SeeBeyond ICAN Suite

SWIFT ADK eWay Intelligent
Adapter User’s Guide

Release 5.0

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

SeeBeyond, e*Gate, e*Way, and e*Xchange are the registered trademarks of SeeBeyond Technology Corporation in the United States
and/or select foreign countries. The SeeBeyond logo, SeeBeyond Integrated Composite Application Network Suite, eGate, eWay,
elnsight, eVision, eXchange, eView, eIndex, eTL, ePortal, eBAM, and e*Insight are trademarks of SeeBeyond Technology Corporation.
The absence of a trademark from this list does not constitute a waiver of SeeBeyond Technology Corporation’s intellectual property
rights concerning that trademark. This document may contain references to other company, brand, and product names. These
company, brand, and product names are used herein for identification purposes only and may be the trademarks of their respective
owners.

© 2004 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20040806171856.

SWIFT ADK eWay Intelligent Adapter User’s Guide 2 SeeBeyond Proprietary and Confidential

Contents

Contents

Chapter 1
Introducing the SWIFT ADK eWay 6
SWIFT Overview 6
SWIFT ADK eWay Overview 7
Types of SWIFT ADK eWay Message Flows 8
Publish (outbound asynchronous) 8
Request / Reply (outbound synchronous) 9
Subscribe (inbound asynchronous) 10
Chapter 2
Installing the SWIFT ADK eWay 12
Supported Operating Systems 12
System Requirements 12
External System Requirements 13
Before Installing the eWay 14
eWay Installation Procedures 14
After Installation 15
Chapter 3
Configuring the SWIFT ADK eWay 16
SWIFT ADK eWay Configuration 16
Configuring the SeeBeyond JMS 1Q Manager 17
Enable authentication and authorization 18
Enable SSL 18
Host Name 18
Server Port 18
Server SSL Port 19

SWIFT ADK eWay Intelligent Adapter User’s Guide 3

SeeBeyond Proprietary and Confidential

Contents

Chapter 4

Installing and Setting up the SEWS eWay Component 20
Overview 20
Installing the SEWS Component on Windows 21
Installing the SEWS Component on UNIX 23
Configuring SEWS 26
System Management Window 26
Network Parameters 27

IP Address or host name 27
Listening TQ Name 27
Message Server Login 29
Message Type 30
Sending TQ Name 31

TCP Port Number 32

Use SSL Flag 33
Security Definition Window 33
Secret 34
Starting the SEWS Swift ADK eWay Component 35
Setting Up a Test Environment (Optional) 36
Queues 36
Routing Points 36
Authentication 37

Chapter 5
Using JMS OTD with the SEWS Component 38
Publish to SEWS Asynchronously 38
Setting the JMS Header property as “PUT” 38
Setting the JMS Header property as “LIST” 39
Publish to SEWS Synchronously 40
Subscribe Asynchronously 42
Chapter 6

Locating, Importing, and Using the Sample Projects 43
Sample Projects Overview 43
Locating and Importing the Sample Projects 44
Running the Sample Projects 44
Setting the Properties 45
Creating the Environment Profile 46
Deploying the Project 47

SWIFT ADK eWay Intelligent Adapter User’s Guide 4 SeeBeyond Proprietary and Confidential

Contents

Running the Sample
Bootstrap Invocation Parameters

Using the Sample Project in elnsight
elnsight Engine and eGate Components
The SWIFT_ADK_Sample_BPEL Sample Project
Sample Project Connectivity Map — cm_SWIFT_ADK
bp_SendToSWIFT BPEL Business Process
Data Used in the Sample Project
bp_ListenFromSWIFT BPEL Business Process

Using the Sample Project in eGate
Sample Project Connectivity Map — cm_SWIFT_ADK
jce_SendToSWIFT Collaboration Definition

SWIFT ADK eWay Error Messages

Index

SWIFT ADK eWay Intelligent Adapter User’s Guide 5

48
48

49
49
50
50
50
51
53

56
56
57

59

62

SeeBeyond Proprietary and Confidential

Chapter 1
Introducing the SWIFT ADK eWay

This guide explains how to install, use, and operate the SeeBeyond® Integrated
Composite Application Network Suite™ (ICAN) SWIFT ADK eWay Intelligent
Adapter, referred to as the SWIFT ADK eWay throughout this guide.

This chapter provides a brief overview of operations, components, general features,
and system requirements of the eWay.

Chapter Topics
= “SWIFT Overview” on page 6
= “SWIFT ADK eWay Overview” on page 7

11 SWIFT Overview
This section provides an overview of Society for Worldwide Interbank Financial
Telecommunication (SWIFT) and the SWIFT ADK eWay.
Introduction to SWIFT

SWIFT is a bank-owned cooperative which supplies secure payment event transfer,
matching, and other services to owner/member banks and other financial
organizations (including brokers, securities deposit and clearing organizations, and
stock exchanges) via its SWIFT Transport Network (STN). The types of events
processed by SWIFT include:

= Payments: Clearing and settlements between member banks.

= Securities: Clearing and settlements and cross border electronic trade
confirmations.

= Forex, money markets and derivatives: Confirmation of trades, marketing and
reporting facilities.

= Trade finance: Documenting credits and collections.

SWIFT ADK eWay Intelligent Adapter User’s Guide 6 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.2
Introducing the SWIFT ADK eWay SWIFT ADK eWay Overview

The SWIFT ADK eWay provides secure messaging services (both receiving and
transmitting) between SWIFT financial institutions. The SWIFT ADK eWay is designed
specifically to interface with the SWIFTAlliance, and enables the SeeBeyond eGate and
elnsight system to exchange data with SWIFTAlliance by providing:

= Automated integration of securities events in the new securities standards (events
MTxxx) which is based on the ISO15022 Data Dictionary.

= Translation of incoming events received from SWIFT into the format required by
existing applications.

= Security, by enabling Secure Sockets Layer (SSL) between the SEWS executable and
eGate.

The SWIFT ADK eWay uses the SWIFT Alliance Developer Toolkit (ADK), which is a
library of APIs that can call services provided by SWIFTAlliance servers. For more
information about ADK, see the SWIFT ADK Reference Guide.

12 SWIFT ADK eWay Overview

The SWIFT ADK eWay functions as a component within the SWIFTAlliance Access
(SAA), operating in conjunction with the SWIFT ADK API to provide direct access to
messages that pass between the SeeBeyond JMS IQ Manager and the SWIFT Network.

The SEWS Executable (SEWS.exe) component is linked into SAA through two routing
points, one for incoming messages (SEWS_from_egate) and the other for outgoing
messages (SEWS_to_egate).

The message remains in the routing point until the SEWS component forwards it to the
JMS IQ Manager, or SAA delivers it to the network. The connection between eGate/
elnsight and SWIFT can be monitored in the SWIFTAlliance log.

Both the eGate API Kit and the Swift ADK API transfer message data from the SAA to a
Queue managed by the SeeBeyond JMS IQ Manager within the SeeBeyond Logical
Host. JMS messages stemming from the JMS IQ Manager are either consumed or
delivered transactionally. These transmissions occur between the J]MS OTD, which
resides in the Integration Server, and the Java Collaboration Definitions or BPEL
business processes, which functions to transform inbound and outbound message data.
The SWIFT ADK eWay supports both synchronous (request/reply) and asynchronous
(send only) communication between these components.

SWIFT ADK eWay Intelligent Adapter User’s Guide 7 SeeBeyond Proprietary and Confidential

Chapter 1
Introducing the SWIFT ADK eWay

Section 1.2
SWIFT ADK eWay Overview

Figure 1 SWIFT ADK eWay Message Flow Overview

Logical Host SwiftAlliance Access (SAA)
-
SecBeyond JMS 1Q SEWS Executable
. Manager
Integration Server (stcms.exe) [
Listening T/Q
request/ reply Name request / X
JCE JMS JMS Client SWIFT
oTD Queue Libraries ADK API
BPEL Sending T/Q
Name [
| |
Routing Rou_ting
Point SEinSKf{;m Point
\ - J
E
5 3
2 8
° 3
e 8
% =
=

121 Types of SWIFT ADK eWay Message Flows

Message that pass between SEWS and eGate/elnsight are classified within the

following three message flows:

= Publish (outbound asynchronous)

= Request/Reply (outbound synchronous)

= Subscribe (inbound asynchronous)

Publish (outbound asynchronous)

Outbound messages that are published asynchronously to SEWS are sent to the
SEWS_from_eGate routing point without waiting to know the status or result of the
request. We call the send method on the JMS OTD within a Java Collaboration or BPEL
Business Process. This method does not return any value. The JMS message is sent to
the JMS queue/topic (as defined by the Listening T/Q name). The same message is
then retrieved by SEWS. Based on the message’s “Header” property value, the SEWS
component will either “PUT” or “LIST”. The status/result of these actions can not be
returned to the Java Collaboration because the JMS OTD send method is asynchronous.
The result of “PUT” or “LIST” enters eGate through a JMS queue/topic (as defined by
the Sending T/Q name). See Figure 2 for an illustration of the message transmission

flow.

SWIFT ADK eWay Intelligent Adapter User’s Guide

SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.2
Introducing the SWIFT ADK eWay SWIFT ADK eWay Overview

Figure 2 Publish (outbound asynchronous) Message Transmission Method
Publish (outbound asynchronous)

SEWS Executable

4)
SEWS_from_eGate

4 Java A
Collaboration
SWIFT msg

. . SWIFT msg -
| Listening « [routing
% "1 T/Q name "\ point

BPEL Business
Process

sl

SEWS_to_eGate

msg status
msg status Sending g u routing
T/Q name point

i] i

Request / Reply (outbound synchronous)

When publishing outbound messages synchronously to SEWS, the message is sent to
the SEWS_from_eGate routing point, then the Java Collaboration waits for the status
or result of the request before sending another request. The synchronous nature is
achieved by calling the JMS OTD method requestReply. This method is different from
send in terms of its blocking /waiting. By calling this method in a Java Collaboration, a
JMS message is sent to the JMS queue/topic (as defined by the Listening T/Q name).
Also, the JMS OTD creates a hidden temporary JMS queue/topic for SEWS to reply to.
Blocking /waiting happens when the J]MS OTD becomes an immediate subscriber of the
temporary queue/topic. In parallel, the SEWS component retrieves the message from
the JMS queue/topic. SEW then processes the message by action defined in the JMS
“Header” property. The result of the “PUT/LIST” action is sent as a JMS message by
SEWS on the hidden temporary JMS queue/topic. The requestReply call unblocks and
returns the resulting JMS message to a Java Collaboration. See Figure 3 for an
illustration of the message transmission flow.

SWIFT ADK eWay Intelligent Adapter User’s Guide 9 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.2
Introducing the SWIFT ADK eWay SWIFT ADK eWay Overview

Figure 3 Request/ Reply (outbound synchronous) Message Transmission Method

Request / Reply (outbound synchronous)

SEWS Executable
4 ™\

SWIFT msg SWIFT msg
A .

A
"1 T/Qname =
SEWS_from_eGate

Listening

Java
Collaboration

routing
1@ | &
msg status msg status
Temporary
T/Q Name

Subscribe (inbound asynchronous)

Messages from SEWS always arrive at eGate/elnsight asynchronously on the JMS
queue/topic (as defined by the Sending T/Q name). There can be three types of
messages:

= The real SWIFT message from the SEWS_to_eGate routing point. This message
leaves the routing point and enters eGate/elnsight as a JMS text message.

= The status message, if you publish to SEWS asynchronously.

= A heart beat message. This message implies that there is no available messages from
the SEWS_to_eGate routing point.

See Figure 4 for an illustration of the message transmission flow.

SWIFT ADK eWay Intelligent Adapter User’s Guide 10 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.2
Introducing the SWIFT ADK eWay SWIFT ADK eWay Overview

Figure 4 Subscribe (inbound asynchronous) Message Transmission Method

Subscribe (inbound asynchronous)

SEWS Executable
4 N

4 Java 3
Collaboration

SWIFT msg status SWIFT msg status”

Sending
T/Q Name

>

SEWS_to_eGate
BPEL Business

routing
point
Process

!
m?_ﬂ? \ J
\] ® J

*
SWIFT message status also appears in outbound asynchronous message flows.

SWIFT ADK eWay Intelligent Adapter User’s Guide 11 SeeBeyond Proprietary and Confidential

Chapter 2
Installing the SWIFT ADK eWay

This chapter describes the requirements and procedures for installing the SWIFT ADK
eWay. Procedures for implementing sample projects, are described in Chapter 6.

Chapter Topics
= “Supported Operating Systems” on page 12
= “System Requirements” on page 12
= “External System Requirements” on page 13
= “Before Installing the eWay” on page 14
= “eWay Installation Procedures” on page 14

= “After Installation” on page 15

21 Supported Operating Systems

The SWIFT ADK eWay is available for the following operating systems:
= Windows 2000
= IBM AIX 5.2

= Sun Solaris 9

22 System Requirements
To use the SWIFT ADK eWay, you need the following:

= An eGate Logical Host.

= A TCP/IP network connection to SWIFTAlliance.

= Sufficient free disk space to accommodate eWay files:
+ Approximately 200 KB on Windows systems
+ Approximately 820 KB on Solaris system
+ Approximately 500 KB on AIX systems

SWIFT ADK eWay Intelligent Adapter User’s Guide 12 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.3
Installing the SWIFT ADK eWay External System Requirements

= Additional free disk space on the SWIFTAlliance host for the SEWS component (see
additional information under External System Requirements on page 13):

+ Approximately 95 KB of disk space on Windows systems
+ Approximately 1.7 MB of disk space on Solaris systems
+ Approximately 780 KB of disk space on AIX systems
Note: Additional disk space is required to process and queue the data that this eWay
processes; the amount necessary varies, based on the type and size of the data being
processed, and any external applications performing the processing.
Logical Host Requirements

The eWay must have its properties set and be administered using the Enterprise
Designer. For complete information on the Enterprise Designer system requirements,
see the ICAN Suite Installation Guide.

Environment Configuration

No changes are required to the Logical Host’s operating environment to support this
eWay.

23 External System Requirements

= The SWIFT ADK eWay supports SWIFTAlliance version 5.5. The SWIFT ADK eWay
also requires a SWIFT ADK eWay run-time license for SWIFTAlliance version 5.5.

Note: The ADK (Alliance Developer Kit) API protocol is supported only by the
SWIFTAlliance Access product family. It is not supported by SWIFTAlliance
Entry. Customers using SWIFTAlliance Entry can send and receive SWIFT
messages through the SeeBeyond Batch eWay, by appropriately configuring the AFT
(Automated File Transfer) interface in SWIFTAlliance Entry.

External Configuration Requirements
= The SEWS component must be installed and configured (see Chapter 4)

Note: The SEWS component must be installed on the same platform as the SWIFTAlliance
server.

= Before installing SEWS into SWIFTAlliance on UNIX, the root user must set up the
correct environment.

Two routing points, SEWS_to_egate and SEWS_from_egate are installed when the
SEWS ADK component is installed. The ways in which these routing points are used,
and messages are routed to and from them, are independent of SEWS and depend on
the application being used. For information on how to configure routing points, see the
SWIFT System Management Guide.

SWIFT ADK eWay Intelligent Adapter User’s Guide 13 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.4
Installing the SWIFT ADK eWay Before Installing the eWay

24 Before Installing the eWay

Open and review the Readme.txt file for any additional information or requirements
prior to installation. The readme.txt is located on the installation CD-ROM.

25 eWay Installation Procedures

During the ICAN Suite installation process, the Enterprise Manager, a Web-based
application, is used to select and upload eWay and add-on files (.sar files) from the
ICAN installation CD-ROM to the Repository.

The eGate installation process includes the following operations:
= Installing the eGate Repository
= Uploading products to the Repository

= Downloading the components (including the eGate Enterprise Designer and the
Logical Host)

= Viewing the product information home pages

Follow the instructions for installing the ICAN Suite found in the “SeeBeyond ICAN
Suite Installation Guide”, and include the following steps:

1 On the Enterprise Manager under the ADMIN tab, select the SwiftADKeWay.sar
(to install the Swift ADK eWay) file to upload.

2 On the Enterprise Manager under the Admin tab, select the FileeWay.sar (to install
the File eWay) file to upload.

3 On the Enterprise Manager under the Admin tab, select the
SwiftADKeWayDocs.sar (to install the documentation and sample projects) file to
upload.

4 On the Enterprise Manager under the DOWNLOADS tab, click the link for the
SEWS component that matches the system running SAA. Files available for
download include:

+ SEWS component for SAA5.5 Win32 — downloads the SEWS_Win32.zip file

+ SEWS component for SAA5.5 Aix52 — downloads the SEWS_AIX52.tar file

+ SEWS component for SAA5.5 Solaris 9 — downloads the SEWS_SOLS9.tar file
You must save the file the following local directory folder:

<cd>: \SETUP\ADDONS\EWSWIFTADK\SEWS\WIN32\

These are SWIFT ADK medium files that are accessed directly from the SAA install
GUI, (see Installing and Setting up the SEWS eWay Component on page 20).

5 On the Enterprise Manager under the DOCUMENTATION tab, click the sample
project link. For the sample project, it is recommended that you extract the file to

SWIFT ADK eWay Intelligent Adapter User’s Guide 14 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.6
Installing the SWIFT ADK eWay After Installation

another location prior to importing it using the Enterprise Explorer’s Import Project
tool.

For additional information on how to use eGate, please see the “eGate Integrator
Tutorial”.

26 After Installation

Once the eWay is installed and configured, it must then be incorporated into a Project
before it can perform its intended functions. See the “eGate Integrator User’s Guide” for
more information on incorporating the eWay into an eGate Project.

SWIFT ADK eWay Intelligent Adapter User’s Guide 15 SeeBeyond Proprietary and Confidential

Chapter 3

Configuring the SWIFT ADK eWay

This chapter explains how to set the properties for the SWIFT ADK eWay.

Chapter Topics

= “SWIFT ADK eWay Configuration” on page 16

“Configuring the SeeBeyond JMS IQ Manager” on page 17

31 SWIFT ADK eWay Configuration

The configuration settings within eGate for the SWIFT ADK eWay only apply to the
SeeBeyond JMS IQ Manager. The SWIFT ADK eWay contains no eWay configuration
properties since the SEWS component resides as a component within the
SWIFTAlliance Access, which communicates directly with Topics of Queues managed
by the SeeBeyond JMS IQ Manager.

To configure the SWIFT ADK eWay

1

From the Enterprise Designer, click the Environment Explorer tab located at the
bottom left pane.

Create a new project Environment.
Create all the systems required to deploy your project, including;:
+ External systems
+ Logical Host
+ SeeBeyond Integration Server
+ SeeBeyond JMS IQ Manager
Right-click JMS IQ Manager and select Properties from the list box.

The eWay Properties dialog box appears, see Figure 5 on page 17. You can use this
dialog box to modify the SeeBeyond JMS IQ Manager properties necessary for
communication with the SEWS Executable in the SWIFTAlliance Access.

Click OK then Save All to save your changes.

SWIFT ADK eWay Intelligent Adapter User’s Guide 16 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
Configuring the SWIFT ADK eWay Configuring the SeeBeyond JMS I1Q Manager

32 Configuring the SeeBeyond JMS 1Q Manager

This chapter describes how to configure the SeeBeyond JMS IQ Manager properties
from the Environment Explorer tab.

Properties you can configure on the dialog box include:
= Enable authentication and authorization

Enable SSL

= Host Name

= Server Port
Server SSL Port

Figure 5 SeeBeyond JMS IQ Manager Properties Dialog Box

ré}_Bctnnﬂguratinn |E|E |B || |§|

SeeBeyond JMS 1C Manage

Authenticate Mode Trustall
Enahle authentication and autl| Maone
Enahle S5L Falze
Host name localhost
Jvhd shared library path

Server part 18004
Server 5L part 18005

4] 1l] 3

Description {(JMS Connection Con...

JWS Connection Configuration
Pararmeters

Comments (JMS Connection Con...

Froperties |

| ks | Cancel

SWIFT ADK eWay Intelligent Adapter User’s Guide 17 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
Configuring the SWIFT ADK eWay Configuring the SeeBeyond JMS I1Q Manager

Enable authentication and authorization

Description

Turns the authentication and authorization security service on or off. If File is selected,
then the Sun Java System, AD and OpenLDAP access to the SeeBeyond JMS IQ
Manager is only granted if a valid user id and password are supplied. If File is selected
for File-based aa service, SunJava is selected for Sun Java System, AD is selected for
Active Directory Service, OpenLDAP is selected for OpenLDAP Directory Service.

Required Values
Change the default value to File.

Note: Previous versions of eGate use the value True to require user id and password access
through the SeeBeyond [MS IQ Manager. You can access the JMS configuration
properties by double-clicking the JMS icon on the connectivity map. Security
settings are found under: Configuration > JMS Client > Basic > Security. For

additional information on these settings, refer to the eGate Integrator JMS Reference
Guide.

Enable SSL

Description

Turns on or off Secure Sockets Layer (SSL). TCP/IP connections from the client to the
JMS IQ Manager are secured using SSL when this parameter is set to True, but you
must use the Server SSL port to take advantage of it.

Required Values

The default value is False.

Host Name

Description
Lists the host name of the machine running the SeeBeyond JMS IQ Manager.
Required Values

The default value is localhost.

Server Port

Description

Specifies the TCP/IP port number that the SeeBeyond JMS IQ Manager listens on. Each
SeeBeyond JMS IQ Manager must have a unique port number per Logical Host.
Change this setting to an available port if you add additional SeeBeyond JMS IQ
Managers.

Required Values

The value displayed in the Server Port field is different for each version of eGate
installed.

SWIFT ADK eWay Intelligent Adapter User’s Guide 18 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
Configuring the SWIFT ADK eWay Configuring the SeeBeyond JMS I1Q Manager

Server SSL Port

Description

Specifies the TCP/IP port number that the SeeBeyond JMS IQ Manager listens on for
Secure Socket Listener (SSL) connections. This port number is enabled when you
change the Enable SSL configuration property to “True”.

Required Values

The value displayed in the Server SSL Port field is different for each version of eGate
installed.

SWIFT ADK eWay Intelligent Adapter User’s Guide 19 SeeBeyond Proprietary and Confidential

Chapter 4

Installing and Setting up the SEWS eWay
Component

This chapter describes procedures for installing the SEWS component within the
SWIFTAlliance Access, and for customizing the SEWS component to operate with your
system.

This Chapter Includes:
= “Overview” on page 20
= “Installing the SEWS Component on Windows” on page 21
= “Installing the SEWS Component on UNIX” on page 23
= “Configuring SEWS” on page 26
= “Starting the SEWS Swift ADK eWay Component” on page 35
= “Setting Up a Test Environment (Optional)” on page 36

s1 Overview

Prior to installation you must:
= Install the SEWS component into the SWIFTAlliance server
= Make sure all SWIFTAlliance servers are not running
= Click Cancel if the Add-ons installer starts up automatically

You must properly configure the SEWS component to connect SWIFTAlliance to the
SeeBeyond JMS IQ Manager.

SWIFT ADK eWay Intelligent Adapter User’s Guide 20 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Installing and Setting up the SEWS eWay Component Installing the SEWS Component on Windows

42 Installing the SEWS Component on Windows

To install the SEWS component on a Windows system
1 Unzip the SEWS component for the SAA5.5_Win32 to a local folder:
<cd>: \temp
2 Log into SWIFTAlliance ADK as the user account under which it was installed.

3 Start the SWIFTAlliance ADK setup program by locating and running the
adk_install.exe on SAA 5.5. The SWIFTAlliance Set-up window appears.

Figure 6 SWIFTAlliance Set-up (Install component)

SWIFTAlliance Set-up (init)

4 In the Set-up dialog, install SEWS as follows:
A In the Component field, type SEWS.

B In the Software group, select the Install component option (or Upgrade
component, if a previous version of SEWS is installed)

C In the Input device field, type in the path to the folder extracted in step 1:

SWIFT ADK eWay Intelligent Adapter User’s Guide 21 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Installing and Setting up the SEWS eWay Component Installing the SEWS Component on Windows

<drive>\<temp directory>

D In the Cipher field, enter "seebeyond"

E Click OK. Progress messages display in the dialog box. SEWS is successfully
installed when you see the following message:

ADKI session completed

Figure 7 SWIFTAlliance Set-up (Register)

SWIFTAlliance Set-up (init)

SWIFT ADK eWay Intelligent Adapter User’s Guide 22 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Installing and Setting up the SEWS eWay Component Installing the SEWS Component on UNIX
5 If you are preforming a first-time installation, register SEWS as follows:

A In the Set-up dialog Software group, clear the Install component option by
selecting Register.

Clear the Input device and Cipher fields.

C Click OK. Progress messages are displayed in the message area of the dialog.
SEWS is successfully registered when you see the following message:

ADKI session completed

D Click Quit to close the Set-up window.

43 Installing the SEWS Component on UNIX

To install the SEWS component on a UNIX system
1 Log in as root, running under /bin/ksh.
2 Save the SEWS component for SAA5.5_AIX52 or SAA5.5_Solaris_9 to:

/export/home/alliance/

3 Set up the correct environment by sourcing the following script (including the
period and space at the beginning):

. /usr/swa/alliance_init -s
4 Set up the LIBPATH (for AIX 5.2) or the LD_LIBRARY_PATH (for Solaris 9) to:

LIBPATH=/usr/alliance/rls/common/lib/AIX

LD_LIBRARY_PATH=/usr/alliance/rls/common/lib/SunOS

5 Set the display variable.
6 Start the SWIFTAlliance ADK setup program by typing the following command:

$ (ALLIANCE) /INA/bin/$(ARCH) /adk_install:

Note: On Solaris, $(ARCH) is set to ‘SunOS’; on AIX 5.2, $(ARCH) is set to *AIX".

The SWIFTAlliance Set-up window appears.

SWIFT ADK eWay Intelligent Adapter User’s Guide 23 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Installing and Setting up the SEWS eWay Component Installing the SEWS Component on UNIX

Figure 8 SWIFTAlliance Set-up (Install component)

SWIFTAlliance Set-up (init)

7 In the Set-up dialog, install SEWS as follows:
A In the Component field, type SEWS.

B In the Software group, select the Install component option (or Upgrade
component, if a previous version of SEWS is installed).

C In the Input device field, type in the fully-qualified path on the installation
CD-ROM, such as:

<cd>: /export/home/alliance/SEWS_AIX52.tar
D In the Cipher field, enter "seebeyond"

E Click OK. Progress messages display in the dialog box. SEWS is successfully
installed when you see the following message:

ADKI session completed

SWIFT ADK eWay Intelligent Adapter User’s Guide 24 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Installing and Setting up the SEWS eWay Component Installing the SEWS Component on UNIX

Figure 9 SWIFTAlliance Set-up (Register)

SWIFTAlliance Set-up (init)

Cancel

8 Register SEWS as follows if you are performing a first-time installation:
A In the Set-up dialog Software group, clear the Install component option.
B In the Services group, select Register.
C Clear the Input device and Cipher fields.
D

Click OK. Progress messages are displayed in the message area of the dialog.
SEWS is successfully registered when you see the following message:

SWIFT ADK eWay Intelligent Adapter User’s Guide 25 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Installing and Setting up the SEWS eWay Component Configuring SEWS

ADKI session completed

E Click Quit to close the Set-up window.

44 Configuring SEWS

To configure SEWS, first set your SWIFTAlliance servers to housekeeping mode, then
set up the following item to match your system and your schema:

= Network Parameters

Note: The values entered for the SEWS parameters must exactly match the corresponding
eWay configuration parameters.

441 System Management Window

The System Management window lists the seven parameters that require configuration.
Each parameter must contain the proper value or the SEWS executable will attempt to
initiate a JMS connection to a nonexistent JMS server.

To open the System Management window:
1 Click the System Management icon on the SWIFTAlliance Access Control

window. The System Management window appears.

Figure 10 Systems Management Window

1=
Configuration Queue Device
Comp. Class Parameter Mame Device name
MXS Batch Input Automatic — Error Dir BatchSwiftAcks Fdev/ttyod
MXS Batch Input Automatic — Polling Timer BatchSwiftMNaks Adev/ttyl
MXS Batch Input History Period DeliveryMotifAcks
MXS Print Skip Interventions DeliveryMotifMNaks
MXS Print S5T200-1like Format LocalSwiftAcks
LocalSwiftNaks
SEWS Network paramet Listening TO Mame PeccSuiftAcks
SEWS Network paramet Messape Server Lopin Mame PccSuiftMNaks
SEWS Network paramet Messape Type Received
SEWS Network paramet Sending TA@ Name SEWS_from_egate
SEWS Network paramet TCP Port Mumber SEWS_to_epate
SEWS Network paramet Use S5L Flag Statement
SIS FIN Copy Local 103 Addition System
SIS Message LT load balancing ToBelnvestigated
SIS Performance Active Correspondent UpdateKeys
SIS Message ETY Routing _AI_from_APPLI
SIS Network SWIFTNet Batching Timeout _MP_authorisation

SWIFT ADK eWay Intelligent Adapter User’s Guide 26 SeeBeyond Proprietary and Confidential

Chapter 4

Section 4.4
Installing and Setting up the SEWS eWay Component Configuring SEWS

442 Network Parameters

The Systems Management window of SWIFTAlliance allows you to configure seven
non-secret parameters (see Figure 10 on page 26) of the SEWS component, including:

= IP Address or host name

= Listening TQ Name

= Message Server Login Name
= Message Type

* Sending TQ name

= TCP Port Number

= Use SSL Flag

IP Address or host name

1 Double-click the IP Address or host name line in the System Management Window,
to open the configuration details for that parameter, (see Figure 11 below).

Figure 11 Systems Management — IP Address

!;{-ZSystem Management - Configuration Details

SEWS
INetuork parameters

127/0/0/1

IP Address or host n

The IP address or host name of message server
to bind to.

Refer to the SEMWS documentation for more
information.

2 Enter the IP Address or host name where your message server runs.

Note: Review the SWIFT documentation for the required IP Address format.

Listening TQ Name

3 Double-click the Listening TQ Name line to open the configuration details for that
parameter, (see Figure 12 below).

SWIFT ADK eWay Intelligent Adapter User’s Guide 27 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Installing and Setting up the SEWS eWay Component Configuring SEWS

Figure 12 Systems Management — Listening TQ Name

. System Management - Configuration Details

SEWS_from_egate

MNetwork parameters

Listening TQ Name

The incoming Topic or Queue name.

Refer to the SEMWS documentation for more
information.

4 Enter the name of the JMS Topic or Queue in the SeeBeyond Enterprise Designer —
Connectivity Map Editor that is designated for sending messages to SEWS.

The SEWS executable listens for available messages and inserts the SWIFT message
to the SEWS_from_egate routing point. You can provide any name for the J]MS
queue or topic in eGate, but not for the routing point which is registered with
SWIFT. We recommend providing similar naming conventions to distinguish
between incoming and outgoing messages.

SWIFT ADK eWay Intelligent Adapter User’s Guide 28 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Installing and Setting up the SEWS eWay Component Configuring SEWS

Message Server Login

5 Double-click the Message Server Login line in the System Management Window, to
open the configuration details for that parameter, (see Figure 13 below).

Figure 13 Systems Management — Message Server Login

!;{-ZSystem Management - Configuration Details

ISEWS
Network parameters
p

Message Server Login

Administrator

The user login name to message server.
Refer to the SEMWS documentation for more
information.

6 Enter the Message Server Login name to communicate with the JMS server.

This parameter only takes affect if you enable the JMS message server to
authenticate the client. The example in Figure 13 uses the default value.

SWIFT ADK eWay Intelligent Adapter User’s Guide 29 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Installing and Setting up the SEWS eWay Component Configuring SEWS

Message Type

7 Double-click the Message Type line in the System Management Window, to open
the configuration details for that parameter, (see Figure 13 below).

Figure 14 Systems Management — Message Type

!;{-ZSystem Management - Configuration Details

MNetwork parameters

Message Type

The Topic or Queue message type.

Refer to the SEMWS documentation for more
information.

8 Enter QUEUE or TOPIC in upper case characters. Entering any other character
causes the value to default to queue mode communication with the JMS message
server.

SWIFT ADK eWay Intelligent Adapter User’s Guide 30 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Installing and Setting up the SEWS eWay Component Configuring SEWS

Sending TQ Name

9 Double-click the Sending TQ Name line in the System Management Window, to
open the configuration details for that parameter, (see Figure 13 below).

Figure 15 Systems Management — Sending TQ Name

!;{-ZSystem Management - Configuration Details

SEWS

SEWS_to_epate

MNetwork parameters

Sending TQ Name

The outgoing Topic or Queue name.

Refer to the SEMWS documentation for more
information.

10 Enter the name of the JMS Topic or Queue in the Connectivity Map Editor that is
designated for receiving messages from SEWS.

The SEWS Executable uses the JMS Topic or Queue name to subscribe to a message
from the routing point, such as "SEWS_to_egate", and mashals the ADK message
into a SWIFT message. The SEWS Executable then converts the SWIFT message to a
text message and delivers it to the SeeBeyond IQ Manager. You also need to
subscribe to the JMS Queue or Topic in the eGate Collaboration.

SWIFT ADK eWay Intelligent Adapter User’s Guide 31 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Installing and Setting up the SEWS eWay Component Configuring SEWS

TCP Port Number

11 Double-click the TCP Port Number line in the System Management Window, to
open the configuration details for that parameter, (see Figure 13 below).

Figure 16 Systems Management — TCP Port Number

The TCP Port number to listen on.
Refer to the SEMWS documentation for more
information.

12 Enter the port number the SeeBeyond IQ Manager uses to communicate to the JMS
message client. You can get this value from the JMS IQ Manager Properties
window in the Environment Explorer.

SWIFT ADK eWay Intelligent Adapter User’s Guide 32 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Installing and Setting up the SEWS eWay Component Configuring SEWS

Use SSL Flag

13 Double-click the Use SSL Flag line in the System Management Window, to open the
configuration details for that parameter, (see Figure 13 below).

Figure 17 Systems Management — Use SSL Flag

!;{-ZSystem Management - Configuration Details

SEWS
MNetwork parameters
Use SSL Flag

FLAG to indicate connect the message sever port
using 55L.

Refer to the SEMWS documentation for more
information.

14 Enter an integer value of “1” if you want the SEWS executable to communicate with
the JMS message server using Secured Sockets Layer (SSL) protocol. Otherwise, set
the value to “0”. If you set the value to “1”, then the TCP Port Number in the
previous section should be the SSL port used in the SeeBeyond JMS IQ Manager’s
Properties dialog box, located on the Environment Explorer.

443 Security Definition Window

The Security Definition window can only be run by security officers LSO and RSO
(which stands for Left and Right Security Office, respectively). Any changes made by
any security officer to any of the security definitions must be approved by both security
officers before they can become effective.

SWIFT ADK eWay Intelligent Adapter User’s Guide 33 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Installing and Setting up the SEWS eWay Component Configuring SEWS

Figure 18 Security Definitions window

[Z] Configuration - Security Definition

Ei

el ' Appr_w.e_

Sianon Irneo!

Signoft Tirneout Aporoved
Operator Restict Functions . Approved
Password aster Period Spproved
Password . & Bad Pwd Aoproved
Password . in Pwd Lenath Approved
Password . Mbr Retained Pwd &pproved
Password . User Period Approved
Password Mode Approved
Password lleasl Pattemns Approved
Passw et Peer Officer Passwo . Aporoved

Reparts t Path for Aeport File . Approved
Signon Multiple Approved
Swystem RPC Authentication Approved
Approved
Uiemmpeel

Secret

Enter the value that will be used to connect to eGate. You must first login as LSO to
enter this value, then login as RSO to approve the value.

Figure 19 Security Definition window

FISecurity Defii nfiguration Details

The secret used to authenticate eGate
clients,

SWIFT ADK eWay Intelligent Adapter User’s Guide 34 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.5
Installing and Setting up the SEWS eWay Component Starting the SEWS Swift ADK eWay Component

45 Starting the SEWS Swift ADK eWay Component

To start the SEWS component
1 Set your SWIFTAlliance servers to operational mode.
2 Select Start Component from the File menu in the System Management window.

The Start Component window appears.

Figure 20 System Management — Star Component

¢ System Management - Start Co =]

Components that can be started

SEWS Swift ADK elay Serwver
SNSS SWIFTNet Support Services

Startl Closel Helpl

3 Select SEWS Swift ADK eWay Server from the component list and click Start.

SWIFT ADK eWay Intelligent Adapter User’s Guide 35 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.6
Installing and Setting up the SEWS eWay Component Setting Up a Test Environment (Optional)

46 Setting Up a Test Environment (Optional)

If you do not have an existing SWIFT environment suitable for testing, you can set up a
simple loopback configuration for testing purposes, following installation of the SEWS
component. When running this test environment, any eGate-outbound events sent to
the SEWS component will be routed back as eGate-inbound events, using the
SEWS_from_egate and SEWS_to_egate routing points.

To create this test environment, you must set up the following items to match your
system and your schema.

1 Queues for the routing points.
2 The routing points themselves.
3 Logical terminals.
4 TCP/IP parameters.
5 Security options.
Remember to set your SWIFTAlliance servers to housekeeping mode. All procedures

except those related to security options require only Operator privileges.

Note: When you create a new security, both the LSO and RSO must log in and approve it
before you can activate it.

461 Queues

First, you need to set up the queue for the routing points:

1 Launch the Systems Management window, invoke the View drop-down menu, and
select Queue.

2 Open the routing point SEWS_from_egate, and select the Routing tab.
3 Under Valid routing targets, move SEWS_to_egate from Available to Selected.
4 Modify and Save this configuration.

462 Routing Points

Second, you need to configure the routing points to loop the messages from inbound
back to outbound:

1 Launch the Routing window.

2 View the schemas to make sure your test schema is separate from any working
schema. If not, create a dummy schema and move it to the Selected box under the
Used in Routing Schema(s) field.

SWIFT ADK eWay Intelligent Adapter User’s Guide 36 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.7
Installing and Setting up the SEWS eWay Component Authentication

3 With the test schema active, open the routing point SEWS_from_egate and create a
new routing rule, setting the following parameters to the indicated values.

Parameter Value
Condition On Function Result and Message
Function Result Accept
Message Creating_mpfn = ‘SEWS_mpf’
Action On source
Action Route To (on the source sub-panel)
Route To SEWS_to_egate
Append Intervention No Intervention
Unit Keep Current

4 Click Validate, then Save the configuration.

5 View the Routing Rule window and click Add or Modify to save the routing rule
settings.

47 Authentication

The SWIFT ADK eWay only supports password based authentication. The SEWS
component authenticates itself to the eGate IQ Manager by providing Message Server
Login (see Message Server Login on page 29) and Secret (see Secret on page 34). For
additional security, we recommend enabling SSL. The SEWS component always trusts
the eGate IQ Manager. Server authorization (IQ Manager authenticating itself to SEWS)
is currently not supported.

SWIFT ADK eWay Intelligent Adapter User’s Guide 37 SeeBeyond Proprietary and Confidential

Chapter 5
Using JMS OTD with the SEWS Component

This chapter describes the properties used to establish message connections between
the J]MS OTD and the SEWS Component.

This Chapter Includes:
= “Publish to SEWS Asynchronously” on page 38
= “Publish to SEWS Synchronously” on page 40
= “Subscribe Asynchronously” on page 42

1 Publish to SEWS Asynchronously

This section describes the steps required to set up JMS properties that are required to
publish to SEWS asynchronously (publish — outbound asynchronous). This component
supports two types of messages:

= PUT
= LIST

For additional information on how these message types are implemented in a typical
outbound asynchronous message flow, see Publish (outbound asynchronous)
Message Transmission Method on page 9.

511 Setting the JMS Header property as “PUT”

To insert a SWIFT ADK eWay message using a Java Collaboration or BPEL business
process, you must:

1 Create a text message that invokes the JMS OTD'’s createTestMessage method. In a
Java Collaboration, this method appears as:

com.stc.connectors.jms.Message requestTextMsg =
JMS_1.createTextMessage() ;

SWIFT ADK eWay Intelligent Adapter User’s Guide 38 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Using JMS OTD with the SEWS Component Publish to SEWS Asynchronously

2 Call the storeUserProperty method on the requestTextMsg object to set up the
following JMS properties:

+ storeUserProperty("Header", "PUT"), the "PUT" means the SEWS will put the
message into routing point SEWS_from_egate.

+ storeUserProperty("type", "Swift"), means the message type is Swift.

+ storeUserProperty("validation", "none"), the level of message validation you
want SAA to do it before insert to routing point. SAA supports these possible
validation levels:

¢+ none

¢+ minimum

¢+ intermediate
¢+ maximum

If you misspell the validation property or do not set validation property, the
SEWS takes the default validation level: "maximum".

+ storeUserProperty("recourse_action","complete'). The possible choices are:
+ complete: means the message will be complete if validation ok
+ modify: this means the message will be modified due to validation failure.

+ storeUserProperty("duplicate","true"), you only set this user property when
you know the message you want to insert into RP: SEWS_from_egate is a
duplicated message.

+ Set the text pay load on this JMS OTD object.

512 Setting the JMS Header property as “LIST”

Another "Header" action is "LIST", which allows you to get a list of messages on the
routing point. The following JMS properties apply:

= storeUserProperty("Header", "LIST"), the "LIST" means the SEWS will list the
messages on the RP.

= storeUserProperty("state", "reserved"), it will only list "reserved" messages,
choices are:

+all
* reserved
+ unreserved
If you do not set "state" property, the default state is "unreserved".

= storeUserProperty("rp_name", "SEWS_to_egate"), which RP you want to list,
choices are:

+ SEWS_to_egate
+ SEWS_from_egate.

SWIFT ADK eWay Intelligent Adapter User’s Guide 39 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Using JMS OTD with the SEWS Component Publish to SEWS Synchronously

Publishing to SEWS asynchronously requires calling the send method on this OTD. If
you use eGate 5.0.1 - 5.0.3, the J]MS OTD does not have a requestReply method, so you
can only call send. The result of "PUT" or "LIST" will come in eGate through the JMS

queue/topic (as defined in the Sending T/Q name).

52 Publish to SEWS Synchronously

This section describes the steps required to set up JMS properties that are required to
publish to SEWS synchronously (Request / Reply — outbound synchronous).

For additional information on how these message types are implemented in a typical
outbound synchronous message flow, see Request / Reply (outbound synchronous)
Message Transmission Method on page 10.

This feature is only supported in eGate 5.0.4 with the addition of a new method in the
JMS OTD.

Everything is the same as in "Publish to SEWS asynchronously", except for the last step.
Instead of calling the send method, you call requestReply(requestTextMsg);.

There will be a return result from calling requestReply, the return result is a
com.stc.connectors.jms.Message type object. You should call retrievelserPropertyList on
the reply object to get all the user properties. Also you should call
retrieveStringFromMessage to retrieve the reply message body.

If your request is "Header=PUT", then the reply message is a status report of "PUT".
The reply message has the following JMS properties:

= s_umid, the value of this JMS property is the s_umid of new swift message we add
to RP: SEWS_from_egate.

= JMS_ProducerID, the value is always ICANSEWSLSTN.
= isOK, the value if "TRUE" if you insert successfully, otherwise "FALSE".

= times, the value a series of timestamp the "PUT" request take to put a message.

SWIFT ADK eWay Intelligent Adapter User’s Guide 40 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Using JMS OTD with the SEWS Component Publish to SEWS Synchronously

If "isOK=FLASE", e.g. the message has the wrong format. The JMS property will list the
cause of the failure, it will has the following properties:

= code, value may be "SEWS_FAILED_TO_ADD". Other possible codes are:
+ SEWS_UNKNOWN_COMMAND
+ SEWS_UNKNOWN_STATE
+ SEWS_FAILED_TO_ROUTE
+ SEWS_FAILED_TO_RESERVE
+ SEWS_UNKNOWN_MSG_TYPE
* SEWS_NO_MSG_TYPE_SUPPLIED
+ SEWS_INVALID_RP.

= JMS_ProducerID, same as previous.

= isOK, "FALSE"

= reason, value is "ADK_FAILURE

If your request is "Header=LIST", then the reply message is a list of messages’ s_umids
The reply message has JMS properties:

= isOK, "TRUE" or "FALSE"
= JMS_ProducerID, the value is always ICANSEWSLSTN
= code, value may be "SEWS_FAILED_TO_LIST". Other possible codes are:
+ SEWS_UNKNOWN_COMMAND
+ SEWS_UNKNOWN_STATE
+ SEWS_FAILED_TO_ROUTE
+ SEWS_FAILED_TO_RESERVE
+ SEWS_UNKNOWN_MSG_TYPE
+ SEWS_NO_MSG_TYPE_SUPPLIED
+ SEWS_INVALID_RP.
You get code only isOK=FALSE.

The reply message body will have a list of s_umids separated by space. In case there is
no message, then the reply message body is a empty string, i.e. "

SWIFT ADK eWay Intelligent Adapter User’s Guide 4 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Using JMS OTD with the SEWS Component Subscribe Asynchronously

53 Subscribe Asynchronously

This section describes the steps required to set up JMS properties that are required to
subscribe to messages asynchronously (Subscribe — inbound asynchronous).

For additional information on how these message types are implemented in a typical
inbound asynchronous message flow, see Subscribe (inbound asynchronous) Message
Transmission Method on page 11.

These messages are delivered to eGate asynchronously from SEWS. There can be three
types of messages:

1 The real swift message from RP: SEWS_to_egate, those messages are real SWIFT
message and coming into egate as a JMS text message. The SWIFT message is
contained in the JMS message body. It has following JMS message properties

+ mesg_s_umid: s_umid of the message

+ inst_type: always "ADK_INST_TYPE_ORIGINAL", we only support routing
original message

+ inst_num, message instance number, normally 0 because we only support
routing original message.

+ times, a series of timing data

+ mesg_sub_format, either "ADK_INPUT" or "ADK_OUTPUT"

* JMS_ProducerID

+ inst_s_umid, the instance s_umid, normally same as mesg_s_umid.

+ isOK, always "TRUE"

* type, can be "Swift" or "Telex"

+ text_s_umid, the message text body s_umid, normally same as mesg_s_umid
+ s_umid, the message body s_umid, normally same as mesg_s_umid

The text payload of the J]MS message will have the real Swift message without any
string padding.

2 The status message, if you use "Publish to SEWS asynchronously", the message is a
JMS message, has same format as we discussed in "Publish to SEWS
synchronously", except the JMS_ProducerID has new value: ICANFROMSEWS.

3 A heart beat message saying there is no message to get from RP: SEWS_to_egate. It
has JMS properties:

+ code, "SEWS_NO_MESSAGE"
+ JMS_ProducerID, "ICANFROMSEWS"

+ isOK, "FALSE". It is always FALSE because no message on RP: SEWS_to_egate,
you should also look at "code" property for "SEWS_NO_MESSAGE" to filter out
such benign heart beat message.

+ rp_name, always "SEWS_to_egate"

SWIFT ADK eWay Intelligent Adapter User’s Guide 42 SeeBeyond Proprietary and Confidential

Chapter 6

Locating, Importing, and Using the Sample
Projects

This chapter describes how to use the sample projects included in the installation
CD-ROM package.

Chapter Topics Include:
= “Sample Projects Overview” on page 43
= “Locating and Importing the Sample Projects” on page 44
= “Running the Sample Projects” on page 44
= “Using the Sample Project in eInsight” on page 49
= “Using the Sample Project in eGate” on page 56

&1 Sample Projects Overview

Sample projects are designed to provide an overview of the basic functionality of the
SWIFT ADK eWay by demonstrating how to pass information between the
SWIFTAlliance Access and eGate.

Sample Projects Include:

SWIFT_ADK_Sample_JCE — uses Collaboration Definitions (Java) to either listen for,
or send messages to SWIFT.

The following components are found in the sample project:
= Connectivity Map (ecm_SWIFT_ADK)
= File External Applications (FileIN and FileOUT)
= Java based Collaboration Definitions (jce_ListenFromSwift and jce_SendToSwift)

= Queues (SEWS_from_egate and SEWS_to_egate)

SWIFT ADK eWay Intelligent Adapter User’s Guide 43 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Locating, Importing, and Using the Sample Projects Locating and Importing the Sample Projects

SWIFT_ADK_Sample_BPEL — uses BPEL based business processes that are designed
to either listen for, or send messages to SWIFT.

The following components are found in the sample project:
= Connectivity Map (cm_SWIFT_ADK)
= File External Applications (FileIN and FileOUT)
= BPEL based business processes (bp_ListenFromSwift and bp_SendToSwift)
= DTD based OTD (UserPropertyMsg UserPropertyMsg)
= Queues (SEWS_from_egate and SEWS_to_egate)

62 Locating and Importing the Sample Projects

The eWay sample projects are included in the SWIFTADKeWayDocs.sar. This file is
uploaded separately from the SWIFTADKeWay.sar file during installation. For more
information, refer to “Installing the SWIFT ADK eWay” on page 12.

Once you have uploaded the SWIFTADKeWayDocs.sar to the Repository, you can
begin downloading the sample Projects from the Documentation tab on Enterprise
Manager, to a folder of your choosing.

Before using the sample project, you must first import it into the SeeBeyond Enterprise
Designer using the Enterprise Designer Project Import utility.

To Import the Sample Project:

1 From the Enterprise Designer’s Project Explorer pane, right-click the Repository
and select Import.

2 In the Import Manager window, browse to the directory that contains the sample
Project zip file.

3 Select the sample file and then click Open.

4 Click the Import button. If the import was successful, then click the OK button on
the Import Status window.

63 Running the Sample Projects

Steps required to run the sample projects include:
= Configure the Properties
= Creating the Environment Profile
= Deploying the Project
= Running the Sample

SWIFT ADK eWay Intelligent Adapter User’s Guide 4 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Locating, Importing, and Using the Sample Projects Running the Sample Projects

631 Setting the Properties

Sample projects use both an inbound and an outbound File eWay to deliver or receive
sample data. The following information describes how to configure the File eWays from
the Connectivity Map.

To Configure the File eWays:

1 On the Connectivity Map, double-click the Inbound File eWay (denoted as the
eWay that delivers data to the Collaboration Definition or BPEL Business Process).

Figure 21 Connectivity Map — Inbound File eWay

Inbound File eWay
connecting to a

Collaboration Definition\

. 0O (b= 1 »
Fileslrd Servicel SBEWS_from_egste

2 The Properties window for the Inbound File eWay opens. Modify any parameter
settings necessary for your system, including the Directory and Input file name so
they match the location and name of the sample data file, see Data Used in the
Sample Project on page 51.

Figure 22 Properties Dialog Box — Inbound File eWay

Configuration Y 12 E = || |@|
m HERIENID

Directary Citemp
Input file name input® bd
Input type Bytes
Maximum bytes per recard | 4096
Description {parameter-settings) hultiple records per file False
Falling interval a000
Femove EOL False

comments (parameter-settings)

Froperties |

| (]34 | Cancel

3 Click OK to close the Properties window.

4 On the Connectivity Map, double-click the Outbound File eWay (denoted as the
eWay that receives data to the Collaboration Definition or BPEL Business Process).

SWIFT ADK eWay Intelligent Adapter User’s Guide 45 SeeBeyond Proprietary and Confidential

Chapter 6

Section 6.3
Locating, Importing, and Using the Sample Projects Running the Sample Projects

Figure 23 Connectivity Map — Outbound File eWay

Outbound File eWay
connected to a BPEL

business process \

pA-——a—>F [= o P

a
SBEWS_to_egate Service? File2UT

5 The Properties window for the Outbound File eWay opens. Modify any parameter

settings necessary for your system, including the Output file name and the target
Directory where you want the resulting data to appear.

Figure 24 Properties Dialog Box — Outbound File eWay

Configuration |£J|13J =)@ @)
L2 [Parameter Settings
Add ECL True
Directony Cltemp
tultiple records perfile | True
Qutput file narme output¥d.dat
Description {parameter-settings)
Farameter Settings suhbsection
Camments (parameter-settings)
Froperties |
| QK | Cancel

6 Click OK to close the Properties window.

632. Creating the Environment Profile

An eGate Environment represents the physical system required to implement a Project.
A typical Environment contains several components, including Logical Hosts,
Integration Servers, JMS IQ Managers, and External Systems. Environments are created
using the Enterprise Designer’s Environment Explorer.

To Create a New Environment for the Sample Projects:
1 On the Environment Explorer, right-click the Repository icon and select New

Environment. This creates a new Environment that you can rename to match the
sample project you want to deploy.

SWIFT ADK eWay Intelligent Adapter User’s Guide 46 SeeBeyond Proprietary and Confidential

fggﬁfﬁrg‘i Importing, and Using the Sample Projects Running the Sampslgclgirglj’e‘icg
2 Right-click the new Environment and add the following components:
+ New Logical Host
+ New File External System (as an outbound eWay)
+ New File External System (as an inbound eWay)
3 Right-click the new Logical Host and add the following components:
* New SeeBeyond Integration Server
+ New SeeBeyond JMS IQ Manager
Figure 25 on page 47 shows an example of these Environment containers in the

Environment Editor.

Figure 25 Environment Editor — Environment Containers

File Tools View Window Help

eE@ 4

Repository

FE envEWIFTADK
Fileln
FileOut
B hostSWIFTADK S intswSWIFTADK

L intswSIWIFTADK JrsIQMgrSIFTA
9 ImsiaMarawIFTADK

Froject Explorer = | Enwironment Explorar envSWIFTADK

633 Deploying the Project

Deployment Profile maps the ICAN components with the Environment hosts (hosts)
that support them. A project may have one or more Deployment Profiles, but each
project’s active Deployment Profile must reside within a separate Environment.

To create a Deployment Profile:
1 Right-click the sample project and select New > Deployment Profile.

2 In the Create Deployment Profile window, enter a name for the component and
select the applicable Environment from the drop-down list. Click OK to close the
window.

SWIFT ADK eWay Intelligent Adapter User’s Guide 47 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Locating, Importing, and Using the Sample Projects Running the Sample Projects

3 From the Deployment Profile pane, drag-and-drop all the ICAN icons from the left
pane, to the applicable Environment containers on the right pane (See Figure 26 on
page 48).

4 Click Activate to activate your Deployment Profile.

Figure 26 Dragging ICAN Icons to the Environment Containers

Ervironment: enySWIFTADK ["' Activate] | ﬁ' Deactivate | [Map Variahles

—[] FileIn -= Semvical

S~

By intsvrSWIFTADK
t@v Semicel

Leb serice2
% ImsloMgrawIFTADK

|:- Servicel -» SEWS_fromm_
@ SEYWS_to_sgate -= Servic

| dpswirT |

634. Running the Sample

Running a sample project requires starting the “Bootstrap” process. The Bootstrap is a
process that launches the Integration Servers and Message Servers for one Logical Host.
The Bootstrap process is started and stopped with the following scripts:

/icanb50/logicalhost/bootstrap/bin/bootstrap.bat
/icanb50/logicalhost/bootstrap/bin/shutdown.bat

When the Bootstrap is started it locates the Respository via the command line

parameters or with the user-defined configuration file, logical-host.properties, located
in:

/ican50/logicalhost/bootstrap/config

Bootstrap Invocation Parameters

The following table lists the parameters required to invoke the bootstrap. You can enter
these parameters in the logical-host.properties file, or create a command line that runs
these parameters in a separate .bat file.

SWIFT ADK eWay Intelligent Adapter User’s Guide 48 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Locating, Importing, and Using the Sample Projects Using the Sample Project in elnsight

Table 1 Bootstrap Invocation Parameters

Parameter Description Example

-r Repository URL http://localhost:12000/Repository
-e Environment Environment1

-l Logical Host LogicalHost1

-i User Name Administrator

-p Password STC

After completing the process, the Output file in the target directory—that was
previously configured in the Outbound File eWay—contains all records retrieved from
the database in text format.

64 Using the Sample Project in elnsight

This section describes in greater detail how the SWIFT_ADK_Sample_BPEL sample
project works with the ICAN Suite’s eInsight Business Process Manager and the Web
Services interface. This section does not explain how to create a project using an elnsight

business process. For these instructions, refer to the “elnsight Business Process Manager
User’s Guide”.

Before running this sample project, you must:

= Import the sample Project, (see “Locating and Importing the Sample Projects” on
page 44)

= Configure the properties, (see “Setting the Properties” on page 45)

= Create an Environment for the sample project, (see “Creating the Environment
Profile” on page 46)

= Create a Deployment Profile, (see “Deploying the Project” on page 47)

641 elnsight Engine and eGate Components

You can deploy an eGate component as an Activity in an elnsight Business Process.
Once you have associated the desired component with an Activity, the eInsight engine
can invoke it using a Web Services interface. Examples of eGate components that can
interface with elnsight in this way are:

= Java Messaging Service (JMS)
= Object Type Definitions (OTDs)
= An eWay

= Collaborations

SWIFT ADK eWay Intelligent Adapter User’s Guide 49 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Locating, Importing, and Using the Sample Projects Using the Sample Project in elnsight

Using the eGate Enterprise Designer and elnsight, you can add an Activity to a
Business Process, then associate that Activity—such as an eWay—with an eGate
component. When elnsight runs the Business Process, it automatically invokes that
component via its Web Services interface.

642 The SWIFT_ADK_Sample_BPEL Sample Project

The SWIFT_ADK_Sample_BPEL sample Project uses two BPEL business processes to
send data to, and receive data from the SWIFTAlliance Access. The flow of data
between eGate and SWIFT are represented on the sample project Connectivity Map.

Sample Project Connectivity Map — cm_SWIFT_ADK

A Connectivity Map provides a canvas for assembling and configuring a Project’s
components. The icons on the Connectivity Map Editor tool bar represent the
components used to populate the Connectivity Map canvas. When linked together, the
components define the Connectivity Map for your Project.

The cm_SWIFT_ADK Connectivity Map contains two components. The first
component displays the flow of data from eGate to SWIFT, and uses a BPEL business
process called bp_SendToSWIFT, located in Servicel. The second component displays
the flow of data from SWIFT to eGate and uses a BPEL business process called
bp_ListenFromSWIFT, located in Service2. Both of these Connectivity Map
components are seen below in Figure 27.

Figure 27 Components on the cm_SWIFT_ADK Connectivity Map

D p—o—F p—a—f>

Filelr Servicel SBAS_from_eoste

M@—D—HED

SEWS _to_egate Service2 FileQUT

bp_SendToSWIFT BPEL Business Process

The bp_SendToSWIFT BPEL business process is designed to pass data from a sample
text file, using the FileClient.receive web service, to the Message Properties OTD,
using the SEWS_from.JMS.send.

SWIFT ADK eWay Intelligent Adapter User’s Guide 50 SeeBeyond Proprietary and Confidential

Section 6.4

Chapter 6
Locating, Importing, and Using the Sample Projects Using the Sample Project in elnsight

Figure 28 bp_SendToSWIFT BPEL Business Process

O TP as o @) o)

start FileCliert receive SBEWS_from_egat End
e WS zend

In addition to passing through the entire contents of the text file, The SWIFT ADK API
also requires four string literals that the business process passes in as message
properties, as seen in Figure 29.

Figure 29 Business Rules in bp_SendToSWIFT

Business Rule Designer
Conversion ¥ Datetime ¥ Operator ¥ Boolean ¥ String ¥ Modes % MNumber %
| autput | All | M| All |

Buzinesz Process Attributes A, string literal 4 B Buzinesz Process Attributes
JhdS zend. Input .'[:

.'[: FileClient.receaive Output
[4§ test Header' s Ill?;—¢
A string lteral | # deliveryblode @
priority @
‘PUT timeToLive &
destination @
R = Meszage I:l?;
1 o]
O
A string literal UserPropertyP_lg
UzerProperty[1] P_lg @
Suift UzerProperty[2] P_lqg &
=
UzerPrope [Cma =
A\ string literal P W[B]s'g
UzerProperty[4] .sl_lg
Hame &
_— Walue &
A string lteral 12 MessagePropertiesI:l?;-('
JmShessagaTupe & —
Bytestleszage & —|
Texthdessage & —
2,
A string literal Streambessage g—
haphiassage P_ll;-O

‘recourse_action’

A\ string literal

“validation’

‘masimum’

A string literal

‘complete’
(-]

| hp_sendToswirT |

Data Used in the Sample Project

The data used for the inbound samples (data sent to SWIFT) is received from a text file
included in the sample project called Sample_SWIFT_Msg.txt, see Figure 30 below.

Figure 30 Sample Data sent to SWIFTAlliance Access

{1:FO1PTSAUSZZAXXX1515293255}{2:I5020500020701PTSAUSZZ80A082645987402

51013050083} {3:{108:32516200}}{4:

:16R:GENL
:20C: :SEME/ /UESS420701B02216

: 23G: NEWM

SWIFT ADK eWay Intelligent Adapter User’s Guide 51 SeeBeyond Proprietary and Confidential

Chapter 6

Locating, Importing, and Using the Sample Projects

:98C
:22F

:16R:
:20C:
:168S:
:16R:
:20C:
:16S:
:16S:
:16R:
:94B:
:22H:
:22F:
:22F:
:22F:
:22F:
:22H:
:98A:
:11A:

:16R
: 950
:16S
:36B
:19A
:35B
ACT.

::PREP//20020701152928

: : TRTR//TRAD

LINK
:MAST//FUNDS502

LINK

LINK
:PREV//FUNDS502.1

LINK

GENL

ORDRDET

: TRAD//EXCH/XPARFRPPBIC
:BUSE/ /SELL
:TRCN//SOLI

:CAOP/ /CASH

: TOOR/ /MAKT
:TILI//GTCA

: PAYM/ /APMT

:EXPI/ /20040731
:FXIS//EUR

: TRADPRTY

: : SELL/ /DBZEFRPPXXX

: TRADPRTY

: :ORDR//UNIT/100,

: :ORDR//EUR1000,

:ISIN FR0O000127771
VIVENDI UNIVERSAL

/TS/EX/FRA

:16R:
:22F:
:16S:
:16S:
:16R:
:22F:

:16R

:19A:

:16S
:16R

:19A:
:16S:
:16R:
:19A:

:16S

:16S:

-}

FIA

:FORM/ /BEAR
FIA

ORDRDET
SETDET
:SETR//TRAD
:AMT
:EXEC//EUR123,
:AMT

:AMT
:CHAR//EUR123,
AMT

AMT
:LOCO//EUR123,
:AMT

SETDET

SWIFT ADK eWay Intelligent Adapter User’s Guide

Section 6.4
Using the Sample Project in elnsight

SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Locating, Importing, and Using the Sample Projects Using the Sample Project in elnsight

bp_ListenFromSWIFT BPEL Business Process

The bp_ListenFromSWIFT BPEL business process is designed to listen for messages
from SWIFT. Messages received by the business process first go through a Decision
Activity to determine if the data is either valid or invalid. Valid data gets transformed
and marshalled using a DTD based OTD before being written out to a text file. Invalid
data passes to an empty Activity, see Figure 31 below.

Figure 31 bp_ListenFromSWIFT BPEL Business Process

p——{ 22 p—e—{[])

i3 UzerPropertyisg FileClient write
OD—D<> _UszerPropettyhis Bb—bo

Stert SEWS_to_egate Decision gt shel Decizion.end Etcd

JME receive

Ernpty

The following BPEL based Activities are used in the business process:
= SEWS_to_egate.JMS.receive
= Branching Decision
= Business Rule

= UserPropertyMsg_UserPropertyMsg.marshal

SEWS_to_egate.JMS.receive

The SEWS_to_egate.JMS.receive contains a JMS receive OTD, that uses JMS much like
a web service to pull data into a queue. Figure 32 below lists the methods used.

Figure 32 SEWS_to_egate.JMS.receive — Receive OTD

Ohject Type Definition

a4 hessage

- Bt UsarProparty

L Il-q, MessageProperties

& IMSMessageType

¢ Byteshessage

¢ TexiMessage

"¢ StreamMessage

&q; Maphlessage

B reftrieveMapMessage

B storelserProperty

B retrieveBytesFromMessage

B retrieveStrinaFromMessageEncod
B retrieveStringFromiessage

“® storeMapMessage

B retrieveBytesFromMessageEncodi
B retrievel)serProperty

]

| D]

SWIFT ADK eWay Intelligent Adapter User’s Guide 53 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Locating, Importing, and Using the Sample Projects Using the Sample Project in elnsight

Branching Decision

The Branching Decision (Casel) is used to create a condition that looks for text in a
receiving file that starts with “{1:”. Text that matches this criteria passes onto a Business
Rule Activity. Text that fails to match this criteria pass into an Empty Activity, see
Figure 33.

Figure 33 Branching Decision — CaseT

Mame: |Decisi0n |

Order of Execution

drder | Link | Condition | |
1 Case 1 starts-with (getContainerDataIMS receive. Output’, ‘Message’, Mexthi..

If no link conditions are true, use this default link: |Case 2 EH

Ifexpression evaluation fails: Thraw ExceptiunE

Link Canditian

Link: [Case 1

© Conversion ¥ Datetime ¥ Operator ¥ Boolean ¥ String ¥ Modes ¥ Number @

Business Process Attributes b’ |ﬂ

.1: IS receive. Output Result EI|—|
Meszage
Eﬂ UserProperty

MeszageFroperies

& IMShMessageType
@ BytesMessage {1
@ Texthlessage
BQ Streamhdeszage
Eﬂ hlaptleszage
]

%EMMTM E‘E @ — I o

L QK ” Apply H Cancel

i starts with ¥

string1

(11118

A string literal string?

retum boalean

Business Rule

The Business Rule is an Activity that passes the text message and the Name and Value
user properties into the UserPropertyMsg_UserPropertyMsg, see Figure 34.

SWIFT ADK eWay Intelligent Adapter User’s Guide 54 SeeBeyond Proprietary and Confidential

Chapter 6

Section 6.4
Locating, Importing, and Using the Sample Projects

Using the Sample Project in elnsight

Figure 34 Business Rule Activity

Business Rule Designer
Conversion ¥ Datetime ¥ Operator ¥ Boolean ¥ String ¥ Modes ¥ MNumbhber ¥

Do e

Business Process Atributes -
2 .T= JMS receive. Jutput

(E)—I:'?; lessage

Business Process Attribute
UserPropertyhdsg_UserProperybdsg.marshal. lnput bl

UserPropertyhizg I:l?; —d

El?; UzerProperty UserPropeﬂy%
@ Mame = Hame @
& value Value 3@

— .

I_II; MessageProperties Tesxthleszage ?®

& JnSMeszageType

@ BytesMeszage

@ TexdMeassage

“¢ Streamhiessage

El?; Maphiessage

o~ ™18 Fileclientwrite.Input [+]

B IR] | []

UserPropertyMsg_UserPropertyMsg.marshal

The UserPropertyMsg_UserPropertyMsg.marshal is a DTD OTD based Activity that
marshals the contents of the message before passing it onto the FileClient.write
Activity. Figure 35 below lists the methods used by this OTD.

Figure 35 DTD OTD methods

Chiject Type Definition

Il-?; LzerPropertyhsg
. ﬁ LserProperty
7% TexMessage
o= 2 nmarshalFromString
=% marshal
B roset
=% ynmarshal
o= marshalToString

FileClient.write

The FileClient.write is an Activity based on the File eWay’s web service OTD, see
Figure 36.

SWIFT ADK eWay Intelligent Adapter User’s Guide 55 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.5
Locating, Importing, and Using the Sample Projects Using the Sample Project in eGate

Figure 36 File eWay Write Methods

Ohject Type Definition

IT; FileTexdessage

¢J— Ii—’, FileTextMessane
B getBytesrray
B getText
B cotBytelrray
B getTex

65 Using the Sample Project in eGate

This section describes in greater detail how the SWIFT_ADK_Sample_JCE sample
project works with Java based Collaboration Definitions created with the Collaboration
Editor. This section does not explain how to create Collaborations in eGate. For these
instructions, refer to the “eGate Integrator User’s Guide”.

Before running a sample Project, you must:
= Import the sample Project, (see “Locating and Importing the Sample Projects” on
page 44)
= Configure the eWay properties, (see “Setting the Properties” on page 45)

= Create an Environment for the sample project, (see “Creating the Environment
Profile” on page 46)

= Create a Deployment Profile, (see “Deploying the Project” on page 47)

Sample Project Connectivity Map — cm_SWIFT_ADK

A Connectivity Map provides a canvas for assembling and configuring a Project’s
components. The icons on the Connectivity Map Editor tool bar represent the
components used to populate the Connectivity Map canvas. When linked together, the
components define the Connectivity Map for your Project.

The cm_SWIFT_ADK Connectivity Map contains two components. The first
component displays the flow of data from eGate to SWIFT, and uses a Java based
Collaboration Definition called jce_SendToSWIFT, located in Servicel. The second
component displays the flow of data from SWIFT to eGate and uses a Java based
Collaboration Definition called jce_ListenFromSWIFT, located in Service2. Both of
these Connectivity Map components are seen below in Figure 27.

SWIFT ADK eWay Intelligent Adapter User’s Guide 56 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.5
Locating, Importing, and Using the Sample Projects Using the Sample Project in eGate

Figure 37 Components on the cm_SWIFT_ADK Connectivity Map

o

Filelr Servicel SBEAS_from_egste

N Ei) A o P
SEWS o egate Service2 File2UT

jce_SendToSWIFT Collaboration Definition

The jce_SendToSWIFT Collaboration Definition is designed to pass data from a sample
text file, using the FileClient.receive web service, to the Message Properties OTD,
using the SEWS_from.JMS.send. The following four user properties are also included
with the text file using the storeUserProperty() method:

= storeUserProperty[1]: “Header”, “PUT”
= storeUserProperty[1]: “type”, “Swift”

A

= storeUserProperty[1]: “validation”, “maximum”

s

= storeUserProperty[1]: “recourse_action”, “complete”

Figure 38 below lists the business rules used to create the jce_SendToSWIFT
Collaboration Definition.

Figure 38 jce_SendToSWIFT Collaboration Definition Business Rules

Business Rules
@ @™ @AM Bwew b dg s

@ % raceive

— ﬁ; Create uninitialized wariable requestTexthl=g (of type Message)
— 4~ Copw JMS_1.createTexth essagedinput. Texd) to request T esdhlsg
— = mequestTexthlsy. storelserPropery™Header, "FUT™)

— = mequestTexthlsy. storeUserPrope th™hp e, " Swnift")

— =2 mequestTexthlsy. store e rProperty™ralidation”, "maximum™)

— 4= requestTexthlsy.storelserPropertyrecourse_action”, "complete™)
— < IME_1 send(requestT exthzg)
— 7 logger

— 7 alerter

SWIFT ADK eWay Intelligent Adapter User’s Guide 57 SeeBeyond Proprietary and Confidential

Chapter 6

Section 6.5
Locating, Importing, and Using the Sample Projects

Using the Sample Project in eGate

jce_ListenFromSWIFT Collaboration Definition

The bp_ListenFromSWIFT Collaboration Definition is designed to listen for messages
from SWIFT. When a messages arrive into the J]MS Queue, the Collaboration Definition
first checks to see if the text of the message starts with "{1:". If the message is valid, then

Name and Value parameters are passed into variables that are concatenated together
and written out as a text message.

Figure 39 below lists the business rules used to create the jce_ListenFromSWIFT
Collaboration Definition.

Figure 39 jce_ListenFromSWIFT Collaboration Definition Business Rules

Business Rules
®@ @@L 3D R M i dhg s
Gr)— B recaive

=i
& If input. Texthdeszage startsufith"1:"

("P— then

*

ﬂn Capy "nn™ " Response User Property List = 0" to variable tempStr
o Capy "™ to wariable PropertyName
Capy "™ to wariable Properh®falue
Capy caunt of input.UserProperty to wariable UserPropertylength
o1 ForLaop
counter initialization
L = CopyDtai

& gcondition: i is lessthan UserProperylLength

c c c
130383

step
L = increment i
rles
“—r Copy input.UserProperty[i].Mame to PropertyName
“—r Copy input. UserPropertyfi].Value toSting to Properhtfalue
“—r Copy(tempStr+ PropertyName + " =" + ProperhWalue + . 40" to tempStr
— €= Copy (tempStr + "™ Here iz the Meszage Body = 0" to tempStr
—¢— CopytempStrto FileClient_1.Text
— <~ FileClient_1 write
— €~ Copy input. Texthessage to FileClient_1. Tesxt
— < FileClient_1 write
— else
— [logger
T alerter

SWIFT ADK eWay Intelligent Adapter User’s Guide 58 SeeBeyond Proprietary and Confidential

Chapter 6
Locating, Importing, and Using the Sample Projects

Section 6.6

SWIFT ADK eWay Error Messages

66 SWIFT ADK eWay Error Messages

The following error messages can be returned:

Content

Meaning

“No messages to get”

The requested message does not
exist.

“Unknown state”

The state given in the request was
not recognized.

“No s_umid supplied”

The ACK/NAK request cannot
succeed without a s_umid.

“No s_umid to ACK”

There is no outstanding message
requiring acknowledgment.

“No s_umid to NAK”

There is no outstanding message
requiring acknowledgment.

“Incorrect s_umid, pending
s_umid supplied”

The s_umid given in the request is

not the s_umid requiring

acknowledgment. This response

contains two additional

arguments.

= s_umid: The s_umid of the
message that is pending
acknowledgment.

= instance: The instance number of
that message.

“Failed to route message: ..."

After the message was added to
the routing point, it couldn't be
“routed on” in SWIFT terminology.
The reason for this failure is
included in the response Content.

“Failed to reserve message: ..."

The message specified could not

be reserved. This response

contains additional arguments on

why the request failed.

= s_umid: The s_umid of the
message that could not be
acknowledged.

*= instance: The instance number of
the message that could not be
acknowledged.

“Failed to get message: ...”

SEWS was not able to retrieve the
message. The response content
provides text that explains the
reason for the error.

SWIFT ADK eWay Intelligent Adapter User’s Guide

SeeBeyond Proprietary and Confidential

Section 6.6

Chapter 6
SWIFT ADK eWay Error Messages

Locating, Importing, and Using the Sample Projects

Content

Meaning

“Failed to get message, then failed
to unreserve it: ...”

SEWS reserved the message, but
could not retrieve it, and then
could not unreserve the same
message when recovering.
Includes text further detailing the
problem in the content.

“Failed to count/list instances ...“

SWIFTAIlliance couldn't perform
the operation. The human
readable text - Content - includes
the ADK error string that details
the problem.

“Failed to add message: ...”

The message could not be added

to the SWIFT routing point. The

response content provides

additional detail on why the

procedure failed.

When this error occurs, there are

two additional arguments in the

response.

= offset: The character offset into
the text message, that caused the
error.

= reason: Text giving further details
about the error.

“Unknown message type”

The type argument contained an

unexpected value. The response

also contains a type argument:

= type: The type value given in the
initial request that was not
understood.

“Message type not supplied”

No type argument was supplied
with the initial GET request.

“Pending ACK for another
message”

No more messages can be
retrieved until the last message is
acknowledged. Responses with
this code include another
argument “pending”, which lists
the s_umid of the pending
message.

“Invalid routing point name
supplied”

The routing point name given in
the request was not recognized.

“No authorization”

Authentication was not possible.

“Too many clients connected”

SEWS cannot take more than one
client per direction.

SWIFT ADK eWay Intelligent Adapter User’s Guide

SeeBeyond Proprietary and Confidential

Section 6.6
SWIFT ADK eWay Error Messages

Chapter 6
Locating, Importing, and Using the Sample Projects

Content

Meaning

“Cannot translate SWIFT message
to ADK”

The SWIFT message supplied in
the request cannot be understood
by SEWS. Perhaps there is a
Signature error in the message.
More exact details can be found in
the SWIFTAlliance logs.

“Cannot translate TELEX message
to ADK”

The Telex message supplied in the
request cannot be understood by
SEWS. Perhaps there is a Signature
error in the message. More exact
details can be found in the
SWIFTAIlliance logs.

SWIFT ADK eWay Intelligent Adapter User’s Guide

SeeBeyond Proprietary and Confidential

Index

Index

A

ADK - see Alliance Developer Toolkit
Alliance Developer Toolkit (ADK) 7
authentication and authorization 17
Automated integration 7

C

configuring
enable authentication and authorization 17
enable SSL 17
host name 17
SeeBeyond JMS 1IQ Manager 17
server port 17
server SSL port 17
SWIFT ADK eWay 16
configuring SEWS 26

E

eGate API Kit 7

Enable authentication and authorization 18
enable SSL 17, 18

eWay Installation 14

H

host name 17, 18

implementation 20
installation 14
sar files 14
installing
SEWS on Unix 23
SEWS on Windows 21
installing the SEWS eWay component 20
IP Address or host name 27

L

Listening TQ Name 27
Logical Host requirements 13

SWIFT ADK eWay Intelligent Adapter User’s Guide

62

M

message flow

SWIFT ADK eWay 8
Message Server Login 29
Message Type 30

QUEUE 30

TOPIC 30

N

network parameters
IP Address or host name 27
listening TQ name name 27
message server login name 27
message type 27
sending TQ name 27
TCP port number 27
use SSL Flag 27

O

operating systems
supported 12
overview 20, 43
SWIFT 6
SWIFT ADK eWay 7

P

properties, eWay
Project Explorer 17

Q

Queues 36

R

routing point
SEWS_from_egate 28

Routing Points 36

routing points 7, 13

S

sample projects 43
components 43
locating & importing 43
running 44
SWIFT_ADK_Sample_BPEL 44
SWIFT_ADK_Sample_JCE 43
Secured Sockets Layer 33
Security 7

SeeBeyond Proprietary and Confidential

Index

SeeBeyond JMS IQ Manager 7
Sending TQ Name 31
SEWS_to_egate 31
server port 17, 18
server SSL port 17, 19
setting eWay properties
Environment Explorer 16
setting up
test environment 36
SEWS eWay component 20
SEWS Executable 7
SSL 33
Starting the SEWS Component 35
supported operating systems 12
Swift ADK AP17
SWIFT ADK eWay message flow 8
SWIFT ADK eWay Overview 7
SWIFT Network 7
SWIFT Overview 6
SWIFT_ADK_Sample_BPEL 44
SWIFT_ADK_Sample_]JCE 43
SWIFTAlliance 7
SWIFTAlliance Access Control window 26
SWIFTAlliance parameters 27
synchronous (request/reply) 7
synchronous (send only) 7
System Management Window 26
system requirements 12
environment 13
Logical Host 13
Systems Management window
network parameters 27

T

TCP Port Number 32
test environment 36
Translation 7

U
Use SSL Flag 33

SWIFT ADK eWay Intelligent Adapter User’s Guide 63

SeeBeyond Proprietary and Confidential

	SWIFT ADK eWay Intelligent Adapter User’s Guide
	Contents
	Introducing the SWIFT ADK eWay
	1.1 SWIFT Overview
	1.2 SWIFT ADK eWay Overview
	1.2.1 Types of SWIFT ADK eWay Message Flows
	Publish (outbound asynchronous)
	Request / Reply (outbound synchronous)
	Subscribe (inbound asynchronous)

	Installing the SWIFT ADK eWay
	2.1 Supported Operating Systems
	2.2 System Requirements
	2.3 External System Requirements
	2.4 Before Installing the eWay
	2.5 eWay Installation Procedures
	2.6 After Installation

	Configuring the SWIFT ADK eWay
	3.1 SWIFT ADK eWay Configuration
	3.2 Configuring the SeeBeyond JMS IQ Manager
	Enable authentication and authorization
	Enable SSL
	Host Name
	Server Port
	Server SSL Port

	Installing and Setting up the SEWS eWay Component
	4.1 Overview
	4.2 Installing the SEWS Component on Windows
	4.3 Installing the SEWS Component on UNIX
	4.4 Configuring SEWS
	4.4.1 System Management Window
	4.4.2 Network Parameters
	IP Address or host name
	Listening TQ Name
	Message Server Login
	Message Type
	Sending TQ Name
	TCP Port Number
	Use SSL Flag

	4.4.3 Security Definition Window
	Secret

	4.5 Starting the SEWS Swift ADK eWay Component
	4.6 Setting Up a Test Environment (Optional)
	4.6.1 Queues
	4.6.2 Routing Points

	4.7 Authentication

	Using JMS OTD with the SEWS Component
	5.1 Publish to SEWS Asynchronously
	5.1.1 Setting the JMS Header property as “PUT”
	5.1.2 Setting the JMS Header property as “LIST”

	5.2 Publish to SEWS Synchronously
	5.3 Subscribe Asynchronously

	Locating, Importing, and Using the Sample Projects
	6.1 Sample Projects Overview
	6.2 Locating and Importing the Sample Projects
	6.3 Running the Sample Projects
	6.3.1 Setting the Properties
	6.3.2. Creating the Environment Profile
	6.3.3 Deploying the Project
	6.3.4. Running the Sample
	Bootstrap Invocation Parameters

	6.4 Using the Sample Project in eInsight
	6.4.1 eInsight Engine and eGate Components
	6.4.2 The SWIFT_ADK_Sample_BPEL Sample Project
	Sample Project Connectivity Map - cm_SWIFT_ADK
	bp_SendToSWIFT BPEL Business Process
	Data Used in the Sample Project
	bp_ListenFromSWIFT BPEL Business Process

	6.5 Using the Sample Project in eGate
	Sample Project Connectivity Map - cm_SWIFT_ADK
	jce_SendToSWIFT Collaboration Definition

	6.6 SWIFT ADK eWay Error Messages

	Index
	A
	C
	E
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U

