
HIPAA ETD Library User’s
Guide

Release 5.0.5 for Schema Run-time
Environment (SRE)

Copyright © 2005, 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and
are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not
use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the
U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and
adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent
applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you
use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. UNIX is a registered trademark licensed through X/Open
Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Version 20100720195100.

HIPAA ETD Library User’s Guide 2

Contents
Contents

Chapter 1

Introduction 6
Overview 6

Intended Reader 6

Supported Operating Systems 7

Chapter 2

HIPAA Overview 8
Introduction to HIPAA 8

What Is HIPAA? 8
Trading Partner Agreements 10
Sample Scenario 10
Batch and Real-Time Transactions 11

Batch 11
Real Time 11

Data Overview 11
Acknowledgment 12

Additional Information 12

Chapter 3

HIPAA Template Installation 13
HIPAA Libraries 13

Installation Procedure 14

HIPAA Files and Folders 15
HIPAA Folder Structure Created by Installation 15
HIPAA Files 16
File Names 17

HIPAA File Names 17
NCPDP-HIPAA File Names 18
Addenda Files 19
HIPAA ETD Library User’s Guide 3

Contents
Chapter 4

Working With the HIPAA X12 ETDs 20
HIPAA ETD Components Naming Conventions 20

Envelope and Transaction Names 20
Segment Loop Names 20
Segment Names 21
Composite names 21
Element names 21

Customizing a Java ETD 21

Viewing a HIPAA X12 ETD in the ETD Editor 22

Setting the Delimiters 23

Running Validation in the Collaboration Rules Component 25
Java Collaboration Rules 25

HIPAA Collaboration Rules 26
Creating a Collaboration Rule to Validate the ETD 26

Alternative Formats: ANSI and XML 27
XML Format for HIPAA X12 27
Setting the Collaboration to XML Output 28

Possible Differences in Output When Using Pass-Through 30

Chapter 5

HIPAA ETD Library Java Methods 31
Java Methods 31

Overview 31
Available Java Methods 31

setDefaultX12Delimiters 33
getSegmentTerminator 33
setSegmentTerminator 34
getElementSeparator 34
setElementSeparator 35
getSubelementSeparator 36
setSubelementSeparator 36
getRepetitionSeparator 37
setRepetitionSeparator 37
performValidation (no parameters) 38
performValidation (boolean parameter) 39
isUnmarshalComplete 40
getUnmarshalErrors 40
getMsgValidationResult 41
getAllErrors 42
getICValidationResult 43
getFGValidationResult 44
getTSValidationResult 44
validate (no parameters) 45
validate (boolean parameter) 46
countSegments 47
setXMLOutput (boolean isXML) 47
marshal (boolean isXMLOutput) 48
HIPAA ETD Library User’s Guide 4

Contents
stripDataError 49
addUserDataError 51
isExternalCode 52
getMandatePlanId 53
setMandatePlanId 54
getMandateProviderId 55
setMandateProviderId 55
getMandateIndividualId 56
setMandateIndividualId 57
getMandateEmployerId 57
setMandateEmployerId 58

Error Message Formats 59
getAllErrors, getUnmarshalErrors, and getMsgValidationResult 59
getICValidationResult 59
getFGValidationResult 60
getTSValidationResult 60

Appendix A

ASC X12 Overview 62
Introduction to X12 62

What Is ASC X12? 62
What Is a Message Structure? 63

Components of an X12 Envelope 63
Data Elements 64
Segments 64
Loops 64
Delimiters 64

Structure of an X12 Envelope 65
Transaction Set (ST/SE) 67
Functional Group (GS/GE) 68
Interchange Envelope (ISA/IEA) 69
Control Numbers 70

ISA13 (Interchange Control Number) 70
GS06 (Functional Group Control Number) 70
ST02 (Transaction Set Control Number) 71

Acknowledgment Types 71
TA1, Interchange Acknowledgment 71
997, Functional Acknowledgment 71
Application Acknowledgments 72

Key Parts of EDI Processing Logic 72
Structures 72
Validations, Translations, Enveloping, Acknowledgments 73
Trading Partner Agreements 73

Additional Information 73

Index 75
HIPAA ETD Library User’s Guide 5

Chapter 1

Introduction

This chapter provides an introduction to the HIPAA ETD Library User’s Guide.

The Health Insurance Portability and Accountability Act of 1996 (HIPAA) is a law that,
among other things, mandates certain standards specifically for the healthcare
industry. For transactions related to healthcare, HIPAA uses a customization of X12.
For pharmaceutical transactions, the HIPAA standard uses NCPDP (National Council
for Prescription Drug Programs) transactions.

This book includes an overview of HIPAA, and then specific information relating to the
installation and contents of the HIPAA ETD Library.

A general overview of X12 is also included in Appendix A.

1.1 Overview
Each of the e*Gate™ Event Type Definition (ETD) libraries contains sets of pre-built
structures for industry-standard formats. e*Gate ETD files are message format
definitions in Monk or Java. The HIPAA ETD Library ETDs are written in Java.

The HIPAA ETD library is a feature of the Oracle™ eBusiness Integration Suite, and
contains message definitions for HIPAA messages. This document gives a brief
overview of HIPAA and the HIPAA message structures provided with the e*Gate
Integrator, and provides information on installing and using the HIPAA ETD libraries.

1.2 Intended Reader
The reader of this guide is presumed to be a developer or system administrator with
responsibility for maintaining the e*Gate system or the Oracle eBusiness Integration
Suite, to be thoroughly familiar with Windows operations and administration, and to
be familiar with Microsoft Windows graphical user interfaces.
HIPAA ETD Library User’s Guide 6

Chapter 1 Section 1.3
Introduction Supported Operating Systems
1.3 Supported Operating Systems
For information about supported operating systems, see the readme.txt file provided
on the e*Gate Integrator installation CD.

Note: UNIX Systems—This guide uses the backslash (“\”) as the separator within path
names. If you are working on a UNIX system, make the appropriate substitutions.
HIPAA ETD Library User’s Guide 7

Chapter 2

HIPAA Overview

This chapter provides an overview of HIPAA, including general information, a list of
the specific transactions that comprise the HIPAA standard, and the structure of HIPAA
envelopes, data elements, and syntax.

2.1 Introduction to HIPAA
The following sections provide an introduction to HIPAA and the message structures
that are included in the HIPAA ETD Library.

2.1.1. What Is HIPAA?
HIPAA is an acronym for the Health Insurance Portability and Accountability Act of
1996. This Act is designed to protect patients. Among other things, it defines
specifications affecting standards of treatment and privacy rights. It provides a number
of standardized transactions that can be used for such things as a healthcare eligibility
inquiry or a healthcare claim. HIPAA legislates that all of the healthcare industry will
be on the same implementation timetable. All institutions performing electronic
healthcare insurance transactions had to implement these standardized transactions by
October 2002 unless they obtained an extension to October 2003.

More transactions will be added for later implementations.

HIPAA legislation mandates, among other items:

Standards for maintaining patient confidentiality and helping to ensure privacy by
mandating security options.

Use of a national payer ID.

Use of a national provider ID.

HIPAA regulations affect many organizations dealing with the medical industry, such
as:

Automated clearing houses (ACHs)

Transaction processors

Value-added networks (VANs)

Payers
HIPAA ETD Library User’s Guide 8

Chapter 2 Section 2.1
HIPAA Overview Introduction to HIPAA
Health insurance providers

Provider management organizations

For transactions relating to such things as healthcare claims, the HIPAA standard uses a
range of customized X12 transactions. For transactions relating to prescriptions, HIPAA
uses NCPDP (National Council for Prescription Drug Programs) transactions.

The HIPAA X12 standard, being based on X12, includes loops, segments, and data
elements. In addition, it mandates consistent use of these elements across all HIPAA
implementation guides. The X12 portion of the HIPAA ETD Library provides Event
Type Definitions for the standard X12 transactions that have been adopted by HIPAA,
as listed in Table 1.

The HIPAA 1999 and 2000 libraries are based on the X12 Version 4, Release 1, Sub-
release 0 (004010) standard. The HIPPA 2005 library is based on the Version 5, Release1,
Sub-release 0 (005010) standard.

The HIPAA 2005 library includes the additional X12 transactions listed in the following
table.

The NCPDP portion of the HIPAA ETD Library provides request and response
transactions for all the HIPAA-approved NCPDP transaction codes, as listed in Table 2.

Table 1 HIPAA X12 Transactions

Number Name

270 Eligibility Coverage or Benefit Inquiry

271 Eligibility Coverage or Benefit Information

276 Health Care Claim Status Request

277 Health Care Claim Status Notification

278 Two versions: Health Care Services Review Information and Request for
Review/Response to Request

820 Payment Order Remittance Advice

834 Benefit Enrollment and Maintenance

835 Health Care Claim Payment Advice

837 Health Care Claim (three versions: Professional, Dental, and Institutional)

Table 2 Additional HIPAA X12 Transactions (005010)

Number Name

269 Health Care Benefit Coordination Verification

275 Patient Information Transaction Set

278 Multiple versions: Health Care Services Review and Response, Health Care
Services Notification and Acknowledgement, Health Care Services Review
Inquiry/Response

824 Application Advice
HIPAA ETD Library User’s Guide 9

Chapter 2 Section 2.1
HIPAA Overview Introduction to HIPAA
Note: While the HIPAA ETD Library includes both X12 and NCPDP ETDs, this
document primarily discusses the HIPAA X12 ETDs. For more information about
the NCPDP-HIPAA ETD Library, see the NCPDP ETD Library User’s Guide.

2.1.2. Trading Partner Agreements
Although the regulations mandated by HIPAA are very strict and specific, it is still
important to have trading partner agreements for individual trading relationships.

Following the HIPAA standard ensures that transactions comply with the regulations
mandated by the government. HIPAA requirements are completely described in the
HIPAA implementation guide for each transaction, and must not be modified by a
trading partner.

However, there is room for negotiation in terms of the specific processing of the
transactions in each trading partner’s individual system. It is normal for trading
partners to have individual agreements that supplement the standard guides. The
specific processing of the transactions in each trading partner’s individual system
might vary between sites. Because of this, additional documentation that provides
information about the differences is helpful to the site’s trading partners and simplifies
implementation. For example, while a certain code might be valid in an
implementation guide, a specific trading partner might not use that code in
transactions. It would be important to include that information in a trading partner
agreement.

Table 3 NCPDP-HIPAA Transaction Codes

Code Transaction Name

E1 Eligibility Verification

B1 Billing

B2 Reversal

B3 Rebill

P1 Prior Authorization Request and Billing

P2 Prior Authorization Reversal

P3 Prior Authorization Inquiry

P4 Prior Authorization Request Only

N1 Information Reporting

N2 Information Reporting Reversal

N3 Information Reporting Rebill

C1 Controlled Substance Reporting

C2 Controlled Substance Reporting Reversal

C3 Controlled Substance Reporting Rebill
HIPAA ETD Library User’s Guide 10

Chapter 2 Section 2.1
HIPAA Overview Introduction to HIPAA
2.1.3. Sample Scenario
An example of a HIPAA X12 transaction exchange between a healthcare provider and a
payer is shown in Figure 1.

Figure 1 Sample HIPAA Transaction Exchange

2.1.4. Batch and Real-Time Transactions
The HIPAA standard supports the sending and receiving of messages in both batch and
real-time (interactive) modes.

Batch

In batch mode, transactions are grouped together and multiple transactions are sent in
a single message. The batch can either go directly to the receiver or via a clearing house.
The connection does not remain open while the receiver processes the messages. If
there is an expected response transaction (for example, a 271 in response to a 270) the
receiver creates the response transaction offline and then sends it.

Real Time

If a transaction is processed in real time, it is sent individually. Transactions that require
an immediate response are normally sent in real time. In real-time mode, the sender
sends the request transaction, either directly or through a clearing house, and the
connection is kept open while the receiver processes the transaction and returns a
response transaction. Response times are typically no more than one minute, and often
less.

In real-time mode, the receiver must send a response; either the expected response
transaction, such as a 271 in response to a 270, or a standard acknowledgment such as
the 997.

2.1.5. Data Overview
HIPAA X12 transactions all use the standard components of the X12 standard, covered
in Appendix A, “ASC X12 Overview” on page 62.

Specifically, the transactions use the following elements:

Segments

Healthcare
Provider Payer

Claim Payment/Advice (835 or other)

Health Care Claim Status Request (276)

Health Care Claim Status Response (277)

Claim (837 or other format)

Functional Acknowledgment (997 or other format)

Functional Acknowledgment (997 or other format)
HIPAA ETD Library User’s Guide 11

Chapter 2 Section 2.2
HIPAA Overview Additional Information
Data elements

Looping structures

2.1.6. Acknowledgment
The HIPAA X12 transactions either have specific response transactions or use the
standard 997 Functional Acknowledgment.

The 997 Functional Acknowledgment is used by the following transactions:

837 (sent by the payer to acknowledge claim receipt)

277 (sent by the provider to acknowledge receipt of a Health Care Payer Unsolicited
Claim Status request)

277 (sent by the provider to acknowledge receipt of a Health Care Claim Request for
Additional Information)

835 (sent by the provider to acknowledge receipt of a Health Care Claim Payment/
Advice notification)

2.2 Additional Information
For more information on HIPAA, visit the following Web sites:

http://www.hipaa-dsmo.org

http://www.wedi.org/

http://www.claredi.com/

http://aspe.os.dhhs.gov/admnsimp/

For more information on NCPDP, visit the official NCPDP Web site at this address:

http://www.ncpdp.org/

Note: This information is correct at the time of going to press; however, we have no control
over these sites. If you find the links are no longer correct, use a search engine to
search for HIPAA.
HIPAA ETD Library User’s Guide 12

http://www.hipaa-dsmo.org
http://aspe.os.dhhs.gov/admnsimp/
http://www.wedi.org/
http://www.claredi.com/
http://www.ncpdp.org/

Chapter 3

HIPAA Template Installation

This chapter provides information on the installation procedure for the HIPAA ETD
library template files and shows the resulting directory structure for the templates. It
includes general installation information and installation instructions.

The HIPAA ETD Library includes Java templates for the following:

HIPAA May 1999 transactions

HIPAA May 2000 transactions

HIPAA 2005 (005010) transactions

NCPDP Telecom 5.0.1/Batch 1.0 and 1.1 transactions

Note: Batch 1.1 has become the adopted standard for usage with Telecom 5.0.1. Batch 1.0
files are only provided for backward compatibility.

Some additional points to note about the HIPAA transactions:

The ETDs only accept messages with all the envelope segment information.

The ETDs are intended for use with the HIPAA Collaboration Rules provided with
the e*Xchange™ Partner Manager.

Messages can be batched; however, all the messages in one functional group must
be of the same message type.

The May 1999 transaction files are only included for backward compatibility. For
full HIPAA functionality, you need to use the May 2000 transaction files or later.

Apart from their use by e*Xchange, ETDs can also be used independently for e*Gate
schemas not associated with e*Xchange.

3.1 HIPAA Libraries
Together, ETDs and Collaboration Rules provide comprehensive validation of all
eleven standard HIPAA X12 transactions. Alternately, a software patch that enables
validation through a third-party network appliance is also available.

When the HIPAA ETD Library is installed, there is a separate subdirectory for each set
of transactions (three in total), including both HIPAA X12 transactions (for the May
1999 and May 2000 standard) and NCPDP transactions. February 2003 amendments to
HIPAA ETD Library User’s Guide 13

Chapter 3 Section 3.2
HIPAA Template Installation Installation Procedure
the May 2003 standard (the 00401010A1 Addenda) are stored in the May 2000
subdirectory. Each subdirectory stores all the files for that version.

For more information on the folder structure for the e*Gate HIPAA ETD Library, refer
to “HIPAA Folder Structure Created by Installation” on page 15.

3.2 Installation Procedure
This section explains how to install the HIPAA template files.

Before you begin:

You must have Administrator privileges to install back-end components such as the
HIPAA templates.

Exit all Windows programs, including any anti-virus applications.

Verify your e*Gate Registry Host name, schema name, Control Broker logical name,
and the administrator user name and password.

To install the HIPAA templates on Windows

1 Log on to the workstation on which you want to install the templates.

2 Insert the installation CD into the CD-ROM drive.

If Autorun is enabled, the setup program automatically starts. Otherwise:

On the task bar, click the Start button, and then click Run.

In the Open field, type D:\setup\setup.exe where D: is your CD-ROM drive.

3 Follow the installation instructions until the Please choose the product to install
dialog box appears.

4 Select e*Gate Integrator, and then click Next.

5 Follow the on-screen instructions until the second Please choose the product to
install dialog box appears.

6 Select Add-ons, and then click Next.

7 Follow the on-screen instructions until the Select Components dialog box appears.

8 Highlight (but do not check) ETD Libraries, and then click the Change button.

The Select Sub-components dialog box appears.

9 Select Java HIPAA ETD Library

10 Click Continue to return to the Select Components dialog box, and then click Next.

11 Follow the rest of the on-screen instructions to install the HIPAA templates.

For more information about installing e*Gate add ons, see the e*Gate Integrator
Installation Guide.

Note: Do not change the default directory location for the HIPAA template files.
HIPAA ETD Library User’s Guide 14

Chapter 3 Section 3.3
HIPAA Template Installation HIPAA Files and Folders
To install the HIPAA templates on UNIX

1 Follow the steps for the standard e*Gate installation.

For more information, refer to the e*Gate Integrator Installation Guide.

2 At the prompt Choose e*Gate Add-on Application, enter the number assigned to
the Java HIPAA Library (scroll down the list to check the number).

3 Enter the installation path, or press Enter to accept the default path
(recommended).

4 Enter the hostname of the Registry server (UNIX host).

The library is installed.

Important: In order for the complete e*Xchange HIPAA solution to work properly, you must
also install the X12 4010 ETD Library. This ensures proper message envelope
validation. See the X12 ETD Library User’s Guide for more information.

3.3 HIPAA Files and Folders
This section outlines the folder structure created on your hard drive as a result of
installation of the HIPAA templates, and the files copied into those folders. The files
include Event Type Definitions for the May 2000 and May 1999 HIPAA standards and
for NCPDP Batch and Telecom transactions. May 1999 files are included for backwards
compatibility only and do not include the more comprehensive validations of the May
2000 files.

Transactions modified according to rules published in the Federal Register on February
20, 2003 are installed to the same location as the May 2000 files.

3.3.1. HIPAA Folder Structure Created by Installation
By default, installation places the HIPAA ETD templates in the locations shown in Table
3.

Note: The e*Xchange schema includes a pair of Monk HIPAA ETDs for backward
compatibility. One Monk ETD is provided for NCPDP Batch 1.1 transactions, and
one is provided for Batch 1.0 transactions. These ETDs have a “xlate.ssc” suffix. For

Table 3 HIPAA Template Locations

These files... Are installed in this location...

1999 \<eGate>\Server\Registry\Repository\default\ETD\templates\HIPAA_1999

2000 \<eGate>\Server\Registry\Repository\default\ETD\templates\HIPAA_2000

Addenda \<eGate>\Server\Registry\Repository\default\ETD\templates\HIPAA_2000

2005 \<eGate>\Server\Registry\Repository\default\ETD\templates\HIPAA_2005
HIPAA ETD Library User’s Guide 15

Chapter 3 Section 3.3
HIPAA Template Installation HIPAA Files and Folders
more information on these ETDs, refer to the e*Xchange Partner Manager User’s
Guide. The HIPAA ETD Library includes only Java ETDs.

Installation commits the templates to the default schema on the Registry Host that you
specified during the installation process.

Within the relevant template directory, there are two files for each transaction:

.xsc is the Java Event Type Definition file.

.jar is the associated Java jar file.

3.3.2. File Names
File names for the templates are designed to assist you in quickly locating the file you
want. Each file name consists of the same set of elements in the same sequence.

Because Addenda have been created for each of the eleven X12 Implementation Guides
adopted for use under HIPAA and published in May, 2000, naming conventions
differentiate between the original file set of May, 2000 and the Addenda published in
February, 2003.

The federal Health and Human Services web site (www.cms.hhs.gov) describes the
changes of 2003 as follows: “This final rule modifies a number or the electronic
transactions and code sets adopted as national standards under HIPAA, and eliminates
the NDC code set as the standard for all providers except retail pharmacies.”

HIPAA File Names

The file names for 4010 X12 Java HIPAA transactions are constructed as follows:

The name of the standard, followed by an underscore

X12_

004010X092_: The HIPAA reference number for the transaction—which includes the
X12 version—followed by an underscore in the original set or “A1” and then an
underscore in the February 2003 Addenda set. The “92” represents a two-digit
number unique to each transaction type. It can also be 91, 93, 94, 95, 96, 97, or 98.

Year designation:

99_ for 1999 files

00_ for 2000 files and Addenda files

hipaa277_ An indicator that this is a HIPAA ETD, followed by the transaction ID,
and then an underscore. For 278 and 837 transactions, the format is “hipaaA1_278,”
where “A1” represents a transaction sub-type and “278” or “837” is the transaction
type.

Note: “A1” following the string “hipaa” has a different meaning than “A1” following the
ten-digit HIPAA reference number. In the first case, A1 identifies a transaction sub-
type. In the second case, “A1” identifies an Addendum file, one of several Addenda
to the May 2000 standard.
HIPAA ETD Library User’s Guide 16

Chapter 3 Section 3.3
HIPAA Template Installation HIPAA Files and Folders
Abbreviation for the transaction name; for example, HealCareClaiPaym for Health
Care Claim Payment

.xsc (file extension)

Examples:

The file name for a 277, Health Care Claim Status Notification, for HIPAA 1999 is
X12_004010X093_99_hipaa277_HealCareClaiStatNoti.xsc

The file name for a 270, Eligibility Coverage or Benefit Inquiry, for HIPAA 2000 is
X12_004010X092_00_hipaa270_EligCoveOrBeneInqu.xsc

The file name for a 270, Eligibility Coverage or Benefit Inquiry Addendum for
HIPAA 2000 is X12_004010X092A1_00_hipaa270_EligCoveOrBeneInqu.xsc

NCPDP-HIPAA File Names

The file names for NCPDP Java HIPAA transactions are constructed as follows:

NCPDP_ (name of standard followed by underscore)

T51_, Batch11, or Batch_1_0 (version type and number; for Telecom 5.1, version type
for Telecom is followed by underscore)

The following characters are used for Telecom transactions only.

Two-character transaction code followed by underscore; for example, E1_ or N3_
(indicates transaction type, such as Eligibility Verification or Information Reporting
Rebill)

REQ_ or RESP_ (indicates whether the message is a request or a response)

For responses only, a single-character code indicating the type of response followed
by an underscore; for example, 4_.

Abbreviation for the transaction name; for example, BillRequ for Billing Request.

.xsc (file extension)

For example:

The Java file name for a Prior Authorization Inquiry Response: Transmission
Accepted; Transaction Rejected is
NCPDP_T51_P3_RESP_4_PAInquRespTranAcceReje.xsc.

The Java file name for a Batch 1.1 transaction is NCPDP_Batch11.

Addenda Files

Amendments to the 004010 Implementation Guides of May 2000 were approved by the
X12N Health Care Work Group in October 2002 and published in February 2003. These
Addenda are optional until October 15, 2003 but required after that date.

ESR (software patch) 53310 does the following:

Removes HIPAA validations from the X12 4010 HIPAA Standard ETDs to pave the
way for validation through a network appliance from Claredi Corporation.
HIPAA ETD Library User’s Guide 17

Chapter 3 Section 3.3
HIPAA Template Installation HIPAA Files and Folders
Adds the X12 4010 HIPAA Addenda ETDs to the HIPAA_2000 subdirectory.
Addenda ETDs supplement the ETDs for which they are amendments, and function
the same way.

Addenda ETD files are as follows:

X12_004010X061A1_00_hipaa820_PaymOrdeAdvi.jar
X12_004010X061A1_00_hipaa820_PaymOrdeAdvi.xsc
X12_004010X091A1_00_hipaa835_HealCareClaiPaym.jar
X12_004010X091A1_00_hipaa835_HealCareClaiPaym.xsc
X12_004010X092A1_00_hipaa270_EligCoveOrBeneInqu.jar
X12_004010X092A1_00_hipaa270_EligCoveOrBeneInqu.xsc
X12_004010X092A1_00_hipaa271_EligCoveOrBeneInfo.jar
X12_004010X092A1_00_hipaa271_EligCoveOrBeneInfo.xsc
X12_004010X093A1_00_hipaa276_HealCareClaiStatRequ.jar
X12_004010X093A1_00_hipaa276_HealCareClaiStatRequ.xsc
X12_004010X093A1_00_hipaa277_HealCareClaiStatNoti.jar
X12_004010X093A1_00_hipaa277_HealCareClaiStatNoti.xsc
X12_004010X094A1_00_hipaaA1_278_HealCare ServReviInfo.jar
X12_004010X094A1_00_hipaaA1_278_HealCareServReviInfo.xsc
X12_004010X094A1_00_hipaaA3_278_HealCareServReviInfo.jar
X12_004010X094A1_00_hipaaA3_278_HealCareServReviInfo.xsc
X12_004010X095A1_00_hipaa834_BeneEnroAndMain.jar
X12_004010X095A1_00_hipaa834_BeneEnroAndMain.xsc
X12_004010X096A1_00_hipaaQ3_837_HealCareClai.jar
X12_004010X096A1_00_hipaaQ3_837_HealCareClai.xsc
X12_004010X097A1_00_hipaaQ2_837_HealCareClai.jar
X12_004010X097A1_00_hipaaQ2_837_HealCareClai.xsc
X12_004010X098A1_00_hipaaQ1_837_HealCareClai.jar
X12_004010X098A1_00_hipaaQ1_837_HealCareClai.xsc

Transactions of type 837 (health care claims) are differentiated by Qn appended to the
“hipaa” string, where n is a value of 1, 2, or 3, as follows:

Q1: type 837p (professional)

Q2: type 837d (dental)

Q3: type 837i (institutional)

For more information about ASC X12 and its subcommittees, see www.x12.org
HIPAA ETD Library User’s Guide 18

http://www.x12.org

Chapter 4

Working With the HIPAA X12 ETDs

This chapter provides information on additional features built into the X12 ETDs, and
includes instructions on working with and testing the ETDs. This chapter also provides
information on using the custom Java methods provided within the ETDs, and other
general information about using the X12 ETD Library.

To test that your data is being mapped correctly by the ETD and that the data is valid
based on definitions and business rules, you can run validation within the
Collaboration Rules component.

4.1 HIPAA ETD Components Naming Conventions
Each HIPAA ETD contains envelope, transaction, segment loop, segment, and element
names. In addition, there may be mask names and composite names. The components
in an ETD correspond to the components in the X12 transaction type represented by the
ETD. The component names are very similar to the names listed in the X12
implementation guides, with some abbreviations and additional SEF ordinal number
information to help you determine which instance of a repeating component is
referenced.

Envelope and Transaction Names

Each ETD contains two envelope names and a transaction name. The transaction name
always begins with X12, followed by version information, the transaction type ID, and
a short description. For example, a standard transaction name is
X12_004010X096_00_hipaaQ3_837_HealCareClai. This means it is an X12 transaction,
based on the May 2000 standards, and it is a HIPAA 837 Professional Health Care
Claim.

The Interchange Group level is indicated by appending “Outer” to the transaction
name; for example, X12_004010X096_00_hipaaQ3_837_HealCareClaiOuter.

The Functional Group level is indicated by appending “Inner” to the transaction name;
for example, X12_004010X096_00_hipaaQ3_837_HealCareClaiInner.

Segment Loop Names

Segment loop names are similar to the standard names in the X12 implementation
guides, with some qualifiers. Each segment loop name begins with “Loop”, followed by
HIPAA ETD Library User’s Guide 20

Chapter 4 Section 4.2
Working With the HIPAA X12 ETDs Customizing a Java ETD
the name of the segment loop, the segment loop ordinal number based on SEF
specifications, and a short description of the loop (that is, the first four characters of the
loop). An example of a segment name would be Loop2010AB_16_2010, indicating loop
2010AB with an SEF ordinal number of 16.

Segment Names

In the HIPAA X12 ETDs, each segment name begins with the segment ID, followed by a
mask number if applicable, the segment ordinal number based on SEF specifications,
and a short description of the loop. For example, N3_24_AddrInfo indicates the
address information segment, N3, with an SEF ordinal number of 24. Mask numbers
are prefaced by “msk”. SBR_msk2_21_SubsInfo is an example of a segment name with
a mask number.

Segments in Interchange or Functional Group envelopes use a different formatting for
the naming convention. These names begin with “GS” followed by a short description;
for example, GS_FuncGrouHead indicates the Functional Group Header segment.

Composite names

Composite names within the HIPAA ETDs begin with the composite ID, which is
followed by the composite ordinal in the segment and a short description. For example,
C003_3_CompMediProcIden indicates composite C003, Composite Medical Procedure
Identifier, with an ordinal number of 3. Like segments, composite names can include a
mask number, which appears just after the composite ID; for example,
C022_msk1_1_HealCareCodeInfo.

Element names

Element names within the HIPAA ETDs are indicated by the letter “E” at the beginning
of the name. This is followed by the element ID, the element ordinal number in the
segment, and a short description. For example, E1138_1_PayeRespSequNumbCode
represents element 1138, Payer Responsibility Sequence Number Code, which is the
first element in the segment.

4.2 Customizing a Java ETD
Currently eGate Integrator does not support the editing of pre-built Java ETDs.
However, the e*Gate Integrator offers a feature that allows you to convert existing
Monk ETDs (.ssc files) to Java-enabled ETDs (.xsc files). This feature is the SSC Wizard.

To create a customized Java ETD

1 Create a corresponding Monk ETD, or use the Monk version of the Java ETD if
available.

2 Customize the Monk ETD (.ssc file) using the e*Gate ETD Editor.

3 Convert the Monk ETD to a Java ETD using the e*Gate SSC Wizard.
HIPAA ETD Library User’s Guide 21

Chapter 4 Section 4.3
Working With the HIPAA X12 ETDs Viewing a HIPAA X12 ETD in the ETD Editor
When the conversion is done, you have three files:

The original Monk ETD (.ssc file)
Keep this file in case further customization is needed.

The Java version of the ETD (.xsc file)

The corresponding .jar file

If you need to make further changes to the ETD, make the changes in the .ssc file and
run the conversion again.

For specific instructions on using the e*Gate ETD Editor or the SSC Wizard, refer to the
e*Gate Integrator User’s Guide.

4.3 Viewing a HIPAA X12 ETD in the ETD Editor
An example of a HIPAA 270 transaction in the Java ETD Editor is shown in Figure 4.

Figure 4 HIPAA 270 In the ETD Editor

The ETD shown in Figure 4 is
X12_004010X092_00_hipaa270_EligCoveOrBeneInqu.xsc. The root node is
x12_004010X092_00_hipaa270_EligCoveOrBeneInquOuter. For each X12 ETD, the root
node name is the same as the file name, but without the extension and with Outer
appended to the file name.
HIPAA ETD Library User’s Guide 22

Chapter 4 Section 4.4
Working With the HIPAA X12 ETDs Setting the Delimiters
Some things to note about X12 Java ETDs:

Bubble text labels are available for some of the items.

In the .xsc file, the following naming conventions apply:

An element name begins with E

A segment loop name begins with Loop

4.4 Setting the Delimiters
The HIPAA X12 ETDs must include some way for delimiters to be defined so that they
can be mapped successfully from one ETD to another.

In X12, delimiters are specified in the interchange header segment (ISA).

The delimiters are as follows:

Data Element Separator (default is an asterisk)

Subelement Separator/Component Element Separator (default is a colon)

Segment Terminator (default is a tilde)

These delimiters can be set in two ways:

You can set the Subelement Separator and Repetition Separator from the
corresponding elements within the ISA segment.

You can set the delimiters in the Collaboration Editor by means of Java methods
that are provided in the ETD files.

For specific information on the Java methods provided for the getting and setting of
delimiters, refer to “HIPAA ETD Library Java Methods” on page 31.

If the input data is already in HIPAA X12 format, you can use the “get” methods to get
the delimiters from the input data. If the Collaboration is putting the data into HIPAA
X12 format, you can use the “set” methods to set the delimiters in the output ETD.

To set the delimiters in the Collaboration Rules Editor

1 Open the Collaboration in the Java Collaboration Rules Editor.

2 In the Business Rules section, add a rule.

3 Click on the method that you want to use.

4 Drag and drop the method to the Rule Properties section (an example is shown in
Figure 5).

Note: When building Collaboration Rules scripts with Java ETDs, if there is data mapped
to a field in a Java template and there are optional fields on the same level with no
data mapped to them, the output includes delimiters for the optional fields.
HIPAA ETD Library User’s Guide 23

Chapter 4 Section 4.4
Working With the HIPAA X12 ETDs Setting the Delimiters
Figure 5 Setting Delimiters in a Collaboration Rules Component

5 The Parameters for method: dialog box appears (see Figure 6).

Figure 6 Parameters for Method Dialog Box

6 Set the delimiter value (an example is shown in Figure 7).
HIPAA ETD Library User’s Guide 24

Chapter 4 Section 4.5
Working With the HIPAA X12 ETDs Running Validation in the Collaboration Rules Component
Figure 7 Parameters for Method Dialog Box Showing Delimiter Value

7 Click OK.

8 Save the Collaboration Rules component.

Note: You must specify the delimiters. You can do this either by setting individual
delimiters to specific values, or by using the setdefaultX12delimiters Java method to
set the defaults.

4.5 Running Validation in the Collaboration Rules
Component

An additional tool you can use for validating your data is to run validation methods
within the Collaboration.

The HIPAA X12 ETD Library includes several Java methods provided for this purpose.
They are as follows:

performValidation

performValidation(boolean)

getMsgValidationResult

getICValidationResult

getFGValidationResult

getTSValidationResult

For more information on these Java methods, refer to “HIPAA ETD Library Java
Methods” on page 31.

4.5.1. Java Collaboration Rules
If you install e*Xchange, a set of predefined Java validation Collaboration Rules is
installed to validate transactions that use the ETDs from the HIPAA ETD Library. You
HIPAA ETD Library User’s Guide 25

Chapter 4 Section 4.5
Working With the HIPAA X12 ETDs Running Validation in the Collaboration Rules Component
can use these Collaboration Rules to implement a comprehensive, tested HIPAA
solution, or you can create your own Collaboration Rules to validate the ETD.

HIPAA Collaboration Rules

The HIPAA Collaboration Rules provided with e*Xchange provide HIPAA validations
in addition to those provided in the HIPAA ETDs. There is one Collaboration Rule for
each transaction type, and each Collaboration Rule was designed to work with a
specific HIPAA ETD. The output of the Collaboration Rules is defined by the ETD
X12ValidationResult, and includes any errors that were found during the validation
process.

The validation method nodes in an .xsc file are used to validate a HIPAA X12 message
at run time. The methods return arrays containing descriptions about any invalid data
elements, segments, segment loops, envelopes, and so forth.

The performValidation method performs specific validations on the Interchange
Group, Functional Group, and Transaction Set envelopes as follows, and outputs any
invalid information into an array (for more information about the format of the error
output for envelope errors, see “Error Message Formats” on page 59). The following
validations are performed against the message envelopes:

Verifies that the control numbers in the ISA and IEA segments match.

Verifies the number of transactions and verifies the number against the transaction
count value provided in the GE01 segment of the Functional Group trailer (GE).

Validates the transaction count by checking the number of transactions against the
count provided. The transaction is invalid if the numbers do not match.

Verifies that the number of segments listed matches the actual count.

Checks for missing or invalid Transaction Set headers.

The results of the validation method can be retrieved by calling error retrieval methods
(described in Chapter 5 of this guide). You can choose how to direct the output of the
string; for example, to a log file.

Note: Although validation is a useful tool to ensure that data conforms to the definitions
and business rules, be aware that it significantly impacts performance.

Creating a Collaboration Rule to Validate the ETD

The elements that are part of an .xsc file can be dragged and dropped when two or
more .xsc files are opened in the Collaboration Rules Editor (see the e*Gate Integrator
User’s Guide for more information). A field in the Source pane can be dragged to a field
in the Destination Events pane. This action, when highlighted in the Business Rules
pane, displays the rule in the Rule Properties pane.
HIPAA ETD Library User’s Guide 26

Chapter 4 Section 4.6
Working With the HIPAA X12 ETDs Alternative Formats: ANSI and XML
4.6 Alternative Formats: ANSI and XML
By default, all the HIPAA X12 ETDs accept either standard ANSI X12 format or XML
format as input; no changes to the existing Collaborations are needed. However, if you
are using ETDs from previous releases, you must recompile your Collaborations after
installing the HIPAA X12 ETD Library. The package names for the Java methods have
changed for the ETDs.

By default, output is ANSI. However, there are two Java Methods available for setting
the output to XML.

4.6.1. XML Format for HIPAA X12
Since there is no established XML standard for X12 as yet, the HIPAA X12 ETD Library
uses Open Business Objects for EDI (OBOE) as the XML format for X12.

The XML X12 DTD is shown in Figure 8.

Figure 8 XML X12 DTD

<!ELEMENT envelope (segment, segment?, functionalgroup+, segment)>
<!ATTLIST envelope format CDATA #IMPLIED>

<!ELEMENT functionalgroup (segment, transactionset+, segment)>

<!ELEMENT transactionset (table+)>
<!ATTLIST transactionset code CDATA #REQUIRED>
<!ATTLIST transactionset name CDATA #IMPLIED>

<!ELEMENT table (segment)+>
<!ATTLIST table section CDATA #IMPLIED>

<!ELEMENT segment ((element | composite)+, segment*)>
<!ATTLIST segment code CDATA #REQUIRED>
<!ATTLIST segment name CDATA #IMPLIED>

<!ELEMENT composite (element)+>
<!ATTLIST composite code CDATA #REQUIRED>
<!ATTLIST composite name CDATA #IMPLIED>

<!ELEMENT element (value)>
<!ATTLIST element code CDATA #REQUIRED>
<!ATTLIST element name CDATA #IMPLIED>

<!ELEMENT value (#PCDATA)>
<!ATTLIST value description CDATA #IMPLIED>
HIPAA ETD Library User’s Guide 27

Chapter 4 Section 4.6
Working With the HIPAA X12 ETDs Alternative Formats: ANSI and XML
HIPAA ETD Library User’s Guide 28

Figure 9 shows an X12 997 Functional Acknowledgment, in XML format.

Figure 9 X12 997 Functional Acknowledgment—XML

An example of the same transaction, an X12 997 Functional Acknowledgment, using
standard ANSI format, is shown in Figure 10.

Figure 10 X12 997 Functional Acknowledgment—ANSI Format

4.6.2. Setting the Collaboration to XML Output
By default, output from a Collaboration that uses standard Events from the HIPAA X12
ETD Library is in ANSI X12 format.

If you want to set the Collaboration to output XML format, use one of the following two
new Java methods:

setXMLOutput (boolean isXML) with the argument set to true if the outbound
HIPAA X12 ETD is set to automatically publish.

marshal (boolean isXMLOutput) with the argument set to true if the outbound
HIPAA X12 ETD is set to manually publish.

Chapter 4 Section 4.6
Working With the HIPAA X12 ETDs Alternative Formats: ANSI and XML
Figure 11 shows a HIPAA X12 Collaboration. A rule is being added to the Collaboration
to set the output to XML.

Figure 11 Setting the Output to XML in the HIPAA X12 Collaboration

Figure 12 shows the parameter for setXMLOutput () being set.

Figure 12 Specifying the Parameter for setXMLOutput ()
HIPAA ETD Library User’s Guide 29

Chapter 4 Section 4.7
Working With the HIPAA X12 ETDs Possible Differences in Output When Using Pass-Through
4.7 Possible Differences in Output When Using Pass-
Through

If you are using pass-through, the output file contains essentially the same data as the
input file.

Certain differences in output, based on variations in acceptable interpretation of the
information, are acceptable, provided that the data conforms to the formats specified
for the elements. For example:

If the input file includes a six-digit date, the output file might represent this as an
eight-digit value. For example, 010420 in the input file might be represented as
20010420 in the output file.

The number of trailing zeros after a decimal point might vary. For example, an
input value of 10.000 might be represented as 10 in the output file.

The reason these changes occur is that, during pass-through, certain data fields are
parsed and stored as Java objects other than strings; for example, Date or Double.

The actual value of all the information must remain the same.
HIPAA ETD Library User’s Guide 30

Chapter 5

HIPAA ETD Library Java Methods

The HIPAA ETD Library contains Java methods that are used to extend the
functionality of the ETDs. This chapter describes these methods, and includes
descriptions of the output generated by the validation and error message output
methods.

5.1 Java Methods

5.1.1. Overview
The HIPAA ETD Library provides methods for a variety of purposes, including
validation and error reporting, retrieving and setting delimiters, and defining HIPAA
mandate national identifier processing. Error processing is divided into three types:
marshalling errors, message errors, and envelope errors. Message validation is typically
performed after unmarshalling, which means after the input data has been parsed and
populated into the ETD structure. However, you can also validate the data from
memory by calling performValidation with the parameter set to “false”. After data is
unmarshalled and validated, it is then “marshalled”, meaning output data is generated
from the validated ETD structure.

5.1.2. Available Java Methods
The HIPAA ETD Library provides methods that allow you to retrieve the standard X12
delimiters from the input ETD and set them appropriately for the output ETD; or to set
the delimiters to the defaults. The methods are:

setDefaultX12Delimiters on page 33

getSegmentTerminator on page 33

setSegmentTerminator on page 34

getElementSeparator on page 34

setElementSeparator on page 35

getSubelementSeparator on page 36

setSubelementSeparator on page 36

getRepetitionSeparator on page 37
HIPAA ETD Library User’s Guide 31

Chapter 5 Section 5.1
HIPAA ETD Library Java Methods Java Methods
setRepetitionSeparator on page 37

The HIPAA ETD Library also includes the following custom Java methods for testing
the validation Collaborations and outputting error message information:

performValidation (no parameters) on page 38

performValidation (boolean parameter) on page 39

isUnmarshalComplete on page 40

getUnmarshalErrors on page 40

getMsgValidationResult on page 41

getAllErrors on page 42

getICValidationResult on page 43

getFGValidationResult on page 44

getTSValidationResult on page 44

validate (no parameters) on page 45

validate (boolean parameter) on page 46

The library includes the following utility method to count the segments in a given
transaction:

countSegments on page 47

The HIPAA ETD library includes the following methods for setting the output of a
Collaboration to XML:

setXMLOutput (boolean isXML) on page 47

marshal (boolean isXMLOutput) on page 48

Three methods are provided in the HIPAA ETD library specifically to assist in creating
post-validation processing Collaboration Rules.

stripDataError on page 49

addUserDataError on page 51

isExternalCode on page 52

Finally, the library includes the following methods for getting and setting the unique
identifier flags for payors, providers, individuals, and employers:

getMandatePlanId on page 53

setMandatePlanId on page 54

getMandateProviderId on page 55

setMandateProviderId on page 55

getMandateIndividualId on page 56

setMandateIndividualId on page 57

getMandateEmployerId on page 57

setMandateEmployerId on page 58
HIPAA ETD Library User’s Guide 32

Chapter 5 Section 5.1
HIPAA ETD Library Java Methods Java Methods
setDefaultX12Delimiters

Description

Sets the default X12 delimiters.

Syntax

public void setDefaultX12Delimiters()

Parameters

None.

Constants

None.

Returns

void (none).

Throws

None.

Examples

com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_HealCareClaiOuter
input=new com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_Heal
CareClaiOuter();

......

......
input.setDefaultX12Delimiters();

getSegmentTerminator

Description

Gets the segmentTerminator character.

Syntax

public char getSegmentTerminator()

Parameters

None.

Constants

None.

Returns

char
Returns the segment terminator character.

Throws

None.
HIPAA ETD Library User’s Guide 33

Chapter 5 Section 5.1
HIPAA ETD Library Java Methods Java Methods
Examples

com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_HealCareClaiOuter
input=new com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_Heal
CareClaiOuter();

......

......
char segTerm=input.getSegmentTerminator();

setSegmentTerminator

Description

Sets the segmentTerminator character.

Syntax

public void setSegmentTerminator(char c)

Parameters

Constants

None.

Returns

void (none).

Throws

None.

Examples

com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_HealCareClaiOuter
input=new com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_Heal
CareClaiOuter();

......

......
char c='~';
input.setSegmentTerminator(c);

getElementSeparator

Description

Gets the elementSeparator character.

Syntax

public char getElementSeparator()

Parameters

None.

Name Type Description

c char The character to be set as the
segment terminator.
HIPAA ETD Library User’s Guide 34

Chapter 5 Section 5.1
HIPAA ETD Library Java Methods Java Methods
Constants

None.

Returns

char
Returns the element separator character.

Throws

None.

Examples

com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_HealCareClaiOuter
input=new com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_Heal
CareClaiOuter();

......

......
char elmSep=input.getElementSeparator();

setElementSeparator

Description

Sets the elementSeparator character.

Syntax

public void setElementSeparator(char c);

Parameters

Constants

None.

Returns

void (none).

Throws

None.

Examples

com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_HealCareClaiOuter
input=new com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_Heal
CareClaiOuter();

......

......
char c='+';
input.setElementSeparator(c);

Name Type Description

c char The character to be set as the
element separator.
HIPAA ETD Library User’s Guide 35

Chapter 5 Section 5.1
HIPAA ETD Library Java Methods Java Methods
getSubelementSeparator

Description

Gets the subelementSeparator character.

Syntax

public char getSubelementSeparator()

Parameters

None.

Constants

None.

Returns

char
Returns the subelement separator character.

Throws

None.

Examples

com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_HealCareClaiOuter
input=new com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_Heal
CareClaiOuter();

......

......
char subeleSep=input.getSubelementSeparator();

setSubelementSeparator

Description

Sets the subelementSeparator character.

Syntax

public void setSubelementSeparator(char c)

Parameters

Constants

None.

Returns

void (none).

Name Type Description

c char The character to be set as the
subelement separator.
HIPAA ETD Library User’s Guide 36

Chapter 5 Section 5.1
HIPAA ETD Library Java Methods Java Methods
Throws

None.

Examples

com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_HealCareClaiOuter
input=new com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_Heal
CareClaiOuter();

......

......
char c=':';
input.setSubelementSeparator(c);

getRepetitionSeparator

Description

Gets the repetitionSeparator character.

Syntax

public char getRepetitionSeparator()

Parameters

None.

Constants

None.

Returns

char
Returns the repetition separator character.

Throws

None.

Examples

com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_HealCareClaiOuter
input=new com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_Heal
CareClaiOuter();

......

......
char repSep=input.getRepetitionSeparator();

setRepetitionSeparator

Description

Sets the repetitionSeparator character.

Syntax

public void setRepetitionSeparator(char c)
HIPAA ETD Library User’s Guide 37

Chapter 5 Section 5.1
HIPAA ETD Library Java Methods Java Methods
Parameters

Constants

None.

Returns

void (none).

Throws

None.

Examples

com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_HealCareClaiOuter
input=new com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_Heal
CareClaiOuter();

......

......
char c='*';
input.setRepetitionSeparator(c);

performValidation (no parameters)

Description

Performs validation on the ETD content after unmarshalling from the input data.
Unlike the validate method, performValidation does not return a string of error
messages. After calling performValidation, you must call getAllErrors,
getMsgValidationResult, getICValidationResult, getFGValidationResult, or
getTSValidationResult to obtain error information for the input data.

Syntax

public void performValidation()

Parameters

None.

Constants

None.

Returns

void (none).

Throws

None.

Name Type Description

c char The character to be set as the
repetition separator.
HIPAA ETD Library User’s Guide 38

Chapter 5 Section 5.1
HIPAA ETD Library Java Methods Java Methods
Examples

com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_HealCareClaiOuter
input=new com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_Heal
CareClaiOuter();

com.stc.hipaa.X12ValidationResult output=new
com.stc.hipaa.X12ValidationResult();
.....
.....
if (input().isUnmarshalComplete())

input().performValidation();
output().addDataErrors(input().getMsgValidationResult());

performValidation (boolean parameter)

Description

Validates the ETD content, either immediately after unmarshalling or in memory.
Unlike the validate method, performValidation does not return a string of error
messages. You must call getAllErrors, getMsgValidationResult,
getICValidationResult, getFCValidationResult, or getTSValidationResult to obtain
error information for the input data.

When used with the parameter set to true, this method works in the same way as
performValidation (with no parameters). When set to false, this method validates the
input in memory (that is, the input prior to unmarshalling). For more information
about validating in memory or validating after unmarshalling, see “validate (boolean
parameter)” on page 46.

Syntax

public void performValidation(boolean original)

Parameters

Constants

None.

Returns

void (none).

Throws

None.

Name Type Description

original boolean If true, validates the ETD content
right after unmarshalling. If false,
validates the ETD in memory.
HIPAA ETD Library User’s Guide 39

Chapter 5 Section 5.1
HIPAA ETD Library Java Methods Java Methods
Examples

com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_HealCareClaiOuter
input=new com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_Heal
CareClaiOuter();

com.stc.hipaa.X12ValidationResult output=new
com.stc.hipaa.X12ValidationResult();
.....
.....
if (input().isUnmarshalComplete())

input().performValidation(true);
output().addDataErrors(input().getMsgValidationResult());

isUnmarshalComplete

Description

Checks if unmarshalling was completed successfully. If unmarshalling was completed
successfully, processing continues. If it was not completed successfully, call
getUnmarshalErrors to retrieve a list of the errors that occurred.

Syntax

public boolean isUnmarshalComplete()

Parameters

None.

Constants

None.

Returns

boolean
Returns Boolean true if unmarshalling was completed successfully; returns Boolean
false otherwise.

Throws

None.

Examples

com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_HealCareClaiOuter
input=new com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_Heal
CareClaiOuter();

com.stc.hipaa.X12ValidationResult output=new
com.stc.hipaa.X12ValidationResult();
.....
if (input().isUnmarshalComplete())

input().performValidation();
output().addDataErrors(input().getMsgValidationResult());

getUnmarshalErrors

Description

Retrieves an array of unmarshal error objects of the type “DataError”. Call this after
isUnmarshalComplete returns false, which indicates that unmarshalling was not
HIPAA ETD Library User’s Guide 40

Chapter 5 Section 5.1
HIPAA ETD Library Java Methods Java Methods
finished due to errors. As an alternative, you can call getMsgValidationResult or
getAllErrors.

Note: When getMsgValidationResult or getAllErrors is called without first calling
performValidation, they return an array of unmarshalling errors.

Syntax

public com.stc.hipaa.DataError[] getUnmarshalErrors()

Parameters

None.

Constants

None.

Returns

com.stc.hipaa.DataError[]
An array of errors found during the validation process.

Throws

None.

Examples

com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_HealCareClaiOuter
input=new com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_Heal
CareClaiOuter();

com.stc.hipaa.X12ValidationResult output=new
com.stc.hipaa.X12ValidationResult();
.....
if (input().isUnmarshalComplete())
.....
else

output().addDataErrors(input().getUnmarshalErrors());

getMsgValidationResult

Description

Returns an array of errors found during unmarshalling from the input data and any
errors found during validation (performValidation).

Syntax

public com.stc.hipaa.DataError[] getMsgValidationResult()

Parameters

None.

Constants

None.
HIPAA ETD Library User’s Guide 41

Chapter 5 Section 5.1
HIPAA ETD Library Java Methods Java Methods
Returns

com.stc.hipaa.DataError[]
An array of errors found in the input data during unmarshalling and the validation
process.

Throws

None.

Examples

com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_HealCareClaiOuter
input=new com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_Heal
CareClaiOuter();

com.stc.hipaa.X12ValidationResult output=new
com.stc.hipaa.X12ValidationResult();
.....
.....
if (input().isUnmarshalComplete()) {

input().performValidation();
output().addDataErrors(input().getMsgValidationResult());

getAllErrors

Description

Outputs an array of string representations of all errors that occurred during
unmarshalling from the input data and the validation results for both the message and
envelopes.

Note: To view a sample error message that getAllErrors would output, see “Validation
Error Reporting” in Chapter 4 of the HIPAA Implementation Guide. This section
provides information about each element in the error code.

Syntax

public java.lang.String[] getAllErrors()

Parameters

None.

Constants

None.

Returns

String[]
A string array of error messages describing any errors in the input data. If there are
no errors, the array size is zero (0).

Throws

None.
HIPAA ETD Library User’s Guide 42

Chapter 5 Section 5.1
HIPAA ETD Library Java Methods Java Methods
Examples

com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_HealCareClaiOuter
input=new com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_Heal
CareClaiOuter();

com.stc.hipaa.X12ValidationResult output=new
com.stc.hipaa.X12ValidationResult();
.....
.....
if (input().isUnmarshalComplete()) {

input().performValidation();
output().addDataErrors(input().getAllErrors());

getICValidationResult

Description

Outputs results from performValidation, but only outputs results of the interchange
(IC) envelope validation.

Note: Only certain IC validations are performed. For more information about IC
validations, see “getICValidationResult” on page 59.

Syntax

public com.stc.hipaa.ICError[] getICValidationResult()

Parameters

None.

Constants

None.

Returns

com.stc.hipaa.ICError[]
An array of interchange envelope errors found during the validation process.

Throws

None.

Examples

com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_HealCareClaiOuter
input=new com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_Heal
CareClaiOuter();

com.stc.hipaa.X12ValidationResult output=new
com.stc.hipaa.X12ValidationResult();
.....
.....
if (input().isUnmarshalComplete())

input().performValidation();
output().addDataErrors(input().getICValidationResult());
HIPAA ETD Library User’s Guide 43

Chapter 5 Section 5.1
HIPAA ETD Library Java Methods Java Methods
getFGValidationResult

Description

Outputs the results of performValidation, but only outputs results of the functional
group (FG) envelope validation.

Note: Only certain FG validations are performed. For more information about FG
validations, see “getICValidationResult” on page 59.

Syntax

public com.stc.hipaa.FGError[] getFGValidationResult()

Parameters

None.

Constants

None.

Returns

com.stc.hipaa.FGError[]
An array of the functional group envelope errors found during the validation
process.

Throws

None.

Examples

com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_HealCareClaiOuter
input=new com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_Heal
CareClaiOuter();

com.stc.hipaa.X12ValidationResult output=new
com.stc.hipaa.X12ValidationResult();
.....
.....
if (input().isUnmarshalComplete())

input().performValidation();
output().addDataErrors(input().getFGValidationResult());

getTSValidationResult

Description

Outputs the result of performValidation, but only outputs results of the transaction/
message (TS) envelope validation.

Note: Only certain TS validations are performed. For more information about TS
validations, see “getICValidationResult” on page 59.

Syntax

public com.stc.hipaa.TSError[] getTSValidationResult()
HIPAA ETD Library User’s Guide 44

Chapter 5 Section 5.1
HIPAA ETD Library Java Methods Java Methods
Parameters

None.

Constants

None.

Returns

com.stc.hipaa.TSError[]
An array of transaction/message envelope errors found during the validation
process.

Throws

None.

Examples

com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_HealCareClaiOuter
input=new com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_Heal
CareClaiOuter();

com.stc.hipaa.X12ValidationResult output=new
com.stc.hipaa.X12ValidationResult();
.....
.....
if (input().isUnmarshalComplete())

input().performValidation();
output().addDataErrors(input().getTSValidationResult());

validate (no parameters)

Description

Validates the ETD content in memory, and outputs a concatenation of strings listing all
unmarshalling, envelope, and message errors that occurred.

For example, if one of the nodes populated in the ETD has an inappropriate value, this
method outputs a string providing this information. If there are no problems with the
ETD content, the output is a null string.

If you want to list validation errors by type of error instead of listing all errors together,
use performValidation, along with the message output methods (getMsgValidation,
getTCSValidationResult, and so on), instead of validate.

Syntax

public java.lang.String validate()

Parameters

None.

Constants

None.

Returns

String
A description of the errors in the data. If there are no errors, the string is null.
HIPAA ETD Library User’s Guide 45

Chapter 5 Section 5.1
HIPAA ETD Library Java Methods Java Methods
Throws

None.

Examples

com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_HealCareClaiOuter
input=new com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_Heal
CareClaiOuter();

......

......
string msg=input.validate();

validate (boolean parameter)

Description

Validates the ETD content, either immediately after unmarshalling or in memory,
depending on the value of the Boolean parameter. This method outputs a concatenation
of strings containing all error types, including marshalling, message, and envelope
errors. If you want to list validation errors by type of error instead, use
performValidation, along with the message output methods (getMsgValidation,
getTCSValidationResult, and so on), instead of validate.

When used with the parameter set to false, this method works in the same way as
validate (with no parameters); that is, it validates the ETD content in memory. When
the parameter is set to true, this method validates the input data file after
unmarshalling to the ETD. When the parameter is set to true, this method is able to
provides more extensive validation.

1*BHT*2**8*4**373*4*980905*BHT_4 at 2 [980915]: Data has too few
characters of 6 because >= 8.

Syntax

public java.lang.String validate(boolean original)

Parameters

Constants

None.

Returns

java.lang.String
A description of the errors in the data. If there are no errors, the string is null.

Throws

None.

Name Type Description

original boolean If true, validates the ETD content
right after unmarshalling. If false,
validates the ETD in memory.
HIPAA ETD Library User’s Guide 46

Chapter 5 Section 5.1
HIPAA ETD Library Java Methods Java Methods
Examples

com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_HealCareClaiOuter
input=new com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_Heal
CareClaiOuter();

......

......
string msg=input.validate(true);

countSegments

Description

Returns a count of segments in the given level.

Syntax

public int countSegments()

Parameters

None.

countSegments Constant

None.

Returns

int
An integer representing the number of segments counted in the given level.

Throws

None.

Examples

com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_HealCareClaiOuter
input=new com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_Heal
CareClaiOuter();

......

......
int segments=input.countSegments();

setXMLOutput (boolean isXML)

Description

When used with the parameter set to true, this method causes the HIPAA ETD
involved to output XML.

When used with the parameter set to false, this method causes the HIPAA ETD to
output ANSI (which is the default output if this method is not used at all).

Use this method when the HIPAA ETD is set to automatic output (the default). If the
Collaboration is set to manual output, use marshal (boolean) to achieve the same result.

Syntax

public void setXMLOutput(boolean isXML)
HIPAA ETD Library User’s Guide 47

Chapter 5 Section 5.1
HIPAA ETD Library Java Methods Java Methods
Parameters

Constants

None.

Returns

void (none).

Throws

None.

Examples

com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_HealCareClaiOuter
input=new com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_Heal
CareClaiOuter();

......

......
input.setXMLOutput(true);

marshal (boolean isXMLOutput)

Description

When used with the parameter set to true, this method generates the output byte array
in XML format.

When used with the parameter set to false, this method generates the output byte array
in ANSI format.

Use this method when the ETD is set to manual output. If the ETD is set to automatic
output (the default), use setXMLOutput (boolean parameter) to achieve the same result.

Syntax

public byte[] marshal(boolean isXMLOutput)

Parameters

Constants

None.

Name Type Description

isXML boolean If true, the HIPAA X12 is output in
XML format. If false, output is
standard ANSI X12.

Name Type Description

isXMLOutput boolean If true, the HIPAA X12 is output in
XML format. If false, output is
standard ANSI X12.
HIPAA ETD Library User’s Guide 48

Chapter 5 Section 5.1
HIPAA ETD Library Java Methods Java Methods
Returns

byte []
The output in byte array format.

Throws

None.

Examples

com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_HealCareClaiOuter
input=new com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_Heal
CareClaiOuter();

......

......
byte[] output=input.marshal(true);

stripDataError

Description

Removes error data from the transaction. Use this method to make the validations
against certain elements in HIPAA transactions less restrictive.

Syntax

public void stripDataError(int ErrorCode, short level,
java.lang.String loopIDCode, java.lang.String segmIDCode, int
segmPosiInTransSet, short segmSyntErroCode, short elemPosiInSegm,
short compDataElemPosiInComp, java.lang.String dataElemRefNumb, short
dataElemSyntErroCode, java.lang.String CopyOfBadDataElem)

Parameters

Name Type Description

ErrorCode int The error code number for the
error message to be stripped.
Note: In previous versions, HIPAA
error code numbers began at 5000;
for the current version, they begin
at 15000.

level short The Claredi level of the error
message.

loopIDCode java.lang.String The loop identifier of the loop in
which the error data is located.

segmIDCode java.lang.String The segment identifier of the
segment in which the error data is
located.

segmPosiInTransSet int The position of the segment in the
transaction set.
HIPAA ETD Library User’s Guide 49

Chapter 5 Section 5.1
HIPAA ETD Library Java Methods Java Methods
Parameter Notes

When defining parameters, follow these guidelines.

For parameters of the data type short, you must use a cast for the parameter value.
For example, if the parameter value is “3”, the parameter must be defined as
“(short)3” (without the double quotes).

For parameters of the data type java.lang.String, the value of the parameter must
be placed in double quotes. For example, “Element value is not valid.”

To specify that a parameter not be used in a specific call to a method:

Enter -1 for parameters of the type int.

Enter (short)-1 for parameters of the type short.

Enter null (the actual text “null” with no quotes) for parameters of the type
java.lang.String.

For example, if you do not know the Claredi level of the message you want to strip,
enter “(short)-1” (no quotes) for the level parameter for stripDataError. The method
will then ignore the Claredi level when searching for errors to remove.

Returns

void (none).

Throws

None.

Examples

getoutput().stripDataError(15004,(short)-1,"2000B","SBR",14,
(short)-1,(short)4,(short)-1,null,(short)-1,null);
getoutput().stripDataError(15008,(short)-1,"1000A","PER",-1,
(short)-1,(short)-1,(short)-1,null,(short)-1,null);

segmSyntErroCode short The segment syntax error as it
appears in the AK304 segment of
the 997 Functional
Acknowledgment.

elemPosiInSegm short The position of the element within
the segment.

compDataElemPosiInComp short The position of the element in the
composite.

dataElemRefeNumb java.lang.String The reference number of the data
element.

dataElemSyntErroCode short The element error code as it
appears in the AK403 segment of
the 997 Functional
Acknowledgment.

CopyOfBadDataElem java.lang.String A copy of the bad data value.

Name Type Description
HIPAA ETD Library User’s Guide 50

Chapter 5 Section 5.1
HIPAA ETD Library Java Methods Java Methods
addUserDataError

Description

Adds custom error data to the transaction. Use this method to create custom error
messages for the validations you define for reprocessing HIPAA transactions.

Note: When defining the error messages for the validation logic you create, you must
follow the format of the e*Xchange HIPAA error message structure. For more
information about these messages, see “Validation Error Reporting” and “Appendix
C: Error Codes” in the HIPAA Implementation Guide.

Syntax

public void addUserDataError(int errorCode, java.lang.String
errorDesc, short level, java.lang.String loopIDCode, java.lang.String
segmIDCode, int segmPosiInTransSet, short segmSyntErroCode, short
elemPosiInSegm, short compDataElemPosiInComp, java.lang.String
dataElemRefNumb, short dataElemSyntErroCode, java.lang.String
CopyOfBadDataElem)

Parameters

Important: Review the Parameter Notes on page 50 before using the following
parameters.

Returns

void (none).

Throws

None.

Name Type Description

errorCode int The error code number for the error
message to be added.
Note: The error code numbers must
be between 20000 and 29999.

errorDesc java.lang.String A short description of the error that
occurred. This string cannot contain
pipes (“|”) or asterisks (“*”).

level short The Claredi level of the error
message.

loopIDCode java.lang.String The loop identifier of the loop in
which the error data is located.

segmIDCode java.lang.String The segment identifier of the
segment in which the error data is
located.

segmPosiInTransSet int The position of the segment in the
transaction set.
HIPAA ETD Library User’s Guide 51

Chapter 5 Section 5.1
HIPAA ETD Library Java Methods Java Methods
Examples

getoutput().addUserDataError((short)3,29001,"This is not a valid
value.","2010AB","NM1",27,(short)2,(short)1,(short)7,"576",(short)6,
"Bad Data");
getoutput().addUserDataError((short)3,29002,"Value not found in
specified codeset.","2010AB","NM1",27,(short)8,(short)1,(short)7,
"576",(short)6,"Bad Data")

isExternalCode

Description

Specifies an external code set to use to validate the specified element. Use this method
to change the code set used for a specific element. Be sure to strip any HIPAA code set
errors written against the specified element before re-validating the element against a
new code set.

Syntax

The isExternalCode method can use four different sets of parameters. If you do not
specify a date in the parameter list, the method uses the most recent version of the code
set.

public final static boolean isExternalCode(String value, String
sources)

public final static boolean isExternalCode(String value, String
sources, String dt)

public final static boolean isExternalCode(String value, String
sources, String dt, String qual)

public final static boolean isExternalCode(String value, String
sources, java.util.Date dt)

Parameters

Name Type Description

value java.lang.String The value or element to validate
using the specified code set.

sources java.lang.String The name of the code set to use to
validate the specified element. This
name must match a code set name
defined in the External Codeset
Configuration function.

dt java.lang.String The date in string format. If no qual
parameter is specified, the format
must be “YYYYMMDD”. If a qual
parameter is specified, the format
is specified by the qualifier (qual).
HIPAA ETD Library User’s Guide 52

Chapter 5 Section 5.1
HIPAA ETD Library Java Methods Java Methods
Returns

boolean
Returns Boolean true if the specified element passed the validation against the new
code set; returns Boolean false otherwise.

Throws

None.

Examples

The following sample defines a new external code set, 51, to use to revalidate the value
of the PostCode element.

......
if(!Util.isExternalCode(getinput().getX12.004010X096_00_hipaaQ3_837_H
ealCareClaiInner(0).getX12_004010X096_00_hipaaQ3_837_HealCareClai(0).
getLoop2000A_7_2000(0).getLoop2010AB_16_2010().getN4_msk1_18_GeogLoca
().getE116_3_PostCode(),"51"))
.....

getMandatePlanId

Description

Gets the mandate flag for HIPAA plan identifiers.

segmSyntErroCode short The segment syntax error as it
appears in the AK304 segment of
the 997 Functional
Acknowledgment.

elemPosiInSegm short The position of the element within
the segment.

compDataElemPosiInComp short The position of the element in the
composite.

dataElemRefeNumb java.lang.String The reference number of the data
element.

dataElemSyntErroCode short The element error code as it
appears in the AK403 segment of
the 997 Functional
Acknowledgment.

CopyOfBadDataElem java.lang.String A copy of the bad data value.

dt java.util.Date The date in java.lang.Date format.
This can be used in place of a date
in string format, but cannot be
used if the qual parameter is
specified.

qual java.lang.String A date format qualifier as defined
in SEF.

Name Type Description
HIPAA ETD Library User’s Guide 53

Chapter 5 Section 5.1
HIPAA ETD Library Java Methods Java Methods
Syntax

public boolean getMandatePlanId()

Parameters

None.

Constants

None.

Returns

boolean
Returns true if the flag is set to validate per the HIPAA mandate; returns false if the
flag is not set to validate per the HIPAA mandate.

Throws

None.

Examples

com.stc.hipaa277_A120.X12_004010X093_00_hipaa277_HealCareClaiStatNoti
Outer input=new com.stc.hipaa277_A120.X12_004010X093_00_hipaa277_
HealCareClaiStatNotiOuter();

......

......
boolean planID=input.getMandatePlanId();

setMandatePlanId

Description

Sets the mandate flag for HIPAA plan identifiers.

Syntax

public void setMandatePlanId(boolean flag)

Parameters

Constants

None.

Returns

void (none).

Name Type Description

flag boolean An indicator that specifies whether
to validate against the HIPAA
identifier mandate. Set the flag to
true to validate plan identifiers; set
the flag to false to allow non-
mandated identifiers.
HIPAA ETD Library User’s Guide 54

Chapter 5 Section 5.1
HIPAA ETD Library Java Methods Java Methods
Throws

None.

Examples

com.stc.hipaa277_A120.X12_004010X093_00_hipaa277_HealCareClaiStatNoti
Outer input=new com.stc.hipaa277_A120.X12_004010X093_00_hipaa277_
HealCareClaiStatNotiOuter();

......

......
boolean flag=true;
input.setMandatePlanId(flag);

getMandateProviderId

Description

Gets the mandate flag for HIPAA provider identifiers.

Syntax

public boolean getMandateProviderId()

Parameters

None.

Constants

None.

Returns

boolean
Returns true if the flag is set to validate per the HIPAA mandate; returns false if the
flag is not set to validate per the HIPAA mandate.

Throws

None

Examples

com.stc.hipaa277_A120.X12_004010X093_00_hipaa277_HealCareClaiStatNoti
Outer input=new com.stc.hipaa277_A120.X12_004010X093_00_hipaa277_
HealCareClaiStatNotiOuter();

......

......
boolean providerID=input.getMandateProviderId();

setMandateProviderId

Description

Sets the mandate flag for HIPAA provider identifiers.

Syntax

public void setMandateProviderId(boolean flag)
HIPAA ETD Library User’s Guide 55

Chapter 5 Section 5.1
HIPAA ETD Library Java Methods Java Methods
Parameters

Constants

None.

Returns

void (none).

Throws

None.

Examples

com.stc.hipaa277_A120.X12_004010X093_00_hipaa277_HealCareClaiStatNoti
Outer input=new com.stc.hipaa277_A120.X12_004010X093_00_hipaa277_
HealCareClaiStatNotiOuter();

......

......
boolean flag=true;
input.setMandateProviderId(flag);

getMandateIndividualId

Description

Gets the mandate flag for HIPAA patient identifiers.

Syntax

public boolean getMandateIndividualId()

Parameters

None.

Constants

None.

Returns

boolean
Returns true if the flag is set to validate per the HIPAA mandate; returns false if the
flag is not set to validate per the HIPAA mandate.

Throws

None.

Name Type Description

flag boolean An indicator that specifies whether
to validate against the HIPAA
identifier mandate. Set the flag to
true to validate provider
identifiers; set the flag to false to
allow non-mandated identifiers.
HIPAA ETD Library User’s Guide 56

Chapter 5 Section 5.1
HIPAA ETD Library Java Methods Java Methods
Examples

com.stc.hipaa277_A120.X12_004010X093_00_hipaa277_HealCareClaiStatNoti
Outer input=new com.stc.hipaa277_A120.X12_004010X093_00_hipaa277_
HealCareClaiStatNotiOuter();

......

......
boolean indivID=input.getMandateIndividualId();

setMandateIndividualId

Description

Sets the mandate flag for HIPAA patient identifiers.

Syntax

public void setMandateIndividualId(boolean flag)

Parameters

Constants

None.

Returns

void (none).

Throws

None.

Examples

com.stc.hipaa277_A120.X12_004010X093_00_hipaa277_HealCareClaiStatNoti
Outer input=new com.stc.hipaa277_A120.X12_004010X093_00_hipaa277_
HealCareClaiStatNotiOuter();

......

......
boolean flag=true;
input.setMandateIndividualId(flag);

getMandateEmployerId

Description

Gets the mandate flag for HIPAA employer identifiers.

Name Type Description

flag boolean An indicator that specifies whether
to validate against the HIPAA
identifier mandate. Set the flag to
true to validate patient identifiers;
set the flag to false to allow non-
mandated identifiers.
HIPAA ETD Library User’s Guide 57

Chapter 5 Section 5.1
HIPAA ETD Library Java Methods Java Methods
Syntax

public boolean getMandateEmployerId()

Parameters

None.

Constants

None.

Returns

boolean
Returns true if the flag is set to validate per the HIPAA mandate; returns false if the
flag is not set to validate per the HIPAA mandate.

Throws

None.

Examples

com.stc.hipaa277_A120.X12_004010X093_00_hipaa277_HealCareClaiStatNoti
Outer input=new com.stc.hipaa277_A120.X12_004010X093_00_hipaa277_
HealCareClaiStatNotiOuter();

......

......
boolean employerID=input.getMandateEmployerId();

setMandateEmployerId

Description

Sets the mandate flag for HIPAA employer identifiers.

Syntax

public void setMandateEmployerId(boolean flag)

Parameters

Constants

None.

Returns

void (none).

Name Type Description

flag boolean An indicator that specifies whether
to validate against the HIPAA
identifier mandate. Set the flag to
true to validate employer
identifiers; set the flag to false to
allow non-mandated identifiers.
HIPAA ETD Library User’s Guide 58

Chapter 5 Section 5.2
HIPAA ETD Library Java Methods Error Message Formats
Throws

None.

Examples

com.stc.hipaa277_A120.X12_004010X093_00_hipaa277_HealCareClaiStatNoti
Outer input=new com.stc.hipaa277_A120.X12_004010X093_00_hipaa277_
HealCareClaiStatNotiOuter();

......

......
boolean flag=true;
input.setMandateEmployerId(flag);

5.2 Error Message Formats
The error messages you can retrieve using the HIPAA ETD Library Java methods vary
in format depending on the type of messages you decide to retrieve.

getAllErrors, getUnmarshalErrors, and getMsgValidationResult

These methods return messages in the format described in Chapter 4 of the HIPAA
Implementation Guide under “Validation Error Reporting”. Additional error message
information can be found in Appendix C, “Error Codes”, of the HIPAA Implementation
Guide.

getICValidationResult

This method retrieves error information for the interchange (IC) envelope validation.
The resulting error messages contain five fields delimited by asterisks (*), and the
information contained in the messages corresponds to certain fields in the X12
Interchange Acknowledgment response. Table 5 lists each field in the e*Xchange error
message, providing a field description and the corresponding location in the
Interchange Acknowledgment response for each. A sample error message appears
below.

000001040*020428*0130*021*Invalid Number of Included Groups Value

Table 4 Interchange Validation Error Message Format

Error Message
Field Position

Description
Interchange

Acknowledgment Field

1 Interchange Control Number TA101

2 Interchange Date TA102

3 Interchange Time TA103

4 Interchange Note Code TA105

5 Interchange Note Description NA
HIPAA ETD Library User’s Guide 59

Chapter 5 Section 5.2
HIPAA ETD Library Java Methods Error Message Formats
e*Xchange reports the following interchange error notes. These note codes and
descriptions appear in fields 4 and 5 of the e*Xchange error message.

Note Code 001: The Interchange Control Number in the Header and Trailer Do Not
Match. The Value From the Header is Used in the Acknowledgment.

Note Code 021: Invalid Number of Included Groups Value

getFGValidationResult

This method retrieves error information for the functional group (FG) envelope
validation. The resulting error messages contain five fields delimited by asterisks (*),
and the information contained in the messages corresponds to certain fields in the X12
997 Functional Acknowledgment response. Table 5 lists each field in the e*Xchange
error message, providing a field description and the corresponding location in the 997
response for each. A sample message appears below.

HC*2*2*4*Group Control Number in the Functional Group Header and
Trailer Do Not Agree

e*Xchange reports the following functional group errors. These error codes and
descriptions appear in fields 4 and 5 of the e*Xchange error message.

Syntax Error Code 4: Group Control Number in the Functional Group Header and
Trailer Do Not Agree

Syntax Error Code 5: Number of Included Transaction Sets Does Not Match Actual
Count

getTSValidationResult

This method retrieves error information for the transaction/message (TS) envelope
validation. The resulting error messages contain four fields delimited by asterisks (*),
and the information contained in the messages corresponds to certain fields in the X12
997 Functional Acknowledgment response. Table 6 lists each field, providing a field
description and the corresponding location in the 997 response for each. A sample
message appears below.

837*000001040*6*Missing or Invalid Transaction Set Identifier

Table 5 Functional Group Validation Error Message Format

Error Message
Field Position

Description 997 Response Field

1 Functional Identifier Code AK101

2 Group Control Number AK102

3 Number of Transaction Sets
Included

AK902

4 Functional Group Syntax Error Code AK905 - AK909

5 Functional Group Error Description NA
HIPAA ETD Library User’s Guide 60

Chapter 5 Section 5.2
HIPAA ETD Library Java Methods Error Message Formats
e*Xchange reports the following transaction set errors. These error codes and
descriptions appear in fields 3 and 4 of the e*Xchange error message.

Syntax Error Code 3: Transaction Set Control Number in Header and Trailer Do Not
Match

Syntax Error Code 4: Number of Included Segments Does Not Match Actual Count

Syntax Error Code 6: Missing or Invalid Transaction Set Identifier

Table 6 Transaction/Message Validation Error Message Format

Error Message
Field Position

Description 997 Response Field

1 Transaction Set Identifier Code AK201

2 Transaction Set Control Number AK202

3 Transaction Set Syntax Error Code AK502 - AK506

4 Transaction Set Error Description NA
HIPAA ETD Library User’s Guide 61

Appendix A

ASC X12 Overview

This appendix provides an overview of the X12 standard, including:

An overview of ASC X12, including the structure of an X12 envelope, data
elements, and syntax.

An explanation of how to use the generic message structures provided as an add-on
to the e*Gate Integrator to help you quickly create the structures you need for
various X12 transactions.

For specific information on HIPAA, refer to Chapter 2, “HIPAA Overview” on page 8.

A.1 Introduction to X12
The following sections provide an introduction to X12.

A.1.1. What Is ASC X12?
ASC X12 is an EDI (electronic data interchange) standard, developed for the electronic
exchange of machine-readable information between businesses.

The Accredited Standards Committee (ASC) X12 was chartered by the American
National Standards Institute (ANSI) in 1979 to develop uniform standards for
interindustry electronic interchange of business transactions—electronic data
interchange (EDI). The result was the X12 standard.

The ASC X12 body develops, maintains, interprets, and promotes the proper use of the
ASC X12 standard. Data Interchange Standards Association (DISA) publishes the ASC
X12 standard and the UN/EDIFACT standard. The ASC X12 body comes together three
times a year to develop and maintain EDI standards. Its main objective is to develop
standards to facilitate electronic interchange relating to business transactions such as
order placement and processing, shipping and receiving information, invoicing, and
payment information.

The ASC X12 EDI standard is used for EDI within the United States. UN/EDIFACT is
broadly used in Europe and other parts of the world.

X12 was originally intended to handle large batches of transactions. However, it has
been extended to encompass real-time processing (transactions sent individually as
they are ready to send, rather than held for batching) for some healthcare transactions
to accommodate the healthcare industry.
HIPAA ETD Library User’s Guide 62

Appendix A Section A.2
ASC X12 Overview Components of an X12 Envelope
A.1.2. What Is a Message Structure?
The term message structure (also called a transaction set structure) refers to the way in
which data elements are organized and related to each other for a particular EDI
transaction.

In e*Gate, a message structure is called an Event Type Definition (ETD). Each message
structure (ETD) consists of the following:

Physical hierarchy

The predefined way in which envelopes, segments, and data elements are
organized to describe a particular X12 EDI transaction.

Delimiters

The specific predefined characters that are used to mark the beginning and end of
envelopes, segments, and data elements.

Properties

The characteristics of a data element, such as the length of each element, default
values, and indicators that specify attributes of a data element—for example,
whether it is required, optional, or repeating.

The transaction set structure of a claim that is sent from a payer to a provider defines
the header, trailer, segments, and data elements required by claim transactions.
Installation of X12 templates for a specific version includes transaction set structures for
each of the transactions available in that version.

The X12 ETD Library provides e*Gate Event Type Definitions, which are based on the
X12 message structures, to verify that the data in the messages coming in or going out is
in the correct format. There is a message structure for each X12 transaction. The HIPAA
ETD Library provides a message structure for each X12 HIPAA transaction.

The list of transactions provided is different for each version of X12, and for each
customized implementation. This book addresses the transactions covered by the May
1999 and May 2000 implementations of the HIPAA standard.

A.2 Components of an X12 Envelope
X12 messages are all ASCII text, with the exception of the BIN segment which is binary.

Each X12 message is made up of a combination of the following elements:

Data elements

Segments

Loops

Elements are separated by delimiters.

More information on each of these is provided below.
HIPAA ETD Library User’s Guide 63

Appendix A Section A.2
ASC X12 Overview Components of an X12 Envelope
A.2.1. Data Elements
The data element is the smallest named unit of information in the ASC X12 standard.
Data elements can be broken down into two types. The distinction between the two is
strictly a matter of how they are used. The two types are:

Simple

If a data element occurs in a segment outside the defined boundaries of a composite
data structure it is called a simple data element.

Composite

If a data element occurs as an ordinally positioned member of a composite data
structure it is called a composite data element.

Each data element has a unique reference number; it also has a name, description, data
type, and minimum and maximum length.

A.2.2. Segments
A segment is a logical grouping of data elements. In X12, the same segment can be used
for different purposes. This means that a field’s meaning can change based on the
segment. For example:

The NM1 segment is for any name (patient, provider, organization, doctor)

The DTP segment is for any date (date of birth, discharge date, coverage period)

For more information on the X12 enveloping segments, refer to “Structure of an X12
Envelope” on page 65.

A.2.3. Loops
Loops are sets of repeating ordered segments. In X12 you can locate elements by
specifying:

The transaction set (for example, 270)

The loop (for example, “loop 1000” or “info. receiver loop”)

The occurrence of the loop

The segment (for example, BGN)

The field number (for example, 01)

The occurrence of the segment (if it is a repeating segment)

A.2.4. Delimiters
In an X12 message, the various delimiters act as syntax, dividing up the different
elements of a message. The delimiters used in the message are defined in the
interchange control header, the outermost layer enveloping the message. For this
reason, there is flexibility in the delimiters that are used.
HIPAA ETD Library User’s Guide 64

Appendix A Section A.3
ASC X12 Overview Structure of an X12 Envelope
No suggested delimiters are recommended as part of the X12 standards, but the
industry-specific implementation guides do have recommended delimiters.

The default delimiters used by the HIPAA ETD Library are the same as those
recommended by the industry-specific implementation guides. These delimiters are
shown in Table 7.

Note: It is important to note that errors could result if the transmitted data itself includes
any of the characters that have been defined as delimiters. Specifically, the existence
of asterisks within transmitted application data is a known issue in X12, and can
cause problems with translation.

A.3 Structure of an X12 Envelope
The rules applying to the structure of an X12 envelope are very strict to ensure the
integrity of the data and the efficiency of the information exchange.

The actual X12 message structure has three main levels. From the highest to the lowest
they are:

Interchange Envelope

Functional Group

Transaction Set

A schematic of X12 envelopes is shown in Figure 13. Each of these levels is explained in
more detail in the following sections.

Table 7 Default Delimiters in X12 ETD Library

Type of Delimiter Default Value

Segment terminator ~ (tilde)

Data element separator * (asterisk)

Subelement (component) separator : (colon)
HIPAA ETD Library User’s Guide 65

Appendix A Section A.3
ASC X12 Overview Structure of an X12 Envelope
Figure 13 X12 Envelope Schematic

Note: The above schematic is from Appendix B of an ASC X12 implementation guide.

Figure 14 shows the standard segment table for an X12 997 (Functional
Acknowledgment) as it appears in the X12 standard and in most industry-specific
implementation guides.
HIPAA ETD Library User’s Guide 66

Appendix A Section A.3
ASC X12 Overview Structure of an X12 Envelope
Figure 14 X12 997 Segment Table

Figure 15 shows the same transaction as viewed in the Java ETD Editor.

Figure 15 X12 997 Viewed in Java ETD Editor

A.3.1. Transaction Set (ST/SE)
Each transaction set (also called a transaction) contains three things:

A transaction set header

A transaction set trailer

A single message, enveloped within the header and footer
HIPAA ETD Library User’s Guide 67

Appendix A Section A.3
ASC X12 Overview Structure of an X12 Envelope
The transaction has a three-digit code, a text title, and a two-letter code; for example,
997, Functional Acknowledgment (FA).

The transaction consists of logically related pieces of information, grouped into units
called segments. For example, one segment used in the transaction set might convey the
address: city, state, ZIP code, and other geographical information. A transaction set can
contain multiple segments. For example, the address segment could be used repeatedly
to convey multiple sets of address information.

The X12 standard defines the sequence of segments in the transaction set and also the
sequence of elements within each segment. The relationship between segments and
elements could be compared to the relationship between records and fields in a
database environment.

Figure 16 Example of a Transaction Set Header (ST)

Figure 17 Example of a Transaction Set Trailer (SE)

A.3.2. Functional Group (GS/GE)
A functional group is comprised of one or more transaction sets, all of the same type,
that can be batched together in one transmission. The functional group is defined by the
header and trailer; the Functional Group Header (GS) appears at the beginning, and the
Functional Group Trailer (GE) appears at the end. Many transaction sets can be
included in the functional group, but all transactions must be of the same type.

Within the functional group, each transaction set is assigned a functional identifier
code, which is the first data element of the header segment. The transaction sets that
comprise a specific functional group are identified by this functional ID code.

The functional group header (GS) segment contains the following information:

Functional ID code (the two-letter transaction code; for example, PO for an 850
Purchase Order, HS for a 270 Eligibility, Coverage, or Benefit Inquiry) to indicate the
type of transaction in the functional group

Identification of sender and receiver

Control information (the functional group control numbers in the header and trailer
segments must be identical)

Date and time

ST*270*0159~

Transaction Set
Identifier Code

Transaction Set Control
Number

SE*41*0159~

Number of
Included Segments

Transaction Set Control
Number
HIPAA ETD Library User’s Guide 68

Appendix A Section A.3
ASC X12 Overview Structure of an X12 Envelope
The functional group trailer (GE) segment contains the following information:

Number of transaction sets included

Group control number (originated and maintained by the sender)

Figure 18 Example of a Functional Group Header (GS)

Figure 19 Example of a Functional Group Trailer (GE)

A.3.3. Interchange Envelope (ISA/IEA)
The interchange envelope is the wrapper for all the data to be sent in one batch. It can
contain multiple functional groups. This means that transactions of different types can
be included in the interchange envelope, with each type of transaction stored in a
separate functional group.

The interchange envelope is defined by the header and trailer; the Interchange Control
Header (ISA) appears at the beginning, and the Interchange Control Trailer (IEA)
appears at the end.

As well as enveloping one or more functional groups, the interchange header and
trailer segments include the following information:

Data element separators and data segment terminator

Identification of sender and receiver

Control information (used to verify that the message was correctly received)

Authorization and security information, if applicable

The sequence of information that is transmitted is as follows:

Interchange header

Optional interchange-related control segments

Actual message information, grouped by transaction type into functional groups

GS*HS*6264712000*6264716000*20000515*1457*126*X*004010X092~

Functional ID code

Group control number

Sender’s ID code

Receiver’s ID code

Date Time Version/Release/
Identifier Code

Responsible Agency Code

GE*1*126~

Number of
transaction sets

Group control
number
HIPAA ETD Library User’s Guide 69

Appendix A Section A.3
ASC X12 Overview Structure of an X12 Envelope
Interchange trailer

Figure 20 Example of an Interchange Header (ISA)

Interchange Header Segments from Figure 20:

Figure 21 Example of an Interchange Trailer (IEA)

A.3.4. Control Numbers
The X12 standard includes a control number for each enveloping layer:

ISA13—Interchange Control Number

GS06—Functional Group Control Number

ST02—Transaction Set Control Number

The control numbers act as identifiers, useful in message identification and tracking.

ISA13 (Interchange Control Number)

The ISA13 is assigned by the message sender. It must be unique for each interchange.

GS06 (Functional Group Control Number)

The GS06 is assigned by the sender. It must be unique within the Functional Group
assigned by the originator for a transaction set.

1 Authorization Information Qualifier
2 Security Information Qualifier
3 Interchange ID Qualifier
4 Interchange Sender ID
5 Interchange ID Qualifier
6 Interchange Receiver ID
7 Date

8 Time
9 Repetition Separator
10Interchange Control Version Number
11Interchange Control Number
12Acknowledgment Requested
13Usage Indicator

ISA*00* *00* *01*6264712000 *01*6264716000

*000515*1457*U*00401*000000028*0*T*:~

10 11987 12 13

1 2 3 4 5 6

IEA*1*000000028~

Number of included
functional groups

Interchange
control number
HIPAA ETD Library User’s Guide 70

Appendix A Section A.4
ASC X12 Overview Acknowledgment Types
Note: The Functional Group control number GS06 in the header must be identical to the
same data element in the associated Functional Group trailer, GE02.

ST02 (Transaction Set Control Number)

The ST02 is assigned by the sender, and is stored in the transaction set header. It must
be unique within the Functional Group.

Note: The control number in ST02 must be identical with the SE02 element in the
transaction set trailer, and must be unique within a Functional Group (GS-GE).

A.4 Acknowledgment Types
X12 includes two types of acknowledgment, the TA1 Interchange Acknowledgment
and the 997 Functional Acknowledgment.

A.4.1. TA1, Interchange Acknowledgment
The TA1 acknowledgment verifies the interchange envelopes only. The TA1 is a single
segment and is unique in the sense that this single segment is transmitted without the
GS/GE envelope structures. A TA1 acknowledgment can be included in an interchange
with other functional groups and transactions.

A.4.2. 997, Functional Acknowledgment
The 997 includes much more information than the TA1. The 997 was designed to allow
trading partners to establish a comprehensive control function as part of the business
exchange process.

There is a one-to-one correspondence between a 997 and a functional group. Segments
within the 997 identify whether the functional group was accepted or rejected. Data
elements that are incorrect can also be identified.

Many EDI implementations have incorporated the acknowledgment process into all of
their electronic communications. Typically, the 997 is used as a functional
acknowledgment to a functional group that was transmitted previously.

The 997 is the acknowledgment transaction recommended by ASC X12.

The acknowledgment of the receipt of a payment order is an important issue. Most
corporate originators want to receive at least a Functional Acknowledgment (997) from
the beneficiary of the payment. The 997 is created using the data about the identity and
address of the originator found in the ISA and/or GS segments.

Some users argue that the 997 should be used only as a point-to-point acknowledgment
and that another transaction set, such as the Application Advice (824) should be used as
the end-to-end acknowledgment.
HIPAA ETD Library User’s Guide 71

Appendix A Section A.5
ASC X12 Overview Key Parts of EDI Processing Logic
A.4.3. Application Acknowledgments
Application acknowledgments are responses sent from the destination system back to
the originating system, acknowledging that the transaction has been successfully or
unsuccessfully completed. The application advice (824) is a generic application
acknowledgment that can be used in response to any X12 transaction. However, it has
to be set up as a response transaction; only TA1 and 997 transactions are sent out
automatically.

Other types of responses from the destination system to the originating system, which
may also be considered application acknowledgments, are responses to query
transactions—for example, the Eligibility Response (271) which is a response to the
Eligibility Inquiry (270). Other types of responses from the destination system to the
originating system, which may also be considered application acknowledgments, are
responses to query transactions—for example, the Eligibility Response (271) which is a
response to the Eligibility Inquiry (270).

A.5 Key Parts of EDI Processing Logic
The five key parts of EDI processing logic are listed in Table 8. The table describes each
term, and lists its language analogy along with its associated e*Gate Collaboration
scripts.

e*Gate uses the structures, validations, translations, enveloping, and acknowledgments
listed below to support HIPAA.

A.5.1. Structures
The Event Type Definition library for HIPAA includes pre-built ETDs for all supported
HIPAA versions.

Table 8 Key Parts of EDI Processing

Term Description
Language
Analogy

e*Gate Collaboration
Scripts

structures format, segments, loops syntax ETD files or structures

validations data contents “edit”
rules

semantics validation scripts

translations (also
called mapping)

reformatting or
conversion

translation translation scripts

enveloping header and trailer
segments

envelopes part of translation

acks acknowledgments return receipt e*Way scripts
HIPAA ETD Library User’s Guide 72

Appendix A Section A.6
ASC X12 Overview Additional Information
A.5.2. Validations, Translations, Enveloping, Acknowledgments
The e*Gate Integrator does not include any pre-built validations, transformations, or
acknowledgments. These scripts can be built in the Java version of the Collaboration
Rules Editor graphical user interface (GUI). These GUIs provide a user-friendly drag-
and-drop front end for creating Java scripts.

For HIPAA, the e*Gate Integrator provides translations in Monk that add the
enveloping information to the HIPAA message.

Installation of the e*Xchange Partner Manager includes a set of custom Java validations
for HIPAA transactions, and also provides acknowledgment receipts, such as an X12
997 Functional Acknowledgment.

Note: In e*Gate, translations are called Collaborations.

A.5.3. Trading Partner Agreements
There are three levels of information that guide the final format of a specific transaction.
These three levels are:

The ASC X12 standard

ASC X12 publishes a standard structure for each X12 transaction.

Industry-specific Implementation Guides

Specific industries publish Implementation Guides customized for that industry.
Normally, these are provided as recommendations only. However, in certain cases,
it is extremely important to follow these guidelines. Specifically, since HIPAA
regulations are law, it is important to follow the guidelines for these transactions
closely.

Trading Partner Agreements

It is normal for trading partners to have individual agreements that supplement the
standard guides. The specific processing of the transactions in each trading
partner’s individual system might vary between sites. Because of this, additional
documentation that provides information about the differences is helpful to the
site’s trading partners and simplifies implementation. For example, while a certain
code might be valid in an implementation guide, a specific trading partner might
not use that code in transactions. It would be important to include that information
in a trading partner agreement.

A.6 Additional Information
For more information on X12, visit the following Web sites:

For X12 standard:

http://www.disa.org
HIPAA ETD Library User’s Guide 73

http://www.disa.org

Appendix A Section A.6
ASC X12 Overview Additional Information
For Implementation Guides: Washington Publishing Company at

http://www.wpc-edi.com

Note: This information is correct at the time of going to press; however, we have no control
over these sites. If you find the links are no longer correct, use a search engine to
search for X12.
HIPAA ETD Library User’s Guide 74

http://www.wpc-edi.com

Index
Index

A
acknowledgments 71, 72

functional acknowledgment (997) 71
interchange acknowledgment (TA1) 71
receipt of payment order 71

Addenda files 19
addUserDataError 51
ANSI 27
ASC 62

B
batch transactions 11

C
Collaborations

for ETD validation 26
compatible systems 7

UNIX 7
control numbers 70

functional group control number (GS06) 70
interchange control number (ISA13) 70
transaction set control number (ST02) 71

countSegments 47

D
data element separator 65
data elements 64
delimiters 64

data element separator 65
segment terminator 65
setting 23
subelement (component) separator 65

document overview 6

E
enveloping 72
error message formats

getAllErrors 59
getFGValidationResult 60
getICValidationResult 59

getMsgValidationResult 59
getTSValidationResult 60
getUnmarshalErrors 59

F
file formats 27
file names 17
files and folders 15
files created by installation 16
functional acknowledgments (997) 71
functional group 68
functional group control number (GS06) 70

G
getAllErrors 42, 59
getElementSeparator 34
getFGValidationResult 44, 60
getICValidationResult 43, 59
getMandateEmployerId 57
getMandateIndividualId 56
getMandatePlanId 53
getMandateProviderId 55
getMsgValidationResult 40, 41, 59
getRepetitionSeparator 37
getSegmentTerminator 33
getTSValidationResult 44, 60
getUnmarshalErrors 40, 59
GS06 (functional group control number) 70

H
HIPAA

additional information (Web sites) 12
file names 17
files and folders 15
files created by installation 16
folder structure created by installation 15
libraries 13

HIPAA template installation 14

I
implementation

acknowledgments 72
enveloping 72
structures 72
translations 72
validations 72

installation 14
installation procedure 14
intended reader 6
HIPAA ETD Library User’s Guide 75

Index
interchange acknowledgment (TA1) 71
interchange control number (ISA13) 70
interchange envelope 69
ISA13 (interchange control number) 70
isExternalCode 52
isUnmarshalComplete 40

J
Java ETD

customizing 21
validating 26
viewing 22

Java methods
countSegments 47
getAllErrors 42
getElementSeparator 34
getFGValidationResult 44
getICValidationResult 43
getMandateEmployerId 57
getMandateIndividualId 56
getMandatePlanId 53
getMandateProviderId 55
getMsgValidationResult 40, 41
getRepetitionSeparator 37
getSegmentTerminator 33
getTSValidationResult 44
getUnmarshalErrors 40
isUnmarshalComplete 40
marshal 48
marshal (boolean parameter) 48
performValidation (boolean param) 39
performValidation (no parameters) 38
setDefaultX12Delimiters 33
setMandateEmployerId 58
setMandateIndividualId 57
setMandatePlanId 54
setMandateProviderId 55
setRepetitionSeparator 37
setSegmentTerminator 34
setXMLOutput 47
validate (boolean param) 46
validate (no parameters) 45

Java methods, listing 31

L
libraries 13
loops 64

M
marshal 48

marshal (boolean parameter) 28, 48
message delimiters, setting 23

N
NCPDP-HIPAA 9, 15

O
output differences, using pass-through 30
overview 6

of document 6
of HIPAA 8

P
performValidation (boolean param) 39
performValidation (no parameters) 38

R
real-time transactions 11
response transactions 72

S
segment terminator 65
segments 64
setDefaultX12Delimiters 33
setMandateEmployerId 58
setMandateIndividualId 57
setMandatePlanId 54
setMandateProviderId 55
setRepetitionSeparator 37
setSegmentTerminator 34
setXMLOutput 28, 47
ST02 (transaction set control number) 71
stripDataError 49
structure of an X12 envelope 65
structures 72
subelement (component) separator 65
syntax

control numbers 70
delimiters 64

T
TA1 (interchange acknowledgment) 71
template installation 14
template location 15

HIPAA 15
trading partner agreements 10, 73
transaction
HIPAA ETD Library User’s Guide 76

Index
batch mode 11
Transaction Codes 9
transaction set 67
transaction set control number (ST02) 71
transactions

real-time mode 11
translations 72

V
validate (boolean param) 46
validate (no parameters) 45
validating data 25
validating ETDs 26
validations 72

W
what is a message structure? 63

X
X12

acknowledgment types 71
additional information (Web sites) 73
data elements 64
envelope structure 65
functional group 68
interchange envelope 69
loops 64
segments 64
transaction set 67
what is it? 62

XML 27
XML output 28
HIPAA ETD Library User’s Guide 77

	HIPAA ETD Library User’s Guide
	Contents
	Introduction
	1.1 Overview
	1.2 Intended Reader
	1.3 Supported Operating Systems

	HIPAA Overview
	2.1 Introduction to HIPAA
	2.1.1. What Is HIPAA?
	2.1.2. Trading Partner Agreements
	2.1.3. Sample Scenario
	2.1.4. Batch and Real-Time Transactions
	Batch
	Real Time

	2.1.5. Data Overview
	2.1.6. Acknowledgment

	2.2 Additional Information

	HIPAA Template Installation
	3.1 HIPAA Libraries
	3.2 Installation Procedure
	3.3 HIPAA Files and Folders
	3.3.1. HIPAA Folder Structure Created by Installation
	3.3.2. File Names
	HIPAA File Names
	NCPDP-HIPAA File Names
	Addenda Files

	Working With the HIPAA X12 ETDs
	4.1 HIPAA ETD Components Naming Conventions
	Envelope and Transaction Names
	Segment Loop Names
	Segment Names
	Composite names
	Element names

	4.2 Customizing a Java ETD
	4.3 Viewing a HIPAA X12 ETD in the ETD Editor
	4.4 Setting the Delimiters
	4.5 Running Validation in the Collaboration Rules Component
	4.5.1. Java Collaboration Rules
	HIPAA Collaboration Rules
	Creating a Collaboration Rule to Validate the ETD

	4.6 Alternative Formats: ANSI and XML
	4.6.1. XML Format for HIPAA X12
	4.6.2. Setting the Collaboration to XML Output

	4.7 Possible Differences in Output When Using Pass- Through

	HIPAA ETD Library Java Methods
	5.1 Java Methods
	5.1.1. Overview
	5.1.2. Available Java Methods
	setDefaultX12Delimiters
	getSegmentTerminator
	setSegmentTerminator
	getElementSeparator
	setElementSeparator
	getSubelementSeparator
	setSubelementSeparator
	getRepetitionSeparator
	setRepetitionSeparator
	performValidation (no parameters)
	performValidation (boolean parameter)
	isUnmarshalComplete
	getUnmarshalErrors
	getMsgValidationResult
	getAllErrors
	getICValidationResult
	getFGValidationResult
	getTSValidationResult
	validate (no parameters)
	validate (boolean parameter)
	countSegments
	setXMLOutput (boolean isXML)
	marshal (boolean isXMLOutput)
	stripDataError
	addUserDataError
	isExternalCode
	getMandatePlanId
	setMandatePlanId
	getMandateProviderId
	setMandateProviderId
	getMandateIndividualId
	setMandateIndividualId
	getMandateEmployerId
	setMandateEmployerId

	5.2 Error Message Formats
	getAllErrors, getUnmarshalErrors, and getMsgValidationResult
	getICValidationResult
	getFGValidationResult
	getTSValidationResult

	ASC X12 Overview
	A.1 Introduction to X12
	A.1.1. What Is ASC X12?
	A.1.2. What Is a Message Structure?

	A.2 Components of an X12 Envelope
	A.2.1. Data Elements
	A.2.2. Segments
	A.2.3. Loops
	A.2.4. Delimiters

	A.3 Structure of an X12 Envelope
	A.3.1. Transaction Set (ST/SE)
	A.3.2. Functional Group (GS/GE)
	A.3.3. Interchange Envelope (ISA/IEA)
	A.3.4. Control Numbers
	ISA13 (Interchange Control Number)
	GS06 (Functional Group Control Number)
	ST02 (Transaction Set Control Number)

	A.4 Acknowledgment Types
	A.4.1. TA1, Interchange Acknowledgment
	A.4.2. 997, Functional Acknowledgment
	A.4.3. Application Acknowledgments

	A.5 Key Parts of EDI Processing Logic
	A.5.1. Structures
	A.5.2. Validations, Translations, Enveloping, Acknowledgments
	A.5.3. Trading Partner Agreements

	A.6 Additional Information

	Index
	A
	acknowledgments 71, 72
	Addenda files 19
	addUserDataError 51
	ANSI 27
	ASC 62

	B
	batch transactions 11

	C
	Collaborations
	compatible systems 7
	control numbers 70
	countSegments 47

	D
	data element separator 65
	data elements 64
	delimiters 64
	document overview 6

	E
	enveloping 72
	error message formats

	F
	file formats 27
	file names 17
	files and folders 15
	files created by installation 16
	functional acknowledgments (997) 71
	functional group 68
	functional group control number (GS06) 70

	G
	getAllErrors 42, 59
	getElementSeparator 34
	getFGValidationResult 44, 60
	getICValidationResult 43, 59
	getMandateEmployerId 57
	getMandateIndividualId 56
	getMandatePlanId 53
	getMandateProviderId 55
	getMsgValidationResult 40, 41, 59
	getRepetitionSeparator 37
	getSegmentTerminator 33
	getTSValidationResult 44, 60
	getUnmarshalErrors 40, 59
	GS06 (functional group control number) 70

	H
	HIPAA
	HIPAA template installation 14

	I
	implementation
	installation 14
	installation procedure 14
	intended reader 6
	interchange acknowledgment (TA1) 71
	interchange control number (ISA13) 70
	interchange envelope 69
	ISA13 (interchange control number) 70
	isExternalCode 52
	isUnmarshalComplete 40

	J
	Java ETD
	Java methods
	Java methods, listing 31

	L
	libraries 13
	loops 64

	M
	marshal 48
	marshal (boolean parameter) 28, 48
	message delimiters, setting 23

	N
	NCPDP-HIPAA 9, 15

	O
	output differences, using pass-through 30
	overview 6

	P
	performValidation (boolean param) 39
	performValidation (no parameters) 38

	R
	real-time transactions 11
	response transactions 72

	S
	segment terminator 65
	segments 64
	setDefaultX12Delimiters 33
	setMandateEmployerId 58
	setMandateIndividualId 57
	setMandatePlanId 54
	setMandateProviderId 55
	setRepetitionSeparator 37
	setSegmentTerminator 34
	setXMLOutput 28, 47
	ST02 (transaction set control number) 71
	stripDataError 49
	structure of an X12 envelope 65
	structures 72
	subelement (component) separator 65
	syntax

	T
	TA1 (interchange acknowledgment) 71
	template installation 14
	template location 15
	trading partner agreements 10, 73
	transaction
	Transaction Codes 9
	transaction set 67
	transaction set control number (ST02) 71
	transactions
	translations 72

	V
	validate (boolean param) 46
	validate (no parameters) 45
	validating data 25
	validating ETDs 26
	validations 72

	W
	what is a message structure? 63

	X
	X12
	XML 27
	XML output 28

