CICS eWay Intelligent Adapter User’s Guide

Release 5.0.4
Contents

Chapter 1

Introducing the CICS eWay

Overview

CICS Transaction Server
The eWay Intelligent Adapter for CICS
IBM CICS Transaction Gateway (CTG)
SeeBeyond CICS Listener (STCL)

z/OS CICS Security Considerations

Security Considerations for SeeBeyond CICS Listener
Security Considerations for IBM CICS Transaction Gateway

Chapter 2

Installing the CICS eWay

Supported Operating System

Also Supported

System Requirements

External System Requirements

Requirements for the CICS Server using CICS Transaction Gateway
Requirements for the CICS Server Using the SeeBeyond CICS Listener
SeeBeyond CICS Listener Requirements for Invoking DB2 Applications

Application Server Support

Installing the CICS eWay

Installing the CICS eWay on an eGate Supported System
After Installation

SeeBeyond CICS Listener Installation for z/OS

Downloading the SeeBeyond CICS Listener Zip File
Installing the SeeBeyond CICS Listener from CD for z/OS
Installing the SeeBeyond CICS Listener from 3480 Tape
Copying the Tape Contents to Disk
Creating the STCCLCFG File
Installing the CICS CEDA Definitions
Adding the CICS eWay Load Modules to CICS DFHRPL Concatenation

SeeBeyond CICS Listener Configuration Maintenance for z/OS

The SeeBeyond CICS Listener Monitor Screen for z/OS
Chapter 3

Configuring the CICS eWay

Creating and Configuring the CICS eWay
Selecting CICS as the External Application 39
Modifying the CICS eWay Properties 40
Using the Properties Sheet 41

CICS eWay Connectivity Map Configuration Properties
Connector 42
 Class 42
 Connection Transport 43
 Property.Tag 43
 Type 43
CICS Client 43
 CICS Program 44
 CICS TransId 44
 COMMAREA Length 44
 ECI call type 44
 ECI extend mode 44
 Encoding 45

CICS eWay Environment Explorer Configuration Properties
SeeBeyond CICS Listener 46
 COMMAREA Padding Character 46
 Host 47
 KeepAlive 47
 Listener Timeout 47
 NoDelay 47
 Polling Rate 48
 Port 48
 ReceiveBufSize 48
 SeeBeyond CICS Listener TransId 48
 SendBufSize 48
 Start Delay 49
 Start Type 49
 TP Timeout 49
 Transport Timeout 49
CICS Gateway 49
 Port 50
 SSL KeyRing Class 50
 SSL KeyRing Password 50
 URL 50
Tracing 51
 Dump Offset 51
 Filename 51
 Level 51
Chapter 4

Using eInsight Business Processes with the CICS eWay

The eInsight Engine and Components

The CICS eWay With eInsight

CICS CTG Concerns

Defining More Than One Server When Using CTG
Matching the COMMAREA Size

The CICS eWay eInsight Sample Project

Importing a Sample Project

The CICS_BP_Sample Project Overview

Creating the CICS_BP_Sample Project

Creating a Project
Creating a Business Process
Creating the Business Process Flow
Configuring the Modeling Elements
Creating a Connectivity Map
Selecting the External Applications
Populating the Connectivity Map
Binding the eWay Components
Creating an Environment
Configuring the eWay Properties
Configuring the File eWay Properties
Configuring the CICS eWay Properties
Creating and Activating the Deployment Profile
Running the Project

Chapter 5

Implementing a CICS eWay Project

CICS eWay Components

CICS eWay Sample Projects

CICS CTG Concerns

Defining More Than One Server When Using CTG
Matching the COMMAREA Size

Importing a Sample Project
Contents

The CICS_JCE_Sample Project Overview 73
Creating the CICS_JCE_Sample Project 74
 Creating a Project 74
 Creating a Connectivity Map 74
 Selecting the External Applications 74
 Populating the Connectivity Map 75
 Creating the Collaboration Definitions 76
 Using the Collaboration Editor (Java) 77
 Creating the CICSjms_Collab Business Rules 77
 Creating the JMS2File_Collab Collaboration Business Rules 81
 Binding the eWay Components 82
 Creating an Environment 84
 Configuring the eWays 85
 Configuring the File eWays 85
 Configuring the CICS eWay 86
 Configuring the JMS Clients 87
 Creating and Activating the Deployment Profile 88
 Running the Project 89

The CICS_COBOL_Sample Project 90
 Creating a Project 90
 Creating a Connectivity Map 91
 Selecting the External Applications 91
 Populating the Connectivity Map 91
 Creating an Object Type Definition 92
 Using the Cobol Copybook Wizard 92
 Creating a Collaboration Definition (Java) 93
 The CICS_COBOL_Collab Business Rules 93
 Creating Collaboration Bindings 101
 Creating an Environment 102
 Configuring the eWays 103
 Configuring the File eWays 103
 Configuring the CICS eWay 103
 Creating and Activating the Deployment Profile 104
 Running the Project 105

Chapter 6

Java Methods 106
 The CicsClient Class 106
 CICS Javadoc 106
 Packed Decimal Java Helper Methods 106
 ContainerExists 107
 CopyBack 107
 CopyTo 108
 GiveElem 108
 SetElem 109

Index 110
This chapter includes a brief description of IBM’s Customer Information Control System™ (CICS™), and an overview of the SeeBeyond CICS eWay Intelligent Adapter.

Chapter Topics
- **Overview** on page 7
- **z/OS CICS Security Considerations** on page 11

1.1 Overview

1.1.1. CICS Transaction Server

IBM’s Customer Information Control System (CICS), is IBM’s most widely used proprietary, transaction monitor. CICS provides connectivity and online transaction management for mission-critical applications. It supports real-time distributed processing environments and online transaction processing (OLTP). According to IBM, CICS handles more than thirty billion transactions, processing more than one trillion dollars, per day.

CICS is the premier OLTP (On-Line Transaction Processing) product from IBM. It is used to access many file systems and databases including third party products. For IBM product, it interfaces with DB2, VSAM and IMS/DB. For non-IBM products, it interfaces with IDMS, ADABAS, DATACOM, to name a few. Most applications in CICS are written in COBOL, although it supports other languages such as PL/1.

OLTP systems provide accurate, up-to-date information within seconds, from terminals that give direct access to data held as either files or databases. CICS provides a company with numerous transaction processing and resource management functions, allowing the user to concentrate on developing application programs that meet that organization’s specific business needs. CICS controls OLTP application programs in a distributed transaction processing (DTP) environment. CICS handles interactions between the terminal user and the application programs. Programs gain access to the CICS facilities with straightforward, high-level commands.

CICS provides:
- Communication functions to terminals and systems required by application programs
- Control of concurrently running programs serving online users
- Facilities for accessing databases and files
- The ability to communicate with other CICS family members using Transmission Control Protocol/Internet Protocol (TCP/IP)
- Interactive facilities to configure specific systems
- Recovery processing and data protection, should a problem occur

1.1.2. The eWay Intelligent Adapter for CICS

The eWay Intelligent Adapter for CICS is an interface that enables remote bidirectional calls to CICS transactional programs. The CICS eWay includes a build tool, the Cobol Copybook Converter, that creates an Object Type Definition (OTD) from a Cobol Copybook file and generates eGate Object Type Definitions for use within the eGate environment. The Copybook file structures are passed into the CICS environment as the data buffer (Commarea).

A fixed Object Type Definition, the **CICS_eWay.CICSClient OTD**, designed to expose various essential portions of the CICS Java API, provides available methods and properties, as well as access to all message attributes.

The eWay can use either the IBM CICS Transaction Gateway 5.1 or the SeeBeyond CICS Listener as the underlying connection transport for accessing CICS z/OS transactions.

IBM CICS Transaction Gateway (CTG)

CTG provides an API (the External Call Interface or ECI) to call CICS transactions on the mainframe. The ECI allows a non-CICS application program to call a CICS program in a CICS server. SeeBeyond’s CICS eWay uses this ECI method to connect to CICS. The CICS eWay connects to CICS with CTG running on a local-host (Figure 1), on a second computer (**Figure 2 on page 9**), or on the mainframe (**Figure 3 on page 9**).

![Figure 1 eGate and CTG running on the same host](image-url)
Figure 2 Remote connection with CTG on a UNIX or Windows host

Figure 3 eGate connects with CTG running on the mainframe
SeeBeyond CICS Listener (STCL)

The CICS eWay connects to the IBM CICS Listener running on z/OS via the TCP/IP Sockets. The Listener accepts the incoming request and spawns a new process handing the socket connection off to the newly created process via TCP/IP givesocket() / takesocket() function calls. The spawned process invokes the user written CICS application program through an EXEC CICS LINK.

Figure 4 Using the SeeBeyond CICS Listener for Synchronous Transactions

The CICS eWay (Java version) communicates with SeeBeyond CICS Listener for Synchronous Transactions (See Figure 4) as follows:

1. An incoming Connect request is handled by the IBM CICS Socket Listener, which starts the SeeBeyond CICS Listener Transaction STCL and hands off the incoming connection via the IBM TCP/IP Give Socket and Take Socket interface.

2. The SeeBeyond CICS Listener allocates a CICS COMMAREA and copies information from the CICS eWay COMMAREA to the actual CICS COMMAREA.

3. The SeeBeyond CICS Listener issues an EXEC CICS LINK to requested CICS Transaction Program passing it the newly allocated COMMAREA.

4. The requested CICS Transaction obtains data from the COMMAREA, performs typical business rule processing and then returns its results in the COMMAREA and returns control back to the SeeBeyond CICS Listener.

5. The SeeBeyond CICS Listener copies information from the CICS COMMAREA back to the CICS eWay COMMAREA.

6. The SeeBeyond CICS Listener goes into a listen mode and waits for the next incoming Transaction Program request.

 The process continues until the SeeBeyond CICS Listener Timeout is exceeded or a disconnect request is received from the CICS eWay.
1.2 z/OS CICS Security Considerations

Security Considerations for SeeBeyond CICS Listener

The CICS eWay, using the SeeBeyond CICS Listener as the underlying connection transport, utilizes three modes of security with z/OS: Connection Logic, Request Link to Program, and Request Start Transaction. The userID and password are defined in the eWay properties file. The connection manager uses the userID and password in the properties file to start the SeeBeyond CICS Listener on z/OS. During Business Rules processing, requests that flow into the SeeBeyond CICS Listener can use the userID and password from the properties file, or can be overwritten in the Collaborations.

![Connection Logic Diagram](image)

Connection Logic

For the Connection Logic mode (Figure 5), the userID and password, passed from the CICS eWay through the IBM CICS listener and into the SeeBeyond CICS Listener, must be defined for the z/OS security system (RACF, for example). The userID must be authorized by the z/OS security system to run CICS transaction “xxxx” inside of CICS. The default value for “xxxx” is STCL, and can be changed in the properties of the Connection Manager in the CICS eWay.

![Business Rules Request to Program Diagram](image)
Request Link to Program

For the Request Link to Program mode (Figure 6 on page 11), the userID and password passed from the CICS eWay to the SeeBeyond CICS Listener must be defined for the z/OS security system (RACF, for example). The userID must be authorized by the z/OS security system to run CICS program “prog1” inside of CICS. The default value for “prog1” is set in the properties of the CICS eWay, and can be overridden in the Collaboration for each request sent into the SeeBeyond CICS Listener.

![Figure 7 Business Rules Request Start Transaction]

Request Start Transaction

For the Request Start Transaction mode (Figure 7), the userID and password passed from the CICS eWay to the SeeBeyond CICS Listener must be defined for the z/OS security system (RACF, for example). The userID must be authorized by the z/OS security system to start CICS transaction “TRN1” inside of CICS. The default value for “TRN1” is set in the properties file of the CICS eWay, and can be overridden in the Collaboration for each request sent into the SeeBeyond CICS listener.

Security Considerations for IBM CICS Transaction Gateway

For information on CICS Transaction Gateway 5.1 security validation refer to the following:

- IBM documentation CICS Transaction Gateway z/OS Administration or the CICS Transaction Gateway V5.1 Administration Guide for your specific operating system, available at:

- Readme.txt for CTG 5.1 provided on the CTG 5.1 installation CD_ROM

- APAR OW55570 (for RACF)
Chapter 2

Installing the CICS eWay

This chapter contains installation information for the CICS eWay.
In addition, this chapter also includes information for installing and configuring the SeeBeyond CICS Listener and IBM CICS Transaction Gateway. One of these must be installed and configured as the underlying connection transport for accessing z/OS CICS transactions.

Chapter Topics

- Supported Operating System on page 13
- System Requirements on page 14
- Installing the CICS eWay on page 15
- SeeBeyond CICS Listener Installation for z/OS on page 16
- SeeBeyond CICS Listener Configuration Maintenance for z/OS on page 20
- CICS Listener Considerations for Invoking DB2 Applications on page 36
- CICS Transaction Gateway 5.1 Installation and Configuration on page 38

2.1 Supported Operating System

The CICS eWay is available on the following operating systems:

- HP-UX 11.0, 11i (PA-RISC), and 11i V2 (11.23)
- IBM AIX 5.1L and 5.2
- Sun Solaris 8 and 9

Also Supported

The CICS eWay also supports CICS Transaction Server residing on the following operating systems:

- OS/390 V2R10 or z/OS V1.2 and above (any reference to z/OS in this document includes OS/390 V2R10)
2.2 System Requirements

The system requirements for the CICS eWay are the same as those for eGate Integrator. For information, refer to the SeeBeyond ICAN Suite Installation Guide. It is also helpful to review the Readme.txt for any additional requirements prior to installation. The Readme.txt is located on the installation CD-ROM.

Although the CICS eWay, the Repository, and Logical Hosts run on the platforms listed under Supported Operating Systems, the Enterprise Designer requires the Windows operating system. The Enterprise Manager can run on any platform that supports Internet Explorer 6.0.

2.3 External System Requirements

Software Requirements

- IBM CICS Transaction Server version 1.3, 2.1, or 2.2
- An underlying connection transport using either of the following
 - IBM CICS Transaction Gateway 5.1 (see Requirements for the CICS Server using CICS Transaction Gateway on page 14)
 - SeeBeyond CICS Listener (see Requirements for the CICS Server Using the SeeBeyond CICS Listener on page 14)

Requirements for the CICS Server using CICS Transaction Gateway

For directions on configuring CICS Transaction Gateway 5.1 to communicate with a CICS server over a TCP/IP using TCP62, see the “Setting Up Client/Server Communications” section of the CICS Transaction Gateway Administration manual for your specific platform available at:

Requirements for the CICS Server Using the SeeBeyond CICS Listener

To enable the eWay to communicate correctly with CICS using the SeeBeyond CICS Listener the following are required:

- OS/390 V2R10 or above (see System Requirements on page 14)
- Resource Access Control Facility (RACF) or an equivalent security product
- IBM CICS Transaction Server version 1.3 or 2.1
- IBM MVS TCP/IP socket runtime libraries, installed and configured for each CICS region in which the SeeBeyond CICS Listener will be run. For more information please refer to IBM’s TCP/IP V3R2 for MVS: CICS TCP/IP Socket Interface Guide.
- COBOL for z/OS and Language Environments
SeeBeyond CICS Listener Requirements for Invoking DB2 Applications

There are two different techniques that can be used for invoking DB2 application programs through the SeeBeyond CICS Listener.

- RCT entry for the STCL SeeBeyond CICS Listener Transaction
- PPT entry to redirect DB2 application to another AOR (Application Owning Region)

For detailed information refer to CICS Listener Considerations for Invoking DB2 Applications on page 36.

2.4 Application Server Support

The CICS eWay in Outbound mode is supported on WebSphere™ and WebLogic™ Application Servers when using Java Collaborations only. See the eGate Integrator User’s Guide for additional information regarding the running of this eWay on this Application Server.

2.5 Installing the CICS eWay

During the eGate Integrator installation process, the Enterprise Manager, a web-based application, is used to select and upload eWays (eWay.sar files) from the eGate installation CD-ROM to the Repository.

When the Repository is run on a UNIX operating system, eGate and the eWays are installed using the Enterprise Manager from a computer running Windows, connected to the Repository server.

2.5.1. Installing the CICS eWay on an eGate Supported System

The CICS eWay is installed during the installation of the eGate Integrator. The eGate installation process includes the following operations:

- Installing the eGate Repository
- Uploading products to the Repository
- Downloading components (such as eGate Enterprise Designer and Logical Host)
- Viewing product information home pages

Follow the instructions for installing the eGate Integrator in the SeeBeyond ICAN Suite Installation Guide, and include the following steps:

1. During the procedures for uploading files to the eGate Repository using the Enterprise Manager, after uploading the eGate.sar file, select and upload the following files:
2.5.2. **After Installation**

Once the eWay is installed and configured it must then be incorporated into a project before it can perform its intended functions. See the *eGate Integrator User’s Guide* for more information on incorporating the eWay into an eGate project.

2.6 SeeBeyond CICS Listener Installation for z/OS

The following section provides directions for installing the SeeBeyond CICS Listener to an OS/390 or z/OS operating system from the installation CD-ROM or from a 3480 Tape. Directions are also included for installing CICS CEDA definitions, adding the CICS eWay load modules to the CICS DFHRPL concatenation, and using the SeeBeyond CICS Listener monitoring screen to verify that all components are properly installed and working correctly.

2.6.1. **Downloading the SeeBeyond CICS Listener Zip File

The SeeBeyond CICS Listener ZIP file, CICS_Listener.zip, can be downloaded from the ICAN Installation CD-ROMs. To download the CICS_Listener.zip to your computer do the following:

1. Locate the Projects installation CD-ROM containing the CICSeWay.sar file.
2. Open the CD-ROM to view and locate the CICSeWay.sar file.
3. Right-click the CICSeWay.sar file, and from the shortcut menu, select the “Open With” option and select a zip program such as WinZip™.
4. From the opened CICSeWay.sar file, click on and drag the CICS_Listener.zip file to your Desktop. Close the zip program. The CICS_Listener.zip file is now available from your computer’s Desktop file.
2.6.2. **Installing the SeeBeyond CICS Listener from CD for z/OS**

These following describes how to restore the SeeBeyond CICS Listener files from the CICS_Listener.zip file to your MVS system in a usable state. The files are packaged on MVS for transfer using the TSO transmit (XMIT) command to transmit them into a data set. This is done to turn a PDS into FB 80 files which can be sent by FTP. Files are downloaded to a computer and then compressed with PKZIP.

1. **Download the CICS_Listener.zip file** to your PC (see Downloading the SeeBeyond CICS Listener Zip File on page 16), and unzip the files using a zip program such as WinZip.

2. **Create two MVS datasets to receive the files**, as follows:

   ```
   //DD1 DD DSN=USER.XMIT.CICSLOAD,
   //     DISP=(NEW,CATLG,DELETE),
   //     RECFM=FB,LRECL=80,BLKSIZE=3120,DSORG=PS,
   //     SPACE=(3120,(48,5)),
   //     UNIT=diskunit
   
   //DD2 DD DSN=USER.XMIT.JCLLIB,
   //     DISP=(NEW,CATLG,DELETE),
   //     RECFM=FB,LRECL=80,BLKSIZE=3120,DSORG=PS,
   //     SPACE=(3120,(30,5)),
   //     UNIT=diskunit
   ```

3. **Upload (FTP, IND$FILE) the unzipped files to MVS using a binary file transfer method** (no CRLF or ASCII translation).

 A Restore the files to PDS by using the **Receive** command on MVS.

 B Issue command: TSO RECEIVE INDATASET(uploaded.dataset)

 C When prompted by the message:

   ```
   INMR906A Enter restore parameters or 'DELETE' or 'END' +
   enter:
   DA(name.of.your.library) UNIT(unit) VOLUME(volume)
   ```

 Note: The **UNIT()** and **VOLUME()** operands are optional but shown in case your installation requires them.

We suggest using the following names for your received datasets:

- `STC.XMIT.CICS.CICSLOAD`
- `STC.XMIT.CICS.JCLLIB`

These names match our documentation. Change them as your facility requires.
2.6.3. Installing the SeeBeyond CICS Listener from 3480 Tape

The SeeBeyond CICS Listener installation for OS/390 or z/OS is provided on an installation tape containing the following datasets (Table 1):

<table>
<thead>
<tr>
<th>File</th>
<th>Dataset Name</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TAPE.STC.RESTORE.JCL</td>
<td>JCL sample to load this tape to disk (RESTORE JCL).</td>
</tr>
<tr>
<td>2</td>
<td>TAPE.STC.CICS.JCLLIB</td>
<td>Installation jobs and control cards for the CICS eWay.</td>
</tr>
<tr>
<td>3</td>
<td>TAPE.STC.CICS.CICSLIB</td>
<td>Load library that containing the load modules for the CICS eWay.</td>
</tr>
</tbody>
</table>

Table 1 Tape Contents

Copying the Tape Contents to Disk

1. Create, customize, and submit the following job to copy the RESTORE JCL to disk:

   ```
   //JOBNAME JOB (SYSTEM),'SYSPROG', NOTIFY=&SYSUID, REGION=6M,
   //   CLASS=A, MSGLEVEL=(1,1), MSGCLASS=X
   //*
   //** COPY SAMPLE JCL TO DISK
   //*
   //IEBGENER EXEC PGM=IEBGENER
   //SYSPRINT DD SYSOUT=* 
   //SYSUT1 DD DSN=TAPE.STC.RESTORE.JCL,
   //   UNIT=tapeunit,
   //   VOL=SER=STC390,
   //   LABEL=(1,SL,,,EXPDT=98000),
   //   DISP=OLD
   //SYSUT2 DD DSN=customer.dataset,
   //   SPACE=(TRK,(10,10),RLSE),
   //   UNIT=3390,
   //   VOL=SER=diskvol,
   //   DCB=(LRECL=80,BLKSIZ=3120,RECFM=FB),
   //   DISP=(NEW,CATLG,DELETE)
   //SYSIN DD DUMMY
   ```

2. Edit the above mentioned code for your system as follows:

 A. Replace the Jobcard in the first two lines with one that meets your installation standards.
 B. Replace tapeunit in line 9 with the unit name of your tape drive: for example, UNIT=TAPE.
 C. Some Tape Management systems require an EXPDT value (see line 11) to indicate a foreign tape.
 D. Specify a customer.dataset name (see line 13) that meets your installation standards.
 E. Specify a unitname for the disk (replacing diskunit in line 15), to meet your installation standards: for example, UNIT=3390.
 F. Specify the volume serial number of the disk (replacing diskvol in line 16), where the dataset is to be created.
Once the job has completed successfully, customize and submit the sample JCL in CUSTOMER.DATASET job to copy the entire contents of the installation tape to disk. Customize displayed in the first 15 lines below

1 //JOBNAMEx JOB (SYSTEM), 'SYSPROG', NOTIFY=&SYSUID, REGION=6M,
2 // MSGLEVEL=(1,1), MSGCLASS=X, CLASS=A
3 /*
4 // TAPECOPY PROC PREFIX=custpref, == CUSTOMER HIGH LEVEL QUALIFIER
5 // signals UNIT NAME FOR TAPE DRIVE
6 // DISKUNIT=3390, == UNIT NAME FOR DISK DRIVE
7 // VOLSER=diskvol, == DISK VOLUME FOR INSTALL DATASETS
8 // LOADBLK=TRK, == BLOCKING FACTOR FOR CICS LOAD
9 // LOADPRI=45, == PRIMARY ALLOCATION FOR CICS LOAD
10 // LOADSEC=15, == SECONDARY ALLOCATION FOR CICS LOAD
11 // LOADDIR=10, == DIRECTORY BLOCKS FOR CICS LOAD
12 // JCLLBLK=TRK, == BLOCKING FACTOR FOR JCL LIBRARY
13 // JCLLPRI=1, == PRIMARY ALLOCATION FOR JCL LIBRARY
14 // JCLLSEC=1, == SECONDARY ALLOCATION FOR JCL LIB
15 // JCLLDIR=10, == DIRECTORY BLOCKS FOR JCL LIBRARY:

A Replace the Jobcard in the first two lines with one that meets your installation standards.

B Change the custpref value (see line 4) in the TAPECOPY procedure to a high-
level-qualifier for your installation datasets.

C Replace tapeunit in line 4 with the unit name of your tape drive: for example, TAPEUNIT=TAPE.

D Change the 3390 for the DISKUNIT in line 6, to meet your installation standards:
for example, DISKUNIT=SYSDA.

E Specify the volume serial number of the disk (replacing diskvol in line 7), where the dataset is to be created.

2.6.4. Creating the STCCLCFG File

Customize the Jobcard and Dataset names, and submit the STCCLCFG job found in JCLLIB.

2.6.5. Installing the CICS CEDA Definitions

Customize the file definition in the JCLLIB member CEDALCFG to conform to your file
naming conventions, and to match the file name created in the previous step.
Customize and submit job STCLCEDA to create CICS CEDA definitions for the eWay.
Using the CICS RDO interface, install the new definitions in group STCLSN into CICS,
and add the group name STCLSN, to your start-up list.

2.6.6. Adding the CICS eWay Load Modules to CICS DFHRPL

Concatenation

Add the following data set to the DFHRPL concatenation under CICS:

// DD DSN=&PREFIX..STC.CICS.CICSLOAD, DISP=SHR

Note: Remember to re-cycle your CICS region to pick up this new library.
2.7 SeeBeyond CICS Listener Configuration Maintenance for z/OS

After the STCCLCFG Configuration File has been created and the CEDA file definition has been installed, use the SeeBeyond CICS Configuration File Maintenance screen to view and update the contents of the STCCLCFG configuration file.

1. Logon to the CICS region that the SeeBeyond Listener is running in. Clear the screen, type in stlc as shown in Figure 8, and press Enter.

 Figure 8

2. The Configuration File Maintenance screen appears as displayed in Figure 9.

 Figure 9
The fields of the Listener Configuration Maintenance screen are described as follows:

- **Generate verbose debug tracing for STCCLSN:** This flag controls the logging of debug tracing messages issued by the STCCLSN SeeBeyond CICS Listener Program. These tracing messages are written to the LLOG transient data queue.

 If the “Write messages to the LLOG listener log queue” field on this screen is turned off, then debug tracing will NOT be logged.
 - Y: yes, log debug tracing messages.
 - N or blank: no, do not log debug tracing messages.

- **Generate verbose debug tracing for STCCLQS:** This flag controls the logging of debug tracing messages issued by the STCCLQS SeeBeyond CICS Listener Query Security Program. These tracing messages are written to the LLOG transient data queue.

 If the “Write messages to the LLOG listener log queue” field on this screen is turned off, then debug tracing will NOT be logged.
 - Y: yes, log debug tracing messages.
 - N or blank: no, do not log debug tracing messages.

- **Verify userid/password during STCL listener transaction startup:** This flag controls userid/password verification at the STCL SeeBeyond Listener Transaction startup. The userid and password are passed from the CICS eWay to the IBM Listener program in the user area of Connection Request Record. The IBM Listener passes this user area to the SeeBeyond CICS Listener when it spawns it as a child listener task.

 If this flag is turned on, the SeeBeyond Listener Program startup logic issues a Verify Password command to check whether the userid is defined for the RACF or any equivalent security system, and if the password is valid and current.
 - Y: yes, verify userid/password.
 - N or blank: no, do not verify userid/password.

- **Query Security during STCL listener transaction startup:** This flag controls Query Security processing at the STCL SeeBeyond Listener Transaction startup. The userid and password are passed from the CICS eWay to the IBM Listener program in the user area of Connection Request Record. The IBM Listener passes this user area to the SeeBeyond CICS Listener when it spawns it as a child listener task.

 If this flag is turned on, the SeeBeyond Listener Program startup logic invokes the STLQ SeeBeyond Listener Query Security transaction to check if the userid is authorized to run the STCL SeeBeyond Listener transaction.
 - Y: yes, perform Query Security processing.
 - N or blank: no, do not Query Security processing.
Verify userid/password for each business rules transaction record: This flag controls userid/password verification for each Business Rules transaction sent in from the CICS eWay. The userid and password are passed in from the CICS eWay in the Application Control Record (ACR) that contains the Business Rules transaction data.

If this flag is turned on, the SeeBeyond CICS Listener program Business Rules logic issues a Verify Password command to check whether the userid is defined for the RACF or any equivalent security system, and if the password is valid and current.

- **Y**: yes, verify userid/password.
- **N or blank**: no, do not verify userid/password.

Query Security for each business rules transaction record: This flag controls Query Security processing for each Business Rules transaction sent in from the CICS eWay. The userid and password are passed in from the CICS eWay in the Application Control Record (ACR) that contains the Business Rules transaction data.

If this flag is turned on, the SeeBeyond CICS Listener Program Business Rules logic invokes the STLQ SeeBeyond Listener Query Security transaction to check whether the userid is authorized to run the requested customer application program or transaction that is specified in the ACR.

- **Y**: yes, perform Query Security processing.
- **N or blank**: no, do not Query Security processing.

Write messages to the LLOG listener log queue: This flag controls the logging of messages to the LLOG listener log queue.

If this flag is turned off, NO messages (normal information as well as debug tracing) will be written by either the STCCLSN (SeeBeyond CICS Listener) or STCCLQS (SeeBeyond Listener Query Security) programs.

- **Y**: yes, write log messages to the LLOG listener log queue.
- **N or blank**: no, do not write log messages to the LLOG listener log queue.

Suppress RACF messages generated by Query Security commands: This flag controls RACF informational message logging for Query Security exceptions.

If this flag is turned off, then every Query Security command that results in a negative result for Control, Alter, Update, or Read will cause respective RACF information messages to be written to the system message log. This could create unnecessary, high volume logging on the system message log files.

It is recommended that this flag be turned off for debugging or low volume testing purposes only.

In a production environment, it is recommended that this flag be turned on to
suppress the RACF informational messages generated by Query Security exception conditions.

- **Y**: yes, suppress RACF messages generated by Query Security processing.
- **N or blank**: no, do not suppress (in other words, allow) RACF messages to be generated by Query Security processing.

Timeout value for invoking STCCLQS: This value is used to control the amount of time the STCCLSN SeeBeyond CICS Listener program waits for the STLQ Listener Query Security Transaction to return a response. Valid values are **0000** to **9999**. Since the STLQ transaction, under normal CICS processing conditions, executes within one second, it is recommended that the value be set above 1 and below 10. However, if the CICS region that the SeeBeyond CICS Listener is running in experiences occasional performance bottle necks, you may choose to set this value higher to avoid unnecessary STLQ timeout errors during peek load conditions.

This value does not affect the time STLQ takes to respond. It simply sets a timeout threshold above which the STCCLSN stops waiting for a response from STLQ and issues an error message back to the CICS eWay indicating that an STLQ timeout has occurred. For example, if this timeout value is set to 5, and STLQ executes in 1 second, then STCCLSN will “wake up” after 1 second, not the full 5 seconds.

4 The pfkeys for this screen are as follows:

- **PF3**: exit.
- **PF4**: commit the updates on the screen to the STCCLCFG file and update all existing Listener Program Areas (LPA’s) in CICS storage.
- **Enter**: validates the onscreen data for errors.

The user may make any necessary changes, then use the **Enter** key to validate any new values that have been entered. If no error conditions occur for the data on the screen, then the user must press the PF4 key to commit the updates to the STCCLCFG Listener Config VSAM File. The updated screen appears as displayed in **Figure 10 on page 24**. A message appears at the bottom of the screen that indicating the file and whether any LPA’s were updated.

During commit processing, the program will also automatically propagate the new data to all existing SeeBeyond Listener Program Areas (LPA’s) in the same CICS region. There is one LPA for each instance of the SeeBeyond CICS Listener in the region. The STCCLSN (SeeBeyond CICS Listener) program uses its copy of the LPA to store monitoring statistics and to retrieve data used to control the execution of the SeeBeyond CICS Listener. Live updates to the LPAs provide the capability for real time control of the configuration flags and timers for all active SeeBeyond CICS Listeners executing at that time.
5 Continue making any necessary changes, committing them by pressing **PF4**. To exit the screen press **PF3**.
2.7.1. The SeeBeyond CICS Listener Monitor Screen for z/OS

After the components are installed, use the SeeBeyond CICS Listener monitoring screen to verify that all components are properly installed and working correctly.

1. Logon to the CICS region that the SeeBeyond Listener is running in. Clear the screen, and type in `stlm` as displayed in Figure 11. Press Enter.

 Figure 11

 ![Figure 11](image)

2. The menu screen appears as displayed in Figure 12.

 Figure 12

 ![Figure 12](image)
3 The pfkeys for this screen, and all of the monitor screens shown in this document, are as follows:

- **PF4**: displays the LPAT (Listener Program Area Table).
- **PF13**: displays the LPA counts and polling rates.
- **PF14**: displays the LPA performance statistics.
- **PF15**: displays the LPA last request header received from the CICS eWay.
- **PF16**: displays the LPA last request payload received from the CICS eWay.
- **PF17**: displays the LPA last response header sent to the CICS eWay.
- **PF18**: displays the LPA last response payload sent to the CICS eWay.
- **PF19**: displays the LPA initial record sent from the IBM Listener (EZACIC02).
- **PF20**: displays the LPA status.
- **PF21**: displays the LPA last error message sent to the CICS eWay.

Press **PF4**. The **Listener Program Area Table** screen appears as displayed in Figure 13.

![Figure 13](image)

4 This screen displays the Listener Program Area Table (LPAT). Each line contains information about a Listener Program Area (LPA). There is one LPA associated with each instance of the SeeBeyond CICS Listener Program that is running or has run in this CICS region. The fields on the screen are:

- **CLPAT-status-flag**: shows the current status of the LPAT entry as follows:
 - E: Exists.
 - N: Never used.
C: Corrupted.

CLPAT-lpa-pointer: shows the address of the most recent LPA in this entry.

Listener Program Status: shows the last status of the Listener Program using this LPA.

Press PF13. The LPA Counts and Polling Rates screen appears as displayed in Figure 14.

Figure 14

This screen displays counts and polling rates information for each LPA. Each line shows one LPA (one for each instance of the SeeBeyond Listener Program).

The fields on the screen are as follows:

- **program link**: the number of program links that have been requested.
- **start trans**: the number of transaction starts that have been requested.
- **avg poll rate**: the average number of receives per polling cycle to satisfy a full message receive from the CICS eWay.
- **non-max cnt**: the 'high water mark' of receives within a polling cycle without reaching the polling rate (polling rate is sent in from the CICS eWay when it initializes connection with the CICS Listener program).
- **highest poll**: the 'high water mark' of receives within a polling cycle that can include reaching the maximum allowed polling rate.
- **receive delay cnt**: the number of one second delays that occurred due to the Comm Timeout limit being reached (Comm. Timeout is sent in from the CICS eWay when it initializes connection with the CICS Listener program).
listener delay cnt: number of one second delays that occur due to the Listener Timeout limit being reached (Listener Timeout is sent in from the CICS eWay when it initializes connection with the CICS Listener program).

Press PF14. The **LPA Performance Statistics** screen appears as displayed in Figure 15.

![Figure 15](image)

This screen (Figure 15) displays the performance statistics for each LPA. Each line shows one LPA (one for each instance of the SeeBeyond Listener Program).

All times shown are in sss.mmm format (sss = seconds, mmm=milliseconds). The fields on the screen are as follows:

- **peek request**: the average time spent peeking for the next incoming application request message.
- **receive request**: the average time spent receiving the next incoming application request message.
- **send ack**: the average time spent sending an ack for an incoming application request message.
- **link program**: the average time spent link to requested application programs.
- **start tran**: the average time spent starting requested application transactions.
- **send response**: the average time spent sending the application response (including the updated COMMAREA for program links) back to the eWay.
- **peek ack**: the average time spent peeking for the incoming ack to the preceding send response.
- **receive ack**: the average time spent receiving the incoming ack to the preceding send response.
Press PF15. The **Last Application Request Header Received** screen appears as displayed in Figure 16.

Figure 16

This screen (Figure 16) displays the last application request header received from the CICS eWay for each LPA. Each line shows one LPA (one for each instance of the SeeBeyond Listener Program). The fields on the screen are as follows:

- **message length**: the entire length of the incoming message including the header and payload.
- **program or tran**: the requested application program or transaction.
- **appl timeout**: (reserved for future development).
- **request code**: which action is being requested.
 - 0010 = link to application program.
 - 0020 = start application transaction.
 - 0111 = ack for a link response.
 - 0121 = ack for a start response.
 - 9000 = shutdown the Listener program.
- **response code**: always set to zero from the CICS eWay.
- **pad char**: padding character for the COMMAREA if the payload length is less than the COMMAREA length.
- **commarea length**: the length of the data to pass to the application program (link) or the application transaction (start).
- **payload length**: the length of the payload portion of the incoming message.
Press PF16. The **Last Application Request Payload Received** screen appears as displayed in Figure 17.

Figure 17

This screen (Figure 17) displays the last application request payload received from the CICS eWay for each LPA. Each line shows one LPA (one for each instance of the SeeBeyond Listener Program). There is one field on the screen:

- **Payload Received**: the incoming payload from the CICS eWay.

Press PF17. The **Last Application Response Header** screen appears as displayed in Figure 18.
The Last Application Response Header screen (Figure 18 on page 31) displays the last response header sent to the CICS eWay for each LPA. Each line shows one LPA (one for each instance of the SeeBeyond Listener Program). The fields on the screen are as follows:

- **message length**: the entire length of the outgoing message including the header and payload.
- **program or tran**: the application program or transaction that was executed or started.
- **appl timeout**: (reserved for future development).
- **request code**: what action is being requested.
 - 0001 = ack the init request.
 - 0011 = ack for a link program request.
 - 0021 = ack for a start trans response.
 - 0110 = response from a linked application program (including COMMAREA).
 - 0120 = response from starting an application transaction (no COMMAREA included).
 - 9001 = ack for a shutdown request.
- **response code**: response code indicating what occurred while processing the previous incoming request from the eWay.
 - 0000 = ok.
 - 0011 = bad startcode during initialization.
• 0012 = bad password on init record.
• 0013 = bad comm timeout on init record.
• 0014 = bad appl timeout on init record.
• 0015 = bad Listener timeout on init record.
• 0016 = error reading the init record from transient data queue.
• 0017 = error retrieving the init record from the start data.
• 0018 = error while setting blocking mode.
• 0051 = bad payload length.
• 0052 = error while linking to a program.
• 0053 = error while starting a transaction.
• 0054 = bad request code.
• 0055 = bad response code.
• 0056 = partial message received.
• 0057 = bad program name.
• 0058 = bad message length.
• 0059 = bad commarea length.

• pad char: padding char that was sent in from the CICS eWay.
• commarea length: COMMAREA length that was sent in from the CICS eWay.
• payload length: payload length that was sent in from the CICS eWay (the Listener sets this to zero if this is a response to a start transaction request).

Press PF18. The Last Application Response Payload Sent screen appears as displayed in Figure 19.
Figure 19

This screen (Figure 19) displays the last application response payload sent to the CICS eWay for each LPA. Each line shows one LPA (one for each instance of the SeeBeyond Listener Program). There is one field on the screen:

- **Payload sent:** the outgoing payload being sent to the CICS eWay.

Press **PF19**. The *Initialization Record Passed from EZACIC02* screen appears as displayed in **Figure 20 on page 34**.
This screen (Figure 20) displays the init record that was passed to the SeeBeyond Listener program from the IBM Listener program (ezacic02) for each LPA. Each line shows one LPA (one for each instance of the SeeBeyond Listener program). The fields on the screen are as follows:

- **sckt nbr**: the socket number that is passed to the SeeBeyond Listener.
- **Listener applid**: the applid of the CICS region that the IBM Listener is executing in that started this instance of the SeeBeyond Listener.
- **Listener tasked**: the CICS taskid for the IBM Listener program that started this instance of the SeeBeyond Listener.
- **userid**: userid passed in from the CICS eWay.
- **password**: user password passed in from the CICS eWay.
- **comm. Timeout**: this timeout value is the threshold limit for waiting for all the bytes of an incoming message.
- **Listener timeout**: this timeout value is the threshold limit for waiting for a new incoming message.
- **poll rate**: how many times the SeeBeyond Listener will perform a receive loop to satisfy a complete message receive, after which it will wait one second before trying again.
- **socket family**: the TCP/IP family to which this socket belongs.
- **socket port**: the port this instance of the SeeBeyond Listener is using.

Press PF20. The **Status Code Information** screen appears as displayed in **Figure 21 on page 35**.
This screen (Figure 21) shows the status information for each LPA. Each line shows one LPA (one for each instance of the SeeBeyond Listener program). The fields on the screen are as follows:

- **Current status**: The current status of an active SeeBeyond Listener program, or the last known status of a previously executing SeeBeyond Listener program.
 - C = LPA is initialized.
 - E = about to get ezacic02 data.
 - G = about to take socket from IBM Listener program.
 - I = about to set mode to blocking.
 - K = about to send ack for init request.
 - M = peeking for length of next incoming request.
 - O = peeking for entire incoming request.
 - Q = receiving full incoming request message.
 - S = sending ack for application request.
 - U = linking to requested application program.
 - W = starting a request application transaction.
 - Y = sending an application response.
 - 0 = peeking for application response ack.
 - 2 = receiving an application response ack.
 - 4 = a shutdown request has been received.
 - 6 = sending an ack for the shutdown request.
Chapter 2
Installing the CICS eWay

Section 2.8
CICS Listener Considerations for Invoking DB2 Applications

- 7 = shutdown is complete, this LPA is now available for reuse.
- 8 = SeeBeyond Listener program appended.

- **Current Status date**: date for this status.
- **Current Status time**: time for this status.
- **Initial Startup date**: date this instance of the SeeBeyond Listener was started.
- **Initial Startup time**: time this instance of the SeeBeyond Listener was started.
- **cics task nbr**: the CICS eibtaskn for this instance of the SeeBeyond Listener.

Press PF21. The **Error Message Sent** screen appears as displayed in Figure 22.

![Figure 22](image)

13 This screen (Figure 22) shows the last error message sent to the CICS eWay for each LPA. Each line shows one LPA (one for each instance of the SeeBeyond Listener program). There is one field on the screen:

Error Message Sent: the last error message sent to the CICS eWay for this instance of the SeeBeyond Listener program.

2.8 CICS Listener Considerations for Invoking DB2 Applications

One of the following two techniques are required when using the CICS eWay to run CICS applications that invoke a DB2 table:

- RCT entry for the STCL SeeBeyond CICS Listener Transaction
- PPT entry to redirect DB2 application to another AOR
RCT entry for the STCL SeeBeyond CICS Listener Transaction

To run DB2 application programs under the STCL SeeBeyond CICS Listener transid, an RCT entry for the STCL transaction must be created using an RCT macro definition similar to the one shown below or by using an equivalent RDO entry.

```
DSNCRCT TYPE=ENTRY, TXID=STCL, THRDM=0, THRDA=0, THRDS=0, TWAIT=POOL, PLAN=HD45LE06, AUTH=(SIGNID, *, *)
```

PPT entry to redirect DB2 application to another AOR

To redirect DB2 application programs to another AOR, the PPT entry for the requested DB2 application program in the TOR (where the STCL SeeBeyond CICS Listener transaction is running) must be defined to run the DB2 application program in a different region (usually an AOR) and under a specific PCT in that AOR. Refer to Figure 23 for a detailed flow diagram showing the use of the PPT and PCT.

Figure 23 SeeBeyond CICS Listener invoking DB2 programs
2.9 CICS Transaction Gateway 5.1 Installation and Configuration

For installation and configuration information regarding IBM’s CICS Transaction Gateway 5.1, consult the latest CTG 5.1 documentation at IBM’s CICS Library Website:

This documentation should also be consulted for information on configuring CTG for use with RACF and the latest APARs.

IBM CICS Transaction Gateway properties are set using the CTG Configuration Tool. The Configuration Tool is located under the CICS Transaction Gateway program menu.
Chapter 3

Configuring the CICS eWay

This chapter describes how to create and configure the CICS eWay properties.

Chapter Topics

- Creating and Configuring the CICS eWay on page 39
- Using the Properties Sheet on page 41
- CICS eWay Connectivity Map Configuration Properties on page 42
- CICS eWay Environment Explorer Configuration Properties on page 46

3.1 Creating and Configuring the CICS eWay

All eWays contain a set of parameters with properties unique to that eWay type. After the eWays are established and a CICS External System is created in the project’s Environment, the eWay parameters can be modified for your specific system. The CICS eWay parameters are modified from these locations:

- From the Connectivity Map. These parameters most commonly apply to a specific component eWay, and may vary from other eWays (of the same type) in the project.
- From the Environment Explorer tree. These parameters are commonly global, applying to all eWays (of the same type) in the project. The saved properties are shared by all eWays in the CICS External System window.
- CICS eWay properties may also be set from the Collaboration Editor (Java) or eInsight Business Rules Designer, in which case they will override the corresponding properties in the eWay’s configuration file. Any properties that are not overridden retain their saved settings.

3.1.1 Selecting CICS as the External Application

To create a CICS eWay you must first create a CICS External Application in your Connectivity Map. CICS eWays are located between a CICS External Application and a Service. Services are containers for Collaborations, Business Processes, eTL processes, and so forth.

To create the CICS External Application

1. From the Connectivity Map toolbar, click the External Applications icon.
2 Select the **CICS External Application** from the menu (see Figure 24 on page 40). The selected CICS External Application icon appears on the Connectivity Map toolbar.

![Figure 24 - External Applications Selection Menu](image)

3 Drag the new **CICS External Application** from the toolbar onto the Connectivity Map canvas. This represents an external CICS system.

From the Connectivity Map, you can associate (bind) the External Application with the Service to establish an eWay (see Figure 25).

![Figure 25 - eWay Location](image)

When CICS is selected as the External Application, it automatically applies the default CICS eWay properties, provided by the OTD, to the eWay that connects it to the Service. These properties can then be or modified for your specific system using the **Properties Sheet**.

3.1.2 Modifying the CICS eWay Properties

A project’s eWay properties can be modified after the eWays have been established in the Connectivity Map and the Environment has been created.

Modifying the CICS eWay (Connectivity Map) Properties

1. From the Connectivity Map, double click the eWay icon, located in the link between the associated External Application and the Service.
2. The eWay **Properties Sheet** opens with the CICS eWay Connectivity Map properties. Make any necessary modifications and click **OK** to save the settings.

Modifying the CICS eWay (Environment Explorer) Properties

1. From the Environment Explorer tree, right-click the CICS External System. Select **Properties** from the shortcut menu. The **Properties Sheet** opens with the CICS eWay Environment properties.
2. Make any necessary modifications to the Environment properties of the CICS eWays, and click **OK** to save the settings.
3.1.3. **Using the Properties Sheet**

Modifications to the eWay configuration properties are made from the CICS eWay Properties Sheet.

To modify the default eWay configuration properties

1. Open the Properties Sheet to the CICS eWay default properties. An eWay has two different sets of parameters: those specific to that particular eWay (accessed from the Connectivity Map), and those that are common to all eWays of this type (accessed from the Environment Explorer tree).

2. From the upper-right pane of the Properties Sheet, select a subdirectory of the configuration directory. The parameters contained in that subdirectory are now displayed in the Properties pane of the Properties Sheet. For example, clicking on the **connector** subdirectory displays the editable parameters in the right pane, as shown in Figure 26.

![Figure 26 Properties Sheet -- CICS Properties](image-url)
3 Click on any property field to make it editable. For example, click on the class parameter to edit the class value. If a parameter’s value is true/false or multiple choice, the field reveals a submenu of property options.

Click on the ellipsis (. . .) in the properties field to open a separate configuration dialog box. This is helpful for large values that cannot be fully displayed in the parameter’s property field. Enter the property value in the dialog box and click OK. The value is now displayed in the parameter’s property field.

4 A description of each parameter is displayed in the Description pane when that parameter is selected, providing an explanation of any required settings or options.

5 The Comments pane provides an area for recording notes and information regarding the currently selected parameter. This is saved for future referral.

6 After modifying the configuration properties, click OK to close the Properties Sheet and save the changes.

3.2 CICS eWay Connectivity Map Configuration Properties

The CICS eWay configuration parameters, accessed from the Connectivity Map, are organized into the following sections:

- Connector on page 42
- CICS Client on page 43

3.2.1. Connector

This section contains a set of top level parameters:

- Class on page 42
- Connection Transport on page 43
- Property.Tag on page 43
- Type on page 43

Class

Description

Specifies the class name of the CICS Client connector object.

Required Value

The valid (class) package name for the CICS Client connector object. The default is com.stc.eways.cics.CicsClientConnector.
Connection Transport

Description
Specifies the underlying connection transport used by the CICS eWay to send requests and get responses from a CICS region.

Required Value
Enter the name of the selected underlying connection transport as follows:

- SeeBeyond CICS Listener
- Transaction Gateway (specifies the IBM CICS Transaction Gateway 5.1)

SeeBeyond CICS Listener is the configured default.

Property.Tag

Description
Specifies the data source identity. This parameter is required by the current EBobConnectorFactory.

Required Value
The valid data source package name.

Type

Description
Specifies the connector type.

Required Value
CICS. The value always defaults to CICS for CICS connections.

3.2.2. CICS Client

This section contains the following parameters for CICS Client setup:

- CICS Program on page 44
- CICS TransId on page 44
- COMMAREA Length on page 44
- ECI call type on page 44
- ECI extend mode on page 44
- Encoding on page 45
CICS Program

Description
 Specifies the CICS program to be run on the server. Maximum length is eight characters.

Required Value
 A valid CICS program name, eight characters or less.

CICS TransId

Description
 Specifies the CICS TransId to be run on the server. Maximum length is four characters.

Required Value
 A valid CICS TransId, four characters or less.

COMMAREA Length

Description
 Specifies the length (in bytes) of the communication area (COMMAREA) passed to the ECI.

Required Value
 An integer in the range of 1 to 32659. The configured default is 1000.

Note: When using the CICS Transaction Gateway transport, data sent to CICS must be padded with spaces, if necessary, to match the full size of the commarea.

ECI call type

Description
 Specifies whether the ECI call type is Synchronous. Synchronous calls wait for the transaction to complete, then return the contents of the COMMAREA. Only Synchronous calls are supported.

Required Value
 Synchronous is the configured default.

ECI extend mode

Description
 Specifies whether a logical unit of work is terminated at the end of a call.

Required Value
 Yes or No. Yes indicates that the work unit is terminated at the end of a call. No is the configured default.
Chapter 3
Configuring the CICS eWay

Section 3.2
CICS eWay Connectivity Map Configuration Properties

Encoding

Description

Specifies the canonical name for the encoding set.

Required Value

The canonical name for any encoding set supported by Sun's Java Runtime Environment 1.1.8 (contained in rt.jar and i18n.jar). Examples are ASCII and Cp500 (EBCDIC). When running the CICS eWay on z/OS platforms, encoding should be set to "ISO-8859-1".
3.3 CICS eWay Environment Explorer Configuration Properties

The CICS eWay configuration parameters, accessed from the Environment Explorer tree, are organized into the following sections:

- SeeBeyond CICS Listener on page 46
- CICS Gateway on page 49
- Tracing on page 51
- CICS Client on page 52

3.3.1. SeeBeyond CICS Listener

These parameters are specific to the SeeBeyond CICS Listener. This section contains a set of top level parameters:

- COMMAREA Padding Character on page 46
- Host on page 47
- KeepAlive on page 47
- Listener Timeout on page 47
- NoDelay on page 47
- Polling Rate on page 48
- Port on page 48
- ReceiveBufSize on page 48
- SeeBeyond CICS Listener TransId on page 48
- SendBufSize on page 48
- Start Delay on page 49
- Start Type on page 49
- TP Timeout on page 49
- Transport Timeout on page 49

COMMAREA Padding Character

Description

Specifies the EBCDIC code for the character used by the SBYND listener to pad the COMMAREA at the CICS server when the actual length of the payload in the COMMAREA is shorter than the length given by CommAreaLength. The default value is hexadecimal 40 - EBCDIC space.
Required Value

- A character value coded in Hexadecimal. For example: 40 for Blanks, 00 for Low Values, FF for High Values, and so forth.

Host

Description

Specifies the name of the mainframe host with which to connect. This is always CICS.

Required Value

CICS. The value always defaults to CICS for CICS connections. The default is CICS.

KeepAlive

Description

Specifies whether to enable socket keep-alive checking. A setting of TRUE enables an implementation specific time period when a probe is sent to the peer host. The purpose of this option is to detect if the peer host has crashed.

One of three responses is expected:

1. The peer responds with the expected ACK. The application is not notified (since everything is OK). TCP will send another probe following another 2 hours of inactivity.
2. The peer responds with an RST, which tells the local TCP that the peer host has crashed and rebooted. The socket is closed.
3. There is no response from the peer. The socket is closed.

Required Value

Enter TRUE or FALSE. TRUE is the default.

Listener Timeout

Description

Specifies the estimated amount of time (in milliseconds) for the SeeBeyond CICS Listener to wait for the next incoming transaction program request from the CICS eWay.

Required Value

An integer between 1 and 864000 representing milliseconds (for example, 120000 milliseconds equals 2 minutes). The default value is 5000.

NoDelay

Description

Specifies whether the system can delay connections or requests. Generally, **NoDelay/True** is necessary for high-volume and/or critical transactions. In cases of low-volume and/or noncritical transactions, you can use **NoDelay/False**. Required Values
Required Value

Enter **TRUE** or **FALSE**. TRUE is the default.

Polling Rate

Description

Specifies the polling rate. This is the number of times the SeeBeyond CICS Listener will query the current TCP connection for incoming traffic before issuing an EXEC CICS DELAY for one second.

Required Value

An integer between 1 and 255 representing. The default value is 5.

Port

Description

Specifies the TCP/IP port where the SeeBeyond CICS Listener is listening. This is the port to which the CICS eWay will connect.

Required Value

The TCP/IP port to which SeeBeyond CICS Listener is listening. The default is 3001.

ReceiveBufSize

Description

Specifies the Receive Buffer Size (in bytes) for the underlying socket, this is a hint.

Required Value

An integer between 1 and 864000 representing bytes (for example, 10240 bytes equals 10 kilobytes). The default value is 4096.

SeeBeyond CICS Listener TransId

Description

Specifies the TransId of the SeeBeyond CICS Listener on the mainframe host. This is the CICS Transaction that the SeeBeyond CICS Listener is installed under.

Required Value

The valid TransId of the SeeBeyond Cics Listener

SendBufSize

Description

Specifies the Send Buffer Size for the underlying socket.
Chapter 3 Section 3.3
Configuring the CICS eWay CICS eWay Environment Explorer Configuration Properties

Required Value
An integer between 1 and 864000 representing bytes (for example, 10240 bytes equals 10 kilobytes). The default value is 4096.

Start Delay
Description
Specifies the hours, minutes and seconds (interval of time) to delay starting the transaction program (TP) on the CICS server for the IC Start Type. This field is optional but must specify all 6 digits if used.

Required Value
A 6 digit integer. All 6 digits must be given if this is specified (for example, 000000).

Start Type
Description
Specifies the startup type. This can be either IC for CICS interval control or TD for CICS transient data. This is the CICS Startup type for the program being executed.

Required Value
Select IC or TD.

TP Timeout
Description
Specifies the amount of time the CICS eWay will wait for the SeeBeyond CICS Listener to return results for a current transaction program request.

Required Value
An integer between 1 and 864000 representing milliseconds (for example, 120000 milliseconds equals 2 minutes). The default value is 50000.

Transport Timeout
Description
Specifies the timeout used by both the local and host side for receive on the socket.

Required Value
An integer between 1 and 864000 representing milliseconds (for example, 120000 milliseconds equals 2 minutes). The default value is 5000.

3.3.2. CICS Gateway
These parameters are specific to the CICS Transaction Gateway (CTG). This section contains the following parameters for CICS Java Gateway setup:
• **Port** on page 50
• **SSL KeyRing Class** on page 50
• **SSL KeyRing Password** on page 50
• **URL** on page 50

Port

Description

Specifies the TCP/IP port with which to connect, that is, the port where CTG is running.

Required Value

An integer ranging from 1 to 864000. The default value is 2006.

SSL KeyRing Class

Description

Specifies the full classname of the SSL KeyRing class.

Required Value

The valid full classname of the SSL KeyRing class.

SSL KeyRing Password

Description

Specifies the PASSWORD for the encrypted KeyRing class.

Required Value

The valid password for the SSL KeyRing class.

URL

Description

Specifies the remote or local Gateway with which to connect.

Required Value

The valid remote or local Gateway node name or IP address.
3.3.3. Tracing

This section contains the following parameters for CICS Client setup:

- **Dump Offset** on page 51
- **Filename** on page 51
- **Level** on page 51
- **Timing** on page 52
- **Truncation Size** on page 52

Dump Offset

Description

CTG specific. Specifies the offset from which the display of any data blocks will start.

Required Values

A number ranging from 0 to 864000, indicating the offset. If the offset is greater than the total length of data to be displayed, an offset of 0 is used.

The dump offset can also be set using the system property `gateway.T.setDumpOffset=xxx`, where `xxx` is a number.

Filename

Description

CTG specific. Specifies a file location for writing the trace output. This is an alternative to the default output on stderr. Long filenames must be surrounded by quotation marks; for example: "trace output file.log".

Required Values

A valid output file name.

Filename can also be set using the system property `gateway.T.setTFile=xxx`, where `xxx` is a filename.

Level

Description

CTG specific. Specifies the level of trace information available.

Required Values

An integer in the range of 0 to 3, indicating the following:

- **0**: None. No CICS Java client application tracing.
- **1**: Standard. Only the first 128 bytes of any data block (for example the COMMAREA, or network flows) are displayed by default. This trace level is equivalent to the Gateway trace set by the ctgstart -trace option. (This can also be set using the system property `gateway.T.trace=on`
2: Full Debug. Traces out the whole of any data blocks by default. The trace contains more information about CICS Transaction Gateway than the standard trace level. This trace level is equivalent to the Gateway debug trace set by the ctgstart -x option. (This can also set using the system property \texttt{gateway.T=on}.)

3: Exception Stacks. Traces most Java exceptions, including exception which are expected during normal operation of the CICS Transaction Gateway. No other tracing is written. This trace level is equivalent to the Gateway stack trace set by the ctgstart -stack option. (This can also set using the system property \texttt{gateway.T.stack=on}.)

Timing

Description

Specifies whether or not to display time-stamps in the trace.

Required Value

- \texttt{On} or \texttt{Off}. \texttt{On} indicates that the time-stamp is displayed in the trace. The default setting is \texttt{On}.

Timing can also set using the system property \texttt{gateway.T.timing=on}.

Truncation Size

Description

CTG specific. Specifies the maximum size of any data blocks written in the trace.

Required Value

A number ranging from 0 to 864000, indicating the maximum data block size. A value of 0 indicates that no data blocks will be written in the trace. No value (leaving the property blank) indicates that no truncation size is specified.

The truncation size can also be set using the system property \texttt{gateway.T.setTruncationSize=xxx}, where \texttt{xxx} is a number.

3.3.4. CICS Client

This section contains the following parameters for CICS Client setup:

- **CICS Password** on page 52
- **CICS UserId** on page 53

CICS Password

Description

Specifies the password for the CICS user. Maximum length is eight characters.

Required Value

- A valid password for the user ID, eight characters or less.
CICS UserId

Description

Specifies the ID of the CICS user. Maximum length is eight characters.

Required Value

A valid CICS user ID, eight characters or less.

3.4 Alerting and Logging

eGate provides an alerting and logging feature. This allows monitoring of messages, and captures any adverse messages in order of severity based on configured severity level and higher.

For information on enabling or modifying the level of logging for the various logging categories, see the eGate Integrator System Administration Guide.

The alerts/status notifications for the CICS eWay are currently limited to Started, Running, Stopping, and Stopped.
Chapter 4

Using eInsight Business Processes with the CICS eWay

This chapter describes how to use the CICS eWay with the ICAN Suite’s eInsight Business Process Manager and the Web Services interface.

Note: You must have the eInsight.sar file installed to use the Web Services interface.

Chapter Topics

- The eInsight Engine and Components on page 54
- The CICS eWay With eInsight on page 55
- The CICS eWay eInsight Sample Project on page 56

4.1 The eInsight Engine and Components

eGate components can be deployed as Activities in eInsight Business Processes. Once a component is associated with an Activity, eInsight invokes it using a Web Services interface. eGate components that can interface with eInsight in this way include the following:

- Object Type Definitions (OTDs)
- eWays
- Collaborations

Using the Enterprise Designer and eInsight, you can add an Activity to a Business Process, then associate that Activity with an eGate component, for example, an eWay. Then, when eInsight runs the Business Process, it automatically invokes that component via its Web Services interface.

See the eInsight Business Process Manager User’s Guide for details.
4.2 The CICS eWay With eInsight

An eInsight Business Process Activity can be associated with the CICS eWay during the system design phase. To make this association, select the desired operators under the eWay in the Enterprise Explorer and drag it onto the eInsight Business Process Designer canvas.

The CICS eWay has the following operators available:

- execute
- getServerList

The operation is automatically changed to an Activity with an icon identifying the component that is the basis for the Activity. At run time, eInsight invokes each step in the order defined in the Business Process. Using eInsight’s Web Services interface, the Activity in turn invokes the CICS eWay.

Dynamic Configuration

The CICS eWay web service message structure exposes properties such as server, transId, password, userId, and so forth, that correspond to eWay configuration parameters. Populating these properties dynamically at runtime from the Business Rules Designer, allows the user to override the corresponding configuration parameters.

4.3 CICS CTG Concerns

Defining More Than One Server When Using CTG

If CTG is used as the connection transport and more than one server is defined in a CICS Transaction Gateway installation, the target server name must be assigned as a literal to the server node in the Business Process.

To assign the target server, do the following:

1. From the eInsight Business Process Designer canvas, double-click the Business Process before the CICS_eWay.execute activity, to open the Business Rules Designer.
2. From the Business Rules Designer toolbar, select the String Literal and drag it to the Business Rules Designer canvas. Enter the target server name as the Literal Value.
3. Map the output node of the String Literal to server under CICS_eWay.execute.Input > Input in the Business Rule Designer’s Input pane (see Figure 27 on page 56).
Figure 27 eInsight Business Process Designer - Defining the Target Server

4 Save changes to the Repository.

Matching the COMMAREA Size

When using the CICS Transaction Gateway transport, data sent to CICS must be padded with spaces, if necessary, to match the full size of the commarea.

4.4 The CICS eWay eInsight Sample Project

This following pages provide directions for creating a simple project that demonstrates how eInsight Business Processes are used with the CICS eWay. The same project can be downloaded from the Installation CD-ROM in a near-complete state.

For more information on creating ICAN projects see the eInsight Business Process Manager User’s Guide and the eGate Integrator User’s Guide.

Expanded BPEL Properties

The 5.0.3 version of the CICS eWay displays additional CICS BPEL properties in the message structure, visible from the Business Rules Designer. The packaged sample that is included on the installation CD-ROM is designed to work with eGate, versions 5.0.1 and above, and will not display these additional properties when loaded. To see these additional parameters, create the sample manually, as directed in this chapter.

4.5 Importing a Sample Project

Sample eWay projects are included as part of the installation CD-ROM package. To import a sample eWay project to the Enterprise Designer do the following:

1 The sample files are uploaded with the eWay’s documentation .sar file and downloaded from the Enterprise Manager’s Documentation tab. The CICS_eWay_Sample.zip file contains the various sample project zip files. Extract the samples from the Enterprise Manager to a local file.
2 Save all unsaved work before importing a project.

3 From the Enterprise Designer’s Project Explorer pane, right-click the Repository and select Import from the shortcut menu. The Import Manager appears.

4 Browse to the directory that contains the sample project zip file. Select the sample file (for this sample, CICS_BP_Sample.zip) and click Import. After the sample project is successfully imported, click Close.

5 Before the imported sample project can be run you must do the following:
 - Create an Environment (see Creating an Environment on page 65)
 - Configure the eWay properties for your specific system (see Configuring the eWay Properties on page 66)
 - Create a Deployment Profile (see Creating and Activating the Deployment Profile on page 68)

The following pages provide step by step directions for manually creating the CICS_BP_Sample project.

4.6 The CICS_BP_Sample Project Overview

The CICS eWay project, CICS_BP_Sample, demonstrates the following:

- The Inbound File eWay subscribes to an external directory and receives input data (ASCII text).
- The ASCII text data is converted to EBCDIC (byte array) using cp037 encoding, and published by the CICS eWay, to the CICS external system.
- Input EBCDIC data from the CICS external system, is received by the CICS eWay and converted back to String ASCII data using cp037 encoding. This data is published to the outbound File eWay.
- The outbound File eWay publishes the data to an external directory.

Figure 28 CICS_BP_Sample Project
4.7 Creating the CICS_BP_Sample Project

The following pages provide step by step directions for creating the CICS_BP_Sample project.

4.7.1. Creating a Project

The first step is to create a new project in the SeeBeyond Enterprise Designer.

1. Start the Enterprise Designer.
2. From the Project Explorer tree, right-click the Repository and select **New Project** (see Figure 29). A new project (**Project1**) appears on the Project Explorer tree.

![Figure 29 Enterprise Explorer - New Project](image)

3. Click twice on **Project1** and rename the project (for this sample, **CICS_BP_Sample**).

4.7.2 Creating a Business Process

To create the CICS eInsight Business Process, do the following:

Creating the Business Process Flow

1. Right-click an existing project (for this sample **CICS_BP_Sample**) in the Enterprise Designer’s Project Explorer, and select **New > Business Process** from the shortcut menu. The eInsight Business Process Designer appears and **BusinessProcess1** is added to the Project Explorer tree. Rename **BusinessProcess1** to **CICS_BP**.
2. From the Project Explorer tree, expand the SeeBeyond > eWays > CICSeWay > CICS_eWay, and File > FileClient nodes.
3. Populate the eInsight Business Process Designer’s modeling canvas with the following activities from the Project Explorer tree, as displayed in **Figure 30 on page 59**:
 - **receive**, under SeeBeyond > eWays > File > FileClient
 - **execute**, under SeeBeyond > eWays > CICSeWay > CICS_eWay
 - **write**, under SeeBeyond > eWays > File > FileClient
4. Link the modeling elements by clicking on the element connector and dragging the cursor to the next element connector, making the following links as displayed in Figure 31.

- Start -> FileClient.receive
- FileClient.receive -> CICS_eWay.execute
- CICS_eWay.execute -> FileClient.write
- FileClient.write -> End

Figure 31 Business Process Designer - Link the Modeling Elements
Configuring the Modeling Elements

Business Rules, created between the Business Process Activities, allow you to configure the relationships between the input and output Attributes of the Activities using the Business Process Designer’s Business Rule Designer.

Adding Business Rules

1. Right-click the link between the `FileClient.receive` and `CICS_eWay.execute` Activities and select **Add Business Rule** from the shortcut menu.

2. Repeat step 1 for the `CICS_eWay.execute` to `FileClient.write` link (see Figure 32).

Figure 32 eInsight Business Process Designer - Adding Business Rules

Using the Business Rule Designer

1. From the eInsight Business Process Designer toolbar, click the **Map Business Process Attributes** button. The Business Rule Designer appears at the bottom of the eInsight Business Process Designer.

2. Click on the Business Rule icon in the link between `FileClient.receive` and `CICS_eWay.execute` to display the Business Rule’s Input and Output Attributes in the Business Rule Designer. These Attributes can now be modified.

3. From the Business Rule Designer toolbar, click the Method Palette icon (see Figure 33). The Method Palette appears. From the String tab, select **bytes to text** and **text to bytes**, and click **Close**. The **bytes to text** and **text to bytes** icons are added to the toolbar.

4. Drag the **text to bytes** icon to the Business Rule Designer canvas. The **text to bytes** method box appears on the Business Rule Designer canvas (see **Figure 33 on page 61**).
5 Map text, under FileClient.receive.Output to the text input node of the text to bytes method box by clicking on text under FileClient.receive.Output in Output pane of the Business Rule Designer, and dragging the cursor to the text input node of the text to bytes method box. A line is displayed between the two.

6 Map return bytes in the text to bytes method box, to commArea under CICS_eWay.execute.Input > Input in the Input pane of the Business Rule Designer.

7 Drag the string-literal icon from the Business Rule Designer toolbar to the Business Rule Designer canvas. The Input dialog box appears. Enter cp037 as the literal value. The string-literal method box is displayed in the Business Rule Designer.

8 Map the string-literal value, cp037, to the encoding input node of the text to bytes method box (see Figure 34).

9 From the Enterprise Explorer, right-click the Repository and select Save Changes into Repository from the shortcut menu, to save your current changes.

10 To configure the second Business Rule, click on the Business Rule icon in the link between the CICS_eWay.execute and FileClient.write Activities. This Business Rule is now displayed (to be modified) in the Business Rule Designer.
11 From the Business Rule Designer toolbar, drag and drop the **bytes to text** icon to the Business Rule Designer canvas. The **bytes to text** method box appears.

12 Map **commArea**, under **CICS_eWay.execute_Output > output** in the Output pane, to the **bytes** input node of the **bytes to text** method box.

13 Map the **return text** output node of the **bytes to text** method box, to **text** under **FileClient.write_Input** in the Input pane.

14 Drag the **string-literal** icon from the Business Rule Designer toolbar to the Business Rule Designer. The **Input** dialog box appears. Enter **cp037** as the literal value. The string-literal method box is displayed in the Business Rule Designer.

15 Map the string-literal value, **cp037**, to the **encoding** input node of the **bytes to text** method box (see Figure 35).

![Figure 35 eInsight Business Rule Designer](image)

16 From the Business Process Designer toolbar, click the **Synchronize Graphical Model and Business Process** icon to synchronize the graphical interface to the Business Process code.

17 Save your changes to the Repository.

4.7.3 Creating a Connectivity Map

The Connectivity Map provides a canvas for assembling and configuring a project’s components.

1 From the Project Explorer tree, right-click the new **CICS_BP_Sample** project and select **New > Connectivity Map** from the shortcut menu.

2 The New Connectivity Map appears and a node for the Connectivity Map is added under the project on the Project Explorer tree labeled **CMap1**. Rename the Connectivity Map **CICS_BP_Sample_CM**.

The icons in the toolbar represent the available components used to populate the Connectivity Map canvas.
Selecting the External Applications

In the Connectivity Map, the eWays are associated with External Systems. For example, to establish a connection to CICS, you must first select CICS as an External System to use in your Connectivity Map (see Figure 36).

Figure 36 Connectivity Map - External Applications

1. Click the External Application icon on the Connectivity Map toolbar,
2. Select the external systems necessary to create your project (for this sample, CICS and File). Icons representing the selected external systems are added to the Connectivity Map toolbar.

Populating the Connectivity Map

Add the project components to the Connectivity Map by dragging the icons from the toolbar to the canvas.

1. For this sample, drag the following components onto the Connectivity Map canvas as displayed in Figure 37:
 - File External System (2)
 - Service (A service is a container for Collaborations, Business Processes, eTL processes, and so forth)
 - CICS External System

Figure 37 Connectivity Map with Components

2. Rename the File1 External Application to FileIn by right-clicking the object, selecting Rename from the shortcut menu, and typing in the new name.
3. Rename the File2 External Application to FileOut.
4. Save your current changes to the Repository.
4.7.4. **Binding the eWay Components**

After the Business Processes have been completed, the components are associated and Bindings are created in the Connectivity Map.

1. From the Project Explorer, double-click **CICS_BP_Sample_CM**. The Enterprise Designer canvas now displays the Connectivity Map.

2. Drag and drop the **CICS_BP** Business Process from the Project Explorer onto the Service (**Service1**). If the Business Process was successfully associated, the Service’s icon changes to a Business Process icon (see Figure 38).

Figure 38 Connectivity Map - Binding the eWay Components

3. Double-click **Service1**. The **Service1 Binding dialog box** appears using the **CICS_BP** Rule.

4. From the Service1 Binding dialog box, drag **FileSender** (under Implemented Services) to the **FileIn (File)** External Application.

5. From the Service1 Binding dialog box, drag **CICS_Receiver** (under Invoked Services) to the **CICS1** External Application.

6. From the Service1 Binding dialog box, drag **FileReceiver** to the **FileOut** External Application (see **Figure 39 on page 65**). Minimize the Service1 Binding dialog box by clicking the chevrons in the upper-right corner.
Creating the CICS_BP_Sample Project

4.7.5. Creating an Environment

Environments include the external systems, Logical Hosts, integration servers and message servers used by a project and contain the configuration information for these components. Environments are created using the Enterprise Designer’s Environment Explorer and Environment Editor.

1. From the Enterprise Designer’s Enterprise Explorer, click the Environment Explorer tab.
2. Right-click the Repository and select New Environment. A new Environment is added to the Environment Explorer tree.
3. Rename the new Environment to CICS_BP_Sample_ENV.
4. Right-click CICS_BP_Sample_ENV and select New CICS External System. Name the External System CicsExtSys. Click OK. CicsExtSys is added to the Environment Editor.
5. Right-click CICS_BP_Sample_ENV and select New File External System. Name the External System FileExtSysIn and select Inbound File eWay as the External System Type. Click OK. FileExtSysIn is added to the Environment Editor.
6. Right-click CICS_BP_Sample_ENV and select New File External System. Name this External System FileExtSysOut and select Outbound File eWay as the External System Type. FileExtSysOut is added to the Environment Editor.
7. Right-click CICS_BP_Sample_ENV and select New Logical Host. The LogicalHost1 box is added to the Environment and LogicalHost1 is added to the Environment Editor tree.

Figure 39 Connectivity Map - Associating (Binding) the Project's Components
8 From the Environment Explorer tree, right-click **LogicalHost1** and select **New SeeBeyond Integration Server**. A new Integration Server (**IntegrationSvr1**) is added to the Environment Explorer tree under LogicalHost1.

9 Save changes to the repository. The Environment Explorer and Environment Editor now appear as displayed in Figure 40.

Figure 40 Environment Editor

![Environment Editor Diagram]

4.7.6. **Configuring the eWay Properties**

The CICS_BP_Sample project uses three eWays, each represented in the Connectivity Map as a node between an External Application and a Business Process. eWays facilitate communication and movement of data between the external applications and the eGate system.

The File eWay properties are configured from the Connectivity Map. The CICS eWay configuration parameters are set from both the Project Explorer’s Connectivity Map and the Environment Explorer tree.

To configure the eWays do the following:

Configuring the File eWay Properties

1 Double-click the inbound **File eWay** (see **Figure 41 on page 67**), select **Inbound File eWay** in the Templates dialog box and click **OK**.
The Properties Sheet opens to the inbound File eWay properties. Modify the properties for your system, including the settings for the inbound File eWay in Table 2, and click OK.

Table 2 Inbound File eWay Settings

<table>
<thead>
<tr>
<th>Inbound eWay Connection Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directory</td>
</tr>
<tr>
<td>Input file name</td>
</tr>
</tbody>
</table>

In the same way, modify the outbound File eWay properties for your system, including the settings in Table 3, and click OK.

Table 3 Outbound File eWay Settings

<table>
<thead>
<tr>
<th>Outbound eWay Connection Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directory</td>
</tr>
<tr>
<td>Output file name</td>
</tr>
</tbody>
</table>

Configuring the CICS eWay Properties

The CICS eWay properties must be set in both the Project Explorer’s Connectivity Map and Environment Explorer. For more information on the CICS eWay properties and the Properties Sheet, see Creating and Configuring the CICS eWay on page 39 or see the eGate Integrator User’s Guide.

Modifying the CICS eWay Connectivity Map Properties

1 From the Connectivity Map, double-click the CICS eWay. The Parameters dialog box opens to the CICS eWay project configuration properties.

2 Modify the CICS eWay Connectivity Map properties for your system, including the settings in Table 4 on page 68, and click OK.
Modifying the CICS eWay Environment Explorer Properties

1. From the **Environment Explorer** tree, right-click the CICS External System (CicsExtSys in this sample), and select **Properties** from the shortcut menu. The Properties Sheet appears.

2. Modify the CICS eWay environment properties for your system, including the settings in Table 5, and click **OK**.

Table 5 CICS Environment Explorer eWay Properties

<table>
<thead>
<tr>
<th>CICS eWay Environment Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>SeeBeyond CICS Listener Settings</td>
</tr>
<tr>
<td>Host</td>
</tr>
<tr>
<td>Port</td>
</tr>
<tr>
<td>CICS Client Settings</td>
</tr>
<tr>
<td>Set as directed, otherwise use the default settings.</td>
</tr>
<tr>
<td>CICS Password</td>
</tr>
<tr>
<td>CICS UserId</td>
</tr>
</tbody>
</table>

Note: CICS eWay properties may also be set from the Collaboration Editor (Java) or eInsight Business Rules Designer, in which case they will override the corresponding properties in the eWay's configuration file. Any properties that are not overridden retain their saved settings.

4.7.7 Creating and Activating the Deployment Profile

Deployment Profiles are specific instances of a project in a particular Environment. A Deployment Profile contains information about the assignment of Services and message destinations to integration and message servers (JMS IQ Managers). It also contains version information for all versionable objects in the project. Deployment profiles are created using the Deployment Editor.
To create the CICS_BP_Sample Deployment Profile do the following:

1. From the Enterprise Explorer’s Project Explorer, right-click the project (CICS_BP_Sample) and select New > Deployment Profile from the shortcut menu.

2. Enter a name for the Deployment Profile (for this sample CICS_BP_Sample_DP). Make sure that the selected Environment is CICS_BP_Sample_ENV. Click OK. The Deployment Profile Editor appears.

3. From the left pane of the Deployment Editor, drag the FileIn -> Service1 (external application) object to the FileExtSysIn window.

4. Drag the Service1 -> FileOut (external application) object to the FileExtSysOut window.

5. Drag the Service1 -> CICS1 (external application) to the CicsExtSys window.

6. Drag the Service1 object to IntegrationSvr1 in the Logicalhost1 window (see Figure 42).

7. Click Activate. When activation succeeds, save the changes to the Repository.

4.7.8. Running the Project

The following directions assume that the Enterprise Designer was downloaded to C:\ican50. If this is not the case, replace that location in the following directions with the appropriate location.

1. From the Enterprise Manager Downloads tab, download Logical Host - for win32.

2. Extract the file to the ican50\logicalhost1\logicalhost directory. You must specify the logicalhost1 directory for it to be created.

3. Navigate to C:\ican50\logicalhost1\logicalhost\bootstrap\config directory and open the logical-host.properties file using Notepad™.

4. Enter the following information in the appropriate fields:
 - Logical Host root directory: ican50\logicalhost1\logicalhost
Chapter 4
Using eInsight Business Processes with the CICS eWay

Section 4.7
Creating the CICS_BP_Sample Project

- Repository URL: http://localhost:port number/repository name
- Repository user name and password: *Your user name and password*
- Logical Host Environment name: CICS_BP_Sample_Env
- Logical Host name: `logicalhost1`

Save your changes to `logical-host.properties` and close the file.

5. Run the **bootstrap.bat** file in the `eGate50\logicalhost1\logicalhost\bootstrap\bin` directory.

6. Copy the sample input data file to the input directory.
Implementing a CICS eWay Project

This chapter provides an introduction to the CICS eWay components and information on how these components are created and implemented in an eGate project. It is assumed that the reader understands the basics of creating a project using the SeeBeyond Enterprise Designer. For more information on creating an eGate project see the eGate Tutorial and the eGate Integrator User’s Guide.

Chapter Topics

- CICS eWay Components on page 71
- CICS eWay Sample Projects on page 72
 - The CICS_JCE_Sample Project Overview on page 73
 - The CICS_COBOL_Sample Project on page 90

5.1 CICS eWay Components

This chapter presents sample CICS eWay projects created using the same procedures as the sample end-to-end project provided in the eGate Tutorial. CICS eWay components that are unique to this eWay include the following:

CICS eWay Properties File

The Properties file for the CICS eWay contains the parameters that are used to connecting with a specific external system. These parameters are set using the Parameters dialog box. For more information about the CICS eWay Configuration File and the Parameters dialog box see Creating and Configuring the CICS eWay on page 39.

CICS_eWay.CICSClient OTD

The CICS_eWay.CICSClient OTD is provided with the eWay and contains methods and attributes used to create the Business Rules that invoke the CICS program.

Cobol Copybook Wizard

The Cobol Copybook Wizard allows the eGate Integrator to convert Cobol Copybook files into eGate Object Type Definition (OTD) files.
5.2 CICS eWay Sample Projects

Two sample projects are defined in the following sections.

- **CICS_JCE_Sample**: a simple project that demonstrates the CICS eWay receiving data from a file, passing the data to the CICS External System, and writing the output from the CICS System to another file.

- **CICS_COBOL_Sample**: demonstrates a simple CICS project that uses the Cobol Copybook Converter.

5.3 CICS CTG Concerns

Defining More Than One Server When Using CTG

If CTG is used as the connection transport and more than one server is defined in a CICS Transaction Gateway installation, the target server name must be assigned as a literal to the server node, before to CICS eWay.execute, in the Java Collaboration.

To assign the target server, do the following:

1. From the (Java) Collaboration Editor’s Business Rules pane, click on the Business Rule above the CICS eWay.execute rule.

2. From the Business Rules toolbar, click the **rule** icon. An **Empty Rule** appears on the Business Rules tree.

3. From the Business Rules Designer toolbar, click the Create Literal icon. From the Create Literal dialog box, select **String** as the Type, and enter the name of the target server as the Value. Click **OK**.

4. Map the output node of the Literal to **server**, under CICS_eWay_1 in the right pane of the Business Rules Designer (see Figure 43).

Figure 43 Business Rules Designer - Defining the Target Server

5. Continue creating your Collaboration.
Matching the COMMAREA Size

When using the CICS Transaction Gateway transport, data sent to CICS must be padded with spaces, if necessary, to match the full size of the commarea.

5.4 Importing a Sample Project

Sample eWay projects are included as part of the installation CD-ROM package. To import a sample eWay project to the Enterprise Designer do the following:

1. The sample files are uploaded with the eWay’s documentation .sar file and downloaded from the Enterprise Manager’s Documentation tab. The CICS_eWay_Sample.zip file contains the various sample project zip files. Extract the samples from the Enterprise Manager to a local file.

2. Save all unsaved work before importing a project.

3. From the Enterprise Designer’s Project Explorer pane, right-click the Repository and select **Import** from the shortcut menu. The **Import Manager** appears.

4. Browse to the directory that contains the sample project zip file. Select the sample file (for this sample, CICSjms_JCE_Sample.zip) and click **Import**. After the sample project is successfully imported, click **Close**.

5. Before an imported sample project can be run you must do the following:
 - Create an **Environment** (see **Creating an Environment** on page 84)
 - Configure the eWays for your system (see **Configuring the eWays** on page 85)
 - Create a **Deployment Profile** (see **Creating and Activating the Deployment Profile** on page 88)

5.5 The CICS_JCE_Sample Project Overview

The CICS eWay project, **CICS_JCE_Sample**, demonstrates the following:

- Input data (ASCII text) is read from an external directory by the Inbound File eWay.
- The ASCII text data is converted to EBCDIC (byte array) using cp037 encoding, and published by the CICS eWay to the CICS external system.
- The CICS eWay subscribes to the CICS external system, receives EBCDIC input data, and converts it to String ASCII data using cp037 encoding. The data is then published to the JMS Topic.
- The outbound File eWay subscribes to the JMS Topic and publishes the data to an external directory (see **Figure 44 on page 74**).
5.6 Creating the CICS_JCE_Sample Project

The following pages provide step by step directions for manually creating the sample eWay components.

5.6.1 Creating a Project

The first step is to create a new project in the SeeBeyond Enterprise Designer.

1. Start the Enterprise Designer.
2. From the Enterprise Explorer’s Project Explorer tab, right-click your Repository on the Project Explorer tree and select New Project. A new project (Project1) appears on the Project Explorer tree.
3. Click twice on Project1 and rename the project (for this sample, CICS_JCE_Sample).

5.6.2 Creating a Connectivity Map

The Connectivity Map provides a canvas for assembling and configuring a project’s components.

1. From the Project Explorer tree, right-click the new CICS_JCE_Sample project and select New > Connectivity Map from the shortcut menu.
2. The New Connectivity Map appears and a node for the Connectivity Map is added under the project on the Project Explorer tree labeled CMap1. Rename the Connectivity Map to CICSjms_JCE_Sample_CM.

The icons in the toolbar represent the available components used to populate the Connectivity Map canvas.

Selecting the External Applications

The icons in the toolbar represent the available components used to populate the Connectivity Map canvas.
In a Connectivity Map, the eWays are associated with External Systems. For example, to establish a connection to CICS, you must first select CICS as an External System to use in your Connectivity Map (see Figure 45).

Figure 45 Connectivity Map - External Applications

1. Click the **External Application** icon on the Connectivity Map toolbar,
2. Select the external systems required by your project (for this sample, the **CICS** and **File** External Applications). Icons representing the selected external systems are added to the Connectivity Map toolbar.

Populating the Connectivity Map

Add the project components to the Connectivity Map by dragging the icons from the toolbar to the canvas.

1. For this sample, drag the following components onto the Connectivity Map canvas as displayed in Figure 46:
 - **File External System** (2)
 - **Service** (2) A service is a container for Collaborations, Business Processes, eTL processes, and so forth.
 - **Topic**
 - **CICS External System**

Figure 46 Connectivity Map with Components

2. Rename the objects by right-clicking the object, selecting **Rename** from the shortcut menu, and typing in the new name. Change the names as follows:
 - **File1** to **FileIn**
 - **Service1** to **CICSjmsCollab**
 - **Service2** to **JMS2FileCollab**
5.6.3. Creating the Collaboration Definitions

The next step in the sample is to create two Collaborations using the Collaboration Definition Wizard (Java). Once the Collaboration Definitions have been created, the Business Rules of the Collaborations are written using the Collaboration Editor.

Creating the CICSjms_Collab Collaboration

The CICSjms_Collab Collaboration defines transactions from the inbound file application to the CICS eWay and the CICS application, and back to the JMS Topic.

1. From the Project Explorer, right-click the sample project and select New > Collaboration Definition (Java) from the shortcut menu. The Collaboration Definition Wizard (Java) appears.

2. Enter a Collaboration Definition name (for this sample CICSjms_Collab) and click Next.

3. For Step 2 or the wizard, from the Web Services Interfaces selection window, double-click SeeBeyond > eWays > File > FileClient > receive. The File Name field now displays receive. Click Next.

4. For Step 3 of the wizard, from the Select OTDs selection window, double-click SeeBeyond > eWays > CICSWay > CICS_eWay. The CICS_eWay OTD is added to the Selected OTDs field.

5. Click the Up One Level button to return to the Repository. Double-click SeeBeyond > eGate > JMS. The Selected OTDs field now lists the JMS OTD (see Figure 47).

Figure 47 Collaboration Definition Wizard (Java) - Select Web Service Interface
6 Click Finish. The Collaboration Editor with the new CICSjms_Collab Collaboration appears in the right pane of the Enterprise Designer.

Creating the JMS2File_Collab Collaboration (Java)

The JMS2File_Collab Collaboration defines transactions made from the JMS Topic to the Outbound File eWay.

1 From the Project Explorer, right-click the sample project and select New > Collaboration Definition (Java) from the shortcut menu. The Collaboration Definition Wizard (Java) appears.

2 Enter a Collaboration Definition name (for this sample JMS2File_Collab) and click Next.

3 For Step 2 of the wizard, from the Web Services Interfaces selection window, double-click SeeBeyond > eGate > JMS > receive. The File Name field now displays receive. Click Next.

4 For Step 3, Select OTDs, from the Select OTDs selection window, double-click SeeBeyond > eWays > File > FileClient. The Selected OTDs field now lists the FileClient OTD.

5 Click Finish. The Collaboration Editor with the new JMS2File_Collab Collaboration appears.

5.6.4. Using the Collaboration Editor (Java)

The next step in the sample is to create the Business Rules of the Collaboration using the Collaboration Editor.

Creating the CICSjms_Collab Business Rules

Be careful to open all nodes specified in the directions to connect to the correct item. The CICSjms_Collab Collaboration contains the Business Rule displayed in Figure 48.
To create the CICSjms_Collab Collaboration Business Rules do the following:

1. From the Project Explorer tree, double-click CICSjms_Collab to open the Collaboration Editor (Java) to the CICSjms_Collab Collaboration.

2. To create comments for the Business Rules, from the Business Rules toolbar, click the comment icon. The Enter a Comment dialog box appears. Enter the comment and click OK. The comment is placed on the Business Rules tree under the last selected item. Once the Comment is created, it can be moved by clicking the comment and dragging it up or down the Business Rules tree to a new location.

3. Double-click the input, FileClient_1, and CICCS_eWay_1 in the Transformation Designer panes to expand the nodes.

4. To create the Copy 50 to CICS_eWay_1.CommAreaLength rule do the following:
 A. From the Transformation Designer toolbar, click the Create Literal icon. The Create Literal method box appears. Select int as the type, 50 as the value, and click OK. The Literal method box appears in the Transformation Designer.
 B. Map the 50 output node of the Literal method box to CommAreaLength under CICS_eWay_1 in the right pane of the Collaboration Editor. To do this, click on the 50 output node in the Literal method box and drag the cursor to CommAreaLength under CICS_eWay_1 in the right pane of the Transformation Designer (see Figure 49).

5. To create the (variable) Copy new String(input.ByteArray) to variable temp1 rule do the following:
 A. From the Business Rules toolbar, click the rule icon to add a new rule.
 B. From the Collaboration Editor toolbar, click the Advance mode icon. The Java Source Editor appears as the bottom pane of the Collaboration Editor.
 C. From the Java Source Editor, replace //New rule with the following code:
      ```java
      String temp1 = new String( input.getByteArray() );
      ```
 D. From the Java Source Editor toolbar, click the Commit Changes icon. A new object named temp1 is added to the left pane of the Business Rules Designer.
To create the **Copy temp1.Bytes["Cp037"] to CICS_eWay_1.CommArea** rule do the following:

A. From the Business Rules toolbar, click the **rule** icon to add a new rule.

B. From the left pane of the Business Rules Designer, right click **temp1** and select **Select a method to call** from the shortcut menu.

C. From the Method selection box, select `getBytes(java.lang.String charsetName)`. The `getBytes` method box appears on the Business Rules Designer canvas.

D. From the Business Rules Designer toolbar, click on the **Create Literal** icon. The **Create Literal** dialog box appears.

E. From the Create Literal dialog box, select **String** as Type, enter **cp037** as the Value, and click **OK**. The **Literal** method box appears on the Business Rules Designer canvas.

F. Map the **cp037** output node of the Literal method box to the **charsetName (String)** input node of the getBytes method box. To do this, click on **cp037** in the Literal method box and drag the cursor to **charsetName (String)** in the getBytes method box, to create a link as displayed in Figure 50.

G. Map the **result (byte[])** output node of the getBytes method box to **CommArea** under **CICS_eWay_1** in the right pane of the Business Rules Designer. The Collaboration Editor now appears as displayed in Figure 50.

Figure 50 CICSjms_Collab - Copy temp1.Bytes["Cp037"] to CICS_eWay_1.CommArea

To create the **CICS_eWay_1.execute** rule do the following:
A From the Business Rules toolbar, click the rule icon to add a new rule.

B From the left pane of the Business Rules Designer, right click CICS_eWay_1 and select Select a method to call from the shortcut menu.

C From the Method selection box, select execute(). The execute method box appears on the Business Rules Designer canvas.

8 To create the (variable) Copy CICS_eWay_1.CommAreaString["Cp037"] to variable temp2 rule do the following:

A From the Business Rules toolbar, click the rule icon to add a new rule.

B From the Collaboration Editor toolbar, click the Advance mode icon. The Java Source Editor appears as the bottom pane of the Collaboration Editor.

C From the Java Source Editor, replace //New rule with the following code:

```java
String temp2 = CICS_eWay_1.getCommAreaString( "cp037" );
```

D From the Java Source Editor toolbar, click the Commit Changes icon. A new object named temp2 is added to the left pane of the Business Rules Designer.

9 To create the (variable) Create uninitialized variable jmstext (of type Message); rule do the following:

A From the Business Rules toolbar, click on the local variable icon. The Create a Variable dialog box appears.

B From the Create a Variable dialog box, select class, and click the ellipsis (...) button. The Find Class dialog box appears. Select Message as the Class Name, com.stc.connectors.jms as the Package, and click OK.

C From the Create a Variable dialog box, enter jmstext as the Variable Name. Click OK.

D From the Collaboration Editor toolbar, click the Refresh Collaboration icon. A new object named jmstext is added to the left pane of the Business Rules Designer.

10 To create the Copy JMS_1.createMessage to jmstext rule do the following:

A From the Business Rules toolbar, click the rule icon to add a new rule.

B From the left pane of the Business Rules Designer, right click JMS_1 and select Select a method to call from the shortcut menu.

C From the Method selection box, select createMessage(). The createMessage method box appears on the Business Rules Designer canvas.

D Map the result (Message) output node of the createMessage method box to jmstext in the right pane of the Business Rules Designer (see Figure 51 on page 81).
To create the **Copy temp2 to jmstext.TextMessage** rule do the following:

A. From the Business Rules toolbar, click the **rule** icon to add a new rule.

B. Map **temp2** in the left pane of the Business Rules Designer, to **TextMessage** under jmstext in the right pane of the Business Rules Designer (see Figure 52).

From the editor’s toolbar, click **Validate** to check the Collaboration for errors.

Save your current changes to the Repository.

Note: See the eGate Integrator User’s Guide for more information on editing Collaborations.

Creating the JMS2File_Collab Collaboration Business Rules

Be careful to open all nodes specified in the directions to connect to the correct item. The CICSjms_Collab Collaboration contains the Business Rule displayed in **Figure 53** on page 82.
To create the JMS2File_Collab Collaboration Business Rules do the following:

1. From the Project Explorer tree, double-click JMS2File_Collab to open the Collaboration Editor to the JMS2File_Collab Collaboration.

2. To create comments for the Business Rules, from the Business Rules toolbar, click the comment icon. The Enter a Comment dialog box appears. Enter the comment and click OK. The comment is placed on the Business Rules tree under the last selected item. Once the Comment is created, it can be moved by clicking the comment and dragging it up or down the Business Rules tree to a new location.

3. To create the Copy input.TextMessage to FileClient_1.Text rule do the following:
 A. Select the New rule in the Business Rules pane.
 B. Map TextMessage under input in the left pane of the Transformation Designer to Text under FileClient_1 in the right pane.

4. To create the FileClient_1.write rule do the following:
 A. From the Business Rules toolbar click the rule icon to add a new rule.
 B. From the left pane of the Transformation Designer, right-click FileClient_1 and click Select a method to call from the shortcut menu. The method selection box appears.
 C. Select the write method. The write method box appears in the Transformation Designer canvas.

5. From the editor’s toolbar, click Validate to check the Collaboration for errors.

6. Save your current changes to the Repository.

5.6.5. **Binding the eWay Components**

After the Collaborations have been written, the components are associated and Bindings are created in the Connectivity Map.

1. From the Project Explorer, double-click the Connectivity Map CICSjms_JCE_Sample_CM. The Enterprise Designer canvas now displays the CICSjms_JCE_Sample_CM Connectivity Map.

2. Drag and drop the CICSjms_Collab Collaboration from the Project Explorer to the first Service (CICSjmsCollab). If the Collaboration was successfully associated, the Service’s “gears” icon changes from red to green (see Figure 54 on page 83).
Figure 54 Connectivity Map - Binding the Components

3 Drag and drop JMS2File_Collab from the Project Explorer to the second Service (JMS2FileCollab).

4 From the Connectivity Map canvas, double-click CICSjmsCollab. The CICSjmsCollab Binding dialog box appears with the CICSjms_Collab Rule.

5 From the CICSjmsCollab Binding dialog box, map FileClient Input (under Implemented Services) to the inbound FileIn External Application.

6 From the CICSjmsCollab Binding dialog box, map CICS_eWay (under Invoked Services) to the CICS1 External Application.

7 From the CICSjmsCollab Binding dialog box, drag JMS_1 (under Invoked Services) to Topic1 (see Figure 55).

Figure 55 Connectivity Map - Associating (Binding) the Project’s Components

8 Minimize the CICSjmsCollab Binding dialog box by clicking the chevrons in the upper-right corner.
9 From the Connectivity Map, double-click JMS2FileCollab. The JMS2FileCollab Binding dialog box appears with the JMS2FileCollab Rule.

10 From the JMS2FileCollab Binding dialog box, drag JMS input (under Implemented Services) to Topic1.

11 From the JMS2FileCollab Binding dialog box, drag FileClient_1 (under Invoked Services) to the outbound FileOut Application.

12 Minimize the Collaboration Binding dialog box, and save your current changes to the Repository

5.6.6. Creating an Environment

Environments include the external systems, Logical Hosts, integration servers and message servers used by a project and contain the configuration information for these components. Environments are created using the Enterprise Designer’s Environment Explorer and Environment Editor.

1 From the Enterprise Designer’s Enterprise Explorer, click the Environment Explorer tab.

2 Right-click the Repository and select New Environment. A new Environment is added to the Environment Explorer tree.

3 Rename the new Environment to CICS_JCE_Sample_Env.

4 Right-click CICS_JCE_Sample_Env and select New CICS External System. Name the External System CicsExtSys. Click OK. CicsExtSys is added to the Environment Editor.

5 Right-click CICS_JCE_Sample_Env and select New File External System. Name the External System FileExtSysIn and select Inbound File eWay as the External System Type. Click OK. FileExtSysIn is added to the Environment Editor.

6 Right-click CICS_JCE_Sample_Env and select New File External System. Name this External System FileExtSysOut and select Outbound File eWay as the External System Type. FileExtSysOut is added to the Environment Editor.

7 Right-click CICS_JCE_Sample_Env and select New Logical Host. The LogicalHost1 box is added to the Environment and LogicalHost1 is added to the Environment Editor tree.

8 Right-click LogicalHost1 and select New SeeBeyond Integration Server. A new Integration Server (IntegrationSvr1) is added to the Environment Explorer tree under LogicalHost1.

9 Right-click LogicalHost1 and select New SeeBeyond JMS IQManager. A new JMS IQ Manager (SBJmsIQMgr1) is added to the Environment Explorer tree under LogicalHost1. The Environment Explorer and Environment Editor appear as displayed in Figure 56 on page 85.
5.6.7. Configuring the eWays

The CICS_JCE_Sample project uses three eWays, each represented in the Connectivity Map as a node between an External Application and a Service (see Figure 57). eWays facilitate communication and movement of data between the external applications and the eGate system.

The File eWay configuration parameters are configured from the Connectivity Map. The CICS eWay configuration parameters are set from both the Project Explorer or Connectivity Map and the Environment Explorer. To configure the eWays do the following:

Configuring the File eWays

1. Double-click the Inbound File eWay, select Inbound File eWay in the Templates dialog box and click OK.
2 The **Parameters** dialog box opens to the Inbound File eWay configuration. Modify the configuration for your system, including the settings for the **Inbound** File eWay in Table 6, and click **OK**. The configuration settings are saved for the eWay.

Table 6 Inbound File eWay Settings

<table>
<thead>
<tr>
<th>Inbound eWay Connection Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directory</td>
</tr>
<tr>
<td>Input file name</td>
</tr>
</tbody>
</table>

3 In the same way, modify the **Outbound** File eWay configuration for your system, including the settings in Table 7, and click **OK**.

Table 7 Outbound File eWay Settings

<table>
<thead>
<tr>
<th>Outbound eWay Connection Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directory</td>
</tr>
<tr>
<td>Output file name</td>
</tr>
</tbody>
</table>

Configuring the CICS eWay

The CICS eWay configuration parameters must be set in both the Project Explorer and Environment Explorer. For more information on the CICS eWay configuration parameters and the **Parameters** dialog box, see **Creating and Configuring the CICS eWay** on page 39 or see the **eGate Integrator User’s Guide**.

For the CICS_JCE_Sample project, do the following:

Modifying the CICS eWay (Project Explorer) Configuration Parameters

1. From the **Connectivity Map**, double-click the **CICS eWay**. The **Parameters** dialog box opens to the CICS eWay project configuration properties.

2. Modify the CICS eWay (Project Explorer) configuration for your system, including the settings in Table 8, and click **OK**.

Table 8 CICS Project Explorer eWay Settings

<table>
<thead>
<tr>
<th>CICS eWay Project-Configuration Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector</td>
</tr>
<tr>
<td>Set as directed, otherwise use the default settings</td>
</tr>
<tr>
<td>Class</td>
</tr>
<tr>
<td>Connection Transport</td>
</tr>
<tr>
<td>Type</td>
</tr>
<tr>
<td>CICS Client</td>
</tr>
<tr>
<td>Set as directed, otherwise use the default settings.</td>
</tr>
<tr>
<td>COMMAREA Length</td>
</tr>
<tr>
<td>CICS Program</td>
</tr>
</tbody>
</table>
Modifying the CICS eWay (Environment Explorer) Configuration Parameters

1. From the **Environment Explorer** tree, right-click the CICS External System (CicsExtSys in this sample), and select **Properties**. The **Parameters** dialog box opens to the CICS eWay environment-configuration properties.

2. Modify the CICS eWay environment-configuration for your system, including the settings in Table 9, and click **OK**.

Table 9 CICS Environment Explorer eWay Settings

<table>
<thead>
<tr>
<th>CICS eWay Environment-Configuration Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>SeeBeyond CICS Listener Settings</td>
</tr>
<tr>
<td>Set as directed, otherwise use the default settings</td>
</tr>
<tr>
<td>Host</td>
</tr>
<tr>
<td>Port</td>
</tr>
<tr>
<td>CICS Client Settings</td>
</tr>
<tr>
<td>Set as directed, otherwise use the default settings.</td>
</tr>
<tr>
<td>CICS Password</td>
</tr>
<tr>
<td>CICS UserId</td>
</tr>
</tbody>
</table>

Note: CICS eWay properties may also be set from the Collaboration Editor (Java) or eInsight Business Rules Designer, in which case they will override the corresponding properties in the eWay’s configuration file. Any properties that are not overridden retain their saved settings.

5.6.8. **Configuring the JMS Clients**

When a Service is linked with a Queue (or Topic), the Enterprise Designer adds a JMS properties handle between the two (see Figure 57 on page 85). These JMS properties facilitate the transfer and, if necessary, translation of data within the eGate system. JMS configuration properties must be configured in both the Connectivity Map and the Environment Explorer.

For more information on JMS configuration parameters see the *eGate Integrator User’s Guide*.

Modifying the JMS Connectivity Map Configuration Parameters

1. From the CICsjms_JCE_Sample_CM Connectivity Map, double-click the JMS properties handle located between the CICsjmsCollab and Topic1.

2. The **Properties sheet** appears, containing the default environment-configuration properties. Click **OK** to keep the default settings.

3. Double-click the JMS properties handle located between Topic1 and the JMS2FileCollab Collaboration.

4. The **Parameters** dialog box appears, containing the default configuration parameters. Click **OK** to keep the default settings.
Modifying the JMS Environment Explorer Configuration Parameters

1. From the **Environment Explorer** tree, right-click the Message Server found under the Logical Host, and select **Properties**. The **Properties sheet** opens to the JMS Environment-configuration properties.

2. Modify the JMS Environment-configuration for your specific system and click **OK**.

5.6.9 Creating and Activating the Deployment Profile

A Deployment Profile is used to assign Collaborations and message destinations to the integration server and message server. Deployment Profiles are created using the Deployment Editor.

1. From the Enterprise Explorer’s Project Explorer, right-click the project (CICS_JCE_Sample) and select **New** > **Deployment Profile**.

2. Enter a name for the Deployment Profile (for this sample CICS_JCE_Sample_DP). Make sure that the selected Environment is CICS_JCE_Sample_Env. Click **OK**.

3. From the left pane of the Deployment Editor, drag CICSjmsCollab -> Topic1 (External Application) to the CicsExtSys window.

4. From the left pane of the Deployment Editor, drag the FileIn -> CICSjmsCollab (External Application) to the FileExtSysIn window.

5. From the left pane of the Deployment Editor, drag the JMS2FileCollab -> FileOut (External Application) to the FileExtSysOut window.

6. Drag the following 2 Collaborations:
 - CICSjmsCollab
 - JMS2FileCollab
 to **IntegrationSvr1** in the **LogicalHost1** window.

7. Drag the two Topic components:
 - CICSjmsCollab -> Topic1
 - Topic1 -> JMS2FileCollab
 to **MessageSvr1** in the **LogicalHost1** window (see **Figure 58 on page 89**).
5.6.10. Running the Project

The following directions assume that the Enterprise Designer was downloaded to C:\ican50. If this is not the case, replace that location in the following directions with the appropriate location.

1. From the Enterprise Manager Downloads tab, download Logical Host - for win32.
2. Extract the file to the ican50\logicalhost2\logicalhost directory. You must specify the logicalhost2 directory for it to be created.
3. Navigate to C:\ican50\logicalhost2\logicalhost\bootstrap\config directory and open the logical-host.properties file using Notepad™.
4. Enter the following information in the appropriate fields:
 - Logical Host root directory: ican50\logicalhost2\logicalhost
 - Repository URL: http://localhost:port number/repository name
 - Repository user name and password: Your user name and password
 - Logical Host Environment name: CICS_JCE_Sample_ENV
 - Logical Host name: logicalhost2

Save your changes to logical-host.properties and close the file.
5. Run the bootstrap.bat file in the ican50\logicalhost2\logicalhost\bootstrap\bin directory.
6. Copy the sample input data file to the input directory.

8. Click Activate. When activation succeeds, save the changes to the Repository.
5.7 The CICS_COBOL_Sample Project

The CICS eWay project, **CICS_Cobol_Sample**, demonstrates the following:

- The Inbound File eWay subscribes to an external directory, receives the data, and publishes the data to the CICS eWay.

- The CICS eWay, triggered by the data from the File eWay, does the following:
 - executes a CICS program on the external CICS system (mainframe)
 - reads the program’s output (the contents of its COMM area)
 - copies the output into a Cobol Copybook OTD that is generated from the same data area description
 - OTD accessors selectively extract the value of select fields

- This data is published to the outbound File eWay, which publishes the data to an external directory.

Figure 59 CICS_Cobol_Sample Project

The **CICS_Cobol_Sample** is available to import from the Installation CD-ROM package (see **Importing a Sample Project** on page 73 for more information). The following pages review how the CICS_Cobol_Sample project is created.

5.7.1. Creating a Project

The first step is to create a new project in eGate Enterprise Designer.

1. Start the Enterprise Designer.
2. From the Enterprise Explorer’s Project Explorer tab, right-click the Repository and select **New Project**. A new project (Project1) appears on the Project Explorer tree.
3. Click twice on **Project1** and rename the project (for this sample, **CICS_COBOL_Sample**).
5.7.2 Creating a Connectivity Map

The Connectivity Map provides a canvas for assembling and configuring a project’s components.

1. In Enterprise Explorer’s Project Explorer, right-click the new project (CICS_COBOL_Sample) and select New > Connectivity Map from the shortcut menu.

2. The New Connectivity Map appears and a node for the Connectivity Map is added under the project on the Project Explorer tree labeled CMap1. Rename the CMap1 Connectivity Map to CICS_COBOL_Sample_CM.

Selecting the External Applications

1. Click the External Application icon on the Connectivity Map toolbar,

2. Select the external systems needed for your project (for this sample, CICS and File). Icons representing the selected external systems are added to the Connectivity Map toolbar.

Populating the Connectivity Map

Add the project components to the Connectivity Map by dragging the icons from the toolbar to the canvas.

1. For the CICS_COBOL_Sample project, drag the following components onto the Connectivity Map canvas as displayed in Figure 60:
 - File External System (2)
 - Service
 - CICS External System

 ![Figure 60 Connectivity Map with Components](image_url)

2. Rename the objects by right-clicking the object, selecting Rename from the shortcut menu, and typing in the new name. Change the names as follows:
 - File1 to FileIn
 - File2 to FileOut
Implementing a CICS eWay Project

Chapter 5
The CICS_COBOL_Sample Project

5.7 Implementing a CICS eWay Project

5.7.3 Creating an Object Type Definition

Object Type Definitions (OTDs) contain the data structures and rules that define objects. OTDs are used in the Enterprise Designer to create Collaboration Definitions for building data transformations. OTDs are created using the **Object Type Definition Wizard**.

Using the Cobol Copybook Wizard

The CICS_COBOL_Sample project uses an OTD that is created using the Cobol Copybook Wizard. A sample Cobol data file, qan3glr1.cobol is available from the downloaded CICS eWay Samples folder. To create the Cobol Copybook OTD using the sample Cobol file do the following:

1. Copy the sample Cobol file, qan3glr1.cobol, from the installation CD-ROM to a temporary file.

2. From the Project Explorer, right-click the CICS_COBOL_Sample project, and select New > Object Type Definition from the shortcut menu. The OTD Wizard Selection dialog box appears. Select the Cobol Copybook Wizard and click Next.

3. From the Select Cobol Copybook Files page of the Wizard, navigate to the directory that contains the sample Cobol file. The sample file is now visible in the Available Files field (see Figure 61).

![Figure 61 Cobol Copybook Wizard - Select Cobol Files](image-url)
4 Select the sample Cobol file and click the **Add** button. The file is added to the **Selected Files** field. Click **Finish**.

5 A **Message** dialog box appears if the OTD is created successfully, and the OTD is added to the Project Explorer tree as **qan3glr1**.

5.7.4. Creating a Collaboration Definition (Java)

The next step is to create the CICS_COBOL_Collab Collaboration using the Collaboration Definition Wizard (Java). Once the Collaboration Definition has been created, the Business Rules of the Collaboration can be written using the Collaboration Editor (Java).

Creating the CICS_COBOL_Colab Collaboration

1 From the Project Explorer, right-click the **CICS_COBOL_Sample** project and select **New > Collaboration Definition (Java)** from the shortcut menu. The **Collaboration Definition Wizard (Java)** appears.

2 Enter a Collaboration Definition name (for this sample **CICS_COBOL_Collab**) and click **Next**.

3 For Step 2 of the Wizard, from the Web Services Interfaces selection window, double-click **SeeBeyond > eWays > File > FileClient > receive**. The File Name field now displays **receive**. Click **Next**.

4 For Step 3 of the Wizard, from the Select OTDs selection window, double-click **SeeBeyond > eWays > CICSeWay > CICS_eWay**. The **CICS_eWay** OTD is added to the Selected OTDs field.

5 Click the **Up One Level** button to return to the Repository directory. Double-click **SeeBeyond > eWays > File > FileClient**. The **FileClient** OTD is added to the Selected OTDs field.

6 Click the **Up One Level** button to return to the Repository directory. Double-click **CICS_COBOL_Sample > qan3glr1**. The **qan3glr1** OTD is added to the Selected OTDs field.

7 Click **Finish**. The Collaboration Editor opens to the new Collaboration in the right pane of the Enterprise Designer.

5.7.5. The CICS_COBOL_Collab Business Rules

The the **CICS_COBOL_Sample** project uses one Collaboration created in the previous section, **CICS_COBOL_Collab**.

CICS_COBOL_Collab Business Rules

The CICS_COBOL_Collab Collaboration contains the Business Rule displayed in **Figure 62 on page 94**. These rules are created using the Collaboration Editor (Java).
To create the CICS_COBOL_Collab Business Rules do the following:

1. From the Project Explorer tree, double-click CICS_COBOL_Collab to open the Collaboration Editor to the Collaboration.

2. Double-click the input, FileClient_1, and CICCS_eWay_1 in the Transformation Designer panes to expand the nodes.

3. To create the **Copy util.STCTypeConverter.toIntegerPrimitive(50) to CICS_eWay_1.CommAreaLength** rule do the following:

 A. From the Collaboration Editor toolbar click the **Advance mode** icon. The Java Source Editor now appears as the bottom pane of the Collaboration Editor.

 B. From the Collaboration Editor pane, select **//New rule**, and replace it with the following code:

   ```java
   CICS_eWay_1.setCommAreaLength( com.stc.util.STCTypeConverter.toIntegerPrimitive( 50 ) );
   ```

 C. From the Java Source Editor toolbar click the **Commit changes** icon (see Figure 63 on page 95).
To create the (variable) `Copy new String(input.ByteArray, "ISO8859_1") to variable triggerString` rule do the following:

A. From the Business Rules toolbar, click the local variable icon. The Create a Variable dialog box appears. Select Class and browse to `java.lang.String` as the Class Name. Enter `triggerString` as the Variable Name, and click OK.

B. From the Business Rules pane, expand the variable and select the variable's initializer.

C. From the Business Rules Designer toolbar, click the Call New Constructor icon. The Call New Constructor dialog box appears.

D. Select String for All Classes and `java.lang.String(byte[] bytes, java.lang.String charsetName)` as the Constructors. Click OK. The `java.lang.String` method box is appears on the Business Rules Designer canvas.

E. From the Business Rules Designer toolbar, click the Create Literal icon. The Create Literal dialog box appears. Select String as the Type and ISO8859_1 as the Value. Click OK.
Chapter 5
Implementing a CICS eWay Project

Section 5.7
The CICS_COBOL_Sample Project

F Map **ByteArray** under **input** in the left pane of the Business Rules Designer, to the bytes (byte[]) input node of the **java.lang.String** method box.

G Map the **ISO8859_1** output node of the **literal** method box, to the **charsetName (String)** input node of the **java.lang.String** method box.

5 To create the **Copy triggerString.Bytes["Cp037"] to CICS_eWay_1.CommArea** rule do the following:

A From the Business Rules toolbar, click the **rule** icon to add a new rule.

B From the left pane of the Business Rules Designer, right click **triggerString** and select **Select a method to call** from the shortcut menu.

C From the Method selection box, select **getBytes(java.lang.String charsetName)**. The **getBytes** method box appears on the Business Rules Designer canvas.

D From the Business Rules Designer toolbar, click on the **Create Literal** icon. The **Create Literal** dialog box appears.

E From the Create Literal dialog box, select **String** as Type, enter **cp037** as the Value, and click **OK**. The **Literal** method box appears on the Business Rules Designer canvas.

F Map the **cp037** output node of the **literal** method box to the **charsetName (String)** input node of the **getBytes** method box. To do this, click on **cp037** in the **Literal** method box and drag the cursor to **charsetName (String)** in the **getBytes** method box, to create a link as displayed in Figure 50.

G Map the **result (byte[])** output node of the **getBytes** method box to **CommArea under CICS_eWay_1** in the right pane of the Business Rules Designer.

6 To create the **CICS_eWay_1.getServerList(1)** Business Rule do the following:

A From the Business Rules toolbar, click the **rule** icon to add a new rule.

B From the Java Source Editor pane, select **//New rule**, and replace it with the following code:

```java
CICS_eWay_1.getServerList( 1 );
```

C From the Collaboration Editor toolbar click the **Commit changes** icon.

7 To create the **CICS_eWay_1.execute** Business Rule do the following:

A From the Business Rules toolbar, click the **rule** icon to add a new rule.

B From the left pane of the Business Rules Designer, right click **CICS_eWay_1** and select **Select a method to call** from the shortcut menu.

C From the Method selection box, select **execute()**. The **execute** method box appears on the Business Rules Designer canvas.

8 To create the variable **Create uninitialized variable resultBytes (of type byte array)** rule do the following:

A From the Business Rules toolbar, click the **local variable** icon. The **Create a Variable** dialog box appears. Select **Primitive** with byte as the value, and select **Is array**, for Type. Enter **resultByte** as the Variable Name, and click **OK**.
To create the variable Create uninitialized variable resultBytesStream (of type ByteArrayInputStream) rule do the following:

A From the Business Rules toolbar, click the local variable icon. The Create a Variable dialog box appears. Select Class and browse to java.io.ByteArrayInputStream as the value. Enter resultBytesStream as the Variable Name, and click OK.

To create the variable Create uninitialized variable otdStream (of type OtdInputStream) rule do the following:

A From the Business Rules toolbar, click the rule icon to add a new rule.

B From the Collaboration Editor pane, select //New rule, and replace it with the following code:

```java
com.stc.otd.runtime.OtdInputStream otdStream;
```

C From the Java Source Editor toolbar click the Commit changes icon.

To create the Copy CICS_eWay_1.CommArea to resultBytes rule do the following:

A From the Business Rules toolbar, click the rule icon to add a new rule.

B Map CommArea under CICS_eWay_1 in the left pane of the Business Rules Designer, to resultBytes in the right pane of the Business Rules Designer (see Figure 64).

Figure 64 Copy CICS_eWay_1.CommArea to resultBytes rule

To create the Copy new ByteArrayInputStream(resultBytes) to resultBytesStream rule do the following:

A From the Business Rules toolbar, click the rule icon to add a new rule.

B From the Business Rules Designer toolbar, click the Call New Constructor icon. The Call New Constructor dialog box appears.

C Select ByteArrayInputStream for All Classes and java.io.ByteArrayInputStream(byte[] buf) as the Constructors. Click OK. The java.io.ByteArrayInputStream method box is appears on the Business Rules Designer canvas.
D Map `resultBytes` in the left pane of the Business Rules Designer, to the `buf` (`Byte[]`) input node of the `java.io.ByteArrayInputStream` method box.

E Map the `result` (`ByteArrayInputStream`) output node of the `java.io.ByteArrayInputStream` method box in the left pane of the Business Rules Designer, to the `buf` (`Byte[]`) input node of the `java.io.ByteArrayInputStream` method box (see Figure 65).

Figure 65 Copy new ByteArrayInputStream(resultBytes) to resultBytesStream rule

13 To create the **Copy new SimpleOtdInputStreamImpl(resultBytesStream) to otdStream** rule do the following:

A From the Business Rules toolbar, click the **rule** icon to add a new rule.

B From the Collaboration Editor toolbar click the **Advance mode** icon. The Java Source Editor now appears as the bottom pane of the Collaboration Editor.

C From the Collaboration Editor pane, select //New rule, and replace it with the following code:

```java
otdStream = new com.stc.otd.runtime.provider.SimpleOtdInputStreamImpl(resultBytesStream);
```

D From the Collaboration Editor toolbar click the **Commit changes** icon.

14 To create the **qan3glr1_1.unmarshal(otdStream)** rule do the following:

A From the Business Rules toolbar, click the **rule** icon to add a new rule.

B From the left pane of the Business Rules Designer, right click `qan3glr1_1` and select **Select a method to call** from the shortcut menu.

C From the Method selection box, select `unmarshal()` . The `unmarshal` method box appears on the Business Rules Designer canvas.

D Map `otdStream` from the left pane of the Business Rules Designer to the `in` (`OtdInputStream`) input node of the `unmarshal` method box.

15 To create the **Copy qan3glr1_1.DFHCOMMAREA.CA_OUT_NAME to FileClient_1.Text** rule do the following:

A From the Business Rules toolbar, click the **rule** icon to add a new rule.
To create the **Copy FileClient_1.Text.concat("/") to FileClient_1.Text** rule do the following:

A. From the Business Rules toolbar, click the **rule** icon to add a new rule.

B. From the Business Rules Designer toolbar, click the **Create Literal** icon. The **Create Literal** dialog box appears.

C. From the **Create Literal** dialog box, select **String** as Type, enter `/` as the Value, and click **OK**. The **Literal** method box appears on the Business Rules Designer canvas.

D. From the Business Rules Designer toolbar, drag the **concat** icon to the Business Rules Designer canvas. The **concat** method box appears.

E. Map the **Text** under **FileClient_1** in the left pane of the Business Rules Designer, to the String input node of the **concat** method box.

F. Map the `/` output node of the **Literal** method box to the **str (String)** input node of the **concat** method box.

G. Map the **result (String)** output node of the **concat** method box to **Text** under **FileClient_1** in the right pane of the Business Rules Designer (see Figure 66).

Figure 66 Copy FileClient_1.Text.concat("/") to FileClient_1.Text rule

To create the **Copy FileClient_1.Text.concat(qan3glr1_1.DFHCOMMAREA.CA_OUT_CITY) to FileClient_1.Text** rule do the following:

A. From the Business Rules toolbar, click the **rule** icon to add a new rule.

B. From the Business Rules Designer toolbar, drag the **concat** icon to the Business Rules Designer canvas. The **concat** method box appears.

C. Map the **Text** under **FileClient_1** in the left pane of the Business Rules Designer, to the String input node of the **concat** method box.
D Map CA-OUT-CITY under qan3glr1_1 > DFHCOMMAREA in the left pane of the Business Rules Designer to the str (String) input node of the concat method box.

E Map the result (String) output node of the concat method box to Text under FileClient_1 in the right pane of the Business Rules Designer (see Figure 67 on page 100).

Figure 67 Copy FileClient_1.Text.concat to FileClient_1.Text rule

18 To create the Copy FileClient_1.Text.concat("/") to FileClient_1.Text rule do the following:
 A From the Business Rules toolbar, click the rule icon to add a new rule.
 B From the Business Rules Designer toolbar, click the Create Literal icon. The Create Literal dialog box appears.
 C From the Create Literal dialog box, select String as Type, enter / as the Value, and click OK. The Literal method box appears on the Business Rules Designer canvas.
 D From the Business Rules Designer toolbar, drag the concat icon to the Business Rules Designer canvas. The concat method box appears.
 E Map the Text under FileClient_1 in the left pane of the Business Rules Designer, to the String input node of the concat method box.
 F Map the / output node of the Literal method box to the str (String) input node of the concat method box.

19 To create the Copy FileClient_1.Text.concat(qan3glr1_1.DFHCOMMAREA.CA_OUT_RETURN_CODE) to FileClient_1.Text rule do the following:
 A From the Business Rules toolbar, click the rule icon to add a new rule.
 B From the Business Rules Designer toolbar, drag the concat icon to the Business Rules Designer canvas. The concat method box appears.
C Map the **Text** under **FileClient_1** in the left pane of the Business Rules Designer, to the **String** input node of the **concat** method box.

D Map **CA-OUT-RETURN-CODE** under **qan3glr1_1 > DFHCOMMAREA** in the left pane of the Business Rules Designer to the **str (String)** input node of the **concat** method box.

E Map the **result (String)** output node of the **concat** method box to **Text** under **FileClient_1** in the right pane of the Business Rules Designer.

F Map the **result (String)** output node of the **concat** method box to **Text** under **FileClient_1** in the right pane of the Business Rules Designer.

20 To create the **FileClient_1.write** Business Rule do the following:

A From the Business Rules toolbar, click the **rule** icon to add a new rule.

B From the left pane of the Business Rules Designer, right click **FileClient_1** and select **Select a method to call** from the shortcut menu.

C From the Method selection box, select **write()**. The **write** method box appears on the Business Rules Designer canvas.

21 From the editor’s toolbar, click **Validate** to check the Collaboration for errors.

22 Save your current changes to the Repository.

Note: See the eGate Integrator User’s Guide for more information on editing Collaborations.

5.7.6. Creating Collaboration Bindings

After the Collaborations have been written, the components are associated and the Collaboration Bindings are created in the Connectivity Map.

1 From the Project Explorer, double-click the Connectivity Map **CM_CICS_COBOL_Sample**. The Enterprise Designer canvas now displays the **CM_CICS_COBOL_Sample** Connectivity Map.

2 Drag and drop the **CICS_COBOL_Collab** Collaboration from the Project Explorer onto **CicsCobolCollab** in the **CICS_COBOL_Sample_CM** Connectivity Map. If the Collaboration was successfully associated, the Collaboration’s “gears” icon changes from red to green.

3 Double-click **CicsCobolCollab**. The **CicsCobolCollab** Binding dialog box appears.

4 From the **CicsCobolCollab** Binding dialog box, drag **FileClient input** (under Source) to the **Inbound** File external application.

5 From the **CicsCobolCollab** Binding dialog box, drag the **FileClient FileClient_1 OTD** (under Destination) to the **outbound** File external application.

6 From the **CicsCobolCollab** Binding dialog box, drag the **CICS_eWay CICS_eWay_1 OTD** (under Destination) to the **CICS** external application.

7 Minimize the **CicsCobolCollab** Binding dialog box. The Connectivity Map now appears similar to the Connectivity Map displayed in **Figure 68 on page 102**.
5.7. Creating an Environment

Environments include the external systems, Logical Hosts, integration servers and message servers used by a project and contain the configuration information for these components.

1. From the Enterprise Designer’s Enterprise Explorer, click the Environment Explorer tab.
2. Right-click the Repository and select New Environment. A new environment is added to the Environment Explorer tree.
3. Rename the new environment to CICS_COBOL_Sample_ENV.
4. Right-click CICS_COBOL_Sample_ENV and select New CICS External System. Name the External System CicsExtSys. Click OK. CicsExtSys is added to the Environment Editor.
5. Right-click CICS_COBOL_Sample_ENV and select New File External System. Name the External System FileExtSysIn and select Inbound File eWay as the External System Type. Click OK. FileExtSysIn is added to the Environment Editor.
6. Right-click CICS_COBOL_Sample_ENV and select New File External System. Name this External System FileExtSysOut and select Outbound File eWay as the External System Type. FileExtSysOut is added to the Environment Editor.
7. Right-click CICS_COBOL_Sample_ENV and select New Logical Host. The LogicalHost1 box is added to the Environment and LogicalHost1 is added to the Environment Editor tree.
8. Right-click LogicalHost1 and select New SeeBeyond Integration Server. A new Integration Server (IntegrationSvr1) is added to the Environment Explorer tree under LogicalHost1.
9. Save your current changes to the repository.
5.7.8. Configuring the eWays

The CICS_COBOL_Sample project uses three eWays, each represented in the Connectivity Map as a node between an External Application and a Collaboration.

The File eWay properties are configured from the Connectivity Map. The CICS eWay properties are set from both the Project Explorer’s Connectivity Map and the Environment Explorer. To configure the eWays do the following:

Configuring the File eWays

1. Double-click the Inbound File eWay and select Inbound File eWay in the Templates dialog box and click OK.
2. The Properties Sheet opens to the Inbound File eWay properties. Modify the properties for your system, including the settings for the Inbound File eWay in Table 6, and click OK.

 Table 10 Inbound File eWay properties

<table>
<thead>
<tr>
<th>Inbound eWay Connection Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directory</td>
</tr>
<tr>
<td>Input file name</td>
</tr>
</tbody>
</table>

3. In the same way, modify the Outbound File eWay properties for your system, including the settings in Table 7, and click OK.

 Table 11 Outbound File eWay properties

<table>
<thead>
<tr>
<th>Outbound eWay Connection Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directory</td>
</tr>
<tr>
<td>Output file name</td>
</tr>
</tbody>
</table>

Configuring the CICS eWay

The CICS eWay properties must be set in both the Project Explorer and Environment Explorer. For more information on the CICS eWay properties and the Properties Sheet, see Creating and Configuring the CICS eWay on page 39 or see the eGate Integrator User’s Guide.

For the CICS_JCE_Sample project, do the following:

Modify the CICS eWay Connectivity Map Properties

1. From the Connectivity Map, double-click the CICS eWay. The Properties Sheet opens to the CICS eWay Connectivity Map configuration properties.
2. Modify the CICS eWay Connectivity Map properties for your system, including the settings in Table 12 on page 104, and click OK.
Table 12 CICS eWay Connectivity Map Properties

<table>
<thead>
<tr>
<th>CICS eWay Connectivity Map Properties</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector</td>
<td>Set as directed, otherwise use the default settings</td>
</tr>
<tr>
<td>Class</td>
<td>com.stc.eways.cics.CicsClientConnector</td>
</tr>
<tr>
<td>Connection Transport</td>
<td>SeeBeyond CICS Listener</td>
</tr>
<tr>
<td>Type</td>
<td>CICS</td>
</tr>
<tr>
<td>CICS Client</td>
<td>Set as directed, otherwise use the default settings.</td>
</tr>
<tr>
<td>COMMAREA Length</td>
<td>1000</td>
</tr>
<tr>
<td>CICS Program</td>
<td>CICS program to be run on server</td>
</tr>
</tbody>
</table>

Modify the CICS eWay Environment Explorer Properties

1. From the Environment Explorer tree, right-click the CICS External System (CicsExtSys in this sample), and select Properties. The Properties Sheet opens to the CICS eWay Environment configuration.

2. Modify the CICS eWay Environment configuration properties for your system, including the settings in Table 13 on page 104, and click OK.

Table 13 CICS eWay Environment Explorer Properties

<table>
<thead>
<tr>
<th>CICS eWay Environment Explorer Properties</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SeeBeyond CICS Listener</td>
<td></td>
</tr>
<tr>
<td>Host</td>
<td>Host Name</td>
</tr>
<tr>
<td>Port</td>
<td>TCP/IP Port Number</td>
</tr>
<tr>
<td>CICS Client</td>
<td></td>
</tr>
<tr>
<td>CICS Password</td>
<td>Password of CICS user</td>
</tr>
<tr>
<td>CICS UserId</td>
<td>This is the ID of the CICS user</td>
</tr>
</tbody>
</table>

5.7.9 Creating and Activating the Deployment Profile

A Deployment Profile is used to assign Collaborations and message destinations to the integration server and message server. Deployment profiles are created using the Deployment Editor.

1. From the Enterprise Explorer’s Project Explorer, right-click the project (CICS_COBOL_Sample) and select New > Deployment Profile.

2. Enter a name for the Deployment Profile (for this sample CICS_COBOL_Sample_DP). Select CICS_COBOL_Sample_ENV as the Environment and click OK.

3. From the left pane of the Deployment Editor, drag the Inbound -> Service1 (External Application) to the FileExtSysIn window.
4. From the left pane of the Deployment Editor, drag the `Service1 -> Outbound` (External Application) to the `FileExtSysOut` window.

5. Drag the `Service1 -> CICS1` (External Application) to the `CicsExtSys` window.

6. Drag `Service1` and `OTDProcessor1` to `IntegrationSvr1` in the `Logicalhost1` window (see Figure 69).

![Figure 69 Deployment Profile](image)

7. Click **Activate**. When activation succeeds, save the changes to the Repository.

5.7.10. Running the Project

The following directions assume that the Enterprise Designer was downloaded to C:\eGate50. If this is not the case, replace that location in the following directions with the appropriate location.

1. From the Enterprise Manager Downloads tab, click on **Logical Host - for win32**.

2. Extract the file to the `eGate50\logicalhost3\logicalhost` directory. You must specify the `logicalhost3` directory for it to be created.

3. Navigate to `C:\eGate50\logicalhost3\logicalhost\bootstrap\config` directory and open the `logical-host.properties` file using Notepad™.

4. Enter the following information in the appropriate fields:
 - Logical Host rood directory: `eGate50\logicalhost3\logicalhost`
 - Repository URL: `http://localhost:port number/repository name`
 - Repository user name and password: `Your user name and password`
 - Logical Host Environment name: `CICS_COBOL_Sample_ENV`
 - Logical Host name: `logicalhost3`

 Save your changes to `logical-host.properties` and close the file.

5. Run the `bootstrap.bat` file in the `eGate50\logicalhost3\logicalhost\bootstrap\bin` directory.

6. Copy the sample input data file to the input directory.
Chapter 6

Java Methods

A number of Java methods have been exposed to make it easier to set information in the eWay’s OTD Editor and to get information from it. These methods are contained in the CicsClient Class.

Chapter Topics

- The CicsClient Class on page 106
- Packed Decimal Java Helper Methods on page 106

6.1 The CicsClient Class

The CicsClient class represents an OTD through which a Collaboration can invoke transaction programs on a CICS server. Nodes and methods are exposed so that the Collaboration can conveniently prepare a request for a CICS program, invoke the program, and get result from the program. The OTD also exposes nodes that correspond to eWay configuration parameters, to provide the means to dynamically override the preset eWay settings at runtime.

CICS Javadoc

The Javadoc is uploaded with the eWay’s documentation file (CICSeWayDocs.sar) and downloaded from the Documentation tab of the Enterprise Manager. To access the full Javadoc, extract the Javadoc to an easily accessible folder, and double click the index.html file.

6.2 Packed Decimal Java Helper Methods

The Java helper methods for the toPackedDecimal class. These methods are not exposed in the Collaboration but are available for use. For example, to use the CopyTo method to obtain a Hex value in a byte array you would use the following code:

```java
MyPacked.toPackedDecimal("327.00");
System.out.println("Decimal value is: " + MyPacked.toString());
byte[] work_buf = new byte[7];
MyPacked.CopyTo(work_buf, 7);
for (int Ii = 0; Ii < 7; Ii++)
{
    int Ib = (int) new Byte(work_buf[Ii]).intValue();
    if (Ib < 16)
{ System.out.println("  Byte" + Ii + " Hexvalue = 0" + Integer.toHexString(Ib)); 
  } else 
  { System.out.println("  Byte" + Ii + " Hexvalue = " + Integer.toHexString(Ib)); 
  }
}

This produces the following output:

Decimal value is: 327.00
Byte0 Hexvalue = 00
Byte1 Hexvalue = 00
Byte2 Hexvalue = 00
Byte3 Hexvalue = 00
Byte4 Hexvalue = 32
Byte5 Hexvalue = 70
Byte6 Hexvalue = 0c

These methods are described in detail on the following pages:

- [ContainerExists](#) on page 107
- [GiveElem](#) on page 108
- [CopyBack](#) on page 107
- [SetElem](#) on page 109
- [CopyTo](#) on page 108

### ContainerExists

**Description**

Checks to see if contents of a packed decimal are available.

**Syntax**

```java
public com.stc.eways.cics.PackedDecimal boolean ContainerExists()
```

**Parameters**

None.

**Return Values**

Boolean

**Throws**

None.

### CopyBack

**Description**

Builds a packed decimal from the payload in a byte array. The byte array must contain a valid packed decimal number.

**Syntax**

```java
public com.stc.eways.cics.PackedDecimal void CopyBack(byte Origin[], int Size)
```
Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin[]</td>
<td>byte</td>
<td>Payload containing a valid packed decimal number.</td>
</tr>
<tr>
<td>Size</td>
<td>int</td>
<td>Size of the payload that contains the packed decimal number.</td>
</tr>
</tbody>
</table>

Return Values

None.

Throws

None.

---

**CopyTo**

Description

Copies a packed decimal number to a byte array.

Syntax

```java
public com.stc.eways.cics.PackedDecimal void CopyTo(byte Dest[],
 int Size)
```

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dest[]</td>
<td>byte</td>
<td>A byte array that the packed decimal number will be copied to.</td>
</tr>
<tr>
<td>Size</td>
<td>int</td>
<td>Size of the payload that contains the packed decimal number.</td>
</tr>
</tbody>
</table>

Return Values

None.

Throws

None.

---

**GiveElem**

Description

Returns a specified byte of a packed decimal number.

Syntax

```java
public com.stc.eways.cics.PackedDecimal int GiveElem(int Ii)
```
Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ii</td>
<td>int</td>
<td>Position of the byte to be returned.</td>
</tr>
</tbody>
</table>

Return Values

int

Returns the value of the position.

Throws

None.

---

SetElem

Description

Sets the value of a specified byte in a packed decimal number.

Syntax

```java
public com.stc.eways.cics.PackedDecimal void SetElem(int Ii, byte Value)
```

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ii</td>
<td>int</td>
<td>Position of the byte to be set.</td>
</tr>
<tr>
<td>Value</td>
<td>byte</td>
<td>Value to set.</td>
</tr>
</tbody>
</table>

Return Values

None.

Throws

None.
## Index

<table>
<thead>
<tr>
<th>Section</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>alerting and logging</td>
<td>53</td>
</tr>
<tr>
<td>alerts/status notifications</td>
<td>53</td>
</tr>
<tr>
<td>aateway</td>
<td>49</td>
</tr>
<tr>
<td>binding</td>
<td>82</td>
</tr>
<tr>
<td>dialog box</td>
<td>65</td>
</tr>
<tr>
<td>eWay components</td>
<td>64</td>
</tr>
<tr>
<td>bindings</td>
<td>101</td>
</tr>
<tr>
<td>Business Rule</td>
<td></td>
</tr>
<tr>
<td>comments</td>
<td></td>
</tr>
<tr>
<td>creating</td>
<td>78, 82</td>
</tr>
<tr>
<td>Connectivity Map</td>
<td>74</td>
</tr>
<tr>
<td>CTG</td>
<td></td>
</tr>
<tr>
<td>defining a target server</td>
<td></td>
</tr>
<tr>
<td>Business Process</td>
<td>55</td>
</tr>
<tr>
<td>Collaboration</td>
<td>72</td>
</tr>
<tr>
<td>selecting a server</td>
<td>55, 72</td>
</tr>
<tr>
<td>Customer Information Control System</td>
<td></td>
</tr>
<tr>
<td>described</td>
<td>8</td>
</tr>
<tr>
<td>Deployment Profile</td>
<td>88</td>
</tr>
<tr>
<td>creating</td>
<td>68</td>
</tr>
<tr>
<td>DFHRPL Concatenation</td>
<td>19</td>
</tr>
<tr>
<td>dynamic configuration</td>
<td>55</td>
</tr>
<tr>
<td>Environment</td>
<td>65, 84</td>
</tr>
<tr>
<td>creating</td>
<td>65</td>
</tr>
<tr>
<td>Logical Host</td>
<td>65</td>
</tr>
<tr>
<td>SeeBeyond Integration Server</td>
<td>66</td>
</tr>
<tr>
<td>eWays</td>
<td></td>
</tr>
<tr>
<td>creating</td>
<td>40</td>
</tr>
<tr>
<td>External Application</td>
<td></td>
</tr>
<tr>
<td>creating</td>
<td>39</td>
</tr>
<tr>
<td>External Applications</td>
<td>74</td>
</tr>
<tr>
<td>helper methods</td>
<td>106</td>
</tr>
<tr>
<td>implementation</td>
<td>71</td>
</tr>
<tr>
<td>Java methods</td>
<td>106</td>
</tr>
<tr>
<td>CicsClient Class</td>
<td>106</td>
</tr>
<tr>
<td>Javadoc</td>
<td>106</td>
</tr>
<tr>
<td>JMS Client</td>
<td></td>
</tr>
<tr>
<td>properties</td>
<td>87</td>
</tr>
<tr>
<td>logging</td>
<td></td>
</tr>
<tr>
<td>enabling and modifying</td>
<td>53</td>
</tr>
<tr>
<td>levels and categories</td>
<td>53</td>
</tr>
<tr>
<td>COMMAREA</td>
<td>8</td>
</tr>
<tr>
<td>comments</td>
<td></td>
</tr>
<tr>
<td>creating</td>
<td>78, 82</td>
</tr>
<tr>
<td>CTG</td>
<td></td>
</tr>
<tr>
<td>defining a target server</td>
<td></td>
</tr>
<tr>
<td>Business Process</td>
<td>55</td>
</tr>
<tr>
<td>Collaboration</td>
<td>72</td>
</tr>
<tr>
<td>selecting a server</td>
<td>55, 72</td>
</tr>
<tr>
<td>Customer Information Control System</td>
<td></td>
</tr>
<tr>
<td>described</td>
<td>8</td>
</tr>
<tr>
<td>Deployment Profile</td>
<td>88</td>
</tr>
<tr>
<td>creating</td>
<td>68</td>
</tr>
<tr>
<td>DFHRPL Concatenation</td>
<td>19</td>
</tr>
<tr>
<td>dynamic configuration</td>
<td>55</td>
</tr>
<tr>
<td>Environment</td>
<td>65, 84</td>
</tr>
<tr>
<td>creating</td>
<td>65</td>
</tr>
<tr>
<td>Logical Host</td>
<td>65</td>
</tr>
<tr>
<td>SeeBeyond Integration Server</td>
<td>66</td>
</tr>
<tr>
<td>eWays</td>
<td></td>
</tr>
<tr>
<td>creating</td>
<td>40</td>
</tr>
<tr>
<td>External Application</td>
<td></td>
</tr>
<tr>
<td>creating</td>
<td>39</td>
</tr>
<tr>
<td>External Applications</td>
<td>74</td>
</tr>
<tr>
<td>helper methods</td>
<td>106</td>
</tr>
<tr>
<td>implementation</td>
<td>71</td>
</tr>
<tr>
<td>Java methods</td>
<td>106</td>
</tr>
<tr>
<td>CicsClient Class</td>
<td>106</td>
</tr>
<tr>
<td>Javadoc</td>
<td>106</td>
</tr>
<tr>
<td>JMS Client</td>
<td></td>
</tr>
<tr>
<td>properties</td>
<td>87</td>
</tr>
<tr>
<td>logging</td>
<td></td>
</tr>
<tr>
<td>enabling and modifying</td>
<td>53</td>
</tr>
<tr>
<td>levels and categories</td>
<td>53</td>
</tr>
</tbody>
</table>
M
methods
packed decimal helper methods 106
  ContainerExists 107
  CopyBack 107
  CopyTo 108
  GiveElem 108
  SetElem 109
packed decimal helper methods example 109

O
operating systems
  supported 13

P
project
  creating 74
  importing 73
  JCE sample overview 73
  using Java Collaborations 71
properties
  CICS Client 43, 52
  CICS Gateway 49
  CICS Password 52
  CICS Program 44
  CICS TransId 44
  CICS UserId 53
  Class 42
  COMMAREA Length 44
  COMMAREA length 44
  COMMAREA Padding Character 46
  configuring 39
  configuring the eWays 66
  Connection Transport 43
  Connectivity Map properties 39, 42
  Dump Offset 51
  ECI call type 44
  ECI extend mode 44
  Encoding 45
  Environment Explorer properties 46
  Environment Explorer properties 39
  Filename 51
  Host 47
  JMS Client 87
  KeepAlive 47
  Level 51
  Listener Timeout 47
  modifying 41
    Connectivity Map properties 40
    NoDelay 47
  Polling Rate 48
  Port 48, 50
  Property.Tag 43
  ReceiveBufSize 48
  SeeBeyond CICS Listener 46
  SeeBeyond CICS Listener TransId 48
  SendBufSize 48
  SSL KeyRing Class 50
  SSL KeyRing Password 50
  Start Delay 49
  Start Type 49
  Timing 52
  TP Timeout 49
  Tracing 51
  Transport Timeout 49
  Truncation Size 52
  Type 43
  URL 50
  Properties Sheet 41

R
running a project 69, 89

S
sar files
  CICSeWay.sar 16
security
  11
  security validation
  CICS Transaction Gateway 12
  request start transaction mode 12
  SeeBeyond Listener
    business logic mode 11
    request link to program mode 12
    request start transaction mode 12
  z/OS CICS security 11
SeeBeyond CICS Listener
  configuration file maintenance screen for z/OS
  20
configuration requirements 14
installation
  3480 tape 18
  adding the CICS eWay Load Module 19
  CICS CEDA definitions 19
  copying the tape contents to disk 18
  verifying proper installation 19
  z/OS 16
installation from CD-ROM 17
monitor screen for OS/390 25
overview 10
system requirements 14
  external 14
Index

U
URL 50

W
WebLogic 15
WebSphere 15