
WebLogic eWay Intelligent
Adapter User’s Guide

Release 5.0
SeeBeyond Proprietary and Confidential

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

SeeBeyond, e*Gate, e*Way, and e*Xchange are the registered trademarks of SeeBeyond Technology Corporation in the United States
and/or select foreign countries. The SeeBeyond logo, SeeBeyond Integrated Composite Application Network Suite, eGate, eWay,
eInsight, eVision, eXchange, eView, eIndex, eTL, ePortal, eBAM, and e*Insight are trademarks of SeeBeyond Technology Corporation.
The absence of a trademark from this list does not constitute a waiver of SeeBeyond Technology Corporation's intellectual property
rights concerning that trademark. This document may contain references to other company, brand, and product names. These
company, brand, and product names are used herein for identification purposes only and may be the trademarks of their respective
owners.

© 2005 SeeBeyond Technology Corporation. All Rights Reserved.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20050407133201.

WebLogic eWay Intelligent Adapter User’s Guide 2 SeeBeyond Proprietary and Confidential

Contents
Contents

Chapter 1

Introducing the WebLogic eWay 8
About WebLogic Application Server 8

WebLogic Server 8

About the WebLogic eWay 9

About This Document 9
What’s in This Document 9
Scope 10
Intended Audience 10
Document Conventions 10
Screenshots 10

Related Documents 10

SeeBeyond Web Site 11

Feedback 11

Chapter 2

Installing the eWay 12
Supported Operating Systems 12

System Requirements 13

Supported External Applications 13

Installing the eWay Product Files 13
Required Files 13
Sample Projects 13

After You Install 14

Chapter 3

Setting Properties of WebLogic eWay 15
Configuring the WebLogic eWay Properties 15

Configuring the eWay Connectivity Map Properties 16
eWay Property Settings 17
WebLogic eWay Intelligent Adapter User’s Guide 3 SeeBeyond Proprietary and Confidential

Contents
JNDI name 17

Configuring the Environment Properties 17
WebLogic External System Properties 17
Environment Property Settings 18

java.naming.authoritative 19
java.naming.batchsize 20
java.naming.dns.url 20
java.naming.factory.control 20
java.naming.factory.initial 20
java.naming.factory.object 20
java.naming.factory.state 21
java.naming.factory.url.pkgs 21
java.naming.language 21
java.naming.provider.url 21
java.naming.referral 22
java.naming.security.authentication 22
java.naming.security.credentials 22
java.naming.security.principal 23
java.naming.security.protocol 23
weblogic.jndi.WLContext.CREATE_INTERMEDIATE_CONTEXTS 23
weblogic.jndi.WLContext.DELEGATE_ENVIRONMENT 23
weblogic.jndi.WLContext.ENABLE_SERVER_AFFINITY 23
weblogic.jndi.WLContext.PIN_TO_PRIMARY_SERVER 24
weblogic.jndi.WLContext.PROVIDER_RJVM 24
weblogic.jndi.WLContext.REPLICATE_BINDINGS 24
weblogic.jndi.WLContext.SSL_CLIENT_CERTIFICATE 24
weblogic.jndi.WLContext.SSL_CLIENT_KEY_PASSWORD 25
weblogic.jndi.WLContext.SSL_ROOT_CA_FINGERPRINTS 25
weblogic.jndi.WLContext.SSL_SERVER_NAME 25
weblogic.jndi.WLContext.USE_IIOP_SERVICE_PROVIDER 25

Chapter 4

WebLogic Server Components 26
Java Naming and Directory Interface (JNDI) 26

The WebLogic Naming Service 26
Sample Code 27
Viewing The WebLogic JNDI Tree 28

Java Messaging Service (JMS) 29

Enterprise JavaBeans (EJBs) 30
Session Beans 31
Entity Beans 31
Message Driven Beans 31

XA Transactions 31
WebLogic eWay Intelligent Adapter User’s Guide 4 SeeBeyond Proprietary and Confidential

Contents
Chapter 5

WebLogic eWay Component Communication 33
Synchronous and Asynchronous Communication 33

Synchronous Communication 34
Asynchronous Communication 34

Synchronous Communication in eGate 36
The WebLogic OTD 36

Asynchronous Communication in eGate 37
Additional Messaging Service Requirements 37
SeeBeyond JMS 38

Message Flow from eGate to WebLogic Using JMS Objects 38
Updating the WebLogic JMS 41
Message Flow from WebLogic to eGate Using JMS Objects 42

SeeBeyond WebLogic Startup Class 47
Startup Class Implementation 47
Startup Properties File 48

STCWLStartup.properties File 48

Chapter 6

Configuring WebLogic Server 53
Configuration for WebLogic 6.1 53

Configuration for WebLogic 7.0 57

Configuration for WebLogic 8.1 61

Chapter 7

Using the WebLogic OTD Wizard 66
Java Methods for the OTD Wizard 66

Creating the OTD 67
Select Wizard Type 67
Specify OTD Name 68
Select Interfaces 68
Select Method Argument 71
Select Class Path 71
Review Selections 74

Chapter 8

Implementing the WebLogic eWay 75
Sample Projects Overview 75
WebLogic eWay Intelligent Adapter User’s Guide 5 SeeBeyond Proprietary and Confidential

Contents
Synchronous Communication—eGate to WebLogic Server 75
Asynchronous Communication—WebLogic EJB to eGate JMS 76

Preparing WebLogic 76
Asynchronous Communication—eGate JMS to a WebLogic Message Driven Bean 77

Preparing WebLogic 77

Locating and Importing the Sample Projects 78

Running the Sample Projects 79
Setting the Properties 79
Creating the Environment Profile 79
Deploying the Project 80
Running the Sample 80

Using Sample Projects in eInsight 80
The eInsight Engine and Components 81
The WebLogic_BPEL Sample Project 81

CreateAccount_BP 81
DepositAmound_BP 82

Using the Sample Projects in eGate 84
The WebLogic_JCE Sample Project 84
The JMSQueueRequestor Sample Project 85
The JMSTopicSubscribe Sample 86
The JMSXATopicSubscribe Sample 88
The JMSQueueSend Sample 90
The JMSTopicPublish Sample 91
The JMSXAQueueSend Sample 92

Chapter 9

SeeBeyond Sample Message Driven Beans 94
MDB Subscribing to a SeeBeyond Topic 94

ejb-jar.xml 94
WebLogic-ejb-jar.xml 95

MDB Subscribing to SeeBeyond Queue 96
ejb-jar.xml 96
weblogic-ejb-jar.xml 97

Accessing Session Beans 98
SeeBeyond Sample Session Beans 98
SLS Bean Publishing to SeeBeyond Topic 98

ejb-jar.xml 98
ejb-jar.xml 99
ejb-jar.xml 100
weblogic-ejb-jar.xml 101

Lazy Loading 102
Accessing Entity Beans 103

SeeBeyond Sample XA Message Driven Beans 104
SeeBeyond Sample XA Session Beans 106

SLS Bean Publishing to SeeBeyond JMS Topic Transactionally 107
Verifying XA At Work 110
examples-dataSource-demoXAPool 112
WebLogic eWay Intelligent Adapter User’s Guide 6 SeeBeyond Proprietary and Confidential

Contents
Index 114
WebLogic eWay Intelligent Adapter User’s Guide 7 SeeBeyond Proprietary and Confidential

Chapter 1

Introducing the WebLogic eWay

This document describes the integration between BEA WebLogic™ application Server
and SeeBeyond eGate using the WebLogic eWay Intelligent Adapter (referred to as the
WebLogic eWay throughout this document).

What’s in This Chapter

“About WebLogic Application Server” on page 8

“About the WebLogic eWay” on page 9

“About This Document” on page 9

“Related Documents” on page 10

“SeeBeyond Web Site” on page 11

“Feedback” on page 11

1.1 About WebLogic Application Server

WebLogic Server

BEA defines WebLogic Server as a fully featured, standards-based, application server
providing the foundation on which an enterprise builds its applications. More
specifically, WebLogic Application Server is used to build Web applications that share
data and resources with other systems, and then generate dynamic information for Web
pages and other user interfaces.

WebLogic Application Server streamlines the process of building distributed, scalable,
highly available systems by offering services that users previously had to write
themselves, including connectivity, business logic, re-usability, security, concurrency
(access is serialized), and transactionally (using XA to assure a successful
transfer/update or rollback).

Other features offered by WebLogic include:

Object Pooling – conserves system resources by placing objects in a pool, so that
the next request for the object does not require a re-allocation of memory.

Thread and Connection Pooling – works much the same way as Object Pooling to
save memory and connection resources.
WebLogic eWay Intelligent Adapter User’s Guide 8 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.2
Introducing the WebLogic eWay About the WebLogic eWay
Clustering – allows easy movement or distribution of applications to other
machines.

1.2 About the WebLogic eWay
The WebLogic eWay is an application specific eWay that facilitates integration between
applications built on the WebLogic platform and eGate using the Enterprise Java Bean
(EJB) component model.

1.3 About This Document
This guide explains how to install, configure, and operate the SeeBeyond® Integrated
Composite Application Network Suite™ (ICAN) WebLogic eWay Intelligent Adapter,
referred to as the WebLogic eWay throughout this guide.

1.3.1. What’s in This Document
This document includes the following chapters:

Chapter 1 “Introducing the WebLogic eWay”: Provides an overview description of
the product as well as high-level information about this document.

Chapter 2 “Installing the eWay”: Describes the system requirements and provides
instructions for installing the WebLogic eWay.

Chapter 3 “Setting Properties of WebLogic eWay”: Provides instructions for
configuring the eWay to communicate with your legacy systems.

Chapter 4 “WebLogic Server Components”: Provides an overview various Sun
Microsystem Java 2 Enterprise Edition (J2EE) Applications and WebLogic Server
technologies employed in the WebLogic Server.

Chapter 5 “WebLogic eWay Component Communication”: Provides an overview
of how components of the eWay Intelligent Adapter for WebLogic communicate
with the WebLogic Application Server.

Chapter 6 “Configuring WebLogic Server”: Provides directions for configuring
WebLogic Server for asynchronous interaction with eGate.

Chapter 7 “Using the WebLogic OTD Wizard”: Describes how to build and use
Object Type Definitions (OTDs) using the WebLogic OTD Wizard.

Chapter 8 “Implementing the WebLogic eWay”: Describes how to use the sample
projects included in the installation CD-ROM package

Chapter 9 “SeeBeyond Sample Message Driven Beans” Provides further
information on the messaging objects designed to route messages from clients to
other Enterprise Java Beans.
WebLogic eWay Intelligent Adapter User’s Guide 9 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introducing the WebLogic eWay Related Documents
1.3.2. Scope
This document describes the process of installing, configuring, and running the
WebLogic eWay.

1.3.3. Intended Audience
This guide is intended for experienced computer users who have the responsibility of
helping to set up and maintain a fully functioning ICAN Suite system. This person
must also understand any operating systems on which the ICAN Suite is to be installed
(Windows or UNIX) and must be thoroughly familiar with Windows-style GUI
operations.

1.3.4. Document Conventions
The following writing conventions are observed throughout this document.

Table 1 Writing Conventions

1.3.5. Screenshots
Depending on what products you have installed, and how they are configured, the
screenshots in this document may differ from what you see on your system.

1.4 Related Documents
The following SeeBeyond documents provide additional information about the ICAN
product suite:

eGate Integrator User’s Guide

SeeBeyond ICAN Suite Installation Guide

Text Convention Example

Button, file, icon, parameter,
variable, method, menu, and
object names.

Bold text Click OK to save and close.
From the File menu, select Exit.
Select the logicalhost.exe file.
Enter the timeout value.
Use the getClassName() method.
Configure the Inbound File eWay.

Command line arguments and
code samples

Fixed font. Variables
are shown in bold
italic.

bootstrap -p password

Hypertext links Blue text http://www.seebeyond.com
WebLogic eWay Intelligent Adapter User’s Guide 10 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.5
Introducing the WebLogic eWay SeeBeyond Web Site
1.5 SeeBeyond Web Site
The SeeBeyond Web site is your best source for up-to-the-minute product news and
technical support information. The site’s URL is:

http://www.seebeyond.com

1.6 Feedback
If you have any feedback on any SeeBeyond documentation, please send an E-mail to:

docfeedback@seebeyond.com
WebLogic eWay Intelligent Adapter User’s Guide 11 SeeBeyond Proprietary and Confidential

http://www.SeeBeyond.com
mailto:docfeedback@seebeyond.com

Chapter 2

Installing the eWay

This chapter explains how to install the WebLogic eWay.

What’s in This Chapter

“Supported Operating Systems” on page 12

“System Requirements” on page 13

“Supported External Applications” on page 13

“Installing the eWay Product Files” on page 13

“After You Install” on page 14

2.1 Supported Operating Systems
The WebLogic eWay is available on the following operating systems:

Windows XP, Windows 2000, and Windows Server 2003

HP-UX 11.0 and HP-UX 11i (PA-RISC)

IBM AIX 5.1L and 5.2

Red Hat Linux 8 (Intel Version)

Red Hat Enterprise Linux AS 2.1

Sun Solaris 8 and 9

Korean Windows XP, Windows 2000, and Windows Server 2003

Korean HP-UX 11.0 and HP-UX 11i (PA-RISC)

Korean IBM AIX 5.1L and 5.2

Korean Sun Solaris 8 and 9
WebLogic eWay Intelligent Adapter User’s Guide 12 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
Installing the eWay System Requirements
2.2 System Requirements
The system requirements for the WebLogic eWay are the same as for eGate Integrator.
For information, refer to the SeeBeyond ICAN Suite Installation Guide. It is also helpful to
review the Readme.txt for any additional requirements prior to installation. The
Readme.txt is located on the installation CD-ROM.

2.3 Supported External Applications
The WebLogic eWay supports the following software for external systems:

BEA WebLogic Server 6.1, 7.0, or 8.1

WebLogic Server 6.1 SP 7 for Korean platforms

2.4 Installing the eWay Product Files
During the ICAN Suite installation process, the Enterprise Manager—a web-based
application running on the Windows operating system—is used to select and upload
eWay and Add-on files (.sar files) from the ICAN installation CD-ROM to the
Repository.

Note: Refer to the ICAN Installation Guide for additional installation instructions.

2.4.1. Required Files
During the procedures for uploading files to the eGate Repository using the Enterprise
Manager, select and upload the following files:

WebLogiceWay.sar (to install the WebLogic eWay)

WebLogiceWayDocs.sar (to install the eWay user guide, Javadoc, and Samples)

FileeWay.sar (to install the File eWay, used in the sample Project)

2.4.2. Sample Projects
Sample projects are included to help demonstrate key features and technologies used in
the WebLogic eWay.

To Download Sample Projects

1 In the Enterprise Manger, click the DOCUMENTATION tab.

2 Click WebLogic eWay.

3 In the right pane, click Download Sample, and select a location to save the .zip file.
WebLogic eWay Intelligent Adapter User’s Guide 13 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
Installing the eWay After You Install
Additional information on importing and using sample projects can be found in
Implementing the WebLogic eWay on page 75.

2.5 After You Install
Once the eWay is installed and configured it must then be incorporated into a project
before it performs its intended functions. See the eGate Integrator User’s Guide for more
information on incorporating the eWay into an eGate project.
WebLogic eWay Intelligent Adapter User’s Guide 14 SeeBeyond Proprietary and Confidential

Chapter 3

Setting Properties of WebLogic eWay

This chapter describes how to create and configure a WebLogic eWay.

What’s in This Chapter:

“Configuring the WebLogic eWay Properties” on page 15

“Configuring the eWay Connectivity Map Properties” on page 16

“Configuring the Environment Properties” on page 17

3.1 Configuring the WebLogic eWay Properties
The WebLogic eWay includes a unique set of configuration parameters. After
establishing an eWay and creating a WebLogic External System in the project’s
Environment, the property parameters are modified for your specific system.

WebLogic eWay properties are modified from two locations:

From the Connectivity Map—which contains parameters specific to the WebLogic
eWay.

From the Environment Explorer tree—which contains parameters common to all
eWays (of the same type) in the project.

Note: You must set configuration parameters for WebLogic eWay in both locations.
WebLogic eWay Intelligent Adapter User’s Guide 15 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
Setting Properties of WebLogic eWay Configuring the eWay Connectivity Map Properties
3.2 Configuring the eWay Connectivity Map Properties
When you connect an External Application to a Collaboration, Enterprise Designer
automatically assigns the appropriate eWay to the link. Each eWay is supplied with a
template containing default configuration properties that are accessible on the
Connectivity Map.

To configure the eWay properties:

1 On the Enterprise Designer’s Connectivity Map (see Figure 1), double-click the
inbound WebLogic eWay icon.

Figure 1 Connectivity Map with Components

2 The Configuration properties window opens, displaying the default properties for
the eWay.

Figure 2 Configuration Editor: WebLogic eWay

WebLogic eWay
WebLogic eWay Intelligent Adapter User’s Guide 16 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Setting Properties of WebLogic eWay Configuring the Environment Properties
3 Click on the ellipsis (...) in the properties field (displayed during modification of the
value) to open a separate configuration dialog box. This is helpful for large values
that cannot be fully displayed in the parameter’s property field. Enter the property
value in the dialog box and click OK. The value is now displayed in the parameter’s
property field.

4 A description of each parameter is displayed in the Description pane when that
parameter is selected, providing an explanation of any required settings or options.

5 The Comments pane provides an area for recording notes and information
regarding the currently selected parameter. This is saved for future referral.

6 After modifying the configuration properties, click OK to close the Properties Sheet
and save the changes.

3.2.1. eWay Property Settings
The WebLogic eWay Properties window contains one eWay specific property called
JNDI name.

JNDI name

Description

Specifies a Java Naming and Directory Interface (JNDI) name for initial context lookup.
This JNDI name overwrites the default JNDI name provided when the OTD was
created.

Required Value

A JNDI name (String).

3.3 Configuring the Environment Properties
The eWay configuration properties contain parameters that define how the eWay
connects to, and interacts with, other eGate components within the Environment.

3.3.1. WebLogic External System Properties
The WebLogic Environment contains outbound properties that are accessible via the
Environment Explorer. A description of each parameter is displayed in the Description
pane when that parameter is selected, providing an explanation of any required
settings or options. The Comments pane provides an area for recording notes and
information regarding the currently selected parameter. This is saved for future referral.

To Configure the Environment Properties:

1 In Enterprise Explorer, click the Environment Explorer tab.

2 Expand the Environment created for the WebLogic project and locate the WebLogic
External System.
WebLogic eWay Intelligent Adapter User’s Guide 17 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Setting Properties of WebLogic eWay Configuring the Environment Properties
Note: For more information on creating an Environment, see the eGate Integrator
Tutorial.

3 Right-click the WebLogic External System and select Properties from the list box.
The Environment Configuration Properties window appears.

Figure 3 Environment Configuration outbound properties

4 Click on the ellipsis (...) in the properties field (displayed during modification of the
value) to open a separate configuration dialog box. This is helpful for large values
that cannot be fully displayed in the parameter’s property field. Enter the property
value in the dialog box and click OK. The value is now displayed in the parameter’s
property field.

5 After modifying the configuration properties, click OK to close the Properties Sheet
and save the changes.

3.3.2. Environment Property Settings
Configure your Environment properties to match the properties listed below.

Settings Include:

java.naming.authoritative on page 19

java.naming.batchsize on page 20
WebLogic eWay Intelligent Adapter User’s Guide 18 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Setting Properties of WebLogic eWay Configuring the Environment Properties
java.naming.dns.url on page 20

java.naming.factory.control on page 20

java.naming.factory.initial on page 20

java.naming.factory.object on page 20

java.naming.factory.state on page 21

java.naming.factory.url.pkgs on page 21

java.naming.language on page 21

java.naming.provider.url on page 21

java.naming.referral on page 22

java.naming.security.authentication on page 22

java.naming.security.credentials on page 22

java.naming.security.principal on page 23

java.naming.security.protocol on page 23

weblogic.jndi.WLContext.CREATE_INTERMEDIATE_CONTEXTS on page 23

weblogic.jndi.WLContext.DELEGATE_ENVIRONMENT on page 23

weblogic.jndi.WLContext.PIN_TO_PRIMARY_SERVER on page 24

weblogic.jndi.WLContext.PROVIDER_RJVM on page 24

weblogic.jndi.WLContext.REPLICATE_BINDINGS on page 24

weblogic.jndi.WLContext.SSL_CLIENT_CERTIFICATE on page 24

weblogic.jndi.WLContext.SSL_CLIENT_KEY_PASSWORD on page 25

weblogic.jndi.WLContext.SSL_ROOT_CA_FINGERPRINTS on page 25

weblogic.jndi.WLContext.SSL_SERVER_NAME on page 25

weblogic.jndi.WLContext.USE_IIOP_SERVICE_PROVIDER on page 25

java.naming.authoritative

Description

Specifies the authoritativeness of the service requested. If true is specified, the most
authoritative source is used (for example, bypass any caches, or bypass replicas in some
systems). Otherwise, the source need not be (but can be) authoritative.

Required Value

Either the value true or false. False is the configured default.
WebLogic eWay Intelligent Adapter User’s Guide 19 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Setting Properties of WebLogic eWay Configuring the Environment Properties
java.naming.batchsize

Description

Specifies the preferred batch size to use when returning data using the WebLogic Server
protocol. This suggestion, for the user to return the results of operations in batches of a
specified size, optimizes its performance and resources. It does not affect number or
size of the data returned.

Required Value

A preferred batch size. If not specified, it defaults to the service provider default.

java.naming.dns.url

Description

Specifies the DNS host and domain names (Context.DNS_URL).

Required Value

A valid DNS host. If not specified, it defaults to the service provider default.

java.naming.factory.control

Description

Specifies a colon-separated list of the class names for the response control factory
classes to be used (LdapContext.CONTROL_FACTORIES). See
ControlFactory.getControlInstance().

Required Value

Class names of the response control factory classes, separated by a colon.

java.naming.factory.initial

Description

Specifies the class name of initial context factory. Defines the implementation of JNDI to
be used by the client (Context.INITIAL_CONTEXT_FACTORY). For most cases use the
configured default.

Required Value

The class name of the initial context factory to be used.
weblogic.jndi.WLInitialContextFactory is the configured default.

java.naming.factory.object

Description

Specifies a colon-separated list of the class names for the object factory classes to be
used (Context.OBJECT_FACTORIES). See NamingManager.getObjectInstance() and
DirectoryManager.getObjectInstance().
WebLogic eWay Intelligent Adapter User’s Guide 20 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Setting Properties of WebLogic eWay Configuring the Environment Properties
Required Value

Class names of object factory classes, separated by a colon.

java.naming.factory.state

Description

Specifies a colon-separated list of the class names for the state factory classes to be used
(Context.STATE_FACTORIES). See NamingManager.getStateToBind() and
DirectoryManager.getStateToBind().

Required Value

Class names of state factory classes, separated by a colon.

java.naming.factory.url.pkgs

Description

Specifies a colon-separated list of the package prefixes to use when loading in URL
context factories (Context.URL_PKG_PREFIXES). See
NamingManager.getURLContext().

Required Value

Valid package prefixes used for loading URL context factories, separated by a colon.
com.sun.jndi.url is always added to end of list.

java.naming.language

Description

Specifies a colon-separated list of the preferred languages to use with this service.
Languages are specified using tags defined in RFC 1766. (Context.LANGUAGE)

Required Value

Valid language tags as specified by RFC1776 protocol, separated by a colon (for
example, en-US:fr:fr-CH:ja-JP-kanji). If not specified it defaults to the service provider
default.

java.naming.provider.url

Description

Specifies the PROVIDER_URL (Context.PROVIDER_URL).

Required Value

The URL of the participating host (for example, t3://localhost:7001 or
http:localhost:7003). If not specified, it defaults to the service provider default.
WebLogic eWay Intelligent Adapter User’s Guide 21 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Setting Properties of WebLogic eWay Configuring the Environment Properties
java.naming.referral

Description

Specifies whether referrals encountered by the service provider are to be followed
automatically. (Context.REFERRAL) The value of the property is one of the following:

follow: follow referrals automatically.

ignore: ignore any encountered referrals.

throw: throw a ReferralException when a referral is encountered.

Required Value

A naming referral property. Values are follow, ignore, or throw. If not specified, it
defaults to the service provider default.

java.naming.security.authentication

Description

Specifies the security authentication scheme to use.
(Context.SECURITY_AUTHENTICATION) The values are as follows:

simple: provides user password authentication. Values must also be provided for
java.naming.security.principal and java.naming.security.credentials parameters.

strong: provides certificate authentication (a file name). May require the use of
X.509 certificates for the java.naming.security.credentials property. Values must also
be provided for java.naming.security.principal and java.naming.security.credentials
parameters.

none: no required authentication.

user-defined: a user-defined key for authentication. Values must also be provided
for java.naming.security.principal and java.naming.security.credentials parameters.

Required Value

A security authentication property. Values are simple, strong, none, or a user-defined
key. If not specified it defaults to the service provider default.

java.naming.security.credentials

Description

Specifies the principal's (user’s) credentials for the authentication scheme determined
by the authentication value specified for java.naming.security.authentication. If the
value is set as simple this would be a password. If the value is strong this would be
certificate (a file). If the value is user-defined then it would be the user-specified key. If
the authentication value is none no value is set for credentials.

Required Value

Either a password, a certificate (file), or a user-defined key depending on the value set
for java.naming.security.authentication. If not specified, it defaults to “guest”, the
service provider default.
WebLogic eWay Intelligent Adapter User’s Guide 22 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Setting Properties of WebLogic eWay Configuring the Environment Properties
java.naming.security.principal

Description

Specifies the identity of the principal (user) for the authentication scheme when the
java.naming.security.authentication value is set as simple or strong.

Required Value

Either a user name or a certificate depending on the value entered for
java.naming.security.authentication. If not specified, it defaults to “guest”, the service
provider default.

java.naming.security.protocol

Description

Specifies the security protocol to use (for example, “ssl”).

Required Value

A security protocol. If not specified, it defaults to the service provider default.

weblogic.jndi.WLContext.CREATE_INTERMEDIATE_CONTEXTS

Description

Specifies the way to handle non-existent intermediate contexts. If true then performing
a bind, rebind, or createSubcontext with a name that specifies non- existent
intermediate contexts creates those contexts.

Required Value

Either the value true or false. If not specified, it defaults to the service provider default.

weblogic.jndi.WLContext.DELEGATE_ENVIRONMENT

Description

Specifies the JNDI environment to use for connecting to a third-party naming service
through the WebLogic Server. When specified, the WebLogic Server creates a three-tier
connection to a third-party naming service. Properties contained in the Hashtable
specified by this parameter are used to create an initial context for the third-party
naming service. The original initial context then delegates its work to the third-party's
initial context.

Required Value

A specified JNDI environment.

weblogic.jndi.WLContext.ENABLE_SERVER_AFFINITY

Description

This parameter applies to WebLogic 8.1 only. Specifies whether multiple context
creations from the same VM will reuse existing connections or round-robin across all
WebLogic eWay Intelligent Adapter User’s Guide 23 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Setting Properties of WebLogic eWay Configuring the Environment Properties
servers in the cluster (cluster-specific). By default, context creations will round-robin
across all servers in a cluster. This property takes affect only when a cluster url is
specified. If a specific server url is used, context creation would always connect to that
server.

Required Value

Either the value true or false. True indicates that the VM will reuse existing
connections. The configured default is false.

weblogic.jndi.WLContext.PIN_TO_PRIMARY_SERVER

Description

Specifies whether the context stub only connects to the primary naming server. Cluster-
specific: If set as true, this parameter forces the context stub to connect to only the
server currently running at the host specified by Context.PROVIDER_URL.

Required Value

Either the value true or false. The configured default is false.

weblogic.jndi.WLContext.PROVIDER_RJVM

Description

Specifies the RJVM to use as the naming server. This may be used as an alternative to
Context.PROVIDER_URL. It specifies an RJVM representing the desired server rather
than a URL.

Required Value

A specified RJVM.

weblogic.jndi.WLContext.REPLICATE_BINDINGS

Description

Cluster-specific: Specifies whether tree modifications are replicated. This only applies
when connecting to WebLogic Servers that are running in a cluster. If set to false,
modifications to the tree caused by bind, unbind, createSubcontext, and
destroySubcontext, are not replicated. A false value should only be used with extreme
caution. The default setting for the parameter is true, which allows any modification to
the naming tree to be replicated across the cluster. This ensures that any server can act
as a naming server for the entire cluster.

Required Value

Either the value true or false. The default value is true.

weblogic.jndi.WLContext.SSL_CLIENT_CERTIFICATE

Description

Specifies an RSA private key and a chain of certificates for client authentication. This
can be set to SERVER, a special string that refers to the server’s private key and
WebLogic eWay Intelligent Adapter User’s Guide 24 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Setting Properties of WebLogic eWay Configuring the Environment Properties
certificate chain. Generally, it is set to an array of InputStreams, the first element being a
DER-encoded RSA private key, followed by DER_encoded X.509 certificates. Other
than the first, all certificates must be an issuer certificate of the preceding certificate.

Required Value

An RSA private key and a chain of certificates.

weblogic.jndi.WLContext.SSL_CLIENT_KEY_PASSWORD

Description

Specifies the password for an encrypted PKCS5/PKCS8 RSA private key.

Required Value

A valid password.

weblogic.jndi.WLContext.SSL_ROOT_CA_FINGERPRINTS

Description

Specifies valid certificate authorities using a set of fingerprints (MD5) of the authorities'
certificates encoded either as an array of byte arrays, or a comma-separated string of
hex values. When specified, the SSL connection can only be established to a server that
presents a certificate chain in which the fingerprint of the root matches one of the
fingerprints specified by the parameter value.

Required Value

A set of fingerprints (MD5) of the authorities' certificates encoded either as an array of
byte arrays, or a comma-separated string of hex values.

weblogic.jndi.WLContext.SSL_SERVER_NAME

Description

Specifies an expected name of an SSL server as a String. The value must match the
common name field in the certificate provided by the server (typically the WebLogic
Server’s DNS name).

Required Value

A specific SSL server name.

weblogic.jndi.WLContext.USE_IIOP_SERVICE_PROVIDER

Description

Applies to WebLogic 6.1 and 7.0 only. Specified when the caller intends to use the
WebLogic IIOP service provider to establish an IIOP connection to the naming server.

Required Value

USE_IIOP_SERVICE_PROVIDER to specify use.
WebLogic eWay Intelligent Adapter User’s Guide 25 SeeBeyond Proprietary and Confidential

Chapter 4

WebLogic Server Components

This chapter provides an overview of the various Sun Microsystem Java 2 Enterprise
Edition (J2EE) Applications and WebLogic Server technologies employed in the
WebLogic Server.

What’s in This Chapter:

“Java Naming and Directory Interface (JNDI)” on page 26

“Java Messaging Service (JMS)” on page 29

“Enterprise JavaBeans (EJBs)” on page 30

“XA Transactions” on page 31

4.1 Java Naming and Directory Interface (JNDI)
The JNDI service is a set of APIs published by Sun that interface to a directory to locate
named objects. APIs allow Java programs to store and lookup objects using multiple
naming services in a standard manner. The naming service may be either LDAP, a file
system, or a RMI registry. Each naming service has a corresponding provider
implementation that can be used with JNDI. The ability for JNDI to “plug in” any
implementation for any naming service (or span across naming services with a
federated naming service) easily provides another level of programming abstraction.
This level of abstraction allows Java code using JNDI to be portable against any naming
service. For example, no code changes should be needed by the Java client code to run
against an RMI registry or an LDAP server.

The WebLogic Naming Service

Any J2EE compliant application server, such as the WebLogic Server, has a JNDI
subsystem. The JNDI subsystem is used in an Application Server as a directory for such
objects as resource managers and Enterprise JavaBeans (EJBs). Objects managed by the
WebLogic container have default environments for getting the JNDI InitialContext
loaded when they use the default InitialContext() constructor. For a Collaboration
using a WebLogic EJB Object Type Definition (OTD) to find the home interface of an
EJB, the JNDI properties must be configured and associated with the OTD. However,
for other external clients, accessing the WebLogic naming service requires a Java client
program that sets up the appropriate JNDI environment when creating the JNDI Initial
Context.
WebLogic eWay Intelligent Adapter User’s Guide 26 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
WebLogic Server Components Java Naming and Directory Interface (JNDI)
There are essentially two environments that have to be configured,
Context.PROVIDER_URL and Context.INITIAL_CONTEXT_FACTORY. For
WebLogic, the Context.PROVIDER_URL environment is

t3://<wlserverhost>:<port>/

where <wlserverhost> is the hostname on which the WebLogic Server instance is
running and <port> is the port at which the Webserver instance is listening for
connections. For example:

t3://localhost:7003/

The initial context factory class for the WebLogic JNDI is
weblogic.jndi.WLInitialContextFactory. This class should be supplied to the
Context.INITIAL_CONTEXT_FACTORY environment property when constructing
the initial context. The overloaded InitialContext(Map) constructor must be used in
this case.

Sample Code

The following code is an example of creating an initial context to WebLogic JNDI from a
stand-alone client:

HashMap env = new HashMap();
env.put (Context.PROVIDER_URL, "t3://localhost:7003/");
env.put (Context.INITIAL_CONTEXT_FACTORY,
"weblogic.jndi.WLInitialContextFactory");
Context initContext = new InitialContext (env);
…

Once an initial context is created, sub-contexts can be created, objects can be bound, and
objects can be retrieved using the initial context. For example the following segment of
code retrieves a Topic object:

Topic topic
=(Topic)initContext.lookup("sbyn.inTopicToSeeBeyondTopic");
…

Here's an example of how to bind a SeeBeyond Queue object:

Queue queue = null;
try {

queue = new STCQueue("inQueueToSeeBeyondQueue");
initContext.bind ("sbyn.ToSeeBeyondQueue", queue);

}
catch (NameAlreadyBoundException ex)
{

try
{
if (queue != null)

initContext.rebind ("sbyn.ToSeeBeyondQueue", queue);
}
catch (Exception ex)
{
throw ex;

}
}

WebLogic eWay Intelligent Adapter User’s Guide 27 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
WebLogic Server Components Java Naming and Directory Interface (JNDI)
Viewing The WebLogic JNDI Tree

The WebLogic Administrative Console (Web Interface) allows a user to view the JNDI
Tree associated with the server instance. To view the JNDI Tree (see Figure 4), log onto
the Administrative console for the selected server (for example, the examplesServer),
expand the Servers tab, right click on the server node, and select View JNDI tree from
the pop up menu.

Figure 4 Administrative Console - View JNDI Tree

In the following example, (see Figure 5 on page 29) the JNDI tree Web page shows that
the SeeBeyond subcontext was expanded in order to view the SeeBeyond JMS objects
that were bound to the WebLogic JNDI. These objects are bound when the
STCWLStartup class is loaded and run by the WebLogic Server. (See SeeBeyond
WebLogic Startup Class on page 47 for more details about this startup class.)

Additionally, when EJBs are deployed on the application server they are registered in
the JNDI. This JNDI name is used by the EJB OTD to look up the home interface of the
EJB.
WebLogic eWay Intelligent Adapter User’s Guide 28 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
WebLogic Server Components Java Messaging Service (JMS)
Figure 5 Administrative Console - The JNDI Tree Web Page

4.2 Java Messaging Service (JMS)
The Java Messaging Service is a messaging oriented middleware API designed by Sun.
The client makes use of these APIs, allowing portability with any JMS implementation.
JMS allows clients to be de-coupled from one another. The clients do not communicate
with each other directly, but rather by send messages to each other via middleware.
Each client in a JMS environment connects to a messaging server. The messaging server
facilitates the flow of messages among all clients. The messaging server guarantees that
all messages arrive at the appropriate destinations. The messaging server also
guarantees quality of services as transactions (local or XA), persistence, durability, and
others.

Clients send messages to or receive messages from Topics or Queues (see Figure 6 and
Figure 7). The difference between a Topic and a Queue is that all subscribers to a Topic
receive the same message when the message is published and only one subscriber to a
Queue receives a message when the message is sent (see SeeBeyond JMS on page 38).
WebLogic eWay Intelligent Adapter User’s Guide 29 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
WebLogic Server Components Enterprise JavaBeans (EJBs)
Figure 6 Topic - The Publish-Subscribe Model.

Figure 6 shows multiple subscribers receiving the same messages when the publisher
publishes the message to a Topic. This is the pubsub (publish-subscribe) model.

Figure 7 Queue - The Point-to-Point Model

The Point-to-Point model (Figure 7), on the other hand, allows for only one receiver to
get the message when a sender sends a message to a Queue.

4.3 Enterprise JavaBeans (EJBs)
Enterprise JavaBeans are reusable software programs that you can develop and
assemble easily to create sophisticated applications. Developers use EJBs to design and
develop customized, reusable business logic. EJBs are the units of work that an
application server is responsible for and exposes to the external world. The WebLogic
Application Server provides the architecture for writing business logic components,
allowing Web servers to easily access data.

There are three types of Enterprise JavaBeans:

Session Beans

Entity Beans

Message Driven Beans

Topic fPublisher Subscriber

Subscriber

Subscriber

Msg
A

Msg
A

Msg
A

Msg
A

Queue fSender Receiver

Receiver

Receiver

Msg
A

Msg
A

WebLogic eWay Intelligent Adapter User’s Guide 30 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
WebLogic Server Components XA Transactions
Session Beans

Session Beans are business process objects that perform actions. An action may be
opening an account, transferring funds, or performing a calculation. Session Beans
consist of the remote, home, and bean classes. A client gets a reference to the Session
Bean's home interface in order to create the Session Bean remote object, which is
essentially the bean's factory. The Session Bean is exposed to the client with the remote
interface. The client uses the remote interface to invoke the bean's methods. The actual
implementation of the Session Bean is done with the bean class. (See Accessing Session
Beans on page 98.)

Entity Beans

Entity Beans are data objects that represent the real-life objects on which Session Beans
perform actions. Objects may include items such as accounts, employees, or inventory.
An Entity Bean, like a Session Bean, consists of the remote, home, and bean classes. The
client references the Entity Bean's home interface in order to create the Entity Bean
remote object (essentially the bean's factory). The Entity Bean is exposed to the client
with the remote interface, which the client uses to invoke the bean's methods. The
implementation of the Entity Bean is done with the bean class. (See Entity Beans on
page 31.)

Message Driven Beans

Message Driven Beans (MDBs) are messaging objects designed to route messages from
clients to other Enterprise Java Beans. In the WebLogic eWay, Message Driven Beans
deal with asynchronous subscription/publication of JMS messages in a different
manner than Entity and Session Beans (EJB 2.0 specification). Message Driven Beans are
often compared to a Stateless Session Bean in that it does not have any state context. A
Message Driven Bean differs from Session and Entity Beans in that it has no local/
remote or localhome/home interfaces. An MDB is not exposed to a client at all. The
MDB simply subscribes to a Topic or a Queue, receives messages from the container via
the Topic or Queue, and then process the messages it receives from the container.

An MDB implements two interfaces: javax.ejb.MessageBean and
javax.jms.MessageListener. Minimally, the MDB must implement the
setMessageDrivenContext, ejbCreate, and ejbRemove methods from the
javax.ejb.MessageBean interface. In addition, the MDB must implement the onMessage
method of the javax.jms.MessageListener interface. The container calls the onMessage
method, passing in a javax.jms.Message, when a message is available for the MDB.

4.4 XA Transactions
XA is a two-phase commit protocol that is natively supported by many databases and
transaction monitors. It ensures data integrity by coordinating single transactions
accessing multiple relational databases. XA guarantees that transactional updates are
committed in all of the participating databases, or are fully rolled back out of all of the
databases, reverting to the state prior to the start of the transaction.
WebLogic eWay Intelligent Adapter User’s Guide 31 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
WebLogic Server Components XA Transactions
The X/Open XA specification defines the interactions between the Transaction Manager
(TM) and the Resource Manager. The Transaction Manager, also known as the XA
Coordinator, manages the XA or global transactions. The Resource Manager manages a
particular resource such as a database or a JMS system. In addition, an XA Resource
exposes a set of methods or functions for managing the resource.

In order to be involved in an XA transaction, the XA Resource must make itself known
to the Transaction Manager. This process is called enlistment. Once an XA Resource is
enlisted, the Transaction Manager ensures that the XA Resource takes part in a
transaction and makes the appropriate method calls on the XA Resource during the
lifetime of the transaction. For an XA transaction to complete, all the Resource
Managers participate in a two-phase commit (2pc). A commit in an XA transaction is
called a two-phase commit because there are two passes made in the committing
process. In the first pass, the Transaction Manager asks each of the Resource Managers
(via the enlisted XA Resource) whether they will encounter any problems committing
the transaction. If any Resource Manager objects to committing the transaction, then all
work done by any party on any resource involved in the XA transaction must all be
rolled back. The Transaction Manager calls the rollback() method on each of the
enlisted XA Resources. However, if no resource Managers object to committing, then
the second pass involves the Transaction Manager actually calling commit() on each of
the enlisted XA Resources. This process guarantees the ACID (atomicity, consistency,
isolation, and durability) properties of a transaction that can span multiple resources.

Both SeeBeyond JMS and BEA WebLogic Server implement the X/Open XA interface
specifications. Because both systems support XA, the EJBs running inside the WebLogic
container can subscribe or publish messages to SeeBeyond JMS in XA mode. When
running in XA mode, the EJBs subscribing or publishing to SeeBeyond JMS can also
participate in a global transaction involving other EJBs. For the “example” EJBs running
in XA mode, Container Managed Transactions (CMTs) are used. In other words, we
define the transactional attributes of the EJBs through their deployment descriptors and
allow the container to transparently handle the XA transactions on behalf of the EJBs.
The WebLogic Transaction Manager coordinates the XA transactions. The SeeBeyond
JMS XA Resource is enlisted to a transaction so that the WebLogic Transaction Manager
is aware of the SeeBeyond JMS XA Resource involved in the XA transaction. The
WebLogic container interacts closely with the Transaction Manager in CMT such that
transactions are almost transparent to an EJB developer. (See SeeBeyond Sample XA
Session Beans on page 106.)
WebLogic eWay Intelligent Adapter User’s Guide 32 SeeBeyond Proprietary and Confidential

Chapter 5

WebLogic eWay Component
Communication

This chapter provides an overview of how components of the eWay Intelligent Adapter
for WebLogic communicate with the WebLogic Application Server.

What’s in This Chapter:

Synchronous and Asynchronous Communication on page 33

Synchronous Communication in eGate on page 36

Asynchronous Communication in eGate on page 37

SeeBeyond WebLogic Startup Class on page 47

5.1 Synchronous and Asynchronous Communication
WebLogic eWay takes advantage of both Synchronous and Asynchronous
communication in message delivery. Asynchronous messages provide both inbound
and outbound communication between eGate and WebLogic, using the WebLogic JMS.
Synchronous messages only provide outbound communication and require OTDs to
hold the data structure and define rules referenced in the EJB.

Figure 8 WebLogic Synchronous and Asynchronous Communication

W ebLogic eW ay Com munication

Asynchronous
M essage

Synchronous
Message

JM S
Uses JM S to provide

point-to-point queuing
and topic (publish/

subscribe) behaviour.

Requires O TDs build by
the W ebLogic OTD
W izard

Provides outbound
com munication only

Provides both inbound
and outbound

com munication
WebLogic eWay Intelligent Adapter User’s Guide 33 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
WebLogic eWay Component Communication Synchronous and Asynchronous Communication
5.1.1. Synchronous Communication
Synchronous communication is considered an unbuffered process, requiring either
complete data transmission and reply or confirmation of message transmission failure
before continuing with the process. This can be comparable to a phone call in which the
caller makes the call and waits for a response before attempting to make another call.
An example of synchronous communication is displayed in Figure 9.

Figure 9 Synchronous Communication

Synchronous Communication in eGate Includes:

eGate to WebLogic Transactions – an outbound transaction, where eGate makes a
request to WebLogic and waits for a response. For more information, see
“Synchronous Communication in eGate” on page 36.

Associated Sample Projects:

Two sample projects—WebLogic_BPEL.zip and WebLogic_JCE.zip—are included
with the WebLogic eWay to demonstrate synchronous message interactions.

WebLogic_BPEL – demonstrates how to deploy an eGate component as an Activity
in an eInsight Business Process. For more information, see “Implementing the
WebLogic eWay” on page 75

WebLogic_JCE – demonstrates how to deploy and eGate component using java
collaborations. For more information, see “Using the Sample Projects in eGate” on
page 84.

5.1.2. Asynchronous Communication
Asynchronous communication is considered a buffered process, since the sender never
waits after sending data and the receiver only waits when the buffer is empty. The
buffer or queue is a service that temporarily holds messages until the receiver is ready
to process them. This can be comparable to a mail message in which mail is sent and
forgotten until sometime later when a response is received.

Process 1 Process 2

Send

Reply
WebLogic eWay Intelligent Adapter User’s Guide 34 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
WebLogic eWay Component Communication Synchronous and Asynchronous Communication
Figure 10 Asynchronous Communication

Asynchronous Communication in eGate Includes:

WebLogic EJB to eGate (JMS) Transactions – an inbound transaction, where the
JMS dictates how client applications talk to a Queue, and the WebLogic EJBs
publish to the eGate JMS IQ Manager. For more information, see “Asynchronous
Communication in eGate” on page 37.

eGate (JMS) to WebLogic Message Driven Bean Transactions – an outbound
transaction, where the eGate JMS publishes to a WebLogic Application Server
Message Driven Bean. A Message Driven Bean (MDB) is a specialized EJB that acts
like a trigger which executes whenever there is activity on a specific Queue. A
message published to eGate’s JMS causes an MDB stored in WebLogic to execute.
For more information, see “Asynchronous Communication in eGate” on page 37.

Associated Sample Projects:

Six sub projects are included in the WebLogic eWay WebLogicJMS.zip file to
demonstrate Asynchronous message interactions.

JMSQueueRequestor – an inbound example that demonstrates how a remote client
requests and receives messages asynchronously from a JMS queue.

JMSQueueSend – an outbound example that demonstrates how to pass messages
into a JMS queue asynchronously, before ultimately passing into a WebLogic
container.

JMSTopicPublish – an outbound example that demonstrates how messages are
read, subscribed and published to a JMS topic asynchronously, before passing into a
WebLogic container.

JMSTopicSubscribe – an inbound example that demonstrates how a remote client
is used to send a messages to eGate asynchronously through a JMS topic.

JMSXAQueueSend – an outbound example that demonstrates how to
asynchronously pass two-phase commit protocol (XA) messages into a JMS queue,
before ultimately passing into a WebLogic container.

JMSXATopicSubscribe – an inbound example that demonstrates how a remote
client is used to asynchronously pass two-phase commit protocol (XA) messages
into a JMS topic.

Process 1 Process 2

Send

Reply

Topic
or

Queue

Signal

Reply

Send
WebLogic eWay Intelligent Adapter User’s Guide 35 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
WebLogic eWay Component Communication Synchronous Communication in eGate
5.2 Synchronous Communication in eGate
Synchronous communication is carried out by the WebLogic eWay, and requires the
creation of an OTD using the WebLogic OTD Wizard. WebLogic OTDs are created using
WebLogic’s Session and Entity Beans (not Message Driven Beans) EJB interface classes,
that represent the methods of the EJB.

Once created, these methods are called from within a Collaboration, making them
accessible to the user. The OTD queries the JNDI directory services and locates a home
interface, uses the home interface to acquire remote interfaces, applies Iterator methods
for managing multiple remote interface instances, and provides access to the remote
interface methods. Collaborations can then be built between the OTD and OTDs for
other applications, making the EJB methods available to that application.

5.2.1. The WebLogic OTD
The WebLogic OTD contains EJB methods that are callable from inside a Collaboration.

The OTD is divided into two portions:

Home Interface Methods – used to acquire the Remote Interface, allowing OTDs to
find and invoke EJB instances.

As an example, the home interface method findBigAccounts(), seen in Figure 11,
could use the argument “balanceGreaterThan (100,000)” to find all account EJBs
with a balance over 100,000 and assign their remote interface to the Remote
Instances OTD node.

Remote Interface Methods – contains remote interface methods that allow
processes to be run on the current remote interface.

Figure 11 EJB OTD nodes represent both Home and Remote Interface methods
WebLogic eWay Intelligent Adapter User’s Guide 36 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
WebLogic eWay Component Communication Asynchronous Communication in eGate
5.3 Asynchronous Communication in eGate
The following section describes how SeeBeyond’s implementation of JMS applies to
asynchronous interaction between the eWay Intelligent Adapter for WebLogic and
WebLogic Server.

The eWay incorporates the SeeBeyond JMS IQ Manager into the WebLogic
environment, allowing EJBs in the WebLogic container to receive messages from or
send messages to eGate.

Two messaging procedures are used to facilitate interaction:

Message Driven Beans subscribing to SeeBeyond JMS

Session Beans publishing/sending to SeeBeyond JMS

5.3.1. Additional Messaging Service Requirements
Other WebLogic subsystems required to facilitate messaging services include:

EJB Containers – contains and provides persistence, distributed objects,
concurrency, security, and transactions to all EJBs.

Naming Services – required to locate distributed objects, the Java Naming and
Directory Interface™ (JNDI) enables servers to host objects at specific times.

The naming service allows you to “bind” the following SeeBeyond JMS objects:

TopicConnectionFactory

QueueConnectionFactory

Topic(s)

Queue(s)

By binding instances of these objects, any EJB can get a hold of the references to
these objects by looking them up in the naming service using JNDI. The Message
Driven Beans (MDBs) are used for asynchronous subscription of messages from a
JMS Topic or Queue. This scenario corresponds to the SeeBeyond JMS provider
driving MDBs running in WebLogic. Session Beans are used for publishing and
sending Topic/Queue messages through the SeeBeyond JMS provider as well.

The following architectural diagram (Figure 12) illustrates the components
involved:
WebLogic eWay Intelligent Adapter User’s Guide 37 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
WebLogic eWay Component Communication Asynchronous Communication in eGate
Figure 12 WebLogic Server and WebLogic eWay Components

5.3.2. SeeBeyond JMS
As part of the WebLogic eWay installation, SeeBeyond supplies startup classes for JMS
objects to install into the naming service. Four JMS ConnectionFactory objects are
bound to the naming service, including:

MyTopicConnectionFactory

XATopicConnectionFactory

MyQueueConnectionFactory

XAQueueConnectionFactory

Moreover, installing the SeeBeyond supplied Session Beans and Message Driven Beans
installs Topic and Queue objects into the naming service.

Message Flow from eGate to WebLogic Using JMS Objects

To enable message flow from eGate to WebLogic, WebLogic uses the SeeBeyond
TopicConnectionFactory to create the necessary JMS TopicConnection(s) and
TopicSession(s) and uses the SeeBeyond QueueConnectionFactory to create the JMS
QueueConnection(s) and QueueSession(s). Likewise, XATopicConnectionFactory is
used to create the necessary JMS XATopicConnection(s) and XATopicSession(s) and the
SeeBeyond XAQueueConnectionFactory is used to create the JMS

Startup
Properties
File

SBYN
EJBs

EJB Container

SeeBeyond
WebLogic
Startup Class

WebLogic Server

SeeBeyond
Queue/Topic
Connection
Factory

JMS

JMS
Connection

Java
Collaboration

Lookup &
Use

JNDI

eGate

SeeBeyond
Queues
Topics

SeeBeyond
Queues
Topics
WebLogic eWay Intelligent Adapter User’s Guide 38 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
WebLogic eWay Component Communication Asynchronous Communication in eGate
XAQueueConnection(s) and XAQueueSession(s). The weblogic-ejb-jar.xml
deployment descriptor allows the configuration of SeeBeyond JMS as a foreign JMS to
which the MDBs subscribe. The diagram in Figure 13 shows the components involved
in eGate to WebLogic mode. The arrows represent message flow.

Figure 13 Message Flow from eGate to WebLogic

To External

 SBYN
 Queue
 Connection
 Factory

Port

Outbound
Topic
MDB

EJB Container

JMS

Queue
Session

To External

 SeeBeyond
 JMS Connection

 Queue
 MDB

eGate on some Host

JNDI

 SBYN
 Topic
 Connection
 Factory

SBYN
Topics

SBYN
Queues

 Topic
 MDB

Topic
Session

WebLogic on some Host
WebLogic eWay Intelligent Adapter User’s Guide 39 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
WebLogic eWay Component Communication Asynchronous Communication in eGate
Figure 14 displays an example of the ejb-jar.xml for the Topic MDB which receives
messages from a SeeBeyond JMS Topic.

Figure 14 ejb-jar.xml - Topic MDB
WebLogic eWay Intelligent Adapter User’s Guide 40 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
WebLogic eWay Component Communication Asynchronous Communication in eGate
Updating the WebLogic JMS

An updated WebLogic JMS is required to ensure communication between eGate and
WebLogic. Figure 15 displays an example of the weblogic-ejb-jar.xml for the Topic
MDB which receives messages from a SeeBeyond JMS Topic.

Figure 15 weblogic-ejb-jar.xml - Topic MDB

In the above figure, the <destination-jndi-name> tag of the Topic is
SeeBeyond.Topics.STCTopic1; this is a SeeBeyond JMS Topic. Using the WebLogic
naming service, the two entries initial-context-factory and provider-url are
weblogic.jndi.WLInitialContextFactory and t3://localhost:7003 respectively. Since the
container needs to use the SeeBeyond JMS TopicConnectionFactory, we specify the
SeeBeyond TopicConnectionFactory with the <connection-factory-jndi-name> tag as
SeeBeyond.TopicConnectionFactories.TopicConnectionFactory. The JNDI bound
objects SeeBeyond.Topics.STCTopic1 and
SeeBeyond.TopicConnectionFactories.TopicConnectionFactory must be created and
bound to the WebLogic JNDI for this server instance before deploying and using the
MDB. The WebLogic Administrative Console does NOT allow creation of any foreign
JMS objects. This must be done outside of the Administrative Console.

The task of creating the SeeBeyond JMS objects is done by the SeeBeyond WebLogic
startup class called STCWLStartup. (See the section SeeBeyond WebLogic Startup
Class on page 47 to see how the startup class works and how to configure and deploy
it.) The three tag entries <initial-context-factory>, <provider-url>, and <connection-
WebLogic eWay Intelligent Adapter User’s Guide 41 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
WebLogic eWay Component Communication Asynchronous Communication in eGate
factory-jndi-name> are necessary because SeeBeyond JMS is being used as a foreign
JMS into WebLogic.

The same entries can be added for subscribing to a SeeBeyond Queue (using the
SeeBeyond QueueConnectionFactory as the connection factory and SeeBeyond Queue
as the destination).

Message Flow from WebLogic to eGate Using JMS Objects

For message flow from WebLogic to eGate, Session Beans can publish/send JMS
messages to SeeBeyond JMS Topics/Queues.

In addition to the connection factories, the Topic and Queue destinations are also bound
to the naming service before they are referenced by the Session Beans. Creating these
SeeBeyond JMS objects and JNDI bindings is done through the SeeBeyond WebLogic
startup class, STCWLStartup. (See SeeBeyond WebLogic Startup Class on page 47 for
details.) With access to these JMS objects via JNDI, the Session Beans use the JMS API's
to send the JMS message to eGate.

Figure 16 displays a diagram of the components involved for the WebLogic to eGate
mode. The arrows represent the message flow.

Figure 16 Message Flow from WebLogic to eGate

Every bean automatically has access to a special naming system called the
Environment Naming Context (ENC). The ENC is managed by the container and
accessed by beans using JNDI. The JNDI ENC allows a bean to access resources like
JDBC connections, other enterprise beans, and properties specific to that bean. Each
Session Bean uses the ENC to specify the TopicConnectionFactory or
QueueConnectonFactory with the <resource-ref> element in the ejb-jar.xml file.

eGate on some Host

Port

Outbound
Topic
MDB

EJB Container

JMS

 SeeBeyond
 JMS Connection

Session
Bean

Session
Bean

SBYN
Queue
Session

SBYN
Topic
Session

 SBYN
 Queue
 Connection
 Factory

 SBYN
 Topic
 Connection
 Factory

 SBYN
 Queue SBYN

 Topic

JNDI
sbyn subcontext

Client Client
WebLogic eWay Intelligent Adapter User’s Guide 42 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
WebLogic eWay Component Communication Asynchronous Communication in eGate
Additionally, the Session Bean uses the ENC to specify the destination via the
<resource-env-ref> element in the ejb-jar.xml. The weblogic-ejb-jar.xml also has these
corresponding elements defined with the <resource-description> and <resource-env-
description> elements.

Figure 17 displays the Session Bean ejb-jar.xml deployment descriptor.

Figure 17 Session Bean ejb-jar.xml deployment descriptor
WebLogic eWay Intelligent Adapter User’s Guide 43 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
WebLogic eWay Component Communication Asynchronous Communication in eGate
Figure 18 displays the Session Bean weblogic-ejb-jar.xml deployment descriptor.

Figure 18 Session Bean weblogic-ejb-jar.xml deployment descriptor
WebLogic eWay Intelligent Adapter User’s Guide 44 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
WebLogic eWay Component Communication Asynchronous Communication in eGate
Figure 19 displays an example of the ejb-jar.xml deployment descriptor for the Session
Bean publishing to a SeeBeyond JMS Topic:

Figure 19 ejbjar.xml deployment descriptor - Session Bean to SeeBeyond JMS Topic

The value for the <res-ref-name> tag is jms/TopicConnectionFactory and the value for
the <resource-env-ref-name> environment entry tag is jsm/Topic. They are specified as
javax.jms.TopicConnectionFactory and javax.jms.Topic for the resource type
respectively. These resource references are another level of JNDI indirection. They don't
specify the actual JNDI names of the JMS objects, but instead reference the JNDI name.
Additionally, the EJB can reference jms/TopicConnectionFactory but does not really
care what the actual JNDI name is. The actual JNDI names for these references are
defined in the weblogic-ejb-jar.xml file.

The weblogic-ejb-jar.xml defines the actual JNDI name of the resource references
defined in ejb-jar.xml for the Session Bean as seen in Figure 20.
WebLogic eWay Intelligent Adapter User’s Guide 45 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
WebLogic eWay Component Communication Asynchronous Communication in eGate
Figure 20 weblogic-ejb-jar.xml defines the actual JNDI name

The value for the jndi-name tag for the resource name jms/TopicConnectionFactory is
SeeBeyond.TopicConnectionFactories.TopicConnectionFactory and the value for the
jndi-name tag for the jms/Topic entry is SeeBeyond.Topics.STCTopic2. These define
the resource reference name to JNDI name mappings. As mentioned earlier, these JNDI
bound objects need to be created by the startup class.
WebLogic eWay Intelligent Adapter User’s Guide 46 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
WebLogic eWay Component Communication SeeBeyond WebLogic Startup Class
5.4 SeeBeyond WebLogic Startup Class
To bind the SeeBeyond JMS objects into the WebLogic naming service, a SeeBeyond
startup class is installed on the WebLogic Server. The startup class is loaded by the
WebLogic Server when the server is booted and the startup method of the class is
invoked.

Upon invocation of the startup method, the following objects are instantiated and
bound to WebLogic's naming service:

A SeeBeyond MyTopicConnectionFactory

A SeeBeyond MyQueueConnectionFactory

All Configured Topics

All Configured JMS Queues

The configuration file for the startup class is in the form of a Java properties file. Before
describing the format of this file, let's look at the implementation of the startup class.

5.4.1. Startup Class Implementation
The startup class is called STCWLStartup.class. It implements the
weblogic.common.T3StartupDef interface. The STCWLStartup.class only needs to
implement two methods:

setServices()

startup()

setServices() method

The setServices() method is trivial; the server passes in an instance of T3ServicesDef
which can be saved by the startup class as an attribute. (See the WebLogic
documentation on T3ServicesDef for more information on this interface.)

startup() method

The startup() method is where the crux of the work is done. This method is invoked by
the server and this is where the SeeBeyond JMS objects are created and bound to the
naming service.

The startup() method takes two parameters that are provided by the server:

name – which is of type java.lang.String, is the name of the startup class.

args – which is of type HashTable, contains name/value pairs that are passed to the
startup as program “arguments.”

Both the name and args program arguments are defined when the startup class is
deployed in the server using the WebLogic Administrative Console.
WebLogic eWay Intelligent Adapter User’s Guide 47 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
WebLogic eWay Component Communication SeeBeyond WebLogic Startup Class
5.4.2. Startup Properties File
The startup properties file, STCWLStartup.properties, is read by the startup class
when the startup() method is invoked by the WebLogic Server and is used to configure
information about the SeeBeyond JMS specific information.

This file consists of name/value pairs. There are seven sections to this properties file.
Each name and value in the different sections have different meanings. Each section of
the default STCWLStartup.properties file in detail. Comment lines in the properties
file start with either a '#' or a '!' character.

Any changes to the startup configuration (properties) file does not take effect right
away. The WebLogic Server must be restarted in order for the startup class to get
reloaded and for the startup class to read the changes to the configuration file. For
example, if a new Topic or Queue is added, the WebLogic Server needs to be restarted.

STCWLStartup.properties File

SeeBeyond JNDI Sub-context

The first section allows the user to specify the JNDI sub-context for SeeBeyond.

#--

JNDI subcontext for SeeBeyond objects.
This section configures the JNDI subcontext to which all the
SeeBeyond
JMS objects will bind.
#
WARNING: Only the property value can be changed here.
#--

Subcontext.SeeBeyond=SeeBeyond

The user should not have to change this.

SeeBeyond JMS TopicConnectionFactory Sub-context

The next section allows the user to specify the JNDI sub-context where all instances of
SeeBeyond JMS TopicConnectionFactory are bound. This sub-context is under the
SeeBeyond sub-context.

#--

JNDI subcontext for SeeBeyond JMS Topic connection factories.
This section configures the JNDI subcontext to which all the
SeeBeyond
JMS TopicConnectionFactory objects will bind.
#
WARNING: Only the property value can be changed here.
#--

Subcontext.TopicConnectionFactory=TopicConnectionFactories

The user should not have to change this.
WebLogic eWay Intelligent Adapter User’s Guide 48 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
WebLogic eWay Component Communication SeeBeyond WebLogic Startup Class
SeeBeyond JMS QueueConnectionFactory Sub-context

The next section allows the user to specify the JNDI sub-context where all instances of
SeeBeyond JMS QueueConnectionFactory are bound. This sub-context is under the
SeeBeyond sub-context configured.

#--

JNDI subcontext for SeeBeyond JMS Queue connection factories.
This section configures the JNDI subcontext to which all the
SeeBeyond
JMS QueueConnectionFactory objects will bind.
#
WARNING: Only the property value can be changed here.
#--

Subcontext.QueueConnectionFactory=QueueConnectionFactories

The user should not have to change this.

SeeBeyond JMS Topic Sub-context

The next section allows the user to specify the JNDI sub-context where all instances of
SeeBeyond JMS Topic destinations are bound. This sub-context is under the SeeBeyond
sub-context configured.

#--

JNDI subcontext for SeeBeyond JMS Topics.
This section configures the JNDI subcontext to which all the
SeeBeyond
JMS Topic objects will bind.
#
WARNING: Only the property value can be changed here.
#--

Subcontext.Topic=Topics

The user should not have to change this.

SeeBeyond JMS Queue Sub-context

The next section allows the user to specify the JNDI sub-context where all instances of
SeeBeyond JMS Queue destinations are bound. This sub-context is under the
SeeBeyond sub-context configured.

#--

JNDI subcontext for SeeBeyond JMS Queues.
This section configures the JNDI subcontext to which all the
SeeBeyond
JMS Queues objects will bind.
#
WARNING: Only the property value can be changed here.
#--

Subcontext.Queue=Queues

The user should not have to change this.
WebLogic eWay Intelligent Adapter User’s Guide 49 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
WebLogic eWay Component Communication SeeBeyond WebLogic Startup Class
SeeBeyond JMS Server Names List

The next section allows the user to specify the logical names of each JMS server
instances to configure for registration to WebLogic JNDI:

#--

JMS Server Names
Define all the logical JMS Server Names in this section.
Each Server Name must be separated by a '&' character.

WARNING: Only the property value can be changed here.
Example: SeeBeyondJMS&MyJMS&JMSOnHostA
#--

JMSServerNames=SeeBeyondJMS&MyJMS

The server names are separated by the '&' character. The server names used here are
referenced in another section for configuring the JMS host, port, and the connection
factories.

SeeBeyond JMS Servers Configuration

For each server name listed in the JMSServerNames property value, the user is
required to specify the hostname and port of the JMS server. In addition, the user can
configure one or more of the types of JMS connection factories
(TopicConnectionFactory, QueueConnectionFactory, and so forth.).

#--

JMS Servers Configuration
For each of the Servers define in the JMS Server Names section,
define the JMS configurations in this section.
The following JMS information must be defined for each Server:
Host, Port
The following are used to configure JMS Connection Factories:
TopicConnectionFactory, QueueConnectionFactory
XATopicConnectionFactory, XAQueueConnectionFactory

#--

! SeeBeyondJMS Server configuration
! Notice that "SeeBeyondJMS" is in the JMS Server Names list.
SeeBeyondJMS.Host=localhost
SeeBeyondJMS.Port=18007
SeeBeyondJMS.TopicConnectionFactory=TopicConnectionFactory
SeeBeyondJMS.QueueConnectionFactory=QueueConnectionFactory
SeeBeyondJMS.XATopicConnectionFactory=XATopicConnectionFactory
SeeBeyondJMS.XAQueueConnectionFactory=XAQueueConnectionFactory

! MyJMS Server configuration
! Notice that "MyJMS" is in the JMS Server Names list.
MyJMS.Host=localhost
MyJMS.Port=9876

Note: The sample above demonstrates how two JMS server instances are configured on
two different ports.
WebLogic eWay Intelligent Adapter User’s Guide 50 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
WebLogic eWay Component Communication SeeBeyond WebLogic Startup Class
There are four possible connection factories that can be configured:

TopicConnectionFactory

QueueConnectionFactory

XATopicConnectionFactory

XAQueueConnectionFactory

For the connection factories, the property value is used as the JNDI name of the factory
object created. In the example above, we are telling the startup to create a
TopicConnectionFactory with
SeeBeyond.TopicConnectionFactories.TopicConnectionFactory as the JNDI name for
the TopicConnectionFactory. Notice that the SeeBeyond sub-context and the
TopicConnectionFactories sub-context are pre-pended.

SeeBeyond JMS Topic Destinations

The next section allows the user to specify the Topics to create and bind to JNDI:

#--

SeeBeyond JMS Topics
This section configures the SeeBeyond JMS Topics.
The property name for each Topic entry must start with "Topic.".
For each Topic entry, the property name will be used as the JMS
Topic
name and the property value will be used as the JNDI name for the
Topic.
#
#--

! A sample JMS Topic with name "Topic.Sample1" and JNDI name
"STCTopic1"
Topic.Sample1=STCTopic1
! Another sample JMS Topic with name "Topic.Sample2" and JNDI name
"STCTopic2"
Topic.Sample2=STCTopic2
! Another sample JMS Topic with name "Topic.Sample3" and JNDI name
"STCTopic3"
Topic.Sample3=STCTopic3

For each Topic to configure, the property name must start with “Topic”. The startup
class uses the property name as the Topic name when creating the SeeBeyond Topic.
This Topic name is the name to be used in the eGate environment (the name of the
event created with the Enterprise Manager). The property value for the Topic is used as
the JNDI name for the Topic. The JNDI name is used by the EJB (via the EJB's
deployment descriptor). See the section Message Flow from eGate to WebLogic Using
JMS Objects on page 38 and Message Flow from WebLogic to eGate Using JMS
Objects on page 42 for more information on the EJB deployment descriptors.
WebLogic eWay Intelligent Adapter User’s Guide 51 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
WebLogic eWay Component Communication SeeBeyond WebLogic Startup Class
SeeBeyond JMS Queue Destinations

The next section allows the user to specify the Queues to create and
bind to JNDI:
#--

SeeBeyond JMS Queues
This section configures the SeeBeyond JMS Queues.
The property name for each Queue entry must start with "Queue.".
For each Topic entry, the property name will be used as the JMS
Queue
name and the property value will be used as the JNDI name for the
Queue.
#
#--

! A sample JMS Queue with name "Queue.Sample1" and JNDI name
"STCQueue1"
Queue.Sample1=STCQueue1
! Another sample JMS Queue with name "Queue.Sample2" and JNDI name
"STCQueue2"
Queue.Sample2=STCQueue2

For each Queue to configure, the property name must start with “Queue”. The startup
class uses the property name as the Queue name when creating the SeeBeyond Queue.
This Queue name is the name to be used in the eGate environment (the name of the
event created with Enterprise Manager). The property value for the Queue is used as
the JNDI name for the Queue. The JNDI name is used by the EJB (via the EJB's
deployment descriptor). See the section Message Flow from eGate to WebLogic Using
JMS Objects on page 38 and Message Flow from WebLogic to eGate Using JMS
Objects on page 42 for more information on the EJB deployment descriptors.
WebLogic eWay Intelligent Adapter User’s Guide 52 SeeBeyond Proprietary and Confidential

Chapter 6

Configuring WebLogic Server

The following chapter provides directions for configuring WebLogic Server for
asynchronous interaction with eGate. Setup directions are provided for both WebLogic
version 6.1 and 7.0.

What’s in This Chapter:

“Configuration for WebLogic 6.1” on page 53

“Configuration for WebLogic 7.0” on page 57

“Configuration for WebLogic 8.1” on page 61

6.1 Configuration for WebLogic 6.1
WebLogic Server 6.1 installation creates a home or root directory named “bea” by
default (this name may be changed during installation). Under the Home directory first
open the wlserver6.1 directory, then open the config directory. Sample servers created
on WebLogic Server are located in the config directory (see Figure 21).

Figure 21 WebLogic Server 6.1 File Structure

1 Verify that the system classpath contains ejb.jar and weblogic.jar (with ejb.jar
proceeding weblogic.jar).

2 Copy the following files to WebLogic’s <BEA-HOME>\wlserver6.1\lib directory.

com.stc.jms.stcjms.jar

stcejbweblogic.jar

stcwlstartup.jar

STCWLStartup.properties
WebLogic eWay Intelligent Adapter User’s Guide 53 SeeBeyond Proprietary and Confidential

com.stc.jms.stcjms.jar can be found in the ICAN Repository at:

repository\data\files\InstallManager\50Base\stcas\common\lib\com.s
tc.jms.stcjms.jar

stcejbweb

+logic.jar, stcwlstartup.jar, and STCWLStartup.properties can be found at:

edesigner\usrdir\modules\ext\weblogic

3 Copy the JSSE.jar file from: repository\jre\1.4.2\lib and place into
bea\wlserver61\lib.

4 Modify startExamplesServer.cmd and setExamplesServer.cmd located at <WL-
HOME/config/examples. Append com.stc.jms.stcjms.jar and stcwlstartup.jar to the
classpath as follows:

For startExamplesServer.cmd

CLASSPATH=.;.\lib\weblogic_sp.jar;.\lib\weblogic.jar;.\samples\eva
l\cloudscape\lib\cloudscape.jar;.\config\examples\serverclasses;.\
lib\com.stc.jms.stcjms.jar;.\lib\stcwlstartup.jar

For setExampleEnv.cmd

setCLASSPATH=%CLASSPATH%;%WL_HOME%\lib\com.stc.jms.stcjms.jar;%WL_
HOME%\lib\stcwlstartup.jar

com.stc.jms.stcjms.jar is located in the ..\eGate\server\regestry\repository\
default\classes directory.

5 The sample EJBs have been configured to reference the T3 naming service that is
running on the localhost at port 7003. By default, each WebLogic Server instance is
installed to listen on port 7001. If your server instance is running, listening on port
7003, then you do not need to modify the deployment descriptors for the EJBs.
Otherwise, modify the deployment descriptors by completing the following steps:

A Extract stcejbweblogic.jar and edit META-INF\weblogic-ejb-jar.xml.

B For each Bean that is run, find the Provider_URL tag of the deployment
descriptor and change the port number from 7003 to 7001.

C Re-jar (zip) the stcejbweblogic.jar.

6 Start an instance of the application server (in this case, Examples Server).

7 When the server has finished booting, start the Default Console. Go to
Deployments, Startup & Shutdown, and click on Configure a New Startup Class
(see WebLogic Server Console - Create a New StartupClass on page 55.) Enter the
following Values:

Name: SeeBeyond_Startup

CLASSNAME: com.stc.eways.weblogic.startup.STCWLStartup

Deployment Order: 1000 (default)

Arguments: sbyn.wlstartup.propsfile=<WL
Home>\wlserver6.1\lib\STCWLStartup
.properties (where <WL Home> is the home directory of WebLogic Server.)

Click Create.
WebLogic eWay Intelligent Adapter User’s Guide 54 SeeBeyond Proprietary and Confidential

Figure 22 WebLogic Server Console - Create a New StartupClass

8 Click on the Targets tab and move the new server instance from Available to
Chosen using the arrow button. Click Apply.

9 Stop and restart the server. If the startup class is successfully invoked, you should
see:

STCWLStartup - SeeBeyond startup class invoked - STCWLStartup
STCWLStartup - Successfully invoked SeeBeyond startup

10 Start the Default Console.

11 In the Console, go to Servers, examplesServer (or the new server instance). Right-
click exampleServer and select View JNDI Tree to open the JNDI Tree window.
Expand the SeeBeyond node to verify that all SeeBeyond JMS objects are now
available (see Figure 23).
WebLogic eWay Intelligent Adapter User’s Guide 55 SeeBeyond Proprietary and Confidential

Figure 23 View the JNDI Tree

12 On the Console, click on Examples, Deployments, EJB. Click on Install a new EJB.
Browse to and select <WL-HOME>\wlserver6.1\lib\stcejbweblogic.jar. Click
Upload to install it on the WebLogic Administration Server.
WebLogic eWay Intelligent Adapter User’s Guide 56 SeeBeyond Proprietary and Confidential

6.2 Configuration for WebLogic 7.0
WebLogic Server 7.0 installation creates a home or root directory named “bea” by
default (this name may be changed during installation). Sample servers are located in
the <BEA-HOME>\weblogic700\samples\server\config directory. Servers created
by the user are located under <BEA-HOME>\user_projects\<domain name> (see
Figure 24).

Figure 24 WebLogic Server File Structure

1 Verify that the system classpath contains ejb.jar, weblogic.jar (with ejb.jar
proceeding weblogic.jar in order), and stcejbweblogic.jar.

2 Copy the following files to the <BEA-HOME>\weblogic700\server\lib directory.

com.stc.jms.stcjms.jar

stcejbweblogic.jar

stcwlstartup.jar

STCWLStartup.properties

com.stc.jms.stcjms.jar can be found in the ICAN Repository at:

repository\data\files\InstallManager\50Base\stcas\common\lib\com.s
tc.jms.stcjms.jar

stcejbweblogic.jar, stcwlstartup.jar, and STCWLStartup.properties can be found at:

edesigner\usrdir\modules\ext\weblogic

3 Copy the JSSE.jar file from: repository\jre\1.4.2\lib and place into
bea\weblogic700\server\lib.

4 Modify startExamplesServer.cmd and setExamplesServer.cmd located at <BEA-
HOME>\user_projects\<domain name>, appending com.stc.jms.stcjms.jar and
stcwlstartup.jar to the classpath for each. For example:

For startExamplesServer.cmd
WebLogic eWay Intelligent Adapter User’s Guide 57 SeeBeyond Proprietary and Confidential

CLASSPATH=C:\bea\jdk131_03\lib\tools.jar;%POINTBASE_HOME%\lib\pbse
rver42ECF183.jar;%POINTBASE_HOME%\lib\pbclient42ECF183.jar;%CLIENT
_CLASSES%;%SERVER_CLASSES%;%COMMON_CLASSES%;%CLIENT_CLASSES%\utils
_common.jar;C:\bea\weblogic700\server\lib\com.stc.jms.stcjms.jar;C
:\bea\weblogic700\server\lib\stcwlstartup.jar

For setExampleEnv.cmd

CLASSPATH=%CLIENT_CLASSES%;%SERVER_CLASSES%;%SAMPLES_HOME%\server\
eval\pointbase\lib\pbserver42ECF183.jar;%SAMPLES_HOME%\server\eval
\pointbase\lib\pbclient42ECF183.jar;%WL_HOME%\server\lib\classes12
.zip;%COMMON_CLASSES%;C:\bea\weblogic700\server\lib\com.stc.jms.st
cjms.jar;C:\bea\weblogic700\server\lib\stcwlstartup.jar

5 The sample EJBs have been configured to reference the T3 naming service that is
running on the localhost at port 7003. By default, each WebLogic Server instance is
installed to listen on port 7001. If your server instance is running, listening on port
7003, then you do not need to modify the deployment descriptors for the EJBs.
Otherwise, modify the deployment descriptors by completing the following steps:

A Extract stcejbweblogic.jar to a temporary file and edit META-INF\weblogic-
ejb-jar.xml.

B For each Bean that is run, find the Provider_URL tag of the deployment
descriptor, change the port number from 7003 to 7001, and if necessary, change
localhost to the name of your specific computer.

C Save, re-jar (zip), and replace stcejbweblogic.jar.

6 Start an instance of the application server (in this case, the user defined
domain/server).

7 When the server has finished booting, start the Administration Console. Go to
Deployments, Startup & Shutdown, and click on Configure a New Startup Class
(see WebLogic Server Console - Create a New StartupClass on page 59.) Enter the
following Values:

Name: SeeBeyond_Startup

CLASSNAME: com.stc.eways.weblogic.startup.STCWLStartup

Deployment Order: 1000 (default)

Arguments: sbyn.wlstartup.propsfile=<BEA-
HOME>\weblogic700\server\lib\STCWLStartup
.properties (where <BEA-HOME> is the home directory of the WebLogic Server.)

Click Create and Apply.
WebLogic eWay Intelligent Adapter User’s Guide 58 SeeBeyond Proprietary and Confidential

Figure 25 WebLogic Server Console - Create a New StartupClass

8 Click on the Targets tab and move the new server instance from Available to
Chosen using the arrow button. Click Apply.

9 Stop and restart the server by completing the following steps:

A From the navigator pane on the left, go to <mydomain>, Servers, and right-click
on <myserver> (or the new server instance). Click on Start/stop this server.

B In the pane on the right, under the Start/Stop tab, click on Shutdown this
server, then click Yes. The server shuts down.

C To restart the server, from the Windows Programs menu, select BEA WebLogic
Platform 7.0, User Projects, <mydomain>, Start Server.

D When prompted, enter user name and password.

If the startup class is successfully invoked, you should see the following text in the
Start Server command window:

STCWLStartup - SeeBeyond startup class invoked - STCWLStartup
STCWLStartup - Successfully invoked SeeBeyond startup

10 Start the Administration Console.

11 In the Console, go to Servers, <myserver> (or the new server instance). Right-click
exampleServer and select View JNDI Tree to open the JNDI Tree window. Expand
the SeeBeyond node to verify that all SeeBeyond JMS objects are now available (see
Figure 23).
WebLogic eWay Intelligent Adapter User’s Guide 59 SeeBeyond Proprietary and Confidential

Figure 26 View the JNDI Tree

12 From the Navigator pane on the left, click on Examples, Deployments, EJB. Click on
Configure a new EJB.

Note: Before deploying the EJB, make sure that the JMS IQ Manager is running (see
Executing the Schema on page 143). It is only necessary to start the JMS IQ
Manager

A Under Step 1, click on upload it through your browser. Click Browse and select
<BEA-Home>\weblogic700\server\lib\stcejbweblogic.jar. With the file
selected, click Upload.

B Under Step 2, find stcejbweblogic.jar and click select (left of the name).

C Under Step 3, select the server instance under Available Servers. Click the
right-arrow to move the new server instance to Target Servers.

D Under Step 4, enter stcejbweblogic as the name for this application (EJB).

E Under Step 5, click the Configure and Deploy button. This installs the EJB on
the WebLogic Administration Server.
WebLogic eWay Intelligent Adapter User’s Guide 60 SeeBeyond Proprietary and Confidential

6.3 Configuration for WebLogic 8.1
WebLogic Server 8.1 installation creates a home or root directory named “bea” by
default (this name may be changed during installation). Sample servers are located in
the <BEA-HOME>\weblogic81\sample\server\lib directory. Servers created by the
user are located under <BEA-HOME>\user_projects\<domain name> (see Figure 24).

Figure 27 WebLogic Server File Structure

1 Verify that the system classpath contains ejb.jar, weblogic.jar (with ejb.jar preceding
weblogic.jar in order), and stcejbweblogic.jar.

2 Copy the following files to the <BEA-HOME>\weblogic81\server\lib directory:

com.stc.jms.stcjms.jar

stcejbweblogic.jar

stcwlstartup.jar

STCWLStartup.properties

com.stc.jms.stcjms.jar can be found in the ICAN Repository at:

repository\data\files\InstallManager\50Base\stcas\common\lib\com.s
tc.jms.stcjms.jar

stcejbweblogic.jar, stcwlstartup.jar, and STCWLStartup.properties can be found at:

edesigner\usrdir\modules\ext\weblogic

3 Copy the stcjms.jar file to the <BEA-HOME>\weblogic81\server\lib directory.

This file is located in the following directory:
WebLogic eWay Intelligent Adapter User’s Guide 61 SeeBeyond Proprietary and Confidential

<eGate-Home>\repository\data\files\InstallManager\STCMA\common\lib

4 Modify startExamplesServer.cmd and setExamplesServer.cmd located at <BEA-
HOME>\<user_projects>\<domain name>, appending com.stc.jms.stcjms.jar and
stcwlstartup.jar to the classpath for each. For example:

For startExamplesServer.cmd

CLASSPATH=C:\bea\weblogic81\server\lib\webservices.jar;%POINTBASE_
CLASSPATH%;%CLIENT_CLASSES%;%SERVER_CLASSES%;%COMMON_CLASSES%;%CLI
ENT_CLASSES%\utils_common.jar;C:\bea\weblogic81\server\lib\com.stc
.jms.stcjms.jar;C:\bea\weblogic81\server\lib\stcwlstartup.jar

For setExampleEnv.cmd

CLASSPATH=%WL_HOME%\server\lib\webservices.jar;%CLIENT_CLASSES%;%S
ERVER_CLASSES%;%POINTBASE_CLASSPATH%;%POINTBASE_TOOLS%;%COMMON_CLA
SSES%;%CLIENT_CLASSES%\utils_common.jar;%WEBLOGIC_CLASSPATH%;%WL_H
OME%\server\lib\com.stc.jms.stcjms.jar;%WL_HOME%\server\lib\stcwls
tartup.jar

5 The sample EJBs have been configured to reference the T3 naming service that is
running on the localhost at port 7001. By default, each WebLogic Server instance is
installed to listen on port 7001. If your server instance is running on a different port,
then you should modify the deployment descriptors for the EJBs to match this port.

If you need to modify the deployment descriptors, do the following:

A Extract stcejbweblogic.jar to a temporary file and edit META-INF\weblogic-
ejb-jar.xml.

B For each Bean that is run, find the Provider_URL tag of the deployment
descriptor, change the port number from the current port number to 7001, and if
necessary, change localhost to the name of your specific computer.

C Save, re-jar (zip), and replace stcejbweblogic.jar.

6 Start an instance of the application server (in this case, the user defined
domain/server).

7 When the server has finished booting, start the Administration Console. Go to
Deployments, Startup & Shutdown, and click on Configure a New Startup Class
(see WebLogic Server Console - Create a New StartupClass on page 59.) Enter the
following Values:

Name: SeeBeyond_Startup

CLASSNAME: com.stc.eways.weblogic.startup.STCWLStartup

Deployment Order: 1000 (default)

Arguments: sbyn.wlstartup.propsfile=<BEA-
HOME>\weblogic81\server\lib\STCWLStartup
.properties (where <BEA-HOME> is the home directory of the WebLogic
Server.)

8 Click Create and Apply.
WebLogic eWay Intelligent Adapter User’s Guide 62 SeeBeyond Proprietary and Confidential

Figure 28 WebLogic Server Console - Create a New StartupClass

9 Click on the Target and Deploy tab and move the new server instance from
Available to Chosen using the arrow button. Click Apply.

10 Stop and restart the server by completing the following steps:

A From the navigator pane on the left, go to <mydomain>, Servers, and right-click
on <myserver> (or the new server instance). Click on Start/stop this server.

B In the pane on the right, under the Start/Stop tab, click on Graceful shutdown
of this server and Apply. The server shuts down.

C To restart the server, from the Windows Programs menu, select BEA WebLogic
Platform 8.1, Examples, WebLogic Server Examples, Launch WebLogic server
Examples.
WebLogic eWay Intelligent Adapter User’s Guide 63 SeeBeyond Proprietary and Confidential

D When prompted, enter user name and password.

If the startup class is successfully invoked, you should see the following text in the
Start Server command window:

STCWLStartup - SeeBeyond startup class invoked - Seebeyond_Startup
STCWLStartup - Topic name: Topic.Sample3
STCWLStartup - Topic name: Topic.Sample2
STCWLStartup - Topic name: Topic.Sample1
STCWLStartup - Queue name: Queue.Sample3
STCWLStartup - Queue name: Queue.Sample2
STCWLStartup - Queue name: Queue.Sample1
STCWLStartup - Successfully invoked SeeBeyond startup.

11 Start the Administration Console.

12 In the Console, go to Servers, <myserver> (or the new server instance). Right-click
exampleServer and select View JNDI Tree to open the JNDI Tree window. Expand
the SeeBeyond node to verify that all SeeBeyond JMS objects are now available (see
Figure 23).

Figure 29 View the JNDI Tree

13 From the Navigator pane on the left, click on Examples, Deployments, EJB. Click on
Configure a new EJB.

Note: Before deploying the EJB, make sure that the JMS IQ Manager is running in
Enterprise Manager.
WebLogic eWay Intelligent Adapter User’s Guide 64 SeeBeyond Proprietary and Confidential

To Deploy the EJB:

1 In the left pane of the WebLogic Server Home, click open the Deployments node.

2 Right-click the EJB Deployments node and select Deploy a new EJB Module from
the menu.

3 Select <BEA-Home>\weblogic81\server\lib

4 Click the upload your file(s) link, then click Browse and select <BEA-
Home>\weblogic81\server\lib\stcejbweblogic.jar. With the file selected, click
Upload.

5 Select the uploaded stcejbweblogic.jar and click Target Module.

6 Select the server instance under Available Servers. Click the right-arrow to move
the new server instance to Target Servers.

7 Enter stcejbweblogic as the name for this application (EJB).

8 Click the Deploy button. This installs the EJB on the WebLogic Administration
Server.
WebLogic eWay Intelligent Adapter User’s Guide 65 SeeBeyond Proprietary and Confidential

Chapter 7

Using the WebLogic OTD Wizard

This chapter describes how to build and use Object Type Definitions (OTDs) using the
WebLogic OTD Wizard.

What’s in This Chapter:

“Java Methods for the OTD Wizard” on page 66

“Creating the OTD” on page 67

7.1 Java Methods for the OTD Wizard
Field nodes are added to the OTD based on the Tables in the external data source. Java
method and parameter nodes are added to provide the appropriate JDBC functionality.
For more information about the Java methods, refer to your JDBC developer’s
reference.

Note: Java classes provided in the WebLogic OTD Wizard can contain APIs created using
standard Sun JDK 1.3.x or JDK 1.4.x but they must be compatible with either
versions of the JVM. For example, java code that is dependent on the JDK 1.3.x
characteristic for java.util.TimeZone and java.util.SimpleTimeZone might not work
with the same behavior or load correctly for JVM 1.4.x.

Note: Consult the Sun Microsystems Javadoc for the latest API documentation for certain
restrictions imposed by the J2EE specification.

Note: JNI methods and inner classes are not supported.

Important: If the home or the remote interface class or their dependent class(es) contain(s)
recursive reference(s), the support for the corresponding EJB methods will be
limited.
WebLogic eWay Intelligent Adapter User’s Guide 66 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Using the WebLogic OTD Wizard Creating the OTD
7.2 Creating the OTD
OTDs contain the data structure and rules that define an object. The OTD Wizard
creates OTDs based on EJB archive files (and theirs dependent classes, if applicable).

Steps used to create an OTD include:

Select Wizard Type on page 67

Specify OTD Name on page 68

Select Interfaces on page 68

Select Method Argument on page 71

Select Class Path on page 71

Review Selections on page 74

7.2.1. Select Wizard Type
1 On the Enterprise Explorer, right click on the project and select New > Object Type

Definition from the menu.

2 The Select Wizard Type window appears, displaying the available OTD wizards.
See Figure 30 on page 67.

Figure 30 OTD Wizard Selection

3 From the list, select the WebLogic Wizard OTD and click Next. The Specify OTD
Name window appears.
WebLogic eWay Intelligent Adapter User’s Guide 67 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Using the WebLogic OTD Wizard Creating the OTD
7.2.2. Specify OTD Name

Figure 31 Database Connection Information

4 Enter an OTD name and type the Java Naming and Directory Interface (JNDI) name
used to locate your Enterprise Java Bean (EJB) object.

5 Click Next, the Select Interfaces window appears.

7.2.3. Select Interfaces
The Select Interfaces window requires locating and selecting the root directory or
specific jar file containing the EJB class files.

Available Fields Include:

Class File Root – contains the path of the EJB jar file or a directory path that
includes the EJB, and other dependent jar files.

Class name regex filter – used as an interface name pattern filter when locating EJB
class files. A regular expression can be entered to describe home and remote
interface name patterns for matching optimization. Wildcard-like (*) patterns, used
as a suffix, are allowed in this field for matching purposes.

Home Interface – used to define the enterprise bean’s life-cycle methods that are
used to create, remove, and find beans.

Remote Interface – used to define an enterprise bean’s business methods, which are
used by bean clients to interact with the bean.
WebLogic eWay Intelligent Adapter User’s Guide 68 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Using the WebLogic OTD Wizard Creating the OTD
Figure 32 Select Interfaces window

6 Click the Browse button next to the Class File Root text box, and in the Open
window, navigate to the required EJB jar file. The EJB jar file must contain both
Home and Remote Interface classes for the EJB.

If you provide an EJB class file that does not contain all necessary dependent class
files required for the Home or Remote Interface, the WebLogic OTD Wizard
prompts a Confirm Dependent Class window, allowing you to provide additional
dependent class files. The Confirm Dependent Class window includes the
following buttons:

Yes – choose Yes to provide the path and name of required jar files.

No – choose No to ignore a class that has a dependency.

Cancel – choose Cancel to ignore all classes with dependencies.

Note: If you do not specify a jar file, the program searches through the entire directory
looking for all Java Archive files. Searches on top level drives or directories can
significantly increase search times.
WebLogic eWay Intelligent Adapter User’s Guide 69 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Using the WebLogic OTD Wizard Creating the OTD
Figure 33 Class File Root Open window

Note: Only recognized Class File Root file names are accepted in the File Name text field.

7 Select the EJB jar file and click the Open button. Both the Home Interface and
Remote Interface fields are automatically populated in the Select Interfaces
window.

Figure 34 Completed Select Interfaces window

Note: Do not check the Include method argument names checkbox if you do not have the
EJB source code.

8 If you selected the Include Method argument names checkbox, the Select Method
Arguments window appears when you click Next. If you have not selected the
checkbox, skip to Select Class Path on page 71
WebLogic eWay Intelligent Adapter User’s Guide 70 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Using the WebLogic OTD Wizard Creating the OTD
7.2.4. Select Method Argument
9 Enter the Java source file or click Browse to locate the java source files for the EJB

archive supplied. Only a .java file or an archive file (containing .java files) will be
accepted; if a directory is supplied, then it searches only for .java files.

Figure 35 Select Method Argument

10 Select the source files and click the Open button. The files will be populated in the
EJB Java Source Files Selected window.

The Class name regex filter field is used as a name filter when locating EJB source
files. A regular expression can be entered to describe the file name pattern for
matching optimization. Wildcard-like (*) patterns, used as suffix, are allowed in this
field for matching purposes.

11 Once the desired EJB source files have been added, click Next. The Select Class
Path window appears. At least 2 files must be supplied -- one for the home interface
and one for the remote interface (or one EJB bean implementation source).

7.2.5. Select Class Path
The Select Class Path contains a list of system based jar files referenced by the EJB. You
must identify the root path and jar files of every class referenced by the EJB interfaces.
WebLogic eWay Intelligent Adapter User’s Guide 71 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Using the WebLogic OTD Wizard Creating the OTD
Figure 36 Select Class Path window

12 Click the Add button, and in the Open window, navigate to and select the required
jar files. You will be reminded to supply, at the very least, the wlclient.jar or
weblogic.jar file which is WebLogic’s client jar file.

You may be prompted to provide any dependent archive file(s) if the home and
remote interface classes require them for runtime with the logicalhost or for use in
any Java Collaboration Editor instance. Please notice that if wlclient.jar is supplied,
you must ensure that the version of the JVM, for the underlined logicalhost in use,
is compatible with the corresponding wlclient.jar. In most cases, when including the
absence of a wlclient.jar (for an older version of the WebLogic server), it is advised
to use the self-contained weblogic.jar, even though it will result in larger ICAN
project file.

13 You must at least select the wlclient.jar file which is WebLogic’s client jar file. For
more information on indicating the .jar file(s) to be used, refer to Figure 37 on
page 73

Note: Use the weblogic.jar file if the wlclient.jar file is not available, or if you are running
on an AIX platform.
WebLogic eWay Intelligent Adapter User’s Guide 72 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Using the WebLogic OTD Wizard Creating the OTD
Figure 37 Indicating the .jar file to be used

14 Click the Open button to close the window and return to the Select Class Path
window. SeeFigure 38.

Platform being used

 - AIX
 - WebLogic 6.1
 - wlclient.jar
 (or equivalent)
 not available

 Is the
WebLogic .jar file

(or equivalent)
available?

Is the thin
WebLogic client .jar file

(wlclient.jar) compatible
with the version of JVM
for the STCIS/Logical

Host?

Is there
dependent .jar file(s) in
the manifest.mf of the

webLogic.jar or
wlclient.jar

(or equivalent)?

Consult the WebLogic
client example for more

information.

Is a smaller PRJ
EAR .jar file
required?

Use either the
weblogic.jar, or the

wlclient.jar (or
equivalent) with any

applicable dependent
.jar files, when building

each OTD.

It is recommend to:
1. Upload .jar files (including weblogic.jar or
wlclient.jar) to the Logical Host on the
environment tree.
2. Build the OTD without the weblogic.jar,
wlclient.jar, or dependent .jar files.
3. Include the dependent .jar file(s) indicated in
the manifest.mf in the upload to the Logical
Host, if applicable.
4. Make sure the versions of the dependent
.jar files are consistent with that of the
corresponding weblogic.jar or wlclient.jar (or
equivalent).

Yes No

No

No

Yes

Use the wlclient.jar
(or equivalent) file

Yes

Yes

No

Yes

No

Will different versions
of WebLogic servers be

mapped to different eWay
externals running in the same
Logical Host and/or the same

Integration Server?

No

Yes

Use the
weblogic.jar

(or equivalent) file

Warning: You may
experience a WebLogic

Version Check Exception if
the classes in dependent

.jar files are in conflict with
classes in the STCIS/

Logical Host.
WebLogic eWay Intelligent Adapter User’s Guide 73 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Using the WebLogic OTD Wizard Creating the OTD
Figure 38 Select Class Path - Add window

15 Click the Next button. The Review Selections window appears.

7.2.6. Review Selections

Figure 39 Review Your Selections window

16 Review your selections and click the Finish button to close the window and create
the OTD.
WebLogic eWay Intelligent Adapter User’s Guide 74 SeeBeyond Proprietary and Confidential

Chapter 8

Implementing the WebLogic eWay

This chapter describes how to use the sample projects included in the installation CD-
ROM package.

What’s in This Chapter:

“Sample Projects Overview” on page 75

“Locating and Importing the Sample Projects” on page 78

“Using Sample Projects in eInsight” on page 80

“Using the Sample Projects in eGate” on page 84

Note: Sample projects mentioned in this chapter were created using WebLogic 8.1.

8.1 Sample Projects Overview
Sample projects are designed to provide an overview of the basic functionality of the
WebLogic eWay by identifying how to synchronously and asynchronously pass data to
and from a WebLogic Server.

Types of synchronous and asynchronous communication include:

“Synchronous Communication—eGate to WebLogic Server” on page 75

“Asynchronous Communication—WebLogic EJB to eGate JMS” on page 76

“Asynchronous Communication—eGate JMS to a WebLogic Message Driven
Bean” on page 77

8.1.1 Synchronous Communication—eGate to WebLogic Server
Sample projects using synchronous communication between eGate and the WebLogic
Server, require the creation of OTDs using WebLogic’s Session and Entity Beans EJB
interface classes.

Sample projects using synchronous communication in this manner include:

“The WebLogic_BPEL Sample Project” on page 81

“The WebLogic_JCE Sample Project” on page 84
WebLogic eWay Intelligent Adapter User’s Guide 75 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.1
Implementing the WebLogic eWay Sample Projects Overview
8.1.2 Asynchronous Communication—WebLogic EJB to eGate JMS
Asychronous Communication from the WebLogic EJB to eGate JMS requires the
implementation of SeeBeyond’s JMS IQ Manager into the WebLogic environment,
allowing EJBs in the WebLogic container to receive messages from or send messages to
eGate.

Sample projects using synchronous communication in this manner include:

“The JMSQueueRequestor Sample Project” on page 85

“The JMSTopicSubscribe Sample” on page 86

“The JMSXATopicSubscribe Sample” on page 88

Preparing WebLogic

The following steps required to prepare WebLogic EJB for interaction with the eGate
JMS:

1 Configure WebLogic

Configure WebLogic to create JNDI entries for SeeBeyond JMS on WebLogic Server
instance startup.

2 Create a new Session Bean

Create an EJB that can publish to SeeBeyond JMS. The basic sample Session Beans
STCPublisherSLSession and STCQueueRequrestorSLSession are provided so that
when instantiated, they publish to the Queue name listed in their parameters. Use
these samples as models to build Session Beans.

3 Create a new Deployment Descriptor

An EJB is a Java class is written following the protocols of the application server. A
deployment tool—a XML file similar to a configuration file for an eWay—is then
used to make the EJBs available to other programs from the directory. An EJB in
itself does not have parameters. Parameters that direct the behavior of the EJB—
port number, class names for the JMS provider, and so on—are provided and stored
in the Deployment Descriptor.

4 Packaging and Deployment

Take the Session Bean and Deployment Descriptor and use the WebLogic GUI to
make the EJB available for external applications to call and publish to the
SeeBeyond JMS.
WebLogic eWay Intelligent Adapter User’s Guide 76 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.1
Implementing the WebLogic eWay Sample Projects Overview
8.1.3 Asynchronous Communication—eGate JMS to a WebLogic
Message Driven Bean

Asychronous Communication between the eGate JMS to a WebLogic Message Driven
Bean also requires the implementation of SeeBeyond’s JMS IQ Manager into the
WebLogic environment.

Sample projects using synchronous communication in this manner include:

“The JMSQueueSend Sample” on page 90

“The JMSTopicPublish Sample” on page 91

“The JMSXAQueueSend Sample” on page 92

Preparing WebLogic

The following steps are required to prepare the WebLogic MDB:

1 Configure WebLogic

Configure WebLogic to create JNDI entries for SeeBeyond JMS on WebLogic Server
instance startup. Responsibility for building the JNDI tree lies with the startup
classes. Install these classes in the startup area of the Console and specify the name
of the properties file.

2 Create a new MDB

Build the EJB and implement the business logic. Implementation uses JNDI to
lookup TopicConnectionFactory.

3 Create a new Deployment Descriptor

An EJB is a Java class that is written following the protocols of the application
server. A deployment tool is then used to make the EJBs available to other programs
from the directory. The Deployment Descriptor comes in two parts:

General EJB parameters (ejb-jar.xml)— defines the session type (stateless,
statefull), registers the Home and Remote classes with JNDI, and defines the
JNDI name.

Application Server vendor-specific parameters (weblogic-ejb-jar.xml)—
defines Pooling parameters and Reference Resource parameters.

4 Packaging and Deployment

Take the Bean class files and Deployment Descriptors then place these in a Jar file.
Upload Jar files using the WebLogic Console. Classes are available to other
applications once the EJB is deployed.
WebLogic eWay Intelligent Adapter User’s Guide 77 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.2
Implementing the WebLogic eWay Locating and Importing the Sample Projects
8.2 Locating and Importing the Sample Projects
The eWay sample projects are included in the WebLogiceWay.sar file. This file is
uploaded separately from the WebLogiceWay sar file during installation. For additional
information, refer to section called Sample Projects on page 13.

Once the WebLogiceWay.sar file is uploaded to the Repository, you can begin
downloading the sample projects using the DOCUMENTATION tab in the Enterprise
Manager to a folder of your choosing.

Before using the sample project, you must first import it into the SeeBeyond Enterprise
designer using the Enterprise Designer project Import utility.

Note: eInsight is a Business Process modeling tool. If you have not purchased eInsight,
contact your sales representative for information on how to do so.

To Import a Sample Project:

1 From the Enterprise Designer’s Project Explorer pane, right-click the Repository
and select Import.

2 In the Import Manager window, browse to the directory that contains the sample
project zip file.

3 Select the sample file and then click Open.

4 Click the Import button. If the import is successful, then click the OK button on the
Import Status window.

5 Close the Import Manger window.
WebLogic eWay Intelligent Adapter User’s Guide 78 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Implementing the WebLogic eWay Running the Sample Projects
8.3 Running the Sample Projects
The steps required to run the sample project include:

Setting the Properties

Creating the Environment Profile

Deploying the Project

Running the Sample

8.3.1 Setting the Properties
Each sample project contains properties accessible either through the File or WebLogic
eWay, located on the Project Explorer Connectivity Map, or from the WebLogic eWay
External System, located in the Environment.

To Configure File eWays:

1 On the Connectivity Map, double-click the Inbound File eWay

2 Select Inbound File eWay in the Templates dialog box and click OK.

3 The Properties window for the Inbound File eWay opens. Modify the parameter
settings for your system. Change the Directory and Input file name to match the
location and name of the sample data file.

4 Click OK to close the Properties window.

5 On the Connectivity Map, double-click the Outbound File eWay, select Outbound
File eWay in the templates dialog box and click OK. The Properties window for the
Inbound File eWay opens.

6 Modify the required parameter settings for your system, including the target
Directory and Output file name.

7 Click OK to close the Properties window.

To Configure the Outbound WebLogic eWay:

1 On the Connectivity Map, double-click the WebLogic eWay.

2 Select Outbound WebLogic eWay and click OK. The Properties window for the
WebLogic eWay opens.

3 Modify the parameter settings for your system. Click OK to close the Properties
window.

8.3.2 Creating the Environment Profile
An eGate Environment represents the physical system required to implement a project.
A typical Environment contains several components, including Logical Hosts,
Integration Servers, Message Servers, and External Systems. Environments are created
using the Enterprise Designer’s Environment Explorer
WebLogic eWay Intelligent Adapter User’s Guide 79 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.4
Implementing the WebLogic eWay Using Sample Projects in eInsight
To Create a New Environment:

1 On the Environment Explorer, highlight and right-click the eWay profile.

2 Select Properties, and enter the configuration information required for the eWay. for
more information, see Configuring the Environment Properties on page 17.

8.3.3 Deploying the Project
For instruction on the steps required to deploy a project, see the eGate Integrator User’s
Guide.

8.3.4 Running the Sample
For instruction on the steps required to run the Sample project, see the eGate Integrator
Tutorial.

8.4 Using Sample Projects in eInsight
This section describes how to use sample projects with the ICAN Suite’s eInsight
Business Process Manager and the Web Services interface. This section does not provide
an explanation of how to create a project that uses a Business Process Extension
Language (BPEL). For these instructions, you should refer to the eInsight Enterprise
Service Bus User’s Guide.

Before running a sample project, you must:

Import the sample project

Create an Environment for the sample project

Configure the eWay properties for your specific system (see Configuring the
WebLogic eWay Properties on page 15)

Create a Deployment Profile

Note: While several key steps are required to create, activate, and deploy a project, only the
steps containing information relevant to the sample project in eInsight are included
in this chapter. For more detailed information on how to complete a sample project,
see the eInsight Enterprise Service Bus Installation Guide.
WebLogic eWay Intelligent Adapter User’s Guide 80 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.4
Implementing the WebLogic eWay Using Sample Projects in eInsight
8.4.1 The eInsight Engine and Components
eGate components can be deployed as Activities in eInsight Business Processes. Once a
component is associated with an Activity, eInsight invokes it using a Web Services
interface. eGate components that can interface with eInsight in this way include the
following:

Object Type Definitions (OTDs)

eWays (using default receive and write operators of the File eWay)

Collaborations

Using the Enterprise Designer and eInsight, you can add an Activity to a Business
Process, then associate that Activity with an eGate component (for example, an eWay).
Then, when eInsight runs the Business Process, it automatically invokes that
component via its Web Services interface.

8.4.2 The WebLogic_BPEL Sample Project
The eInsight sample project WebLogic_BPEL demonstrates a synchronous interaction
between the WebLogic EJB and the eGate JMS. As mentioned previously, synchronous
communication is considered an unbuffered process, requiring complete data
transmission and reply or confirmation of message transmission failure before enacting
additional communication processes. The nature of the sample project is dependent on
the services invoked through the methods and properties of the EJB that is used to
create the OTD. In the WebLogic_BPEL sample project, these services are used to detail
the creation and subsequent funding of an account.

The sample project includes the following business processes:

CreateAccount_BP

This business process describes the account creation process seen in Figure 40.

Figure 40 Account Creation Business Process

Business Process:

1 The File eWay subscribes to an external directory and picks up a text request for
specific account data.

2 Account data is copied to the input container FileClient.receive.Output, using the
AccountOTD.createWLService BPEL service. A number literal of 2000 is also passed
into the OTD (see Figure 41) before sending the combined data to the
FileClient.write container.
WebLogic eWay Intelligent Adapter User’s Guide 81 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.4
Implementing the WebLogic eWay Using Sample Projects in eInsight
Figure 41 Account Creation

DepositAmound_BP

This business process describes the account deposit process as seen in Figure 42.

Figure 42 Account Deposit Business Process

Business Process:

1 The file eWay subscribes to an external directory and picks up a text request for
specific account data.

2 Account data is copied to the input container FileClient.receive.Output, using the
AccountOTD.findByPrimaryKeyWLService BPEL service. This service also requests
the specific data (Account ID and amount) using the primary key from WebLogic
Server, as seen in Figure 43.
WebLogic eWay Intelligent Adapter User’s Guide 82 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.4
Implementing the WebLogic eWay Using Sample Projects in eInsight
Figure 43 Retrieving Account Data

3 The AccountOTD.depositWLService OTD is then invoked, adding the number
literal of 100 to the account balance listed in WebLogic Server (see Figure 44).

Figure 44 Making the Deposit

4 Combined data is sent to the FileClient.write container, as seen in Figure 45.

Figure 45 Returning the Response
WebLogic eWay Intelligent Adapter User’s Guide 83 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.5
Implementing the WebLogic eWay Using the Sample Projects in eGate
8.5 Using the Sample Projects in eGate
This section describes how the sample projects included with the WebLogic eWay are
implemented using eGate Integrator.

Before running a sample project, you must:

Import the sample project

Create an environment

Configure the eWay properties for your specific system (see Configuring the
WebLogic eWay Properties on page 15)

Create a Deployment Profile

Note: While several key steps are required to create, activate, and deploy a project, only the
steps containing information relevant to the WebLogic eWay are included in this
chapter. For more detailed information on how to complete a sample project, see the
eGate Integrator Tutorial.

8.5.1 The WebLogic_JCE Sample Project
The WebLogic_JCE sample project demonstrates synchronous communication from
eGate to WebLogic. The sample Project is identical to the WebLogic_BPEL sample
project described in section 8.4.2, with the exception that there is no eInsight Business
Process.

The Connectivity Maps for this sample appear as follows:

Figure 46 WebLogic_JCE Connectivity Map—Create Account

Figure 47 WebLogic_JCE Connectivity Map—Deposit

WebLogic eWay

WebLogic eWay
WebLogic eWay Intelligent Adapter User’s Guide 84 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.5
Implementing the WebLogic eWay Using the Sample Projects in eGate
This sample project demonstrates creating and then depositing funds to an account
using two collaborations (CreateAccountCollab and DepositAmountCollab). The first
collaboration subscribes to the FileIn (File eWay), and then picks up an account name
(String). Both the account name and a string literal value of 1000.00 (double) are
concatenated and converted to text before passing into the FileOut (File eWay). During
the second collaboration, a new deposit of 100.00 is added to the previous balance and a
response is written to the FileOut (File eWay) revealing the updated balance.

8.5.2 The JMSQueueRequestor Sample Project
JMSQueueRequestor is an inbound sample project that demonstrates how a remote
client requests and receives messages asynchronously from a JMS queue.

The Connectivity Map for this sample project appears as follows:

Figure 48 JMSQueueRequrestor Connectivity Map

In this sample, the Collaboration (crJMSQueueRequestor) subscribes to the Queue
(Queue.Sample2), picks up messages, and then publishes messages to a second Queue
(DummyQueue1). The Collaboration is configured to use the internal SeeBeyond JMS
IQ Manager as the JMS server. The Collaboration constructs a reply string, by
prepending the String "This is a text message" to the message it received from the
Queue and manually publishes the reply back to the Session Bean. In this case, the
STCQueueRequestorSLSessionBean Session Bean acts as the sender to the
Queue.Sample2 Queue and waits for the reply from eGate. Essentially, this
demonstrates a request/reply usage of the QueueRequestor JMS object by the
STCQueueRequestorSLSessionBean.

Figure 49 JMSQueueRequestor Sample Components

As seen in Figure 49, The stand-alone remote client,
com.stc.eways.ejb.sessionbean.queuerequestor.STCQueueRequestorSLSessionClient, is
used to invoke the request() method of the STCQueueRequestorSLSessionBean and

JMS client propertiesJMS client properties

JMS client
properties

QueueRequestor
SLSessionBean

 JMS Queue

JMS IQ Manager

ConnectionConnection

Queue.Sample2
WebLogic Container

Remote
Client reply

request
request

STCQueueRequestorSLSessionClient
WebLogic eWay Intelligent Adapter User’s Guide 85 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.5
Implementing the WebLogic eWay Using the Sample Projects in eGate
wait for a reply from the Session Bean. As parameters, the client takes the provider URL
of the WebLogic JNDI where the Session Bean is bound, the JNDI name of the Session
Bean (SeeBeyond.STCQueueRequestorSLSessionBean), a text message or a file name,
and the option specifying whether the third parameter is a file or a text message (msg).
For example, the following command sends the message “This is a text message”:
java com.stc.eways.ejb.sessionbean.queuerequestor.STCQueueRequestorSLSessionClient t3://
localhost:7001 SeeBeyond.STCQueueRequestorSLSessionBean "This is a text message." msg

Whereas the following command sends the message contained in the file
c:\temp\testfile.txt:
java com.stc.eways.ejb.sessionbean.publisher.STCPublisherSLSessionClient t3://localhost:7001
SeeBeyond.STCPublisherSLSessionBean c:\temp\testfile.txt file

8.5.3 The JMSTopicSubscribe Sample
JMSTopicSubscribe is an inbound example that demonstrates how a remote client is
used to send a messages to eGate asynchronously through a JMS topic.

The Connectivity Map for this sample project appears as follows:

Figure 50 JMSTopicSubscribe Connectivity Map

In this sample, the STCPublisherSLSessionBean Session Bean acts as publisher to the
JMS Topic. This demonstrates how messages are published asynchronously from an
EJB running in WebLogic to a SeeBeyond JMS Topic. The Collaboration
(crJMSTopicSubscribe) seen on the Connectivity Map is configured to use the internal
SeeBeyond JMS IQ Manager as the JMS server. It subscribes to the JMS client properties
on the Topic.Sample2 Topic and sends data received to the Inbound File eWay.

Figure 51 JMSTopicSubscribe Sample Components

Inbound File eWayJMS client properties

Remote
Client

STCPublisherSLSessionClient

publish Publisher
SLSessionBean

WebLogic Container

JMS IQ Manager
ConnectionConnection

 JMS Topic

Topic.Sample2

JMS client
properties

Collaboration
Definition

(Java)

crJMSTopicSubscribe

Inbound File
eWay

publish
WebLogic eWay Intelligent Adapter User’s Guide 86 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.5
Implementing the WebLogic eWay Using the Sample Projects in eGate
As seen in Figure 51, the stand-alone remote client,
com.stc.eways.ejb.sessionbean.publisher.STCPublisherSLSessionClient, can be used to
invoke the publish() method of the STCPublisherSLSessionBean to send a message to
eGate asynchronously. The parameters taken by the client are:

The provider URL of the WebLogic JNDI where the Session Bean is bound

The JNDI name of the Session Bean (SeeBeyond.STCPublisherSLSessionBean)

A text message or a file name

The option specifying whether the third parameter is a file or a text message (msg).

For example, the following command sends the message “This is a text message”:
java com.stc.eways.ejb.sessionbean.publisher.STCPublisherSLSessionClient t3://localhost:7001
SeeBeyond.STCPublisherSLSessionBean "This is a text message." msg

Whereas the following command sends the message contained in the file
c:\temp\testfile.txt:

java com.stc.eways.ejb.sessionbean.publisher.STCPublisherSLSessionClient t3://localhost:7001
SeeBeyond.STCPublisherSLSessionBean c:\temp\testfile.txt file

Note: Before running this client, make sure that the system classpath includes ejb.jar,
weblogic.jar (with ejb.jar proceeding weblogic.jar in order), and stcejbweblogic.jar.

The result of the test is that eGate sees the message that the remote client sent to the
STCPublisherSLSessionBean. The message is written to an output file.

Note: For more information on eWay Connection Configuration Parameters for JMS see
Configuring the WebLogic eWay Properties on page 15
WebLogic eWay Intelligent Adapter User’s Guide 87 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.5
Implementing the WebLogic eWay Using the Sample Projects in eGate
8.5.4. The JMSXATopicSubscribe Sample
JMSXATopicSubscribe is an inbound example that demonstrates how a remote client is
used to asynchronously pass two-phase commit protocol (XA) messages into a JMS
topic.

The Connectivity Map for this sample appears as follows:

Figure 52 JMSXATopicSubscribe Sample

In this sample, the Inbound File eWay consumes messages coming from the Topic
(Topic.Sample3). The Collaboration (crJMSXATopicSubscribe) subscribes to the JMS
client properties on the Topic.Sample3 Topic. The JMS client properties is configured to
use the internal SeeBeyond JMS IQ Manager as the JMS server, and is responsible for
displaying the message received to standard output, and then publishing the message
to the external file (Inbound File).

In this case, the STCXAPublisherSLSessionBean acts as publisher to the Topic.Sample3
topic. This demonstrates transactionally publishing asynchronous messages from an
EJB running in WebLogic to a SeeBeyond JMS Topic.

Figure 53 JMSXATopicSubscribe Sample Components

The stand-alone remote client,
com.stc.eways.ejb.sessionbean.xapublisher.STCPublisherSLSessionClient, is used to
invoke the createAccountAndPublish() method of the STCXAPublisherSLSessionBean.
This method takes two parameters:

An account ID of type java.lang.String

A balance of type double

The XA Session Bean inserts a record into the demo database and publishes to the topic
with a message indicating that the record is successfully inserted into the database.

Inbound File eWayJMS client properties

Remote
Client

createAccountAndPublish

getBalance

STCPublisherSLSessionClient

XA Publisher
SLSessionBean

WebLogic Container

Demo Database
PointBase

Connection

JMS IQ Manager

 JMS Topic

Topic.Sample3

JMS client
properties

Connection

Collaboration
Definition

(Java)

crJMSXATopicSubscribe1

Inbound
File eWay

publish
WebLogic eWay Intelligent Adapter User’s Guide 88 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.5
Implementing the WebLogic eWay Using the Sample Projects in eGate
The parameters taken by the client are:

The provider URL of the WebLogic JNDI where the Session Bean is bound

The JNDI name of the Session Bean (SeeBeyond.STCXAPublisherSLSessionBean)

An account ID

A balance for the account to create in the database

For example, the following command inserts a record into the database with the ID
“JohnDoe” and a balance of 8888.99:

java com.stc.eways.ejb.sessionbean.xapublisher.STCXAPublisherSLSessionClient t3://localhost:7001
SeeBeyond.STCXAPublisherSLSessionBean John 9888.99

Note: Before running this client, make sure that the system classpath includes ejb.jar,
weblogic.jar (with ejb.jar proceeding weblogic.jar in order), and stcejbweblogic.jar.

After successfully inserting the record into the database and publishing to the topic, the
remote client invokes the getBalance() method of the Session Bean and confirms that
the record is successfully inserted. Note that getBalance does NOT confirm occurrence
of a two phase commit. To see that both the database and SeeBeyond JMS XA Resources
are being used, look at the weblogic.log and SeeBeyond JMS IQ Manager log. In
addition, upon successfully publishing to the topic, the inbound File eWay writes a
confirmation message to the file.

To simulate a rollback, pass an account ID of “rollback” in the command line for the
remote client. For more details on the demoXAPool resource see examples-dataSource-
demoXAPool on page 112.

Important: XA transactions for the WebLogic eWay are managed by the WebLogic
TransactionManager, NOT the eGate TransactionManager or in the eWay
Connection parameters. For XA transactions make sure that the
XAConnectionFactory(ies) are configured for the startup class.
WebLogic eWay Intelligent Adapter User’s Guide 89 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.5
Implementing the WebLogic eWay Using the Sample Projects in eGate
8.5.5 The JMSQueueSend Sample
JMSQueueSend is an outbound sample project that demonstrates how to pass messages
into a JMS queue asynchronously, before ultimately passing into a WebLogic container.

The Connectivity Map for this sample project appears as follows:

Figure 54 JMSQueSend Connectivity Map

In this sample, the Inbound File eWay feeds messages to the Queue (Queue.Sample1).
The eWay looks for files with extension “.qfin” as input files (the input directory
configured is C:\temp). The crJMSQueueSend1 Collaboration subscribes to the external
data source and publishes to the Queue. The Collaboration is configured to use the
internal SeeBeyond JMS IQ Manager as the JMS server, and is responsible for copying
data from the source event to the output event. The STCReceiverMDBean MDB receives
messages from the Queue and displays the receiving message to the WebLogic console.

Figure 55 JMSQueueSend Sample Components

As seen in Figure 55, the Inbound File reads a file containing the input message event.
A Collaboration subscribes to the external data source and publishes the input message
to the JMS Queue. The JMS Connection is configured to use a JMS Queue and acts as a
QueueSender. Both the JMS Connection and the MDB on WebLogic are configured to
connect to the JMS IQ Manager as the JMS server. When WebLogic intercepts a JMS
message, it delegates and dispatches the message to the MDB.

Note: For more information on how to configure/deploy the MDB to use the SeeBeyond
JMS IQ Manager to drive the MDB, see SeeBeyond JMS on page 38.

For more information on configuring Environment Properties for the sample
project, see Configuring the Environment Properties on page 17

Inbound File eWay JMS client properties

Collaboration
Definition

(Java)

JMS client
properties

STCReceiver
MDB JMS Queue

JMS IQ Manager

ConnectionConnection

Queue.Sample1
WebLogic Container

Inbound File
eWay

crJMSQueueSend1
WebLogic eWay Intelligent Adapter User’s Guide 90 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.5
Implementing the WebLogic eWay Using the Sample Projects in eGate
8.5.6. The JMSTopicPublish Sample
JMSTopicPublish is an outbound example that demonstrates how messages are read,
subscribed and published to a JMS topic asynchronously, before passing into a
WebLogic container.

The Connectivity Map for this sample appears as follows:

Figure 56 JMSTopicPublish Connectivity Map

In this sample, the Outbound File eWay publishes messages to the JMS Topic
(Topic.Sample1). The Inbound File eWay looks for input files with the extension .tfin
within the input directory C:\InputData. The Collaboration (crJMSTopicPublish)
subscribes to this external data source and then publishes to the JMS Topic. The JMS
client properties is configured to use the internal SeeBeyond JMS IQ Manager as the
JMS server, and is responsible for copying data from the source event to the output
event. The STCSubscriberMDBean receives messages from the Topic.Sample1 Topic
and displays the message it receives to the WebLogic console.

Figure 57 JMSTopicPublish Sample Components

As seen in Figure 57, the Outbound File eWay reads a file containing the input message
event. Collaboration subscribes to the external data source and then publishes the input
message, as a Topic.Sample1 event, to the JMS client properties. The JMS eWay
Connection is configured to use a JMS Topic, acting as a TopicPublisher. Both the JMS
Connection and the MDB are configured to connect to the JMS IQ Manager as the JMS
server. The STCSubscriberMDB then receives the message, passed to it by the container,
and displays the message in standard output (the WebLogic console).

Note: For more information on how to configure/deploy the MDB to use the SeeBeyond
JMS IQ Manager to drive the MDB, see SeeBeyond JMS on page 38.

Outbound file eWay JMS client properties

Outbound File
eWay

JMS
Connection

Point
Subscriber

MDB
 JMS Topic

JMS IQ Manager

Connection
Connection

Topic.Sample1

Collaboration
Definition

(Java)

crJMSTopicPublish
WebLogic eWay Intelligent Adapter User’s Guide 91 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.5
Implementing the WebLogic eWay Using the Sample Projects in eGate
8.5.7. The JMSXAQueueSend Sample
JMSXAQueueSend is an outbound sample project that demonstrates how to
asynchronously pass two-phase commit protocol (XA) messages into a JMS queue,
before ultimately passing into a WebLogic container.

The Connectivity Map for tis sample project appears as follows:

Figure 58 JMSXAQueueSend Connectivity Map

In this sample, the Outbound File eWay feeds messages to the Queue (Queue.Sample3).
The eWay looks for input files with the extension .xaqfin within the input directory
C:\InputData. The Collaboration (crJMSXAQueueSend1) subscribes to this external
data and publishes to the JMS Queue. The JMS client properties is configured to use the
internal SeeBeyond JMS IQ Manager as the JMS server, and is responsible for copying
data from the source event to the output event.

Figure 59 JMSXAQueueSend Sample Components

As seen in Figure 59, the Outbound File eWay reads a file containing the input message
event. The Collaboration subscribes to this external file and publishes the input
message to the JMS Queue. The JMS client properties is configured to use a JMS Queue
and therefore acts as a QueueSender. Both the JMS client properties and the MDB are
configured to connect to the JMS IQ Manager as the JMS server. (For more information
on how to configure/deploy the MDB to use the SeeBeyond JMS IQ Manager to drive
the MDB, see SeeBeyond JMS on page 38.)

The STCXARecieverMDBean MDB receives the message in the format
“accountID|balance,” where accountID is a String account ID and balance is a
numerical balance amount. The STCXAReceiverMDBean is configured to use the
SeeBeyond JMS XAResource and the PointBase sample demoXAPool to receive
messages from SeeBeyond JMS and write database records into the sample PointBase
database table. Checking the database to see that the record is there does not necessarily
confirm occurrence of the two stage commit.

Outbound File eWay JMS client properties

Collaboration
Definition

(Java)

JMS client
properties

Receiver MDB
STCXAReceiverMDBean JMS Queue

JMS IQ Manager

ConnectionConnection

Queue.Sample3

WebLogic Container

Demo
Database

PointBase

insertOutbound File
eWay

crJMSXAQueueSend1
WebLogic eWay Intelligent Adapter User’s Guide 92 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.5
Implementing the WebLogic eWay Using the Sample Projects in eGate
Verify XA functionality by looking into the weblogic.log file for the examples domain,
and also the SeeBeyond IQ Manager log. For more information on how to effect proper
logging, and to see XA at work, see Verifying XA At Work on page 110. XA prepares
and commits should be called on both database and SeeBeyond JMS XA Resource. To
simulate a rollback, pass an account ID of “rollback.” For more details on the
demoXAPool resource see examples-dataSource-demoXAPool on page 112. For details
on the format of the input message for the feeder eWay see SeeBeyond Sample
Message Driven Beans on page 94.

Note: Before running this client, be sure that the system classpath includes ejb.jar,
weblogic.jar (with ejb.jar proceeding weblogic.jar in order), and stcejbweblogic.jar.

The result of the test is that eGate sees the message that the remote client sent to the
STCQueueRequestorSLSessionBean and the remote client sees the reply message
constructed by the Java Collaboration from eGate.

Important: XA transactions for the WebLogic eWay are managed by the WebLogic
TransactionManager, NOT the eGate TransactionManager or in the eWay
Connection parameters. For XA transactions make sure that the
XAConnectionFactory(ies) are configured for the startup class.

Note: WebLogic will create a warning message, that XA is not supported, if a combination
of XA and non-XA EJBs are loaded in the stcejbweblogic.jar file and the associated
deployment descriptor files.
WebLogic eWay Intelligent Adapter User’s Guide 93 SeeBeyond Proprietary and Confidential

Chapter 9

SeeBeyond Sample Message Driven Beans

The previous sections, Java Naming and Directory Interface (JNDI) on page 26 and
Java Messaging Service (JMS) on page 29 describe the JNDI and JMS subsystems. This
chapter relates the concepts that were discussed in the previous sections with those
regarding the SeeBeyond Message Driven Beans (MDBs).

There are two MDBs that are deployed in WebLogic:

MDB Subscribing to SeeBeyond Topic

MDB Subscribing to SeeBeyond Queue.

In the following sections, there are references to two XML files. These files are used as
the MDB's deployment descriptor. These are ejb-jar.xml and weblogic-ejb-jar.xml. The
ejb-jar.xml deployment descriptor is specified by the EJB 2.0 specification. The
weblogic-ejb-jar.xml is proprietary to WebLogic. Both are defined in order to deploy
the MDB.

9.1 MDB Subscribing to a SeeBeyond Topic
This MDB subscribes to a SeeBeyond JMS Topic. It receives from ONLY ONE
SeeBeyond Topic. The MDB simply receives and displays the JMS messages.

ejb-jar.xml

The following is the deployment descriptor for this MDB (ejb-jar.xml):
<ejb-jar>

<enterprise-beans>
<message-driven>

<ejb-name>STCSubscriberMDBean</ejb-name>
<ejb-class>com.stc.eways.ejb.messagebean.STCSubscriberMDBean</ejb-class>
<transaction-type>Container</transaction-type>
<message-driven-destination>

<destination-type>javax.jms.Topic</destination-type>
<subscription-durability>Durable</subscription-durability>

</message-driven-destination>
</message-driven>

 …

</enterprise-beans>
<assembly-descriptor>

<container-transaction>
<method>

<ejb-name>STCSubscriberMDBean</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>NotSupported</trans-attribute>

</container-transaction>
…

</assembly-descriptor>
</ejb-jar>
WebLogic eWay Intelligent Adapter User’s Guide 94 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.1
SeeBeyond Sample Message Driven Beans MDB Subscribing to a SeeBeyond Topic
<ejb-name> Tag

The <ejb-name> defines the name of the MDB and is used to uniquely identify the MDB
by the container. This name is displayed in the WebLogic Administrative Console to
identify this MDB.

<ejb-class> Tag

The <ejb-class> tag defines the class that implements that MDB. The class that
implements the Topic subscribing MDB is
com.stc.eways.ejb.messagebean.STCSubscriberMDBean.

<destination-type> Tag

Since this MDB is subscribing to a SeeBeyond Topic, the <destination-type> is specified
as javax.jms.Topic.

<subscription-durability> Tag

In order to create a durable subscriber MDB, the <subscription-durability> is specified
as Durable.

<container-transaction> Tag

In the <container-transaction> tag of the <assembly-descriptor>, we define the
transactional mode for the MDB. Because this MDB does not use a transaction, the
NotRequired tag in <trans-attribute> is specified.

WebLogic-ejb-jar.xml

In addition to the ejb-jar.xml file, the MDB also needs to be included in the WebLogic-
ejb-jar.xml file.

<weblogic-ejb-jar>
<weblogic-enterprise-bean>

<ejb-name>STCSubscriberMDBean</ejb-name>
<message-driven-descriptor>

<pool>
<max-beans-in-free-pool>15</max-beans-in-free-pool>
<initial-beans-in-free-pool>5</initial-beans-in-free-pool>

</pool>
<destination-jndi-name>SeeBeyond.Topics.STCTopic1</destination-jndi-name>
<initial-context-factory>weblogic.jndi.WLInitialContextFactory</initial-context-

factory>
<provider-url>t3://localhost:7003</provider-url>
<connection-factory-jndi-

name>SeeBeyond.TopicConnectionFactories.TopicConnectionFactory</connection-factory-jndi-name>
</message-driven-descriptor>
<jndi-name>SeeBeyond.STCSubscriberMDBean</jndi-name>

</weblogic-enterprise-bean>
…

</weblogic-ejb-jar>

<ejb-name> Tag

The value for <ejb-name> must match that defined in ejb-jar.xml.

<pool> Tag

The <pool> tag defines the maximum number of MDBs in the free pool and the initial
pool size by using the <max-beans-in-free-pool> and <initial-beans-in-free-pool> tags
respectively.
WebLogic eWay Intelligent Adapter User’s Guide 95 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.2
SeeBeyond Sample Message Driven Beans MDB Subscribing to SeeBeyond Queue
<destination-jndi-name> Tag

The <destination-jndi-name> tells the container the JNDI name of the SeeBeyond Topic
that this MDB is to subscribe.

<connection-factory-jndi-name> Tag

Also, the <connection-factory-jndi-name> specifies the TopicConnectionFactory to use.
The Topic and TopicConnectionFactory must have already been created and registered
with JNDI by the startup class. (See SeeBeyond WebLogic Startup Class on page 47 for
details.) The container locates these JNDI objects in its own JNDI as specified by the
<initial-context-factory> and <provider-url>.

9.2 MDB Subscribing to SeeBeyond Queue
This MDB subscribes to only one SeeBeyond JMS Queue and simply receives and
displays the JMS Messages.

ejb-jar.xml

The following is the deployment descriptor for this MDB (ejb-jar.xml):
<ejb-jar>

<enterprise-beans>
…
<message-driven>

<ejb-name>STCReceiverMDBean</ejb-name>
<ejb-class>com.stc.eways.ejb.messagebean.STCReceiverMDBean</ejb-class>
<transaction-type>Container</transaction-type>
<message-driven-destination>

<destination-type>javax.jms.Queue</destination-type>
<subscription-durability>Durable</subscription-durability>

</message-driven-destination>
</message-driven>
…

<assembly-descriptor>
…

<container-transaction>
<method>

<ejb-name>STCReceiverMDBean</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>NotSupported</trans-attribute>

</container-transaction>

…
</assembly-descriptor>

</ejb-jar>

<ejb-name> Tag

The <ejb-name> defines the name of the MDB and is used to uniquely identify the MDB
by the container. This name is displayed in the WebLogic Administrative Console to
identify this MDB.

<ejb-class> Tag

The <ejb-class> tag defines the class that implements that MDB. The class that
implements the Queue subscribing MDB is
com.stc.eways.ejb.messagebean.STCReceiverMDBean.
WebLogic eWay Intelligent Adapter User’s Guide 96 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.2
SeeBeyond Sample Message Driven Beans MDB Subscribing to SeeBeyond Queue
<destination-type> Tag

Since this MDB is subscribing to a SeeBeyond Queue, you must specify the
<destination-type> tag as javax.jms.Queue.

<subscription-durability> Tag

In order to create a durable subscriber MDB, the <subscription-durability> tag is
specified as Durable.

<container-transaction> Tag

In the <container-transaction> tag of the <assembly-descriptor>, the transactional
mode is defined for the MDB. Because this MDB does not use a transaction, the
NotRequired tag in <trans-attribute> is specified.

weblogic-ejb-jar.xml

In addition to the ejb-jar.xml file, the MDB also needs to be included in the weblogic-
ejb-jar.xml file:

<weblogic-ejb-jar>
<weblogic-enterprise-bean>

<ejb-name>STCReceiverMDBean</ejb-name>
<message-driven-descriptor>

<pool>
<max-beans-in-free-pool>15</max-beans-in-free-pool>
<initial-beans-in-free-pool>5</initial-beans-in-free-pool>

</pool>
<destination-jndi-name>SeeBeyond.Queues.STCQueue1</destination-jndi-name>
<initial-context-factory>weblogic.jndi.WLInitialContextFactory</initial-context-

factory>
<provider-url>t3://localhost:7003</provider-url>
<connection-factory-jndi-

name>SeeBeyond.QueueConnectionFactories.QueueConnectionFactory</connection-factory-jndi-name>
</message-driven-descriptor>
<jndi-name>SeeBeyond.STCReceiverMDBean</jndi-name>

</weblogic-enterprise-bean>
…

</weblogic-ejb-jar>

<ejb-name> Tag

The value for <ejb-name> tag must match that defined in ejb-jar.xml.

<pool> Tag

The <pool> tag defines the maximum number of MDBs in the free pool and the initial
pool size by using the <max-beans-in-free-pool> and <initial-beans-in-free-pool> tags
respectively.

<destination-jndi-name> Tag

The <destination-jndi-name> tag tells the container the JNDI name of the SeeBeyond
Queue that this MDB is to subscribe.

<connection-factory-jndi-name> Tag

The <connection-factory-jndi-name> specifies the QueueConnectionFactory to use.
The Queue and QueueConnectionFactory must have already been created and
registered with JNDI by the startup class. (See SeeBeyond WebLogic Startup Class on
page 47 for details.) The container locates these JNDI objects in its own JNDI as
specified by the <initial-context-factory> and <provider-url>.
WebLogic eWay Intelligent Adapter User’s Guide 97 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.3
SeeBeyond Sample Message Driven Beans Accessing Session Beans
9.3 Accessing Session Beans
Session Beans can be accessed from an eGate Collaboration by using the EJB OTD
Builder to create an OTD for the Session Bean. This is done by:

1 Using Create on the home interface to create a remote instance.

2 Call methods on the remote instance.

3 Free resources by calling remove() when finished.

9.3.1. SeeBeyond Sample Session Beans
There are two Stateless Session Beans available with the WebLogic eWay:

A Session Bean that publishes to a SeeBeyond JMS Topic

A Session Bean that uses the STCQueueRequestor to send and receive a message to
and from SeeBeyond JMS.

In the following sections, there are references to two XML files: jb-jar.xml and
weblogic-ejb-jar.xml. These files are used as the Session Bean's deployment descriptor.
The ejb-jar.xml deployment descriptor is specified by the EJB 2.0 specification. The
weblogic-ejb-jar.xml is proprietary to WebLogic. Both need to define in order to
deploy the MDBs.

9.3.2. SLS Bean Publishing to SeeBeyond Topic
This Stateless Session Bean publishes to a SeeBeyond JMS Topic. It exposes the remote
method, publish(), which takes a String as an argument. The Session Bean gets the
message and publishes the message to a SeeBeyond JMS Topic.

ejb-jar.xml

The following is the deployment descriptor for this Session Bean (ejb-jar.xml):
<ejb-jar>

<enterprise-beans>
…

<session>
<ejb-name>STCPublisherSLSessionBean</ejb-name>
<home>com.stc.eways.ejb.sessionbean.publisher.STCPublisherSLSessionHome</home>
<remote>com.stc.eways.ejb.sessionbean.publisher.STCPublisherSLSession</remote>
<ejb-class>com.stc.eways.ejb.sessionbean.publisher.STCPublisherSLSessionBean</

ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
<resource-ref>

<res-ref-name>jms/TopicConnectionFactory</res-ref-name>
<res-type>javax.jms.TopicConnectionFactory</res-type>
<res-auth>Container</res-auth>

</resource-ref>
<resource-env-ref>

<resource-env-ref-name>jms/Topic</resource-env-ref-name>
<resource-env-ref-type>javax.jms.Topic</resource-env-ref-type>

</resource-env-ref>
</session>
…

</ejb-jar>
WebLogic eWay Intelligent Adapter User’s Guide 98 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.3
SeeBeyond Sample Message Driven Beans Accessing Session Beans
<ejb-name> Tag

The <ejb-name> tag defines the name of the Stateless Session Bean and is used to
uniquely identify the Session Bean by the container. This name is displayed in the
WebLogic Administrative Console to identify this Bean.

<ejb-class> Tag

The <ejb-class> tag defines the class that implements that Session Bean. The home
interface for this bean is:

com.stc.eways.ejb.sessionbean.publisher.STCPublisherSLSessionHome

The remote interface for the bean is:

com.stc.eways.ejb.sessionbean.publisher.STCPublisherSLSession

The class which implements the home and remote interfaces as well as the bean itself is:

com.stc.eways.ejb.sessionbean.publisher.STCPublisherSLSessionBean

The Session Bean knows about the TopicConnectionFactory and Topic destinations via
the resource reference tags. Notice that the value for the res-ref-name tag is jms/
TopicConnectionFactory and the value for the resource-env-ref-name environment
entry is jsm/Topic. They are specified as javax.jms.TopicConnectionFactory and
javax.jms.Topic for the resource type respectively. These resource references are
another level of JNDI indirection. They don't specify the actual JNDI names of the JMS
objects, but rather they are references to the JNDI name. So the EJB can reference jms/
TopicConnectionFactory but does not really care what the actual JNDI name is. The
actual JNDI names for these references are defined in the weblogic-ejb-jar.xml file.

ejb-jar.xml

In addition to the ejb-jar.xml file, the Session Bean also needs to be included in the
weblogic-ejb-jar.xml file:

<weblogic-ejb-jar>
<weblogic-enterprise-bean>

<ejb-name>STCPublisherSLSessionBean</ejb-name>
<stateless-session-descriptor>

<pool>
<max-beans-in-free-pool>15</max-beans-in-free-pool>
<initial-beans-in-free-pool>5</initial-beans-in-free-pool>

</pool>
</stateless-session-descriptor>
<reference-descriptor>

<resource-description>
<res-ref-name>jms/TopicConnectionFactory</res-ref-name>
<jndi-name>SeeBeyond.TopicConnectionFactories.TopicConnectionFactory</

jndi-name>
</resource-description>
<resource-env-description>

<res-env-ref-name>jms/Topic</res-env-ref-name>
<jndi-name>SeeBeyond.Topics.STCTopic2</jndi-name>

</resource-env-description>
</reference-descriptor>
<jndi-name>SeeBeyond.STCPublisherSLSessionBean</jndi-name>

</weblogic-enterprise-bean>
…

</weblogic-ejb-jar>

<ejb-name> Tag

The value for <ejb-name> tag must match that defined in ejb-jar.xml.
WebLogic eWay Intelligent Adapter User’s Guide 99 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.3
SeeBeyond Sample Message Driven Beans Accessing Session Beans
<pool> Tag

The <pool> tag defines the maximum number of Session Beans in the free pool and the
initial pool size by using the <max-beans-in-free-pool> and <initial-beans-in-free-pool>
tags respectively.

<jndi-name> Tag

The value for the <jndi-name> tag for the resource name jms/TopicConnectionFactory
is:

SeeBeyond.TopicConnectionFactories.TopicConnectionFactory

The value for the <jndi-name> tag for the jms/Topic entry is:

SeeBeyond.Topics.STCTopic2

These values define the resource reference name to JNDI name mappings. The Topic
and TopicConnectionFactory must have already been created and registered with JNDI
by the startup class. (See SeeBeyond WebLogic Startup Class on page 47 for details.)
The container locates these JNDI objects in its own JNDI as specified by the <initial-
context-factory> and <provider-url>.

SLS Bean Request/Reply To SeeBeyond Queue

This Stateless Session Bean sends a request to the SeeBeyond JMS Queue and receives a
reply on the request sent. It exposes the remote method, request(), which takes a String
as an argument. The Session Bean receives the message and sends it to a SeeBeyond
JMS Queue. The Session Bean then gets a reply from eGate.

ejb-jar.xml

The following is the deployment descriptor for this MDB (ejb-jar.xml):
<ejb-jar>

<enterprise-beans>
…

<session>
<ejb-name>STCQueueRequestorSLSessionBean</ejb-name>

<home>com.stc.eways.ejb.sessionbean.queuerequestor.STCQueueRequestorSLSessionHome</home>

<remote>com.stc.eways.ejb.sessionbean.queuerequestor.STCQueueRequestorSLSession</remote>
<ejb-

class>com.stc.eways.ejb.sessionbean.queuerequestor.STCQueueRequestorSLSessionBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
<env-entry>

<env-entry-name>ReceiveTimeout</env-entry-name>
<env-entry-type>java.lang.Long</env-entry-type>
<env-entry-value>60000</env-entry-value>

</env-entry>
<resource-ref>

<res-ref-name>jms/QueueConnectionFactory</res-ref-name>
<res-type>javax.jms.QueueConnectionFactory</res-type>
<res-auth>Container</res-auth>

</resource-ref>
<resource-env-ref>

<resource-env-ref-name>jms/Queue</resource-env-ref-name>
<resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>

</resource-env-ref>
</session>
…

</ejb-jar>
WebLogic eWay Intelligent Adapter User’s Guide 100 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.3
SeeBeyond Sample Message Driven Beans Accessing Session Beans
<ejb-name> Tag

The <ejb-name> tag defines the name of the Stateless Session Bean and is used to
uniquely identify the Session Bean by the container. This name is displayed in the
WebLogic Administrative Console to identify this Bean.

<ejb-class> Tag

The <ejb-class> tag defines the class that implements the Session Bean. The home
interface for this bean is:

com.stc.eways.ejb.sessionbean.publisher.STCPublisherSLSessionHome

The remote interface for the bean is:

com.stc.eways.ejb.sessionbean.publisher.STCPublisherSLSession

The class which implements the home and remote interfaces as well as the bean itself is:

com.stc.eways.ejb.sessionbean.publisher.STCPublisherSLSessionBean

The Session Bean knows about the QueueConnectionFactory and Queue destinations
via the resource reference tags.

<res-ref-name> and <resource-env-ref-name> Tags

The value for the <res-ref-name> tag is jms/QueueConnectionFactory and the value
for the <resource-env-ref-name> environment entry is jsm/Queue. The EJB can
reference jms/QueueConnectionFactory but is not concerned with what the actual
JNDI name is. They are specified as: javax.jms.QueueConnectionFactory and
javax.jms.Queue for the resource type respectively. These resource references are
another level of JNDI indirection. They don't specify the actual JNDI names of the JMS
objects, but rather they are references to the JNDI name. So the EJB can reference jms/
QueueConnectionFactory but does not really care what the actual JNDI name is. The
actual JNDI names for these references are defined in the weblogic-ejb-jar.xml file.

weblogic-ejb-jar.xml

In addition to the ejb-jar.xml file, the Session Bean also needs to be included in the
weblogic-ejb-jar.xml file:

<weblogic-ejb-jar>
<weblogic-enterprise-bean>

<ejb-name>STCQueueRequestorSLSessionBean</ejb-name>
<stateless-session-descriptor>

<pool>
<max-beans-in-free-pool>15</max-beans-in-free-pool>
<initial-beans-in-free-pool>5</initial-beans-in-free-pool>

</pool>
</stateless-session-descriptor>
<reference-descriptor>

<resource-description>
<res-ref-name>jms/QueueConnectionFactory</res-ref-name>
<jndi-name>SeeBeyond.QueueConnectionFactories.QueueConnectionFactory</

jndi-name>
</resource-description>
<resource-env-description>

<res-env-ref-name>jms/Queue</res-env-ref-name>
<jndi-name>SeeBeyond.Queues.STCQueue2</jndi-name>

</resource-env-description>
</reference-descriptor>
<jndi-name>SeeBeyond.STCQueueRequestorSLSessionBean</jndi-name>

</weblogic-enterprise-bean>
…

</weblogic-ejb-jar>
WebLogic eWay Intelligent Adapter User’s Guide 101 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.3
SeeBeyond Sample Message Driven Beans Accessing Session Beans
<ejb-name> Tag

The value for <ejb-name> must match that defined in ejb-jar.xml.

<pool> Tag

The <pool> tag defines the maximum number of Session Beans in the free pool and the
initial pool size by using the <max-beans-in-free-pool> and <initial-beans-in-free-pool>
tags respectively.

<jndi-name> Tag

The value for the <jndi-name> tag for the resource name jms/
QueueConnectionFactory is:

SeeBeyond.QueueConnectionFactories.QueueConnectionFactory

The value for the <jindi-name> tag for the jms/Queue entry is:

SeeBeyond.Queues.STCQueue2

These values define the resource reference name to JNDI name mappings. The Queue
and QueueConnectionFactory must have already been created and registered with
JNDI by the startup class. (See SeeBeyond WebLogic Startup Class on page 47 for
details.) The container locates these JNDI objects in its own JNDI as specified by the
<initial-context-factory> and <provider-url>.

9.3.3. Lazy Loading
The following code is for the publish() method of the sample Topic Publisher Session
Bean. initialize() is called in order to create the necessary JMS connections to publish to
the JMS Topic. This process is known as “lazy loading.” Lazy loading is used because
JMS objects may not have been bound to the naming service during the deployment of
the EJB. This is because the SeeBeyond WebLogic startup class can not be deployed
prior to the EJB. Therefore, it may not be guaranteed that calling initalize() in
ejbCreate() creates the JMS Topic connection. WebLogic does not allow the user to
specify the deployment of a startup class prior to the deployment of an EJB.

/**
 * Send a text message to SeeBeyond JMS Topic.
 *
 * @param message The text message to send to a JMS Topic.
 *
 * @throws EJBException Upon error.
 *
 * @author SeeBeyond
 */
 public void publish (String message) throws EJBException
 {
 // If not initialized already then do it (lazy loading)
 initialize();

 if (message == null)
 throw new EJBException ("Can not publish a null message.");

 try
 {
 TextMessage textMsg = sbynJMSTopicObject.createTextMessage(message);
 sbynJMSTopicObject.publish(textMsg);
 }
 catch (Exception ex)
 {
 throw new EJBException ("Exception caught while publishing message; exception : " +
ex.toString());
 }
 }
WebLogic eWay Intelligent Adapter User’s Guide 102 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.3
SeeBeyond Sample Message Driven Beans Accessing Session Beans
The following code is for initialize(). Notice that the EJB's ENC is used for getting the
TopicConnectionFactory and Topic destination. See the sample Java source code for
details.

 protected void initialize () throws EJBException
 {
 if (!bInitialized)
 {
 Exception savedException = null;

 try
 {
 // Get the InitialContext
 jndiInitialContext = new InitialContext();

 // Get the TopicConnectionFactory using JNDI ENC
 TopicConnectionFactory tcf =
(TopicConnectionFactory)jndiInitialContext.lookup("java:comp/env/" +
ENV_TOPIC_CONNECTION_FACTORY);

 // Get the Topic using JNDI ENC
 Topic topic = (Topic)jndiInitialContext.lookup("java:comp/env/" +
ENV_TOPIC_DESTINATION);

 // Create our JMSTopic object
 sbynJMSTopicObject = new JMSTopicObject (tcf, topic);

 bInitialized = true;
 }
 catch (Exception ex1)
 {
 throw new EJBException(ex1);
 }
 }
 }

Accessing Entity Beans

Entity Beans can be accessed from an eGate Collaboration by using the EJB OTD
Builder to create an OTD for the Session Bean. This is done by:

1 Using Creators or Finders on the home interface to create remote instances.

2 Using hasNext() and next() to access the instance.

3 Call methods on the remote instance.

By calling “remove”, the Entity Bean instance is removed from the permanent storage,
for example deleting an account from a database (or databases).
WebLogic eWay Intelligent Adapter User’s Guide 103 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
SeeBeyond Sample Message Driven Beans SeeBeyond Sample XA Message Driven Beans
9.4 SeeBeyond Sample XA Message Driven Beans
A MDB can subscribe to a SeeBeyond JMS Topic or Queue in an XA transaction. If the
transaction needs to roll back, the message received by the MDB is rolled back and re-
delivered to the MDB.

MDB Subscribing to SeeBeyond JMS Queue Transactionally

The MDB subscribes to a (single) SeeBeyond JMS Queue. This MDB uses Container
Managed Transaction. Because the WebLogic container optimizes to one-phase commit
(or rollback) if only one XA resource is used, the MDB must also be configured to use
another XA Resource in order to observe a two-phase commit (or rollback). Therefore,
in addition to the SeeBeyond JMS XAResource, the MDB is also deployed to use the
demo XA database resource pool. The “examples” WebLogic Server instance already
has a XA database resource pool configured. The pool's JNDI name is examples-
dataSource-demoXAPool. The MDB references this pool. (See examples-dataSource-
demoXAPool on page 112 for more information.) The MDB expects the JMS
TextMessage to contain, in its body content, a text string that looks like the following:

accountId|balance

where accountId is a String ID for the account to create in the database and balance is
the initial balance of the account to be created.

The MDB parses these values separated by the “|” (pipe) character. If a XA commit
occurs successfully, both the JMS Message receive and the insert into the database get
committed. To simulate an XA rollback, create a JMS Message with an accountId of
rollback. The MDB throws an EJBException (or any EJB SystemException), if it sees
rollback as the accountId, after preparing to insert into the database table. Throwing
EJBException causes the XA rollback to happen on both the database and the
SeeBeyond JMS Queue. Upon rollback, the JMS Message is again delivered to the MDB.
The MDB can't keep any state; therefore, in order to determine whether the rollback
message has been sent again, it checks the JMSRedelivered flag on the JMS Message it
received. If the JMSRedelivered flag is set to true, the MDB does not open a connection
to the database or throw any exceptions. By not throwing an exception on a rollback
message that is being resent, a one-phase commit on the JMS Queue occurs. The MDB
must check the JMSRedelivered flag in order to prevent indefinite rollbacks.
WebLogic eWay Intelligent Adapter User’s Guide 104 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
SeeBeyond Sample Message Driven Beans SeeBeyond Sample XA Message Driven Beans
ejb-jar.xml

The following is the deployment descriptor for this MDB (ejb-jar.xml):
<ejb-jar>

<enterprise-beans>
<message-driven>

<ejb-name>STCXAReceiverMDBean</ejb-name>
<ejb-class>com.stc.eways.ejb.messagebean.STCXAReceiverMDBean</ejb-class>
<transaction-type>Container</transaction-type>
<message-driven-destination>

<destination-type>javax.jms.Queue</destination-type>
<subscription-durability>Durable</subscription-durability>

</message-driven-destination>
<resource-ref>

<res-ref-name>jdbc/demoXAPool</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>
</message-driven>

 …

</enterprise-beans>
<assembly-descriptor>

<container-transaction>
<method>

<ejb-name>STCXAReceiverMDBean</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
…

</assembly-descriptor>
</ejb-jar>

Notice that MDB references another resource by the reference name jdbc/demoXAPool.
This resource is of type javax.sql.DataSource. The actual JNDI name of this resource is
defined in the weblogic-ejb-jar.xml deployment descriptor. Notice, also, that the CMT
(Container Managed Transaction) is specified in the <transaction-type> for the MDB. It
is also required that the <container-transaction> be specified for the MDB in the
<assembly-descriptor> tag. In <container-transaction>, it’s specified that all methods
(including the onMessage() method) are required to participate in an XA transaction.
This is done by setting <trans-attribute> to “Required” and the <method> tag with
<ejb-name> set to the name of the MDB and <method-name> set to * (used as a
wildcard to signify all methods).

weblogic-ejb-jar.xml

In addition to the ejb-jar.xml file, the MDB also needs to be included in the weblogic-
ejb-jar.xml file:

<weblogic-ejb-jar>
<ejb-name>STCXAReceiverMDBean</ejb-name>
<message-driven-descriptor>

<pool>
<max-beans-in-free-pool>15</max-beans-in-free-pool>
<initial-beans-in-free-pool>5</initial-beans-in-free-pool>

</pool>
<destination-jndi-name>SeeBeyond.Queues.STCQueue3</destination-jndi-name>
<initial-context-factory>weblogic.jndi.WLInitialContextFactory</initial-

context-factory>
<provider-url>t3://localhost:7003</provider-url>
<connection-factory-jndi-

name>SeeBeyond.QueueConnectionFactories.XAQueueConnectionFactory</connection-factory-jndi-
name>

</message-driven-descriptor>
<reference-descriptor>

<resource-description>
<res-ref-name>jdbc/demoXAPool</res-ref-name>
<jndi-name>examples-dataSource-demoXAPool</jndi-name>

</resource-description>
</reference-descriptor>
<jndi-name>SeeBeyond.STCXAReceiverMDBean</jndi-name>

</weblogic-enterprise-bean>
…

</weblogic-ejb-jar>

The value for <ejb-name> must match the value defined in ejb-jar.xml.
WebLogic eWay Intelligent Adapter User’s Guide 105 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
SeeBeyond Sample Message Driven Beans SeeBeyond Sample XA Message Driven Beans
<pool> Tag

The <pool> tag defines the maximum number of MDBs in the free pool and the initial
pool size by using the <max-beans-in-free-pool> and <initial-beans-in-free-pool> tags
respectively.

<destination-jndi-name> Tag

The <destination-jndi-name> tag tells the container the JNDI name of the SeeBeyond
Queue to which this MDB is to subscribe.

<connection-factory-jndi-name> Tag

The <connection-factory-jndi-name> tag specifies the XAQueueConnectionFactory to
use. The Queue and XAQueueConnectionFactory must already be created and
registered with JNDI by the startup class. (See SeeBeyond WebLogic Startup Class on
page 47 for details.) The container locates these JNDI objects in its own JNDI as
specified by the <initial-context-factory> and <provider-url>. Notice also that the
actual JNDI name for the jdbc/demoXAPool resource is examples-dataSource-
demoXAPool. This is the JNDI name of the datasource XA pool that is already created
and configured for the “examples” WebLogic Server when WebLogic is installed.

9.4.1. SeeBeyond Sample XA Session Beans
A Session Bean (Stateless or Stateful) can publish a message to a SeeBeyond JMS Topic
or send a message to a SeeBeyond JMS Queue in an XA transaction. The Session Bean
accesses the SeeBeyond JMS XAConnectionFactory and Destination via the Bean's
Environment Naming Context (ENC). The XAConnectionFactory and Destination are
denoted using the following tags of the Bean's deployment descriptor:

<resource-ref>

<resource-env-ref>

<resource-ref-name>

<resource-env-ref-name>

The Session Bean must enlist the SeeBeyond JMS XA Resource to WebLogic
TransactionManager. The enlistment must be done to the current XA transaction
created by the WebLogic container.

How To Enlist SeeBeyond JMS XAResource

WebLogic provides a helper class, weblogic.transaction.TxHelper, which the EJB
developer can use to get a hold of the current transaction and to enlist the SeeBeyond
JMS XA Resource to the current transaction. The enlistment process can be done in the
Bean's ejbCreate method(s). The Session Bean relies on the SeeBeyond Startup Class
(see SeeBeyond WebLogic Startup Class) to create and bind the JMS
XAConnectionFactory and Destination prior to WebLogic deploying the EJBs. Because
WebLogic does not allow startup classes to be deployed prior to EJBs, the sample EJBs
do “lazy loading” of the JMS objects. EJBs should only lookup the JMS objects once they
are created or during initialization. This can be done only when the EJB is ready to
publish or send a message(s) to a destination.
WebLogic eWay Intelligent Adapter User’s Guide 106 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
SeeBeyond Sample Message Driven Beans SeeBeyond Sample XA Message Driven Beans
In the usual manner, use the XAConnectionFactory and Destination to create the
XAConnection and XASession. The Bean can get a hold of the XAConnectionFactory
and Destination via the Bean's ENC. Once the XASession has been created, get a
reference to the XAResource by calling XASession.getXAResource(); then enlist the
XAResource to the current transaction. Before you enlist, call the WebLogic static
method, TxHelper.getTransaction, to get a reference to the current transaction allocated
by the container. TxHelper.getTransaction returns a javax.transaction.Transaction. You
can then call javax.transaction.Transaction.enlistResource passing in the XAResource
retrieved for the XASession that you had created.

SLS Bean Publishing to SeeBeyond JMS Topic Transactionally

This Stateless Session Bean publishes to a SeeBeyond JMS Topic transactionally. The
sample Session Bean uses CMT (Container Managed Transaction). As with the
transactional MDB, the Session Bean also utilizes two XA Resources in order to exhibit
a two-phase commit or rollback behavior. The sample Session Bean uses both the
SeeBeyond JMS XAResource and the demo XA database resource pool.(See examples-
dataSource-demoXAPool on page 112 for details.) This Session Bean exposes two
remote methods:

createAccountAndPublish()

getBalance()

The createAccountAndPublish() method takes two parameters: accountId of type
java.lang.String and balance of type double. This method inserts a new record into a
table of the demo database and publishes a JMS Message to a SeeBeyond JMS Topic
upon successfully inserting the record into the table. Both the insert and the publish are
treated as a single XA transaction.

The getBalance() method accesses the database and retrieves the balance for the record
specified by the account ID, passed to the method as argument. This method can be
used to verify that a particular record has been successfully inserted into the database
by the createAccountAndPublish() method. In fact, the remote client tester for this
Session Bean does invoke createAccountAndPublish() and then invokes the
getBalance() method immediately after the createAccountAndPublish() method
invocation returns. Upon successful commit of the XA transaction, both the insert to the
database table and the publish to the SeeBeyond JMS Topic are committed. The
getBalance() method returns the correct balance and eGate receives the published
message.

To simulate an XA rollback, the remote client can pass in an accountId of rollback in the
createAccountAndPublish() remote method call. The Session Bean prepares to insert
the record to the database and prepares to publish to the SeeBeyond JMS Topic. Finally,
it checks whether the accountId is “rollback.” If it is, the Session Bean throws an
EJBException (or any EJB SystemException) so that the container calls rollback on both
XA resources. When the client calls getBalance(), passing in an accountId of rollback,
the client will see that this record is not inserted. Moreover, eGate does not receive the
rollback message.
WebLogic eWay Intelligent Adapter User’s Guide 107 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
SeeBeyond Sample Message Driven Beans SeeBeyond Sample XA Message Driven Beans
ejb-jar.xml Tag

The following is the deployment descriptor for this Session Bean (ejb-jar.xml):
<ejb-jar>

<enterprise-beans>
…

<session>
<ejb-name>STCXAPublisherSLSessionBean</ejb-name>

<home>com.stc.eways.ejb.sessionbean.xapublisher.STCXAPublisherSLSessionHome</home>
<remote>com.stc.eways.ejb.sessionbean.xapublisher.STCXAPublisherSLSession</

remote>
<ejb-

class>com.stc.eways.ejb.sessionbean.xapublisher.STCXAPublisherSLSessionBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
<resource-ref>

<res-ref-name>jms/XATopicConnectionFactory</res-ref-name>
<res-type>javax.jms.XATopicConnectionFactory</res-type>
<res-auth>Container</res-auth>

</resource-ref>
<resource-ref>

<res-ref-name>jdbc/demoXAPool</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>
<resource-env-ref>

<resource-env-ref-name>jms/Topic</resource-env-ref-name>
<resource-env-ref-type>javax.jms.Topic</resource-env-ref-type>

</resource-env-ref>
</session>
…

</enterprise-beans>
<assembly-descriptor>

<container-transaction>
<method>

<ejb-name>STCXAPublisherSLSessionBean</ejb-name>
<method-name>createAccountAndPublish</method-name>

</method>
<method>

<ejb-name>STCXAPublisherSLSessionBean</ejb-name>
<method-name>getBalance</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
…

</assembly-descriptor>
</ejb-jar>

<ejb-name> Tag

The <ejb-name> defines the name of the Stateless Session Bean and is used to uniquely
identify the Session Bean by the container. This name is displayed in the WebLogic
Administrative Console to identify this Bean.

<ejb-class> Tag

The <ejb-class> tag defines the class that implements that Session Bean. The home
interface for this bean is:

com.stc.eways.ejb.sessionbean.publisher.STCXAPublisherSLSessionHome

The remote interface for the bean is:

com.stc.eways.ejb.sessionbean.publisher.STCXAPublisherSLSession

The class which implements the home and remote interfaces as well as the bean itself is:

com.stc.eways.ejb.sessionbean.publisher.STCXAPublisherSLSessionBean

The Session Bean is aware of the XATopicConnectionFactory and Topic destinations
via the resource reference tags.
WebLogic eWay Intelligent Adapter User’s Guide 108 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
SeeBeyond Sample Message Driven Beans SeeBeyond Sample XA Message Driven Beans
<res-ref-name> and <resource-env-ref-name> Tag

The value for the <res-ref-name> tag is jms/XATopicConnectionFactory and the value
for the <resource-env-ref-name> environment entry is jsm/Topic. They are specified as
javax.jms.XATopicConnectionFactory and javax.jms.Topic for the resource type
respectively. These resource references are another level of JNDI indirection. They don't
specify the actual JNDI names of the JMS objects, but rather they are references to the
JNDI name. The EJB can reference jms/XATopicConnectionFactory but does not really
care what the actual JNDI name is. The actual JNDI names for these references are
defined in the weblogic-ejb-jar.xml file.

Notice that the SLS Bean references another resource by the reference name jdbc/
demoXAPool. This resource is of type javax.sql.DataSource. The actual JNDI name of
this resource is defined in the weblogic-ejb-jar.xml deployment descriptor.

The CMT is specified in the <transaction-type> for the SLS Bean. It is also required that
the <container-transaction> be specified for the SLS Bean in the <assembly-descriptor>
tag. In <container-transaction>, it’s specified that the methods
createAccountAndPublish and getBalance are required to participate in an XA
transaction. Although getBalance is marked as required, the container optimizes for a
one-phase commit or rollback because it only accesses one XA Resource (the database
XA Resource).

weblogic-ejb-jar.xml

In addition to the ejb-jar.xml file, the Session Bean must also be included in the
weblogic-ejb-jar.xml file:

<weblogic-ejb-jar>
<ejb-name>STCXAPublisherSLSessionBean</ejb-name>
<stateless-session-descriptor>

<pool>
<max-beans-in-free-pool>15</max-beans-in-free-pool>
<initial-beans-in-free-pool>5</initial-beans-in-free-pool>

</pool>
</stateless-session-descriptor>
<reference-descriptor>

<resource-description>
<res-ref-name>jms/XATopicConnectionFactory</res-ref-name>
<jndi-

name>SeeBeyond.TopicConnectionFactories.XATopicConnectionFactory</jndi-name>
</resource-description>
<resource-description>

<res-ref-name>jdbc/demoXAPool</res-ref-name>
<jndi-name>examples-dataSource-demoXAPool</jndi-name>

</resource-description>
<resource-env-description>

<res-env-ref-name>jms/Topic</res-env-ref-name>
<jndi-name>SeeBeyond.Topics.STCTopic3</jndi-name>

</resource-env-description>
</reference-descriptor>
<jndi-name>SeeBeyond.STCXAPublisherSLSessionBean</jndi-name>

…
</weblogic-ejb-jar>

The value for <ejb-name> must match that defined in ejb-jar.xml.

The <pool> tag defines the maximum number of Session Beans in the free pool and the
initial pool size by using the <max-beans-in-free-pool> and <initial-beans-in-free-pool>
tags respectively. The value for the jndi-name tag for the resource name jms/
XATopicConnectionFactory is:

SeeBeyond.TopicConnectionFactories.XATopicConnectionFactory
WebLogic eWay Intelligent Adapter User’s Guide 109 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
SeeBeyond Sample Message Driven Beans SeeBeyond Sample XA Message Driven Beans
The value for the jndi-name tag for the jms/Topic entry is:

SeeBeyond.Topics.STCTopic3

These values define the resource reference name to JNDI name mappings. The Topic
and XATopicConnectionFactory must already be created and registered with JNDI by
the startup class. (See SeeBeyond WebLogic Startup Class on page 47 for details.) The
container locates these JNDI objects in its own JNDI as specified by the <initial-context-
factory> and <provider-url>. Notice that the actual JNDI name for the jdbc/
demoXAPool resource is examples-dataSource-demoXAPool. This is the JNDI name of
the datasource XA pool that is already created and configured for the examples
WebLogic Server when WebLogic is installed.

Verifying XA At Work

XA works transparently when the EJBs are running. To observe XA working, look at the
SeeBeyond JMS server log. When XA works, the user sees the XA APIs being called. To
see the XA APIs being logged, write the trace messages to a file.

The JMS server log should appear something like this :
17:49:53.299 JMS I 2676 (Session.cpp:716): XA prepare for Session sessionid=63737404, transaction
txnid=63737405
17:49:53.299 JMS I 2676 (SessionManager.cpp:694): XAPrepare() :
xid:48801:0005fa80c71858e3d95b:636f6d2e7365656265796f6e642e6a6d732e636c69656e742e53544358415265736
f75726365
…
17:49:53.460 JMS I 2676 (Session.cpp:775): Session::XACommit() session sessionid=63737404,
transaction txnid=63737438
17:49:53.460 JMS I 2676 (SessionManager.cpp:710): XACommit() :
xid:48801:0005fa80c71858e3d95b:636f6d2e7365656265796f6e642e6a6d732e636c69656e742e53544358415265736
f75726365

In addition, WebLogic JTA and JMS XA tracing can be turned on by doing the
following:

For WebLogic 6.1, modify the server startup script (i.e., startExamplesServer.cmd)
to include the following Java properties in the command line:

-Dweblogic.Debug=weblogic.JTAXA -Dweblogic.Debug.DebugJMSXA=true

For WebLogic 7.0, modify startExamplesServer.cmd at:

<BEA-HOME>\user_projects\<domain name> to set the JTA / JMS debug flag as
follows:

JAVA_VM=-Dweblogic.Debug=weblogic.JTAXA -Dweblogic.Debug.DebugJMSXA=true

or
JAVA_OPTIONS=-Dweblogic.Debug=weblogic.JTAXA -Dweblogic.Debug.DebugJMSXA=true

Once these properties are added, restart the server. JTA and JMS XA tracing is written
to the server log which is typically located in a subdirectory with the same name as the
server, under the current domain in use. For example, given a server named “serv” the
location would be:

BEA\WebLogic7\user_projects\mydomain\serv\serv.log

####<Apr 4, 20xx 5:49:52 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <>
<5:fa80c71858e3d95b> <000000> <5:fa80c71858e3d95b:
XA.start(rm=com.seebeyond.jms.client.STCXAResource,
xar=com.seebeyond.jms.client.STCXAResource@82e1a, flags=TMNOFLAGS)>
####<Apr 4, 20xx 5:49:52 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <> <>
<000000> <ResourceDescriptor[com.seebeyond.jms.client.STCXAResource]: startResourceUse, Number of
active requests:1, last alive time:0 ms ago.>
WebLogic eWay Intelligent Adapter User’s Guide 110 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
SeeBeyond Sample Message Driven Beans SeeBeyond Sample XA Message Driven Beans
####<Apr 4, 20xx 5:49:52 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <>
<5:fa80c71858e3d95b> <000000> <5:fa80c71858e3d95b: XA.start DONE
(rm=com.seebeyond.jms.client.STCXAResource, xar=com.seebeyond.jms.client.STCXAResource@82e1a>
####<Apr 4, 20xx 5:49:52 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <>
<5:fa80c71858e3d95b> <000000> <ResourceDescriptor[com.seebeyond.jms.client.STCXAResource]:
endResourceUse, Number of active requests:0>
####<Apr 4, 20xx 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <>
<5:fa80c71858e3d95b> <000000> <ResourceDescriptor[demoXAPool]: getOrCreate gets rd: name =
demoXAPool
xar = demoXAPool
registered = true
enlistStatically = false
healthy = true
lastAliveTimeMillis = -1
numActiveRequests = 0
scUrls = examplesServer+10.1.50.134:7003+examples+
>
####<Apr 4, 20xx 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <>
<5:fa80c71858e3d95b> <000000> <5:fa80c71858e3d95b: XA.start(rm=demoXAPool, xar=demoXAPool,
flags=TMNOFLAGS)>
####<Apr 4, 20xx 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <> <>
<000000> <ResourceDescriptor[demoXAPool]: startResourceUse, Number of active requests:1, last alive
time:0 ms ago.>
####<Apr 4, 20xx 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <>
<5:fa80c71858e3d95b> <000000> <5:fa80c71858e3d95b: XA.start DONE (rm=demoXAPool, xar=demoXAPool>
####<Apr 4, 20xx 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <>
<5:fa80c71858e3d95b> <000000> <ResourceDescriptor[demoXAPool]: endResourceUse, Number of active
requests:0>
####<Apr 4, 20xx 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <> <>
<000000> <5:fa80c71858e3d95b: XA.end(rm=com.seebeyond.jms.client.STCXAResource,
xar=com.seebeyond.jms.client.STCXAResource@82e1a, flags=TMSUCCESS)>
####<Apr 4, 20xx 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <> <>
<000000> <ResourceDescriptor[com.seebeyond.jms.client.STCXAResource]: startResourceUse, Number of
active requests:1, last alive time:0 ms ago.>
####<Apr 4, 20xx 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <>
<5:fa80c71858e3d95b> <000000> <5:fa80c71858e3d95b: XA.end DONE
(rm=com.seebeyond.jms.client.STCXAResource, xar=com.seebeyond.jms.client.STCXAResource@82e1a>
####<Apr 4, 20xx 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <>
<5:fa80c71858e3d95b> <000000> <ResourceDescriptor[com.seebeyond.jms.client.STCXAResource]:
endResourceUse, Number of active requests:0>
####<Apr 4, 20xx 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <> <>
<000000> <5:fa80c71858e3d95b: XA.end(rm=demoXAPool, xar=demoXAPool, flags=TMSUCCESS)>
####<Apr 4, 20xx 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <> <>
<000000> <ResourceDescriptor[demoXAPool]: startResourceUse, Number of active requests:1, last alive
time:0 ms ago.>
####<Apr 4, 20xx 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <>
<5:fa80c71858e3d95b> <000000> <5:fa80c71858e3d95b: XA.end DONE (rm=demoXAPool, xar=demoXAPool>
####<Apr 4, 20xx 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <>
<5:fa80c71858e3d95b> <000000> <ResourceDescriptor[demoXAPool]: endResourceUse, Number of active
requests:0>
####<Apr 4, 20xx 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <> <>
<000000> <5:fa80c71858e3d95b: XA.prepare(rm=com.seebeyond.jms.client.STCXAResource,
xar=com.seebeyond.jms.client.STCXAResource@82e1a>
####<Apr 4, 20xx 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <> <>
<000000> <ResourceDescriptor[com.seebeyond.jms.client.STCXAResource]: startResourceUse, Number of
active requests:1, last alive time:0 ms ago.>
####<Apr 4, 20xx 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <>
<5:fa80c71858e3d95b> <000000> <5:fa80c71858e3d95b: XA.prepare DONE:ok>
####<Apr 4, 20xx 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <>
<5:fa80c71858e3d95b> <000000> <ResourceDescriptor[com.seebeyond.jms.client.STCXAResource]:
endResourceUse, Number of active requests:0>
####<Apr 4, 20xx 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <> <>
<000000> <5:fa80c71858e3d95b: XA.prepare(rm=demoXAPool, xar=demoXAPool>
####<Apr 4, 20xx 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <> <>
<000000> <ResourceDescriptor[demoXAPool]: startResourceUse, Number of active requests:1, last alive
time:0 ms ago.>
####<Apr 4, 20xx 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <>
<5:fa80c71858e3d95b> <000000> <5:fa80c71858e3d95b: XA.prepare DONE:ok>
####<Apr 4, 20xx 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <>
<5:fa80c71858e3d95b> <000000> <ResourceDescriptor[demoXAPool]: endResourceUse, Number of active
requests:0>
####<Apr 4, 20xx 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <> <>
<000000>
<XAResource[com.seebeyond.jms.client.STCXAResource].commit(xid=5:fa80c71858e3d95b,onePhase=false)>
####<Apr 4, 20xx 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <> <>
<000000> <ResourceDescriptor[com.seebeyond.jms.client.STCXAResource]: startResourceUse, Number of
active requests:1, last alive time:0 ms ago.>
####<Apr 4, 20xx 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <>
<5:fa80c71858e3d95b> <000000> <5:fa80c71858e3d95b: XA.commit DONE
(rm=com.seebeyond.jms.client.STCXAResource, xar=com.seebeyond.jms.client.STCXAResource@82e1a>
####<Apr 4, 20xx 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <>
<5:fa80c71858e3d95b> <000000> <ResourceDescriptor[com.seebeyond.jms.client.STCXAResource]:
endResourceUse, Number of active requests:0>
####<Apr 4, 20xx 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <> <>
<000000> <XAResource[demoXAPool].commit(xid=5:fa80c71858e3d95b,onePhase=false)>
####<Apr 4, 20xx 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <> <>
<000000> <ResourceDescriptor[demoXAPool]: startResourceUse, Number of active requests:1, last alive
time:0 ms ago.>
####<Apr 4, 20xx 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <>
<5:fa80c71858e3d95b> <000000> <5:fa80c71858e3d95b: XA.commit DONE (rm=demoXAPool, xar=demoXAPool>
WebLogic eWay Intelligent Adapter User’s Guide 111 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
SeeBeyond Sample Message Driven Beans SeeBeyond Sample XA Message Driven Beans
####<Apr 4, 20xx 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <>
<5:fa80c71858e3d95b> <000000> <ResourceDescriptor[demoXAPool]: endResourceUse, Number of active
requests:0>

Additional Logging and Monitoring of JTA and JMS XA

Additional logging and monitoring of JTA and JMS XA can be configured for WebLogic
Server 7.0 through the Administrator Console. From the navigation pane on the left,
expand the Servers node and select the appropriate server. Configure monitoring and
logging in the following locations:

Select the Monitoring tab and click on the JMS and JTA subtabs.

Select the Logging tab and click on the JTA and Debugging subtabs.

examples-dataSource-demoXAPool

As part of its examples server, WebLogic pre-installs a pre-configured datasource
named examples-dataSource-demoXAPool (see Figure 60 on page 112) and associates it
with the pre-installed connection pool named demoXAPool (see on page 113). This
datasource is intended for use with the sample WebLogic EJBs that are deployed with
the examples server, but it is also used by the EJBs supplied with the WebLogic eWay.
Use the figures below to verify that the WebLogic examples server is properly set up to
work with the sample eGate projects/EJBs discussed in this document.

Figure 60 WebLogic (8.1) Administrative Console - demoXAPool
WebLogic eWay Intelligent Adapter User’s Guide 112 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
SeeBeyond Sample Message Driven Beans SeeBeyond Sample XA Message Driven Beans
WebLogic (8.1) Administrative Console - demoXAPool
WebLogic eWay Intelligent Adapter User’s Guide 113 SeeBeyond Proprietary and Confidential

Index
Index

A
Asynchronous Communication 34
Asynchronous Interaction 37

C
Clustering 9
Configuring

WebLogic 6.1 53
WebLogic 7.0 57
WebLogic 8.0 61

Configuring WebLogic Server 53
Connect to Database 67
Creating the Environment Profile 79

D
Deploying the Project 80

E
eInsight

components 81
EJB Containers 37
EJBs 30

Entity Beans 31
Message Driven Beans 31

SeeBeyond 94
subscribing toSeeBeyond queue 96
subscribing toSeeBeyond Topic 94

Session Beans 31
SeeBeyond 98

e-Mail eWay
properties

Connectivity Map 15
Environment Explorer tree 15

ENC 42
Enterprise JavaBeans 30

Entity Beans 31
Message Driven Beans 31

SeeBeyond 94
subscribing to SeeBeyond queue 96
subscribing to SeeBeyond Topic 94

Session Beans 31

SeeBeyond 98
Entity Beans 31
Environment Naming Context 42
examples-dataSource-demoXAPool 112

I
Installing WebLogic eWay

Required Files 13
Sample Projects 13

J
Java Messaging Service 29

SeeBeyond JMS 38
JMS

SeeBeyond JMS 38
WebLogic Server Components

JMS 29
JNDI

sample code 27
SeeBeyond JMS Queue sub-context 49
SeeBeyond JMS QueueConnectionFactory sub-

context 49
SeeBeyond JMS server names list 50
SeeBeyond JMS Topic sub-context 49
SeeBeyond JMS TopicConnectionFactory sub-

context 48
sub-context 48
viewing the JNDI tree 28

JNDI InitialContext parameters
java.naming.authoritative 19
java.naming.batchsize 20
java.naming.dns.url 20
java.naming.factory.control 20
java.naming.factory.initial 20
java.naming.factory.object 20
java.naming.factory.state 21
java.naming.factory.url.pkgs 21
java.naming.language 21
java.naming.provider.url 21
java.naming.referral 22
java.naming.security.authentication 22
java.naming.security.credentials 22
java.naming.security.principal 23
java.naming.security.protocol 23
weblogic.jndi.createIntermediateContexts 23
weblogic.jndi.delegate.environment 23
weblogic.jndi.pinToPrimaryServer 24
weblogic.jndi.provider.rjvm 24
weblogic.jndi.replicateBindings 24
weblogic.jndi.ssl.client.certificate 24
weblogic.jndi.ssl.client.key_password 25
weblogic.jndi.ssl.root.ca.fingerprints 25
WebLogic eWay Intelligent Adapter User’s Guide 114 SeeBeyond Proprietary and Confidential

Index
weblogic.jndi.ssl.server.name 25
weblogic.jndi.use.iiop.service.provider 25

JTA and JMS XA
logging 110
monitoring 110, 112
tracing 110

L
logging 112

JTA and JMS XA 110, 112

M
Message Driven Beans 31
message flow

e*Gate to WebLogic 38
WebLogic to e*Gate 42

monitoring
JTA and JMS XA 110, 112

N
Naming Services 37

Queue(s) 37
QueueConnectionFactory 37
Topic(s) 37
TopicConnectionFactory 37

O
Object Pooling 8
operating systems

supported 12
OTD Wizard

Creating the WebLogic OTD 67

P
Point-to-Point Model 30
Properties

Connectivity Map 16
Environment 17
WebLogic eWay 15

Publish-Subscribe Model 30

Q
Queue 30

R
Running the Sample 80

S
Sample MDB 94
Sample Projects

BPEL 81
Create Enviornment Profile 79
Deploying 80
eGate 84
eInsight Sample Project 80
JMSQueueRequestor 85
JMSQueueSend 90
JMSTopicPublish 91
JMSTopicSubscribe 86
JMSXAQueueSend 92
JMSXATopicSubscribe 88
Locating and Importing 78
Overview 75
Preparing WebLogic 76, 77
Running Sample Projects 79
Running the Sample 80
Setting Properties 79
WebLogic_JCE 84

samples
JMSQueueSend 90
JMSTopicPublish 91
JMSTopicSubscribe 86
JMSXATopicSubscribe 88

SeeBeyond JMS 38
configuring servers on different ports 50
configuring two JMS server instances 50
queue destinations 52
Queue sub-context 49
QueueConnectionFactory 38
QueueConnectionFactory sub-context 49
server names list 50
servers configuration 50
topic destinations 51
Topic sub-context 49
TopicConnectionFactory 38
TopicConnectionFactory sub-context 48
XAQueueConnectionFactory 38
XATopicConnectionFactory 38

Select Wizard Type 67
Session Beans 31
Setting the Properties 79
Startup Class 47

Implementation 47
Properties File 47

startup class
STCWLStartup.class 47

Startup Properties File
STCWLStartup.properties 48

STCWLStartup.properties file 48
Synchronous Communication 34
WebLogic eWay Intelligent Adapter User’s Guide 115 SeeBeyond Proprietary and Confidential

Index
eGate (JMS) to WebLogic Message Driven Bean
35

eGate to WebLogic 34
WebLogic EJB to eGate (JMS) 35

synchronous interaction 36
System Requirements

External 13
System requirements 13
system requirements 13

external 13

T
Thread and Connection Pooling 8
topic 30

U
Updating the WebLogic JMS 41
Using eGate Sample Projects 84

W
WebLogic eWay

Configuring Environment Properties 17
Connectivity Map Properties 16
Setting Properties 15

WebLogic features
Clustering 9
Object Pooling 8
Thread and Connection Pooling 8

WebLogic JMS
Updating 41

WebLogic OTD 36
WebLogic Server

components 53
JNDI tree 56, 60, 64
startup class 54, 58, 62

Configuring 53
file structure 53, 57, 61
Overview 8

WebLogic Server Components 26
EJB 30
Naming Service 26
XA Transactions 31

WebLogic T3 naming service 26

X
XA

confirming succeed or fail 89, 93
verifying XA at work 110

XA Transactions 31

two-phase commit protocol 31
XA transactions

overview 31
SeeBeyond JMS XAResource 106
SeeBeyond XA MDBs 104

subscribing to SeeBeyond JMS queue 104
SeeBeyond XA Session Beans 106
verifying XA 110
WebLogic eWay Intelligent Adapter User’s Guide 116 SeeBeyond Proprietary and Confidential

	WebLogic eWay Intelligent Adapter User’s Guide
	Contents
	Introducing the WebLogic eWay
	1.1 About WebLogic Application Server
	WebLogic Server

	1.2 About the WebLogic eWay
	1.3 About This Document
	1.3.1. What’s in This Document
	1.3.2. Scope
	1.3.3. Intended Audience
	1.3.4. Document Conventions
	1.3.5. Screenshots

	1.4 Related Documents
	1.5 SeeBeyond Web Site
	1.6 Feedback

	Installing the eWay
	2.1 Supported Operating Systems
	2.2 System Requirements
	2.3 Supported External Applications
	2.4 Installing the eWay Product Files
	2.4.1. Required Files
	2.4.2. Sample Projects

	2.5 After You Install

	Setting Properties of WebLogic eWay
	3.1 Configuring the WebLogic eWay Properties
	3.2 Configuring the eWay Connectivity Map Properties
	3.2.1. eWay Property Settings
	JNDI name

	3.3 Configuring the Environment Properties
	3.3.1. WebLogic External System Properties
	3.3.2. Environment Property Settings
	java.naming.authoritative
	java.naming.batchsize
	java.naming.dns.url
	java.naming.factory.control
	java.naming.factory.initial
	java.naming.factory.object
	java.naming.factory.state
	java.naming.factory.url.pkgs
	java.naming.language
	java.naming.provider.url
	java.naming.referral
	java.naming.security.authentication
	java.naming.security.credentials
	java.naming.security.principal
	java.naming.security.protocol
	weblogic.jndi.WLContext.CREATE_INTERMEDIATE_CONTEXTS
	weblogic.jndi.WLContext.DELEGATE_ENVIRONMENT
	weblogic.jndi.WLContext.ENABLE_SERVER_AFFINITY
	weblogic.jndi.WLContext.PIN_TO_PRIMARY_SERVER
	weblogic.jndi.WLContext.PROVIDER_RJVM
	weblogic.jndi.WLContext.REPLICATE_BINDINGS
	weblogic.jndi.WLContext.SSL_CLIENT_CERTIFICATE
	weblogic.jndi.WLContext.SSL_CLIENT_KEY_PASSWORD
	weblogic.jndi.WLContext.SSL_ROOT_CA_FINGERPRINTS
	weblogic.jndi.WLContext.SSL_SERVER_NAME
	weblogic.jndi.WLContext.USE_IIOP_SERVICE_PROVIDER

	WebLogic Server Components
	4.1 Java Naming and Directory Interface (JNDI)
	The WebLogic Naming Service
	Sample Code
	Viewing The WebLogic JNDI Tree

	4.2 Java Messaging Service (JMS)
	4.3 Enterprise JavaBeans (EJBs)
	Session Beans
	Entity Beans
	Message Driven Beans

	4.4 XA Transactions

	WebLogic eWay Component Communication
	5.1 Synchronous and Asynchronous Communication
	5.1.1. Synchronous Communication
	5.1.2. Asynchronous Communication

	5.2 Synchronous Communication in eGate
	5.2.1. The WebLogic OTD

	5.3 Asynchronous Communication in eGate
	5.3.1. Additional Messaging Service Requirements
	5.3.2. SeeBeyond JMS
	Message Flow from eGate to WebLogic Using JMS Objects
	Updating the WebLogic JMS
	Message Flow from WebLogic to eGate Using JMS Objects

	5.4 SeeBeyond WebLogic Startup Class
	5.4.1. Startup Class Implementation
	5.4.2. Startup Properties File
	STCWLStartup.properties File

	Configuring WebLogic Server
	6.1 Configuration for WebLogic 6.1
	6.2 Configuration for WebLogic 7.0
	6.3 Configuration for WebLogic 8.1

	Using the WebLogic OTD Wizard
	7.1 Java Methods for the OTD Wizard
	7.2 Creating the OTD
	7.2.1. Select Wizard Type
	7.2.2. Specify OTD Name
	7.2.3. Select Interfaces
	7.2.4. Select Method Argument
	7.2.5. Select Class Path
	7.2.6. Review Selections

	Implementing the WebLogic eWay
	8.1 Sample Projects Overview
	8.1.1 Synchronous Communication-eGate to WebLogic Server
	8.1.2 Asynchronous Communication-WebLogic EJB to eGate JMS
	Preparing WebLogic

	8.1.3 Asynchronous Communication-eGate JMS to a WebLogic Message Driven Bean
	Preparing WebLogic

	8.2 Locating and Importing the Sample Projects
	8.3 Running the Sample Projects
	8.3.1 Setting the Properties
	8.3.2 Creating the Environment Profile
	8.3.3 Deploying the Project
	8.3.4 Running the Sample

	8.4 Using Sample Projects in eInsight
	8.4.1 The eInsight Engine and Components
	8.4.2 The WebLogic_BPEL Sample Project
	CreateAccount_BP
	DepositAmound_BP

	8.5 Using the Sample Projects in eGate
	8.5.1 The WebLogic_JCE Sample Project
	8.5.2 The JMSQueueRequestor Sample Project
	8.5.3 The JMSTopicSubscribe Sample
	8.5.4. The JMSXATopicSubscribe Sample
	8.5.5 The JMSQueueSend Sample
	8.5.6. The JMSTopicPublish Sample
	8.5.7. The JMSXAQueueSend Sample

	SeeBeyond Sample Message Driven Beans
	9.1 MDB Subscribing to a SeeBeyond Topic
	ejb-jar.xml
	WebLogic-ejb-jar.xml

	9.2 MDB Subscribing to SeeBeyond Queue
	ejb-jar.xml
	weblogic-ejb-jar.xml

	9.3 Accessing Session Beans
	9.3.1. SeeBeyond Sample Session Beans
	9.3.2. SLS Bean Publishing to SeeBeyond Topic
	ejb-jar.xml
	ejb-jar.xml
	ejb-jar.xml
	weblogic-ejb-jar.xml

	9.3.3. Lazy Loading
	Accessing Entity Beans

	9.4 SeeBeyond Sample XA Message Driven Beans
	9.4.1. SeeBeyond Sample XA Session Beans
	SLS Bean Publishing to SeeBeyond JMS Topic Transactionally
	Verifying XA At Work
	examples-dataSource-demoXAPool

	Index
	A
	C
	D
	E
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W
	X

