
eView Studio User’s Guide

Release 5.0.3
SeeBeyond Proprietary and Confidential

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

SeeBeyond, e*Gate, and e*Way are the registered trademarks of SeeBeyond Technology Corporation in the United States and select
foreign countries; the SeeBeyond logo, e*Insight, and e*Xchange are trademarks of SeeBeyond Technology Corporation. The absence
of a trademark from this list does not constitute a waiver of SeeBeyond Technology Corporation's intellectual property rights
concerning that trademark. This document may contain references to other company, brand, and product names. These company,
brand, and product names are used herein for identification purposes only and may be the trademarks of their respective owners.

© 2003-2004 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20040226160657.
eView Studio User’s Guide 2 SeeBeyond Proprietary and Confidential

Contents
Contents

List of Figures 10

Chapter 1

Introduction 12
Document Purpose and Scope 12

Intended Audience 12
Using this Guide 13
Document Organization 13

Writing Conventions 14
Special Notation Conventions 14
Mouse Conventions 15

Supporting Documents 15

Online Documents 16

SeeBeyond Web Site 16

Chapter 2

eView Studio Overview 17
Learning about eView 17

Overview 17
eView Features and Functions 17
eView and the SeeBeyond ICAN Suite 18

eGate Integrator 18
eInsight 18
eVision 19

eView Components 19
eView Wizard 19
Editors 19
Project Components 20

Configuration Files 21
Database Scripts 22
Custom Plug-ins 22
Match Engine Configuration Files 22
Outbound Object Type Definition (OTD) 23
Dynamic Java API 23
Connectivity Components 23
eView Studio User’s Guide 3 SeeBeyond Proprietary and Confidential

Contents
Deployment Profile 24
Environment Components 24

Learning about the Master Index 24
Functions of the Master Index 25
Features of the Master Index 25

Master Index Components 27
Matching Service 28
eView Manager Service 28
Query Builder 28
Query Manager 28
Update Manager 28
Object Persistence Service (OPS) 29
Database 29
Enterprise Data Manager 29

Enterprise Records 29
System Records 29
The Single Best Record 30
Objects in an Enterprise Record 30

From eView to the Master Index 30
Process Overview 30
From XML to the Database 31
From XML to the Enterprise Data Manager 31
From XML to the Connectivity Components 32
From XML to the Runtime Environment 32

Chapter 3

Installation 33
Installation Overview 33

eView Installation 33
Database Installation 33

About the Installation 34

System Requirements 34

Requirements for the ICAN 5.0.2 Environment 35
Before Installing eView 35

Installing eView 36
Uploading eView to the Repository 36

Uploading eView 36
Uploading the eView Documentation and Sample 40
Uploading the INTEGRITY Add-on 41

Installing eView in the Enterprise Designer 43

Upgrading eView from Version 5.0.2 49
What’s New for Release 5.0.3 49

Changes to the Method OTD 49
Changes to the Database 50
Changes to the Java Collaboration 50
eView Studio User’s Guide 4 SeeBeyond Proprietary and Confidential

Contents
Performing the Upgrade 50
Upgrading the eView Project 50
Upgrading the Database 50

Chapter 4

Creating the Master Index Framework 52
The eView Project 52

The eView Wizard 52
Working with the eView Wizard 53

Accessing the eView Wizard 53
eView Wizard Toolbar Buttons 53
eView Wizard Navigation Buttons 53

Before you Begin 54
Data Analysis 54
Project Planning 55
Project Initiation Checklist 55

Creating the Master Index Configuration 55
Step 1: Create a Project 56
Step 2: Launch the eView Wizard 57
Step 3: Name the eView Application 57
Step 4: Define Source Systems 58
Step 5: Define the Deployment Environment 59
Step 6: Define Parent and Child Objects 61

Creating Undefined Objects 61
Creating Objects from a Template 63
Deleting an Object from the Structure 65

Step 7: Define the Fields for each Object 66
Creating a Field 66
Configuring Field Properties 67
Deleting a Field 72

Step 8: Generate the Project Files 72
Step 9: Review the Configuration Files 73

Chapter 5

Configuring the Master Index 74
Configurable Options 74

Object Definition 74
Enterprise Data Manager 74
Query Definitions 75
Standardization and Matching Rules 75
Survivor Calculator 75
Update Policies 75
Field Validations 75
EUID Configuration 76

About the eView Configuration Files 76
eView Studio User’s Guide 5 SeeBeyond Proprietary and Confidential

Contents
Object Definition 76
Candidate Select 76
Match Field 77
Threshold 77
Best Record 77
Field Validation 77
Security 78
Enterprise Data Manager 78

Modifying the eView Configuration Files 78

Match Engine Configuration Files 79

Chapter 6

Generating the Project 80
Generated Application Components 80

Generating the Project 81

Chapter 7

Creating Custom Plug-ins 82
About Custom Plug-ins 82

Update Policies 82
Enterprise Merge Policy 83
Enterprise Unmerge Policy 83
Enterprise Update Policy 83
Enterprise Create Policy 83
System Merge Policy 83
System Unmerge Policy 83
Undo Assumed Match Policy 83

Field Validations 84
Custom eView Components 84

Query Builder 84
Block Picker 84
Pass Controller 85
Match Engine 85
Standardization Engine 85
Phonetic Encoders 85

Implementing Custom Plug-ins 86
Creating Custom Plug-ins 86
Building Custom Plug-ins 86

Chapter 8

Creating the Database 87
Database Scripts 87
eView Studio User’s Guide 6 SeeBeyond Proprietary and Confidential

Contents
Requirements 87
Database Platforms 87
Operating Systems 88
Hardware Requirements 88

Database Structure 88

Designing the Database 89
Designing for Performance Optimization 89
Data Analysis 89
Common Table Data 89
User Code Data 90
Considerations 90

Sizing 90
Distribution 90
Indexes 90

Creating the Database 91
Step 1: Analyze the Database Requirements 91
Step 2: Create an Oracle Database 91
Step 3: Customize the Database Scripts 91

Defining Indexes 92
Defining Systems 92
Defining Code Lists 93
Defining User Code Lists 95
Creating a Custom Script 96

Step 4: Modify the Database 96
Step 5: Specify a Starting EUID (optional) 97

Deleting the Master Index Tables 98

Chapter 9

Defining Connectivity Components 99
Overview 99

Connectivity Components 99
eView Project Connectivity Components 99
Client Project Connectivity Components 100

Defining Connectivity Components 101
Defining eView Application Connectivity Components 101

Creating the eView Project Connectivity Map 102
Connecting Connectivity Map Components 103

Defining External System Connectivity Components 105
Adding eView Methods to a Java Collaboration 105
Creating the External System Project Connectivity Map 107
Connecting Connectivity Map Components 109
Incorporating the JMS Topic into the Connectivity Map 111
Configuring the Outbound Collaboration 113

Defining eInsight Integration Connectivity Components 114
Including eView Methods in a Business Process 115
Connecting the Business Process Components 116
Creating the eInsight Integration Connectivity Map 117
Connecting Connectivity Map Components 119
eView Studio User’s Guide 7 SeeBeyond Proprietary and Confidential

Contents
Chapter 10

Defining the Environment 123
Environment Components 123

Environment Components 123

Building an Environment 124
Creating an eView Environment 124
Adding a Logical Host 125
Adding Servers 126
Adding an External System 127
Adding an eVision External System 128
Adding an Oracle External System 129

Configuring the Oracle External System 130

Configuring the Integration Server 132
Defining the Data Source 132
Defining Environment Variables for INTEGRITY 134

Defining Security 137

Chapter 11

Deploying the Project 141
Overview 141

Deploying a Project 141
Defining a Deployment Profile 141

Defining an eView Application Deployment Profile 142
Creating an eView Client Deployment Profile 144
Creating an eInsight Integration Deployment Profile 147

Activating the Project 149
Running the Bootstrap 150

Chapter 12

Implementing the eView Sample 151
Overview 151

Importing the Sample Projects 151

Implementing the Sample Projects 152
Configuring for INTEGRITY 152
Regenerate the Application 153
Create the Database 153
Define the Environment 154

Create a User 154
Define the Data Source 154

Configure the Client Connectivity Map 155
Create and Activate the Server Deployment Profile 155
eView Studio User’s Guide 8 SeeBeyond Proprietary and Confidential

Contents
Create and Activate the Client Deployment Profile 155
Start the Logical Host 156
Run the Sample File 156
Working with the EDM 156

Appendix A

Field Notations 158
Defining Field Locations 158

ePath 158
Syntax 159
Example 159

Qualified Field Names 160
Syntax 161
Example 161

Simple Field Names 162
Syntax 162
Example 162

Appendix B

eView Wizard Match Types 163
About Match and Standardization Types 163

SeeBeyond Match Engine 163
INTEGRITY Match Engine 166

Glossary 170

Index 175
eView Studio User’s Guide 9 SeeBeyond Proprietary and Confidential

List of Figures
List of Figures

Figure 1 eView Project and Environment Components 21

Figure 2 eView Master Index Architecture 27

Figure 3 Enterprise Manager Logon Window 37

Figure 4 ADMIN Page 38

Figure 5 Products Available to Upload Section 39

Figure 6 Downloading eView Reports 40

Figure 7 DOWNLOADS Page (for INTEGRITY Addon) 43

Figure 8 Tools Menu for Enterprise Designer 44

Figure 9 Update Center Wizard - Select Location of Modules 44

Figure 10 Update Center Wizard - Select Modules to Install 45

Figure 11 Update Center Wizard - License Agreement 46

Figure 12 Update Center Wizard - Download Modules 47

Figure 13 Update Center Wizard - View Certificates and Install Modules 48

Figure 14 Update Center Wizard - Restart the IDE 49

Figure 15 Enterprise Explorer 56

Figure 16 Project Context Menu 57

Figure 17 eView Wizard - Name Application 58

Figure 18 eView Wizard - Define Source Systems 59

Figure 19 eView Wizard - Defining the Deployment Environment 60

Figure 20 eView Wizard - New Undefined Parent Object 62

Figure 21 eView Wizard - Creating an Undefined Child Object 63

Figure 22 eView Wizard - Company Template 64

Figure 23 eView Wizard - Creating a Child Object from a Template 65

Figure 24 eView Wizard - New Field Properties 67

Figure 25 Field Properties Page 68

Figure 26 Field EDM Page 69

Figure 27 eView Wizard - Generating the Configuration Files 73

Figure 28 Generate Context Menu 81

Figure 29 Database Properties Dialog 97

Figure 30 eView Server Connectivity Map 103

Figure 31 eView Server Connectivity Map with Connections 104

Figure 32 eView Method OTD in Collaboration Editor 107
eView Studio User’s Guide 10 SeeBeyond Proprietary and Confidential

List of Figures
Figure 33 External System Menu 108

Figure 34 External System Connectivity Map 109

Figure 35 Service Binding Window, External Systems 110

Figure 36 External System Connectivity Map With Connections 111

Figure 37 eView Client Connectivity Map with JMS Topic 112

Figure 38 eView Client Connectivity Map with Connections 113

Figure 39 Outbound Java Collaboration 114

Figure 40 eInsight Business Process with eView Activity 116

Figure 41 eInsight Business Process with Connections 117

Figure 42 External System Menu 118

Figure 43 eInsight Integration Connectivity Map 119

Figure 44 Service Binding Window, eInsight 120

Figure 45 Service Binding Window Connections, eInsight 121

Figure 46 eInsight Connectivity Map With Connections 122

Figure 47 New Environment 125

Figure 48 eView Logical Host 126

Figure 49 Integration and JMS Servers 127

Figure 50 File External System 128

Figure 51 eVision External System 129

Figure 52 Oracle External System 130

Figure 53 Oracle External System Properties 131

Figure 54 Integration Server Properties 133

Figure 55 Integration Server Configuration Properties 135

Figure 56 Input dialog 136

Figure 57 Defined Environment Variables 136

Figure 58 User Management 138

Figure 59 Create Deployment Profile Dialog Box 142

Figure 60 Deployment Editor Window - Server Project 143

Figure 61 Mapped eView Components in the Deployment Editor 144

Figure 62 Create Deployment Profile Dialog Box 145

Figure 63 Deployment Editor Window - Client Project 145

Figure 64 Mapped Client Components in the Deployment Editor 146

Figure 65 Create Deployment Profile Dialog Box 147

Figure 66 Deployment Editor Window 148

Figure 67 Mapped Client Components in the Deployment Editor 149

Figure 68 Activate Dialog 150
eView Studio User’s Guide 11 SeeBeyond Proprietary and Confidential

Chapter 1

Introduction

This guide provides comprehensive information on using the SeeBeyond® eView
Studio (eView) to design, configure, and create a customized enterprise-wide master
index. As a component of SeeBeyond’s Integrated Composite Application Network
(ICAN) Suite, eView helps you integrate information from disparate systems
throughout your organization. This guide explains how to install eView and to create
and configure the components of a master index, including eGate project files, the index
database, the runtime environment, and the Enterprise Data Manager (EDM). It also
includes information about the eView and master index structure. This guide is
intended to be used with the eView Studio Configuration Guide and Implementing the
SeeBeyond Match Engine with eView Studio or Implementing Ascential INTEGRITY with
eView Studio.

This chapter provides an overview of this guide and the conventions used throughout,
as well as a list of supporting documents and information about using this guide.

1.1 Document Purpose and Scope
This guide provides step-by-step instructions for installing eView and creating a master
index application. It includes navigational information, functional instructions, and
background information where required. A summary of activities for creating a master
index is provided in Chapter 2 of this guide.

This guide does not include information or instructions on using the EDM or eGate
Integrator components. These topics are covered in the appropriate user guide (for
more information, see “Supporting Documents” on page 15).

1.1.1 Intended Audience
Any user who installs any component of eView, or designs and creates a master index
using eView, should read this guide. A thorough knowledge of eView is not needed to
understand this guide. It is presumed that the reader of this guide is familiar with the
eGate environment and GUIs, eGate projects, Oracle database administration, and the
operating system(s) on which eGate and the index database run. Readers who will
configure the master index should also be familiar with XML documents, the SQL
scripting language, and Java.

The intended reader must have a good working knowledge of his or her company's
current business processes and information system (IS) setup.
eView Studio User’s Guide 12 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.1
Introduction Document Purpose and Scope
1.1.2 Using this Guide
For best results, skim through the guide to familiarize yourself with the locations of
essential information you need. The beginning of each chapter provides introductory
information on the topics covered in that chapter. This introductory material contains
background and explanatory information you may need to understand before moving
into the more detailed information later in the chapter.

1.1.3 Document Organization
This guide is divided into twelve chapters and two appendixes that cover the topics
shown below.

Chapter 1 “Introduction” gives a general preview of this document—its purpose,
scope, and organization—and provides sources of additional information.

Chapter 2 “eView Studio Overview” provides information about the architecture
of eView and the master index, and describes how a master index is created.

Chapter 3 “Installation” gives instructions for installing the eView files and setting
up the environment for eView and the master index.

Chapter 4 “Creating the Master Index Framework” describes how to create the
object definition file and configure the definition of the primary object you are
storing in the master index.

Chapter 5 “Configuring the Master Index” gives a summary of the configuration
files in the eView Project, and provides information about the XML Editor.

Chapter 6 “Generating the Project” explains how to generate the eView
application to create a master index from the files you created and customized.

Chapter 7 “Creating Custom Plug-ins” describes how to implement custom
processing code in the master index.

Chapter 8 “Creating the Database” describes how to design, install, and configure
the Oracle database for the master index.

Chapter 9 “Defining Connectivity Components” describes how to work with the
connectivity components of the eView Project to share and process data through the
master index system.

Chapter 10 “Defining the Environment” describes how to set up the physical
environment of the master index.

Chapter 11 “Deploying the Project” explains how to create the Deployment Profile
for the master index and how to activate the profile.

Chapter 12 “Implementing the eView Sample” explains how to work with the
eView sample to run data into the database through a Service, and view the
information in the EDM.

Appendix A “Field Notations” describes the different notations used in the
configuration files to define different fields in the messages being processed and
stored.
eView Studio User’s Guide 13 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.2
Introduction Writing Conventions
Appendix B “eView Wizard Match Types” describes the different match types you
can select from the eView Wizard and how they define matching and
standardization processing logic.

1.2 Writing Conventions
Before you start using this guide, it is important to understand the special notation and
mouse conventions observed throughout this document.

1.2.1 Special Notation Conventions
The following special notation conventions are used in this document.

Additional Conventions

Windows Systems—The eView system is fully compliant with Windows NT,
Windows 2000, and Windows XP platforms. When this document refers to Windows,
such statements apply to all three Windows platforms.

UNIX Systems—This guide uses the backslash (\) as the separator within path names.
If you are working on a UNIX system, please make the appropriate substitutions.

Table 1 Special Notation Conventions

Text Convention Example

Titles of publications Title caps in italic
font

eView Studio Configuration Guide

Button, Icon,
Command, Function,
and Menu Names

Bold text Click OK to save and close.
From the File menu, select Exit.

Parameter, Variable,
and Method Names

Bold text Use the executeMatch() method.
Enter the field-type value.

Command Line
Code and Code
Samples

Courier font
(variables are
shown in bold
italic)

bootstrap -p password
<tag>Person</tag>

Hypertext Links Blue text For more information, see “Writing Conventions”
on page 14.

File Names and Paths Bold text To install eView, upload the eView.sar file.

Notes Bold Italic text Note: If a toolbar button is dimmed, you
cannot use it with the selected
component.
eView Studio User’s Guide 14 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.3
Introduction Supporting Documents
1.2.2 Mouse Conventions
You can use either a single-button mouse or a multiple-button mouse with eView. If
you use a multiple-button mouse, the left mouse button is the primary button, unless
the mouse is configured differently.

The instructions in this guide may require you to use the mouse in a variety of ways:

Point means to position the mouse pointer until the tip of the pointer rests on
whatever you want to point to on the screen.

Click means to press and then immediately release the left mouse button without
moving the mouse.

Double-click means to click the left mouse button twice in rapid succession.

Right-click means to click the right mouse button once.

Drag means to point and then hold down the mouse button as you move the
mouse. Drop means to let go of the mouse button to place the dragged information
where you want it to be moved.

Move means to point to an object on the screen and then drag the mouse to move
the object to a screen location of your choice.

Highlight means to select an area of text by dragging the mouse over the desired
portion of text that appears on a window.

Select means to point to a list of information on an eView window, and then click
once to choose the data you want. The information becomes highlighted when
selected.

Expand means to double-click a row of information on an expandable list to display
more details. The details appear on another row, below the row you double-click.

Collapse means to double-click a row of information on an expandable list to hide
the details that appear on the following row.

1.3 Supporting Documents
SeeBeyond has developed a suite of user's guides and related publications that are
distributed in an electronic library. The following documents may provide information
useful in creating your customized index. In addition, complete documentation of the
eView Java API is provided in Javadoc format.

Enterprise Data Manager User’s Guide

eView Studio Configuration Guide

eView Studio Reference Guide

Implementing the SeeBeyond Match Engine with eView Studio

Implementing Ascential INTEGRITY with eView Studio

eGate Integrator User’s Guide
eView Studio User’s Guide 15 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction Online Documents
eGate Integrator System Administration Guide

SeeBeyond ICAN Suite Deployment Guide

eVision Studio User’s Guide

eInsight Business Process Manager User’s Guide

1.4 Online Documents
The documentation for the SeeBeyond ICAN Suite is distributed as a collection of
online documents. These documents are viewable with the Acrobat Reader application
from Adobe Systems. Acrobat Reader can be downloaded from:

http://www.adobe.com

1.5 SeeBeyond Web Site
The SeeBeyond Web site is your best source for up-to-the-minute product news and
technical support information. The site’s URL is:

http://www.SeeBeyond.com
eView Studio User’s Guide 16 SeeBeyond Proprietary and Confidential

http://www.adobe.com
http://www.seebeyond.com

Chapter 2

eView Studio Overview

This chapter provides information about eView, how it is used to create a master index,
and the master index applications you create with eView. It also includes a description
of the files stored in the eGate Repository and the XML files that define the structure
and configuration of the master index environment.

2.1 Learning about eView

2.1.1 Overview

eView provides a flexible framework to allow you to create matching and indexing
applications called enterprise-wide master indexes (or just master indexes). It is an
application building tool to help you design, configure, and create a master index that
will uniquely identify and cross-reference the business objects stored in your system
databases. Business objects can be any type of entity for which you store information,
such as customers, members, vendors, businesses, hardware parts, and so on. In eView,
you define the data structure of the business objects to be stored and cross-referenced.
In addition, you define the logic that determines how data is updated, standardized,
weighted, and matched in the master index database.

The structure and logic you define is located in a group of XML configuration files that
you create using the eView Wizard. These files are created within the context of an
eGate Project, and can be further customized using the XML editor provided in the
Enterprise Designer.

2.1.2 eView Features and Functions
eView provides features and functions to allow you to create and configure an
enterprise-wide master index for any type of data. The primary function of eView is to
automate the creation of a highly configurable master index application. eView
provides a wizard to guide you through the initial setup steps, and various editors so
you can further customize the configuration of the master index. eView automatically
generates the components you need to implement a master index.

eView provides the following features:

Rapid Development—eView allows for rapid and intuitive development of a
master index using a wizard to create the master index configuration, and using
eView Studio User’s Guide 17 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.1
eView Studio Overview Learning about eView
XML documents to configure the attributes of the index. Templates are provided for
quick development of person and company object structures.

Automated Component Generation—eView automatically creates the eView
configuration files that define the primary attributes of the master index, including
the configuration of the Enterprise Data Manager (EDM). eView also generates
scripts that create the appropriate database schemas and an eGate Object Type
Definition (OTD) based on the object definition you create and configure.

Configurable Survivor Calculator—eView provides predefined strategies for
determining which field values to populate in the single best record (SBR). You can
define different survivor rules for each field, and you can create a custom survivor
strategy to implement in the master index.

Flexible Architecture—eView provides a flexible platform that allows you to create
a master index for any business object. You can customize the object structure so the
master index can match and store any type of data, allowing you to design an
application that specifically meets your data processing needs.

Configurable Matching Algorithm—eView provides support for both the
SeeBeyond Match Engine and the AscentialTM INTEGRITYTM matching algorithm.
In addition, you can plug in a custom matching algorithm to the master index.

Configurable Server Support—The master index applications generated by eView
support the SeeBeyond Integration Server (SIS).

Custom Java API—eView generates a Java API that is customized to the object
structure you define. You can call the methods in this API in the Collaborations of
the eGate Project.

2.1.3 eView and the SeeBeyond ICAN Suite
eView is tightly integrated within the ICAN suite, and can leverage the features of other
ICAN suite components.

eGate Integrator

eView leverages the eGate Integrator by providing identification and cross-referencing
capabilities for the data shared throughout the eGate system. It also uses eGate to
transform and route data between the master index database and external systems by
adding the eView method OTD to the external system Collaborations.

eInsight

eInsight Business Process Manager (eInsight) is the component within the SeeBeyond
ICAN Suite that facilitates the automation of the flow of business activities. eInsight
functions include business process model design, monitoring, and execution as well as
the ability to analyze how data messages flow from activity to activity, and from page
to page. You can include custom Java methods from the eView Project in Business
Processes for eInsight, enabling access to the master index database through eInsight.
eView Studio User’s Guide 18 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
eView Studio Overview eView Components
eVision

eVision Studio (eVision) is a graphical design studio for the WYSIWYG creation of
specialized Web applications, specifically developed for integration with the eGate and
eInsight runtime environments. Using eVision, you can create custom Web pages to
access information stored in the master index databases.

2.2 eView Components
The components of eView are designed to work within the eGate Enterprise Designer
to create and configure the master index, and to define connectivity between external
systems and the master index. The primary components of eView are:

eView Wizard

Editors

Project Components

Environment Components

2.2.1 eView Wizard
The eView Wizard takes you through each step of the master index setup process, and
creates the XML files that define the configuration of the application. The eView Wizard
allows you to define the name of the master index, the objects to store, the fields in each
object and their attributes, the EDM configuration, and the database and match engine
platforms to use. The eView Wizard generates a set of configuration files and database
scripts based on the information you specify. You can further customize these files as
needed.

2.2.2 Editors
eView provides the following editors to help you customize the files generated in the
eView Project.

XML Editor—allows you to review and customize the XML configuration files
created by the eView Wizard. This editor provides verification services for XML
syntax (schema validation is provided by eView). The XML editor is automatically
launched when you open an eView configuration file.

Text Editor—allows you to review and customize the database scripts created by
the eView Wizard. This editor is very similar to the XML editor but without the
verification services. The text editor is automatically launched when you open an
eView database script.

Java Source Editor—allows you to create and customize custom plug-in classes for
the master index. This editor is a simple text editor, similar to the Java Source Editor
in the Java Collaboration Editor. The Java source editor is automatically launched
when you open a custom plug-in file.
eView Studio User’s Guide 19 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
eView Studio Overview eView Components
2.2.3 Project Components
An eView master index is implemented within a Project in Enterprise Designer. When
you create an eView application, a set of configuration files and a set of database files
are generated based on the information you specified in the eView Wizard. When you
generate the Project, additional components are created, including a method OTD, an
outbound OTD, eInsight web page methods, necessary .jar files, and a Custom Plug-in
function that allows you to define additional, custom processing for the index. To
complete the Project, you create a Connectivity Map and Deployment Profile.

Additional eGate components must be added to the client Projects accessing the eView
master index, including Services, Collaborations, OTDs, Web Connectors, eWays, JMS
Queues, JMS Topics, and so on. You can use the standard Enterprise Designer editors,
such as the OTD or Collaboration editors, to create these components.

Following is a list of eView Project components.

Configuration Files

Database Scripts

Custom Plug-ins

Match Engine Configuration Files

Object Type Definitions

Dynamic Java Methods

Connectivity Components

Deployment Profile

Figure 1 on page 21 illustrates the Project and Environment components of eView
Studio.
eView Studio User’s Guide 20 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
eView Studio Overview eView Components
Figure 1 eView Project and Environment Components

Configuration Files

Several XML files together determine certain characteristics of the master index, such as
how data is processed, queried, and matched. These files configure runtime
components of the master index, which are listed in “Master Index Components” on
page 27.

Object Definition—Defines the data structure of the object being indexed in a
master index.

Enterprise Data Manager—Configures the search functions and appearance of the
EDM, along with debug information and security information for authorization.

Candidate Select—Configures the Query Builder component of the master index,
and defines the queries available for the index.

Match Field—Configures the Matching Service, and defines the fields to be
standardized and the fields to use for matching. It also specifies the match and
standardization engines to use.

Threshold—Configures the eView Manager Service, and defines certain system
parameters, such as match thresholds, EUID attributes, and update modes. It also
specifies the query from the Query Builder to use for matching queries.

eView Project

eGate Repository

Configuration

Configuration Files:
Object Definition
Runtime Configuration

Database Scripts
Systems
Code List
Create

Deployment
Profile

OTDs
Outbound
Method
eInsight

eView Environment

Logical
Host

Message
Server

Custom
Plug-ins

Integration
ServerConnectivity

Client Projects

External Systems

eInsight Business Process

eVision Web Interfaces
eView Studio User’s Guide 21 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
eView Studio Overview eView Components
Best Record—Configures the Update Manager, and defines the strategies used by
the survivor calculator to determine the field values for the SBR. It also allows you
to define custom update procedures.

Field Validation—Defines rules for validating field values. Rules are predefined for
validating the local ID field, and you can create custom validation rules to plug in to
this file.

Security—This file is a placeholder to be used in future versions.

Database Scripts

Two database scripts are generated by the eView Wizard: Systems and Code List. Two
additional scripts are created when you generate the Project (or by the wizard if you
choose to create all Project files at once).

Systems—Contains the SQL insert statements that add the external systems you
specified in the eView Wizard to the database. You can define additional systems in
this file. This file is executed after the create script is run.

Code List—Contains the SQL statements to insert processing codes and drop-down
list values into the database. You must define these elements in this file to make
them available to the master index system.

Create database script—Defines the structure of the master index database based
on the object structure defined in the eView Wizard. You can customize this file, and
then run it against an Oracle database to create a customized master index database.
This file is named the same name as was specified for the eView application in the
eView Wizard.

Drop database script—Used primarily in testing, when you need to drop existing
database tables and create new ones. The delete script removes all tables related to
the master index so you can recreate a fresh database for your Project.

You can also create custom scripts to store in the eView Project and run against the
master index database.

Custom Plug-ins

eView provides a method by which you can create custom processing logic for the
master index. To do this, you need to define and name a custom plug-in, which is a Java
class that performs the required functions. Once you create a custom plug-in, you
incorporate it into the index by adding it to the appropriate configuration file. You can
create custom update procedures and field validations, as well as define custom eView
components. Update procedures must be referenced in the update policies of the Best
Record file; field validations must be referenced in the Field Validation file; and custom
components must be referenced in the configuration file for that component.

Match Engine Configuration Files

If you specified the SeeBeyond Match Engine in the eView Wizard, several
configuration files for the engine are created in the eView Project. The configuration
eView Studio User’s Guide 22 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
eView Studio Overview eView Components
files under the Match Engine node define certain weighting characteristics and
constants for the match engine. The configuration files under the Standardization
Engine node define how to standardize names, business names, and address fields. You
can customize any of these fields as necessary. For more information, refer to
Implementing the SeeBeyond Match Engine with eView Studio.

Outbound Object Type Definition (OTD)

eView generates an outbound OTD based on the object structure defined in the Object
Definition file. This OTD is used for distributing information that has been added or
updated in the master index to the external systems that share data with the master
index. It includes the objects and fields defined in the Object Definition file plus
additional SBR information (such as the create date and create user) and additional
system object information (such as the local ID and system code). If you plan to use this
OTD to make the master index data available to external systems, you must define a
JMS Topic in the eView Connectivity Map to which the master index can publish
transactions.

Dynamic Java API

Due to the flexibility of the object structure, eView generates several dynamic Java
methods for use in Collaborations and in the Web service. One set is provided in a
method OTD for use in Collaborations and one set is provided for Web services. The
names, parameter types, and return types of these methods vary based on the objects
you defined in the object structure. These methods are described in the eView Studio
Reference Guide.

Method OTD

Generating the eView instance creates a method OTD containing Java functions you
can use to define data processing rules in Collaborations. These functions allow you to
define how messages received from external systems are processed by the Service. You
can define rules for inserting new records, retrieving record information, updating
existing records, performing match processing on incoming records, and so on.

Web Services Java Methods

In addition to the method OTD, which can be used in Collaborations, eView creates a
set of Java methods that can be incorporated into an eInsight Business Process for
eVision Web services. These methods are a subset of those defined for the method OTD,
providing the ability to view, retrieve, and match information in the master index
database from eInsight Web pages.

Connectivity Components

The eView Project Connectivity Map consists of two required components: the Web
application file and the application file. Two optional components are a JMS Topic for
broadcasting messages and an Oracle eWay for database connectivity. In client Project
Connectivity Maps you can use any of the standard Project components to define
connectivity and data flow to and from the master index. Client Projects include those
created for the external systems sharing data with the index and for eVision Web pages.
eView Studio User’s Guide 23 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.3
eView Studio Overview Learning about the Master Index
For the client Projects, you can use connectivity components from the eView server
Project and create any standard eGate connectivity components, such as OTDs,
Services, Collaborations, JMS Queues, JMS Topics, and eWays. Client Project
components transform and route incoming data into the master index database
according to the rules contained in the Collaborations. They can also route the
processed data back to the appropriate local systems through eWays.

Deployment Profile

The Deployment Profile defines information about the production environment of the
master index. It contains information about the assignment of Services and message
destinations to integration servers and JMS IQ Managers within the eView system.
Each eView Project must have at least one Deployment Profile, and can have several,
depending on the Project requirements and the number of Environments used. You
must activate the deployment before you can use the custom master index you created
using eView.

2.2.4 Environment Components
The eView Environments define configuration of the deployment environment of the
master index, including the Logical Host and application server. If eView client Projects
use the same Environment, it may also include a JMS IQ Manager, constants, Web
Connectors, and External Systems. Each Environment represents a unit of software that
implements one or more eView applications. You must define and configure at least one
Environment for the master index before you can deploy the application. The
integration server hosting the eView application is configured within the Environment
in the Enterprise Designer. Security is defined through the Environment configuration.

For more information about Environments, see the eGate Integrator User’s Guide.

2.3 Learning about the Master Index

In today’s business environment, important information about certain business objects
in your organization may exist in many disparate information systems. It is vital that
this information flow seamlessly and rapidly between departments and systems
throughout the entire business network. As organizations grow, merge, and form
affiliations, sharing data between different information systems becomes a complicated
task. The master indexes you create from eView can help you manage this data, and
ensure that the data you have is the most current and accurate information available.

Regardless of how you define the structure of the business object and configure the
runtime environment for the master index, the final product will include much of the
same functions and features. The master index provides a cross-reference of centralized
information that is kept current by the logic you define for unique identification,
matching, and update transactions.
eView Studio User’s Guide 24 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.3
eView Studio Overview Learning about the Master Index
2.3.1 Functions of the Master Index
The master index provides the following functions to help you monitor and maintain
the data shared throughout the index system.

Transaction History—The system provides a complete history of each object by
recording all changes to each object's data. This history is maintained for both the
local system records and the SBR.

Data Maintenance—The web-based user interface supports all the necessary
features for maintaining data records. It allows you to add new records; view,
update, deactivate, or reactivate existing records; and compare records for
similarities and differences. You can perform these functions against each local
system record or SBR associated with an enterprise object.

Search—The information contained in each SBR or system record can be obtained
from the database using a variety of search criteria. You can perform searches
against the database for a specific object or a set of objects. For certain searches, the
results are assigned a matching weight that indicates the probability of a match.

Potential Duplicate Detection and Handling—One of the most important features
of the master index system is its ability to match records and identify possible
duplicates. Using matching algorithm logic, the index identifies potential duplicate
records, and provides the functionality to correct the duplication. Potential
duplicate records are easily corrected by either merging the records in question or
marking the records as “resolved”.

Merge and Unmerge—You can compare potential duplicate records and then
merge the records if you find them to be actual duplicates of one another. You can
merge records at either the EUID or system record level. At the EUID level, you can
determine which record to retain as the active record. At the system level, you can
determine which record to retain, and which information from each record to
preserve in the resulting record.

2.3.2 Features of the Master Index
The components of the master index are designed to uniquely identify, match, and
maintain information throughout a business enterprise. These components are highly
configurable, allowing you to create a custom master index suited to your specific data
processing needs. Primary features of the master index include:

Centralized Information—The master index maintains a centralized database,
enabling the integration of data records throughout the enterprise while allowing
local systems to continue operating independently. The index stores copies of local
system records and of SBRs, which represent the most accurate and complete data
for each object. This database is the central location of information and identifiers,
and is accessible throughout the enterprise.

Configurability—Before deploying the master index, you define the components
and processing capabilities of the system to suit your organization’s processing
requirements. You can configure the object structure, matching and standardization
rules, survivorship rules, queries, EDM appearance, and field validation rules.
eView Studio User’s Guide 25 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.3
eView Studio Overview Learning about the Master Index
Cross-referencing—The master index is a global cross-indexing application that
automates record-matching across disparate source systems, simplifying the
process of sharing data between systems. The master index uses the local identifiers
assigned by your existing systems as a reference for cross-indexing, allowing you to
maintain your current systems and practices. The index maintains the most current
information by providing accurate identification and cross-referencing of business
objects.

Data Cleansing—The master index uses configurable matching algorithm logic to
uniquely identify object records, and to identify duplicate and potential duplicate
records. The index provides the functionality to easily merge or resolve duplicates.
The index can be configured to automatically merge records that are found to be
duplicates of one another.

Data Updates—The master index provides the ability to add, update, deactivate,
and delete data in the database tables through messages received from external
systems. Records received from external systems are checked for potential
duplicates during processing. Merges can also be performed through external
system messages. Data updates from external systems can occur in real time or as
batch processes.

Identification—The master index employs configurable probabilistic matching
technology, which uses a matching algorithm to formulate an effective statistical
measure of how closely records match. Using a state-of-the-art algorithm in real-
time mode and establishing a common method of locating records, the index
consistently and precisely identifies objects within an enterprise.

Integration—Relying on the eGate Integrator, the master index provides the power
and flexibility to identify, route, and transform data to and from any system or
application throughout your business enterprise. It can accept incoming
transactions and distribute updates to any external system, providing seamless
integration with the systems in your enterprise.

Matching Algorithm—The master index is designed to use the SeeBeyond Match
Engine or Ascential’s INTEGRITY matching algorithm to provide a matching
probability weight between records. Both algorithms provide the flexibility to create
user-defined matching thresholds, which control how potential duplicates and
automatic merges are determined. You can configure the index to use the match
engine of your choice.

Shared Information—Each time a record is updated, added, merged, or unmerged
from the user interface, the master index generates a message that can be
transmitted to external systems. It also receives, processes, and broadcasts
messages, containing information about the objects in your index.

Unique Identifier—Records from various systems are cross-referenced using an
enterprise-wide unique identifier, known as an EUID, that the index assigns to each
object record. The index uses the EUID to cross-reference the local IDs assigned to
each object by the various computer systems throughout the enterprise.
eView Studio User’s Guide 26 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.4
eView Studio Overview Master Index Components
2.4 Master Index Components
The master index created by eView is made up of several components that work
together to form the complete indexing system. The primary components of the master
index are:

eView Manager Service

Matching Service

Query Builder

Query Manager

Update Manager

Object Persistence Service

Database

Enterprise Data Manager

In addition, the master index uses the connectivity components defined in the eView
server and client Projects to route data between external systems and the master index.

The eGate Repository stores information about the configuration and structure of the
master index environment. Because the master index is deployed within eGate, it can
be implemented in a distributed environment. The master index system requires the
SeeBeyond Integration Server to enable Web service connectivity.

The components of an eView master index are illustrated in Figure 2.

Figure 2 eView Master Index Architecture

Master Index
Database

Application or Integration Server

eView Manager Service
(Master Controller Session Bean)

Matching Service

Match and
Standardization

Engine

Query
Builder

Query
Manager

Update
Manager

Object
Persistence

Service (OPS)

Enterprise Data
Manager Workstations

Master Index Runtime Components
eView Studio User’s Guide 27 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.4
eView Studio Overview Master Index Components
2.4.1 Matching Service
The Matching Service stores the logic for standardization (which includes data parsing
and normalization), phonetic encoding, and matching. It includes the specified
standardization and match engines, along with the configuration you defined for each.
The Matching Service also contains the data standardization tables and configuration
files for the match engine, such as the configuration files for the SeeBeyond Match
Engine or the rule set files for INTEGRITY. The configuration of the Matching Service is
defined in the Match Field file.

2.4.2 eView Manager Service
The eView Manager Service provides a session bean to all components of the master
index, such as the Enterprise Data Manager, Query Builder, and Update Manager. The
service also provides connectivity to the master index database. The configuration of
the eView Manager Service specifies the query to use for matching, and defines system
parameters that control EUID generation, matching thresholds, and update modes. The
configuration of the eView Manager Service is defined in the Threshold file.

2.4.3 Query Builder
The Query Builder defines all queries available to the master index. This includes the
queries performed automatically by the master index when searching for possible
matches to an incoming record. It also includes the queries performed manually
through the Enterprise Data Manager (EDM). The EDM queries can be either
alphanumeric or phonetic, and have the option of using wildcard characters. The
configuration of the Query Builder is defined in the Candidate Select file.

2.4.4 Query Manager
The Query Manager is a service that performs queries against the master index
database and returns a list of objects that match or closely match the query criteria. The
Query Manager uses classes specified in the Match Field file to determine how to
perform a query for match processing. All queries performed in the master index
system are executed through the Query Manager.

2.4.5 Update Manager
The Update Manager controls how updates are made to an entity’s single best record
(SBR) by defining a survivor strategy for each field. The survivor calculator in the
Update Manager uses these strategies to determine the relative reliability of the data
from external systems and to determine which value for each field is populated into the
SBR. The Update Manager also manages certain update policies, allowing you to define
additional processing to be performed against incoming data. The configuration of the
Update Manager is defined in the Best Record file.
eView Studio User’s Guide 28 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
eView Studio Overview Enterprise Records
2.4.6 Object Persistence Service (OPS)
OPS is a database service that translates high-level and descriptive object requests into
actual JDBC calls. The service provides mapping from the Java object to the database
and from the database to the Java object.

2.4.7 Database
The master index uses an Oracle database to store the information you specify for the
business objects being cross-referenced. The database stores local system records, the
single best record for each object record, and certain administrative information, such
as drop-down menu lists, processing codes, and information about the systems from
which data originates. The scripts that are generated to create the database tables are
based on the information specified in the Object Definition file.

2.4.8 Enterprise Data Manager
The Enterprise Data Manager (EDM) is a web-based interface that allows you to
monitor and maintain the data in your master index database. Most of the configurable
attributes of the EDM are defined by information you specify in the eView Wizard, but
you can further configure the EDM in the Enterprise Data Manager file after you
generate the eView application. The EDM provides the ability to manually search for
records; update, add, deactivate, and reactivate records; merge and unmerge records;
view potential duplicates; and view comparisons of object records.

2.5 Enterprise Records
An enterprise record includes all components of a record that represents one entity. The
master index stores two different types of records in each enterprise record: system
records and a single best record (SBR). A system record contains an enterprise record’s
information as it appears in an incoming message from a local system. An enterprise
record’s SBR stores data from a combination of local systems and it represents the most
reliable and current information contained in all system records for an enterprise
record. An enterprise record consists of both system records and the SBR.

2.5.1 System Records
The structure of system records is different from the SBR in that each system record
contains a system and local ID pair. The remaining information contained in the system
records of an enterprise record is used to determine the best data for the SBR in that
enterprise record. If an enterprise record only contains one system record, the SBR will
be identical to that system record. However, if it contains multiple system records, the
SBR may be identical to one system record but will more likely include a combination
of information from all system records.
eView Studio User’s Guide 29 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.6
eView Studio Overview From eView to the Master Index
2.5.2 The Single Best Record
The SBR for an object is created from the most reliable information contained in each
system record for a particular enterprise record. The information used from each local
system to populate the SBR is determined by the survivor calculator, which is
configured in the Best Record file. This data is determined to be the most reliable
information from all system records in the enterprise record. The survivor calculator
can consider factors such as the relative reliability of a local system, how recent the data
is, and whether the SBR contains any “locked” field values. You define the rules that
select a field to be persisted in the SBR.

2.5.3 Objects in an Enterprise Record
In eView, each system record and SBR in an enterprise record typically contain a set of
objects that store different types of information about the business object. A record
contains a parent object and several child objects. A record can have only one parent
object, but can have multiple instances of a child object as long as each instance is of a
different type. For example, if the business object being indexed is a person, the record
can only contain one member name and social security number, which would be
contained in the parent object (for example, a person object). However, the record could
have multiple addresses, telephone numbers, and aliases, which would each be defined
in different child object types (for example, in address, phone, and alias objects).

2.6 From eView to the Master Index
The process of creating a master index begins with a thorough analysis of the data you
plan to store in the index database and to share among the systems connected to the
index. Once your analysis is complete, you can define the object structure and begin to
customize the configuration files for your processing requirements.

2.6.1 Process Overview
The following steps outline the procedures you need to follow to build a master index
using the eView Studio.

1 Perform a thorough analysis of the data you plan to store in the master index.

2 Create an eGate Project, and create a new eView application within that Project
(Chapter 4).

3 Define the object structure, operating environment, and certain runtime
characteristics using the eView Wizard (Chapter 4).

4 If necessary, customize the configuration files (Chapter 5).

Note: If you customize Object Definition, you may also need to make corresponding
changes to the other configuration files. For example, if you add a new field to Object
eView Studio User’s Guide 30 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.6
eView Studio Overview From eView to the Master Index
Definition that you want to include in queries and matching, you need to make the
corresponding changes to the Candidate Select, Match Field, and Best Record files.

5 Generate the master index (Chapter 6).

6 Define and build custom plug-ins, and specify the plug-ins in the appropriate
configuration file (Chapter 7).

7 Create the database (Chapter 8).

Customize the scripts by defining system information, processing codes, and drop-
down menu values.

Create the database and then create any necessary indexes.

8 Create Connectivity Maps (Chapter 9).

Create and define the components in the Connectivity Maps, such as
Collaborations, Services, and External Applications.

Configure the Connectivity Maps.

9 Define the Environment and configure the server and security (Chapter 10).

10 Create the Deployment Profile and activate the Project (Chapter 11).

2.6.2 From XML to the Database
The master index database is created using standard Oracle database and a database
script created from the Object Definition file. Running the database script against a
standard Oracle 8.1.7 or 9i database creates the tables necessary for your master index.
You must define the sizing and distribution of your database before running the
database script and create any necessary indexes against the primary object tables after
running the file.

2.6.3 From XML to the Enterprise Data Manager
The Enterprise Data Manager file is created based on information you specify in the
eView Wizard. This file defines the fields and appearance of the EDM, and also
specifies the searches used by the EDM. The available search types are defined in the
Candidate Select file. You can customize many features of the EDM, including:

The fields that appear on the windows.

Field attributes, such as a display name, display order, maximum field length, the
field type and format, and so on.

The types of searches that can be performed and the fields available for each type.

The appearance of search results lists.

The location of the fields on all windows.
eView Studio User’s Guide 31 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.6
eView Studio Overview From eView to the Master Index
2.6.4 From XML to the Connectivity Components
When you generate the eView Project, several connectivity components are created,
including a method OTD, eInsight methods, and an outbound OTD. All are created
based on the Object Definition. The method OTD contains certain Java methods for use
in Collaborations to specify how data is processed into the database. The eInsight
methods are used for eInsight integration. The outbound OTD is used when publishing
messages processed by the master index for broadcasting to external systems.
Generating a Project also creates application files that you can drag into the
Connectivity Map.

2.6.5 From XML to the Runtime Environment
The information you specify in the eView configuration files is stored in the eGate
Repository, and is read at runtime when the Logical Host is started. The only exception
is the Object Definition, which is stored only as a record of the object structure. You can
modify many of the parameters of the configuration files after moving to production.
For the changes to take effect, you must regenerate the Project and reactivate the
Deployment profile to apply the changes to the Logical Host. You also need to restart
the EDM and any eWays connected to the application for the changes to take effect. Use
caution when modifying these files; changing certain elements after moving to
production may result in loss of data integrity or unexpected weighting and matching
results.
eView Studio User’s Guide 32 SeeBeyond Proprietary and Confidential

Chapter 3

Installation

eView Studio is installed in an eGate environment, and is installed into the Enterprise
Designer. This chapter provides instructions on installing eView once the eGate
environment is in place.

3.1 Installation Overview
In order to work with eView, you only need to perform the eView installation described
in this chapter. To work with the master index created by eView, a second component,
an Oracle database, must be installed for any master indexes you create.

3.1.1 eView Installation
eView is installed by uploading the eView files to the eGate Repository using the
Enterprise Manager, and then installing the eView Module, eView Wizard, and eView
Help to the Enterprise Designer. eView must be uploaded via an active eGate
Repository, and the eView Module, eView Wizard, and eView Help must be installed
using a computer with an existing Enterprise Designer. You must have access to a Web
browser for the initial upload. Installing eView includes installing the eView
application, reports, documentation, Javadocs, sample, and optionally, the INTEGRITY
add-on.

Before installing eView, make sure you have followed the instructions in the SeeBeyond
ICAN Suite Installation Guide to install your eGate environment, including the
Repository, monitors, Logical Host, Enterprise Designer, and integration server. eView
runs on the SeeBeyond Integration Server.

3.1.2 Database Installation
All of the master index components you create using eView are stored in the eGate
Repository. The only external component is the master index database. The database
does not need to be installed in order to use the eView tools, but it must be installed as
a part of master index implementation. For optimal performance, the database should
be installed on its own server. The master index database can be installed on an Oracle
8.1.7 or 9i platform, and can run on any operating system platform supported by Oracle
8.1.7 or 9i.
eView Studio User’s Guide 33 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
Installation About the Installation
To install the database, create a standard Oracle instance, using the sizing and
distribution requirements obtained from the data analysis. After you run the eView
Wizard and generate the Project, several SQL scripts are created. Running these scripts
against the database creates the master index tables and inserts startup data. For
complete instructions on installing the database, see Chapter 8, “Creating the
Database”.

3.2 About the Installation
The eView installation is a multi-stage process that includes the following:

1 Uploading eView into the Repository.

2 Uploading INTEGRITY into the Repository (optional).

3 Installing eView in the Enterprise Designer.

You can also install these components:

eView documentation in PDF format

eView Javadocs

eView sample Projects

3.3 System Requirements
eView is installed within SeeBeyond’s Integrated Composite Application Network
(ICAN) Suite environment, version 5.0.1. For system requirement information for the
ICAN environment, see the SeeBeyond ICAN Suite Installation Guide. This guide also
contains information about resource considerations. The Readme.txt file (located in the
Root directory of the installation CD-ROM) contains the most up-to-date operating
system requirements for the supported platforms. In addition to the operating system
requirements listed below, you must have the Java 2 Software Development Kit (SDK)
installed on the machine from which you will run the eView reports.

The following operating systems are supported by eView.

Windows Server 2003, Windows XP SP1a, and Windows 2000 SP3

HP Tru64 V5.1A with patch 5

HP-UX 11.0 and 11i with required patches and parameter changes

IBM AIX 5.1 and 5.2 with required maintenance level patches

Red Hat Enterprise Linux AS 2.1

Red Hat Linux 8 (Intel Version)

Sun Solaris 8 and 9 with required patches
eView Studio User’s Guide 34 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Installation Requirements for the ICAN 5.0.2 Environment
Important: Linux is not supported for implementations using the Ascential INTEGRITY
matching algorithm.

Requirements for the master index database, which is only required when you deploy a
master index, are included in Chapter 8, “Creating the Database”. The client
workstations accessing the master index EDM requires Internet Explorer 6.0 with SP1.

3.4 Requirements for the ICAN 5.0.2 Environment
You will be issued a license that allows you to install eView. eView can be installed after
you have done the following:

Installed the Repository.

Installed Enterprise Manager, including these files:

A ProductsManifest.xml

B eGate.sar.or eInsightESB.sar

C FileeWay.sar

D OracleeWay.sar (if you are connecting to the database via the Oracle eWay)

Installed the Enterprise Designer and all required modules, including:

A Code Generation Framework, and all modules required by the framework, such
as Logical Host, Project Explorer, Environment Explorer, and so on

B Deployment Editor

C OTD, Collaboration, and Connectivity Map Editors

D DTD OTD Wizard

Note: These modules are required for most Enterprise Designer implementations, and will
most likely already be installed (unless you are installing Enterprise Designer for
the first time).

3.4.1 Before Installing eView
Before you install eView, you must do the following:

1 Obtain an activation key, which is required for every installation (see the SeeBeyond
ICAN Suite Installation Guide for more information).

2 Select the Window(s) computers that will host eView. This must be installed on a
computer running the Enterprise Designer, which only runs on Windows systems.

3 Determine the add-on applications, if any, you will require.

4 Make sure you have the appropriate administrator permissions to install eView in
the Enterprise Manager and to update the Enterprise Designer through the Update
Center.
eView Studio User’s Guide 35 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
Installation Installing eView
5 Make sure the File eWay is installed. The eView sample Project installation relies on
the eWay and will fail if the File eWay is not installed first.

6 Before you begin the installation, exit all Windows applications.

3.5 Installing eView
To install eView, you must complete the following tasks:

Uploading eView to the Repository on page 36

Installing eView in the Enterprise Designer on page 43

3.5.1 Uploading eView to the Repository
The first step in installing eView is uploading the files into the eGate Repository. These
files are in the form of a SeeBeyond archive file that contains all the actual components
of the eView package and licensing information. Make sure you have installed all the
necessary eGate or eInsight Enterprise Service Bus (ESB) components before beginning.

The following steps are performed using the Enterprise Manager, which serves as an
update center, management center, and a dash board to gain access to available
applications. Additionally, system administrators use Enterprise Manager to upload
components to the Repository server. Perform these steps to upload all eView files.

Uploading eView on page 36

Uploading the eView Documentation and Sample on page 40

Uploading the INTEGRITY Add-on on page 41

Important: Make sure eGate Integrator and Enterprise Designer are installed before performing
these steps.

Uploading eView

The first step is to upload the eView product files.

To upload eView

1 Make sure the eGate Repository is started. (Run startserver.bat in the Repository
home directory if it is not started.)

2 Start your browser.

3 In the Address line, type http://<hostname>:<port_number>
where:

<hostname> is the TCP/IP host name of the server where you installed the
Repository—not the name of the Repository itself.

<port_number> is the port number you gave during the installation of the
Repository.
eView Studio User’s Guide 36 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
Installation Installing eView
When ready, press Enter.

The SeeBeyond Customer Login window of Enterprise Manager appears (see Figure
3).

Figure 3 Enterprise Manager Logon Window

4 Enter your username and password.

5 When ready, click Login.

The Upload System Component Manifest window appears with the HOME tab
active.

6 Click the ADMIN tab (see Figure 4).
eView Studio User’s Guide 37 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
Installation Installing eView
Figure 4 ADMIN Page

7 On the ADMIN page, do the following:

A Enter the products manifest file for eView (ProductsManifest.xml), located in
the Products folder on the installation CD-ROM, or click Browse to navigate to
ProductsManifest.xml, select the file, and then click Open.

B On the ADMIN page, click Submit.

A list of products you can install appears in the products available to upload
section of the page.
eView Studio User’s Guide 38 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
Installation Installing eView
Figure 5 Products Available to Upload Section

8 To upload the eView files to the Repository, under SeeBeyond Product Suite, click
Browse (for eView).

A Navigate to the Products folder on the installation CD-ROM, select eView.sar,
and then click Open.

B When you return to the products available to upload to <Repository_name>
window, the Products box for eView is populated. Click upload now.

9 To install the eView reports, do the following:

A Click the DOWNLOADS tab after the products available to upload to
<Repository_name> window reappears. The products available to download
from <Repository_name> window appears (see Figure 6).

B Click eView Reports.

C A dialog appears prompting you to open the file to disk or save it to your
computer. Extract the files to the directory where you want to store the reports
(the machine on which you store the reports must have network access to the
Integration Server).
eView Studio User’s Guide 39 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
Installation Installing eView
Figure 6 Downloading eView Reports

10 If you are installing documentation, samples, or the INTEGRITY add-on, leave the
Enterprise Manager open and continue to “Uploading the eView Documentation
and Sample” on page 40 or “Uploading the INTEGRITY Add-on” on page 41.

Uploading the eView Documentation and Sample

This optional step uploads a sample eView Project and a complete eView
documentation set, including Javadocs. It creates links to these components on the
Enterprise Manager’s DOCUMENTATION tab.

To upload the eView documentation and sample

1 Complete the procedure described under “Uploading eView” on page 36.

2 On the Enterprise Manager, click the ADMIN tab.

3 To upload documentation and sample files to the Repository, under SeeBeyond
Product Suite, click Browse (for eView).

A Navigate to the Products folder on the installation CD-ROM, select
eViewDoc.sar, and then click Open.

B When you return to the products available to upload to <Repository_name>
window, the Products box for eView is populated. Click upload now.

Note: You can install additional documentation if needed. The .sar files for non-eWay
documentation are located in the \Documentation directory on the Products -
eView Studio User’s Guide 40 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
Installation Installing eView
Disc 1 CD-ROM. The .sar files for eWay documentation are located in the
\Documentation directory on the Products - Disc 2 CD-ROM.

4 Leave the Enterprise Manager open and perform any of the following procedures:

To access the documentation files on page 41

To download the Javadoc files on page 41

To download the sample Project on page 41

To upload the INTEGRITY Add-on on page 42

To access the documentation files

1 In the Enterprise Manager, click the DOCUMENTATION tab.

2 Click eView Studio.

3 In the frame on the right side of the window, select any document title to view the
file in Acrobat Reader.

To download the Javadoc files

1 In the Enterprise Manager, click the DOCUMENTATION tab.

2 Click eView Studio.

3 In the frame on the right side of the windows, scroll to, and then click, Download
Javadoc.

4 A dialog appears prompting you to open the file to disk or save it to your computer.
Extract the files to the directory where you want to store the files.

5 To access the documents, navigate to the extract directory and then to
\eView_Javadoc\html.

6 Double-click index.html. This page provides links to all Javadoc pages.

To download the sample Project

1 In the Enterprise Manager, click the DOCUMENTATION tab.

2 Click eView Studio.

3 In the frame on the right side of the windows, scroll to, and then click, Download
Samples.

4 A dialog appears prompting you to open the file to disk or save it to your computer.
Choose Save, and then choose a location for the file set.

5 Extract eView_Samples.zip (make sure “Use folder names” is selected on the
WinZip dialog).

6 To implement the sample Project, see Chapter 12 “Implementing the eView
Sample”.

Uploading the INTEGRITY Add-on

This step is required only if you are using eView with the INTEGRITY match engine.
eView Studio User’s Guide 41 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
Installation Installing eView
Note: The .sar files for the INTEGRITY add-on are located on the INTEGRITY Add-on
CD-ROM. The .sar files for INTEGRITY documentation are located on the same
CD-ROM.

To upload the INTEGRITY Add-on

1 Complete the procedure described under “Uploading eView” on page 36.

2 On the Enterprise Manager, click the ADMIN tab.

3 To upload the INTEGRITY files to the Repository, under SeeBeyond Product Suite,
click Browse (for eView).

A Insert the eView INTEGRITY Add-on CD-ROM.

B Navigate to the eView INTEGRITY Add-on CD-ROM, select
eViewIntegrityAddon.sar, and then click Open.

C When you return to the products available to upload to <Repository_name>
window, the Products box for eView is populated. Click upload now.

4 To upload the INTEGRITY documents to the Repository, under SeeBeyond Product
Suite, click Browse (for eView).

A Navigate to the eView INTEGRITY Add-on CD-ROM, select
eViewIntegrityAddonDoc.sar, and then click Open.

B When you return to the products available to upload to <Repository_name>
window, the Products box for eView is populated. Click upload now.

C The documents can be accessed from the DOCUMENTATION tab under “Add-
ons”.

5 When the upload is complete, click the DOWNLOADS tab. The products available
to download from <Repository_name> window appears (see Figure 7).
eView Studio User’s Guide 42 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
Installation Installing eView
Figure 7 DOWNLOADS Page (for INTEGRITY Addon)

6 Click eView Integrity Addon. You can either open the file and extract the
INTEGRITY files, or you can save the file to disk and extract the files at a later time.

Note: The extracted files must reside on the application or integration server for the eView
system. Make sure to note the location to which you extract the files. You will need
to set this as a variable in the server configuration in the Enterprise Designer, and
you will need to copy one of the extracted files into the eView Project.

3.5.2 Installing eView in the Enterprise Designer
The final step in installing eView is updating the Enterprise Designer with eView. The
Enterprise Designer must be installed on the machine on which you are installing
eView. This step is performed using the Update Center, which is a tool in Enterprise
Designer that allows you to install add-on modules into the Enterprise Designer.

Note: The eView Project may be visible on the Enterprise Designer before you perform
these steps. If it is not, you can click Refresh All from Repository to view the
Projects. However, you cannot work with the Project files until you perform the
following steps.

To install eView in the Enterprise Designer

1 Navigate to <c:\eGate50>\edesigner\bin and double-click runed.bat. The
SeeBeyond Enterprise Designer GUI opens.
eView Studio User’s Guide 43 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
Installation Installing eView
Figure 8 Tools Menu for Enterprise Designer

2 Select the Tools menu and click Update Center.

The Update Center Wizard appears (see Figure 9).

Figure 9 Update Center Wizard - Select Location of Modules

3 Accept the default values, and click Next.

The Select Modules to Install page appears.(see Figure 10 on page 45).
eView Studio User’s Guide 44 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
Installation Installing eView
Figure 10 Update Center Wizard - Select Modules to Install

4 Do one of the following:

In the Available Updates and New Modules box, select eView Module, eView
Wizard, and eView Help, and then click the Add button (single-arrow button at
the top).

Note: To select each eView module, hold down the Control key and click each module.

To move all items in the Available Updates and New Modules box, click the
Add All button (double-arrow button between the two panes).

This moves the eView files to the Include in Install list.

5 Click Next.

The License Agreement window appears (see Figure 11 on page 46).
eView Studio User’s Guide 45 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
Installation Installing eView
Figure 11 Update Center Wizard - License Agreement

6 On the License Agreement window, click Accept.

The Download Modules page appears (see Figure 12).
eView Studio User’s Guide 46 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
Installation Installing eView
Figure 12 Update Center Wizard - Download Modules

7 After the progress bar reaches 100 percent, click Next.

The View Certificates and Install Modules page appears (see Figure 13).
eView Studio User’s Guide 47 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
Installation Installing eView
Figure 13 Update Center Wizard - View Certificates and Install Modules

8 Click Finish.

The Restart the IDE dialog box appears (see Figure 14).

9 The modules that were installed must be reloaded for eView to function properly.
To restart the IDE and install the module, check the Restart the IDE option button,
and then click OK.
eView Studio User’s Guide 48 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.6
Installation Upgrading eView from Version 5.0.2
Figure 14 Update Center Wizard - Restart the IDE

10 To begin working with the eView module, restart the Enterprise Designer.

11 When the Enterprise Designer is restarted, the sample Project appears in the Project
Explorer.

3.6 Upgrading eView from Version 5.0.2

3.6.1 What’s New for Release 5.0.3
For release 5.0.3, minor changes were made to the database, the method OTD, and the
Java Collaboration. This section describes the changes made for release 5.0.3.

Changes to the Method OTD

eView 5.0.3 provides two new methods that can be used for eInsight integration and in
the Java Collaborations for processing external system data. One method,
executeMatchUpdate, is added to the MasterController class, and processes the system
object in a similar manner to executeMatch. The primary difference between these two
methods is that executeMatchUpdate updates a system object rather than replacing the
entire object. The executeMatchUpdate method differs from executeMatch in the
following ways:

If a partial record is received, executeMatchUpdate only updates fields whose
values are different in the incoming record. Unless the clearFieldIndicator field is
used, empty or null fields in the incoming record do not update existing values.

The clearFieldIndicator field can be used to null out specific fields.

Child objects in the existing record are not deleted if they are not present in the
incoming record.

Child objects in the existing record are updated if the same key field value is found
in both the incoming and existing records.
eView Studio User’s Guide 49 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.6
Installation Upgrading eView from Version 5.0.2
A delete() method is now added to each child object bean to allow a child object to
be removed from the parent object if necessary.

Changes to the Database

For 5.0.3, the delta column of the sbyn_transaction table was modified from a LONG
RAW data type to a BLOB data type. This column stores a history of the changes made
to each record stored in the eView database. This change enables the sbyn_transaction
table, which can grow to be very large, to be partitioned (this was not possible with the
LONG RAW data type).

Changes to the Java Collaboration

With this release, a new field has been added to the Java Collaboration Editor named
CollabContext. If you want to use this field, you need to update any eView Java
Collaborations. For more information about the CollabContext field, see the ICAN
Suite readme file.

3.6.2 Performing the Upgrade
If you are upgrading eView from version 5.0.2, perform all steps listed under
“Uploading eView to the Repository” on page 36 and “Installing eView in the
Enterprise Designer” on page 43. There are two final steps in the upgrade: updating
the Project and modifying the history table (sbyn_transaction) in the database.

Upgrading the eView Project

The eView Project needs to be updated if you want to use the new CollabContext field
in the Java Collaboration Editor (JCE).

To upgrade the eView Project

1 Check out, and then open, the Java Collaboration for the eView client Project.

2 Click the Advanced Mode button located on the Business Rules toolbar.

3 In the Java Source Editor, locate the following line of code:

public com.stc.codegen.alerter.Alerter alerter;

4 Add the following line of code in the next line:

public com.stc.codegen.util.CollaborationContext collabContext;

5 Commit the change.

6 Regenerate the eView application.

Upgrading the Database

This step converts the history information from the LONG RAW character type to
BLOB. You must have Oracle 9i installed for this conversion; Oracle 8i does not include
the required tools. If you are not currently using Oracle 9i, perform the Oracle upgrade
before modifying the master index database.
eView Studio User’s Guide 50 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.6
Installation Upgrading eView from Version 5.0.2
To upgrade the 5.0.2 database

1 Log off any active Enterprise Data Manager GUIs.

2 In the Enterprise Designer, deactivate all eView Projects.

3 Shut down the Logical Host bootstrap for the Integration Server on which eView is
running.

4 Perform the installation steps listed under “Uploading eView to the Repository”
and “Installing eView in the Enterprise Designer”.

5 Open a SQL editor, such as SQL Plus, and enter the following commands at the
prompt.

ALTER TABLE SBYN_ASSUMEDMATCH DROP CONSTRAINT FK_AM_TRANSACTIONNUMBER;
ALTER TABLE SBYN_MERGE DROP CONSTRAINT FK_SBYN_MERGE;
ALTER TABLE SBYN_TRANSACTION DROP CONSTRAINT PK_TRANSACTION;
ALTER TABLE SBYN_TRANSACTION DROP CONSTRAINT AK_TRANSACTION;
DROP INDEX SBYN_TRANSACTION1;
DROP INDEX SBYN_TRANSACTION2;
ALTER TABLE SBYN_TRANSACTION MODIFY(DELTA BLOB);
ALTER TABLE SBYN_TRANSACTION ADD CONSTRAINT PK_TRANSACTION PRIMARY KEY
(TRANSACTIONNUMBER);
ALTER TABLE SBYN_TRANSACTION ADD CONSTRAINT AK_TRANSACTION UNIQUE (EUID,
EUID2, TRANSACTIONNUMBER);
CREATE INDEX SBYN_TRANSACTION1 on SBYN_TRANSACTION (TIMESTAMP ASC);
CREATE INDEX SBYN_TRANSACTION2 on SBYN_TRANSACTION (FUNCTION ASC);
ALTER TABLE SBYN_ASSUMEDMATCH ADD CONSTRAINT FK_AM_TRANSACTIONNUMBER FOREIGN
KEY (TRANSACTIONNUMBER) REFERENCES SBYN_TRANSACTION(TRANSACTIONNUMBER);
ALTER TABLE SBYN_MERGE ADD CONSTRAINT FK_SBYN_MERGE FOREIGN KEY (KEPT_EUID,
MERGED_EUID, MERGE_TRANSACTIONNUM) REFERENCES SBYN_TRANSACTION(EUID, EUID2,
TRANSACTIONNUMBER) DEFERRABLE INITIALLY DEFERRED;

6 In the Enterprise Designer, regenerate the eView server Project (this is the Project
containing the eView application).

7 Restart the Logical Host bootstrap.

8 In the Enterprise Designer, reactivate all eView Projects and apply the changes to
the Logical Host.
eView Studio User’s Guide 51 SeeBeyond Proprietary and Confidential

Chapter 4

Creating the Master Index Framework

The first step in creating a master index is to use the eView Wizard to define the object,
such as a person or company object, that will be stored and cross-referenced in the
master index database. This steps creates all of the configuration files required by the
master index.

This chapter describes the eView Wizard, and provides instructions for using the
wizard to create the basic configuration of the master index.

4.1 The eView Project
The eView Wizard runs in the context of an eGate Project. You must create a Project for
the master index before you can use the wizard to create the configuration of the index.
The eView Wizard creates the following elements of the eView Project.

Object Definition

Configuration Files

Database Scripts (for processing codes and system information)

Generating the Project creates additional components of the master index based on the
information specified in the Object Definition. From these basic pieces, you can create
and configure the connectivity components of the Project, and then define the
Environments and Deployment Profiles for the application.

4.2 The eView Wizard
The eView Wizard provides a user interface on which you can define the structure of
your enterprise object, the deployment environment, and the source systems to be
integrated in the eView system. You can also specify characteristics about the
appearance of the Enterprise Data Manager (EDM).

When you complete the wizard, eView automatically generates several XML files that
are used to define and create the master index and the runtime environment. You can
customize these files, if needed, using the XML editor in the Enterprise Designer.
Chapter 5 provides an overview of these files. The eView Studio Configuration Guide
provides detailed information and instructions for modifying each file. The files are
eView Studio User’s Guide 52 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Creating the Master Index Framework The eView Wizard
stored in the Repository and can only be modified using the eView editors in the
Enterprise Designer.

The wizard also generates database scripts that are used to insert start-up data into the
database. The eView Wizard provides the option to generate all application files at
once. In addition to the configuration and database files described above, this creates an
outbound and a method OTD, complete database scripts, the Custom Plug-ins
function, and all required application files.

4.2.1 Working with the eView Wizard

Accessing the eView Wizard

The eView Wizard can only be accessed from an existing Project in Enterprise Designer.
Once you create a Project, you can right-click in the Project Explorer pane, and select
New -> eView Application. This launches the eView Wizard. You should be familiar
with the Enterprise Designer and eGate Projects before creating the master index.

eView Wizard Toolbar Buttons

The toolbar buttons described in Table 2 provides one-click shortcuts for executing
commands in the eView Wizard. Place the cursor over a toolbar button to display the
title of that button.

Note: If a toolbar button is dimmed, you cannot use it with the selected component.

eView Wizard Navigation Buttons

The navigation buttons described in Table 3 allow you to navigate through the
windows of the eView Wizard.

Table 2 eView Wizard Toolbar Buttons

Button Command Function

Add Primary Object Adds a parent object, with no predefined child object or
fields.

Add Sub Object Adds a child object, with no predefined fields, under the
parent object.

Add Field Add a new field under the selected object.

Delete Deletes the selected object or field. If you delete an object,
all fields in that object are also deleted.

Templates Opens a template menu, from which you can select a
Company or a Person template with predefined fields and
sub-objects.
eView Studio User’s Guide 53 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Creating the Master Index Framework Before you Begin
Note: If a navigation button is dimmed, you cannot use it on the displayed page.

4.3 Before you Begin
Creating a master index requires in-depth analyses of your business requirements,
legacy data, and data processing requirements. After the initial analysis, you can plan
and design how you will configure the index using the eView Wizard and how you will
customize that configuration after running the wizard. In addition, you must plan and
design each physical component of the eView Project. For additional information about
analyzing, planning, and designing eGate components, see the eGate Integrator
Deployment Guide.

4.3.1 Data Analysis
Before you run the eView Wizard to create the master index, you perform an analysis
against the data that will be stored in the index database. Analyzing your data requires
extracting a set of records from each system that needs to share data with the eView
master index. At a minimum, each extracted data record should include all fields used
for matching. SeeBeyond or a qualified third party performs the preliminary data
analysis. It is important that SeeBeyond receives the data extracts for analysis as early
in the implementation process as possible.

The data analysis process helps you define the best object definition for your index, and
to configure the EDM, matching and standardization rules, survivor calculator, and
queries. It also helps identify over-used default field values, field-formatting
inconsistencies, frequently unpopulated or incorrectly populated fields, and so on.

Table 3 eView Wizard Navigation Buttons

Button Command Function

Back Returns to the previous step in the wizard. This button is
disabled on the first step.

Next Goes to the next step in the wizard. This button is disabled
on the last step.

Finish Saves configuration information, created Project files, and
closes the wizard. This button is only enabled on the last
step.

Cancel Closes the wizard without saving the configuration
information.

Help Displays the online help documentation for the eView
Wizard.
eView Studio User’s Guide 54 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Creating the Master Index Framework Creating the Master Index Configuration
4.3.2 Project Planning
Before you create the eView Project in the Enterprise Designer, you must analyze the
business requirements of the project and determine the Project components that will
help you meet those requirements. Planning the Project includes defining how each
external system will share information with the master index, and how the master
index will share information with those external systems. In addition, the Collaboration
of the Project contains the Java methods that define how the master index processes
incoming data. Collaborations can also be used to transform the data sent from external
systems into a format that can be read by the master index.

One additional consideration is whether to integrate the eView methods into an
eInsight Business Process by creating Web pages through eVision to access the eView
master index database.

4.3.3 Project Initiation Checklist
Before you begin using the eView Wizard to create your master index, make sure you
have obtained the following information:

The primary object to be indexed, such as a person, customer, business, and so on

Any secondary objects, such as telephone numbers and addresses

All fields to be stored in the index, for both the primary and secondary objects

The name of each field as it appears on the EDM, and whether the field will be a
standard text field or will be populated from a menu list (if a field will be populated
from a menu list, you should also know the name of the list)

Which fields are required

Which fields must be unique to the primary object

Which fields will be used for matching

Any special formatting requirements, such as character types, the data type,
minimum and maximum values, and field size

Which fields will appear on EDM search and search results windows

The processing codes for the source systems being integrated into the index

The match and standardization engines to be used in the index

4.4 Creating the Master Index Configuration
The eView Wizard provides a simple method for you to create the Object Definition and
the runtime configuration files for your master index. This section provides instructions
for creating a new eGate Project, and for using the eView Wizard to create the definition
and configuration files for the master index. To create the initial master index
configuration, follow these steps:

Step 1: Create a Project on page 56
eView Studio User’s Guide 55 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Creating the Master Index Framework Creating the Master Index Configuration
Step 2: Launch the eView Wizard on page 57

Step 3: Name the eView Application on page 57

Step 4: Define Source Systems on page 58

Step 5: Define the Deployment Environment on page 59

Step 6: Define Parent and Child Objects on page 61

Step 7: Define the Fields for each Object on page 66

Step 8: Generate the Project Files on page 72

Step 9: Review the Configuration Files on page 73

4.4.1 Step 1: Create a Project
Before you can access the eView Wizard, you must create and name a new Project in the
Enterprise Designer.

To create a Project

1 In the Project Explorer pane of the Enterprise Designer GUI, select the Repository
name.

2 Right-click to display the Repository context menu, and then select Project.

A new Project node appears under the Repository.

3 Enter a unique name for the Project and then press Enter.

Figure 15 Enterprise Explorer
eView Studio User’s Guide 56 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Creating the Master Index Framework Creating the Master Index Configuration
4.4.2 Step 2: Launch the eView Wizard
Once you create a Project for the master index, you can launch the eView Wizard and
begin defining the eView instance.

To launch the eView Wizard

1 Complete “Step 1: Create a Project”.

2 Select the new Project, and then right-click in the Project Explorer pane of the
Enterprise Designer GUI to display the Project context menu (Figure 16).

Figure 16 Project Context Menu

3 From the context menu, select eView Application.

4 Continue to “Step 3: Name the eView Application”.

4.4.3 Step 3: Name the eView Application
Each master index you create is an eView application. Before you can configure the new
master index, you must name the master index application. The name you specify will
become the name of the parent object, so it must follow Oracle naming requirements for
database tables.
eView Studio User’s Guide 57 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Creating the Master Index Framework Creating the Master Index Configuration
To name the eView application

1 Complete “Step 2: Launch the eView Wizard”.

Figure 17 eView Wizard - Name Application

2 In the Application field of the Name Application window, enter a name for the
new eView application, and then click Next.

Note: Make sure the application name you specify is unique in the Project (if you have
more than one eView application in the Project).

The Define Source Systems window appears as shown in Figure 18.

3 Continue to “Step 4: Define Source Systems”.

4.4.4 Step 4: Define Source Systems
After you specify a name for the new master index application, you need to specify the
names of the source systems that will be integrated into the new master index system.

To define source systems

1 Complete “Step 3: Name the eView Application”.

2 In the Name field of the Define Source Systems window, enter the processing code
of one of the source systems that will share data in the eView system, and then click
Add.

The value you entered appears in the Systems box.
eView Studio User’s Guide 58 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Creating the Master Index Framework Creating the Master Index Configuration
Important: Be sure to enter the processing code of the system and not the name. This value is
entered in the Best Record file for defining survivor strategies for the SBR.

Figure 18 eView Wizard - Define Source Systems

3 Do any of the following:

To define additional systems, repeat the above step for each source system that
will share information with the master index.

To remove a system from the list, highlight the name of that system in the
Systems box, and then click Remove.

To remove all systems from the list, click Remove All.

4 When you have defined all required source systems, click Next.

The Define Deployment Environment window appears.

5 Continue to “Step 5: Define the Deployment Environment”.

4.4.5 Step 5: Define the Deployment Environment
Once you define systems, you must specify information about the deployment
environment, including the database and match engine vendors.

To define the deployment environment

1 Complete “Step 4: Define Source Systems”.
eView Studio User’s Guide 59 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Creating the Master Index Framework Creating the Master Index Configuration
Figure 19 eView Wizard - Defining the Deployment Environment

2 On the Define Deployment Environment window, select the appropriate values
for the fields described in Table 4.

3 When you have defined the deployment environment fields, click Next.

4 Continue to “Step 6: Define Parent and Child Objects”.

Table 4 Deployment Environment Fields

Field Description

Database The type of database being used for the master
index. Currently, only Oracle is supported.

Match Engine The type of match and standardization engine
to use for the implementation. You can select
SeeBeyond or INTEGRITY.

Date Format The date format for the master index system.
This defines how dates should be entered and
how they appear on the EDM. You can select
MM/dd/yyyy, dd/MM/yyyy, or yyyy/MM/dd.
eView Studio User’s Guide 60 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Creating the Master Index Framework Creating the Master Index Configuration
4.4.6 Step 6: Define Parent and Child Objects
After you define the deployment environment for the master index, you can begin to
define the structure of the object you want to index. The primary object will be the
parent object for any other objects defined.

You can create new undefined objects, create objects using predefined templates, or use
a combination of both methods to create the objects in your enterprise object. Perform
any of the following actions to define the objects in the enterprise object.

Creating Undefined Objects on page 61

Creating Objects from a Template on page 63

Deleting an Object from the Structure on page 65

Complete “Step 2: Launch the eView Wizard” through “Step 5: Define the
Deployment Environment” before performing these procedures.

Important: Make sure the name of the parent object is the same as the application name you
specified earlier (this is the default name).

Creating Undefined Objects

When you create undefined objects, you create an empty object with no predefined
fields or child objects.

To create undefined parent and child objects

1 On the Define Enterprise Object window, click the Add Primary Object icon (you
can also right-click in the tree pane and select New Primary Object from the context
menu).

The initial node appears on the tree, as shown in Figure 20. By default, the name of
the field is the same as the name of the application you defined in “Step 2: Launch
the eView Wizard”.
eView Studio User’s Guide 61 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Creating the Master Index Framework Creating the Master Index Configuration
Figure 20 eView Wizard - New Undefined Parent Object

2 Accept the default name by pressing Enter.

3 To create a new child object, select the primary object created above, and then click
the Add Sub Object icon (or right-click to display the context menu and then select
New Sub Object).

The new child node appears on the tree, as shown in Figure 21.
eView Studio User’s Guide 62 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Creating the Master Index Framework Creating the Master Index Configuration
Figure 21 eView Wizard - Creating an Undefined Child Object

4 To accept the default name, press Enter. To change the name, type the new name
and then press Enter.

5 Repeat steps 3 and 4 for each child object.

6 Continue to “Step 7: Define the Fields for each Object”.

Creating Objects from a Template

When you create objects from a template, secondary objects and fields are predefined.
You can modify the predefined attributes if necessary.

To create parent and child objects from a template

1 On the Define Enterprise Object window, click the Templates icon and select the
template you want to use (or right-click in the tree-view pane to display the New
Primary Object context menu, point to Templates, and then select the template
name).

The objects and fields from the template appear in the tree-view pane in the center
of the window as shown in Figure 22.
eView Studio User’s Guide 63 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Creating the Master Index Framework Creating the Master Index Configuration
Figure 22 eView Wizard - Company Template

2 To create a child object from a template, right-click the primary object created above
to display the context menu, point to Template, and then select the name of the
template you want to use.

The new object and any defined fields appear in the object tree, as shown in Figure
23.
eView Studio User’s Guide 64 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Creating the Master Index Framework Creating the Master Index Configuration
Figure 23 eView Wizard - Creating a Child Object from a Template

3 If necessary, change the name of the new object by doing the following:

Click twice on the name.

Type the new name.

Press Enter.

4 Repeat steps 2 and 3 for each child object template you want to create.

5 Continue to “Step 7: Define the Fields for each Object”.

Deleting an Object from the Structure

If you add an object in error, or do not want to use one of the objects in a predefined
template, you can delete the object from the structure.

To delete an object from the structure

1 On the Define Enterprise Object window, select the object you want to remove.

2 Do any of the following:

Right-click in the object tree pane to display the context menu, and then select
Delete.

Press the Delete key.

Click the Delete icon in the eView Wizard toolbar.
eView Studio User’s Guide 65 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Creating the Master Index Framework Creating the Master Index Configuration
The object and any fields associated with that object are deleted. If you remove the
parent object, all child objects are deleted.

4.4.7 Step 7: Define the Fields for each Object
After you define all the parent and child objects for your enterprise object, you must
define the fields for each object. Every field has a set of properties that must be
configured before creating the master index configuration files. If you chose a
predefined template to create your objects, be sure to check the properties for all
predefined fields to be sure they are configured correctly for your implementation.

After you have defined the parent and child object, you can perform any of the
following actions to define the fields for those objects.

Creating a Field on page 66

Configuring Field Properties on page 67

Deleting a Field on page 72

Creating a Field

If you created an empty object in “Step 6: Define Parent and Child Objects”, you must
create each field that belongs to the object. If you created objects using a predefined
template, you can add new fields to the object if needed.

To create a field

1 Complete “Step 6: Define Parent and Child Objects”.

2 In the object tree pane of the Define Enterprise Object window, do one of the
following:

To add the field to the end of the object’s field list, select the name of the object
to which you want to add a new field and then click the Add Field icon (or
right-click in the object tree pane to display the context menu and then click
New Field).

To add the field immediately following an existing field, select the field after
which you want to add the new field and then click the Add Field icon (or right-
click in the object tree pane to display the context menu and then click New
Field).

The tree expands and a new field is inserted.
eView Studio User’s Guide 66 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Creating the Master Index Framework Creating the Master Index Configuration
Figure 24 eView Wizard - New Field Properties

3 To accept the default name, press Enter. To change the name, type the new name
and then press Enter.

4 Continue to “Configuring Field Properties”.

Important Field Name Restrictions:

eView automatically creates a field for each object named <object>Id, where <object> is
the name of the object or sub-object. You cannot create additional fields by those names. For
example, you cannot create a field named “AddressId” if there is an Address object in the
object structure.

If you enter a field name longer than 20 characters, a warning dialog appears. While Oracle
can handle names up to 30 characters, eView appends text to the end of fields defined for
phonetic encoding or standardization. For fields that will be parsed, normalized, or
phonetically encoded, make sure the name of the original field does not exceed 20 characters.
Any other field can have a name up to 30 characters long. For information about the names
of the fields automatically created by the eView Wizard, see Appendix B.

Configuring Field Properties

When a field is created, a set of default properties are defined for that field. You can
modify the property configuration for each field to suit your data processing, storage,
and display requirements.
eView Studio User’s Guide 67 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Creating the Master Index Framework Creating the Master Index Configuration
To configure field properties

1 Complete the steps under “Creating a Field”.

2 In the object tree pane of the Define Enterprise Object window, select the field you
want to configure.

3 On the Properties page in the right side of the window, modify the value of any of
the listed properties (shown in Figure 25).

To see a list of descriptions and restrictions for each property, see Table 5 on
page 69.

Note: After you modify a property value, press Enter to apply the change.

Figure 25 Field Properties Page

4 On the right side of the window, click the EDM tab, and then modify the value of
any of the listed properties on the EDM page.

To see a list of descriptions and restrictions for each property, see Table 6 on
page 71.
eView Studio User’s Guide 68 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Creating the Master Index Framework Creating the Master Index Configuration
Figure 26 Field EDM Page

5 When you have created and configured all of the necessary fields for each object,
click Next.

6 Continue to “Step 8: Generate the Project Files”.

Table 5 Field Properties

Property Description

Data Type The eView data type of the field, such as string,
object, date, and so on. The possible values are
string, date, long, float, int, char, or boolean.

Match Type The type of matching to be performed against the
field. The available options for this field are
dependent on the match engine you selected.
Note: The match types you specify here define the
standardization, normalization, and phonetic
encoding structure of the Match Field file. They also
define the match string. The match types in the
Match Field file might differ from the eView Wizard
match types. For complete information about match
types, see Appendix B.

Blocking An indicator of whether the field will be used in the
blocking query. Specify true to add the field to the
blocking query; specify false to omit it from the
blocking query.
eView Studio User’s Guide 69 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Creating the Master Index Framework Creating the Master Index Configuration
Key Type An indicator of whether the field is used to identify
unique objects. For example, in a business index you
might store several addresses for each business.
Each address is assigned an address type, which can
be used to identify an address for a business. Specify
true if the field is a unique record identifier, or false
if it is not. Key type fields should be required, unless
a combination of fields are specified as key types for
an object (see below).

Updateable An indicator of whether the field can be updated
from the EDM and external system messages.
Specify true if the field can be updated, or false if it
cannot.

Required An indicator of whether the field is required in order
to save an enterprise object to the database. Specify
true if the field is required, or false if it is not. If only
one key type field is defined for an object, it should
also be required.

Size The number of characters allowed in each field. This
determines the number of characters allowed in the
database columns, and defines the maximum
number of characters that can be entered into each
field on the EDM.

Pattern The required data pattern for the field. For more
information about possible values and using Java
patterns, see “Patterns” in the class list for
java.util.regex in the Javadocs provided with J2SDK.
You might want to define patterns for date,
telephone, or SSN fields.

Code Module The identification code for the drop-down list that
will appear for this field in the EDM.
Note: This must match an entry in the code column
of the sbyn_common_header database table. You
can define code lists in the Code List file after
completing the wizard.

User Code The processing code for the drop-down list that
appears for the fields defined by the Constrained By
property. For more information, see the description
of the Constrained By property below.
Note: This must match an entry in the code_list
column of the sbyn_user_code database table.

Table 5 Field Properties

Property Description
eView Studio User’s Guide 70 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Creating the Master Index Framework Creating the Master Index Configuration
Constrained By The name of the field containing the corresponding
User Code value (described above). User Code and
Constrained By are used in conjunction 1) to define
a drop-down list for the field that has the User Code
value, and 2) to validate the field that has the
Constrained By value against definitions for the field
with the User Code value.
For example, if you store non-unique IDs such as
credit card numbers or insurance policy numbers,
you could create a field named ID Type that has a
User Code value matching a code in the
sbyn_user_code table. This gives the ID Type field a
drop-down list based on the definitions in the
sbyn_user_code table. You could then create a field
named ID that would be constrained by the ID Type
field. Any IDs you enter would be validated against
the value of the ID Type field.

Table 6 EDM Properties

Property Description

Display Name The name of the field as it will appear on the
Enterprise Data Manager (EDM).

Input Mask A mask used by the GUI to add punctuation to a
field. For example, if users enter the date in the
format MMDDYYYY, you can add an input mask to
display the dates as MM/DD/YYYY.
To define an input mask, type a character type for
each character in the field, and place any necessary
punctuation between the character types. For
example, the input mask for the above date format is
DD/DD/DDDD. The following character types are
allowed:

D—indicates a numeric character.
L—indicates an alphabetic character.
A—indicates an alphanumeric character.

Table 5 Field Properties

Property Description
eView Studio User’s Guide 71 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Creating the Master Index Framework Creating the Master Index Configuration
Deleting a Field

If you add a field in error, or do not need one of the predefined fields from a template,
you can delete the field.

To delete a field

1 In the object tree pane of the Define Enterprise Object window, select the field you
want to delete.

2 Right-click in the object tree pane to display the context menu.

3 From the context menu, select Delete.

The field is removed from the object tree.

4.4.8 Step 8: Generate the Project Files
Once you have named the application and configured the source systems, deployment
environment, objects, and fields for the master index, you must generate the
configuration files and database scripts for the index. You have the option to create all
remaining Project files at this time, or to wait until you have modified the configuration
of the eView application. Either way, you should review the configuration files to be
sure the application is set up correctly for your data processing environment.

To generate the configuration files

1 Complete “Step 7: Define the Fields for each Object”.

Value Mask A mask used by the index to strip any extra
characters that were added by the input mask. This
mask ensures that data is stored in the database in
the correct format.
To specify a value mask, type the same value as is
entered for the input mask, but type an “x” in place
of each punctuation mark. For example, if an SSN
field has an input mask of DDD-DD-DDDD, you
need to specify a value mask of DDDxDDxDDDD in
order to strip the dashes before storing the SSN. A
value mask is not required for date fields.

Search Screen An indicator of whether the field will appear on the
search windows of the EDM. Specify true to display
the field, or false to hide it.

Search Result An indicator of whether the field will appear on the
search results windows of the EDM. Specify true to
display the field, or false to hide it.

Table 6 EDM Properties

Property Description
eView Studio User’s Guide 72 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Creating the Master Index Framework Creating the Master Index Configuration
Figure 27 eView Wizard - Generating the Configuration Files

2 Verify that all of the information you have entered is complete and correct.

3 To generate all application files for the Project, select the check box at the bottom of
the window. To generate them later, after reviewing the configuration files, leave
this check box unchecked.

4 On the Generate Configuration Files window, click Finish.

The configuration files are generated, and are stored in the eGate Repository.

5 Continue to “Step 9: Review the Configuration Files”.

4.4.9 Step 9: Review the Configuration Files
After the eView Wizard is complete, several nodes representing eView configuration
files are placed in the Project for the master index. Verify that the following nodes exist
in the Project tree, and that they are configured correctly for your implementation. If
you need to modify the configuration files, Chapter 5 provides an overview of these
files. See the eView Studio Configuration Guide for information about modifying the files.

Two folders, the Match Engine and Standardization Engine components, are only
included if you specified the SeeBeyond Match Engine; if the INTEGRITY match engine
was specified, these nodes do not appear.
eView Studio User’s Guide 73 SeeBeyond Proprietary and Confidential

Chapter 5

Configuring the Master Index

The eView Wizard creates several nodes in the eView Project that represent
configuration files for the master index. Before generating the eView Project, make sure
that each of these files is configured as required for your implementation. This chapter
provides an overview of the configuration files. For detailed information about the
structure of these files and how to modify them, see the eView Studio Configuration
Guide.

5.1 Configurable Options
eView provides a very flexible framework for creating a master index that is
customized for your requirements. This section describes the configurable components
of the master index.

Object Definition

By customizing the Object Definition file, you can configure the structure of the data
stored in the master index. This file contains the configuration of each object in the
master index and their relationships to one another. It also defines the fields contained
in each object, as well as certain attributes of each field, such as length, data type,
whether it is required, whether it is a unique key, and so on. This file contains one
parent object; all other objects must be child objects to that parent object. The object
structure you define in the Object Definition file determines the structure of the
database tables that will store object data and the structure of the method OTD
generated for the eView Project.

Enterprise Data Manager

The appearance of the EDM is defined in the Enterprise Data Manager file. You can
customize this file by defining each field that appears on the EDM, along with the
attributes of each field, such as the field type and length, field labels, format masks, and
so on. You can also define the order in which objects and fields appear on the EDM
pages, available search types and criteria, results fields, and so on.
eView Studio User’s Guide 74 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Configuring the Master Index Configurable Options
Query Definitions

The queries used in the master index are all defined in the Candidate Select file. You can
customize this file by configuring the types of queries used by the master index,
including those that are performed from the EDM and those that are used during the
match process. You can define both phonetic and alphanumeric searches for the EDM.
By default, these are called basic searches. You can also define blocking queries, which
define blocks of criteria fields, for the match process (this type of search can be used in
place of the phonetic search in the EDM as well).

Standardization and Matching Rules

Standardization and matching are configured in two files: Threshold and Match Field.
You can specify which match and standardization engines to use, and then configure
information about the standardization and match process. This includes defining fields
to be reformatted, normalized, or converted to their phonetic version; defining the data
string to be passed to the match engine; and specifying a blocking query for matching.
Finally, you can define certain match parameters that define weight thresholds and
how assumed matches are processed.

Survivor Calculator

The logic that determines the data included in each object’s SBR is defined in the Best
Record file. You can configure this file by defining the formulas used by the survivor
calculator to determine the fields from each system that contain the most reliable data.
The survivor calculator uses these formulas to generate the SBR for a given object.
Survivor logic is defined in the SurvivorHelperConfig and WeightedCalculator
sections of the Best Record file.

The SBR is defined by a mapping of fields from external system objects. Since there may
be many external systems, you can optionally specify a strategy to select the SBR field
from the list of external values. You can also specify any additional fields that might be
required by the selection strategy to determine which external system contains the best
data, such as the object's update date and time.

Update Policies

You can create Java classes that define special processing to perform against a record
when the record is created, updated, merged, or unmerged. These classes must be
created in the Custom Plug-ins module, and can be specified for each transaction type
in the Best Record file.

Field Validations

By default, the Field Validation file defines certain validations for the local identifier
assigned by each external system. You can create custom rules to validate field values
before they are saved to the master index database. .
eView Studio User’s Guide 75 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Configuring the Master Index About the eView Configuration Files
EUID Configuration

The configuration of the EUIDs assigned by the master index is defined in the
Threshold file. You can specify an EUID length, whether a checksum value will be used
for additional verification, and a “chunk size” (the number of EUIDs to be sent to the
EUID generator at one time). Specifying a chunk size allows the EUID generator to
obtain a block of EUIDs from the sbyn_seq_table database table, so it does not need to
query the table each time it generates a new EUID.

5.2 About the eView Configuration Files
The files that configure the components of the master index are created by the eView
Wizard and define certain characteristics, such as how data is processed, queried, and
matched. These files configure runtime components of the master index.

The configuration files include the following:

Object Definition on page 76

Candidate Select on page 76

Match Field on page 77

Threshold on page 77

Best Record on page 77

Field Validation on page 77

Enterprise Data Manager on page 78

These files can only be modified in the XML Editor provided with eView. This editor is
described in the eView Studio Configuration Guide.

5.2.1 Object Definition
In the eView Wizard, you define the objects and fields contained in the object structure,
along with attributes for those fields. The information you specify is written to the
Object Definition file in the eView Project. This file defines each object in the master
index and their relationships to one another. It also defines the fields contained in each
object, as well as certain attributes of each field, such as length, data type, whether it is
required, whether it is a unique key, and so on. This file contains one parent object; all
other objects must be child objects to that parent object. The object structure defines in
the Object Definition file determines the structure of the database tables that will store
object data, the structure of the Java API, and the structure of the OTD generated for the
Project.

5.2.2 Candidate Select
This file configures the Query Builder component of the master index, and defines the
queries available for the index. In this file, you define the types of queries that can be
eView Studio User’s Guide 76 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Configuring the Master Index About the eView Configuration Files
performed from the EDM and the queries that are used during the match process. You
can define both phonetic and alphanumeric searches for the EDM. By default, these are
called basic searches. You can also define blocking queries, which define blocks of criteria
fields for the match process. The master index queries the database using the criteria
defined in each block, one at a time. After completing a query on the criteria defined in
one block, it performs another pass using the next block of defined criteria. Blocking
queries can also be used in place of the basic phonetic query in the EDM.

5.2.3 Match Field
This file configures the Matching Service by defining standardization and matching
fields for the master index. It also specifies which match and standardization engines to
use and the query process for matching. Standardization includes defining fields to be
reformatted, normalized, or converted to their phonetic version. You must also define
the data string to be passed to the match engine. The rules you define for
standardization and matching are highly dependent on the standardization and match
engines in use.

5.2.4 Threshold
This file configures the eView Manager Service, and defines attributes of the match
process. You can specify the match and duplicate thresholds in this file, and define
certain system parameters, such as how to process records above the match threshold
how to manage same system matches, update modes, and whether merged records can
be updated. This file also specifies the query from the Query Builder to use for
matching queries.

This file also configures the EUIDs assigned by the master index. You can specify an
EUID length, whether a checksum value will be used for additional verification, and a
“chunk size” (the number of EUIDs to be sent to the EUID generator at one time).
Specifying a chunk size allows the EUID generator to obtain a block of EUIDs from the
sbyn_seq_table database table, so it does not need to query the table each time it
generates a new EUID.

5.2.5 Best Record
This file defines the logic for determining the data to be included in each object’s single
best record (SBR). The Best Record file allows you to define formulas for determining
which data should be considered the most reliable, and how updates to the SBR will be
handled. The survivor calculator uses these formulas to generate the SBR for a given
object. This logic is defined in the SurvivorHelperConfig and WeightedCalculator
sections of the Best Record file. This file also allows you to define custom update
procedures.

5.2.6 Field Validation
By default, the Field Validation file specifies a Java class that defines certain validations
for the local identifiers assigned by each external system. You can create Java classes
eView Studio User’s Guide 77 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Configuring the Master Index Modifying the eView Configuration Files
that define custom rules to validate field values before they are saved to the master
index database, and then specify those classes in this file.

5.2.7 Security
This file is a placeholder to be used in future versions.

5.2.8 Enterprise Data Manager
The appearance of the EDM is defined in the Enterprise Data Manager file. In this file,
you define each field that appears on the EDM, along with the attributes of each field,
such as the field type and length, field labels, format masks, and so on. You can also
define the order in which objects and fields appear on the EDM pages.

This file defines several additional attributes of the EDM, such as the types of searches
available, whether wildcard characters can be used, the criteria for the searches, and the
results fields that appear. You can also specify whether an audit log is maintained of
each instance data is accessed through the EDM.

Finally, this file defines certain implementation information, such as the integration
server in use, debugging options, and security details.

5.3 Modifying the eView Configuration Files
You may need to modify the configuration files after you review them. Make sure that
when you modify the configuration files, you use the Check Out and Check In
commands to maintain version control. If you open and modify a file without first
checking the file out, a warning appears when you try to save the file. This warning lets
you save and check out the file in one step. Also, be sure to verify that the modifications
are valid by using the XML verification function of the XML editor and the XSD
validation function of the eView application. After modifying each file, save the
changes to the Repository.

There are a few restraints on modifying these files. In addition to the general rules listed
below, the match engine you choose may place other requirements on customizations.
Be sure to review Implementing the SeeBeyond Match Engine with eView Studio or
Implementing Ascential INTEGRITY with eView Studio before modifying the Match Field
file.

All fields specified in any of the configuration files must be included in the Object
Definition file.

If you add fields to the object structure, make sure you add them to the survivor
calculator in the Best Record file.

If you define additional fields for normalization, parsing, or phonetic encoding,
make sure to add the normalized, parsed, and phonetic fields to the Object
Definition file and, optionally, the blocking query.
eView Studio User’s Guide 78 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
Configuring the Master Index Match Engine Configuration Files
After modifying any of the configuration files, you must regenerate before using the
master index application.

5.4 Match Engine Configuration Files
If you chose to implement the SeeBeyond Match Engine in the eView Wizard, several
match engine configuration files are added to the Project tree. You can customize
matching logic and standardization information for the match engine by modifying
these files. eView provides a text editor for this purpose. For information about the
structure of these files and how they can be modified, see Implementing the SeeBeyond
Match Engine with eView Studio.
eView Studio User’s Guide 79 SeeBeyond Proprietary and Confidential

Chapter 6

Generating the Project

Once all of the configuration files are created, and are customized completely, you
must generate the application to create the customized components. This chapter gives
instructions for generating the Project, and describes the Project components that are
created when you generate.

6.1 Generated Application Components
Generating an eView application is the process that actually creates the indexing
application. Several custom components are created in the Project, along with the
executable files for the application. eView uses the Object Definition to generate these
components based on the configuration you defined. These components include:

Database scripts—The scripts for creating and dropping tables and indexes are
created based on the Object Definition file.

Custom Plug-ins module—This component allows you to define additional
customized processing rules for the master index to perform when certain
transactions occur.

Outbound OTD—This component defines the outbound data structure and
includes general OTD methods. The data structure is based on the Object Definition
file.

Method OTD—The method OTD includes the Java methods you need to process
data through the master index. These are customized for your application based on
the Object Definition file.

eInsight methods—eInsight methods can be used when processing data through
eInsight rather than a Collaboration. They include a subset of the method OTDs,
and are based on the Object Definition file.

Application JAR files—These files are used by the Web-based interface (EDM) and
any client Projects that access the master index.
eView Studio User’s Guide 80 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Generating the Project Generating the Project
6.2 Generating the Project
Once all modifications to the configuration files are complete, you can generate the
eView application to create the components listed above. If you modify the
configuration files after you generate the application, you can regenerate the
application to update the custom components.

To generate the Project

1 Save all configuration changes to the Repository.

2 Right-click the eView application in the Project Explorer pane to display the
Generate context menu (shown in Figure 28).

Figure 28 Generate Context Menu

3 Select Generate. eView creates the new Project components. This may take a few
minutes.

4 Save the new components to the Repository.

Note: When you regenerate an application, a warning dialog appears stating that the
application already exists. Click Yes on this dialog to recreate the generated
components.
eView Studio User’s Guide 81 SeeBeyond Proprietary and Confidential

Chapter 7

Creating Custom Plug-ins

eView provides the ability to create custom update procedures to be performed on a
record once standard eView processing is carried out. These procedures are defined as
Java classes in the Custom Plug-ins module. This chapter describes how to create
custom procedures using this module and how to configure eView to use the custom
procedures.

7.1 About Custom Plug-ins
You can add custom processing to the master index using the Custom Plug-ins module
of an eView Project. You can use these plug-ins for field validations, update policies,
and to create custom components for the master index, such as a custom phonetic
encoders, block pickers, or query builders. The components listed below are explained
more fully in the eView Studio Configuration Guide.

7.1.1 Update Policies
For the primary transactions performed by the master index you can define additional
custom processing to perform against the record that results from the transaction. The
policies you define are invoked by the Update Manager, and are applied to the
resulting records after they are processed by the survivor calculator. The modifications
made to a record by an update policy determine how the record is stored in the
database. Using the Custom Plug-ins function, you can create additional Java classes to
support the update policies you define.

Update policies are specified in the UpdatePolicy section of the Best Record file. You
can define several different types of update policies. Each policy modifies an enterprise
object (class com.stc.eindex.objects.EnterpriseObject), and must implement
com.stc.eindex.update.UpdatePolicy. This class contains one method,
applyUpdatePolicy. The syntax is as follows:

public EnterpriseObject applyUpdatePolicy(EnterpriseObject
beforeImage, EnterpriseObject afterImage)

This method throws two exceptions: com.stc.eindex.objects.SystemObjectException
and com.stc.eindex.objects.exception.ObjectException.
eView Studio User’s Guide 82 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.1
Creating Custom Plug-ins About Custom Plug-ins
Enterprise Merge Policy

The enterprise merge policy defines additional processing to perform when two
enterprise objects are merged. The processing defined in this policy acts against the
surviving record of the merge. Specify the fully qualified name of this custom plug-in in
the EnterpriseMergePolicy element in the Best Record file.

Enterprise Unmerge Policy

The enterprise unmerge policy defines additional processing to perform when an
unmerge transaction occurs. The processing defined in this policy acts against the
surviving record of the merge transaction that was unmerged. Specify the fully
qualified name of this custom plug-in in the EnterpriseUnmergePolicy element of the
Best Record file.

Enterprise Update Policy

The enterprise update policy defines additional processing to perform when a record is
updated. Specify the fully qualified name of this custom plug-in in the
EnterpriseUpdatePolicy element of the Best Record file.

Enterprise Create Policy

The enterprise create policy defines additional processing to perform when a new
record is inserted into the master index database. Specify the fully qualified name of
this custom plug-in in the EnterpriseCreatePolicy element of the Best Record file.

System Merge Policy

The system merge policy defines additional processing to perform when two system
objects are merged. The processing defined in this file acts against the surviving
enterprise record of the merge (and not the system record). Specify the fully qualified
name of this custom plug-in in the SystemMergePolicy element of the Best Record file.

System Unmerge Policy

The system unmerge policy defines additional processing to perform when system
objects are unmerged. The processing defined in this file acts against the surviving
enterprise record of the merge transaction that was unmerged. Specify the fully
qualified name of this custom plug-in in the SystemUnmergePolicy element in the Best
Record file.

Undo Assumed Match Policy

The undo assumed match policy defines additional processing to perform when an
assumed match transaction is reversed. Specify the fully qualified name of this custom
plug-in in the UndoAssumeMatchPolicy element in the Best Record file.
eView Studio User’s Guide 83 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.1
Creating Custom Plug-ins About Custom Plug-ins
7.1.2 Field Validations
You can define validations to be performed against certain fields before information is
entered into the master index database. Once you create the custom plug-ins containing
the validation logic, you can specify the plug-in in the Field Validation file. Follow these
guidelines when implementing custom field validators.

The custom validation classes must implement
com.stc.eindex.objects.validation.ObjectValidator.

The exception thrown is
com.stc.eindex.objects.validation.exception.ValidationException.

One default field validator, validate-local-id, is provided by default to validate
information about system and local ID fields before processing the data. This is
described in the eView Studio Configuration Guide.

7.1.3 Custom eView Components
eView provides a flexible framework, allowing you to create custom Java classes to
plug in to most eView components. This section provides a brief list and descriptions of
some components for which you can create your own classes.

Query Builder

The query builder defines the different types of queries that can be used in the master
index. You can create custom queries to implement. To add a new query builder, you
must define a class that extends the base abstract
com.stc.eindex.querybuilder.QueryBuilder, and then define that class in a query-
builder element in the Candidate Select file. The exception thrown is
com.stc.eindex.querybuilder.QueryBuilderException.

Three methods must be implemented.

init—This method receives the XML elements after the config tag so the query
builder can read its custom configuration.

getApplicableQueryIds—This method returns an array of string IDs indicating the
query objects that can be generated given the available criteria. For example, in the
blocking configuration, the unique ID of each block definition is the string that is
returned in the call to getApplicableQueryIds.

buildQueryObject—This method constructs the query object based on one of the
applicable query IDs provided as an input argument.

Block Picker

The block picker chooses the block definition to use for the next matching pass. You can
create a custom block picker class to select query blocks as you define. Specify the fully
qualified name of this custom plug-in in the block-picker element of the Match Field
file. Follow these guidelines when implementing a custom block picker.
eView Studio User’s Guide 84 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.1
Creating Custom Plug-ins About Custom Plug-ins
Implement the com.stc.eindex.matching.BlockPicker interface to select the blocks
in the desired order.

If none of the remaining blocks should be executed, throw a
NoBlockApplicableException from the pickBlock method.

Pass Controller

The matching process can be executed in multiple stages. After a block is evaluated, the
pass controller determines whether the results found are sufficient or if matching
should continue by performing another match pass. The class you define is specified in
the pass-controller element of the Match Field file. Follow these guidelines when
implementing a custom pass controller.

Implement the com.stc.eindex.matching.PassController interface to evaluate
whether to do another pass or not.

Return true from evalAnotherPass to specify that an additional pass be performed;
return false to specify that no additional passes are performed.

Match Engine

You can define classes to connect to a custom match engine instead of the SeeBeyond
Match Engine or INTEGRITY. The classes you define are specified in the matcher-api
and matcher-config elements of the Match Field file. Follow these guidelines when
implementing custom match engine classes.

Implement the com.stc.eindex.matching.MatcherAPI interface to communicate
with the match engine.

Implement the com.stc.eindex.matching.MatchEngineConfiguration interface to
retrieve any configuration values the match engine requires for initialization.

Standardization Engine

You can define classes to connect to a custom standardization engine instead of the
SeeBeyond Match Engine or INTEGRITY. The classes you define are specified in the
standardizer-api and standardizer-config elements of the Match Field file. Follow
these guidelines when implementing custom standardization engine classes.

Implement the com.stc.eindex.matching.StandardizerAPI interface to
communicate with the standardization engine.

Implement the com.stc.eindex.matching.StandardizerEngineConfiguration
interface to retrieve any configuration values the standardization engine requires
for initialization.

Phonetic Encoders

Two phonetic encoders, NYSIIS and Soundex, are predefined for the master index. You
can define custom classes to implement additional phonetic encoders if needed. These
classes are specified in the encoder-implementation-class element of the Match Field
eView Studio User’s Guide 85 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Creating Custom Plug-ins Implementing Custom Plug-ins
file. When creating a custom phonetic encoder class, implement the
com.stc.eindex.phonetic.PhoneticEncoder interface.

7.2 Implementing Custom Plug-ins
eView provides a simple method of incorporating custom Java code into an eView
application via the Custom Plug-ins module.

Creating Custom Plug-ins

Custom plug-ins contain Java code that you create to tailor how messages are processed
in the eView system. You can create as many plug-ins as you need to carry out the
custom processes.

To create custom plug-ins

1 In the eView Project, click the Custom Plug-ins folder and then right-click.

2 Select New from the context menu that appears.

3 Enter the name of the custom plug-in and then click OK.

The custom plug-in file appears in the Java Source Editor with the first line already
entered (“package com.stc.eindex.user;”).

4 Create the custom processing rules using Java code.

5 Close and save the file.

6 Repeat these steps for each plug-in you need to create.

7 Build the custom plug-ins, as described under “Building Custom Plug-ins”.

Note: Custom plug-ins are created in the com.stc.eindex.user package, and the name you
specify for the plug-in is the name of the Java class created for the plug-in. When you
specify the custom plug-in in the configuration files, use the fully qualified class
name. For example, if you create a custom plug-in named “MergePolicy”, the value
you would enter for the class in the Best Record file is
“com.stc.eindex.user.MergePolicy”.

Building Custom Plug-ins

In order for the custom plug-ins you create to become a part of the eView application,
you must build the plug-ins. This compiles the Java code and incorporates it into the
application files.

To build custom plug-ins

1 In the eView Project, click the Custom Plug-ins folder and then right-click.

2 Select Build from the context menu that appears.
eView Studio User’s Guide 86 SeeBeyond Proprietary and Confidential

Chapter 8

Creating the Database

eView automatically generates several database scripts to create the master index
tables, indexes, and startup data for the new database. Additional scripts are created for
testing purposes. This chapter provides information about designing the database,
modifying the scripts, and using the scripts to create the index-specific database tables
and startup data.

8.1 Database Scripts
The eView Wizard creates two scripts based on information you specified about code
lists and about external systems. Use these scripts to define startup data for the master
index. Generating the Project creates additional scripts for creating or dropping
database tables. These scripts appear under the Database node of the eView Project,
and are named Systems, Code List, Create <application_name> database, Drop
<application_name> database (where <application_name> is the name you defined
for the application in the eView Wizard). You can modify these scripts as needed to
customize the tables, indexes, startup data, and distribution of the database.

8.2 Requirements
When configuring the master index database, there are several factors to consider,
including basic software requirements, operating systems, disk space, and so on. This
section provides a summary of requirements for the database. For more detailed
information about designing and implementing the database, refer to the appropriate
Oracle documentation. The person responsible for the database configuration should be
an Oracle database administrator familiar with the master index database and with
your data processing requirements.

Database Platforms

The master index database can be run on either an Oracle 8.1.7 or an Oracle 9i platform.
You must have this software installed before beginning the database installation.
eView Studio User’s Guide 87 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Creating the Database Database Structure
Operating Systems

The database can be installed on any operating system platform supported by the
version of Oracle you are using.

Hardware Requirements

The minimum recommended hardware configuration for a database installation is one
of the following options. These requirements are based on the minimum requirements
recommended by Oracle for the installation of a Typical installation. Depending on the
size of the database and expected volume, you should increase these recommendations
as needed.

For a Windows NT, 2000, or XP database server, the following configuration is
recommended as a minimal installation:

Windows NT 4.0 with SP4 or later

Pentium 3

256 MB RAM (increase this based on the number of users, connections to the
database, and volume)

2.5 GB disk space plus an additional 2 KB for each system record to be stored in
the database (note that this is a conservative estimate per system record,
assuming that most records do not contain complete data)

256-color video

CD-ROM device

For a Unix database server, the following configuration is recommended as a
minimal installation:

256 MB RAM (increase this based on the number of users and connections to the
database)

Swap space should be a minimum of twice the amount of RAM

1 GB disk space plus an additional 2 KB for each system record to be stored in
the database (note that this is a conservative estimate per system record,
assuming that most records do not contain complete data)

CD-ROM device

Important: Disk space recommendations do not take into account the volume and processing
requirements or the number of users. These are minimal requirements to install a
generic database. At a minimum, the empty database and the database software will
require 2.5 GB of disk space.

8.3 Database Structure
The master index database contains some tables that are created for all
implementations. These tables include standard Oracle tables and supporting tables,
eView Studio User’s Guide 88 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.4
Creating the Database Designing the Database
such as sbyn_seq_table, sbyn_common_header, and sbyn_common_detail. These tables
do not store information about the enterprise object structure you defined. The tables
that store information about the enterprise object are named based on the object
structure.

Two tables store information about the primary, or parent, object you defined:
sbyn_<parent_object> and sbyn_<parent_object>sbr, where <parent_object> is the name
you specified for the parent object in Object Definition. sbyn_<parent_object> stores
parent object information from each local system, and sbyn_<parent_object>sbr stores
parent object information contained in the SBRs. Similar tables are created for each
child object you defined in the object structure.

For a complete description of the database tables, see Chapter 4, “The Database
Structure”, in the eView Studio Reference Guide.

8.4 Designing the Database
In designing the database, there are several factors to consider, such as the volume of
data stored in the database and the number of transactions processed by the database
daily.

8.4.1 Designing for Performance Optimization
The Oracle installation guides provide detailed information about installing the
database software for optimal performance. The Oracle Administrator's Reference
includes information about monitoring and fine-tuning your database, including
tuning memory, swap space, I/O, CPU usage, block and file size, and so on.

8.4.2 Data Analysis
Before beginning the master index implementation, you performed an analysis of the
legacy data to help you define the object structure and the attributes of each field. You
can use this data analysis to determine the amount of data that will be stored in the
database, which will help you size the master index database and decide how to best
distribute the database. Knowing the volume of existing data plus the expected daily
transaction volume will help you plan the requirements of the database server, such as
networking needs, disk space, memory, swap space, and so on.

The data analysis will also help you define the processing codes and the descriptions to
define in the common tables.

8.4.3 Common Table Data
This part of the data analysis involves gathering information about the abbreviations
used for specific data elements in each sending system, such as system codes and codes
for certain attributes about the objects in your database. For example, if you are
indexing person objects, there may be processing codes for genders, marital statuses,
eView Studio User’s Guide 89 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.4
Creating the Database Designing the Database
nationalities, and so on. The processing codes and their descriptions are stored in a set
of database tables known as common maintenance tables. The eView Wizard creates a
script to help you load the processing codes into the database.

When an enterprise object appears on the EDM, the master index translates the
processing codes defined in the common tables into their descriptions so the user is not
required to decipher each code. The data elements stored in the common maintenance
tables are also used to populate the drop-down lists that appear for certain fields in the
EDM. Users can select from these options to populate the associated fields.

8.4.4 User Code Data
This part of the data analysis involves gathering information about the abbreviations
used for specific data elements in each sending system for a field whose format or
possible values are constrained by a separate field. For example, if you store credit card
information, you might have a drop-down list in the Credit Card field for each credit
card type. The format of the field that stores the credit card number is dependent on the
type of credit card you select. You could also use user code data to validate cities with
postal codes. The abbreviations and related constraint information are stored in the
sbyn_user_code table.

8.4.5 Considerations
When you create the master index database, you need to consider several factors, such
as sizing, distribution, indexes, and extents. By default, all of the master index database
tables are installed in the Oracle “system” tablespace. You may want to install these
tables into different tablespaces, depending on the original size and expected volume of
the database.

Sizing

To begin the database installation, you first create an Oracle database instance using
Oracle configuration tools. You can use this tool to define the tablespace and extent
sizing for the database.

Distribution

The Oracle configuration tools also allow you to define the distribution of your system
tables, data tables, rollback logs, dump files, control files, and so on.

Indexes

By default, indexes are defined for the following tables: sbyn_appl,
sbyn_common_header, sbyn_common_detail tables, sbyn_enterprise,
sbyn_transaction, sbyn_assumedmatch, sbyn_potentialduplicates, sbyn_audit, and
sbyn_merge. You can create additional indexes against the database to optimize the
searching and matching processes. At a minimum, it is recommended that fields used
for blocking or matching be indexed.
eView Studio User’s Guide 90 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.5
Creating the Database Creating the Database
8.5 Creating the Database
Once you have customized the configuration files and generated the eView Project in
the Enterprise Designer, you can create the master index database. Before you begin,
make sure you have Oracle installed on the database server. Follow these steps to create
the database:

Step 1: Analyze the Database Requirements on page 91

Step 2: Create an Oracle Database on page 91

Step 3: Customize the Database Scripts on page 91

Step 4: Modify the Database on page 96

Step 5: Specify a Starting EUID (optional) on page 97

8.5.1 Step 1: Analyze the Database Requirements
Before you begin to create the master index database, you must perform a thorough
analysis of the legacy data to be stored in the database, and determine the amount of
data that will be processed daily. During the analysis, be sure to define the processing
codes that need to be stored in the common maintenance tables and the systems that
will share data with the master index. You should also know the length and format of
the local IDs assigned by each system.

An Oracle database administrator who is familiar with your data and processing
requirements should perform this task.

8.5.2 Step 2: Create an Oracle Database
Before beginning this step, be sure that the correct version of Oracle is installed on the
database server. eView supports both Oracle 8.1.7 and Oracle 9i. To install the database,
you can use a standard Oracle tool, such as the Database Configuration Assistant,
which will lead you through the database configuration process. During this step, you
will be defining tablespace sizes and locations; extents; and dump file, log file, and
rollback file sizes and locations. Make sure these issues have been thoroughly analyzed
and designed before creating the database.

When you create the database, you should also create an administrator user, granting
DBA with the admin option. Also give this user permission to select any table and to
create users.

8.5.3 Step 3: Customize the Database Scripts
The database script that installs the database components specific to eView is created
from the information you specify in the eView Wizard. You can modify any of the
database script as needed.
eView Studio User’s Guide 91 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.5
Creating the Database Creating the Database
Defining Indexes

To optimize data processing in the master index, you can define additional indexes for
the database tables that store object data. SeeBeyond recommends defining indexes for
each field used for searching, blocking, or matching. You can define these indexes in the
Create <Object> database file or create a new script.

To define an index

1 In the Project Explorer pane, expand the Database node and then double-click the
Create <Object> database file.

The file opens in the text editor.

2 Do any of the following:

Remove an existing index definition (not recommended).

Create new index definitions for the required fields.

Modify an existing index definition.

3 Save and close the Create <Object> database file

Defining Systems

The eView Wizard defines SQL statements to insert the systems you specified. These
statements are provided in the Systems file in the eView Project.

To define a system

1 In the Project Explorer pane, expand the Database node and then double-click the
Systems file.

The file opens in the text editor.

2 For each “insert” statement, modify the values clause according to the column
descriptions in Table 7. For example:

INSERT into sbyn_systems (systemcode, description, status,
id_length, format, input_mask, value_mask, create_date,
create_userid)
VALUES ('ARS', 'Automated Registration System', 'A', 10, '[0-
9]{10}', 'DDD-DDD-DDDD', 'DDD^DDD^DDDD', sysdate, ‘admin’);

3 If needed, create additional “insert” statements for any systems that are not already
defined.

4 Save and close the Systems file.

Table 7 Columns in the sbyn_systems Table

Column Description

systemcode The unique processing code of the system.

description A brief description of the system, or the system name.

status The status of the system in the master index system.
Specify “A” for active, or “D” for deactivated.
eView Studio User’s Guide 92 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.5
Creating the Database Creating the Database
Defining Code Lists

The eView Wizard defines SQL statements to insert custom data into the database. The
information you define will be used to translate processing codes from incoming
messages into descriptions for the EDM fields and to create drop-down lists for EDM
fields.

id_length The length of the local identifiers assigned by the
system. This length does not include any additional
characters added by the input mask.
Note: The maximum length of the LID database columns
is 25. If the system generates longer local IDs, be sure to
increase the length of all LID columns in the database.

format The required data pattern for the local IDs assigned by
the system. For more information about possible values
and using Java patterns, see “Patterns” in the class list for
java.util.regex in the Javadocs provided with J2SDK.

input_mask A mask used by the EDM to add punctuation to the local
ID. For example, you can add an input mask to display
the local IDs with hyphens or constant characters. To
define an input mask, enter a character type for each
character in the field, and place any necessary
punctuation between the types. For example, to insert a
hyphen after the second and fifth characters in an 8-digit
ID, the input mask would be DD-DDD-DDD. The
following character types can be used; any other
characters are treated as constants.

D - indicates a numeric character.
L - indicates an alphabetic character.
A - indicates an alphanumeric character.

value_mask A mask used to strip any extra characters that were
added by the input mask. This mask ensures that data is
stored in the database in the correct format.
To specify a value mask, type the same value entered for
the input mask, but type an “x” in place of each
punctuation mark. Using the 8-digit input mask
described above, you would specify a value mask of
DDxDDDxDDD. This strips the hyphens before storing
the ID.

create_date The date the system information was inserted into the
database. You can specify “sysdate” for this column, or
use the variables defined at the beginning of the sample
script.

create_userid The logon ID of the user who inserted the system
information into the database. You can enter the logon
ID or use the variables defined at the beginning of the
sample script.

Table 7 Columns in the sbyn_systems Table

Column Description
eView Studio User’s Guide 93 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.5
Creating the Database Creating the Database
The eView Wizard creates a stanza in the Code List file (located under the Database
node of the Project) for each code list you specified in the field properties. You must
specify the information to enter for each stanza. This script inserts data into two tables:
sbyn_common_header, which lists the types of common table data, and
sbyn_common_detail, which lists each common table data element. You must define a
type before you can define the elements for that type.

Note: The codes you specify in this file can be no longer than eight characters (the codes
are the second value in the value list for each common table data type and data
element).

To customize common table data

1 In the Project Explorer pane, expand the Database node and then double-click the
Code List file.

The file opens in the text editor.

2 In the Code List file, scroll to the following line.

codes tCodeList := tCodeList(

The statements following this line must be customized.

3 In the first code list stanza, change “module description” in the first line to a brief
description of the code type. For example:

-- **** PHONTYPE ****
tCode('L', 'PHONTYPE', 'TELEPHONE TYPE'),

4 Copy the second line of the stanza (this line begins with “tCode(‘V’...”), and paste
the copied line into the same stanza for each data element you need to define for
that type.

5 In the copied lines, change “code” to the processing code of the data element, and
change “code description” to the description of the element as you want it to appear
on the Enterprise Data Manager windows. For example:

-- **** PHONTYPE ****
tCode('L', 'PHONTYPE', 'TELEPHONE TYPE'),
tCode('V', 'H', 'HOME'),
tCode('V', 'C', 'CELL'),
tCode('V', 'F', 'FAX'),
tCode('V', 'O', 'OFFICE'),
tCode('V', 'HB', 'HOME BUSINESS'),

6 Repeat steps 3 through 5 for each code list type defined in the file.

If you specified additional code list fields in the Object Definition file, add a new
stanza for each new code type.

7 In the last code module stanza, make sure each line except the last contains a
comma at the end. For example:

-- **** ADDRTYPE ****
tCode('L', 'ADDRTYPE', 'ADDRESS TYPE'),
tCode('V', 'H', 'HOME'),
tCode('V', 'B', 'BUSINESS'),
tCode('V', 'M', 'MAILING')

8 Save and close the Code List file.
eView Studio User’s Guide 94 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.5
Creating the Database Creating the Database
Defining User Code Lists

If you specified a value for the Constrained By and User Code properties of a field, you
must define the user code values for those fields. Below is a sample insert statement for
the sbyn_user_code table.

insert into sbyn_user_code (code_list, code, descr, format,
input_mask, value_mask)
values ('AUXIDDEF', 'CC', 'CREDIT CARD', '[0-9]{16}', 'DDDD-DDDD-
DDDD-DDDD', 'DDDD^DDDD^DDDD^DDDD');

To define a user code list

1 In the Project Explorer pane, expand the Database node and then right-click.

2 In the Database context menu, select New.

3 Enter the name of the script, and then click OK.

The file opens in the text editor.

4 Use the above sample to define a value for the user code drop-down list and the
required format for the dependent fields.

5 Repeat step 4 for each drop-down list value and type (for example you might have
one list for credit cards and another for postal codes and their corresponding cities).

6 Save and close the file.

Table 8 SBYN_USER_CODE Table Description

Column Name Description

code_list The code list name of the user code type (using the
credit card example above, this might be similar to
“CREDCARD”). This column links the values for each list.

code The processing code of each user code element.

description A brief description or name for the user code. This is the
value that appears in the drop-down list.

format The required data pattern for the field that is
constrained by the user code. For more information
about possible values and using Java patterns, see
“Patterns” in the class list for java.util.regex in the
Javadocs provided with Java 2Software Development Kit
(SDK).

input-mask A mask used by the EDM to add punctuation to the
constrained field. For example, the input mask DD-DDD-
DDD inserts a hyphen after the second and fifth
characters in an 8-digit ID. These character types can be
used.

D—Numeric character
L—Alphabetic character
A—Alphanumeric character
eView Studio User’s Guide 95 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.5
Creating the Database Creating the Database
Creating a Custom Script

You can insert additional information into the database by creating a custom script
under the Database node. For information about the structure of the master index
database, see the eView Studio Reference Guide.

To create a custom script

1 In the eView Project, right-click the Database node.

2 In the Database context menu, select New.

3 Enter the name of the script, and then click OK.

The new script appears under the Database node.

4 Double-click the new script.

The text editor appears.

5 In the text editor, create the SQL script to insert the custom data.

6 Close the file and select Yes to save the data.

8.5.4 Step 4: Modify the Database
After you create the database instance and customize the database scripts, you can
create the master index tables and insert the custom data.

To modify the database

1 In the eView Project, right-click the Database node, and then select Properties from
the Database context menu.

The Properties of Database Script dialog appears as shown in Figure 29 on
page 97.

value-mask A mask used to strip any extra characters that were
added by the input mask for database storage. The value
mask is the same as the input mask, but with an “x” in
place of each punctuation mark. Using the input mask
described above, the value mask is DDxDDDxDDD. This
strips the hyphens before storing the ID.

Table 8 SBYN_USER_CODE Table Description

Column Name Description
eView Studio User’s Guide 96 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.5
Creating the Database Creating the Database
Figure 29 Database Properties Dialog

2 In the Properties of Database Script dialog, enter the following information:

In the Database Server field, change <host> to the database server name and
change <SID> to the SID name of the database you created in “Step 2: Create an
Oracle Database”.

In the Password field, enter the password of the administrator user you created
when you created the database.

In the User field, enter the administrator user’s logon ID.

3 Close the dialog by clicking the “X” icon in the upper right corner of the dialog.

4 Right-click Create <app_name> Database (where <app_name> is the name of the
eView application), and then select Run. On the confirmation dialog, click OK.

5 For each additional script to run against the database, right-click the name of the
script, and then select Run. On the confirmation dialog, click OK.

8.5.5 Step 5: Specify a Starting EUID (optional)
By default, the EUIDs assigned by the master index start with “1”, with padded zeroes
added to the left to make the EUID number the correct length (for more information,
see “Threshold Configuration” in the eView Studio Configuration Guide). You can modify
this numbering format by changing the value of the seq_name column of the
sbyn_seq_table database table where the sequence name is “EUID”. For example:
eView Studio User’s Guide 97 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.6
Creating the Database Deleting the Master Index Tables
update sbyn_seq_table set seq_count=1000000001 where
seq_name='EUID';

8.6 Deleting the Master Index Tables
If you need to remove the database tables created in Step 4: Modify the Database on
page 96, you can run the “drop script” created by the eView Wizard. This is useful
while testing the master index implementation.

To delete the master index tables

1 Right-click Drop <app_name> database (where <app_name> is the name of the
eView application).

2 Select Run.

3 On the confirmation dialog, click OK.

eView Studio User’s Guide 98 SeeBeyond Proprietary and Confidential

Chapter 9

Defining Connectivity Components

Once the eView server Project is generated, you must create a Connectivity Map that
defines the application. You can also create connectivity components that define how
data is transformed, routed, and processed between the master index and Business
Processes or external systems sharing data with the index. This chapter describes the
connectivity components used in conjunction with an eView master index and how to
configure those components using the Enterprise Designer tools.

9.1 Overview
Data can be processed by the master index in four ways. First, data is processed
through the EDM. This process is defined by the Connectivity Map in the eView server
Project. Second, data is processed from the external systems that share information with
the master index. This process is defined by the Connectivity Maps in the external
system Projects. Next, you can incorporate eView methods into an eInsight Business
Process and develop eVision Web pages to access data in the master index database.
This process is defined by the Connectivity Map in an eInsight integration Project.
Finally, you can define a JMS Topic to which eView publishes messages to broadcast to
external systems. This topic is included in the eViewserver Project and also in Projects
for the external systems. The Project that defines the eView application is known as the
server Project; the Projects that define external system or eInsight connectivity with
eView are known as client Projects.

9.1.1 Connectivity Components
The connectivity components of an eView server Project include the master index
application files and an optional JMS Topic. The client Projects that connect to the
master index use standard connectivity components of an eGate Project, with the
addition of an eView method OTD or Java methods for eInsight integration.

eView Project Connectivity Components

The connectivity components in an eView Project include:

Connectivity Map—Graphically describes the relationship between the Web
application components and the master index application components.
eView Studio User’s Guide 99 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.1
Defining Connectivity Components Overview
Application file—Contains the logic used by the master index to process data into
and out of the master index database. This file is automatically created when you
generate the eView Project.

Web application file—Contains the logic used by the Enterprise Data Manager to
process data and access the master index logic and database. This file is
automatically created when you generate the eView Project.

Oracle eWay—Provides connectivity to the eView database. This component is
optional. Alternatively, you can connect to the database by defining a JDBC data
source in the Integration Server configuration properties.

JMS Topic—A message destination conforming to the publish-and-subscribe (pub/
sub) messaging paradigm. In this case, eView publishes to the topic to broadcast
messages to external systems. This component is optional.

Client Project Connectivity Components

The connectivity components in an eView client Project can include any of the
following:

Connectivity Map—Graphically describes the relationship between the External
Systems, Queues and Topics, Services, Web Connectors, and eView master index
application. The Connectivity Map also contains the configuration information for
each component’s connections—for example, the polling interval and transactional
behavior.

eView application—Represents the master index application accessed by the client
Project. Each external system or Web connector in the eView system must include
the eView application in its Connectivity Map in order for those components to
exchange information with the master index.

Service—Provides a framework for a process or a Collaboration, which contains the
information required to execute a set of business rules.

Collaboration—Business rules describing the logic to be executed on the Object
Type Definitions. These business rules include the data transformation and method
calls to be executed by the Services and determine how data is processed into the
master index database.

Object Type Definitions (OTDs)—Meta-data containers describing external
objects including both data structure and methods. A custom method OTD is
created in the eView Project for use in the client Projects to define how data is
processed between the master index and external systems or eInsight. A custom
OTD is also created to publish messages from the master index to a JMS Topic.

External Applications—Logical representations of external software applications
(called external systems) that are integrated by the eGate system. External
Applications allow the master index to connect with external systems via eGate.
These are linked to a Service by means of an eWay.

JMS Queues—A message destination conforming to the point-to-point (p2p or PTP)
messaging paradigm. This means that one sender delivers a message to exactly one
receiver.
eView Studio User’s Guide 100 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.2
Defining Connectivity Components Defining Connectivity Components
JMS Topics—A message destination conforming to the publish-and-subscribe (pub/
sub) messaging paradigm. This means that one publisher broadcasts messages to
multiple subscribers, ensuring that all subscribers receive a message. External
system Project can include a JMS Topic to which the master index publishes, giving
the external system access to all data updates.

JMS Client—An internal link between a Service and a Message Destination (that is,
a JMS Topic or Queue).

eWays—An eWay is an application-specific adapter linking an external application
with eGate.

Web Connectors—A graphical representation of a set of eVision Web pages and
activities.

Before creating any of the connectivity components, make sure you have read and
understand the information presented in the eGate Integrator User’s Guide. This guide
gives more details about each component in an eGate Project.

9.2 Defining Connectivity Components
Defining connectivity components begins with creating a graphical representation of
the connectivity components (the Connectivity Map). You must define connectivity
components for the eView Project and for any client Projects integrating with the eView
application. This section describes how to define connectivity components for eView
server Projects, external system Projects, and Projects integrating eView with eInsight.
Perform the following tasks to configure connectivity for the master index and
connected systems.

Defining eView Application Connectivity Components on page 101

Defining External System Connectivity Components on page 105

Defining eInsight Integration Connectivity Components on page 114

Note: Refer to the eGate Integrator User’s Guide for more details about performing any
of the processes described in this chapter.

9.2.1 Defining eView Application Connectivity Components
In the eView Project, the Connectivity Map contains business logic and information
about how data is processed in the master index. This section describes how to create a
Connectivity Map for the eView Project, add components to the map, and then connect
those components. Perform these tasks to create and configure the eView Project
Connectivity Map.

Creating the eView Project Connectivity Map on page 102

Connecting Connectivity Map Components on page 103
eView Studio User’s Guide 101 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.2
Defining Connectivity Components Defining Connectivity Components
Creating the eView Project Connectivity Map

This section describes how to create, and add components to, the eView Project
Connectivity Map.

To create the eView Project Connectivity Map

1 In Enterprise Explorer, select the eView Project to which you want to add the
Connectivity Map.

2 Right-click to display the Project context menu.

3 Select New > Connectivity Map to add a Connectivity Map icon to the Project and
display the Connectivity Map Editor window as shown in Figure 30.

4 Click the Connectivity Map icon in the Project Explorer and change the default
name to the name you want to use.

5 Drag the eView.Web.Application-<application_name> icon from the Project
Explorer onto the Connectivity Map Editor canvas.

6 Drag the eView.Application-<application_name> icon from the Project Explorer
onto the canvas to the right of the Web application icon.

7 To publish messages from the master index to external systems, select the Topic
icon in the Connectivity Map Editor toolbar, and then drag it onto the canvas above
and to the right of the eView.Application-<application_name> icon.

8 To add an Oracle eWay for database connectivity, do the following:

A On the Connectivity Map Editor toolbar, click the External System icon.

B From the drop-down list, select the check box for Oracle External Application.
An Oracle External Application icon appears on the toolbar.

C Drag the new icon from the toolbar onto the canvas below and to the right of the
eView.Application-<application_name> icon.

The Connectivity Map should now look similar to Figure 30.
eView Studio User’s Guide 102 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.2
Defining Connectivity Components Defining Connectivity Components
Figure 30 eView Server Connectivity Map

9 Save the Connectivity Map to the Repository.

Connecting Connectivity Map Components

Once you create the components of a Connectivity Map, you must link them to define
the flow of data within the application. Before you connect the components, make sure
you have completed all of the steps in “Creating the eView Project Connectivity Map”
on page 102.

1 In the Connectivity Map Editor, place the cursor over the arrow to the right of the
eView.Web.Application-<application_name> icon until the cursor turns into a
hand.

2 Click the arrow and drag it to the eView.Application-<application_name> icon.

3 Release the mouse button to link the two components.

4 If you added a JMS Topic to the Connectivity Map, repeat steps 1 through 3,
dragging the arrow from the right side of the eView.Application-
<application_name> icon to the Topic icon.

5 If you added an Oracle eWay to the Connectivity Map, repeat step 4, dragging the
arrow from the right side of the eView.Application-<application_name> icon to
the Oracle External Application icon.

Figure 31 illustrates the completed Connectivity Map for the eView Project.
eView Studio User’s Guide 103 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.2
Defining Connectivity Components Defining Connectivity Components
Figure 31 eView Server Connectivity Map with Connections

6 If necessary, configure the JMS Client Connection (for more information, see the
eGate Integrator User’s Guide).

7 Configure the Oracle eWay:

A Double-click the Oracle eWay icon.

B On the Templates dialog, select Outbound Oracle eWay, and then click OK.

C On the Properties window, modify the properties described in Table 9.

8 Save the Connectivity Map to the Repository.

Table 9 Oracle eWay Properties

Property Description

ClassName The Java class in the JDBC driver that is used to
implement the ConnectionPoolDataSource interface.
This must be a valid class name. The default is
oracle.jdbc.pool.OracleConnectionPoolDataSource.

Description A description for the database. This can be any valid
string.

InitialPoolSize The number of physical connections the pool should
contain when it is created. This can be any valid numeric
value.

LoginTimeOut The number of seconds driver will wait before
attempting to log in to the database before timing out.
This can be any numeric value.
eView Studio User’s Guide 104 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.2
Defining Connectivity Components Defining Connectivity Components
9.2.2 Defining External System Connectivity Components
In the client Projects for external systems sharing data with the master index, the
Connectivity Map contains business logic and information about how data is
transferred between the master index and external systems. This section describes how
to create a Connectivity Map for an external system Project, add and configure map
components, and then connect those components. Perform these tasks to configure the
connectivity components.

Adding eView Methods to a Java Collaboration on page 105

Creating the External System Project Connectivity Map on page 107

Connecting Connectivity Map Components on page 109

Adding eView Methods to a Java Collaboration

This section describes how to incorporate the eView method OTD into Java
Collaborations for external systems. For a complete reference of the methods included
in the eView OTD, see the eView Studio Reference Guide.

MaxIdleTime The maximum number of seconds that a physical
connection may remain unused before it is closed. 0
(zero) indicates that there is no limit. This can be any
valid numeric value.

MaxPoolSize The maximum number of physical connections the pool
should keep available at all times. 0 (zero) indicates that
there is no maximum. This can be any valid numeric
value.

MaxStatements The maximum total number of statements that the pool
should keep open. 0 (zero) indicates that the caching of
statements is disabled. This can be any valid numeric
value.

MinPoolSize The minimum number of physical connections the pool
should keep available at all times. 0 (zero) indicates that
there should be no physical connections in the pool and
the new connections should be created as needed. This
can be any valid numeric value.

Network Protocol The network protocol used to communicate with the
server. This can be any valid string.

Property Cycle The interval, in seconds, the pool should wait before
enforcing the current policy defined by the values of the
other connection pool properties in this deployment
descriptor. This can be any valid numeric value.

Role Name An initial SQL role name. This can be any valid string.

Table 9 Oracle eWay Properties

Property Description
eView Studio User’s Guide 105 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.2
Defining Connectivity Components Defining Connectivity Components
To add eView methods to a Java Collaboration

1 Create the Java Collaboration for the external system Project using the
Collaboration Wizard (select the Project, right-click, and then select New ->
Collaboration Definition (Java)).

2 Enter information into the wizard as it applies to the external system (for more
information, see the eGate Integrator User’s Guide).

3 In step 3 of the Collaboration Definition Wizard (Select OTDs), select the input
OTD, the output OTD, and the eView method OTD.

Note: The eView method OTD is contained in the eView Project and is named after the
eView application.

4 Use the Collaboration Editor to define custom processing using Java methods. To
use eView methods in the Collaboration, do the following:

A In the left pane of the Transformation Designer, right-click the eView method
OTD. A list of available methods appears.

B Select the desired method from the list.

C Create any necessary variables for the method, and then map the input, output,
and variables to the method.

Figure 32 illustrates a sample of the executeMatch method in the Collaboration
Editor.
eView Studio User’s Guide 106 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.2
Defining Connectivity Components Defining Connectivity Components
Figure 32 eView Method OTD in Collaboration Editor

5 When you are done defining the processing rules, save the Collaboration.

Creating the External System Project Connectivity Map

To define connectivity between the eView application and external systems, you must
include the eView application in the Connectivity Maps of the external systems. This
section describes how to incorporate the eView application into the Connectivity Map.

Note: Before beginning this procedure make sure an external system component is defined
for a system that sends information to the master index (source system) and possibly
for a system that receives information from the master index (destination system).

To create an external system Connectivity Map

1 In Enterprise Explorer, select the Project to which you want to add the Connectivity
Map.

2 Right-click to display the Project context menu.

3 Select New > Connectivity Map to add a Connectivity Map icon to the Project and
display the Connectivity Map Editor window.

4 Click the Connectivity Map icon in the Project Explorer and change the default
name to the name you want to use.
eView Studio User’s Guide 107 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.2
Defining Connectivity Components Defining Connectivity Components
5 Drag the external source system icon from the Project Explorer to the Connectivity
Map Editor.

6 Drag the Java Collaboration you created using the eView method OTD onto the
Connectivity Map Editor canvas to the right of the external source system icon.

7 If you defined an external destination system, drag its icon from the Project
Explorer onto the canvas to the upper right of the Collaboration icon.

8 On the Connectivity Map Editor toolbar, click the down arrow next to the External
Systems icon and select the check box next to the name of the eView Application
you want to integrate.

Figure 33 External System Menu

The eView application icon appears in the Connectivity Map Editor toolbar.

9 Drag the eView application icon from the Connectivity Map Editor toolbar onto the
canvas to the lower right of the Collaboration icon.

The Connectivity Map should now look similar to Figure 34.
eView Studio User’s Guide 108 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.2
Defining Connectivity Components Defining Connectivity Components
Figure 34 External System Connectivity Map

10 Save the Connectivity Map.

Connecting Connectivity Map Components

Once you create the components of a Connectivity Map, you must link them to define
the flow of data through the system. Before you connect the components, make sure
you have completed all of the steps in “Creating the External System Project
Connectivity Map” on page 107.

To connect Connectivity Map components

1 In the Connectivity Map, double-click the Service icon to display the Service
Binding window, as shown in Figure 35.
eView Studio User’s Guide 109 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.2
Defining Connectivity Components Defining Connectivity Components
Figure 35 Service Binding Window, External Systems

2 Drag the source system from the Implemented Services box in the Service Binding
window to the external source system icon on the canvas.

3 Drag the eView application from the Invoked Services box in the Service Binding
window to the eView application icon on the canvas.

4 If you defined a destination system, drag the appropriate service from the Invoked
Services box in the Service Binding window to the external destination system icon
on the canvas.

5 Close the Service Binding window. The Connectivity Map connections should look
similar to Figure 36.
eView Studio User’s Guide 110 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.2
Defining Connectivity Components Defining Connectivity Components
Figure 36 External System Connectivity Map With Connections

6 Configure the eWays (for more information, see the eGate Integrator User’s Guide).

7 Save the Connectivity Map to the Repository.

Incorporating the JMS Topic into the Connectivity Map

If you defined a JMS Topic in the eView server Connectivity Map to which eView
messages will be published, you must add the topic to the client Connectivity Map in
order to publish the messages to external systems. This involves two primary steps:
adding the JMS Topic and associated components to the Connectivity Map and
configuring the Collaboration for the connected Service.

To add the JMS Topic to the Connectivity Map

1 In the eView client Project, check out the Connectivity Map and then open it in the
Connectivity Map Editor.

2 Drag the JMS Topic from the eView Project to the Connectivity Map Editor, below
the existing connectivity diagram (this is the same topic you created in “Defining
eView Application Connectivity Components” on page 101).

3 Drag a Service from the Connectivity Map Editor toolbar to the right of the JMS
Topic on the canvas.

4 Drag an external source system of the appropriate type from the Connectivity Map
Editor toolbar to the right of the new Service on the canvas (for testing purposes,
use a File External Application).

The Connectivity Map should now look like Figure 37.
eView Studio User’s Guide 111 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.2
Defining Connectivity Components Defining Connectivity Components
Figure 37 eView Client Connectivity Map with JMS Topic

5 In the Connectivity Map Editor, place the cursor over the arrow to the right of the
Topic icon until the cursor turns into a hand, and then drag it into the Service to
connect the two objects.

6 Repeat step 5 to connect the Service to the external system.

The Connectivity Map should now look similar to Figure 38.
eView Studio User’s Guide 112 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.2
Defining Connectivity Components Defining Connectivity Components
Figure 38 eView Client Connectivity Map with Connections

7 If necessary, configure the JMS Client Connection (for more information, see the
eGate Integrator User’s Guide).

8 Double-click the new external system eWay to configure the eWay parameter
settings.

9 Save the Connectivity Map, and continue to “Configuring the Outbound
Collaboration”.

Configuring the Outbound Collaboration

If you are publishing outbound messages to a JMS Topic, you must configure the Java
Collaboration that process messages from the eView JMS Topic once you create the
components of the Connectivity Map. Before you begin, make sure you have completed
all of the steps in “Incorporating the JMS Topic into the Connectivity Map” on
page 111.

To configure the outbound Collaboration

1 In the Project Explorer, right-click the eView client Project.

2 In the Project context menu, select New, and then select Collaboration Definition
(Java).

3 Enter information into the Collaboration Definition Wizard, with the following
guidelines:
eView Studio User’s Guide 113 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.2
Defining Connectivity Components Defining Connectivity Components
For the Web Service Type, select the existing JMS receive type (navigate to
SeeBeyond\eGate\JMS and select receive).

Select the appropriate outbound OTD for the external system (for testing with a
File External Application, select the FileClient OTD).

4 Configure the Collaboration to map data from the JMS Topic to the external system
(a sample is shown in Figure 39).

Figure 39 Outbound Java Collaboration
.

5 Save the Collaboration to the Repository.

6 Open the eView client Connectivity Map, and drag the newly created Collaboration
onto the Service connected to the JMS Topic.

7 Save the Connectivity Map to the Repository.

9.2.3 Defining eInsight Integration Connectivity Components
In the eInsight integration Projects, the Connectivity Map contains business logic and
information about how data is transferred between the master index and a Business
Process for viewing on eVision Web pages. This section describes how to incorporate
eView methods into a Business Process, create the Connectivity Map, and then add and
eView Studio User’s Guide 114 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.2
Defining Connectivity Components Defining Connectivity Components
connect the connectivity components. Perform these tasks to define connectivity
components for eInsight integration.

“Including eView Methods in a Business Process” on page 115

“Creating the eInsight Integration Connectivity Map” on page 117

“Connecting Connectivity Map Components” on page 119

Note: Refer to the eVision Studio User’s Guide and the eInsight Business Process
Manager User’s Guide for more details about performing any of the processes
described in this section.

Including eView Methods in a Business Process

Before including the eView application in the Connectivity Map for eInsight
integration, you must add eView methods to a Business Process. This section provides
instructions for adding an eView method to an eVision Web page in a Business Process.
For more information about the available methods, see the eView Studio Reference Guide.

To include eView methods in a Business Process

1 In the client Project, create two page layouts: one for the user input Web page and
one for the master index output Web page.

2 Create a new page link for the Web pages.

3 Create a new Business Process.

4 In the Project Explorer, expand the page link icon and drag the activity icon onto the
Business Process Editor to the right of the Start icon.

5 In the Project Explorer, expand the input Web page icon and drag the activity icon
onto the Business Process Editor to the right of the page link activity.

6 In the Project Explorer, expand the output Web page icon and drag the activity icon
onto the Business Process Editor to the left of the End icon.

7 In the eView Project, expand the method OTD folder to display the method list and
then drag the method you want to use into the Business Process Editor to the right
of the input Web page activity (so it is between the input and output Web page
activities, as shown in Figure 40).

Note: The method OTD is the folder in the eView Project with the same name as the eView
application.
eView Studio User’s Guide 115 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.2
Defining Connectivity Components Defining Connectivity Components
Figure 40 eInsight Business Process with eView Activity
.

8 Save the Business Process.

Connecting the Business Process Components

This section describes how to connect the components of a Business Process that applies
eView methods to eVision Web pages. Make sure you have completed all of the steps in
“Including eView Methods in a Business Process” on page 115.

To connect the Business Process Components

1 In the Connectivity Map Editor, place the cursor over the arrow to the right of the
Start icon until the cursor turns into a hand.

2 Click the arrow and drag it to the Page Link activity.

3 Follow the same procedure to link the following activities:

Link the Page Link activity to the input Web page activity.

Link the input Web page activity to the eView activity.

Link the eView activity to the output Web page activity.

Link the output Web page activity to the End icon.

The business process should look similar to Figure 41.
eView Studio User’s Guide 116 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.2
Defining Connectivity Components Defining Connectivity Components
Figure 41 eInsight Business Process with Connections

4 For each link you created in step 3, right-click the link and select Add Business
Rule. Configure the business rule to map data from the input to output activity. (For
more information, see the eInsight Business Process Manager User’s Guide.)

5 Save the Business Process to the Repository.

Creating the eInsight Integration Connectivity Map

This section describes how to create, and add components to, the eInsight integration
Connectivity Map.

To create the eInsight Integration Connectivity Map

1 In Enterprise Explorer, select the Project to which you want to add the Connectivity
Map.

2 Right-click to display the Project context menu.

3 Select New > Connectivity Map to add a Connectivity Map icon to the Project and
display the Connectivity Map Editor window.

4 Click the Connectivity Map icon in the Project Explorer and change the default
name to the name you want to use.

5 Drag a Web Connector icon from the Connectivity Map Editor toolbar onto the
canvas.

6 Drag a Service icon from the Connectivity Map Editor toolbar onto the canvas to
the right of the Web Connector icon.
eView Studio User’s Guide 117 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.2
Defining Connectivity Components Defining Connectivity Components
7 Drag the Business Process created in “Including eView Methods in a Business
Process” into the Service.

8 On the Connectivity Map Editor toolbar, click the down arrow next to the External
Systems icon and select the check box next to the name of the eView application
you want to integrate.

Figure 42 External System Menu

The eView application icon appears in the Connectivity Map Editor toolbar.

9 Drag the eView application icon from the Connectivity Map Editor toolbar onto the
canvas to the right of the Service icon.

The Connectivity Map should now look similar to Figure 43.
eView Studio User’s Guide 118 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.2
Defining Connectivity Components Defining Connectivity Components
Figure 43 eInsight Integration Connectivity Map

10 Save the Connectivity Map to the Repository.

Connecting Connectivity Map Components

Once you create the components of a Connectivity Map, you must link them to define
the flow of data through the system. Before you connect the components, make sure
you have completed all of the steps in “Creating the eInsight Integration Connectivity
Map” on page 117.

To connect Connectivity Map components

1 In the eInsight Connectivity Map, double-click the Service icon to display the
Service Binding window, as shown in Figure 44.
eView Studio User’s Guide 119 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.2
Defining Connectivity Components Defining Connectivity Components
Figure 44 Service Binding Window, eInsight

2 Drag eVision from the Invoked Services box in the Service Binding window to the
Web Connector icon on the Connectivity Map Editor.

3 Drag the eView application from the Invoked Services box in the Service Binding
window to the eView application icon on the Connectivity Map Editor.

4 Drag the Partner (in the illustrations, WSPProvider) from the Implemented
Services box in the Service Binding window to the Web Connector icon on the
Connectivity Map Editor.

Figure 45 illustrates the Connectivity Map with the connections in place.
eView Studio User’s Guide 120 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.2
Defining Connectivity Components Defining Connectivity Components
Figure 45 Service Binding Window Connections, eInsight

5 Close the Service Binding window.

The Connectivity Map window should now look similar to Figure 46.
eView Studio User’s Guide 121 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.2
Defining Connectivity Components Defining Connectivity Components
Figure 46 eInsight Connectivity Map With Connections

6 Configure the JMS Client Connection between the Web Connector and the Business
Process Service (for more information, see the eGate Integrator User’s Guide).

7 Save the Connectivity Map to the Repository.
eView Studio User’s Guide 122 SeeBeyond Proprietary and Confidential

Chapter 10

Defining the Environment

The eView Environment defines the configuration of the physical environment of the
master index, including the Logical Host, integration server, JMS IQ Manager,
constants, and external systems. This chapter describes building a generic environment
for an eView application. For more information about Environments and Environment
components, see the eGate Integrator User’s Guide. Additional information about Logical
Hosts is included in the eGate Integrator System Administration Guide.

10.1 Environment Components
All Projects accessing the eView system must be configured to use the same
Environment, including client Projects defining external systems and Business
Processes that use eView methods. The Environment requirements are different for the
eView Project and client Projects. When you activate an eView Project, the eView master
index application defined by that Project becomes available to the client Projects.

Environment Components

The Environments configured to support the eView server Project include the following
components:

Logical Hosts—Each Environment contains one or more Logical Hosts, which are
instances of the eGate runtime environment installed on a host hardware platform.

Integration Servers—The Logical Host contains one or more Integration Servers,
which are the engines that run eGate Services and eWays. It provides services for
security, transactions, business rules execution, and database connectivity
management.

JMS IQ Managers—The Logical Host contains one or more JMS IQ Managers,
which manage JMS topics (publish-and-subscribe messaging) and queues (point-to-
point messaging).

External Systems—An external system is a representation of a real, physical system
that exists within the specific Environment, with configuration properties for
locating and accessing that system. This component is required for client Projects
connecting external systems with the eView application.
eView Studio User’s Guide 123 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.2
Defining the Environment Building an Environment
eVision External Systems—An eVision external system is a representation of an
eVision Web application. This component is required for client Projects integrating
eView with eInsight.

Oracle External Systems—An Oracle external system is a representation of an
Oracle eWay. This component is required for Projects connecting to the database
using the Oracle eWay.

Environmental Constants—You can define constants for a specific Environment.
Environmental constants are name/value pairs that are visible across the
Environment.

10.2 Building an Environment
Each Environment represents a unit of software that implements one or more eView
applications. You must define and configure at least one Environment for the master
index before you can deploy the application. The tasks you can perform to build an
Environment for the eView application are described on the following pages.

Creating an eView Environment on page 124

Adding a Logical Host on page 125

Adding Servers on page 126

Adding an External System on page 127

Adding an Oracle External System on page 129

10.2.1 Creating an eView Environment
This section describes how to create an Environment for an eView Project.

To create an Environment

1 In the Enterprise Explorer, click the Environment Explorer tab.

2 Select the Repository icon.

3 Right-click to display the Repository context menu.

4 Select New Environment to add an Environment icon to the Environment
Explorer tab.

5 Enter the name of the new Environment as shown in Figure 47.
eView Studio User’s Guide 124 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.2
Defining the Environment Building an Environment
Figure 47 New Environment

10.2.2 Adding a Logical Host
This section describes how to add a logical host to the eView Environment. This is a
required step for all eView implementations.

To add a Logical Host

1 Select the Environment icon for the new Environment you created.

2 Right-click to display the Environment context menu.

3 Select New Logical Host to add a Logical Host icon to the Environment Explorer
tab.

4 Enter the name of the new Logical Host as shown in Figure 48.
eView Studio User’s Guide 125 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.2
Defining the Environment Building an Environment
Figure 48 eView Logical Host

10.2.3 Adding Servers
This section describes how to add Integration Servers and JMS IQ Managers to the
eView Logical Host. You must add an Integration Server to the Environment.

To add integration servers and JMS IQ Managers

1 In Enterprise Explorer, click the Environment Explorer tab.

2 Select the Logical Host icon of the eView Logical Host.

3 Right-click the Logical Host icon to display the Logical Host context menu.

4 Select New SeeBeyond Integration Server.

5 Modify the name of the server in the Environment Explorer.

6 Right-click the mouse to redisplay the Logical Host context menu.

7 Select New SeeBeyond JMS IQ Manager.

8 Modify the name of the server in the Environment Explorer.

Figure 49 illustrates an Environment with a Logical Host, SeeBeyond Integration
Server, and SeeBeyond JMS IQ Manager.
eView Studio User’s Guide 126 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.2
Defining the Environment Building an Environment
Figure 49 Integration and JMS Servers

9 Configure the connection to the database, as described in “Configuring the
Integration Server” on page 132.

10.2.4 Adding an External System
This section describes how to add an external system to the eView Environment. This is
only required for Projects connecting an external system to the eView master index.

To add an external system

1 In Enterprise Explorer, click the Environment Explorer tab.

2 Select the eView Environment icon.

3 Right-click the eView Environment icon to display the Environment context menu.

4 Select New <type> External System, where <type> is the type of eWay connecting
the external system to eGate (such as Oracle, TCP/IP, and so on).

5 In the External System Name field, enter the name of the new external system.

6 In the External System Type field, select the direction of the eWay (Inbound or
Outbound).

7 Repeat these steps for each external system defined in the Projects that will be using
this Environment.
eView Studio User’s Guide 127 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.2
Defining the Environment Building an Environment
Figure 50 File External System

10.2.5 Adding an eVision External System
This section describes how to add an eVision external system to the eView
Environment. This is only required for Projects connecting a Business Process for
eVision Web pages to the eView master index.

To add an eVision external system

1 In Enterprise Explorer, click the Environment Explorer tab.

2 Select the eView Environment icon.

3 Right-click the eView Environment icon to display the Environment context menu.

4 Select New eVision External System to add the system to the Environment.

5 Enter the name of the new eVision external system

6 Click OK.
eView Studio User’s Guide 128 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.2
Defining the Environment Building an Environment
Figure 51 eVision External System

10.2.6 Adding an Oracle External System
This section describes how to add an Oracle external system to the eView Environment.
This is only required for Projects that connect to the database using an Oracle eWay.

To add an Oracle external system

1 In Enterprise Explorer, click the Environment Explorer tab.

2 Select the eView Environment icon.

3 Right-click the eView Environment icon to display the Environment context menu.

4 Select New Oracle External System to add the system to the Environment.

5 In the External System Name field, enter the name of the new Oracle external
system.

6 In the External System Type field, select Outbound Oracle eWay

7 Click OK.
eView Studio User’s Guide 129 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.3
Defining the Environment Configuring the Oracle External System
Figure 52 Oracle External System

10.3 Configuring the Oracle External System
If you are using an Oracle eWay to connect to the master index database, you must
configure the Oracle External System you created in the eView Environment. You do
not need to perform this step if you are using a JDBC connection pool to connect to the
database.

To configure the Oracle External System

1 In Enterprise Explorer, click the Environment Explorer tab.

2 Select the Oracle External System icon in the Environment you want to configure.

3 Right-click the icon, and then select Properties.

The Properties window appears.

4 Define each property in the right portion of the window with information specific
to the master index database you created. For more information about the
properties on this window, see Table 10 on page 131.

Note: Creating the database is described in Chapter 8 of this guide. Use the information
for that database for the properties on this window.
eView Studio User’s Guide 130 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.3
Defining the Environment Configuring the Oracle External System
Figure 53 Oracle External System Properties

5 Click OK to close the Properties dialog.

Table 10 Data Source Properties

Property Description

Database Name The SID name of the eView database.

DataSource Name The name of the data source connection. This field can be left
blank.

Delimiter The delimiter character to be used in the Driver Properties
property.

Description A description of the database.

Driver Properties Use this property field to define additional data source
properties. This field can be left blank.

Password The logon password associated with the user logon ID specified
in the user parameter below.

Port Number The port number used to connect to the database. Typically, for
Oracle this is 1521.

Server Name The name of the server on which the eView database resides.
Specify localhost only if the database resides on the integration
server.
eView Studio User’s Guide 131 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.4
Defining the Environment Configuring the Integration Server
10.4 Configuring the Integration Server
The configuration of the Integration Server varies depending on whether you are using
the Oracle eWay for database connectivity or a JDBC connection pool. If you are using
the JDBC connection pool, you must define the data source in the Integration Server
configuration. You must also specify environment variables.

10.4.1 Defining the Data Source
In order to connect to the database through the SeeBeyond Integration Server, you must
configure the data source for the server. This supplies the information necessary to
establish a connection to the database. You do not need to perform this step if you are
connecting to the database through an Oracle eWay.

Note: To access the EDM for the master index, you need to know the host name and port
number of the server. This information is found on the SIS Properties page in the
Web Container Configuration section. The port number of the URL is found in
the Default Web Server section.

To define the data source

1 In Enterprise Explorer, click the Environment Explorer tab.

2 Select the Integration Server icon in the Environment you want to configure.

3 Right-click the icon to display the Integration Server context menu.

4 Select Properties to display the Properties window.

5 Expand the configuration list in the left pane until JDBC DataSource Connection
Pools is visible.

6 Right-click JDBC DataSource Connection Pools and select Create New Section.

7 Rename the new section.

8 Define each property in the right portion of the window with information specific
to the master index database you created. For more information about the
properties on this window, see Table 11 on page 133.

Note: Creating the database is described in Chapter 8 of this guide. Use the information
for that database for the properties on this window.

User The user logon ID that will be used to connect to the database
from the EDM and external connections.

Table 10 Data Source Properties

Property Description
eView Studio User’s Guide 132 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.4
Defining the Environment Configuring the Integration Server
Figure 54 Integration Server Properties

9 Click OK to close the Properties dialog.

Note: For the Pool JNDI Name property, you must enter <app_name>DataSource,
where <app_name> is the name of the application defined for the eView
implementation. This allows you to configure one integration server for multiple
eView applications. To see a description of each property you can configure, select a
property and then view the description in the Description box in the left portion of
the window.

Table 11 Data Source Properties

Property Description

Database Name The SID name of the eView database.
eView Studio User’s Guide 133 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.4
Defining the Environment Configuring the Integration Server
10.4.2 Defining Environment Variables for INTEGRITY
If you are implementing the INTEGRITY matching algorithm instead of the SeeBeyond
Match Engine, you must define certain variables to help the application use the
INTEGRITY rule set and library files.

DataSource Class Name The Java class in the JDBC driver that is used to implement the
ConnectionPoolDataSource interface.
Default: oracle.jdbc.pool.OracleConnectionPoolDataSource

Extra Properties Use this property field to define additional data source
properties. You must specify the driver type for the application
(for example, “DriverType=thin”).

Maximum Pool size The maximum number of physical connections the pool should
keep available at all times. 0 (zero) indicates that there is no
maximum.

Minimum Pool size The minimum number of physical connections the pool should
keep available at all times. 0 (zero) indicates that there should
be no physical connections in the pool and new connections
should be created as needed.

Network Protocol The network protocol used to communicate with the server.

Password The logon password associated with the user logon ID specified
in the user parameter below.

Pool idle time The maximum number of seconds that a physical connection
may remain unused before it is closed. 0 (zero) indicates that
there is no limit.

Pool JNDI Name The JNDI name for the data source. This must be
<Object>DataSource, where <Object> is the name of the eView
application as defined in the eView Wizard.

Port Number The port number used to connect to the database. Typically, for
Oracle this is 1521.

Remote An indicator of whether the database can be accessed remotely.
Specify true for remote access; specify false if you do not want
to allow remote access.

Request Timeout The number of seconds driver will wait before attempting to log
in to the database before timing out.

Server Name The name of the server on which the eView database resides.
Specify localhost only if the database resides on the integration
server.

User The user logon ID that will be used to connect to the database
from the EDM and external connections.

XA Recovery Password The database administrator password.

XA Recovery User The database administrator logon ID.

Table 11 Data Source Properties

Property Description
eView Studio User’s Guide 134 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.4
Defining the Environment Configuring the Integration Server
To define environment variables

1 In Enterprise Explorer, click the Environment Explorer tab.

2 Select the SeeBeyond Integration Server icon in the Environment you want to
configure.

3 Right-click the icon to display the Integration Server context menu.

4 Select Properties to display the Properties window.

5 In the configuration list in the left pane, select IS Configuration to display the
configuration properties, as shown in Figure 55.

Figure 55 Integration Server Configuration Properties

6 Click in the Environment Variables field, and then click the ellipses to the right of
the field.

The Environment Variables properties dialog appears.

7 For each environment variable listed in Table 12 on page 137, do the following:

A On the Environment Variables properties dialog, click Add.

B In the Input dialog, enter the name of the environment variable and the
definition, as shown in Figure 56.
eView Studio User’s Guide 135 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.4
Defining the Environment Configuring the Integration Server
Figure 56 Input dialog

C On the Input dialog, click OK.

After you defined all variables, the window should look similar to Figure 57.

Figure 57 Defined Environment Variables

8 When you have defined all environment variables, click OK on the Environment
Variables properties dialog.

9 On the IS Configuration Properties window, click OK to close the window.

Note: In the following table, <OS> represents the operating system directory (such as
Windows or WINNT), <edesigner> represents the Enterprise Designer home
eView Studio User’s Guide 136 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.5
Defining the Environment Defining Security
directory, <logicalhost> represents the Logical Host home directory, and
<integrity> represents the directory to which the INTEGRITY add-on files were
extracted. Make sure to include a drive designation for Windows paths.

10.5 Defining Security
A secure user name and password must be defined for the integration server in order to
connect to the master index database. For each user you define, you must also specify a
security role or roles in order for that user to be able to perform any functions in the
Enterprise Data Manager. For more information about setting up security, see the eGate
Integrator System Administration Guide.

To define security

1 In Enterprise Explorer, click the Environment Explorer tab.

2 Select the eView Environment icon.

3 Right-click the eView Environment icon to display the Environment context menu.

4 Select User Management to display the User Management dialog as shown in
Figure 58.

5 Enter the user name, password, and confirmation password of the eView user.

Table 12 INTEGRITY Environment Variable Definitions

Set this environment
variable ...

to this value ...

PATH Windows: <OS>;<OS>\system32;
<OS>\system32\webm;<integrity>\lib;
<logicalhost>\jre\bin
UNIX:<logicalhost>/jre/bin

LD_LIBRARY_PATH Sparc Solaris and TRU64: <integrity>/lib

SHLIB_PATH HP UNIX: <integrity>/lib

LIBPATH AIX: <integrity>/lib

VTICFG Windows and UNIX: <integrity>\Rules

LC_All Windows and UNIX: EN_US

OS Windows and UNIX: Set this variable to the
operating system of the server.

temp Windows and UNIX: <location of the temporary
directory on the server >

SystemRoot Windows only: <OS>

windir Windows only: <OS>

ComSpec Windows only: <OS>\system32\cmd.exe
eView Studio User’s Guide 137 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.5
Defining the Environment Defining Security
Figure 58 User Management

6 On the User Management dialog, click Add Role.

7 In the Role dialog, do the following:

A Click Create Role, enter the user role name, and then click OK.

B Select the newly created user role, and then click OK.

eView user roles are listed and described in Table 13.

8 Repeat step 7 for each role to which you want to assign the user.

9 Click OK and then Close to close the User Management dialog.

Table 13 User Roles and Descriptions

User Role Description

eView.Admin Gives access permission to all functions of the
Enterprise Data Manager.

eView.User Gives access to the EDM. This role must be assigned
to each user except those assigned the eView.Admin
role.

eView.VIP Gives permission to view fields masked by any
custom masking logic specified by the Security
configuration file.

AL.View Gives access permission to view audit log entries.
eView Studio User’s Guide 138 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.5
Defining the Environment Defining Security
Duplicate.All Gives access permission to all potential duplicate
functions.

Duplicate.SearchAndView Gives access permission to search for and view
potential duplicate records.

Duplicate.Print Reserved for future functionality.

Duplicate.Unresolve Gives access permission to unresolve potential
duplicate records that were previously resolved.

Duplicate.Resolve Gives access permission to resolve potential
duplicate records.

Duplicate.AutoResolve Gives access permission to permanently resolve
potential duplicate records.

EO.All Gives access permission to all enterprise object
functions described below.

EO.Activate Gives access permission to activate enterprise
records.

EO.Create Gives access permission to create new enterprise
records.

EO.Compare Gives access permission to compare enterprise
records.

EO.Deactivate Gives access permission to deactivate enterprise
records.

EO.Edit Gives access permission to modify the SBR in
enterprise records.

EO.Merge Gives access permission to merge enterprise
records.

EO.OverwriteSBR Gives access permission to modify the SBR and to
lock SBR fields for overwrite.

EO.PrintComparison Reserved for future functionality.

EO.PrintSBR Reserved for future functionality.

EO.SearchAndViewSBR Gives access permission to search for and view
single best records.

EO.Unmerge Gives access permission to unmerge enterprise
records.

EO.ViewMergeTree Gives access permission to view a merge history of
an enterprise object.

History.All Gives access permission to all history functions
described below.

History.Print Reserved for future functionality.

History.SearchAndView Gives access permission to search for and view the
transaction history of enterprise records.

Table 13 User Roles and Descriptions

User Role Description
eView Studio User’s Guide 139 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.5
Defining the Environment Defining Security
SO.All Gives access permission to all system record
functions described below.

SO.Add Gives access permission to add system records.

SO.Edit Gives access permission to modify system records.

SO.Print Reserved for future functionality.

SO.Merge Gives access permission to merge system records.

SO.Remove Gives access permission to delete system records.

SO.Unmerge Gives access permission to unmerge system records.

SO.View Gives access permission to view system records.

Table 13 User Roles and Descriptions

User Role Description
eView Studio User’s Guide 140 SeeBeyond Proprietary and Confidential

Chapter 11

Deploying the Project

Each Project in the master index system must include a Deployment Profile that
correlates the processing components to the physical components. This includes the
primary eView Project and any client Projects that connect the master index to an
external system or Web service.

11.1 Overview
The Deployment Profile binds the eView Project attributes to the Environment that
defines where each component runs. For example, the Deployment Profile defines
which Integration Server runs the eView master index. The Deployment Profiles for the
client Projects that use eView Components define which JMS IQ Managers host which
topics, which External Systems are connected to the master index via which eWays, and
so on.

11.2 Deploying a Project
To deploy a project, you must perform the following steps.

“Defining a Deployment Profile” on page 141

“Activating the Project” on page 149

“Running the Bootstrap” on page 150

11.2.1 Defining a Deployment Profile
A Deployment Profile maps Project components to the Environment. You need to create
a Deployment Profile for the eView application Project and for any client Projects that
connect to the master index. You can use the same Environment components for each
Deployment Profile.
eView Studio User’s Guide 141 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.2
Deploying the Project Deploying a Project
Defining an eView Application Deployment Profile

This section describes how to add a Deployment Profile to the eView application
Project. This consists of two primary steps: creating the Deployment Profile and
mapping the Project components to the Environment components.

To create an eView application Deployment Profile

1 In Enterprise Explorer, click the Project Explorer tab.

2 Select the eView Project folder.

3 Right-click the mouse to launch the Project context menu.

4 Select New > Deployment Profile to display the Create Deployment Profile dialog
shown in Figure 59.

Figure 59 Create Deployment Profile Dialog Box

5 In the Deployment Profile Name field, type a name for the Deployment Profile.

6 In the Environments drop-down list, select the Environment you created for the
eView Project.

7 Click OK to add a Deployment Profile icon to the eView Project and display the
Deployment Editor window shown in Figure 60.
eView Studio User’s Guide 142 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.2
Deploying the Project Deploying a Project
Figure 60 Deployment Editor Window - Server Project

To map eView Project components

Once you create a Deployment Profile, you must configure the Project components in
the deployment Environment. When you map the Project components to the
Deployment Profile, you are specifying the Logical Host to handle the transactions.

1 With the eView Project Deployment Profile open in the Deployment Editor, drag the
eView.Web.Application-<application_name> and eView.Application-
<application_name> icons onto the SeeBeyond Integration Server in the
Deployment Editor (the server appears in the Logical Host).

2 If you defined a JMS Topic to publish the master index messages, drag the JMS
Topic icon onto the JMS IQ Manager in the Logical Host.

3 If the server Project contains an Oracle eWay, drag the Oracle External Application
icon onto the Oracle External System in the right pane.

Figure 61 illustrates the updated Deployment Profile.
eView Studio User’s Guide 143 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.2
Deploying the Project Deploying a Project
Figure 61 Mapped eView Components in the Deployment Editor

4 Deploy the application, as described in “Activating the Project” on page 149.

Creating an eView Client Deployment Profile

This section describes how to create a Deployment Profile for the Projects defining
external system connections to the eView application. This consists of two primary
steps: creating the Deployment Profile and mapping the Project components to the
Environment components.

Note: You must have created and activated the eView application deployment profile, as
described in “Defining an eView Application Deployment Profile” on
page 142, before performing these steps. This creates the eView application
component in the Environment, which is required for the client deployment.

To create an eView client Deployment Profile

1 In Enterprise Explorer, click the Project Explorer tab.

2 Select the eView Project folder.

3 Right-click the mouse to launch the Project context menu.

4 Select New > Deployment Profile to display the Create Deployment Profile dialog
shown in Figure 62.
eView Studio User’s Guide 144 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.2
Deploying the Project Deploying a Project
Figure 62 Create Deployment Profile Dialog Box

5 In the Deployment Profile Name field, type a name for the Deployment Profile.

6 In the Environments drop-down list, select the Environment you created for the
eView Project.

7 Click OK to add a Deployment Profile icon to the eView Project and display the
Deployment Editor window shown in Figure 63.

Figure 63 Deployment Editor Window - Client Project

Note: Your Deployment Editor may differ from the above illustration depending on
whether you implementing a JMS Topic for processing outbound messages.
eView Studio User’s Guide 145 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.2
Deploying the Project Deploying a Project
To map eView client Project components

Once you create a Deployment Profile, you must configure the Project components in
the deployment Environment. When you map the Project components to the
Deployment Profile, you are specifying the Logical Host to handle the transactions.

1 With eView client Project Deployment Profile open in the Deployment Editor, drag
the Service icon(s) onto the SeeBeyond Integration Server in the Deployment Editor
(the server appears in the Logical Host).

2 Drag the eView application icon onto the eView application deployment
component (this is named after the eView application).

3 Drag the external system eWays to the appropriate inbound and outbound
deployment components (in Figure 64, the inbound File eWay is placed in
InboundeWay and the outbound File eWays are placed in OutboundeWay).

4 If you implemented a JMS Topic, drag the topic to the JMS IQ Manager in the
Logical Host.

Figure 64 Mapped Client Components in the Deployment Editor

5 Deploy the application, as described in “Activating the Project” on page 149.
eView Studio User’s Guide 146 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.2
Deploying the Project Deploying a Project
Creating an eInsight Integration Deployment Profile

This section describes how to create a Deployment Profile for the Projects defining Web
pages for eView using eInsight integration. This consists of two primary steps: creating
the Deployment Profile and mapping the Project components to the Environment
components.

Note: You must have created and activated the eView application deployment profile, as
described in “Defining an eView Application Deployment Profile” on
page 142, before performing these steps. This creates the eView application
component in the Environment, which is required for the client deployment.

To create a Deployment Profile for eInsight Integration

1 In Enterprise Explorer, click the Project Explorer tab.

2 Select the eView Project folder.

3 Right-click the mouse to launch the Project context menu.

4 Select New > Deployment Profile to display the Create Deployment Profile dialog
shown in Figure 65.

Figure 65 Create Deployment Profile Dialog Box

5 In the Deployment Profile Name field, type a name for the Deployment Profile.

6 In the Environments drop-down list, select the Environment you created for the
eView Project.

7 Click OK to add a Deployment Profile icon to the eView Project and display the
Deployment Editor window shown in Figure 66.
eView Studio User’s Guide 147 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.2
Deploying the Project Deploying a Project
Figure 66 Deployment Editor Window

To map eInsight Integration Project components

Once you create a Deployment Profile, you must configure the Project components in
the deployment Environment. When you map the Project components to the
Deployment Profile, you are specifying the Logical Host to handle the transactions.

1 With the eInsight integration Project Deployment Profile open in the Deployment
Editor, drag the Service icon onto the SeeBeyond Integration Server in the
Deployment Editor (the server appears in the Logical Host).

2 Drag the eView application icon onto the eView application deployment
component (this is named after the eView application).

3 Drag the eVision Web service(s) to the eVision External Application in the
Environment.

Figure 67 illustrates the updated Deployment Profile.
eView Studio User’s Guide 148 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.2
Deploying the Project Deploying a Project
Figure 67 Mapped Client Components in the Deployment Editor

4 Deploy the application, as described in “Activating the Project” on page 149.

11.2.2 Activating the Project
With Project components mapped in the Deployment Profile, you are now ready to
activate the Project.

To activate a Project

1 In the Project, select the Deployment Profile you wish to activate.

2 Click the Activate button. After the activation is successful, the Activate dialog
appears as shown in Figure 68.
eView Studio User’s Guide 149 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.2
Deploying the Project Deploying a Project
Figure 68 Activate Dialog

3 Answer the question appropriately.

If you wish to apply the changes immediately, click Yes. (Only apply the changes if
the Logical Host for the eView Environment has been configured for the Project and
is running.)

If you wish to apply the changes at a later time, click No. (To apply the changes at a
later time, right-click the Logical Host and click Apply. This will apply all of the
changes for that Logical Host.)

Note: The Project must be properly configured for successful activation. Activating the
eView Project before creating client Project Deployment Profiles makes the eView
application available to those Profiles.

11.2.3 Running the Bootstrap
To run the eView master index application, you must run the bootstrap for the Logical
Host to which the application was deployed. If any client Projects connected to the
master index application are deployed on a different Logical Host, you must run a
bootstrap for that Logical Host as well. Before starting the Logical Host, modify the
properties file for the eViewEnvironment. For information about the bootstrap process
and instructions for configuring and running the bootstrap, see the eGate Integrator
System Administration Guide.
eView Studio User’s Guide 150 SeeBeyond Proprietary and Confidential

Chapter 12

Implementing the eView Sample

Sample Projects for a master company index are provided with eView. You can install
and run the samples to better understand how the master index works, and how the
various components of eView correlate. This chapter explains how to import the
sample files, customize the Projects, and then run data into the index.

Important: In order to work with the sample Projects, you must have a standard Oracle
database installed on your computer, and the File eWay must be installed.

12.1 Overview
The eView sample Project implements a simple master company index. It includes a
server and a client Project, along with a small data file in XML format to enter data into
the master index through an eGate Service. Once you implement the master index, you
can create your own data files to enter through the Service, and you can create and
modify data through the EDM.

12.2 Importing the Sample Projects
In order to work with the eView sample Projects, you must import the Projects into
your eGate environment. Before you begin this step, make sure you have installed the
sample files, as described in “Uploading the eView Documentation and Sample” on
page 40.

To import the sample Projects

1 In the Enterprise Designer, select the Repository name and then right-click.

2 From the context menu, select Import Project.

3 On the Import dialog, click Yes to continue, or click No to save any changes and
restart the import process.

4 In the From Zip File field on the Import Manager window, browse to the directory
where you extracted the sample files, and then select eView_Sample.zip.

5 In the Root Project field, select the name of the Repository to which you want to
import the sample Projects.
eView Studio User’s Guide 151 SeeBeyond Proprietary and Confidential

Chapter 12 Section 12.3
Implementing the eView Sample Implementing the Sample Projects
6 Click Import.

7 On the Import Status: dialog, click OK.

8 In the From Zip File field on the Import Manager window, browse to the directory
where you extracted the sample files, and then select eView_Sample_Client.zip.

9 In the Root Project field, select the name of the Repository to which you want to
import the sample Projects.

10 Click Import.

11 On the Import Status: dialog, click OK.

12 On the Import Manager window, click Close.

12.3 Implementing the Sample Projects
Implementing the sample Project includes the following tasks:

Configuring for INTEGRITY on page 152

Regenerate the Application on page 153

Create the Database on page 153

Define the Environment on page 154

Configure the Client Connectivity Map on page 155

Create and Activate the Server Deployment Profile on page 155

Create and Activate the Client Deployment Profile on page 155

Start the Logical Host on page 156

Run the Sample File on page 156

Working with the EDM on page 156

12.3.1 Configuring for INTEGRITY
If you are using the INTEGRITY match engine, you must customize the Match Field file
for the eView sample. If you are using the SeeBeyond Match Engine, you can skip this
step. To perform this step, you must have access to the location where the eView
INTEGRITY Add-on files were downloaded.

To configure for INTEGRITY

1 In the Project Explorer, expand the Configuration folder in the eView_Sample
Project.

2 Check out, and then open, the Match Field file.

3 In Windows Explorer or a command prompt, navigate to the location where the
eView INTEGRITY Add-on files were downloaded, and then to the
eViewSampleApplication folder.
eView Studio User’s Guide 152 SeeBeyond Proprietary and Confidential

Chapter 12 Section 12.3
Implementing the eView Sample Implementing the Sample Projects
4 Open the file mefa.xml.

5 Copy all text from this file, and paste it into the Match Field file in Enterprise
Designer, replacing all existing text.

6 Right-click on Match Field in the Project Explorer, and then click Validate.

7 If the validation shows no errors, save and close the file.

12.3.2 Regenerate the Application
Before you can work with the application files, you must regenerate the application.

To regenerate the application

1 In the Project Explorer, expand the eView_Sample Project.

2 Right-click eView Application - Company.

3 Select Generate from the context menu.

4 Select Yes on the Confirm dialog.

5 When the application is regenerated, close the output window.

12.3.3 Create the Database
To create the sample database tables, you must have a standard Oracle database
installed on your computer. If you have not done so already, create the database before
continuing. You can use the database files as they are, or you can add additional
systems and common table data (see “Step 3: Customize the Database Scripts” on
page 91 for more information). Make sure not to delete or change any of the existing
information.

To create the database

1 Create an administrator user for the database. Use the following scripts as a sample.

create user <username> identified by <password>;
grant dba to <username> with admin option;
grant select any table to <username> with admin option;
grant create user to <username> with admin option;

2 In the Project Explorer, expand the Database folder of the eView_Sample Project.

3 Right-click Database Script, and then select Properties.

4 On the Properties window, enter the database server information, administrator
login ID, and administrator password.

5 Close the dialog.

6 Right-click Create Company Database, and then click Run.

7 Right-click Systems, and then click Run.

8 Right-click Code List, and then click Run.
eView Studio User’s Guide 153 SeeBeyond Proprietary and Confidential

Chapter 12 Section 12.3
Implementing the eView Sample Implementing the Sample Projects
12.3.4 Define the Environment
You need to create an Environment that will run both the server and client Projects.

To define the Environment

1 In the Environment Explorer, create a new Environment and rename it to
“eViewEnvironment”.

2 In eViewEnvironment, create a new LogicalHost and rename it to
“eViewLogicalHost”.

3 In eViewLogicalHost, create a new SeeBeyond Integration Server and rename it to
“eViewServer”.

4 In eViewEnvironment, create a new File External System. Specify “InboundFile”
for the name, and select “Inbound File eWay” for the type.

Create a User

Following the instructions under “Defining Security” on page 137, create a new user.
Add the eView.Admin and eView.User roles to the user.

Define the Data Source

You must define a data source in order to connect to the database. You can either do this
by configuring a JDBC connection pool in the Integration Server or by incorporating an
Oracle eWay into the Project. This section describes configuring the Integration Server.

To define the data source

1 Right-click eViewServer, and then select Properties.

2 Expand IS Configuration until you see JDBC DataSource Connection Pools.

3 Right-click JDBC DataSource Connection Pools, and select Create New Section.

4 Rename the new section to “Sample DataSource”.

5 Close and reopen the Properties window to refresh the fields.

6 Enter the database properties following these guidelines:

In the DataSource Class Name field, enter
“oracle.jdbc.pool.OracleDataSource”.

In the Extra Properties field, enter “DriverType=thin”.

In the Password and User fields, enter the password and logon ID of the
administrator user you created for the database.

In the Pool JNDI Name field, enter “CompanyDataSource”.

In the Server Name field, you can enter “localhost” if the database and
integration server are on the same machine. Otherwise enter the name of the
database server.

In the XA Recovery Password and XA Recovery User Name, enter the system
login ID and password for the database.
eView Studio User’s Guide 154 SeeBeyond Proprietary and Confidential

Chapter 12 Section 12.3
Implementing the eView Sample Implementing the Sample Projects
12.3.5 Configure the Client Connectivity Map
The client Connectivity Map is predefined. You only need to configure the eWay
connection so it knows where to locate the data input file.

To define the client connectivity map

1 In the Project Explorer, expand the eView_Sample_Client Project.

2 Check out the Connectivity Map (CMap1), and then open the map.

3 In the Connectivity Map Editor, double-click the eWay icon between the File eWay
and the Service.

The Properties window appears.

4 Change the value of the Directory field to the location of the sample files (where
you extracted the samples .zip file).

5 Change the value of the Multiple records per file field to “True”.

6 Save your changes to the Repository

12.3.6 Create and Activate the Server Deployment Profile
This task links the components of the server Connectivity Map with the physical
components defined for the Environment.

To create and activate the server Deployment Profile

1 In the Project Explorer, right-click the eView_Sample Project.

2 Point to New, and then click Deployment Profile.

3 Name the profile “eViewDeployment”, and then select “eViewEnvironment” for
the Environment.

4 Click OK.

5 In the Deployment Editor window, drag both eView application files onto
eViewServer in the eViewLogicHost box.

6 In the Deployment Editor toolbar, click Activate.

7 Do not apply the changes to the logical host.

12.3.7 Create and Activate the Client Deployment Profile
This task links the components of the client Connectivity Map with the physical
components defined for the Environment.

To create and activate the client Deployment Profile

1 In the Project Explorer, right-click the eView_Sample_Client Project.

2 Point to New, and then click Deployment Profile.

3 Name the profile “ClientDeployment”, and then select “eViewEnvironment” for the
Environment.
eView Studio User’s Guide 155 SeeBeyond Proprietary and Confidential

Chapter 12 Section 12.3
Implementing the eView Sample Implementing the Sample Projects
4 Click OK.

5 In the Deployment Editor window, do the following:

Drag eViewsampleJavaCollaboration1 onto eViewServer in the
eViewLogicalHost box.

Drag eViewSample.fin -> eViewsampleJavaCollaboration1 into the
InboundFile box.

Drag eViewsampleJavaCollaboration1 -> eViewCompany1 into the Company
box.

6 In the Deployment Editor toolbar, click Activate.

7 Do not apply the changes to the logical host.

12.3.8 Start the Logical Host
You can start the Logical Host through a command line prompt, or you can define the
properties in the logical-host.properties file. This section describes how to run the
bootstrap using a command line.

To run the bootstrap

1 Open an MS-DOS command prompt.

2 Navigate to the Logical Host home directory, and then to \bootstrap\bin.

3 At the prompt, type the following:

bootstrap -r <server_URL> -i Administrator -p STC -e eViewEnvironment
-l eViewLogicalHost

where <server_URL> is the URL of the SeeBeyond Integration Server.

12.3.9 Run the Sample File
Running the sample file inserts a few company records into the eView sample database.
To run this file, navigate to the directory where you extracted the sample files and
change name of the eViewSample.~in file to eViewSample.fin. When the file has been
processed, the file name changes back to eViewSample.~in.

12.3.10Working with the EDM
You can view the records created by processing the eViewSample.fin file using the
EDM. You can also create new records, compare records, merge records, and so on. For
instructions on working with the EDM, see the Enterprise Data Manager User’s Guide.

To log into the EDM

1 Open a Web browser.

2 In the Address field, type the following:

http://localhost:<port>/Companyedm
eView Studio User’s Guide 156 SeeBeyond Proprietary and Confidential

Chapter 12 Section 12.3
Implementing the eView Sample Implementing the Sample Projects
where <port> is the port number of the Web Connection Container. (This is displayed in
the Enterprise Designer on the Integration Server Properties window. It is the value of
the Connector Port field on the Web Container Configuration page.)

To view the new records

1 The first page to appear is a Search page. Click Search to display all records in the
database.

2 Click on the EUID of any record to view more information.
eView Studio User’s Guide 157 SeeBeyond Proprietary and Confidential

Appendix A

Field Notations

The configuration files use specific notations to define a specific field in an enterprise or
system object. This appendix describes each type of notation used.

A.1 Defining Field Locations
There are three different type of notations used to specify a specific field or group of
fields in the eView configuration files. They are ePath, qualified field name, and simple
field name.

A.1.1. ePath
In Best Record file, an element path, called “ePath”, is used to specify the location of a
field or list of fields. ePaths are also used in the StandardizationConfig element of the
Match Field file. An ePath is a sequence of nested nodes in an enterprise record where
the most nested element is a data field or a list of data fields. ePaths allow you to
retrieve and transform values that are located in the object tree.

ePath strings can be of four basic types:

ObjectField
An ObjectField represents a field defined in the master index object structure.

ObjectNode
An ObjectNode represents a parent or child object defined in the master index object
structure.

ObjectField List
An ObjectField List is a list of references to certain ObjectFields in the master index
object structure.

ObjectNode List
An ObjectNode List is a list of references to certain ObjectNodes in the master index
object structure.

A context node is specified when evaluating each ePath expression. The context is
considered as the root node of the structure for evaluation.
eView Studio User’s Guide 158 SeeBeyond Proprietary and Confidential

Appendix A Section A.1
Field Notations Defining Field Locations
Syntax

The syntax of an ePath consists of three components: nodes, qualifiers, and fields, as
shown below.

node{.node{‘[‘qualifier’]’}+}+.field

Nodes
The node specifies the node type, and optionally includes qualifiers to restrict the
number of nodes. A node without any qualifier defaults to only the first node of the
specified type. “node.*” is used to address a node rather than a field.

Qualifiers
Qualifiers restrict the number of nodes addressed at each level. The following
qualifiers are allowed:

* (asterisk)
Denotes all nodes of the specified type.

int
Accesses the node by index.

@keystring= valuestring
Accesses the node using a key-value pair. Only one instance of the node is
addressed using keys. If a composite key is defined, then multiple key-value
pairs can be separated by a comma (‘,’). For example,
[@key1=value1,@key2=value2].

filter=value
Considers only nodes whose field matches the specified value. A subset of
nodes is addressed using filters. Multiple filter-value pairs can be separated by a
comma (‘,’). For example, [filter1=value1, filter2=value2].

Field
Designates the field to return, and is in the form of a string.

Example

The following sample illustrates an object structure containing a system object from Site
A with a local ID of 111. The object contains a first name, last name, and three addresses.
Following the sample, there are several ePath examples listed that refer to various
elements of this object structure. A description of the data in the sample object structure
referred by the ePath is also included.
eView Studio User’s Guide 159 SeeBeyond Proprietary and Confidential

Appendix A Section A.1
Field Notations Defining Field Locations
Enterprise
SystemObject - A 111

Person
FirstName
LastName
-Address

AddressType = Home
Street = 404 E. Huntington Dr.
City = Monrovia
State = CA
PostalCode = 91016

-Address
AddressType = Office
Street = 181 E. Huntington Dr.
City = Monrovia
State = CA
PostalCode = 91016

-Address
AddressType = Billing
Street = 100 Marine Parkway
City = Redwood Shores
State = CA
PostalCode = 94065

Person.Address.City
Equivalent to Person.Address[0].City.

Person.FirstName (uses Person as the context)
Equivalent to Enterprise.SystemObject[@SystemCode=A, @Lid=
111].Person.FirstName with Enterprise as the context.

Person.Address[@AddressType=Home].City
Returns a single ObjectField reference to “Monrovia”.

Person.Address[City=Monrovia,State=CA].Street
Returns a list of ObjectField references: “404 E. Huntington Dr.”, “181 E.
Huntington Dr.”. Note that a reference to the Billing address is not returned.

Person.Address[*].Street
Returns a list of ObjectField references: “404 E. Huntington Dr.”, “181 E.
Huntington Dr.”, “100 Marine Parkway”. Note that all references to Street are
returned.

Person.Address[2].*
Addresses the second address object as an ObjectNode, instead of ObjectField.

A.1.2. Qualified Field Names
The Candidate Select file and the MatchingConfig element of the Match Field file use
qualified field names to specify the location of a field. This method defines a specific
field and is not used to define a list of fields. A qualified field name is a sequence of
nested nodes in an enterprise record where the most nested element is a data field.
There are two types of qualified field names.

Fully qualified field names—This type allows you to define fields within the
context of the enterprise object; that is, the field name uses “Enterprise” as the root.
These are used in the MatchingConfig element of the Match Field file and to
specify the fields in a query block in the Candidate Select file.
eView Studio User’s Guide 160 SeeBeyond Proprietary and Confidential

Appendix A Section A.1
Field Notations Defining Field Locations
Qualified field names—This type allows you to define fields within the context of
the parent object; that is, the field name uses the name of the parent object as the
root. These are used in the Candidate Select file to specify the source fields for the
blocking query criteria.

Syntax

The syntax of a fully qualified field name is:

Enterprise.SystemSBR.<parent_object>.<child_object>.<field_name>

where <parent_object> refers to the name of the parent object in the index,
<child_object> refers to the name of the child object that contains the field, and
<field_name> is the full name of the field. If the parent object contains the field being
defined, the child object is not required in the path.

The syntax of a qualified field name is:

<parent_object>.<child_object>.<field_name>

Example

The following sample illustrates an object structure that could be defined in the Object
Definition file. The object contains a Person parent object, and an Address and Phone
child object.

Person
FirstName
LastName
DateOfBirth
Gender

-Address
AddressType
StreetAddress
Street
City
State
PostalCode

-Phone
PhoneType
PhoneNumber

The following fully qualified field names are valid for the sample structure above.

Enterprise.SystemSBR.Person.FirstName

Enterprise.SystemSBR.Person.Address.StreetAddress

Enterprise SystemSBR.Person.Phone.PhoneNumber

The qualified field names that correspond with the fully qualified names listed above
are:

Person.FirstName

Person.Address.StreetAddress

Person.Phone.PhoneNumber
eView Studio User’s Guide 161 SeeBeyond Proprietary and Confidential

Appendix A Section A.1
Field Notations Defining Field Locations
A.1.3. Simple Field Names
The Enterprise Data Manager file uses simple field names to specify the location of a
field that appears on the EDM. These are used in the GUI configuration section of the
file. Simple field names define a specific field and are not used to define a list of fields.
They include only the field name and the name of the object that contains the field.
Simple field names allow you to define fields within the context of an object.

Syntax

The syntax of a simple field name is:

<object>.<field_name>

where <object> refers to the name of the object that contains the field being defined and
and <field_name> is the full name of the field.

Example

The following sample illustrates an object structure that could be defined in the Object
Definition file. The object contains a Person parent object, and an Address and Phone
child object.

Person
FirstName
LastName
DateOfBirth
Gender

-Address
AddressType
StreetAddress
Street
City
State
PostalCode

-Phone
PhoneType
PhoneNumber

The following simple field names are valid for the sample structure above.

Person.FirstName

Address.StreetAddress

Phone.PhoneNumber
eView Studio User’s Guide 162 SeeBeyond Proprietary and Confidential

Appendix B

eView Wizard Match Types

You can select a Match Type for each field defined in the eView Wizard. Each match
type defines a different type of standardization, normalization, phonetic encoding, and
matching logic in the Match Field file.

This appendix describes each match type and how each affects the logic in the Match
Field file.

B.1 About Match and Standardization Types
For each field against which matching will be performed in the new index, you can
select a match type in the eView Wizard. When you select a match type for a field, eView
automatically adds that field to the match string and, in many cases, generates
additional fields in the Object Definition that are not visible on the eView Wizard. These
fields are used for matching and searching, and should not be modified.

If new fields are generated, they are automatically incorporated into the configuration
files and the database script that creates the master index tables. These fields are used
for standardized, normalized, or phonetic versions of the field, depending on the type
of matching you choose. In addition, these fields are assigned a match type in the match
string in the Match Field file. They may also be defined for standardization in the
Match Field file, in which case they will also be assigned a standardization type. These
types differ depending on the match engine you are using.

Note: The match types specified in the Match Field file for the fields in the match string
might not be the same as the match types you specify in the eView Wizard.
Information about match types is provided in the following sections. For more
information, see the implementation guide for the match engine you are using.

SeeBeyond Match Engine

The eView Wizard match types for the SeeBeyond Match Engine are described on the
following pages.

Person Match Types on page 164

BusinessName on page 164

Address on page 165

Miscellaneous Match Types on page 166
eView Studio User’s Guide 163 SeeBeyond Proprietary and Confidential

Appendix B Section B.1
eView Wizard Match Types About Match and Standardization Types
The actual standardization and match types entered into the Match Field file vary for
each match type you select in the eView Wizard. The match and standardization types
for each type of field are listed in the following descriptions. The match types entered
into the Match Field file correspond to the match types defined in the match
configuration file, MatchConfigFile.cfg.

Person Match Types

The Person match types include PersonLastName, PersonFirstName, and
PersonMiddleName. These match types are used to normalize and phonetically encode
name fields for person matching. For each field with one of these match types, the
eView Wizard adds two fields to the Object Definition for phonetic and standardized
versions. If you select a field for blocking with a person match type, the phonetic
version of the name is added to the blocking query. The following fields are created
when you select one of the Person match types for a field (<field_name> refers to the
name of the field selected for Person matching).

<field_name>_Std
This field contains the normalized version of the name.

<field_name>_Phon
This field contains the phonetic version of the name.

The corresponding standardization type and match type in the Match Field file for each
of the Person match types are listed in Table 14.

BusinessName

BusinessName matching is used to parse, normalize, and phonetically encode a
business name for matching on company names. BusinessName matching adds several
fields to the Object Definition and to the match string. If you select a business name
field for blocking, each parsed business name field is added to the blocking query. The
corresponding standardization type in the Match Field file for fields selected for
BusinessName matching is BusinessName. The actual match type assigned to each
field varies depending on the type of information in each field.

The fields created when you select the BusinessName match type for a field are listed
below along with their corresponding Match Field match types (<field_name> refers to
the name of the field selected for BusinessName matching).

Important: Only specify this type of matching for one business name field; otherwise, the eView
Wizard will create duplicate entries in the object structure. If more than one field
contains the business name, you can define the additional fields in the

Table 14 Person Name Standardization and Match Types for the SeeBeyond Match Engine

eView Wizard Match Type
Match Field File

Standardization Type
Match Field File Match Type

PersonLastName PersonName LastName

PersonFirstName PersonName FirstName

PersonMiddleName PersonName MiddleName
eView Studio User’s Guide 164 SeeBeyond Proprietary and Confidential

Appendix B Section B.1
eView Wizard Match Types About Match and Standardization Types
standardization structure in the Match Field file after the eView Wizard creates the
configuration files.

<field_name>_Name
This field contains the parsed and normalized version of the business name. This
field is added to the match string, and the match type assigned to this field is
PrimaryName.

<field_name>_NamePhon
This field contains the phonetic version of the business name. This field is not
added to the match string.

<field_name>_OrgType
This field contains the parsed organization type of the business name. This field is
added to the match string, and the match type assigned to this field is
OrgTypeKeyword.

<field_name>_AssocType
This field contains the association type for the business. This field is added to the
match string, and the match type assigned to this field is AssocTypeKeyword.

<field_name>_Sector
This field contains a location for the business, such as a floor number. This field is
not added to the match string, but if you add it to the match string, assign it a match
type of SectorTypeKeyword.

<field_name>_Alias
This field contains an alias for the business name. This field is not added to the
match string.

<field_name>_Url
This field contains the business’ web site URL. This field is added to the match
string, and the match type assigned to this field is Url.

Address

Address matching is used to parse, normalize, and phonetically encode an address for
matching or standardizing address information. Address matching adds several fields
to the Object Definition and to the match string. If you select an address field for
blocking, the parsed fields are added to the blocking query. The corresponding
standardization type for fields selected for Address matching is Address. The actual
match type assigned to each field varies depending on the type of information in each
field.

The fields created when you select the Address match type for a field are listed below
along with their corresponding Match Field match types (<field_name> refers to the
name of the field selected for BusinessName matching).

Important: Only specify this type of matching for one street address field; otherwise, the eView
Wizard will create duplicate entries in the object structure. If more than one field
contains the street address, you can define the additional fields in the
standardization structure in the Match Field file after the eView Wizard creates the
configuration files.
eView Studio User’s Guide 165 SeeBeyond Proprietary and Confidential

Appendix B Section B.1
eView Wizard Match Types About Match and Standardization Types
<field_name>_HouseNo
This field contains the parsed street number of the address. This field is added to
the match string, and the match type assigned to this field is HouseNumber.

<field_name>_StDir
This field contains the parsed and normalized street direction of the address. This
field is added to the match string, and the match type assigned to this field is
StreetDir.

<field_name>_StName
This field contains the parsed and normalized street name of the address. This field
is added to the match string, and the match type assigned to this field is
StreetName.

<field_name>_StPhon
This field contains the phonetic version of the street name. This field is not added to
the match string.

<field_name>_StType
This field contains the parsed and normalized street type of the address, such as
Boulevard, Street, Drive, and so on. This field is added to the match string, and the
match type assigned to this field is StreetType.

If you want to search on street addresses but do not want to use these fields for
matching, select the Address match type for only one street address field in the eView
Wizard. When the wizard is complete, you can remove the address fields from the
match string in the Match Field file.

Note: If you want to search on street addresses but do not want to use these fields for
matching, select the Address match type for only one street address field in the
eView Wizard. When the wizard is complete, you can remove the address fields from
the match string in the Match Field file.

Miscellaneous Match Types

Several additional eView Wizard match types are defined for the SeeBeyond Match
Engine. These match types are used to indicate matching on a string, date, or number
field other than those described above, or to indicate matching on a field that is a single
character (such as the gender field, which might accept “F” for female or “M” for male).
These match types do not define standardization for the specified field, and do not add
any fields to the Object Definition. If you select a field for one of these types of
matching, it is added to the match string with a match type of String, Date, Number,
Exac, Pro, or Character.

INTEGRITY Match Engine

The eView Wizard match types for INTEGRITY are described on the following pages.

Person Match Types on page 167

Usfname and Uslname Match Types on page 167

Business on page 167

Address on page 168
eView Studio User’s Guide 166 SeeBeyond Proprietary and Confidential

Appendix B Section B.1
eView Wizard Match Types About Match and Standardization Types
Area on page 169

Custom1 Match Types on page 169

The actual standardization and match types entered into the Match Field file vary for
each match type you select in the eView Wizard. The match and standardization types
for each type of field are listed in the following descriptions.

The match types entered into the Match Field file correspond to the INTEGRITY rule
sets as defined in the ServerCfg.cfg and MatchCfgs.cfg files. For detailed information
about the fields that are automatically created when a specific match type is specified,
see Implementing Ascential INTEGRITY with eView Studio.

Person Match Types

Person match types include Person.LastName, Person.FirstName, Person.DOB,
Person.SSN, and Person.Gender. Person.LastName and Person.FirstName are used to
normalize and phonetically encode a person’s first, last, and middle name for
matching. For each field with a Person.LastName or Person.FirstName match type, the
eView Wizard adds the following two fields to the Object Definition (<field_name>
refers to the name of the field selected for Person matching).

<field_name>_Std
This field contains the normalized version of the name.

<field_name>_Phon
This field contains the phonetic version of the name.

When the Person.DOB, Person.SSN, or Person.Gender match types are specified for a
field, no additional fields are created but the field is added to the match string. The
corresponding standardization type in the Match Field file for fields selected for Person
matching is UI. The match type assigned to each field is Person.

Usfname and Uslname Match Types

Name match types include Usfname and Uslname. These match types are used to
normalize and phonetically encode a person’s first, last, and middle name for storing
the values in the database. For each field assigned one of these match types, the eView
Wizard adds the following two fields to the Object Definition for phonetic and
standardized versions (<field_name> refers to the name of the field selected for
matching).

<field_name>_Std
This field contains the normalized version of the name.

<field_name>_Phon
This field contains the phonetic version of the name.

The corresponding standardization type in the Match Field file for fields selected for
Usfname name matching is USFNAME. For Uslname matching, the standardization
type is USLNAME. The corresponding match type in the Match Field file for fields
selected for these types of matching is Person.

Business

Business matching is used to parse, normalize, and phonetically encode a business
name for matching on company names. Business matching adds several fields to the
eView Studio User’s Guide 167 SeeBeyond Proprietary and Confidential

Appendix B Section B.1
eView Wizard Match Types About Match and Standardization Types
Object Definition, but only adds the unparsed field specified for matching to the match
string. The fields added to the Object Definition include:

<field_name>_Name
This field contains the parsed version of the business name.

<field_name>_NamePhon
This field contains the phonetically encoded version of the business name.

<field_name>_Type
This field contains the parsed version of the business type.

<field_name>_StandType
This field contains the normalized version of the business type.

where <field_name> refers to the name of the field selected for Business matching.

The corresponding match type and standardization type in the Match Field file for
fields selected for Business matching is Business.

Important: Only specify this type of matching for one business name field; otherwise, the eView
Wizard will create duplicate entries in the object structure. If more than one field
contains the business name, you can define the additional fields in the
standardization structure in the Match Field file after the eView Wizard creates the
configuration files.

Address

Address matching is used to parse, normalize, and phonetically encode addresses for
matching and standardization on address information. Address matching adds several
fields to the Object Definition, but only adds the field specified for matching to the
match string. The fields added to the Object Definition include:

<field_name>_HouseNo
This field contains the parsed house number component of the street address.

<field_name>_StName
This field contains the parsed and normalized street name component of the street
address.

<field_name>_StDir
This field contains the parsed street direction component of the street address.

<field_name>_StType
This field contains the parsed street type component of the street address.

<field_name>_StPhon
This field contains the phonetically encoded version of the street name.

where <field_name> refers to the name of the field selected for Address matching.

The corresponding standardization type and match type in the Match Field file for
fields selected for Address matching is Address. If you want to search on street
addresses but do not want to use these fields for matching, select the Address match
type for only one street address field in the eView Wizard. When the wizard is
complete, you can remove the address fields from the match string in the Match Field
file.
eView Studio User’s Guide 168 SeeBeyond Proprietary and Confidential

Appendix B Section B.1
eView Wizard Match Types About Match and Standardization Types
Important: Only specify this type of matching for one street address field; otherwise, the eView
Wizard will create duplicate entries in the object structure. If more than one field
contains the street address, you can define the additional fields in the
standardization structure in the Match Field file after the eView Wizard creates the
configuration files.

Area

Area matching is used to parse, normalize, and phonetically encode city, state, and
other address information for matching and standardization. Area matching adds
several fields to the Object Definition, but only adds the unparsed field specified for
matching to the match string. he fields added to the Object Definition include:

<field_name>_City
This field contains the parsed city name component of the local area.

<field_name>_State
This field contains the parsed state abbreviation component of the local area.

<field_name>_PostCode
This field contains the parsed postal code component of the local area.

<field_name>_PostExt
This field contains the parsed postal code extension component of the local area.

<field_name>_Country
This field contains the country code component of the local area.

<field_name>_CityPhon
This field contains the phonetically encoded version of the city name.

where <field_name> refers to the name of the field selected for Area matching.

The corresponding standardization type and match type in the Match Field file for
fields selected for Area matching is Area.

Important: Only specify this type of matching for one local area field; otherwise, the eView
Wizard will create duplicate entries in the object structure. If more than one field
contains the local area, you can define the additional fields in the standardization
structure in the Match Field file after the eView Wizard creates the configuration
files.

Custom1 Match Types

The Custom1 match types include Custom1.PartName, Custom1.PartType, and
Custom1.PartID. This is a customized match and standardization type, designed to be
used with the Custom1 INTEGRITY rule set. When you specify the Custom1.PartName
match type for a field, one field is added to the Object Definition. This field is named
<field_name>_Phon, where <field_name> refers to the name of the field selected for
Custom1.PartName matching. This field contains the phonetically encoded version of
the field. For more information about working with this type, see Implementing Ascential
INTEGRITY with eView Studio.
eView Studio User’s Guide 169 SeeBeyond Proprietary and Confidential

Glossary
Glossary

alphanumeric search
A type of search that looks for records that precisely match the specified criteria. This
type of search does not allow for misspellings or data entry errors, but does allow the
use of wildcard characters.

assumed match
When the matching weight between two records is at or above a weight you specify,
(depending on the configuration of matching parameters) the objects are an assumed
match and are merged automatically (see “Automatic Merge”).

automatic merge
When two records are assumed to be matches of one another (see “Assumed Match”),
the system performs an automatic merge to join the records rather than flagging them
as potential duplicates.

Blocking Query
The query used during matching to search the database for possible matches to a new
or updated record. This query makes multiple passes against the database using
different combinations of criteria. The criteria is defined in the Candidate Select file.

Candidate Select file
The eView configuration file that defines the queries you can perform from the
Enterprise Data Manager (EDM) and the queries that are performed for matching.

candidate selection
The process of performing the blocking query for match processing. See Blocking Query.

candidate selection pool
The group of possible matching records that are returned by the blocking query. These
records are weighed against the new or updated record to determine the probability of
a match.

checksum
A value added to the end of an EUID for validation purposes. The checksum for each
EUID is derived from a specific mathematical formula.

code list
A list of values in the sbyn_common_detail database table that is used to populate
values in the drop-down lists of the EDM.
eView Studio User’s Guide 170 SeeBeyond Proprietary and Confidential

Glossary
code list type
A category of code list values, such as states or country codes. These are defined in the
sbyn_common_header database table.

duplicate threshold
The matching probability weight at or above which two records are considered to
potentially represent the same entity.

EDM
See Enterprise Data Manager.

Enterprise Data Manager
Also known as the EDM, this is the web-based interface that allows monitoring and
manual control of the master index database. The configuration of the EDM is stored in
the Enterprise Data Manager file in the eView Project.

enterprise object
A complete object representing a specific entity, including the SBR and all associated
system objects.

ePath
A definition of the location of a field in an eView object. Also known as the element path.

EUID
The enterprise-wide unique identification number assigned to each object profile in the
master index. This number is used to cross-reference objects and to uniquely identify
each object throughout your organization.

eView Manager Service
An eView component that provides an interface to all eView components and includes
the primary functions of the master index. This component is configured by the
Threshold file.

field IDs
An identifier for each field that is defined in the standardization engine and referenced
from the Match Field file.

Field Validator
An eView component that specifies the Java classes containing field validation logic for
incoming data. This component is configured by the Field Validation file.

Field Validation file
The eView configuration file that specifies any custom Java classes that perform field
validations when data is processed.

local ID
A unique identification code assigned to an object in a specific local system. An object
profile may have several local IDs in different systems.
eView Studio User’s Guide 171 SeeBeyond Proprietary and Confidential

Glossary
master index
A database application that stores and cross-references information on specific objects
in a business organization, regardless of the computer system from which the
information originates.

Match Field File
An eView configuration file that defines normalization, parsing, phonetic encoding,
and the match string for an instance of eView. The information in this file is dependent
on the type of data being standardized and matched.

match pass
During matching several queries are performed in turn against the database to retrieve
a set of possible matches to an incoming record. Each query execution is called a match
pass.

match string
The data string that is sent to the match engine for probabilistic weighting. This string is
defined by the match system object defined in the Match Field file.

match type
An indicator specified in the MatchingConfig section of the Match Field configuration
file that tells the match engine which rules to use to match information.

matching probability weight
An indicator of how closely two records match one another. The weight is generated
using matching algorithm logic, and is used to determine whether two records
represent the same object.

Matching Service
An eView component that defines the matching process. This component is configured
by the Match Field file.

matching threshold
The lowest matching probability weight at which two records can be considered a
match of one another.

matching weight or match weight
See matching probability weight.

merge
To join two object profiles or system records that represent the same entity into one
object profile.

merged profile
See non-surviving profile.

non-surviving profile
An object profile that is no longer active because it has been merged into another object
profile. Also called a merged profile.
eView Studio User’s Guide 172 SeeBeyond Proprietary and Confidential

Glossary
normalization
A component of the standardization process by which the value of a field is converted
to a standard version, such as changing a nickname to a common name.

object
A component of an object profile, such as a company object, which contains all of the
demographic data about a company, or an address object, which contains information
about a specific address type for the company.

object profile
A set of information that describes characteristics of one enterprise object. A profile
includes identification and other information about an object and contains a single best
record and one or more system records.

parsing
A component of the standardization process by which a freeform text field is separated
into its individual components, such as separating a street address field into house
number, street name, and street type fields.

phonetic encoding
A standardization process by which the value of a field is converted to its phonetic
version.

phonetic search
A search that returns phonetic variations of the entered search criteria, allowing room
for misspellings and typographic errors.

potential duplicates
Two different enterprise objects that have a high probability of representing the same
entity. The probability is determined using matching algorithm logic.

probabilistic weighting
A process during which two records are compared for similarities and differences, and
a matching probability weight is assigned based on the fields in the match string. The
higher the weight, the higher the likelihood that two records match.

probability weight
See matching probability weight.

Query Builder
An eView component that defines how queries are processed. The user-configured
logic for this component is contained in the Candidate Select file.

SBR
See single best record.

single best record
Also known as the SBR, this is the best representation of an entity’s information. The
SBR is populated with information from all source systems based on the survivor
eView Studio User’s Guide 173 SeeBeyond Proprietary and Confidential

Glossary
strategies defined for each field. It is a part of an entity’s enterprise object and is
recalculated each time a system record is updated.

standardization
The process of parsing, normalizing, or phonetically encoding data in an incoming or
updated record. Also see normalization, parsing, and phonetic encoding.

survivor calculator
The logic that determines which fields from which source systems should be used to
populate the SBR. This logic is a combination of Java classes and user-configured logic
contained in the Best Record file.

survivorship
Refers to the logic that determines which fields are used to populate the SBR. The
survivor calculator defines survivorship.

system
A computer application within your company where information is entered about the
objects in the master index and that shares this information with the master index (such
as a registration system). Also known as “source system” or “external system”.

system object
A record received from a local system. The fields contained in system objects are used
in combination to populate the SBR. The system objects for one entity are part of that
entity’s enterprise object.

tab
A heading on an application window that, when clicked, displays a different type of
information. For example, click the EDM tab on the Define Enterprise Object window to
display the EDM attributes.

Threshold file
An eView configuration file that specifies duplicate and match thresholds, EUID
generator parameters, and which blocking query defined in the Candidate Select file to
use for matching.

transaction history
A stored history of an enterprise object. This history displays changes made to the
object’s information as well as merges, unmerges, and so on.

Update Manager
The component of the master index that contains the Java classes and logic that
determines how records are updated and how the SBR is populated. The user-
configured logic for this component is contained in the Best Record file.
eView Studio User’s Guide 174 SeeBeyond Proprietary and Confidential

Index
Index

A
activation key 35
Add Field 66
Add Primary Object 61
Add Sub Object 62
Address match type 165–166, 168
analysis 30, 54
analysis phase

data analysis 54
Application field

on the Name Application window 58
application file

in an eView Project 100
application server 24
Area match type 169
audit log 78

B
basic searches 77
Best Record file 22, 30, 75, 77, 78
block picker, customizing 84
blocking queries 75, 77, 78, 164, 165
Blocking, field property 69
bootstrap, for Logical Host 150
Business match type 167–168
business objects 17
Business Processes 18, 114

connecting components 116
including eView methods 115–116

BusinessName 164
BusinessName match type 164–165

C
Candidate Select file 21, 31, 75, 76
Character match type 166
child objects 30, 76
client Projects 23

Connectivity Map 100
Deployment Profile 141–142, 145–147
Environments 123

Code List script 22, 70, 87
modifying 94

Code Module, field property 70
Collaboration

processing from JMS Topic 113–114
Collaboration Editor 106
Collaborations 32

for external systems 106, 108
in a client Project 100

common table data 89
defining 94

components
Environment 24
eView 19
eView Project 20
master index 27–29

configuration files 19
connectivity components 23, 99–101

in a client Project 100
in an eView Project 99–100

Connectivity Map 32
adding JMS Topic to client Project 111–113
adding to an eInsight Project 114, 117–119
adding to an eView Project 101–103
adding to External System Projects 105, 107–109
connecting eInsight components 119–122
connecting External System components 109–

111
in a client Project 100
in an eView Project 99
linking components 103, 109, 113, 116, 119
linking eView components 103

Constants, environment 124
Constraint By field property 71
Create database script 22, 87

running 97
cross-reference 24
custom database scripts 96
Custom Plug-ins 22, 80

about 82–86
creating 86

Custom1 match types 169

D
data analysis 54, 89

overview 54
data structure 17, 74, 76
Data Type

field property 69
database

creating 31
designing 89
factors 90
hardware requirements 88
indexes 90, 92
eView Studio User’s Guide 175 SeeBeyond Proprietary and Confidential

Index
installation 33
operating systems 88
optimization 89
platforms 87
requirements 87
structure 88

Database field
on the Define Deployment Environment

window 60
database implementation

data analysis 54
Database node 87
database scripts 19

Code List 22, 87
Create database 22, 87
custom 96
Drop database 22, 87
modifying 91–96
running 96–97
Systems 22, 87

database server
performance optimization 89

database tables
dropping 98

Date Format field
on the Define Deployment Environment

window 60
Date match type 166
Define Deployment Environment 59, 60
Define Enterprise Object 61–72
Define Source Systems 58
Deployment Profile 24

about 141
activating 149–150
creating 141–142, 145–147
mapping components 143–144, 146, 148–149
mapping eView components 143, 146

Display Name, EDM property 71
document conventions 14
Drop database script 22, 87

running 98
drop-down lists 90
duplicate threshold 77

E
editors

Java source 19
text 19
XML 19

eGate Integrator 18
eInsight

Business Processes 115–116
Connectivity Map 100, 114, 117–119

integration 18
Java methods for 23
methods 80

element path
See ePath

enterprise create policy 83
Enterprise Data Manager

configuration 31
Enterprise Data Manager file 21, 29, 31, 74, 78
Enterprise Designer 19

Projects 20
enterprise merge policy 83
enterprise record 29
enterprise unmerge policy 83
enterprise update policy 83
EnterpriseCreatePolicy element 83
EnterpriseMergePolicy element 83
EnterpriseUnmergePolicy element 83
EnterpriseUpdatePolicy element 83
Environment

adding a logical host 125
creating 124

Environment components 24
Environments

adding an eVision external system 128
adding an external system 127
adding an Oracle external system 129
components 123–124
configuring the Oracle external system 130
configuring the server 132
Constants 124
defining security 137–140

ePath
about 158

EUID 26, 77
configuration 76
generator 76
modifying the first 97

eView
components 19
Environment 24
installing in Enterprise Designer 43

eView application
generating 80
in a client Project 100

eView Manager Service 21, 28, 77
eView methods

in Business Processes 115–116
in Collaborations 106

eView Projects
components 20
Connectivity Map 99–100
creating 56
Deployment Profile 141–142, 145–147
eView Studio User’s Guide 176 SeeBeyond Proprietary and Confidential

Index
Environments 123
eView Wizard 17, 19

Define Deployment Environment 59
Define Enterprise Object 61–72
Define Source Systems 58
Generate Project Files 72
launching 57
Name Application 57
steps 55–73

eView.Application 102, 143
eView.Web.Application 102, 143
eVision External Systems 124
eVision Studio

integration 19
Java methods for 23
page layouts 115
Web pages 114

eWays
in a client Project 101

Exac match type 166
External Applications

in a client Project 100
External Systems 24

in eView Environments 123
method OTD for 23

external systems
Connectivity Map 107–109
JMS Topic 111–113

F
field EDM properties

Display Name 71
Input Mask 71
Search Result 72
Search Screen 72
Value Mask 72

field locations
defining 158

field names
syntax 158, 160, 162

field properties
Blocking 69
Code Module 70
Constraint By 71
Data Type 69
Key Type 70
Match Type 69
Pattern 70
Required 70
Size 70
Updateable 70
User Code 70

Field Validation file 22, 75, 77

field validations, defining 84
fields

configuring properties 67–72
creating 66
defining 66–72
deleting 72
EDM label 71
EDM properties 71–72
naming constraints 67
parsed 164, 165, 168–169
parsing 75
phonetic 75, 164, 167
properties 69–70
standardized 75, 164, 167

fully qualified field names 160

G
Generate Project Files 72

results 80
generating application files 80
generating eView 80

I
identification 24
indexes 90, 92
Input Mask, EDM property 71
installation

overview 33
Integration Servers 123
INTEGRITY 18, 26
INTEGRITY match types 166–169

J
JAR files 80
Java API 18
Java methods, dynamic 23
Java source editor 19
java.util.regex 70, 93
JMS Client

in a client Project 101
JMS IQ Managers 24, 123
JMS Queues

in a client Project 100
JMS Topic

in an eView Project 100
JMS Topics

in a client Project 101
eView Studio User’s Guide 177 SeeBeyond Proprietary and Confidential

Index
K
Key Type, field property 70

L
local identifiers

format 93
length 93

Logical Host 24
bootstrap 150

Logical Hosts 123

M
master index

components 27–29
creating 55–73
features 25–26
naming 57
overview 24

match engine 21, 75, 77, 78
Match Engine field

on the Define Deployment Environment
window 60

Match Engine node 23
match engine, customizing 85
Match Field file 21, 75, 77, 78
match threshold 77
Match Type

field property 69
match types

Address 165–166, 168
Area 169
Business 167–168
BusinessName 164–165
Custom1 169
Name 167
Person 164, 167
Usfname 167
Uslname 167

MatchCfgs.cfg 167
matching 77
matching algorithm 18, 26
matching configuration 75
Matching Service 21, 28, 77
method OTD 23, 74, 80, 105, 106, 108

N
Name Application 58
Name field

on the Define Source Systems window 58
Name match types 167

New Field 66
New Primary Object 61, 63
New Sub Object 62
Number match type 166

O
Object Definition 164
Object Definition file 21, 74, 76, 78
Object Persistence Service 29
object structure 18, 23, 74, 76

defining 61–72
Object Type Definition 23, 32

in a client Project 100
objects

creating new 61–63
defining 61–66
deleting 65
from template 63–65
predefined 61
undefined 61

Oracle eWay 100
configuration 130

Oracle External Systems 124
Outbound OTD 80

P
parent objects 30, 76
parsed fields 164, 165, 168–169
pass controller, customizing 85
Pattern, field property 70
performance optimization, database 89
Person match types 164, 167
phonetic encoders, customizing 85
phonetic fields 164, 167
planning 55
Pro match type 166
process 30
processing codes 89, 92
Project components

Custom Plug-ins 22
database scripts 22
Deployment Profile 24
for connectivity 23
Match Engine node 23
outbound OTD 23
Standardization Engine node 23

Projects
client 23

Properties of Database Script 96–97
eView Studio User’s Guide 178 SeeBeyond Proprietary and Confidential

Index
Q
qualified field names

fully qualified 160
qualified 160

queries
basic 77
blocking 77

Query Builder 21, 28, 76, 77
query builder, customizing 84
query definitions 75
Query Manager 28

R
Readme.txt file

up-to-date OS requirements
Windows Server 2003, Windows 2000/XP 34

records, objects in 30
relationships 74
Required, field property 70
requirements 34

database 87

S
SBR

see single best record
sbyn_common_detail 94
sbyn_common_header 70, 94
sbyn_seq_table 97
sbyn_user_code 70
search definitions 75
Search Result, EDM property 72
Search Screen, EDM property 72
searches

basic 77
blocking 77

Security 24
defining 137–140
file 22

SeeBeyond Integration Server 18, 33
configuration 132

SeeBeyond Match Engine 18, 26
configuration files 22, 79

SeeBeyond Web site 16
ServerCfg.cfg 167
Service

in a client Project 100
Service Binding window 110, 119–120
Services 24
simple field names 162
single best record 18, 28, 30, 77
SIS

see SeeBeyond Integration Server
Size, field property 70
source systems

defining 58
standardization 77
standardization configuration 75
standardization engine 21, 75
Standardization Engine node 23
standardization engine, customizing 85
standardized fields 164, 167
String match type 166
survivor calculator 18, 22, 28, 75, 77, 78
survivor strategy 28
SurvivorHelperConfig 75, 77
system codes 89
system merge policy 83
system records 29
system unmerge policy 83
SystemMergePolicy element 83
systems

defining 92
status 92

Systems box
on the Define Source Systems window 58

Systems database script 22
Systems script 87

database scripts
Systems 22

modifying 92
systems table description 92–93
SystemUnmergePolicy element 83

T
templates 63–65
text editor 19, 79
Threshold file 21, 75
transaction history 25

U
undo assumed match policy 83
UndoAssumeMatchPolicy element 83
unique key fields 70
Update Manager 22, 28
update policies 22, 75

implementing 82–83
Updateable, field property 70
User Code field property 70
Usfname 167
Uslname 167
eView Studio User’s Guide 179 SeeBeyond Proprietary and Confidential

Index
V
Value Mask, EDM property 72

W
Web application file 100
Web Connector 117
Web Connectors 24

in a client Project 101
WeightedCalculator 75, 77

X
XML editor 19, 78
eView Studio User’s Guide 180 SeeBeyond Proprietary and Confidential

	eView Studio User’s Guide
	Contents
	List of Figures
	Introduction
	1.1 Document Purpose and Scope
	1.1.1 Intended Audience
	1.1.2 Using this Guide
	1.1.3 Document Organization

	1.2 Writing Conventions
	1.2.1 Special Notation Conventions
	1.2.2 Mouse Conventions

	1.3 Supporting Documents
	1.4 Online Documents
	1.5 SeeBeyond Web Site

	eView Studio Overview
	2.1 Learning about eView
	2.1.1 Overview
	2.1.2 eView Features and Functions
	2.1.3 eView and the SeeBeyond ICAN Suite
	eGate Integrator
	eInsight
	eVision

	2.2 eView Components
	2.2.1 eView Wizard
	2.2.2 Editors
	2.2.3 Project Components
	Configuration Files
	Database Scripts
	Custom Plug-ins
	Match Engine Configuration Files
	Outbound Object Type Definition (OTD)
	Dynamic Java API
	Connectivity Components
	Deployment Profile

	2.2.4 Environment Components

	2.3 Learning about the Master Index
	2.3.1 Functions of the Master Index
	2.3.2 Features of the Master Index

	2.4 Master Index Components
	2.4.1 Matching Service
	2.4.2 eView Manager Service
	2.4.3 Query Builder
	2.4.4 Query Manager
	2.4.5 Update Manager
	2.4.6 Object Persistence Service (OPS)
	2.4.7 Database
	2.4.8 Enterprise Data Manager

	2.5 Enterprise Records
	2.5.1 System Records
	2.5.2 The Single Best Record
	2.5.3 Objects in an Enterprise Record

	2.6 From eView to the Master Index
	2.6.1 Process Overview
	2.6.2 From XML to the Database
	2.6.3 From XML to the Enterprise Data Manager
	2.6.4 From XML to the Connectivity Components
	2.6.5 From XML to the Runtime Environment

	Installation
	3.1 Installation Overview
	3.1.1 eView Installation
	3.1.2 Database Installation

	3.2 About the Installation
	3.3 System Requirements
	3.4 Requirements for the ICAN 5.0.2 Environment
	3.4.1 Before Installing eView

	3.5 Installing eView
	3.5.1 Uploading eView to the Repository
	Uploading eView
	Uploading the eView Documentation and Sample
	Uploading the INTEGRITY Add-on

	3.5.2 Installing eView in the Enterprise Designer

	3.6 Upgrading eView from Version 5.0.2
	3.6.1 What’s New for Release 5.0.3
	Changes to the Method OTD
	Changes to the Database
	Changes to the Java Collaboration

	3.6.2 Performing the Upgrade
	Upgrading the eView Project
	Upgrading the Database

	Creating the Master Index Framework
	4.1 The eView Project
	4.2 The eView Wizard
	4.2.1 Working with the eView Wizard
	Accessing the eView Wizard
	eView Wizard Toolbar Buttons
	eView Wizard Navigation Buttons

	4.3 Before you Begin
	4.3.1 Data Analysis
	4.3.2 Project Planning
	4.3.3 Project Initiation Checklist

	4.4 Creating the Master Index Configuration
	4.4.1 Step 1: Create a Project
	4.4.2 Step 2: Launch the eView Wizard
	4.4.3 Step 3: Name the eView Application
	4.4.4 Step 4: Define Source Systems
	4.4.5 Step 5: Define the Deployment Environment
	4.4.6 Step 6: Define Parent and Child Objects
	Creating Undefined Objects
	Creating Objects from a Template
	Deleting an Object from the Structure

	4.4.7 Step 7: Define the Fields for each Object
	Creating a Field
	Configuring Field Properties
	Deleting a Field

	4.4.8 Step 8: Generate the Project Files
	4.4.9 Step 9: Review the Configuration Files

	Configuring the Master Index
	5.1 Configurable Options
	Object Definition
	Enterprise Data Manager
	Query Definitions
	Standardization and Matching Rules
	Survivor Calculator
	Update Policies
	Field Validations
	EUID Configuration

	5.2 About the eView Configuration Files
	5.2.1 Object Definition
	5.2.2 Candidate Select
	5.2.3 Match Field
	5.2.4 Threshold
	5.2.5 Best Record
	5.2.6 Field Validation
	5.2.7 Security
	5.2.8 Enterprise Data Manager

	5.3 Modifying the eView Configuration Files
	5.4 Match Engine Configuration Files

	Generating the Project
	6.1 Generated Application Components
	6.2 Generating the Project

	Creating Custom Plug-ins
	7.1 About Custom Plug-ins
	7.1.1 Update Policies
	Enterprise Merge Policy
	Enterprise Unmerge Policy
	Enterprise Update Policy
	Enterprise Create Policy
	System Merge Policy
	System Unmerge Policy
	Undo Assumed Match Policy

	7.1.2 Field Validations
	7.1.3 Custom eView Components
	Query Builder
	Block Picker
	Pass Controller
	Match Engine
	Standardization Engine
	Phonetic Encoders

	7.2 Implementing Custom Plug-ins
	Creating Custom Plug-ins
	Building Custom Plug-ins

	Creating the Database
	8.1 Database Scripts
	8.2 Requirements
	Database Platforms
	Operating Systems
	Hardware Requirements

	8.3 Database Structure
	8.4 Designing the Database
	8.4.1 Designing for Performance Optimization
	8.4.2 Data Analysis
	8.4.3 Common Table Data
	8.4.4 User Code Data
	8.4.5 Considerations
	Sizing
	Distribution
	Indexes

	8.5 Creating the Database
	8.5.1 Step 1: Analyze the Database Requirements
	8.5.2 Step 2: Create an Oracle Database
	8.5.3 Step 3: Customize the Database Scripts
	Defining Indexes
	Defining Systems
	Defining Code Lists
	Defining User Code Lists
	Creating a Custom Script

	8.5.4 Step 4: Modify the Database
	8.5.5 Step 5: Specify a Starting EUID (optional)

	8.6 Deleting the Master Index Tables

	Defining Connectivity Components
	9.1 Overview
	9.1.1 Connectivity Components
	eView Project Connectivity Components
	Client Project Connectivity Components

	9.2 Defining Connectivity Components
	9.2.1 Defining eView Application Connectivity Components
	Creating the eView Project Connectivity Map
	Connecting Connectivity Map Components

	9.2.2 Defining External System Connectivity Components
	Adding eView Methods to a Java Collaboration
	Creating the External System Project Connectivity Map
	Connecting Connectivity Map Components
	Incorporating the JMS Topic into the Connectivity Map
	Configuring the Outbound Collaboration

	9.2.3 Defining eInsight Integration Connectivity Components
	Including eView Methods in a Business Process
	Connecting the Business Process Components
	Creating the eInsight Integration Connectivity Map
	Connecting Connectivity Map Components

	Defining the Environment
	10.1 Environment Components
	Environment Components

	10.2 Building an Environment
	10.2.1 Creating an eView Environment
	10.2.2 Adding a Logical Host
	10.2.3 Adding Servers
	10.2.4 Adding an External System
	10.2.5 Adding an eVision External System
	10.2.6 Adding an Oracle External System

	10.3 Configuring the Oracle External System
	10.4 Configuring the Integration Server
	10.4.1 Defining the Data Source
	10.4.2 Defining Environment Variables for INTEGRITY

	10.5 Defining Security

	Deploying the Project
	11.1 Overview
	11.2 Deploying a Project
	11.2.1 Defining a Deployment Profile
	Defining an eView Application Deployment Profile
	Creating an eView Client Deployment Profile
	Creating an eInsight Integration Deployment Profile

	11.2.2 Activating the Project
	11.2.3 Running the Bootstrap

	Implementing the eView Sample
	12.1 Overview
	12.2 Importing the Sample Projects
	12.3 Implementing the Sample Projects
	12.3.1 Configuring for INTEGRITY
	12.3.2 Regenerate the Application
	12.3.3 Create the Database
	12.3.4 Define the Environment
	Create a User
	Define the Data Source

	12.3.5 Configure the Client Connectivity Map
	12.3.6 Create and Activate the Server Deployment Profile
	12.3.7 Create and Activate the Client Deployment Profile
	12.3.8 Start the Logical Host
	12.3.9 Run the Sample File
	12.3.10 Working with the EDM

	Field Notations
	A.1 Defining Field Locations
	A.1.1. ePath
	Syntax
	Example

	A.1.2. Qualified Field Names
	Syntax
	Example

	A.1.3. Simple Field Names
	Syntax
	Example

	eView Wizard Match Types
	B.1 About Match and Standardization Types
	SeeBeyond Match Engine
	INTEGRITY Match Engine

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

