
Working with Collaboration
IDs

Release 5.0.5 for Schema Run-time
Environment (SRE)

Copyright © 2005, 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and
are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not
use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the
U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and
adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent
applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you
use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. UNIX is a registered trademark licensed through X/Open
Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Version 20100721180658.

Working with Collaboration IDs 2

Contents
Contents

Chapter 1

The Anatomy of a Collaboration-ID 4
The ID Service in Workslices 4

Collaboration-ID/Incoming e*Way Architecture 5

Chapter 2

Upgrading e*Gate 3.5/3.6 Environments to e*Gate 4 or Higher 8
Working with Collaboration IDs 3

Chapter 1

The Anatomy of a Collaboration-ID

A Collaboration-ID, as produced by the Collaboration ID editor, has two components:

1 An Event Type Definition

2 A set of rules that apply tests to the Event Type Definition

When an Event is passed to a Collaboration-ID, two evaluations are performed:

1 The Event is first tested against the Event Type Definition (an Event parse) to see if
the Event conforms structurally to the Event Type Definition. This test also checks
for any requirements defined by input tags definitions included in the Event Type
Definition.

2 The associated rules are then evaluated against the Event’s content.

If both the event parse and the associated rules complete successfully, the
Collaboration-ID function returns a boolean true; but if either the event parse or any of
the rules fail, the Collaboration-ID function returns a boolean false.

1.1 The ID Service in Workslices
The workslice component in the e*Ways and the BOBs is the executing thread that
operates one or more Collaborations. Each Collaboration supports any of a number of
Collaboration Services, including the default services Copy, Monk Collaboration, and
Monk ID.

Collaborations in inbound e*Ways, which process Events from external sources, handle
failures differently from those in BOBs or outbound e*Ways. In an inbound e*Way, if
any of the collaborations fail, all collaborations in the workslice are considered to have
failed, and the Event is NAKed. In BOB’s and outgoing e*Ways, each defined
Collaboration succeeds or fails individually.

In earlier products such as e*Gate 3.5 or 3.6 (formerly known as DataGate), incoming
messages were identified and labeled; this ID label was then used to drive the routing
and translation process. In e*Gate, Events can be identified and processed before being
forwarded to the queuing service for distribution. Both the Monk ID Service and the
Monk Collaboration Service can perform the identification function.

The Monk ID Service can be used in the workslices to include Collaboration-ID
functions directly in the process flow. Collaboration-ID functions use "iq-put" function
calls to insert Events directly into queues. Using this feature, Collaboration-IDs can
Working with Collaboration IDs 4

Chapter 1 Section 1.2
The Anatomy of a Collaboration-ID Collaboration-ID/Incoming e*Way Architecture
identify an Event, call one or more sub-collaborations to modify the Event content, and
distribute the resulting Events to one or more queues. Alternatively, the same results
can be achieved within the Monk Collaboration environment: after the initial event
parse, the Collaboration can perform its own ID tests before processing and enqueueing
any output events. By using the Monk Collaboration Service to perform identification
functions in the inbound e*Way workslice, you can provide Collaboration-ID
functionality without the restrictions of the Monk ID Service.

1.2 Collaboration-ID/Incoming e*Way Architecture
In an extremely simple system, an external source sends a single Event Type to an
incoming e*Way. The incoming e*Way applies an identification test, forwarding Events
that pass the test and returning events that fail to the external system.

Figure 1 A Simple ID Test

In a more complex system, however, the simple model that NAKs unidentifiable Events
may be the wrong approach. Consider the following example:

Figure 2 Multiple Event Types from a Single Source

In this example, an external system sends the e*Gate system any of three types of
Events (one at a time). Each one of the Events is acceptable to the e*Gate system, but the
Events are dissimilar and must be processed separately.

If we use the scheme discussed in Figure 1, where unidentified Events are NAKed and
returned to the server, the configuration would look like the following:
Working with Collaboration IDs 5

Chapter 1 Section 1.2
The Anatomy of a Collaboration-ID Collaboration-ID/Incoming e*Way Architecture
Figure 3 Applying Multiple Collaboration-IDs

This scheme has two major drawbacks:

1 Each ID parses the Event separately. This means that a single Event would be
parsed three times (once per ID), slowing system performance.

2 Although a given Event may pass the ID for its type (Event A passes the test for ID
A, for example), the Event will fail the ID for the other two Event Types. Therefore,
any given Event will be NAKed and sent back to the external system even if it is
acceptable to one of the IDs-effectively, this means that no Event will pass the ID
e*Way to enter the e*Gate system.

A better scheme is shown in Figure 4:

Figure 4 Single Collaboration Rules Script for Multiple IDs
Working with Collaboration IDs 6

Chapter 1 Section 1.2
The Anatomy of a Collaboration-ID Collaboration-ID/Incoming e*Way Architecture
In this scheme, a single ID script parses each incoming Event. Events that match ID A
are sent directly to Queue A via the "iq-put" function call. Events that match IDs for B
and C are similarly put directly into appropriate queues. Once in those queues, other
e*Gate components will continue processing the Events.

In this scheme, only Events that fail all the tests within the ID script will be NAKed.
Optionally, you could provide an error-handling routine in the ID script that forwards
Events that match no IDs to a fourth "bad Event" queue, perhaps for further processing
or later examination. This refinement moves all error processing to the e*Gate system
and never returns NAKed Events to their originating system.

This scheme has several advantages:

1 It keeps all ID functions within the same script and within the same workslice,
improving system performance.

2 It enables you to process both successfully identified Events and problem Events
within the e*Gate system.

3 Most importantly, it will perform its intended function-the three-ID alternative will
not.

See the sample code at the end of the next section for an example of how this scheme
could be implemented.
Working with Collaboration IDs 7

Chapter 2 Section
Upgrading e*Gate 3.5/3.6 Environments to e*Gate 4 or Higher
Chapter 2

Upgrading e*Gate 3.5/3.6 Environments to
e*Gate 4 or Higher

If you need to migrate existing e*Gate 3.5/3.6 implementations to e*Gate, use the
following technique to encapsulate existing e*Gate 3.5/3.6 ID and Translation functions
within an e*Gate Monk Collaboration in a workslice.

Using the example discussed in the section “Collaboration-ID/Incoming e*Way
Architecture” on page 5: In e*Gate 3.5/3.6, an inbound message is passed through
three different IDs, and if an ID is successful, the related translation is called. The result
of the translation is then sent on toward a destination system. Pictorially, the situation
looks like

Input message ->
ID1 -> (if true) -> xlate1 -> (if successful) -> route
ID2 -> (if true) -> xlate2 -> (if successful) -> route
ID3 -> (if true) -> xlate3 -> (if successful) -> route

In e*Gate, this can be implemented in the Monk Collaboration service as follows:

Input Event -> Event

parsed into a single collaboration, using a single-node Event Type Definition as the
input Event, passing all data in the "~input%msg.data" Event Type Definition node.

The body of the function looks like:

 (if (ID1 ~input%msg.data)
 (begin
 (set! xlate_result (xlate1 ~input%msg.data))
 (iq-put event_to_send_to xlate_result ...)
)
 (begin
 (display "Not id’ed with ID1")
)
)
 (if (ID2 ~input%msg.data)
 (begin
 (set! xlate_result (xlate2 ~input%msg.data))
 (iq-put event_to_send_to xlate_result ...)
)
 (begin
 (display "Not id’ed with ID2")
)
)
 (if (ID3 ~input%msg.data)
 (begin
 (set! xlate_result (xlate3 ~input%msg.data))
 (iq-put event_to_send_to xlate_result ...)
Working with Collaboration IDs 8

Chapter 2 Section
Upgrading e*Gate 3.5/3.6 Environments to e*Gate 4 or Higher
)
 (begin
 (display "Not id’ed with ID3")
)
)

where "ID1" through "ID3" are whatever identification tests you wish to perform to
identify the Event.
Working with Collaboration IDs 9

	Working with Collaboration IDs
	Contents
	The Anatomy of a Collaboration-ID
	1.1 The ID Service in Workslices
	1.2 Collaboration-ID/Incoming e*Way Architecture

	Upgrading e*Gate 3.5/3.6 Environments to e*Gate 4 or Higher

