
SeeBeyond Proprietary and Confidential

X12 OTD Library User’s
Guide

Release 5.0.3

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

SeeBeyond, e*Gate, e*Way, and e*Xchange are the registered trademarks of SeeBeyond Technology Corporation in the United States
and/or select foreign countries. The SeeBeyond logo, SeeBeyond Integrated Composite Application Network Suite, eGate, eWay,
eInsight, eVision, eXchange, eView, eIndex, eTL, ePortal, eBAM, and e*Insight are trademarks of SeeBeyond Technology Corporation.
The absence of a trademark from this list does not constitute a waiver of SeeBeyond Technology Corporation's intellectual property
rights concerning that trademark. This document may contain references to other company, brand, and product names. These
company, brand, and product names are used herein for identification purposes only and may be the trademarks of their respective
owners.

© 2004 SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the copyright
laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20040526164130.

X12 OTD Library User’s Guide 2 SeeBeyond Proprietary and Confidential

Contents

X12 OTD Library User’s Guide 3 SeeBeyond Proprietary and Confidential

Contents

List of Tables 6

List of Figures 7

Chapter 1

Introduction 8
Overview 8

Intended Reader 8

Compatible Systems 8

Document Organization 9

Writing Conventions 9
Additional Conventions 9

Supporting Documents 10

SeeBeyond Web Site 10

Chapter 2

X12 Overview 11
Introduction to X12 11

What Is X12? 11
What Is a Message Structure? 12

Components of an X12 Envelope 12
Data Elements 13
Segments 13
Loops 13
Delimiters 13

Structure of an X12 Envelope 14
Transaction Set (ST/SE) 17
Functional Group (GS/GE) 17
Interchange Envelope (ISA/IEA) 18
Control Numbers 19

ISA13 (Interchange Control Number) 20
GS06 (Functional Group Control Number) 20

Contents

X12 OTD Library User’s Guide 4 SeeBeyond Proprietary and Confidential

ST02 (Transaction Set Control Number) 20

Backward Compatibility 20

Messages 21

Example of EDI Usage 29
Overview of EDI Payments Processing 29

Types of Information that Is Exchanged Electronically 30
Types of Electronic Payment 30
Transfer of Funds 31

Payment-Related EDI Transactions 32

Acknowledgment Types 32
TA1, Interchange Acknowledgment 32
997, Functional Acknowledgment 32
Application Acknowledgments 33

Key Parts of EDI Processing Logic 33
Structures 33
Validations, Translations, Enveloping, Acknowledgments 34
Trading Partner Agreements 34

Additional Information 34

Chapter 3

Installation 35
X12 Libraries 35

Installation Procedure 36
Uploading to the Repository 36
Refreshing Enterprise Designer 37

X12 OTD Libraries 38
X12 OTDs 38
Transaction Names 39

Chapter 4

Working With the X12 OTDs 40
Importing .jar Files 40

Viewing an X12 OTD in the OTD Editor 41

Setting the Delimiters 43

Methods for Getting and Setting 43
Bean Nodes for Getting and Setting Data 44
Bean Nodes for Getting Errors and Results 44

Using Validation in the Java Collaboration Editor 45
Creating a Collaboration Rule to Validate an X12 OTD 45

Alternative Formats: ANSI and XML 46

Contents

X12 OTD Library User’s Guide 5 SeeBeyond Proprietary and Confidential

XML Format for X12 46

Possible Differences in Output When Using Pass-Through 49

Limitations of X12 OTDs 49
Memory Requirements 49
Delayed Unmarshaling 50
Errors and Exceptions 50
Special Methods for Error Classes 51

Chapter 5

Java Methods for X12 OTDs 52
Bean Nodes 52

Read/Write Bean Nodes for Getting and Setting Values 52
Read-Only Bean Nodes for Getting Values 53
Bean Nodes for Reporting Errors and Exceptions 53

Java Methods 54
check 54
clone 55
isUnmarshalComplete 55
marshal 55
marshalToBytes 56
marshalToString 56
performValidation 56
reset 57
setDefaultX12Delimiters 58
getElementSeparator 58
setElementSeparator 59
getRepetitionSeparator 60
setRepetitionSeparator 60
getSegmentTerminator 61
setSegmentTerminator 61
getSubelementSeparator 62
setSubelementSeparator 63
setXmlOutput 63
unmarshal 64
unmarshalFromBytes 65
unmarshalFromString 65

Index 66

List of Tables

X12 OTD Library User’s Guide 6 SeeBeyond Proprietary and Confidential

List of Tables

Table 1 Writing Conventions 9

Table 2 Default Delimiters in X12 OTD Library 14

Table 3 Transactions Included in X12 Version 4010 21

Table 4 Key Parts of EDI Processing 33

Table 5 X12 Versions Supported 35

List of Figures

X12 OTD Library User’s Guide 7 SeeBeyond Proprietary and Confidential

List of Figures

Figure 1 X12 Envelope Schematic 15

Figure 2 X12 997 (Functional Acknowledgment) Segment Table 15

Figure 3 X12 997 (Functional Acknowledgment) Viewed in OTD Editor 16

Figure 4 Example of a Transaction Set Header (ST) 17

Figure 5 Example of a Transaction Set Trailer (SE) 17

Figure 6 Example of a Functional Group Header (GS) 18

Figure 7 Example of a Functional Group Trailer (GE) 18

Figure 8 Example of an Interchange Header (ISA) 19

Figure 9 Example of an Interchange Trailer (IEA) 19

Figure 10 Update Center Wizard: Select Modules to Install 37

Figure 11 Some of the Transaction Set Structures for X12 Version 4010 38

Figure 12 Importing sefimpl.jar 41

Figure 13 X12 270 Transaction in the OTD Editor 42

Figure 14 Accessing a Method in an X12 OTD 45

Figure 15 Accessing the performValidation Method from the Root Node 46

Figure 16 XML X12 DTD 47

Figure 17 X12 997 Functional Acknowledgment—XML 48

Figure 18 X12 997 Functional Acknowledgment—ANSI Format 48

Figure 19 Setting the Maximum Heap Size 49

X12 OTD Library User’s Guide 8 SeeBeyond Proprietary and Confidential

Chapter 1

Introduction

This chapter introduces you to the X12 OTD Library User’s Guide.

1.1 Overview
Each of the eGate Object Type Definition (OTD) libraries contains sets of pre-built
structures for industry-standard formats. The ASC X12 OTD Library is one of the
products within the SeeBeyond ICAN Suite. The OTD library contains message
definitions for X12 messages.

This document gives a brief overview of X12 and the X12 message structures provided,
and provides information on installing and using the ASC X12 OTD Library.

1.2 Intended Reader
The reader of this guide is presumed to be a developer or system administrator with
responsibility for maintaining the SeeBeyond ICAN Suite (such as eGate Integrator and
eXchange Integrator), to have familiarity with Windows operations and administration,
and to be thoroughly familiar with Microsoft Windows graphical user interfaces.

1.3 Compatible Systems
The ASC X12 OTD Library is available on the following platforms:

Microsoft Windows 2000, Windows XP, and Windows 2003
Sun Solaris 8 and Solaris 9
IBM AIX 5L Version 5.1 and AIX 5L Version 5.2
HP-UX 11.0 and HP-UX 11i (PA-RISC)
HP Tru64 UNIX Version 5.1A
Red Hat Linux 8 (Intel x86) and Linux Advanced Server 2.1 (Intel x86)

Chapter 1 Section 1.4
Introduction Document Organization

X12 OTD Library User’s Guide 9 SeeBeyond Proprietary and Confidential

1.4 Document Organization
This document is organized topically as follows:

Chapter 1 ”Introduction” gives a general preview of this document, its purpose,
scope, and organization.

Chapter 2 ”X12 Overview” provides an overview of X12.

Chapter 3 ”Installation” explains how to install the X12 OTD Library files and
where to find them after installation.

Chapter 4 ”Working With the X12 OTDs” provides instructions and examples on
how to load, view, and test X12 OTDs.

Chapter 5 ”Java Methods for X12 OTDs” lists and explains the bean nodes and
Java methods that can be used to extend the functionality of the OTDs in the library.

1.5 Writing Conventions
The following writing conventions are observed throughout this document.

Additional Conventions

Windows Systems

For the purposes of this guide, references to “Windows” will apply to Microsoft
Windows Server 2003, Windows XP, and Windows 2000.

Path Name Separator

This guide uses the backslash (“\“) as the separator within path names. If you are
working on a UNIX or HP NonStop system, please make the appropriate substitutions.

Table 1 Writing Conventions

Text Convention Example

Names of buttons, files,
menus and menu items,
icons, parameters, variables,
methods, and objects

Bold text Click OK to save and close.
Select the logicalhost.exe file.
On the File menu, click Exit.
Enter the timeout value.
Use the getClassName() method.

Command-line arguments,
code samples

Fixed font. Variables are
shown in bold italic.

bootstrap -f -p password

Hypertext links Blue text For more information, see “Writing
Conventions” on page 9.
http://www.seebeyond.com

Chapter 1 Section 1.6
Introduction Supporting Documents

X12 OTD Library User’s Guide 10 SeeBeyond Proprietary and Confidential

1.6 Supporting Documents
The following SeeBeyond documents provide additional information about eGate and
the ICAN system:

You can also refer to the appropriate Microsoft Windows or UNIX documents, if
necessary.

1.7 SeeBeyond Web Site
The SeeBeyond Web site is your best source for up-to-the-minute product news and
technical support information. The site’s URL is:

http://www.seebeyond.com

SeeBeyond ICAN Suite Installation Guide

SeeBeyond ICAN Suite Primer

SeeBeyond ICAN Suite Deployment Guide

eGate Integrator User’s Guide

eGate Integrator Tutorial

eGate Integrator System Administration Guide

eXchange Integrator User’s Guide

HIPAA OTD Library User’s Guide

UN/EDIFACT OTD Library User’s Guide

http://www.seebeyond.com

X12 OTD Library User’s Guide 11 SeeBeyond Proprietary and Confidential

Chapter 2

X12 Overview

This chapter provides the following information:

An overview of X12, including the structure of an X12 envelope, data elements, and
syntax.

An explanation of how to use the generic message structures provided as an add-on
to eGate to help you quickly create the structures you need for X12 transactions.

An example of how X12 is used in payment processing.

2.1 Introduction to X12
The following sections provide an introduction to X12 and to the message structures
that constitute the X12 OTD Library.

2.1.1. What Is X12?
X12 is an EDI (electronic data interchange) standard, developed for the electronic
exchange of machine-readable information between businesses.

The Accredited Standards Committee (ASC) X12 was chartered by the American
National Standards Institute (ANSI) in 1979 to develop uniform standards for
interindustry electronic interchange of business transactions—electronic data
interchange (EDI). The result was the X12 standard.

The X12 body develops, maintains, interprets, and promotes the proper use of the ASC
standard. Data Interchange Standards Association (DISA) publishes the X12 standard
and the UN/EDIFACT standard. The X12 body comes together three times a year to
develop and maintain EDI standards. Its main objective is to develop standards to
facilitate electronic interchange relating to business transactions such as order
placement and processing, shipping and receiving information, invoicing, and
payment information.

The X12 EDI standard is used for EDI within the United States. UN/EDIFACT is
broadly used in Europe and other parts of the world.

X12 was originally intended to handle large batches of transactions. However, it has
been extended to encompass real-time processing (transactions sent individually as
they are ready to send, rather than held for batching) for some healthcare transactions
to accommodate the healthcare industry.

Chapter 2 Section 2.2
X12 Overview Components of an X12 Envelope

X12 OTD Library User’s Guide 12 SeeBeyond Proprietary and Confidential

2.1.2. What Is a Message Structure?
The term message structure (also called a transaction set structure) refers to the way in
which data elements are organized and related to each other for a particular EDI
transaction.

In eGate, a message structure is called an Object Type Definition (OTD). Each message
structure (OTD) consists of the following:

Physical hierarchy

The predefined way in which envelopes, segments, and data elements are
organized to describe a particular X12 EDI transaction.

Delimiters

The specific predefined characters that are used to mark the beginning and end of
envelopes, segments, and data elements.

Properties

The characteristics of a data element, such as the length of each element, default
values, and indicators that specify attributes of a data element—for example,
whether it is required, optional, or repeating.

The transaction set structure of an invoice that is sent from one trading partner to
another defines the header, trailer, segments, and data elements required by invoice
transactions. The X12 OTD Library for a specific version includes transaction set
structures for each of the transactions available in that version. You can use these
structures as provided, or customize them to suit your business needs.

eGate Integrator uses Object Type Definitions based on the X12 message structures to
verify that the data in the messages coming in or going out is in the correct format.
There is a message structure for each X12 transaction.

The list of transactions provided is different for each version of X12. This book uses
Versions 4010 and 4021 as examples for illustrating how to install and work with X12
OTDs.

2.2 Components of an X12 Envelope
X12 messages are all ASCII text, with the exception of the BIN segment which is binary.

Each X12 message is made up of a combination of the following elements:

Data elements

Segments

Loops

Elements are separated by delimiters.

More information on each of these is provided below.

Chapter 2 Section 2.2
X12 Overview Components of an X12 Envelope

X12 OTD Library User’s Guide 13 SeeBeyond Proprietary and Confidential

2.2.1. Data Elements
The data element is the smallest named unit of information in the X12 standard. Data
elements can be broken down into two types. The distinction between the two is strictly
a matter of how they are used. The two types are:

Simple

If a data element occurs in a segment outside the defined boundaries of a composite
data structure it is called a simple data element.

Composite

If a data element occurs as an ordinally positioned member of a composite data
structure it is called a composite data element.

Each data element has a unique reference number; it also has a name, description, data
type, and minimum and maximum length.

2.2.2. Segments
A segment is a logical grouping of data elements. In X12, the same segment can be used
for different purposes. This means that a field’s meaning can change based on the
segment. For example:

The NM1 segment is for any name (patient, provider, organization, doctor)

The DTP segment is for any date (date of birth, discharge date, coverage period)

For more information on the X12 enveloping segments, refer to “Structure of an X12
Envelope” on page 14.

2.2.3. Loops
Loops are sets of repeating ordered segments. In X12 you can locate elements by
specifying:

The transaction set (for example, 270)

The loop (for example, “loop 1000” or “info. receiver loop”)

The occurrence of the loop

The segment (for example, BGN)

The field number (for example, 01)

The occurrence of the segment (if it is a repeating segment)

2.2.4. Delimiters
In an X12 message, the various delimiters act as syntax, dividing up the different
elements of a message. The delimiters used in the message are defined in the
interchange control header, the outermost layer enveloping the message. For this
reason, there is flexibility in the delimiters that are used.

Chapter 2 Section 2.3
X12 Overview Structure of an X12 Envelope

X12 OTD Library User’s Guide 14 SeeBeyond Proprietary and Confidential

No suggested delimiters are recommended as part of the X12 standards, but the
industry-specific implementation guides do have recommended delimiters.

The default delimiters used by the SeeBeyond X12 OTD Library are the same as those
recommended by the industry-specific implementation guides. These delimiters are
shown in Table 2.

Within eXchange Integrator, delimiters are specified at the B2B protocol level. The
delimiters you define are applied to all transaction types.

If you do not specify delimiters, eXchange expects the default delimiters as shown in
Table 2.

Note: It is important to note that errors could result if the transmitted data itself includes
any of the characters that have been defined as delimiters. Specifically, the existence
of asterisks within transmitted application data is a known issue in X12, and can
cause problems with translation.

2.3 Structure of an X12 Envelope
The rules applying to the structure of an X12 envelope are very strict, to ensure the
integrity of the data and the efficiency of the information exchange.

The actual X12 message structure has three main levels. From the highest to the lowest
they are:

Interchange Envelope

Functional Group

Transaction Set

A schematic of X12 envelopes is shown in Figure 1. Each of these levels is explained in
more detail in the following sections.

Table 2 Default Delimiters in X12 OTD Library

Type of Delimiter Default Value

Segment terminator ~ (tilde)

Data element separator * (asterisk)

Subelement (component) separator : (colon)

Repetition separator (version 4020 and
later)

+ (plus sign)

Chapter 2 Section 2.3
X12 Overview Structure of an X12 Envelope

X12 OTD Library User’s Guide 15 SeeBeyond Proprietary and Confidential

Figure 1 X12 Envelope Schematic

Note: The above schematic is from Appendix B of an X12 Implementation Guide.

Figure 2 shows the standard segment table for an X12 997 (Functional
Acknowledgment) as it appears in the X12 standard and in most industry-specific
implementation guides.

Figure 2 X12 997 (Functional Acknowledgment) Segment Table

Chapter 2 Section 2.3
X12 Overview Structure of an X12 Envelope

X12 OTD Library User’s Guide 16 SeeBeyond Proprietary and Confidential

Figure 3 shows the same transaction as viewed in the OTD Editor.

Figure 3 X12 997 (Functional Acknowledgment) Viewed in OTD Editor

Chapter 2 Section 2.3
X12 Overview Structure of an X12 Envelope

X12 OTD Library User’s Guide 17 SeeBeyond Proprietary and Confidential

2.3.1. Transaction Set (ST/SE)
Each transaction set (also called a transaction) contains three things:

A transaction set header

A transaction set trailer

A single message, enveloped within the header and footer

The transaction has a three-digit code, a text title, and a two-letter code; for example,
997, Functional Acknowledgment (FA).

The transaction is composed of logically related pieces of information, grouped into
units called segments. For example, one segment used in the transaction set might
convey the address: city, state, postal code, and other geographical information. A
transaction set can contain multiple segments. For example, the address segment could
be used repeatedly to convey multiple sets of address information.

The X12 standard defines the sequence of segments in the transaction set and also the
sequence of elements within each segment. The relationship between segments and
elements could be compared to the relationship between records and fields in a
database environment.

Figure 4 Example of a Transaction Set Header (ST)

Figure 5 Example of a Transaction Set Trailer (SE)

2.3.2. Functional Group (GS/GE)
A functional group is composed of one or more transaction sets, all of the same type,
that can be batched together in one transmission. The functional group is defined by the
header and trailer; the Functional Group Header (GS) appears at the beginning, and the
Functional Group Trailer (GE) appears at the end. Many transaction sets can be
included in the functional group, but all transactions must be of the same type.

Within the functional group, each transaction set is assigned a functional identifier
code, which is the first data element of the header segment. The transaction sets that
constitute a specific functional group are identified by this functional ID code.

ST*270*0159~

Transaction Set
Identifier Code

Transaction Set Control
Number

SE*41*0159~

Number of
Included Segments

Transaction Set Control
Number

Chapter 2 Section 2.3
X12 Overview Structure of an X12 Envelope

X12 OTD Library User’s Guide 18 SeeBeyond Proprietary and Confidential

The functional group header (GS) segment contains the following information:

Functional ID code (the two-letter transaction code; for example, PO for an 850
Purchase Order, HS for a 270 Eligibility, Coverage or Benefit Inquiry) to indicate the
type of transaction in the functional group

Identification of sender and receiver

Control information (the functional group control numbers in the header and trailer
segments must be identical)

Date and time

The functional group trailer (GE) segment contains the following information:

Number of transaction sets included

Group control number (originated and maintained by the sender)

Figure 6 Example of a Functional Group Header (GS)

Figure 7 Example of a Functional Group Trailer (GE)

2.3.3. Interchange Envelope (ISA/IEA)
The interchange envelope is the wrapper for all the data to be sent in one batch. It can
contain multiple functional groups. This means that transactions of different types can
be included in the interchange envelope, with each type of transaction stored in a
separate functional group.

The interchange envelope is defined by the header and trailer; the Interchange Control
Header (ISA) appears at the beginning, and the Interchange Control Trailer (IEA)
appears at the end.

As well as enveloping one or more functional groups, the interchange header and
trailer segments include the following information:

Data element separators and data segment terminator

GS*HS*6264712000*6264716000*20000515*1457*126*X*004010X092~

Functional ID code

Group control number

Sender’s ID code

Receiver’s ID code

Date Time Version/Release/
Identifier Code

Responsible Agency Code

GE*1*126~

Number of
transaction sets

Group control
number

Chapter 2 Section 2.3
X12 Overview Structure of an X12 Envelope

X12 OTD Library User’s Guide 19 SeeBeyond Proprietary and Confidential

Identification of sender and receiver

Control information (used to verify that the message was correctly received)

Authorization and security information, if applicable

The sequence of information that is transmitted is as follows:

Interchange header

Optional interchange-related control segments

Actual message information, grouped by transaction type into functional groups

Interchange trailer

Figure 8 Example of an Interchange Header (ISA)

Interchange Header Segments from Figure 8:

Figure 9 Example of an Interchange Trailer (IEA)

2.3.4. Control Numbers
The X12 standard includes a control number for each enveloping layer:

ISA13—Interchange Control Number

GS06—Functional Group Control Number

ST02—Transaction Set Control Number

1 Authorization Information Qualifier
2 Security Information Qualifier
3 Interchange ID Qualifier
4 Interchange Sender ID
5 Interchange ID Qualifier
6 Interchange Receiver ID
7 Date

8 Time
9 Repetition Separator
10Interchange Control Version Number
11Interchange Control Number
12Acknowledgment Requested
13Usage Indicator

ISA*00* *00* *01*6264712000 *01*6264716000

*000515*1457*U*00401*000000028*0*T*:~

10 11987 12 13

1 2 3 4 5 6

IEA*1*000000028~

Number of included
functional groups

Interchange
control number

Chapter 2 Section 2.4
X12 Overview Backward Compatibility

X12 OTD Library User’s Guide 20 SeeBeyond Proprietary and Confidential

The control numbers act as identifiers, useful in message identification and tracking.
eXchange Integrator includes a flag for each control number, so you can choose not to
assign control numbers to outgoing messages and not to store control numbers on
incoming messages.

ISA13 (Interchange Control Number)

The ISA13 is assigned by the message sender. It must be unique for each interchange.
This is the primary means used by eXchange Integrator to identify an individual
interchange.

GS06 (Functional Group Control Number)

The GS06 is assigned by the sender. It must be unique within the Functional Group
assigned by the originator for a transaction set.

Note: The Functional Group control number GS06 in the header must be identical to the
same data element in the associated Functional Group trailer, GE02.

ST02 (Transaction Set Control Number)

The ST02 is assigned by the sender, and is stored in the transaction set header. It must
be unique within the Functional Group.

Note: The control number in ST02 must be identical with the SE02 element in the
transaction set trailer, and must be unique within a Functional Group (GS-GE).
Once you have defined a value for SE02, eXchange Integrator uses the same value
for SE02.

2.4 Backward Compatibility
Each version of X12 is slightly different. Each new version has some new transactions;
in addition, existing transactions might have changed.

New versions of X12 are usually backward compatible; however, this is not a
requirement of the X12 rules. You should not expect different versions of X12 to be
backward compatible, but you can expect that when you analyze the differences only a
few changes are required in the message structures.

Note: In this context backward compatible means that software that parses one version
might not be able to parse the next version, even if the software ignores any
unexpected new segments, data elements at the end of segments, and sub-elements
at the end of composite data elements. Not backward compatible means that required
segments can disappear entirely, data elements can change format and usage, and
required data elements can become optional.

Chapter 2 Section 2.5
X12 Overview Messages

X12 OTD Library User’s Guide 21 SeeBeyond Proprietary and Confidential

2.5 Messages
An example of an X12 version is shown in Table 3. This table lists the transactions of
X12 version 4010. Compare this table with Figure 11 on page 38.

Table 3 Transactions Included in X12 Version 4010

Number Title

101 Name and Address Lists

104 Air Shipment Information

105 Business Entity Filings

106 Motor Carrier Rate Proposal

107 Request for Motor Carrier Rate Proposal

108 Response to a Motor Carrier Rate Proposal

109 Vessel Content Details

110 Air Freight Details and Invoice

112 Property Damage Report

120 Vehicle Shipping Order

121 Vehicle Service

124 Vehicle Damage

125 Multilevel Railcar Load Details

126 Vehicle Application Advice

127 Vehicle Baying Order

128 Dealer Information

129 Vehicle Carrier Rate Update

130 Student Educational Record (Transcript)

131 Student Educational Record (Transcript) Acknowledgment

135 Student Loan Application

138 Testing Results Request and Report

139 Student Loan Guarantee Result

140 Product Registration

141 Product Service Claim Response

142 Product Service Claim

143 Product Service Notification

144 Student Loan Transfer and Status Verification

146 Request for Student Educational Record (Transcript)

147 Response to Request for Student Educational Record (Transcript)

148 Report of Injury, Illness or Incident

149 Notice of Tax Adjustment or Assessment

Chapter 2 Section 2.5
X12 Overview Messages

X12 OTD Library User’s Guide 22 SeeBeyond Proprietary and Confidential

150 Tax Rate Notification

151 Electronic Filing of Tax Return Data Acknowledgment

152 Statistical Government Information

153 Unemployment Insurance Tax Claim or Charge Information

154 Uniform Commercial Code Filing

155 Business Credit Report

157 Notice of Power of Attorney

159 Motion Picture Booking Confirmation

160 Transportation Automatic Equipment Identification

161 Train Sheet

163 Transportation Appointment Schedule Information

170 Revenue Receipts Statement

175 Court and Law Enforcement Notice

176 Court Submission

180 Return Merchandise Authorization and Notification

185 Royalty Regulatory Report

186 Insurance Underwriting Requirements Reporting

188 Educational Course Inventory

189 Application for Admission to Educational Institutions

190 Student Enrollment Verification

191 Student Loan Pre-Claims and Claims

194 Grant or Assistance Application

195 Federal Communications Commission (FCC) License Application

196 Contractor Cost Data Reporting

197 Real Estate Title Evidence

198 Loan Verification Information

199 Real Estate Settlement Information

200 Mortgage Credit Report

201 Residential Loan Application

202 Secondary Mortgage Market Loan Delivery

203 Secondary Mortgage Market Investor Report

204 Motor Carrier Load Tender

205 Mortgage Note

206 Real Estate Inspection

210 Motor Carrier Freight Details and Invoice

Table 3 Transactions Included in X12 Version 4010 (Continued)

Number Title

Chapter 2 Section 2.5
X12 Overview Messages

X12 OTD Library User’s Guide 23 SeeBeyond Proprietary and Confidential

211 Motor Carrier Bill of Lading

212 Motor Carrier Delivery Trailer Manifest

213 Motor Carrier Shipment Status Inquiry

214 Transportation Carrier Shipment Status Message

215 Motor Carrier Pick-up Manifest

216 Motor Carrier Shipment Pick-up Notification

217 Motor Carrier Loading and Route Guide

218 Motor Carrier Tariff Information

219 Logistics Service Request

220 Logistics Service Response

222 Cartage Work Assignment

223 Consolidators Freight Bill and Invoice

224 Motor Carrier Summary Freight Bill Manifest

225 Response to a Cartage Work Assignment

242 Data Status Tracking

244 Product Source Information

248 Account Assignment/Inquiry and Service/Status

249 Animal Toxicological Data

250 Purchase Order Shipment Management Document

251 Pricing Support

252 Insurance Producer Administration

255 Underwriting Information Services

256 Periodic Compensation

260 Application for Mortgage Insurance Benefits

261 Real Estate Information Request

262 Real Estate Information Report

263 Residential Mortgage Insurance Application Response

264 Mortgage Loan Default Status

265 Real Estate Title Insurance Services Order

266 Mortgage or Property Record Change Notification

267 Individual Life, Annuity and Disability Application

268 Annuity Activity

270 Eligibility, Coverage or Benefit Inquiry

271 Eligibility, Coverage or Benefit Information

272 Property and Casualty Loss Notification

Table 3 Transactions Included in X12 Version 4010 (Continued)

Number Title

Chapter 2 Section 2.5
X12 Overview Messages

X12 OTD Library User’s Guide 24 SeeBeyond Proprietary and Confidential

273 Insurance/Annuity Application Status

275 Patient Information

276 Health Care Claim Status Request

277 Health Care Claim Status Notification

278 Health Care Services Review Information

280 Voter Registration Information

285 Commercial Vehicle Safety and Credentials Information Exchange

286 Commercial Vehicle Credentials

288 Wage Determination

290 Cooperative Advertising Agreements

300 Reservation (Booking Request) (Ocean)

301 Confirmation (Ocean)

303 Booking Cancellation (Ocean)

304 Shipping Instructions

309 U.S. Customs Manifest

310 Freight Receipt and Invoice (Ocean)

311 Canadian Customs Information

312 Arrival Notice (Ocean)

313 Shipment Status Inquiry (Ocean)

315 Status Details (Ocean)

317 Delivery/Pickup Order

319 Terminal Information

322 Terminal Operations and Intermodal Ramp Activity

323 Vessel Schedule and Itinerary (Ocean)

324 Vessel Stow Plan (Ocean)

325 Consolidation of Goods In Container

326 Consignment Summary List

350 U.S. Customs Status Information

352 U.S. Customs Carrier General Order Status

353 U.S. Customs Events Advisory Details

354 U.S. Customs Automated Manifest Archive Status

355 U.S. Customs Acceptance/Rejection

356 U.S. Customs Permit to Transfer Request

357 U.S. Customs In-Bond Information

358 U.S. Customs Consist Information

Table 3 Transactions Included in X12 Version 4010 (Continued)

Number Title

Chapter 2 Section 2.5
X12 Overview Messages

X12 OTD Library User’s Guide 25 SeeBeyond Proprietary and Confidential

361 Carrier Interchange Agreement (Ocean)

362 Cargo Insurance Advice of Shipment

404 Rail Carrier Shipment Information

410 Rail Carrier Freight Details and Invoice

414 Rail Carhire Settlements

417 Rail Carrier Waybill Interchange

418 Rail Advance Interchange Consist

419 Advance Car Disposition

420 Car Handling Information

421 Estimated Time of Arrival and Car Scheduling

422 Shipper's Car Order

423 Rail Industrial Switch List

425 Rail Waybill Request

426 Rail Revenue Waybill

429 Railroad Retirement Activity

431 Railroad Station Master File

432 Rail Deprescription

433 Railroad Reciprocal Switch File

434 Railroad Mark Register Update Activity

435 Standard Transportation Commodity Code Master

436 Locomotive Information

437 Railroad Junctions and Interchanges Activity

440 Shipment Weights

451 Railroad Event Report

452 Railroad Problem Log Inquiry or Advice

453 Railroad Service Commitment Advice

455 Railroad Parameter Trace Registration

456 Railroad Equipment Inquiry or Advice

460 Railroad Price Distribution Request or Response

463 Rail Rate Reply

466 Rate Request

468 Rate Docket Journal Log

470 Railroad Clearance

475 Rail Route File Maintenance

485 Ratemaking Action

Table 3 Transactions Included in X12 Version 4010 (Continued)

Number Title

Chapter 2 Section 2.5
X12 Overview Messages

X12 OTD Library User’s Guide 26 SeeBeyond Proprietary and Confidential

486 Rate Docket Expiration

490 Rate Group Definition

492 Miscellaneous Rates

494 Rail Scale Rates

500 Medical Event Reporting

501 Vendor Performance Review

503 Pricing History

504 Clauses and Provisions

511 Requisition

517 Material Obligation Validation

521 Income or Asset Offset

527 Material Due-In and Receipt

536 Logistics Reassignment

540 Notice of Employment Status

561 Contract Abstract

567 Contract Completion Status

568 Contract Payment Management Report

601 U.S. Customs Export Shipment Information

602 Transportation Services Tender

620 Excavation Communication

625 Well Information

650 Maintenance Service Order

715 Intermodal Group Loading Plan

805 Contract Pricing Proposal

806 Project Schedule Reporting

810 Invoice

811 Consolidated Service Invoice/Statement

812 Credit/Debit Adjustment

813 Electronic Filing of Tax Return Data

814 General Request, Response or Confirmation

815 Cryptographic Service Message

816 Organizational Relationships

818 Commission Sales Report

819 Operating Expense Statement

820 Payment Order/Remittance Advice

Table 3 Transactions Included in X12 Version 4010 (Continued)

Number Title

Chapter 2 Section 2.5
X12 Overview Messages

X12 OTD Library User’s Guide 27 SeeBeyond Proprietary and Confidential

821 Financial Information Reporting

822 Account Analysis

823 Lockbox

824 Application Advice

826 Tax Information Exchange

827 Financial Return Notice

828 Debit Authorization

829 Payment Cancellation Request

830 Planning Schedule with Release Capability

831 Application Control Totals

832 Price/Sales Catalog

833 Mortgage Credit Report Order

834 Benefit Enrollment and Maintenance

835 Health Care Claim Payment/Advice

836 Procurement Notices

837 Health Care Claim

838 Trading Partner Profile

839 Project Cost Reporting

840 Request for Quotation

841 Specifications/Technical Information

842 Nonconformance Report

843 Response to Request for Quotation

844 Product Transfer Account Adjustment

845 Price Authorization Acknowledgment/Status

846 Inventory Inquiry/Advice

847 Material Claim

848 Material Safety Data Sheet

849 Response to Product Transfer Account Adjustment

850 Purchase Order

851 Asset Schedule

852 Product Activity Data

853 Routing and Carrier Instruction

854 Shipment Delivery Discrepancy Information

855 Purchase Order Acknowledgment

856 Ship Notice/Manifest

Table 3 Transactions Included in X12 Version 4010 (Continued)

Number Title

Chapter 2 Section 2.5
X12 Overview Messages

X12 OTD Library User’s Guide 28 SeeBeyond Proprietary and Confidential

857 Shipment and Billing Notice

858 Shipment Information

859 Freight Invoice

860 Purchase Order Change Request - Buyer Initiated

861 Receiving Advice/Acceptance Certificate

862 Shipping Schedule

863 Report of Test Results

864 Text Message

865 Purchase Order Change Acknowledgment/Request - Seller Initiated

866 Production Sequence

867 Product Transfer and Resale Report

868 Electronic Form Structure

869 Order Status Inquiry

870 Order Status Report

871 Component Parts Content

872 Residential Mortgage Insurance Application

875 Grocery Products Purchase Order

876 Grocery Products Purchase Order Change

877 Manufacturer Coupon Family Code Structure

878 Product Authorization/De-authorization

879 Price Information

880 Grocery Products Invoice

881 Manufacturer Coupon Redemption Detail

882 Direct Store Delivery Summary Information

883 Market Development Fund Allocation

884 Market Development Fund Settlement

885 Retail Account Characteristics

886 Customer Call Reporting

887 Coupon Notification

888 Item Maintenance

889 Promotion Announcement

891 Deduction Research Report

893 Item Information Request

894 Delivery/Return Base Record

895 Delivery/Return Acknowledgment or Adjustment

Table 3 Transactions Included in X12 Version 4010 (Continued)

Number Title

Chapter 2 Section 2.6
X12 Overview Example of EDI Usage

X12 OTD Library User’s Guide 29 SeeBeyond Proprietary and Confidential

2.6 Example of EDI Usage
This section provides an overview of the normal processes involved in EDI payment
processing.

Note: This is just a general overview of how electronic payments processing is used. Not
everything said here applies to the use of X12 in processing payments.

2.6.1. Overview of EDI Payments Processing
EDI payments processing encompasses both collection and disbursement transactions.
The exchange of funds is accomplished by means of credit and debit transfers. It can
also include a related bank balance, as well as transaction and account analysis
reporting mechanisms.

Most non-monetary EDI trading partner communications are handled either directly
between the parties or indirectly through their respective value added networks
(VANs). However, the exchange of funds requires a financial intermediary. This is
normally the bank or banks that hold deposit accounts of the two parties.

EDI involves the exchange of remittance information along with the order to pay. In the
United States this can become complex as two standards are involved in the

896 Product Dimension Maintenance

920 Loss or Damage Claim - General Commodities

924 Loss or Damage Claim - Motor Vehicle

925 Claim Tracer

926 Claim Status Report and Tracer Reply

928 Automotive Inspection Detail

940 Warehouse Shipping Order

943 Warehouse Stock Transfer Shipment Advice

944 Warehouse Stock Transfer Receipt Advice

945 Warehouse Shipping Advice

947 Warehouse Inventory Adjustment Advice

980 Functional Group Totals

990 Response to a Load Tender

996 File Transfer

997 Functional Acknowledgment (see Figure 2 and Figure 3)

998 Set Cancellation

Table 3 Transactions Included in X12 Version 4010 (Continued)

Number Title

Chapter 2 Section 2.6
X12 Overview Example of EDI Usage

X12 OTD Library User’s Guide 30 SeeBeyond Proprietary and Confidential

transaction. The remittance information, which acts as an electronic check stub, can be
sent in any of the following ways:

Directly between trading partners or through their respective EDI VAN mailboxes

Through the banking system, with the beneficiary’s bank sending notice of
payment to the beneficiary

By the originator to the originator’s bank as an order to pay, with the originator’s
bank notifying the beneficiary

The trading partners and the capabilities of their respective banks determine the
following:

The routing of the electronic check stub

Which of the following the payment is:

a debit authorized by the payor and originated by the beneficiary

a credit transfer originated by the payor

Types of Information that Is Exchanged Electronically

There are several types of information that can be exchanged electronically between
bank and customer, including:

Daily reports of balances and transactions

Reports of lockbox and EFT (electronic funds transfer) remittances received by the
bank

Authorizations issued to the bank to honor debit transfers

Monthly customer account analysis statements

Account reconcilement statements

Statements of the demand deposit account

The electronic payment mechanism, which is a subset of EDI, involves two separate
activities:

The exchange of payment orders, causing value to transfer from one account to
another

The exchange of related remittance information in standardized machine-
processable formats.

Types of Electronic Payment

The electronic payment can be either of the following:

Credit transfer, initiated by the payor

Debit transfer, initiated by the payee as authorized by the payor

Regardless of how the credit transfer was initiated, the payor sends a payment order to
its bank in the form of an X12 Payment Order/Remittance Advice (transaction set 820).

Chapter 2 Section 2.6
X12 Overview Example of EDI Usage

X12 OTD Library User’s Guide 31 SeeBeyond Proprietary and Confidential

The bank then adds data in a format prescribed in the United States by the National
Automated Clearing House Association (NACHA) and originates the payment through
the Automated Clearing House (ACH) system.

A corporate-to-corporate payment performs two functions:

Transfers actual monetary value

Transfers notification of payment from payor to payee

When a credit transfer occurs, these two functions are sometimes treated as one, and
sometimes treated separately. The two functions can travel in either of these two ways:

Together through the banking system

Separately and by different routes

X12 820 is a data format for transporting a payment order from the originator to its
bank. This payment order might be either of the following:

An instruction to the originator’s bank to originate a credit transfer

An instruction to the trading partner to originate a debit transfer against the payor’s
bank account

Once this decision has been made, the 820 transports the remittance information to the
beneficiary. The transfer can either be through the banking system or by a route that is
separate from the transport of funds.

Note: Whenever the 820 remittance information is not transferred with the funds, it can
be transmitted directly from the originator to the beneficiary. It can also be
transmitted through an intermediary, such as a VAN.

Transfer of Funds

Before funds can be applied against an open accounts receivable account, the
beneficiary must reconcile the two streams—the payment advice from the receiving
bank and the remittance information received through a separate channel—that were
separated during the transfer. If this reconciliation does not take place and if the
amount of funds received differs from the amount indicated in the remittance advice,
the beneficiary might have problems balancing the accounts receivable ledger.

The value transfer begins when the originator issues a payment order to the
originator’s bank. If a credit transfer is specified, the originator’s bank charges the
originator’s bank account and pays the amount to the beneficiary’s bank for credit to
the beneficiary’s account.

If the payment order specifies a debit transfer, the originator is the beneficiary. In this
case, the beneficiary’s bank originates the value transfer, and the payor’s account is
debited (charged) for a set amount, which is credited to the originator’s (beneficiary’s)
bank account. The payor must issue approval to its bank to honor the debit transfer,
either before the beneficiary presents the debit transfer or at the same time. This debit
authorization or approval can take one of four forms:

Individual item approval

Blanket approval of all incoming debits with an upper dollar limit

Chapter 2 Section 2.7
X12 Overview Acknowledgment Types

X12 OTD Library User’s Guide 32 SeeBeyond Proprietary and Confidential

Blanket approval for a particular trading partner to originate any debit

Some combination of the above

2.6.2. Payment-Related EDI Transactions
X12 uses an end-to-end method to route the 820 Payment Order/Remittance Advice
from the originator company through the banks to the beneficiary. This means that
there might be several relay points between the sender and the receiver.

The 820 is wrapped in an ACH banking transaction for the actual funds transfer
between the banks.

2.7 Acknowledgment Types
X12 includes two types of acknowledgment, the TA1 Interchange Acknowledgment
and the 997 Functional Acknowledgment.

2.7.1. TA1, Interchange Acknowledgment
The TA1 acknowledgment verifies the interchange envelopes only. The TA1 is a single
segment and is unique in the sense that this single segment is transmitted without the
GS/GE envelope structures. A TA1 acknowledgment can be included in an interchange
with other functional groups and transactions.

2.7.2. 997, Functional Acknowledgment
The 997 includes much more information than the TA1; see Figure 2 on page 15 and
Figure 3 on page 16. The 997 was designed to allow trading partners to establish a
comprehensive control function as part of the business exchange process.

There is a one-to-one correspondence between a 997 and a functional group. Segments
within the 997 identify whether the functional group was accepted or rejected. Data
elements that are incorrect can also be identified.

Many EDI implementations have incorporated the acknowledgment process into all of
their electronic communications. Typically, the 997 is used as a functional
acknowledgment to a functional group that was transmitted previously.

The 997 is the acknowledgment transaction recommended by X12.

The acknowledgment of the receipt of a payment order is an important issue. Most
corporate originators want to receive at least a Functional Acknowledgment (997) from
the beneficiary of the payment. The 997 is created using the data about the identity and
address of the originator found in the ISA and/or GS segments.

Some users argue that the 997 should be used only as a point-to-point acknowledgment
and that another transaction set, such as the Application Advice (824) should be used as
the end-to-end acknowledgment.

Chapter 2 Section 2.8
X12 Overview Key Parts of EDI Processing Logic

X12 OTD Library User’s Guide 33 SeeBeyond Proprietary and Confidential

2.7.3. Application Acknowledgments
Application acknowledgments are responses sent from the destination system back to
the originating system, acknowledging that the transaction has been successfully or
unsuccessfully completed. The application advice (824) is a generic application
acknowledgment that can be used in response to any X12 transaction. However, it has
to be set up as a response transaction; only TA1 and 997 transactions are sent out
automatically.

Other types of responses from the destination system to the originating system, which
may also be considered application acknowledgments, are responses to query
transactions—for example, the Eligibility Response (271) which is a response to the
Eligibility Inquiry (270).Other types of responses from the destination system to the
originating system, which may also be considered application acknowledgments, are
responses to query transactions—for example, the Eligibility Response (271) which is a
response to the Eligibility Inquiry (270).

2.8 Key Parts of EDI Processing Logic
The five key parts of EDI processing logic are listed in Table 4.

eGate uses the structures, validations, translations, enveloping, and acknowledgments
listed below to support the X12 standard.

2.8.1. Structures
The X12 OTD Library includes pre-built OTDs for all supported X12 versions.
These OTDs can be viewed in the OTDEditor, but cannot be modified.

To customize the OTD structure — for example, to add a segment or loop — you must
first generate a SEF file (typically using a third-party tool, such as the EDISIM tool from
Foresight Corporation). You then use the SEFWizard to generate the OTD.

Table 4 Key Parts of EDI Processing

Term Description
Language
Analogy

eGate Component

structures format, segments, loops syntax rules OTD elements and fields

validations data contents “edit” rules semantic rules validation methods

translations (also
called mappings)

reformatting or
conversion

translation collaborations

enveloping header and trailer
segments

envelope for a
written letter

the special “envelope” OTDs:
FunctionalGroupEnv and
InterchangeEnv

acks acknowledgments return receipt specific acknowledgment
elements in the OTD

Chapter 2 Section 2.9
X12 Overview Additional Information

X12 OTD Library User’s Guide 34 SeeBeyond Proprietary and Confidential

2.8.2. Validations, Translations, Enveloping, Acknowledgments
Within each OTD are Java methods and Java bean nodes for handling validation; and
the marshal and unmarshal methods of the two envelope OTDs handle enveloping and
de-enveloping. No pre-built translations are supplied with the OTD libraries; these can
be built in an eGate GUI called the Java Collaboration Editor (JCE).

Note: In eGate, X12 translations are called collaborations.

2.8.3. Trading Partner Agreements
There are three levels of information that guide the final format of a specific transaction.
These three levels are:

The X12 standard

The Accredited Standards Committee publishes a standard structure for each X12
transaction.

Industry-specific Implementation Guides

Specific industries publish Implementation Guides customized for that industry.
Normally, these are provided as recommendations only. However, in certain cases,
it is extremely important to follow these guidelines. Specifically, since HIPAA
regulations are law, it is important to follow the guidelines for these transactions
closely.

Trading Partner Agreements

It is normal for trading partners to have individual agreements that supplement the
standard guides. The specific processing of the transactions in each trading
partner’s individual system might vary between sites. Because of this, additional
documentation that provides information about the differences is helpful to the
site’s trading partners and simplifies implementation. For example, while a certain
code might be valid in an implementation guide, a specific trading partner might
not use that code in transactions. It would be important to include that information
in a trading partner agreement.

2.9 Additional Information
For more information on the X12 standard, visit the following Web sites:

http://www.disa.org and specifically http://www.x12.org/x12org/index.cfm

X12 implementation guides can be obtained from Washington Publishing Company:

http://www.wpc-edi.com; specifically, http://www.wpc-edi.com/tg4/tg4home.asp

Note: This information is correct at the time of going to press; however, SeeBeyond has no
control over these sites. If you find the links are no longer correct, use a search
engine to search for X12.

http://www.disa.org
http://www.x12.org/x12org/index.cfm
http://www.wpc-edi.com/tg4/tg4home.asp
http://www.wpc-edi.com

X12 OTD Library User’s Guide 35 SeeBeyond Proprietary and Confidential

Chapter 3

Installation

This chapter provides information on installing the X12 OTD library, and shows the
resulting Project Explorer tree for the OTDs. It includes both general installation
information and step-by-step installation instructions.

The X12 OTD library includes OTDs for the following X12 versions.

Some additional points to note:

The library OTDs only accept messages with all the envelope segment information.
If you need to generate a custom OTD without an envelope segment, use the SEF
OTD Wizard.

Messages can be batched; however, all the messages in one functional group must
be of the same message type.

3.1 X12 Libraries
When the X12 OTD Library is installed, the Project Explorer tree adds a new project
under the SeeBeyond > OTD Library > X12 hierarchy. Each version of X12, such as
4010 or 4021, has a separate folder; for an example, see Figure 11 on page 38.

The SeeBeyond > OTD Library > X12 > envelope folder contains two additional OTDs
for manipulating envelopes as bytes:

InterchangeEnv — parses interchange envelope segments (ISA/IEA and TA1),
treating functional groups as bytes.

FunctionalGroupEnv — parses functional group envelope segments (GS/GE),
treating transaction sets as bytes.

Note: The following abbreviations are common: “IC” for “interchange”; “FG” for
“functional group”; and “TS” for “Transaction Set.”

Table 5 X12 Versions Supported

4010
4011
4012

4020
4021
4022

4030
4031
4032

4040
4041
4042

4050
4051
4052

4060
4061

Chapter 3 Section 3.2
Installation Installation Procedure

X12 OTD Library User’s Guide 36 SeeBeyond Proprietary and Confidential

3.2 Installation Procedure
The steps for installing the X12 OTD Library are the same as for other products in the
ICAN Suite. You can find general product installation instructions in the ICAN Suite
Installation Guide, which is available on the product media and can also be accessed via
Enterprise Manager (Documentation tab).

3.2.1. Uploading to the Repository
Before you begin

A Repository server must be running on the machine where you will be uploading
the product files.

You must have already uploaded eGate.sar (for either eGate 5.0.4 or eGate 5.0.3
with appropriate ESRs), and you must have already uploaded a license.sar file that
includes a license for the X12 OTD library product.

To upload product files to the Repository

1 On a Windows machine, start a Web browser and point it at the machine and port
where the Repository server is running:

http://<hostname>:<port>

where
<hostname> is the name of the machine running the Repository server.
<port> is the starting port number assigned when the Repository was installed.

For example, the URL you enter might look like either of the following:
http://localhost:12001
http://serv1234.company.com:19876

2 In the Enterprise Manager SeeBeyond Customer Login page, enter your username
and password.

3 When Enterprise Manager responds, click the ADMIN tab.

4 In the ADMIN page, click Browse.

5 In the Choose file dialog, click ProductsManifest.xml, and then click Open.

6 In the ADMIN page, click Submit.

The lower half of the ADMIN page lists the product files you are licensed to upload.

7 In the Products column, find the ASC X12 OTD Library v40?0 product, and then
click the Browse button for it.

8 In the Choose file dialog, click the corresponding X12_v40??_OTD.sar file, and
then click Open.

9 Repeat the previous two steps for other .sar files you want to upload, such as other
X12 OTD libraries, eXchange, or SME Web Services.

Note: SMEWebServices.sar is required for such features as encryption/decryption,
signature verification, certificate authentication, and nonrepudiation.

10 In the ADMIN page, click the button.

Chapter 3 Section 3.2
Installation Installation Procedure

X12 OTD Library User’s Guide 37 SeeBeyond Proprietary and Confidential

3.2.2. Refreshing Enterprise Designer
Before you begin

You must have already downloaded and installed Enterprise Designer, and a
Repository server must be running on the machine where you uploaded the
product files for the X12 OTD Library.

To refresh an existing installation of Enterprise Designer

1 Start Enterprise Designer.

2 On the Tools menu, click Update Center.

The Update Center shows a list of components ready for updating. See Figure 10.

Figure 10 Update Center Wizard: Select Modules to Install

3 Click Add All (the button with a doubled chevron pointing to the right).

All modules move from the Available/New pane to the Include in Install pane.

4 Click Next and, in the next window, click Accept to accept the license agreement.

5 When the progress bars indicate the download has ended, click Next. Review the
certificates and installed modules, and then click Finish. When prompted to restart
Enterprise Designer, click OK.

When Enterprise Designer restarts, installation of the X12 OTD Library is complete.

Chapter 3 Section 3.3
Installation X12 OTD Libraries

X12 OTD Library User’s Guide 38 SeeBeyond Proprietary and Confidential

If you need help on details of product installation, see the SeeBeyond ICAN Suite
Installation Guide.

3.3 X12 OTD Libraries

3.3.1. X12 OTDs
Since there is an OTD for every X12 transaction, installation of each version of X12
includes a large number of OTDs. Figure 3 on page 16 and Figure 11 below show some
of the OTDs installed for a specific version of X12 (in this case, version 4010); compare
with Table 3 on page 21.

Figure 11 Some of the Transaction Set Structures for X12 Version 4010

Chapter 3 Section 3.3
Installation X12 OTD Libraries

X12 OTD Library User’s Guide 39 SeeBeyond Proprietary and Confidential

3.3.2. Transaction Names

The names for the X12 OTDs are designed to assist you in quickly locating the file you
want. The name for each transaction OTD is composed of the same set of elements in
the same sequence. The names are constructed as follows (using a v4021 997, Functional
Acknowledgment, as an example):

x12_ (name of standard followed by underscore)

4021_ (name of version followed by underscore)

997_FuncAckn (transaction code and abbreviation for the transaction name)

_Full

Examples:

The name for a 270, Eligibility Coverage or Benefit Inquiry, for version 4010 is
x12_4010_270_EligCoveOrBeneInqu_Full

The name for an 855, Purchase Order Acknowledgment, in version 4032 is
x12_4032_855_PurcOrdeAckn_Full

X12 OTD Library User’s Guide 40 SeeBeyond Proprietary and Confidential

Chapter 4

Working With the X12 OTDs

This chapter provides information on additional features built into the X12 OTDs, and
instructions on working with the OTDs and on testing them.

See “Viewing an X12 OTD in the OTD Editor“ on page 41.

It also provides information on using the Java methods provided within the OTDs, and
other general information about using the X12 OTD Library.

See “Setting the Delimiters“ on page 43 and “Methods for Getting and
Setting“ on page 43. (Further details are provided in Chapter 5 “Java Methods
for X12 OTDs” on page 52.)

To test that your data is being mapped correctly by the OTD, and that the data is valid
based on definitions and business rules, you can run performValidation() within the
Java Collaboration Editor.

See “Using Validation in the Java Collaboration Editor“ on page 45.

Information on limitations you should know about the X12 OTD Library is provided in
“Limitations of X12 OTDs“ on page 49.

4.1 Importing .jar Files
If your project contains one or more Java collaborations that access bean nodes for
reporting errors and exceptions of X12 OTDs (see “Bean Nodes for Reporting Errors
and Exceptions“ on page 53), then you must import a .jar file as described below.

Before you begin

You must have completed all the other installation steps.

A Repository server must be running on the machine where you uploaded the
X12 OTD Library product files.

You must have already created a project.

To import com.stc.otd.sefimpl.jar

1 Start Enterprise Designer and, if necessary, create a project.

2 Right-click the project and, on the popup context menu, point at New and click File.

3 Navigate to the folder <ican50>\edesigner\usrdir\modules\ext\sefwizard\, select
com.stc.otd.sefimpl.jar, and click Import. See Figure 12.

Chapter 4 Section 4.2
Working With the X12 OTDs Viewing an X12 OTD in the OTD Editor

X12 OTD Library User’s Guide 41 SeeBeyond Proprietary and Confidential

Figure 12 Importing sefimpl.jar

4 Later, in the Java Collaboration Editor, you will use the Import JAR file button
on the tool palette to add sefimpl.jar to a collaboration that uses the X12 OTD.

4.2 Viewing an X12 OTD in the OTD Editor
To view an X12 OTD (or any other OTD), simply double-click the name in the Project
Explorer tree. The OTD Editor automatically opens to display it. Within the OTD
Editor, you can expand or contract a parent node by single-clicking the icon to its left,
or by double-clicking the node name. For some of the items, help is available by
hovering your cursor over the item.

For elements other than bean nodes, the following naming conventions apply:

Each element name begins with E
Each segment loop name begins with Loop

An example of an X12 270 transaction in the OTD Editor is shown in Table 13 on
page 42. The OTD shown in Figure 13 is x12_4010_270_EligCoveOrBeneInqu_Full.
Some of its parent nodes are fully expanded, some partly so, and some full collapsed.
In this example, the root node is X12_4010_270_EligCoveOrBeneInqu_Outer. This
pattern holds for all the X12 OTDs: the root node name is the same as the OTD name,
but with the first letter in upper case (X instead of x) and the string _Outer replacing the
string _Full. Under this root node, the first node is the ISA header node, and then
comes the node X12_4010_270_EligCoveOrBeneInqu_Inner, which references the
enveloping information.

Chapter 4 Section 4.2
Working With the X12 OTDs Viewing an X12 OTD in the OTD Editor

X12 OTD Library User’s Guide 42 SeeBeyond Proprietary and Confidential

Figure 13 X12 270 Transaction in the OTD Editor

Chapter 4 Section 4.3
Working With the X12 OTDs Setting the Delimiters

X12 OTD Library User’s Guide 43 SeeBeyond Proprietary and Confidential

4.3 Setting the Delimiters
The X12 OTDs must include some way for delimiters to be defined so that they can be
mapped successfully from one OTD to another. The X12 delimiters are as follows:

Data Element Separator (default is an asterisk)

Subelement Separator/Component Element Separator (default is a colon)

Repetition Separator (version 4020 and later) (default is a plus sign)

Segment Terminator (default is a tilde)

Two delimiters — Repetition Separator and Subelement Separator — are explicitly
specified in the interchange header segment (ISA). The other two delimiters are
implicitly defined within the structure of the ISA, by their first usage. For example,
after the fourth character defines the Data Element Separator, the same character is
used subsequently to delimit all data elements; and after the 107th character defines the
Segment Terminator, the same character is used subsequently to delimit all segments.

Because the OTD automatically detects delimiters while unmarshaling, you need not
(and should not) specify delimiters for an incoming message; any delimiters that are set
before unmarshaling are ignored, and the unmarshal() function picks up the delimiter
being used in the ISA segment of the incoming message.

You can specify delimiters in two ways:

You can set the Subelement Separator and Repetition Separator from the
corresponding elements within the ISA segment.

You can set the delimiters in the Java Collaboration Editor using bean nodes that are
provided in the OTDs. Specific information on using bean nodes to get and set these
delimiter values is provided in Chapter 5:

elementSeparator (see getElementSeparator on page 58)

subelementSeparator (see getSubelementSeparator on page 62)

repetitionSeparator (see getRepetitionSeparator on page 60)

segmentTerminator (see getSegmentTerminator on page 61)

If the input data is already in X12 format, you can use the “get” methods to get the
delimiters from the input data. If the collaboration is putting the data into X12 format,
you can use the “set” methods to set the delimiters in the output OTD. See “Methods
for Getting and Setting“ on page 43.

4.4 Methods for Getting and Setting
Bean nodes automatically have get and set methods associated with them; in other
words, a bean node named theBeanNode has a method getTheBeanNode() to read the
current value and another method setTheBeanNode() to write a value. Therefore, do
not assume that a node is read/write merely because it has a setNode() method.

Chapter 4 Section 4.4
Working With the X12 OTDs Methods for Getting and Setting

X12 OTD Library User’s Guide 44 SeeBeyond Proprietary and Confidential

4.4.1. Bean Nodes for Getting and Setting Data
The following bean nodes are available under the root node and at the xxx_Outer,
xxx_Inner, and xxx (transaction set) levels:

elementSeparator(char) — to get or set the element separator.

inputSource(byte[]) — to get the byte array of original input data source.

repetitionSeparator(char) — to get or set the repetition separator.

segmentCount(int) — to get the segment count at the current level. This node is
also available for segment loops.

segmentTerminator(char) — to get or set the segment terminator.

subelementSeparator(char) — to get or set the subelement separator.

xmlOutput(boolean) — to set whether the output should be in XML format.

The following bean node is available from the Loop elements:

segmentCount(int) — to get the segment count at the current level. This node is
also available under the root node and at the xxx_Outer, xxx_Inner, and xxx
(transaction set) levels.

4.4.2. Bean Nodes for Getting Errors and Results
The following bean nodes are available under the root node and at the xxx_Outer,
xxx_Inner, and xxx (transaction set) levels.

allErrors(String[]) — to get errors during unmarshaling from the input data and
validation results on message and envelopes, in the format of a String array that
combines (without duplication) the results from ICValidationResult(),
FGValidationResult(), TSValidationResult(), and msgValidationResult().

ICValidationResult(com.stc.otd.runtime.check.sef.ICError[]) — to get the
interchange envelope validation result, in the format of an array of
com.stc.otd.runtime.check.sef.ICError objects.

FGValidationResult(com.stc.otd.runtime.check.sef.FGError[]) — to get the
functional group envelope validation result in the format of an array of
com.stc.otd.runtime.check.sef.FGError objects.

TSValidationResult(com.stc.otd.runtime.check.sef.TSError[]) — to get the
transaction set envelope validation result in the format of an array of
com.stc.otd.runtime.check.sef.TSError objects.

maxDataError(int) — to get or set the maximum number of validation errors to be
reported, where -1 means “no limit.”

msgValidationResult(com.stc.otd.runtime.check.sef.DataError[]) — to get
validation errors, in the format of com.stc.otd.runtime.check.sef.DataError objects.

unmarshalErrors(com.stc.otd.runtime.check.sef.DataError[]) — to get errors that
occurred during unmarshaling from the input data, in the format of

Chapter 4 Section 4.5
Working With the X12 OTDs Using Validation in the Java Collaboration Editor

X12 OTD Library User’s Guide 45 SeeBeyond Proprietary and Confidential

com.stc.otd.runtime.check.sef.DataError objects. The presence of any objects in this
array implies that isUnmarshalComplete() is false.

4.5 Using Validation in the Java Collaboration Editor
Each of the OTDs in the X12 OTD library includes a Java method for the purpose of
validating your data:

performValidation()

Information on using this method from within Java Collaboration Editor (JCE) GUI is
provided below. Technical information on the Java methods is provided in “Java
Methods for X12 OTDs“ on page 52.

4.5.1. Creating a Collaboration Rule to Validate an X12 OTD
The elements that are part of an OTD can be dragged and dropped when two or more
OTDs are opened in the Java Collaboration Editor; see the eGate Integrator User’s Guide
for more information. A field on the input (left) side pane can be dragged to a field in
the output (right) pane. This action, when highlighted in the Business Rules pane,
displays the rule in the Rule Properties pane.

To access the method, right-click the node and, on the context popup menu, click
Select a method to call. See Figure 14.

Figure 14 Accessing a Method in an X12 OTD

The methods available depend on the node you select. In particular, if you right-click
the root node of the OTD, one of the methods available to you is performValidation();
see Figure 15.

Chapter 4 Section 4.6
Working With the X12 OTDs Alternative Formats: ANSI and XML

X12 OTD Library User’s Guide 46 SeeBeyond Proprietary and Confidential

Figure 15 Accessing the performValidation Method from the Root Node

The performValidation() method can be used to validate an X12 message at run time.
If the OTD content is found to be invalid, the appropriate error bean nodes are
populated (see “Bean Nodes for Reporting Errors and Exceptions“ on page 53).
Therefore, the complete set of bean nodes for reporting errors and exceptions can
only be accessed after the call to performValidation().

Note: Although validation is a useful tool to ensure that data conforms to the definitions
and business rules, be aware that it significantly impacts performance.

4.6 Alternative Formats: ANSI and XML
All the X12 OTDs accept either standard ANSI X12 format or XML format as input,
by default; and, by default, output from a collaboration that uses messages from an
X12 OTD is in ASC X12 format. However, there is a Java method available for setting
the output to XML:

setXMLOutput (boolean isXML)

If you want to set the collaboration to output XML format, use setXmlOutput(true); in
other words, set the xmlOutput bean node to the value true.

4.6.1. XML Format for X12
Since there is no de facto XML standard for X12 as yet, the SeeBeyond X12 OTD Library
uses Open Business Objects for EDI (OBOE) as the XML format for X12.

The XML X12 DTD is shown in Figure 16.

Chapter 4 Section 4.6
Working With the X12 OTDs Alternative Formats: ANSI and XML

X12 OTD Library User’s Guide 47 SeeBeyond Proprietary and Confidential

Figure 16 XML X12 DTD

<!ELEMENT envelope (segment, segment?, functionalgroup+, segment)>
<!ATTLIST envelope format CDATA #IMPLIED>

<!ELEMENT functionalgroup (segment, transactionset+, segment)>

<!ELEMENT transactionset (table+)>
<!ATTLIST transactionset code CDATA #REQUIRED>
<!ATTLIST transactionset name CDATA #IMPLIED>

<!ELEMENT table (segment)+>
<!ATTLIST table section CDATA #IMPLIED>

<!ELEMENT segment ((element | composite)+, segment*)>
<!ATTLIST segment code CDATA #REQUIRED>
<!ATTLIST segment name CDATA #IMPLIED>

<!ELEMENT composite (element)+>
<!ATTLIST composite code CDATA #REQUIRED>
<!ATTLIST composite name CDATA #IMPLIED>

<!ELEMENT element (value)>
<!ATTLIST element code CDATA #REQUIRED>
<!ATTLIST element name CDATA #IMPLIED>

<!ELEMENT value (#PCDATA)>
<!ATTLIST value description CDATA #IMPLIED>

Chapter 4 Section 4.6
Working With the X12 OTDs Alternative Formats: ANSI and XML

X12 OTD Library User’s Guide 48 SeeBeyond Proprietary and Confidential

Figure 17 shows an X12 997 Functional Acknowledgment, in XML format.

Figure 17 X12 997 Functional Acknowledgment—XML

An example of the same transaction, an X12 997 Functional Acknowledgment, using
standard ANSI format, is shown in Figure 18.

Figure 18 X12 997 Functional Acknowledgment—ANSI Format

Chapter 4 Section 4.7
Working With the X12 OTDs Possible Differences in Output When Using Pass-Through

X12 OTD Library User’s Guide 49 SeeBeyond Proprietary and Confidential

4.7 Possible Differences in Output When Using Pass-
Through

If you are using pass-through, the output file contains essentially the same data as the
input file.

Certain differences in output, based on variations in acceptable interpretation of the
information, are acceptable, provided that the data conforms to the formats specified
for the elements. For example:

If the input file includes a six-digit date, the output file might represent this as an
eight-digit value. For example, 040715 in the input file might be represented as
20040705 in the output file.

The number of trailing zeros after a decimal point might vary. For example, an
input value of 10.000 might be represented as 10 in the output file.

The reason these changes occur is that, during pass-through, certain data fields are
parsed and stored as Java objects other than strings; for example, Date or Double.

The actual value of all the information must remain the same.

4.8 Limitations of X12 OTDs

4.8.1. Memory Requirements
When using the X12 OTD Library, set the maximum heap size to more than 128MB for
Enterprise Designer and the OTD tester; a value of 256MB is recommended. If settings
are 128MB or less, and multiple messages are processed simultaneously (such as during
FTP batch upload of messages), a NullPointerException can occur.

To set the heap size in Enterprise Designer: On the Tools menu, click Options.

Figure 19 Setting the Maximum Heap Size

Chapter 4 Section 4.8
Working With the X12 OTDs Limitations of X12 OTDs

X12 OTD Library User’s Guide 50 SeeBeyond Proprietary and Confidential

4.8.2. Delayed Unmarshaling
For performance reasons, the unmarshal() method does not unmarshal the entire
message. Instead, it does the following:

Unmarshals the incoming message at the segment level. In other words, the OTD
checks for all relevant segments and reports any missing or extra segments.

Reports trailing delimiter for elements and composites.

Elements within a segment are not unmarshaled until an element in that segment is
accessed in the collaboration using a getXxx() method.

4.8.3. Errors and Exceptions
For all X12 OTDs, including the two envelope OTDs, if the incoming message cannot
be parsed (for example, if the OTD cannot find the ISA segment), then the unmarshal()
method throws a com.stc.otd.runtime.UnmarshalException.

You can also use the isUnmarshalComplete() method to learn whether unmarshal()
executed without reporting any errors. Successful completion does not guarantee that
the OTD instance is free of unmarshal exceptions within segments, however, since
elements are not unmarshaled until the first getElementXxxx() method of a segment is
encountered (see “Delayed Unmarshaling“ on page 50). Encountering this triggers an
automatic background unmarshal of the entire segment, and any problems with the
segment will be appended in allErrors, unmarshalErrors, and msgValidationResult.
Note that the value returned by isUnmarshalComplete() is not influenced by the
outcome of the automatic background unmarshal; instead, its value reflects what was
set by the explicit invocation of the unmarshal() method.

It is an error to use the setXxx method if bean node Xxx is read-only. The system may
throw compile exceptions if this is attempted.

If trailing element separators are found inside a segment

In the initial unmarshaling process, the OTD tries to parse the message based on the
segment sequence defined in the input metadata (SEF) file. At the same time, however,
it also checks for the presence of one or more trailing element separators inside the
segment. If found, error arrays such as for unmarshalErrors are populated accordingly.
Trailing element separators do not affect data parsing. Immediately after unmarshal() is
invoked, therefore, if isUnmarshalComplete() returns true, then the error arrays for
unmarshalErrors either contain no entries or else contain only errors of trailing element
separators; if it returns false, the error arrays contain errors other than those of trailing
element separators.

See “Bean Nodes for Reporting Errors and Exceptions“ on page 53.

Chapter 4 Section 4.8
Working With the X12 OTDs Limitations of X12 OTDs

X12 OTD Library User’s Guide 51 SeeBeyond Proprietary and Confidential

4.8.4. Special Methods for Error Classes
The toString() and marshal() methods of the following error classes cannot be
implemented via the GUI, and have to be hand-coded:

com.stc.otd.runtime.check.sef.DataError

com.stc.otd.runtime.check.sef.TSError

com.stc.otd.runtime.check.sef.FGError

com.stc.otd.runtime.check.sef.ICError

Also see “Bean Nodes for Reporting Errors and Exceptions“ on page 53.

X12 OTD Library User’s Guide 52 SeeBeyond Proprietary and Confidential

Chapter 5

Java Methods for X12 OTDs

Each X12 OTD contains bean nodes and Java methods that extend the functionality of
the OTDs. This chapter describes bean nodes and methods, and includes descriptions
of the output generated by methods for validation and error message output.

5.1 Bean Nodes
All bean nodes have get methods associated with them; in other words, a bean node
named theBeanNode has a method getTheBeanNode() to read the current value.

In addition to the get methods that all bean nodes have, read/write bean nodes have
set methods; that is, the method setTheBeanNode() writes a value.

These methods can be used together or separately. For example, they can allow you to
get the X12 delimiters from the input OTD and set them appropriately for the output
OTD; or they can also allow you to set the delimiters to the default values.

5.1.1. Read/Write Bean Nodes for Getting and Setting Values
The following bean nodes have both get and set methods:

xmlOutput — This bean node is of data type boolean. The value determines
whether the marshal() method generates XML output. The default value is false,
which causes the marshal() method to generate delimited output. For details, see
“setXmlOutput” on page 63.

maxDataError — This bean node is of data type int. The value defines the number of
validation errors to be recorded in the bean node msgValidationResult; any errors
that occur after the value is reached are not recorded. The default value is -1, which
causes all errors to be recorded. If the value is set to 0 all errors are suppressed.

Delimiter bean nodes — The following four bean nodes are of the data type char:
segmentTerminator (See getSegmentTerminator on page 61.)
elementSeparator (See getElementSeparator on page 58.)
subelementSeparator (See getSubelementSeparator on page 62.)
repetitionSeparator (See getRepetitionSeparator on page 60.)

These four bean nodes are used to set the delimiters for a target X12 message (X12
message generated by the collaboration). The delimiters for an incoming message
with interchange envelope are defined in the interchange header; any values that
the bean nodes might contain are ignored and overwritten during unmarshal.

Chapter 5 Section 5.1
Java Methods for X12 OTDs Bean Nodes

X12 OTD Library User’s Guide 53 SeeBeyond Proprietary and Confidential

5.1.2. Read-Only Bean Nodes for Getting Values
The values of the following bean nodes are set internally by the OTD, usually as a result
of some processing. Although these nodes sometimes have corresponding set methods,
the behavior is not guaranteed and can throw compile exceptions; thus, you should not
use the set method for these bean nodes.

inputSource — This bean node is of data type byte[]. It holds raw bytes that were
unmarshaled to the OTD instance.

segmentCount — This bean node is of data type int. It gives the number of
segments at the current node. It is available at the following levels:

xxx_Outer (from ISA to IEA segments)

xxx_Inner (from GS to GE segments)

xxx_<transactionset> (from ST to SE segments)

5.1.3. Bean Nodes for Reporting Errors and Exceptions
After sefimpl.jar has been imported (see “To import com.stc.otd.sefimpl.jar” on
page 40), you can use the following bean nodes for reporting errors and exceptions that
occur during unmarshal or validation of transactions.

allErrors — This bean node is of data type java.lang.String[]. It holds a string
version of every exception stored in the other bean nodes listed below:
unmarshalErrors, ICValidationResult, FGValidationResult, TSValidationResult,
and msgValidationResult.

Note: A single exception can qualify for inclusion in two or more bean nodes. When this
occurs, allErrors holds just one copy of the exception, and the length of its array is
less than the sum of the lengths of the combined individual arrays.

unmarshalErrors — Data type com.stc.otd.runtime.check.sef.DataError[]. This
array stores all exceptions that occur when the unmarshal() method is invoked and
while accessing elements of a segment for the first time. If this array has any objects
in it before a call to performValidation has been made, their presence is equivalent
to isUnmarshalComplete() returning false.

ICValidationResult — Data type com.stc.otd.runtime.check.sef.ICError[].This
array stores all exceptions that occur during the validation of the Interchange
envelope.

FGValidationResult — Data type com.stc.otd.runtime.check.sef.FGError[].This
array stores all exceptions that occur during validation of the Function Group
envelope (in other words, the GS and GE segments).

TSValidationResult — Data type com.stc.otd.runtime.check.sef.TSError[].This
array stores all exceptions that occur during validation of the Transaction set
(in other words, the ST and SE segments).

msgValidationResult — Data type com.stc.otd.runtime.check.sef.DataError[].This
array stores all exceptions that occur during the validation of the message (in other
words, the segments between, but not including, the ST and SE segments).

Chapter 5 Section 5.2
Java Methods for X12 OTDs Java Methods

X12 OTD Library User’s Guide 54 SeeBeyond Proprietary and Confidential

The methods toString() and unmarshal() are both implemented, allowing the exception
to be output in a specific format so that it can be wrapped in an acknowledgment and
sent as a response.

5.2 Java Methods
In addition to the bean nodes described in the previous section, and whose methods are
explained below, the top node of any x12_40??_[...] OTD in the X12 OTD Library also
includes the following Java methods:

check on page 54 (X12 OTDs only, not envelopes)

clone on page 55 (X12 OTDs only, not envelopes)

isUnmarshalComplete on page 55

marshalToBytes on page 56

marshalToString on page 56

performValidation on page 56 (X12 OTDs only, not envelopes)

reset on page 57

setDefaultX12Delimiters on page 58

unmarshalFromBytes on page 65

unmarshalFromString on page 65

check

Description

Performs validation on the OTD unmarshaled from inbound data, and returns message
validation result into a String array.

Parameters

None.

Bean node Data type of the array Return format

unmarshalErrors com.stc.otd.runtime.check.sef.DataError AK3 / AK4 segment of the 997
transaction.

ICValidationResult com.stc.otd.runtime.check.sef.ICError TA1 transaction.

FGValidationResult com.stc.otd.runtime.check.sef.FGError AK1 / AK9 segment of the 997
transaction.

TSValidationResult com.stc.otd.runtime.check.sef.TSError AK2 / AK5 segment of the 997
transaction.

msgValidationResult com.stc.otd.runtime.check.sef.DataError AK3 / AK4 segment of the 997
transaction.

Chapter 5 Section 5.2
Java Methods for X12 OTDs Java Methods

X12 OTD Library User’s Guide 55 SeeBeyond Proprietary and Confidential

Throws

None.

Returns

String[] (the message validation result)

clone

Description

Clones the object itself.

Parameters

None.

Throws

java.lang.CloneNotSupportedException (if clone not implemented)

Returns

java.lang.Object (the cloned object)

isUnmarshalComplete

Description

Flag for whether or not the unmarshaling (parsing) has completed successfully.

Parameters

None.

Throws

None.

Returns

boolean (whether or not the initial explicit call to unmarshal completed successfully).
For caveats and limitations, see “Delayed Unmarshaling” on page 50 and “Errors and
Exceptions” on page 50.

marshal

Description

Marshals (serializes, renders) the internal data tree into an output stream.

Parameters

out - com.stc.otd.runtime.OtdOutputStream (the output, as an OtdOutputStream
object)

Chapter 5 Section 5.2
Java Methods for X12 OTDs Java Methods

X12 OTD Library User’s Guide 56 SeeBeyond Proprietary and Confidential

Throws

java.io.IOException (for output problems)

com.stc.otd.runtime.MarshalException (for an inconsistent internal tree)

Returns

None.

marshalToBytes

Description

Marshals (serializes, renders) the internal data tree into a byte array.

Parameters

in - byte[] (the input, as a byte array)

Throws

java.io.IOException (for output problems)

com.stc.otd.runtime.MarshalException (for an inconsistent internal tree)

Returns

byte[] (serialized byte array)

marshalToString

Description

Marshals (serializes, renders) the internal data tree into a String.

Parameters

None.

Throws

java.io.IOException (for input problems)

com.stc.otd.runtime.MarshalException (for an inconsistent internal tree)

Returns

java.lang.String (the serialized String)

performValidation

Description

Validates the OTD content immediately after unmarshaling.

Syntax

public void performValidation()

Chapter 5 Section 5.2
Java Methods for X12 OTDs Java Methods

X12 OTD Library User’s Guide 57 SeeBeyond Proprietary and Confidential

Parameters

None.

Constants

None.

Returns

None. If the OTD content is found to be invalid, the appropriate error bean nodes are
populated; see “Bean Nodes for Reporting Errors and Exceptions” on page 53.

Throws

None.

Examples

x12_4010.x12_4010_850_PurcOrde_Outer myOTD=new x12_4010.x12_4010_850_
PurcOrde_Outer();
......
......
myOTD.performValidation();

Notes

For an example of using performValidation() in a collaboration, see Creating a
Collaboration Rule to Validate an X12 OTD on page 45.

reset

Description

Clears out any data and resources held by this OTD instance.

Parameters

None.

Throws

None.

Returns

None.

Chapter 5 Section 5.2
Java Methods for X12 OTDs Java Methods

X12 OTD Library User’s Guide 58 SeeBeyond Proprietary and Confidential

setDefaultX12Delimiters

Description

Sets the default X12 delimiters, such as:

Syntax

public void setDefaultX12Delimiters()

Parameters

None.

Constants

None.

Returns

void (none).

Throws

None.

Example

x12_4010.x12_4010_850_PurcOrde_Outer myOTD=new x12_4010.x12_4010_850_
PurcOrde_Outer();
......
......
myOTD.setDefaultX12Delimiters();

getElementSeparator

Description

Gets the elementSeparator character.

Syntax

public char getElementSeparator()

Parameters

None.

Constants

None.

~ segment terminator

* element separator

: subelement separator

+ repetition separator

Chapter 5 Section 5.2
Java Methods for X12 OTDs Java Methods

X12 OTD Library User’s Guide 59 SeeBeyond Proprietary and Confidential

Returns

char
Returns the element separator character.

Throws

None.

Example

x12_4010.x12_4010_850_PurcOrde_Outer myOTD=new x12_4010.x12_4010_850_
PurcOrde_Outer();
......
......
char elmSep=myOTD.getElementSeparator();

setElementSeparator

Description

Sets the elementSeparator character.

Syntax

public void setElementSeparator(char c);

Parameters

Constants

None.

Returns

void (none).

Throws

None.

Example

x12_4010.x12_4010_850_PurcOrde_Outer myOTD=new x12_4010.x12_4010_850_
PurcOrde_Outer();
......
......
char c='+';
myOTD.setElementSeparator(c);

Name Type Description

c char The character to be set as the element separator.

Chapter 5 Section 5.2
Java Methods for X12 OTDs Java Methods

X12 OTD Library User’s Guide 60 SeeBeyond Proprietary and Confidential

getRepetitionSeparator

Description

Gets the RepetitionSeparator character. Valid only for X12 version 4020 and later.

Syntax

public char getRepetitionSeparator()

Parameters

None.

Constants

None.

Returns

char
Returns the getRepetitionSeparator character.

Throws

None.

Example

x12_4020.x12_4020_850_PurcOrde_Outer myOTD=new x12_4020.x12_4020_850_
PurcOrde_Outer();
......
......
char repSep=myOTD.getRepetitionSeparator();

setRepetitionSeparator

Description

Sets the RepetitionSeparator character. Valid only for X12 version 4020 and later.

Syntax

public void setRepetitionSeparator(char c)

Parameters

Constants

None.

Returns

void (none).

Throws

None.

Name Type Description

c char The character to be set as the repetition separator.

Chapter 5 Section 5.2
Java Methods for X12 OTDs Java Methods

X12 OTD Library User’s Guide 61 SeeBeyond Proprietary and Confidential

Example

x12_4030.x12_4030_850_PurcOrde_Outer myOTD=new x12_4030.x12_4030_850_
PurcOrde_Outer();
......
......
char c='*';
myOTD.setRepetitionSeparator(c);

getSegmentTerminator

Description

Gets the segment terminator character.

Syntax

public char getSegmentTerminator()

Parameters

None.

Constants

None.

Returns

char (the segment terminator character).

Throws

None.

Example

x12_4010.x12_4010_850_PurcOrde_Outer myOTD=new x12_4010.x12_4010_850_
PurcOrde_Outer();
......
......
char segTerm=myOTD.getSegmentTerminator();

setSegmentTerminator

Description

Sets the segmentTerminator character.

Syntax

public void setSegmentTerminator(char c)

Parameters

Name Type Description

c char The character to be set as the segment terminator.

Chapter 5 Section 5.2
Java Methods for X12 OTDs Java Methods

X12 OTD Library User’s Guide 62 SeeBeyond Proprietary and Confidential

Constants

None.

Returns

void (none).

Throws

None.

Example

x12_4010.x12_4010_850_PurcOrde_Outer myOTD=new x12_4010.x12_4010_850_
PurcOrde_Outer();
......
......
char c='~';
myOTD.setSegmentTerminator(c);

getSubelementSeparator

Description

Gets the subelementSeparator character.

Syntax

public char getSubelementSeparator()

Parameters

None.

Constants

None.

Returns

char
Returns the getSubelement character.

Throws

None.

Example

x12_4010.x12_4010_850_PurcOrde_Outer myOTD=new x12_4010.x12_4010_850_
PurcOrde_Outer();
......
......
char subeleSep=myOTD.getSubelementSeparator();

Chapter 5 Section 5.2
Java Methods for X12 OTDs Java Methods

X12 OTD Library User’s Guide 63 SeeBeyond Proprietary and Confidential

setSubelementSeparator

Description

Sets the SubelementSeparator character.

Syntax

public void setSubelementSeparator(char c)

Parameters

Constants

None.

Returns

void (none).

Throws

None.

Example

x12_4010.x12_4010_850_PurcOrde_Outer myOTD=new x12_4010.x12_4010_850_
PurcOrde_Outer();
......
......
char c=':';
myOTD.setSubelementSeparator(c);

setXmlOutput

Description

When used with the parameter set to true, this method causes the X12 OTD involved to
output XML.

When used with the parameter set to false, this method causes the X12 OTD to output
ANSI (which is the default output if this method is not used at all).

Use this method when the X12 OTD is set to automatic output (the default). If the
collaboration is set to manual output, use marshal (boolean) to achieve the same result.

Syntax

public void setXMLOutput(boolean isXML)

Name Type Description

c char The character to be set as the subelement separator.

Chapter 5 Section 5.2
Java Methods for X12 OTDs Java Methods

X12 OTD Library User’s Guide 64 SeeBeyond Proprietary and Confidential

Parameters

Constants

None.

Returns

void (none).

Throws

None

Example

x12_4010.x12_4010_850_PurcOrde_Outer myOTD=new x12_4010.x12_4010_850_
PurcOrde_Outer();
......
......
myOTD.setXMLOutput(true);

unmarshal

Description

Unmarshals (deserializes, parses) the given input into an internal data tree.

Parameters

in - com.stc.otd.runtime.OtdInputStream (the input, as an OtdInputStream object)

Throws

java.io.IOException (for output problems)

com.stc.otd.runtime.UnmarshalException (for a lexical or other mismatch)

Returns

None.

Notes

Caveats and limitations are discussed in “Delayed Unmarshaling” on page 50, “Errors
and Exceptions” on page 50, and “Special Methods for Error Classes” on page 51.

Name Type Description

isXML boolean If true, the X12 is output in XML format. If false,
output is standard ANSI X12.

Chapter 5 Section 5.2
Java Methods for X12 OTDs Java Methods

X12 OTD Library User’s Guide 65 SeeBeyond Proprietary and Confidential

unmarshalFromBytes

Description

Unmarshals (deserializes, parses) the given input byte array into an internal data tree.

Parameters

in - byte[] (the input, as a byte array)

Throws

java.io.IOException (for input problems)

com.stc.otd.runtime.UnmarshalException (for an inconsistent internal tree)

Returns

None.

unmarshalFromString

Description

Unmarshals (deserializes, parses) the given input string into an internal data tree.

Parameters

in - java.lang.String (the input, as a String)

Throws

java.io.IOException (for input problems)

com.stc.otd.runtime.UnmarshalException (for an inconsistent internal tree; typically
occurs if the OTD cannot recognize the incoming message as X12)

Returns

None.

Index

X12 OTD Library User’s Guide 66 SeeBeyond Proprietary and Confidential

Index

A
acknowledgments

application 33
as part of EDI logic 33
functional acknowledgment (997) 32
interchange acknowledgment (TA1) 32
receipt of payment order 32
types of 32

allErrors (bean node for error reporting) 53
application acknowledgments 33

B
backward compatibility 20
bean nodes 43, 52

allErrors 44, 53
elementSeparator 43, 44, 52
FGValidationResult 44, 53
ICValidationResult 44, 53
inputSource 44
inputSource (read-only) 53
maxDataError 44, 52
msgValidationResult 44, 52, 53
repetitionSeparator 43, 44, 52
segmentCount 44
segmentCount (read-only) 53
segmentTerminator 43, 44, 52
subelementSeparator 43, 44, 52
TSValidationResult 44, 53
unmarshalErrors 44, 53
xmlOutput 44, 52

C
certificate authentication 36
check 54
clone 55
com.stc.otd.sefimpl.jar

(illustrated) 41
importing 40

compatible systems 8
Component Element Separator 43
control numbers 19

functional group control number (GS06) 20

interchange control number (ISA13) 20
transaction set control number (ST02) 20

conventions
path name separator 9
Windows 9

D
Data Element Separator 43
data element separator 14
data elements 13
DataError 51
Delimiters 12
delimiters 12, 13, 43

Component Element Separator 43
Data Element Separator 43
data element separator 14
Repetition Separator 43
repetition separator 14
Segment Terminator 43
segment terminator 14
subelement (component) separator 14
Subelement Separator 43

document
conventions 9
organization 9

document overview 8

E
EDI

payment processing overview 29
usage example 29

EDISIM 33
element separators

trailing 50
elementSeparator 43, 52
encryption/decryption 36
envelopes

OTDs for parsing 35
enveloping

as part of EDI logic 33
error arrays

and unmarshalErrors() 44, 50
error classes

bean nodes for 53
hand-coding 51
methods for 53

example of EDI usage 29
Exceptions

CloneNotSupported 55
IOException 56, 64, 65
MarshalException 56
UnmarshalException 64, 65

Index

X12 OTD Library User’s Guide 67 SeeBeyond Proprietary and Confidential

exceptions
bean nodes for 53
methods for 53

F
FG (functional group)

OTD for parsing envelope 35
FGError 51
FGValidationResult (bean node, error reporting) 53
Foresight Corporation 33
functional acknowledgments (997) 32
functional group 17

OTD for parsing envelope 35
functional group control number (GS06) 20
FunctionalGroupEnv OTD 35

G
getAllErrors 44
getElementSeparator 44, 58
getFGValidationResult 44
getICValidationResult 44
getInputSource 44
getMaxDataError 44
getMsgValidationResult 44
getRepetitionSeparator 44, 60
getSegmentCount 44
getSegmentTerminator 44, 61
getSubelementSeparator 44, 62
getTSValidationResult 44
getUnmarshalErrors 44
GS06 (functional group control number) 20

I
IC (interchange envelope) 18

OTD for parsing envelope 35
ICError 51
ICValidationResult

bean node for error reporting 53
implementation 33
Index 66
inputSource (read-only) 53
installation 36–38
intended reader 8
interchange acknowledgment (TA1) 32
interchange control number (ISA13) 20
interchange envelope 18

OTD for parsing envelope 35
InterchangeEnv OTD 35
ISA13 (interchange control number) 20
isUnmarshalComplete 50, 55

J
Java methods 52–65

Also see bean nodes
check 54
clone 55
getAllErrors 44
getElementSeparator 44, 58
getFGValidationResult 44
getICValidationResult 44
getInputSource 44
getMsgValidationResult 44
getRepetitionSeparator 44, 60
getSegmentCount 44
getSegmentTerminator 44, 61
getSubelementSeparator 44, 62
getTSValidationResult 44
getUnmarshalErrors 44
isUnmarshalComplete 50, 55
marshal 51, 55
marshalToBytes 56
marshalToString 56
performValidation 45, 56
reset 57
setDefaultX12Delimiters 58
setElementSeparator 44, 59
setInputSource 44
setMaxDataError 44
setRepetitionSeparator 44, 60
setSegmentCount 44
setSegmentTerminator 44, 61
setSubelementSeparator 44, 63
setXmlOutput 44, 63
toString 51
unmarshal 50, 64
unmarshalFromBytes 65
unmarshalFromString 65

L
libraries 35
loops 13

M
marshal 55

limitations of 51
marshalToBytes 56
marshalToString 56
maxDataError 52
messages

X12 transactions included in version 4010 21
methods

Also see Java methods

Index

X12 OTD Library User’s Guide 68 SeeBeyond Proprietary and Confidential

for getting values 43, 52
for setting values 43, 52

msgValidationResult
and maxDataError 52
bean node for error reporting 53

N
nonrepudiation 36

O
OTD libraries 38
OTD names 39
OTDs

FunctionalGroupEnv 35
InterchangeEnv 35

OTDs, working with 40–51
overview

of document 8
of EDI payments processing 29
of X12 11–34

P
payment-related EDI transactions 32
performValidation 45, 56

R
Repetition Separator 43
repetition separator 14
repetitionSeparator 43, 52
reset 57
response transactions 33
runtime exceptions

UnmarshalException 50

S
SEF file 33
sefimpl.jar

(illustrated) 41
adding to Collaboration 41
importing 40

SEFWizard 33
Segment Terminator 43
segment terminator 14
segmentCount (read-only) 53
segments 13
segmentTerminator 43, 52
setDefaultX12Delimiters 58
setElementSeparator 44, 59

setInputSource 44
setMaxDataError 44
setRepetitionSeparator 44, 60
setSegmentCount 44
setSegmentTerminator 44, 61
setSubelementSeparator 44, 63
setXmlOutput 44, 46, 63
signature verification 36
ST02 (transaction set control number) 20
structure of an X12 envelope 14
structures 33

as part of EDI logic 33
subelement (component) separator 14
Subelement Separator 43
subelementSeparator 43, 52
supporting documents 10
syntax

control numbers 19
delimiters 13

T
TA1 (interchange acknowledgment) 32
template installation 36–38
toString

limitations of 51
toStringl

limitations of 51
trading partner agreements 34
trailing element separators 50
transaction set 17
transaction set control number (ST02) 20
transaction set structures 38
translations

as part of EDI logic 33
TSError 51
TSValidationResult (bean node, error reporting) 53

U
unmarshal 64

limitations of 50
unmarshalErrors (bean node for error reporting) 53
unmarshalErrors() 44
UnmarshalException 50
unmarshalFromBytes 65
unmarshalFromString 65
unmarshaling

background 50
delayed 50
initial and extended 50

Index

X12 OTD Library User’s Guide 69 SeeBeyond Proprietary and Confidential

V
validations

as part of EDI logic 33

W
what is a message structure? 12
working with OTDs 40–51
writing conventions 9

X
X12

acknowledgment types 32
additional information (Web sites) 34
data elements 13
end-to-end example 32
envelope structure 14
functional group 17
interchange envelope 18
libraries 35
list of messages in version 4010 21
loops 13
OTD names 39
segments 13
transaction set 17
what is it? 11

X12 methods 52–65
X12 OTD libraries 38
X12 overview 11–34
X12 template installation 36–38
xmlOutput 52

	X12 OTD Library User’s Guide
	Contents
	List of Tables
	List of Figures
	Introduction
	1.1 Overview
	1.2 Intended Reader
	1.3 Compatible Systems
	1.4 Document Organization
	1.5 Writing Conventions
	Additional Conventions

	1.6 Supporting Documents
	1.7 SeeBeyond Web Site

	X12 Overview
	2.1 Introduction to X12
	2.1.1. What Is X12?
	2.1.2. What Is a Message Structure?

	2.2 Components of an X12 Envelope
	2.2.1. Data Elements
	2.2.2. Segments
	2.2.3. Loops
	2.2.4. Delimiters

	2.3 Structure of an X12 Envelope
	2.3.1. Transaction Set (ST/SE)
	2.3.2. Functional Group (GS/GE)
	2.3.3. Interchange Envelope (ISA/IEA)
	2.3.4. Control Numbers
	ISA13 (Interchange Control Number)
	GS06 (Functional Group Control Number)
	ST02 (Transaction Set Control Number)

	2.4 Backward Compatibility
	2.5 Messages
	2.6 Example of EDI Usage
	2.6.1. Overview of EDI Payments Processing
	Types of Information that Is Exchanged Electronically
	Types of Electronic Payment
	Transfer of Funds

	2.6.2. Payment-Related EDI Transactions

	2.7 Acknowledgment Types
	2.7.1. TA1, Interchange Acknowledgment
	2.7.2. 997, Functional Acknowledgment
	2.7.3. Application Acknowledgments

	2.8 Key Parts of EDI Processing Logic
	2.8.1. Structures
	2.8.2. Validations, Translations, Enveloping, Acknowledgments
	2.8.3. Trading Partner Agreements

	2.9 Additional Information

	Installation
	3.1 X12 Libraries
	3.2 Installation Procedure
	3.2.1. Uploading to the Repository
	3.2.2. Refreshing Enterprise Designer

	3.3 X12 OTD Libraries
	3.3.1. X12 OTDs
	3.3.2. Transaction Names

	Working With the X12 OTDs
	4.1 Importing .jar Files
	4.2 Viewing an X12 OTD in the OTD Editor
	4.3 Setting the Delimiters
	4.4 Methods for Getting and Setting
	4.4.1. Bean Nodes for Getting and Setting Data
	4.4.2. Bean Nodes for Getting Errors and Results

	4.5 Using Validation in the Java Collaboration Editor
	4.5.1. Creating a Collaboration Rule to Validate an X12 OTD

	4.6 Alternative Formats: ANSI and XML
	4.6.1. XML Format for X12

	4.7 Possible Differences in Output When Using Pass- Through
	4.8 Limitations of X12 OTDs
	4.8.1. Memory Requirements
	4.8.2. Delayed Unmarshaling
	4.8.3. Errors and Exceptions
	4.8.4. Special Methods for Error Classes

	Java Methods for X12 OTDs
	5.1 Bean Nodes
	5.1.1. Read/Write Bean Nodes for Getting and Setting Values
	5.1.2. Read-Only Bean Nodes for Getting Values
	5.1.3. Bean Nodes for Reporting Errors and Exceptions

	5.2 Java Methods
	check
	clone
	isUnmarshalComplete
	marshal
	marshalToBytes
	marshalToString
	performValidation
	reset
	setDefaultX12Delimiters
	getElementSeparator
	setElementSeparator
	getRepetitionSeparator
	setRepetitionSeparator
	getSegmentTerminator
	setSegmentTerminator
	getSubelementSeparator
	setSubelementSeparator
	setXmlOutput
	unmarshal
	unmarshalFromBytes
	unmarshalFromString

	Index
	A
	acknowledgments
	allErrors (bean node for error reporting) 53
	application acknowledgments 33

	B
	backward compatibility 20
	bean nodes 43, 52

	C
	certificate authentication 36
	check 54
	clone 55
	com.stc.otd.sefimpl.jar
	compatible systems 8
	Component Element Separator 43
	control numbers 19
	conventions

	D
	Data Element Separator 43
	data element separator 14
	data elements 13
	DataError 51
	Delimiters 12
	delimiters 12, 13, 43
	document
	document overview 8

	E
	EDI
	EDISIM 33
	element separators
	elementSeparator 43, 52
	encryption/decryption 36
	envelopes
	enveloping
	error arrays
	error classes
	example of EDI usage 29
	Exceptions
	exceptions

	F
	FG (functional group)
	FGError 51
	FGValidationResult (bean node, error reporting) 53
	Foresight Corporation 33
	functional acknowledgments (997) 32
	functional group 17
	functional group control number (GS06) 20
	FunctionalGroupEnv OTD 35

	G
	getAllErrors 44
	getElementSeparator 44, 58
	getFGValidationResult 44
	getICValidationResult 44
	getInputSource 44
	getMaxDataError 44
	getMsgValidationResult 44
	getRepetitionSeparator 44, 60
	getSegmentCount 44
	getSegmentTerminator 44, 61
	getSubelementSeparator 44, 62
	getTSValidationResult 44
	getUnmarshalErrors 44
	GS06 (functional group control number) 20

	I
	IC (interchange envelope) 18
	ICError 51
	ICValidationResult
	implementation 33
	Index 66
	inputSource (read-only) 53
	installation 36-38
	intended reader 8
	interchange acknowledgment (TA1) 32
	interchange control number (ISA13) 20
	interchange envelope 18
	InterchangeEnv OTD 35
	ISA13 (interchange control number) 20
	isUnmarshalComplete 50, 55

	J
	Java methods 52-65

	L
	libraries 35
	loops 13

	M
	marshal 55
	marshalToBytes 56
	marshalToString 56
	maxDataError 52
	messages
	methods
	msgValidationResult

	N
	nonrepudiation 36

	O
	OTD libraries 38
	OTD names 39
	OTDs
	OTDs, working with 40-51
	overview

	P
	payment-related EDI transactions 32
	performValidation 45, 56

	R
	Repetition Separator 43
	repetition separator 14
	repetitionSeparator 43, 52
	reset 57
	response transactions 33
	runtime exceptions

	S
	SEF file 33
	sefimpl.jar
	SEFWizard 33
	Segment Terminator 43
	segment terminator 14
	segmentCount (read-only) 53
	segments 13
	segmentTerminator 43, 52
	setDefaultX12Delimiters 58
	setElementSeparator 44, 59
	setInputSource 44
	setMaxDataError 44
	setRepetitionSeparator 44, 60
	setSegmentCount 44
	setSegmentTerminator 44, 61
	setSubelementSeparator 44, 63
	setXmlOutput 44, 46, 63
	signature verification 36
	ST02 (transaction set control number) 20
	structure of an X12 envelope 14
	structures 33
	subelement (component) separator 14
	Subelement Separator 43
	subelementSeparator 43, 52
	supporting documents 10
	syntax

	T
	TA1 (interchange acknowledgment) 32
	template installation 36-38
	toString
	toStringl
	trading partner agreements 34
	trailing element separators 50
	transaction set 17
	transaction set control number (ST02) 20
	transaction set structures 38
	translations
	TSError 51
	TSValidationResult (bean node, error reporting) 53

	U
	unmarshal 64
	unmarshalErrors (bean node for error reporting) 53
	unmarshalErrors() 44
	UnmarshalException 50
	unmarshalFromBytes 65
	unmarshalFromString 65
	unmarshaling

	V
	validations

	W
	what is a message structure? 12
	working with OTDs 40-51
	writing conventions 9

	X
	X12
	X12 methods 52-65
	X12 OTD libraries 38
	X12 overview 11-34
	X12 template installation 36-38
	xmlOutput 52

