
Batch e*Way Intelligent
Adapter User’s Guide

Release 5.0.5 for Schema Run-time
Environment (SRE)

Monk Version

Copyright © 2005, 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and
are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not
use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the
U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and
adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent
applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you
use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. UNIX is a registered trademark licensed through X/Open
Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Version 20100712151600.

Batch e*Way Intelligent Adapter User’s Guide 2

Contents
Contents

Chapter 1

Introduction 8
Overview 8

Intended Reader 10
Components 10

Document Conventions 10

SOCKS Support 10
SOCKS Overview 11

SOCKS Proxy Server 11

Supported Operating Systems 11

System Requirements 11

External System Requirements 12

Chapter 2

Installation 13
Installation on Windows Systems 13

Pre-installation 13
Installation Procedure 13

UNIX Installation 14
Pre-installation 14
Installation Procedure 14

Files/Directories Created by the Installation 15

Chapter 3

Configuration 19
e*Way Configuration Parameters 19

Monk Variables 20
General Settings 22

Journal File Name 22
Max Resends Per Message 22
Max IQ Connection Retries 23
Max Failed Messages 23
Forward External Errors 23
Batch e*Way Intelligent Adapter User’s Guide 3

Contents
Communication Setup 23
Start Exchange Data Schedule 24
Stop Exchange Data Schedule 24
Exchange Data Interval 25
Down Timeout 25
Up Timeout 25
Resend Timeout 26
Zero Wait Between Successful Exchanges 26
Exchange-if-in-window-on-startup 26

Monk Configuration 26
Operational Details 27
How to Specify Function/File Names 33
Additional Path 34
Auxiliary Library Directories 34
Monk Environment Initialization File 34
Startup Function 35
Process Outgoing Message Function 35
Exchange Data with External Function 36
External Connection Establishment Function 37
External Connection Verification Function 38
External Connection Shutdown Function 38
Positive Acknowledgment Function 38
Negative Acknowledgment Function 39
Shutdown Command Notification Function 40

External Host Setup 40
Host Type 40
External Host Name 41
User Name 41
Encrypted Password 41
File Transfer Method 42
File Sync 42

Subscribe to External 42
Remote Directory Name 43
Remote File Regexp 43
Record Type 43
Record Delimiter 44
Delimiter on Last Record 44
Record Size 44
Remote Command After Transfer 44
Remote Rename or Archive Name 45
Local Command After Transfer 45
Local Archive Directory 46

Publish to External 46
Remote Directory Name 46
Remote File Name 46
Append or Overwrite when Transferring Files 47
Record Type 47
Record Delimiter 47
Delimiter on Last Record 47
Record Size 48
Remote Command After Transfer 48
Remote Rename or Archive Name 48
Local Command After Transfer 49
Local Archive Directory 49
Batch e*Way Intelligent Adapter User’s Guide 4

Contents
Sequence Numbering 49
Starting Sequence Number 50
Max Sequence Number 50

Recourse Action 50
Action on Fetch Failure 50
Action on Send Failure 51

FTP 51
Server Port 51
Mode 51
Pretransfer Commands 53
Posttransfer Commands 53

SOCKS 53
Server Host Name 53
Server Port 54
Method 54
User Name 54
Encrypted Password 54

Dynamic Configuration 55
Enable Message Configuration 55
Publish Status Record on Success 58
Publish Status Record on Error 58
Include Order Record in Error Record 58
Include Payload in Error Record 59
Action on Mal-formed Command 59

FTP Heuristics 59
Operating System or File Type Selection 60
Configuration Parameters 61

Commands Supported by FTP Server 61
Header Lines To Skip 61
Header Indication Regex Expression 61
Trailer Lines To Skip 62
Trailer Indication Regex Expression 62
Directory Indication Regex Expression 62
File Link Real Data Available 62
File Link Indication Regex Expression 63
File Link Symbol Regex Expression 63
List Line Format 63
Valid File Line Minimum Position 64
File Name Is Last Entity 64
File Name Position 64
File Name Length 65
File Extension Position 65
File Extension Length 66
File Size Verifiable 66
File Size Position 66
File Size Length 67
Special Envelope For Absolute Path Name 67
Listing Directory Yields Absolute Path Names 68
Absolute Path Name Delimiter Set 68
Change Directory Before Listing 69
Directory Name Requires Terminator 69

Using Special Characters 69
Literal Characters 69
Batch e*Way Intelligent Adapter User’s Guide 5

Contents
Wildcard Expansion 69
Hexadecimal and Octal 70
Unprintable Characters 70
Date and Time Expansion 70
Sequence Numbering 71
File Name Replacement 71

Environment Configuration 72

External Configuration Requirements 72

Chapter 4

Dynamic Messaging 73
Dynamic Messaging: General Operation 73

Sending Data with a Send Order 74
Receiving Data with a Receive Order 75

Error Reporting 77

Configuration 78

Chapter 5

Implementation 79
Implementation Notes 79

How the e*Way Uses Temporary Files 79
Record Type Configuration 81

Delimited Record 81
Fixed-length Record 81
Single Record 82

Sample Configurations 82
Subscribing to an External System 82
Publishing to an External System 84

Chapter 6

Batch e*Way Functions 86
Monk Functions: Overview 86

Basic Functions 87

Core Functions 90

Connection and File Functions 98

File Name Expansion Functions 115

Post-transfer Routines 122

File Copy Transfer Functions 124
Batch e*Way Intelligent Adapter User’s Guide 6

Contents
FTP Transfer Functions 132

Advanced FTP Functions 138
Advanced FTP Function Exceptions 171

File System Functions 172

Appendix A

Document Type Definitions 178
Send or Receive XML Messages 178

Error Messages 179

Data Message 180

Index 182
Batch e*Way Intelligent Adapter User’s Guide 7

Chapter 1

Introduction

This chapter introduces you to the Batch e*WayTM Intelligent Adapter, which enables
the e*Gate system to exchange data with other network hosts, using the file transfer
protocol (FTP).

1.1 Overview
This document explains how to install and configure the Batch e*Way. This e*Way is
enabled by the Monk programming language.

Figure 1 shows a diagram of how the e*Way operates.

Figure 1 e*Way Internal Architecture

Conceptually, an e*Way is divided into two halves. One half of the e*Way (shown on
the left in Figure 1 on page 8) handles communication with the external system; the
other half manages the Collaborations that process data and subscribe or publish to
other e*Gate components.

Communication
with External
System

Business Logic and
Communication
Within e*Gate

External
system Other e*Gate

components

e*Gate Events

Data
e*Way

Collaboration

Collaboration

Function

Function
Batch e*Way Intelligent Adapter User’s Guide 8

Chapter 1 Section 1.1
Introduction Overview
The communications side of the e*Way uses Monk functions to start and stop scheduled
operations, exchange data with the external system, package data as e*Gate Events and
send those Events to Collaborations, and manage the connection between the e*Way
and the external system. The Monk Configuration options discussed in this section
control the Monk environment and define the Monk functions used to perform these
basic e*Way operations. You can create and modify these functions using the
Collaboration Rules Editor or a text editor (such as Notepad or UNIX vi).

The communications side of the e*Way is single-threaded. Functions run serially, and
only one function can be executed at a time. The business logic side of the e*Way is
multi-threaded, with one executable thread for each Collaboration. Each thread
maintains its own Monk environment; therefore, information such as variables,
functions, path information, and so on cannot be shared between threads.

The Batch e*Way has the following behavior models:

Messages are published to the e*Way, then it collects the messages in temporary
files until its next scheduled release time. It then sends them out, either as single
files per message or multiple messages per single file, depending on configuration.

The e*Way subscribes to messages and polls an external system based on a schedule
and searches for files based on specific criteria. It then retrieves the files that match
the criteria, stores them locally, and then reads the records in the files, while
simultaneously keeping track of its own progress by maintaining state information
in a separate file.

A Dynamic Configuration is available that requires the use of the flag, Enable
Message configuration (See “Enable Message Configuration” on page 55). If this
flag is turned on, the e*Way has a subscription that determines its activity. This
subscription is an XML message, with all relevant parameters governing the
transfer, including the file to be sent (if it is an outbound transfer).

The Batch e*Way supports standard FTP commands according to RFC-959, for example:

APPE NOOP RNTO

CWD PASS SITE

DELE QUIT STOR

LIST RETR TYPE

MKD RNFR USER
Batch e*Way Intelligent Adapter User’s Guide 9

Chapter 1 Section 1.2
Introduction SOCKS Support
1.1.1 Intended Reader
The reader of this guide is presumed to be a developer or system administrator with
responsibility for maintaining the e*Gate system, to have expert-level knowledge of
Windows operations and administration, to be thoroughly familiar with Windows-style
GUI operations, and to have an understanding of FTP.

Components

The Batch e*Way comprises the following elements:

stcewgenericmonk.exe, the executable component

Configuration files, which the e*Way Editor uses to define configuration parameters

Monk function scripts; the scripts themselves are discussed in Chapter 3; the
functions they call, in Chapter 6

Library files, which provide access to additional Monk application programming
interfaces (APIs); the APIs are discussed in Chapter 6.

A complete list of installed files appears in Table 1 on page 16.

1.1.2 Document Conventions
This user’s guide uses the following conventions with respect to operating systems:

Windows Systems: The e*Gate system is fully compliant with both Windows XP
and Windows 2000 platforms. When this document references Windows, such
statements apply to both Windows platforms.

UNIX Systems: This guide uses the backslash (“\”) as the separator within path
names. If you are working on a UNIX system, please make the appropriate
substitutions (“/”).

1.2 SOCKS Support
SOCKS is an IETF (Internet Engineering Task Force) approved standard (RFC 1928)
generic, proxy protocol for TCP/IP-based networking applications. The SOCKS
protocol provides a flexible framework for developing secure communications by
easily integrating other security technologies.

There are two versions of the SOCKS protocol, version 4 and version 5 (called
SOCKSv4 and SOCKSv5). The SOCKSv4 protocol performs the following functions:
makes connection requests, sets up proxy circuits, and relays application data. The
SOCKSv5 protocol adds authentication.

The Batch e*Way now supports the SOCKSv5 authentication protocol. To enable
SOCKSv5 support, the SOCKS server name and port number, as well as the user name
and encrypted password, must be specified in the configuration file. Details of these
configuration parameters are provided in the chapter “Configuration” on page 19.
Batch e*Way Intelligent Adapter User’s Guide 10

Chapter 1 Section 1.3
Introduction Supported Operating Systems
See also ftp-open-host-through-SOCKS on page 158. In addition, refer to the
subsection “Mode” on page 51, describing options for data transfer modes to an FTP
server.

1.2.1 SOCKS Overview
SOCKS includes two components, the SOCKS server and SOCKS client. The SOCKS
server is implemented at the application layer, while the SOCKS client is implemented
between the application and transport layers. The basic purpose of the protocol is to
enable hosts on one side of a SOCKS server to gain access to hosts on the other side of a
SOCKS server, without requiring direct IP-accessibility.

SOCKS Proxy Server

When an application client needs to connect to an application server, the client connects
to a SOCKS proxy server. The proxy server connects to the application server on behalf
of the client and relays data between the client and the application server. For the
application server, the proxy server is the client.

1.3 Supported Operating Systems
For information about the operating systems and versions supported by the e*Gate
Integrator system, see the readme.txt provided on the e*Gate Integrator installation CD.

1.4 System Requirements
To use the Batch e*Way, you need to meet the following requirements:

An e*Gate Participating Host.

A TCP/IP network connection.

Additional disk space for e*Way executable, configuration, library, and script files.
The disk space is required on both the Participating and the Registry Host.
Additional disk space is required to process and queue the data that this e*Way
processes. The amount necessary varies based on the type and size of the data being
processed and any external applications performing the processing.

See the e*Way Readme for additional information.
Batch e*Way Intelligent Adapter User’s Guide 11

Chapter 1 Section 1.5
Introduction External System Requirements
1.5 External System Requirements
This section explains external system requirements for the Batch e*Way.

Client Components

Any client components of the Batch e*Way have their own requirements; see the subject
system’s documentation for more details.

In addition, you must meet the following conditions:

To communicate with the Batch e*Way, the external system must run an FTP server
compliant with RFC-959.

A user name and password granting appropriate access to the FTP server must be
available for the e*Way’s use.

If you are using Secure Shell (SSH) port forwarding, the e*Way supports the following
client software applications:

Plink on Windows

OpenSSH on UNIX

For details on these applications, see the appropriate user’s guides.
Batch e*Way Intelligent Adapter User’s Guide 12

Chapter 2

Installation

This chapter explains the system requirements and procedures for installing the Batch
e*Way.

2.1 Installation on Windows Systems

2.1.1 Pre-installation
Exit all Windows programs before running the setup program, including any
anti-virus applications.

You must have Administrator privileges to install this e*Way.

Review the readme.txt file provided on the installation media for important
installation information.

2.1.2 Installation Procedure
To install the Batch e*Way on Windows Systems

1 Log in as an Administrator on the workstation on which you want to install the
e*Way.

2 Insert the e*Way installation CD-ROM into the CD-ROM drive.

3 If the CD-ROM drive’s Auto-run feature is enabled, the setup application should
launch automatically; skip ahead to step 4. Otherwise, use the Windows Explorer or
the Control Panel’s Add/Remove Applications feature to launch the file setup.exe
on the CD-ROM drive.

4 The InstallShield setup application launches. Follow the on-screen instructions to
install the e*Way.

Note: Be sure to install the e*Way files in the suggested \client installation directory. The
installation utility detects and suggests the appropriate installation directory.
Unless you are directed to do so by Oracle support personnel, do not change
the suggested installation directory setting.

5 After the installation is complete, exit the install utility and launch the Schema
Manager.
Batch e*Way Intelligent Adapter User’s Guide 13

Chapter 2 Section 2.2
Installation UNIX Installation
6 In the Component editor, create a new e*Way.

7 Display the new e*Way’s properties.

8 On the General tab, under Executable File, click Find.

9 Select the file stcgenericmonk.exe.

10 Click OK to close the properties sheet, or continue to configure the e*Way.
Configuration parameters are explained in Chapter 3.

Note: Once you have installed and configured this e*Way, you must incorporate it into a
schema by defining and associating the appropriate Collaborations, Collaboration
Rules, Intelligent Queues (IQs), and Event Types before this e*Way can perform its
intended functions. For more information about any of these procedures, please see
the online Help system.

For more information about configuring e*Ways or how to use the e*Way Editor, see
the e*Gate Integrator User’s Guide.

2.2 UNIX Installation

2.2.1 Pre-installation
You do not require root privileges to install this e*Way. Log in under the user name that
you wish to own the e*Way files. Be sure that this user has sufficient privileges to create
files in the e*Gate directory tree. Review the readme.txt file provided on the installation
media for important installation information.

2.2.2 Installation Procedure
To install the Batch e*Way on a UNIX system

1 Log in on the workstation containing the CD-ROM drive, and insert the CD-ROM
into the drive.

2 If necessary, mount the CD-ROM drive.

3 At the shell prompt, type:

cd /cdrom/setup

4 Start the installation script by typing:

setup.sh

5 A menu of options appear. Select the e*Gate Addon Applications option. Then,
follow any additional on-screen directions.

Be sure to install the e*Way files in the suggested client installation directory. The
installation utility detects and suggests the appropriate installation directory.
Batch e*Way Intelligent Adapter User’s Guide 14

Chapter 2 Section 2.3
Installation Files/Directories Created by the Installation
Caution: Unless you are directed to do so by Oracle support personnel, do not change the
suggested “installation directory” setting.

6 After installation is complete, exit the installation utility and launch the Schema
Manager.

7 In the Component editor, create a new e*Way.

8 Display the new e*Way’s properties.

9 On the General tab, under Executable File, click Find.

10 Select the file stcewgenericmonk.exe.

11 Click OK to close the properties sheet, or continue to configure the e*Way.
Configuration parameters are discussed in Chapter 3.

Note: Once you have installed and configured this e*Way, you must incorporate it into a
schema by defining and associating the appropriate Collaborations, Collaboration
Rules, IQs, and Event Types before this e*Way can perform its intended functions.
For more information about any of these procedures, please see the online Help
system.

For more information about configuring e*Ways or how to use the e*Way Editor, see
the e*Gate Integrator User’s Guide.

2.3 Files/Directories Created by the Installation
The Batch e*Way installation process installs the files shown in Table 1 on page 16
within the e*Gate directory tree. Files are installed within the eGate\ tree on the
Participating Host and committed to the “default” schema on the Registry Host.
Batch e*Way Intelligent Adapter User’s Guide 15

Chapter 2 Section 2.3
Installation Files/Directories Created by the Installation
Table 1 Files Created by Installation

Directories Files

client\bin\ stcewgenericmonk.exe
stc_ewftp.dll
stc_monkfilesys.dll

client\configs\stcewgenericmonk\ batch.def

client\monk_library\batch\ batch-ack.monk
batch-dynamic-init.monk
batch-dynamic-proc-out.monk
batch-dynamic-send-to-egate.monk
batch-exchange-data.monk
batch-exchange-utils.monk
batch-ext-connect.monk
Batch e*Way Intelligent Adapter User’s Guide 16

Chapter 2 Section 2.3
Installation Files/Directories Created by the Installation
batch-ext-shutdown.monk
batch-ext-verify.monk
batch-fetch-files-from-remote.monk
batch-fetch-named-files.monk
batch-init.monk
batch-nak.monk
batch-persist.monk
batch-post-transfer.monk
batch-proc-out.monk
batch-regular-init.monk
batch-regular-proc-out
batch-send-path-file.monk
batch-shutdown-notify.monk
batch-startup.monk
batch-utils.monk
batch-validate-params.monk
file-ext-connect.monk
file-ext-shutdown.monk
file-ext-verify.monk
file-fetch.monk
file-fetch-path.monk
file-init.monk
file-remote-path-list.monk
file-remote-post-transfer.monk
file-rmt-list.monk
file-rmt-post-transfer.monk
file-send.monk
file-send-path-file.monk
file-startup.monk
file-vaildate-params.monk
ftp-connect.monk
ftp-disconnect.monk
ftp-ext-connect.monk
ftp-ext-shutdown.monk
ftp-ext-verify.monk
ftp-fetch.monk
ftp-fetch-path.monk
ftp-init.monk
ftp-pre-post-commands.monk
ftp-remote-path-list.monk
ftp-remote-post-transfer.monk
ftp-rmt-list.monk
ftp-rmt-post-transfer.monk
ftp-send.monk
ftp-send-path-file.monk
ftp-startup.monk
ftp-validate-params.monk
local-post-transfer.monk

Table 1 Files Created by Installation (Continued)

Directories Files
Batch e*Way Intelligent Adapter User’s Guide 17

Chapter 2 Section 2.3
Installation Files/Directories Created by the Installation
client\monk_scripts\common\ batch_eway_data.jar
batch_eway_error.jar
batch_eway_order.jar
batch_eway_data.xsc
batch_eway_error.xsc
batch_eway_order.xsc

client\etd\batchclient\ FtpFileETD.xsc
stcbatch.jar

Table 1 Files Created by Installation (Continued)

Directories Files
Batch e*Way Intelligent Adapter User’s Guide 18

Chapter 3

Configuration

This chapter explains the parameters used to configure the Batch e*Way.

3.1 e*Way Configuration Parameters
Set the e*Way configuration parameters, using the e*Way Editor graphical user
interface (GUI) available through the e*Gate Schema Manager.

To change e*Way configuration parameters:

1 In the Schema Manager’s Component Editor pane, select the e*Way you want to
configure and display its properties.

2 Under Configuration File, click New to create a new file, Find to select an existing
configuration file, or Edit to edit the currently selected file.

3 In the Additional Command Line Arguments box, type any additional command-
line arguments that the e*Way may require, taking care to insert them at the end of
the existing command-line string.

Caution: Be careful not to change any of the default arguments unless you have a specific need
to do so.

For more information about how to use the e*Way Editor GUI, see the e*Way Editor’s
online Help or the e*Gate Integrator User’s Guide. The e*Way’s configuration parameters
are organized into the following sections:

General Settings on page 22

Communication Setup on page 23

Monk Configuration on page 26

External Host Setup on page 40

Subscribe to External on page 42
Batch e*Way Intelligent Adapter User’s Guide 19

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Publish to External on page 46

Sequence Numbering on page 49

Recourse Action on page 50

FTP on page 51

SOCKS on page 53

Dynamic Configuration on page 55

3.1.1 Monk Variables
You can use Monk e*Way configuration parameters in Monk scripts, as Monk variables.
Monk variables are available, which correspond to all the e*Way’s configuration
parameters.

These variables are available to the e*Way on the external side (see “Communication
Setup” on page 23). You can use these variables with both the event-driven (Process
Outgoing Message) and schedule-driven data exchange functions.

These Monk variables are:

GENERAL_SETTINGS_JOURNAL_FILE_NAME

GENERAL_SETTINGS_MAX_RESENDS_PER_MESSAGE

GENERAL_SETTINGS_MAX_FAILED_MESSAGES

GENERAL_SETTINGS_FORWARD_EXTERNAL_ERRORS

COMMUNICATION_SETUP_START_EXCHANGE_DATA_SCHEDULE

COMMUNICATION_SETUP_STOP_EXCHANGE_DATA_SCHEDULE

COMMUNICATION_SETUP_EXCHANGE_DATA_INTERVAL

COMMUNICATION_SETUP_DOWN_TIMEOUT

COMMUNICATION_SETUP_UP_TIMEOUT

COMMUNICATION_SETUP_RESEND_TIMEOUT

COMMUNICATION_SETUP_ZERO_WAIT_BETWEEN_SUCCESSFUL_EXCHANGES

COMMUNICATION_SETUP_EXCHANGE-IF-IN-WINDOW-ON-STARTUP

MONK_CONFIGURATION_ADDITIONAL_PATH

MONK_CONFIGURATION_AUXILIARY_LIBRARY_DIRECTORIES

MONK_CONFIGURATION_MONK_ENVIRONMENT_INITIALIZATION_FILE

MONK_CONFIGURATION_STARTUP_FUNCTION

MONK_CONFIGURATION_PROCESS_OUTGOING_MESSAGE_FUNCTION

MONK_CONFIGURATION_EXCHANGE_DATA_WITH_EXTERNAL_FUNCTION

MONK_CONFIGURATION_EXTERNAL_CONNECTION_ESTABLISHMENT_FUNCTION

MONK_CONFIGURATION_EXTERNAL_CONNECTION_VERIFICATION_FUNCTION

MONK_CONFIGURATION_EXTERNAL_CONNECTION_SHUTDOWN_FUNCTION
Batch e*Way Intelligent Adapter User’s Guide 20

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
MONK_CONFIGURATION_POSITIVE_ACKNOWLEDGMENT_FUNCTION

MONK_CONFIGURATION_NEGATIVE_ACKNOWLEDGMENT_FUNCTION

MONK_CONFIGURATION_SHUTDOWN_COMMAND_NOTIFICATION_FUNCTION

EXTERNAL_HOST_SETUP_HOST_TYPE

EXTERNAL_HOST_SETUP_EXTERNAL_HOST_NAME

EXTERNAL_HOST_SETUP_USER_NAME

EXTERNAL_HOST_SETUP_ENCRYPTED_PASSWORD

EXTERNAL_HOST_SETUP_FILE_TRANSFER_METHOD

SUBSCRIBE_TO_EXTERNAL_REMOTE_DIRECTORY_NAME

SUBSCRIBE_TO_EXTERNAL_REMOTE_FILE_REGEXP

SUBSCRIBE_TO_EXTERNAL_RECORD_TYPE

SUBSCRIBE_TO_EXTERNAL_RECORD_DELIMITER

SUBSCRIBE_TO_EXTERNAL_DELIMITER_ON_LAST_RECORD

SUBSCRIBE_TO_EXTERNAL_RECORD_SIZE

SUBSCRIBE_TO_EXTERNAL_REMOTE_COMMAND_AFTER_TRANSFER

SUBSCRIBE_TO_EXTERNAL_REMOTE_RENAME_OR_ARCHIVE_NAME

SUBSCRIBE_TO_EXTERNAL_LOCAL_COMMAND_AFTER_TRANSFER

SUBSCRIBE_TO_EXTERNAL_LOCAL_ARCHIVE_DIRECTORY

PUBLISH_TO_EXTERNAL_REMOTE_DIRECTORY_NAME

PUBLISH_TO_EXTERNAL_REMOTE_FILE_NAME

PUBLISH_TO_EXTERNAL_APPEND_OR_OVERWRITE_WHEN_TRANSFERRING_FILES

PUBLISH_TO_EXTERNAL_RECORD_TYPE

PUBLISH_TO_EXTERNAL_RECORD_DELIMITER

PUBLISH_TO_EXTERNAL_DELIMITER_ON_LAST_RECORD

PUBLISH_TO_EXTERNAL_RECORD_SIZE

PUBLISH_TO_EXTERNAL_REMOTE_COMMAND_AFTER_TRANSFER

PUBLISH_TO_EXTERNAL_REMOTE_RENAME_OR_ARCHIVE_NAME

PUBLISH_TO_EXTERNAL_LOCAL_COMMAND_AFTER_TRANSFER

PUBLISH_TO_EXTERNAL_LOCAL_ARCHIVE_DIRECTORY

SEQUENCE_NUMBERING_STARTING_SEQUENCE_NUMBER

SEQUENCE_NUMBERING_MAX_SEQUENCE_NUMBER

RECOURSE_ACTION_ACTION_ON_FETCH_FAILURE

RECOURSE_ACTION_ACTION_ON_SEND_FAILURE

FTP_SERVER_PORT

FTP_MODE

FTP_PRETRANSFER_COMMANDS

FTP_POSTTRANSFER_COMMANDS
Batch e*Way Intelligent Adapter User’s Guide 21

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Note: For complete information on Monk variables and on creating Monk scripts, see the
Monk Developer’s Reference.

3.1.2 General Settings
The General Settings control the e*Way’s basic operational parameters.

Journal File Name

Description

Specifies the name of the journal file.

Required Values

A valid file name, including the absolute path (for example, c:\temp\filename.txt). If
an absolute path is not specified, the file is stored in the e*Gate SystemData directory.
See the e*Gate Integrator System Administration and Operations Guide for more
information about file locations.

Additional Information

An Event is journaled for the following conditions:

When the number of resends is exceeded (see Max Resends Per Message in the
next section)

When its receipt is due to an external error, but Forward External Errors is set to
No. (See “Forward External Errors” on page 23 for more information.)

Max Resends Per Message

Description

Specifies the number of times the e*Way attempts to resend an Event (message) to the
external system after receiving an error.

SOCKS_SERVER_HOST_NAME

SOCKS_SERVER_PORT

SOCKS_METHOD

SOCKS_USER_NAME

SOCKS_ENCRYPTED_PASSWORD

DYNAMIC_CONFIGURATION_ENABLE_MESSAGE_CONFIGURATION

DYNAMIC_CONFIGURATION_PUBLISH_STATUS_RECORD_ON_SUCCESS

DYNAMIC_CONFIGURATION_PUBLISH_STATUS_RECORD_ON_ERROR

DYNAMIC_CONFIGURATION_INCLUDE_ORDER_RECORD_IN_ERROR_RECORD

DYNAMIC_CONFIGURATION_INCLUDE_PAYLOAD_IN_ERROR_RECORD

DYNAMIC_CONFIGURATION_ACTION_ON_MAL-FORMED_COMMAND
Batch e*Way Intelligent Adapter User’s Guide 22

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Required Values

An integer between 1 and 1024. The default is 5.

Max IQ Connection Retries

Description

The maximum number of times the e*Way attempts to connect to the IQ Manager
before shutting itself down.

Required Values

An integer between 1 and 32,000. The default is 20.

Max Failed Messages

Description

Specifies the maximum number of failed Events (messages) that the e*Way will allow.
When the specified number of failed messages is reached, the e*Way will shut down
and exit.

Required Values

An integer between 1 and 1024. The default is 3.

Forward External Errors

Description

Selects whether error messages that begin with the string DATAERR that are received
from the external system will be queued to the e*Way’s configured queue. See
“Schedule-driven Data Exchange Functions” on page 30 for more information about
how the e*Way uses this function.

Required Values

Yes or No. The default value, Yes, specifies that error messages are to be forwarded.

3.1.3 Communication Setup
The Communication Setup parameters control the schedule by which the e*Way
obtains data from the external system. These parameters are affected by the Dynamic
Configuration section. See Table 4 on page 56.

Note: The schedule (that is, timetable) you set using the e*Way’s properties in the Schema
Manager controls when the e*Way executable will run. The schedule you set within
the parameters discussed in this section (using the e*Way Editor) determines when
data will be exchanged. Be sure you set the “exchange data” schedule to fall within
the “run the executable” schedule.
Batch e*Way Intelligent Adapter User’s Guide 23

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Start Exchange Data Schedule

Description

Establishes the schedule to invoke the e*Way’s Exchange Data with External function
(see “Exchange Data with External Function” on page 36).

Required Values

One of the following:

One or more specific dates/times

A single repeating interval (such as yearly, weekly, monthly, daily, or every n
seconds).

Also Required: If you set a schedule using this parameter, you must also define all
three of the following functions:

Exchange Data With External

Positive Acknowledgment

Negative Acknowledgment

If you do not do so, the e*Way will terminate execution when the schedule attempts to
start.

See “Exchange Data with External Function” on page 36, “Exchange Data Interval”
on page 25, and “Stop Exchange Data Schedule” on page 24 for more information. See
also, “Exchange-if-in-window-on-startup” on page 26.

Additional Information

When the schedule starts, the e*Way determines whether it is waiting to send a positive
or negative acknowledgment to the external system (using the Positive
Acknowledgment and Negative Acknowledgment functions) and whether the
connection to the external system is active.

If no positive or negative acknowledgements are pending and the connection is active,
the e*Way immediately executes the Exchange Data with External function. Thereafter,
the Exchange Data with External function will be called according to the Exchange
Data Interval parameter until the Stop Exchange Data Schedule time is reached.

Also, see start-schedule on page 89.

Stop Exchange Data Schedule

Description

Establishes the schedule to stop data exchange.

Required Values

One of the following:

One or more specific dates/times

A single repeating interval (such as yearly, weekly, monthly, daily, or every n
seconds).
Batch e*Way Intelligent Adapter User’s Guide 24

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Also, see stop-schedule on page 90.

Exchange Data Interval

Description

Specifies the number of seconds the e*Way waits between calls to the Exchange Data
with External function (see “Exchange Data with External Function” on page 36). If
the Start Exchange Data Schedule and Stop Exchange Data Schedule parameters have
been set to create a scheduled data-exchange window, then this interval only operates
during this window. If these parameters have not been set to create such a window,
then the Exchange Data Interval operates on a continuous basis, in conjunction with
the Exchange Data with External function.

Required Values

An integer between 0 and 86,400. The default is 120.

Additional Information

If Zero Wait Between Successful Exchanges is set to Yes and the Exchange Data with
External Function returns data, The Exchange Data Interval setting will be ignored
and the e*Way will invoke the Exchange Data with External Function immediately.

If this parameter is set to 0 (zero), there will be no exchange data schedule set and the
Exchange Data with External Function will never be called.

See “Down Timeout” on page 25 and “Stop Exchange Data Schedule” on page 24 for
more information about the data-exchange schedule.

Down Timeout

Description

Specifies the number of seconds that the e*Way will wait between calls to the External
Connection Establishment function. See “External Connection Establishment
Function” on page 37 for more information.

Required Values

An integer between 1 and 86,400. The default is 15.

Up Timeout

Description

Specifies the number of seconds the e*Way waits between calls to the External
Connection Verification function. See “External Connection Verification Function”
on page 38 for more information.

Required Values

An integer between 1 and 86,400. The default is 15.
Batch e*Way Intelligent Adapter User’s Guide 25

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Resend Timeout

Description

Specifies the number of seconds the e*Way waits between attempts to resend a message
(Event) to the external system, after receiving an error message from the external
system.

Required Values

An integer between 1 and 86,400. The default is 10.

Zero Wait Between Successful Exchanges

Description

Selects whether to initiate data exchange after the Exchange Data Interval or
immediately after a successful previous exchange.

Required Values

Yes or No. If this parameter is set to Yes, the e*Way immediately invokes the Exchange
Data with External function if the previous exchange function returned data. If this
parameter is set to No, the e*Way always waits the number of seconds specified by
Exchange Data Interval between invocations of the Exchange Data with External
function. The default is Yes.

See “Exchange Data with External Function” on page 36 for more information.

Exchange-if-in-window-on-startup

If this parameter is set to Yes, and the e*Way starts within an exchange data window,
the e*Way immediately invokes the Exchange Data with External Function.

Required Values

Yes or No. The default is No.

3.1.4 Monk Configuration
The parameters in this section help you set up the information required by the e*Way to
utilize Monk for communication with the external system. These parameters are
affected by the Dynamic Configuration section. See Table 4 on page 56.
Batch e*Way Intelligent Adapter User’s Guide 26

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Operational Details

The Monk functions in the communications side of the e*Way fall into the groups
shown in Table 2 on page 27.

A series of figures on the next several pages illustrates the interaction and operation of
these functions.

Initialization Functions

Figure 2 on page 28 illustrates how the e*Way executes its initialization functions.

Table 2 Monk Communications Functions

Type of Operation Name

Initialization Startup Function on page 35
(also see Monk Environment Initialization
File on page 34)

Connection External Connection Establishment Function
on page 37
External Connection Verification Function on
page 38
External Connection Shutdown Function on
page 38

Schedule-driven data
exchange

Exchange Data with External Function on
page 36
Positive Acknowledgment Function on
page 38
Negative Acknowledgment Function on
page 39

Shutdown Shutdown Command Notification Function
on page 40

Event-driven data
exchange

Process Outgoing Message Function on
page 35
Batch e*Way Intelligent Adapter User’s Guide 27

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Figure 2 Initialization Functions

Connection Functions

Figure 3 on page 29 illustrates how the e*Way executes the connection establishment
and verification functions.

Start e*Way

Load
"Monk Initialization"

file

Execute any Monk function
having the same name as the

initialization file

Load "Startup" file

Execute any Monk function
having the same name as the

startup file
Batch e*Way Intelligent Adapter User’s Guide 28

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Figure 3 Connection Establishment and Verification Functions

Note: The e*Way selects the connection function based on an internal “up/down” flag
rather than a poll to the external system. See Figure 5 on page 31 and Figure 7 on
page 33 for examples of how different functions use this flag.

User functions can manually set this flag using Monk functions. See “send-
external-up” on page 88 and “send-external-down” on page 88 for more
information.

Figure 4 on page 30 illustrates how the e*Way executes its connection shutdown
function.

Connect e*Way to
external system

Internal
flag shows connection

active?

Wait for "Up Timeout"
schedule

Call External Connection
Verification function

Wait for "Down Timeout"
schedule

Call External Connection
Establishment function

Yes

No
Batch e*Way Intelligent Adapter User’s Guide 29

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Figure 4 Connection Shutdown Functions

Schedule-driven Data Exchange Functions

Figure 5 on page 31 illustrates how the e*Way performs schedule-driven data exchange
using the Exchange Data with External function. The Positive Acknowledgment
Function and Negative Acknowledgment function are also called during this process.

“Start” can occur in any of the following ways:

The Start Data Exchange time occurs

Periodically during data-exchange schedule (after Start Data Exchange time, but
before Stop Data Exchange time), as set by the Exchange Data Interval

The start-schedule Monk function is called

After the function exits, the e*Way waits for the next start schedule time or command.

Control Broker issues
"Suspend" command

Call External Connection Shutdown
function with parameter

"SUSPEND_NOTIFICATION"

e*Way closes connection

Return any value
Batch e*Way Intelligent Adapter User’s Guide 30

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Figure 5 Schedule-driven Data Exchange Functions

Shutdown Functions

Figure 6 on page 32 illustrates how the e*Way implements the shutdown request
function.

Increment "Failed
Message" counter

DATAERR plus
additional data

Null
string

Data
(other than

error strings)

Forward
external
errors?

No

Yes

Set interval flag
"Connection Down"

CONNERR

Wait for Resend
Timeout period

Roll back Event to
its publishing IQ

Increment "Failed
Message" counter

DATAERR only

Journal
enabled?

Create journal entry

Yes

No

Start

Function exits

Send Event to
e*Gate

All
subscribing

Collaborations return
TRUE

?

Call Positive
Acknowledgment

function

Zero
wait after successful

exchange?

Call Negative
Acknowledgment

function

Yes

No

YesNo

Call Exchange Data with
External function

Return
Batch e*Way Intelligent Adapter User’s Guide 31

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Figure 6 Shutdown Functions

Event-driven Data Exchange Functions

Every two minutes, the e*Way checks the failed message counter against the value
specified by the Max Failed Messages parameter. When the failed message counter
exceeds the specified maximum value, the e*Way logs an error and shuts down.

After the function exits, the e*Way waits for the next outgoing Event.

Figure 7 on page 33 illustrates event-driven data-exchange using the Process Outgoing
Message function.

Control Broker issues
"Shutdown" command

Call Shutdown Notification function
with parameter

"SHUTDOWN_NOTIFICATION"

e*Way shuts down

Wait for
shutdown-request

function

Return

Null string or
"SUCCESS"

any other value
Batch e*Way Intelligent Adapter User’s Guide 32

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Figure 7 Event-driven Data Exchange Functions

How to Specify Function/File Names

Parameters that require the name of a Monk function accept either a function name or a
file name. If you specify a file name, be sure that the file has one of the following
extensions:

.monk

.tsc

.dsc

Collaboration publishes
to <EXTERNAL>

Call Process Outgoing
Message function

Set internal flag
"Connection Down"

Maximum
Resends per Message

exceeded?

Yes

Return

CONNERR DATAERR

Increment "Failed
Message" counter

Create journal entry

Null
string

No

Journal
enabled?

No

Function exits

Wait for Resend
Timeout period

Roll back Event to
its publishing IQ

Yes

Wait for Resend
Timeout period

Increment
"Resend" counter

RESEND
Batch e*Way Intelligent Adapter User’s Guide 33

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Additional Path

Description

Specifies a path to be appended to the load path, the path Monk uses to locate files and
data (set internally within Monk). The directory specified in Additional Path will be
searched after the default load paths.

Required Values

A path, or a series of paths separated by semicolons. This parameter is optional and
may be left blank.

Additional Information

The default load paths are determined by the bin and Shared Data settings in
the .egate.store file. See the e*Gate Integrator System Administration and Operations Guide
for more information about this file.

To specify multiple directories, manually enter the directory names rather than
selecting them with the File Selection button. Directory names must be separated with
semicolons, and you can mix absolute paths with relative e*Gate paths, for example:

monk_scripts\my_dir;c:\my_directory

The internal e*Way function that loads this path information is called only once, when
the e*Way first starts up.

Auxiliary Library Directories

Description

Specifies a path to auxiliary library directories. Any .monk files found within those
directories will automatically be loaded into the e*Way’s Monk environment. This
parameter is optional and may be left blank.

Required Values

A path name, or a series of paths separated by semicolons.

Additional Information

To specify multiple directories, manually enter the directory names rather than
selecting them with the “file selection” button. Directory names must be separated with
semicolons, and you can mix absolute paths with relative e*Gate paths. For example,

monk_scripts\my_dir;c:\my_directory

The internal e*Way function that loads this path information is called only once, when
the e*Way first starts up.

This parameter is optional and may be left blank.

Monk Environment Initialization File

Specifies a file that contains environment initialization functions, which will be loaded
after the auxiliary library directories are loaded. Use this feature to initialize the
e*Way’s Monk environment (for example, to define Monk variables that are used by the
e*Way’s function scripts).
Batch e*Way Intelligent Adapter User’s Guide 34

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Required Values

A file name within the “load path”, or file name plus path information (relative or
absolute). If path information is specified, that path will be appended to the “load
path.” See “Additional Path” on page 34 for more information about the “load path.”

Additional Information

Any environment-initialization functions called by this file accept no input, and must
return a string. The e*Way will load this file and try to invoke a function of the same
base name as the file name (for example, for a file named my-init.monk, the e*Way
would attempt to execute the function my-init).

Typically, it is a good practice to initialize any global Monk variables that may be used
by any other Monk Extension scripts.

The internal function that loads this file is called once when the e*Way first starts up
(see Figure 2 on page 28).

Startup Function

Description

Specifies a Monk function that the e*Way will load and invoke upon startup or
whenever the e*Way’s configuration is reloaded. This function should be used to
initialize the external system before data exchange starts.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is optional and may be left
blank.

Additional Information

The function accepts no input, and must return a string.

The string FAILURE indicates that the function failed; any other string (including a null
string) indicates success.

This function will be called after the e*Way loads the specified “Monk Environment
Initialization file” and any files within the specified Auxiliary Directories.

The e*Way will load this file and try to invoke a function of the same base name as the
file name (see Figure 2 on page 28). For example, for a file named my-startup.monk,
the e*Way would attempt to execute the function my-startup.

Process Outgoing Message Function

Description

Specifies the Monk function responsible for sending outgoing messages (Events) from
the e*Way to the external system. This function is event-driven (unlike the Exchange
Data with External function, which is schedule-driven).
Batch e*Way Intelligent Adapter User’s Guide 35

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. You must enter a value for this parameter.

Additional Information

The function requires a non-null string as input (the outgoing Event to be sent) and
must return a string.

The e*Way invokes this function when one of its Collaborations publishes an Event to
an <EXTERNAL> destination (as specified within the Schema Manager). The function
returns one of the following (see Figure 7 on page 33 for more details):

Null string: Indicates that the Event was published successfully to the external
system.

RESEND: Indicates that the Event should be resent.

CONNERR: Indicates that there is a problem communicating with the external
system.

DATAERR: Indicates that there is a problem with the message (Event) data itself.

Any other string: If a string other than the preceding is returned, the e*Way will
create an entry in the log file indicating that an attempt has been made to access an
unsupported function.

Note: If you wish to use event-send-to-egate to enqueue failed Events in a separate IQ,
the e*Way must have an inbound Collaboration (with appropriate IQs) configured
to process those Events. See “event-send-to-egate” on page 87 for more
information.

Exchange Data with External Function

Description

Specifies a Monk function that initiates the transmission of data from the external
system to the e*Gate system and forwards that data as an inbound Event to one or more
e*Gate Collaborations. This function is called according to a schedule (unlike the
Process Outgoing Message Function, which is event-driven).

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is optional and may be left
blank.
Batch e*Way Intelligent Adapter User’s Guide 36

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Additional Information

The function accepts no input and must return a string (see Figure 5 on page 31 for
more details):

Null string: Indicates that the data exchange was completed successfully. No
information will be sent into the e*Gate system.

CONNERR: Indicates that a problem with the connection to the external system has
occurred.

DATAERR: Indicates that a problem with the data itself has occurred. The e*Way
handles the string DATAERR and DATAERR plus additional data differently; see
Figure 5 on page 31 for more details.

Any other string: The contents of the string are packaged as an inbound Event. The
e*Way must have at least one Collaboration configured suitably to process the
inbound Event, as well as any required IQs.

This function is initially triggered by the Start Data Exchange schedule or manually by
the Monk function start-schedule. After the function has returned true and the data
received by this function has been positively or negatively acknowledged (by the
Positive Acknowledgment Function or Negative Acknowledgment Function,
respectively), the e*Way checks the Zero Wait Between Successful Exchanges
parameter.

If this parameter is set to Yes, the e*Way will immediately call the Exchange Data with
External function again; otherwise, the e*Way will not call the function until the next
scheduled start-exchange time or the schedule is manually invoked using the Monk
function start-schedule (see “start-schedule” on page 89 for more information).

External Connection Establishment Function

Description

Specifies a Monk function that the e*Way will call when it has determined that the
connection to the external system is down.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This field cannot be left blank.

Additional Information

The function accepts no input and must return a string:

SUCCESS or UP: Indicates that the connection was established successfully.

Any other string (including the null string): Indicates that the attempt to establish
the connection failed.

This function is executed according to the interval specified within the Down Timeout
parameter, and is only called according to this schedule.

The External Connection Verification function (see below) is called when the e*Way
has determined that its connection to the external system is up.
Batch e*Way Intelligent Adapter User’s Guide 37

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
External Connection Verification Function

Description

Specifies a Monk function that the e*Way will call when its internal variables show that
the connection to the external system is up.

Required Values

The name of a Monk function. This function is optional; if no External Connection
Verification function is specified, the e*Way will execute the External Connection
Establishment function in its place.

Additional Information

The function accepts no input and must return a string as follows:

SUCCESS or UP: Indicates that the connection was established successfully.

Any other string (including the null string): Indicates that the attempt to establish
the connection failed.

This function is executed according to the interval specified within the Up Timeout
parameter, and is only called according to this schedule.

The External Connection Establishment function (see above) is called when the e*Way
has determined that its connection to the external system is down.

External Connection Shutdown Function

Description

Specifies a Monk function that the e*Way will call to shut down the connection to the
external system.

Required Values

The name of a Monk function. This parameter is optional.

Additional Information

This function requires a string as input, and may return a string.

This function will only be invoked when the e*Way receives a suspend command from
a Control Broker. When the suspend command is received, the e*Way will invoke this
function, passing the string SUSPEND_NOTIFICATION as an argument.

Any return value indicates that the suspend command can proceed and that the
connection to the external system can be broken immediately.

Positive Acknowledgment Function

Description

Specifies a Monk function that the e*Way will call when all the Collaborations to which
the e*Way sent data have processed and enqueued that data successfully.
Batch e*Way Intelligent Adapter User’s Guide 38

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is required if the Exchange
Data with External function is defined.

Additional Information

The function requires a non-null string as input (the Event to be sent to the external
system) and must return a string:

CONNERR: Indicates a problem with the connection to the external system. When
the connection is reestablished, the Positive Acknowledgment function will be
called again, with the same input data.

Null string: The function completed execution successfully.

After the Exchange Data with External function returns a string that is transformed
into an inbound Event, the Event is handed off to one or more Collaborations for
further processing. If the Event’s processing is completed successfully by all the
Collaborations to which it was sent, the e*Way executes the Positive Acknowledgment
function (otherwise, the e*Way executes the Negative Acknowledgment function).

Negative Acknowledgment Function

Description

Specifies a Monk function that the e*Way will call when the e*Way fails to process and
queue Events from the external system.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is required if the Exchange
Data with External function is defined.

Additional Information

The function requires a non-null string as input (the Event to be sent to the external
system) and must return a string:

CONNERR: Indicates a problem with the connection to the external system. When
the connection is reestablished, the function will be called again.

Null string: The function completed execution successfully.

This function is only called during the processing of inbound Events. After the
Exchange Data with External function returns a string that is transformed into an
inbound Event, the Event is handed off to one or more Collaborations for further
processing.

If the Event’s processing is not completed successfully by all the Collaborations to
which it was sent, the e*Way executes the Negative Acknowledgment function
(otherwise, the e*Way executes the Positive Acknowledgment function).
Batch e*Way Intelligent Adapter User’s Guide 39

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Shutdown Command Notification Function

Description

Specifies a Monk function that is called when the e*Way receives a shutdown command
from the Control Broker. This parameter is optional.

Required Values

The name of a Monk function.

Additional Information

When the Control Broker issues a shutdown command to the e*Way, the e*Way calls
this function with the string SHUTDOWN_NOTIFICATION passed as a parameter.

The function accepts a string as input and must return a string as follows:

A null string or SUCCESS: Indicates that the shutdown can occur immediately.

Any other string: Indicates that shutdown must be postponed. Once postponed,
shutdown will not proceed until the Monk function shutdown-request is executed
(see “shutdown-request” on page 89).

Note: If you postpone a shutdown using this function, be sure to use the
(shutdown-request) function to complete the process in a timely manner.

3.1.5 External Host Setup
The External Host Setup parameters describe the FTP server to which the e*Way is to
connect.

Note: These parameters may be overridden depending on how parameters in the Dynamic
Configuration section are set. See Table 4 on page 56.

Host Type

Description

Specifies the operating system of the remote FTP server. The e*Way uses this parameter
when analyzing the output of the FTP list command.
Batch e*Way Intelligent Adapter User’s Guide 40

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Required Values

The default is UNIX. Use any one of the following supported host types:

External Host Name

Description

Specifies the host name of the FTP server.

Required Values

A valid host name. The default is localhost.

User Name

Description

Specifies the user name the e*Way uses when gaining access to the FTP server.

Required Values

A valid user name. The default is anonymous.

Encrypted Password

Description

Specifies the password the e*Way uses when gaining access to the FTP server.

Host Type Directory Structure

UNIX /dir1/dir2/file.ext

VMS disk1:[dir1.dir2]file.ext;1

MVS PDS dir1.dir2(file)

MVS Sequential dir1.dir2.file

MVS GDG dir1.dir2.file(version)

AS400 dir1/file.ext

AS400-UNIX /dir1/dir2/file.ext

HCLFTPD 5.1 /dir1/dir2/file.ext

HCLFTPD 6.0. /dir1/dir2/file.ext

MSFTPD 2.0 /dir1/dir2/file.ext

VM/ESA file.ext

Netware 4.11 /dir1/dir2/file.ext
Batch e*Way Intelligent Adapter User’s Guide 41

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Required Values

The password appropriate for the user name specified earlier. First enter the user name
then enter the password in cleartext; the e*Way editor will store the password
encrypted. The encrypted form of the password is based on the combined username
and the password in cleartext. Therefore, an environment variable can not be used in
lieu of the username.

File Transfer Method

Description

Selects whether files are transferred via FTP protocol or by a simple file-copy operation.

Required Values

FTP or File Copy. The default is FTP.

Additional Information

The File Copy parameter can be used when transferring files between physically
different systems across NFS mounts.

File Sync

Description

Allows you to specify whether the e*Way to controls the cache synchronization to disk
(Yes) or whether the operating system controls the synchronization schedule (No).

Use this parameter is for the file transfer method only.

Required Values

Yes or No (the default).

3.1.6 Subscribe to External
The Subscribe to External parameters control how the e*Way retrieves files from an
external system. Note that when you are archiving a local file, the archive destination
must be on the same volume as the source.

Note: These parameters may be overridden or ignored altogether depending on how
parameters in the Dynamic Configuration section are set. See Table 4 on
page 56.
Batch e*Way Intelligent Adapter User’s Guide 42

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Additional Information

When you are using the Batch e*Way’s Subscribe to External-related features to
retrieve files from external systems, keep the following facts in mind:

The FTP process can copy an open file from the external system and into e*Gate. If
the file is currently being modified and correct results depend on the completed file,
an unready file could be copied into the e*Gate system. To avoid this problem, you
can set up external files to be copied using a signal to tell you whether the file is
open. For example, you can have the system try to rename the file first, and if the
rename operation fails, the file is not ready for use and not copied.

Keep in mind that the FTP process copies files in the directory list order. You can
verify this operation by checking the persist.dat file. You can modify the list
command in this file to change the order.

Remote Directory Name

Description

Specifies a directory path on the external system from which the e*Way retrieves files.

Required Values

Specify a relative or absolute path. The relative path is the path relative to the default
login location. The path must exist on the FTP server’s system. There is no default
specified.

Remote File Regexp

Description

Specifies a regular expression that describes files to be retrieved.

Required Values

A valid regular expression.

Additional Information

Wildcards can be used, which are expanded by the e*Way before the file is transmitted.
See “Using Special Characters” on page 69 for details.

Record Type

Description

Specifies the record structure of the files being retrieved.

Required Values

One of Delimited, Fixed, or Single Record. The default is Delimited.
Batch e*Way Intelligent Adapter User’s Guide 43

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Additional Information

For delimited files, the delimiter characters are defined by the Record Delimiter
parameter

For fixed-record files, the record size is defined by the Record Size parameter

For single-record files, it is recommended that you use message sequencing to
prevent any messages from being overwritten (see “Sequence Numbering” on
page 49 for more information)

Record Delimiter

Description

Specifies the record delimiter in delimited files.

Required Values

A string. The delimiter can be entered in ASCII, escaped ASCII, octal, or hex. The
default is \n (new line).

Additional Information

The delimiter is stripped and is not queued as part of the record data.

Delimiter on Last Record

Description

Specifies whether the last record in a delimited file is terminated by a delimiter.

Required Values

Yes or No. The default is Yes.

Additional Information

This parameter is only used when Record Type is set to Delimited.

Record Size

Description

Specifies the record length for fixed-record files, in bytes.

Required Values

A positive integer between 1 and 214,783,647.

Remote Command After Transfer

Description

Specifies the command that the e*Way executes on the external system after a
successful file transfer.
Batch e*Way Intelligent Adapter User’s Guide 44

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Required Values

One of Rename, Archive, or None. The default is None.

Additional Information

The Archive command moves the file to the directory specified in the Remote Rename
or Archive Name (see that section) parameter.

The Rename and Archive values may not be available on all systems because they rely
on the FTP command RNFR being available on the external system. If the external
system does not support RNFR, these commands do not work.

If you are receiving multiple files, using Rename overwrites the file each time another
file is transferred. Do not use Rename unless you are providing your own handler for
manipulating the file name (see the Remote Rename or Archive Name section).

Note: The MVS remote FTP host type does not permit the renaming of partitioned data
sets into different partitioned data sets. Therefore, neither the Remote Rename nor
Archive Name commands are supported on MVS host types.

Remote Rename or Archive Name

Description

Depending on the value of Remote Command After Transfer, the parameter specifies
either the name to which to rename the external file (for Rename) or the directory in
which to archive the external file (for Archive).

Required Values

A file name or path name. There is no default specified.

Additional Information

Special characters can be used, which are expanded by the e*Way before the file is
transmitted. See “Using Special Characters” on page 69 for details. The expansion of
any special character is carried out each time this parameter is used.

Note: If you are entering a path name, use the forward slash (/) instead of the back slash
(\) because the e*Way interprets the back slash as a special character and not a path
separator. For example, use c:/temp/dir for that path location, not c:\temp\dir.

Local Command After Transfer

Description

Specifies the action to be performed on the temporary file after all the records in it have
been queued.

Required Values

One of Delete or Archive. The default is Delete.
Batch e*Way Intelligent Adapter User’s Guide 45

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Local Archive Directory

Description

Specifies the directory in which to archive the file.

Required Values

A path to a directory. There is no default specified.

Additional Information

The local file must be removed from the working directory by archiving.

Special characters can be used, which are expanded by the e*Way before the file is
transmitted. See “Using Special Characters” on page 69 for details. The expansion of
any special character is carried out each time this parameter is used.

Note: If you are entering a path, use the forward slash (/) instead of the back slash (\)
because the e*Way interprets the back slash as a special character and not a path
separator. For example, use c:/temp/dir for that path location, not c:\temp\dir.

3.1.7 Publish to External
The Publish to External parameters control how the e*Way publishes data to an
external system.

Note: These parameters may be overridden or ignored altogether depending on how
parameters in the Dynamic Configuration section are set. See Table 4 on
page 56.

Remote Directory Name

Description

Specifies a path to the directory on the external system to which the e*Way will transfer
files.

Required Values

Leave this parameter blank to use the default directory assigned to the user name by
which the e*Way will log in (most often, the user’s home directory). Otherwise, specify
an absolute path. The path must exist on the FTP server’s system. There is no default
specified.

Remote File Name

Description

Specifies the file name on the external system to be used for the file transfer.

Required Values

Any valid file name, as an absolute path. A file name must be specified; do not specify a
directory name.
Batch e*Way Intelligent Adapter User’s Guide 46

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Additional Information

Special characters can be used which are expanded by the e*Way before the file is
transmitted. See “Using Special Characters” on page 69 for details.

Append or Overwrite when Transferring Files

Description

Specifies whether to append the records in the file being transferred to the existing file
on the external system, or to overwrite the existing file on the external system with the
file being transferred.

Required Values

One of Append or Overwrite. The default is Append.

Record Type

Description

Specifies the record structure of the files being transferred to the external system.

Required Values

One of Delimited, Fixed, or Single Record. The default is Delimited.

Additional Information

For delimited files, the delimiter characters are defined by the Record Delimiter
parameter

For fixed-record files, the record size is defined by the Record Size parameter

For single-record files, it is recommended that you use message sequencing to
prevent any messages from being overwritten (see “Sequence Numbering” on
page 49 for more information)

Record Delimiter

Description

Specifies the record delimiter in delimited files.

Required Values

A string. The delimiter can be entered in ASCII, escaped ASCII, octal, or hex. The
default is \n (new line).

Delimiter on Last Record

Description

Specifies whether the last record in a delimited file is terminated by a delimiter.

Required Values

Yes or No. The default is Yes.
Batch e*Way Intelligent Adapter User’s Guide 47

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Additional Information

This parameter is only used when Record Type is set to Delimited.

Record Size

Description

Specifies the record length for fixed-record files, in bytes.

Required Values

A positive integer. The range is between 1 and 214,783,647.

Remote Command After Transfer

Description

Specifies the command that the e*Way executes on the external system after a
successful file transfer.

Required Values

One of Rename, Archive, or None. The default is None.

Additional Information

The Archive command moves the file to the directory specified in the Remote Rename
or Archive Name (see that section) parameter.

The Rename and Archive values may not be available on all systems because they rely
on the FTP command RNFR being available on the external system. If the external
system does not support RNFR, these commands do not work.

If you are receiving multiple files, using Rename overwrites the file each time another
file is transferred. Do not use Rename unless you are providing your own handler for
manipulating the file name (see the Remote Rename or Archive Name section).

Note: MVS does not permit the renaming of partitioned data sets into different partitioned
data sets. Therefore, neither the Remote Rename nor Archive Name commands
are supported on MVS systems.

Remote Rename or Archive Name

Description

Depending on the value of Remote Command After Transfer, the parameter specifies
either the name to which to rename the external file (for Rename) or the directory in
which to archive the external file (for Archive).

Required Values

A file name or path. There is no default specified.
Batch e*Way Intelligent Adapter User’s Guide 48

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Additional Information

Special characters can be used, which are expanded by the e*Way before the file is
transmitted. See “Using Special Characters” on page 69 for details. The expansion of
any special character is carried out each time this parameter is used.

Note: If you are entering a path name, use the forward slash (/) instead of the back slash
(\) because the e*Way interprets the back slash as a special character and not a path
separator. For example, use c:/temp/dir for that path location, not c:\temp\dir.

Local Command After Transfer

Description

Specifies the action to be performed on the temporary file after all the records in it have
been queued.

Required Values

One of Delete or Archive. The default is Delete.

Local Archive Directory

Description

Specifies the directory in which to archive the file.

Required Values

A file name or path. There is no default specified.

Additional Information

The local file must be removed from the working directory by archiving.

Special characters can be used, which are expanded by the e*Way before the file is
transmitted. See “Using Special Characters” on page 69 for details. The expansion of
any special character is carried out each time this parameter is used.

Note: If you are entering a path name, use the forward slash (/) instead of the back slash
(\) because the e*Way interprets the back slash as a special character and not a path
separator. For example, use c:/temp/dir for that path location, not c:\temp\dir.

3.1.8 Sequence Numbering
The Sequence Numbering parameters determine how to use sequence numbers to
generate file names. These parameters are affected by the Dynamic Configuration
section. See Table 4 on page 56.

If sequence numbering is used, the file name must contain a single occurrence of a
special format string that designates the sequence number (see “Sequence
Numbering” on page 71). The sequence number is incremented by one after each file
“get” operation, whether successful or unsuccessful.
Batch e*Way Intelligent Adapter User’s Guide 49

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Note: When composing external file names, do not use wildcard characters immediately
before or after the special format string because these may cause file name expansion
ambiguities. Wild cards may not be used in the name of a sending file.

Starting Sequence Number

Description

Specifies the starting sequence number used if there is no number from a previous run.
If there is, the previous number is used.

Required Values

A non-negative integer. The default range is from 0 to 1, but you can change the upper
limit of the range. No additional default is specified.

Additional Information

To change the default range in the e*Way Editor, simply change the value in the To box.
You will only be able to add a starting value higher than 1 after you change the limit.

The number must be less than the Max Sequence Number. When the Max Sequence
Number is reached, the current sequence number rolls back to this parameter.

Max Sequence Number

Description

Specifies the last sequence number to be used before rolling over to the Starting
Sequence Number.

Required Values

A positive integer. The default range is between 1 and 214,783,647. No default is
specified.

Additional Information

This number must be greater than the Starting Sequence Number.

3.1.9 Recourse Action
The Recourse Action parameters determine the action to be taken if the FTP transfer
fails. This action will depend on the interface to the external system and the data
contained in the files. The default action is to shut down the e*Way, which we
recommend as the safest course of action. These parameters are affected by the
Dynamic Configuration section. See Table 4 on page 56.

Action on Fetch Failure

Description

Specifies the recourse action to be taken if the FTP operation failed when retrieving a
file from the external system.
Batch e*Way Intelligent Adapter User’s Guide 50

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Required Values

One of Exit, Skip File, or Next Schedule. The default is Exit.

Exit: Shuts down the e*Way immediately.

Skip File: Ignores the file that could not be retrieved, leaving it on the external
server. The e*Way retries the retrieval on the next scheduled attempt.

Next Schedule: Stops the e*Way from retrieving more files until the next schedule.
However, any files that are already retrieved are processed.

Action on Send Failure

Description

Specifies the recourse action to be taken if the FTP operation failed when sending a file
to the external system.

Required Values

One of Exit, Skip File, or Next Schedule. The default is Exit.

Exit: Shuts down the e*Way immediately.

Skip File: Ignores the file that could not be sent, leaving it on the external server.
The e*Way tries to send again on the next scheduled attempt.

Next Schedule: Stops the e*Way from sending more files until the next schedule.
However, any files already sent are processed.

3.1.10 FTP
This section contains the parameters for communicating with a FTP server.

Server Port

Description

Specifies the port number to use for connection to the FTP server.

Required Values

A integer from 0 through 100000. Default is 21.

Mode

Description

Specifies the mode to use for the transfer of data to or from the FTP server.

Required Values

A, I, or E, where A = ASCII, I = image (or binary), and E = EBCDIC. The default is A.

Note: The default in e*Way versions 4.1.2 or earlier is I. The default is A in versions 4.5 or
later.
Batch e*Way Intelligent Adapter User’s Guide 51

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Additional Information

The mode selected produces different results, depending on the type of data transferred
and the types of systems involved.

Note: In this e*Way, the E value is supported only within AIX, z/OS systems. To
transport EBCDIC data to an ASCII-based system (UNIX or Windows), you must
use the ebcdic->ascii Monk function. The opposite is also true, using the analogous
ascii->ebcdic function. For complete information on these functions, see the Monk
Developer’s Reference Guide.

The Table 3 lists the possible different configurations of systems, data, and modes, with
the corresponding results of each combination.

Table 3 Results of Modes Under Different Configurations

Configuration Mode Results

Batch e*Way on an ASCII machine
retrieving data from an EBCDIC
machine

ASCII Data converts to ASCII, which can be
read on an ASCII machine.

EBCDIC Data converts to ASCII, which can be
read on an ASCII machine.

Binary Data remains in EBCDIC.

Batch e*Way on an ASCII machine
retrieving data from an ASCII machine

ASCII Data remains in ASCII.

EBCDIC Do not use; the data converts to an
unreadable format.

Binary Data remains in ASCII.

Batch e*Way on an ASCII machine
sending data to an EBCDIC machine

ASCII Data converts to EBCDIC, which can be
read on an EBCDIC machine.

EBCDIC Data converts to EBCDIC, which can be
read on an EBCDIC machine.

Binary Data remains in ASCII.

Batch e*Way on an ASCII machine
sending data to an ASCII machine

ASCII Data remains in ASCII.

EBCDIC Do not use; the data converts to an
unreadable format.

Binary Data remains in ASCII.

Batch e*Way on an EBCDIC machine
retrieving data from an ASCII machine

ASCII Data converts to EBCDIC, which can be
read on an EBCDIC machine.

EBCDIC Data converts to EBCDIC, which can be
read on an EBCDIC machine.

Binary Data remains in ASCII.

Batch e*Way on an EBCDIC machine
retrieving data from an EBCDIC
machine

ASCII Do not use; the data converts to an
unreadable format.

EBCDIC Data remains in EBCDIC.

Binary Data remains in EBCDIC.
Batch e*Way Intelligent Adapter User’s Guide 52

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Pretransfer Commands

Description

Specifies a set of FTP commands to use before a FTP file transfer. The command
delimiter is ; (the semi-colon), for example:

SITE RECFM=FB;SITE LRECL=50;SITE BLOCKSIZE=32750;SITE TRACKS;SITE
PRI=5;SITE SEC=5

Posttransfer Commands

Description

Specifies a set of FTP commands to use after a FTP file transfer. The command delimiter
is ‘;’.

3.1.11 SOCKS
This section contains the parameters the e*Way uses when it connects to a SOCKSv5
server. These parameters are affected by the Dynamic Configuration section. See
Table 4 on page 56.

Server Host Name

Description

Specifies the SOCKS server name to use to communicate with a SOCKSv5 server.

Required Values

A string indicating the name of the SOCKS server.

Batch e*Way on an EBCDIC machine
sending data to an ASCII machine

ASCII Data converts to ASCII, which can be
read on an ASCII machine.

EBCDIC Data converts to ASCII, which can be
read on an ASCII machine.

Binary Data remains in EBCDIC.

Batch e*Way on an EBCDIC machine
sending data to an EBCDIC machine

ASCII Do not use; the data converts to an
unreadable format.

EBCDIC Data remains in EBCDIC.

Binary Data remains in EBCDIC.

Table 3 Results of Modes Under Different Configurations (Continued)

Configuration Mode Results
Batch e*Way Intelligent Adapter User’s Guide 53

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Server Port

Description

Specifies the port number to use on the SOCKS server for connection. A non-negative
integer implies that the e*Way is connecting to a SOCKS server. Therefore, leave this
parameter empty if the e*Way is not connecting to a SOCKS server.

Required Values

An integer from 0 through 100000. The default is 0.

Leave this field blank if the e*Way does connect to a SOCKS server. Otherwise, enter a
non-negative integer in the range 0 through 100,000.

Note: Check with your System Administrator to verify the availability and necessity of
configuring the SOCKS server.

Method

Description

Specifies the SOCKSv5 method-dependent subnegotiation and determines whether a
user name and encrypted password are required.

Required Values

No Authentication (the default) or User/Password. These are the only two methods
that the e*Way supports. No Authentication indicates that neither the user name nor a
password is required.

If User/Password is selected, specifying the values for the following parameters is
required:

User Name

Encrypted Password

User Name

Description

When User/Password is selected for the Method parameter, the user name specified
here (and Encrypted Password) is used for authentication with the SOCKS server.

Required Values

String value of the user name. The default value is anonymous.

Encrypted Password

Description

When User/Password is selected for the Method parameter, the password specified
here is used (with User Name) for authentication with the SOCKS server.
Batch e*Way Intelligent Adapter User’s Guide 54

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Required Values

String value of the password.

Note: The Batch e*Way does not support the Kerberos authentication protocol.

3.1.12 Dynamic Configuration
This section explains the parameters for the dynamic Batch e*Way. See Chapter 4 for
details on this feature.

Enable Message Configuration

Description

Use this parameter to indicate that the e*Way contains an XML message which
determines its activities. The XML message should contain all relevant parameters that
govern the transfer, including the data to be sent (if it is an outbound transfer). See
Appendix A, “Document Type Definitions” on page 178 for details about the DTD.

Note: When the XML message sets the e*Way to receive, the batch process retrieves the
external file and wraps it into XML payload (see Data Message on page 180), and
transforms the data into Base64 format. To send the data back in its original format,
use the Base64-to-Raw Monk function. Details on how to use this function are
explained in the Monk Developer’s Reference Guide.

Required Values

Yes or No. (No is the default).

When this parameter is set to Yes, the Batch e*Way becomes Event-driven, so it does not
exchange data based on scheduling, and the record type is always a single record.

Note: If the fields marked as “Overridden by message” are set by the XML message, then
the table below holds true. However, if the fields are NOT set by the XML message,
then those fields marked as “Overridden by message” MUST be specified in the .cfg
file. Only publication OR subscriptions fields must be set, unless this e*Way is a
publisher AND a subscriber.
Batch e*Way Intelligent Adapter User’s Guide 55

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Furthermore, when the Message Configuration is enabled, certain Configuration
Sections and parameters are affected, as shown in the Table 4.

Table 4 Effect of Message Configuration Enabled

Section Parameter Effect

Communication
Setup

Start Exchange Data Schedule Ignored.

Stop Exchange Data Schedule Ignored.

Exchange Data Interval Ignored.

Zero Wait Between Successful
Exchanges

Ignored.

Down Timeout Ignored.

Up Timeout Ignored.

External Host Setup External Host Name Overridden by message.

Host Type Overridden by message.

User Name Overridden by message.

Encrypted Password Overridden by message.

File Transfer Method Overridden by message.

Monk Configuration Process Outgoing Message
Function

The XML event is parsed and
processed.

Exchange Data With External
Function

Ignored.

Positive Acknowledgment Function Ignored.

Negative Acknowledgment
Function

Ignored.

Startup Function Normal behavior, but the value
assigned to transfer method is
ignored.

Publish To External Remote Directory Name Overridden by message.
Batch e*Way Intelligent Adapter User’s Guide 56

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Publish To External Remote File Name Overridden by message.

Append or Overwrite when
Transferring Files

Overridden by message.

Record Type Automatically set to Single
Record. Any other value is
ignored.

Record Delimiter Ignored.

Delimiter on Last Record Ignored.

Record Size Ignored.

Remote Command After Transfer Overridden by message.

Remote Rename or Archive Name Overridden by message.

Local Command After Transfer Overridden by message.

Local Archive Directory Overridden by message.

Recourse Action Action on Fetch Failure Normal behavior, but an
additional option is needed to
publish the Event that contains
the configuration message.

Action on Send Failure Normal behavior, but an
additional option is needed to
publish the Event that contains
the configuration message.

Sequence Numbering Starting Sequence Number Ignored.

Max Sequence Number Ignored.

SOCKS Server Host Name Overridden by message.

Server Port Overridden by message.

Subscribe To External Remote Directory Name Overridden by message.

Remote File Regexp Overridden by message.

Record Type Ignored.

Record Delimiter Ignored.

Delimiter on Last Record Ignored.

Record Size Ignored.

Remote Command After Transfer Overridden by message.

Remote Rename or Archive Name Overridden by message.

Local Command After Transfer Overridden by message.

Local Archive Directory Overridden by message.

Table 4 Effect of Message Configuration Enabled (Continued)

Section Parameter Effect
Batch e*Way Intelligent Adapter User’s Guide 57

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Publish Status Record on Success

Description

When this parameter is set to Yes, the Batch e*Way will publish a "good error" record to
e*Gate, with the same format that is specified in batch_eway_error.dtd. (See “Error
Messages” on page 179.) The “good error” record is published only when the payload
has been successfully sent to the remote host.

Note: The user must configure an inbound topic and process this event.

The <error_code> element of the XML message will be zero (0) to indicate that there are
no errors, and the <error_text> will represent the time the file was successfully
transferred.

An example follows:

Successfully sent on: Fri, 29 Jun 2001 at 14:02:30 PDT

See also “Enable Message Configuration” on page 55 and “Publish Status Record on
Error” on page 58.

Required Values

Yes or No. No is the default.

Publish Status Record on Error

Description

This parameter determines whether or not the Batch e*Way publishes an error record to
e*Gate. The error record is in the format of batch_eway_error.dtd (See “Error
Messages” on page 179). However, you are required to configure an inbound topic to
process this Event.

Required Values

Yes or No. No is the default.

Include Order Record in Error Record

Description

If this parameter is set to Yes, the Batch e*Way includes an Order Record as part of an
error record when Publish Status Record on Error is enabled.

FTP server_port Overridden by message.

mode Overridden by message.

Pretransfer_Commands Overridden by message.

Posttransfer_Commands Overridden by message.

Table 4 Effect of Message Configuration Enabled (Continued)

Section Parameter Effect
Batch e*Way Intelligent Adapter User’s Guide 58

Chapter 3 Section 3.2
Configuration FTP Heuristics
Required Values

Yes or No. No is the default.

Include Payload in Error Record

Description

If this parameter is set to Yes, the e*Way includes the payload as part of an Error Record
when the Order Record Command is Send.

Required Values

Yes or No. No is the default.

Action on Mal-formed Command

Description

If Enable Message Configuration is set to Yes, the e*Way requires a specific XML
message structure. This parameter specifies the action that the e*Way takes when the
Outgoing Event doesn't match the XML message structure the e*Way requires.

Required Values

One of the following values:

Exit

Ignore

Raise Alert

Publish Error Record

Exit is the default.

3.2 FTP Heuristics
The FTP heuristics are a set of parameters that the e*Way uses (via the FTP .dll file) to
interact with external FTP daemons on a system-specific level. The primary functions
create and parse both path and file names in the style required by the external system.

You do not normally need to change any of the FTP heuristics, since the default
parameters have been set up for the most commonly used operating systems. This
section is provided as a reference if any changes are necessary to accommodate your
site’s requirements. You can change FTP heuristics configuration parameters using the
e*Gate Schema Manager’s e*Way Editor GUI (see “Configuration Parameters” on
page 61).

FTP heuristics are stored in the file FtpHeuristics.cfg. This file is downloaded from the
e*Gate Registry when the e*Way invokes the Monk function ftp-init (see ftp-init on
page 135 for more information).
Batch e*Way Intelligent Adapter User’s Guide 59

Chapter 3 Section 3.2
Configuration FTP Heuristics
3.2.1 Operating System or File Type Selection
Each operating system defined within the FTP heuristics file sets the same parameters,
as explained in this section. In the e*Way Editor GUI, the operating system is selected
using the Goto Selection list.

FTP Heuristics support the following file types:

The e*Way’s FTP heuristics support the following file types:

UNIX

HCLFTPD 5.1

HCLFTPD 6.0.1.3

VMS

MSFTPD 2.0

MVS Partition Data Sets (PDS)

MVS Sequential

MVS Generation Data Group (GDG)

VM/ESA

Netware 4.11

AS400

AS400-UNIX

MPE

The FTP heuristic functions used for communication with MVS PDS, MVS GDG, and
MVS Sequential for the Batch e*Way are designed for FTP servers (at the mainframe)
that use IBM IP stack.

Therefore, when you use FTP to an MVS PDS, MVS GDG, or MVS Sequential file
system on a mainframe, you need to make sure that the FTP server is using IBM IP
stack. If any other IP stack is in place, the FTP heuristic functions do not work or can
require modification.

Note: The following Monk functions are not supported on heuristics for MVS GDG:
ftp-rename
ftp-rename-path
ftp-archive
ftp-archive-path
ftp-delete
ftp-delete-path

For more information, see Advanced FTP Functions on page 138.
Batch e*Way Intelligent Adapter User’s Guide 60

Chapter 3 Section 3.2
Configuration FTP Heuristics
3.2.2 Configuration Parameters
The section explains the configuration parameters for FTP heuristics feature of the
Batch e*Way.

Commands Supported by FTP Server

Description

Specifies the commands that the FTP server on the given host supports.

Required Values

One or more FTP commands as selected from the list.

Header Lines To Skip

Description

Specifies the number of beginning lines from a LIST command to be considered as a
potential header (subject to the Header Indication Regex Expression configuration
parameter, discussed below) and skipped.

Required Values

A non-negative integer. Enter zero if there are no headers.

Additional Information

In the example below, the line “total 6” comprises a one-line header.

total 6
-rw-r----- 1 ed usr 110 Apr 15 13:43 AAA
-rw-r--r-- 1 ed usr 110 Apr 15 13:33 aaa

Header Indication Regex Expression

Description

Specifies a regular expression used to help identify lines which comprise the header in
the output of a LIST command. All the declared lines of the header (see Header Lines
To Skip, above) must match the regular expression.

Required Values

A regular expression. The default varies based on the FTP server’s operating system. If
there is no reliable way of identifying the header lines in the LIST command’s output,
leave this parameter undefined.

Additional Information

The regular expression “^ *total” indicates that each line in the header starts with
“total,” possibly preceded by blanks. For example,

total 6
-rw-r----- 1 ed usr 110 Apr 15 13:43 AAA
-rw-r--r-- 1 ed usr 110 Apr 15 13:33 aaa
Batch e*Way Intelligent Adapter User’s Guide 61

Chapter 3 Section 3.2
Configuration FTP Heuristics
If the regular expression is undefined, then the header is solely determined by the value
of the configuration parameter Header Lines To Skip.

Trailer Lines To Skip

Definition

Specifies the number of ending lines from a LIST command that are to be considered as
a potential Trailer (subject to the Trailer Indication Regex Expression) and skipped.

Required Values

A non-negative integer. Enter zero if there are no trailers.

Trailer Indication Regex Expression

Definition

Specifies the regular expression used to help identify lines which comprise the trailer in
the output of a LIST command. All the declared lines of the trailer (see Trailer Lines To
Skip) must match the regular expression.

Required Values

A regular expression. If there is no reliable way of identifying the trailer lines in the
LIST output, then leave this parameter undefined.

Additional Information

If the regular expression is undefined, then the header is determined solely by the value
of the Trailer Lines To Skip configuration parameter.

Directory Indication Regex Expression

Definition

Specifies a regular expression used to identify external directories in the output of a
LIST command. Directories cannot be retrieved and must be filtered out of the file list.

Required Values

A regular expression. If there is no reliable way of identifying the trailer lines in the
LIST output, then leave this parameter undefined.

Additional Information

The regular expression “^ *d” specifies that a directory is indicated by a line starting
with the lowercase ‘d,’ possibly preceded by blanks. For example,

drwxr-xr-x 2 ed usr 2048 Apr 17 17:43 public_html

File Link Real Data Available

Definition

Specifies whether a file may be a file link (a pointer to a file) on those operating systems
whereon an FTP server will return the data for the real file as opposed to the content of
the link itself.
Batch e*Way Intelligent Adapter User’s Guide 62

Chapter 3 Section 3.2
Configuration FTP Heuristics
Required Values

Yes or No.

File Link Indication Regex Expression

Definition

Specifies a regular expression that identifies external file links in the output of a LIST
command. File links are pointers to the real file and usually have some visual symbol,
such as ->, mixed in with the file name in the output of the LIST command. Only the
link name is desired within the returned list.

Required Values

A regular expression. If there is no reliable way of identifying a file link within a LIST
output, then leave this parameter undefined.

Additional Information

The regular expression “^ *l” specifies that a file link is indicated by a line starting with
the lowercase “l,” preceded possibly by blanks. For example,

lrwxr-xr-x 2 ed usr 2048 Apr 17 17:43 p -> public_html

File Link Symbol Regex Expression

Definition

Specifies a regular expression that parses the external file link name in the output of a
LIST command. Only the link name is required for the file list to be returned.

Required Values

A regular expression. If there is no reliable way of identifying a file link within a LIST
output, then leave this parameter undefined.

Additional Information

The regular expression “[] ->[]” defines that a file link symbol is represented by an
arrow surrounded by spaces (“ -> “). When parsed, only the file name to the right of the
symbol is used.

In the following example, only the public_html would be used, not the “p” character:

lrwxrwxrwx 2 ed usr 4 Apr 17 17:43 p -> public_html

List Line Format

Definition

Specifies whether fields in each line are blank delimited or fixed, that is, whether
information always appears at certain columns.

Required Values

Blank Delimited or Fixed.
Batch e*Way Intelligent Adapter User’s Guide 63

Chapter 3 Section 3.2
Configuration FTP Heuristics
Additional Information

Even though some lines appear to be blank delimited, be wary of certain fields
continuing their maximum value when juxtaposed with the next field without any
separating blank. In such a case, we recommend you declare the line as “Fixed”. For
example,

-rw-r--r-- 1 ed usr 110 Apr 15 13:33 aaa
^^^^^^^^^^ ^ ^^ ^^^ ^^^ ^^^ ^^ ^^^^^ ^^^

 1 2 3 4 5 6 7 8 9

Valid File Line Minimum Position

Definition

Specifies the minimum number of positions (inclusive) a listing line must have in order
to be considered as a possible valid file name line.

Required Values

For a Fixed list line format, enter a value equal to the number of columns, counting the
first column at the far left as column 1. For a Blank Delimited list line format, enter a
value equal to the number of fields, counting the first field on the far left as field 1.

For either case, if no minimum can be determined, set this value to zero (0).

Additional Information

For example, in the Blank Delimited line below, the minimum number of fields is 9:

-rw-r--r-- 1 ed usr 110 Apr 15 13:33 aaa
^^^^^^^^^^ ^ ^^ ^^^ ^^^ ^^^ ^^ ^^^^^ ^^^

 1 2 3 4 5 6 7 8 9
 File Name

Note: The URL FTP Proxy will fail on ascertaining file names that have leading blanks,
training blanks, or both.

File Name Is Last Entity

Definition

Specifies whether the file name is the last entity on each line. This allows the file name
to have imbedded blanks (however, leading or trailing blanks are not supported).

Required Values

Yes or No.

File Name Position

Definition

Specifies the starting position (inclusive) of a file name.
Batch e*Way Intelligent Adapter User’s Guide 64

Chapter 3 Section 3.2
Configuration FTP Heuristics
Required Values

For Fixed list line format, enter the column number, counting the first column on the far
left as column 1. For Blank Delimited list line format, enter the field number, counting
the first field on the extreme left as field 1.

Additional Information

For Blank Delimited List Line Format only, if the file name has imbedded blanks, then
it can span over several fields.

For example,
-rw-r--r-- 1 ed usr 110 Apr 15 13:33 aaa
^^^^^^^^^^ ^ ^^ ^^^ ^^^ ^^^ ^^ ^^^^^ ^^^

1 2 3 4 5 6 7 8 9
 File Name

File Name Length

Definition

Represents the maximum width of a file name; valid only for Fixed list line format.

Required Values

An Integer: Positive lengths imply that the file name is right-justified within the
maximum field width, and thus leading-blanks are discarded.

Negative Lengths: That is, compared to the absolute length, imply that the file
name is left-justified and trailing-blanks are discarded.

Zero (0) Value Length: If the file name is at the end of a file listing line, this value
implies that the file name field extends to the end of the line.

Note: For Blank Delimited list line format, this value is usually zero (0). However, if the
File Name Length parameter is supplied even though a Blank Delimited list line
format is specified, this implies that if the file name field exceeds the given length,
then the rest of the List Line data occurs on the following line.

File Extension Position

Definition

Specifies the left-most position of the file extension for those operating systems that
present the file name extension separated from the main file name.

Required Values

For Fixed list line format, enter the column number, counting the first column at the
extreme left as column 1. For Blank Delimited list line format, enter the field number,
counting the first field at the far left as field 1. If there is no file extension (as on UNIX
systems) set the value to zero (0).
Batch e*Way Intelligent Adapter User’s Guide 65

Chapter 3 Section 3.2
Configuration FTP Heuristics
File Extension Length

Definition

Specifies the maximum width of the file extension; valid only for Fixed list line format.

Required Values

An Integer

Positive Lengths: Imply that the file extension is right-justified within the
maximum field width and therefore leading-blanks are discarded.

Negative Lengths: Imply that the file extension is left-justified and trailing-blanks
are discarded (the absolute length is used).

Value of Zero (0): Always for the Blank Delimited list line format.

File Size Verifiable

Definition

Specifies whether the file size is verifiable, significant, and accurate within a directory
listing.

Required Values

Yes or No. The File Size Stability Check configurable parameter must also be enabled.

Additional Information

Even if the file size field of a listing line is not significant (that is, it is there but only
represents an approximate value), the value of this parameter should be No, but the file
size location should still be declared in the File Size Position parameter below to assist
determining which line of listing represents a valid file name.

Note: Use of this parameter does not guarantee that the file is actually stable. We do not
recommend that you rely on this functionality for critical data; the feature is
intended only for backward compatibility with previous FTP implementations.

Example
-rw-r--r-- 1 ed usr 110 Apr 15 13:33 aaa

 ^^^
 File Size

File Size Position

Definition

Specifies the left-most position in the listing line that represents the size of the file. Even
though for some operating systems the value shown might not truly reflect the file size,
this position is still important in ascertaining that the line contains a valid file name.
Batch e*Way Intelligent Adapter User’s Guide 66

Chapter 3 Section 3.2
Configuration FTP Heuristics
Required Values

A non-negative integer. For Fixed list line format, the position value is the column
number (starting with one (1) on the far left). For Blank Delimited, this value
represents the field number (starting with one (1) on the far left). If the LIST line does
not have a size field, set this parameter to zero (0).

Additional Information

Example
-rw-r--r-- 1 ed usr 110 Apr 15 13:33 aaa
^^^^^^^^^^ ^ ^^ ^^^ ^^^ ^^^ ^^ ^^^^^ ^^^

 1 2 3 4 5 6 7 8 9
File

 Size

The following represent valid number representations of file sizes:

1234 or 1,234,567 or -12345 or +12345 or ' 1234 ' or 12/34 or
1,234/56

The following represent invalid number representations of file sizes (the ^ indicates
where the error occurs):

'12 34' or 123,45,678 or 123-456-789 or --123 or 123-
 ^ ^ ^ ^ ^

or 12345678901 or any number > 4294967295 or < -2147483647
 ^ (too large)

or 123.45 or 12AB34 or 0x45 or ,123,456 or 12//34
^ ^ ^ ^ ^

or /123 or 123/ or 12,3/45
 ^ ^ ^

File Size Length

Definition

Specifies the maximum width (number of columns) of the file size field, only valid for
Fixed List Line Format.

Required Values

A non-negative integer. For Blank Delimited list line format, set this value to zero (0).

Special Envelope For Absolute Path Name

Definition

Specifies special enveloping characters required to surround an absolute path name (for
example, single quotes are used in MVS). Only use a single quote at the start of the
directory name.

Required Values

A pair of enveloping characters. Even if the leading and trailing character is identical,
enter it twice.

If no enveloping characters are required for an operating system, leave this parameter
undefined.
Batch e*Way Intelligent Adapter User’s Guide 67

Chapter 3 Section 3.2
Configuration FTP Heuristics
Note: On UNIX, this parameter is always undefined.

Listing Directory Yields Absolute Path Names

Definition

Specifies whether, when the DIR command is used on a directory name, the resulting
file names are absolute.

Required Values

Yes or No.

Note: On UNIX, this character is always set to No.

Absolute Path Name Delimiter Set

Definition

Specifies any absolute path requiring certain delimiters to separate directory names (or
their equivalent) from each other and from the file name.

Required Values

Enter the delimiters for the absolute path, starting from the left, for:

Initial (left-most) directory delimiter

Intermediate directory delimiters

Initial (left-most) file name delimiter

Optionally, the ending (right-most) file name delimiter

Wherever there is no specific delimiter, use “\0” (backslash zero) to act as a
placeholder. Delimiters that are backslashes need to be escaped with another backslash.

Additional Information

OS Path Name Format
Delimiter Set

1 2 3 4 Enter

UNIX /dir1/dir2/file.ext / / / ///

Windows C:\dir1\dir2\file.ext \\ \\ \\ \\\\\\

VMS disk1:[dir1.dir2]file.ext;1 [.] ; [.];

MVS PDS dir1.dir2(file) \0 . () \0.()

MVS Sequential dir1.dir2.filename \0 . . \0..

MVS GDG dir1.dir2.file(version) \0 . . \0..

AS400 dir1/file.ext \0 / . \0/.
Batch e*Way Intelligent Adapter User’s Guide 68

Chapter 3 Section 3.3
Configuration Using Special Characters
Change Directory Before Listing

Definition

Determines whether a change directory (cd) needs to be done before issuing the DIR
command to get a listing of files under the desired directory.

Required Values

Yes or No.

Directory Name Requires Terminator

Definition

Determines whether a directory name that is not followed immediately by a file name
requires the ending directory delimiter as a terminator (for example, as on VMS).

Required Values

Yes or No.

3.3 Using Special Characters
Directory and file names can contain special characters. In most cases, these characters
are undesirable for directory names and for outbound file names, but are not
prohibited.

3.3.1 Literal Characters
If a literal character is required, the special character must be preceded by a backslash
(\), for example, * for the asterisk character. Parentheses () and braces [] are not
considered literal characters by the system.

3.3.2 Wildcard Expansion
The wildcard characters can be used when retrieving files. After the Batch e*Way
requests and receives a list from a remote directory, it filters the list using the parameter
Remote File Regexp (see “Remote File Regexp” on page 43).

Note: For more information, see “batch-fetch-files-from-remote” on page 99, “file-
remote-path-list” on page 128, and “ftp-remote-path-list” on page 161.
Batch e*Way Intelligent Adapter User’s Guide 69

Chapter 3 Section 3.3
Configuration Using Special Characters
These wildcard characters are:

3.3.3 Hexadecimal and Octal
To insert a hexadecimal value, use the notation \xNN where NN is a hexadecimal
number.

To insert an octal value, use the notation \oNNN where N is a valid octal digit.

3.3.4 Unprintable Characters
A number of common characters have a well-defined representation. These characters
are frequently used as record delimiters, especially \n and \r. They are:

3.3.5 Date and Time Expansion
The following expansions relate to those provided by the C strftime() function (the
expansion is site-specific):

Wildcard
Character Description

* Zero or more matches of the preceding character.

+ One or more matches of the preceding character.

. Any single character.

^ Any match beginning with the following character.

Special
Character Description

\0 Null character (\x00)

\a Audible bell character (\x07)

\b Backspace (\x08)

\f Form feed (\x0c)

\n New line (\x0a)

\r Line feed (\x0d)

\t Tab (\x09)

\c Vertical tab (\x0b)

Special
Character Description

%a Abbreviated weekday

%A Full weekday

%b Abbreviated month name
Batch e*Way Intelligent Adapter User’s Guide 70

Chapter 3 Section 3.3
Configuration Using Special Characters
3.3.6 Sequence Numbering
Special characters used for sequence numbering are

3.3.7 File Name Replacement
Use the special character %f if you need a working file-name replacement. For example,
if the original working file name is abcd, %f.txt stands for abcd.txt.

%B Full month name

%c Date and time representation (location-specific)

%d Day of month (01-31)

%H Hour (00-23)

%I Hour (01-12)

%j Day of the year (001-366)

%m Month (01-12)

%M Minute (00-59)

%p AM or PM

%S Seconds (00-61)
Note: Seconds may be as high as 61 if there are leap
seconds to be accounted for.

%U Week number, starting on the first Sunday

%W Week number, starting on the first Monday

%w Day of the week, (Sunday=0)

%x Date representation (location-specific)

%y Year (00-99)

%Y Year including century

%Z Time zone

Special
Character Description

%# Sequence number

%5# Sequence number padded to five places

Special
Character Description (Continued)
Batch e*Way Intelligent Adapter User’s Guide 71

Chapter 3 Section 3.4
Configuration Environment Configuration
3.4 Environment Configuration
To support the operation of this e*Way, no changes are necessary, either in the
Participating Host’s operating environment or in the e*Gate system.

Note: Changes to Monk files can be made using the Collaboration Rules Editor (available
from within the e*Gate Schema Manager) or with a text editor. However, if you use
a text editor to edit Monk files directly, you must commit these changed files to the
e*Gate Registry or your changes will not be implemented.

For more information about committing files to the e*Gate Registry, see the Schema
Manager’s online Help system, or the stcregutil command-line utility section in
the e*Gate Integrator System Administration and Operations Guide.

3.5 External Configuration Requirements
There are no configuration changes required in the external system. All necessary
configuration changes can be made within e*Gate.
Batch e*Way Intelligent Adapter User’s Guide 72

Chapter 4

Dynamic Messaging

This chapter explains how to use the Batch e*Way Intelligent Adapter’s Dynamic
Messaging features, including its message-based operations.

4.1 Dynamic Messaging: General Operation
Message-based orders can be transmitted to the Batch e*Way as follows:

Ordering it to send once (to one or more destinations)

Ordering it to receive once (from one or more destinations)

In either of these cases, the ordering message, in the Extensible Markup Language
(XML), has the following basic format:

<batch_eWay_order>
<command> (command) </command>
<order_record>

<error_record>
</error_record>

</order_record>
<order_record>

<error_record>
</error_record>

</order_record>
<payload> (DATA) </payload>

</batch_eWay_order>

This main record has the following sub-records:

command: Can be send or receive.

order_record: Contains the details for sending or retrieving to/from a single source
or destination.

error_record: Contains error information from the e*Way after it attempts to execute
the order, if there were problems.

payload: Specifies the data to be sent (send only).
Batch e*Way Intelligent Adapter User’s Guide 73

Chapter 4 Section 4.1
Dynamic Messaging Dynamic Messaging: General Operation
The data can come in the following forms:

In the first case, the payload node can contain base64 data, in which case it has a
payload attribute set to base64Insitu.

In the second case, the payload node represents the directory for the payload, in
which case it has a payload attribute equal to localDir.

Note: See Appendix A for the text of the DTD messaging files.

Dynamic Messaging Files

Use the Document Type Definition (DTD) and e*Gate Event Type Definition (ETD) files
shown in Table 5, with dynamic messaging.

4.1.1 Sending Data with a Send Order
The following example shows an XML message:

<batch_eWay_order>
<command> send </command>
<order_record>
<external_host_setup>

<host_type> Unix </host_type>
<user_name> Alincoln </user_name>
<encrypted_password> liasdfLIJB </encrypted_password>
<file_transfer_method> ftp </file_transfer_method>

</external_host_setup>
<publish_to_external>

<remote_directory_name>/usr/home/honest_abe/to
</remote_directory_name>

<remote_file_name> X1.tmp </remote_file_name>
<append_or_overwrite_when_transferring_files>overwrite

</append_or_overwrite_when_transferring_files>
<remote_rename_or_archive name>X1.dat

</remote_rename_or_archive_name>
</publish_to_external>
</order_record>
<payload> (DATA) </payload>

</batch_eWay_order>

Note: For a list of valid values to associate with the <host_type> variable in the XML file,
see “Valid values for the <host_type> variable” on page 77.

Table 5 Dynamic Messaging Files

DTD File Corresponding ETD File

batch_eway_data.dtd batch_eway_data.xsc

batch_eway_error.dtd batch_eway_error.xsc

batch_eway_order.dtd batch_eway_order.xsc
Batch e*Way Intelligent Adapter User’s Guide 74

Chapter 4 Section 4.1
Dynamic Messaging Dynamic Messaging: General Operation
The previous example shows the delivery of a file to an external system. It is one XML
message, batch_eWay_order, that contains a command record, one or more order
records, and finally a single payload message. The order record represents one
destination for this payload. If any of the individual orders fails, then the e*Way
publishes an error record.

Note: See “Send or Receive XML Messages” on page 178 for the corresponding DTD
file.

4.1.2 Receiving Data with a Receive Order
Receiving from a file is similar to sending, as shown in this example.

<batch_eWay_order>
<command> receive </command>
<external_host_setup>

<host_type> Unix </host_type>
<user_name> Alincoln </user_name>
<encrypted_password>liasdfLIJB </encrypted_password>
<file_transfer_method> ftp </file_transfer_method>
<return_tag> Factor order </return_tag>

</external_host_setup>
<subscribe_to_external>

<remote_directory_name> /usr/home/honest_abe/from
</remote_directory_name>

<remote_file_regexp> Y*.dat </remote_file_regexp>
</subscribe_to_external>

</batch_eWay_order>

Note: For a list of valid values to associate with the <host_type> variable in the XML file,
see “Valid values for the <host_type> variable” on page 77.

In this case, the e*Way retrieves all of the files in the designated directory that match the
given regular expression, and stores them in a temporary directory. It then reads the
entire contents of each file and sends it to e*Gate as a publication (using the event-send-
to-egate function).

The message sent is similar to the XML message that initiated the transfer, except for
the following characteristics:

There is one return message per order in the command, instead of one return per
command. Thus, if a command is received with orders for three transfers, the e*Way
attempts three transfers and returns the three files so retrieved as three “receive”
responses.

The message contains a payload field with the data received. See the following
example:

<batch_eWay_order>
<command> receive </command>
<external_host_setup>

<host_type> Unix </host_type>
<user_name> Alincoln </user_name>
<encrypted_password> liasdfLIJB </encrypted_password>
<file_transfer_method> ftp </file_transfer_method>
<return_tag> Factor order </return_tag>
Batch e*Way Intelligent Adapter User’s Guide 75

Chapter 4 Section 4.1
Dynamic Messaging Dynamic Messaging: General Operation
</external_host_setup>
<subscribe_to_external>

<remote_directory_name> /usr/home/honest_abe/from
</remote_directory_name>

<remote_file_regexp> Y*.dat </remote_file_regexp>
</subscribe_to_external>
<payload> (DATA) </payload>

</batch_eWay_order>

Note: For a list of valid values to associate with the <host_type> variable in the XML file,
see “Valid values for the <host_type> variable” on page 77.

The e*Way only acknowledges (“ACK”) the order command message after all records
have been sent. The <return_tag> field of the XML message is used to store a unique
tag generated by the originator of the command. This tag allows the e*Gate system
administrator to determine, as each response comes back, which system gave that
response.

As a final example of the receive command, consider this example of a command to go
to three different systems for three different kinds of data, factory orders, bills of
materials, and engineering updates.

First, note the following command record (transfer details omitted for brevity):

<batch_eWay_order>
<command> receive </command>

<return_tag> Factory order </return_tag>
<return_tag> Build of Materials </return_tag>
<return_tag> Engineering Updates </return_tag>

</batch_eWay_order>

In this example, the Batch e*Way tries each receive transfer and follows its normal
procedures for retrying and raising exceptions, if there are problems. As each transfer
succeeds, it returns an XML message with the payload and the corresponding return
tag. If it fails, it returns an XML message with the error record.

The e*Way begins with the factory order as follows:

<batch_eWay_order>
<command> receive </command>

<return_tag> Factory order </return_tag>
<payload> (DATA) </payload>

</batch_eWay_order>
Batch e*Way Intelligent Adapter User’s Guide 76

Chapter 4 Section 4.2
Dynamic Messaging Error Reporting
The e*Way then continues with each of the other two (bill of materials and engineering
updates) as follows:

<batch_eWay_order>
<command> receive </command>

<return_tag> Build of Materials </return_tag>
<payload> (DATA) </payload>

</batch_eWay_order>

<batch_eWay_order>
<command> receive </command>

<return_tag> Engineering Updates </return_tag>
<payload> (DATA) </payload>

</batch_eWay_order>

Note: See “Send or Receive XML Messages” on page 178 for the corresponding DTD
file.

Valid values for the <host_type> variable

The XML files used to create send and receive orders (described in the preceding
sections) contain a <host_type> variable, which defines the external host. The following
are valid values for this variable:

HCLFTPD 5.1

HCLFTPD 6.0.1.3

VMS

MSFTPD 2.0

MVS

AS400

AS400-UNIX

4.2 Error Reporting
If the parameter Publish Status Record on Error (see “Publish Status Record on Error”
on page 58) is set to Yes, and the e*Way has problems with one order, it publishes the
command message with all orders stripped out, except those that failed, as well as the
population of the corresponding error records.
Batch e*Way Intelligent Adapter User’s Guide 77

Chapter 4 Section 4.3
Dynamic Messaging Configuration
See the following template:

<batch_eWay_order>
<command> (command) </command>
<order_record> </order_record>
<error_record>
<error_code> </error_code>
<error_text> </error_text>
<last_action> </last_action>
</error_record>
<payload> (DATA) </payload>

</batch_eWay_order>

The “last action” record contains whatever command the e*Way can indicate. Thus, if
there is a failure on renaming a file after the transfer, the e*Way populates this field with
the rename command it is trying to carry out.

Please see “Error Messages” on page 179, for the corresponding DTD file.

4.3 Configuration
The Batch e*Way consists of several sections that contain parameters for configuring the
e*Way, one of which is Dynamic Configuration. For details on these configuration
parameters and how to set them, see “Dynamic Configuration” on page 55.
Batch e*Way Intelligent Adapter User’s Guide 78

Chapter 5

Implementation

This chapter explains how the Batch e*Way is implemented and provides sample
configurations.

5.1 Implementation Notes
In implementing the Batch e*Way, you need to know the following important functions:

How the e*Way uses temporary files

Record type configuration

Note: The Batch e*Way is unable to detect that a file is being transmitted and only checks
for a file entry, without trying to determine whether the file is still actively being
transmitted.

5.1.1 How the e*Way Uses Temporary Files
For each e*Way, a directory tree is created under the e*Way’s name in the following
directory:

egate/client/tmp
Batch e*Way Intelligent Adapter User’s Guide 79

Chapter 5 Section 5.1
Implementation Implementation Notes
For example, the directory structure shown in Figure 8 below would be created for the
e*Way called batch_sample.

Figure 8 Batch e*Way Directory Tree

The file sequence.dat is used for holding the current sequence number, if sequence
numbering is being used.

The file persist.dat is used only for inbound e*Ways. It holds information about the
current state of processing of temporary files.

Table 6 below shows the file structure of persist.dat.

The Batch e*Way fetches one or more files needed from the external system. Records are
read from these files one at a time. The persist.dat file stores the following information:

The list of files received

The file being worked on (the index)

The position within that file (the offset) is stored after every read from a file

Note: If the e*Way is shut down, it continues at the point where it left off.

Table 6 File Structure of persist.dat

Bytes Description

0-19 file offset

20-29 list index

30+ file name list

“-*- End of Files -*-” (terminator)
Batch e*Way Intelligent Adapter User’s Guide 80

Chapter 5 Section 5.1
Implementation Implementation Notes
Files retrieved from the external system are stored in the inbound directory, and
outbound files (waiting to be sent to the external system) are stored in the outbound
directory.

Note: It is recommended that you do not edit persist.dat or move files around in the
inbound or outbound directories.

5.1.2 Record Type Configuration
The Batch e*Way works with delimited files, fixed-length record files, and with single-
record files, as set by the Record Type parameters in the Subscribe to External Settings
(see “Subscribe to External” on page 42) and Publish to External Settings (see
“Publish to External” on page 46) configuration parameter sections.

The behavior of each Record Type differs with the direction of transfer.

Delimited Record

Subscribing to the External System

When subscribing to the external system, the Batch e*Way expects each record in an
inbound file to be separated with a delimiter defined by the Record Delimiter
parameter. The delimiter can be a multi-character text string, and it can contain special
characters (see “Using Special Characters” on page 69). These characters are expanded
once only, at initialization.

Records with the given delimiter are read from local temporary files, one at a time. If
the Delimiter on Last Record parameter is set to Yes, then a final record, which does
not have a terminating delimiter is ignored.

Publishing to the External System

When publishing to the external system, the e*Way creates a single local file containing
records for transmission to the external system. The file is sent to the external system at
the next scheduled time for data transfer.

All received records are appended to the local file separated by a single or multi-
character string as defined by the Record Delimiter parameter. The delimiter may
include special characters (see “Using Special Characters” on page 69). These
characters are expanded once only, at initialization.

If the Delimiter on Last Record parameter is set to Yes, then the delimiter character(s)
are added to the final record.

Fixed-length Record

Subscribing to the External System

Records of the size given in the parameter Subscribe to External: Record Size are read
from the local temporary files, and passed back through the e*Way one at a time.
Batch e*Way Intelligent Adapter User’s Guide 81

Chapter 5 Section 5.2
Implementation Sample Configurations
Publishing to the External System

Only records of the size given in the parameter Publish to External: Record Size are
accepted and stored in the temporary file for later transmission. Records with a
different length are rejected as data errors.

The file is sent to the external system at the next scheduled time for data transfer.

Single Record

Subscribing to the External System

Each local temporary file is treated as if it contains a single record. The file is read in its
entirety and passed through the e*Way.

Publishing to the External System

This setting means that only one record is written to the temporary file. Under normal
circumstances, this means that only one file will be created, containing a single record.
However, multiple files may be created if the parameter Publish To External File
Name:

Contains a sequence number

Is the name of a Monk function (beginning with monk-). It is assumed that this
routine will return a different file name each time, and multiple files will be created

5.2 Sample Configurations
This section briefly describes the sample configurations available with the Batch e*Way.

5.2.1 Subscribing to an External System
In this example, the Batch e*Way fetches two files from the remote UNIX machine
wellington every 24 hours, using the FTP protocol. These files are stored in the home
directory of user adam, under the subdirectory pub/download.
Batch e*Way Intelligent Adapter User’s Guide 82

Chapter 5 Section 5.2
Implementation Sample Configurations
Figure 9 shows a diagram of this setup.

Figure 9 Subscribe-to-external-system Setup

This setup has the following additional characteristics:

The names of the two files are file1.txt and file2.txt. No other files are required.

The two files contain multiple records delimited by a new line (\n) character.

After retrieving the files from the remote system, the Batch e*Way deletes the
remote copy.

The last seven day’s files on the local system are kept.

The Table 7 lists the most critical parameters and the settings required to achieve the
setup described previously.

Table 7 Parameters for Input Example

Section Parameter Value

Communication
Setup

Start Exchange Data Schedule Repeatedly, every
24 hours

External Host
Setup

Host Type UNIX

External Host Name wellington

User Name adam

Encrypted Password ********

File Transfer Method FTP

wellington localhost

IQ
file1.txt file1.txtfile2.txt file2.txt

~adam/pub/download d:\archive\<day-of-week>

ftpin
Batch e*Way Intelligent Adapter User’s Guide 83

Chapter 5 Section 5.2
Implementation Sample Configurations
5.2.2 Publishing to an External System
In this example, the Batch e*Way sends a file containing new-line (\n) delimited
messages to the remote UNIX machine wellington, using the FTP protocol. The file is
created in the subdirectory pub/upload under the user adam.

Figure 10 shows a diagram of this setup.

Figure 10 Publish-to-external-system Setup

This file is sent once every hour under the name myfile.tmp and is renamed after it
arrives to myfile.txt. This technique can be used if there is a process on the remote
machine watching for a file to be created. However, be sure that the remote machine
does not see the file until it is there in its entirety.

Note: A copy of the file on the local system is not required and is deleted.

Subscribe To
External

Remote Directory Name pub/download

Remote File Regexp ^file[12].txt$

Record Type Delimited

Record Delimiter \n

Delimiter on Last Record Yes

Remote Command After
Transfer

delete

Local Command After Transfer archive

Local Rename or Archive Name d:\\archive/%a

Table 7 Parameters for Input Example (Continued)

Section Parameter Value

localhost

IQ ftpout

wellington

~adam/pub/upload

myfile.tmp myfile.txt
Batch e*Way Intelligent Adapter User’s Guide 84

Chapter 5 Section 5.2
Implementation Sample Configurations
The Table 8 lists the most critical parameters and the settings required to achieve the
setup described previously.

Note: For AIX and all EBCDIC-based systems, you must use the ebcdic->ascii Monk
function to convert any EBCDIC data before transporting it to an ASCII-based
system. See the Monk Developer’s Reference Guide for more details about this
function.

Table 8 Parameters for Output Example

Section Parameter Value

Communication
Setup

Start Exchange Data
Schedule

Repeatedly, every
1 hour

External Host Setup Host Type UNIX

External Host Name wellington

User Name adam

Encrypted Password ********

File Transfer Method FTP

Publish To External Remote Directory Name pub/upload

Remote File Name myfile.tmp

Append or Overwrite
when Transferring Files

Overwrite

Record Type Delimited

Record Delimiter \n

Delimiter on Last Record Yes

Remote Command After
Transfer

rename

Local Command After
Transfer

delete

Remote Rename or Archive
Name

myfile.txt
Batch e*Way Intelligent Adapter User’s Guide 85

Chapter 6

Batch e*Way Functions

This chapter explains the Monk application programming interface (API) functions
available with the Batch e*Way.

6.1 Monk Functions: Overview
The Batch e*Way’s Monk functions fall into the following categories:

Basic Functions on page 87

Core Functions on page 90

Connection and File Functions on page 98

File Name Expansion Functions on page 115

Post-transfer Routines on page 122

File Copy Transfer Functions on page 124

FTP Transfer Functions on page 132

Advanced FTP Functions on page 138

File System Functions on page 172

Note: For AIX and all EBCDIC-based systems, you must use the ebcdic->ascii Monk
function to convert any EBCDIC data before transporting it to an ASCII-based
system. See the Monk Developer’s Reference Guide for more details about this
function.

When the Batch e*Way is executing a send command, and a Monk exception goes
undetected while a message is being sent, the command is aborted, the Batch e*Way
shuts down, and the connection to the FTP server is lost. This behavior happens by
design to prevent the loss of a message.
Batch e*Way Intelligent Adapter User’s Guide 86

Chapter 6 Section 6.2
Batch e*Way Functions Basic Functions
6.2 Basic Functions
The functions in this category control the e*Way’s most basic operations. The functions
explained in this section can only be used by the functions defined within the e*Way’s
configuration file. None of the functions are available to Collaboration Rules scripts
executed by the e*Way.

The basic functions are:

event-send-to-egate on page 87

get-logical-name on page 88

send-external-down on page 88

send-external-up on page 88

shutdown-request on page 89

start-schedule on page 89

stop-schedule on page 90

event-send-to-egate

Syntax

(event-send-to-egate string)

Description

event-send-to-egate sends data that the e*Way has already received from the external
system into the e*Gate system as an Event.

Parameters

Return Values

Boolean
Returns #t (true) if the data is sent successfully; otherwise, returns #f (false).

Throws

None.

Additional Information

This function can be called by any e*Way function when it is necessary to send data to
the e*Gate system in a blocking fashion.

Name Type Description

string string The data to be sent to the e*Gate
system
Batch e*Way Intelligent Adapter User’s Guide 87

Chapter 6 Section 6.2
Batch e*Way Functions Basic Functions
get-logical-name

Syntax

(get-logical-name)

Description

get-logical-name returns the logical name of the e*Way.

Parameters

None.

Return Values

String
Returns the name of the e*Way (as defined by the Schema Manager).

Throws

None.

send-external-down

Syntax

(send-external-down)

Description

send-external-down instructs the e*Way that the connection to the external system is
down.

Parameters

None.

Return Values

None.

Throws

None.

send-external-up

Syntax

(send-external-up)

Description

send-external-up instructs the e*Way that the connection to the external system is up.

Parameters

None.
Batch e*Way Intelligent Adapter User’s Guide 88

Chapter 6 Section 6.2
Batch e*Way Functions Basic Functions
Return Values

None.

Throws

None.

shutdown-request

Syntax

(shutdown-request)

Description

shutdown-request completes the e*Gate shutdown procedure that was initiated by the
Control Broker but was interrupted by returning a non-null value within the
Shutdown Command Notification Function (see “Shutdown Command Notification
Function” on page 40). Once this function is called, shutdown proceeds immediately.

Once interrupted, the e*Way’s shutdown cannot proceed until this Monk function is
called. If you do interrupt an e*Way shutdown, we recommend that you complete the
process in a timely fashion.

Parameters

None.

Return Values

None.

Throws

None.

start-schedule

Syntax

(start-schedule)

Description

start-schedule requests that the e*Way open a one-time window for the exchange of
data with the external system (see “Exchange Data with External Function” on
page 36). This function operates with the Exchange Data Interval parameter (see
“Exchange Data Interval” on page 25), starting the exchange of data, according to this
parameter, until you close the window using the stop-schedule function (see stop-
schedule on page 90).

The start-schedule function does not affect any defined schedules. See also “Start
Exchange Data Schedule” on page 24.
Batch e*Way Intelligent Adapter User’s Guide 89

Chapter 6 Section 6.3
Batch e*Way Functions Core Functions
Note: Use this function only when the Start Exchange Data Schedule and Stop
Exchange Data Schedule parameters are in operation. Otherwise, data exchange is
already occurring on a continuous basis, and no window needs to be opened.

Parameters

None.

Return Values

None.

Throws

None.

stop-schedule

Syntax

(stop-schedule)

Description

stop-schedule requests that the e*Way halt execution of the Exchange Data with
External function specified within the e*Way’s configuration file (see “Exchange Data
with External Function” on page 36). Execution will be stopped when the e*Way
concludes any open transaction and does not halt the e*Way process itself.

This function does not affect any defined schedules. See also “Stop Exchange Data
Schedule” on page 24.

Parameters

None.

Return Values

None.

Throws

None.

6.3 Core Functions
The functions in this category are those called by e*Way configuration parameters (see
“Monk Configuration” on page 26).

The core functions are

batch-ack on page 91

batch-exchange-data on page 92

batch-ext-connect on page 92
Batch e*Way Intelligent Adapter User’s Guide 90

Chapter 6 Section 6.3
Batch e*Way Functions Core Functions
batch-ext-shutdown on page 93

batch-ext-verify on page 93

batch-init on page 94

batch-nak on page 94

batch-proc-out on page 95

batch-regular-proc-out on page 96

batch-shutdown-notify on page 97

batch-startup on page 97

batch-ack

Syntax

(batch-ack command)

Description

batch-ack is called automatically when the e*Way successfully processes and queues
Events from the external system.

Parameters

Return Values

String
Returns “FAILURE” on all errors; otherwise, returns a null string.

Throws

None.

Location

batch-ack.monk

Additional Information

This function is only called during the processing of inbound Events. After the
Exchange Data with External function returns a string that is transformed into an
inbound Event, the Event is handed off to a Collaboration for further processing. If the
Event’s processing is completed successfully, the e*Way executes the Positive
Acknowledgment function (otherwise, the e*Way executes the Negative
Acknowledgment function).

This function can return an Event to be queued, but the e*Way does ACK/NAK the
external system.

Name Type Description

command string Any non-null string
Batch e*Way Intelligent Adapter User’s Guide 91

Chapter 6 Section 6.3
Batch e*Way Functions Core Functions
The e*Way exits if it fails its attempt to invoke this function or this function returns a
“FAILURE” string.

batch-exchange-data

Syntax

(batch-exchange-data)

Description

batch-exchange-data initiates an exchange of Events with an external system. This
function can exchange either inbound or outbound Events.

Parameters

None.

Return Values

String
Returns a null string if the function processed an outbound Event successfully; otherwise,
returns a string to be packaged as an inbound Event.

Throws

None.

Location

batch-exchange-data.monk

batch-ext-connect

Syntax

(batch-ext-connect)

Description

batch-ext-connect establishes (or re-establishes) a connection to the external system.

Parameters

None.

Return Values

String
Returns “UP” if the connection was made successfully; otherwise, returns “DOWN.”

Throws

except-method

Location

batch-ext-connect.monk
Batch e*Way Intelligent Adapter User’s Guide 92

Chapter 6 Section 6.3
Batch e*Way Functions Core Functions
batch-ext-shutdown

Syntax

(batch-ext-shutdown command)

Description

batch-ext-shutdown shuts down the connection between the external system and the
e*Way.

Parameters

Return Values

String
Returns a null string.

Throws

except-method

Location

batch-ext-shutdown.monk

batch-ext-verify

Syntax

(batch-ext-verify)

Description

batch-ext-verify confirms that the external system is operating and available.

Parameters

None.

Return Values

String
Returns “UP” if the connection was verified successfully; otherwise, returns “DOWN.”

Throws

except-method

Location

batch-ext-verify.monk

Name Type Description

command string Any non-null string
Batch e*Way Intelligent Adapter User’s Guide 93

Chapter 6 Section 6.3
Batch e*Way Functions Core Functions
batch-init

Syntax

(batch-init)

Description

batch-init defines a number of variables upon which other e*Way functions rely,
defines exceptions, and loads the library file stc_monkfilesys.dll.

Parameters

None.

Return Values

String
Returns “FAILURE” on all errors; otherwise, returns a null string.

Throws

Table 9 shows a list of the batch-init exceptions and their categories.

Note: For a complete explanation of Monk exception types, categories, and how they are
used, see the Monk Developer’s Reference.

Location

batch-init.monk

batch-nak

Syntax

(batch-nak command)

Table 9 Exceptions and Categories: batch-init

Exception Type Category

except-abort + 0

except-method + 1

except-param + 2

except-connect + 3

except-transfer + 4

except-local-op + 5

except-rmt-op + 6

except-rmt-list + 7

except-dynamic-op + 8

except-mal-formed-command + 9
Batch e*Way Intelligent Adapter User’s Guide 94

Chapter 6 Section 6.3
Batch e*Way Functions Core Functions
Description

batch-ack is called automatically when the e*Way fails to process and queue Events
from the external system.

Parameters

Return Values

String
Returns “FAILURE” on all errors; otherwise, returns a null string.

Throws

None.

Location

batch-nak.monk

Additional Information

This function is only called during the processing of inbound Events. After the
Exchange Data with External function returns a string that is transformed into an
inbound Event, the Event is handed off to a Collaboration for further processing. If the
Event’s processing is completed unsuccessfully, the e*Way executes the Negative
Acknowledgment function; otherwise, the e*Way executes the Positive
Acknowledgment function.

This function can return an Event to be queued, but the e*Way does not return a
positive or negative acknowledgement to the external system.

The e*Way exits if it fails its attempt to invoke this function or this function returns a
“FAILURE” string.

batch-proc-out

Syntax

(batch-proc-out Event)

Description

batch-proc-out sends the outbound Event from the e*Way to the external system.

Parameters

Name Type Description

command string Any non-null string

Name Type Description

Event string The Event to be sent
Batch e*Way Intelligent Adapter User’s Guide 95

Chapter 6 Section 6.3
Batch e*Way Functions Core Functions
Return Values

String
Returns one of the following strings:

Null

RESEND

CONNERR

DATAERR

See Figure 7 on page 33 for an explanation of the effect of each of these return values.

Throws

None.

Location

batch-proc-out.monk

batch-regular-proc-out

Syntax

(batch-regular-proc-out Event)

Description

batch-regular-proc-out sends the outbound Event from the e*Way to the external
system.

Parameters

Return Values

String
Returns one of the following strings:

Null

RESEND

CONNERR

DATAERR

See Figure 7 on page 33 for an explanation of the effect of each of these return values.

Throws

None.

Name Type Description

Event string The Event to be sent
Batch e*Way Intelligent Adapter User’s Guide 96

Chapter 6 Section 6.3
Batch e*Way Functions Core Functions
Location

batch-regular-proc-out.monk

batch-shutdown-notify

Syntax

(batch-shutdown-notify command)

Description

batch-shutdown-notify notifies the external system that the e*Way is shutting down.

Parameters

Return Values

String
Returns a null string.

Throws

None.

Location

batch-shutdown-notify.monk

batch-startup

Syntax

(batch-startup)

Description

batch-startup launches a Monk function that start the e*Way. The function invoked
depends on whether the e*Way uses FTP or file transfer via copy (selected by a
configuration parameter; see “File Transfer Method” on page 42).

Parameters

None.

Return Values

String
Returns “FAILURE” on all errors; otherwise, returns a null string.

Throws

except-method

Name Type Description

command string Any non-null string
Batch e*Way Intelligent Adapter User’s Guide 97

Chapter 6 Section 6.4
Batch e*Way Functions Connection and File Functions
Location

batch-startup.monk

6.4 Connection and File Functions
These functions initiate the connections to the external system and transfer files
between the e*Way and the external system. The functions described in this section can
only be used by the functions defined within the e*Way’s configuration file. None of
the functions are available to Collaboration Rules scripts executed by the e*Way.

The connection and file functions are:

batch-fetch-files-from-remote on page 99

batch-fetch-named-files on page 100

batch-send-path-file on page 101

batch-validate-params on page 102

batch-write-file on page 103

disconnect-from-remote on page 103

fetch-files-from-remote on page 104

fetch-named-files on page 104

get-next-record on page 105

list-files-on-remote on page 106

open-next-working-file on page 106

persist-get-index on page 107

persist-get-list on page 107

persist-get-offset on page 108

persist-init on page 108

persist-read-number on page 109

persist-update-index on page 109

persist-update-list on page 110

persist-update-offset on page 110

persist-update-status on page 111

persist-write-pad on page 111

post-transfer-hook on page 112

pre-transfer-hook on page 113

send-files-to-remote on page 113

string-is-proc? on page 114
Batch e*Way Intelligent Adapter User’s Guide 98

Chapter 6 Section 6.4
Batch e*Way Functions Connection and File Functions
transfer-method? on page 114

batch-fetch-files-from-remote

Syntax

(batch-fetch-files-from-remote transferMethod ftpHandle ftpMode
remoteDirectory remoteFileRegexp
postTransferCommand
remoteRenameArchiveName)

Description

batch-fetch-files-from-remote attempts to fetch all files from the external system
specified by an Extensible Markup Language (XML) message.

Parameters

Return Values

List
Returns the list of files fetched.

Name Type Description

transferMethod string Identifies whether transfer method
is FTP.

ftpHandle string The FTP handle.

ftpMode string The FTP mode, for example binary
or ASCII.

remoteDirectory string The path name at the remote
location from which the files are
fetched.

remoteFileRegexp string A regular expression that describes
files to be retrieved. (See “Using
Special Characters” on page 69.)

postTransferCommand string The command that the e*Way
executes after a successful file
transfer (for example, Delete,
Rename, or Archive).

remoteRenameArchiveName string Depending on the value of
postTransferCommand, the
parameter specifies either the
name to which the external file will
be renamed (for Rename), or the
directory in which to archive the
external file (for Archive).
Batch e*Way Intelligent Adapter User’s Guide 99

Chapter 6 Section 6.4
Batch e*Way Functions Connection and File Functions
Throws

except-abort

Location

batch-fetch-files-from-remote.monk

batch-fetch-named-files

Syntax

(batch-fetch-named-files transferMethod ftpHandle ftpMode
postTransferCommand
remoteRenameArchiveName file-list)

Description

batch-fetch-named-files attempts to fetch a list of files from the external system.

Parameters

Return Values

List
Returns a list of files successfully fetched.

Throws

except-method, except-abort

Name Type Description

transferMethod string Identifies whether transfer method
is FTP.

ftpHandle string The FTP handle.

ftpMode string The FTP mode, for example binary
or ASCII.

postTransferCommand string The command that the e*Way
executes after a successful file
transfer (for example, Delete,
Rename, or Archive).

remoteRenameArchiveName string Depending on the value of
postTransferCommand, the
parameter specifies either the
name to which the external file will
be renamed (for Rename), or the
directory in which to archive the
external file (for Archive).

file-list List A list of files to be transferred from
the external system.
Batch e*Way Intelligent Adapter User’s Guide 100

Chapter 6 Section 6.4
Batch e*Way Functions Connection and File Functions
Location

batch-fetch-named-files.monk

batch-send-path-file

Syntax

(batch-send-path-file transferMethod ftpHandle ftpMode
appendOverwrite localFilename
remoteDirectory remoteFilename
rmtpostTransferCommand
remoteRenameArchiveName
localPostTransferCommand
localArchiveDirectory)

Description

batch-send-path-file attempts to send files to an external system.

Parameters

Name Type Description

transferMethod string Identifies whether transfer method
is FTP.

ftpHandle string The FTP handle.

ftpMode string The FTP mode, for example binary
or ASCII.

appendOverwrite string Specifies whether to append the
records in the file being
transferred to the existing file on
the external system, or to overwrite
the existing file on the external
system with the file being
transferred.

localFilename string The name of the file being sent to
the external system.

remoteDirectory string The path name at the remote
location to which the file is to be
sent.

remoteFilename string The name of the file on the
external system that is being
overwritten or appended.

rmtPostTransferCommand string The command that the e*Way
executes on the remote system
after a successful file transfer (for
example, Delete, Rename, or
Archive).
Batch e*Way Intelligent Adapter User’s Guide 101

Chapter 6 Section 6.4
Batch e*Way Functions Connection and File Functions
Return Values

Undefined.

Throws

except-abort

Location

batch-send-path-file.monk

batch-validate-params

Syntax

(batch-validate-params)

Description

batch-validate-params validates a number of parameters used by other functions. It
provides a double-check that any modifications made to selected crucial Monk
functions have not altered the validated parameters.

Parameters

None.

Return Values

Undefined.

Throws

except-param

Location

batch-validate-params.monk

RemoteRenameArchiveName string Depending on the value of
rmtPostTransferCommand, the
parameter specifies either the
name to which the external file will
be renamed (for Rename), or the
external system directory in which
to archive the file (for Archive).

localPostTransferCommand string The command that the e*Way will
execute on the local after a
successful file transfer (for
example, Delete, Rename, or
Archive).

LocalArchiveDirectory string Specifies the local directory in
which to archive the file.

Name Type Description (Continued)
Batch e*Way Intelligent Adapter User’s Guide 102

Chapter 6 Section 6.4
Batch e*Way Functions Connection and File Functions
batch-write-file

Syntax

(batch-write-file Event_data)

Description

batch-write-file writes a record to a temporary (outbound) file in the style defined by
the Publish To External section of the e*Way’s configuration parameters (see “Publish
to External” on page 46 for more information).

Parameters

Return Values

Undefined.

Throws

None.

Location

batch-proc-out.monk

disconnect-from-remote

Syntax

(disconnect-from-remote)

Description

disconnect-from-remote is the top-level function that disconnects the e*Way from the
remote system.

Parameters

None.

Return Values

Undefined.

Throws

The function itself does not throw any exceptions, but it catches and logs exceptions
thrown by other functions.

Location

batch-exchange-utils.monk

Name Type Description

Event_Data string Event data
Batch e*Way Intelligent Adapter User’s Guide 103

Chapter 6 Section 6.4
Batch e*Way Functions Connection and File Functions
fetch-files-from-remote

Syntax

(fetch-files-from-remote)

Description

fetch-files-from-remote attempts to fetch from the external system all the files specified
by the configuration parameters in the Subscribe To External section of the e*Way’s
configuration parameters (see “Subscribe to External” on page 42 for more
information).

Parameters

None.

Return Values

List
Returns the list of files fetched.

Throws

except-abort

Location

batch-exchange-utils.monk

fetch-named-files

Syntax

(fetch-named-files file_list)

Description

fetch-named-files attempts to fetch a list of files from the external system. The method
used to perform the actual transfer of each file is specified by the File Transfer Method
configuration parameter (see “File Transfer Method” on page 42 for more
information).

Parameters

Return Values

List
Returns a list of files successfully fetched.

Name Type Description

file_list List A list of files to be transferred from
the external system.
Batch e*Way Intelligent Adapter User’s Guide 104

Chapter 6 Section 6.4
Batch e*Way Functions Connection and File Functions
Throws

except-method, except-abort

Location

batch-exchange-utils.monk

get-next-record

Syntax

(get-next-record)

Description

get-next-record reads the next available record from the files in the inbound temporary
directory. If there are no more records in the current file, the next file is opened and
read.

Parameters

None.

Return Values

Returns one of the following values:

String
If a record is available and can be read, the function returns the record read.

Boolean
If there are no more records available for reading, the function returns #f (false).

Throws

None.

Location

batch-exchange-utils.monk

get-next-record-current-file

Syntax

(get-next-record-current-file)

Description

get-next-record-current-file reads and returns the next record from the currently open
file (in the inbound temporary directory).

Parameters

None.

Return Values

Returns one of the following values:
Batch e*Way Intelligent Adapter User’s Guide 105

Chapter 6 Section 6.4
Batch e*Way Functions Connection and File Functions
String
If a record is available and can be read, the function returns the record read.

Boolean
If there are no more records available for reading, the function returns #f (false).

Throws

None.

Location

batch-exchange-utils.monk

list-files-on-remote

Syntax

(list-files-on-remote)

Description

list-files-on-remote lists the files in the currently connected directory on the external
system, using a command appropriate to the File Transfer Method configuration
parameter (see “File Transfer Method” on page 42).

Parameters

None.

Return Values

List
Returns a list of files.

Throws

except-method

Location

batch-exchange-utils.monk

open-next-working-file

Syntax

(open-next-working-file)

Description

While the e*Way is reading temporary files in the inbound temporary directory, open-
next-working-file closes the current file, then opens a handle on the next available file.

Parameters

None.
Batch e*Way Intelligent Adapter User’s Guide 106

Chapter 6 Section 6.4
Batch e*Way Functions Connection and File Functions
Return Values

Returns one of the following values:

String
If a record is available and can be read, the function returns the record read.

Boolean
If there are no more records available for reading, the function returns #f (false).

Throws

None.

Location

batch-exchange-utils.monk

persist-get-index

Syntax

(persist-get-index)

Description

persist-get-index retrieves the current file list index from the persistency file.

Parameters

None.

Return Values

Integer
Returns the file list index.

Throws

None.

Location

batch-persist.monk

persist-get-list

Syntax

(persist-get-list)

Description

persist-get-list retrieves the current file list from the persistency file.

Parameters

None.
Batch e*Way Intelligent Adapter User’s Guide 107

Chapter 6 Section 6.4
Batch e*Way Functions Connection and File Functions
Return Values

List
Returns the file list.

Throws

None.

Location

batch-persist.monk

persist-get-offset

Syntax

(persist-get-offset)

Description

persist-get-offset retrieves the current file position offset from the persistency file.

Parameters

None.

Return Values

Integer
Returns the file offset.

Throws

None.

Location

batch-persist.monk

persist-init

Syntax

(persist-init)

Description

persist-init opens the persistency file if the file is not already open, creating the file if
necessary.

Parameters

None.

Return Values

Undefined.
Batch e*Way Intelligent Adapter User’s Guide 108

Chapter 6 Section 6.4
Batch e*Way Functions Connection and File Functions
Throws

None.

Location

batch-persist.monk

Additional Information

The persistency file is used when reading records from files in inbound data transfers.
The default file name is persist.dat.

persist-read-number

Syntax

(persist-read-number string_size)

Description

persist-read-number reads a string of the size given in the input argument from the
persistency file (persist.dat), and converts it to a numeric value.

Parameters

Return Values

Integer
Returns the numeric value of the string read from the persistency file.

Throws

None.

Location

batch-persist.monk

persist-update-index

Syntax

(persist-update-index index)

Description

persist-update-index updates the file list index in the persistency file

Name Type Description

string_size integer The size (in bytes) of the string to
be read from the persistency file.
Batch e*Way Intelligent Adapter User’s Guide 109

Chapter 6 Section 6.4
Batch e*Way Functions Connection and File Functions
Parameters

Return Values

Undefined.

Throws

None.

Location

batch-persist.monk

persist-update-list

Syntax

(persist-update-list file_list)

Description

persist-update-list updates the file list in the persistency file.

Parameters

Return Values

Undefined.

Throws

None.

Location

batch-persist.monk

persist-update-offset

Syntax

(persist-update-offset offset)

Description

persist-update-offset updates the file position offset in the persistency file.

Name Type Description

index integer The file list index to update

Name Type Description

file_list integer The file list to update
Batch e*Way Intelligent Adapter User’s Guide 110

Chapter 6 Section 6.4
Batch e*Way Functions Connection and File Functions
Parameters

Return Values

Undefined.

Throws

None.

Location

batch-persist.monk

persist-update-status

Syntax

(persist-update-status offset list_index file_list)

Description

persist-update-status updates all elements of the persistency file in a single function
call.

Parameters

Return Values

Undefined.

Throws

None.

Location

batch-persist.monk

persist-write-pad

Syntax

(persist-write-pad port text_string length)

Name Type Description

offset integer The file position offset

Name Type Description

offset integer The file position offset

list_index integer The file list index

file_list List The file list
Batch e*Way Intelligent Adapter User’s Guide 111

Chapter 6 Section 6.4
Batch e*Way Functions Connection and File Functions
Description

persist-write-pad writes the text to the output port, padded with leading spaces to the
specified length.

Parameters

Return Values

Undefined.

Throws

None.

Location

batch-persist.monk

post-transfer-hook

Syntax

(post-transfer-hook)

Description

post-transfer-hook sets a variable used by the ftp-ext-connect and ftp-ext-verify
functions that describes the state of the connection. The function is called by batch-
exchange-data immediately after the disconnect-from-remote function is called.

Parameters

None.

Return Values

Undefined.

Throws

None.

Location

batch-exchange-utils.monk

Name Type Description

port Port The output port

text_string string The text to be written

length integer The length of the string to be written,
including padding (spaces)
Batch e*Way Intelligent Adapter User’s Guide 112

Chapter 6 Section 6.4
Batch e*Way Functions Connection and File Functions
pre-transfer-hook

Syntax

(pre-transfer-hook)

Description

pre-transfer-hook sets a variable used by the ftp-ext-connect and ftp-ext-verify
functions that describes the state of the connection.

Parameters

None.

Return Values

Undefined.

Throws

None.

Location

batch-exchange-utils.monk

send-files-to-remote

Syntax

(send-files-to-remote file_list)

Description

send-files-to-remote attempts to send a list of files stored in the temporary outbound
directory to the external system according to the method defined by the File Transfer
Method parameter.

Parameters

Return Values

List
Returns a list of the files that were sent successfully.

Throws

except-method, except-abort

Location

batch-exchange-utils.monk

Name Type Description

file_list List A list of files to be sent to the external
system.
Batch e*Way Intelligent Adapter User’s Guide 113

Chapter 6 Section 6.4
Batch e*Way Functions Connection and File Functions
string-is-proc?

Syntax

(string-is-proc? procedurename)

Description

string-is-proc? tests whether the specified string is the name of a Monk procedure.

Parameters

Return Values

Boolean
Returns #t (true) if the specified string is the name of a Monk procedure; otherwise,
returns #f (false).

Throws

None.

Location

batch-utils.monk

transfer-method?

Syntax

(transfer-method?)

Description

transfer-method? returns the transfer method established by the File Transfer Method
parameter.

Parameters

None.

Return Values

Quoted Symbol
Returns one of the following quoted symbols:

Name Type Description

procedurename string The string to test

‘METHOD_FTP File transfer method FTP

‘METHOD_FILE File transfer method File Copy

‘METHOD_UNKNOWN Unknown method
Batch e*Way Intelligent Adapter User’s Guide 114

Chapter 6 Section 6.5
Batch e*Way Functions File Name Expansion Functions
Throws

None.

Location

batch-utils.monk

6.5 File Name Expansion Functions
These functions are used when converting special character sequences in a string to
some other sequence. The functions described in this section can only be used by the
functions defined within the e*Way’s configuration file. None of the functions are
available to Collaboration Rules scripts executed by the e*Way.

The file name expansion functions are:

char-hex? on page 115

expand-char on page 116

expand-hex on page 117

expand-octal on page 117

expand-seqno on page 118

expand-string on page 118

expand-time on page 119

get-seqno on page 120

incr-seqno on page 121

set-seqno on page 121

char-hex?

Syntax

(char-hex? chr)

Description

char-hex? determines whether a character is a valid hexadecimal character (that is, in
the range 0 through 9, A through F, or a through f).

Parameters

Name Type Description

chr character The character to test
Batch e*Way Intelligent Adapter User’s Guide 115

Chapter 6 Section 6.5
Batch e*Way Functions File Name Expansion Functions
Return Values

Boolean
Returns #t (true) if the tested character is a valid hexadecimal character; otherwise,
returns #f (false).

Throws

None.

Location

batch-exchange-utils.monk

expand-char

Syntax

(expand-char chr)

Description

expand-char converts certain special characters from their escaped representation to
their ASCII character.

Parameters

The characters expand-char can convert are as follows:

Return Values

Character
Returns a character (see the conversion table above).

Throws

None.

Name Type Description

chr character The character to convert

Input character Converts To

0 Null character

a Audible bell

b Backspace

f Form feed

n New line

r Carriage return

t Tab

v Vertical tab
Batch e*Way Intelligent Adapter User’s Guide 116

Chapter 6 Section 6.5
Batch e*Way Functions File Name Expansion Functions
Location

batch-exchange-utils.monk

expand-hex

Syntax

(expand-hex hex_string)

Description

expand-hex converts two hexadecimal characters (0 through 9, A through F) to the
ASCII character that they represent.

Parameters

Return Values

String
Returns a single ASCII character.

Throws

None.

Location

batch-exchange-utils.monk

expand-octal

Syntax

(expand-octal octal_string)

Description

expand-octal converts three octal digits (0 through 9) to a single ASCII character.

Parameters

Return Values

String
Returns a single ASCII character.

Name Type Description

hex_string string A two-character string to be converted
to an ASCII character.

Name Type Description

octal_string string A three-character string to be
converted to an ASCII character.
Batch e*Way Intelligent Adapter User’s Guide 117

Chapter 6 Section 6.5
Batch e*Way Functions File Name Expansion Functions
Throws

None.

Location

batch-exchange-utils.monk

expand-seqno

Syntax

(expand-seqno padding)

Description

expand-seqno inserts a sequence number into a string, padded with the number of
zeros specified in the function call. The sequence number is incremented when this
function is called.

Parameters

Return Values

String
Returns the current sequence number, zero-padded as specified.

Throws

None.

Location

batch-utils.monk

expand-string

Syntax

(expand-string string)

Description

expand-string searches an arbitrary string for known special character sequences and
replaces them with the strings they represent. This function calls, as appropriate,
expand-octal, expand-hex, expand-char, expand-seqno (with zero padding), or
expand-time.

Name Type Description

padding string The number of zeros to add as
padding to the sequence number.
Batch e*Way Intelligent Adapter User’s Guide 118

Chapter 6 Section 6.5
Batch e*Way Functions File Name Expansion Functions
Parameters

Return Values

String
Returns the expanded string.

Throws

None.

Location

batch-utils.monk

expand-time

Syntax

(expand-time chr)

Description

expand-time returns an expansion of the supplied character as described in the
C strftime() function call.

Parameters

The supported formats are:

Name Type Description

string string The string to expand

Name Type Description

chr character A character representing a strftime()
format

Character Format

a Abbreviated weekday

A Full weekday

b Abbreviated month name

B Full month name

c Date and time representation

d Day of the month (01 through 31)

H Hour (00 through 23)

I Hour (01 through 12)

j Day of the year (001 through 366)
Batch e*Way Intelligent Adapter User’s Guide 119

Chapter 6 Section 6.5
Batch e*Way Functions File Name Expansion Functions
Return Values

String
Returns a string containing time or date information.

Throws

None.

Location

batch-utils.monk

get-seqno

Syntax

(get-seqno)

Description

get-seqno reads the current sequence number from persistent storage (the text file
sequence.dat) and returns it. If this file does not exist, the sequence number is taken
from the configuration variable cfg-seq-no-start.

Parameters

None.

Return Values

String
Returns the current sequence number as a string.

Throws

None.

m Month (01 through 12)

M Minute (00 through 59)

p AM or PM

S Seconds (00 through 61)

U Week number, starting from the first Sunday

W Week number, starting from the first Monday

w Day of the week (Sunday = 0)

x Date representation

X Time representation

 y Year (00 through 99)

Y Year, including century

Z Time zone

Character Format
Batch e*Way Intelligent Adapter User’s Guide 120

Chapter 6 Section 6.5
Batch e*Way Functions File Name Expansion Functions
Location

batch-utils.monk

incr-seqno

Syntax

(incr-seqno)

Description

incr-seqno obtains the current sequence number through a call to the function ftp-get-
seqno, and increments it by one. If the new sequence number is greater than that
specified by the configuration variable Max Sequence Number, the number is reset to
the value of the configuration variable Start Sequence Number.

The configuration number is then written to persistent storage in the file sequence.dat.
This file will be created if it does not already exist and overwritten if it does.

Parameters

None.

Return Values

String
Returns a string containing a sequence number.

Throws

None.

Location

batch-utils.monk

set-seqno

Syntax

(set-seqno new_number)

Description

set-seqno sets the current sequence number to the specified value. The value is not
checked, and therefore could be set outside the range defined by the configuration
variables Start Sequence Number and Max Sequence Number.

Parameters

Name Type Description

new_number integer The value to which to set the
sequence number
Batch e*Way Intelligent Adapter User’s Guide 121

Chapter 6 Section 6.6
Batch e*Way Functions Post-transfer Routines
Return Values

String
Returns a string that contains a sequence number.

Throws

None.

Location

batch-utils.monk

6.6 Post-transfer Routines
These functions are invoked after either an inbound or outbound transfer has taken
place. They specify actions that are defined by the settings of configuration variables,
which will be performed on the local temporary file or upon the external file. Some of
these operations are likely to be undesirable depending on the direction of transfer, but
this is a configuration issue.

The functions described in this section can only be used by the functions defined within
the e*Way’s configuration file. None of the functions are available to Collaboration
Rules scripts executed by the e*Way.

The post-transfer routines are:

batch-local-post-transfer on page 122.

batch-rmt-post-transfer on page 123.

local-post-transfer on page 123.

batch-local-post-transfer

Syntax

(batch-local-post-transfer local_filename)

Description

batch-local-post-transfer performs the relevant post-transfer operation on a specified
local file.

Parameters

Return Values

Undefined.

Name Type Description

local_filename string The name of a local file
Batch e*Way Intelligent Adapter User’s Guide 122

Chapter 6 Section 6.6
Batch e*Way Functions Post-transfer Routines
Throws

except-local-op

Location

batch-post-transfer.monk

batch-rmt-post-transfer

Syntax

(batch-rmt-post-transfer rmt_filename)

Description

batch-rmt-post-transfer performs the relevant post-transfer operation on the specified
remote file.

Parameters

Return Values

Undefined.

Throws

except-method

Location

batch-post-transfer.monk

local-post-transfer

Syntax

(local-post-transfer direction command archiveDirectory filename)

Description

local-post-transfer performs the relevant post-transfer operation on a local system,
after the transfer of working files is complete.

Name Type Description

rmt_filename string The name of a remote file
Batch e*Way Intelligent Adapter User’s Guide 123

Chapter 6 Section 6.7
Batch e*Way Functions File Copy Transfer Functions
Parameters

Return Values

Undefined.

Throws

except-local-op

Location

local-post-transfer.monk

6.7 File Copy Transfer Functions
These functions execute file-based “copy” transfers. The functions described in this
section can only be used by the functions defined within the e*Way’s configuration file.
None of the functions are available to Collaboration Rules scripts executed by the
e*Way.

Note: Many of the functions in this section are place-holders for user-supplied
customizations. If you need to add functionality to these place-holder functions, be
sure not to change the arguments required nor the type of value returned.

The file copy transfer functions are:

file-ext-connect on page 125

file-ext-shutdown on page 125

file-ext-verify on page 126

file-fetch on page 126

file-fetch-path on page 127

file-init on page 127

file-remote-path-list on page 128

Name Type Description

direction string (“inbound” or
“outbound”)

Indicates whether the e*Way is
inbound or outbound.

command string The command that the e*Way will
execute after a successful file transfer
(for example, Delete, Rename, or
Archive.

archiveDirectory string Specifies the local directory in which
to archive the working files.

filename string The name of a local file.
Batch e*Way Intelligent Adapter User’s Guide 124

Chapter 6 Section 6.7
Batch e*Way Functions File Copy Transfer Functions
file-rmt-list on page 128

file-rmt-post-transfer on page 129

file-send on page 129

file-send-path-file on page 130

file-startup on page 131

file-validate-params on page 131

file-ext-connect

Syntax

(file-ext-connect)

Description

file-ext-connect opens a connection to the external system.

Parameters

None.

Return Values

Boolean
Returns #t (true) under all circumstances.

Throws

None.

Location

file-ext-connect.monk

file-ext-shutdown

Syntax

(file-ext-shutdown)

Description

file-ext-shutdown closes the connection to an external system.

Parameters

None.

Return Values

Boolean
Returns #t (true) under all circumstances.

Throws

None.
Batch e*Way Intelligent Adapter User’s Guide 125

Chapter 6 Section 6.7
Batch e*Way Functions File Copy Transfer Functions
Location

file-ext-shutdown.monk

file-ext-verify

Syntax

(file-ext-verify)

Description

file-ext-verify verifies the connection to an external system.

Parameters

None.

Return Values

Boolean
Returns #t (true) under all circumstances.

Throws

None.

Location

file-ext-verify.monk

file-fetch

Syntax

(file-fetch filename)

Description

file-fetch fetches a file from a remote system.

Parameters

Return Values

Boolean
Returns #t (true) under all circumstances.

Throws

except-transfer, plus the name of the file.

Location

file-fetch.monk

Name Type Description

filename string The name of a file
Batch e*Way Intelligent Adapter User’s Guide 126

Chapter 6 Section 6.7
Batch e*Way Functions File Copy Transfer Functions
file-fetch-path

Syntax

(file-fetch-path remoteDirectory filename)

Description

file-fetch-path-list fetches a file from a specified location on a remote system.

Parameters

Return Values

Boolean
Returns #t (true) under all circumstances.

Throws

except-transfer, plus the name of the file.

Location

file-fetch.monk

file-init

Syntax

(file-init)

Description

file-init initializes the Monk environment for file-based-transfer functions.

Parameters

None.

Return Values

Boolean
Returns #t (true) under all circumstances.

Throws

None.

Location

file-init.monk

Name Type Description

remoteDirectory string The complete directory path on the
remote system where the file to be
fetched resides.

filename string The name of a file.
Batch e*Way Intelligent Adapter User’s Guide 127

Chapter 6 Section 6.7
Batch e*Way Functions File Copy Transfer Functions
file-remote-path-list

Syntax

(file-remote-path-list remoteDirectory remoteFileRegexp)

Description

file-remote-path-list lists the files within a specified location on an external system.

Parameters

Return Values

List
Returns a list of files.

Throws

except-rmt-list

Location

file-remote-path-list.monk

file-rmt-list

Syntax

(file-rmt-list)

Description

file-rmt-list lists the files in the external source directory.

Parameters

None.

Return Values

List
Returns a list of files.

Name Type Description

remoteDirectory string The complete directory path on the
remote system where the files to be
listed reside. A regular expression is
not accepted.

remoteFileRegexp string A regular expression that describes
the files to be listed. (See “Remote
File Regexp” on page 43 and “Using
Special Characters” on page 69.)
Batch e*Way Intelligent Adapter User’s Guide 128

Chapter 6 Section 6.7
Batch e*Way Functions File Copy Transfer Functions
Throws

except-rmt-list

Location

file-rmt-list.monk

file-rmt-post-transfer

Syntax

(file-rmt-post-transfer filename)

Description

file-rmt-post-transfer performs post-transfer operations on the named file, depending
on the setting of the Remote Command After Transfer configuration parameter.

Parameters

Return Values

Boolean
Returns #t (true) if the function evaluates the Remote Command After Transfer
configuration parameter’s to be None, or if the function succeeds. The exception except-
rmt-op is thrown if the function fails, or if an unrecognized transfer option (other than
none, archive, rename or delete) is selected. See “Remote Command After Transfer” on
page 44 for more information.

Throws

except-rmt-op.

Location

file-rmt-post-transfer.monk

file-send

Syntax

(file-send filename)

Description

file-send sends the specified file to the external system.

Name Type Description

filename string The name of a file
Batch e*Way Intelligent Adapter User’s Guide 129

Chapter 6 Section 6.7
Batch e*Way Functions File Copy Transfer Functions
Parameters

Return Values

Boolean
Returns #t (true) if the transfer succeeds; otherwise, returns #f (false).

Throws

except-transfer, plus the name of the file.

Location

file-send.monk

file-send-path-file

Syntax

(file-send-path-file appendOverwrite localFilename remoteDirectory
remoteFilename)

Description

file-send-path-file sends the specified file to a specific directory on an external system.

Parameters

Return Values

Boolean
Returns #t (true) if the transfer succeeds; otherwise, returns #f (false).

Name Type Description

filename string The name of a file

Name Type Description

appendOverwrite string Specifies whether to append the
records in the file being transferred to
the existing file on the external
system, or to overwrite the existing
file on the external system with the
file being transferred.

localFilename string The name of the file being sent to the
external system.

remoteDirectory string The path name at the remote location
to which the file is to be sent.

remoteFilename string The name of the file on the external
system that is being overwritten or
appended.
Batch e*Way Intelligent Adapter User’s Guide 130

Chapter 6 Section 6.7
Batch e*Way Functions File Copy Transfer Functions
Throws

except-transfer, plus the name of the file.

Location

file-send-path-file.monk

file-startup

Syntax

(file-startup)

Description

file-startup performs startup functions specific to file-based transfers.

Parameters

None.

Return Values

Boolean
Returns #t (true) under all circumstances.

Throws

None.

Location

file-startup.monk

file-validate-params

Syntax

(file-validate-params)

Description

file-validate-params validates the configuration parameters specific to file-based
transfers.

Parameters

None.

Return Values

Boolean
Returns #t (true) under all circumstances.

Throws

None.
Batch e*Way Intelligent Adapter User’s Guide 131

Chapter 6 Section 6.8
Batch e*Way Functions FTP Transfer Functions
Location

file-validate-params.monk

6.8 FTP Transfer Functions
The functions in this section control the FTP connection and perform basic operations
such as send, list, and fetch. The functions described in this section can only be used by
the functions defined within the e*Way’s configuration file. None of the functions are
available to Collaboration Rules scripts executed by the e*Way.

The FTP transfer functions are:

ftp-do-connect

Syntax

(ftp-do-connect)

Description

ftp-do-connect is a helper function related to ftp-ext-connect, which actually makes the
connection to the remote host.

Parameters

None.

Return Values

Undefined.

Throws

None.

Location

ftp-ext-connect.monk

ftp-do-connect on
page 132

ftp-init on page 135

ftp-ext-connect on
page 133

ftp-rmt-list on page 135

ftp-ext-shutdown on
page 133

ftp-rmt-post-transfer on
page 136

ftp-ext-verify on page 133 ftp-send on page 136

ftp-fetch on page 134 ftp-startup on page 137

ftp-heuristic-download on
page 134

ftp-validate-params on
page 137
Batch e*Way Intelligent Adapter User’s Guide 132

Chapter 6 Section 6.8
Batch e*Way Functions FTP Transfer Functions
ftp-ext-connect

Syntax

(ftp-ext-connect)

Description

ftp-ext-connect opens an FTP connection to an external system.

Parameters

None.

Return Values

Boolean
Returns #t (true) if the connection succeeds; otherwise, returns #f (false).

Throws

except-connect

Location

ftp-ext-connect.monk

ftp-ext-shutdown

Syntax

(ftp-ext-shutdown)

Description

ftp-ext-shutdown closes the FTP connection to the external system.

Parameters

None.

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

None.

Location

ftp-ext-shutdown.monk

ftp-ext-verify

Syntax

(ftp-ext-verify)
Batch e*Way Intelligent Adapter User’s Guide 133

Chapter 6 Section 6.8
Batch e*Way Functions FTP Transfer Functions
Description

ftp-ext-verify verifies that the FTP connection to the external system is still operating
properly.

Parameters

None.

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

None.

Location

ftp-ext-verify.monk

ftp-fetch

Syntax

(ftp-fetch filename)

Description

ftp-fetch retrieves the specified file from the external system.

Parameters

Return Values

Boolean
Returns #t (true) under all circumstances.

Throws

except-transfer, plus the file name.

Location

ftp-fetch.monk

ftp-heuristic-download

Syntax

(ftp-heuristic-download)

Name Type Description

filename string The name of a file
Batch e*Way Intelligent Adapter User’s Guide 134

Chapter 6 Section 6.8
Batch e*Way Functions FTP Transfer Functions
Description

ftp-heuristic-download downloads the file FtpHeuristics.cfg from the e*Gate Registry.

Parameters

None.

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

None.

Location

ftp-init.monk

ftp-init

Syntax

(ftp-init)

Description

ftp-init initializes the Monk environment for FTP-transfer functions.

Parameters

None.

Return Values

Boolean
Returns #t (true) if the initialization operations succeed; otherwise, returns #f (false).

Throws

None.

Location

ftp-init.monk

ftp-rmt-list

Syntax

(ftp-rmt-list)

Description

ftp-rmt-list returns a list of files in the external source directory.

Parameters

None.
Batch e*Way Intelligent Adapter User’s Guide 135

Chapter 6 Section 6.8
Batch e*Way Functions FTP Transfer Functions
Return Values

List
Returns a list of files.

Throws

except-rmt-list

Location

ftp-rmt-list.monk

ftp-rmt-post-transfer

Syntax

(ftp-rmt-post-transfer filename)

Description

ftp-rmt-post-transfer performs post-transfer operations on the named file, depending
on the setting of the Remote Command After Transfer configuration parameter.

Parameters

Return Values

Boolean
Returns #t (true) if the function evaluates the Remote Command After Transfer
configuration parameter’s to be “none” or if the function succeeds; #f (false) if an
unrecognized transfer option (other than none, archive, rename or delete) is selected or if
the function fails. See “Remote Command After Transfer” on page 44 for more
information.

Throws

except-rmt-op

Location

ftp-rmt-post-transfer.monk

ftp-send

Syntax

(ftp-send filename)

Description

ftp-send sends the specified file to the external system.

Name Type Description

filename string The name of a file
Batch e*Way Intelligent Adapter User’s Guide 136

Chapter 6 Section 6.8
Batch e*Way Functions FTP Transfer Functions
Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

except-transfer, plus the file name.

Location

ftp-send.monk

ftp-startup

Syntax

(ftp-startup)

Description

ftp-startup performs startup functions necessary for FTP transfers, such as establishing
the required handles.

Parameters

None.

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

None.

Location

ftp-startup.monk

ftp-validate-params

Syntax

(ftp-validate-params)

Description

ftp-validate-params validates configuration parameters specific to FTP transfers.

Name Type Description

filename string The name of a file
Batch e*Way Intelligent Adapter User’s Guide 137

Chapter 6 Section 6.9
Batch e*Way Functions Advanced FTP Functions
Parameters

None.

Return Values

Undefined.

Throws

except-param

Location

ftp-validate-params.monk

6.9 Advanced FTP Functions
The functions in this section perform advanced FTP functions. The functions described
in this section can only be used by the functions defined within the e*Way’s
configuration file. None of the functions are available to Collaboration Rules scripts
executed by the e*Way.

The advanced FTP functions are:

ftp-append-file on page 139

ftp-append-path on page 140

ftp-archive on page 141

ftp-archive-path on page 142

ftp-capture-data on page 143

ftp-change-dir on page 143

ftp-close on page 144

ftp-connect on page 145

ftp-create-handle on page 146

ftp-disconnect on page 147

ftp-delete on page 147

ftp-delete-path on page 148

ftp-fetch-path on page 149

ftp-get-file on page 150

ftp-get-last-response on page 150

ftp-get-last-result-code on page 151

ftp-get-path on page 152

ftp-handle? on page 153

ftp-list-files on page 153
Batch e*Way Intelligent Adapter User’s Guide 138

Chapter 6 Section 6.9
Batch e*Way Functions Advanced FTP Functions
ftp-list-raw on page 154

ftp-login on page 155

ftp-make-dir on page 156

ftp-open-data-port on page 157

ftp-open-host on page 157

ftp-open-host-through-SOCKS on page 158

ftp-put-file on page 159

ftp-put-path on page 160

ftp-remote-path-list on page 161

ftp-rename on page 162

ftp-rename-path on page 162

ftp-send-command on page 163

ftp-send-path-file on page 164

ftp-send-reply-immediate on page 165

ftp-set-compare-time on page 166

ftp-set-mode on page 167

ftp-set-port on page 168

ftp-set-SOCKS-host on page 169

ftp-set-SOCKS-port on page 169

ftp-set-timeout on page 170

ftp-append-file

Syntax

(ftp-append-file handle local_file remote_file)

Description

ftp-append-file sends a local file to the external host with the given external file name.
This function appends to the target file, or creates a new file if the target file does not
exist.

Parameters

Name Type Description

handle Handle The FTP handle

local_file string The name of a file

remote_file string The name of a file
Batch e*Way Intelligent Adapter User’s Guide 139

Chapter 6 Section 6.9
Batch e*Way Functions Advanced FTP Functions
Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-append-file throws the following exceptions:

$Ftp-Exception-Generic, E_STR 508

$Ftp-Exception-Generic, E_STR 507

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 39

Exception-InvalidArg E_STR 12

See Table 11 on page 171 for details about these exceptions.

Location

stc_ewftp.dll

ftp-append-path

Syntax

(ftp-append-path handle local_file remote_dir remote_file)

Description

ftp-append-path sends a local file to the external host with the specified external file
name, to the specified directory. This function appends to the target file if it exists, or
creates a new file. ftp-append-path is functionally identical to ftp-append-file, except
that the FTP Heuristics database is used to generate a correct path name for the external
file.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Name Type Description

handle Handle The FTP handle

local_file string The name of a file

remote_dir string The name of a directory

remote_file string The name of a file
Batch e*Way Intelligent Adapter User’s Guide 140

Chapter 6 Section 6.9
Batch e*Way Functions Advanced FTP Functions
Throws

ftp-append-path throws the following exceptions:

$Ftp-Exception-Generic, E_STR 509

$Ftp-Exception-Generic, E_STR 507

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 39

Exception-InvalidArg E_STR 12

See Table 11 on page 171 for details about these exceptions.

Location

stc_ewftp.dll

ftp-archive

Syntax

(ftp-archive handle filename directory)

Description

ftp-archive moves an external file to a different directory on the external host.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-archive throws the following exceptions:

$Ftp-Exception-Generic, E_STR 509

$Ftp-Exception-Generic, E_STR 507

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 39

Exception-InvalidArg E_STR 12

See Table 11 on page 171 for details about these exceptions.

Name Type Description

handle Handle The FTP handle

filename string The name of a file

directory string The name of a directory
Batch e*Way Intelligent Adapter User’s Guide 141

Chapter 6 Section 6.9
Batch e*Way Functions Advanced FTP Functions
Location

stc_ewftp.dll

Note: The ftp-archive function is not supported on heuristics for MVS GDG. See
“Operating System or File Type Selection” on page 60. In addition, MVS
does not allow partitioned data sets to be renamed to another partitioned data set.

ftp-archive-path

Syntax

(ftp-archive-path handle old_dir filename new_dir)

Description

ftp-archive-path moves a file on the external system to a different directory on the
external system. The FTP Heuristics database is used to generate the correct path for the
external file.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-archive-path throws the following exceptions:

$Ftp-Exception-Generic, E_STR 509

$Ftp-Exception-Generic, E_STR 506

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 39

Exception-InvalidArg E_STR 12

See Table 11 on page 171 for details about these exceptions.

Location

stc_ewftp.dll

Name Type Description

handle Handle The FTP handle

old_dir String The name of a directory

filename String The name of a file

new_dir String The name of a directory
Batch e*Way Intelligent Adapter User’s Guide 142

Chapter 6 Section 6.9
Batch e*Way Functions Advanced FTP Functions
Note: The ftp-archive-path function is not supported on heuristics for MVS GDG. See
“Operating System or File Type Selection” on page 60 for details. In addition,
MVS does not allow partitioned data sets to be renamed to another partitioned data
set.

ftp-capture-data

Syntax

(ftp-capture-data handle filename)

Description

ftp-capture-data reads the data from a data port previously opened with ftp-open-
data-port, and captures said data to the file specified. If the file already exists, it is
overwritten.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-capture-data throws the following exceptions:

$Ftp-Exception-Generic, E_STR 509

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 39

Exception-InvalidArg E_STR 12

See Table 11 on page 171 for details about these exceptions.

Location

stc_ewftp.dll

ftp-change-dir

Syntax

(ftp-change-dir handle directory)

Description

ftp-change-dir changes to the specified directory on the external host.

Name Type Description

handle Handle The FTP handle

filename String The name of a file
Batch e*Way Intelligent Adapter User’s Guide 143

Chapter 6 Section 6.9
Batch e*Way Functions Advanced FTP Functions
Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-change-dir throws the following exceptions:

$Ftp-Exception-Generic, E_STR 506

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 30.

Exception-InvalidArg E_STR 12

See Table 11 on page 171 for details about these exceptions.

Location

stc_ewftp.dll

ftp-close

Syntax

(ftp-close handle)

Description

ftp-close closes the FTP connection on the specified handle.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-close throws the following exceptions:

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg E_STR 12

Name Type Description

handle Handle The FTP handle

directory string The name of a directory

Name Type Description

handle Handle The FTP handle
Batch e*Way Intelligent Adapter User’s Guide 144

Chapter 6 Section 6.9
Batch e*Way Functions Advanced FTP Functions
See Table 11 on page 171 for details about these exceptions.

Location

stc_ewftp.dll

ftp-connect

Syntax

ftp-connect ftpHandle socksServerName socksServerPort SocksMethod
SocksUserName Sockspassword ftpServerName ftpServerPort
userName encryptedPassword

Description

ftp-connect makes a connection to a FTP server through a SOCKS host, and allows for a
configurable FTP server port number. If the FTP server port is an empty string, the
e*Way uses the default port number 21.

If SOCKS is not used, an empty string is passed for both the SOCKS server name and
the SOCKS server port.

Parameters

Name Type Description

ftpHandle string The FTP handle.

socksServerName string A valid name for the SOCKS server.

socksServerPort integer The port number to use on the SOCKS
server for connection.

socksMethod string Indicates the Authentication method,
if any, for connecting to the SOCKS
server.

socksUserName string The User Name to be used for
authentication when connecting to
the SOCKS server.

sockspassword encrypted string The encrypted password to be used
for authentication when connecting
to the SOCKS server.

ftpServerName string A valid name for the FTP server

userName string The User Name to be used for
authentication when connecting to
the FTP server.

encryptedPassword encrypted string The encrypted password to be used
for authentication when connecting
to the FTP server.
Batch e*Way Intelligent Adapter User’s Guide 145

Chapter 6 Section 6.9
Batch e*Way Functions Advanced FTP Functions
Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-connect throws the following exception:

$Ftp-Exception-Invalid-Arg, E_STR 500

See Table 11 on page 171 for details about these exceptions.

Location

ftp-connect.monk

ftp-create-handle

Syntax

(ftp-create-handle host-type)

Description

ftp-create-handle creates a new FTP handle for the specified host type. The host type
must be valid, and specified in the Ftp Heuristics configuration file.

You must supply the argument for this function; there is no default.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-create-handle throws the following exceptions:

$Ftp-Exception-Catastrophic, E_STR 502

Exception-InvalidArg, E_STR 39

Exception-InvalidArg E_STR 12

See Table 11 on page 171 for details about these exceptions.

Location

stc_ewftp.dll

Name Type Description

host-type string A valid host type
Batch e*Way Intelligent Adapter User’s Guide 146

Chapter 6 Section 6.9
Batch e*Way Functions Advanced FTP Functions
ftp-disconnect

Syntax

(ftp-disconnect ftpHandle)

Description

ftp-disconnect closes the FTP connection on the specified handle.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-close throws the following exceptions:

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg E_STR 12

See Table 11 on page 171 for details about these exceptions.

Location

ftp-disconnect.monk

ftp-delete

Syntax

(ftp-delete handle filename)

Description

ftp-delete deletes a file from the external system.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Name Type Description

ftpHandle string The FTP handle

Name Type Description

handle Handle The FTP handle

filename string The name of a file
Batch e*Way Intelligent Adapter User’s Guide 147

Chapter 6 Section 6.9
Batch e*Way Functions Advanced FTP Functions
Throws

ftp-delete throws the following exceptions:

$Ftp-Exception-Generic, E_STR 509

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 39

Exception-InvalidArg E_STR 12

See Table 11 on page 171 for details about these exceptions.

Location

stc_ewftp.dll

Note: The function ftp-delete is not supported on heuristics for MVS GDG. See
“Operating System or File Type Selection” on page 60 for details.

ftp-delete-path

Syntax

(ftp-delete-path handle remote_dir remote_file)

Definition

ftp-delete-path deletes a file from a named directory on the external system. The FTP
Heuristics database is used to generate a correct path to the external file’s location.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-delete-path throws the following exceptions:

$Ftp-Exception-Generic, E_STR 509

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 39

Exception-InvalidArg E_STR 12

See Table 11 on page 171 for details about these exceptions.

Name Type Description

handle Handle The FTP handle

remote_dir string The name of a directory

remote_file string The name of a file
Batch e*Way Intelligent Adapter User’s Guide 148

Chapter 6 Section 6.9
Batch e*Way Functions Advanced FTP Functions
Location

stc_ewftp.dll

Note: The function ftp-delete-path is not supported on heuristics for MVS GDG. See
“Operating System or File Type Selection” on page 60.

ftp-fetch-path

Syntax

(ftp-fetch-path ftphandle ftpMode remoteDirectory filename)

Description

ftp-fetch-path-list fetches a file, through a FTP connection, from a specified location on
a remote system.

Parameters

Return Values

Boolean
Returns #t (true) under all circumstances.

Throws

except-transfer, plus the name of the file, and the following exceptions:

$Ftp-Exception-Generic, E_STR 509

$Ftp-Exception-Generic, E_STR 508

$Ftp-Exception-Generic, E_STR 507

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 39

Exception-InvalidArg E_STR 12

See Table 11 on page 171 for details about these exceptions.

Location

ftp-fetch-path.monk

Name Type Description

ftpHandle string The FTP handle.

ftpMode string The FTP mode, for example binary or
ASCII.

remoteDirectory string The complete directory path on the
remote system where the file to be
fetched resides.

filename string The name of a file.
Batch e*Way Intelligent Adapter User’s Guide 149

Chapter 6 Section 6.9
Batch e*Way Functions Advanced FTP Functions
ftp-get-file

Syntax

(ftp-get-file handle remote_file local_file)

Description

ftp-get-file retrieves the specified file from the external host and stores it in the
specified local file.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-get-file throws the following exceptions:

$Ftp-Exception-Generic, E_STR 509

$Ftp-Exception-Generic, E_STR 507

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 39

Exception-InvalidArg E_STR 12

See Table 11 on page 171 for details about these exceptions.

Location

stc_ewftp.dll

ftp-get-last-response

Syntax

(ftp-get-last-response handle)

Description

ftp-get-last-response returns the full textual response of the last FTP transaction.

Name Type Description

handle Handle The FTP handle

remote_file string The name of a file

local_file string The name of a file
Batch e*Way Intelligent Adapter User’s Guide 150

Chapter 6 Section 6.9
Batch e*Way Functions Advanced FTP Functions
Parameters

Return Values

String
Returns the external system’s response.

Throws

ftp-get-last-response throws the following exceptions:

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg E_STR 12

See Table 11 on page 171 for details about these exceptions.

Location

stc_ewftp.dll

ftp-get-last-result-code

Syntax

(ftp-get-last-result-code handle)

Description

ftp-get-last-result-code returns the result code of the last FTP transaction. See RFC 959
for a description of the values that may be returned in this function.

Parameters

Return Values

Integer
Returns the external system’s response.

Throws

ftp-get-last-result-code throws the following exceptions:

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg E_STR 12

See Table 11 on page 171 for details about these exceptions.

Name Type Description

handle Handle The FTP handle

Name Type Description

handle Handle The FTP handle
Batch e*Way Intelligent Adapter User’s Guide 151

Chapter 6 Section 6.9
Batch e*Way Functions Advanced FTP Functions
Location

stc_ewftp.dll

ftp-get-path

Syntax

(ftp-get-path handle remote_dir remote_file local_file)

Description

ftp-get-path retrieves a file from a named directory on the external system. This is
functionally identical to ftp-get-file, except that the FTP Heuristics database is used to
generate a correct path name for the external file.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-get-path throws the following exceptions:

$Ftp-Exception-Generic, E_STR 509

$Ftp-Exception-Generic, E_STR 508

$Ftp-Exception-Generic, E_STR 507

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 39

Exception-InvalidArg E_STR 12

See Table 11 on page 171 for details about these exceptions.

Location

stc_ewftp.dll

Name Type Description

handle Handle The FTP handle

remote_dir string The name of a directory

remote_file string The name of a file

local_file string The name of a file
Batch e*Way Intelligent Adapter User’s Guide 152

Chapter 6 Section 6.9
Batch e*Way Functions Advanced FTP Functions
ftp-handle?

Syntax

(ftp-handle? handle)

Description

ftp-handle? determines whether the specified handle is a valid FTP handle.

Parameters

Return Values

Boolean
Returns #t (true) if the handle is valid; otherwise, returns #f (false).

Throws

ftp-handle? throws the following exception:

Exception-InvalidArg E_STR 12

See Table 11 on page 171 for details about these exceptions.

Location

stc_ewftp.dll

Additional Information

The fact that a file is of the same size on both occasions does not imply that it is stable.
This function and ftp-set-compare-time are provided for compatibility purposes only.

ftp-list-files

Syntax

(ftp-list-files handle directory regexp_mask)

Description

ftp-list-files uses the FTP Heuristics to retrieve the list of the files, in the specified
directory, that match the given regular expression.

Parameters

Name Type Description

handle Handle An FTP handle

Name Type Description

handle Handle The FTP handle

directory string The name of a directory

regexp_mask string A regular expression
Batch e*Way Intelligent Adapter User’s Guide 153

Chapter 6 Section 6.9
Batch e*Way Functions Advanced FTP Functions
Return Values

Returns one of the following values:

List
Returns a list of files.

Boolean
Returns #f (false) when it fails to find the list of files that match the given regular
expression.

Throws

ftp-list-files throws the following exceptions:

$Ftp-Exception-Invalid-Arg, E_STR 501.

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 39

Exception-InvalidArg E_STR 12

See Table 11 on page 171 for details about these exceptions.

Location

stc_ewftp.dll

Examples

(define file-list (ftp-list-files “srcdir” “*.txt”))

ftp-list-raw

Syntax

(ftp-list-raw handle directory filename_regexp)

Description

ftp-list-raw performs a “LIST” command on the external system, using the specified
directory and file name regular expression. The reply from the FTP server is returned as
a list of lines, so that a Monk programmer can parse the output in any way that may be
required.

Parameters

Return Values

List
Returns a list of lines.

Name Type Description

handle handle The FTP handle

directory string The name of a directory

filename_regexp string A regular expression
Batch e*Way Intelligent Adapter User’s Guide 154

Chapter 6 Section 6.9
Batch e*Way Functions Advanced FTP Functions
Throws

ftp-list-raw throws the following exceptions:

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 39

Exception-InvalidArg E_STR 12

See Table 11 on page 171 for details about these exceptions.

Location

stc_ewftp.dll

ftp-login

Syntax

(ftp-login handle username encryptedpwd)

Description

ftp-login performs the FTP login sequence for the host previously opened on the
current ftp handle.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-login throws the following exceptions:

$Ftp-Exception-Invalid-Arg, E_STR 505

$Ftp-Exception-Invalid-Arg, E_STR 504

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 39

Exception-InvalidArg E_STR 12

See Table 11 on page 171 for details about these exceptions.

Name Type Description

handle handle The FTP handle

username string A valid username

encryptedpwd string The encrypted password
corresponding to the specified
username
Batch e*Way Intelligent Adapter User’s Guide 155

Chapter 6 Section 6.9
Batch e*Way Functions Advanced FTP Functions
Location

stc_ewftp.dll

Additional Information

The following Monk environment variables contain the user name and password
specified in the e*Way Editor:

EXTERNAL_HOST_SETUP_ENCRYPTED_PASSWORD
EXTERNAL_HOST_SETUP_USER_NAME

See “User Name” on page 41 and “Encrypted Password” on page 41 for more
information on these variables. If the ftp-login function is called within the Batch
e*Way’s Monk environment, you can obtain the required username and password
information from those variables. For example,

(ftp-login handle EXTERNAL_HOST_SETUP_ENCRYPTED_PASSWORD
EXTERNAL_HOST_SETUP_USER_NAME)

You may also use the (encrypt-password) function to generate an encrypted password.
For example,

(ftp-login handle "Administrator"
(encrypt-password "Administrator" "Admin-password"))

(encrypt-password) requires two string parameters (the user name and password), and
returns the encrypted password as a string. The (encrypt-password) function is defined
in the following file:

/monk_library/monkext/monkext.monk

You must load this file to use (encrypt-password). To load the monkext.monk file
within the e*Way’s Monk environment, add the directory /monk_library/monkext/ to
the list of Auxiliary Library Directories. See “Auxiliary Library Directories” on
page 34 for more information.

ftp-make-dir

Syntax

(ftp-make-dir handle directory)

Description

ftp-make-dir creates a directory on the external system.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Name Type Description

handle handle The FTP handle

directory string A valid directory name
Batch e*Way Intelligent Adapter User’s Guide 156

Chapter 6 Section 6.9
Batch e*Way Functions Advanced FTP Functions
Throws

ftp-make-dir throws the following exceptions:

$Ftp-Exception-Generic, E_STR 506

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 30

Exception-InvalidArg E_STR 12

See Table 11 on page 171 for details about these exceptions.

Location

stc_ewftp.dll

ftp-open-data-port

Syntax

(ftp-open-data-port handle)

Description

ftp-open-data-port creates opens a TCP/IP port.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-open-data-port throws the following exceptions:

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg E_STR 12

See Table 11 on page 171 for details about these exceptions.

Location

stc_ewftp.dll

ftp-open-host

Syntax

(ftp-open-host handle hostname)

Name Type Description

handle handle The FTP handle
Batch e*Way Intelligent Adapter User’s Guide 157

Chapter 6 Section 6.9
Batch e*Way Functions Advanced FTP Functions
Description

ftp-open-host opens a command connection to the FTP port of the given host name.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-open-host throws the following exceptions:

$Ftp-Exception-Invalid-Arg, E_STR 503

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 39

Exception-InvalidArg E_STR 12

See Table 11 on page 171 for details about these exceptions.

Location

stc_ewftp.dll

ftp-open-host-through-SOCKS

Syntax

(ftp-open-host-through-SOCKS ftpHandle socksServerName
socksServerPort SocksMethod
SocksUserName Sockspassword
ftpServerName)

Description

ftp-open-host-through-SOCKS connects to the specified FTP Host through the SOCKS
Host.

Parameters

Name Type Description

handle handle The FTP handle

hostname string A valid hostname

Name Type Description

ftpHandle string The FTP handle.

socksServerName string A valid name for the SOCKS server.

socksServerPort integer The port number to use on the SOCKS
server for connection.
Batch e*Way Intelligent Adapter User’s Guide 158

Chapter 6 Section 6.9
Batch e*Way Functions Advanced FTP Functions
Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-open-host-through-SOCKS throws the following exception:

$Ftp-Exception-Invalid-Arg, E_STR 500

See Table 11 on page 171 for details about these exceptions.

Location

stc_ewftp.dll

ftp-put-file

Syntax

(ftp-put-file handle local_file remote_file)

Description

ftp-put-file sends the specified local file to the external host, saving it under the
specified remote file name. A target file of the same name will be overwritten.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

socksMethod string Indicates the Authentication method,
if any, for connecting to the SOCKS
server.

socksUserName string The User Name to be used for
authentication when connecting to
the SOCKS server.

sockspassword encrypted string The encrypted password to be used
for authentication when connecting
to the SOCKS server.

ftpServerName string A valid name for the FTP server.

Name Type Description

handle Handle The FTP handle

local_file string The local file name

remote_file string The remote file name

Name Type Description
Batch e*Way Intelligent Adapter User’s Guide 159

Chapter 6 Section 6.9
Batch e*Way Functions Advanced FTP Functions
Throws

ftp-put-file throws the following exceptions:

$Ftp-Exception-Generic, E_STR 508

$Ftp-Exception-Generic, E_STR 507

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 39

Exception-InvalidArg E_STR 12

See Table 11 on page 171 for details about these exceptions.

Location

stc_ewftp.dll

ftp-put-path

Syntax

(ftp-put-path handle local_file remote_dir remote_file)

Description

ftp-put-path sends a file from the local system to a named directory on the external
system. This is functionally identical to ftp-put-file, except that the FTP Heuristics
database is used to generate a correct path name for the external file.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-put-path throws the following exceptions:

$Ftp-Exception-Generic, E_STR 509

$Ftp-Exception-Generic, E_STR 507

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 39

Exception-InvalidArg E_STR 12

Name Type Description

handle Handle The FTP handle

local_file string The local file name

remote_dir string The remote directory name

remote_file string The remote file name
Batch e*Way Intelligent Adapter User’s Guide 160

Chapter 6 Section 6.9
Batch e*Way Functions Advanced FTP Functions
See Table 11 on page 171 for details on these exceptions.

Location

stc_ewftp.dll

ftp-remote-path-list

Syntax

(ftp-remote-path-list ftpHandle remoteDirectory remoteFileRegexp)

Description

ftp-remote-path-list lists the files within a specified location on an external system,
through a FTP connection.

Parameters

Return Values

List
Returns a list of files.

Throws

ftp-remote-path-list throws the following exceptions:

$Ftp-Exception-Generic, E_STR 509

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 39

Exception-InvalidArg E_STR 12

See Table 11 on page 171 for details about these exceptions.

Location

ftp-remote-path-list.monk

Name Type Description

ftpHandle string The FTP handle

remoteDirectory string The complete directory path on the
remote system where the files to be
listed resides.

remoteFileRegexp string A regular expression that describes
files to be listed. (See “Remote File
Regexp” on page 43 and “Using
Special Characters” on page 69.)
Batch e*Way Intelligent Adapter User’s Guide 161

Chapter 6 Section 6.9
Batch e*Way Functions Advanced FTP Functions
ftp-rename

Syntax

(ftp-rename handle old_name new_name)

Description

ftp-rename renames a file on the external host.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-rename throws the following exceptions:

$Ftp-Exception-Generic, E_STR 509

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 39

Exception-InvalidArg E_STR 12

See Table 11 on page 171 for details about these exceptions.

Location

stc_ewftp.dll

Note: Not all FTP daemons support this command. The ftp-rename function is not
supported on heuristics for MVS GDG. See “Operating System or File Type
Selection” on page 60. In addition, MVS does not allow partitioned data sets to
be renamed to another partitioned data set.

ftp-rename-path

Syntax

(ftp-rename-path handle remote_dir old_name new_name)

Name Type Description

handle Handle The FTP handle

old_name string The current file name

new_name string A valid file name
Batch e*Way Intelligent Adapter User’s Guide 162

Chapter 6 Section 6.9
Batch e*Way Functions Advanced FTP Functions
Description

ftp-rename-path renames a file on the external system. The directory in which the file is
located is passed as a parameter. The FTP heuristics database is used to generate a
correct path name for the external file.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-rename-path throws the following exceptions:

$Ftp-Exception-Generic, E_STR 509

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 39

Exception-InvalidArg, E_STR 12

See Table 11 on page 171 for details about these exceptions.

Location

stc_ewftp.dll

Note: The ftp-rename-path function is not supported on heuristics for MVS GDG. See
“Operating System or File Type Selection” on page 60. In addition, MVS
does not allow partitioned data sets to be renamed to another partitioned data set.

ftp-send-command

Syntax

(ftp-send-command handle command)

Description

ftp-send-command enables the developer to send any command to the external FTP
server. The results of the command should be read with ftp-get-last-result-code and
ftp-get-last-response.

Name Type Description

handle Handle The FTP handle

remote_dir string The remote directory name

old_name string The current file name

new_name string A valid file name
Batch e*Way Intelligent Adapter User’s Guide 163

Chapter 6 Section 6.9
Batch e*Way Functions Advanced FTP Functions
Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false). This function
does not return the results of the FTP command itself.

Throws

ftp-send-command throws the following exceptions:

$Ftp-Exception-Generic, E_STR 510.

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 39

Exception-InvalidArg E_STR 12

See Table 11 on page 171 for details about these exceptions.

Location

stc_ewftp.dll

ftp-send-path-file

Syntax

(ftp-send-path-file ftpHandle ftpMode appendOverwrite localFilename
remoteDirectory remoteFilename)

Description

ftp-send-path-file sends the specified file to a specific directory on an external system
through a FTP connection.

Parameters

Name Type Description

handle Handle The FTP handle

command string A valid FTP command

Name Type Description

ftpHandle string The FTP handle.

ftpMode string The FTP mode, for example binary or
ASCII.
Batch e*Way Intelligent Adapter User’s Guide 164

Chapter 6 Section 6.9
Batch e*Way Functions Advanced FTP Functions
Return Values

Boolean
Returns #t (true) if the transfer succeeds; otherwise, returns #f (false).

Throws

except-transfer, plus the name of the file, and throws the following exceptions:

$Ftp-Exception-Generic, E_STR 509

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 39

Exception-InvalidArg, E_STR 12

See Table 11 on page 171 for details about these exceptions.

Location

file-send-path-file.monk

ftp-send-reply-immediate

Syntax

(ftp-send-reply-immediate handle flag)

Description

ftp-send-reply-immediate sets a Boolean flag. When the flag is set to #t, this function
prevents the FTP *.dll file from waiting for a reply from the command port before
starting a data transfer. The default for this flag is #f.

appendOverwrite string Specifies whether to append the
records in the file being transferred to
the existing file on the external
system, or to overwrite the existing
file on the external system with the
file being transferred.

localFilename string The name of the file being sent to the
external system.

remoteDirectory string The path name at the remote location
to which the file is to be sent.

remoteFilename string The name of the file on the external
system that is being overwritten or
appended.

Name Type Description (Continued)
Batch e*Way Intelligent Adapter User’s Guide 165

Chapter 6 Section 6.9
Batch e*Way Functions Advanced FTP Functions
Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-send-reply-immediate throws the following exceptions:

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 29

Exception-InvalidArg, E_STR 12

See Table 11 on page 171 for details about these exceptions.

Location

stc_ewftp.dll

ftp-set-compare-time

Syntax

(ftp-set-compare-time handle seconds)

Description

ftp-set-compare-time sets the time between file listings for size comparison to the
supplied number of seconds. See Additional Information on page 153 for more
information.

Parameters

Return Values

Boolean
Returns #t (true) under all circumstances.

Name Type Description

handle Handle The FTP handle

flag Boolean The value of the flag

Name Type Description

handle Handle The FTP handle

seconds integer A non-zero positive integer
Batch e*Way Intelligent Adapter User’s Guide 166

Chapter 6 Section 6.9
Batch e*Way Functions Advanced FTP Functions
Throws

ftp-set-compare-time throws the following exceptions:

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 29

Exception-InvalidArg, E_STR 12

See Table 11 on page 171 for details about these exceptions.

Location

stc_ewftp.dll

ftp-set-mode

Syntax

(ftp-set-mode handle mode)

Description

ftp-set-mode sets the transfer mode to either A for ASCII, E for EBCDIC, or I for image
(binary).

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-set-port throws the following exceptions:

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 30

Exception-InvalidArg E_STR 12

See Table 11 on page 171 for details about these exceptions.

Location

stc_ewftp.dll

Name Type Description

handle Handle The FTP handle

mode character A, E, or I
Batch e*Way Intelligent Adapter User’s Guide 167

Chapter 6 Section 6.9
Batch e*Way Functions Advanced FTP Functions
Additional Information

The mode selected produces different results, depending on the type of data
transferred, and the types of systems involved. The Table 10 illustrates the possible
different configurations of systems, data, and modes, with the corresponding results.

ftp-set-port

Syntax

(ftp-set-port handle port)

Description

ftp-set-port sets the FTP port number. The default port is 21, if this port is not set.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-set-port throws the following exceptions:

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 29

Exception-InvalidArg E_STR 12

See Table 11 on page 171 for details about these exceptions.

Table 10 ASCII/EBCDIC System Configurations and Results

Configuration Mode Results

Batch e*Way on ASCII
machine retrieving data
from an EBCDIC
machine.

ASCII Data converts to ASCII which can be
read on ASCII machine.

EBCDIC Data converts to ASCII which can be
read on ASCII machine.

Image Data remains in EBCDIC.

Batch e*Way on ASCII
machine retrieving data
from an ASCII machine.

ASCII Data remains in ASCII.

EBCDIC Do not use; data converts to unreadable
format.

Image Data will be in ASCII.

Name Type Description

handle Handle The FTP handle

port integer A positive integer
Batch e*Way Intelligent Adapter User’s Guide 168

Chapter 6 Section 6.9
Batch e*Way Functions Advanced FTP Functions
Location

stc_ewftp.dll

ftp-set-SOCKS-host

Syntax

(ftp-set-SOCKS-host handle SOCKS-hostname)

Description

ftp-set-SOCKS-host sets the host name of the SOCKS server.

Note: This function is for backwards compatibility only. If you are using SOCKS
version 5, you should use ftp-open-host-through-SOCKS on page 158.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-set-SOCKS-host throws the following exceptions:

$Ftp-Exception-Invalid-Arg, E_STR 500

$Ftp-Exception-Invalid-Arg, E_STR 503

Exception-InvalidArg, E_STR 39

Exception-InvalidArg, E_STR 12

See Table 11 on page 171 for details about these exceptions.

Location

stc_ewftp.dll

ftp-set-SOCKS-port

Syntax

(ftp-set-SOCKS-port handle SOCKS-port)

Name Type Description

handle Handle The FTP handle

SOCKS-hostname String A valid host name
Batch e*Way Intelligent Adapter User’s Guide 169

Chapter 6 Section 6.9
Batch e*Way Functions Advanced FTP Functions
Description

ftp-set-SOCKS-port sets the port number through which to connect to the SOCKS
server. When this SOCKS port is set, the FTP server is connected through the SOCKS
server.

Note: This function is for backwards compatibility only. If you are using SOCKS version
5, you should use ftp-open-host-through-SOCKS on page 158.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-set-SOCKS-port throws the following exceptions:

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 29

Exception-InvalidArg, E_STR 12

See Table 11 on page 171 for details about these exceptions.

Location

stc_ewftp.dll

ftp-set-timeout

Syntax

(ftp-set-timeout handle time)

Description

ftp-set-timeout sets the number of seconds to wait for a response from the external FTP
host or that a data transfer can stall.

Parameters

Name Type Description

handle Handle The FTP handle

SOCKS-port integer A positive integer

Name Type Description

handle Handle The FTP handle

time integer A non-zero positive integer
Batch e*Way Intelligent Adapter User’s Guide 170

Chapter 6 Section 6.9
Batch e*Way Functions Advanced FTP Functions
Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-set-timeout throws the following exceptions:

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 29

Exception-InvalidArg, E_STR 12

See Table 11 on page 171 for details about these exceptions.

Location

stc_ewftp.dll

6.9.1 Advanced FTP Function Exceptions
Table 11 shows details of the exceptions which the advanced FTP functions can throw.

Table 11 Advanced FTP Exceptions

Symbol Category E_STR String Reason

$Ftp-Exception-
Generic

-51 510 argument %d - \"%s\" -
must be valid
Command.

Command is empty
string.

$Ftp-Exception-
Generic

-51 509 argument %d - \"%s\" -
must be valid File
name.

The file name is an
empty string.

$Ftp-Exception-
Generic

-51 508 argument %d - \"%s\" -
must be valid Local
Path.

Remote path is an
empty string.

$Ftp-Exception-
Generic

-51 507 argument %d - \"%s\" -
must be valid Local
Path.

Local path is an
empty string.

$Ftp-Exception-
Generic

-51 506 argument %d - \"%s\" -
must be valid
Directory.

Directory path is an
empty string.

$Ftp-Exception-
Invalid-Arg

-52 505 argument %d - \"%s\" -
must be valid User.

User name is an
empty string.

$Ftp-Exception-
Invalid-Arg

-52 504 "argument %d - \"%s\"
- must be password."

Password is an empty
string.

$Ftp-Exception-
Invalid-Arg

-52 503 argument %d - \"%s\" -
must be valid Host
name.

Host name is an
empty string.
Batch e*Way Intelligent Adapter User’s Guide 171

Chapter 6 Section 6.10
Batch e*Way Functions File System Functions
6.10 File System Functions
This section describes functions that perform file-system operations. The functions
described in this section can only be used by the functions defined within the e*Way’s
configuration file. None of the functions are available to Collaboration Rules scripts
executed by the e*Way.

The file system functions are:

fs-append-file on page 172

fs-copy-file on page 173

fs-delete-file on page 174

fs-list-files on page 174

fs-make-dir on page 175

fs-read-delim on page 175

fs-read-fixed on page 176

fs-rename-file on page 177

fs-append-file

Syntax

(fs-append-file source_file dest_file)

$Ftp-Exception-
Catastrophic

-52 502 "Failed to create new
FTP session handle."

Failed to create FTP
handle.

$Ftp-Exception-
Invalid-Arg

-52 501 "argument %d - \"%s\"
- must be valid \filter
with length in range of
1-255."

File filter is an empty
string.

$Ftp-Exception-
Invalid-Arg

-52 500 argument %d must be a
valid FTP handle.

FTP handle is invalid.

Exception-InvalidArg -10 39 argument %u must be a
string

The argument must
be a string.

Exception-InvalidArg -10 30 %s: argument %u must
be a char.

Mode must be a
character.

Exception-InvalidArg -10 29 argument %u must be
an integer.

Timeout must be an
integer.

Exception-InvalidArg -10 12 requires %u
argument(s).

Not enough input
parameters.

Table 11 Advanced FTP Exceptions (Continued)

Symbol Category E_STR String Reason
Batch e*Way Intelligent Adapter User’s Guide 172

Chapter 6 Section 6.10
Batch e*Way Functions File System Functions
Description

fs-append-file appends the contents of the source file to the destination file. If the
destination file does not exist, it is created.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

None.

Location

stc_monkfilesys.dll

fs-copy-file

Syntax

(fs-copy-file source_file dest_file)

Description

fs-copy-file copies the source file to the destination file. If the destination file does not
exist, it is created.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

None.

Location

stc_monkfilesys.dll

Name Type Description

source_file string The source file name

dest_file string A valid file name

Name Type Description

source_file string The source file name

dest_file string A valid file name
Batch e*Way Intelligent Adapter User’s Guide 173

Chapter 6 Section 6.10
Batch e*Way Functions File System Functions
fs-delete-file

Syntax

(fs-delete-file filename)

Description

fs-delete-file deletes the specified file.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

None.

Location

stc_monkfilesys.dll

fs-list-files

Syntax

(fs-list-files directory regexp)

Description

fs-list-files lists all files in the specified directory. If a second parameter is entered, only
files matching the specified regular expression are listed. Directories are excluded from
the list. On Windows systems, files with the hidden, system or archive attributes will be
listed.

Parameters

Return Values

List
Returns a list of files.

Name Type Description

filename string The name of the file to delete.

Name Type Description

directory string The directory containing files to list.

regexp string A regular expression (optional)
Batch e*Way Intelligent Adapter User’s Guide 174

Chapter 6 Section 6.10
Batch e*Way Functions File System Functions
Throws

None.

Location

stc_monkfilesys.dll

fs-make-dir

Syntax

(fs-make-dir directory)

or

(fs-make-dir directory option)

Description

In the standard, single argument form, fs-make-dir creates the named directory,
returning #t on success. If the directory already exists, or it is not possible to create the
directory for some other reason, #f is returned.

In the alternate form, an optional Boolean value may be given as the second argument.
If this is set to #f, then the behavior described above is observed. A value of #t indicates
that all components of the directory given will be created. If any or all of these
components exist, including the final one, then no error is generated and #t is returned.

Parameters

Return Values

Boolean
Returns #t (true) or #f (false), as described above.

Throws

None.

Location

stc_monkfilesys.dll

fs-read-delim

Syntax

(fs-read-delim port delimiter final_delim)

Name Type Description

directory string A valid directory name

option Boolean Optional Boolean argument
Batch e*Way Intelligent Adapter User’s Guide 175

Chapter 6 Section 6.10
Batch e*Way Functions File System Functions
Description

fs-read-delim provides a fast method for reading delimiter records from an already
opened file. The input port and the delimiter string are passed as arguments, and the
next Event in the file is returned, minus the delimiter. If the final Event in the file is not
terminated with the delimiter string, it is not returned.

To change this behavior, an additional Boolean value may be supplied. A value of #t
will provide the same behavior as described above, while a value of #f indicates that
there is no delimiter on the final record.

Parameters

Return Values

String
Returns the string indicating the delimiter records that have been read.

Throws

Exception if the requested delimiter records are not read.

Location

stc_monkfilesys.dll

fs-read-fixed

Syntax

(fs-read-fixed port bytes)

Description

fs-read-fixed attempts to read a specified number of bytes from an input port. If the
final record in the file is less than the requested number of bytes, it is ignored.

Parameters

Return Values

Returns one of the following values:

Name Type Description

port integer A valid port number

delimiter string A record-delimiter string

final_delim Boolean Optional Boolean argument

Name Type Description

port integer A valid port number

bytes integer A non-zero positive integer
Batch e*Way Intelligent Adapter User’s Guide 176

Chapter 6 Section 6.10
Batch e*Way Functions File System Functions
String
If the function successfully read the required number of bytes, returns a string of the
specified length.

Boolean
Returns #f (false) if the required number of bytes cannot be read.

Throws

None.

Location

stc_monkfilesys.dll

fs-rename-file

Syntax

(fs-rename-file old_name new_name)

Description

fs-rename-file renames a file.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Note: When moving or renaming a file, the destination volume must be the same as the
source volume.

Throws

None.

Location

stc_monkfilesys.dll

Name Type Description

old_name string The current file name

new_name string A valid file name
Batch e*Way Intelligent Adapter User’s Guide 177

Appendix A

Document Type Definitions

This appendix provides Document Type Definitions (DTDs) for the XML Messages
used in Dynamic Configuration. The payload element in each DTD contains a new
attribute, location, which can have two values: base64InSitu or localDir.

The base64InSitu value is the default, which implies that the data is Base64-encoded,
and that it is located in the body of the payload element.

If the location attribute is localDir, the Batch e*Way assumes that the payload data is
contained in a file in a local directory on the Participating Host. The local directory is
specified by a value (a the directory name) stored in the payload element. If you do not
want to transport large files through the Intelligent Queues, for the sole purpose of
sending the files to an external location, using the localDir attribute is recommended.

A.1 Send or Receive XML Messages
The DTD below provides details of the XML Message that can be used for Send orders,
or Receive orders.

<!-- batch eway order record format. -->
<!ELEMENT batch_eWay_order (command, (order_record)+, payload?)>
<!ELEMENT command (#PCDATA)>
<!ATTLIST command

Enumeration (send | receive) "send"
>
<!ELEMENT order_record (external_host_setup?, (subscribe_to_external
| publish_to_external)?, FTP?, SOCKS?)>
<!ELEMENT external_host_setup (host_type?, external_host_name?,
user_name?, encrypted_password?, file_transfer_method?, return_tag?)>
<!ELEMENT host_type (#PCDATA)>
<!ELEMENT external_host_name (#PCDATA)>
<!ELEMENT user_name (#PCDATA)>
<!ELEMENT encrypted_password (#PCDATA)>
<!ELEMENT file_transfer_method (#PCDATA)>
<!ATTLIST file_transfer_method

Enumeration (ftp | copy) "ftp"
>
<!ELEMENT return_tag (#PCDATA)>
<!ELEMENT subscribe_to_external (remote_directory_name?,
remote_file_regexp?, remote_command_after_transfer?,
remote_rename_or_archive_name?, local_command_after_transfer?,
local_archive_directory?)>
<!ELEMENT remote_directory_name (#PCDATA)>
<!ELEMENT remote_file_regexp (#PCDATA)>
<!ELEMENT remote_command_after_transfer (#PCDATA)>
Batch e*Way Intelligent Adapter User’s Guide 178

Appendix A Section A.2
Document Type Definitions Error Messages
<!ATTLIST remote_command_after_transfer
Enumeration (archive | delete | none | rename) "delete"

>
<!ELEMENT remote_rename_or_archive_name (#PCDATA)>
<!ELEMENT local_command_after_transfer (#PCDATA)>
<!ATTLIST local_command_after_transfer

Enumeration (archive | delete) "delete"
>
<!ELEMENT local_archive_directory (#PCDATA)>
<!ELEMENT publish_to_external (remote_directory_name?,
remote_file_name?, append_or_overwrite_when_transferring_files?,
remote_command_after_transfer?, remote_rename_or_archive_name?,
local_command_after_transfer?, local_archive_directory?)>
<!ELEMENT remote_file_name (#PCDATA)>
<!ELEMENT append_or_overwrite_when_transferring_files (#PCDATA)>
<!ATTLIST append_or_overwrite_when_transferring_files

Enumeration (append | overwrite) "append"
>
<!ELEMENT FTP (server_port, mode, Pretransfer_Commands,
Posttransfer_Commands)>
<!ELEMENT server_port (#PCDATA)>
<!ELEMENT mode (#PCDATA)>
<!ELEMENT Pretransfer_Commands (#PCDATA)>
<!ELEMENT Posttransfer_Commands (#PCDATA)>
<!ELEMENT SOCKS (server_host_name, server_port, method, user_name,
encrypted_password)>
<!ELEMENT server_host_name (#PCDATA)>
<!ELEMENT method (#PCDATA)>
<!ELEMENT payload (#PCDATA)>
<!ATTLIST payload

Location (base64InSitu | localDir) #IMPLIED
>

A.2 Error Messages
The DTD below is used for the Error Reporting XML Message.

<!-- batch eway error record format. -->
<!ELEMENT batch_eWay_error (command, (return_tag | order_record)?,
error_record, payload?)>
<!ELEMENT command (#PCDATA)>
<!ATTLIST command

Enumeration (send | receive) "send"
>
<!ELEMENT order_record (external_host_setup?, (subscribe_to_external
| publish_to_external)?, FTP?, SOCKS?)>
<!ELEMENT external_host_setup (host_type?, external_host_name?,
user_name?, encrypted_password?, file_transfer_method?, return_tag?)>
<!ELEMENT host_type (#PCDATA)>
<!ELEMENT external_host_name (#PCDATA)>
<!ELEMENT user_name (#PCDATA)>
<!ELEMENT encrypted_password (#PCDATA)>
<!ELEMENT file_transfer_method (#PCDATA)>
<!ATTLIST file_transfer_method

Enumeration (ftp | copy) "ftp"
>
<!ELEMENT return_tag (#PCDATA)>
<!ELEMENT subscribe_to_external (remote_directory_name?,
remote_file_regexp?, remote_command_after_transfer?,
Batch e*Way Intelligent Adapter User’s Guide 179

Appendix A Section A.3
Document Type Definitions Data Message
remote_rename_or_archive_name?, local_command_after_transfer?,
local_archive_directory?)>
<!ELEMENT remote_directory_name (#PCDATA)>
<!ELEMENT remote_file_regexp (#PCDATA)>
<!ELEMENT remote_command_after_transfer (#PCDATA)>
<!ATTLIST remote_command_after_transfer

Enumeration (archive | delete | none | rename) "delete"
>
<!ELEMENT remote_rename_or_archive_name (#PCDATA)>
<!ELEMENT local_command_after_transfer (#PCDATA)>
<!ATTLIST local_command_after_transfer

Enumeration (archive | delete) "delete"
>
<!ELEMENT local_archive_directory (#PCDATA)>
<!ELEMENT publish_to_external (remote_directory_name?,
remote_file_name?, append_or_overwrite_when_transferring_files?,
remote_command_after_transfer?, remote_rename_or_archive_name?,
local_command_after_transfer?, local_archive_directory?)>
<!ELEMENT remote_file_name (#PCDATA)>
<!ELEMENT append_or_overwrite_when_transferring_files (#PCDATA)>
<!ATTLIST append_or_overwrite_when_transferring_files

Enumeration (append | overwrite) "append"
>
<!ELEMENT FTP (server_port, mode, Pretransfer_Commands,
Posttransfer_Commands)>
<!ELEMENT server_port (#PCDATA)>
<!ELEMENT mode (#PCDATA)>
<!ELEMENT Pretransfer_Commands (#PCDATA)>
<!ELEMENT Posttransfer_Commands (#PCDATA)>
<!ELEMENT SOCKS (server_host_name, server_port, method, user_name,
encrypted_password)>
<!ELEMENT server_host_name (#PCDATA)>
<!ELEMENT method (#PCDATA)>
<!ELEMENT payload (#PCDATA)>
<!ATTLIST payload

Location (base64InSitu | localDir) #IMPLIED
>
<!ELEMENT error_record (error_code, error_text, last_action)>
<!ELEMENT error_code (#PCDATA)>
<!ELEMENT error_text (#PCDATA)>
<!ELEMENT last_action (#PCDATA)>

A.3 Data Message
The DTD file below provides a data structure, includes a data payload, and is used for
transporting data to Batch e*Way. See “Enable Message Configuration” on page 55.

<!-- batch eway data record format. -->
<!ELEMENT batch_eWay_data (command,
 (return_tag|order_record)?,
 payload) >
<!ELEMENT command (#PCDATA) >
<!ATTLIST command Enumeration (send|receive) "send" >
<!ELEMENT order_record (external_host_setup?,
 (subscribe_to_external|publish_to_external)?,
 FTP?,
 SOCKS?) >
<!ELEMENT external_host_setup (host_type?,
 external_host_name?,
Batch e*Way Intelligent Adapter User’s Guide 180

Appendix A Section A.3
Document Type Definitions Data Message
 user_name?,
 encrypted_password?,
 file_transfer_method?,
 return_tag?) >
<!ELEMENT host_type (#PCDATA) >
<!ELEMENT external_host_name (#PCDATA) >
<!ELEMENT user_name (#PCDATA) >
<!ELEMENT encrypted_password (#PCDATA) >
<!ELEMENT file_transfer_method (#PCDATA) >
<!ATTLIST file_transfer_method Enumeration (ftp|copy) "ftp" >
<!ELEMENT return_tag (#PCDATA) >
<!ELEMENT subscribe_to_external (remote_directory_name?,
 remote_file_regexp?,
 remote_command_after_transfer?,
 remote_rename_or_archive_name?,
 local_command_after_transfer?,
 local_archive_directory?) >
<!ELEMENT remote_directory_name (#PCDATA) >
<!ELEMENT remote_file_regexp (#PCDATA) >
<!ELEMENT remote_command_after_transfer (#PCDATA) >
<!ATTLIST remote_command_after_transfer Enumeration
(archive|delete|none|rename) "delete" >
<!ELEMENT remote_rename_or_archive_name (#PCDATA) >
<!ELEMENT local_command_after_transfer (#PCDATA) >
<!ATTLIST local_command_after_transfer Enumeration (archive|delete)
"delete" >
<!ELEMENT local_archive_directory (#PCDATA) >
<!ELEMENT publish_to_external (remote_directory_name?,
 remote_file_name?,

append_or_overwrite_when_transferring_files?,
 remote_command_after_transfer?,
 remote_rename_or_archive_name?,
 local_command_after_transfer?,
 local_archive_directory?) >
<!ELEMENT remote_file_name (#PCDATA) >
<!ELEMENT append_or_overwrite_when_transferring_files (#PCDATA) >
<!ATTLIST append_or_overwrite_when_transferring_files Enumeration
(append|overwrite) "append" >
<!ELEMENT FTP (server_port,
 mode,
 Pretransfer_Commands,
 Posttransfer_Commands) >
<!ELEMENT server_port (#PCDATA) >
<!ELEMENT mode (#PCDATA) >
<!ELEMENT Pretransfer_Commands (#PCDATA) >
<!ELEMENT Posttransfer_Commands (#PCDATA) >
<!ELEMENT SOCKS
(server_host_name,server_port,method,user_name,encrypted_password) >
<!ELEMENT server_host_name (#PCDATA) >
<!ELEMENT method (#PCDATA) >
<!ELEMENT payload (#PCDATA) >
Batch e*Way Intelligent Adapter User’s Guide 181

Index
Index

A
Action on Fetch Failure parameter 50
Action on Send Failure parameter 51
Additional Path parameter 34
AIX 52
Append or Overwrite when Transferring Files
parameter 47
Auxiliary Library Directories parameter 34

B
Base64 55, 178
Batch e*Way

operation 9
batch-ack function 91
batch-exchange-data function 92
batch-ext-connect function 92
batch-ext-shutdown function 93
batch-ext-verify function 93
batch-fetch-files-from-remote function 99
batch-fetch-named-files 100
batch-init function 94
batch-local-post-transfer function 122
batch-nak function 94
batch-proc-out function 95, 96
batch-rmt-post-transfer function 123
batch-send-path-file function 101
batch-shutdown-notify function 97
batch-startup function 97
batch-validate-params function 102
batch-write-file function 103
behavior models 9

C
char-hex? function 115
configuration parameters 19–54

Action on Fetch Failure 50
Action on Send Failure 51
Additional Path 34
Append or Overwrite when Transferring Files 47
Auxiliary Library Directories 34
Delimiter on Last Record 44, 47
Down Timeout 25

Encrypted Password 41
Exchange Data Interval 25
Exchange Data With External Function 36
Exchange-if-in-window-on-startup 26
External Connection Establishment Function 37
External Connection Shutdown Function 38
External Connection Verification Function 38
External Host Name 41
File Sync 42
File Transfer Method 42
Forward External Errors 23
Host Type 40
Journal File Name 22
Local Command After Transfer 45, 49
Local Rename or Archive Name 46, 49
Max Failed Messages 23
Max IQ Connection Retries 23
Max Resends Per Message 22
Max Sequence Number 50
Monk Environment Initialization File 34
Negative Acknowledgment Function 39
Positive Acknowledgment Function 38
Process Outgoing Message Function 35
Record Delimiter 44, 47
Record Size 44, 48
Record Type 43, 47
Remote Command After Transfer 44, 48
Remote Directory Name 42, 46
Remote Directory Regexp 43
Remote File Name 46
Remote Rename or Archive Name 45, 48
Resend Timeout 26
Shutdown Command Notification Function 40
Start Exchange Data Schedule 25
Starting Sequence Number 50
Startup Function 35
Stop Exchange Data Schedule 24
Up Timeout 25
User Name 41
Zero Wait Between Successful Exchanges 26

D
Delimited Record 81
Delimiter on Last Record parameter 44, 47
disconnect-from-remote function 103
Document Type Definitions 178
Down Timeout parameter 25
DTD 178
dynamic configuration 9, 55

XML message 9
dynamic messaging

DTD files 74
overview 73
Batch e*Way Intelligent Adapter User’s Guide 182

Index
E
EBCDIC 51, 85, 86

transfer data 51
Encrypted Password parameter 41
error reporting 77
Exchange Data Interval parameter 25
Exchange Data with External Function parameter 36
Exchange-if-in-window-on-startup parameter 26
expand-char function 116
expand-hex function 117
expand-octal function 117
expand-seqno function 118
expand-string function 118
expand-time function 119
External Connection Establishment Function
parameter 37
External Connection Shutdown Function parameter
38
External Connection Verification Function
parameter 38
External Host Name parameter 41

F
fetch-files-from-remote function 104
fetch-named-files function 102, 104
File Copy Transfer Functions 124
File Sync parameter 42
File System Functions 172

fs-append-file 172
fs-copy-file 173
fs-delete-file 174
fs-list-files 174
fs-make-dir 175
fs-read-delim 175
fs-read-fixed 176
fs-rename-file 177

File Transfer Method parameter 42
file-ext-connect function 125
file-ext-shutdown function 125
file-ext-verify function 126
file-fetch function 126
file-fetch-path function 127
file-init function 127
file-rmt-list function 128
file-rmt-post-transfer 129
file-rmt-post-transfer function 129
file-send function 129
file-send-path-file function 130
file-startup function 131
file-validate-params function 131
Fixed Length Record File 81
Forward External Errors parameter 23

fs-append-file function 172
fs-copy-file function 173
fs-delete-file function 174
fs-list-files function 174
fs-make-dir function 175
fs-read-delim function 175
fs-read-fixed function 176
fs-rename-file function 177
FTP configuration

data transfer mode 51
FTP Functions 138

ftp-append-file 139
ftp-append-path 140
ftp-archive 141
ftp-archive-path 142
ftp-capture-data 143
ftp-change-dir 143
ftp-close 144
ftp-create-handle host-type 146
ftp-delete 147
ftp-delete-path 148
ftp-get-file 150
ftp-get-last-response 150
ftp-get-last-result-code 151
ftp-get-path 152
ftp-handle? 153
ftp-list-files 153
ftp-list-raw 154
ftp-login 155
ftp-make-dir 156
ftp-open-data-port 157
ftp-open-host hostname 157
ftp-open-host-through-SOCKS 158
ftp-put-file 159
ftp-put-path 160
ftp-rename 162
ftp-rename-path 162
ftp-send-command 163
ftp-send-reply-immediate 165
ftp-set-compare-time 166
ftp-set-mode 167
ftp-set-port 168
ftp-set-SOCKS-host 169
ftp-set-timeout 170

FTP handle 146
FTP Heuristics

configuration file 146
database 140, 142, 148, 152, 160, 163

FTP heuristics
file type selection 60

FTP server port number
configuring 145

FTP Transfer Functions 132
ftp-append-file function 139
Batch e*Way Intelligent Adapter User’s Guide 183

Index
ftp-append-path function 140
ftp-archive function 141
ftp-archive-path function 142
ftp-capture-data function 143
ftp-change-dir function 143
ftp-close function 144
ftp-connect function 145
ftp-create-handle function 146
ftp-delete function 147
ftp-delete-path function 148
ftp-disconnect function 147
ftp-do-connect function 132
ftp-ext-connect function 133
ftp-ext-shutdown function 133
ftp-ext-verify function 133
ftp-fetch function 134
ftp-fetch-path function 149
ftp-get-file function 150
ftp-get-last-response function 150
ftp-get-last-result-code function 151
ftp-get-path function 152
ftp-handle? function 153
ftp-heuristic-download function 134
ftp-init function 135
ftp-list-compare-size function 153
ftp-list-files function 153
ftp-list-raw function 154
ftp-login function 155
ftp-make-dir function 156
ftp-open-data-port function 157
ftp-open-host function 157
ftp-open-host-through-SOCKS function 158
ftp-put-file function 159
ftp-put-path function 160
ftp-remote-path-list function 161
ftp-rename function 162
ftp-rename-path function 162
ftp-rmt-list function 135
ftp-rmt-post-transfer 136
ftp-rmt-post-transfer function 136
ftp-send function 136
ftp-send-command function 163
ftp-send-path function 164
ftp-send-reply-immediate function 165
ftp-set-compare-time function 166
ftp-set-mode function 167
ftp-set-port function 168
ftp-set-SOCKS-host function 169
ftp-set-timeout function 170
ftp-startup function 137
ftp-validate-params function 137
functions 86–177

batch-ack 91
batch-exchange-data 92

batch-ext-connect 92
batch-ext-shutdown 93
batch-ext-verify 93
batch-fetch-files-from-remote 99
batch-fetch-named-files 100
batch-init 94
batch-local-post-transfer 122
batch-nak 94
batch-proc-out 95, 96
batch-rmt-post-transfer 123
batch-send-path-file 101
batch-shutdown-notify 97
batch-startup 97
batch-validate-params 102
batch-write-file 103
char-hex? 115
disconnect-from-remote 103
expand-char 116
expand-hex 117
expand-octal 117
expand-seqno 118
expand-string 118
expand-time 119
fetch-files-from-remote 104
fetch-named-files 102, 104
file-ext-connect 125
file-ext-shutdown 125
file-ext-verify 126
file-fetch 126
file-fetch-path 127
file-init 127
file-rmt-list 128
file-rmt-post-transfer 129
file-send 129
file-send-path-file 130
file-startup 131
file-validate-params 131
fs-append-file 172
fs-copy-file 173
fs-delete-file 174
fs-list-files 174
fs-make-dir 175
fs-read-delim 175
fs-read-fixed 176
fs-rename-file 177
ft-heuristic-download 134
ftp-append-file 139
ftp-append-path 140
ftp-archive 141
ftp-archive-path 142
ftp-capture-data 143
ftp-change-dir 143
ftp-close 144
ftp-connect 145
Batch e*Way Intelligent Adapter User’s Guide 184

Index
ftp-create-handle 146
ftp-delete 147
ftp-delete-path 148
ftp-disconnect 147
ftp-do-connect 132
ftp-ext-connect 133
ftp-ext-shutdown 133
ftp-ext-verify 133
ftp-fetch 134
ftp-fetch-path 149
ftp-get-file 150
ftp-get-last-response 150
ftp-get-last-result-code 151
ftp-get-path 152
ftp-handle? 153
ftp-init 135
ftp-list-compare-size 153
ftp-list-files 153
ftp-list-raw 154
ftp-login 155
ftp-make-dir 156
ftp-open-data-port 157
ftp-open-host 157, 158
ftp-put-file 159
ftp-put-path 160
ftp-remote-path-list 161
ftp-rename 162
ftp-rename-path 162
ftp-rmt-list 135
ftp-rmt-post-transfer 136
ftp-send 136
ftp-send-command 163
ftp-send-path-file 164
ftp-send-reply-immediate 165
ftp-set-compare-time 166
ftp-set-mode 167
ftp-set-port 168
ftp-set-SOCKS-host 169
ftp-set-timeout 170
ftp-startup 137
ftp-validate-params 137
get-logical-name 88
get-next-record 105
get-next-record-current-file 105
get-seqno 120
incr-seqno 121
list-files-on-remote 106
local-post-transfer 123
open-next-working-file 106
persist-get-index 107
persist-get-list 107
persist-get-offset 108
persist-init 108
persist-read-number 109

persist-update-index 109
persist-update-list 110
persist-update-offset 110
persist-update-status 111
persist-write-pad 111
post-transfer-hook 112
pre-transfer-hook 113
send-external-down 88
send-external-up 88
send-files-to-remote 113
set-seqno 121
start-schedule 89
stop-schedule 90
string-is-proc? 114
transfer-method? 114

G
get-logical-name function 88
get-next-record function 105
get-next-record-current-file function 105
get-seqno function 120

H
Heuristics

configuration file 146
database 140, 142, 148, 152, 160, 163

Host Type parameter 40

I
incr-seqno function 121
Intelligent Queues

sending large files through 178

J
Journal File Name parameter 22

L
list-files-on-remote function 106
Local Command After Transfer parameter 45, 49
Local Rename or Archive Name parameter 46, 49
local-post-transfer function 123

M
Max Failed Messages parameter 23
Max IQ Connection Retries parameter 23
Max Resends Per Message parameter 22
Max Sequence Number parameter 50
Batch e*Way Intelligent Adapter User’s Guide 185

Index
Monk Environment Initialization File parameter 34
Monk Filename Expansion Functions

dgwftp-get-seqno 120
dgwftp-incr-seqno 121
dgwftp-set-seqno 121

Monk functions see also functions
MVS Generation Data Group (GDG) 60
MVS Partition Data Sets (PDS) 60
MVS Sequential 60

N
Negative Acknowledgment Function parameter 39

O
open-next-working-file function 106
operation

dynamic configuration 9
publishing to the e*Way 9
subscribes to messages 9

P
parameters seeconfiguration parameters
persist.dat 80
persist-get-index function 107
persist-get-list function 107
persist-get-offset function 108
persist-init function 108
persist-read-number function 109
persist-update-index function 109
persist-update-list function 110
persist-update-offset function 110
persist-update-status function 111
persist-write-pad function 111
Positive Acknowledgment Function parameter 38
post-transfer-hook function 112
pre-transfer-hook function 113
Process Outgoing Message Function parameter 35
publishing to the e*Way 9

R
Receiving Data with a Receive Order 75
Record Delimiter parameter 44, 47
Record Size parameter 44, 48
Record Type 81
Record Type Configuration

Delimited Record 81
Fixed Length Record 81
Single Record 82

Record Type parameter 43, 47

Remote Command After Transfer parameter 44, 48
Remote Directory Name parameter 42, 46
Remote Directory Regexp parameter 43
Remote File Name parameter 46
Remote Rename or Archive Name parameter 45, 48
requirements

for client components 12
Resend Timeout parameter 26
retrieving files

using special characters 69

S
send-external-down function 88
send-external-up function 88
send-files-to-remote function 113
Sending Data with a Send Order 74
sending large files to an external location 178
sequence.dat 80
set-seqno function 121
Shutdown Command Notification Function
parameter 40
Single Record File 82
SOCKS

Batch e*Way use 10
overview 11

SOCKS5 53, 54
Special Characters 69
Start Exchange Data Schedule parameter 25
Starting Sequence Number parameter 50
start-schedule function 89
Startup Function parameter 35
Stop Exchange Data Schedule parameter 24
stop-schedule function 90
string-is-proc? function 114
subscribing to messages 9
supported operating systems 11

T
transfer-method? function 114
transmission orders 73

U
Up Timeout parameter 25
User Name parameter 41

W
wildcard characters 69
Batch e*Way Intelligent Adapter User’s Guide 186

Index
X
XML message 9

sample 74

Z
z 52
Zero Wait Between Successful Exchanges parameter
26
Batch e*Way Intelligent Adapter User’s Guide 187

	Batch e*Way Intelligent Adapter User’s Guide
	Contents
	Introduction
	1.1 Overview
	1.1.1 Intended Reader
	Components

	1.1.2 Document Conventions

	1.2 SOCKS Support
	1.2.1 SOCKS Overview
	SOCKS Proxy Server

	1.3 Supported Operating Systems
	1.4 System Requirements
	1.5 External System Requirements

	Installation
	2.1 Installation on Windows Systems
	2.1.1 Pre-installation
	2.1.2 Installation Procedure

	2.2 UNIX Installation
	2.2.1 Pre-installation
	2.2.2 Installation Procedure

	2.3 Files/Directories Created by the Installation

	Configuration
	3.1 e*Way Configuration Parameters
	3.1.1 Monk Variables
	3.1.2 General Settings
	Journal File Name
	Max Resends Per Message
	Max IQ Connection Retries
	Max Failed Messages
	Forward External Errors

	3.1.3 Communication Setup
	Start Exchange Data Schedule
	Stop Exchange Data Schedule
	Exchange Data Interval
	Down Timeout
	Up Timeout
	Resend Timeout
	Zero Wait Between Successful Exchanges
	Exchange-if-in-window-on-startup

	3.1.4 Monk Configuration
	Operational Details
	How to Specify Function/File Names
	Additional Path
	Auxiliary Library Directories
	Monk Environment Initialization File
	Startup Function
	Process Outgoing Message Function
	Exchange Data with External Function
	External Connection Establishment Function
	External Connection Verification Function
	External Connection Shutdown Function
	Positive Acknowledgment Function
	Negative Acknowledgment Function
	Shutdown Command Notification Function

	3.1.5 External Host Setup
	Host Type
	External Host Name
	User Name
	Encrypted Password
	File Transfer Method
	File Sync

	3.1.6 Subscribe to External
	Remote Directory Name
	Remote File Regexp
	Record Type
	Record Delimiter
	Delimiter on Last Record
	Record Size
	Remote Command After Transfer
	Remote Rename or Archive Name
	Local Command After Transfer
	Local Archive Directory

	3.1.7 Publish to External
	Remote Directory Name
	Remote File Name
	Append or Overwrite when Transferring Files
	Record Type
	Record Delimiter
	Delimiter on Last Record
	Record Size
	Remote Command After Transfer
	Remote Rename or Archive Name
	Local Command After Transfer
	Local Archive Directory

	3.1.8 Sequence Numbering
	Starting Sequence Number
	Max Sequence Number

	3.1.9 Recourse Action
	Action on Fetch Failure
	Action on Send Failure

	3.1.10 FTP
	Server Port
	Mode
	Pretransfer Commands
	Posttransfer Commands

	3.1.11 SOCKS
	Server Host Name
	Server Port
	Method
	User Name
	Encrypted Password

	3.1.12 Dynamic Configuration
	Enable Message Configuration
	Publish Status Record on Success
	Publish Status Record on Error
	Include Order Record in Error Record
	Include Payload in Error Record
	Action on Mal-formed Command

	3.2 FTP Heuristics
	3.2.1 Operating System or File Type Selection
	3.2.2 Configuration Parameters
	Commands Supported by FTP Server
	Header Lines To Skip
	Header Indication Regex Expression
	Trailer Lines To Skip
	Trailer Indication Regex Expression
	Directory Indication Regex Expression
	File Link Real Data Available
	File Link Indication Regex Expression
	File Link Symbol Regex Expression
	List Line Format
	Valid File Line Minimum Position
	File Name Is Last Entity
	File Name Position
	File Name Length
	File Extension Position
	File Extension Length
	File Size Verifiable
	File Size Position
	File Size Length
	Special Envelope For Absolute Path Name
	Listing Directory Yields Absolute Path Names
	Absolute Path Name Delimiter Set
	Change Directory Before Listing
	Directory Name Requires Terminator

	3.3 Using Special Characters
	3.3.1 Literal Characters
	3.3.2 Wildcard Expansion
	3.3.3 Hexadecimal and Octal
	3.3.4 Unprintable Characters
	3.3.5 Date and Time Expansion
	3.3.6 Sequence Numbering
	3.3.7 File Name Replacement

	3.4 Environment Configuration
	3.5 External Configuration Requirements

	Dynamic Messaging
	4.1 Dynamic Messaging: General Operation
	4.1.1 Sending Data with a Send Order
	4.1.2 Receiving Data with a Receive Order

	4.2 Error Reporting
	4.3 Configuration

	Implementation
	5.1 Implementation Notes
	5.1.1 How the e*Way Uses Temporary Files
	5.1.2 Record Type Configuration
	Delimited Record
	Fixed-length Record
	Single Record

	5.2 Sample Configurations
	5.2.1 Subscribing to an External System
	5.2.2 Publishing to an External System

	Batch e*Way Functions
	6.1 Monk Functions: Overview
	6.2 Basic Functions
	event-send-to-egate
	get-logical-name
	send-external-down
	send-external-up
	shutdown-request
	start-schedule
	stop-schedule

	6.3 Core Functions
	batch-ack
	batch-exchange-data
	batch-ext-connect
	batch-ext-shutdown
	batch-ext-verify
	batch-init
	batch-nak
	batch-proc-out
	batch-regular-proc-out
	batch-shutdown-notify
	batch-startup

	6.4 Connection and File Functions
	batch-fetch-files-from-remote
	batch-fetch-named-files
	batch-send-path-file
	batch-validate-params
	batch-write-file
	disconnect-from-remote
	fetch-files-from-remote
	fetch-named-files
	get-next-record
	get-next-record-current-file
	list-files-on-remote
	open-next-working-file
	persist-get-index
	persist-get-list
	persist-get-offset
	persist-init
	persist-read-number
	persist-update-index
	persist-update-list
	persist-update-offset
	persist-update-status
	persist-write-pad
	post-transfer-hook
	pre-transfer-hook
	send-files-to-remote
	string-is-proc?
	transfer-method?

	6.5 File Name Expansion Functions
	char-hex?
	expand-char
	expand-hex
	expand-octal
	expand-seqno
	expand-string
	expand-time
	get-seqno
	incr-seqno
	set-seqno

	6.6 Post-transfer Routines
	batch-local-post-transfer
	batch-rmt-post-transfer
	local-post-transfer

	6.7 File Copy Transfer Functions
	file-ext-connect
	file-ext-shutdown
	file-ext-verify
	file-fetch
	file-fetch-path
	file-init
	file-remote-path-list
	file-rmt-list
	file-rmt-post-transfer
	file-send
	file-send-path-file
	file-startup
	file-validate-params

	6.8 FTP Transfer Functions
	ftp-do-connect
	ftp-ext-connect
	ftp-ext-shutdown
	ftp-ext-verify
	ftp-fetch
	ftp-heuristic-download
	ftp-init
	ftp-rmt-list
	ftp-rmt-post-transfer
	ftp-send
	ftp-startup
	ftp-validate-params

	6.9 Advanced FTP Functions
	ftp-append-file
	ftp-append-path
	ftp-archive
	ftp-archive-path
	ftp-capture-data
	ftp-change-dir
	ftp-close
	ftp-connect
	ftp-create-handle
	ftp-disconnect
	ftp-delete
	ftp-delete-path
	ftp-fetch-path
	ftp-get-file
	ftp-get-last-response
	ftp-get-last-result-code
	ftp-get-path
	ftp-handle?
	ftp-list-files
	ftp-list-raw
	ftp-login
	ftp-make-dir
	ftp-open-data-port
	ftp-open-host
	ftp-open-host-through-SOCKS
	ftp-put-file
	ftp-put-path
	ftp-remote-path-list
	ftp-rename
	ftp-rename-path
	ftp-send-command
	ftp-send-path-file
	ftp-send-reply-immediate
	ftp-set-compare-time
	ftp-set-mode
	ftp-set-port
	ftp-set-SOCKS-host
	ftp-set-SOCKS-port
	ftp-set-timeout
	6.9.1 Advanced FTP Function Exceptions

	6.10 File System Functions
	fs-append-file
	fs-copy-file
	fs-delete-file
	fs-list-files
	fs-make-dir
	fs-read-delim
	fs-read-fixed
	fs-rename-file

	Document Type Definitions
	A.1 Send or Receive XML Messages
	A.2 Error Messages
	A.3 Data Message

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	X
	Z

