
HTTP(S) e*Way Intelligent
Adapter User’s Guide

Release 5.0.5 for Schema Run-time
Environment (SRE)

Monk Version

Copyright © 2005, 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and
are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not
use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the
U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and
adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent
applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you
use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. UNIX is a registered trademark licensed through X/Open
Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Version 20100715160550.

HTTP(S) e*Way Intelligent Adapter User’s Guide 2

Contents

HTTP(S) e*Way Intelligent Adapter User’s Guide 3

Contents

Chapter 1

Introduction 7
HTTP(S) e*Way: Overview 7

Using Clear HTTP 8
Intended Reader 8
Components 8
Basic Information 9

General Operation 9

Supported Operating Systems 10

System Requirements 10

Chapter 2

Installation 11
Windows Systems 11

Pre-installation 11
Installation Procedure 11

UNIX Systems 12
Pre-installation 12
Installation Procedure 12

Files/Directories Created by the Installation 13

Chapter 3

Clear HTTP Implementation 15
e*Way Implementation/Clear HTTP: Overview 15

Sample Configurations 16
Creating a Schema Using httpnossl-outgoing 16
Creating a Schema Using httpnossl-exchange 21

Sample Monk Scripts 24
GET (Inbound) Example (HTTP_get) 24
POST (Outbound) Example (HTTP_post) 25
Input File based Example (AUTO_HTTP) 25

Contents

HTTP(S) e*Way Intelligent Adapter User’s Guide 4

Chapter 4

Clear HTTP Functions 27
HTTP Functions: Introduction 27

Basic Functions 27

HTTP Standard Functions 28

HTTP Monk Functions 34

Chapter 5

Secure Sockets Layer Operation 48
Using Secure Sockets Layer: Overview 48

Certificates and Security 48

Using the openssl Utility 49
Working with PKCS12 files 49
Converting PKCS12 Files to PEM Files 49
Converting DER Files to PEM Files 50
Converting Other Formats 50

SSL Handshaking 50

Chapter 6

HTTP(S) e*Way Configuration 54
Introduction 54

e*Way Configuration Parameters 54
General Settings 55

Journal File Name 55
Max Resends Per Message 55
Max Failed Messages 55
Forward External Errors 56

Communication Setup 56
Exchange Data Interval 56
Zero Wait Between Successful Exchanges 57
Start Exchange Data Schedule 57
Stop Exchange Data Schedule 58
Down Timeout 58
Up Timeout 58
Resend Timeout 58

Monk Configuration 59
e*Way Structure 59
Operational Details 60
How to Specify Function Names or File Names 66
Additional Path 66
Auxiliary Library Directories 67

Contents

HTTP(S) e*Way Intelligent Adapter User’s Guide 5

Monk Environment Initialization File 67
Startup Function 68
Process Outgoing Message Function 68
Exchange Data with External Function 69
External Connection Establishment Function 70
External Connection Verification Function 71
External Connection Shutdown Function 71
Positive Acknowledgment Function 72
Negative Acknowledgment Function 72
Shutdown Command Notification Function 73

HTTP Configuration 73
Request 73
Timeout 74
URL 74
User Name 74
Encrypted Password 75
Agent 75
Content-type 75
Request-content 75
Accept-type 76

HTTP Proxy Configuration 76
Use Proxy Server 76
User Name 76
Encrypted Password 76
Server Address 77
Port Number 77

HTTP(S) Configuration 77
Trusted CA Certificates Directory 77
Use Client Certificate Map 77
Client Certificate Map File 78

Working with Certificates 78
Required Certificate Format 78
Obtaining Certificates 79

Obtaining CA Certificates From Secure Sites using Internet Explorer 79
Exporting CA Certificates 80
Working with Client Certificate/Key Pairs 81

Importing Certificates to the e*Gate Registry 82

Chapter 7

HTTP(S) e*Way Implementation 83
HTTP(S) e*Way Implementation: Overview 83

Creating Event Type Definitions from Form Data 84
Creating Event Type Definitions using Command-line Utilities 84
Creating Event Type Definitions from the ETD Editor 85

Sample Configurations 86
Creating a Schema Using http-outgoing 87
Creating a Schema Using http-exchange 92

Sample Monk Scripts 96

Contents

HTTP(S) e*Way Intelligent Adapter User’s Guide 6

GET (Inbound) Example (HTTP_get) 97
POST (Outbound) Example (HTTP_post) 97
Sample Input Data (AUTO_HTTP) 98
GET (Inbound) Example (HTTPS_get) 99

Index 101

HTTP(S) e*Way Intelligent Adapter User’s Guide 7

Chapter 1

Introduction

This guide provides instructions for installing and configuring the HTTP(S) e*WayTM
Intelligent Adapter. This chapter provides an introduction to the e*Way.

1.1 HTTP(S) e*Way: Overview
The HTTP(S) e*Way allows integration with third-party applications over the Internet
using the hyper-text transfer protocol (HTTP) and HTTP with the Secure Sockets Layer
(SSL) feature. This e*Way supports both the GET and POST methods. This version of
the HTTP(S) e*Way is enabled by the Monk programming language.

Note: When referring specifically to HTTP clear, this guide uses the term HTTP. For
HTTP over SSL, that is, secure HTTP, it uses the term HTTPS. For generic HTTP
that can be either clear or secure, it uses the term HTTP(S).

GET and POST Methods

The GET method can be used to retrieve a page specified by the URL or to retrieve
information from a form-based Web page by submitting URL-encoded key and name
value pairs. In the latter case, the page must support the GET method.

The following example shows a URL-encoded query string:

http://google.yahoo.com/bin/query?p=egate+integrator

The URL specifies the search page and the name value pair for the search. The question
mark (?) indicates the beginning of the name value pair encoding. In the above sample,
the name portion of the query is “p,” and the value to search is egate integrator. A
query may consist of one or more of these name-value pairs.

Note: See the HTTP specification for more details.

The POST method is more versatile, in that it supports form-based requests as well as
sending large amounts of data. The POST method does not have the size limitation of
255 or 1024 maximum number of characters (depending on the Web server) that the
GET method has. As with GET, the Web page must support the POST method in order
to use POST.

Taking the above URL as an example, the user specifies http://google.yahoo.com/bin/
query as the URL, then specifies the name value pair separately. The HTTP client
allows for specification of the URL and n-number of value pairs through its methods.

Chapter 1 Section 1.1
Introduction HTTP(S) e*Way: Overview

HTTP(S) e*Way Intelligent Adapter User’s Guide 8

SSL Protocol

Beyond simple data transfer with the HTTP protocol, the HTTP(S) e*Way offers the
option of using HTTP to provide secure data transport using the SSL protocol. This
capability provides privacy and authentication by encrypting the data in transit
between the e*Way and the server, and by verifying both the client’s and server’s
identities before commencing the transaction. The e*Way can also set certificate and
private key information that is required to communicate with some secure servers.

Note: See Chapter 5 for details on the e*Way’s SSL feature.

1.1.1 Using Clear HTTP
The HTTP(S) e*Way can be used without the SSL features. When you use clear HTTP,
the e*Way is equally functional in an HTTP environment. For information on how to
use the e*Way with clear HTTP (without SSL), see the following chapters:

Chapter 3: “Clear HTTP Implementation”

Chapter 4: “Clear HTTP Functions”

1.1.2 Intended Reader
The reader of this guide is presumed to be a developer or system administrator with
responsibility for maintaining the e*Gate Integrator system; to have high-level
knowledge of Windows and/or UNIX operations and administration; to be thoroughly
familiar with HTTP(S) certification, Web servers, and Windows-style graphical user
interface (GUI) operations.

1.1.3 Components
The following components comprise the HTTP(S) e*Way:

stcewgenericmonk.exe, the executable component

Configuration files, which the e*Way Editor GUI uses to define configuration
parameters

Function-library files, stc_monkhttp.dll and stc_monkhttp_nossl.dll

HTML Converter, a tool that builds a Monk ETDs from a sample HTML page (see
“Creating Event Type Definitions from Form Data” on page 84).

A complete list of installed files appears in Table 1 on page 13.

Note: For complete information on the HTML Converter, see the HTML Converter
User’s Guide.

Chapter 1 Section 1.2
Introduction General Operation

HTTP(S) e*Way Intelligent Adapter User’s Guide 9

1.1.4 Basic Information
The following information applies to the HTTP(S) e*Way:

Supports HTTP versions 1.0 and 1.1

Adheres to RFCs 1945 (version 1.0), 2616 (version 1.1), and 2817 (TLS over
version 1.1)

Acts as client only

Supports single-session request/reply scenarios in the default configuration

1.2 General Operation
In a typical data exchange using HTTP(S), a user sends requests to a Web server using a
Web browser (for instance, when sending an order to an online shopping service using
HTML forms). See Figure 1 for details.

Figure 1 HTTP(S) Data Exchange Using Browser

In an e*Gate implementation, the HTTP(S) e*Way exchanges data using the same
HTTP(S) methods as a browser might (see Figure 2).

Figure 2 HTTP(S) Data Exchange Using the HTTP(S) e*Way

Internet
(or other network)

IDC

Web Browser
and HTML Forms

Web
Server

Outbound data and
inbound responses

via HTTPS

Internet
(or other network)

IDC

Web
Server

Outbound data
and inbound

responses via
HTTP(S)

e*Gate System

HTTP(S)
e*Way

Chapter 1 Section 1.3
Introduction Supported Operating Systems

HTTP(S) e*Way Intelligent Adapter User’s Guide 10

The HTTP(S) e*Way can also be configured to operate through a proxy server when the
e*Gate components are separated from the target Web server by a fire wall (see
Figure 3).

Figure 3 HTTP(S) Data Exchange Through a Fire Wall

1.3 Supported Operating Systems
For information about the operating systems supported by the e*Gate Integrator
system, see the readme.txt file provided on the installation CD.

1.4 System Requirements
To use the HTTP(S) e*Way, you need to meet the following requirements:

An e*Gate Participating Host

A TCP/IP network connection

The e*Way must be configured and administered using the e*Gate Schema Designer.

Note: Additional disk space can be required to process and queue the data that this e*Way
processes. The amount necessary can vary based on the type and size of the data
being processed and any external applications doing the processing.

External System Requirements

There are no external system requirements.

Outbound data
and inbound

responses via
HTTP(S)

e*Gate System

HTTP(S)
e*Way

Internet
(or other network)

IDC

Web
Server

Proxy Server

HTTP(S) e*Way Intelligent Adapter User’s Guide 11

Chapter 2

Installation

This chapter explains how to install the HTTP(S) e*Way Intelligent Adapter.

2.1 Windows Systems

2.1.1 Pre-installation
1 Exit all Windows programs before running the setup program, including any anti-

virus applications.

2 You must have Administrator privileges to install this e*Way.

2.1.2 Installation Procedure
To install the HTTP(S) e*Way on Windows systems

1 Log in as an Administrator on the workstation where you want to install the e*Way.

2 Insert the e*Way installation CD-ROM into the CD-ROM drive.

3 If the CD-ROM drive’s “Autorun” feature is enabled, the setup application
launches automatically; skip to the next step. Otherwise, use Windows Explorer to
launch the file setup.exe on the CD-ROM drive.

4 The InstallShield setup application launches. Follow the on-screen instructions to
install the e*Way. Select the HTTP(S) e*Way installation option.

Be sure to install the e*Way files in the suggested client installation directory. The
installation utility detects and suggests the appropriate installation directory.

Caution: Unless you are directed to do so by Oracle support personnel, do not change the
suggested “installation directory” setting.

5 After the installation is complete, exit the install utility and launch the e*Gate
Integrator Schema Designer graphical user interface (GUI).

6 In the Component editor, create a new e*Way.

7 Display the new e*Way properties.

8 On the General tab, under Executable File, click Find.

Chapter 2 Section 2.2
Installation UNIX Systems

HTTP(S) e*Way Intelligent Adapter User’s Guide 12

9 Select the file stcewgenericmonk.exe.

10 Under Configuration file, click New.

11 From the Select an e*Way template list, select stcewhttp and click OK.

The e*Way Editor GUI appears.

12 Make any necessary changes, then save the configuration file.

The properties sheet reappears.

13 Click OK to close the properties sheet, or continue to configure the e*Way.
Configuration parameters are discussed in Chapter 6.

Note: Once you install and configure this e*Way, you must incorporate it into a schema by
defining and associating the appropriate Collaborations, Collaboration Rules,
Intelligent Queues (IQs), and Event Types before this e*Way can perform its
intended functions.

For more information about configuring the e*Way or how to use these components,
the Schema Designer, or e*Way Editor, see the GUI’s online Help or the e*Gate
Integrator User’s Guide.

2.2 UNIX Systems

2.2.1 Pre-installation
You do not require root privileges to install this e*Way. Log in under the user name that
you want to own the e*Way files. Be sure that this user has sufficient privilege to create
files in the e*Gate directory tree.

2.2.2 Installation Procedure
To install the HTTP(S) e*Way on a UNIX system

1 Log in on the workstation containing the CD-ROM drive, and insert the CD-ROM
into the drive.

2 If necessary, mount the CD-ROM drive.

3 At the shell prompt, type

cd /cdrom/setup

4 Start the installation script by typing:

setup.sh

5 A menu of options will appear. Select the install e*Way option. Then, follow any
additional on-screen directions.

Chapter 2 Section 2.3
Installation Files/Directories Created by the Installation

HTTP(S) e*Way Intelligent Adapter User’s Guide 13

Be sure to install the e*Way files in the suggested client installation directory. The
installation utility detects and suggests the appropriate installation directory.

Caution: Unless you are directed to do so by Oracle support personnel, do not change the
suggested “installation directory” setting.

6 After installation is complete, exit the installation utility and launch the e*Gate
Schema Designer.

7 In the Component editor, create a new e*Way.

8 Display the new e*Way’s properties.

9 On the General tab, under Executable File, click Find.

10 Select the file stcewgenericmonk.exe.

11 Under Configuration file, click New.

12 From the Select an e*Way template list, select stcewhttp and click OK.

The e*Way Editor GUI appears.

13 Make any necessary changes, then save the configuration file.

The e*Way’s properties sheet reappears.

14 Click OK to close the properties sheet, or continue to configure the e*Way.
Configuration parameters are discussed in Chapter 6.

Note: Once you install and configure this e*Way, you must incorporate it into a schema by
defining and associating the appropriate Collaborations, Collaboration Rules,
Intelligent Queues (IQs), and Event Types before this e*Way can perform its
intended functions.

For more information about configuring the e*Way or how to use these components,
the Schema Designer, or e*Way Editor, see the GUI’s online Help or the e*Gate
Integrator User’s Guide.

2.3 Files/Directories Created by the Installation
The HTTP(S) e*Way installation process installs the files shown in Table 1 within the
e*Gate directory tree. Files are installed within the eGate\client\ tree on the
Participating Host and committed to the “default” schema on the Registry Host.

Table 1 Files Created by HTTP(S) e*Way Installation

e*Gate Directory File(s)

bin\ stcewgenericmonk.exe

bin\ stc_monkhttp.dll

Chapter 2 Section 2.3
Installation Files/Directories Created by the Installation

HTTP(S) e*Way Intelligent Adapter User’s Guide 14

bin\ stcewgenericmonk.exe
stc_monkfilesys.dll
stc_monkhttp_nossl.dll

configs\stcewgenericmonk\ stcewhttp.def

configs\stcewgenericmonk\ stcewhttpnossl.def

monk_library httpnossl.gui

monk_library\ http.gui

monk_library\ewhttp\ http-ack.monk
http-nack.monk
http-connect.monk
http-exchange.monk
http-init.monk
http-notify.monk
http-outgoing.monk
http-shutdown.monk
http-startup.monk
http-verify.monk

monk_library\ewhttpnossl\ httpnossl-ack.monk
httpnossl-nack.monk
httpnossl-connect.monk
httpnossl-exchange.monk
httpnossl-init.monk
httpnossl-notify.monk
httpnossl-outgoing.monk
httpnossl-shutdown.monk
httpnossl-startup.monk
httpnossl-verify.monk

pkicerts\client\ certmap.txt

pkicerts\trustedcas\ GTECyberTrustGlobalRoot.cer
MicrosoftRootAuthority.cer
SecureServerCertificationAuthority.cer
ThawtePremiumServerCA.cer
ThawteServerCA.cer
verisign_class3.cer

Table 1 Files Created by HTTP(S) e*Way Installation (Continued)

e*Gate Directory File(s)

HTTP(S) e*Way Intelligent Adapter User’s Guide 15

Chapter 3

Clear HTTP Implementation

This chapter explains how to implement the HTTP(S) e*Way Intelligent Adapter with
clear hyper-text transfer protocol (HTTP), in a production environment.

Note: This operation does not provide the Secure Sockets Layer (SSL) feature. If you want
to implement the HTTP(S) e*Way with this feature, see Chapter 7.

3.1 e*Way Implementation/Clear HTTP: Overview
To implement the HTTP(S) e*Way with clear HTTP (without SSL) within the e*Gate
Integrator system, you must do the following operations:

Define Event Type Definitions (ETDs) to package the data being exchanged with the
external system.

Note: The HTTP(S) e*Way Extension (stc_monkhttpnossl.dll) is not thread-safe. It
must only be used in an e*Way or a single Collaboration in a Business Object
Broker (BOB).

In the e*Gate Schema Designer graphical user interface (GUI), do the following
steps:

Define Collaboration Rules to process Event data.

Define any Intelligent Queues (IQs) to which Event data is published before
sending it to the external system.

Define the e*Way component.

Within the e*Way component, configure Collaborations to apply the required
Collaboration Rules.

Note: For more information about creating or modifying any component within the e*Gate
Schema Designer, see the Schema Designer’s online Help or the e*Gate Integrator
User’s Guide.

Chapter 3 Section 3.2
Clear HTTP Implementation Sample Configurations

HTTP(S) e*Way Intelligent Adapter User’s Guide 16

Use the e*Way Editor to set the e*Way’s configuration parameters (this procedure is
explained in Chapter 6).

Be sure that any other e*Gate components are configured as necessary to complete
the schema.

Test the schema and make any necessary corrections.

See “Sample Monk Scripts” on page 24 for examples of how the previous steps are
combined to create a working implementation.

Note: The delimiters for the configuration file must not appear within the URL string. The
default delimiter set contains the equals sign (=), to modify this delimiter, open the
configuration file, select Options, Config Delimiters, on the task bar, modify the
value of delimiter 3 with a value that will not conflict with the search string.

Creating ETDs from Form Data

Creating ETDs for the HTTP(S) e*Way (no SSL) uses the same procedures as those used
to create ETDs for the HTTP(S) e*Way (with SSL). See “Creating Event Type
Definitions from Form Data” on page 84 for details.

3.2 Sample Configurations
This section describes several sample implementations for the HTTP(S) e*Way.

3.2.1 Creating a Schema Using httpnossl-outgoing
This section demonstrates how to set up a basic schema using the httpnossl-outgoing
function. In this sample, data is drawn from a text file using the file e*Way and sent to
an external system using the HTTP(S) e*Way. The data returned from the external
system is received by the HTTP(S) e*Way, then forwarded to another file e*Way and
stored in an output file on the local system (see Figure 18 on page 87).

This schema requires a number of components as illustrated in Figure 19 on page 88.

Note: For more information about creating or modifying any component within the e*Gate
Schema Designer, see the Schema Designer’s online Help or the e*Gate Integrator
User’s Guide.

To create a schema using httpnossl-outgoing

1 Log into the e*Gate Schema Designer and click New to create a new schema. Name
the schema “http_sample_1.”

The Schema Designer main screen appears.

2 If the Navigator’s Components tab is not selected already, select it now.

3 Create an Event Type named “In.”

Chapter 3 Section 3.2
Clear HTTP Implementation Sample Configurations

HTTP(S) e*Way Intelligent Adapter User’s Guide 17

4 Display the properties of the In Event Type. Then, use the Find button, navigate to
the common folder to assign the file GenericInEvent.ssc.

5 Create a Collaboration Rule named “Passthrough_Data.”

6 Edit the Properties of this Collaboration Rule as follows:

7 Create two IQs, named “Inbound_IQ” and “HTTP_IQ.”

8 Create an e*Way named “Inbound.”

9 Display the e*Way’s properties. Then, use the Find button to assign the file
stcewfile.exe.

The next part of the procedure requires that you launch the e*Way editor and define the
file-based e*Way’s properties.

1 With the e*Way’s Properties page still displayed, click New to launch the e*Way
Editor.

2 Using the e*Way Editor, do the following configuration settings:

3 Save the settings, promote to run time, and exit the e*Way Editor.

4 When you return to the e*Way’s Properties page, click OK to save all changes and
return to the Schema Designer’s main window.

Next, create a Collaboration for the Inbound e*Way as follows:

1 Open the Inbound e*Way and create a Collaboration named “Inbound_collab.”

2 Set the Collaboration’s properties as follows:

Service Pass Through

Subscription In (the Event Type defined in Step 1 above)

Publication In (Event Type defined in Step 1 above)

Section Parameter and setting

General Settings AllowIncoming: Yes
AllowOutgoing: No

Poller (inbound) Settings Polldirectory: C:\TEMP (or other
“temporary” directory)
Input File Mask: leave unchanged

Collaboration Rule Passthrough_Data

Subscriptions Event: In
Source: <External>.

Publications Event: In
Publish to: Inbound_IQ.

Chapter 3 Section 3.2
Clear HTTP Implementation Sample Configurations

HTTP(S) e*Way Intelligent Adapter User’s Guide 18

Now that the inbound e*Way is completely configured, you must create an outbound
HTTP(S) e*Way.

1 Create a new e*Way component named “http_eway.”

2 Display the e*Way’s properties. Then, use the Find button to assign the file
stcewgenericmonk.exe.

3 Click New to launch the e*Way Editor. When prompted with a list of templates,
select stcewhttpnossl.

4 Use the e*Way Editor to define the following parameters:

5 Save the settings, promote to run time, and exit the e*Way Editor.

6 When you return to the e*Way’s Properties page, click OK to save all changes and
return to the Schema Designer’s Main window.

Section Parameter and Settings

General Settings Leave all settings unchanged

Communication Setup Exchange Data Interval: 0 (zero)
Zero Wait Between Successful Exchanges: No

Monk Configuration Auxiliary Library Directories: monk_library/ewhttp
Monk Environment Initialization File: monk_library/
ewhttpnossl/httpnossl-init.monk
Startup Function: httpnossl-startup
Process Outgoing Message Function: httpnossl-outgoing
Exchange Data With External Function: httpnossl-exchange
External Connection Establishment Function: httpnossl-
connect
External Connection Verification Function: httpnossl-verify
External Connection Shutdown Function: httpnossl-shutdown
Positive Acknowledgment Function: httpnossl-ack
Negative Acknowledgment Function: httpnossl-nack
The remaining parameters may be left blank for this sample.

HTTP Configuration Timeout: 5000
User Name: enter an appropriate user name if necessary
Encrypted Password: enter an appropriate password if
necessary
Agent: e*Gate HTTP(S) e*Way
Content-type: Content-Type:application/x-www-form-
urlencoded
Accept-type: accept:text/*
The remaining parameters may use the default values.

HTTP Proxy
Configuration

Leave blank unless required

HTTP Configuration Leave blank to test basic HTTP functionality; if required, enter
any necessary information to test HTTP functionality

Chapter 3 Section 3.2
Clear HTTP Implementation Sample Configurations

HTTP(S) e*Way Intelligent Adapter User’s Guide 19

Important: The above code loads the certificate (s) and private key (s) from the specified
directory.

Next, create the Collaboration for the HTTP(S) e*Way.

1 Select the http_eway component and create a Collaboration named “http_collab1.”

2 Assign the following properties to the Collaboration:

3 Create a second Collaboration for the http_eway, naming it “http_collab2.”

4 Assign the following properties to the Collaboration:

Now create and configure the final e*Way component.

1 Create a new e*Way named “Outbound.”

2 In its Properties Page, specify the executable file of “Outbound” as stcewfile.exe.

3 Display the e*Way’s properties. Then, use the Find button to assign the file
stcewfile.exe.

4 With the e*Way’s Properties page still displayed, click New to launch the e*Way
Editor.

5 Using the e*Way Editor, configure the following settings:

6 Save the settings, promote to run time, and exit the e*Way Editor.

7 When you return to the e*Way’s Properties page, click OK to save all changes and
return to the Schema Designer’s main window.

8 Create a Collaboration for the “Outbound” e*Way, naming it “outbound_collab.”

Collaboration Rules Passthrough_Data

Subscriptions Event: In
Source: Inbound_collab

Publications Event: In
Publish to: <External>

Collaboration Rules Passthrough_Data

Subscriptions Event: In
Source: <External>

Publications Event: In
Publish to: HTTP_IQ

Section Parameter and setting

General Settings AllowIncoming: No
AllowOutgoing: Yes

Outbound (sender)
Settings

Output directory: C:\TEMP (or other
“temporary” directory)
Output File Name: httpnossl_out.txt

Chapter 3 Section 3.2
Clear HTTP Implementation Sample Configurations

HTTP(S) e*Way Intelligent Adapter User’s Guide 20

9 Set the Collaboration’s properties as follows:

The Schema Designer configuration is now complete. Now, you must create some test
data which will be sent via HTTP to external Web sites. The results of these requests
will be saved to the output data file.

Note: The sites recommended within the test data are publicly available sites, and the test
data was accurate at the time this guide was published. If any of the recommended
sites are no longer available, or you wish to replace them with your own test sites,
please make the appropriate substitutions.

1 Use a text editor to create an input file. Create an Input File, using any ASCII text
editor. The input must have the following format (the pipe symbol “|” delimits
each field):

URL|POST or GET|data (POST only)

The following sample can also be used as your test data, changing “somesite” to a
valid HTTP site name:

http://info.somesite.com|GET|
http://finance.somesite.asp|POST|s=amd&d=v1
http://search.somesite.com/cgi-bin/
search|POST|search=Mars+missions
http://finance.somesite.com/q|GET|s=amd&d=v1
http://finance.somesite.com/q|GET|s=amd+&d=v4
http://finance.somesite.com/q|GET|s=amd&d=v1

Note: When using an input file, it is necessary to modify the fields within the
configuration file to match those within the input file, or to leave the fields blank. If a
field in the configuration file, such as the Request-content parameter contains a
string, and it does not appear within the input file, e*Gate will attempt to append
the information. If within the input file, the delimiters are left empty the action
within the configuration file will be used.

2 Save the file as c:\temp\testdata.fin (if you specified a different input directory,
please make the appropriate substitution).

Launch the sample schema. If the schema was configured properly and your
connection to the test sites is good, you should find response data from your requests in
the file C:\TEMP\httpnossl_out.txt (if you specified a different output directory,
please make the appropriate substitution).

Collaboration Rules: Passthrough_Data

Subscriptions Event: In
Source: http_collab2

Publications Event: In
Publish to: <External>

Chapter 3 Section 3.2
Clear HTTP Implementation Sample Configurations

HTTP(S) e*Way Intelligent Adapter User’s Guide 21

3.2.2 Creating a Schema Using httpnossl-exchange
This schema, which illustrates the use of the Monk function httpnossl-exchange, is
simpler than the one illustrated in “Creating a Schema Using httpnossl-outgoing” on
page 16. Rather than using an inbound e*Way, the data to be sent to the external Web
server is hard-coded into the HTTP(S) e*Way’s configuration using the e*Way editor.
Except for this change, the architecture is the same.

See Figure 20 on page 93 for a diagram of the schema.

Note: For more information about creating or modifying any component within the e*Gate
Schema Designer, see the Schema Designer’s online Help of the e*Gate Integrator
User’s Guide.

To create a schema using httpnossl-exchange

1 Log into the e*Gate Schema Designer and select the New to create a new schema.

2 Enter the new schema name.

3 Create an Event Type named “In.”

4 Display the properties of the In Event Type. Then, use the Find button to assign the
file GenericInEvent.ssc.

5 Create a Collaboration Rule named “Passthrough_Data.”

6 Edit the Properties of this Collaboration Rule as follows:

7 Create an Intelligent Queue, named “HTTP_IQ.”

You must create an outbound HTTP(S) e*Way.

1 Create a new e*Way component named “http_eway.”

2 Display the e*Way’s properties. Then, use the Find button to assign the file
stcewgenericmonk.exe.

3 Click New to launch the e*Way Editor. When prompted with a list of templates,
select stcewhttpnossl.

4 Use the e*Way Editor to define the following parameters:

Service Pass Through

Subscription In (the Event Type defined in Step 1 above)

Publication In (Event Type defined in Step 1 above)

Section Parameter and Settings

General Settings Leave all settings unchanged

Communication Setup Exchange Data Interval: 10 (ten)
Zero Wait Between Successful Exchanges: No

Chapter 3 Section 3.2
Clear HTTP Implementation Sample Configurations

HTTP(S) e*Way Intelligent Adapter User’s Guide 22

5 Save the settings, promote to run time, and exit the e*Way Editor.

6 When you return to the e*Way’s Properties page, click OK to save all changes and
return to the Schema Designer’s main window.

In the next step, you modify the initialization function (httpnossl-init) loads the
correct .dll.

1 From the Schema Designer’s File menu, select Edit File.

2 Open the file monk_library\ewhttpnossl\httpnossl-init.monk.

3 Verify that the stc_monkhttp_nossl.dll is the specified file in the (load-extension)
function call.

Save and exit the editor of the text file. Verify that the files are in the appropriate
location.

Monk Configuration Auxiliary Library Directories: monk_library/ewhttpnossl
Monk Environment Initialization File: monk_library/
ewhttpnossl:/httpnossl-init.monk
Startup Function: httpnossl-startup
Process Outgoing Message Function: httpnossl-outgoing
Exchange Data With External Function: httpnossl-
exchange
External Connection Establishment Function: httpnossl-
connect
External Connection Verification Function: httpnossl-
verify
External Connection Shutdown Function: httpnossl-
shutdown
Positive Acknowledgment Function: httpnossl-ack
Negative Acknowledgment Function: httpnossl-nack
The remaining parameters may be left blank for this
sample.

HTTP Configuration Request: GET
Timeout: 5000
URL: enter an appropriate URL to contact.
User Name: enter an appropriate user name if necessary
Encrypted Password: enter an appropriate password if
necessary
Agent: e*Gate HTTP(S) e*Way
Content-type: Content-Type:application/x-www-form-
urlencoded
Request-content: Leave this entry blank (because this is a
sample using GET; fill in this field when using the POST
method).
Accept-type: accept:text/*
The remaining parameters may use the default values.

HTTP Proxy
Configuration

Leave blank unless required

Section Parameter and Settings (Continued)

Chapter 3 Section 3.2
Clear HTTP Implementation Sample Configurations

HTTP(S) e*Way Intelligent Adapter User’s Guide 23

Next, create the Collaboration for the HTTP(S) e*Way.

1 Create a Collaboration for the http_eway, naming it “http_collab2.”

2 Assign the following properties to the Collaboration:

Now create and configure the final e*Way component as follows:

1 Create a new e*Way named “Outbound.”

2 In its Properties Page, specify the executable file of “Outbound” as stcewfile.exe.

3 Display the e*Way’s properties. Then, use the Find button, navigate to the “bin”
folder to assign the file stcewfile.exe.

4 With the e*Way’s Properties page still displayed, click New to launch the e*Way
Editor.

5 Using the e*Way Editor, configuration the following settings:

6 Save the settings, promote to run time, and exit the e*Way Editor.

7 When you return to the e*Way’s Properties page, click OK to save all changes and
return to the Schema Designer’s main window.

8 Create a Collaboration for the “Outbound” e*Way, naming it “outbound_collab.”

9 Set the Collaboration’s properties as follows:

The Schema Designer configuration is now complete. Now, you must create some test
data which will be sent via HTTP to external Web sites. The results of these requests are
saved to the output data file.

Collaboration Rules Passthrough_Data

Subscriptions Event: In
Source: <External>

Publications Event: In
Publish to: HTTP_IQ

Section Parameter and setting

General Settings AllowIncoming: No
AllowOutgoing: Yes

Outbound (sender)
Settings

Output directory: C:\TEMP (or other
“temporary” directory)
Output File Name: httpnossl_out.txt

Collaboration Rules: Passthrough_Data

Subscriptions Event: In
Source: http_collab2

Publications Event: In
Publish to: <External>

Chapter 3 Section 3.3
Clear HTTP Implementation Sample Monk Scripts

HTTP(S) e*Way Intelligent Adapter User’s Guide 24

Note: The sites recommended within the test data are publicly available sites, and the test
data was accurate at the time this guide was published. If any of the recommended
sites are no longer available, or you wish to replace them with your own test sites,
please make the appropriate substitutions.

3.3 Sample Monk Scripts
This section describes several sample implementations for the HTTP(S) e*Way.

The samples in this section can be run using the stctrans command-line utility. They do
not require a complete e*Gate schema configuration to function, and are designed to
illustrate the principles involved in creating your own custom Monk scripts. The library
(.dll) files to be loaded and the script to be tested must be in the load path (or, for
simplicity’s sake, may be placed in the connected directory).

Note: See the Monk Developer’s Reference for more information about the load path.

The syntax of the stctrans utility is

stctrans monk_file.monk

Additional command-line flags are available; enter stctrans -h to display a list, or see
the e*Gate Integrator System Administration and Operations Guide for more information.

The sample files may be created using any text editor. The samples use a generic
“www.sitename.com” site name; before testing any script, replace the generic name
with a working site name.

3.3.1 GET (Inbound) Example (HTTP_get)
The script in this section retrieves the URL http://www.somesite.com and displays the
results as follows:

;; Load HTTP extension DLL
(load-extension "stc_monkhttp_nossl.dll")

;; Create an HTTP session handle
(define hCon (http-acquire-provider "jdoe" "0E0102" "" "" 0))

;; Execute the HTTP GET method
(http-get hCon "http://www.somesite.com" 0 “accept:text/*”)
(define pszData (http-get-result-data hCon)

;; Print the results
(display pszData)

;; Free HTTP session handle
(http-release-provider hCon)
(set! hCon 0)

Parameters could be passed by this script by appending them to the URL using the
application/x-www-form-urlencoded format, for example,

http://peterw?param1=16¶m2=Lorne+Street

Chapter 3 Section 3.3
Clear HTTP Implementation Sample Monk Scripts

HTTP(S) e*Way Intelligent Adapter User’s Guide 25

3.3.2 POST (Outbound) Example (HTTP_post)
The script in this section contains three examples: one posts to an ASP page, and the
other two post to scripts at the specified URLs. The results are displayed.

;; Load HTTP extension DLL
(load-extension "stc_monkhttp_nossl.dll")

;; Create an HTTP session handle
(define hCon (http-acquire-provider "jdoe" "0E0102" "" "" 0))

;; Post to an Active Server Page (ASP) and print server reply
(define postCmd (http-post hCon "http://stingray/Project3/
Project3.asp" 0
"accept:text/*" "Content-Type: application/x-www-form-
urlencoded" "text1=doe"))
(define postData (http-get-result-data hCon))
(if postCmd

(begin
(define postData (http-get-result-data hCon))
(display postData)
)

)

;; Post form data to a CGI script and print server reply
(define postCmd (http-post hCon "http://info.netscape.com/
home_search2.cgi"
0 "accept:text/*" "Content-Type: application/x-www-form-urlencoded"
"cp=Netscape&version=C&searchstring=Martin+Luther+King"))
(define postData (http-get-result-data hCon))
(if postCmd

(begin
(define postData (http-get-result-data hCon))
(display postData)
)

)

;; Post form data to a CGI script and print server reply
(define postCmd (http-post hCon "http://search.netscape.com/cgi-bin/
search"
0 "accept:text/*" "Content-Type: application/x-www-form-urlencoded"
"search=Mars+missions"))
(define postData (http-get-result-data hCon))
(if postCmd

(begin
(define postData (http-get-result-data hCon))
(display postData)
)

)

;; Free HTTP session handle
(http-release-provider hCon)
(set! hCon 0)

3.3.3 Input File based Example (AUTO_HTTP)
The sample in this section illustrates an input file for an inbound e*Way. (Change
“somesite” to a valid site address.

Chapter 3 Section 3.3
Clear HTTP Implementation Sample Monk Scripts

HTTP(S) e*Way Intelligent Adapter User’s Guide 26

Note: When using an input file, it is necessary to modify the fields within the
configuration file to match those within the input file, or to leave the fields blank. If a
field in the configuration file, such as the Request-content parameter contains a
string, and it does not appear within the input file, e*Gate will attempt to append
the information. If within the input file, the delimiters are left empty the action
within the configuration file will be used.

The following input data is in the AUTO_HTTP schema and executes a POST or GET as
specified. The following illustrates typical GET input data which might be passed to an
HTTP(S) e*Way.

http://www.somesitea.com|GET|
http://www.somesitea.com|GET|
http://www.somesiteb.com|GET|
http://info.somesitec.com|GET|
http://finance.somesiteb.com/q|GET|s=amd&d=v1
http://finance.somesiteb.com/q|GET|s=stcs&d=v1
http://finance.somesiteb.com/q|GET|s=dell&d=v4
http://finance.somesiteb.com/q|GET|s=turf&d=b
http://www.somesited.com|GET|
http://www.somesitee.com|GET|
http://lc6.law5.hotmail.passport.com/cgi-bin/login|GET|
http://www.somesite-facts.com/
srchgrp.asp|POST|keywords=beef&stype=AND&group=ALL
http://www.msn.com|GET|
http://shop.infospace.com/cat1.htm?qvcid=539&qcat=416&nA=11|GET|
http://www.foxnews.com/video/main.sml|GET|
http://www.launch.com/music/welcome/pvn_musicvideos/?seti=1|GET|
http://www.trip.com/content/guidesandtools/0,1324,1-1,00.html|GET|
http://microsoft.com|GET|
http://www.datek.com|GET|
http://www.home.com|GET|
http://www.hotmail.com|GET|
http://www.stc.com|GET|
http://www.nutri-facts.com/
srchgrp.asp|POST|keywords=shrimp&stype=AND&group=ALL
http://www.yahoo.com|GET|

HTTP(S) e*Way Intelligent Adapter User’s Guide 27

Chapter 4

Clear HTTP Functions

This chapter explains the Monk functions for the HTTP(S) e*Way Intelligent Adapter
when using clear hyper-text transfer protocol (HTTP).

Note: This operation does not provide the Secure Sockets Layer (SSL) feature. The Monk
functions for the HTTP(S) e*Way with SSL are listed in Chapter 8.

4.1 HTTP Functions: Introduction
The HTTP(S) e*Way’s clear HTTP (without SSL) functions fall into the following
categories:

Basic Functions

HTTP Standard Functions on page 28

HTTP Monk Functions on page 34

The rest of this chapter explains the functions in these categories.

Note: The functions explained in this chapter can only be used by the functions defined
within the e*Way’s configuration file for clear HTTP. None of the functions are
available to Collaboration Rules scripts executed by the e*Way.

4.2 Basic Functions
The functions in this category control the e*Way’s most basic operations. For details on
these functions, see “Basic Functions” on page 104.

Chapter 4 Section 4.3
Clear HTTP Functions HTTP Standard Functions

HTTP(S) e*Way Intelligent Adapter User’s Guide 28

4.3 HTTP Standard Functions
The current suite of HTTP Monk standard functions are:

httpnossl-ack on page 28

httpnossl-connect on page 29

httpnossl-exchange on page 29

httpnossl-init on page 30

httpnossl-nack on page 30

httpnossl-notify on page 31

httpnossl-outgoing on page 31

httpnossl-shutdown on page 32

httpnossl-startup on page 33

httpnossl-verify on page 33

httpnossl-ack

Syntax

(httpnossl-ack message-string)

Description

httpnossl-ack sends a positive acknowledgment to the external system after all
Collaborations to which the e*Way sent data have processed and enqueued that data
successfully.

Parameters

Return Values

String
An empty string indicates a successful operation. The e*Way is then able to proceed with
the next request.

CONNERR indicates a problem with the connection to the external system. When the
connection is re-established, the function is called again.

Additional Information

See “Positive Acknowledgment Function” on page 72 for more information.

Name Type Description

message-string String The Event for which an
acknowledgment is sent.

Chapter 4 Section 4.3
Clear HTTP Functions HTTP Standard Functions

HTTP(S) e*Way Intelligent Adapter User’s Guide 29

httpnossl-connect

Syntax

(httpnossl-connect)

Description

httpnossl-connect establishes a connection to the external system.

Parameters

None.

Return Values

String
UP indicates the connection is established. Anything else indicates no connection.

Throws

None.

Additional Information

See “External Connection Establishment Function” on page 70 for more information.

httpnossl-exchange

Syntax

(httpnossl-exchange)

Description

httpnossl-exchange sends a received event from the external system to e*Gate. The
function expects no input.

Parameters

None.

Return Values

String
An empty string indicates a successful operation. Nothing is sent to e*Gate.

A message string indicates successful operation and the Event is sent to e*Gate.

CONNERR indicates a problem with the connection to the external system. When the
connection is re-established this function is re-executed with the same input Event.

Throws

None.

Additional Information

See “Exchange Data with External Function” on page 69 for more information.

Chapter 4 Section 4.3
Clear HTTP Functions HTTP Standard Functions

HTTP(S) e*Way Intelligent Adapter User’s Guide 30

httpnossl-init

Syntax

(httpnossl-init)

Description

httpnossl-init begins the initialization process for the e*Way. This function loads the
stc_monkhttp_nossl.dll file and the initialization file, thereby making the function
scripts available for future use.

Parameters

None.

Return Values

String
If a FAILURE string is returned, the e*Way shuts down. Any other return indicates
success.

Throws

None.

Additional Information

Within this function, any necessary global variables to be used by the function scripts
could be defined. The internal function that loads this file is called once when the
e*Way first starts up.

See “Monk Environment Initialization File” on page 67 for more information.

httpnossl-nack

Syntax

(httpnossl-nack message-string)

Description

httpnossl-nack sends a negative acknowledgment to the external system when the
e*Way fails to process and queue Events from the external system.

Parameters

Return Values

String
An empty string indicates a successful operation.

Name Type Description

message-string String The Event for which a negative
acknowledgment is sent.

Chapter 4 Section 4.3
Clear HTTP Functions HTTP Standard Functions

HTTP(S) e*Way Intelligent Adapter User’s Guide 31

CONNERR indicates a problem with the connection to the external system. When the
connection is re-established, the function is called again.

Throws

None.

Additional Information

See “Negative Acknowledgment Function” on page 72 for more information.

httpnossl-notify

Syntax

(httpnossl-notify command)

Description

httpnossl-notify notifies the external system that the e*Way is shutting down.

Parameters

Return Values

String
Returns a null string.

Throws

None.

Additional Information

See “Shutdown Command Notification Function” on page 73 for more information.

httpnossl-outgoing

Syntax

(httpnossl-outgoing event-string)

Description

httpnossl-outgoing is used for sending a received message from e*Gate to the external
system.

Name Type Description

command String When the e*Way calls this
function, it passes the string
SHUTDOWN_NOTIFICATION as
the parameter.

Chapter 4 Section 4.3
Clear HTTP Functions HTTP Standard Functions

HTTP(S) e*Way Intelligent Adapter User’s Guide 32

Parameters

Return Values

String
An empty string indicates a successful operation.

RESEND causes the Event to be immediately resent.

CONNERR indicates a problem with the connection to the external system. When the
connection is re-established this function is re-executed with the same input Event.

DATAERR indicates the function had a problem processing data. If the e*Gate journal is
enabled, the Event is journaled and the failed Event count is increased (the input Event is
essentially skipped in this process). Use the event-send-to-egate function to place bad
Events in a bad-event IQ. See event-send-to-egate on page 105 for more information on
this function.

Additional Information

See “Process Outgoing Message Function” on page 68 for more information.

httpnossl-shutdown

Syntax

(httpnossl-shutdown shutdown)

Description

httpnossl-shutdown requests that the external connection shutdown. A return value of
SUCCESS indicates that the shutdown can occur immediately. Any other return value
indicates that the shutdown Event must be delayed. You then must execute a call
(shutdown-request on page 106) from within a Monk function to allow the requested
shutdown process to continue.

Parameters

Return Values

String
SUCCESS allows an immediate shutdown to occur. Anything else delays shutdown until
the shutdown-request is executed successfully.

Name Type Description

event-string String The Event to be processed.

Name Type Description

shutdown String When the e*Way calls this function, it passes
the string SUSPEND_NOTIFICATION as the
parameter.

Chapter 4 Section 4.3
Clear HTTP Functions HTTP Standard Functions

HTTP(S) e*Way Intelligent Adapter User’s Guide 33

Throws

None.

Additional Information

See “External Connection Shutdown Function” on page 71.

httpnossl-startup

Syntax

(httpnossl-startup)

Description

httpnossl-startup is used for function loads that are specific to this e*Way and invokes
startup.

Parameters

None.

Return Values

String
FAILURE causes a shutdown of the e*Way. Any other return indicates success.

Throws

None.

Additional Information

Use this function to initialize the external system before any data exchange starts. Any
additional variables can be defined here.

See “Startup Function” on page 68 for more information.

httpnossl-verify

Syntax

(httpnossl-verify)

Description

httpnossl-verify is used to verify whether the connection to the external system is
established.

Parameters

None.

Return Values

String
UP or SUCCESS if the connection established. Anything other value indicates the
connection is not established.

Chapter 4 Section 4.4
Clear HTTP Functions HTTP Monk Functions

HTTP(S) e*Way Intelligent Adapter User’s Guide 34

Throws

None.

Additional Information

See “External Connection Verification Function” on page 71 for more information.

4.4 HTTP Monk Functions
The HTTP Monk functions are used to invoke contact with the HTTP Web server to
upload (post) or download (get) data from it.

The Monk functions are:

http-acquire-provider on page 35

http-add-content-type-param on page 35

http-add-header on page 36

http-clear-content-type-param on page 37

http-clear-headers on page 38

http-get on page 38

http-get-error-text on page 39

http-get-last-status on page 40

http-get-result-data on page 43

http-post on page 43

http-release-provider on page 45

http-set-body-write-delay on page 45

http-set-proxy-properties on page 46

http-url-encode on page 47

Rules for x-www-form-urlencoded Format Encoding

For lists of reserved characters, control characters, delimiters, and symbols not to use
when you are doing x-www-form-urlencoded format encoding, see the tables under
“Rules for x-www-form-urlencoded Format Encoding” on page 115.

Chapter 4 Section 4.4
Clear HTTP Functions HTTP Monk Functions

HTTP(S) e*Way Intelligent Adapter User’s Guide 35

http-acquire-provider

Syntax

(http-acquire-provider username password agent proxy flags)

Description

http-acquire-provider performs the necessary initialization of underlying libraries and
resources used during operations. This functions returns a connection-handle needed
for subsequent operations.

Parameters

Return Values

handle
The handle associated with the HTTP session.

Throws

None.

Examples

(define hCon (http-acquire-provider "myusername" "0E102" "" "" 0))

http-add-content-type-param

Syntax

(http-add-content-type-param hCon content_type_name
content_type_value)

Description

http-add-content-type-param adds the content type parameter associated to the
specified handle.

Name Type Description

username Valid string The name of the user performing the inquiry.

password Encrypted-
password

The valid password corresponding to the user
above.

agent Agent name The user-agent name. This value is passed to
the Web server by the client with each Web
request, and it is usually used to specify the
type of browser running as a client.

proxy URL-string A valid URL for the proxy, for example,
"http://proxyname:8080" where ‘proxyname’ is
the host, and 8080 is the port number on which
the proxy server is serving requests. Specify ""
(empty string) if none is used.

flags Integer set to 0 (reserved)

Chapter 4 Section 4.4
Clear HTTP Functions HTTP Monk Functions

HTTP(S) e*Way Intelligent Adapter User’s Guide 36

Parameters

Return Values

Boolean
Returns #t (true) when successful; otherwise, returns #f (false) when an error occurs.

Throws

None.

http-add-header

Syntax

(http-add-header hCon field_name field_value)

Description

http-add-header adds a token value pair associated with the specified header.

Name Type Description

hCon Opaque handle The handle provided by http-acquire-
provider.

content_type_name String The name of the content type
parameter to be added.

content_type_value String The value of the content type
parameter to be added.

Chapter 4 Section 4.4
Clear HTTP Functions HTTP Monk Functions

HTTP(S) e*Way Intelligent Adapter User’s Guide 37

Parameters

Return Values

Boolean
Returns #t (true) when successful; otherwise, returns #f (false) when an error occurs.

http-clear-content-type-param

Syntax

(http-clear-content-type-param hCon)

Description

http-clear-content-type-param clears the content type parameter associated with the
specified handle.

Parameters

Name Type Description

hCon Opaque handle The handle provided by http-acquire-provider.

field_name String The field name associated with the header
being added. Some of the possible field names
are:

Accept
Accept-Charset
Accept-Encoding
Accept-Language
Authorization
Expect
From
Host
If-Match
If-Modified-Since
If-None-Match
If-Range
If-Unmodified-Since
Max-Forwards
Proxy-Authorization
Range
Referer

field_value String The field value associated with the header
being added.

Name Type Description

hCon Opaque handle The handle provided by http-acquire-
provider.

Chapter 4 Section 4.4
Clear HTTP Functions HTTP Monk Functions

HTTP(S) e*Way Intelligent Adapter User’s Guide 38

Return Values

Boolean
Returns #t (true) when successful; otherwise, returns #f (false) when an error occurs.

Throws

None.

http-clear-headers

Syntax

(http-clear-headers hCon)

Description

http-clear-headers clears the headers associated with the specified handle.

Parameters

Return Values

Boolean
Returns #t (true) when successful; otherwise, returns #f (false) when an error occurs.

Throws

None.

http-get

Syntax

(http-get hCon URL timeout accept-type)

Description

http-get obtains and stores the data referenced by the specified URL.

Parameters

Name Type Description

hCon opaque handle The handle provided by http-acquire-
provider.

Name Type Description

hCon Opaque handle The handle provided by
http-acquire-provider.

URL String The URL that the http-get request is to
retrieve when executed.

Chapter 4 Section 4.4
Clear HTTP Functions HTTP Monk Functions

HTTP(S) e*Way Intelligent Adapter User’s Guide 39

Return Values

Boolean
Returns #t (true) when successful; otherwise, returns #f (false) when an error occurs.

Throws

None.

Additional Information

This function stores the data internally. In order to retrieve the data, the http-get-result-
data function must be called. See http-get-result-data on page 43 for more information.

Examples

(define postCmd (http-get hCon "http://
www.somesite.com" 20000 "Accept:text/*"))
(if postCmd

(begin
(define postData (http-get-result-data hCon))
(display postData)
)

)

(display pData)

http-get-error-text

Syntax

(http-get-error-text error_code)

Description

http-get-error-text obtains the explanation for the error code returned by
http-get-last-status.

Parameters

timeout Integer A number representing the timeout in
milliseconds that the client waits for a
response from the server.

accept-type String The MIME type of the output data to
be returned by the server.
NOTE: Only text types are supported.
Must be in the form:
Accept:xxxx/xxxx. For example:
“Accept:text/*.”

Name Type Description

error_code Integer The handle error code returned by
http-get-last-status.

Name Type Description (Continued)

Chapter 4 Section 4.4
Clear HTTP Functions HTTP Monk Functions

HTTP(S) e*Way Intelligent Adapter User’s Guide 40

Return Values

String
Returns the message associated with the error code returned by http-get-last-status.

Throws

None.

Additional Information

See Table 2 on page 40 for a list of these error codes, along with a description of each.

http-get-last-status

Syntax

(http-get-last-status hCon)

Description

http-get-last-status returns the status from the last http-get or http-put call.

Parameters

Return Values

Integer
Returns an integer corresponding to specified HTTP server status codes. See Table 2 for
details.

Name Type Description

hCon opaque handle The handle provided by http-acquire-
provider.

Table 2 Server Status Return Codes

Return
Value Description Return CodeType

-906 Cannot locate host

-905 Connection timeout

-904 Recover pipe line

-903 If you want to pause a stream

-902 Note the negative value

-901 If we are in a select

-900 (Not in use)

-505 Bad protocol version

-503 Service is not available

-419 Proxy reauthentication required

Chapter 4 Section 4.4
Clear HTTP Functions HTTP Monk Functions

HTTP(S) e*Way Intelligent Adapter User’s Guide 41

-418 Reauthentication required

-417 Expectation failed

-416 Request range not satisfiable

-415 Unsupported

-414 Request-URI too long

-413 Request entity too large

-412 Precondition failed

-411 Length required

-409 Conflict

-407 Proxy authentication failed

-406 Not acceptable

-404 Not found

-403 Access forbidden

-401 Unauthorized

-1 Generic failure

10 Response is stale Cache

11 Revalidation failed Cache

12 Disconnected operation Cache

13 Heuristic expiration Cache

14 Transformation applied Cache

99 Cache warning Cache

100 Continue Information

101 Switching protocols Information

200 OK Success

201 Created Success

202 Accepted Success

203 Non-authoritative information Success

204 Document updated Success

205 Reset content Success

206 Partial content Success

207 Partial update OK Success

300 Multiple choices Redirection

301 Moved permanently Redirection

302 Found Redirection

Table 2 Server Status Return Codes (Continued)

Return
Value Description Return CodeType

Chapter 4 Section 4.4
Clear HTTP Functions HTTP Monk Functions

HTTP(S) e*Way Intelligent Adapter User’s Guide 42

Note: See the HTTP server documentation for more information.

303 See other Redirection

304 Not Modified Redirection

305 Use proxy Redirection

306 Proxy redirect Redirection

307 Temporary redirect Redirection

400 Bad request Client_error

401 Unauthorized Client_error

402 Payment required Client_error

403 Forbidden Client_error

404 Not found Client_error

405 Method not allowed Client_error

406 Not acceptable Client_error

407 Proxy authentication required Client_error

408 Request timeout Client_error

409 Conflict Client_error

410 Gone Client_error

411 Length required Client_error

412 Precondition failed Client_error

413 Request entity too large Client_error

414 Request-URI too large Client_error

415 Unsupported media type Client_error

416 Range not satisfiable Client_error

417 Expectation failed Client_error

418 Reauthentication required Client_error

419 Proxy reauthentication required Client_error

500 Internal server error Server_error

501 Not implemented Server_error

502 Bad gateway Server_error

503 Service unavailable Server_error

504 Gateway timeout Server_error

505 HTTP version not supported Server_error

506 Partial update not implemented Server_error

Table 2 Server Status Return Codes (Continued)

Return
Value Description Return CodeType

Chapter 4 Section 4.4
Clear HTTP Functions HTTP Monk Functions

HTTP(S) e*Way Intelligent Adapter User’s Guide 43

http-get-result-data

Syntax

(http-get-result-data hCon)

Description

http-get-result-data retrieves the data returned by the server from the last http-get call.

Parameters

Return Values

String
The string contains the data requested.

Additional Information

Verify the success of the http-get or http-post function, prior to calling http-get-result-
data.

Note: The function must be passed as a handle that is returned from http-acquire-
provider. The return value is valid only when called after a FORM get as shown in
the example in this section (via http-get).

Examples

(define postCmd (http-post hCon "http://stingray/Project3/
Project3.asp" 0
"accept:text/*" "Content-Type: application/x-www-form-
urlencoded" "test1=hello&test2=world"))
(if postCmd

(begin
(define postData (http-get-result-data hCon))
(display postData)
)

)

http-post

Syntax

(http-post hCon URL timeout accept-string content-type post-data)

Description

http-post posts to a specified URL. The post request submits data to a form.

Name Type Description

hCon Opaque handle The handle provided by http-acquire-
provider.

Chapter 4 Section 4.4
Clear HTTP Functions HTTP Monk Functions

HTTP(S) e*Way Intelligent Adapter User’s Guide 44

Parameters

Return Values

Boolean
If successful, returns #t (true); otherwise, returns #f (false).

Throws

None.

Additional Information

Verify the successful result of the http-post call before calling http-get-result-data.

For more information on acceptable format types, see “Rules for x-www-form-
urlencoded Format Encoding” on page 115.

When the Web server sends a “cookie” to the e*Way, the e*Way stores it away in
memory. Each time the e*Way needs to “Post” to the same Web site, it references the
same cookie as received initially (usually the login page). The e*Way is able to store
cookie “A” for one site, cookie “B” for another site, etc., and associates each cookie with
the relevant site.

Example One

(define postCmd (http-post hCon "http://stingray/Project3/
Project3.asp" 0
"accept:text/*" "Content-Type: application/x-www-form-
urlencoded" "test1=hello&test2=world"))
(if postCmd

(begin
(define postData (http-get-result-data hCon))

Name Type Description

hCon Opaque
handle

The handle provided by http-acquire-provider.

URL String The URL to which the data is posted.

timeout Integer A number representing the timeout in milliseconds
that the client waits for a response from the server.

accept-string String The MIME type of the output data to be returned by
the server.
NOTE: Only text types are supported. Must be in the
form: accept:xxxx/xxxx For example: “Accept:text/*.”

content-type String Content type of the data passed to the post-data
parameter. The default:
application/x-www-form-urlencoded.

post-data String Defines the encoded value to pass to the Web server
as part of a POST request. The example here is
encoded in the default "application/x-www-form-
urlencoded" scheme.
(stringx=data_string&stingy=data_string)
example:”test1=hello&test2=world”

Chapter 4 Section 4.4
Clear HTTP Functions HTTP Monk Functions

HTTP(S) e*Way Intelligent Adapter User’s Guide 45

(display postData)
)

)

Example Two

1st eWay post ---> login page
<---login page responds with cookie “A”

2nd eWay post (with cookie “A” ---> next page

http-release-provider

Syntax

(http-release-provider hCon)

Description

http-release-provider de-allocates the HTTP session handle obtained from
http-acquire-provider.

Parameters

Return Values

None.

Throws

None.

http-set-body-write-delay

Syntax

(http-set-body-write-delay hCon <1stdelay> <2nddelay>)

Description

http-set-body-write-delay is used to specify the delays added before writing the HTTP
body data. See the following Web site for a detailed explanation:

http://www.w3.org/Library/src/HTTP.html

Parameters

Name Type Description

hCon Opaque handle The handle provided by http-acquire-
provider.

Name Type Description

hCon Handle The handle from http-acquire-provider (see
http-acquire-provider on page 35).

http://www.w3.org/Library/src/HTTP.html

Chapter 4 Section 4.4
Clear HTTP Functions HTTP Monk Functions

HTTP(S) e*Way Intelligent Adapter User’s Guide 46

Return Values

None.

Throws

None.

http-set-proxy-properties

Syntax

(http-set-proxy-properties hCon proxyUrl port proxyUser
proxyPassword)

Description

http-set-proxy-properties defines the parameters necessary to access the proxy server.

Parameters

Return Values

Boolean

If successful, returns #t (true); otherwise, returns #f (false).

Throws

None.

1stdelay Integer The desired first delay time in milliseconds
(default is 2000 ms).

2nddelay Integer The desired second delay time in milliseconds
(default is 3000 ms).

Name Type Description

hCon Opaque handle The handle provided by http-acquire-
provider.

proxyUrl String The proxy URL, for example:
“www.somesite.com” or
“www.somesite.com:8080”

port Integer The port number on which the proxy server is
listening.

proxyUser String A valid user name.

proxyPassword String An encrypted password associated with the
above named user. Use the encrypt-password
function to create this password. See the
Monk Developer’s Reference for more
information.

Name Type Description

Chapter 4 Section 4.4
Clear HTTP Functions HTTP Monk Functions

HTTP(S) e*Way Intelligent Adapter User’s Guide 47

http-url-encode

Syntax

(http-url-encode input_data)

Description

http-url-encode encodes the given string into x-www-form-urlencoded format.

Parameters

Return Values

String
Returns the encoded string.

Throws

None.

Additional Information

In previous releases of the HTTP(S) e*Way this was handled automatically. Currently,
this function must be called in order to transform the data string into a URL-encoded
format.

Name Type Description

input_data String The string to be encoded.

HTTP(S) e*Way Intelligent Adapter User’s Guide 48

Chapter 5

Secure Sockets Layer Operation

This chapter explains the operation of the Secure Sockets Layer (SSL) feature available
with the HTTP(S) e*Way Intelligent Adapter.

5.1 Using Secure Sockets Layer: Overview
The SSL feature offers hyper-text transfer protocol (HTTP) data exchanges security
from interception, hackers, and other types of breaches. HTTP with SSL is called
HTTP(S), meaning that SSL is enabled and provides security for any HTTP(S) data
exchange.

You can use the openssl utility program to generate certificate and key files to use with
the HTTP(S) e*Way. If your client certificates are in the PKCS12 format, you must
convert them to PEM-formatted files. The HTTP(S) e*Way only uses PEM files.

The OpenSSL Project is a collaborative effort to develop a robust, commercial-grade,
full-featured, and open-source toolkit implementing SSL versions 2.0 and 3.0, and
Transport Layer Security (TLS) version 1.0 protocols, as well as a full-strength general
purpose cryptography library. The project is managed by a worldwide community of
volunteers that use the Internet to communicate, plan, and develop the OpenSSL toolkit
and its related documentation.

For more information, see the following Web site:

http://www.openssl.org/

5.2 Certificates and Security
The HTTP(S) e*Way uses certificates to ensure the security of each transaction.
Certificates are files that contain information that identifies the user or organization
that owns the certificate, the period of time for which the certificate is valid, the
organization that issued the certificate, and a digital “signature” that verifies the
organization’s identity. Certificates are issued by a certification authority (CA), a third
party that each participant in the data-exchange process trusts to verify identity and to
issue appropriate certificates.

http://www.openssl.org/

Chapter 5 Section 5.3
Secure Sockets Layer Operation Using the openssl Utility

HTTP(S) e*Way Intelligent Adapter User’s Guide 49

An easy way to understand certificates is to compare them to passports. Border-control
authorities and citizens both agree that the agency that issues passports (the
government) has the authority to do so. Each passport identifies its owner; each
passport has an expiration date. Anti-counterfeiting measures built into the passport
identify genuine, authorized documents.

Using certificates, the client system (in an e*Gate implementation, the HTTP(S) e*Way)
is able to verify the identity of the Web server; likewise, the Web server is able to verify
the identity of the client. Once both systems have verified each other’s identity, a secure
channel is established, and confidential information can be exchanged safely.

Important: There must be a valid certificate located in the specified directory before a CA
certificate can be authenticated. If there are no certificates located in the specified
directory, if the directory load fails, or if the file within the directory is empty, the
authentication process cannot proceed.

5.3 Using the openssl Utility
This section explains how to use the openssl Utility with the HTTP(S) e*Way, to convert
PKCS12-formatted files.

5.3.1 Working with PKCS12 files
Run the following command at the command line:

openssl pkcs12 <options>

For the usage banner:

 openssl pkcs12 -v

To get the CA certificate

 openssl pkcs12 -info -in existing_cert_file.pfx -out
new_cert_file.cer -cacerts

 Example

 openssl pkcs12 -info -in D:\myown.pfx -out myownCA.cer -cacerts

5.3.2 Converting PKCS12 Files to PEM Files
To convert a PKCS12 certificate and key file to two separate PEM files

Get the client certificate PEM file as follows:

 openssl pkcs12 -info -in D:\myown.pfx -out myownClient.cer -clcerts
-nokeys

Get the client key PEM file as follows:

openssl pkcs12 -info -in D:\myown.pfx -out myownKey.cer -nocerts
-nodes

Chapter 5 Section 5.4
Secure Sockets Layer Operation SSL Handshaking

HTTP(S) e*Way Intelligent Adapter User’s Guide 50

5.3.3 Converting DER Files to PEM Files
To convert a DER certificate and key file to two separate PEM files

openssl x509 -inform DER -in SoCoCert.der.cer -outform PEM -out
SoCoCert.pem

Import a CA certificate to the truststore as follows:

keytool -import -keystore trustcacertsjks -file SoCoCert.der.cer
alias pantallos

or

keytool -import -keystore trustcacertsjks -file SoCoCert.pem -alias
pantallos

The keytool utility understands both formats. The password for trustcacertsjks is
seebeyond (all in lowercase). Set this file as the truststore and seebeyond as the
truststore password for the e*Way configuration.

5.3.4 Converting Other Formats
For more information on using openssl for converting other certificate formats to PEM,
see the following Web site:

http://www.openssl.org/docs/apps/openssl.html

5.4 SSL Handshaking
There are two options available for setting up SSL connectivity with a Web server:

Server-side authentication: The majority of eCommerce Web sites on the Internet
are configured for server-side authentication. The e*Way requests a certificate from
the Web server and authenticates the Web server by verifying that the certificate can
be trusted. Essentially, the e*Way does this operation by looking into its TrustStore
for a CA certificate with a public key that can validate the signature on the
certificate received from the Web server.

Dual authentication: This option requires authentication from both the e*Way and
Web server. The server side (Web server) of the authentication process is the same as
that described previously. However, in addition, the Web server requests a
certificate from the e*Way. The e*Way then sends its certificate to the Web server.
The server, in turn, authenticates the e*Way by looking into its TrustStore for a
matching trusted CA certificate. The communication channel is established by the
process of both parties’ requesting certificate information.

For illustrations of both these types of authentication, see the following figures:

Figure 4 on page 51 shows a diagram of the SSL handshake dialog for server-side
authentication.

Figure 5 on page 52 shows a diagram of the SSL handshake dialog for dual
authentication.

http://www.openssl.org/docs/apps/openssl.html

Chapter 5 Section 5.4
Secure Sockets Layer Operation SSL Handshaking

HTTP(S) e*Way Intelligent Adapter User’s Guide 51

Figure 4 Server-side Authentication

Client Server

Handshake: Finished

ChangeCipherSpec

Handshake: ServerHelloDone

Handshake: Certificate

Handshake: ServerHello

Handshake: Client Hello

Handshake: ClientKeyExchange

ChangeCipherSpec

Handshake: Finished

Chapter 5 Section 5.4
Secure Sockets Layer Operation SSL Handshaking

HTTP(S) e*Way Intelligent Adapter User’s Guide 52

Figure 5 Dual Authentication

Client Server

Handshake: Finished

ChangeCipherSpec

Handshake: ServerHelloDone

Handshake: Certificate

Handshake: ServerHello

Handshake: Client Hello

Handshake: ClientKeyExchange

ChangeCipherSpec

Handshake: Finished

Handshake: Certificate

Handshake: CertificateVerify

Handshake: CertificateRequest

Chapter 5 Section 5.4
Secure Sockets Layer Operation SSL Handshaking

HTTP(S) e*Way Intelligent Adapter User’s Guide 53

Figure 6 shows a diagram of general SSL operation with the HTTP(S) e*Way.

Figure 6 General SSL Operation: HTTP(S) e*Way

HTTP(S) e*Way Web Server

POST / GET

Response

SSL Communication Channel

truststore keystore

Trusted CA
Certificates

Certificate &
CA Certificate

Chain

Private

Key

HackerMan-in-Middle Attack:
Cannot break secured channel

HTTP(S) e*Way Intelligent Adapter User’s Guide 54

Chapter 6

HTTP(S) e*Way Configuration

This chapter describes how to configure the HTTP(S) e*Way Intelligent Adapter.

6.1 Introduction
This chapter describes the procedure for configuring a new HTTP(S) e*Way. You can
also modify this procedure to use existing e*Ways. e*Way configuration parameters are
set using the e*Way editor. Procedures for creating and editing e*Gate components are
provided in the Schema Designer’s online help.

Before you can run the HTTP(S) e*Way, you must configure it using the e*Way Editor,
which is accessed from the e*Gate Schema Designer GUI. The HTTP(S) e*Way package
includes a default configuration file which you can modify using this editor.

6.2 e*Way Configuration Parameters
Start with the e*Gate Schema Designer graphical user interface (GUI) to set or change
an e*Way’s configuration parameters.

To set or change e*Way configuration parameters

1 In the Schema Designer’s Component Editor pane, select the e*Way you want to
configure and display its properties.

2 Under Configuration File, click New to create a new file, Find to select an existing
configuration file, or Edit to edit the currently selected file.

3 In the Additional Command Line Arguments box, type any additional command
line arguments that the e*Way may require, taking care to insert them at the end of
the existing command-line string. Be careful not to change any of the default
arguments unless you have a specific need to do so.

For more information about how to use the e*Way Editor, see the e*Way Editor’s online
Help or the e*Gate Integrator User’s Guide.

Chapter 6 Section 6.2
HTTP(S) e*Way Configuration e*Way Configuration Parameters

HTTP(S) e*Way Intelligent Adapter User’s Guide 55

The e*Way’s configuration parameters are organized into the following sections:

“General Settings” on page 55

“Communication Setup” on page 56

“Monk Configuration” on page 59

“HTTP Configuration” on page 73

“HTTP Proxy Configuration” on page 76

“HTTP(S) Configuration” on page 77

6.2.1 General Settings
The General Settings control basic operational parameters.

Journal File Name

Description

Specifies the name of the journal file.

Required Values

A valid file name, optionally including an absolute path (for example,
c:\temp\filename.txt). If an absolute path is not specified, the file is stored in the
e*Gate SystemData directory. See the e*Gate Integrator System Administration and
Operations Guide for more information about file locations.

Additional Information

An Event is journaled for the following conditions:

When the number of resends is exceeded (see Max Resends Per Message in the
next section)

When its receipt is due to an external error, but Forward External Errors is set to
No. (See “Forward External Errors” on page 56 for more information.)

Max Resends Per Message

Description

Specifies the maximum number of times the e*Way attempts to resend a message to the
external system after receiving an error.

Required Values

An integer between 1 and 1024. The default is 5.

Max Failed Messages

Description

Specifies the maximum number of failed messages that the e*Way allows. When the
specified number of failed messages is reached, the e*Way shuts down and exits.

Chapter 6 Section 6.2
HTTP(S) e*Way Configuration e*Way Configuration Parameters

HTTP(S) e*Way Intelligent Adapter User’s Guide 56

Required Values

An integer between 1 and 1024. The default is 3.

Forward External Errors

Description

Selects whether error messages that begin with the string DATAERR that are received
from the external system are queued to the e*Way’s configured Intelligent Queue (IQ).
See “Exchange Data with External Function” on page 69 for more information.

Required Values

Yes or No. The default value, No, specifies that error messages are not forwarded.

See “Schedule-driven Data Exchange Functions” on page 64 for information about
how the e*Way uses this function.

6.2.2 Communication Setup
The Communication Setup parameters control the schedule by which the e*Way
obtains data from the external system.

Note: The schedule you set using the e*Way’s properties in the Schema Designer controls
when the e*Way executable runs. The schedule you set within the parameters
discussed in this section (using the e*Way Editor) determines when data is
exchanged. Be sure you set the "exchange data" schedule to fall within the "run the
executable" schedule.

Exchange Data Interval

Description

Specifies the number of seconds the e*Way waits between calls to the Exchange Data
with External function during scheduled data exchanges.

Required Values

An integer between 0 and 86,400. The default is 120.

Additional Information

If Zero Wait Between Successful Exchanges is set to Yes and the Exchange Data with
External Function returns data, The Exchange Data Interval setting is ignored, and the
e*Way invokes the Exchange Data with External Function immediately.

If this parameter is set to zero, there is no exchange data schedule set and the Exchange
Data with External Function is never called.

See “Down Timeout” on page 58 and “Stop Exchange Data Schedule” on page 58 for
more information about the data exchange schedule.

Chapter 6 Section 6.2
HTTP(S) e*Way Configuration e*Way Configuration Parameters

HTTP(S) e*Way Intelligent Adapter User’s Guide 57

Zero Wait Between Successful Exchanges

Description

Selects whether to initiate data exchange processes after the Exchange Data Interval or
immediately after a successful previous exchange.

Required Values

Yes or No. If this parameter is set to Yes, the e*Way immediately invokes the Exchange
Data with External function, if the previous exchange function returned data. If this
parameter is set to No, the e*Way always waits the number of seconds specified by
Exchange Data Interval between invocations of the Exchange Data with External
function. The default is No.

See “Exchange Data with External Function” on page 69 for more information.

Start Exchange Data Schedule

Description

Establishes the schedule to invoke the e*Way’s Exchange Data with External function.

Required Values

One of the following:

One or more specific dates/times

A single repeating interval (such as yearly, weekly, monthly, daily, or every n
seconds)

Also required: If you set a schedule using this parameter, you must also define all of
the following parameters:

Exchange Data with External Function on page 69

Positive Acknowledgment Function on page 72

Negative Acknowledgment Function on page 72

If you do not do so, the e*Way terminates its execution when the schedule attempts to
start.

Since months do not all contain equal numbers of days, be sure not to provide
boundaries that would cause an invalid date selection (for example, the 30th of every
month does not include February).

Additional Information

When the schedule starts, the e*Way determines whether it is waiting to send an
acknowledgement (ACK) or non-acknowledgement (NAK) to the external system
(using the Positive and Negative Acknowledgment functions) and whether the
connection to the external system is active.

If no ACK/NAK is pending and the connection is active, the e*Way immediately
executes the Exchange Data with External function. Thereafter, the Exchange Data
with External function is called according to the Exchange Data Interval parameter
until the Stop Exchange Data Schedule time is reached.

Chapter 6 Section 6.2
HTTP(S) e*Way Configuration e*Way Configuration Parameters

HTTP(S) e*Way Intelligent Adapter User’s Guide 58

See “Exchange Data with External Function” on page 69, “Exchange Data Interval”
on page 56, and “Stop Exchange Data Schedule” on page 58 for more information.

Stop Exchange Data Schedule

Description

Establishes the schedule to stop data exchange.

Required Values

One of the following:

One or more specific dates/times

A single repeating interval (such as yearly, weekly, monthly, daily, or every n
seconds).

Since months do not all contain equal numbers of days, be sure not to provide
boundaries that would cause an invalid date selection (for example, the 30th of
every month does not include February).

Down Timeout

Description

Specifies the number of seconds that the e*Way waits between calls to the External
Connection Establishment Function. See “External Connection Establishment
Function” on page 70 for more information.

Required Values

An integer between 1 and 86,400. The default is 15.

Up Timeout

Description

Specifies the number of seconds the e*Way waits between calls to the External
Connection Verification Function. See “External Connection Verification Function”
on page 71 for more information.

Required Values

An integer between 1 and 86,400. The default is 15.

Resend Timeout

Description

Specifies the number of seconds the e*Way waits between attempts to resend a message
to the external system, after receiving an error message.

Required Values

An integer between 1 and 86,400. The default is 10.

Chapter 6 Section 6.2
HTTP(S) e*Way Configuration e*Way Configuration Parameters

HTTP(S) e*Way Intelligent Adapter User’s Guide 59

6.2.3 Monk Configuration
The parameters in this section help you set up the information required by the e*Way to
utilize Monk for communication with the external system.

e*Way Structure

Conceptually, an e*Way is divided into two halves. One half of the e*Way (shown on
the left in Figure 7) handles communication with the external system. The other half
manages the Collaborations that process data and subscribe or publish to other e*Gate
components.

Figure 7 e*Way Internal Architecture

The communications half of the e*Way uses Monk functions to start and stop scheduled
operations, exchange data with the external system, package data as e*Gate Events and
send those Events to Collaborations, and manage the connection between the e*Way
and the external system.

The Monk Configuration options explained in this section control the Monk
environment and define the Monk functions used to perform these basic e*Way
operations. You can create and modify these functions using the Collaboration Rules
Editor or a text editor (such as, Notepad, or UNIX vi).

The communications half of the e*Way is single-threaded. Functions run serially, and
only one function can be executed at a time. The business logic side of the e*Way is
multi-threaded, with one executable thread for each Collaboration. Each thread
maintains its own Monk environment. Therefore, information such as variables,
functions, path information, and so on, cannot be shared between threads.

Communication
with external
system

Business logic and
data exchange
within e*Gate

External
system

Other e*Gate
components

e*Gate Events

Data
e*Way

Collaboration

Collaboration

Function

Function

Chapter 6 Section 6.2
HTTP(S) e*Way Configuration e*Way Configuration Parameters

HTTP(S) e*Way Intelligent Adapter User’s Guide 60

Operational Details

Table 3 shows the categories of Monk functions in the communications half of an
e*Way.

A series of figures on the next several pages illustrates the interaction and operation of
these functions.

Initialization Functions

Figure 8 on page 61 illustrates how the e*Way executes its initialization functions.

Table 3 Categories of Communication Monk Functions

Type of Operation Name

Initialization Startup Function on page 68
(also see Monk Environment Initialization
File on page 67)

Connection External Connection Establishment Function
on page 70
External Connection Verification Function on
page 71
External Connection Shutdown Function on
page 71

Schedule-driven data
exchange

Exchange Data with External Function on
page 69
Positive Acknowledgment Function on
page 72
Negative Acknowledgment Function on
page 72

Shutdown Shutdown Command Notification Function
on page 73

Event-driven data
exchange

Process Outgoing Message Function on
page 68

Chapter 6 Section 6.2
HTTP(S) e*Way Configuration e*Way Configuration Parameters

HTTP(S) e*Way Intelligent Adapter User’s Guide 61

Figure 8 Initialization Functions

Connection Functions

Figure 9 on page 62 illustrates how the e*Way executes the connection establishment
and verification functions.

Start e*Way

Load
"Monk Initialization"

file

Execute any Monk function
having the same name as

the initialization file

Load "Startup" file

Execute any Monk function
having the same name as

the startup file

Chapter 6 Section 6.2
HTTP(S) e*Way Configuration e*Way Configuration Parameters

HTTP(S) e*Way Intelligent Adapter User’s Guide 62

Figure 9 Connection Establishment and Verification Functions

Note: The e*Way selects the connection function based on an internal “up/down” flag
rather than a poll to the external system. See Figure 11 on page 64 and Figure 13
on page 66 for examples of how different functions use this flag.

User functions can manually set this flag using Monk functions. See HTTP
Standard Functions on page 108 and send-external-down on page 106 for more
information.

Connect e*Way to
external system

Internal
flag shows connection

active?

Wait for "Up Timeout"
schedule

Call External Connection
Verification function

Wait for "Down Timeout"
schedule

Call External Connection
Establishment function

Yes

No

Chapter 6 Section 6.2
HTTP(S) e*Way Configuration e*Way Configuration Parameters

HTTP(S) e*Way Intelligent Adapter User’s Guide 63

Figure 10 illustrates how the e*Way executes its “connection shutdown” function.

Figure 10 Connection Shutdown Function

Schedule-driven Data Exchange Functions

Figure 11 on page 64 illustrates how the e*Way performs schedule-driven data
exchange using the Exchange Data with External Function. The Positive
Acknowledgment Function and Negative Acknowledgment Function are also called
during this process.

Start can occur in any of the following ways:

The Start Data Exchange time occurs

Periodically during data-exchange schedule (after Start Data Exchange time, but
before Stop Data Exchange time), as set by the Exchange Data Interval

The start-schedule Monk function is called

After the function exits, the e*Way waits for the next start-schedule time or command.

Connect e*Way to
external system

Internal
flag shows connection

active?

Wait for "Up Timeout"
schedule

Call External Connection
Verification function

Wait for "Down Timeout"
schedule

Call External Connection
Establishment function

Yes

No

Chapter 6 Section 6.2
HTTP(S) e*Way Configuration e*Way Configuration Parameters

HTTP(S) e*Way Intelligent Adapter User’s Guide 64

S-D_DataExchange.vsd

Figure 11 Schedule-driven Data Exchange Functions

Increment "Failed
Message" counter

DATAERR plus
additional data

Null
string

Data
(other than

error strings)

Forward
external
errors?

No

Yes

Set interval flag
"Connection

Down"

CONNERR

Increment "Failed
Message" counter

DATAERR only

Journal
enabled?

Create journal
entry

Yes

No

Start

Function exits

Send Event to
e*Gate

All
subscribing

Collaborations return
TRUE

?

Call Positive
Acknowledgment

function

Zero
wait after successful

exchange?

Call Negative
Acknowledgment

function

Yes

No

YesNo

Call Exchange Data with
External function

Return

Chapter 6 Section 6.2
HTTP(S) e*Way Configuration e*Way Configuration Parameters

HTTP(S) e*Way Intelligent Adapter User’s Guide 65

Shutdown Functions

Figure 12 illustrates how the e*Way implements the shutdown request function.

Figure 12 Shutdown Functions

Event-driven Data Exchange Functions

Figure 13 on page 66 illustrates event-driven data exchange using the Process
Outgoing Message Function.

Every two minutes, the e*Way checks the Failed Message counter against the value
specified by the Max Failed Messages parameter. When the Failed Message counter
exceeds the specified maximum value, the e*Way logs an error and shuts down.

After the function exits, the e*Way waits for the next outgoing Event.

Control Broker issues
"Shutdown" command

Call Shutdown Notification function
with parameter

"SHUTDOWN_NOTIFICATION"

e*Way shuts down

Wait for
shutdown-request

function

Return

Null string or
"SUCCESS"

any other value

Chapter 6 Section 6.2
HTTP(S) e*Way Configuration e*Way Configuration Parameters

HTTP(S) e*Way Intelligent Adapter User’s Guide 66

Figure 13 Event-driven Data-exchange Functions

How to Specify Function Names or File Names

Parameters that require the name of a Monk function accept either a function name or a
file name. If you specify a file name, be sure that the file has one of the following
extensions:

.monk

.tsc

.dsc

Additional Path

Description

Specifies a path to be added to the load path, the path Monk uses to locate files and data
(set internally within Monk). The directory specified in Additional Path is searched
before the default load path.

Connect e*Way to
external system

Internal
flag shows connection

active?

Wait for "Up Timeout"
schedule

Call External Connection
Verification function

Wait for "Down Timeout"
schedule

Call External Connection
Establishment function

Yes

No

Chapter 6 Section 6.2
HTTP(S) e*Way Configuration e*Way Configuration Parameters

HTTP(S) e*Way Intelligent Adapter User’s Guide 67

Required Values

A path name, or a series of paths separated by semicolons. This parameter is optional
and may be left blank.

Additional information

The default load paths are determined by the bin and Shared Data settings in
the .egate.store file. See the e*Gate Integrator System Administration and Operations Guide
for more information about this file.

To specify multiple directories, manually enter the directory names rather than
selecting them with the File Selection button. Directory names must be separated with
semicolons, and you can mix absolute paths with relative e*Gate paths, for example:

monk_scripts\my_dir;c:\my_directory

The internal e*Way function that loads this path information is called only once, when
the e*Way first starts up.

Auxiliary Library Directories

Description

Specifies a path to auxiliary library directories. Any .monk files found within those
directories are automatically loaded into the e*Way’s Monk environment.

Required Values

A path name, or a series of paths separated by semicolons. The default is
monk_library/ewhttp.

Additional information

To specify multiple directories, manually enter the directory names rather than
selecting them with the File Selection button. Directory names must be separated with
semicolons, and you can mix absolute paths with relative e*Gate paths, for example:

monk_scripts\my_dir;c:\my_directory

This function is called once when the e*Way first starts up. This parameter is optional
and may be left blank.

Monk Environment Initialization File

Specifies a file that contains environment initialization functions, which are loaded
after the auxiliary library directories are loaded. Typically, it is a good practice to
initialize any global Monk variables that can be used by any other Monk extension
scripts.

Required Values

A file name within the load path, or file name plus path information (relative or
absolute). If path information is specified, that path is appended to the load path. See
“Additional Path” on page 66 for more information about the load path. The default is
http-init.monk (see http-init on page 110 for more information).

Chapter 6 Section 6.2
HTTP(S) e*Way Configuration e*Way Configuration Parameters

HTTP(S) e*Way Intelligent Adapter User’s Guide 68

Additional information

Any environment-initialization functions called by this file accept no input, and must
return a string. The e*Way loads this file and tries to invoke a function of the same base
name as the file name (for example, for a file named my-init.monk, the e*Way attempts
to execute the function my-init).

Typically, it is a good practice to initialize any global Monk variables that may be used
by any other Monk extension scripts.

The internal function that loads this file is called once when the e*Way first starts up
(see Figure 8 on page 61).

Startup Function

Description

Specifies a Monk function that the e*Way loads and invokes upon startup or whenever
the e*Way’s configuration changes before it enters into its initial communication state.
This function is used so that the external system can be initialized before the message
exchange starts.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. (The default is http-startup. See http-startup
on page 113 for more information.)

Additional information

The function accepts no input, and must return a string.

The string FAILURE indicates that the function failed; any other string (including a null
string) indicates success.

This function is called after the e*Way loads the specified Monk Environment
Initialization file and any files within the specified Auxiliary Directories.

The e*Way loads this file and tries to invoke a function of the same base name as the file
name (see Figure 8 on page 61). For example, for a file named my-startup.monk, the
e*Way attempts to execute the function my-startup.

Process Outgoing Message Function

Description

Specifies the Monk function responsible for sending outgoing messages (Events) from
the e*Way to the external system. This function is event-driven (unlike the Exchange
Data with External function, which is schedule-driven).

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. You may not leave this field blank. (The
default is http-outgoing. See http-outgoing on page 111 for more information.)

Chapter 6 Section 6.2
HTTP(S) e*Way Configuration e*Way Configuration Parameters

HTTP(S) e*Way Intelligent Adapter User’s Guide 69

Additional Information

The function requires a non-null string as input (the outgoing Event to be sent) and
must return a string.

The e*Way invokes this function when one of its Collaborations publishes an Event to
an <EXTERNAL> destination (as specified within the Schema Designer). The function
returns one of the following (see Figure 13 on page 66 for more details):

Null string: Indicates that the Event was published successfully to the external
system.

RESEND: Indicates that the Event should be resent.

CONNERR: Indicates that there is a problem communicating with the external
system.

DATAERR: Indicates that there is a problem with the message (Event) data itself.

Any other string: If a string other than one of the previous is returned, the e*Way
creates an entry in its log file indicating that an attempt has been made to access an
unsupported function.

Note: If you wish to use event-send-to-egate to enqueue failed Events in a separate IQ,
the e*Way must have an inbound Collaboration (with appropriate IQs) configured
to process those Events. See event-send-to-egate on page 105 for more
information.

Exchange Data with External Function

Description

Specifies a Monk function that initiates the transmission of data from the external
system to the e*Gate system and forwards that data as an inbound Event to one or more
e*Gate Collaborations. This function is called according to a schedule (unlike the
Process Outgoing Message Function, which is event-driven).

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. (The default is http-exchange. See http-
exchange on page 109.)

Chapter 6 Section 6.2
HTTP(S) e*Way Configuration e*Way Configuration Parameters

HTTP(S) e*Way Intelligent Adapter User’s Guide 70

Additional Information

The function accepts no input and must return a string (see Figure 11 on page 64 for
more details):

Null string: Indicates that the data exchange was completed successfully. No
information is sent into the e*Gate system.

CONNERR: Indicates that a problem with the connection to the external system has
occurred.

DATAERR: Indicates that a problem with the data itself has occurred. The e*Way
handles the string “DATAERR” and “DATAERR” plus additional data differently;
see Figure 11 on page 64 for more details.

Any other string: The contents of the string are packaged as an inbound Event. The
e*Way must have at least one Collaboration configured suitably to process the
inbound Event, as well as any required IQs.

This function is initially triggered by the Start Data Exchange schedule or manually by
the Monk function start-schedule. After the function has returned true and the data
received by this function has been acknowledged or not acknowledged (by the Positive
Acknowledgment Function or Negative Acknowledgment Function, respectively),
the e*Way checks the Zero Wait Between Successful Exchanges parameter.

If this parameter is set to Yes, the e*Way immediately calls the Exchange Data with
External function again. Otherwise, the e*Way does not call the function until the next
scheduled start-exchange time, or the schedule is manually invoked using the Monk
function start-schedule (see start-schedule on page 107 for more information).

External Connection Establishment Function

Description

Specifies a Monk function that the e*Way calls when it has determined that the
connection to the external system is down.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This field cannot be left blank. (The default is
http-connect. See http-connect on page 109 for more information.)

Additional Information

The function accepts no input and must return a string.

“SUCCESS” or “UP”: Indicates that the connection was established successfully.

Any other string (including the null string): Indicates that the attempt to establish
the connection failed.

This function is executed according to the interval specified within the Down Timeout
parameter, and is only called according to this schedule.

The External Connection Verification function (see below) is called when the e*Way
has determined that its connection to the external system is up.

Chapter 6 Section 6.2
HTTP(S) e*Way Configuration e*Way Configuration Parameters

HTTP(S) e*Way Intelligent Adapter User’s Guide 71

External Connection Verification Function

Description

Specifies a Monk function that the e*Way calls when its internal variables show that the
connection to the external system is up.

Required Values

The name of a Monk function. This function is optional. If no External Connection
Verification function is specified, the e*Way executes the External Connection
Establishment function in its place. The default is http-verify (see http-verify on
page 113 for more information).

Additional Information

The function accepts no input and must return a string as follows:

SUCCESS or UP: Indicates that the connection was established successfully.

Any other string: Including the null string, indicates that the attempt to establish
the connection failed.

This function is executed according to the interval specified within the Up Timeout
parameter, and is only called according to this schedule.

The External Connection Establishment function (see the previous paragraphs) is
called when the e*Way has determined that its connection to the external system is
down.

External Connection Shutdown Function

Description

Specifies a Monk function that the e*Way calls to shut down the connection to the
external system.

Required Values

The name of a Monk function. (The default is http-shutdown. See http-shutdown on
page 112 for more information.)

Additional Information

This function requires a string as input, and may return a string.

This function is only invoked when the e*Way receives a “suspend” command from a
Control Broker. When the suspend command is received, the e*Way invokes this
function, passing the string SUSPEND_NOTIFICATION as an argument.

Any return value indicates that the suspend command can proceed and that the
connection to the external system can be broken immediately.

Note: Include in this function any required clean-up operations that must be performed as
part of the shutdown procedure, but before the e*Way exits.

Chapter 6 Section 6.2
HTTP(S) e*Way Configuration e*Way Configuration Parameters

HTTP(S) e*Way Intelligent Adapter User’s Guide 72

Positive Acknowledgment Function

Description

Specifies a Monk function that the e*Way calls when all the Collaborations to which the
e*Way has sent data have processed and enqueued that data successfully.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is required if the Exchange
Data with External function is defined. (The default is http-ack. See http-ack on
page 108 for more information.)

Additional Information

The function requires a non-null string as input (the Event to be sent to the external
system) and must return a string as follows:

CONNERR: Indicates a problem with the connection to the external system. When
the connection is re-established, the Positive Acknowledgment function is called
again, with the same input data.

Null string: The function completed its execution successfully.

After the Exchange Data with External function returns a string that is transformed
into an inbound Event, the Event is handed off to one or more Collaborations for
further processing. If the Event’s processing is completed successfully by all the
Collaborations to which it was sent, the e*Way executes the Positive Acknowledgment
function. Otherwise, the e*Way executes the Negative Acknowledgment function.

Note: If you configure the acknowledgment function to return a non-null string, you must
configure a Collaboration (with appropriate IQs) to process the returned Event.

Negative Acknowledgment Function

Description

Specifies a Monk function that the e*Way calls when the e*Way fails to process and
enqueue Events from the external system.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is required if the Exchange
Data with External function is defined. See http-nack on page 110 for more
information)

Additional Information

The function requires a non-null string as input (the Event to be sent to the external
system) and must return a string as follows:

CONNERR: Indicates a problem with the connection to the external system. When
the connection is re-established, the function is called again.

Null string: The function completed its execution successfully.

Chapter 6 Section 6.2
HTTP(S) e*Way Configuration e*Way Configuration Parameters

HTTP(S) e*Way Intelligent Adapter User’s Guide 73

This function is only called during the processing of inbound Events. After the
Exchange Data with External function returns a string that is transformed into an
inbound Event, the Event is handed off to one or more Collaborations for further
processing. If the Event’s processing is not completed successfully by all the
Collaborations to which it was sent, the e*Way executes the Negative Acknowledgment
function (otherwise, the e*Way executes the Positive Acknowledgment function).

Note: If you configure the acknowledgment function to return a non-null string, you must
configure a Collaboration (with appropriate IQs) to process the returned Event.

Shutdown Command Notification Function

Description

Specifies a Monk function that is called when the e*Way receives a shutdown command
from the Control Broker. This parameter is optional.

Required Values

The name of a Monk function.

Additional Information

When the Control Broker issues a shutdown command to the e*Way, it calls this
function with the string SHUTDOWN_NOTIFICATION passed as a parameter.

The function accepts a string as an input and must return a string as follows:

A null string or SUCCESS: Indicates that the shutdown can occur immediately.

Any other string: Indicates that shutdown must be postponed. Once postponed,
shutdown does not proceed until the Monk function shutdown-request is executed
(see shutdown-request on page 106).

Note: If you postpone a shutdown using this function, be sure to use the
shutdown-request function to complete the process in a timely manner.

6.2.4 HTTP Configuration
This section defines the hyper-text transfer protocol (HTTP) parameters used in the
http-acquire-provider (see http-acquire-provider on page 117 for more information),
as well as the GET and POST calls (see Sample Configurations on page 86 for more
information).

Request

Description

Specifies whether this request is to use the GET or POST method.

Required Values

GET or POST.

Chapter 6 Section 6.2
HTTP(S) e*Way Configuration e*Way Configuration Parameters

HTTP(S) e*Way Intelligent Adapter User’s Guide 74

Timeout

Description

Specifies the amount of time in milliseconds the e*Way waits for a response from the
Web server.

Required Values

An integer between 1 and 864000. The default is 50000.

URL

Description

Specifies the target URL for the GET or POST command. Your target URL must process
the POST data or GET request.

Required Values

A string containing a valid URL. The URL must be complete, as in the examples below:

HTTP(S)://www.yourcompany.com:2080

or

HTTP(S)://www.yourcompnay.com/search2.cgi

Additional Information

If you are using GET, you can provide parameters using the application/x-www-form-
urlencoded notation, for example:

http://www.peterw.com/search?p1+fort&p2=william&p3=levack

Whether you need to express GET method parameters using the application
x-www-form-urlencoded notation is dependent on whether the interfacing Web program
requires the data to be encoded in this manner before receiving it.

User Name

Description

Specifies the user name for authentication purposes necessary for connecting to the
Web server.

Required Values

A string containing any valid user name. (See also “Encrypted Password” on page 75)

Additional Information

The user name is required by URLs that require HTTP Basic Authentication to access
the site.

Important: Enter a value for this parameter before you enter a value for the Encrypted
Password parameter.

Chapter 6 Section 6.2
HTTP(S) e*Way Configuration e*Way Configuration Parameters

HTTP(S) e*Way Intelligent Adapter User’s Guide 75

Encrypted Password

Description

Specifies the encrypted password connected to the username entered previously,
necessary to complete authentication.

Required Values

A string containing the valid encrypted password associated with the user name.

Important: Be sure to enter a value for the User Name parameter before entering the
Encrypted Password.

Agent

Description

Specifies an agent name to pass to the Web server. This is an arbitrary name identifying
the e*Way to the Web server.

Required Values

A string. (The configured default is e*Gate HTTP(S) e*Way.)

Content-type

Description

Specifies the content-type of the application data.

Required Values

A string.

Additional Information

Normally, the format below is sufficient to support most applications:

Content-Type: application/x-www-form-urlencoded.

Important: Do not change this parameter without a specific need to do so. In previous releases of
the HTTP(S) e*Way this was performed automatically. With this release it is
necessary to call http-url-encode on page 126.

Request-content

Description

Specifies the content to be used with the POST method.

Required Values

A string. The expected string must follow the “stringx=string_data” format. See below
for an example.

Additional Information

This parameter is ignored when the GET method is used.

Chapter 6 Section 6.2
HTTP(S) e*Way Configuration e*Way Configuration Parameters

HTTP(S) e*Way Intelligent Adapter User’s Guide 76

The content is normally in the following format application/x-www-form-urlencoded of
name/value pairs, for example:

p1=peterw&p2=walklett

Accept-type

Description

Specifies the parameters for the Accept-type request header.

Required Values

A string, for example, accept:text/*.

6.2.5 HTTP Proxy Configuration
The parameters in this section specify the information required for the e*Way to
connect to external systems through a proxy server.

Use Proxy Server

Description

Specifies whether the e*Way uses the parameter values in this section to connect
through a proxy server. Select YES if the e*Way must connect through a proxy server, or
NO to use a direct connection.

Required Values

YES or NO.

User Name

Description

Specifies the user name necessary for authentication to access the proxy server.

Required Values

A valid user name.

Important: Enter a value for this parameter before you enter a value for the Encrypted
Password parameter.

Encrypted Password

Description

Specifies the encrypted password corresponding to the user name specified previously.

Required Values

The appropriate password.

Chapter 6 Section 6.2
HTTP(S) e*Way Configuration e*Way Configuration Parameters

HTTP(S) e*Way Intelligent Adapter User’s Guide 77

Important: Be sure to enter a value for the User Name parameter before entering the
Encrypted Password.

Server Address

Description

Specifies the URL address of the proxy server.

Required Values

A valid URL. For example:

http://myproxy

Important: Do not specify a port number as part of the URL. Specify port number within the
Port Number parameter.

Port Number

Description

Specifies the port number to which the proxy server is listening.

Required Values

An Integer between 1 and 864000. The default is 8080.

6.2.6 HTTP(S) Configuration
The parameters in this section control the information required to set up an SSL
connection via HTTP.

Trusted CA Certificates Directory

Description

Specifies the directory located within the e*Gate Registry in which all of the
certification authority (CA) certificates are located. These certificates are used to verify
a trust relationship between the user and the CA.

Required Values

A relative path name. The default is pkicerts/trustedcas.

Note: All certificates in the certificate directory must be valid. Do not allow any other files
to reside in this directory.

Use Client Certificate Map

Description

Specifies whether the e*Way selects client certificates based on certificate mapping. A
certificate map is a text file that maps a base URL to a client certificate file and client
private-key file. No disables this feature.

Chapter 6 Section 6.3
HTTP(S) e*Way Configuration Working with Certificates

HTTP(S) e*Way Intelligent Adapter User’s Guide 78

Required Values

Yes or No.

Client Certificate Map File

Description

Specifies the directory and file name of the text file containing the client certificate map.

Required Values

A string. The default is pkicerts/client/certmap.txt. The string contains four fields,
separated by the pipe symbol (“|”), containing the following information:

Base URL

Logical path and file name of the client certificate

Logical path and file name of the client key

Encoding type for cert and key (PEM)

Example

www.stc.com|pkicerts/client/certs/mycert1.cer|pkicerts/client/keys/
mycert1.key|PEM
*|pkicerts/client/certs/myglobal.cer|pkicerts/client/keys/
myglobal.key|PEM

Additional Information

If there is an '*' in the first column replacing the base URL, it means “all others.”

If there is a '#' in the first column, the line is treated as a comment.

Lines in the file are processed from top to bottom, and the first base-URL match found
is the one used.

6.3 Working with Certificates
Before the HTTP(S) e*Way can establish secure communications with an external
system, the appropriate certificates must be obtained and committed to the e*Gate
Registry. Certificates are files that contain identification information that the e*Way
requires to establish a secure and trusted connection (see the “Introduction” on page 7”
of this manual for more information about certificates).

6.3.1 Required Certificate Format
Certificates must be in Base64 encoded X.509 format.

Chapter 6 Section 6.3
HTTP(S) e*Way Configuration Working with Certificates

HTTP(S) e*Way Intelligent Adapter User’s Guide 79

6.3.2 Obtaining Certificates
Since certificates are simply files, they may be obtained through any means that you
can obtain any other binary file, including

an e-mail attachment

via FTP

downloading the certificate file from a Web server

Certificates have special meanings within SSL-aware Web browsers; such applications
generally have special means to manage them. If your Web browser supports SSL
security, it probably also provides a means to manage certificates. The instructions in
the next few sections describe how to load and export certificates with Internet Explorer
(the browser that is required for e*Gate). If you wish to perform these procedures using
a different browser, see that browser’s Help system.

Independent Certification Authorities

The following CAs are two of the most widely accepted sources for certificates:

Verisign: http://www.verisign.com/

Thawte Consulting: http://www.thawte.com/

Private Certification Authorities

There are a number of private certification authorities who provide both site and client
certificates to a discrete group (for example, for exclusive use by a business’s employees
and clients). Private CA certificates can also be useful for permitting access to the
issuing authority’s site (for example, for a subscription service).

Obtaining CA Certificates From Secure Sites using Internet Explorer

Microsoft’s Internet Explorer warns you when you try to make a secure HTTP(S)
connection to a site that is not within your Trusted Sites list. You can use this feature to
obtain a certificate from the site.

To obtain a CA Certificate from a secure site

1 Using Internet Explorer, contact the secure site using an HTTP(S):// URL (for
example, HTTP(S)://www.securesite.com/).

The browser displays an alert message (see Figure 14 on page 80).

Chapter 6 Section 6.3
HTTP(S) e*Way Configuration Working with Certificates

HTTP(S) e*Way Intelligent Adapter User’s Guide 80

Figure 14 Security Alert Display

2 You can do either or both of the following actions:

Click View Certificate if you want to view the certificate details.

To install the certificate, click Yes.

Once the certificate has been installed, you are able to view the secure site; you receive
no further prompting or confirmation. After a certificate is installed, you can export it;
see the next section for more information.

Exporting CA Certificates

This procedure exports a CA certificate from Internet Explorer to a file, which you can
then commit to the e*Gate Registry.

To export a CA Certificate from within Internet Explorer

1 From the Tools menu, select Internet Options.

2 Select the Content tab.

3 Click Certificates.

The Certificate Manager appears.

4 Select the Trusted Root Certification Authorities tab.

The selected tab lists the available certificates.

Do not proceed unless
the certificate date is
valid and the certificate
matches the site name.

Chapter 6 Section 6.3
HTTP(S) e*Way Configuration Working with Certificates

HTTP(S) e*Way Intelligent Adapter User’s Guide 81

Figure 15 The Certificate Manager

5 Select the certificate you wish to export.

6 Click Export.

7 The Certificate Manager Export Wizard launches. Click Next to continue.

8 You are be asked to select a format. Select Base64 encoded X.509 (.CER), then click
Next.

9 You are prompted to enter a file name for the exported certificate. Enter a file name,
then click Next.

10 You are prompted with a list of the choices you made while running the Wizard.
Confirm that the choices are correct, then click Finish.

11 The Wizard reports success. Click OK.

Note: The exported file is encoded in Base64 format, so it is unreadable using a text editor
such as Notepad.

Working with Client Certificate/Key Pairs

Like CA certificates, client certificates are simply files, and can be retrieved using any
method you use to retrieve any other file. However, not all client certificates can be
managed as simply as CA certificates within Microsoft’s Internet Explorer.

Fortunately, all of the other means to manipulate or retrieve files (for example, e-mail,
FTP, download, or even a simple copy-and-paste operation) provide you with easy
ways to obtain the client-certificate file itself.

Chapter 6 Section 6.3
HTTP(S) e*Way Configuration Working with Certificates

HTTP(S) e*Way Intelligent Adapter User’s Guide 82

Consult the issuing authority with any questions about key generation, certificate
requests, or certificate management.

6.3.3 Importing Certificates to the e*Gate Registry
All certificates (both client and CA) must be committed to the e*Gate Registry before
they are available for the HTTP(S) e*Way’s use. You can import certificates to the e*Gate
Registry using the stcregutil utility.

By default, CA certificates are stored in the repository directory:

pkicerts/trustedcas

We strongly recommend that you store CA certificates in this directory. The procedure
below illustrates how to commit files to this directory.

We also recommend that you store client certificates in a pkicerts/client/ directory
(however, this directory is not created by default).

To import a certificate file

1 Log onto any system upon which the e*Gate GUIs or Participating Host
components are installed.

2 Change to the directory where the certificate files are stored.

3 At the command prompt, type the following command:

stcregutil -rh RegHost -rs Schema -un User -up Passwd
-fc pkicerts/trustedcas CertFile

Where the variables are defined as follows:

RegHost and Schema are the names of the Registry Host and schema where the
files are to be committed.

User and Passwd are authentication information for an e*Gate user with
sufficient privilege to commit the files.

CertFile is the name of the certificate file itself.

A typical command line appears as follows:

stcregutil -rh My_host -rs Outbound_schema -un Administrator
-up adminpass -fc pkicerts/trustedcas TradingPartner.cer

This command commits the file TradingPartner.cer to the Registry directory
pkicerts/trustedcas on the Registry Host My_host within the schema named
Outbound_schema. Validating the command is the Administrator user, with the
password “adminpass.”

Note: You can also commit certificates to other directories within the Registry. Simply
specify the desired directory after the -fc command flag. Optionally, you can commit
files to the Registry using the e*Gate Schema Designer. See the Schema Designer’s
Help system for more information. See the e*Gate Integrator System
Administration and Operations Guide for more information about the
stcregutil utility and committing files to the e*Gate Registry.

HTTP(S) e*Way Intelligent Adapter User’s Guide 83

Chapter 7

HTTP(S) e*Way Implementation

This chapter explains how to implement the HTTP(S) e*Way Intelligent Adapter in a
production environment.

7.1 HTTP(S) e*Way Implementation: Overview
The hyper-text transfer protocol (HTTP) sample in this implementation uses secure
sockets layer (SSL) for data security, in other words, HTTP(S). To implement the
HTTP(S) e*Way within the e*Gate Integrator system, you must do the following
operations:

Define Event Type Definitions (ETDs) to package the data being exchanged with the
external system.

Note: The HTTP(S) e*Way Extension (stc_monkhttpnossl.dll) is not thread-safe. It
must only be used in an e*Way or a single Collaboration in a Business Object
Broker (BOB).

In the e*Gate Schema Designer graphical user interface (GUI), do the following
steps:

Define Collaboration Rules to process Event data.

Define any Intelligent Queues (IQs) to which Event data is published before
sending it to the external system.

Define the e*Way component.

Within the e*Way component, configure Collaborations to apply the required
Collaboration Rules.

Note: For more information about creating or modifying any component within the e*Gate
Schema Designer, see the Schema Designer’s online Help or the e*Gate Integrator
User’s Guide.

Chapter 7 Section 7.2
HTTP(S) e*Way Implementation Creating Event Type Definitions from Form Data

HTTP(S) e*Way Intelligent Adapter User’s Guide 84

Use the e*Way Editor to set the e*Way’s configuration parameters (this procedure is
explained in Chapter 6).

Be sure that any other e*Gate components are configured as necessary to complete
the schema.

Test the schema and make any necessary corrections.

See “Sample Configurations” on page 86 for examples of how the previous steps are
combined to create a working implementation.

Note: The delimiters for the configuration file must not appear within the URL string. The
default delimiter set contains the equals sign (=). To modify this delimiter, open the
configuration file, select Options, Config Delimiters, on the task bar, modify the
value of delimiter 3 with a value that does not conflict with the search string.

7.2 Creating Event Type Definitions from Form Data
You can use the ETD Editor to create or modify any necessary ETDs. However, if you
wish to base ETDs upon existing HTML forms, you can automatically create these
ETDs using the HTML Converter Build Tool.

The HTML Converter tool opens the HTML page, parses it for a <FORM> tag, and uses
the structure within the form to build the ETD. Both POST and GET method types are
supported. All <Input> types are supported except controls (such as submit and reset
buttons) which do not send data to the server and are ignored.

Important: If the form contains a link that is redirected to another Web page, you must save the
source HTML code to a file on disk first, then use the local HTML file as the source
for the HTML converter.

There are two ways to launch the HTML Converter: from the command line and from
the ETD Editor.

7.2.1 Creating Event Type Definitions using Command-line Utilities
To create an ETD using the HTML Converter command-line utility

From the command line, type the following on one line:

stc_form2ssc -rh registry_host -rs schema_name -un username
-up password -html input_file -tf logfile output_file

Chapter 7 Section 7.2
HTTP(S) e*Way Implementation Creating Event Type Definitions from Form Data

HTTP(S) e*Way Intelligent Adapter User’s Guide 85

Where:

registry_host is the name of the computer on which the e*Gate Registry Host resides.

schema_name is the name of the e*Gate schema you are creating. For requirements
regarding schema names, see the Schema Designer’s online Help system.

username and password are the e*Gate administrator username and password,
respectively.

input_file is the HTML filename (including the path) or the URL to the HTML page.

logfile is the name of a log file to capture warning and error messages. This
argument is optional.

output_file is the filename—including the path relative to the “eGate/client”
directory—of the ETD file to be created. Specify the file extension— the converter
will not supply the .ssc extension automatically.

Note: The output_file argument must be the last argument listed.

7.2.2 Creating Event Type Definitions from the ETD Editor
To create an ETD using the HTML Converter from the ETD Editor

1 Launch the ETD Editor.

2 On the ETD Editor’s Toolbar, click Build. The Build an Event Type Definition
dialog box appears.

Figure 16 Build an Event Type Definition Dialog Box

3 In the File name field, type the name of the ETD file you wish to build. Do not
specify any file extension. The Editor supplies the .ssc extension automatically.

4 Click Next. A new dialog box appears.

Chapter 7 Section 7.3
HTTP(S) e*Way Implementation Sample Configurations

HTTP(S) e*Way Intelligent Adapter User’s Guide 86

Figure 17 Build an Event Type Definition - HTML Converter

5 Leave the Input file field blank. The HTML Converter does not use this field.

6 Under Build From, select Library Converter.

7 Under Select a Library Converter, select HTML Converter.

8 Under Additional Command Line Arguments, type the following:

-html input_file

Where:

input_file is the HTML filename (including the path) or the URL to the HTML
page.

9 Click Finish. The Build tool creates the ETD.

If the input HTML page contains more than one form, the Build tool will create
multiple .ssc files, one for each form. The name of each file is the file name that was
entered in step 3 in the previous procedure, plus an underscore and number (starting
with zero), for example: html_0.ssc, html_1.ssc, and so on.

If your HTML page contained only a single form, the ETD Editor opens the resulting
ETD file automatically at the conclusion of the conversion process. If multiple ETD files
were created, you must open each file manually.

7.3 Sample Configurations
This section describes several sample implementations for the HTTP(S) e*Way.

Chapter 7 Section 7.3
HTTP(S) e*Way Implementation Sample Configurations

HTTP(S) e*Way Intelligent Adapter User’s Guide 87

7.3.1 Creating a Schema Using http-outgoing
This section demonstrates how to set up a basic schema using the http-outgoing
function. In this sample, data is drawn from a text file using the file e*Way and sent to
an external system using the HTTP(S) e*Way.

The data returned from the external system is received by the HTTP(S) e*Way, then
forwarded to another file e*Way and stored in an output file on the local system (see
Figure 18).

Figure 18 Sample Schema: Basic Architecture

This schema requires a number of components, as illustrated in Figure 19 on page 88.

Inbound
File e*Way

Outbound
File e*Way

HTTPS
e*Way

e*Gate

Remote
Web

Server

Input file

Output file

Chapter 7 Section 7.3
HTTP(S) e*Way Implementation Sample Configurations

HTTP(S) e*Way Intelligent Adapter User’s Guide 88

Figure 19 Sample Schema: Component View

Note: For more information about creating or modifying any component within the e*Gate
Schema Designer, see the Schema Designer’s online Help or the e*Gate Integrator
User’s Guide.

1 Log into the e*Gate Schema Designer and click New to create a new schema. Name
the schema “HTTP(S)_sample_1.”

The Schema Designer main screen appears.

2 If the Navigator’s Components tab is not selected already, select it now.

3 Create an Event Type named “In.”

4 Display the properties of the In Event Type. Then, use the Find button, navigate to
the common folder to assign the file GenericInEvent.ssc.

e*Gate

Remote Web
Server

Input file

Output file

HTTPS e*Way

Inbound File e*Way

Outbound File e*Way

Inbound_Collab

HTTPS_Collab1

HTTPS_Collab2

Outbound_Collab

Inbound_IQ

HTTPS_IQ

Chapter 7 Section 7.3
HTTP(S) e*Way Implementation Sample Configurations

HTTP(S) e*Way Intelligent Adapter User’s Guide 89

5 Create a Collaboration Rule named “Passthrough_Data.”

6 Edit the Properties of this Collaboration Rule as follows:

7 Create two IQs, named “Inbound_IQ” and “HTTP(S)_IQ.”

8 Create an e*Way named “Inbound.”

9 Display the e*Way’s properties. Then, use the Find button to assign the file
stcewfile.exe.

The next part of the procedure requires that you launch the e*Way editor and define the
file-based e*Way’s properties.

1 With the e*Way’s Properties page still displayed, click New to launch the e*Way
Editor.

2 Using the e*Way Editor, make the following configuration settings:

3 Save the settings, promote to run time, and exit the e*Way Editor.

4 When you return to the e*Way’s Properties page, click OK to save all changes and
return to the Schema Designer’s main window.

Next, create a Collaboration for the Inbound e*Way.

1 Open the Inbound e*Way and create a Collaboration named “Inbound_collab.”

2 Set the Collaboration’s properties as follows:

Now that the “inbound” e*Way is completely configured, you must create an outbound
HTTP(S) e*Way.

1 Create a new e*Way component named “HTTP(S)_eway.”

2 Display the e*Way’s properties. Then, use the Find button to assign the file
stcewgenericmonk.exe.

Service Pass Through

Subscription In (the Event Type defined in Step 1 above)

Publication In (Event Type defined in Step 1 above)

Section Parameter and Setting

General Settings AllowIncoming: Yes
AllowOutgoing: No

Poller(inbound) Settings Polldirectory: C:\TEMP (or other
“temporary” directory)
Input File Mask: leave unchanged

Collaboration Rule Passthrough_Data

Subscriptions Event: In
Source: <External>.

Publications Event: In
Publish to: Inbound_IQ.

Chapter 7 Section 7.3
HTTP(S) e*Way Implementation Sample Configurations

HTTP(S) e*Way Intelligent Adapter User’s Guide 90

3 Click New to launch the e*Way Editor. When prompted with a list of templates,
select stcewhttp.

4 Use the e*Way Editor to define the following parameters:

5 Save the settings, promote to runtime, and exit the e*Way Editor.

6 When you return to the e*Way’s Properties page, click OK to save all changes and
return to the Schema Designer’s main window.

Next, create the Collaboration for the HTTP(S) e*Way.

1 Select the HTTP(S)_eway component and create a Collaboration named
“HTTP(S)_collab1.”

Section Parameter and Settings

General Settings Leave all settings unchanged

Communication Setup Exchange Data Interval: 0 (zero)
Zero Wait Between Successful Exchanges: No

Monk Configuration Auxiliary Library Directories: monk_library/ewhttp
Monk Environment Initialization File: monk_library/
ewhttp/http-init.monk
Startup Function: http-startup
Process Outgoing Message Function: http-outgoing
Exchange Data With External Function: http-exchange
External Connection Establishment Function: http-connect
External Connection Verification Function: http-verify
External Connection Shutdown Function: http-shutdown
Positive Acknowledgment Function: http-ack
Negative Acknowledgment Function: http-nack
The remaining parameters may be left blank for this
sample.

HTTP Configuration Timeout: 5000
User Name: enter an appropriate user name if necessary
Encrypted Password: enter an appropriate password if
necessary
Agent: e*Gate HTTP(S) e*Way
Content-type: Content-Type:application/x-www-form-
urlencoded
Accept-type: accept:text/*
The remaining parameters may use the default values.

HTTP Proxy
Configuration

Leave blank unless required

HTTP(S) Configuration Leave blank to test basic HTTP functionality; if required,
enter any necessary information to test HTTP(S)
functionality

Chapter 7 Section 7.3
HTTP(S) e*Way Implementation Sample Configurations

HTTP(S) e*Way Intelligent Adapter User’s Guide 91

2 Assign the following properties to the Collaboration:

3 Create a second Collaboration for the HTTP(S)_eway, naming it
“HTTP(S)_collab2.”

4 Assign the following properties to the Collaboration:

Now create and configure the final e*Way component.

1 Create a new e*Way named “Outbound.”

2 In its Properties Page, specify the executable file of “Outbound” as stcewfile.exe.

3 Display the e*Way’s properties. Then, use the Find button to assign the file
stcewfile.exe.

4 With the e*Way’s Properties page still displayed, click New to launch the e*Way
Editor.

5 Using the e*Way Editor, configuration the following settings:

6 Save the settings, promote to run time, and exit the e*Way Editor.

7 When you return to the e*Way’s Properties page, click OK to save all changes and
return to the Schema Designer’s main window.

8 Create a Collaboration for the “Outbound” e*Way, naming it “outbound_collab.”

Collaboration Rules Passthrough_Data

Subscriptions Event: In
Source: Inbound_collab

Publications Event: In
Publish to: <External>

Collaboration Rules Passthrough_Data

Subscriptions Event: In
Source: <External>

Publications Event: In
Publish to: HTTP(S)_IQ

Section Parameter and setting

General Settings AllowIncoming: No
AllowOutgoing: Yes

Outbound (sender)
Settings

Output directory: C:\TEMP (or other
“temporary” directory)
Output File Name: HTTP(S)_out.txt

Chapter 7 Section 7.3
HTTP(S) e*Way Implementation Sample Configurations

HTTP(S) e*Way Intelligent Adapter User’s Guide 92

9 Set the Collaboration’s properties as follows:

The Schema Designer configuration is now complete. Now, you must create some test
data which will be sent via HTTP(S) to external Web sites. The results of these requests
will be saved to the output data file.

1 Use a text editor to create an input file. Create an Input File, using any ASCII text
editor. The input must have the following format (the pipe symbol “|” delimits
each field):

URL|POST or GET|data

An example follows, of the test data format:

HTTP(S)://info.somesite.com|GET|
HTTP(S)://finance.somesite.asp|POST|s=amd&d=v1
HTTP(S)://search.somesite.com/cgi-bin/
search|POST|search=Mars+missions
HTTP(S)://finance.somesite.com/q|GET|s=amd&d=v1
HTTP(S)://finance.somesite.com/q|GET|s=amd+&d=v4
HTTP(S)://finance.somesite.com/q|GET|s=amd&d=v1

Modify this sample according to the needs of your test sites.

2 Save the file as C:\TEMP\TESTDATA.FIN (if you specified a different input
directory, please make the appropriate substitution).

Run the sample schema. If the schema was configured properly and your connection to
the test sites is good, you should find response data from your requests in the file
C:\TEMP\HTTP(S)_out.txt (if you specified a different output directory, please make
the appropriate substitution).

7.3.2 Creating a Schema Using http-exchange
This schema, which illustrates the use of the Monk function http-exchange, is simpler
than the one illustrated in “Creating a Schema Using http-outgoing” on page 87.

Rather than using an inbound e*Way, the data to be sent to the external Web server is
hard-coded into the HTTP(S) e*Way’s configuration using the e*Way editor. Except for
this change, the architecture is the same (see Figure 20 on page 93).

Collaboration Rules: Passthrough_Data

Subscriptions Event: In
Source: HTTP(S)_collab2

Publications Event: In
Publish to: <External>

Chapter 7 Section 7.3
HTTP(S) e*Way Implementation Sample Configurations

HTTP(S) e*Way Intelligent Adapter User’s Guide 93

Figure 20 Sample http-exchange Schema

Note: For more information about creating or modifying any component within the e*Gate
Schema Designer, see the Schema Designer’s Help system.

To create a schema using http-exchange

1 Log into the e*Gate Schema Designer and select the New to create a new schema.

2 Enter the new schema name.

3 Create an Event Type named “In.”

4 Display the properties of the In Event Type. Then, use the Find button to assign the
file GenericInEvent.ssc.

5 Create a Collaboration Rule named “Passthrough_Data.”

e*Gate

Remote
Web

Server

Output file

HTTPS e*Way

Outbound File e*Way

HTTPS_Collab1

HTTPS_Collab2

Outbound_Collab

HTTPS_IQ

Chapter 7 Section 7.3
HTTP(S) e*Way Implementation Sample Configurations

HTTP(S) e*Way Intelligent Adapter User’s Guide 94

6 Edit the Properties of this Collaboration Rule as follows:

7 Create an Intelligent Queue, named “HTTP(S)_IQ.”

You must create an outbound HTTP(S) e*Way.

1 Create a new e*Way component named “HTTP(S)_eway.”

2 Display the e*Way’s properties. Then, use the Find button to assign the file
stcewgenericmonk.exe.

3 Click New to launch the e*Way Editor. When prompted with a list of templates,
select stcewhttp.

4 Use the e*Way Editor to define the following parameters:

Service Pass Through

Subscription In (the Event Type defined in Step 1 above)

Publication In (Event Type defined in Step 1 above)

Section Parameter and Settings

General Settings Leave all settings unchanged

Communication Setup Exchange Data Interval: 10 (ten)
Zero Wait Between Successful Exchanges: No

Monk Configuration Auxiliary Library Directories: monk_library/ewhttp
Monk Environment Initialization File: monk_library/
ewhttp/http-init.monk
Startup Function: http-startup
Process Outgoing Message Function: http-outgoing
Exchange Data With External Function: http-exchange
External Connection Establishment Function: http-connect
External Connection Verification Function: http-verify
External Connection Shutdown Function: http-shutdown
Positive Acknowledgment Function: http-ack
Negative Acknowledgment Function: http-nack
The remaining parameters may be left blank for this
sample.

Chapter 7 Section 7.3
HTTP(S) e*Way Implementation Sample Configurations

HTTP(S) e*Way Intelligent Adapter User’s Guide 95

5 Save the settings, promote to run time, and exit the e*Way Editor.

6 When you return to the e*Way’s Properties page, click OK to save all changes and
return to the Schema Designer’s main window.

Next, create the Collaboration for the HTTP(S) e*Way.

1 Create a Collaboration for the HTTP(S)_eway, naming it “HTTP(S)_collab2.”

2 Assign the following properties to the Collaboration:

Now create and configure the final e*Way component.

1 Create a new e*Way named “Outbound.”

2 In its Properties Page, specify the executable file of “Outbound” as stcewfile.exe.

3 Display the e*Way’s properties. Then, use the Find button, navigate to the “bin”
folder to assign the file stcewfile.exe.

4 With the e*Way’s Properties page still displayed, click New to launch the e*Way
Editor.

HTTP Configuration Request: GET
Timeout: 5000
URL: enter an appropriate URL to contact.
User Name: enter an appropriate user name if necessary
Encrypted Password: enter an appropriate password if
necessary
Agent: e*Gate HTTP(S) e*Way
Content-type: Content-Type:application/x-www-form-
urlencoded
Request-content: Leave this entry blank (because this is a
sample using GET; fill in this field when using the POST
method).
Accept-type: accept:text/*
The remaining parameters may use the default values.

HTTP Proxy
Configuration

Leave blank unless required

HTTP(S) Configuration Leave blank to test basic HTTP functionality; if required,
enter any necessary information to test HTTP(S)
functionality

Collaboration Rules Passthrough_Data

Subscriptions Event: In
Source: <External>

Publications Event: In
Publish to: HTTP(S)_IQ

Section Parameter and Settings (Continued)

Chapter 7 Section 7.4
HTTP(S) e*Way Implementation Sample Monk Scripts

HTTP(S) e*Way Intelligent Adapter User’s Guide 96

5 Using the e*Way Editor, configuration the following settings:

6 Save the settings, promote to run time, and exit the e*Way Editor.

7 When you return to the e*Way’s Properties page, click OK to save all changes and
return to the Schema Designer’s main window.

8 Create a Collaboration for the “Outbound” e*Way, naming it “outbound_collab.”

9 Set the Collaboration’s properties as follows:

The Schema Designer configuration is now complete. The results of these requests are
saved to the output data file.

7.4 Sample Monk Scripts
The samples in this section can be run using the stctrans command-line utility. They do
not require a complete e*Gate schema configuration to function, and are designed to
illustrate the principles involved in creating your own custom Monk scripts. The library
(dll) files to be loaded and the script to be tested must be in the load path (or, for
simplicity’s sake, may be placed in the current working directory).

Note: See the Monk Developer’s Reference for more information about the load path.

The syntax of the stctrans utility is

stctrans monk_file.monk

Additional command-line flags are available; enter stctrans -h to display a list, or see
the e*Gate Integrator System Administration and Operations Guide for more information.

The sample files may be created using any text editor. The samples use a generic
“www.sitename.com” site name; before testing any script, replace the generic name
with a working site name.

Section Parameter and setting

General Settings AllowIncoming: No
AllowOutgoing: Yes

Outbound (sender)
Settings

Output directory: C:\TEMP (or other
“temporary” directory)
Output File Name: HTTP(S)_out.txt

Collaboration Rules: Passthrough_Data

Subscriptions Event: In
Source: HTTP(S)_collab2

Publications Event: In
Publish to: <External>

Chapter 7 Section 7.4
HTTP(S) e*Way Implementation Sample Monk Scripts

HTTP(S) e*Way Intelligent Adapter User’s Guide 97

7.4.1 GET (Inbound) Example (HTTP_get)
The following script retrieves the URL http://www.somesite.com and displays the
results:

;; Load HTTP extension DLL
(load-extension "stc_monkhttp.dll")

;; Create an HTTP session handle
(define hCon (http-acquire-provider "jdoe" "0E0102" "" "" 0))

;; Execute the HTTP GET method
(http-get hCon "http://www.somesite.com" 0 “accept:text/*”)
(define pszData (http-get-result-data hCon)

;; Print the results
(display pszData)

;; Free HTTP session handle
(http-release-provider hCon)
(set! hCon 0)

Note: Parameters could be passed by this script by appending them to the URL using the
application/x-www-form-urlencoded format; for example,

http://peterw?param1=16¶m2=Lorne+Street

7.4.2 POST (Outbound) Example (HTTP_post)
The following script contains three examples: one posts to an ASP page, and the other
two post to scripts at the specified URLs. The results are displayed.

;; Load HTTP extension DLL
(load-extension "stc_monkhttp.dll")

;; Create an HTTP session handle
(define hCon (http-acquire-provider "jdoe" "0E0102" "" "" 0))

;; Post to an Active Server Page (ASP) and print server reply
(define postCmd (http-post hCon "http://stingray/Project3/
Project3.asp" 0
"accept:text/*" "Content-Type: application/x-www-form-
urlencoded" "text1=doe"))
(if postCmd

(begin
(define postData (http-get-result-data hCon))
(display postData)
)

)

;; Post form data to a CGI script and print server reply
(define postCmd (http-post hCon "http://info.netscape.com/
home_search2.cgi"
0 "accept:text/*" "Content-Type: application/x-www-form-urlencoded"
"cp=Netscape&version=C&searchstring=Martin+Luther+King"))
(if postCmdHTTPS

(begin
(define postData (http-get-result-data hCon))
(display postData)
)

)

Chapter 7 Section 7.4
HTTP(S) e*Way Implementation Sample Monk Scripts

HTTP(S) e*Way Intelligent Adapter User’s Guide 98

;; Post form data to a CGI script and print server reply
(define postCmd (http-post hCon "http://search.netscape.com/cgi-bin/
search"
0 "accept:text/*" "Content-Type: application/x-www-form-urlencoded"
"search=Mars+missions"))
(if postCmd

(begin
(define postData (http-get-result-data hCon))
(display postData)
)

)

;; Free HTTP session handle
(http-release-provider hCon)
(set! hCon 0)

7.4.3 Sample Input Data (AUTO_HTTP)
The sample in this section illustrates an input file for an inbound e*Way (change
“somesite” to a valid site address).

Note: When using an input file, it is necessary to modify the fields within the
configuration file to match those within the input file, or to leave the fields blank. If a
field in the configuration file, such as the Request-content parameter contains a
string, and it does not appear within the input file, e*Gate will attempt to append
the information. If within the input file, the delimiters are left empty the action
within the configuration file will be used.

The following input data is in the AUTO_HTTP sample schema and executes a POST or
GET as specified and illustrates typical GET input data (boldface text) that could be
passed to an HTTP(S) e*Way:

http://www.somesitea.com|GET|
http://www.somesitea.com|GET|
http://www.somesiteb.com|GET|
http://info.somesitec.com|GET|
http://finance.somesiteb.com/q|GET|s=amd&d=v1
http://finance.somesiteb.com/q|GET|s=stcs&d=v1
http://finance.somesiteb.com/q|GET|s=dell&d=v4
http://finance.somesiteb.com/q|GET|s=turf&d=b
http://www.somesited.com|GET|
http://www.somesitee.com|GET|
http://lc6.law5.hotmail.passport.com/cgi-bin/login|GET|
http://www.somesite-facts.com/
srchgrp.asp|POST|keywords=beef&stype=AND&group=ALL
http://www.msn.com|GET|
http://shop.infospace.com/cat1.htm?qvcid=539&qcat=416&nA=11|GET|
http://www.foxnews.com/video/main.sml|GET|
http://www.launch.com/music/welcome/pvn_musicvideos/?seti=1|GET|
http://www.trip.com/content/guidesandtools/0,1324,1-1,00.html|GET|
http://microsoft.com|GET|
http://www.datek.com|GET|
http://www.home.com|GET|
http://www.hotmail.com|GET|
http://www.stc.com|GET|
http://www.nutri-facts.com/
srchgrp.asp|POST|keywords=shrimp&stype=AND&group=ALL
http://www.yahoo.com|GET|

Chapter 7 Section 7.4
HTTP(S) e*Way Implementation Sample Monk Scripts

HTTP(S) e*Way Intelligent Adapter User’s Guide 99

7.4.4 GET (Inbound) Example (HTTPS_get)
The following script retrieves the URL HTTPS://www.sitename.com:

;; function-list: http-init, http-establish-connection
;;load extension
(define http-init
(lambda ()
(display "In http-init")
(let ((return-value ""))
(define except-base 3000)
(define-exception except-abort (+ 0 except-base))
(define-exception except-method (+ 1 except-base))
(define-exception except-param (+ 2 except-base))
(define-exception except-connect (+ 3 except-base))
(define-exception except-transfer (+ 4 except-base))
(define-exception except-local-op (+ 5 except-base))
(define-exception except-rmt-op (+ 6 except-base))
(define-exception except-rmt-list (+ 7 except-base))
(if (load-extension "stc_monkhttp.dll")
(begin
"Successfully loaded DLL stc_monkhttp.dll"

)
(begin
return-value
"Failed to load DLL stc_monkhttp.dll"

)
)
(define http-write-log
(lambda (x)
(display x)
#t

))
;;Specify whether using a Proxy server
(if (string=? HTTP_PROXY_CONFIGURATION_USE_PROXY_SERVER "NO")

(begin
(set! HTTP_PROXY_CONFIGURATION_USER_NAME "")
(set! HTTP_PROXY_CONFIGURATION_ENCRYPTED_PASSWORD "")
(set! HTTP_PROXY_CONFIGURATION_SERVER_ADDRESS "")
(set! HTTP_PROXY_CONFIGURATION_PORT_NUMBER 0)

)
(begin
(if (string? HTTP_PROXY_CONFIGURATION_PORT_NUMBER)
(begin
(set! HTTP_PROXY_CONFIGURATION_PORT_NUMBER (string-

>number HTTP_PROXY_CONFIGURATION_PORT_NUMBER))
)
(begin
)

)
)

)
(if (string? HTTP_CONFIGURATION_TIMEOUT)
(begin
(set! HTTP_CONFIGURATION_TIMEOUT (string-

>number HTTP_CONFIGURATION_TIMEOUT))
)
(begin
(set! HTTP_CONFIGURATION_TIMEOUT 1)

)
)
(if (not (defined? HTTP_CONFIGURATION_ENCRYPTED_PASSWORD))
(begin
(set! HTTP_CONFIGURATION_ENCRYPTED_PASSWORD "")

Chapter 7 Section 7.4
HTTP(S) e*Way Implementation Sample Monk Scripts

HTTP(S) e*Way Intelligent Adapter User’s Guide 100

)
(begin
)

)
return-value

)
))
;;establish connection
(define http-establish-connection
(lambda ()

;;Create an HTTPS session handle
(define hCon (http-acquire-
provider HTTP_CONFIGURATION_USER_NAME HTTP_CONFIGURATION_ENCRYPTED_PA
SSWORD HTTP_CONFIGURATION_AGENT HTTP_PROXY_CONFIGURATION_SERVER_ADDRE
SS 0))

(if (string=? HTTP_PROXY_CONFIGURATION_USE_PROXY_SERVER "YES")
(begin

;;Set Proxy properties
(http-set-proxy-

properties hCon HTTP_PROXY_CONFIGURATION_SERVER_ADDRESS HTTP_PROXY_CO
NFIGURATION_PORT_NUMBER HTTP_PROXY_CONFIGURATION_USER_NAME HTTP_PROXY
_CONFIGURATION_ENCRYPTED_PASSWORD)

)
(begin
)

)
;;Load CA certificates

(http-load-CA-certificates-
dir hCon HTTP_SSL_CONFIGURATION_TRUSTED_CA_CERTIFICATES_DIRECTORY)

(if (string=? HTTP_SSL_CONFIGURATION_USE_CLIENT_CERTIFICATE_MAP "YE
S")

(begin
;;Specify loacation of certificate map file.

(define fRet (http-set-client-cert-from-
map hCon HTTP_CONFIGURATION_URL HTTP_SSL_CONFIGURATION_CLIENT_CERTIFI
CATE_MAP_FILE))

)
(begin
)

)
hCon

))
;;Execute the HTTPS GET method
(define getCmd (http-get hCon "HTTPS://
www.somesite.com" 20000 "accept:text/*"))
(if getCmd

(begin
(define postData (http-post-get-result hCon))
(display postData)
)

)

Additional notes

In a typical HTTP(S) exchange, the client authenticates the server by obtaining a
certificate from it, and verifies the certificate through a certificate authority (CA). This
process occurs whenever a client requests a URL prefixed with HTTPS, as in
HTTPS://www.sitename.com/. If the Monk script contains a URL specifying the
HTTP(S) protocol, server authentication is performed by default using the specified CA
in the Monk script.

Index

HTTP(S) e*Way Intelligent Adapter User’s Guide 101

Index

A
Accept-type 76
Additional Path 66
Agent 75
AUTO_HTTP 25
Auxiliary Library Directories 67

C
Certificates 78–82

importing into the e*Gate Registry 82
obtaining 79
overview 48
required format 78

Client Certificate Map File 78
Communication Setup 56

Down Timeout 58
Exchange Event Interval 56
Resend Timeout 58
Start Exchange Data Schedule 57
Stop Exchange Data Schedule 58
Up Timeout 58
Zero Wait Between Successful Exchanges 59

Components 8
Configuration parameters 54–78
Content-type 75

D
Directories and files installed 13
Down Timeout 58

E
Encrypted Password 75, 76
example

hard coded 25
inbound 24
outbound 25

examples
GET 24, 97
httpnossl-outgoing 16
POST 25, 97

Exchange Data with External Function 69

Exchange Event Interval 56
export a CA Certificate from within Internet
Explorer 80
Exporting CA Certificates 80
External Connection Establishment Function 70
External Connection Shutdown Function 71
External Connection Verification Function 71

F
Forward External Errors 56
functions

http-acquire-provider 35
http-add-content-type-param 35
http-add-header 36
http-clear-content-type-param 37
http-clear-header 38
http-get 38
http-get-error-text 39
http-get-last-status 40
http-get-result-data 43
httpnossl-ack 28
httpnossl-connect 29
httpnossl-exchange 29
httpnossl-init 30
httpnossl-nack 30
httpnossl-notify 31
httpnossl-outgoing 31
httpnossl-shutdown 32
httpnossl-startup 33
httpnossl-verify 33
http-post 43
http-release-provider 45
http-set-proxy-properties 45
http-url-encode 47

G
general operation, HTTP(S) e*Way 9
General Settings 55

Forward External Errors 56
Journal File Name 55
Max Resends Per Event 55

GET example 24, 97

H
hard coded example 25
HTTP configuration 73

Encrypted Password 75
Request 73
Timeout 74
User name 74

Index

HTTP(S) e*Way Intelligent Adapter User’s Guide 102

HTTP configurations
Accept-type 76
Agent 75
Content-type 75
Request-content 75
URL 74

HTTP functions
http-add-content-type-param 35
http-add-header 36
http-clear-content-type-param 37
http-clear-header 38
http-get-error-text 39
http-url-encode 47

HTTP Monk functions
http-acquire-provider 35
http-get 38
http-get-result-data 43
http-post 43
http-release-provider 45
http-set-proxy-properties 45

HTTP Proxy Configuration 76
Encrypted Password 76
Port Number 77
Server Address 77
User Name 76

HTTP Proxy configuration
Use Proxy Server 76

HTTP SSL Configuration 77
Client Certficate Map File 78
Trusted CA Certificates Directory 77
Use Client Certificate Map 77

http standard functions
httpnossl-ack 28
httpnossl-connect 29
httpnossl-exchange 29
httpnossl-nack 30
httpnossl-notify 31
httpnossl-outgoing 31
httpnossl-shutdown 32
httpnossl-startup 33
httpnossl-verify 33

HTTP_get 24
HTTP_post 25
http-acquire-provider 35
http-add-content-type-param 35
http-add-header 36
http-clear-content-type-param 37
http-clear-header 38
http-get 38
http-get-error-text 39
http-get-last-status 40
http-get-result-data 43
httpnossl-ack 28
httpnossl-connect 29

httpnossl-exchange 29
using 21

httpnossl-init 30
httpnossl-nack 30
httpnossl-notify 31
httpnossl-outgoing 16, 31
httpnossl-shutdown 32
httpnossl-startup 33
httpnossl-verify 33
http-post 43
http-release-provider 45
http-set-proxy-properties 45
http-standard functions

httpnossl-init 30
http-url-encode 47

I
importing certificates into the e*Gate Registry 82
inbound example 24
Independent Certification Authorities 79
installation

UNIX 12
Windows 11

Intended Reader 8

J
Journal File Name 55

M
Max Resends Per Event 55
Monk Configuration 59

Additional Path 66
Auxiliary Library Directories 67
Exchange Data with External Function 69
External Connection Establishment Function 70
External Connection Shutdown Function 71
External Connection Verification Function 71
Monk Environment Initialization 67
Negative Acknowledgment Function 72
Positive Acknowledgment Function 72
Process Outgoing Event Function 68
Shutdown Command Notification Function 73
Startup Function 68

Monk Environment Initialization File 67
monk functions

http-get-last-status 40

N
Negative Acknowledgment Function 72

Index

HTTP(S) e*Way Intelligent Adapter User’s Guide 103

O
Obtaining CA Certificates From Secure Sites using
Internet Explorer 79
Obtaining Certificates 79
outbound example 25

P
Parameters

Additional Path 66
Auxiliary Library Directories 67
Down Timeout 58
Exchange Data with External Function 69
Exchange Event Interval 56
External Connection Establishment Function 70
External Connection Shutdown Function 71
External Connection Verification Function 71
Forward External Errors 56
general settings 55
Journal File Name 55
Max Resends Per Event 55
Monk Environment Initialization File 67
Negative Acknowledgment Function 72
Positive Acknowledgment Function 72
Process Outgoing Event Function 68
Resend Timeout 58
Shutdown Command Notification Function 73
Start Exchange Data Schedule 57
Startup Function 68
Stop Exchange Data Schedule 58
Up Timeout 58
Zero Wait Between Successful Exchanges 59

Port Number 77
Positive Acknowledgment Function 72
POST example 25, 97
Private Certification Authorities 79
Process Outgoing Event Function 68

R
Request 73
Request-content 75
Required certificate format 78
Resend Timeout 58

S
Secure Sockets Layer (SSL) overview 48
security functions

See also Certificates
Server Address 77
Shutdown Command Notification Function 73
Start Exchange Data Schedule 57

Startup Function 68
Stop Exchange Data Schedule 58
system requirements 10

T
Timeout 74
Trusted CA Certificates Directory 77

U
Up Timeout 58
URL 74
Use Client Certificate Map 77
Use Proxy Server 76
User Name 76
User name 74
using httpnossl-exchange 21

W
Working with Certificates 78
Working with Client Certificates 81

Z
Zero Wait Between Successful Exchanges 59

	HTTP(S) e*Way Intelligent Adapter User’s Guide
	Contents
	Introduction
	1.1 HTTP(S) e*Way: Overview
	1.1.1 Using Clear HTTP
	1.1.2 Intended Reader
	1.1.3 Components
	1.1.4 Basic Information

	1.2 General Operation
	1.3 Supported Operating Systems
	1.4 System Requirements

	Installation
	2.1 Windows Systems
	2.1.1 Pre-installation
	2.1.2 Installation Procedure

	2.2 UNIX Systems
	2.2.1 Pre-installation
	2.2.2 Installation Procedure

	2.3 Files/Directories Created by the Installation

	Clear HTTP Implementation
	3.1 e*Way Implementation/Clear HTTP: Overview
	3.2 Sample Configurations
	3.2.1 Creating a Schema Using httpnossl-outgoing
	3.2.2 Creating a Schema Using httpnossl-exchange

	3.3 Sample Monk Scripts
	3.3.1 GET (Inbound) Example (HTTP_get)
	3.3.2 POST (Outbound) Example (HTTP_post)
	3.3.3 Input File based Example (AUTO_HTTP)

	Clear HTTP Functions
	4.1 HTTP Functions: Introduction
	4.2 Basic Functions
	4.3 HTTP Standard Functions
	httpnossl-ack
	httpnossl-connect
	httpnossl-exchange
	httpnossl-init
	httpnossl-nack
	httpnossl-notify
	httpnossl-outgoing
	httpnossl-shutdown
	httpnossl-startup
	httpnossl-verify

	4.4 HTTP Monk Functions
	http-acquire-provider
	http-add-content-type-param
	http-add-header
	http-clear-content-type-param
	http-clear-headers
	http-get
	http-get-error-text
	http-get-last-status
	http-get-result-data
	http-post
	http-release-provider
	http-set-body-write-delay
	http-set-proxy-properties
	http-url-encode

	Secure Sockets Layer Operation
	5.1 Using Secure Sockets Layer: Overview
	5.2 Certificates and Security
	5.3 Using the openssl Utility
	5.3.1 Working with PKCS12 files
	5.3.2 Converting PKCS12 Files to PEM Files
	5.3.3 Converting DER Files to PEM Files
	5.3.4 Converting Other Formats

	5.4 SSL Handshaking

	HTTP(S) e*Way Configuration
	6.1 Introduction
	6.2 e*Way Configuration Parameters
	6.2.1 General Settings
	Journal File Name
	Max Resends Per Message
	Max Failed Messages
	Forward External Errors

	6.2.2 Communication Setup
	Exchange Data Interval
	Zero Wait Between Successful Exchanges
	Start Exchange Data Schedule
	Stop Exchange Data Schedule
	Down Timeout
	Up Timeout
	Resend Timeout

	6.2.3 Monk Configuration
	e*Way Structure
	Operational Details
	How to Specify Function Names or File Names
	Additional Path
	Auxiliary Library Directories
	Monk Environment Initialization File
	Startup Function
	Process Outgoing Message Function
	Exchange Data with External Function
	External Connection Establishment Function
	External Connection Verification Function
	External Connection Shutdown Function
	Positive Acknowledgment Function
	Negative Acknowledgment Function
	Shutdown Command Notification Function

	6.2.4 HTTP Configuration
	Request
	Timeout
	URL
	User Name
	Encrypted Password
	Agent
	Content-type
	Request-content
	Accept-type

	6.2.5 HTTP Proxy Configuration
	Use Proxy Server
	User Name
	Encrypted Password
	Server Address
	Port Number

	6.2.6 HTTP(S) Configuration
	Trusted CA Certificates Directory
	Use Client Certificate Map
	Client Certificate Map File

	6.3 Working with Certificates
	6.3.1 Required Certificate Format
	6.3.2 Obtaining Certificates
	Obtaining CA Certificates From Secure Sites using Internet Explorer
	Exporting CA Certificates
	Working with Client Certificate/Key Pairs

	6.3.3 Importing Certificates to the e*Gate Registry

	HTTP(S) e*Way Implementation
	7.1 HTTP(S) e*Way Implementation: Overview
	7.2 Creating Event Type Definitions from Form Data
	7.2.1 Creating Event Type Definitions using Command-line Utilities
	7.2.2 Creating Event Type Definitions from the ETD Editor

	7.3 Sample Configurations
	7.3.1 Creating a Schema Using http-outgoing
	7.3.2 Creating a Schema Using http-exchange

	7.4 Sample Monk Scripts
	7.4.1 GET (Inbound) Example (HTTP_get)
	7.4.2 POST (Outbound) Example (HTTP_post)
	7.4.3 Sample Input Data (AUTO_HTTP)
	7.4.4 GET (Inbound) Example (HTTPS_get)

	Index
	A
	C
	D
	E
	F
	G
	H
	I
	J
	M
	N
	O
	P
	R
	S
	T
	U
	W
	Z

