
TCP/IP e*Way Intelligent 
Adapter User’s Guide

Release 5.0.5 for Schema Run-time 
Environment (SRE)



Copyright © 2005, 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and 
are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not 
use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any 
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for 
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, 
please report them to us in writing.

If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the 
U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. 
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal 
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and 
adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent 
applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software 
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or 
intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you 
use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, 
redundancy, and other measures to ensure the safe use. Oracle Corporation and its affiliates disclaim any liability for any damages 
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. 
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and 
are trademarks or registered trademarks of SPARC International, Inc. UNIX is a registered trademark licensed through X/Open 
Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third 
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to 
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or 
damages incurred due to your access to or use of third-party content, products, or services.

Version 20100713150238.

TCP/IP e*Way Intelligent Adapter User’s Guide 2



Contents

TCP/IP e*Way Intelligent Adapter User’s Guide 3

Contents

Chapter 1

Introduction 6
Overview 6

Intended Reader 6
Components 6

Supported Operating Systems 7

System Requirements 7

Chapter 2

Installation 8
Installation on Windows Systems 8

Pre-installation 8
Installation Procedure 8

UNIX Installation 9
Pre-installation 9
Installation Procedure 9

Files/Directories Created by the Installation 10

Chapter 3

Configuration 11
e*Way Configuration Parameters 11

General Settings 12
Journal File Name 12
Max Resends Per Message 12
Max Failed Messages 12
Forward External Errors 12

Communication Setup 13
Start Exchange Data Schedule 13
Stop Exchange Data Schedule 14
Exchange Data Interval 14
Down Timeout 14
Up Timeout 14
Resend Timeout 15
Zero Wait Between Successful Exchanges 15



Contents

TCP/IP e*Way Intelligent Adapter User’s Guide 4

Monk Configuration 15
Operational Details 17
How to Specify Function Names or File Names 22
Additional Path 23
Auxiliary Library Directories 23
Monk Environment Initialization File 24
Startup Function 24
Process Outgoing Message Function 25
Exchange Data with External Function 25
External Connection Establishment Function 26
External Connection Verification Function 27
External Connection Shutdown Function 27
Positive Acknowledgment Function 28
Negative Acknowledgment Function 28
Shutdown Command Notification Function 29

TCP/IP Configuration 29
Host 29
Port 30
PacketSize 30
Timeout 30
NoDelay 30
ACKValue 30
NACKValue 31

TCP/IP Server Configuration 31
Host 31
Port 31
PacketSize 31
MaxConnections 31
WaitForClientTimeout 32
Process WaitTime 32
Timeout 32
NoDelay 32
ACKValue 32
NACKValue 33

External Configuration Requirements 33

Chapter 4

Implementation 34
Implementation Process: Overview 34

Creating the Sample Schema 37
Identify the Event Type 37
Define Collaboration Rules 37
Define IQs 38
Define e*Ways and Collaborations 38

TCPIP_Inbound 39
TCPIP_Client 40
TCPIP_Server 41
TCPIP_Outbound 43

Run the Schema 44
Expected Results 44



Contents

TCP/IP e*Way Intelligent Adapter User’s Guide 5

Importing the Sample Schema 44

Chapter 5

TCP/IP e*Way Functions 47
Basic Functions 47

TCP/IP e*Way Standard Functions 51

TCP/IP e*Way Client Functions 63

TCP/IP Server Functions 68

Index 76



TCP/IP e*Way Intelligent Adapter User’s Guide 6

Chapter 1

Introduction

This chapter introduces you to the TCP/IP e*WayTM Intelligent Adapter.

1.1 Overview
The TCP/IP e*Way provides real-time, reliable data transfer for systems that support 
TCP/IP. This e*Way is enabled by the Monk programming language.

1.1.1 Intended Reader
The reader of this guide is presumed:

To be a developer or system administrator with the responsibility for maintaining 
the e*Gate system

To have a high-level knowledge of Windows and/or UNIX operations and 
administration

To be thoroughly familiar with Windows-style GUI operations

To be thoroughly familiar with the Transmission Control Protocol/Internet Protocol 
(TCP/IP)

1.1.2 Components
The following components comprise the TCP/IP e*Way:

stcewgenericmonk.exe, the executable component

Configuration files, which the e*Way Configuration Editor uses to define 
configuration parameters

Monk function scripts, explained under “TCP/IP e*Way Functions” on page 47.

A complete list of installed files appears in Table 1 on page 10.



Chapter 1 Section 1.2
Introduction Supported Operating Systems

TCP/IP e*Way Intelligent Adapter User’s Guide 7

1.2 Supported Operating Systems
For information about the operating systems supported by the e*Gate Integrator 
system, see the readme.txt file provided on the installation CD.

1.3 System Requirements
To use the TCP/IP e*Way, you need to meet the following requirements:

An e*Gate Participating Host

A TCP/IP network connection

The e*Way must be configured and administered using the e*Gate Schema Designer.

Note: Additional disk space might be required to process and queue the data that this 
e*Way processes. The amount necessary can vary based on the type and size of the 
data being processed and any external applications doing the processing.

External System Requirements

To enable the e*Way to communicate properly with the TCP/IP system, you need:

Host on which the server is running

Port location on which the server is listening



TCP/IP e*Way Intelligent Adapter User’s Guide 8

Chapter 2

Installation

This chapter describes how to install the TCP/IP e*Way.

2.1 Installation on Windows Systems

2.1.1 Pre-installation
1 Exit all Windows programs before running the setup program, including any anti-

virus applications.

2 You must have Administrator privileges to install this e*Way.

2.1.2 Installation Procedure
To install the TCP/IP e*Way on Windows systems

1 Log in as an Administrator on the workstation on which you want to install the 
e*Way.

2 Insert the e*Way installation CD-ROM into the CD-ROM drive.

3 If the CD-ROM drive’s “Autorun” feature is enabled, the setup application should 
launch automatically; skip ahead to step 4. Otherwise, use the Windows Explorer or 
the Control Panel’s Add/Remove Applications feature to launch the file setup.exe 
on the CD-ROM drive.

4 The InstallShield setup application is launched. Follow the on-screen instructions 
to install the e*Way.

Be sure to install the e*Way files in the suggested “client” installation directory. The 
installation utility detects and suggests the appropriate installation directory.

Caution: Unless you are directed to do so by Oracle support personnel, do not change the 
suggested installation directory setting.

Once you have installed and configured this e*Way, you must incorporate it into a 
schema by defining and associating the appropriate Collaborations, Collaboration 
Rules, IQs, and Event Types before this e*Way can perform its intended functions. For 
more information about any of these procedures, please see the online Help system.



Chapter 2 Section 2.2
Installation UNIX Installation

TCP/IP e*Way Intelligent Adapter User’s Guide 9

For more information about configuring e*Ways or how to use the e*Way Configuration 
Editor, see the e*Gate Integrator User’s Guide.

2.2 UNIX Installation

2.2.1 Pre-installation
You do not require root privileges to install this e*Way. Log in under the user name 
that you wish to own the e*Way files. Be sure that this user has sufficient privilege 
to create files in the e*Gate directory tree.

2.2.2 Installation Procedure
To install the TCP/IP e*Way on a UNIX system

1 Log in on the workstation containing the CD-ROM drive, and insert the CD-ROM 
into the drive.

2 If necessary, mount the CD-ROM drive.

3 At the shell prompt, type 

cd /cdrom

4 Start the installation script by typing:

setup.sh

5 A menu of options appears. Select the “install e*Way” option. Then, follow any 
additional on-screen directions.

Be sure to install the e*Way files in the suggested “client” installation directory. The 
installation utility detects and suggests the appropriate installation directory.

Caution: Unless you are directed to do so by Oracle support personnel, do not change the 
suggested “installation directory” setting.

Once you have installed and configured this e*Way, you must incorporate it into a 
schema by defining and associating the appropriate Collaborations, Collaboration 
Rules, IQs, and Event Types before this e*Way can perform its intended functions. For 
more information about any of these procedures, please see the online Help system.

For more information about configuring e*Ways or how to use the e*Way Configuration 
Editor, see the e*Gate Integrator User’s Guide.



Chapter 2 Section 2.3
Installation Files/Directories Created by the Installation

TCP/IP e*Way Intelligent Adapter User’s Guide 10

2.3 Files/Directories Created by the Installation
The TCP/IP e*Way installation process installs the files shown in Table 1 within the 
e*Gate directory tree. Files are installed within the eGate\client tree on the 
Participating Host and committed to the “default” schema on the Registry Host.

Table 1 Files Created by Installation

Directories Files

bin\ stcewgenericmonk.exe

bin\ stc_monkfilesys.dll
stc_monktcpip.dll

configs\stcewgenericmonk stcewtcpipext.def

monk_library\ewtcpipext tcpip-ack.monk
tcpip-exchange.monk
tcpip-extconnect.monk
tcpip-init.monk
tcpip-nack.monk
tcpip-notify.monk
tcpip-outgoing.monk
tcpip-shutdown.monk
tcpip-startup.monk
tcpip-verify.monk
tcpip-server-verify.monk
tcpip-server-startup.monk
tcpip-server-shutdown.monk
tcpip-server-outgoing.monk
tcpip-server-notify.monk
tcpip-server-nack.monk
tcpip-server-init.monk
tcpip-server-extconnect.monk
tcpip-server-exchange.monk
tcpip-server-ack.monk



TCP/IP e*Way Intelligent Adapter User’s Guide 11

Chapter 3

Configuration

This chapter describes how to configure the TCP/IP e*Way.

3.1 e*Way Configuration Parameters
e*Way configuration parameters are set using the e*Way Configuration Editor.

To change e*Way configuration parameters

1 In the Schema Designer’s Component editor, select the e*Way you want to 
configure and display its properties.

2 Select the executable file stcewgenericmonk.exe.

3 Under Configuration File, click New to create a new file, Find to select an existing 
configuration file, or Edit to edit the currently selected file.

4 In the Additional Command Line Arguments box, type any additional command 
line arguments that the e*Way may require, taking care to insert them at the end of 
the existing command-line string. Be careful not to change any of the default 
arguments unless you have a specific need to do so.

For more information about how to use the e*Way Configuration Editor, see the e*Way 
Configuration Editor’s online Help or the e*Gate Integrator User’s Guide.

Note: All parameter values are mandatory, except for the Monk Positive Acknowledgment 
and Negative Acknowledgment functions, for both the TCP/IP client and server. See 
“Positive Acknowledgment Function” on page 28 and “Negative 
Acknowledgment Function” on page 28.

The e*Way’s configuration parameters are organized into the following sections:

General Settings

Communication Setup

Monk Configuration

TCP/IP Configuration

TCP/IP Server Configuration



Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

TCP/IP e*Way Intelligent Adapter User’s Guide 12

3.1.1 General Settings 
The General Settings control basic operational parameters. 

Journal File Name

Description

Specifies the name of the journal file.

Required Values

A valid file name, optionally including an absolute path (for example, 
c:\temp\filename.txt). If an absolute path is not specified, the file is stored in the 
e*Gate SystemData directory. See the e*Gate Integrator System Administration and 
Operations Guide for more information about file locations.

Additional Information

An Event is journaled for the following conditions:

When the number of resends is exceeded (see Max Resends Per Message in the 
next section)

When its receipt is due to an external error, but Forward External Errors is set to 
No. (See “Forward External Errors” on page 12 for more information.)

Max Resends Per Message

Description

Specifies the number of times the e*Way attempts to resend a message (Event) to the 
external system after receiving an error.

Required Values

An integer between 1 and 1,024. The default is 5.

Max Failed Messages

Description

Specifies the maximum number of failed messages (Events) that the e*Way allows. 
When the specified number of failed messages is reached, the e*Way shuts down and 
exits.

Required Values

An integer between 1 and 1,024. The default is 3.

Forward External Errors

Description

Selects whether error messages that begin with the string “DATAERR” that are received 
from the external system are queued to the e*Way’s configured queue. See “Exchange 
Data with External Function” on page 25 for more information.



Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

TCP/IP e*Way Intelligent Adapter User’s Guide 13

Required Values

Yes or No. The default value, No, specifies that error messages are not forwarded. 

See “Schedule-driven data exchange functions” on page 20 for information about how 
the e*Way uses this function.

3.1.2 Communication Setup
The Communication Setup parameters control the schedule by which the e*Way 
obtains data from the external system. 

Note: The schedule you set using the e*Way’s properties in the Schema Designer controls 
when the e*Way executable runs. The schedule you set within the parameters 
discussed in this section (using the e*Way Configuration Editor) determines when 
data is exchanged. Be sure you set the "exchange data" schedule to fall within the 
"run the executable" schedule.

Start Exchange Data Schedule

Description

Establishes the schedule to invoke the e*Way’s Exchange Data with External function. 

Required Values

One of the following:

One or more specific dates/times 

A single repeating interval (such as yearly, weekly, monthly, daily, or every n 
seconds). 

Also required: If you set a schedule using this parameter, you must also define all three 
of the following:

Exchange Data With External Function

Positive Acknowledgment Function

Negative Acknowledgment Function

If you do not do so, the e*Way terminates execution when the schedule attempts to 
start.

Additional Information

When the schedule starts, the e*Way determines whether it is waiting to send an ACK 
or NAK to the external system (using the Positive and Negative Acknowledgment 
functions) and whether the connection to the external system is active. If no ACK/NAK 
is pending and the connection is active, the e*Way immediately executes the Exchange 
Data with External function. Thereafter, the Exchange Data with External function is 
called according to the Exchange Data Interval parameter until the Stop Exchange 
Data Schedule time is reached.

See “Exchange Data with External Function” on page 25, “Exchange Data Interval” 
on page 14, and “Stop Exchange Data Schedule” on page 14 for more information.



Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

TCP/IP e*Way Intelligent Adapter User’s Guide 14

Stop Exchange Data Schedule

Description

Establishes the schedule to stop data exchange.

Required Values

One of the following values:

One or more specific dates/times 

A single repeating interval (such as yearly, weekly, monthly, daily, or every n 
seconds). 

Exchange Data Interval

Description

Specifies the number of seconds the e*Way waits between calls to the Exchange Data 
with External function during scheduled data exchanges.

Required Values

An integer, 0 to 86,400. The default is 120.

Additional Information

If Zero Wait Between Successful Exchanges (see “Zero Wait Between Successful 
Exchanges” on page 15) is set to Yes and the Exchange Data with External Function 
returns data, the Exchange Data Interval setting is ignored, and the e*Way invokes the 
Exchange Data with External Function immediately.

If this parameter is set to zero, there is no exchange data schedule set and the Exchange 
Data with External Function is never called.

See “Down Timeout” on page 14 and “Stop Exchange Data Schedule” on page 14 for 
more information about the data exchange schedule.

Down Timeout

Description

Specifies the number of seconds that the e*Way waits between calls to the External 
Connection Establishment function. See “External Connection Establishment 
Function” on page 26 for more information. 

Required Values

An integer between 1 and 86,400. The default is 15.

Up Timeout

Description

Specifies the number of seconds the e*Way waits between calls to the External 
Connection Verification function. See “External Connection Verification Function” 
on page 27 for more information.



Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

TCP/IP e*Way Intelligent Adapter User’s Guide 15

Required Values

An integer between 1 and 86,400. The default is 15.

Resend Timeout

Description

Specifies the number of seconds the e*Way waits between attempts to resend a message 
(Event) to the external system, after receiving an error message from the external 
system. 

Required Values

An integer between 1 and 86,400. The default is 10.

Zero Wait Between Successful Exchanges

Description

Selects whether to initiate data exchange after the Exchange Data Interval or 
immediately after a successful previous exchange.

Required Values

Yes or No. If this parameter is set to Yes, the e*Way immediately invokes the Exchange 
Data with External function if the previous exchange function returned data. If this 
parameter is set to No, the e*Way always waits the number of seconds specified by 
Exchange Data Interval between invocations of the Exchange Data with External 
function. The default is No.

See “Exchange Data with External Function” on page 25 for more information.

3.1.3 Monk Configuration
The parameters in this section help you set up the information required by the e*Way to 
utilize Monk for communication with the external system.

Conceptually, an e*Way is divided into two halves. One half of the e*Way (shown on 
the left in Figure 1) handles communication with the external system; the other half 
manages the Collaborations that process data and subscribe or publish to other e*Gate 
components.



Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

TCP/IP e*Way Intelligent Adapter User’s Guide 16

Figure 1 e*Way internal architecture

The “communications half” of the e*Way uses Monk functions to start and stop 
scheduled operations, exchange data with the external system, package data as e*Gate 
“Events” and send those Events to Collaborations, and manage the connection between 
the e*Way and the external system. The Monk Configuration options discussed in this 
section control the Monk environment and define the Monk functions used to perform 
these basic e*Way operations. You can create and modify these functions using the 
Collaboration Rules Editor or a text editor (such as Notepad, or UNIX vi).

The “communications half” of the e*Way is single-threaded. Functions run serially, and 
only one function can be executed at a time. The “business logic” side of the e*Way is 
multi-threaded, with one executable thread for each Collaboration. Each thread 
maintains its own Monk environment; therefore, information such as variables, 
functions, path information, and so on cannot be shared between threads.

Communication 
with external 
system

Business logic and 
communication 
within e*Gate

External 
system

Other e*Gate 
components

e*Gate Events

Data
e*Way

Collaboration

Collaboration

Function

Function



Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

TCP/IP e*Way Intelligent Adapter User’s Guide 17

Operational Details

The Monk functions in the “communications half” of the e*Way fall into the following 
groups:

A series of figures on the next several pages illustrates the interaction and operation of 
these functions.

Initialization Functions

Figure 2 on page 18 illustrates how the e*Way executes its initialization functions.

Type of Operation Name

Initialization Startup Function on page 24 
(also see Monk Environment Initialization 
File on page 24)

Connection External Connection Establishment Function 
on page 26
External Connection Verification Function on 
page 27
External Connection Shutdown Function on 
page 27

Schedule-driven data 
exchange

Exchange Data with External Function on 
page 25
Positive Acknowledgment Function on 
page 28
Negative Acknowledgment Function on 
page 28

Shutdown Shutdown Command Notification Function 
on page 29

Event-driven data 
exchange

Process Outgoing Message Function on 
page 25



Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

TCP/IP e*Way Intelligent Adapter User’s Guide 18

Figure 2 Initialization Functions

Connection Functions

Figure 3 on page 19 illustrates how the e*Way executes the connection establishment 
and verification functions.

Start e*Way

Load
"Monk Initialization"

file

Execute any Monk function 
having the same name as 

the initialization file

Load "Startup" file

Execute any Monk function 
having the same name as 

the startup file



Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

TCP/IP e*Way Intelligent Adapter User’s Guide 19

Figure 3 Connection establishment and verification functions

Note: The e*Way selects the connection function based on an internal “up/down” flag 
rather than a poll to the external system. See Figure 5 on page 20 and Figure 7 on 
page 22 for examples of how different functions use this flag.

User functions can manually set this flag using Monk functions. See send-
external-up on page 49 and send-external-down on page 48 for more 
information.

Figure 4 illustrates how the e*Way executes its “connection shutdown” function.

Figure 4 Connection shutdown function

Connect e*Way to 
external system

Internal
flag shows connection 

active?

Wait for "Up Timeout" 
schedule

Call External Connection 
Verification function

Wait for "Down Timeout" 
schedule

Call External Connection 
Establishment function

Yes

No

Control Broker issues 
"Suspend" command

Call External Connection Shutdown 
function with parameter 

"SUSPEND_NOTIFICATION"

e*Way closes connection

Return any value



Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

TCP/IP e*Way Intelligent Adapter User’s Guide 20

Schedule-driven Data Exchange Functions

Figure 5 illustrates how the e*Way performs schedule-driven data exchange using the 
Exchange Data with External Function. The Positive Acknowledgment Function and 
Negative Acknowledgment Function are also called during this process.

“Start” can occur in any of the following ways:

The “Start Data Exchange” time occurs

Periodically during data-exchange schedule (after “Start Data Exchange” time, but 
before “Stop Data Exchange” time), as set by the Exchange Data Interval

The start-schedule Monk function is called

After the function exits, the e*Way waits for the next “start schedule” time or command.

Figure 5 Schedule-driven data exchange functions

Increment "Failed 
Message" counter

DATAERR plus
additional data

Null
string

Data
(other than 

error strings)

Forward 
external
errors?

No

Yes

Set interval flag 
"Connection 

Down"

CONNERR

Increment "Failed 
Message" counter

DATAERR only

Journal 
enabled?

Create journal 
entry

Yes

No

Start

Function exits

Send Event to 
e*Gate

All
subscribing 

Collaborations return
TRUE

?

Call Positive 
Acknowledgment 

function

Zero
wait after successful 

exchange?

Call Negative 
Acknowledgment 

function

Yes

No

YesNo

Call Exchange Data with 
External function

Return



Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

TCP/IP e*Way Intelligent Adapter User’s Guide 21

Shutdown Functions

Figure 6 illustrates how the e*Way implements the shutdown request function.

Figure 6 Shutdown functions

Event-driven Data Exchange Functions

Figure 7 on page 22 illustrates event-driven data-exchange using the Process Outgoing 
Message Function. 

Every two minutes, the e*Way checks the “Failed Message” counter against the value 
specified by the Max Failed Messages parameter. When the “Failed Message” counter 
exceeds the specified maximum value, the e*Way logs an error and shuts down.

After the function exits, the e*Way waits for the next outgoing Event.

Control Broker issues 
"Shutdown" command

Call Shutdown Notification function 
with parameter 

"SHUTDOWN_NOTIFICATION"

e*Way shuts down

Wait for
shutdown-request 

function

Return

Null string or
"SUCCESS"

any other value



Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

TCP/IP e*Way Intelligent Adapter User’s Guide 22

Figure 7 Event-driven data-exchange functions

How to Specify Function Names or File Names

Parameters that require the name of a Monk function accept either a function name or a 
file name. If you specify a file name, be sure that the file has one of the following 
extensions:

.monk

.tsc

.dsc

Note: When the e*Way is configured as a server, the default functions must be changed to 
the server functions. For example, tcpip-init would be changed to 
tcpip-server-init.

Collaboration publishes
to <EXTERNAL>

Call Process Outgoing 
Message function

Set internal flag 
"Connection 

Down"

Maximum
Resends per Message 

exceeded?

Yes

Return

CONNERR DATAERR

Increment "Failed 
Message" counter

Create journal 
entry

Null
string

No
Journal 

enabled?

No

Function exits

Wait for Resend 
Timeout period

Roll back Event to 
its publishing IQ

Yes

Wait for Resend 
Timeout period

Increment 
"Resend" counter

RESEND



Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

TCP/IP e*Way Intelligent Adapter User’s Guide 23

Additional Path

Description

Specifies a path to be appended to the “load path,” the path Monk uses to locate files 
and data (set internally within Monk). The directory specified in Additional Path is 
searched after the default load paths.

Required Values

A pathname, or a series of paths separated by semicolons. This parameter is optional 
and may be left blank.

Additional information

The default load paths are determined by the “bin” and “Shared Data” settings in the 
.egate.store file. See the e*Gate Integrator System Administration and Operations Guide for 
more information about this file.

To specify multiple directories, manually enter the directory names rather than 
selecting them with the “file selection” button. Directory names must be separated with 
semicolons, and you can mix absolute paths with relative e*Gate paths. For example:

monk_scripts\my_dir;c:\my_directory

The internal e*Way function that loads this path information is called only once, when 
the e*Way first starts up.

Auxiliary Library Directories

Description

Specifies a path to auxiliary library directories. Any .monk files found within those 
directories are automatically loaded into the e*Way’s Monk environment. This 
parameter is optional and may be left blank.

Required Values

A pathname, or a series of paths separated by semicolons. The default is 
monk_library/ewtcpipext.

Additional information

To specify multiple directories, manually enter the directory names rather than 
selecting them with the “file selection” button. Directory names must be separated with 
semicolons, and you can mix absolute paths with relative e*Gate paths. For example:

monk_scripts\my_dir;c:\my_directory

The internal e*Way function that loads this path information is called only once, when 
the e*Way first starts up.

This parameter is optional and may be left blank.



Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

TCP/IP e*Way Intelligent Adapter User’s Guide 24

Monk Environment Initialization File

Specifies a file that contains environment initialization functions, which are loaded 
after the auxiliary library directories are loaded. Use this feature to initialize the 
e*Way’s Monk environment (for example, to define Monk variables that are used by the 
e*Way’s function scripts). 

Required Values

A filename within the “load path”, or filename plus path information (relative or 
absolute). If path information is specified, that path is appended to the “load path.” See 
“Additional Path” on page 23 for more information about the “load path.” The default 
is tcpip-init.monk. (See tcpip-init on page 53 or tcpip-server-init on page 57 for more 
information.)

Additional information

Any environment-initialization functions called by this file accept no input, and must 
return a string. The e*Way loads this file and tries to invoke a function of the same base 
name as the file name (for example, for a file named my-init.monk, the e*Way would 
attempt to execute the function my-init). 

Typically, it is a good practice to initialize any global Monk variables that may be used 
by any other Monk Extension scripts. 

The internal function that loads this file is called once when the e*Way first starts up 
(see Figure 2 on page 18).

Note: When the e*Way is configured as a server, the default functions must be changed to 
the server functions. For example, tcpip-init would be changed to 
tcpip-server-init.

Startup Function

Description

Specifies a Monk function that the e*Way loads and invoke upon startup or whenever 
the e*Way’s configuration is reloaded. This function should be used to initialize the 
external system before data exchange starts.

Required Values

The name of a Monk function, or the name of a file (optionally including path 
information) containing a Monk function. This parameter is optional and may be left 
blank. The default is tcpip-startup. (See tcpip-startup on page 62 or tcpip-server-
startup on page 61 for more information.)

Additional information

The function accepts no input, and must return a string. 

The string “FAILURE” indicates that the function failed; any other string (including a 
null string) indicates success. 

This function is called after the e*Way loads the specified “Monk Environment 
Initialization file” and any files within the specified Auxiliary Directories.



Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

TCP/IP e*Way Intelligent Adapter User’s Guide 25

The e*Way loads this file and tries to invoke a function of the same base name as the file 
name (see Figure 2 on page 18). For example, for a file named my-startup.monk, the 
e*Way would attempt to execute the function my-startup. 

Process Outgoing Message Function

Description

Specifies the Monk function responsible for sending outgoing messages (Events) from 
the e*Way to the external system. This function is event-driven (unlike the Exchange 
Data with External function, which is schedule-driven).

Required Values

The name of a Monk function, or the name of a file (optionally including path 
information) containing a Monk function. You may not leave this field blank. The 
default is tcpip-outgoing. (See tcpip-outgoing on page 55 or tcpip-server-outgoing on 
page 59 for more information.)

Additional Information

The function requires a non-null string as input (the outgoing Event to be sent) and 
must return a string.

The e*Way invokes this function when one of its Collaborations publishes an Event to 
an <EXTERNAL> destination (as specified within the Schema Designer). The function 
returns one of the following (see Figure 7 on page 22 for more details):

Null string: Indicates that the Event was published successfully to the external 
system.

“RESEND”: Indicates that the Event should be resent.

“CONNERR”: Indicates that there is a problem communicating with the external 
system. 

“DATAERR”: Indicates that there is a problem with the message (Event) data itself. 

If a string other any in the previous list is returned, the e*Way creates an entry in the log 
file indicating that an attempt has been made to access an unsupported function.

Note: If you wish to use event-send-to-egate to enqueue failed Events in a separate IQ, 
the e*Way must have an inbound Collaboration (with appropriate IQs) configured 
to process those Events. See event-send-to-egate on page 47 for more 
information.

Exchange Data with External Function

Description

Specifies a Monk function that initiates the transmission of data from the external 
system to the e*Gate system and forwards that data as an inbound Event to one or more 
e*Gate Collaborations. This function is called according to a schedule (unlike the 
Process Outgoing Message Function, which is event-driven).



Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

TCP/IP e*Way Intelligent Adapter User’s Guide 26

Required Values

The name of a Monk function, or the name of a file (optionally including path 
information) containing a Monk function. This parameter is optional and may be left 
blank. The default is tcpip-exchange. (See tcpip-exchange on page 52 or tcpip-server-
exchange on page 56 for more information.)

Additional Information

The function accepts no input and must return a string (see Figure 5 on page 20 for 
more details):

Null string: Indicates that the data exchange was completed successfully. No 
information is sent into the e*Gate system.

“CONNERR”: Indicates that a problem with the connection to the external system 
has occurred. 

“DATAERR”: Indicates that a problem with the data itself has occurred. The e*Way 
handles the string “DATAERR” and “DATAERR” plus additional data differently; 
see Figure 5 on page 20 for more details. 

Any other string: The contents of the string are packaged as an inbound Event. The 
e*Way must have at least one Collaboration configured suitably to process the 
inbound Event, as well as any required IQs. 

This function is initially triggered by the Start Data Exchange schedule or manually by 
the Monk function start-schedule. After the function has returned true and the data 
received by this function has been ACKed or NAKed (by the Positive 
Acknowledgment Function or Negative Acknowledgment Function, respectively), 
the e*Way checks the Zero Wait Between Successful Exchanges parameter. If this 
parameter is set to Yes, the e*Way immediately calls the Exchange Data with External 
function again; otherwise, the e*Way does not call the function until the next scheduled 
“start exchange” time or the schedule is manually invoked using the Monk function 
start-schedule (see start-schedule on page 50 for more information).

External Connection Establishment Function

Description

Specifies a Monk function that the e*Way calls when it has determined that the 
connection to the external system is down.

Required Values

The name of a Monk function, or the name of a file (optionally including path 
information) containing a Monk function. This field cannot be left blank. The default is 
tcpip-extconnect. (See tcpip-extconnect on page 52 or tcpip-server-extconnect on 
page 57 for more information.)

Additional Information

The function accepts no input and must return a string:

“SUCCESS” or “UP”: Indicates that the connection was established successfully.

Any other string (including the null string): Indicates that the attempt to establish 
the connection failed.



Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

TCP/IP e*Way Intelligent Adapter User’s Guide 27

This function is executed according to the interval specified within the Down Timeout 
parameter, and is only called according to this schedule.

The External Connection Verification function (see below) is called when the e*Way 
has determined that its connection to the external system is up.

External Connection Verification Function

Description

Specifies a Monk function that the e*Way calls when its internal variables show that the 
connection to the external system is up. 

Required Values

The name of a Monk function. This function is optional; if no External Connection 
Verification function is specified, the e*Way executes the External Connection 
Establishment function in its place. The default is tcpip-verify. (See tcpip-verify on 
page 63 or tcpip-server-verify on page 61 for more information.)

Additional Information

The function accepts no input and must return a string:

“SUCCESS” or “UP”: Indicates that the connection was established successfully.

Any other string (including the null string): Indicates that the attempt to establish 
the connection failed.

This function is executed according to the interval specified within the Up Timeout 
parameter, and is only called according to this schedule.

The External Connection Establishment function (see above) is called when the e*Way 
has determined that its connection to the external system is down.

External Connection Shutdown Function

Description

Specifies a Monk function that the e*Way calls to shut down the connection to the 
external system. 

Required Values

The name of a Monk function. The default is tcpip-shutdown. (See tcpip-shutdown on 
page 62 or tcpip-server-shutdown on page 60 for more information.)

Additional Information

This function requires a string as input, and may return a string.

This function is only invoked when the e*Way receives a “suspend” command from a 
Control Broker. When the “suspend” command is received, the e*Way invokes this 
function, passing the string “SUSPEND_NOTIFICATION” as an argument.

Any return value indicates that the “suspend” command can proceed and that the 
connection to the external system can be broken immediately.



Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

TCP/IP e*Way Intelligent Adapter User’s Guide 28

Positive Acknowledgment Function

Description

Specifies a Monk function that the e*Way calls when all the Collaborations to which the 
e*Way sent data have processed and enqueued that data successfully. 

Required Values

The name of a Monk function, or the name of a file (optionally including path 
information) containing a Monk function. This parameter is required if the Exchange 
Data with External function is defined. The default is tcpip-ack. (See tcpip-ack on 
page 51 or tcpip-server-ack on page 56 for more information.)

Additional Information

The function requires a non-null string as input (the Event to be sent to the external 
system) and must return a string:

“CONNERR”: Indicates a problem with the connection to the external system. 
When the connection is re-established, the Positive Acknowledgment function is 
called again, with the same input data.

Null string: The function completed execution successfully.

After the Exchange Data with External function returns a string that is transformed 
into an inbound Event, the Event is handed off to one or more Collaborations for 
further processing. If the Event’s processing is completed successfully by all the 
Collaborations to which it was sent, the e*Way executes the Positive Acknowledgment 
function (otherwise, the e*Way executes the Negative Acknowledgment function). 

Negative Acknowledgment Function

Description

Specifies a Monk function that the e*Way calls when the e*Way fails to process and 
queue Events from the external system. 

Required Values

The name of a Monk function, or the name of a file (optionally including path 
information) containing a Monk function. This parameter is required if the Exchange 
Data with External function is defined. The default is tcpip-nack. (See tcpip-nack on 
page 53 or tcpip-server-nack on page 58 for more information.)

Additional Information

The function requires a non-null string as input (the Event to be sent to the external 
system) and must return a string:

“CONNERR”: Indicates a problem with the connection to the external system. 
When the connection is re-established, the function is called again.

Null string: The function completed execution successfully.



Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

TCP/IP e*Way Intelligent Adapter User’s Guide 29

This function is only called during the processing of inbound Events. After the 
Exchange Data with External function returns a string that is transformed into an 
inbound Event, the Event is handed off to one or more Collaborations for further 
processing. If the Event’s processing is not completed successfully by all the 
Collaborations to which it was sent, the e*Way executes the Negative Acknowledgment 
function (otherwise, the e*Way executes the Positive Acknowledgment function).

Shutdown Command Notification Function

Description

Specifies a Monk function that is called when the e*Way receives a “shut down” 
command from the Control Broker. This parameter is optional.

Required Values

The name of a Monk function. (See tcpip-notify on page 54 or tcpip-server-notify on 
page 58 for more information.)

Additional Information

When the Control Broker issues a shutdown command to the e*Way, the e*Way calls 
this function with the string “SHUTDOWN_NOTIFICATION” passed as a parameter. 

The function accepts a string as input and must return a string:

A null string or “SUCCESS”: Indicates that the shutdown can occur immediately.

Any other string: Indicates that shutdown must be postponed. Once postponed, 
shutdown does not proceed until the Monk function shutdown-request is executed 
(see shutdown-request on page 49).

Note: If you postpone a shutdown using this function, be sure to use 
the (shutdown-request) function to complete the process in a timely manner.

3.1.4 TCP/IP Configuration
This section defines the TCP/IP parameters used in when the e*Way is acting as a 
client.

Host

Description

Specifies the Host on which the server is running. This parameter is mandatory.

Required Values

A string containing a valid hostname.



Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

TCP/IP e*Way Intelligent Adapter User’s Guide 30

Port

Description

Specifies the port on which the server is listening for connection requests. This 
parameter is mandatory.

Required Values

An integer between 1 and 864000. The default is 8888.

PacketSize

Description

Specifies the number of bytes per packet of data. This number also determines the size 
of the buffers. This parameter is mandatory.

Required Values

An integer between 1 and 864000. The default is 4096.

Timeout

Description

Specifies the amount of time, in milliseconds, the e*Way awaits a response when 
making requests to the server.

Required Values

An integer between 1 and 864000. The default is 50000.

NoDelay

Description

Specifies whether the system can delay connections or requests. Generally, NoDelay/
True is necessary for high-volume and/or critical transactions. In cases of low-volume 
and/or noncritical transactions, you can use NoDelay/False. This parameter is 
mandatory.

Required Values

True or False. The default is True.

ACKValue

Description

Specifies the positive acknowledgment return value.

Required Values

A string.



Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

TCP/IP e*Way Intelligent Adapter User’s Guide 31

NACKValue

Description

Specifies the negative acknowledgment return value.

Required Values

A string.

3.1.5 TCP/IP Server Configuration
This section defines the TCP/IP parameters used when the e*Way is acting as a server.

Host

Description

Specifies the host on which the server is running. This parameter is mandatory.

Required Values

A string containing a valid hostname.

Port

Description

Specifies the port on which the server is listening for connection requests. This 
parameter is mandatory.

Required Values

An integer between 1 and 864000. The default is 8888. 

PacketSize

Description

Specifies the number of bytes per packet of data. This number also determines the size 
of the buffers.

Required Values

An integer between 1 and 864000. The default is 4096. This parameter is mandatory.

MaxConnections

Descriptions

Specifies the maximum number of client connections that the server can accommodate.

Required Values

An integer between 1 and 1024. The default is 5.



Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

TCP/IP e*Way Intelligent Adapter User’s Guide 32

WaitForClientTimeout

Description

Specifies the amount of time, in milliseconds, used when waiting for a new client 
connection.

Required Values

An integer between 1000 and 300000. The default is 1000.

Process WaitTime

Description

Specifies the amount of time, in milliseconds, to wait before checking for new client 
connections.

Required Values

An integer between 1000 and 300000. The default is 1000.

Timeout

Description

Specifies the amount of time in milliseconds used when receiving client messages 
(Events) and sending messages (Events) to clients.

Required Values

An integer between 1 and 864000. The default is 50000. 

NoDelay

Description

Specifies whether the system can delay connections or requests. Generally, NoDelay/
True is necessary for high-volume and/or critical transactions. In cases of low-volume 
and/or noncritical transactions, you can use NoDelay/False. This parameter is 
mandatory.

Required Values

True or False. The default is True.

ACKValue

Description

Specifies the positive acknowledgment return value.

Required Values

A string.



Chapter 3 Section 3.2
Configuration External Configuration Requirements

TCP/IP e*Way Intelligent Adapter User’s Guide 33

NACKValue

Description

Specifies the negative acknowledgment return value.

Required Values

A string.

3.2 External Configuration Requirements
There are no configuration changes required in the external system. All necessary 
configuration changes can be made within e*Gate.



TCP/IP e*Way Intelligent Adapter User’s Guide 34

Chapter 4

Implementation

This chapter explains how to implement a sample schema with the TCP/IP e*Way.

4.1 Implementation Process: Overview
To implement the sample schema that uses the TCP/IP e*Way, do the following steps:

Create a new schema.

In the e*Gate Integrator Schema Designer, do the following:

Define Event Type Definitions (ETDs) to package the data being exchanged with 
the external system

Define Collaboration Rules to process Event data.

Define any IQs to which Event data is published prior to sending it to the 
external system.

Define the e*Way components (this procedure is discussed in Chapter 2).

Within each e*Way component, configure Collaborations to apply the required 
Collaboration Rules.

Use the e*Way Configuration Editor to set the e*Way’s configuration parameters.

Be sure that any other e*Gate components are configured as necessary to complete 
the schema.

Test the schema and make any necessary corrections.

Note: For more information about creating or modifying any component within the e*Gate 
Schema Designer, see the e*Gate Integrator User’s Guide or the Schema Designer’s 
online Help.

The sample schema consists of four e*Ways that operate as follows: one reads an Event 
from an external text file and forwards the Event to an e*Way configured as a TCP/IP 
client. The TCP/IP client, in turn, sends the Event to an e*Way configured as a TCP/IP 
server, which appends the Event with additional data and sends it back to the client. 
The client sends the appended Event to the fourth e*Way, which stores the Event in an 
output file.



Chapter 4 Section 4.1
Implementation Implementation Process: Overview

TCP/IP e*Way Intelligent Adapter User’s Guide 35

Figure 8 illustrates the flow of data in the sample schema.

Figure 8 Data Flow in the Sample Schema

Generally, the sample schema operates as follows:

1 A file e*Way reads in data from a text file.

2 The file e*Way sends the data to a TCP/IP e*Way configured as a client.

3 The client e*Way sends the data to a TCP/IP e*Way configured as a server.

4 The server e*Way appends a note to the data and sends the data back to the client 
e*Way.

5 The client e*Way forwards the data to another file e*Way.

6 The data is stored in an output file on the local system.

File e*Way

File e*Way

TCP/IP 
e*Way 
(client)

e*Gate

TCP/IP 
e*Way 

(server)

1

2

3

4

5

6

Input file

Output file



Chapter 4 Section 4.1
Implementation Implementation Process: Overview

TCP/IP e*Way Intelligent Adapter User’s Guide 36

The schema incorporates a number of different components, as shown in Figure 9.

Figure 9 Components in the Sample Schema

In the example, the e*Way named TCPIP_Server acts as an external TCP/IP server that 
receives messages from the e*Way named TCPIP_Client. If you have an existing TCP/
IP server available and can configure it to bounce messages back across the same port 
that they are received, you do not need to configure the TCPIP_Server component in 
the schema.

e*Gate

Input file

TCP/IP e*Way (TCPIP_Client)

TCPIP_Receive_Collab

TCPIP_Send_Collab

File e*Way (TCPIP_Inbound)

Inbound_Collab

TCP/IP e*Way (TCPIP_Server)

TCPIP_Server_Collab

Output file

File e*Way (TCPIP_Outbound)

Outbound_Collab

Send_IQ

Receive_IQ



Chapter 4 Section 4.2
Implementation Creating the Sample Schema

TCP/IP e*Way Intelligent Adapter User’s Guide 37

4.2 Creating the Sample Schema
The first task in deploying the sample implementation is to create a new schema name. 
While it is possible to use the default schema for the sample implementation, it is 
recommended that you create a separate schema for testing purposes. After you install 
the e*Gate Integrator, do the following steps:

1 Start the e*Gate Schema Designer GUI. 

2 When the Schema Designer prompts you to log in, select the host that you specified 
during installation, and enter your password.

3 You are then prompted to select a schema. Click on New. 

4 Enter a name for the new schema; In this case, enter TCPIP_Test, or similar name as 
desired.

The e*Gate Schema Designer opens under your new schema. You now need to create 
the components required to use this sample schema. To do so, complete the following:

1 Identify the Event Type.

2 Define Collaboration Rules to process Event data.

3 Define the IQs to which Event data is published prior to sending it to the external 
system.

4 Define and configure each e*Way and associated Collaborations to apply the 
required Collaboration Rules.

5 Run the schema and make any necessary corrections.

The rest of this chapter describes each of these steps in detail.

Note: For more information about creating or modifying any schema component within 
the e*Gate Schema Designer, see the Schema Designer’s online Help system.

4.2.1 Identify the Event Type
The sample schema uses a single Event Type, GenericInEvent. This Event Type 
transfers the data as a packet and uses an Event Type Definition with a single root node. 
GenericInEvent comes pre-packaged with e*Gate, you do not need to create it.

To identify GenericInEvent

1 In the Navigator, select the Event Types folder. 

2 Verify that GenericInEvent is listed in the Editor and uses the Event Type 
Definition GenericInEvent.ssc.

4.2.2 Define Collaboration Rules
The next step is to define the Collaboration Rules the schema uses to process the data. 
The sample schema uses a single set of Collaboration Rules, called PassThru.



Chapter 4 Section 4.2
Implementation Creating the Sample Schema

TCP/IP e*Way Intelligent Adapter User’s Guide 38

To create PassThru

1 In the Navigator, select the Collaboration Rules folder.

2 Create a new Collaboration Rules component called PassThru.

3 Edit the Properties of PassThru as follows:

4.2.3 Define IQs
The sample schema utilizes two IQs: One to store incoming data and another to store 
data after it has been processed by the TCP/IP server.

To define IQs

1 In the Navigator, select the Participating Hosts folder, then drill down to select the 
IQ Manager.

2 Create the following IQs:

Send_IQ

Receive_IQ

3 In the Properties for each IQ, verify that it uses the Oracle SeeBeyond Standard IQ 
Service.

4 Display the Properties for the IQ Manager, and configure it to start automatically.

4.2.4 Define e*Ways and Collaborations
The sample schema utilizes four e*Way components: Two file-based e*Ways to read the 
incoming data from a file and send the results to an output file; one TCP/IP e*Way 
configured as a client; and one TCP/IP e*Way configured as a server.

Note: The sample schema includes the TCP/IP e*Way configured as a server to simulate 
an external connection to a TCP/IP server. If you have an actual TCP/IP server 
available, you can use that as the external server and omit creating and configuring 
the TCPIP_Server e*way component in the schema.

Important: You must create and configure the e*Ways and Collaborations in the order listed 
below. Otherwise, publishers and subscribers may not be available to other 
components.

Service Pass Through

Subscription GenericInEvent (the Event Type 
identified in Step 1)

Publication GenericInEvent (the Event Type 
identified in Step 1)



Chapter 4 Section 4.2
Implementation Creating the Sample Schema

TCP/IP e*Way Intelligent Adapter User’s Guide 39

TCPIP_Inbound

To create the TCPIP_Inbound e*Way

1 In the Navigator, select the Participating Hosts folder, then drill down to select the 
Control Broker.

2 Create an e*Way named TCPIP_Inbound.

3 Display the e*Way’s Properties.

4 On the General tab, under Executable file, click Find to assign the file 
stcewfile.exe.

5 Select the Start Up tab. Configure the e*Way to start automatically.

To configure the e*Way’s parameters

1 With the e*Way’s Properties dialog box still displayed, select the General tab.

2 Under Configuration file, click New.

This launches the e*Way Configuration Editor.

3 Configure the parameters in the e*Way Configuration Editor as follows:

Parameters not listed in the table should retain their default values.

4 Save the settings and promote the file to run time.

5 In the e*Way’s Properties dialog box, click OK to save all changes and return to the 
e*Gate Schema Designer’s main window.

To create the Collaboration for TCPIP_Inbound

1 In the Navigator, select the e*Way TCPIP_Inbound.

2 Create a Collaboration named Inbound_Collab.

3 Display the Collaboration’s Properties and edit them as follows:

Section Parameter: Setting

General Settings AllowIncoming: Yes

AllowOutgoing: No

Poller (inbound) settings PollDirectory: C:\TEMP (or 
another temporary directory)

RemoveEOL: No

Collaboration Rules PassThru

Subscriptions Event Type: GenericInEvent

Source: <External>

Publications Event Type: GenericInEvent

Destination: Send_IQ



Chapter 4 Section 4.2
Implementation Creating the Sample Schema

TCP/IP e*Way Intelligent Adapter User’s Guide 40

4 In the Collaboration’s Properties dialog box, click OK to save all changes and return 
to the e*Gate Schema Designer’s main window.

TCPIP_Client

To create the TCPIP_Client e*Way

1 In the Navigator, select the Participating Hosts folder, then select the Control 
Broker.

2 Create an e*Way named TCPIP_Client.

3 Display the e*Way’s Properties.

4 On the General tab, under Executable file, click Find to assign the file 
stcewgenericmonk.exe.

5 Select the Start Up tab. Configure the e*Way to start automatically.

To configure the e*Way’s parameters

1 With the e*Way’s Properties dialog box still displayed, select the General tab.

2 Under Configuration file, click New.

3 In the e*Way Template Selection dialog box, select stcewtcpipext.

This launches the e*Way Configuration Editor.

4 Configure the parameters in the e*Way Configuration Editor as follows:

Parameters not listed in the table should retain their default values.

5 Save the settings and promote the file to run time.

6 In the e*Way’s Properties dialog box, click OK to save all changes and return to the 
e*Gate Schema Designer’s main window.

To create the first Collaboration for TCPIP_Client

1 In the Navigator, select the e*Way TCPIP_Client.

2 Create a Collaboration named TCPIP_Send_Collab.

Section Parameter: Setting

Communication Setup Exchange Data Interval: 30

TCPIP Configuration Host: the name of the 
Participating Host (for example, 
localhost)



Chapter 4 Section 4.2
Implementation Creating the Sample Schema

TCP/IP e*Way Intelligent Adapter User’s Guide 41

3 Display the Collaboration’s Properties and edit them as follows:

4 In the Collaboration’s Properties dialog box, click OK to save all changes and return 
to the e*Gate Schema Designer’s main window.

To create the second Collaboration for TCPIP_Client

1 In the Navigator, select the e*Way TCPIP_Client.

2 Create a Collaboration named TCPIP_Receive_Collab.

3 Display the Collaboration’s Properties and edit them as follows:

4 In the Collaboration’s Properties dialog box, click OK to save all changes and return 
to the e*Gate Schema Designer’s main window.

TCPIP_Server

To create the TCPIP_Server e*Way

1 In the Navigator, select the Participating Hosts folder, then select the Control 
Broker.

2 Create an e*Way named TCPIP_Server.

3 Display the e*Way’s Properties.

4 On the General tab, under Executable file, click Find to assign the file 
stcewgenericmonk.exe.

5 Select the Start Up tab. Configure the e*Way to start automatically.

To configure the e*Way’s parameters

1 With the e*Way’s Properties dialog box still displayed, select the General tab.

2 Under Configuration file, click New.

3 In the e*Way Template Selection dialog box, select stcewtcpipext.

This launches the e*Way Configuration Editor.

Collaboration Rules PassThru

Subscriptions Event Type: GenericInEvent

Source: Inbound_Collab

Publications Event Type: GenericInEvent

Destination: <External>

Collaboration Rules PassThru

Subscriptions Event Type: GenericInEvent

Source: <External>

Publications Event Type: GenericInEvent

Destination: Receive_IQ



Chapter 4 Section 4.2
Implementation Creating the Sample Schema

TCP/IP e*Way Intelligent Adapter User’s Guide 42

4 Configure the parameters in the e*Way Configuration Editor as follows:

Parameters not listed in the table should retain their default values.

5 Save the settings and promote the file to run time.

6 In the e*Way’s Properties dialog box, click OK to save all changes and return to the 
e*Gate Schema Designer’s main window.

To create the Collaboration for TCPIP_Server

1 In the Navigator, select the e*Way TCPIP_Server.

2 Create a Collaboration named TCPIP_Server_Collab.

3 Display the Collaboration’s Properties and edit them as follows:

Section Parameter: Setting

Communication Setup Exchange Data Interval: 50

Monk Configuration Monk Environment Initialization 
File: monk_library/ewtcpipext/tcpip-
server-init.monk

Startup Function: tcpip-server-
startup

Process Outgoing Message 
Function: tcpip-server-outgoing

Exchange Data With External 
Function: tcpip-server-exchange

External Connection Establishment 
Function: tcpip-server-extconnect

External Connection Verification 
Function: tcpip-server-verify

External Connection Shutdown 
Function: tcpip-server-shutdown

Positive Acknowledgment Function: 
tcpip-server-ack

Negative Acknowledgment 
Function: tcpip-server-nack

TCPIP Server Configuration Host: the name of the Participating 
Host (for example, localhost)

Collaboration Rules PassThru

Subscriptions Event Type: GenericInEvent

Source: <External>

Publications Event Type: GenericInEvent

Destination: <External>



Chapter 4 Section 4.2
Implementation Creating the Sample Schema

TCP/IP e*Way Intelligent Adapter User’s Guide 43

4 In the Collaboration’s Properties dialog box, click OK to save all changes and return 
to the e*Gate Schema Designer’s main window.

TCPIP_Outbound

To create the TCPIP_Outbound e*Way

1 In the Navigator, select the Participating Hosts folder, then select the Control 
Broker.

2 Create an e*Way named TCPIP_Outbound.

3 Display the e*Way’s Properties.

4 On the General tab, under Executable file, click Find to assign the file 
stcewfile.exe.

5 Select the Start Up tab. Configure the e*Way to start automatically.

To configure the e*Way’s parameters

1 With the e*Way’s Properties dialog box still displayed, select the General tab.

2 Under Configuration file, click New.

This launches the e*Way Configuration Editor.

3 Configure the parameters in the e*Way Configuration Editor as follows:

Parameters not listed in the table should retain their default values.

4 Save the settings and promote the file to run time.

5 In the e*Way’s Properties dialog box, click OK to save all changes and return to the 
e*Gate Schema Designer’s main window.

To create the Collaboration for TCPIP_Outbound

1 In the Navigator, select the e*Way TCPIP_Outbound.

2 Create a Collaboration named Outbound_Collab.

3 Display the Collaboration’s Properties and edit them as follows:

Section Parameter: Setting

General Settings AllowIncoming: No

AllowOutgoing: Yes

Outbound (send) settings OutputDirectory: C:\TEMP (or another temporary 
directory)

Collaboration Rules PassThru

Subscriptions Event Type: GenericInEvent

Source: TCPIP_Receive_Collab

Publications Event Type: GenericInEvent

Destination: <External>



Chapter 4 Section 4.3
Implementation Importing the Sample Schema

TCP/IP e*Way Intelligent Adapter User’s Guide 44

4 In the Collaboration’s Properties dialog box, click OK to save all changes and return 
to the e*Gate Schema Designer’s main window.

This operation completes schema configuration in the e*Gate Schema Designer.

4.2.5 Run the Schema
Before running the schema, create a sample input text file. Unless you specified 
something different in the e*Way Configuration Editor, make sure you save the file in 
the C:\TEMP directory with a .fin extension. To execute the TCPIP_test schema, do the 
following:

1 Go to the command prompt, and enter the following:

stccb -rh hostname -rs TCPIP_Test -un username -up user password
-ln hostname_cb

Substitute hostname, username and user password as appropriate.

2 Exit from the command prompt, and start the Schema Manager GUI.

3 When prompted, specify the hostname which contains the Control Broker you 
started in Step 1 above.

4 Select the TCPIP_Test schema.

5 After you verify that the Control Broker is connected (the message in the Control 
tab of the console indicates the command “succeeded” and the status as “up”), 
highlight the IQ Manager, hostname_igmgr, then click the right button of the mouse, 
and select Start.

6 Highlight each of the e*Ways, right click the mouse, and select Start.

Expected Results

e*Gate returns an output file (outputn.dat, where n is a number) in the C:\TEMP 
directory (or whatever directory you specified) and changes the extension of the input 
file to .~in.

4.3 Importing the Sample Schema
Most e*Ways include sample schemas that you can use for testing purposes. These 
samples are automatically installed during the installation of e*Gate. The sample 
schema created from scratch in the previous sections is identical to the sample schema 
included with the e*Gate installation.

This section explains how to import the sample schema without having to create the 
individual components.

To import the schema

1 From the e*Gate Schema Designer, choose New on the File menu.

The New Schema dialog box appears.



Chapter 4 Section 4.3
Implementation Importing the Sample Schema

TCP/IP e*Way Intelligent Adapter User’s Guide 45

2 Click Create from export and enter the schema name TCPIP_Test.

3 Click Find and use the Import from File dialog box to select the following schema 
export file:

samples\ewtcpipext\TcpipExt_Sample.zip

The dialog box closes.

4 From the New Schema dialog box, click Open.

The Schema Designer displays the imported schema.

When the e*Gate Schema Designer GUI opens, you can see that most of the components 
(including e*Ways, Event Types, Collaborations, Collaboration Rules and IQs) are 
already defined and configured. Only the TCPIP_Server e*Way needs to be configured.

To configure TCPIP_Server e*Way

1 Select the TCPIP_Server e*Way from the Components tab of the e*Gate Schema 
Designer. 

2 Right click with your mouse and select Properties.

3 On the General tab of the Properties window, click on the Edit button under the 
Configuration file field.

4 When the Settings window opens, refer to the following table to configure the 
parameters for this configuration file:

Section Parameter: Setting

Communication Setup Exchange Data Interval: 50

Monk Configuration Monk Environment Initialization 
File: monk_library/ewtcpipext/tcpip-
server-init.monk

Startup Function: tcpip-server-
startup

Process Outgoing Message 
Function: tcpip-server-outgoing

Exchange Data With External 
Function: tcpip-server-exchange

External Connection Establishment 
Function: tcpip-server-extconnect



Chapter 4 Section 4.3
Implementation Importing the Sample Schema

TCP/IP e*Way Intelligent Adapter User’s Guide 46

Parameters not listed in the table can retain their default values.

5 Save the settings and promote the file to run time.

6 In the e*Way’s Properties dialog box, click OK to save all changes and return to the 
e*Gate Schema Designer’s main window.

To run this schema, see “Run the Schema” on page 44.

Monk Configuration (cont.) External Connection Verification 
Function: tcpip-server-verify

External Connection Shutdown 
Function: tcpip-server-shutdown

Positive Acknowledgment Function: 
tcpip-server-ack

Negative Acknowledgment 
Function: tcpip-server-nack

TCPIP Server Configuration Host: the name of the Participating 
Host (for example, localhost)

Section (Continued) Parameter: Setting



TCP/IP e*Way Intelligent Adapter User’s Guide 47

Chapter 5

TCP/IP e*Way Functions

The TCP/IP e*Way functions fall into the following categories:

Basic Functions on page 47

TCP/IP e*Way Standard Functions on page 51

TCP/IP e*Way Client Functions on page 63

TCP/IP Server Functions on page 68

5.1 Basic Functions
The functions in this category control the e*Way’s most basic operations.

Note: The functions described in this section can only be used by the functions defined 
within the e*Way’s configuration file. None of the functions are available to 
Collaboration Rules scripts executed by the e*Way.

The basic functions are:

event-send-to-egate on page 47

get-logical-name on page 48

send-external-down on page 48

send-external-up on page 49

shutdown-request on page 49

start-schedule on page 50

stop-schedule on page 50

event-send-to-egate

Syntax

(event-send-to-egate string)

Description

event-send-to-egate sends data that the e*Way has already received from the external 
system into the e*Gate system as an Event.



Chapter 5 Section 5.1
TCP/IP e*Way Functions Basic Functions

TCP/IP e*Way Intelligent Adapter User’s Guide 48

Parameters

Return Values

Boolean
Returns #t (true) if the data is sent successfully, otherwise, returns #f (false).

Throws

None.

Additional information

This function can be called by any e*Way function when it is necessary to send data to 
the e*Gate system in a blocking fashion.

get-logical-name

Syntax

(get-logical-name)

Description

get-logical-name returns the logical name of the e*Way.

Parameters

None.

Return Values

string 
Returns the name of the e*Way (as defined by the Schema Designer).

Throws

None.

send-external-down

Syntax

(send-external-down)

Description

send-external down instructs the e*Way that the connection to the external system is 
down. 

Name Type Description

string string The data to be sent to the 
e*Gate system.



Chapter 5 Section 5.1
TCP/IP e*Way Functions Basic Functions

TCP/IP e*Way Intelligent Adapter User’s Guide 49

Parameters

None.

Return Values

None.

Throws

None.

send-external-up

Syntax

(send-external-up)

Description

send-external-up instructs the e*Way that the connection to the external system is up. 

Parameters

None.

Return Values

None.

Throws

None.

shutdown-request

Syntax

(shutdown-request)

Description

shutdown-request completes the e*Gate shutdown procedure that was initiated by the 
Control Broker but was interrupted by returning a non-null value within the Shutdown 
Command Notification Function (see “Shutdown Command Notification Function” 
on page 29). Once this function is called, shutdown proceeds immediately.

Once interrupted, the e*Way’s shutdown cannot proceed until this Monk function is 
called. If you do interrupt an e*Way shutdown, we recommend that you complete the 
process in a timely fashion.

Parameters

None.

Return Values

None.



Chapter 5 Section 5.1
TCP/IP e*Way Functions Basic Functions

TCP/IP e*Way Intelligent Adapter User’s Guide 50

Throws

None.

start-schedule

Syntax

(start-schedule)

Description

start-schedule requests that the e*Way execute the “Exchange Data with External” 
function specified within the e*Way’s configuration file. Does not affect any defined 
schedules.

Parameters

None.

Return Values

None.

Throws

None.

stop-schedule

Syntax

(stop-schedule)

Description

stop-schedule requests that the e*Way halt execution of the “Exchange Data with 
External” function specified within the e*Way’s configuration file. Execution is stopped 
when the e*Way concludes any open transaction. Does not affect any defined 
schedules, and does not halt the e*Way process itself.

Parameters

None.

Return Values

None.

Throws

None.



Chapter 5 Section 5.2
TCP/IP e*Way Functions TCP/IP e*Way Standard Functions

TCP/IP e*Way Intelligent Adapter User’s Guide 51

5.2 TCP/IP e*Way Standard Functions
The functions described in this section can only be used by the functions defined within 
the e*Way’s configuration file. None of the functions are available to Collaboration 
Rules scripts executed by the e*Way.

The current suite of TCP/IP e*Way standard functions that control the e*Way’s 
communications center are divided into two groups:

TCP/IP Client Configuration Functions

TCP/IP Server Configuration Functions

tcpip-ack

Syntax

(tcpip-ack message-string)

Description

tcpip-ack sends a positive acknowledgment to the external system after all 
Collaborations to which the e*Way sent data have processed and enqueued that data 
successfully.

Parameters

tcpip-ack on page 51 tcpip-notify on page 54

tcpip-exchange on page 52 tcpip-outgoing on page 55

tcpip-extconnect on page 52 tcpip-shutdown on page 62

tcpip-init on page 53 tcpip-startup on page 62

tcpip-nack on page 53 tcpip-verify on page 63

tcpip-server-ack on page 56 tcpip-server-notify on page 58

tcpip-server-exchange on page 56 tcpip-server-outgoing on page 59

tcpip-server-extconnect on page 57 tcpip-server-shutdown on page 60

tcpip-server-init on page 57 tcpip-server-startup on page 61

tcpip-server-nack on page 58 tcpip-server-verify on page 61

Name Type Description

message-string string The Event for which an 
acknowledgment is sent.



Chapter 5 Section 5.2
TCP/IP e*Way Functions TCP/IP e*Way Standard Functions

TCP/IP e*Way Intelligent Adapter User’s Guide 52

Return Values

string
An empty string indicates a successful operation. The e*Way is then able to proceed with 
the next request.

CONNERR indicates a problem with the connection to the external system. When the 
connection is re-established, the function is called again.

Additional Information

See “Positive Acknowledgment Function” on page 28 for more information.

tcpip-exchange

Syntax

(tcpip-exchange)

Description

tcpip-exchange sends a received Event from the external system to e*Gate. The 
function expects no input.

Parameters

None.

Return Values

string
An empty string indicates a successful operation. Nothing is sent to e*Gate.

A string, containing Event data, indicates successful operation, and the returned Event is 
sent to e*Gate.

CONNERR indicates a problem with the connection to the external system. When the 
connection is re-established, this function is re-executed with the same input Event.

Throws

None.

Additional Information

See “Exchange Data with External Function” on page 25 for more information.

tcpip-extconnect

Syntax

(tcpip-extconnect)

Description

tcpip-extconnect establishes a connection to the external system.



Chapter 5 Section 5.2
TCP/IP e*Way Functions TCP/IP e*Way Standard Functions

TCP/IP e*Way Intelligent Adapter User’s Guide 53

Parameters

None.

Return Values

string
UP indicates the connection is established. Anything else indicates no connection.

Throws

None.

Additional Information

See “External Connection Establishment Function” on page 26 for more information.

tcpip-init

Syntax

(tcpip-init)

Description

tcpip-init begins the initialization process for the e*Way. This function loads the 
stc_monktcpip.dll file and the initialization file, thereby making the function scripts 
available for future use.

Parameters

None.

Return Values

string
If a FAILURE string is returned, the e*Way is shut down. Any other return indicates 
success.

Throws

None.

Additional Information

Within this function, any necessary global variables to be used by the function scripts 
could be defined. The internal function that loads this file is called once when the 
e*Way first starts up.

See “Monk Environment Initialization File” on page 24 for more information.

tcpip-nack

Syntax

(tcpip-nack message-string)



Chapter 5 Section 5.2
TCP/IP e*Way Functions TCP/IP e*Way Standard Functions

TCP/IP e*Way Intelligent Adapter User’s Guide 54

Description

tcpip-nack sends a negative acknowledgment to the external system when the e*Way 
fails to process and queue Events from the external system.

Parameters

Return Values

string
An empty string indicates a successful operation. The e*Way is then able to proceed with 
the next request.

CONNERR indicates a problem with the connection to the external system. When the 
connection is re-established, the function is called again.

Throws

None.

Additional Information

See “Negative Acknowledgment Function” on page 28 for more information.

tcpip-notify

Syntax

(tcpip-notify command)

Description

tcpip-notify notifies the external system that the e*Way is shutting down.

Parameters

Return Values

string
If a FAILURE string is returned, the e*Way is shut down. Any other return indicates 
success.

Name Type Description

message-string string The Event for which a 
negative acknowledgment 
is sent.

Name Type Description

command string When the e*Way calls this 
function, it passes the string 
"SHUTDOWN_NOTIFICATION" 
as the parameter.



Chapter 5 Section 5.2
TCP/IP e*Way Functions TCP/IP e*Way Standard Functions

TCP/IP e*Way Intelligent Adapter User’s Guide 55

Throws

None.

Additional Information

See “Shutdown Command Notification Function” on page 29 for more information.

tcpip-outgoing

Syntax

(tcpip-outgoing event-string)

Description

tcpip-outgoing is used for sending a received message from e*Gate to the external 
system.

Parameters

Return Values

string
An empty string indicates a successful operation.

RESEND causes the Event to be immediately resent.

CONNERR indicates a problem with the connection to the external system. When the 
connection is re-established this function is re-executed with the same input Event.

DATAERR indicates that there is a problem with the message (Event) data itself. First, 
the e*Way pauses the number of seconds specified by the Resend Timeout parameter. 
Then, the e*Way increments its “failed message (Event)” counter and rolls back the 
message (Event) to the IQ from which it was obtained. If the e*Way’s journal is enabled 
the message (Event) is journaled.

See event-send-to-egate on page 47 for more information.

Throws 

None.

Additional Information

See Process Outgoing Message Function on page 25 for more information.

Name Type Description

event-string string The Event to be processed.



Chapter 5 Section 5.2
TCP/IP e*Way Functions TCP/IP e*Way Standard Functions

TCP/IP e*Way Intelligent Adapter User’s Guide 56

tcpip-server-ack

Syntax

(tcpip-server-ack message-string)

Description

tcpip-server-ack is used to send a positive acknowledgment to the external system, and 
for post processing after successfully sending data to e*Gate.

Parameters

Return Values

string
An empty string indicates a successful operation. The e*Way is then able to proceed with 
the next request.

CONNERR indicates a problem with the connection to the external system. When the 
connection is re-established, the function is called again.

Additional Information

See “Positive Acknowledgment Function” on page 28 for more information.

tcpip-server-exchange

Syntax

(tcpip-server-exchange)

Description

tcpip-server-exchange is used for sending a received Event from the external system to 
e*Gate. The function expects no input.

Parameters

None.

Return Values

string
An empty string indicates a successful operation. Nothing is sent to e*Gate.

A string, containing Event data, indicates successful operation, and the returned Event is 
sent to e*Gate.

CONNERR indicates a problem with the connection to the external system. When the 
connection is re-established, this function is re-executed with the same input Event.

Name Type Description

message-string string The Event for which an 
acknowledgment is sent.



Chapter 5 Section 5.2
TCP/IP e*Way Functions TCP/IP e*Way Standard Functions

TCP/IP e*Way Intelligent Adapter User’s Guide 57

Throws

None.

Additional Information

See “Exchange Data with External Function” on page 25 for more information.

tcpip-server-extconnect

Syntax

(tcpip-server-extconnect)

Description

tcpip-server-extconnect is used to establish external system connection.

Parameters

None.

Return Values

string
UP indicates the connection is established. Anything else indicates no connection.

Throws

None.

Additional Information

See “External Connection Establishment Function” on page 26 for more information.

tcpip-server-init

Syntax

(tcpip-server-init)

Description

tcpip-server-init begins the initialization process for the e*Way. This function loads the 
stc_monktcpip.dll file.

Parameters

None.

Return Values

string
If a FAILURE string is returned, the e*Way is shut down. Any other return indicates 
success.

Throws

None.



Chapter 5 Section 5.2
TCP/IP e*Way Functions TCP/IP e*Way Standard Functions

TCP/IP e*Way Intelligent Adapter User’s Guide 58

Additional Information

Within this function, any necessary global variables to be used by the function scripts 
could be defined. The internal function that loads this file is called once when the 
e*Way first starts up.

See “Monk Environment Initialization File” on page 24 for more information.

tcpip-server-nack

Syntax

(tcpip-server-nack message-string)

Description

tcpip-server-nack is used to send a negative acknowledgment to the external system, 
and for post processing after failing to send data to e*Gate.

Parameters

Return Values

string
An empty string indicates a successful operation. The e*Way is then able to proceed with 
the next request.

CONNERR indicates a problem with the connection to the external system. When the 
connection is re-established, the function is called again.

Throws

None.

Additional Information

See “Negative Acknowledgment Function” on page 28 for more information.

tcpip-server-notify

Syntax

(tcpip-server-notify command)

Description

tcpip-server-notify notifies the external system that the e*Way is shutting down.

Name Type Description

message-string string The Event for which a 
negative acknowledgment 
is sent.



Chapter 5 Section 5.2
TCP/IP e*Way Functions TCP/IP e*Way Standard Functions

TCP/IP e*Way Intelligent Adapter User’s Guide 59

Parameters

Return Values

string
If a FAILURE string is returned, the e*Way is shut down. Any other return indicates 
success.

Throws

None.

Additional Information

See “Shutdown Command Notification Function” on page 29 for more information.

tcpip-server-outgoing

Syntax

(tcpip-server-outgoing event-string)

Description

tcpip-server-outgoing is used for sending a received Event from e*Gate to the external 
system.

Parameters

Return Values

string
An empty string indicates a successful operation.

RESEND causes the Event to be immediately resent.

CONNERR indicates a problem with the connection to the external system. When the 
connection is re-established, this function is re-executed with the same input Event.

Name Type Description

command string When the e*Way calls this 
function, it passes the string 
“SUSPEND_NOTIFICATION” as 
the parameter.

Name Type Description

event-string string The Event to be processed.



Chapter 5 Section 5.2
TCP/IP e*Way Functions TCP/IP e*Way Standard Functions

TCP/IP e*Way Intelligent Adapter User’s Guide 60

DATAERR indicates that there is a problem with the message (Event) data itself. First, 
the e*Way pauses the number of seconds specified by the Resend Timeout parameter. 
Then, the e*Way increments its “failed message (Event)” counter and rolls back the 
message (Event) to the IQ from which it was obtained. If the e*Way’s journal is enabled 
the message (Event) is journaled.

See event-send-to-egate on page 47 for more information.

Throws 

None.

Additional Information

See “Process Outgoing Message Function” on page 25 for more information.

tcpip-server-shutdown

Syntax

(tcpip-server-shutdown shutdown)

Description

tcpip-server-shutdown is called by the system to request that the external shut down. 
A return value of SUCCESS indicates that the shutdown can occur immediately. Any 
other return value indicates that the shutdown Event must be delayed. The user is then 
required to execute a (shutdown-request) call from within a Monk function to allow the 
requested shutdown process to continue.

Parameters

Return Values

string
SUCCESS allows an immediate shutdown to occur. Anything else delays shutdown until 
the shutdown-request is executed successfully.

Throws

None.

Additional Information

See “External Connection Shutdown Function” on page 27 for more information.

Name Type Description

shutdown string When the e*Way calls this 
function, it passes the string 
“SHUTDOWN_NOTIFICATION” 
as the parameter.



Chapter 5 Section 5.2
TCP/IP e*Way Functions TCP/IP e*Way Standard Functions

TCP/IP e*Way Intelligent Adapter User’s Guide 61

tcpip-server-startup

Syntax

(tcpip-server-startup)

Description

tcpip-server-startup is used for instance specific function loads and invokes setup.

Parameters

None.

Return Values

string
FAILURE causes shutdown of the e*Way. Any other return indicates success.

Throws

None.

Additional Information

This function should be used to initialize the external system before data exchange 
starts. Any additional variables may be defined here.

See “Startup Function” on page 24 for more information.

tcpip-server-verify

Syntax

(tcpip-server-verify)

Description

tcpip-server-verify is used to verify whether the external system connection is 
established.

Parameters 

None.

Return Values

string
UP if connection established. Any other value indicates the connection is not established.

Throws

None.

Additional Information

See “External Connection Verification Function” on page 27 for more information.



Chapter 5 Section 5.2
TCP/IP e*Way Functions TCP/IP e*Way Standard Functions

TCP/IP e*Way Intelligent Adapter User’s Guide 62

tcpip-shutdown

Syntax

(tcpip-shutdown shutdown)

Description

tcpip-shutdown is called by the system to request that the external shut down. A return 
value of SUCCESS indicates that the shutdown can occur immediately. Any other 
return value indicates that the shutdown Event must be delayed. The user is then 
required to execute a (shutdown-request) call from within a Monk function to allow the 
requested shutdown to process to continue.

Parameters

Return Values

string
SUCCESS allows an immediate shutdown to occur. Anything else delays shutdown until 
the shutdown-request is executed successfully.

Throws

None.

Additional Information

See “External Connection Shutdown Function” on page 27 for more information.

tcpip-startup

Syntax

(tcpip-startup)

Description

tcpip-startup is used for instance specific function loads and invokes setup.

Parameters

None.

Return Values

string
FAILURE causes shutdown of the e*Way. Any other return indicates success.

Name Type Description

shutdown string When the e*Way calls this 
function, it passes the string 
“SUSPEND_NOTIFICATION” as 
the parameter.



Chapter 5 Section 5.3
TCP/IP e*Way Functions TCP/IP e*Way Client Functions

TCP/IP e*Way Intelligent Adapter User’s Guide 63

Throws

None.

Additional Information

This function should be used to initialize the external system before data exchange 
starts. Any additional variables may be defined here.

See “Startup Function” on page 24 for more information.

tcpip-verify

Syntax

(tcpip-verify)

Description

tcpip-verify is used to verify whether the external system connection is established.

Parameters 

None.

Return Values

string
UP if connection established. Any other value indicates the connection is not established.

Throws

None.

Additional Information

See “External Connection Verification Function” on page 27 for more information.

5.3 TCP/IP e*Way Client Functions
The current suite of TCP/IP client functions that facilitate connection to the external 
client system are:

tcpip-close on page 64

tcpip-connect on page 64

tcpip-isconnected on page 65

tcpip-recv on page 66

tcpip-send on page 66

tcpip-waiting on page 67



Chapter 5 Section 5.3
TCP/IP e*Way Functions TCP/IP e*Way Client Functions

TCP/IP e*Way Intelligent Adapter User’s Guide 64

tcpip-close

Syntax

(tcpip-close hCon)

Description

tcpip-close de-allocates the TCP/IP session handle obtained by tcpip-connect.

Parameters

Return Values

Boolean
Returns #t (true) if the data is sent successfully; otherwise, returns #f (false).

Throws

None.

Example

(if (tcpip-close hCon)
(display “Connection closed successfully.”)
(display “Connection close failed.”)

)

tcpip-connect

Syntax

(tcpip-connect pszHostName dwPort cPacketSize fNoDelay)

Description

tcpip-connect locates and establishes external system connection.

Parameters

Name Type Description

hCon opaque handle The handle associated with 
the TCP/IP session.

Name Type Description

pszHostName string A zero-delimited string 
specifying the hostname for 
connection.

dwPort integer The port number for the 
connection.



Chapter 5 Section 5.3
TCP/IP e*Way Functions TCP/IP e*Way Client Functions

TCP/IP e*Way Intelligent Adapter User’s Guide 65

Return Values

handle
The handle associated with a TCP/IP session.

Throws

None.

Examples

(define hCon (tcpip-connect “myhost” 8888 4096 #f))

tcpip-isconnected

Syntax

(tcpip-isconnected hCon)

Description

tcpip-isconnected verifies whether the external system connection is established.

Parameters

Return Values

Boolean
Returns #t (true) if the data is sent successfully; otherwise, returns #f (false).

Throws

None.

Examples

(if (tcpip-isconnected hCon)
(display “Connection is opened.”)
(display “Connection is closed.”)

)

cPacketSize integer The packet size.

fNoDelay Boolean (#t, #f) A flag specifying that the 
e*Way is awaiting 
connection to the external 
system.

Name Type Description

hCon opaque handle The handle associated with 
the TCP/IP session.

Name Type Description



Chapter 5 Section 5.3
TCP/IP e*Way Functions TCP/IP e*Way Client Functions

TCP/IP e*Way Intelligent Adapter User’s Guide 66

tcpip-recv

Syntax

(tcpip-recv hCon cbMax [cmsTimeout])

Description

tcpip-recv retrieves the message from the read buffer.

Parameters

Return Values

string
Returns the string retrieved from the buffer.

Throws

None.

Examples

(define retStr (tcpip-recv hCon 20))
(display retStr)

tcpip-send

Syntax

(tcpip-send hCon pszMessage)

Description

tcpip-send verifies whether the message was sent successfully.

Name Type Description

hCon opaque handle The handle associated with 
the TCP/IP session.

cbMax integer The maximum number of 
bytes in the expected 
string.

cmsTimeout integer The amount of time 
between attempts in 
milliseconds. The default is 
2000. This parameter is 
optional.



Chapter 5 Section 5.3
TCP/IP e*Way Functions TCP/IP e*Way Client Functions

TCP/IP e*Way Intelligent Adapter User’s Guide 67

Parameters

Return Values

Boolean
Returns #t (true) if the data is sent successfully, or returns #f (false); can also return 
MONK_UNSPECIFIED.

Throws

None.

Example

(if (tcpip-send hCon “Message string”)
(display “Message sent successfully.”)
(display “Message being sent failed.”)

)

tcpip-waiting

Syntax

(tcpip-waiting hCon [cmsTimeout=2000])

Description

tcpip-waiting returns the number of bytes ready to be read in the buffer. 

Parameters 

Return Values

integer
Returns the number of bytes ready to be read in the read buffer.

Throws

None.

Name Type Description

hCon opaque handle The handle associated with 
the TCP/IP session.

pszMessage string The string to send.

Name Type Description

hCon opaque handle The handle associated with 
the TCP/IP session.

cmsTimeout An Integer An optional parameter, the 
default is set at 2000, 
specifying the amount of 
time between attempts in 
milliseconds.



Chapter 5 Section 5.4
TCP/IP e*Way Functions TCP/IP Server Functions

TCP/IP e*Way Intelligent Adapter User’s Guide 68

Examples

(define retStr ““)
(define cbWaiting (tcpip-waiting hCon 2000))

(if (> cbWaiting 0)
(set! retStr (tcpip-recv hCon cbWaiting 2000))
(display “No Data\n”)

)
(display retStr)

5.4 TCP/IP Server Functions
The current suite of TCP/IP server functions that facilitate connection to the TCP/IP 
Server system are:

tcpip-server-client-count on page 68

tcpip-server-client-isconnected on page 69

tcpip-server-clients-waiting on page 69

tcpip-server-close on page 70

tcpip-server-close-client on page 70

tcpip-server-connect on page 71

tcpip-server-end-service-client on page 72

tcpip-server-isconnected on page 73

tcpip-server-recv on page 73

tcpip-server-send on page 74

tcpip-server-service-next-client on page 74

tcpip-server-waiting on page 75

tcpip-server-client-count

Syntax

(tcpip-server-client-count hServer)

Description

tcpip-server-client-count obtains the number of open clients on the server.

Parameters

Name Type Description

hServer opaque handle The handle to the server, 
returned by tcpip-server-
connect.



Chapter 5 Section 5.4
TCP/IP e*Way Functions TCP/IP Server Functions

TCP/IP e*Way Intelligent Adapter User’s Guide 69

Return Values

integer
Returns the number of open clients.

Throws

None.

tcpip-server-client-isconnected

Syntax

(tcpip-server-client-isconnected hClient)

Description

tcpip-server-client-isconnected checks whether the currently serviced client’s 
connection is opened or its receive buffer has data.

Parameters

Return Values

Boolean
Returns #t (true) to indicate that the client connection is opened or the client’s receive 
buffer has data; otherwise, returns #f (false).

Additional Information

Call this API to ensure that the client connection can be closed via tcpip-server-end-
service-client, since tcip-server-client-isconnected does not close the client’s 
connection.

tcpip-server-clients-waiting

Syntax

(tcpip-server-clients-waiting hServer)

Description

tcpip-server-clients-waiting checks whether the server has any client connections.

Name Type Description

hClient opaque handle The handle to the client, 
returned by tcpip-service-
next-client.



Chapter 5 Section 5.4
TCP/IP e*Way Functions TCP/IP Server Functions

TCP/IP e*Way Intelligent Adapter User’s Guide 70

Parameters

Return Values

Boolean
Returns #t (true) to indicate that there are open connections to clients; otherwise, returns 
#f (false).

Throws

None.

tcpip-server-close

Syntax

(tcpip-server-close hServer)

Description

tcpip-server-close shuts down the server and closes the connection to the host.

Parameters

Return Values

Boolean
Returns #t (true) to indicate that the connection closed successfully; otherwise, returns 
#f (false).

tcpip-server-close-client

Syntax

(tcpip-server-close-client hServer hClient)

Description

tcpip-server-close-client closes the client connection.

Name Type Description

hServer opaque handle The handle to the server, 
returned by tcpip-server-
connect.

Name Type Description

hServer opaque handle The handle to the server, 
returned by tcpip-server-
connect.



Chapter 5 Section 5.4
TCP/IP e*Way Functions TCP/IP Server Functions

TCP/IP e*Way Intelligent Adapter User’s Guide 71

Parameters

Return Values

Boolean
Returns #t (true) to indicate that the connection closed without any errors; otherwise, 
returns #f (false).

Additional Information

To insure that the client connection is not closed abruptly, and the data in the client’s 
receive buffer does not get lost, call tcpip-server-client-isconnected before calling this 
API.

tcpip-server-connect

Syntax

(tcpip-server-connect pszHostName dwPort cPacketSize cMaxConnections 
cmsWaitForClientTimeout cmsProcessWait fNoDelay)

Description

tcpip-server-connect establishes a connection to the host and starts the server.

Parameters

Name Type Description

hServer opaque handle The handle to the server, 
returned by tcpip-server-
connect.

hClient opaque handle The handle to the client, 
returned by tcpip-service-
next-client.

Name Type Description

pszHostName string A zero delimited string 
specifying the host name to 
which to connect.

dwPort integer The port number on which 
the server listens for client 
connections.

cPacketSize integer The number specifying the 
size of each packet.

cMaxConnections integer The number specifying the 
maximum number of 
clients that can connect.



Chapter 5 Section 5.4
TCP/IP e*Way Functions TCP/IP Server Functions

TCP/IP e*Way Intelligent Adapter User’s Guide 72

Return Values

handle
Returns the handle to the server.

Throws

None.

tcpip-server-end-service-client

Syntax

(tcpip-server-end-service-client hClient)

Description

tcpip-server-end-service-client returns the currently serviced client back to the waiting 
queue.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false).

Additional Information

This API does not close the client connection. This API manages the client handle for 
memory management. Call this API before making subsequent calls to tcpip-server-
service-next-client.

cmsWaitForClientTimeout integer The integer specifying the 
timeout in milliseconds, for 
a client connection.

cmsProcessWait integer The integer specifying the 
time, in milliseconds, 
between checks for client 
connections.

fNoDelay Boolean (#t, #f) A flag specifying that the 
e*Way is awaiting 
connection to the external 
system.

Name Type Description

hClient opaque handle The handle to the client, 
returned by tcpip-service-
next-client.

Name Type Description



Chapter 5 Section 5.4
TCP/IP e*Way Functions TCP/IP Server Functions

TCP/IP e*Way Intelligent Adapter User’s Guide 73

tcpip-server-isconnected

Syntax

(tcpip-server-isconnected hServer)

Description

tcpip-server-isconnected checks whether the server is up and the connection opened.

Parameters

Return Values

Boolean
Returns #t (true) to indicate that the connection is open; otherwise, returns #f (false).

tcpip-server-recv

Syntax

(tcpip-server-recv hCon cbMax [cmsTimeout=2000])

Description

tcpip-server-recv retrieves the message from the read buffer. All parameters are 
mandatory.

Parameters

Return Values

string
Returns the string retrieved from the buffer.

Name Type Description

hServer opaque handle The handle to the server, 
returned by tcpip-server-
connect.

Name Type Description

hCon Opaque handle The handle associated with 
the TCP/IP session.

cbMax Integer The maximum number of 
bytes in the expected 
string.

cmsTimeout Integer The amount of time 
between attempts, in 
milliseconds. The default is 
2000.



Chapter 5 Section 5.4
TCP/IP e*Way Functions TCP/IP Server Functions

TCP/IP e*Way Intelligent Adapter User’s Guide 74

Throws

None.

Examples

(define retStr (tcpip-server-recv hCon 20))
(display retStr)

tcpip-server-send

Syntax

(tcpip-server-send hClient pszMessage)

Description

tcpip-server-send sends a message to the client.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false).

tcpip-server-service-next-client

Syntax

(tcpip-server-service-next-client hServer)

Description

tcpip-server-service-next-client retrieves the next client in the queue for servicing the 
client’s request.

Parameters

Name Type Description

hClient opaque handle The handle to the client, 
returned by tcpip-service-
next-client.

pszMessage string The message to send to the 
client.

Name Type Description

hServer opaque handle The handle to the server, 
returned by tcpip-server-
connect.



Chapter 5 Section 5.4
TCP/IP e*Way Functions TCP/IP Server Functions

TCP/IP e*Way Intelligent Adapter User’s Guide 75

Return Values

handle
Returns the handle to the next client waiting to be serviced.

tcpip-server-waiting

Syntax

(tcpip-server-waiting hClient cmsTimeout)

Description

tcpip-server-waiting retrieves the number of bytes of data waiting in the client’s 
receive buffer.

Parameters

Return Values

integer
Returns the number of bytes waiting in the client’s receive buffer.

Additional Information

If cbMax is greater than or equal to the number of bytes in the client’s receive buffer, all 
data in the buffer is returned, otherwise, the cbMax number of bytes from the buffer is 
returned.

Name Type Description

hClient opaque handle The handle to the client, 
returned by tcpip-service-
next-client.

cmsTimeout integer An integer specifying the 
amount of milliseconds 
between attempts to 
retrieve data.



Index

TCP/IP e*Way Intelligent Adapter User’s Guide 76

Index

A
Additional Path parameter 23
Auxiliary Library Directories parameter 23

B
basic functions

event-send-to-egate 47
get-logical-name 48
send-external-down 48
send-external-up 49
shutdown-request 49
start-schedule 50
stop-schedule 50

C
client configuration 29
client configuration parameters

ACKValue 30
host 29
NACKValue 31
NoDelay 30
PacketSize 30
port 30
timeout 30

client functions 63
tcpip-close 64
tcpip-connect 64
tcpip-isconnected 65
tcpip-recv 66
tcpip-send 66
tcpip-server-recv 73
tcpip-waiting 67

Collaboration Rules, defining 37
PassThru 37

configuration parameters 11
Additional Path 23
Auxiliary Library Directories 23
Down Timeout 14
Exchange Data Interval 14
Exchange Data With External Function 25
External Connection Establishment Function 26
External Connection Shutdown Function 27

External Connection Verification Function 27
Forward External Errors 12
Journal File Name 12
Max Failed Messages 12
Max Resends Per Message 12
Monk configuration 15
Monk Environment Initialization File 24
Negative Acknowledgment Function 28
Positive Acknowledgment Function 28
Process Outgoing Message Function 25
resend timeout 15
Shutdown Command Notification Function 29
Startup Function 24
Stop Exchange Data Schedule 14
TCP/IP client 29
TCP/IP server configuration 31
Up Timeout 14
Zero Wait Between Successful Exchanges 15

creating a sample schema 37

D
defining Collaboration Rules 37
defining e*Ways 38
defining IQs 38
Down Timeout parameter 14

E
e*Ways

defining 38
Event Types, identifying 37
event-send-to-egate 47
Exchange Data Interval parameter 14
Exchange Data with External Function parameter 25
External Connection Establishment Function 
parameter 26
External Connection Shutdown Function parameter 
27
External Connection Verification Function 
parameter 27

F
Forward External Errors parameter 12
functions

event-send-to-egate 47
get-logical-name 48
send-external-down 48
send-external-up 49
shutdown-request 49
start-schedule 50
stop-schedule 50



Index

TCP/IP e*Way Intelligent Adapter User’s Guide 77

tcpip-ack 51
tcpip-close 64
tcpip-connect 64
tcpip-exchange 52
tcpip-extconnect 52
tcpip-init 53
tcpip-isconnected 65
tcpip-nack 53
tcpip-notify 54
tcpip-outgoing 55
tcpip-recv 66
tcpip-send 66
tcpip-server-ack 56
tcpip-server-client-count 68
tcpip-server-client-isconnected 69
tcpip-server-clients-waiting 69
tcpip-server-close 70
tcpip-server-close-client 70
tcpip-server-connect 71
tcpip-server-end-service-client 72
tcpip-server-exchange 56
tcpip-server-extconnect 57
tcpip-server-init 57
tcpip-server-isconnected 73
tcpip-server-nack 58
tcpip-server-notify 58
tcpip-server-outgoing 59
tcpip-server-recv 73
tcpip-server-send 74
tcpip-server-service-next-client 74
tcpip-server-shutdown 60
tcpip-server-startup 61
tcpip-server-verify 61
tcpip-server-waiting 75
tcpip-shutdown 62
tcpip-startup 62
tcpip-verify 63
tcpip-waiting 67

G
GenericInEvent 37
get-logical-name function 48

I
identifying Event Types 37
implementing a schema 34
IQ Manager 38
IQs, defining 38

J
Journal File Name parameter 12

M
Max Failed Messages parameter 12
Max Resends Per Message parameter 12
Monk configuration 15
Monk Environment Initialization File parameter 24

N
native functions

tcpip-close 64
tcpip-connect 64
tcpip-isconnected 65
tcpip-recv 66
tcpip-send 66
tcpip-server-client-count 68
tcpip-server-client-isconnected 69
tcpip-server-clients-waiting 69
tcpip-server-close 70
tcpip-server-close-client 70
tcpip-server-connect 71
tcpip-server-end-service-client 72
tcpip-server-isconnected 73
tcpip-server-recv 73
tcpip-server-send 74
tcpip-server-service-next-client 74
tcpip-server-waiting 75
tcpip-waiting 67

Negative Acknowledgment Function parameter 28

O
operational details 17

P
parameters

ACKValue 30, 32
general settings 12
host 29, 31
MaxConnections

server configuration parameters
MaxConnections 31

NACKValue 31, 33
NoDelay 30, 32
PacketSize 30, 31
port 30, 31
ProcessWaitTime 32
timeout 30, 32



Index

TCP/IP e*Way Intelligent Adapter User’s Guide 78

WaitForClientTimeout 32
PassThru 37
Positive Acknowledgment Function parameter 28
Process Outgoing Message Function parameter 25

R
Resend Timeout parameter 15

S
sample schema 34

architecture 35
components 36
defining Collaboration Rules 37
defining e*Ways 38
defining IQs 38
identifying Event Types 37
running 44

send-external-down function 48
send-external-up function 49
server configuration 31
server configuration parameters

ACKValue 32
host 31
NACKValue 33
NoDelay 32
PacketSize 31
port 31
ProcessWaitTime 32
timeout 32
WaitForClientTimeout 32

server functions 68
tcpip-server-client-count 68
tcpip-server-client-isconnected 69
tcpip-server-clients-waiting 69
tcpip-server-close 70
tcpip-server-close-client 70
tcpip-server-connect 71
tcpip-server-end-service-client 72
tcpip-server-isconnected 73
tcpip-server-send 74
tcpip-server-service-next-client 74
tcpip-server-waiting 75

Shutdown Command Notification Function 
parameter 29
shutdown-request 49
standard functions 51

tcpip-ack 51
tcpip-exchange 52
tcpip-extconnect 52
tcpip-init 53
tcpip-nack 53
tcpip-notifiy 54

tcpip-outgoing 55
tcpip-server-ack 56
tcpip-server-exchange 56
tcpip-server-extconnect 57
tcpip-server-init 57
tcpip-server-nack 58
tcpip-server-notify 58
tcpip-server-outgoing 59
tcpip-server-shutdown 60
tcpip-server-startup 61
tcpip-server-verify 61
tcpip-shutdown 62
tcpip-startup 62
tcpip-verify 63

start-schedule function 50
Startup Function parameter 24
Stop Exchange Data Schedule parameter 14
stop-schedule function 50
Supported Operating Systems 7
system requirements 7

T
TCP/IP client configuration 29
TCP/IP e*Way client 63
TCP/IP e*Way standard functions 51
TCP/IP server functions 68
TCPIP_Client 40
TCPIP_Inbound 39
TCPIP_Outbound 43
TCPIP_Server 41
tcpip-ack 51
tcpip-close 64
tcpip-connect 64
tcpip-exchange 52
tcpip-extconnect 52
tcpip-init 53
tcpip-isconnected 65
tcpip-nack 53
tcpip-notify 54
tcpip-outgoing 55
tcpip-recv 66
tcpip-send 66
tcpip-server-ack 56
tcpip-server-client-count 68
tcpip-server-client-isconnected 69
tcpip-server-clients-waiting 69
tcpip-server-close 70
tcpip-server-close-client 70
tcpip-server-connect 71
tcpip-server-end-service-client 72
tcpip-server-exchange 56
tcpip-server-extconnect 57
tcpip-server-init 57



Index

TCP/IP e*Way Intelligent Adapter User’s Guide 79

tcpip-server-isconnected 73
tcpip-server-nack 58
tcpip-server-notify 58
tcpip-server-outgoing 59
tcpip-server-recv 73
tcpip-server-send 74
tcpip-server-service-next-client 74
tcpip-server-shutdown 60
tcpip-server-startup 61
tcpip-server-verify 61
tcpip-server-waiting 75
tcpip-shutdown 62
tcpip-startup 62
tcpip-verify 63
tcpip-waiting 67

U
Up Timeout parameter 14

Z
Zero Wait Between Successful Exchanges parameter 
15


	TCP/IP e*Way Intelligent Adapter User’s Guide
	Contents
	Introduction
	1.1 Overview
	1.1.1 Intended Reader
	1.1.2 Components

	1.2 Supported Operating Systems
	1.3 System Requirements

	Installation
	2.1 Installation on Windows Systems
	2.1.1 Pre-installation
	2.1.2 Installation Procedure

	2.2 UNIX Installation
	2.2.1 Pre-installation
	2.2.2 Installation Procedure

	2.3 Files/Directories Created by the Installation

	Configuration
	3.1 e*Way Configuration Parameters
	3.1.1 General Settings
	Journal File Name
	Max Resends Per Message
	Max Failed Messages
	Forward External Errors

	3.1.2 Communication Setup
	Start Exchange Data Schedule
	Stop Exchange Data Schedule
	Exchange Data Interval
	Down Timeout
	Up Timeout
	Resend Timeout
	Zero Wait Between Successful Exchanges

	3.1.3 Monk Configuration
	Operational Details
	How to Specify Function Names or File Names
	Additional Path
	Auxiliary Library Directories
	Monk Environment Initialization File
	Startup Function
	Process Outgoing Message Function
	Exchange Data with External Function
	External Connection Establishment Function
	External Connection Verification Function
	External Connection Shutdown Function
	Positive Acknowledgment Function
	Negative Acknowledgment Function
	Shutdown Command Notification Function

	3.1.4 TCP/IP Configuration
	Host
	Port
	PacketSize
	Timeout
	NoDelay
	ACKValue
	NACKValue

	3.1.5 TCP/IP Server Configuration
	Host
	Port
	PacketSize
	MaxConnections
	WaitForClientTimeout
	Process WaitTime
	Timeout
	NoDelay
	ACKValue
	NACKValue


	3.2 External Configuration Requirements

	Implementation
	4.1 Implementation Process: Overview
	4.2 Creating the Sample Schema
	4.2.1 Identify the Event Type
	4.2.2 Define Collaboration Rules
	4.2.3 Define IQs
	4.2.4 Define e*Ways and Collaborations
	TCPIP_Inbound
	TCPIP_Client
	TCPIP_Server
	TCPIP_Outbound

	4.2.5 Run the Schema
	Expected Results


	4.3 Importing the Sample Schema

	TCP/IP e*Way Functions
	5.1 Basic Functions
	event-send-to-egate
	get-logical-name
	send-external-down
	send-external-up
	shutdown-request
	start-schedule
	stop-schedule

	5.2 TCP/IP e*Way Standard Functions
	tcpip-ack
	tcpip-exchange
	tcpip-extconnect
	tcpip-init
	tcpip-nack
	tcpip-notify
	tcpip-outgoing
	tcpip-server-ack
	tcpip-server-exchange
	tcpip-server-extconnect
	tcpip-server-init
	tcpip-server-nack
	tcpip-server-notify
	tcpip-server-outgoing
	tcpip-server-shutdown
	tcpip-server-startup
	tcpip-server-verify
	tcpip-shutdown
	tcpip-startup
	tcpip-verify

	5.3 TCP/IP e*Way Client Functions
	tcpip-close
	tcpip-connect
	tcpip-isconnected
	tcpip-recv
	tcpip-send
	tcpip-waiting

	5.4 TCP/IP Server Functions
	tcpip-server-client-count
	tcpip-server-client-isconnected
	tcpip-server-clients-waiting
	tcpip-server-close
	tcpip-server-close-client
	tcpip-server-connect
	tcpip-server-end-service-client
	tcpip-server-isconnected
	tcpip-server-recv
	tcpip-server-send
	tcpip-server-service-next-client
	tcpip-server-waiting


	Index
	A
	B
	C
	D
	E
	F
	G
	I
	J
	M
	N
	O
	P
	R
	S
	T
	U
	Z



