
UN/EDIFACT OTD Library
User’s Guide

Release 5.0.2
SeeBeyond Proprietary and Confidential

UN/EDIFACT OTD Library User’s Guide 2 SeeBeyond Proprietary and Confidential

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

SeeBeyond, e*Gate, e*Way, and e*Xchange are the registered trademarks of SeeBeyond Technology Corporation in the United States
and/or select foreign countries. The SeeBeyond logo, SeeBeyond Integrated Composite Application Network Suite, eGate, eWay,
eInsight, eVision, eXchange, eView, eIndex, eTL, ePortal, eBAM, and e*Insight are trademarks of SeeBeyond Technology Corporation.
The absence of a trademark from this list does not constitute a waiver of SeeBeyond Technology Corporation’s intellectual property
rights concerning that trademark. This document may contain references to other company, brand, and product names. These
company, brand, and product names are used herein for identification purposes only and may be the trademarks of their respective
owners.

© 2005 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20050401065817.

Contents
Contents

List of Figures 6

Chapter 1

Introduction 7
About This Document 7

What’s In This Document? 7
Scope 8
Intended Audience 8
Document Conventions 8
Screenshots 8
Related Documents 8

References 9

SeeBeyond Web Site 9

SeeBeyond Documentation Feedback 9

Chapter 2

Overview of the UN/EDIFACT OTD Library 11
About the UN/EDIFACT OTD Library 11

UN/EDIFACT Directory Support 12

SEF File Support 13

UN/EDIFACT Validation Support 13

UNA Segment Support 14

On Demand Parsing 14

Errors and Exceptions 15

Chapter 3

Installing the UN/EDIFACT OTDs 16
System Requirements 16

Supported Operating Systems 16
UN/EDIFACT OTD Library User’s Guide 3 SeeBeyond Proprietary and Confidential

Contents
Installing the UN/EDIFACT OTD Library 17

Increasing the Enterprise Designer Heap Size 18
Resolving Memory Errors at Enterprise Designer Startup 18

Chapter 4

Using UN/EDIFACT OTDs 19
Displaying UN/EDIFACT OTDs 19

Building UN/EDIFACT OTD Collaborations 21

Customizing the UN/EDIFACT OTDs 24

Creating UN/EDIFACT OTDs from SEF Files 25

Possible Differences in Output When Using Pass-Through 27

Chapter 5

Java Methods for UN/EDIFACT OTDs 29
Get and Set Methods 29

Setting Delimiters and Indicators 30

Available Methods 31
check 31
checkAll 31
clone 32
countxxx 32
countLoopxxx 32
getxxx 32
getAllErrors 33
getDecimalMark 33
getElementSeparator 33
getFGValidationResult 34
getICValidationResult 34
getInputSource 34
getLoopxxx 34
getMaxDataError 35
getMaxFreedSegsComsNum 35
getMaxParsedSegsComsNum 35
getMarshalUNA 36
getMsgValidationResult 36
getRelease 36
getRepetitionSeparator 37
getSegmentCount 37
getSegmentTerminator 37
getSubelementSeparator 38
getTSValidationResult 38
getUnmarshalError 38
hasxxx 39
hasLoopxxx 39
isUnmarshalComplete 39
marshal 39
marshalToBytes 40
marshalToString 40
performValidation 40
UN/EDIFACT OTD Library User’s Guide 4 SeeBeyond Proprietary and Confidential

Contents
reset 41
setxxx 41
setDecimalMark 41
setDefaultEdifactDelimiters 41
setElementSeparator 42
setLoopxxx 42
setMaxDataError 43
setMaxFreedSegsComsNum 43
setMaxParsedSegsComsNum 43
setMarshalUNA 44
setRelease 44
setRepetitionSeparator 44
setSegmentTerminator 45
setSubelementSeparator 45
unmarshal 46
unmarshalFromBytes 46
unmarshalFromString 46

Appendix A

EDFOTDErrors Schema File and Sample XML 47
Contents of the EDFOTDErrors.xsd File 47

Sample Validation Output XML 48

Index 50
UN/EDIFACT OTD Library User’s Guide 5 SeeBeyond Proprietary and Confidential

List of Figures

UN/EDIFACT OTD Library User’s Guide 6 SeeBeyond Proprietary and Confidential

List of Figures

Figure 1 Increasing Enterprise Designer Heap Size 18

Figure 2 Finding the UN/EDIFACT OTDs in Enterprise Designer 20

Figure 3 OTDs for UN/EDIFACT Directory D.01B Version 4 20

Figure 4 Selecting the Web Service 22

Figure 5 Adding Envelopes to the Collaboration 23

Figure 6 Adding OTDs to the Collaboration 24

Figure 7 Saving UN/EDIFACT OTD SEF Files 25

Figure 8 Creating UN/EDIFACT OTDs 26

Figure 9 Selecting the SEF File 26

Figure 10 Selecting the OTD Options 27

Chapter 1

Introduction

This chapter provides an overview of the this user’s guide, including its contents and
writing conventions.

What’s in This Chapter

About This Document on page 7

Related Documents on page 8

References on page 9

SeeBeyond Web Site on page 9

SeeBeyond Documentation Feedback on page 9

1.1 About This Document
The sections below provide information about this document, such as an overview of
its contents, scope, and intended audience.

1.1.1 What’s In This Document?
This guide contains the following information:

Chapter 1, “Introduction”, provides a preview of this document, its purpose,
scope, and organization.

Chapter 2, “Overview of the UN/EDIFACT OTD Library”, provides an overview
of the UN/EDIFACT OTD Library as well as its support for UN/EDIFACT
directories, SEF file versions, validation, and the UNA segment.

Chapter 3, “Installing the UN/EDIFACT OTDs”, describes how to install UN/
EDIFACT OTDs, the SEF OTD wizard, and the UN/EDIFACT OTD Library
documentation.

Chapter 4, “Using UN/EDIFACT OTDs”, describes how to display and customize
OTDs, and how to build Collaborations with UN/EDIFACT OTDs.

Chapter 5, “Java Methods for UN/EDIFACT OTDs”, provides the syntax for the
Java methods provided with the UN/EDIFACT OTDs.

Appendix A, “EDFOTDErrors Schema File and Sample XML”, provides the
EDFOTDErrors schema file and a sample validation output XML.
UN/EDIFACT OTD Library User’s Guide 7 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.1
Introduction About This Document
1.1.2 Scope
This document describes the UN/EDIFACT OTD library, how to install it, and how to
use it with eGate Integrator. For detailed information about eGate-specific procedures,
refer to the eGate Integrator User’s Guide. If you are using the OTD library with
eXchange, refer to the eXchange Integrator User’s Guide for eXchange-specific
procedures.

1.1.3 Intended Audience
This document provides information for those who are designing, deploying, and
managing ICAN Projects that use UN/EDIFACT OTDs. This document assumes that
you are familiar with eGate-specific procedures.

1.1.4 Document Conventions
The following conventions are observed throughout this document.

1.1.5 Screenshots
Depending on what products you have installed, and how they are configured, the
screenshots in this document may differ from what you see on your system.

1.1.6 Related Documents
The following SeeBeyond documents provide additional information about the
SeeBeyond ICAN Suite:

SeeBeyond ICAN Suite Installation Guide

eGate Integrator User’s Guide

Table 1 Document Conventions

Text Convention Example

Names of buttons, files,
icons, parameters, variables,
methods, menus, and objects

Bold text Click OK to save and close.
From the File menu, select Exit.
Select the logicalhost.exe file.
Enter the timeout value.
Use the getClassName() method.
Configure the Inbound File eWay.

Command line arguments,
code samples

Fixed font. Variables are
shown in bold italic.

bootstrap -p password

Hypertext links Blue text See Document Conventions on
page 8

Hypertext links for Web
addresses (URLs) or email
addresses

Blue underlined text http://www.seebeyond.com
docfeedback@seebeyond.com
UN/EDIFACT OTD Library User’s Guide 8 SeeBeyond Proprietary and Confidential

http://www.seebeyond.com
mailto:docfeedback@seebeyond.com

Chapter 1 Section 1.2
Introduction References
eGate Integrator JMS Reference Guide

eGate Integrator System Administrator Guide

eGate Integrator Deployment Guide

eXchange Integrator User’s Guide

eXchange Integrator Designer’s Guide

eInsight Business Process Manager User’s Guide

UN/EDIFACT Manager Composite Application User’s Guide

1.2 References
The following resources provide additional information about the UN/EDIFACT
protocol:

The United Nations Economic Commission of Europe (UN/ECE) is one of the five
regional commissions of the United Nations. The UN/ECE Web site contains
technical information concerning rules, standards, recent UN/EDIFACT directories,
syntax, and so on.

http://www.unece.org/trade/untdid/welcome.htm

UN/EDIFACT publishes the messages for each version separately from the
envelopes (header and trailer segments) that are used with those messages.

The messages are published at:

http://www.gefeg.com/en/standard/edifact/index.htm

The envelopes are published at:

http://www.gefeg.com/jswg/

1.3 SeeBeyond Web Site
The SeeBeyond Web site is your best source for up-to-the-minute product news and
technical support information. The site’s URL is:

http://www.seebeyond.com

1.4 SeeBeyond Documentation Feedback
We appreciate your feedback. Please send any comments or suggestions regarding this
document to:

docfeedback@seebeyond.com
UN/EDIFACT OTD Library User’s Guide 9 SeeBeyond Proprietary and Confidential

http://www.gefeg.com/jswg/
http://www.seebeyond.com
http://www.unece.org/trade/untdid/welcome.htm
http://www.gefeg.com/en/standard/edifact/index.htm
mailto:docfeedback@seebeyond.com

Chapter 1 Section 1.4
Introduction SeeBeyond Documentation Feedback
UN/EDIFACT OTD Library User’s Guide 10 SeeBeyond Proprietary and Confidential

Chapter 2

Overview of the UN/EDIFACT OTD Library

This chapter provides an overview of the UN/EDIFACT OTD Library as well as its
support for UN/EDIFACT directory versions, SEF file versions, validation, and the
UNA segment.

What’s in This Chapter

About the UN/EDIFACT OTD Library on page 11

UN/EDIFACT Directory Support on page 12

SEF File Support on page 13

UN/EDIFACT Validation Support on page 13

UNA Segment Support on page 14

On Demand Parsing on page 14

Errors and Exceptions on page 15

2.1 About the UN/EDIFACT OTD Library
The United Nations/Electronic Data Interchange (UN/EDIFACT) for Administration,
Commerce and Transport protocol was developed for the electronic exchange of
machine-readable information between businesses.

The UN/EDIFACT Working Group (EWG) develops, maintains, interprets, and
promotes the use of the UN/EDIFACT standard.

UN/EDIFACT messages are structured according to very strict rules. Messages are in
ASCII format. The standard defines all these message elements, their sequence, and
also their grouping.

UN/EDIFACT publishes the messages for each version separately from the envelopes
(header and trailer segments) that are used with those messages.

The messages are available online at:

http://www.gefeg.com/en/standard/edifact/edifact.htm

The envelopes are available online at:

http://www.gefeg.com/jswg/
UN/EDIFACT OTD Library User’s Guide 11 SeeBeyond Proprietary and Confidential

http://www.gefeg.com/en/standard/edifact/edifact.htm
http://www.gefeg.com/jswg/

Chapter 2 Section 2.2
Overview of the UN/EDIFACT OTD Library UN/EDIFACT Directory Support
A new version of UN/EDIFACT messages is released several times a year, containing
most of the messages in the previous version, plus any new messages that have been
approved by the standards organization. The envelopes are updated with a new
version infrequently.

UN/EDIFACT messages have a message structure, which indicates how data elements
are organized and related to each other for a particular EDI transaction. In the ICAN
Suite, message structures are defined as OTDs. Each OTD consists of the following:

Physical hierarchy

The predefined way in which envelopes, segments, and data elements are
organized to describe a particular UN/EDIFACT EDI transaction.

Delimiters

The specific predefined characters that are used to mark the beginning and end of
envelopes, segments, and data elements.

Properties

The characteristics of a data element, such as the length of each element, default
values, and indicators that specify attributes of a data element—for example,
whether it is required, optional, or repeating.

The message level structure of an invoice that is sent from one trading partner to
another defines the header, trailer, segments, and data elements required by invoice
transactions. The UN/EDIFACT OTD Library for a specific version includes message
level structures for each of the transactions available in that version. You can use these
structures as provided, or customize them to suit your business needs.

eGate Integrator uses OTDs based on UN/EDIFACT message structures to verify that
the data in the messages coming in or going out is in the correct format. There is a
message structure for each UN/EDIFACT transaction.

The list of transactions provided is different for each version of UN/EDIFACT.

The UN/EDIFACT OTD Library provides UN/EDIFACT OTDs that you can use to
build ICAN Projects for interfacing with UN/EDIFACT systems. You can use the OTDs
standalone with eGate Integrator or in combination with eXchange Integrator, eGate
Integrator, and the UN/EDIFACT Manager Composite Application.

2.2 UN/EDIFACT Directory Support
The UN/EDIFACT OTD Library provides OTDs for the following UN/EDIFACT
directories:

D.01A and B

D.00A and B

D.99A and B

D.98A and B

D.97A and B
UN/EDIFACT OTD Library User’s Guide 12 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.3
Overview of the UN/EDIFACT OTD Library SEF File Support
D.96A and B

D.95A and B

2.3 SEF File Support
The UN/EDIFACT OTD Library support SEF versions 1.5 and 1.6 when the SEF OTD
wizard is used to build custom OTDs. For more information about the SEF OTD
wizard, refer to “Creating UN/EDIFACT OTDs from SEF Files” on page 25.

The SEF OTD wizard does not handle the following information and sections:

In the .SEMREFS section, semantic rules with its type of the “exit routine” are
ignored as per SEF specification. An exit routine specifies an external routine (such
as a COM-enabled server program supporting OLE automation) to run for
translators or EDI data analyzers.

The .TEXT sections (including subsections such as .TEXT,SETS, .TEXT,SEGS,
.TEXT,COMS, .TEXT,ELMS, .TEXT,SEGS) are ignored due to the fact that these
sections store information about changes in a standard's text, such as notes,
comments, names, purposes, descriptions, titles, semantic notes, explanations, and
definitions.

2.4 UN/EDIFACT Validation Support
Within each UN/EDIFACT OTD are Java methods and Java bean nodes for handling
validation (see “performValidation” on page 40). The marshal and unmarshal methods
of the envelope OTDs handle enveloping and de-enveloping (see “marshal” on page 39
and “unmarshal” on page 46). No pre-built translations are supplied with the OTD
libraries; these can be built in the Java Collaboration Editor.

EDIFACT OTDs have validations and translations, but a validation does not generate
an acknowledgment transaction. Instead, it generates a string.

The output String of the validation (see “check” on page 31 and “checkAll” on
page 31) is in XML format conforming to the EDFOTDErrors.xsd file. Refer to
“Contents of the EDFOTDErrors.xsd File” on page 47 for more information. For a
sample of the validation output XML, refer to “Sample Validation Output XML” on
page 48.

Note: Currently the segment syntax error code (SegmSyntErroCode) and data element
syntax error code (DataElemSyntErroCode) use the same codes as the X12 protocol.
UN/EDIFACT OTD Library User’s Guide 13 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
Overview of the UN/EDIFACT OTD Library UNA Segment Support
2.5 UNA Segment Support
All UN/EDIFACT messages have a UNA segment (service string advice). It is used to
send delimiter and indicator characters. The UNA segment is optional per the UN/
EDIFACT specification.

The string has a mandatory fixed length of 9 characters. The first three are “UNA,”
immediately followed by the 6 characters as defined in ISO 9735.

The UNA segment template is a fixed length with segment ID = UNA, followed by 6
one-byte fields. Each field specifies a separator or other service character. For more
information, refer to “Setting Delimiters and Indicators” on page 30.

The OTD Library provides the getmarshalUNA() method to UN/EDIFACT OTD top
“outer” level with its Java type of java.lang.Boolean. For information, refer to
“getMarshalUNA” on page 36.

If its value is java.lang.Boolean.TRUE, then UNA segment data is always included
in the output message.

If its value is java.lang.Boolean.FALSE, then UNA segment data is never included
in the output message.

If its value is null (or user never sets its value), then inclusion of UNA segment data
in the output message is based on the following:

If any delimiter values are set through UNA segment object, the UNA segment data is
included in the output message regardless of default or non-default delimiters are
used. Otherwise,

If non-default delimiters are used, then UNA segment data is included in the
output message.

If default delimiters are used, then UNA segment data is not included in the output
message.

2.6 On Demand Parsing
For performance enhancement reasons, the unmarshal() method does not unmarshal
the entire message. Instead, it does the following:

Unmarshals the incoming message at the segment and composite level. In other
words, the OTD checks for all relevant segments and composites and reports any
missing or extra segments or composites.

Reports trailing delimiter for elements and composites.

This is also referred to as “parse on demand,” meaning that elements within a segment
or composite are not unmarshaled until an element in that segment or composite is
accessed in the Collaboration using a getxxx() method. The OTD may assigned
unmarshaled segments and composites to a pool that is ready to be freed from memory
by the Java Virtual Machine (JVM). Once these segments or composites are freed from
UN/EDIFACT OTD Library User’s Guide 14 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.7
Overview of the UN/EDIFACT OTD Library Errors and Exceptions
memory, they become unparsed. If the element within segment or composite is
accessed again, the OTD reparses the segment or composite.

By default, UN/EDIFACT OTDs set no limit of parsed segments or composites held in
memory. You can specify a limit for parsed and freed segments or composited by using
the following methods at the OTD root levels:

setMaxParsedSegsComsNum() method (“setMaxParsedSegsComsNum” on
page 43

setMaxFreedSegsComsNum() method (“setMaxFreedSegsComsNum” on page 43)

You can use these methods to set and control the runtime memory use of the
unmarshaling process.

2.7 Errors and Exceptions
For all UN/EDIFACT OTDs, including the two envelope OTDs, if the incoming
message cannot be parsed (for example, if the OTD cannot find the UNB segment), then
the unmarshal() method generates a com.stc.otd.runtime.UnmarshalException.

You can also use the isUnmarshalComplete() method to learn whether unmarshal()
executed without reporting any errors. Successful completion does not guarantee that
the OTD instance is free of unmarshal exceptions within segments, however, since
elements are not unmarshaled until the first getElementXxxx() method of a segment is
encountered (see “On Demand Parsing” on page 14). Encountering this triggers an
automatic background unmarshal of the entire segment. Note that the value returned
by isUnmarshalComplete() is not influenced by the outcome of the automatic
background unmarshal; instead, its value reflects what was set by the explicit
invocation of the unmarshal() method.
UN/EDIFACT OTD Library User’s Guide 15 SeeBeyond Proprietary and Confidential

Chapter 3

Installing the UN/EDIFACT OTDs

This chapter describes how to install UN/EDIFACT OTDs, the SEF wizard, and the
UN/EDIFACT OTD Library documentation.

What’s in This Chapter

System Requirements on page 16

Supported Operating Systems on page 16

Installing the UN/EDIFACT OTD Library on page 17

Increasing the Enterprise Designer Heap Size on page 18

3.1 System Requirements
Each UN/EDIFACT OTD .sar file requires from 10 MB to 35 MB disk space; the
combined disk space required to load all .sar files (v3 and v4 of D.95A through D.01B) is
approximately 645 MB.

Due to the size of the UN/EDIFACT OTDs, it is recommended that you increase the
heap size property of the Enterprise Designer. For information, refer to “Increasing the
Enterprise Designer Heap Size” on page 18.

Other than that, the system requirements for the UN/EDIFACT OTD Library are the
same as those for eGate Integrator and eInsight Business Process Manager. For
information, refer to the SeeBeyond ICAN Suite Installation Guide.

3.2 Supported Operating Systems
The UN/EDIFACT OTD Library is available for the following operating systems:

Windows XP, Windows 2000, and Windows Server 2003

HP Tru64 V5.1A

HP-UX 11.0, 11i (PA-RISC), and 11i v2.0 (11.23)

IBM AIX 5.1L and 5.2

Red Hat Enterprise Linux Advanced Server 2.1 (Intel x86)
UN/EDIFACT OTD Library User’s Guide 16 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Installing the UN/EDIFACT OTDs Installing the UN/EDIFACT OTD Library
Red Hat Linux 8 (Intel x86)

Sun Solaris 8 and 9

3.3 Installing the UN/EDIFACT OTD Library
During the UN/EDIFACT OTD Library installation process, the Enterprise Manager, a
Web-based application, is used to select and upload products as .sar files from the
ICAN Suite installation CD-ROM to the Repository.

The installation process includes the following steps:

Installing the Repository

Uploading products to the Repository

Downloading components (such as Enterprise Designer and Logical Host)

Viewing product information home pages

Follow the instructions for installing the eGate Integrator in the SeeBeyond ICAN Suite
Installation Guide, and include the steps below to install the UN/EDIFACT OTDs. You
must have uploaded a license.sar to the ICAN Repository that includes a license for the
UN/EDIFACT OTD Library.

To install the UN/EDIFACT OTD Library

1 After uploading the eGate.sar or eInsightESB.sar file to the ICAN Repository,
select and upload the items below as described in the SeeBeyond ICAN Suite
Installation Guide:

The .sar file for the OTDs to be used, for example
UN_EDIFACT_OTD_Lib_v3_D00A.sar (to install version 3 of the D.00A user
directory)

UN_EDIFACT_OTD_Docs.sar (to install the user’s guide)

SEF_OTD_Wizard.sar (to install the SEF OTD wizard from Products CD 3 to be
able to build SEF OTDs)

2 Click the DOCUMENTATION page, click UN/EDIFACT OTD Library in the left
pane, and click UN/EDIFACT OTD Library User’s Guide to download the
documentation in PDF form.

3 Start (or restart) the Enterprise Designer, and click Update Center on the Tools
menu. The Update Center shows a list of components ready for updating.

4 Click Add All (the button with a doubled chevron pointing to the right). All
modules move from the Available/New pane to the Include in Install pane.

5 Click Next and, in the next window, click Accept to accept the license agreement.

6 When the progress bars indicate the download has ended, click Next.

7 Review the certificates and installed modules, and then click Finish.

8 When prompted to restart Enterprise Designer, click OK.
UN/EDIFACT OTD Library User’s Guide 17 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Installing the UN/EDIFACT OTDs Increasing the Enterprise Designer Heap Size
3.4 Increasing the Enterprise Designer Heap Size
Due to the size of the UN/EDIFACT OTDs, you may need to increase the heap size
property of the Enterprise Designer. If the heap size is not increased, out of memory
errors may occur.

To increase the Enterprise Designer heap size

1 On the Tools menu in Enterprise Designer, click Options. The Options Setup
dialog box appears.

2 Set the configured heap size for the Enterprise Designer, OTD Tester, and JCE Tester
to no less than 512 MB, and click OK.

Figure 1 Increasing Enterprise Designer Heap Size

3 Restart Enterprise Designer.

3.4.1 Resolving Memory Errors at Enterprise Designer Startup
If an out of memory error occurs at Enterprise Designer startup, change the setting in
the heapSize.bat file. This file is resides in the folder ICAN_Suite\edesigner\bin,
where ICAN_Suite is the folder where eGate Integrator is installed.

Open the file with a text editor, and change the heap size settings to no less than 512
MB. Save the file, and restart the Enterprise Designer.
UN/EDIFACT OTD Library User’s Guide 18 SeeBeyond Proprietary and Confidential

Chapter 4

Using UN/EDIFACT OTDs

This chapter describes how you use UN/EDIFACT OTDs provided in the UN/
EDIFACT OTD Library, such as customizing OTDs and building UN/EDIFACT
Collaborations.

What’s in This Chapter

Displaying UN/EDIFACT OTDs on page 19

Building UN/EDIFACT OTD Collaborations on page 21

Customizing the UN/EDIFACT OTDs on page 24

Possible Differences in Output When Using Pass-Through on page 27

4.1 Displaying UN/EDIFACT OTDs
After installing the UN/EDIFACT OTDs, you can view the OTDs in the OTD Editor as
described below.

To display UN/EDIFACT OTDs

1 In the Project Explorer tab of Enterprise Designer, expand the following folders:

SeeBeyond

OTD Library

EDIFACT

The Project Explorer tab displays the Envelope, v3 and/or v4 folders depending on
the OTDs installed.
UN/EDIFACT OTD Library User’s Guide 19 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
Using UN/EDIFACT OTDs Displaying UN/EDIFACT OTDs
Figure 2 Finding the UN/EDIFACT OTDs in Enterprise Designer

The v3 folder include OTDs for UN/EDIFACT version 3, and the v4 folder includes
OTDs for UN/EDIFACT version 4.

2 Expand the v3 or v4 folder. The folder displays the installed OTDs per UN/
EDIFACT directory, for example D01B.

Figure 3 OTDs for UN/EDIFACT Directory D.01B Version 4
UN/EDIFACT OTD Library User’s Guide 20 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Using UN/EDIFACT OTDs Building UN/EDIFACT OTD Collaborations
The Project Explorer tab displays the OTDs available for the UN/EDIFACT directory
folder selected. The table below described the OTD naming conventions.

The folder also includes a Metadata folder, which holds the SEF files for the OTDs. You
can use the SEF files to customize the OTD as described in Customizing the UN/
EDIFACT OTDs on page 24.

4.2 Building UN/EDIFACT OTD Collaborations
This section describes how you build Java Collaborations that use the UN/EDIFACT
OTDs provided in the UN/EDIFACT OTD Library.

To customize the OTDs before building the Collaboration, refer to “Customizing the
UN/EDIFACT OTDs” on page 24.

Before you can build the Collaboration, you must have installed the .sar file for the
particular OTD to be used. For information, see “Installing the UN/EDIFACT OTD
Library” on page 17.

To build UN/EDIFACT OTD Collaborations

1 In the Project Explorer tab of Enterprise Designer, right-click the Project for which
you want to create a Collaboration, click New, and click Collaboration Definition
(Java). The Collaboration Definition Wizard dialog box appears.

2 Enter the name of the Collaboration and click Next. The Select Web Service
Operation page appears.

3 Select to the Web service to be used for this Collaboration, for example,
SeeBeyond > eGate > JMS > receive, and click Next.

Table 2 OTD Naming Convention

eDF_ Abbreviation of the protocol name

v3_ UN/EDIFACT version 3

v4_ UN/EDIFACT version 4

D00A_ UN/EDIFACT directory

APERAK_ Abbreviation of the message name

_Full Fully enveloped OTD version that includes the inner and
outer envelopes
UN/EDIFACT OTD Library User’s Guide 21 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Using UN/EDIFACT OTDs Building UN/EDIFACT OTD Collaborations
Figure 4 Selecting the Web Service

The Select OTDs page appears.

4 To use envelopes OTDs, under Look In, navigate to the envelopes by double-
clicking the folders below. If the Collaboration does not use enveloping, continue
with step 6.

SeeBeyond

OTD Library

EDIFACT

Envelopes

The Look In area displays the envelope OTDs.

5 Double-click the envelope(s) to be used. This adds the envelopes under Selected
OTDs.
UN/EDIFACT OTD Library User’s Guide 22 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Using UN/EDIFACT OTDs Building UN/EDIFACT OTD Collaborations
Figure 5 Adding Envelopes to the Collaboration

6 Under Look In, navigate to the OTDs by double-click the following folders:

SeeBeyond > OTD Library > EDIFACT > v3 or v4

Folder indicating the UN/EDIFACT directory, such as D01B

The Look In area displays the OTDs for the selected UN/EDIFACT directories. The
table below describes the naming convention for the OTDs.

7 Double-click the OTDs to be used. This adds the OTDs under Selected OTDs.

Table 3 OTD Naming Convention

eDF_ Abbreviation of the protocol name

v3_ UN/EDIFACT version 3

v4_ UN/EDIFACT version 4

D00A_ UN/EDIFACT directory

APERAK_ Abbreviation of the transaction name

_Full Fully enveloped OTD version that includes the inner and
outer envelopes
UN/EDIFACT OTD Library User’s Guide 23 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Using UN/EDIFACT OTDs Customizing the UN/EDIFACT OTDs
Figure 6 Adding OTDs to the Collaboration

8 Click Finish. The Collaboration appears in the Collaboration Editor. You can now
use the eGate and OTD methods to build the business logic for the Collaboration.
For information about the UN/EDIFACT OTD methods, refer to Java Methods for
UN/EDIFACT OTDs on page 29.

4.3 Customizing the UN/EDIFACT OTDs
OTDs provided in the OTD Library cannot be customized. However, the OTD Library
provides the SEF files to allow you to modify the file and then rebuild it. You can then
rebuild the OTD with the customized SEF file as described in the following section. The
procedure below describes how to save the SEF files locally for editing.

To customize UN/EDIFACT OTDs

1 In the Project Explorer tab of Enterprise Designer, expand the following folders:

SeeBeyond > OTD Library > EDIFACT > v3 or v4

Folder indicating the UN/EDIFACT directory, such as D01B

Metadata

The metadata folder displays the SEF files available.
UN/EDIFACT OTD Library User’s Guide 24 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Using UN/EDIFACT OTDs Creating UN/EDIFACT OTDs from SEF Files
Figure 7 Saving UN/EDIFACT OTD SEF Files

2 Right-click the SEF file to be customized and click Export. The Save As dialog box
appears.

3 Select a location for the SEF file and click Save.

4 Use a SEF editor to customize the file.

5 Use the SEF OTD wizard to rebuild the OTD as described in the next section.

4.4 Creating UN/EDIFACT OTDs from SEF Files
This section describes how you create UN/EDIFACT OTDs using SEF files. The UN/
EDIFACT OTD Library includes the SEF files for the OTDs to allow you to customize
the OTD as described in the section above. Once you have tailored the SEF file to your
business requirements, you can then use the procedure below to recreate the OTD.

To create OTDs from SEF files, you use the SEF OTD wizard to build the OTD using
selected SEF files. The SEF OTD wizard is packaged separately from the OTD Library,
so make sure that you uploaded the SEF_OTD_Wizard.sar to the ICAN Repository,
and used the Update Center in Enterprise Designer to install it. For information, refer
to “Installing the UN/EDIFACT OTD Library” on page 17.

To create UN/EDIFACT OTDs from SEF files

1 In the Explorer tab of the Enterprise Designer, right click the Project, click New, and
click Object Type Definition. The New Object Type Definition dialog box
appears.
UN/EDIFACT OTD Library User’s Guide 25 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Using UN/EDIFACT OTDs Creating UN/EDIFACT OTDs from SEF Files
Figure 8 Creating UN/EDIFACT OTDs

2 Click SEF and click Next. The Select SEF File(s) page appears.

3 In the Look In box, navigate to the folder where the SEF file for this OTD resides,
and then double-click the SEF file. This adds the file to the selection box as shown
below.

Figure 9 Selecting the SEF File

4 Click Next. The Select OTD Options page appears.
UN/EDIFACT OTD Library User’s Guide 26 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.5
Using UN/EDIFACT OTDs Possible Differences in Output When Using Pass-Through
Figure 10 Selecting the OTD Options

5 To include the inner and outer envelopes, select the Include Outer and Inner
Envelopes option.

6 To use local codes for segment IDs, select the Segment IDs Using Local Codes
option and enter the code.

7 To avoid the OTD using interfaces for date and time types, select the Do Not Use
Interfaces for Date and Time Types option.

8 Click Finish. The OTD Editor appears, displaying the OTD.

4.5 Possible Differences in Output When Using Pass-
Through

If you are using pass-through, the output file contains essentially the same data as the
input file.

Certain differences in output, based on variations in acceptable interpretation of the
information, are acceptable, provided that the data conforms to the formats specified
for the elements. For example:

If the input file includes a six-digit date, the output file might represent this as an
eight-digit value. For example, 040715 in the input file might be represented as
20040705 in the output file.

The number of trailing zeros after a decimal point might vary. For example, an
input value of 10.000 might be represented as 10 in the output file.
UN/EDIFACT OTD Library User’s Guide 27 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.5
Using UN/EDIFACT OTDs Possible Differences in Output When Using Pass-Through
The reason these changes occur is that, during pass-through, certain data fields are
parsed and stored as Java objects other than strings; for example, Date or Double.

The actual value of all the information must remain the same.
UN/EDIFACT OTD Library User’s Guide 28 SeeBeyond Proprietary and Confidential

Chapter 5

Java Methods for UN/EDIFACT OTDs

This chapter describes the Java methods available for UN/EDIFACT OTDs.

What’s in This Chapter

Get and Set Methods on page 29

Setting Delimiters and Indicators on page 30

Available Methods on page 31

5.1 Get and Set Methods
The OTDs in the UN/EDIFACT OTD Library contain the Java methods that enable you
to set and get the delimiters, which in turn extend the functionality of the UN/
EDIFACT OTD Library.

The following get and set methods are available under the root node and at the
xxx_Outer, xxx_Inner, and xxx levels:

getDecimalMark on page 33 and setDecimalMark on page 41

setDefaultEdifactDelimiters on page 41

getElementSeparator on page 33 and setElementSeparator on page 42

getFGValidationResult on page 34

getICValidationResult on page 34

getInputSource on page 34

getMaxDataError on page 35 and setMaxDataError on page 43

getMaxFreedSegsComsNum on page 35 and setMaxFreedSegsComsNum on
page 43

getMaxParsedSegsComsNum on page 35and setMaxParsedSegsComsNum on
page 43

getMarshalUNA on page 36 and setMarshalUNA on page 44

getMsgValidationResult on page 36

getRelease on page 36 and setRelease on page 44

getRepetitionSeparator on page 37 and setRepetitionSeparator on page 44
UN/EDIFACT OTD Library User’s Guide 29 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Java Methods for UN/EDIFACT OTDs Setting Delimiters and Indicators
getSegmentCount on page 37

getSegmentTerminator on page 37 and setSegmentTerminator on page 45

getSubelementSeparator on page 38 and setSubelementSeparator on page 45

getTSValidationResult on page 38

getUnmarshalError on page 38

The following methods are available from the loop elements:

getLoopxxx on page 34 and setLoopxxx on page 42

getSegmentCount on page 37

Note: The get and set methods are automatically generated from the bean nodes. On
occassion, this means get and set methods may be available that are not beneficial,
such as setFGValidationResult.

5.2 Setting Delimiters and Indicators
The OTDs must include some way for delimiters to be defined so that they can be
mapped successfully from one OTD to another. The UN/EDIFACT delimiters are as
follows:

Data element separator (default is a plus sign)

Subelement separator/component element separator (default is a colon)

Repetition separator (default is an asterisk)

Segment terminator (default is a single quote)

When unmarshaling inbound messages, the UN/EDIFACT OTD uses delimiters
specified in the UNA segment when that segment is present. If the segment is absent,
the OTD uses the default industrial standard delimiters. It is unnecessary to specify
delimiters for incoming messages.

For outbound messages using UN/EDIFACT OTDs, you can specify delimiters in two
ways:

1 You can set the delimiter and indicator charactersfrom the corresponding elements
within the UNB segment. For more information, refer to “UNA Segment Support”
on page 14.

2 You can set the delimiters in the Java Collaboration Editor using the methods or
bean nodes that are provided in the OTDs. Use the following methods to specify
delimiters and indicators:

setDecimalMark on page 41

setDefaultEdifactDelimiters on page 41

setElementSeparator on page 42

setRelease on page 44
UN/EDIFACT OTD Library User’s Guide 30 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Java Methods for UN/EDIFACT OTDs Available Methods
setSegmentTerminator on page 45

setSubelementSeparator on page 45

setRepetitionSeparator on page 44

setSubelementSeparator on page 45)

If the input data is already unmarshaled into an UN/EDIFACT OTD, you can use the
get methods to retrieve the delimiters from the input data. If the Collaboration puts the
data into UN/EDIFACT format, you can use the set methods to set the delimiters in the
output OTD. See “Get and Set Methods” on page 29.

5.3 Available Methods
This section describes the signature and description for each available UN/EDIFACT
OTD method.

check

Signature

public java.lang.String[] check()

Description

Validates the content of the OTD data tree at runtime and returns a string array of
validation errors for the message body only; validation errors for envelope segments
are not included. To include envelope segments, see the checkAll() method below.

The method returns null if there are no validation errors.

Exceptions

None.

checkAll

Signature

public java.lang.String[] checkAll()

Description

Validates the content of the OTD data tree at runtime and returns a string array of
validation errors for the message body and the envelope segments. The checkAll()
method is only available for fully enveloped OTDs.

The method returns null if there are no validation errors.

Exceptions

None.
UN/EDIFACT OTD Library User’s Guide 31 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Java Methods for UN/EDIFACT OTDs Available Methods
clone

Signature

public java.lang.Object clone()

Description

Creates and returns a copy of this OTD instance.

Exceptions

java.lang.CloneNotSupportedException

countxxx

Signature

public int countxxx()

where xxx is the bean name for repeatable nodes.

Description

Counts the repetitions of the node at runtime.

Exceptions

None.

countLoopxxx

Signature

public int countLoopxxx()

where xxx is the bean node for a repeatable segment loop.

Description

Counts the repetitions of the loop at runtime.

Exceptions

None.

getxxx

Signature

public item getxxx()

where xxx is the bean name for the node and where item is the Java type for the node.

public item[] getxxx()

where xxx is the bean name for the repeatable node and where item[] is the Java type for
the node.
UN/EDIFACT OTD Library User’s Guide 32 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Java Methods for UN/EDIFACT OTDs Available Methods
Description

Returns the node object or the object array for the node.

Exceptions

None.

getAllErrors

Signature

public java.lang.String[] getAllErrors()

Description

Returns all the validation errors as a string array. These validation errors include errors
encountered during unmarshaling input data and the validation results from both the
message and the envelope segments.

Exceptions

None.

getDecimalMark

Signature

public char getDecimalMark()

Description

Returns the decimal mark.

Exceptions

None.

getElementSeparator

Signature

public char getElementSeparator()

Description

Gets the elementSeparator character.

Exceptions

None.

Example

com.stc.edifact_v3_d95B.EDF_..._...Outer myOTD=new com.stc.edifact_v3
d95B.EDF..._Outer();
......
......
char elmSep=myOTD.getElementSeparator();
UN/EDIFACT OTD Library User’s Guide 33 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Java Methods for UN/EDIFACT OTDs Available Methods
getFGValidationResult

Signature

public com.stc.otd.runtime.edi.FGError[] getFGValidationResult()

Description

Returns the validation errors for the functional group envelope in the format of an
FGError array. This method is available only at the Outer and Inner root levels of fully-
evenloped OTDs.

Exceptions

None.

getICValidationResult

Signature

public com.stc.otd.runtime.edi.ICError[] getICValidationResult()

Description

Returns the validation errors for the interchange envelope in the format of an ICError
array. This method is available only at the Outer and Inner root levels of fully-
evenloped OTDs.

Exceptions

None.

getInputSource

Signature

public byte[] getInputSource()

Description

Returns the byte array of the original input data source.

Exceptions

None.

getLoopxxx

Signature

public item getLoopxxx()

where Loopxxx is the bean name for the segment loop and where item is the Java type
for the segment loop.

public item[] getLoopxxx()
UN/EDIFACT OTD Library User’s Guide 34 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Java Methods for UN/EDIFACT OTDs Available Methods
where Loopxxx is the bean name for the repeatable segment loop and where item[] is the
Java type for the repeatable segment loop.

Description

Returns the segment loop object or the object array for the segment loop.

Exceptions

None.

getMaxDataError

Signature

public int getMaxDataError()

Description

Returns the maximum number of message validation errors held in the
msgValidationResult bean node. If this method returns -1 there is no limit of how many
errors can be reported.

Exceptions

None.

getMaxFreedSegsComsNum

Signature

public int getMaxFreedSegsComsNum()

Description

Returns the maximum number of segment and composite objects marked to be freed
from memory.

Exceptions

None.

getMaxParsedSegsComsNum

Signature

public int getMaxParsedSegsComsNum()

Description

Returns the maximum number of segments and composite objects to be parsed.

Exceptions

None.
UN/EDIFACT OTD Library User’s Guide 35 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Java Methods for UN/EDIFACT OTDs Available Methods
getMarshalUNA

Signature

public java.long.Boolean getMarshalUNA()

Description

Returns the Boolean value to indicate whether or not the UNA segment is to be
marshaled. This method is only available at the top “outer” level of the OTD.

if the return value is java.lang.Boolean.TRUE, then UNA segment data is always
included in the output message.

if the return value is java.lang.Boolean.FALSE, then UNA segment data is never
included in the output message.

if the return value is null (or user never sets its value), then inclusion of UNA
segment data in the output message is based on the following:

If any delimiter values are set through UNA segment object, the UNA segment data is
included in the output message regardless of default or non-default delimiters are
used. Otherwise,

if non-default delimiters are used, then UNA segment data is included in the output
message.

if default delimiters are used, then UNA segment data is not included in the output
message.

Exceptions

None.

getMsgValidationResult

Signature

public com.stc.otd.runtime.check.sef.DataError[]
getMsgValidationResult()

Description

Returns the validation errors for the message body. Use this method after the
performValidation() method. For information, refer to “performValidation” on page 40.

This method method is available at the Outer, Inner, and message root levels of fully-
enveloped OTDs. It is also available at the top root level of non-enveloped OTDs.

Exceptions

None.

getRelease

Signature

public char getRelease()
UN/EDIFACT OTD Library User’s Guide 36 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Java Methods for UN/EDIFACT OTDs Available Methods
Description

Returns the release character.

Exceptions

None.

getRepetitionSeparator

Signature

public char getRepetitionSeparator()

Description

Returns the repetition separator character.

Exceptions

None.

Examples

com.stc.edifact_v3_d95B.EDF_..._...Outer myOTD=new com.stc.edifact_v3
d95B.EDF..._Outer();
......
......
char repSep=myOTD.getRepetitionSeparator();

getSegmentCount

Signature

public int getSegmentCount()

Description

Returns the segment count at the current level.

Exceptions

None.

getSegmentTerminator

Signature

public char getSegmentTerminator()

Description

Returns the segment terminator character.

Exceptions

None.
UN/EDIFACT OTD Library User’s Guide 37 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Java Methods for UN/EDIFACT OTDs Available Methods
Example

com.stc.edifact_v3_d95B.EDF_..._...Outer myOTD=new com.stc.edifact_v3
d95B.EDF..._Outer();
......
......
char segTerm=myOTD.getSegmentTerminator();

getSubelementSeparator

Signature

public char getSubelementSeparator()

Description

Returns the subelement/composite element separator character.

Exceptions

None.

Example

com.stc.edifact_v3_d95B.EDF_..._...Outer myOTD=new com.stc.edifact_v3
d95B.EDF..._Outer();
......
......
char subeleSep=myOTD.getSubelementSeparator();

getTSValidationResult

Signature

public com.stc.otd.runtime.edi.TSError[] getTSValidationResult()

Description

Returns the validation errors for the message envelope (segments UNH/UIH and
UNT/UIT) in the format of an TSError array. This method is available only in the Outer,
Inner, and message root levels of fully enveloped OTDs. It is also available at the top
root level of non-enveloped OTDs.

Exceptions

None.

getUnmarshalError

Signature

public com.stc.otd.runtime.check.sef.DataError[] getUnmarshalError()

Description

Returns the unmarshal errors as an array of the DataError objects. The unmarshal
errors are reported from an UnmarshalException generated during unmarshaling.
Usually these errors are associated with otd.isUnmarshalComplete=false.
UN/EDIFACT OTD Library User’s Guide 38 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Java Methods for UN/EDIFACT OTDs Available Methods
Exceptions

None.

hasxxx

Signature

public boolean hasxxx()

where xxx is the bean name for the node.

Description

Verifies if the node is present in the runtime data.

Exceptions

None.

hasLoopxxx

Signature

public boolean hasLoopxxx()

where Loopxxx is the bean name for the segment loop.

Description

Verifies if the segment loop is present in the runtime data.

Exceptions

None.

isUnmarshalComplete

Signature

public boolean isUnmarshalComplete()

Description

Flag for whether or not unmarshaling completed successfully. For more information,
see “On Demand Parsing” on page 14 and “Errors and Exceptions” on page 15.

Exceptions

None.

marshal

Signature

public void marshal(com.stc.otd.runtime.OtdOutputStream)
UN/EDIFACT OTD Library User’s Guide 39 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Java Methods for UN/EDIFACT OTDs Available Methods
Description

Marshals the internal data tree into an output stream. For more information, see “On
Demand Parsing” on page 14 .

Exceptions

java.io.IOException for output problems

com.stc.otd.runtime.MarshalException for an inconsistent internal tree

marshalToBytes

Signature

public byte[] marshalToBytes()

Description

Marshals the internal data tree into a byte array.

Exceptions

java.io.IOException for output problems

com.stc.otd.runtime.MarshalException for an inconsistent internal tree

marshalToString

Signature

public java.lang.String marshalToString()

Description

Marshals the internal data tree into a String.

Throws

java.io.IOException for input problems

com.stc.otd.runtime.MarshalException for an inconsistent internal tree

performValidation

Signature

public void performValidation()

Description

Performs validation on the OTD instance unmarshaled from input data.

You can access the validation results from a list of nodes, such as allErrors,
msgValidationResult, and the node for reporting envelope errors (such as
ICValidationResult, FGValidationResult, and TSValidationResult).

For more information, refer to “UN/EDIFACT Validation Support” on page 13.
UN/EDIFACT OTD Library User’s Guide 40 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Java Methods for UN/EDIFACT OTDs Available Methods
Exceptions

None.

reset

Signature

public void reset()

Description

Clears out any data and resources held by this OTD instance.

Exceptions

None.

setxxx

Signature

public void setxxx(item)

where xxx is the bean name for the node and where item is the Java type for the node.

public void setxxx(item[])

where xxx is the bean name for the repeatable node and where item[] is the Java type for
the node.

Description

Sets the node object or the object array for the node.

Exceptions

None.

setDecimalMark

Signature

public void setDecimalMark(char)

Description

Sets the decimal mark.

Exceptions

None.

setDefaultEdifactDelimiters

Signature

public void setDefaultEdifactDelimiters()
UN/EDIFACT OTD Library User’s Guide 41 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Java Methods for UN/EDIFACT OTDs Available Methods
Description

Sets the current delimiters to the default UN/EDIFACT delimiters:

segment terminator = '

element separator = +

subelement separator = :

repetition separator = *

For more information, refer to “Setting Delimiters and Indicators” on page 30.

Exceptions

None

Example

com.stc.edifact_v3_d95B.EDF_..._...Outer myOTD=new com.stc.edifact_v3
d95B.EDF..._Outer();
......
......
myOTD.setDefaultEdifactDelimiters();

setElementSeparator

Signature

public void setElementSeparator(char)

Description

Sets the element separator character. For more information, refer to “Setting Delimiters
and Indicators” on page 30.

Exceptions

None

Examples

com.stc.edifact_v3_d95B.EDF_..._...Outer myOTD=new com.stc.edifact_v3
d95B.EDF..._Outer();
......
......
char c='+';
myOTD.setElementSeparator(c);

setLoopxxx

Signature

public void setLoopxxx(item)

where Loopxxx is the bean name for the segment loop and where item is the Java type
for the segment loop.

public void setLoopxxx(item[])
UN/EDIFACT OTD Library User’s Guide 42 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Java Methods for UN/EDIFACT OTDs Available Methods
where Loopxxx is the bean name for the repeatable segment loop and where item[] is the
Java type for the repeatable segment loop.

Description

Sets the segment loop object or the object array for the segment loop.

Exceptions

None.

setMaxDataError

Signature

public void setMaxDataError(int)

Description

Returns the maximum number of message validation errors held in the
msgValidationResult bean node. If this method returns -1 there is no limit of how many
errors can be reported.

Exceptions

None.

setMaxFreedSegsComsNum

Signature

public void setMaxFreedSegsComsNum(int)

Description

Sets the maximum number of segment and composite objects marked to be freed from
memory. For more information, refer to “On Demand Parsing” on page 14.

Exceptions

None.

setMaxParsedSegsComsNum

Signature

public void setMaxParsedSegsComsNum(int)

Description

Sets the maximum number of segments and composite objects to be parsed. For more
information, refer to “On Demand Parsing” on page 14.

Exceptions

None.
UN/EDIFACT OTD Library User’s Guide 43 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Java Methods for UN/EDIFACT OTDs Available Methods
setMarshalUNA

Signature

public void setMarshalUNA (java.long.Boolean)

Description

Sets the Boolean value to indicate whether or not the UNA segment is to be marshaled.
This method is only available at the top “outer” level of the OTD.

If the item is java.lang.Boolean.TRUE, then UNA segment data is always included in
the output message.

If the item is java.lang.Boolean.FALSE, then UNA segment data is never included in
the output message.

If the item is null (or user never sets its value), then inclusion of UNA segment data
in the output message is based on the following:

If any delimiter values are set through UNA segment object, the UNA segment data is
included in the output message regardless of default or non-default delimiters are used.
Otherwise,

if non-default delimiters are used, then UNA segment data is included in the output
message.

if default delimiters are used, then UNA segment data is not included in the output
message.

For more information, refer to “UNA Segment Support” on page 14.

Exceptions

None.

setRelease

Signature

public void setRelease(char)

Description

Sets the release character.

Exceptions

None.

setRepetitionSeparator

Signature

public void setRepetitionSeparator(char)
UN/EDIFACT OTD Library User’s Guide 44 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Java Methods for UN/EDIFACT OTDs Available Methods
Description

Sets the repetition separator character. For more information, refer to “Setting
Delimiters and Indicators” on page 30.

Exceptions

None.

Example

com.stc.edifact_v3_d95B.EDF_..._...Outer myOTD=new com.stc.edifact_v3
d95B.EDF..._Outer();
......
......
char c='*';
myOTD.setRepetitionSeparator(c);

setSegmentTerminator

Signature

public void setSegmentTerminator(char)

Description

Sets the segment terminator character. For more information, refer to “Setting
Delimiters and Indicators” on page 30.

Exceptions

None.

Example

com.stc.edifact_v3_d95B.EDF_..._...Outer myOTD=new com.stc.edifact_v3
d95B.EDF..._Outer();
......
......
char c='~';
myOTD.setSegmentTerminator(c);

setSubelementSeparator

Signature

public void setSubelementSeparator(char)

Description

Sets the subelement separator character. For more information, refer to “Setting
Delimiters and Indicators” on page 30.

Exceptions

None.

Example

com.stc.edifact_v3_d95B.EDF_..._...Outer myOTD=new com.stc.edifact_v3
d95B.EDF..._Outer();
......
UN/EDIFACT OTD Library User’s Guide 45 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Java Methods for UN/EDIFACT OTDs Available Methods
......
char c=':';
myOTD.setSubelementSeparator(c);

unmarshal

Signature

public void unmarshal(com.stc.otd.runtime.OtdInputStream)

Description

Unmarshals the given input into an internal data tree.

For more information, refer to “On Demand Parsing” on page 14 and “Errors and
Exceptions” on page 15.

Exceptions

java.io.IOException for output problems

com.stc.otd.runtime.UnmarshalException for a lexical or other mismatch

unmarshalFromBytes

Signature

public void unmarshalFromBytes(byte[])

Description

Unmarshals the given input byte array into an internal data tree.

Exceptions

java.io.IOException for input problems

com.stc.otd.runtime.UnmarshalException for an inconsistent internal tree

unmarshalFromString

Signature

public void unmarshalFromString(java.lang.String)

Description

Unmarshals (deserializes, parses) the given input string into an internal data tree.

Exceptions

java.io.IOException for input problems

com.stc.otd.runtime.UnmarshalException for an inconsistent internal tree. This
typically occurs when the OTD does not recognize the incoming message as X12.
UN/EDIFACT OTD Library User’s Guide 46 SeeBeyond Proprietary and Confidential

Appendix A

EDFOTDErrors Schema File and Sample
XML

This appendix provides the contents of the EDFOTDErrors.xsd file, which is the schema
file the validation output string conforms to. This appendix also includes a sample of
validation XML output.

For more information, refer to “UN/EDIFACT Validation Support” on page 13 and
“performValidation” on page 40.

What’s in This Chapter

Contents of the EDFOTDErrors.xsd File on page 47

Sample Validation Output XML on page 48

6.1 Contents of the EDFOTDErrors.xsd File
<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XML Spy v4.4 U (http://www.xmlspy.com) by Tony (TechLeader) -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xs:element name="EDFOTDErrors">
 <xs:annotation>
 <xs:documentation>Validation Errors from an EDF OTD validation</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="EDFICError" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="EDFFGError" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="EDFTSError" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="EDFDataError" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="EDFICError">
 <xs:annotation>
 <xs:documentation>Interchange Envelope Validation Error Structure.</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="InteContNumb" type="xs:string"/>
 <xs:element name="InteContDate" type="xs:string"/>
 <xs:element name="InteContTime" type="xs:string"/>
 <xs:element name="InteNoteCode" type="xs:string"/>
 <xs:element name="ICErrorDesc" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="EDFFGError">
 <xs:annotation>
 <xs:documentation>Functional Group Envelope Validation Error Structure.</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="FuncIdenCode" type="xs:string"/>
 <xs:element name="GrouContNumb" type="xs:string"/>
 <xs:element name="NumbOfTranSetsIncl" type="xs:string"/>
 <xs:element name="FuncGrouSyntErroCode" type="xs:string"/>
UN/EDIFACT OTD Library User’s Guide 47 SeeBeyond Proprietary and Confidential

Appendix A Section 6.2
EDFOTDErrors Schema File and Sample XML Sample Validation Output XML
 <xs:element name="FGErrorDesc" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="EDFTSError">
 <xs:annotation>
 <xs:documentation>Transaction Set Envelope Validation Error Structure.</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="TranSetIdenCode" type="xs:string"/>
 <xs:element name="TranSetContNumb" type="xs:string"/>
 <xs:element name="TranSetSyntErroCode" type="xs:string"/>
 <xs:element name="TSErrorDesc" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="EDFDataError">
 <xs:annotation>
 <xs:documentation>Message (excluding envelopes) Validation Error Structure.</
xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Level" type="xs:short" minOccurs="0"/>
 <xs:element name="SegmIDCode" type="xs:string"/>
 <xs:element name="SegmPosiInTranSet" type="xs:int"/>
 <xs:element name="LoopIdenCode" type="xs:string" minOccurs="0"/>
 <xs:element name="SegmSyntErroCode" type="xs:short" minOccurs="0"/>
 <xs:element name="ElemPosiInSegm" type="xs:short"/>
 <xs:element name="CompDataElemPosiInComp" type="xs:short" minOccurs="0"/>
 <xs:element name="DataElemRefeNumb" type="xs:string" minOccurs="0"/>
 <xs:element name="DataElemSyntErroCode" type="xs:short"/>
 <xs:element name="CopyOfBadDataElem" type="xs:string" minOccurs="0"/>
 <xs:element name="RepeatIndex" type="xs:short" minOccurs="0"/>
 <xs:element name="ErrorCode" type="xs:int"/>
 <xs:element name="ErrorDesc" type="xs:string" minOccurs="0"/>
 <xs:element name="Severity" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

6.2 Sample Validation Output XML
<EDFOTDErrors>
 <EDFDataError>
 <Level>1</Level>
 <SegmIDCode>QTY</SegmIDCode>
 <SegmPosiInTranSet>24</SegmPosiInTranSet>
 <LoopIdenCode>QTY</LoopIdenCode>
 <SegmSyntErroCode>8</SegmSyntErroCode>
 <ElemPosiInSegm>2</ElemPosiInSegm>
 <DataElemSyntErroCode>3</DataElemSyntErroCode>
 <CopyOfBadDataElem>50:PCE</CopyOfBadDataElem>
 <ErrorCode>15037</ErrorCode>
 <ErrorDesc>QTY_QTY_2 at 24 [50:PCE]: Number of data elements inside the segment during
unmarshalling exceeds 1</ErrorDesc>
 <Severity>ERROR</Severity>
 </EDFDataError>
 <EDFDataError>
 <Level>1</Level>
 <SegmIDCode>QTY</SegmIDCode>
 <SegmPosiInTranSet>26</SegmPosiInTranSet>
 <LoopIdenCode>QTY</LoopIdenCode>
 <SegmSyntErroCode>8</SegmSyntErroCode>
 <ElemPosiInSegm>1</ElemPosiInSegm>
 <CompDataElemPosiInComp>2</CompDataElemPosiInComp>
 <DataElemRefeNumb>6060</DataElemRefeNumb>
 <DataElemSyntErroCode>1</DataElemSyntErroCode>
 <ErrorCode>15040</ErrorCode>
 <ErrorDesc>QTY_QTY_1 at 26: Data subelement is required but missing inside the composite during
unmarshalling</ErrorDesc>
 <Severity>ERROR</Severity>
 </EDFDataError>
 <EDFDataError>
 <Level>1</Level>
 <SegmIDCode>DTM</SegmIDCode>
 <SegmPosiInTranSet>5</SegmPosiInTranSet>
 <LoopIdenCode>RFF</LoopIdenCode>
 <SegmSyntErroCode>8</SegmSyntErroCode>
 <ElemPosiInSegm>1</ElemPosiInSegm>
 <CompDataElemPosiInComp>1</CompDataElemPosiInComp>
 <DataElemRefeNumb>2005</DataElemRefeNumb>
 <DataElemSyntErroCode>7</DataElemSyntErroCode>
 <CopyOfBadDataElem>004</CopyOfBadDataElem>
UN/EDIFACT OTD Library User’s Guide 48 SeeBeyond Proprietary and Confidential

Appendix A Section 6.2
EDFOTDErrors Schema File and Sample XML Sample Validation Output XML
 <ErrorCode>15063</ErrorCode>
 <ErrorDesc>RFF_DTM_1 at 5 [004]: Code value is not in the code list of
2,3,4,7,8,9,10,11,12,13,14,15,16,17,18,20,21,22,35,36</ErrorDesc>
 <Severity>ERROR</Severity>
 </EDFDataError>
 <EDFDataError>
 <Level>1</Level>
 <SegmIDCode>NAD</SegmIDCode>
 <SegmPosiInTranSet>7</SegmPosiInTranSet>
 <LoopIdenCode>NAD</LoopIdenCode>
 <SegmSyntErroCode>8</SegmSyntErroCode>
 <ElemPosiInSegm>4</ElemPosiInSegm>
 <CompDataElemPosiInComp>1</CompDataElemPosiInComp>
 <DataElemRefeNumb>3036</DataElemRefeNumb>
 <DataElemSyntErroCode>5</DataElemSyntErroCode>
 <CopyOfBadDataElem>VOLVO AERO CORPORATION S-461 81 TROLLHATTAN</CopyOfBadDataElem>
 <ErrorCode>15055</ErrorCode>
 <ErrorDesc>NAD_NAD_4 at 7 [VOLVO AERO CORPORATION S-461 81 TROLLHATTAN]: Data has too many
characters of 43 because less_or_equal 35</ErrorDesc>
 <Severity>ERROR</Severity>
 </EDFDataError>
 <EDFDataError>
 <Level>1</Level>
 <SegmIDCode>PAT</SegmIDCode>
 <SegmPosiInTranSet>12</SegmPosiInTranSet>
 <LoopIdenCode>PAT</LoopIdenCode>
 <SegmSyntErroCode>8</SegmSyntErroCode>
 <ElemPosiInSegm>2</ElemPosiInSegm>
 <CompDataElemPosiInComp>1</CompDataElemPosiInComp>
 <DataElemRefeNumb>4277</DataElemRefeNumb>
 <DataElemSyntErroCode>7</DataElemSyntErroCode>
 <CopyOfBadDataElem>30</CopyOfBadDataElem>
 <ErrorCode>15063</ErrorCode>
 <ErrorDesc>PAT_PAT_2 at 12 [30]: Code value is not in the code list of 1,2,3,4,5,6</ErrorDesc>
 <Severity>ERROR</Severity>
 </EDFDataError>
 <EDFDataError>
 <Level>1</Level>
 <SegmIDCode>QTY</SegmIDCode>
 <SegmPosiInTranSet>24</SegmPosiInTranSet>
 <LoopIdenCode>QTY</LoopIdenCode>
 <SegmSyntErroCode>8</SegmSyntErroCode>
 <ElemPosiInSegm>1</ElemPosiInSegm>
 <CompDataElemPosiInComp>2</CompDataElemPosiInComp>
 <DataElemRefeNumb>6060</DataElemRefeNumb>
 <DataElemSyntErroCode>4</DataElemSyntErroCode>
 <CopyOfBadDataElem/>
 <ErrorCode>15056</ErrorCode>
 <ErrorDesc>QTY_QTY_1 at 24 []: Data has too few characters of 0 because greater_or_equal 1</
ErrorDesc>
 <Severity>ERROR</Severity>
 </EDFDataError>
</EDFOTDErrors>
UN/EDIFACT OTD Library User’s Guide 49 SeeBeyond Proprietary and Confidential

Index
Index

A
AllErrors 33

C
check() method 31
checkAll() method 31
clone() method 32
Collaborations, building 21
component element separator 30
conventions, document 8
count() method 32
countLoopxxx() method 32
customizing OTDs 24

D
data element separator 30
decimalMark 33, 41
delimiters 12, 30

component element separator 30
data element separator 30
repetition separator 30
segment terminator 30
subelement separator 30

directory support 12
displaying OTDs 19
document conventions 8

E
EDFOTDErrors.xsd 47
elementSeparator 33, 42
Exceptions

IOException 40, 46
MarshalException 40
UnmarshalException 46

F
FGError 34
FGValidationResult 34

G
get methods, overview 29
getAllErrors() method 33
getDecimalMark() method 33
getElementSeparator() method 33
getFGValidationResult() method 34
getICValidationResult() method 34
getInputSource() method 34
getLoopxxx() method 34
getMarshalUNA() method 36
getMaxDataError() method 35
getMaxFreedSegsComsNum() method 35
getMaxParsedSegsComsNum() method 35
getMsgValidationResult() method 36
getRelease() method 36
getRepetitionSeparator() method 37
getSegmentCount() method 37
getSegmentTerminator() method 37
getSubelementSeparator() method 38
getTSValidationResult() method 38
getUnmarshalError() method 38
getxxx() method 32

H
hasLoopxxx() method 39
hasxxx() method 39
heap size, adjusting 18

I
ICError 34
ICValidationResult 34
inputSource 34
isUnmarshalComplete() method 39

M
marshal() method 39
marshaling

marshal() 39
marshalToBytes() 40
marshalToString() 40

marshalToBytes() method 40
marshalToString() method 40
marshalUNA 36, 44
maxDataError 43
maxFreedSegsComsNum 43
maxParsedSegsComsNum 35, 43
memory

management 14
memory errors, resolving 18
message structure
UN/EDIFACT OTD Library User’s Guide 50 SeeBeyond Proprietary and Confidential

Index
defined 12
OTD in eGate 12

methods
check 31
checkAll 31
clone() 32
count() 32
countLoopxxx() 32
get/set methods, overview 29
getAllErrors() 33
getDecimalMark() 33
getElementSeparator() 33
getFGValidationResult() 34
getICValidationResult() 34
getInputSource() 34
getLoopxxx() 34
getMarshalUNA() 36
getMaxDataError() 35
getMaxFreedSegsComsNum() 35
getMaxParsedSegsComsNum() 35
getMsgValidationResult() 36
getRelease() 36
getRepetitionSeparator() 37
getSegmentCount() 37
getSegmentTerminator() 37
getSubelementSeparator() 38
getTSValidationResult() 38
getUnmarshalError() 38
getxxx() 32
hasLoopxxx() 39
hasxxx() 39
isUnmarshalComplete() 39
marshal() 39
marshalToBytes() 40
marshalToString() 40
performValidation() 40
reset() 41
setDecimalMark() 41
setDefaultEdifactDelimiters() 41
setElementSeparator() 42
setLoopxxx() 42
setMarshalUNA() 44
setMaxDataError() 43
setMaxFreedSegsComsNum() 43
setMaxParsedSegsComsNum() 43
setRelease() 44
setRepetitionSeparator() 44
setSegmentTerminator() 45
setSubelementSeparator() 45
setxxx() 41
unmarshal() 46
unmarshalFromBytes() 46
unmarshalFromString() 46

msgValidationResult 35, 36

O
on demand parsing 14
organization of information, document 7
OTDs

Collaborations, using in 21
customizing 24
displaying 19
performValidation() method 40
reset() method 41
SEF file, creating from 25
SEF files 24

OutOfMemoryError
increase heap size 18

P
parse on demand 14
performValidation() method 40

R
related documents 8
release 36, 44
repetition separator 30
repetitionSeparator 37, 44
reset() method 41
runtime exceptions

UnmarshalException 15

S
Screenshots 8
SEF file 13

creating OTD from 25
OTD, customizing 24

SEF OTD wizard
installing 17
using 25

segment terminator 30
segment, UNA 14
segmentCount 37
segmentTerminator 37, 45
set methods, overview 29
setDecimalMark() method 41
setDefaultEdifactDelimiters() method 41
setElementSeparator() method 42
setLoopxxx() method 42
setMarshalUNA() method 44
setMaxDataError() method 43
setMaxFreedSegsComsNum() method 43
setMaxParsedSegsComsNum() method 43
setRelease() method 44
setRepetitionSeparator() method 44
UN/EDIFACT OTD Library User’s Guide 51 SeeBeyond Proprietary and Confidential

Index
setSegmentTerminator() method 45
setSubelementSeparator() method 45
setxxx() method 41
subelement separator 30
subelementSeparator 38, 45
support

SEF file 13
UN/EDIFACT directories 12
UNA segment 14
validation 13

T
TSvalidationResult 38

U
UN/EDIFACT directories, supported 12
UNA segment 14

getMarshalUNA 36
unmarshal() method 46
unmarshalError 38
UnmarshalException 15
unmarshalFromBytes() method 46
unmarshalFromString() method 46
unmarshaling

delayed 14
isUnmarshalComplete() 39
unmarshal() method 46
unmarshalFromBytes() method 46
unmarshalFromString() method 46

V
validation

EDFOTDErrors.xsd 47
performValidation() method 40
reset() method 41
support 13
UN/EDIFACT OTD Library User’s Guide 52 SeeBeyond Proprietary and Confidential

	UN/EDIFACT OTD Library User’s Guide
	Contents
	List of Figures
	Introduction
	1.1 About This Document
	1.1.1 What’s In This Document?
	1.1.2 Scope
	1.1.3 Intended Audience
	1.1.4 Document Conventions
	1.1.5 Screenshots
	1.1.6 Related Documents

	1.2 References
	1.3 SeeBeyond Web Site
	1.4 SeeBeyond Documentation Feedback

	Overview of the UN/EDIFACT OTD Library
	2.1 About the UN/EDIFACT OTD Library
	2.2 UN/EDIFACT Directory Support
	2.3 SEF File Support
	2.4 UN/EDIFACT Validation Support
	2.5 UNA Segment Support
	2.6 On Demand Parsing
	2.7 Errors and Exceptions

	Installing the UN/EDIFACT OTDs
	3.1 System Requirements
	3.2 Supported Operating Systems
	3.3 Installing the UN/EDIFACT OTD Library
	3.4 Increasing the Enterprise Designer Heap Size
	3.4.1 Resolving Memory Errors at Enterprise Designer Startup

	Using UN/EDIFACT OTDs
	4.1 Displaying UN/EDIFACT OTDs
	4.2 Building UN/EDIFACT OTD Collaborations
	4.3 Customizing the UN/EDIFACT OTDs
	4.4 Creating UN/EDIFACT OTDs from SEF Files
	4.5 Possible Differences in Output When Using Pass- Through

	Java Methods for UN/EDIFACT OTDs
	5.1 Get and Set Methods
	5.2 Setting Delimiters and Indicators
	5.3 Available Methods
	check
	checkAll
	clone
	countxxx
	countLoopxxx
	getxxx
	getAllErrors
	getDecimalMark
	getElementSeparator
	getFGValidationResult
	getICValidationResult
	getInputSource
	getLoopxxx
	getMaxDataError
	getMaxFreedSegsComsNum
	getMaxParsedSegsComsNum
	getMarshalUNA
	getMsgValidationResult
	getRelease
	getRepetitionSeparator
	getSegmentCount
	getSegmentTerminator
	getSubelementSeparator
	getTSValidationResult
	getUnmarshalError
	hasxxx
	hasLoopxxx
	isUnmarshalComplete
	marshal
	marshalToBytes
	marshalToString
	performValidation
	reset
	setxxx
	setDecimalMark
	setDefaultEdifactDelimiters
	setElementSeparator
	setLoopxxx
	setMaxDataError
	setMaxFreedSegsComsNum
	setMaxParsedSegsComsNum
	setMarshalUNA
	setRelease
	setRepetitionSeparator
	setSegmentTerminator
	setSubelementSeparator
	unmarshal
	unmarshalFromBytes
	unmarshalFromString

	EDFOTDErrors Schema File and Sample XML
	6.1 Contents of the EDFOTDErrors.xsd File
	6.2 Sample Validation Output XML

	Index
	A
	C
	D
	E
	F
	G
	H
	I
	M
	O
	P
	R
	S
	T
	U
	V

