
eWay Development Kit
User’s Guide

Release 5.0
SeeBeyond Proprietary and Confidential

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

SeeBeyond, e*Gate, e*Way, and e*Xchange are the registered trademarks of SeeBeyond Technology Corporation in the United States
and/or select foreign countries. The SeeBeyond logo, SeeBeyond Integrated Composite Application Network Suite, eGate, eWay,
eInsight, eVision, eXchange, eView, eIndex, eTL, ePortal, eBAM, and e*Insight are trademarks of SeeBeyond Technology
Corporation. The absence of a trademark from this list does not constitute a waiver of SeeBeyond Technology Corporation’s
intellectual property rights concerning that trademark. This document may contain references to other company, brand, and product
names. These company, brand, and product names are used herein for identification purposes only and may be the trademarks of
their respective owners.

© 2004 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20041223133955.
eWay Development Kit User’s Guide 2 SeeBeyond Proprietary and Confidential

Contents
Contents

Chapter 1

Introducing the eWay Development Kit 7
About the eWay Development Kit 7

About this Document 8
What’s in This Document 8
Scope 8
Intended Audience 8
Document Conventions 9

Related Documents 9

SeeBeyond Web Site 10

SeeBeyond Documentation Feedback 10

Chapter 2

Installing the eWay Development Kit 11
System Requirements 11

Supported Operating Systems 11
Supported ICAN Versions 12

Installing the eDK 12
Directories Created After Installation 13
Additional Files Created During Installation 13
Installing Earlier Versions of the JDK/SDK 14

Installing ESR 78987 14

Installing eDK Sample Projects and Javadocs 14

Chapter 3

Using the eWay Development Kit 15
Overview 15

About the eWay Development Kit Build Tool 16

About the eWay Implementation Environment 17
About the Resource Adapter Framework 17
eWay Development Kit User’s Guide 3 SeeBeyond Proprietary and Confidential

Contents
Setting up Your Implementation Environment 17

Steps Required to Build an eWay 18
Step 1: Acquire an eDK eWay License File 18
Licensing Process 19
Request e-mail Format Conventions 19

Requesting a New License 19
Steps to Request an eDK eWay License 20
Requesting a Current License to be ReIssued 21
Steps to Reissue an eDK eWay License 22

Step 2: Set the Environment Variables 23
Step 3: Start the eWay Development Kit Build Tool 23
Step 4: Create and Specify the New eWay 24

Name and Description 25
Icons 25
Change History 26
Imported Files 26

Step 5: Enter the Required eWay Client Interfaces 26
Defining Your eWay’s Java Interface 26
Defining Your eWay’s BPEL Interface 27
Creating Methods (JCE) 28
Creating User Defined Class Files 29
Creating Attributes 30
Creating Operations 30
BPEL Operations in ICAN 30

Step 6: Define the eWay Configuration Template 32
Connectivity Map Configuration Sections and Properties 36
External System Sections and Properties 37
Deleting Sections and Properties 37
Disabling and Enabling Sections 37

Step 7: Run the Code Generator 38
Saving Your Work 39
Opening Previously Saved Work 39
Choosing a Working Directory 40

Step 8: Implement and Build the Generated Shell Code 40
Step 9: Build the .sar File 40

eWay Folders Created After Shell Code Generation 41
connectors Folder 41
eways Folder 43

eWay Code Created After Generation 44

eWay Implementation Details 46

eWay Components 47

Suggested Conventions for Writing JNI Code 47

Extending Third-Party Resource Adapters 48
Providing the AppConn Client Interface 49
Sample MCF Subclass Implementation 51
eWay Development Kit User’s Guide 4 SeeBeyond Proprietary and Confidential

Contents
Chapter 4

eDK eWay Concepts and Best Practices 55
Implementing Connection Logic to the External System 55

Implementing XA 56

Establishing Connections to the EIS 57
Automatic Connection Establishment Mode 57
Dynamic Connection 57

Overriding Configurations at Design-time 59

Specifying Configuration Properties 59
Connectivity Map eWay Properties 60
External System Properties 61

Wrapping Third-Party .jar Files 62

Source Control 62

Maintaining and Persisting State in Java Collaborations 63

Generating Javadocs 63

Chapter 5

Sample eDK eWay Projects 65
Importing eDK Samples 65

Importing a Sample into the eWay Development Kit Build Tool 65

Creating the edkfile Sample in the Build Tool 66
Overview 66
Step 1: Acquire an eDK eWay License File 67
Step 2: Set the Environment Variables 67
Step 3: Start the eWay Development Kit Build Tool 67
Step 4: Create and Specify the New eWay 68
Step 5: Enter the Required eWay Interfaces 69
Step 6: Define the eWay Configuration Template 71

inbound-configuration Properties 71
outbound-configuration Properties 73

Step 7: Run the Code Generator 75
Step 8: Implement the eWay 77
Step 9: Build the .sar File 84
Step 10: Upload the New eWay to the ICAN Repository 84
Step 11: Run the Enterprise Designer Update Center 85
Step 12: Creating, Building, and Deploying Sample Projects 85

Chapter 6

Using eDK-Based eWay Java Methods 86
eWay Development Kit Javadoc 86

eDK-Based eWay Classes and Methods 86
eWay Development Kit User’s Guide 5 SeeBeyond Proprietary and Confidential

Contents
eDK-Based eWay Classes 86

Chapter 7

Adding and Sending Custom Alert Messages 89
eDK Alerts 89

Adding eWay Specific Alert Message Codes 90
Java Code Changes 90
What to Pass for alertMsgCode and alertMsgCodeArgs 90
Installing Alert Code Properties Files (install.xml changes) 91

Sending eWay Specific Alerts 91

Chapter 8

Appendix A 93
J2EE Connector Architecture Overview 93

RA Framework Class Diagram 94

RA Framework Sequence Diagram 96

Client Application Sequence Diagram 97

Application Connection Interfaces 98

eWay Connection Interfaces 99

Chapter 9

Appendix B 101
Generating eDK Code by Command Line 101

eDK Definition File 102
eWay Development Kit User’s Guide 6 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.1
Introducing the eWay Development Kit About the eWay Development Kit
Chapter 1

Introducing the eWay Development Kit

Welcome to the eWay Development Kit User’s Guide. This document includes information
about installing, configuring, and using the eWay Development Kit, also referred to as
the eDK throughout this guide.

What’s in this Chapter

About the eWay Development Kit on page 7

About this Document on page 8

Related Documents on page 9

SeeBeyond Web Site on page 10

SeeBeyond Documentation Feedback on page 10

1.1 About the eWay Development Kit
The eWay Development Kit is a development tool for creating inbound and outbound
eWay components that conform to standard JCA (J2EE Connector Architecture) 1.5.
The eDK includes a build tool (GUI application) which allows users to define the eWay
interfaces as OTDs (Object Type Definitions) that are exposed in Java Collaboration
Definitions and BPEL Business Processes, and an implementation environment for
implementing and building the interfaces.

The eDK is designed to alleviate many of the tedious development steps required to
build eWays by automating the standard eWay build process. eWays created with the
eDK are built, packaged, installed, and executed the same way as standard SeeBeyond
eWays.

Using the eDK does not require any specialized knowledge of ICAN APIs to tie the
eWay component into the ICAN suite. The only requirement is an understanding how
to connect and exchange data with the external system.
eWay Development Kit User’s Guide 7 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.2
Introducing the eWay Development Kit About this Document
1.2 About this Document
This guide explains how to install, configure, and operate the SeeBeyond® Integrated
Composite Application Network Suite™ (ICAN) eWay Development Kit, also referred
to as the eWay Development Kit throughout this guide.

1.2.1 What’s in This Document
This document includes the following chapters:

Chapter 1 “Introducing the eWay Development Kit” provides an overview of the
eWay Development Kit.

Chapter 2 “Installing the eWay Development Kit” provides installation
instructions, including a list of supported operating systems, system requirements,
and JNI protocol considerations.

Chapter 3 “Using the eWay Development Kit” describes the features and
functionality of the eWay Development Kit Build Tool and implementation
environment.

Chapter 4 “eDK eWay Concepts and Best Practices” provides suggestions and
tips on creating eDK based eWays.

Chapter 5 “Sample eDK eWay Projects” describes how to import and use the
sample projects included in the eWay Development Kit.

Chapter 6 “Using eDK-Based eWay Java Methods” describes the Class files that
include the eWay Java methods.

Chapter 7 “Adding and Sending Custom Alert Messages” describes how to add
and send custom alert messages using the Resource Adapter framework.

Chapter 8 “Appendix A” contains additional information on the J2EE Connector
Architecture and RA Framework.

Chapter 9 “Appendix B” contains additional information on Generating eDK code
by command line, and manually creating an eDK definition file.

1.2.2 Scope
This guide describes how to install and use the eWay Development Kit for the purpose
of developing new eWays that function within the ICAN suite of products. Additional
detailed information, such as the steps required to create eDK based eWay projects in
the ICAN Enterprise Designer are not included in this guide; however, sample eWays
are included in the eWaysDevelopmentKit.sar file to explain how an implementation
of an eDK based eWay might occur.

1.2.3 Intended Audience
This guide is intended for experienced developers who have a Java programming
background. Some knowledge of J2EE standards and methodology, and knowlege of
eWay Development Kit User’s Guide 8 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.3
Introducing the eWay Development Kit Related Documents
JCA standards are also helpful. Users should also be familiar with the existing ICAN
products and the role that eWays play within that product line, the Windows-based
operating systems that the eWay Development Kit Build Tool is installed on, and
operating systems supported by the completed eDK eWays.

1.2.4 Document Conventions
The following conventions are observed throughout this document.

1.3 Related Documents
The following SeeBeyond documents provide additional information about the ICAN
product suite:

eGate Integrator User’s Guide

eGate Integrator Tutorial

Alert Agent User’s Guide

Table 1 Document Conventions

Text Convention Example

Names of buttons, files,
icons, parameters, variables,
methods, menus, and
objects

Bold text Click OK to save and close.
From the File menu, select Exit.
Select the logicalhost.exe file.
Enter the timeout value.
Use the getClassName() method.
Configure the Inbound File eWay.

Command line arguments,
code samples

Fixed font. Variables are
shown in bold italic.

bootstrap -p password

Hypertext links Blue text See “Document Conventions” on
page 9

Hypertext links for Web
addresses (URLs) or email
addresses

Blue underlined text http://www.seebeyond.com
docfeedback@seebeyond.com
eWay Development Kit User’s Guide 9 SeeBeyond Proprietary and Confidential

http://www.seebeyond.com
mailto:docfeedback@seebeyond.com

Chapter 1 Section 1.4
Introducing the eWay Development Kit SeeBeyond Web Site
1.4 SeeBeyond Web Site
The SeeBeyond Web site is your best source for up-to-the-minute product news and
technical support information. The site’s URL is:

http://www.seebeyond.com

1.5 SeeBeyond Documentation Feedback
We appreciate your feedback. Please send any comments or suggestions regarding this
document to:

docfeedback@seebeyond.com
eWay Development Kit User’s Guide 10 SeeBeyond Proprietary and Confidential

http://www.seebeyond.com
mailto:docfeedback@seebeyond.com

Chapter 2 Section 2.1
Installing the eWay Development Kit System Requirements
Chapter 2

Installing the eWay Development Kit

This chapter describes how to install the eWay Development Kit.

What’s in this Chapter

System Requirements on page 11

Supported Operating Systems on page 11

Installing the eDK on page 12

Installing ESR 78987 on page 14

Installing eDK Sample Projects and Javadocs on page 14

2.1 System Requirements
To use the eWay Development Kit, you need:

eGate Repository.

TCP/IP network connection.

2.2 Supported Operating Systems
This section lists the system requirements for each platform. The Readme.txt file
(located in the root directory of the Repository CD-ROM) contains the most up-to-date
operating system requirements for the supported platforms. The requirements listed in
the following sections are in addition to the operating system requirements.

The eWay Development Kit is designed to run on a the following operating systems.

Windows 2000, Windows XP, and Windows Server 2003

Note: A minimum monitor resolution of 1024 x 768 is required to run the eWay
Development Kit Build Tool.
eWay Development Kit User’s Guide 11 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.3
Installing the eWay Development Kit Installing the eDK
2.2.1 Supported ICAN Versions
eWays developed with the eDK work with eGate version 5.0.5. If you want an eWay
created with the eDK to work on eGate 5.0.4, then you must install ESR 74717 on an
eGate 5.0.4 Repository.

eWays created in the eDK run on the following operating systems that are supported
by eGate Integrator, including:

Windows 2000, Windows XP, and Windows Server 2003

HP Tru64 V5.1A and V5.1B with required patches

HP-UX 11.0, 11i (PA-RISC), and 11i v2.0 (11.23) with required patches and
parameter changes

IBM AIX 5.1L and 5.2 with required Maintenance level patches

Red Hat Linux Advanced Server 2.1 (Intel x86)

Red Hat Linux 8 (Intel x86)

Sun Solaris 8 and 9 with required patches

SuSE Linux Enterprise Server 8 (Intel x86)

Refer to the SeeBeyond ICAN Suite Installation Guide for additional platform
requirements when running HP-UX or IBM AIX.

2.3 Installing the eDK
During the eDK installation process, the Enterprise Manager, a web-based application,
is used to select and upload the eWayDevelopmentKit.sar file from the installation
CD-ROM to the Repository.

The steps required to install the eDK include:

1 Create a new eDK root directory folder (for example: C:\eDK).

2 Login to Enterprise Manager and click the Admin tab.

3 Click Browse and open the ProductsManifest.xml file from the installation
CD-ROM. The eWay Development Kit appears as an uploadable product.

4 Click Browse and upload the license.sar file.

5 Click Browse and upload the eWayDevelopmentKit.sar file.

6 Click the Downloads tab and select the eWay Development Kit.

7 Click Open from the File Download window and extract the edk.zip file to the eDK
root directory folder.
eWay Development Kit User’s Guide 12 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.3
Installing the eWay Development Kit Installing the eDK
2.3.1 Directories Created After Installation
Several directories are extracted from the edk.zip file, including a subdirectory for
development tools and a subdirectory containing code templates.

Main directories created after extraction include:

BUILD – contains all the API .jar files required to build an eWay.

build-tools – contains all the build tools (Apache Ant , JDK 1.4™, and Netbeans™)
that are necessary to build an eWay.

connectors – contains JCA connector code, Apache Ant build scripts for building
JCA code, and required third-party .jar files.

eways – contains all necessary third-party .jar files, and development tools to run
the eDK, as well as a folder containing completed eDK samples.

Figure 1 Directories Created After Installation

2.3.2 Additional Files Created During Installation
The following files are also created during installation of the eWay Development Kit
Build Tool.

env.bat – used to set up your build environment.

stc.properties – contains global property settings used in Apache Ant build scripts.
eWay Development Kit User’s Guide 13 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.4
Installing the eWay Development Kit Installing ESR 78987
2.3.3 Installing Earlier Versions of the JDK/SDK
Installation of previous JDK/SDK versions may be required to build your Resource
Adapter. As an example, some external APIs or earlier versions of the Logical Host only
support JDK/SDK version 1.3.1.

You can download previous versions of the JDK/SDK from:

http://java.sun.com/downloads/index.html

Note: You must copy the downloaded previous version of the JDK/SDK to the
build-tools folder.

2.4 Installing ESR 78987
ESR 78987 must be installed in the ICAN Repository to permit Enterprise Manager to
upload eWays created with the eWay Development Kit.

This section provides an overview of the steps required to install this ESR, and
references sections of the SeeBeyond ICAN Suite Installation Guide for detailed
procedures.

The SeeBeyond ICAN Suite Installation Guide (ICAN_Install_Guide.pdf) is located on the
SeeBeyond ICAN Suite Repository Disc 1 and Repository Disc 2.

To install this ESR:

1 From the Admin tab of Enterprise Manager, extract the ESR0078987-dist.zip file to a
temporary directory as described in “Extracting ESR Distribution .zip Files.”

2 Install the Repository .zip file ESR78987.zip as described in “Installing Repository
ESRs.”

2.5 Installing eDK Sample Projects and Javadocs
The following steps are required to install the eDK sample projects and Javadocs.

1 From the Documentation tab of the Enterprise Manager, click eGate eWay to view
the list of files available for this product.

2 Click Download Sample to open the eWayDevelopmentKitDocs.zip file.

3 Use WinZip to extract the sample files to the desired location.

4 Click Download Javadocs to open the eWay_Development_Kit_Javadoc.zip file.

5 Use WinZip to extract the Javadocs files to the desired location.

After you complete the process of installing the Repository, Logical Host, and
Enterprise Designer (as described in the SeeBeyond ICAN Suite Installation Guide),
refer to the eGate Integrator Tutorial for instructions on importing the sample project
into your repository using the Enterprise Designer.
eWay Development Kit User’s Guide 14 SeeBeyond Proprietary and Confidential

http://java.sun.com/downloads/index.html

Chapter 3 Section 3.1
Using the eWay Development Kit Overview
Chapter 3

Using the eWay Development Kit

This chapter describes how to use the eWay Development Kit.

What’s in this Chapter

Overview on page 15

About the eWay Development Kit Build Tool on page 16

About the eWay Implementation Environment on page 17

Steps Required to Build an eWay on page 18

eWay Folders Created After Shell Code Generation on page 41

eWay Implementation Details on page 46

eWay Components on page 47

Suggested Conventions for Writing JNI Code on page 47

Extending Third-Party Resource Adapters on page 48

3.1 Overview
The eWay Development Kit is comprised of two main components that work together
to create an eWay .sar file that can be plugged into ICAN 5.0.x for external system
connectivity. These components include:

eWay Development Kit Build Tool – a GUI based tool used to generate eWay shell
code.

eWay Implementation Environment – a development environment that is required
to implement eWay interfaces generated by the eWay Development Kit Build Tool.

Figure 2 illustrates the relationship between the eWay Development Kit Build Tool and
the eWay implementation environment.
eWay Development Kit User’s Guide 15 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
Using the eWay Development Kit About the eWay Development Kit Build Tool
Figure 2 eWay Development Kit Component Overview

3.2 About the eWay Development Kit Build Tool
The eWay Development Kit Build Tool is a stand-alone code generator that is used to
define the eWay components, generate the Shell Code based on the eWay definition,
and provide an implementation environment to build an eWay.

The shell code created with the build tool includes the eWay name and description;
methods, attributes, and user defined classes or data containers that make up the
eWay’s static Object Type Definitions (OTDs); and the attributes that describe the
Environment and eWay configuration properties.

You can perform eDK code generation one of two ways:

The GUI based tool – see “Steps Required to Build an eWay” on page 18.

By command line – see “Generating eDK Code by Command Line” on page 101.

The result of shell code generation is the creation of the “connectors” and “eways”
folders where eWay implementation is performed. See “Step 8: Implement the eWay”
on page 77 for more information.

eWay Implementation
Environment

Implementing
Interfaces

Building the eWay

Generate .sar
File

eWay Development
Kit Build Tool

Use the eWay Development Kit Build Tool
to generate eWay shell code.

Use the eWay Implementation Environment
to implement the eWay interfaces.

Generate a .sar file for the new eWay.
eWay Development Kit User’s Guide 16 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Using the eWay Development Kit About the eWay Implementation Environment
3.3 About the eWay Implementation Environment
The eWay implementation environment includes a directory structure and source files,
eGate APIs, and third-party .jar files that are used for implementing the interfaces
defined in the generated shell code. Implementation also includes building the code
with the Apache Ant build tool, and generating an eWay .sar file.

The shell code generated by the build tool creates the necessary Resource Adapter
components, (see “eWay Code Created After Generation” on page 44) which allows
the eWay to run in the ICAN suite.

3.3.1 About the Resource Adapter Framework
SeeBeyond developed a Resource Adapter (RA) framework for developing resource
adapters based on the J2EE Connector Architecture. The framework is a set of interfaces
and abstract classes which simplify the development of resource adapters. The
framework also facilitates the development of the resource adapter client interface
which is based on the SeeBeyond AppConn interface used by ICAN's Collaboration
framework.

The eDK generates J2EE Connector code based on the SeeBeyond Resource Adapter
(RA) framework. The framework was designed so that development is focused on the
definition and implementation of the client interface to be exposed by the eWay.

For more information on the framework interfaces, see “Application Connection
Interfaces” on page 98.

3.3.2 Setting up Your Implementation Environment
An implementation environment is required to compile Java source files and to build
an eWay .sar file.

Run the env.bat file located at the root level of the extracted eDK folder to set up the
implementation environment.
eWay Development Kit User’s Guide 17 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Using the eWay Development Kit Steps Required to Build an eWay
3.4 Steps Required to Build an eWay
The following steps outline a typical user experience of using the eDK to build an
eDK-based eWay for implementation in an ICAN project. Steps one through six are
considered iterative eWay development procedures.

Steps required to build an eWay using the eWay Development Kit include:

1 Acquire an eDK eWay license file.

2 Set the environment variables.

3 Start the eWay Development Kit Build Tool.

4 Create and specify details of the new eWay – such as the eWay Name, Description,
Version, and so forth.

5 Enter the required eWay Interfaces (including any return types, parameter names,
parameter types, exceptions thrown, and so forth.

6 Define the eWay configuration template.

7 Run the code generator to create the eWay shell code (using either the eWay
Development Kit Build Tool or by command line).

8 Implement the generated shell code and run Apache Ant to build the .rar file.

9 Run the Apache Ant build tool to build the eWay .sar file.

After running the Apache Ant build tool, upload the newly created eWay .sar file to the
ICAN Repository using Enterprise Manager and run the Enterprise Designer Update
Center. You can now create, build, and deploy a new Project using the new eDK based
eWay.

3.4.1 Step 1: Acquire an eDK eWay License File
A valid license file is required to upload your new eWay into the ICAN Repository
using Enterprise Manger.

The ICAN licensing module permits the creation and distribution of non-standard
eWays into the ICAN suite. SeeBeyond has set-up a centralized registration authority to
ensure that newly created eWays do not contain names that conflict with existing
products stored in the Repository. This guarantees the uniqueness of each registered
and licensed eWay name.

Having a unique name means that any registered and licensed eWay can be safely
installed into any ICAN Repository without future conflict. The granting of eWay
names is on a “first come, first served” basis. Obtaining the eWay name and license
should always be the first step when building an eWay
eWay Development Kit User’s Guide 18 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Using the eWay Development Kit Steps Required to Build an eWay
3.4.2 Licensing Process
The ICAN licensing module only allows one license (i.e. license.sar) to be active at a
time; therefore to test or run a newly created eWay requires an updated license.sar.
This is a once only process and subsequent requests for new eWay licenses will include
any previously issued licenses. Note that although the license.sar file will be updated,
the ProductsManifest.xml will not. You will still be able to upload custom eWays by
using the browse button of any listed product to select the appropriate custom eWay
.sar file, and selecting Upload.

The entire licensing process is conducted over e-mail. The user will initiate the process
by sending a completed eWay license request e-mail to:

Licenserequest@SeeBeyond.com (detailed instructions in readme).

Only one e-mail request is allowed per eWay. When a new e-mail is received, the name
is checked to ensure it is unique. If not, a reply is sent back explaining the situation.
Once a unique name is found, then the fields in the body are validated and verified.
Any incorrect field contents or missing fields result in the request being rejected. When
a valid request is received, a license is generated for the eWay name submitted and a
new license.sar is then sent to the requestor.

Note: The readme.txt has more specific details on the exact process and the format of the
e-mail messages used to request these licenses.

3.4.3 Request e-mail Format Conventions
The body of each e-mail request must follow strict formatting rules. There can only be
one field per line and each field must consist of a key that is followed by its value, and a
format and help section.

The general format of each field is:

<key>=<value> (<field_data_format_name>: <any_addtional_qualifers>
[help=<directions to help fill out the field>])

An completed example is:

eWay.name=myeWay (string: free text [help=name of the eway])

Requesting a New License

Use the following checklist when requesting a new license:

Verify the e-mail looks exactly as specified in the readme, (i.e. subject, body, and so
on).

Make sure all fields are filled out.

Make sure all fields have the right data type, or has one of the enumerations.

Make sure the customer ID is valid (check with Support if there are any doubts),
and matches the name of the organization requesting the license.
eWay Development Kit User’s Guide 19 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Using the eWay Development Kit Steps Required to Build an eWay
If the requested name is already registered (i.e. a duplicate), then you could either try
another requesting another name, or if you really would like that name a suggestion
would be to prefix it with the name or abbreviation of the organization that will use it.

Steps to Request an eDK eWay License

To obtain a new eDK based eWay license:

1 Create a new e-mail with the header:

to:Licenserequest@Seeeyond.com

and with the subject:

eWay license request

2 For the body of the e-mail, cut and paste the following set of fields. Note that the
format and help section is optional. Also, be sure each field below as a single line in
your e-mail.

eWay.name= (string: free text [help=name of the eway])

eWay.target.OS.nameversion= (enumeration: Solaris 8 or 9,AIX 5.1 or
5.2, HP-UX 11.0, 11i (PA-RISC) or (11.23), Tru64 V5.1A, RedHat 8 or
AS2.1, SUSE 8, Windows 2000, XP, or Server 2003, HP NonStop G06.22,
ZOS 1.3 or 1.4 or ALL or subset [help=name or list of the OS the eway
is to run on])

external.system.vendor= (string: free text [help=name of the vendor
who made the external system])

external.system.name= (string: free text [help=name of the external
system or technology e.g. a technology might be TCP/IP or CORBA])

external.system.version= (string: free text [help=version of the
external system])

external.system.OS= (string: free text [help=the OS name of where the
external system runs])

directionality= (emuneration: outbound, inbound, bi-directional
[help=in relation to the eWay, the way the information flows in the
interface])

description= (string: free text[help=a brief description of the
functionality and interface mechanisms used by the eWay])
customer.ID.number= (string: free text [help=customer number from
ONYX])

requestor.organization= (string: free text [help=name of organization
that is requesting the eWay license, should be same as in ONYX])

requestor.name.first= (string: free text [help=first name of
individual requesting the new eway license])

requestor.name.last= (string: free text [help=last name of individual
requesting the new eway license])

requestor.email= (string: free text [help=email address of individual
requesting the new eway license])

requestor.phone= (string: free text [help=phone number of individual
requesting the new eway license])
eWay Development Kit User’s Guide 20 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Using the eWay Development Kit Steps Required to Build an eWay
The following is an example of a completed eDK eWay license request:

eWay.name=myTCPIPeWay (string: free text [help=name of the eway])
eWay.target.OS.nameversion=Solaris 9,AIX 5.2, RedHat AS2.1
(enumeration: Solaris 8 or 9,AIX 5.1 or 5.2, HP-UX 11.0, 11i (PA-RISC)
or (11.23), Tru64 V5.1A, RedHat 8 or AS2.1, SUSE 8, Windows 2000, XP,
or Server 2003, HP NonStop G06.22, ZOS 1.3 or 1.4 or ALL or subset
[help=name or list of the OS the eway is to run on])
external.system.vendor=N/A (string: free text [help=name of the
vendor who made the external system])
external.system.name=TCP/IP (string: free text [help=name of the
external system or technology e.g. a technology might be TCP/IP or
CORBA])
external.system.version=N/A (string: free text [help=version of the
external system])
external.system.OS=Any (string: free text [help=the OS name of where
the external system runs])
directionality=bi-directional (enumeration: outbound, inbound,
bi-directional [help=in relation to the eWay, the way the information
flows in the interface])
description=This is a generic TCP/IP eWay that handles both inbound
and outbound connections. (string: free text[help=a brief description
of the functionality and interface mechanisms used by the eWay])
customer.ID.number=999999 (string: free text [help=customer number
from ONYX])
requestor.organization=The Company (string: free text [help=name of
organization that is requesting the eWay license, should be same as in
ONYX])
requestor.name.first=Joe (string: free text [help=first name of
individual requesting the new eway license])
requestor.name.last=Smith (string: free text [help=last name of
individual requesting the new eway license])
requestor.email=jsmith@thecompany.com (string: free text [help=email
address of individual requesting the new eway license])
requestor.phone=222-222-3456 (string: free text [help=phone number of
individual requesting the new eway license])

Requesting a Current License to be ReIssued

Use the following checklist when requesting a re-issue of a license:

Verify that the e-mail looks exactly as specified in the readme i.e. subject, body etc.

Make sure all fields are filled out

Make sure that all fields have the right data type or has one of the enumerations

Make sure that the date of the license is the same as the one used in the response to
the request for a new license (it is possible to request a previous version of the
license as long as the date is correct), or that if the latest license is requested that the
date supplied for the dated issued field is the same date as the date the e-mail was
generated.
eWay Development Kit User’s Guide 21 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Using the eWay Development Kit Steps Required to Build an eWay
Steps to Reissue an eDK eWay License

To reissue an eDK based eWay license:

1 Create a new e-mail with the header:

to:Licenserequest@Seeeyond.com

and with the subject:

Reissue license

2 For the body of the e-mail, cut and paste the following set of fields. Note that the
format and help section is optional. Also, be sure each field below as a single line in
your e-mail.

eWay.name= (string: free text [help=name of the eway])

customer.ID.number= (string: free text [help=customer number from
ONYX])

requestor.organization= (string: free text [help=name of organization
that is requesting the eWay license, should be same as in ONYX])

requestor.name.first= (string: free text [help=first name of
individual requesting the new eway license])

requestor.name.last= (string: free text [help=last name of individual
requesting the new eway license])

requestor.email= (string: free text [help=email address of individual
requesting the new eway license])

requestor.phone= (string: free text [help=phone number of individual
requesting the new eway license])

reissue.reason= (string: free text [help=the reason why a re-issue is
being requested])

license.issue.date= (date: yyyy/mm/dd [help=the date the license that
is being requested was originally issued on or use same date as the
e-mail request to specify the latest license])

The following is an example of a completed eDK eWay license reissue request:

eWay.name=myTCPIPeWay (string: free text [help=name of the eway])
customer.ID.number=999999 (string: free text [help=customer number
from ONYX])
requestor.organization=The Company (string: free text [help=name of
organization that is requesting the eWay license, should be same as in
ONYX])
requestor.name.first=Joe (string: free text [help=first name of
individual requesting the new eway license])
requestor.name.last=Smith (string: free text [help=last name of
individual requesting the new eway license])
requestor.email=jsmith@thecompany.com (string: free text [help=email
address of individual requesting the new eway license])
requestor.phone=222-222-3456 (string: free text [help=phone number of
individual requesting the new eway license])
reissue.reason=can't find file (string: free text [help=the reason
why a re-issue is being requested])
license.issue.date=2000/01/01 (date: yyyy/mm/dd [help=the date the
license that is being requested was originally issued on or use same
date as the e-mail request to specify the latest license])
eWay Development Kit User’s Guide 22 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Using the eWay Development Kit Steps Required to Build an eWay
3.4.4 Step 2: Set the Environment Variables
An implementation environment is required to compile Java source files and to build
an eWay .sar file.

To set the environment variables for the implementation environment:

1 Open a new command line window.

2 Locate the root directory of the extracted eDK folder (e.g. C:\eDK), and run the
env.bat file.

3.4.5 Step 3: Start the eWay Development Kit Build Tool
To start the eWay Development Kit build tool:

1 From the same command window change directories to:

<STC ROOT>\eways\edk\devtools

2 Run the following command:

ant runedkgui

The eWay Development Kit Build Tool appears.

Figure 3 eWay Development Kit Build Tool
eWay Development Kit User’s Guide 23 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Using the eWay Development Kit Steps Required to Build an eWay
3.4.6 Step 4: Create and Specify the New eWay
Perform the following steps to create a new eWay:

1 From the menu bar, select File then select New eWay, or click the New eWay icon.
An empty eWay template appears in the build tool window, see Figure 4.

2 Set up the new eWay by entering or setting the following features on the General
tab on the eWay Development Kit Build Tool.

Name and Description

Icons

Change History

Imported Files

Figure 4 illustrates the features found on the General tab of the eWay Development Kit
Build Tool.

Figure 4 eWay Development Kit Build Tool - General Tab
eWay Development Kit User’s Guide 24 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Using the eWay Development Kit Steps Required to Build an eWay
Name and Description

The Name and Description section contains the following fields:

eWay Name – enter a name that identifies the new eWay name. This field is
required to generate the eWay.

External Application Name – enter a name that identifies the external applicaton.
The name you enter appears in Enterprise Designer. This field is required to
generate the eWay.

Description – enter a description of the new eWay. The description can be used by
the developer to enter notes about the eWay.

Naming Restrictions:

The following standard Java Identifier naming conventions apply to the eWay Name
and External Application Name:

Alphabetic letters – names should only contain alphabetic characters, such as
“AA” or “aa”, or the underscore.

Digit – names can only contain numbers between zero and nine (0 - 9). Also, the
first position of the name should not contain a digit.

Note: Using an underscore in the External Application Name causes the eWay component
to not appear on Enterprise Monitor Logging Control.

Icons

Image Appearance – alters the appearance of eWay icons on the Connectivity Map,
Explorer Tree, or the Receive or Invoke web service activities. It is required to have
a valid icon file location.

To change an eWay icon:

A Click Change, and browse to the location of a suitable file. File types can be
either .jpeg, .tif, .gif, .bmp, .jfif, .png, .jpg, .tiff, .jpe, or .dip.

B Click Open. The new icon now appears in the Image Appearance box.

The maximum size for icons used are:

Table 2 Maximum Icon Size Accepted

Image Appearance Icons Size in Pixels Appears On

Connectivity Map 32 x 32 Enterprise Designer
Connectivity Map

Explorer Tree 20 x 20 Project Explorer, the
Connectivity Map, and the
External Application

Receive Activity 32 x 32 eInsight Canvas

Invoke Activity 32 x 32 eInsight Canvas
eWay Development Kit User’s Guide 25 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Using the eWay Development Kit Steps Required to Build an eWay
Change History

Version – enter a version number to identify the latest version number of the eWay.
The version number appears on the ADMIN tab of the Enterprise Manager, and in
the Update Center Wizard of the SeeBeyond Enterprise Designer. This field is
required to generate the eWay.

Date Created – identifies the eWay creation date. This field is read-only, and is
automatically created by the build tool.

Last Modified – identifies the date and time of the last saved eWay modification.
This is a read-only field that is automatically created by the build.

Comments – is used to enter comments each time you create or update the eWay.

Imported Files

Third-Party Files – is used to import all custom third-party .jar files required for
implementation of eWay shell code generated by the eDK.

To import a file:

A Click Add, and browse to the location of the .jar file.

B Click Open. The name and location of the executable .jar file appears in the
textbox.

To remove a file, select a third-party file from the Third-Party text box and click
Remove.

Note: Code generation copies these .jar files to the implementation environment.

3.4.7 Step 5: Enter the Required eWay Client Interfaces
In the eWay Development Kit, the Client Interfaces represent the methods, user defined
operations, and attributes exposed to the eWay user. The Client Interface also
represents the eWay’s OTD.

Client interfaces can contain both inbound and outbound JCE (J2EE Connector
Architecture) and BPEL (Business Process Execution Language) components.

Defining Your eWay’s Java Interface

Defining a eWay’s Java Client Interface, involves defining the Java methods and
attributes. The getter and setter methods are automatically added when a attribute is
defined. These attributes can be regular JDK Classes or User-Defined classes.
User-Defined classes created with the eDK Build Tool correspond to actual Java classes
exposed in the JCE.

Table 3 illustrates how JCE Interfaces created in the eDK Build Tool appear in the
Enterprise Designer.
eWay Development Kit User’s Guide 26 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Using the eWay Development Kit Steps Required to Build an eWay
Defining Your eWay’s BPEL Interface

Unlike the JCE where the interface defined in the eDK Build Tool correspond to actual
Java classes, the BPEL Interface is primarily used to create the WSDL (Web Services
Description Language) element. The Java code that the eWay Development Kit
generates is a shell for implementing the service defined in the WSDL. This generated
code includes methods corresponding to operations, and wrapper classes for
user-defined data containers.

Table 4 illustrates how BPEL Interfaces created in the eDK Build Tool appear in the
Enterprise Designer.

Perform the following steps to create eWay Interfaces:

1 Select the Client Interface tab on the eWay Development Kit Build Tool. The Client
Interface window appears.

The Client Interface tab in Figure 5 includes an Interface Explorer for adding
placeholders for new Java and BPEL based objects.

Table 3 Java Interface Comparison

Client Interfaces Appearing in the
eWay Development Kit Build Tool:

How these Client Interfaces Appear in
Enterprise Designer:

Methods (JCE only) OTD Methods

User Defined (JCE Java Classes) As part of the OTD

Attribute (JCE only) OTD getters and setters

Table 4 BPEL interface Comparison

Client Interfaces Appearing in the
eWay Development Kit Build Tool:

How these Client Interfaces Appear in
Enterprise Designer:

User Defined (BPEL data containers) Appear in the Business Rule Editor

Operations (BPEL only) Appear in the Project Explorer and the
Business Rule Designer.
eWay Development Kit User’s Guide 27 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Using the eWay Development Kit Steps Required to Build an eWay
Figure 5 eWay Development Kit Build Tool - Client Interface Tab

2 From the Interface Explorer, click New and select one of the following:

Method – to create inbound or outbound methods (JCE only).

User Defined – to create inbound or outbound class types (data containers in
BPEL)

Attribute – to create inbound or outbound attributes (JCE only).

Operation – to create inbound or outbound operations (BPEL only).

3 Enter the details for the selected Java or BPEL interface.

Naming Restrictions:

The following standard Java Identifier naming conventions apply to Method,
Operation, and Attribute names:

Alphabetic letters – names should only contain alphabetic characters, such as
“AA” or “aa”, or the underscore.

Digit – the first position of the name should not contain a digit.

Creating Methods (JCE)

You can use the eDK Build Tool to create inbound and outbound JCE methods that can
take parameters, return a result, and throw exceptions. Methods can also return a User
Defined Type, which can contain a primitive or complex data type or even another User
Defined Type. Any method created is exposed in Java Collaboration Definitions.
eWay Development Kit User’s Guide 28 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Using the eWay Development Kit Steps Required to Build an eWay
To create a new method:

1 From the Java Interface, enter a new method name in the Method Name field.

2 Select a return type for the method from the Return Type drop-down box.

3 Select the Collection Type checkbox to specify that the type of object returned is a
collection.

4 Click Add to create a new parameter in the Parameter List.

5 Enter or select an exception to throw in the Throw Exception combo-box.

6 Enter a description for the exception in the Description textbox.

Creating User Defined Class Files

Classes have attributes (data) and operations (behaviors). Class attributes are
implemented in Java programs as fields, while class behaviors are implemented as
methods.

You can use the eWay Development Kit Build Tool to define new inbound or outbound
classes. You can also choose to use specific classes by importing third-party .jar files.
Only one class file can be selected at a time for each User Defined class.

BPEL Versus JCE User Defined Class Files

BPEL user-defined classes are referred to as “user defined data containers”. A data
container represents the WSDL element “Type” that is generated for the eWay's BPEL
interface. BPEL user-defined classes are data containers only; they are bean classes that
only contain setter or getter methods for attributes. The internal implementation may
contain additional private methods or attributes but what is seen by the eWay user is
only what is described in the WSDL. For additional information on WSDL files and
BPEL, see “BPEL Operations in ICAN” on page 30.

For JCE, the classes defined in the eDK Build Tool can be instantiated directly in the
Java Collaboration Editor. Wrapper classes are not automatically created. You can call
any public method since they are not just data containers.

To create a new User Defined Class:

1 Enter a new name in the Name field.

To use a third-party .jar file:

2 Select the Use Third-Party JAR file checkbox.

3 Select an available .jar file from the drop-down list if you previously added one on
the General tab. If a .jar file does not appear, then select Browse from the
drop-down list and locate one.

New .jar files added to the user defined type are also added to the Imported Files
section on the General tab.

4 Click Add. The Third-Party JAR file window opens containing class files organized
by package.

5 Locate the required class file and click Select. The Class file with available attributes
appears in the Attributes List.
eWay Development Kit User’s Guide 29 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Using the eWay Development Kit Steps Required to Build an eWay
Creating Attributes

JCE Attributes are data fields that describe an object's characteristics. For example, an
attribute may be the “capacity” of the elevator class, or it may describe the state of an
object, such as the “isMoving” of the car class. Attributes have a name and a type. Data
types can be either primitive or a user defined type (such as a previously created class).

The Client Interface tab in Figure 5 includes an Interface Explorer to add placeholders
for new Java based Attributes.

To create a new Java Attribute:

1 From the Java Interface, enter a new attribute name in the Attribute Name field.

2 Select a data type for the attribute from the Type drop-down list.

3 If the attribute is a collection, select the Collection checkbox.

Creating Operations

The BPEL Interface represents the operations that make up your web service. The
operations entered into the eDK Build Tool appear are used to construct the operation
element of the WSDL. This includes the operation’s input, output, and fault message.

To create a new BPEL Operation:

1 From the BPEL Interface, enter a new Operation name in the Operation Name field.

2 Select a return type for the Operation from the Return Type drop-down list.

3 If the return type is a collection, select the Collection checkbox.

4 Click Add to create a new parameter in the Parameter List.

5 Enter or select an exception to throw in the Throw Exception combo-box.

6 Enter a description for the exception in the Description textbox.

BPEL Operations in ICAN

BPEL for web services is an xml-based language designed to enable task-sharing for a
distributed computing environment for Java developers to publish web services and
compose them into reliable and transactional business flows.

BPEL is designed to keep internal business protocols separate from cross-enterprise
protocols so that internal processes can be changed without affecting the exchange of
data from enterprise to enterprise. This means that any programmer using BPEL can
formally describe a business process in such a way that any cooperating entity can
perform one or more steps in the process the same way.

The standardization of communications protocols and message formats makes it
increasingly important to structure the way communications are described. WSDL
addresses this need by defining an XML grammar for describing network services as
collections of communication endpoints capable of exchanging messages.
eWay Development Kit User’s Guide 30 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Using the eWay Development Kit Steps Required to Build an eWay
According to a W3C note dated March 15, 2001, a WSDL document defines services as
collections of network endpoints, or ports. In WSDL, the abstract definition of
endpoints and messages is separated from their concrete network deployment or data
format bindings. This allows the reuse of abstract definitions: messages, which are
abstract descriptions of the data being exchanged, and port types which are abstract
collections of operations. The concrete protocol and data format specifications for a
particular port type constitutes a reusable binding. A port is defined by associating a
network address with a reusable binding, and a collection of ports define a service.

For additional information on WSDL see:

http://www.w3.org/TR/wsdl#_introduction

By design, BPEL operations must follow WSDL specifications:

There are four types of web service operations, or transmission primitives that an
endpoint can support:

One-way – where the endpoint receives a message.

Request-response – where endpoint receives a message, and sends a correlated
message.

Solicit-response – where the endpoint sends a message, and receives a correlated
message.

Notification – where the endpoint sends a message.

In the case when one or more BPEL operations are defined by the user in the build tool,
an WSDL definition is created with the following elements:

port – which specifies an address for a binding, thus defining a single
communication endpoint.

portType – which is a set of abstract operations. Each operation refers to an input
message and output messages.

message – which represents an abstract definition of the data being transmitted. A
message consists of logical parts, each of which is associated with a definition
within some type system.

types – which provides data type definitions used to describe the messages
exchanged.

Note that while binding and service elements used in the definition of network
services, they are not listed above since they are resolved at runtime by the ICAN’s
BPEL engine.
eWay Development Kit User’s Guide 31 SeeBeyond Proprietary and Confidential

http://www.w3.org/TR/wsdl#_introduction

Chapter 3 Section 3.4
Using the eWay Development Kit Steps Required to Build an eWay
Additional Development Notes:

BPEL operations are web service operations that should only be stateless with at
most one input, output and fault message. The corresponding Java classes, either
generated by the eDK build tool or by using a third-party class, must follow the
Java bean conventions.

BPEL operations can be either inbound or outbound (receive and invoke activities).
Inbound operations and outbound operations are included in separate portypes in
the WSDL file, with corresponding java classes generated for each port type.

Parameters that are passed into the operation must contain all the field attributes to
be displayed on the eInsight BPEL attribute mapper. This means that any BPEL
“attribute” must be defined in the User Defined data type which is input to the
operation.

3.4.8 Step 6: Define the eWay Configuration Template
The eWay Development Kit Build Tool's Config Template tab is used to create a
configuration template for an eWay. A configuration template is a hierarchical based
model—represented as an .xml file—that contains a superset of configuration
parameters defined within sections and subsections.

Configuration parameters can be set to contain a number of eWay specific properties to
be edited in either the Enterprise Designer Connectivity Map, or the External System
eWay Environment properties.

It is up to the eDK developer to expose the necessary sections and properties for the
eWay user.

Note: Additional information on specifying configuration properties are found in
“Specifying Configuration Properties” on page 59

To add new sections and properties to the Configuration Template:

1 Select the Config Template tab on the eWay Development Kit Build Tool. The
Config Template window appears.
eWay Development Kit User’s Guide 32 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Using the eWay Development Kit Steps Required to Build an eWay
Figure 6 eWay Development Kit Build Tool - Config Template Tab

2 Expand the inbound-configuration and outbound-configuration sections in
configuration template tree.

3 Click on the New Section icon to add new sections. Click the New Property icon to
add new properties. Alternately, you can also right-click a section and create a new
section or property with the pop-up menu. An example of creating a new property
by right-clicking a section is seen in Figure 7.

Note: Enter only those sections that the eWay supports. For example, if the eWay only
supports inbound, then do not enter sections for outbound. You can disable sections
that are not supported, (see “Deleting Sections and Properties” on page 37, or
“Disabling and Enabling Sections” on page 37 for more information).

Naming Restrictions:

The following standard Java Identifier naming conventions apply to the Section and
Property names:

Alphabetic letters – names should only contain alphabetic characters, such as
“AA” or “aa”, or the underscore.

Digit – the first position of the name should not contain a digit.
eWay Development Kit User’s Guide 33 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Using the eWay Development Kit Steps Required to Build an eWay
Figure 7 Config Template Tab - Adding a New Property

New Sections Contain the following default Attributes:

New Parameters Contain the following default Attributes:

Table 5 Default Section Attributes

Section Value

name The name displayed in the .java files during
implementation. Attribute names should follow
standard Java naming conventions.

display name The name that appears on the Connectivity Map
and the Environment Explorer.

description The description of the section that appears in
Enterprise Designer.
eWay Development Kit User’s Guide 34 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Using the eWay Development Kit Steps Required to Build an eWay
New Parameters can be of the following type:

4 Highlight and change the Attribute-Value for each new section, then click Return to
save your changes.

You can remove any inbound or outbound sections not required in the eWay by
clicking the Delete icon. Any configuration section that appears in the configuration
template also appears in the completed eWay, even if no values are entered for them.

Table 6 Default Parameter Attributes

Section Value

name The name displayed in the .java files during
implementation. Attribute names should follow
standard Java naming conventions.

display name The name that appears in the Connectivity Map or
the External Properties window in Enterprise
Explorer.

description The description of the section that appears in
Enterprise Designer.

default The default value for the parameter.

is choice* Determines if a choice is possible for the default
value. To enter a new choice attribute:
1 Select True from the is choice* attribute value. The

Attributes window appears.
2 Enter a choice value and click OK or the Tab button.

is choice editable Determines if the choices entered for the is choice*
attribute values are editable at design time.

type Refers to the data type of the parameter (see below
for more details).

Table 7 New Parameter Types

Section Additional Attribute Values

Boolean (BOOLEAN)

Number (NUMBER) Includes the additional default attributes:
default min – includes the default minimum value.
default max – the default maximum value.

Object (OBJECT)

Path (PATH)

String (STRING) Includes the additional default attributes:
is encrypted – determines if the string is encrypted.

Note: Do not include is choice* or is choice editable when
using is encrypted.
eWay Development Kit User’s Guide 35 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Using the eWay Development Kit Steps Required to Build an eWay
The example in Figure 8 below illustrates the creation of the “inputParameter” and
“outputParameter” sections, in addition to “Poller-settings” containing a property
called “PollMilliseconds”.

Figure 8 outputParameter set in inbound-configuration

Connectivity Map Configuration Sections and Properties

Connectivity Map configuration properties added to the Config Template tab appear
in the eDK eWay’s Connectivity Map Properties window in Enterprise Designer.

Inbound and Outbound Configuration Parameter Settings

Configuration parameter settings can include both inbound and outbound.

Inbound Configuration properties—and subsequent sub-sections—to a Connectivity
Map link attached to an inbound eWay, are located under the configuration template's
inbound configurations subsection at:

root > inbound-configuration > com.stc.connector.framework.jca.
system.STCActivationSpec > configuration

Outbound Configuration properties—and subsequent sub-sections—to a connectivity
map link attached to an outbound eWay, are located under the configuration template's
outbound configurations subsection at:

root > outbound-configuration >
com.stc.connector.framework.jca.system. STCManagedConnectionFactory >
configuration
eWay Development Kit User’s Guide 36 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Using the eWay Development Kit Steps Required to Build an eWay
External System Sections and Properties

External System properties added to the Config Template tab appear in the eDK
eWay’s External System Properties window in the Environment Explorer tab of
Enterprise Designer.

Inbound and Outbound External System Parameter Settings

External System parameter settings can include both inbound and outbound.

Inbound Configuration properties—and subsequent sub-sections—to an External
System, are located under the configuration template's inbound
environment-configurations subsection at:

root > inbound-configuration > com.stc.connector.framework.jca.
system.STCActivationSpec > environment-configuration

Inbound Configuration properties—and subsequent sub-sections—to an External
System, are located under the configuration template's outbound
environment-configurations subsection at:

root > outbound-configuration >
com.stc.connector.framework.jca.system. STCManagedConnectionFactory >
environment-configuration

Deleting Sections and Properties

Unwanted sections can be deleted from the Config Template tab by either right-clicking
the target section and selecting Delete from the pop-up menu, or by clicking the Delete
icon located in the tool bar.

Note: You cannot delete root level sections such as “Sample Adapter” or “Configuraton”.

Disabling and Enabling Sections

Depending on the eWay requirements, you may also choose to disable certain sections.
Disabling a section on the Config Template tab hides the details of that section during
code generation, and preventing them from appearing in the eDK eWay’s External
System and Connectivity Map Properties window in the Enterprise Designer.

A small green checkbox icon appears beside sections that can be disabled on the
configuration template tree. Sections that are disabled appear with an unchecked icon
and also contain an asterisk after the section name.

Any section that is disabled can also be enabled. Enabling a disabled section restores
the full functionality to that section, including any additional sections or properties that
were previously added.

To disable a section on the configuration template tree:

1 Right-click on a section, as for example the “inbound-configuration” section. A
pop-up menu appears next to the section.

2 Click Disable, and click Yes on the Confirm Deletion window that appears. The
disabled section appears collapsed and displays an unselected checkbox icon next
to it.
eWay Development Kit User’s Guide 37 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Using the eWay Development Kit Steps Required to Build an eWay
Figure 9 Disabled inbound-configuration Section

To enable a section on the configuration template tree:

1 Right-click on a previously disabled section. A pop-up menu appears next to the
section.

2 Click Enable. A selected checkbox icon appears next to the enabled section.

Figure 10 Enabled inbound-configuration Section

3.4.9 Step 7: Run the Code Generator
The Code Generation tab on the eWay Development Kit is used to generate the
“connectors” and “eways” folders at a specified location.

To generate code:

1 Select the Code Generation tab on the eWay Development Kit.

2 Enter or browse to an output directory. This is the location where the “connectors”
and “eways” folders are created, (see “eWay Folders Created After Shell Code
Generation” on page 41).

3 Enter or browse to an output directory for the log file.

4 Click Run from the Run Generator frame.

Note: You must enter both an eWay Name and an External Application Name to generate
eWay code.
eWay Development Kit User’s Guide 38 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Using the eWay Development Kit Steps Required to Build an eWay
Figure 11 Generator Output Tab of the eWay Development Kit Build Tool

Saving Your Work

You can save your work at any time by clicking Save or Save As in the file menu, or by
clicking the Save eWay icon. An eWay name must be provided prior to saving.

Saving creates the following files:

<adapter_name>.xdef – represents the eDK definition file that stores metadata
information about the eWay. For more information on the fields generated in this
file, see “eDK Definition File” on page 102.

<adapter_name>_template.xml – represents the configuration template which is a
hierarchical based model that contains configuration parameters for the eWay. For
more information on the parameters described in the configuration template, see
“Connectivity Map Configuration Sections and Properties” on page 36 and
“External System Sections and Properties” on page 37.

Opening Previously Saved Work

You can open previously saved work by clicking Open in the file menu or by clicking
the Open eWay icon, then browsing and selecting a previously saved
<adapter_name>.xdef file.
eWay Development Kit User’s Guide 39 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Using the eWay Development Kit Steps Required to Build an eWay
Choosing a Working Directory

As an optional step, you can choose to either work from the generated output folder, or
choose a new working directory by copying the following folders:

Copy the <newEway>adapter folder, located under the connectors folder in the
output directory (as specified in the definition file) to:

<STC_ROOT>\connectors\

Copy the <newEway>adapter folder, located under the eways folder in the output
directory (as specified in the definition file) to:

<STC_ROOT>\eways\

3.4.10 Step 8: Implement and Build the Generated Shell Code
The following steps describe how to modify and implement the shell code generated by
the eDK.

1 Browse to and copy <newEway>adapter, located under the connectors folder in
the output directory to:

<STC_ROOT>\connectors\

2 Modify the <external_application>EWayConnection class for your specific eWay
implementations.

3 Implement the <external_application>ClientApplicationImpl class under the
appconn\appimpl sub-folder, and add new classes there if necessary.

4 Implement the <external_application>WebClientApplication class under
webservice sub-folder, and add new classes there if necessary.

5 Browse to the ${env.STC_ROOT}\connectors\<newEway>adapter folder, and
run the following:

ant clean install -f connector-build.xml

This should build the <newEway>.rar file and all the other required jar files at the
following locations:

<STC_ROOT>\BUILD\Modules\connectors\lib\<newEway>.rar
This is a JCA 1.5 compliant .rar file.

<STC_ROOT>\BUILD\Modules\connectors\lib\<newEway>_jca10.rar
This is a JCA 1.0 compliant .rar file.

3.4.11 Step 9: Build the .sar File
You must run the Apache Ant build tool to build the .sar file.

1 Browse to eWay working directory that you defined in “Choosing a Working
Directory” on page 40, then run the following:

ant clean install -f eway-build.xml

This creates the new <newEway>adapter.sar file in the following location:

<STC_ROOT>\BUILD\images\products\<newEway>adapter.sar
eWay Development Kit User’s Guide 40 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
Using the eWay Development Kit eWay Folders Created After Shell Code Generation
3.5 eWay Folders Created After Shell Code Generation
Two new folders containing the eWay shell code are created in the specified output
directory.

connectors folder

eways folder

connectors Folder

The connectors folder contains the J2EE connector code. Most of the implementation
required are contained in the connectors folder.

Both the "src" and "src_jca15" or only the “src” subdirectories are generated in the
connectors directory, depending on whether or not there is inbound operations
defined.

The src_jca15 folder is only created if there are inbound operations defined.

The “src” folder contains the following:

alerts folder–The alert subfolder contains one java file, namely
<External_application_name>AlertCodes.java.

This file should define standard and/or customized alert codes. All generic alert
codes to be displayed in Enterprise Monitor are already defined there; however, the
user can always add more customized alert codes. For details of how to implement
alert codes, see “eDK Alerts” on page 89.

appconn folder – This subfolder contains all the necessary shell code for
application specific implementations.

<External_application_name>ApplicationConnection.java implements
the ApplicationConnection interface which handles EIS connections for the
application. This interface can be viewed to represent the EIS connection
handle for the application connection. It allows implementations to create
an actual application connection.

<External_application_name>ApplicationException.java provides the
exception class for any application specific exceptions.

<External_application_name>ClientApplication.java is the interface class
that contains all user defined interactions with the underlying EIS. Note that
all user defined outbound operations to be made available in SeeBeyond's
Java Collaboration Editor are listed here.

<External_application_name>Configuration.java is the bean class that
allows accessing of each and every user defined outbound configuration
parameters. Note that this class only contains all outbound configurations.
eWay Development Kit User’s Guide 41 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
Using the eWay Development Kit eWay Folders Created After Shell Code Generation
appimpl folder – Contains the implementation class for the
<External_application_name>ClientApplication.java interface defined in
the appconn folder. This is also where user needs to make the actual
application specific implementations for the eway. The user can choose to
add more classes in this folder also if necessary. Generated bean classes for
any user defined datatypes for the Java Collaboration Interface are also
placed here.

ewayconn folder – Contains <External_application_name>EwayConnection.java
which implements the EwayConnection interface. This class allows
implementations to establish and close connection to external EIS system, to match
an existing connection, or to clear or release resources prior to the destruction of
managed connection, and so on.

webservice folder – This subfolder contains all the generated bean classes for the
user-defined data types for webservice operations. These classes follow the java
bean paradigm and also implements the necessary persistence methods. This folder
also contains the <External_applicaiton_name>WebClientApplication.java file,
which contains empty methods for all the defined outbound webservice operations
to be implemented by the user.

The “src_jca15” folder contains the following:

appconn folder – This subfolder contains all the necessary java files for inbound
communications, including:

<External_application_name>InboundConfiguration.java is the bean class
that allows accessing of each and every user defined inbound configuration
parameters. Only accessor methods for inbound configurations are available in
this class.

<External_application_name>Listener.java provides the interface methods for
each inbound operation. This is the interface the MDB needs to implement.

ewayconn folder – This subfolder contains all necessary classes to provide inbound
connectivity from an EIS system.

<External_application_name>EwayActivationSpec.java implements methods
necessary to represent inbound connectivity information from an EIS instance
to an application via a specific resource adapter instance. Other java classes are
included here for the support of inbound Work Tasks. If necessary, the user can
choose to add more classes in this folder.
eWay Development Kit User’s Guide 42 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
Using the eWay Development Kit eWay Folders Created After Shell Code Generation
Figure 12 Files Found in the connectors Folder

eways Folder

The eways folder contains the GUI code used to plug into the ICAN Enterprise
Designer code generation components, including codelets, and installation descriptors.

codegen – contains all the codelets and runtime EJBs.

egategui – contains all the GUI plug-in code for the different eDesigner editors.

config – contains the configuration template.

install – contains the WSDL file, descriptor.xml for eway installation, and also
logging and alerting properties files.

module – contains the manifest.mf and layer.xml files for the eWay Netbeans
module.

Thirdpartylib – contains all user specified third-party .jar files.

Contains the connector-build.xml file

Contains the <xxx>ApplicationConnection.java
file (implements AppliationConnection,
AssociatableHandle)

Contains the <xxx>EwayConnection.java file
(implements EwayConnection)
eWay Development Kit User’s Guide 43 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
Using the eWay Development Kit eWay Folders Created After Shell Code Generation
Figure 13 Files Found in the build-tools Folder

3.5.1 eWay Code Created After Generation
The code generated by the eDK includes the following components:

J2EE Connector Architecture resource adapter

GUI code for plugging into the Enterprise Designer

Code Generation components

Runtime EJB components

All of these components are packaged in the eWay .sar file that can be uploaded into an
ICAN repository. The following diagram illustrates the shell code components created
after code generation.
eWay Development Kit User’s Guide 44 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
Using the eWay Development Kit eWay Folders Created After Shell Code Generation
Figure 14 Shell Code Created After Generation

J2EE Connector Architecture Resource Adapter

The J2EE specification includes a Connector Architecture specification defining the
component which is used to interact directly with external applications (also referred to
as Enterprise Information Systems - EISs). This component is normally referred to as a
J2EE connector or Resource Adapter (RA).

SeeBeyond developed a framework for developing these resource adapters. The classes
generated by the eDK are based on the SeeBeyond RA framework. The framework
provides a set of interfaces and abstract classes which simplify the development of J2EE
Resource Adapters. It allows the eWay developer to focus on implementing the client
interface that needs to be exposed to the eWay user.

Figure 14 on page 45 illustrates how Resource Adapter Archive (RAR Shell) Code fit
into the eDK component process flow.

GUI code for plugging into the Enterprise Designer

To be able to use an eWay on the Enterprise Designer, the corresponding GUI plug-in
code must be provided in the eWay .sar file. Installation of the eWay’s GUI plug-in first
requires uploading the eWay .sar file to the ICAN Repository, then using the Update
Center to install the eWay on Enterprise Designer. The GUI plug-in includes NetBeans
code that runs in the Project Explorer, the Java Collaboration Wizard, the Connectivity
Map editor, and the Deployment and Environment editors. The GUI code generated by
the eDK does not need to be modified by the eDK user.

Figure 14 on page 45 illustrates how NBM, WSDL, and Config Template fit into the
eDK component process flow.

Definition
Model <eWay>.xdef

(definition file)

RAR Shell NBM WSDL Codelets

eWay Development Kit
Build Tool

Generators

Config
Template

Shell Code (to be implemented)
eWay Development Kit User’s Guide 45 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.6
Using the eWay Development Kit eWay Implementation Details
Code Generation components called during deployment

All ICAN products provide a code generation component referred to as Codelets.
Codelets are Java classes which are executed during activation (when a user clicks on
Activate in the Deployment editor). Codelets are responsible for generating artifacts
that get packaged during project deployment. In ICAN, project deployments come in
the form of .ear files. eWay codelets primarily package its J2EE resource adapter (.rar)
file, a Message-driven Bean (MDB) implementation (if inbound) and the associated
deployment descriptors it generated based on project properties. A runtime-handler
EJB is included (if outbound).

Figure 14 on page 45 illustrates how Codelets fit into the eDK component process flow.

3.6 eWay Implementation Details
This section describes how to modify and implement the required eWay class files. A
complete listing of the methods found within each of the eDK class files is found in the
Javadoc, see “Using eDK-Based eWay Java Methods” on page 86.

Note: If the eWay has only outbound operations, then only the "src" folder will be present
in the “connectors” folder, otherwise, “src_jca15” will be generated too.

Class files and Interfaces to consider during implementation include:

<external_application_name>EwayConnection

This class has all the necessary methods to establish, match, and close connections
to an external EIS system.

<external_application_name>ApplicationConnection

This class provides the client interface to the eWay resource adapter.
ApplicationConnnection is used to obtain an Application object –
<external_application_name>ClientApplication. For more information, refer to the
createApplication() method in the Javadoc.

<external_application_name>ClientApplication

This interface is the “OTD” which contains all the outbound methods to be exposed
in SeeBeyond’s Java Collaboration Editor. Refer to the
<external_application_name>ClientApplicationImpl class in the “appimpl”
subfolder if you need to implement this interface.

<external_application_name>WebClientApplication

This class is the Object Type Definition (OTD) which contains all the outbound
BPEL operations to be exposed in SeeBeyond’s BPEL Collaboration Editor. Be sure
that each method defined in this class is well implemented. Also note that all BPEL
operations are considered to be “stateless”.
eWay Development Kit User’s Guide 46 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.7
Using the eWay Development Kit eWay Components
<external_application_name> EwayActivationSpec

This class provides the inbound communication functions. It includes the methods
to be executed when an endpoint activation is triggered (an Message-Driven Bean
subscriber is deployed). Refer to endpointActivation() method in the Javadoc for
details.

3.7 eWay Components
Several components make up an eWay. When you generate a new eWay using the eDK,
make sure the following are included in your .sar file.

<External_application_name>.wsdl – if BPEL operations are defined by the user.

<eway_name>.nbm – contains the Netbeans module for the eWay.

<eway_name>.rar and <eway_name>_jca10.rar – are the .rar files for the resource
adapters.

Descriptor.xml – is the .xml file the eWay installer requires to install the eway.

Images.zip – contains all the necessary image icons.

Jar files – including user specified third-party .jar files and other third-party jar
files required for the eWay installer, and other framework .jar files.

3.8 Suggested Conventions for Writing JNI Code
The Java Native Interface (JNI) is a native programming interface that allows Java code
running inside a Java Virtual Machine (JVM) to invoke platform specific code that runs
outside the JVM.

Using JNI code in ICAN 5.0.x requires several steps at the various stages of eWay
development, usage, and runtime.

Steps required during the JNI development phase include:

1 Write the JNI code using the native code and compile it into an OS specific native
format, such as .dll for Windows, or .so for Solaris.

2 Create a thin Java wrapper to invoke the JNI code, and then build and package it in
a separate .jar file.

3 Package both the native library and the jar file created earlier, into a .zip file.

4 Modify the eway-build.xml to ensure that the .zip file is added to the .sar file.

5 Modify the install.xml, located under:

eways\[adapter name]\install

Add the following code:
eWay Development Kit User’s Guide 47 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.9
Using the eWay Development Kit Extending Third-Party Resource Adapters
<taskdef name="UserDownloadable"
classname="com.stc.installer.UserDownloadableInstallTask" />

<UserDownloadable downloadableName="<DownloadableModuleName>"
file="${basedir}/<TheZipFile>.zip" repDir="InstallManager/50Base/
<eWayExternalName>/" repURL="${stc.rep.url}"
distURLBase="${stc.module.distURLBase}" />

This will add the .zip file as a downloadable object in Enterprise Manager.

6 Download the .zip file to a well-known location. The Integration Server must be
configured to be aware of the JNI code.

7 In the Property Sheet for the integration server, update the “Append Classpath”
property to point to the .jar file of the JNI-wrapper classes.

8 Update the path to the JNI code. The path is operating system dependent and is
easiest in done in the shell right before invoking the bootstrap.bat file that starts
your integration server.

9 For Windows, update your PATH variable to include the path to the JNI code. For
Solaris, update your LD_LIBRARY_PATH variable to include the path to the JNI
code. Refer to your specific OS documentation for setting up other libraries.

3.9 Extending Third-Party Resource Adapters
It is possible to use J2EE Connectors from third-party vendors for the connector
component of an eWay.

Such modifications are primarily designed to:

1 Allow ICAN Collaborations to invoke the third-party connector.

The ICAN Collaboration framework invokes Connectors using the SeeBeyond
AppConnn client interface. In order to use a third-party connector, it must be
extended to provide this AppConn interface.

2 Specify connector configuration properties

Connector configuration properties such as Resource Adapter class properties,
Managed Connection Factory Bean properties, and Activation Spec properties, are
specified in the connector's deployment descriptors. You must add these properties
to the eWay’s Configuration Template if the intention is to expose them in the
Enterprise Designer (through the Connectivity Map link or External System
configuration in the Environment).

For more information on adding components to the Configuration Template using
the eWay Development Kit GUI, see “Step 6: Define the eWay Configuration
Template” on page 32.
eWay Development Kit User’s Guide 48 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.9
Using the eWay Development Kit Extending Third-Party Resource Adapters
3.9.1 Providing the AppConn Client Interface
The AppConn interface is the client interface used by the ICAN Collaboration EJBs
when communicating with eWay connectors.

Figure 15 AppConn Client Interface Class Diagram

«interface»
ApplicationConnectionFactory

«interface»
ApplicationConnection

<eWay>ApplicationConnectionFactory

<eWay>ApplicationConnection

ApplicationConnection
Interfaces
eWay Development Kit User’s Guide 49 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.9
Using the eWay Development Kit Extending Third-Party Resource Adapters
To provide an AppConn interface to a third-party connector, the following must be
created:

An ApplicationConnectionFactory class, which implements the interface
com.stc.connector.appconn.common.ApplicationConnectionFactory (found in
com.stc.appconnapi.jar). This represents the client connection factory exposed by
the eWay to EJB clients obtained via JNDI lookup. This connection factory must
return an ApplicationConnection class through its getConnection() method.

An ApplicationConnection class which implements
com.stc.connector.appconn.common.ApplicationConnection (found in
com.stc.appconnapi.jar). This represents the client connection obtained by EJB
clients obtained by calling the getConnection() method on the Connection factory
class.

An Application class. The ApplicationConnection implementation described above
must return an Application class in its createApplication() method. This
Application class represents the Object Type Definition containing the methods
exposed by the eWay. For example, the File eWay implements a FileApplication
object which exposes the setText(), getText(), write(), and writeBytes() methods.

A subclass of the third-party connector's ManagedConnectionFactory (MCF) Bean,
see Figure 16 below. The third-party connector's MCF class cannot be used “as is”.
Any MCF configuration properties must first be put in the eWay's configuration
template in the appropriate outbound-configuration subsection, see “Step 6:
Define the eWay Configuration Template” on page 32.

The MCF subclass must provide the following methods.

a setConfigurationTemplate() method

a setConfigurationInstance() method

a getConfigurationTemplate() method

a getConfigurationInstance() method

a createConnectionFactory() method, which returns the eWay's application
connection factory implementation, (see above).

a createManagedConnection() method

Sample implementations of these methods are shown in “Sample MCF Subclass
Implementation” on page 51.
eWay Development Kit User’s Guide 50 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.9
Using the eWay Development Kit Extending Third-Party Resource Adapters
Figure 16 Order of the ManagedConnectionFactory Subclass

3.9.2 Sample MCF Subclass Implementation
The sample code below extends the Managed Connection Factory implementation class
called FileManagedConnectionFactoryImpl.

/***
*
* Copyright (c) 2004, SeeBeyond Technology Corporation,
* All Rights Reserved
*
* This program, and all the routines referenced herein,
* are the proprietary properties and trade secrets of
* SEEBEYOND TECHNOLOGY CORPORATION.
*
* Except as provided for by license agreement, this
* program shall not be duplicated, used, or disclosed
* without written consent signed by an officer of
* SEEBEYOND TECHNOLOGY CORPORATION.
* ***/
package com.stc.connector.fileadapter;

import javax.resource.ResourceException;
import javax.resource.cci.ConnectionFactory;
import com.stc.configuration.IConfiguration;
import com.stc.configuration.factory.Factory;
import java.io.ByteArrayInputStream;
import com.stc.connector.framework.util.Base64;

import org.apache.log4j.Logger;
import javax.resource.spi.ResourceAdapterInternalException;

/**
 * Extends MCF implementation class for a CCI based client connection factory
 *
 */
public class FileManagedConnectionFactoryImplExt
 extends FileManagedConnectionFactoryImpl implements STCManagedMaster {

 private Logger mLogger =
 Logger.getLogger("STC.eWay.file." + getClass().getName());

 /**
 * Creates a new instance of FileManagedConnectionFactoryImplExt
 */
 public FileManagedConnectionFactoryImplExt() {
 }

 /**
 * Provides the client connection factory
 *
 * @return AppConn based connection factory
 *
 * @exception javax.resource.ResourceException An exception from the
 * Resource Adapter
 *
 */
 public Object createConnectionFactory()

3rd party MCF implementation class

javax.resource.spi.ManagedConnectionFactory

MCF subclass
eWay Development Kit User’s Guide 51 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.9
Using the eWay Development Kit Extending Third-Party Resource Adapters
 throws javax.resource.ResourceException {

 return new FileApplicationConnectionFactory(
 (ConnectionFactory) super.createConnectionFactory());
 }

 public javax.resource.spi.ManagedConnection createManagedConnection(
 javax.security.auth.Subject subject,
 javax.resource.spi.ConnectionRequestInfo connectionRequestInfo)
 throws javax.resource.ResourceException {

 return super.createManagedConnection(subject, connectionRequestInfo);
 }

 /** Configuration information are obtained from deployment descriptor as
* Base64 encoded strings. A property for the base64 encoded configuration
* template XML and a property for the base64 encoded configuration instance
* XML are used. The setter methods for the configuration template and instance
* are used to create the configuration model using the Configuration API. Once
* the model is loaded, configurations are obtained from the model.
*/
 private java.lang.String configTemplate = null;
 private java.lang.String configInstance = null;
 private ByteArrayInputStream configTemplateBIS = null;
 private ByteArrayInputStream configInstanceBIS = null;
 private IConfiguration mcfModelConfig = null;

 private void loadTheConfigModel() throws Exception {
 if (this.configTemplateBIS != null
 && this.configInstanceBIS != null) {
 mcfModelConfig = (new Factory()).getConfiguration(
 configTemplateBIS,
 configInstanceBIS);
 }
 }

 /**
 * Gets the value of the ConfigurationTemplate property.
 *
 * @return java.lang.String containing the value of the ConfigurationTemplate property.
 */
 public java.lang.String getConfigurationTemplate() {
 return this.configTemplate;
 }

 /**
 * Sets the value of the ConfigurationTemplate property.
 *
 * @param configTemplate java.lang.String containing the value to be assigned to
 * ConfigurationTemplate.
 *
 * @throws java.beans.PropertyVetoException error firing vetoable property
 * change
 */
 public void setConfigurationTemplate(java.lang.String configTemplate)
 throws java.beans.PropertyVetoException {
 String configTemplateDecoded = null;
 try {
 configTemplateDecoded = Base64.decode (configTemplate, "UTF-8");
 } catch (Throwable th) {
 mLogger.error (th.toString(), th);
 }

 this.configTemplate = configTemplate;

 try {
 this.configTemplateBIS =
 new ByteArrayInputStream (configTemplateDecoded.getBytes("UTF-8"));
 } catch (Exception ex) {
 mLogger.error (ex.toString(), ex);
 throw new java.beans.PropertyVetoException(
 ex.toString(),
 new java.beans.PropertyChangeEvent(this,
 "configTemplate",
 this.configTemplate,
 configTemplate));
 }

 if (this.configTemplateBIS == null) {
 throw new java.beans.PropertyVetoException(
 "invalid config template",
 new java.beans.PropertyChangeEvent(this,
 "configTemplate",
 this.configTemplate,
 configTemplate));
 }

 try {
 loadTheConfigModel();

 // Only gets executed if configInstance and
 // configTemplate are already set
eWay Development Kit User’s Guide 52 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.9
Using the eWay Development Kit Extending Third-Party Resource Adapters
 //
 if (this.mcfModelConfig != null) {

 ConfigurationHelper configHelper =
 new ConfigurationHelper(mcfModelConfig.getSection("parameter-settings"));

 super.setDirectory(
 configHelper.getParameter("Directory").getValue().toString());

 super.setAddEOL(
 configHelper.getParameter("AddEOL").getValue().toString());

 super.setMultipleRecordsPerFile(
 configHelper.getParameter("MultipleRecordsPerFile").getValue().toString());

 super.setOutputFileName(
 configHelper.getParameter("OutputFileName").getValue().toString());
 }

 } catch (Exception ex) {
 mLogger.error(ex.toString(), ex);
 throw new java.beans.PropertyVetoException(
 "invalid config template",
 new java.beans.PropertyChangeEvent(this,
 "configTemplate",
 this.configTemplate,
 configTemplate));
 }
 }

 /**
 * Gets the value of the ConfigurationInstance property.
 *
 * @return java.lang.String containing the value of the ConfigurationInstance property.
 */
 public java.lang.String getConfigurationInstance() {
 return this.configInstance;
 }

 /**
 * Sets the value of the ConfigurationInstance property.
 *
 * @param configInstance java.lang.String containing the value to be assigned to
 * ConfigurationInstance.
 *
 * @throws java.beans.PropertyVetoException error firing vetoable property
 * change
 */
 public void setConfigurationInstance(java.lang.String configInstance)
 throws java.beans.PropertyVetoException,
 javax.resource.spi.ResourceAdapterInternalException,
 java.io.UnsupportedEncodingException {

 String configInstanceDecoded = Base64.decode (configInstance, "UTF-8");
 this.configInstance = configInstance;

 try {
 this.configInstanceBIS =
 new ByteArrayInputStream (configInstanceDecoded.getBytes("UTF-8"));
 } catch (Exception ex) {
 mLogger.error(ex.toString(), ex);
 throw new java.beans.PropertyVetoException(
 "invalid config instance",
 new java.beans.PropertyChangeEvent(this,
 "configInstance",
 this.configInstance,
 configInstance));
 }

 if (this.configInstanceBIS == null) {
 throw new java.beans.PropertyVetoException(
 "invalid config instance",
 new java.beans.PropertyChangeEvent(this,
 "configInstance",
 this.configInstance,
 configInstance));
 }

 try {
 loadTheConfigModel();

 // Only gets executed if configInstance and
 // configTemplate are already set
 //
 if (this.mcfModelConfig != null) {

 ConfigurationHelper configHelper =
 new ConfigurationHelper(mcfModelConfig.getSection("parameter-settings"));

 super.setDirectory(
 configHelper.getParameter("Directory").getValue().toString());
eWay Development Kit User’s Guide 53 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.9
Using the eWay Development Kit Extending Third-Party Resource Adapters
 super.setAddEOL(
 configHelper.getParameter("AddEOL").getValue().toString());

 super.setMultipleRecordsPerFile(
 configHelper.getParameter("MultipleRecordsPerFile").getValue().toString());

 super.setOutputFileName(
 configHelper.getParameter("OutputFileName").getValue().toString());
 }

 } catch (Exception ex) {
 mLogger.error(ex.toString(), ex);
 throw new java.beans.PropertyVetoException(
 "invalid config instance",
 new java.beans.PropertyChangeEvent(this,
 "configInstance",
 this.configInstance,
 configInstance));
 }
 }

 /**
 * Gets the configuration model for the instance of the
 * ManagedConnectionFactory. The configuration model holds the properties
 * of the ManagedConnectionFactory.
 *
 * @return An instance of IConfiguration which can be used to get the
 * properties of the ManagedConnectionFactory.
 *
 * @throws Exception upon error.
 */
 public IConfiguration getConfigurationModel()
 throws Exception {
 if (mcfModelConfig == null) {
 throw new Exception("Error loading config model");
 }
 return mcfModelConfig;
 }

}

eWay Development Kit User’s Guide 54 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
eDK eWay Concepts and Best Practices Implementing Connection Logic to the External System
Chapter 4

eDK eWay Concepts and Best Practices

This chapter describes some of the concepts used to successfully create eDK based
eWays.

What’s in this Chapter

Implementing Connection Logic to the External System on page 55

Establishing Connections to the EIS on page 57

Specifying Configuration Properties on page 59

Wrapping Third-Party .jar Files on page 62

Source Control on page 62

Maintaining and Persisting State in Java Collaborations on page 63

Generating Javadocs on page 63

4.1 Implementing Connection Logic to the External System
The eDK generated code includes the shell for implementing establishing the physical
connection to the external system. The shell code is based on the SeeBeyond Resource
Adapter (RA) framework interfaces. The interface called EwayConnection provides the
methods below. Some of these methods are also called from the connector's Managed
Connection Factory class.

initialize() – calls the connect method which establishes the physical connection to
the external system, depending on the connection establishment mode

getConnection() – returns the client connection to return to the Resource Adapter
(RA) client. An implementation is provided in the generated code.

matchConnection() – an implementation of connection matching is provided in the
generated code.

cleanup() – called every time the RA client calls close().
eWay Development Kit User’s Guide 55 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
eDK eWay Concepts and Best Practices Implementing Connection Logic to the External System
The integration server calls the cleanup() method to force a clean-up on the
ManagedConnection instance. The ManagedConnection.cleanup() method
initiates a cleanup of the any client-specific state as maintained by a
ManagedConnection instance. The clean-up invalidates all connection handles
created using this ManagedConnection instance. Any attempt by an application
component to use the connection handle after cleanup of the underlying
ManagedConnection results in an exception.

The clean-up of ManagedConnection is always driven by an application server. An
application server should not invoke ManagedConnection.cleanup when there is an
uncompleted transaction (associated with a ManagedConnection instance) in
progress.The invocation of ManagedConnection.cleanup() method on an already
cleaned-up connection should not throw an exception.

The cleanup of ManagedConnection instance resets its client specific state and
prepares the connection to be put back in to a connection pool. The cleanup method
should not cause the resource adapter to close the physical pipe and reclaim system
resources associated with the physical connection.

destroy() – called by the integration server to destroy the physical connection.

The destroy method destroys the physical connection to the underlying resource
manager. To manage the size of the connection pool, an application server can
explicitly call ManagedConnection.destroy() to destroy a physical connection. A
resource adapter should destroy all allocated system resources for this
ManagedConnection instance when the method destroy is called.

Additional information on how EJBs interact with Resource Adapters to obtain external
connections, see “RA Framework Sequence Diagram” on page 96.

4.1.1 Implementing XA
The EwayConnection interface implementation shell code generated by the eDK
includes a getXAResource() method. This corresponds to the JCA specified method
used by the Integration server to obtain the eWay's javax.transaction.xa.XAResource
implementation.

getXAResource() – returns an javax.transaction.xa.XAresource instance. An
application server enlists this XAResource instance with the Transaction Manager if
the ManagedConnection instance is being used in a JTA transaction that is being
coordinated by the Transaction Manager. If XA is not supported, this method
should throw a javax.resource.ResourceException.
eWay Development Kit User’s Guide 56 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
eDK eWay Concepts and Best Practices Establishing Connections to the EIS
4.2 Establishing Connections to the EIS
An Enterprise Information System (EIS) is a standalone deployed application or system
that provides a set of services to an enterprise for accessing, manipulating, and
managing information.

The eDK supports establishing connections to the EIS both automatically and
dynamically. The code that is generated by the eDK includes an Enterprise Java Bean
(EJB) which calls the getConnection() method on the eWay resource adapter for
obtaining a connection from the integration server managed connection pool. The
getConnection() method implementation is delegated to the implementation of the
EwayConnection interface.

4.2.1 Automatic Connection Establishment Mode
Automatic mode means a connection to the external system is established when the
eWay is initialized. The EwayConnection interface’s initialize() method
implementation must be coded to call getConnection() to establish a physical
connection to the EIS.

4.2.2 Dynamic Connection
In a dynamic connection (manual mode), the connection is not established when the
initialize() method is called. Instead, the eWay end-user must explicitly call a method
from Enterprise Designer.

Dynamic connections must be implemented as follows:

1 Add a property called “Connection-Mode” to the configuration template for
specifying connection establishment mode. For example, add a Connection Mode
section containing a choice property where the choices are “manual” and
“automatic”. You must add this under the outbound environment-configuration
section, see Figure 17.
eWay Development Kit User’s Guide 57 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
eDK eWay Concepts and Best Practices Establishing Connections to the EIS
Figure 17 Configuration Template

2 Implement EwayConnection class to check for the value set for the property added.
The initialize() method in the EwayConnection interface implementation must call
connect() if automatic mode is set; it must not call connect() if manual mode is set.

Note: The initialize(), connect(), disconnect(), and destroy() methods are already present
in the Client Interface and do not need to be added using the build tool.

3 Look in the EwayConnection class for the initialize() method (to connect) and the
destroy() method (to disconnect). If the connection mode is to be set to “manual”
mode, then the following try/catch block must be commented out, otherwise
leaving it in leaves the connection mode in “automatic” mode

try {
 connect();
 } catch (Exception e) {
 e.printStackTrace();
 throw new ResourceException("Failed to connect: [" +
e.getMessage() + "]");
 }

 }

Setting the Connection mode to “manual” allows the eWay connection to be
manipulated in a Collaboration since the OTD permits manual connections.
eWay Development Kit User’s Guide 58 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
eDK eWay Concepts and Best Practices Specifying Configuration Properties
Overriding Configurations at Design-time

It is possible to override default configuraiton values at design-time. This is achieved
by calling the appropriate setter methods in the configuration bean class. You can get
an instance of the config bean class via the appropriate getter method in the OTD.

<eWay>ClientApplicationImpl.java

 /**
 * Returns the testConfiguration object.
 *
 * @return the testConfiguration instance.
 */
 public testConfiguration getEwayConfiguration() {
 return appConn.getEwayConfiguration();
 }
}

4.3 Specifying Configuration Properties
eDK based eWay configuration properties are created on the Config Template tab of the
eWay Development Kit Build Tool. The type of eWay being developed determines the
type of inbound or outbound configuration properties added to the eWay.

eWay configuration properties created on the Config Template tab are normally
exposed to the ICAN user in the Enterprise Designer via:

Connectivity Map link

External System Properties

The Config Template is a superset template that contains a number of designated
sections under which configurations for the Connectivity Map link and configurations
for the External System properties are specified.

Figure 18 illustrates how configuration settings on an eWay (TCPIPClientAdapter in
this example), contain the base settings for both the configuration (Connectivity Map)
and environment-configuration (External System properties).
eWay Development Kit User’s Guide 59 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
eDK eWay Concepts and Best Practices Specifying Configuration Properties
Figure 18 Config Template

4.3.1 Connectivity Map eWay Properties
To access the Connectivity Map properties:

1 Open the SeeBeyond Enterprise Designer – Connectivity Map Editor for the eDK
based eWay that you created.

2 Double-click the eDK based eWay icon to access the Properties window.

Figure 19 Connectivity Map

environment-configuration

configuration (Connectivity
Map) section.

(External System properties)

configuration (Connectivity Map)

TCPIPClient eWay Icon
eWay Development Kit User’s Guide 60 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
eDK eWay Concepts and Best Practices Specifying Configuration Properties
3 The eWay Properties window appears with the sections and parameters defined
under the configuration section of the eWay Development Kit Build Tool – Config
Template. Note that the configuration properties should only provide properties
that are independent of the external system’s physical location.

Figure 20 Connectivity Map Properties – TCPIPClientAdapter

4.3.2 External System Properties
To access the external system properties:

1 Open the SeeBeyond Enterprise Designer – Environment Explorer for the eDK
based eWay that you created.

2 Right-click the eDK based eWay (TCPIPClientAdapter in this example), and select
Properties. The Properties window opens to the environment-configuration
properties. Note that physical connection properties are normally provided here.
eWay Development Kit User’s Guide 61 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
eDK eWay Concepts and Best Practices Wrapping Third-Party .jar Files
Figure 21 Environment Explorer Properties – TCPIPClientAdapter

4.4 Wrapping Third-Party .jar Files
The JCE client interface allows specification of attributes and methods in third-party
classes. While it is possible to refer directly to third-party class files, it is recommended
to create wrapper classes that the Java Collaboration Editor client interface can directly
reference. Encapsulating third-party class files in wrapper classes eliminates any direct
interaction, ensuring future flexibility when newer versions of the third-party class files
introduce incompatible method signature changes.

4.5 Source Control
The eDK and eDK Build Tool support any source control system (e.g. CVS), although
they have no direct tie into them. The eDK Build Tool does provide the ability to label
different versions of the .xdef file, but it does not keep prior versions of the file. It is the
responsibility of the eDK user and a third-party source control system to ensure
adequate source control.

To work with a source control system, it is recommended to use a separate directory as
the target for the stub code from the generator (i.e. the output directory on the
generation tab of the eDK Build Tool), and another to implement the methods and
operations defined for the OTD. These can also be thought of as the “pre” and “post”
implementation directories.
eWay Development Kit User’s Guide 62 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.6
eDK eWay Concepts and Best Practices Maintaining and Persisting State in Java Collaborations
Check eWay code into the source control system after generating for the first time. You
can then check it out to directories where the stub methods and operations are to be
implemented. After this, you can follow the usual source control operations and
procedures from the implementation directories.

If modifications to the OTD are required after implementing the code, then the
procedure is to first delete all of the files in the current output directory and then
regenerate the stubs. Next, merge the new stub code with the existing files and code in
the implementation directories. Check your merged code back into the source control
system. You can now use the implementation directories to build the eWay and .sar file.

4.6 Maintaining and Persisting State in Java Collaborations
Collaboration rules set in the Enterprise Designer are executed in an Enterprise Java
Beans (EJB) instance per incoming message. This means that data does not persist
between EJB instantiations servicing different messages. Collaborations are normally
triggered by messages received by an inbound eWay. The eWay's inbound connector
sends the message to the Collaboration through EJBs. In a deployment, every message
received by the inbound connector triggers instantiation of EJBs or retrieval from an
EJB pool.

There are a number of options to keep track of information such as state across multiple
messages:

Save state to JMS queue or topic. This requires designing Collaborations to include
publishing and reading data from the Java Messaging Service (JMS).

Call methods in the inbound eWay's client interface which persist and retrieve the
state. An eWay may expose a method in the client interface for the purpose of
persisting information. For example, a Java Collaboration Editor (JCE) client
interface may provide a setState() and getState() method which can be called from
a Collaboration. The methods implemented in the eWay's connector can save the
information to a file system or database.

4.7 Generating Javadocs
You can generate Javadocs for both the connectors folder and the eWays folder after
completing eWay implementation.

To generate Javadocs for the connectors folder:

1 From the command window, browse to the eWay adapter under the connectors
folder.

<STC_ROOT>\connectors\<Adapter Name>adapter

2 Run the following to generate Javadocs for the connectors folder:

ant -f connector-build.xml build-javadoc
eWay Development Kit User’s Guide 63 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.7
eDK eWay Concepts and Best Practices Generating Javadocs
3 Browse to the following to access the generated Javadoc:

<STC_ROOT>\BUILD\Modules\connectors\<Adapter Name>adapter\javadoc

To generate Javadocs for the eways folder:

1 From the command window, browse to the eWay adapter under the eways folder:

2 Run the following to generate Javadocs for the eways folder:

ant -f eway-build.xml build-javadoc

3 Browse to the following to access the generated Javadoc:

<STC_ROOT>\BUILD\Modules\eways\<Adapter Name>adapter\javadoc
eWay Development Kit User’s Guide 64 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Sample eDK eWay Projects Importing eDK Samples
Chapter 5

Sample eDK eWay Projects

This chapter describes the samples included in the eWay Development Kit, and the
ICAN sample projects created from them.

What’s in this Chapter

Importing eDK Samples on page 65

Creating the edkfile Sample in the Build Tool on page 66

5.1 Importing eDK Samples
Three eDK samples are included in the eWayDevelopmentKit.sar file. These samples
are designed to provide a general understanding of how to build an eWay using the
eWay Development Kit Build Tool.

eDK eWay samples include:

File eWay inbound/outbound example, located under:

${env.STC_ROOT}\eways\edk\samples\edkfile

TCP/IP outbound client example, located under:

${env.STC_ROOT}\eways\edk\samples\tcpipclient

TCP/IP inbound server example, located under:

${env.STC_ROOT}\eways\edk\samples\tcpipserver

5.1.1 Importing a Sample into the eWay Development Kit Build Tool
To Import a sample eWay into the eWay Development Kit Build Tool:

1 Start the eWay Development Kit build tool.

2 Click the Open eWay icon, or choose File > Open from the file menu.

3 Browse to and select one of the eDK eWay samples under:

${env.STC_ROOT}\eways\edk\samples\<eDK sample>\def\<eDK
sample>_sample.xdef

4 Click Open. The sample appears in the eWay Development Kit Build Tool.
eWay Development Kit User’s Guide 65 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Sample eDK eWay Projects Creating the edkfile Sample in the Build Tool
5.2 Creating the edkfile Sample in the Build Tool
This section describes the settings and parameters used in the edkfile sample. For
detailed instructions on entering information into the eWay Development Kit Build
Tool are found in “Using the eWay Development Kit” on page 15.

5.2.1 Overview
The edkfile eWay sample provides a simple inbound/outbound scenario that is similar
to the File eWay Intelligent Adapter, which is used to exchange data between an external
file system and the eGate Integrator System.

As an inbound eWay, the edkfile eWay polls an input directory for files based on a file
name matching a specified regular expression. When the eWay detects a matching file,
it opens the file and publishes the data to a Collaboration or Business Process Service.
The original data file is then renamed to the same file name with a .~in extension. For
example, input1.txt is renamed to input1.~in.

As an outbound eWay, the edkfile writes processed data to a file in an output
directory. The default file name is output%d.dat; for example, output1.dat,
output2.dat, and so on.

The following steps outline the procedures required to create the edkfile eWay using
the eDK.

Steps to build the edkfile eWay include:

1 Obtain a license for the new eWay.

2 Set the environment variables.

3 Start the eWay Development Kit Build Tool.

4 Create and specify details of the new eWay – such as the eWay Name, Description,
Version, and so forth.

5 Enter the required eWay Interfaces – including any return types, parameter names,
parameter types, exceptions thrown, and so forth.

6 Define the eWay configuration template.

7 Run the code generator to create the eWay shell code.

8 Modify the generated shell code in the eWay implementation environment and
provide the required implementation.

9 Run the Apache Ant build tool to build the eWay .sar file.

10 Upload the new eWay .sar file to the ICAN Repository using Enterprise Manager.

11 Run the Enterprise Designer Update Center.

12 Create, build, and deploy a new Project using the new eDK based eWay.
eWay Development Kit User’s Guide 66 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Sample eDK eWay Projects Creating the edkfile Sample in the Build Tool
5.2.2 Step 1: Acquire an eDK eWay License File
A valid license file is required to upload your new eWay into the ICAN Repository
using Enterprise Manger. Refer to “Step 1: Acquire an eDK eWay License File” on
page 18 for information on acquiring an eDK eWay license file.

5.2.3 Step 2: Set the Environment Variables
An implementation environment is required to compile Java source files and to build
an eWay .sar file.

To set the implementation environment variables:

1 Open a new command line window.

2 Locate the root directory of the extracted eDK folder (e.g. C:\eDK), and run the
env.bat file.

5.2.4 Step 3: Start the eWay Development Kit Build Tool
To start the eWay Development Kit build tool:

1 From the same command window change directories to:

<eDK root>\eways\edk\devtools

2 Run the following command:

ant runedkgui

The eWay Development Kit splash screen appears.
eWay Development Kit User’s Guide 67 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Sample eDK eWay Projects Creating the edkfile Sample in the Build Tool
Figure 22 eWay Development Kit Build Tool Splash Screen

5.2.5 Step 4: Create and Specify the New eWay
Perform the following steps to create the new eWay:

1 From the file menu, select File then select New eWay, or click the New eWay icon.

2 Enter the following on the General tab.

eWay Name = “edkfileadapter”

External Application Name = “EDKFILE”

Version = “1.0”

Figure 23 below displays the completed fields on the General tab.
eWay Development Kit User’s Guide 68 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Sample eDK eWay Projects Creating the edkfile Sample in the Build Tool
Figure 23 General Tab of the eWay Development Kit Build Tool

5.2.6 Step 5: Enter the Required eWay Interfaces
Enter the following on the Client Interface tab.

1 Create a new Java outbound interface method and enter the following:

Method Name = “write”

Return Type = “int”

Throw Exception = “EDKFileApplicationException”

2 Create a new Java outbound interface method and enter the following:

Method Name = “writeBytes”

Return Type = “int”

Throw Exception = “EDKFileApplicationException”

3 Create a new Java attribute and enter the following:

Attribute Name = “text”

Type = “java.lang.String”

4 Create a new Java attribute and enter the following:

Attribute Name = “byteArray”

Type = “byte[]”
eWay Development Kit User’s Guide 69 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Sample eDK eWay Projects Creating the edkfile Sample in the Build Tool
5 Create a new Java user defined class and enter the following:

Name = “EDKFileApplicationException”

Attribute List = “errMsg” (Name), “java.lang.String” (Type)

6 Create a new inbound BPEL interface method and enter the following:

Method Name = “read”

Parameter List = “EDKFileTextMessage”

7 Create a new BPEL user defined class and enter the following:

Name = “EDKFileWriteOutputMessage”

Attribute List = “status” (Name), “boolean” (Type)

8 Create a new BPEL user defined class and enter the following:

Name = “EDKFileWriteOutputMessage”

Attribute List = “message” (Name), “java.lang.String” (Type)

9 Create a new BPEL user defined class and enter the following:

Name = “EDKFileTextMessage”

Attribute List = “edkfiletext” (Name), “java.lang.String” (Type)

Figure 24 below displays the completed fields on the Client Interface tab.

Figure 24 Client Interface tab of the eWay Development Kit Build Tool
eWay Development Kit User’s Guide 70 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Sample eDK eWay Projects Creating the edkfile Sample in the Build Tool
5.2.7 Step 6: Define the eWay Configuration Template
Enter the following properties and attribute values on the Config Template tab.

The eWay Config Template defines the following properties:

inbound-configuration properties

outbound-configuration properties

inbound-configuration Properties

inbound-configuration properties are listed under the following sections:

com.stc.connector.framework.jca.system.STCActivationSpec >
configuration > parameter-settings

Add the following:

1 Create a property called InputType, and define the following attribute values:

name = “InputType”

display name = “InputType”

description = “InputType”

default = “Bytes”

is choice* = “false”

is choice editable = “false”

is collection = “true”

type = “STRING”

2 Create a property called RemoveEOL, and define the following attribute values:

name = “RemoveEOL”

display name = “RemoveEOL”

description = “If multiple records per file is True, this is an option to exclude the
terminating EOL character from the message sent to the subscriber.”

default = “false”

is choice* = “false”

is choice editable = “false”

is collection = “false”

type = “BOOLEAN”
eWay Development Kit User’s Guide 71 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Sample eDK eWay Projects Creating the edkfile Sample in the Build Tool
3 Create a property called MultipleRecordsPerFile, and define the following
attribute values:

name = “MultipleRecordsPerFile”

display name = “Multiple records per file”

description = “Specifies if multiple records will be obtained per file. Multiple
records will be generated per line up to the maximum bytes per record.”

default = “false”

is choice* = “false”

is choice editable = “false”

is collection = “false”

type = “BOOLEAN”

4 Create a property called MaxBytesPerRecord, and define the following attribute
values:

name = “MaxBytesPerRecord”

display name = “Maximum bytes per record”

description = “Maximum number of bytes per record sent to the subscriber.”

default = “4096”

is choice* = “false”

is choice editable = “false”

is collection = “false”

default min = ““

default max = ““

type = “NUMBER”
eWay Development Kit User’s Guide 72 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Sample eDK eWay Projects Creating the edkfile Sample in the Build Tool
5 Create a property called InputFileMask, and define the following attribute values:

name = “InputFileMask”

display name = “Input file name”

description = “Input file name”

default = “input*.txt”

is choice* = “false”

is choice editable = “false”

is collection = “false”

is encrypted = “false”

type = “STRING”

6 Create a property called Directory, and define the following attribute values:

name = “Directory”

display name = “Directory”

description = “Directory”

default = “C:\temp”

is choice* = “false”

is choice editable = “false”

is collection = “false”

type = “Path”

outbound-configuration Properties

outbound-configuration properties are listed under the following sections:

com.stc.connector.framework.jca.system.STCManagedConnectionFactory >
configuration > parameter-settings

Add the following:

1 Create a property called AddEOL, and define the following attribute values:

name = “AddEOL”

display name = “Add EOL”

description = “Add EOL”

default = “true”

is choice* = “false”

is choice editable = “false”

is collection = “false”

type = “BOOLEAN”
eWay Development Kit User’s Guide 73 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Sample eDK eWay Projects Creating the edkfile Sample in the Build Tool
2 Create a property called MultipleRecordsPerFile, and define the following
attribute values:

name = “MultipleRecordsPerFile”

display name = “Multiple records per file”

description = “Multiple records per file”

default = “true”

is choice* = “false”

is choice editable = “false”

is collection = “false”

type = “BOOLEAN”

Create a property called Directory, and define the following attribute values:

name = “Directory”

display name = “Directory”

is readable = “true”

description = “Directory”

default = “C:\temp”

is choice* = “false”

is choice editable = “false”

is collection = “false”

type = “PATH”

Create a property called OutputFileName, and define the following attribute
values:

name = “OutputFileName”

display name = “Output file name”

description = “Output file name”

default = “output%d.dat”

is choice* = “false”

is choice editable = “false”

is collection = “false”

is encrypted = “false”

encryption key = “null”

type = “STRING”

Figure 25 below displays the completed properties on the Config Template tab.
eWay Development Kit User’s Guide 74 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Sample eDK eWay Projects Creating the edkfile Sample in the Build Tool
Figure 25 Config Template tab of the eWay Development Kit Build Tool

5.2.8 Step 7: Run the Code Generator
Enter the following on the Code Generation tab.

1 Create the following directory in the Output directory field:

c:\temp\edkfile\pre

2 Create the following directory in the Log file field:

c:\temp\edkfile\edk.log

3 Click Run to run the code generator. The Status window displays a list of
completed tasks, see Figure 26 below.
eWay Development Kit User’s Guide 75 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Sample eDK eWay Projects Creating the edkfile Sample in the Build Tool
Figure 26 Code Generation tab of the eWay Development Kit Build Tool

The eWay Development Kit Build Tool generates two main folders in the specified
output directory.

connectors folder – contains all the J2EE connector code. The .java files contained in
this folder require implementation.

eways folder – contains the GUI code that plugs into the Enterprise Designer’s code
generation components. No implementation is required in this folder.
eWay Development Kit User’s Guide 76 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Sample eDK eWay Projects Creating the edkfile Sample in the Build Tool
5.2.9 Step 8: Implement the eWay
Complete the following steps to modify and implement the generated shell code.

1 Browse to and copy edkfileadapter, located under the connectors folder in the
output directory, to:

${env.STC_ROOT}\connectors\

2 Modify the <external_application>EWayConnection class. The following is an
example of how this class is implemented.

/**
 *
 * Copyright (c) 2004, SeeBeyond Technology Corporation,
 * All Rights Reserved
 *
 * This program, and all the routines referenced herein,
 * are the proprietary properties and trade secrets of
 * SEEBEYOND TECHNOLOGY CORPORATION.
 *
 * Except as provided for by license agreement, this
 * program shall not be duplicated, used, or disclosed
 * without written consent signed by an officer of
 * SEEBEYOND TECHNOLOGY CORPORATION.
 *
 ***/
package com.stc.connector.edkfileadapter.ewayconn;

import com.stc.connector.edkfileadapter.appconn.EDKFILEApplicationConnection;

import com.stc.connector.framework.client.AssociateableHandle;
import com.stc.connector.framework.eway.EwayConnection;
import com.stc.connector.framework.eway.ManagedConnectionCallback;
import com.stc.connector.framework.jca.system.STCPropertiesInfo;
import com.stc.connector.framework.jca.system.STCManagedConnectionMetaData;
import com.stc.connector.management.STCManagedSlave;
import com.stc.connector.management.jca.system.mbeans.STCManagedConnectionMonitorBean;

import javax.resource.ResourceException;
import javax.resource.NotSupportedException;

import javax.resource.spi.ConnectionRequestInfo;
import javax.resource.spi.LocalTransaction;
import javax.resource.spi.ManagedConnectionMetaData;

import javax.security.auth.Subject;

import javax.transaction.xa.XAResource;

import org.apache.log4j.Logger;

/**
 * This class implements the EwayConnection interface for EDKFILE.
 * It is required that it has a public constructor without arguments.
 *
 */
public class EDKFILEEwayConnection
 implements EwayConnection, STCManagedSlave {
 private ManagedConnectionCallback mcCallback;
 private Subject subject;
 private STCPropertiesInfo cri;
 private Logger mLogger = Logger.getLogger("STC.eWay.edkfile" + getClass().getName());
 private STCManagedConnectionMonitorBean mBean = null;

 /**
 * Creates a new instance of EDKFILEEwayConnection
 */
 public EDKFILEEwayConnection() {
 mLogger.debug("Instance of EDKFILEEwayConnection created...");
 }

 /**
 * Initialize the EwayConnection. Establish the connection to the external
 * system (EIS).
 *
 * @param mcCallback The callback object for getting services from the
 * associated ManagedConnection.
 * @param subject The Subject instance which holds the credentials for EIS
 * signon.
 * @param cri The ConnectionRequestInfo instance which can hold both EIS
 * signon information or general connection specific information.
 * The ConnectionRequestInfo provided will contain the union of the
 * properties from the client connection request properties, the
 * ResourceAdapter properties, and the ManagedConnectionFactory
eWay Development Kit User’s Guide 77 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Sample eDK eWay Projects Creating the edkfile Sample in the Build Tool
 * properties.
 *
 * @throws ResourceException upon error.
 */
 public void initialize(ManagedConnectionCallback mcCallback,
 Subject subject, ConnectionRequestInfo cri)
 throws ResourceException {
 mLogger.debug ("Invoking initialize...");
 if ((mcCallback == null) ||
 (cri == null) || ((STCPropertiesInfo)cri).isEmpty()) {
 throw new ResourceException("Invalid parameters - ManagedConnectionCallback is [" +
mcCallback +
 "] ConnectionRequestInfo is [" + cri + "]");
 }
 this.mcCallback = mcCallback;
 this.subject = subject;
 this.cri = (STCPropertiesInfo) cri;

 // custom connection initialization code goes here (if any)...
 // <Start_User_Code>

 // <End_User_Code>

 }

 /**
 * Determines whether this instance of the EwayConnection matches the
 * the connection request with the connection information in Subject and/or
 * ConnectionRequestInfo.
 *
 * @param subject The Subject instance which holds the credentials for EIS
 * signon.
 * @param cri The ConnectionRequestInfo instance which holds both EIS
 * signon information or general connection specific information.
 * The ConnectionRequestInfo provided will contain the union of the
 * properties from the client connection request properties, the
 * ResourceAdapter properties, and the ManagedConnectionFactory
 * properties.
 *
 * @return A boolean true if there is a connection match; false otherwise.
 */
 public boolean matchConnection(Subject subject, ConnectionRequestInfo cri) {
 boolean match = false;
 // determines the custom match criteria here...
 // <Start_User_Code>

 // <End_User_Code>

 return match;
 }

 /**
 * Get a new instance of the connection handle (application connection).
 *
 * @param subject The Subject instance which holds the credentials for EIS
 * signon.
 * @param cri The ConnectionRequestInfo instance which holds both EIS EIS
 * signon information or general connection specific information.
 * The ConnectionRequestInfo provided will contain the union of the
 * properties from the client connection request properties, the
 * ResourceAdapter properties, and the ManagedConnectionFactory
 * properties.
 *
 * @return A connection handle (application connection) instance which
 * implements the Associateable interface.
 *
 * @throws ResourceException upon error.
 */
 public AssociateableHandle getConnection(Subject subject,
 ConnectionRequestInfo cri)
 throws ResourceException {
 // any custom authentication code goes here...
 // <Start_User_Code>

 // <End_User_Code>
 return new EDKFILEApplicationConnection(mcCallback, (STCPropertiesInfo)cri);
 }

 /**
 * Perform clean up of any resources or reset of any state held by the
 * instance of EwayConnection.
 *
 * @throws ResourceException upon error.
 */
 public void cleanup() throws ResourceException {
 // any custom cleanup code goes here...
 // <Start_User_Code>

 // <End_User_Code>
 }
eWay Development Kit User’s Guide 78 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Sample eDK eWay Projects Creating the edkfile Sample in the Build Tool
 /**
 * Release any resources prior to the destruction of the associated
 * ManagedConnection.
 *
 * @throws ResourceException upon error.
 */
 public void destroy() throws ResourceException {
 // any custom resource release code goes here...
 // <Start_User_Code>

 // <End_User_Code>
 }

 /**
 * Get a LocalTransaction instance for local transaction demaracation.
 *
 * @return A LocalTransaction instance.
 *
 * @throws ResourceException upon error.
 */
 public LocalTransaction getLocalTransaction() throws ResourceException {
 // any custom local transaction support code goes here,
 // <Start_User_Code>

 // <End_User_Code>

 // or un-comment the following throw clause if local transaction is not supported
 throw new ResourceException("Local transactions are not supported in EDKFILE eway");
 }

 /**
 * Get a new instance of the ManagedConnectionMetaData which contains
 * connection information for the currently established connection.
 * The ManagedConnectionMetaData interface provides information
 * about the underlying EIS instance associated with a
 * ManagedConnection instance.
 * An application server may use this information to
 * get runtime information about a connected EIS instance.
 * See <code>com.stc.connector.framework.jca.system.STCManagedConnectionMetaData</code>
 * for details.
 *
 * @return An instance of ManagedConnectionMetaData which contains
 * information about the current established connection to the
 * EIS.
 *
 * @throws ResourceException upon error.
 */
 public ManagedConnectionMetaData getMetaData() throws ResourceException {
 // Currently, ICAN suite does NOT really use this metadata.
 // however, this could be used by other application servers
 // to gather information about the underlying EIS instance.
 // modify the following clause if necessary
 // <Start_User_Code>
 return new STCManagedConnectionMetaData(
 "EDKFILE", "UNKNOWN", 1, "UNKNOWN");
 // <End_User_Code>
 }

 /**
 * Get an XAResource instance for global transaction demaracation.
 *
 * @return A XAResource instance.
 *
 * @throws ResourceException upon error.
 */
 public XAResource getXAResource() throws ResourceException {
 // any custom XA support code goes here,
 // <Start_User_Code>

 // <End_User_Code>

 // or un-comment the following throw clause if XA is not supported
 throw new ResourceException("XA transactions are not supported in EDKFILE eway");
 }

 /**
 * Implementing the STCManagedSlave interface to set up/register a callback so that
 * the connector framework can initialize the Mbean for this eway
 * @param Object the mbean to be set by the framework
 * @return none
 */
 public void setMBean(Object mbean) {
 this.mBean = (STCManagedConnectionMonitorBean) mbean;
 }

 /**
 * Convenience method to get the initialized mBean
 * @param none
 * @return STCManagedConnectionMonitorBean the mbean
 */
 public STCManagedConnectionMonitorBean getMBean() {
 return this.mBean;
eWay Development Kit User’s Guide 79 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Sample eDK eWay Projects Creating the edkfile Sample in the Build Tool
 }

}

3 Implement the <external_application>ClientApplicationImpl class under the
appconn/appimpl subfolder, and add new classes there if necessary. The following
is an example of how this class is implemented.

/**
 *
 * Copyright (c) 2004, SeeBeyond Technology Corporation,
 * All Rights Reserved
 *
 * This program, and all the routines referenced herein,
 * are the proprietary properties and trade secrets of
 * SEEBEYOND TECHNOLOGY CORPORATION.
 *
 * Except as provided for by license agreement, this
 * program shall not be duplicated, used, or disclosed
 * without written consent signed by an officer of
 * SEEBEYOND TECHNOLOGY CORPORATION.
 *
 ***/
package com.stc.connector.edkfileadapter.appconn.appimpl;

import com.stc.connector.edkfileadapter.appconn.EDKFILEApplicationConnection;
import com.stc.connector.edkfileadapter.appconn.EDKFILEClientApplication;
import com.stc.connector.edkfileadapter.appconn.EDKFILEConfiguration;

import org.apache.log4j.Logger;

//user added
import java.io.File;
import java.io.FileOutputStream;
import com.stc.connector.framework.util.SemiSema;
// end of user added

/**
 * Implements EDKFILEClientApplication which exposes
 * operations available for the client application.
 *
 */
public class EDKFILEClientApplicationImpl implements EDKFILEClientApplication {

 private EDKFILEApplicationConnection appConn = null;
 private EDKFILEConfiguration config = null;
 private Logger logger = Logger.getLogger("STC.eWay.edkfile"
 + getClass().getName());

 //user added
 private static String FILE_SEPARATOR = System.getProperty(
 "file.separator");
 private String actualOutputFileName = null;
 private CounterManager countMgr = null;
 private SemiSema writeLock = null;
 private String directory = null;
 private String outputFileName = null;
 // end of user added

 /**
 * Constructor.
 *
 * @param appConn The EDKFILEApplicationConnection instance.
 *
 */
 public EDKFILEClientApplicationImpl (EDKFILEApplicationConnection appConn) {
 this.appConn = appConn;
 this.config = appConn.getEwayConfiguration();

 // user added
 this.directory = config.getDirectory();
 this.outputFileName = config.getOutputFileName();
 this.countMgr = new CounterManager();
 this.writeLock = new SemiSema(1, false);
 // end of user added
 }

 /**
 * Returns the EDKFILEConfiguration object
 *
 * @return An EDKFILEConfiguration object with EDKFILE
 * connection information.
 *
 */
 public EDKFILEConfiguration getEDKFILEConfiguration() {
 return config;
 }
eWay Development Kit User’s Guide 80 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Sample eDK eWay Projects Creating the edkfile Sample in the Build Tool

 private java.lang.String text;

 /**
 * Sets the text
 *
 * @param attrname
 */
 public void setText(java.lang.String text) {
 this.text = text;
 }

 /**
 * Returns the text
 *
 * @return text
 */
 public java.lang.String getText() {
 return this.text;
 }
 private byte[] byteArray;

 /**
 * Sets the byteArray
 *
 * @param attrname
 */
 public void setByteArray(byte[] byteArray) {
 this.byteArray = byteArray;
 }

 /**
 * Returns the byteArray
 *
 * @return byteArray
 */
 public byte[] getByteArray() {
 return this.byteArray;
 }

 public void write() throws EDKFileApplicationException {
 // <Start_User_Code>
 if (text == null)
 throw new EDKFileApplicationException("Error writing text: text is " + text);
 write(text.getBytes());
 // <End_User_Code>
 }
 public void writeBytes() throws EDKFileApplicationException {
 // <Start_User_Code>
 if (byteArray == null) {

 throw new EDKFileApplicationException("Error writing bytes: byteArray is:" +
byteArray);
 }
 write(byteArray);
 // <End_User_Code>
 }

 // user added from this point on
 public synchronized void write(byte[] payload) throws EDKFileApplicationException {
 try {
 File fileDir = new File(directory);
 int percentDIndex = outputFileName.indexOf("%d");

 if (percentDIndex == -1) {
 actualOutputFileName = outputFileName;
 writeContents(
 payload,
 fileDir + this.FILE_SEPARATOR + outputFileName);
 } else {
 int fileCount = this.countMgr.getNextCounterCount(getKey());
 String localOutputFileName = null;
 localOutputFileName = outputFileName.substring(
 0,
 percentDIndex)
 + (new PrintfFormat("%d")).sprintf(fileCount)
 + outputFileName.substring(
 percentDIndex + 2,
 outputFileName.length());
 actualOutputFileName = localOutputFileName;
 writeContents(
 payload,
 fileDir + this.FILE_SEPARATOR
 + localOutputFileName);
 }
 } catch (Exception ex) {
 logger.error("Exception occurred in write", ex);
 throw new EDKFileApplicationException(ex.getMessage());
 }

 }

 public void writeContents(byte[] contents, String fullPathOutputFile)
eWay Development Kit User’s Guide 81 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Sample eDK eWay Projects Creating the edkfile Sample in the Build Tool
 throws Exception {

 FileOutputStream os = null;
 try {
 // Block while there is another write in progress.
 if (logger.isDebugEnabled()) {
 logger.debug("Attempting to acquire a write lock.");
 }
 if (writeLock.acquire()) {
 if (logger.isDebugEnabled()) {
 logger.debug("write lock acquired.");
 }
 } else {
 logger.error("Unable to acquire a write lock.");
 throw new Exception("Unable to acquire a write lock.");
 }

 os = new FileOutputStream(fullPathOutputFile);
 if (contents != null) {
 os.write(contents);
 }
 writeLock.release();
 } catch (Exception ex) {
 logger.error("Exception occurred in writeContents", ex);
 throw ex;
 } finally {
 if (os != null) {
 os.close();
 }
 }
 }

 public String getKey() {
 return this.directory + this.outputFileName;
 }

}

4 Implement the <external_application>WebClientApplication class under
webservice sub-folder, and add new classes there if necessary. The following is an
example of how this class is implemented.

/**
 *
 * Copyright (c) 2004, SeeBeyond Technology Corporation,
 * All Rights Reserved
 *
 * This program, and all the routines referenced herein,
 * are the proprietary properties and trade secrets of
 * SEEBEYOND TECHNOLOGY CORPORATION.
 *
 * Except as provided for by license agreement, this
 * program shall not be duplicated, used, or disclosed
 * without written consent signed by an officer of
 * SEEBEYOND TECHNOLOGY CORPORATION.
 *
 ***/
package com.stc.connector.edkfileadapter.webservice;

/**
 * This class defines the operations made available as
 * webservices for EDKFILE.
 *
 */
import com.stc.connector.edkfileadapter.appconn.EDKFILEApplicationConnection;
import com.stc.connector.edkfileadapter.appconn.EDKFILEApplicationException;
import com.stc.connector.edkfileadapter.appconn.EDKFILEConfiguration;
import org.apache.log4j.Logger;

//user added
import java.io.File;
import java.io.FileOutputStream;
import com.stc.connector.framework.util.SemiSema;
// end of user added

/**
 * Implements EDKFILEClientApplication which exposes
 * operations available for the client application.
 *
 */
public class EDKFILEWebClientApplication {
 private EDKFILEApplicationConnection appConn = null;
 private EDKFILEConfiguration config = null;
 private Logger logger = Logger.getLogger("STC.eWay.edkfile"
 + getClass().getName());
 // user added
 private static String FILE_SEPARATOR = System.getProperty(
 "file.separator");
 private String actualOutputFileName = null;
 private CounterManager countMgr = null;
eWay Development Kit User’s Guide 82 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Sample eDK eWay Projects Creating the edkfile Sample in the Build Tool
 private SemiSema writeLock = null;
 private String directory = null;
 private String outputFileName = null;
 // end of user added

 /**
 * Constructor.
 *
 * @param appConn The EDKFILEApplicationConnection instance.
 *
 */
 public EDKFILEWebClientApplication(EDKFILEApplicationConnection appConn) {
 this.appConn = appConn;
 this.config = appConn.getEwayConfiguration();

 // user added
 this.directory = config.getDirectory();
 this.outputFileName = config.getOutputFileName();
 this.countMgr = new CounterManager();
 this.writeLock = new SemiSema(1, false);
 // end of user added
 }

 /**
 * Get the EDKFILEConfiguration object for setting EDKFILE connection
 * information.
 *
 * @return An EDKFILEConfiguration object for populating EDKFILE
 * connection information.
 *
 * @throws EDKFILEApplicationException upon error.
 */
 public EDKFILEConfiguration getEDKFILEConfiguration()
 throws EDKFILEApplicationException {
 return config;
 }

 public EDKFileWriteOutputMessage write(EDKFileTextMessage edkfiletextmessage) throws
EDKFileWSException {
 EDKFileWriteOutputMessage output = new EDKFileWriteOutputMessage();
 output.setStatus(false);
 if (edkfiletextmessage.getEdkfiletext() == null) {
 throw new EDKFileWSException("Error writing: input message is not populated propertly");
 }
 try {
 write(edkfiletextmessage.getEdkfiletext().getBytes());
 output.setStatus(true);
 } catch (Exception e) {
 e.printStackTrace();
 new EDKFileWSException(e.getMessage());
 }

 return output;
 }

 // user added code from here on
 public synchronized void write(byte[] payload) throws Exception {
 try {
 File fileDir = new File(directory);
 int percentDIndex = outputFileName.indexOf("%d");

 if (percentDIndex == -1) {
 actualOutputFileName = outputFileName;
 writeContents(
 payload,
 fileDir + this.FILE_SEPARATOR + outputFileName);
 } else {
 int fileCount = this.countMgr.getNextCounterCount(getKey());
 String localOutputFileName = null;
 localOutputFileName = outputFileName.substring(
 0,
 percentDIndex)
 + (new PrintfFormat("%d")).sprintf(fileCount)
 + outputFileName.substring(
 percentDIndex + 2,
 outputFileName.length());
 actualOutputFileName = localOutputFileName;
 writeContents(
 payload,
 fileDir + this.FILE_SEPARATOR
 + localOutputFileName);
 }
 } catch (Exception ex) {
 logger.error("Exception occurred in write", ex);
 throw new Exception(ex.getMessage());
 }

 }

 public void writeContents(byte[] contents, String fullPathOutputFile)
 throws Exception {
eWay Development Kit User’s Guide 83 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Sample eDK eWay Projects Creating the edkfile Sample in the Build Tool
 FileOutputStream os = null;
 try {
 // Block while there is another write in progress.
 if (logger.isDebugEnabled()) {
 logger.debug("Attempting to acquire a write lock.");
 }
 if (writeLock.acquire()) {
 if (logger.isDebugEnabled()) {
 logger.debug("write lock acquired.");
 }
 } else {
 logger.error("Unable to acquire a write lock.");
 throw new Exception("Unable to acquire a write lock.");
 }

 os = new FileOutputStream(fullPathOutputFile);
 if (contents != null) {
 os.write(contents);
 }
 writeLock.release();
 } catch (Exception ex) {
 logger.error("Exception occurred in writeContents", ex);
 throw ex;
 } finally {
 if (os != null) {
 os.close();
 }
 }
 }

 public String getKey() {
 return this.directory + this.outputFileName;
 }

}

5 Browse to the ${env.STC_ROOT}\connectors\edkfileadapter folder, and run the
following:

ant clean install -f connector-build.xml

This should build the edkfile.rar file and all the other required jar files at the
following locations:

<STC_ROOT>\BUILD\Modules\connectors\lib\edkfile.rar
<STC_ROOT>\BUILD\Modules\connectors\lib\edkfile_jca10.rar

5.2.10 Step 9: Build the .sar File
Run the Apache Ant Build Tool (included in the eDK install) to create the new
edkfileadapter.sar file.

1 Browse to eWay working directory that you defined in “Choosing a Working
Directory” on page 40, then run the following:

ant clean install -f eway-build.xml

This creates the new edkfileadapter.sar file in the following location:

<STC_ROOT>\build\images\products\edkfileadapter.sar

5.2.11 Step 10: Upload the New eWay to the ICAN Repository
Perform the following steps to upload the new eWay to the ICAN Repository.

1 Click the Admin tab in Enterprise Manager.

2 Click Browse and open the edkfileadapter.sar file from the following location:

<STC_ROOT>\build\images\products\edkfileadapter.sar

3 Click Browse and upload the license.sar file.
eWay Development Kit User’s Guide 84 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Sample eDK eWay Projects Creating the edkfile Sample in the Build Tool
5.2.12 Step 11: Run the Enterprise Designer Update Center
After you start Enterprise Designer for the first time, you must install all the modules
required to run the program.

For detailed information on running the Enterprise Designer Update Center, see the
Seebeyond ICAN Suite Installation Guide.

5.2.13 Step 12: Creating, Building, and Deploying Sample Projects
The creation and deployment of new sample projects created using an eDK based eWay
is beyond the scope of this user’s guide; however, detailed information, including
examples of how to create and deploy JCE based sample projects are found in the eGate
Integrator Tutorial.
eWay Development Kit User’s Guide 85 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Using eDK-Based eWay Java Methods eWay Development Kit Javadoc
Chapter 6

Using eDK-Based eWay Java Methods

This chapter provides an overview of the Java classes and methods contained in eDK-
based eWays. These methods are used to extend the functionality of the eWay.

What’s in this Chapter

eWay Development Kit Javadoc on page 86

6.1 eWay Development Kit Javadoc
The Javadoc is uploaded eDK file (eWayDevelopmentKit.sar) and downloaded from
the Documentation tab of the Enterprise Manager. To access the full Javadoc:

1 Extract the Javadoc to an accessible folder

2 Double click the index.html file.

6.1.1 eDK-Based eWay Classes and Methods
Java methods allow you to set and get information in the eWay Object Type Definitions
(OTDs).

The nature of this data transfer depends on the configuration parameters you created in
the eDK and set in eGate Enterprise Designer.

eDK-Based eWay Classes

Java methods are organized into related classes. The methods for the eDK-based eWays
are organized into the following Java classes:

AlertCodeMap

AlertCodes

AssociateableHandle

Base64

Base64DecodingException

Base64Utils
eWay Development Kit User’s Guide 86 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Using eDK-Based eWay Java Methods eWay Development Kit Javadoc
BaseMonitorMBean

ConfigurationHelper

DirUtils

EwayActivationSpec

EwayConfigModelUtil

EwayConnection

EwayResourceAdapter

EwayResourceAdapterImpl

FileHelper

JndiJCAObject

MBeanInfoConfigModelHelper

MBeansRegistrar

ManagedConnectionCallback

MessageManager

STCActivationSpec

STCActivationSpecMonitor

STCActivationSpecMonitorBean

STCAdapterConfigurationMonitor

STCApplicationConnectionFactory

STCConnectionDisabledException

STCConnectionManager

STCCreateMBeanException

STCMBeanNameUtil

STCMCFMonitor

STCMCFMonitorBean

STCManagedConnection

STCManagedConnectionFactory

STCManagedConnectionMetaData

STCManagedConnectionMonitor

STCManagedConnectionMonitorBean

STCManagedMaster

STCManagedSlave

STCPropertiesInfo

STCRAMonitor
eWay Development Kit User’s Guide 87 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Using eDK-Based eWay Java Methods eWay Development Kit Javadoc
STCRAMonitorBean

STCResourceAdapter

SemiSema

StringHelper

ZIPUtils
eWay Development Kit User’s Guide 88 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.1
Adding and Sending Custom Alert Messages eDK Alerts
Chapter 7

Adding and Sending Custom Alert Messages

This chapter describes how to add and send custom alerts using the Resource Adapter
framework.

What’s in this Chapter

eDK Alerts on page 89

Adding eWay Specific Alert Message Codes on page 90

Sending eWay Specific Alerts on page 91

7.1 eDK Alerts
In the ICAN Suite, an Alert is triggered when a specified condition occurs in a Project
component. The condition might be some type of problem that must be corrected. For
example, an Alert might indicate that a SeeBeyond Integration Server is no longer
running.

Enterprise Manager enables you to monitor Alerts. In the ICAN Monitor component of
Enterprise Manager, you can view detailed information about the Alerts and mark
them as observed or resolved. The eGate Integrator System Administration Guide
describes how to access and use the ICAN Monitor.

Note: The Alert Agent User’s Guide describes how the Alert Agent can monitor both
predefined Alerts and custom Alerts. The “Collaboration Definitions (Java)”
chapter in the eGate Integrator User’s Guide describes how to create custom Alerts
at design time.

eDK Alerts are managed through the <new eWay>AlertCodes.java file, which is
located under:

<Output-Location>\connectors\<new eWay>\src\java\com\stc\
connector\<new eWay>\alerts
eWay Development Kit User’s Guide 89 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Adding and Sending Custom Alert Messages Adding eWay Specific Alert Message Codes
Implementation of the <new eWay>AlertCodes class is required to display your eWay
specific Alerts. Alert codes used in the eDK include:

<new eWay>_EWAY_STARTED
<new eWay>_EWAY_RUNNING
<new eWay>_EWAY_STOPPING
<new eWay>_EWAY_STOPPED
<new eWay>_EWAY_SUSPENDING
<new eWay>_EWAY_SUSPENDED

7.2 Adding eWay Specific Alert Message Codes
This section describes how to add custom alerts using the Resource Adapter
framework.

7.2.1 Java Code Changes
Use the following method on the monitor mbean object to send alerts:

 public void sendAlert(String alertMsgCode,
 String[] alertMsgCodeArgs,
 String alertMsg,
 int severity);

The user can get an instance of the monitor mbean object by invoking the appropriate
getter method in: <external_application_name>EwayConnection.java

7.2.2 What to Pass for alertMsgCode and alertMsgCodeArgs
You need to create a properties file using the localization resource bundle naming
convention.

As an example:

FILE_en_US.properties (for US English),
FILE_fr_FR.properties (French)
FILE_fr_CA.properties (Canadian French)

Note that the file naming convention specifies a string corresponding to your eway
name. The same prefix string (e.g. FILE) must match the prefix of the alert message
code variables contained in the Properties file. The contents of the Properties file will be
your alert code message variable and the alert message.

As an example:

FILE-REN000001="Unable to rename file {0}"
FILE-WRT000001="Unable to write output file {0}."

Note that the placeholders in the message above are (convention {0}...{1}). These are
specified in the alertMsgCodeArgs argument to sendAlert. So, a sample send alert call
using this would look like:

String [] args = { "myfilename" };
String alertMsg = "Unable to rename file " + ... + "Skipping ..." ;
sendAlert("FILE-REN000001",
 args,
eWay Development Kit User’s Guide 90 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Adding and Sending Custom Alert Messages Sending eWay Specific Alerts
 alertMsg,

com.stc.eventmanagement.NotificationEvent.SEVERITY_TYPE_CRITICAL);

To isolate where you update the alert codes (first argument above), you can create a
class containing the constants corresponding to them.

As an example:

public class {EwayName}AlertCodes {

 /**
 * File rename alert
 * <code>Unable to rename file {0}</code>
 * Params:
 * {0} file name
 */
 public static final String FILE_ASRENAMEFAILED = "FILE-
ASRENAMEFAILED000001";

}

The sendAlert call appears as follows:

sendAlert(MessageCodes.FILE_REN_01,
 args,
 alertMsg,

com.stc.eventmanagement.NotificationEvent.SEVERITY_TYPE_CRITICAL);

7.2.3 Installing Alert Code Properties Files (install.xml changes)
Custom Alert codes are installed automatically when the eWay is uploaded to the
ICAN Repository. The following file must be edited to add custom Alert codes:

<output_folder>\eways\<eway_adapter_name>\install\alertcodes\<exte
rnal_application_name>.properties

7.3 Sending eWay Specific Alerts
This section describes how to send custom alerts using the Resource Adapter
framework.

For alerts that are associated with your managed connection, make your
EwayConnection class implement the following:

com.stc.connector.management.STCManagedSlave

This interface includes the setMBean() method, which is called from the associated
STCManagedConnection. This provides access to the MBean class, which encapsulates
the sendAlert() methods. Use the following:

public void sendAlert(String alertMsgCode,
 String[] alertMsgCodeArgs,
 String alertMsg,
 int severity);
eWay Development Kit User’s Guide 91 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Adding and Sending Custom Alert Messages Sending eWay Specific Alerts
Valid values for severity are:

com.stc.eventmanagement.NotificationEvent.SEVERITY_TYPE_CRITICAL
com.stc.eventmanagement.NotificationEvent.SEVERITY_TYPE_INFO
com.stc.eventmanagement.NotificationEvent.SEVERITY_TYPE_MAJOR
com.stc.eventmanagement.NotificationEvent.SEVERITY_TYPE_MINOR
com.stc.eventmanagement.NotificationEvent.SEVERITY_TYPE_WARNING

The EventManagement API is called by the above method. See theEventManagement
module for details on this API.

For alerts associated with your ActivationSpec, do the same as above for your
EwayActivationSpec class (implement STCManagedSlave).
eWay Development Kit User’s Guide 92 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.1
Appendix A J2EE Connector Architecture Overview
Chapter 8

Appendix A

What’s in this Chapter

J2EE Connector Architecture Overview on page 93

RA Framework Class Diagram on page 94

RA Framework Sequence Diagram on page 96

Client Application Sequence Diagram on page 97

Application Connection Interfaces on page 98

eWay Connection Interfaces on page 99

8.1 J2EE Connector Architecture Overview
The J2EE Connector Architecture specifies how to develop resource adapters that are
used to interact with Enterprise Information Systems (EIS). It describes the interfaces
between the J2EE Application Server and the resource adapter which provide for
transaction management, connection management, security management, work
management, and life cycle management. These Application server/resource adapter
interfaces are also referred to as System Contracts, (see Figure 27 on page 94).

The Connector architecture also describes the client interface to the resource adapters.
Figure 27 illustrates allowed client interfaces. The resource adapter client (normally an
EJB) is shown interacting with the resource adapter either through the Client
Connection Interface (CCI) or the SeeBeyond Application Connection (AppConn)
interface.
eWay Development Kit User’s Guide 93 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.2
Appendix A RA Framework Class Diagram
Figure 27 J2EE Connector Architecture Overview

8.2 RA Framework Class Diagram
The Resource Adapter (RA) framework is best specified in a UML class and sequence
diagram.

The following interfaces represent the core eDK tool.

ApplicationConnection Interfaces

EwayConnection Interfaces

JCA System Contract Interfaces

The following class files contain methods to be implemented in the eWay.

<xxx>ApplicationConnection

<xxx>ApplicationSpec

<xxx>EwayConnection

<xxx>ManagedConnectionFactory

<xxx>Application

J2EE
Application

Server

Application
e.g.

Collaborations
using EJBs

CCI
Other
Client

Interface

EISSystem
Contracts JCA 1.5 Adapter

Impementation

EIS
API
eWay Development Kit User’s Guide 94 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.2
Appendix A RA Framework Class Diagram
Figure 28 RA Framework Class Diagram

+getConnection()

«interface»
ApplicationConnectionFactory

+createApplication()
+createOutputHandler()
+close()

«interface»
ApplicationConnection

+write()

«interface»
OutputHandler

+invalidateConnection()
+reassociateConnection()

«interface»
AssociatableHandle

STCApplicationConnectionFactory

+initialize()
+cleanup()
+destroy()
+getConnection()
+matchConnection()
+getLocalTransaction()
+getMetaData()
+getXAResource()

«interface»
EW ayConnection

+notifyConnectionEvent()
+getEwayConnection()
+addConnectionHandle ()
+removeConnectionHandle ()

«interface»
ManagedConnectionCallback

STCConnectionRequestionInfo

STCManagedConnectionSTCManagedConnectionFactory

STCManagedConnectionMetaData STCResourceAdapter

<xxx>ApplicationConnection

<xxx>EwayConnection

<xxx>ManagedConnectionFactory

ApplicationConnection
Interfaces

EwayConnection
Interfaces

JCA System Contract
Interfaces

«interface»
EwayActivationSpec

STCActivationSpec

<xxx>ActivationSpec
eWay Development Kit User’s Guide 95 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Appendix A RA Framework Sequence Diagram
8.3 RA Framework Sequence Diagram
The following diagram describes the client interaction with a resource adapter using
the RA framework.

Figure 29 RA Framework Sequence

The RA framework sequence occurs as follows:

1 The EJB client performs a JNDI lookup to obtain a client connection factory
(ApplicationConnectionFactory).

2 The Application Server (Integration server) uses the RA framework managed
connection factory to create an ApplicationConnectionFactory which is passed
back to the EJB client's JNDI lookup.

3 The EJB client obtains an ApplicationConnection by calling the getConnection()
method on the ApplicationConnectionFactory.

4 The Integration server and RA framework classes interact by first trying to obtain a
matching connection from the connection pool. If a matching connection is not
found, a new connection is requested by the Integration server from the resource
adapter. Note that a ConnectionRequestInfo object containing the connection
configuration properties is used when checking for a match.

EJB IntegSvr <eway>/STC M CF STCACF STCMC <eway>C RA <eway>AC EIS

jndi lookup()
createConn.Factory()

new()

cm.allocateConnection()

m atchMCs()
matchConnection()

m atchConnection()

(on each MC in set)

(false,
no

match)
createConnectionRequestInfo()

createMC()

new()

createConnectionRequestInfo()

initia lize()

establish EIS Connection()
getConnection()

new()
getConnection()

getConnection()

getEwayConnection()

new()

Resource Adapter Framework
eWay Development Kit User’s Guide 96 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.4
Appendix A Client Application Sequence Diagram
5 The EwayConnection interface implementation is used when establishing a
physical connection to the EIS; the initialize method is normally where this is
performed. It is also used in connection matching via the matchConnection()
method. The getConnection() method is used to return the established connection.

8.4 Client Application Sequence Diagram
The following diagram shows the interaction after the EJB client has obtained a
resource adapter connection.

Figure 30 JCA Framework Sequence

The JCA sequence occurs as follows:

1 The createApplication() method is called—once an ApplicationConnection is
obtained—to obtain the eWay-specific Application object which exposes the
methods interacting with the EIS.

2 The EJB client calls the various methods in the eWay's Application object

3 The EJB's resource adapter connection is closed via the close method in the
ApplicationConnection after completing execution of the method calls.

EJB STCMC <eway>Connection <eway>AC EIS

new()

<eway>Application

EIS API()

createApplication / createOutputHandler()

eway method()

close()

ManagedConnectionCallback.notifyConnectionEvent()

EIS API close connection
eWay Development Kit User’s Guide 97 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.5
Appendix A Application Connection Interfaces
4 The Connector architecture provides a notification mechanism between the
Application server and the resource adapter for connection events. These are
hidden in the RA framework.

8.5 Application Connection Interfaces
SeeBeyond’s common client interface (CCI), includes the following interfaces:

ApplicationConnectionFactory

public interface ApplicationConnectionFactory
 extends Referenceable, Serializable
{
 public abstract ApplicationConnection getConnection()
 throws ApplicationConnectionException;
 public abstract ApplicationConnection getConnection(Properties
properties)
 throws ApplicationConnectionException;
}

ApplicationConnection

public interface ApplicationConnection
{
 public abstract void close()
 throws ApplicationConnectionException;
 public abstract Object createApplication(String s)
 throws ApplicationException;
 public abstract OutputHandler createOutputHandler()
 throws ApplicationException;
}

OutputHandler

public interface OutputHandler
{
 public abstract void write(byte abyte0[])
 throws ApplicationException;
 public abstract void write(OutputStream outputstream)
 throws ApplicationException;
}

ApplicationConnectionException

public class ApplicationConnectionException extends Exception
{
 public ApplicationConnectionException()
 {
 }
 public ApplicationConnectionException(String msg)
 {
 super(msg);
 }
}

ApplicationException

public class ApplicationException extends Exception
{
 public ApplicationException()
 {
eWay Development Kit User’s Guide 98 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.6
Appendix A eWay Connection Interfaces
 }
public ApplicationException(String msg)
 {
 super(msg);
 }
}

8.6 eWay Connection Interfaces
The eWay Connection Interfaces are located in the following package:

package com.stc.connector.framework.client;

AssociatableHandle

public interface AssociateableHandle
{
 public abstract void invalidateConnection()
 throws ResourceException;
 public abstract void
reassociateConnection(ManagedConnectionCallback
managedconnectioncallback)
 throws ResourceException;
}
package com.stc.connector.framework.eway;

EwayConnection

public interface EwayConnection
{
 public abstract void initialize(ManagedConnectionCallback
managedconnectioncallback, Subject subject, ConnectionRequestInfo
connectionrequestinfo)
 throws ResourceException;
 public abstract void cleanup()
 throws ResourceException;
 public abstract void destroy()
 throws ResourceException;
 public abstract AssociateableHandle getConnection(Subject
subject, ConnectionRequestInfo connectionrequestinfo)
 throws ResourceException;
 public abstract boolean matchConnection(Subject subject,
ConnectionRequestInfo connectionrequestinfo);
 public abstract LocalTransaction getLocalTransaction()
 throws ResourceException;
 public abstract ManagedConnectionMetaData getMetaData()
 throws ResourceException;
 public abstract XAResource getXAResource()
 throws ResourceException;
}
package com.stc.connector.framework.eway;

ManagedConnectionCallback

public interface ManagedConnectionCallback
{
 public abstract void notifyConnectionEvent(ConnectionEvent
connectionevent);
 public abstract EwayConnection getEwayConnection();
eWay Development Kit User’s Guide 99 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.6
Appendix A eWay Connection Interfaces
 public abstract void addConnectionHandle(AssociateableHandle
associateablehandle);
 public abstract void removeConnectionHandle(AssociateableHandle
associateablehandle);
}

EwayActivationSpec

public interface EwayActivationSpec
{
 public abstract void initialize(BootstrapContext
bootstrapcontext);
 public abstract void validate(STCPropertiesInfo
stcpropertiesinfo)
 throws InvalidPropertyException;
 public abstract void endpointActivation(MessageEndpointFactory
messageendpointfactory, STCPropertiesInfo stcpropertiesinfo)
 throws NotSupportedException;
 public abstract void endpointDeactivation(MessageEndpointFactory
messageendpointfactory);
 public abstract XAResource getXAResource()
 throws ResourceException;
}

eWay Development Kit User’s Guide 100 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.1
Appendix B Generating eDK Code by Command Line
Chapter 9

Appendix B

What’s in this Chapter

Generating eDK Code by Command Line on page 101

eDK Definition File on page 102

9.1 Generating eDK Code by Command Line
In addition to using the eWay Development Kit Build Tool to generate code, you can
also create eWays via the command line.

To Generate Code by Command Line:

1 Run the env.bat file located at the root level of the extracted eDK folder to set up the
implementation environment.

2 Create the eDK definition <adapter_name>.xdef file using the eWay Development
Kit Build Tool. See “Steps Required to Build an eWay” on page 18. Alternately,
you can also create a definition file manually. See “eDK Definition File” on
page 102.

An eDK definition file contains all required eWay metadata, including eWay name,
external application name, third-party jar files, operations to be exposed in Java and
BPEL Collaborations, etc.

3 Create a configuration template <adapter_name_template.xml file using the eWay
Development Kit Build Tool.

4 Run the following command from the ${env.STC_ROOT}\eways\edk\devtools
folder.

ant run -Dxmlfilename=<location_of_xdef_file>

This generates the "connectors" and "eways" folder under the output directory (as
specified in the definition file).

Choosing Your Working Directory

As an optional step, you can choose to either work from the generated output folder, or
choose a new working directory by copying the following folders:

Copy the <newEway>adapter folder, located under the connectors folder in the
output directory (as specified in the definition file) to:
eWay Development Kit User’s Guide 101 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.2
Appendix B eDK Definition File
${env.STC_ROOT}\connectors\

Copy the <newEway>adapter folder, located under the eways folder in the output
directory (as specified in the definition file) to:

${env.STC_ROOT}\eways\

9.2 eDK Definition File
The eDK definition file is an .xdef file that stores metadata information about an eWay.
In order for the eWay Development Kit Build Tool to generate eWay shell code
properly, information about the eWay needs to be gathered. This can be achieved by
either using the eWay Development Kit Build Tool, or by manually creating the eDK
definition file. This appendix discusses how to create an eDK definition file manually.

All information about the eDK definition itself, such as eDK user, version number,
revision number, date created, date modified, can be stored as attributes in the
MetaData element. Note that the eWay user does not need to populate the date
created/modified fields; this information is automatically generated in the proper date
format by the eWay Development Kit Build Tool.

The Properties element contains the following basic information needed to build an
eWay:

Eway_adapter_name (required): name of the eWay. This is used for the directory
name under connectors and eways folder.

External_application_name (required): name of the external application

Output_directory (required): output folder for the generated eWay shell code

Log_File_Name (optional): When specified, all eWay generation loggings will be
saved to this file

Resource_locations (required): This element allows the user to specify resource file
locations, namely configuration template location, and optional icon file locations.
eWay Development Kit User’s Guide 102 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.2
Appendix B eDK Definition File
Resource file locations include:

Config_template_location: file location of the configuration template.

Icon_file_location: This element allows the user to specify icon files to be used
for the eWay. Other eWay icons not specified in this element, created with the
eWay Development Kit Build Tool include:

External_app_icon: file location of the External System icon to be displayed
on eDesigner Environment and Project Explorer.

Connectivity_map_icon: file location of the External System icon to be
displayed on eDesigner Connectivity Map.

BPEL_invoke_icon: file location of the Business Activity icon to be
displayed on eInsight Business Process canvas. This icon is used for all
outbound business activities.

BPEL_receive_icon: file location of the Business Invoke Activity icon to be
displayed on eInsigh Business Process canvas. This icon will be used for all
inbound business activities.

The JCE_client_interface describes all inbound and/or outbound operations to be
exposed in SeeBeyond ICAN Java Collaboration Editor. The JCE_client_interface
allows three elements to be defined.

The Operation element defines the operation to be exposed in Java Collaboration
Editor. For each operation, it is required to define the operation name and mode. The
value of the mode attribute can be either "inbound" or "outbound". Users can also
define the description of the operation using the "description" attribute. Operation
elements allow the user to specify input, output, and exception, with following sub-
elements:

Input element: has the required name and type attributes. In case of Java
Collaboration operations, any number of inputs can be added to the operation.

Output element: has the required type attribute.

Exception element: has the required type attribute.

The Attributes element allows the user to define all attributes for a Java Collaboration
OTD. This element can hold as many attributes as the user needs to define for a JCE
OTD. Each Attribute element requires a name and type (.xml) attribute.
eWay Development Kit User’s Guide 103 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.2
Appendix B eDK Definition File
The Types element contains all user defined data types and/or user defined class
definitions. This element can hold any number of user defined types.

User_defined_data_container elements: allows users to specify only data elements.
It has the required "Element" (.xml) sub-element, which in turn has the required
"name" and "type" attributes. This definition allows the eWay Development Kit
Build Tool to generate java bean classes for each "Element" defined. The "type"
attribute can also refer to the name of another "User_defined_data_container"
element.

User_defined_class elements: allows users to specify a java class definition. It
allows the "Element" sub-element, "Attribute" subelement and "Method"
subelement. "Method" element behaves very much like the "Operation" element.
The reason for User_defined_class elements is to allow the user to specify the
"inbound OTD" type for JCE inbound operations. It is ONLY intended to be used
for an "input" type definition of a JCE inbound operation.

The BPEL_client_interface describes all inbound and/or outbound operations to be
exposed in SeeBeyond ICAN Business Process Editor. It contains very similar elements
as in JCE_client_interface. A notable difference is that only one "input" element is
allowed for any BPEL operation. Also, no "User_defined_class" element is allowed in
the "Types" element.
eWay Development Kit User’s Guide 104 SeeBeyond Proprietary and Confidential

Index
Index

Symbols
.sar file

building 40
<adapter_name>.xdef 39
<adapter_name>_template.xml 39

A
About 17
additional files created during installation 13
Alerts

adding eWay specific message codes 90
Enterprise Manager 89
installing alert code property files 91
sending 91
triggering 89
what to pass 90

Apache Ant build tool 17
AppConn client interface 49
Application class 50
ApplicationConnection class 50
ApplicationConnectionFactory class 50
attributes

creating 30

B
BPEL versus JCE user defined class files 29
Building a .sar file 40
building an eWay

creating and specifying the eWay 24
e-mail format conventions 19
licensing process 19
naming restrictions 25
obtaining a valid license 18
requesting a new license 19
requesting a reissued license 21
setting environment variables 23
starting the build tool 23
steps required 18

C
choosing a working directory 40

class files created
 EwayActivationSpec 47
ApplicationConnection 46
ClientApplication 46
EwayConnection 46
WebClientApplication 46

Classes
eDK-based 86

cleanup() method 55, 56
Client Application

sequence diagram 97
Client Connection Interface (CCI) 93
Client Interface 69
ClientApplicationImpl class 80
code generation

folders created after 41
Code Generation components called during
deployment 46
Code Generation tab

running the 38
saving work 39

code generator
running 75

Codelets 46
command line

generating code by 101
Config Template tab

deleting sections and properties 37
disabling and enabling sections 37

configuration properties
inbound 71
outbound 73

configuration template 39
defining 71

connectors filder 41
connectors folder 16, 76

alerts folder 41
appconn folder 41
ewayconn folder 42
webservice folder 42

connectors folder (src_jca15)
appconn folder 42
ewayconn folder 42

conventions, document 9
creating attributes 30
creating methods (JCE) 28
creating operations 30
creating user defined class files 29

D
date created field 26
deploying a project 85
description of eWay 25
eWay Development Kit User’s Guide 105 SeeBeyond Proprietary and Confidential

Index
destroy() method 56
document conventions 9

E
eDK definition file 39

.xdef file 102
understanding the 102

EIS connections
automatic mode 57
dynamic connection 57
establishing 57
overriding configurations 59

env.bat file 17
Environment Variables

setting 67
ESR

74717 12
78987 14

eWay
creating 68
implementing 77

eWay comments field 26
eWay components 47
eWay creation date field 26
eWay description 25
eWay Development Kit build tool

starting 67
eWay implementation environment 15
eWay interfaces

attribute 28
defining the BPEL interface 27
defining the Java interface 26
methods 28
naming restrictions 28
operation 28
user defined 28

eWay Name 25
eWay name 25
eWay version number 26
EWayConnection class 77
EwayConnection class 58
EwayConnection interface 55
eways folder 16, 41, 76

codegen 43
config 43
egategui 43
install 43
module 43
Thirdpartylib 43

external application name 25
external system sections and properties 37

G
General tab 24

change history 26
description 25
eWay Name 25
extenal applicaton name 25
Icons used in the eDK eWay 25
imported files 26
maximum icon size 25
name and description 25

getConnection() method 55
GUI code for plugging into the Enterprise Designer
45

I
ICAN versions - supported 12
icons

maximum size 25
implementation environment 17

setting up the 17
implementing and building shell code 40
Implementing XA 56

getXAResource() method 56
importing a project 65
initialize() method 55
Insallation

installing ESR 78987 14
installing sample Projects 14

Installation
directories created after 13

installation 11–14
additional files created during 13

interfaces
Application Connection 98
eWay Connection 99
eWay connection 98

J
J2EE

connector architecture 93
J2EE connector architecture 93
J2EE Connector Architecture Resource Adapter 45
J2EE resource adapter 46
Java Collaboration Wizard 45
Java naming restrictions 28
Javadoc

eWay Development Kit 86
Javadocs 14

generating 63
JCA (J2EE Connector Architecture) 7
JNI code
eWay Development Kit User’s Guide 106 SeeBeyond Proprietary and Confidential

Index
suggested conventions for writing 47

L
last modified field 26
LD_LIBRARY_PATH variable (JNI code) 48
license file 67

M
Managed Connection Factory

implementation example 51
Managed Connection Factory class 55
ManagedConnection.cleanup() method 56
matchConnection() method 55
Message-driven Bean (MDB) 46
methods

eDK-based 86
Javadoc 86

minimum monitor resolution 11
monitor resolution - minimum 11

N
naming restrictions

alphabetic letters 28
alphbetic letters 25
digit 28
digits 25

O
opening saved work 39
operating systems - supported 11
operations

creating 30

P
PATH variable (JNI code) 48
properties

inbound 71
outbound 73

R
RA framework 17

about the 17
Resource Adapter

about the 17
class diagram 95
framework 94
sequence diagram 95, 96

running the env.bat file 17

S
sample projects 65

deploying 85
importing 65
locations 65
overview 66

SAR file
building 84

SeeBeyond Application Connection (AppConn)
interface 93
shell code 40
source control

applying 62
Specifying Configuration Properties 59

Connectivity Map eWay properties 60
external system properties 61

state
maintaining and persisting 63

supported ICAN versions 12
eGate version 5.0.5, 5.0.4 12

Supported Operating Systems 11
supported operating systems 12

T
third-party .jar

wrapping 62
third-party files 26

U
Update Center

running 85

V
version 26

W
WebClientApplication class 82
writing JNI code 47
eWay Development Kit User’s Guide 107 SeeBeyond Proprietary and Confidential

	eWay Development Kit User’s Guide
	Contents
	Introducing the eWay Development Kit
	1.1 About the eWay Development Kit
	1.2 About this Document
	1.2.1 What’s in This Document
	1.2.2 Scope
	1.2.3 Intended Audience
	1.2.4 Document Conventions

	1.3 Related Documents
	1.4 SeeBeyond Web Site
	1.5 SeeBeyond Documentation Feedback

	Installing the eWay Development Kit
	2.1 System Requirements
	2.2 Supported Operating Systems
	2.2.1 Supported ICAN Versions

	2.3 Installing the eDK
	2.3.1 Directories Created After Installation
	2.3.2 Additional Files Created During Installation
	2.3.3 Installing Earlier Versions of the JDK/SDK

	2.4 Installing ESR 78987
	2.5 Installing eDK Sample Projects and Javadocs

	Using the eWay Development Kit
	3.1 Overview
	3.2 About the eWay Development Kit Build Tool
	3.3 About the eWay Implementation Environment
	3.3.1 About the Resource Adapter Framework
	3.3.2 Setting up Your Implementation Environment

	3.4 Steps Required to Build an eWay
	3.4.1 Step 1: Acquire an eDK eWay License File
	3.4.2 Licensing Process
	3.4.3 Request e-mail Format Conventions
	Requesting a New License
	Steps to Request an eDK eWay License
	Requesting a Current License to be ReIssued
	Steps to Reissue an eDK eWay License

	3.4.4 Step 2: Set the Environment Variables
	3.4.5 Step 3: Start the eWay Development Kit Build Tool
	3.4.6 Step 4: Create and Specify the New eWay
	Name and Description
	Icons
	Change History
	Imported Files

	3.4.7 Step 5: Enter the Required eWay Client Interfaces
	Defining Your eWay’s Java Interface
	Defining Your eWay’s BPEL Interface
	Creating Methods (JCE)
	Creating User Defined Class Files
	Creating Attributes
	Creating Operations
	BPEL Operations in ICAN

	3.4.8 Step 6: Define the eWay Configuration Template
	Connectivity Map Configuration Sections and Properties
	External System Sections and Properties
	Deleting Sections and Properties
	Disabling and Enabling Sections

	3.4.9 Step 7: Run the Code Generator
	Saving Your Work
	Opening Previously Saved Work
	Choosing a Working Directory

	3.4.10 Step 8: Implement and Build the Generated Shell Code
	3.4.11 Step 9: Build the .sar File

	3.5 eWay Folders Created After Shell Code Generation
	connectors Folder
	eways Folder
	3.5.1 eWay Code Created After Generation

	3.6 eWay Implementation Details
	3.7 eWay Components
	3.8 Suggested Conventions for Writing JNI Code
	3.9 Extending Third-Party Resource Adapters
	3.9.1 Providing the AppConn Client Interface
	3.9.2 Sample MCF Subclass Implementation

	eDK eWay Concepts and Best Practices
	4.1 Implementing Connection Logic to the External System
	4.1.1 Implementing XA

	4.2 Establishing Connections to the EIS
	4.2.1 Automatic Connection Establishment Mode
	4.2.2 Dynamic Connection
	Overriding Configurations at Design-time

	4.3 Specifying Configuration Properties
	4.3.1 Connectivity Map eWay Properties
	4.3.2 External System Properties

	4.4 Wrapping Third-Party .jar Files
	4.5 Source Control
	4.6 Maintaining and Persisting State in Java Collaborations
	4.7 Generating Javadocs

	Sample eDK eWay Projects
	5.1 Importing eDK Samples
	5.1.1 Importing a Sample into the eWay Development Kit Build Tool

	5.2 Creating the edkfile Sample in the Build Tool
	5.2.1 Overview
	5.2.2 Step 1: Acquire an eDK eWay License File
	5.2.3 Step 2: Set the Environment Variables
	5.2.4 Step 3: Start the eWay Development Kit Build Tool
	5.2.5 Step 4: Create and Specify the New eWay
	5.2.6 Step 5: Enter the Required eWay Interfaces
	5.2.7 Step 6: Define the eWay Configuration Template
	inbound-configuration Properties
	outbound-configuration Properties

	5.2.8 Step 7: Run the Code Generator
	5.2.9 Step 8: Implement the eWay
	5.2.10 Step 9: Build the .sar File
	5.2.11 Step 10: Upload the New eWay to the ICAN Repository
	5.2.12 Step 11: Run the Enterprise Designer Update Center
	5.2.13 Step 12: Creating, Building, and Deploying Sample Projects

	Using eDK-Based eWay Java Methods
	6.1 eWay Development Kit Javadoc
	6.1.1 eDK-Based eWay Classes and Methods
	eDK-Based eWay Classes

	Adding and Sending Custom Alert Messages
	7.1 eDK Alerts
	7.2 Adding eWay Specific Alert Message Codes
	7.2.1 Java Code Changes
	7.2.2 What to Pass for alertMsgCode and alertMsgCodeArgs
	7.2.3 Installing Alert Code Properties Files (install.xml changes)

	7.3 Sending eWay Specific Alerts

	Appendix A
	8.1 J2EE Connector Architecture Overview
	8.2 RA Framework Class Diagram
	8.3 RA Framework Sequence Diagram
	8.4 Client Application Sequence Diagram
	8.5 Application Connection Interfaces
	8.6 eWay Connection Interfaces

	Appendix B
	9.1 Generating eDK Code by Command Line
	9.2 eDK Definition File

	Index
	Symbols
	A
	B
	C
	D
	E
	G
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

