

Page 1 of 33

Oracle® Insurance Policy
Administration

Architecture Guide
Version 9.4.0.0
Documentation Part Number: E18894_01

June 2011

Page 2 of 33

1. Product Overview .. 4

Accelerates Speed to Market for New and Adapted Products .. 4

Improves Customers and Channel Loyalty through Better Servicing ... 5

Reduces Risk While Better Managing the Business for Growth ... 5

Eases Integration with Other Systems .. 6

2. Key Features and Benefits of OIPA solutions ... 6

2.1 Line-of-business and Product Agnostic .. 6

2.2 Web-based, Modern, Highly Extensible .. 6

2.3 Unparalleled, Flexible Rules Configuration ... 6

2.4 Powerful Rules Engine .. 7

2.5 Rules Palette ... 7

2.6 Integrated Debugger ... 7

2.7 Pre-configured Product Examples .. 8

2.8 Product Cloning ... 8

2.9 Corrective Processing ... 8

2.10 Complete Traceability of Data ... 8

2.11 Proven Performance – Tested Scalability ... 8

2.12 Release Management ... 8

2.13 Globalization / Localization Support .. 9

3. OIPA Architecture Design Principles .. 9

4. OIPA Key Concepts .. 9

4.1 Activity Processing .. 9

4.2 Screen Configuration .. 11

4.2.1 Screen Business Rules ... 11

4.2.2 Configurable Dynamic Fields .. 13

Processing Incoming Data .. 14

Cycle Processing .. 15

5. System Architecture .. 16

Architecture Overview ... 16

5.2 Shared Rules Engine .. 18

Page 3 of 33

Configuration-based Code Generation ... 19

Security ... 19

Authentication ... 19

User Privileges and Role-Based Security ... 20

Internationalization and Localization ... 21

Support for Multiple Currencies Overview .. 22

Support for Multiple Currencies... 22

Currency Formatting ... 22

Currency Conversion .. 23

Scalability .. 23

Cycle 24

Caching ... 25

6. OIPA-based Solutions ... 26

6.1 OIPA-based Solution ... 26

6.2 Configuring a Solution ... 28

Database Optimization .. 29

Extensions and Integration .. 30

Transaction Level Extensions ... 30

System Level Extensions .. 31

Document Generation ... 31

Technology Stack .. 33

Page 4 of 33

1. Product Overview
Oracle Insurance Policy Administration (OIPA) is an adaptive, rules-based policy administration
system that provides full record keeping and support for all policy lifecycle transactions (such as
policy issue, billing, collections, policy processing and claims). With Oracle’s policy
administration system, insurers can rapidly adapt to changing business needs and regulatory
requirements while supporting straight-through processing throughout the policy lifecycle.

Oracle Insurance Policy Administration is used by leading insurers globally to accelerate
product development and speed up time to market for differentiated life insurance, unit-linked
and annuity products. The system enables insurers to provide real-time policy servicing of
customers and sales channels throughout the policy lifecycle for increased retention and loyalty.
It also helps insurers reduce risk and support compliance, while better managing the business
to optimize performance through use of a single system.

Accelerates Speed to Market for New and Adapted Products
Insurers require the ability to rapidly bring to market innovative products that stand out from the
competition, capture more market share, and ultimately maximize profitability. They can no
longer rely on inflexible, aging legacy systems that require heavy IT intervention and hamper
their ability to quickly adapt to evolving market dynamics and regulatory conditions.

Page 5 of 33

Oracle Insurance Policy Administration enables insurers to accelerate product development and
time to market for differentiated life insurance, unit-linked and annuity products globally. The
system’s rules-driven configuration capabilities are unmatched in the industry. Almost all
changes to the system—including products, fields, screens, languages, and currencies—can be
made without ever touching the core code or recompiling the data base structure. The system
does the heavy-lifting through a user-friendly Rules Palette visual configuration tool, pre-
configured product examples, the ability to reuse rules and clone products, and release
management.

Improves Customers and Channel Loyalty through Better Servicing
Delivering better service customers and sales channels throughout the policy lifecycle is critical
to promote loyalty and retention. Oracle Insurance Policy Administration can help insurers
improve servicing by enabling them to provide real-time access to policy information and the
ability to process transactions or events through Web Services integration to self-service portals
and other systems. It also provides a single view of the customer through full record keeping
and support of all policy lifecycle transactions. Additionally, it can help insurers reduce manual
processing by customer service representatives (CSRs) and drive consistency by automating
support of business processes and validation of transactional information for improved customer
servicing.

Reduces Risk While Better Managing the Business for Growth
It is not uncommon for insurers to have multiple, disparate policy administration systems
supporting multiple lines of business, including closed blocks. These systems are often
inflexible, hard coded, and expensive to maintain.

With Oracle Insurance Policy Administration for Life and Annuity, insurers can consolidate from
multiple systems to a single platform to support life, health, unit-linked and annuity products,
significantly reducing maintenance costs. Its highly extensible and open architecture also allows
for easy integration with front and back-office systems so insurers can progressively renovate
their application portfolio while avoiding “big-bang” system replacement.

Page 6 of 33

Insurers can further mitigate their risk during conversions by leveraging proven best practices
and a broad industry ecosystem including Oracle Insurance and technical resources and
industry partners.

Eases Integration with Other Systems
The open, standards-based architecture of Oracle Insurance Policy Administration allows for
integration with other third-party systems such as illustrations, new business and underwriting,
claims, billing, enterprise document automation / customer communication management, rating,
and more. In addition, Oracle Insurance Policy Administration is compatible with Oracle
Application Integration Architecture (AIA), which enables rapid, low-risk integration with other
back-office systems and existing legacy systems.

Oracle Insurance Policy Administration also integrates with Oracle’s service automation,
enterprise document automation and content management solutions. This gives customer
service representatives a 360-degree view of the customer, including associated documents,
correspondence, confirmations, statements, and policy data—increasing productivity and
customer satisfaction.

2. Key Features and Benefits of OIPA solutions

2.1 Line-of-business and Product Agnostic
OIPA is highly configurable through XML business rules and designed to be both line of
business and product agnostic. It enables insurers to create truly innovative products and
riders, from simple to complex, across life, health, unit-linked and annuity products.

2.2 Web-based, Modern, Highly Extensible
OIPA is a modern system that is built on open, J2EE-based architecture and can be deployed
across numerous technology stacks. The system is Service-Oriented Architecture (SOA)-
enabled allowing integration through Web Services with other insurance systems and Web
portals to support straight-through processing. The system’s browser-based User Interface
further promotes ease-of-use by both business and IT users.

2.3 Unparalleled, Flexible Rules Configuration
The OIPA streamlined architecture separates the rules, which support business and product
logic, from the base code, minimizing the need for heavy IT intervention during the configuration
process. Its highly flexibly rules-configuration capability empowers business and technical users
to collaboratively configure changes using business rules without the need to customize the
system’s core code or database structure. This helps shorten product development time cycles,
while reducing the cost of configuring products and installing upgrades.

Another key benefit is the ability to reuse rules. Users configure rules once and reuse again for
other products reducing development, testing, and maintenance.

Page 7 of 33

Oracle Insurance Policy Administration for Life, Unit Linking and Annuity is structured to provide competitive
advantage through rules-based configuration separated from the base code and data structure.

2.4 Powerful Rules Engine
OIPA’s rules engine allows business and technical analysts to configure transactions using
business rules to support unique and creative product features. For example, an insurer may
want to execute a distinct transaction on a policy, such as paying an agent a bonus on every
sale. This innovation makes the insurer more attractive to agents and producers. It also
promotes consistency and accuracy, reducing the time required for development, testing, and
maintenance. Through rules-based configuration, business and technical analysts can create
compliant calculations and reusable functions, such as tax withholding, to support state-filed
products across life, health and annuities.

2.5 Rules Palette
The Rules Palette, a visual configuration tool with drag-and-drop functionality, simplifies rule
creation, modification, and debugging. It offers unparalleled flexibility by enabling business and
technical analysts involved in configuration to make changes by products, fields, screens,
languages, currencies, and more through business rules—while facilitating improved
collaboration with business and IT. With it, users can control security rights, rates, funds, and
other items through administration tables for a centralized view of fixed and variable data for
enhanced flexibility. The integrated Data Dictionary drives a consistent set of field labels and
math variables.

2.6 Integrated Debugger
OIPA includes an integrated debugger tool within the Rules Palette. The debugger provides full
exposure and step-by-step execution of formulas and complex calculations within policy

Page 8 of 33

examples (for example, a partial surrender charge or taxable gain). The ability to validate
calculations and formulas contributes to reusability and reduced development cycles, testing,
and maintenance.

2.7 Pre-configured Product Examples
OIPA includes pre-configured product configuration examples for guaranteed level premium
term life, variable deferred annuity (without annuitization payout), and unit-linked fund
processing. The pre-configured examples help provide a jump start to insurers during the
configuration process and may be adapted by an insurer based upon the specific product
and /or business requirements.

2.8 Product Cloning
OIPA provides the ability for users to quickly “clone” a product and reconfigure it to create a
new one, resulting in accelerated speed to market. Users may clone rules from an existing
product and reconfigure based on new requirement (for example, add a new secondary
guarantee to a life or annuity product).

2.9 Corrective Processing
Corrective processing functionality is inherent within the system and is triggered by policy
transaction reversals or compliant back-dated transactions. This eliminates the need for
manual processing by customer service representatives (CSRs). In contrast, legacy systems
are often high-touch and time consuming for CSRs to complete corrective undo and redo
processing of policy transactions reversals.

2.10 Complete Traceability of Data
OIPA enables insurers to enforce compliance and best practices, reduce manual processing,
and provide full visibility into transaction history throughout the policy lifecycle. It provides the
ability for users to view the history at transaction and screen detail level to support compliance
requirements and market conduct audits. This is available to CSRs or other employees as soon
as the transaction has been processed.

2.11 Proven Performance – Tested Scalability
The system also is highly scalable to support the evolving business needs of the largest Tier
One global insurers. Oracle recognizes that each implementation project is unique and
specialized to each customer’s requirements with system performance dependent upon the
rules configured to support their products and lines of business. Performance tuning is an
important phase of each project to meet client expectations.

2.12 Release Management
Release management capability with OIPA provides governance of rules migration from
development, to testing, to the production environment throughout the product development
lifecycle. This promotes consistency and further accelerates time to market for new and
adapted products.

Page 9 of 33

2.13 Globalization / Localization Support
OIPA includes several features to support internationalization and localization requirements of
global and regional insurers, including support for multiple languages, locales and currencies in
a single instance of the system.

3. OIPA Architecture Design Principles
The system architecture has been based on the following design principles that establish a
consistent set of rules and guidelines for the design and development of the system:

1. The system architecture should have a multi-tier design with well-defined service layers
to ensure flexibility and continued enhancement.

2. The application should be multi-platform, portable, and scalable.

3. The database access should be implemented in a consistent, database-independent
manner.

4. The database traffic should be optimized to the utmost degree to increase scalability and
availability of the system.

5. The application should support multiple locales, languages, and currencies in a single
deployed instance.

6. The presentation layer should support, but not be limited to, a browser-based user
interface.

7. The Shared Rules Engine should be implemented as a standalone component that is not
dependent on any particular application.

8. The application’s data model should be extensible by configuration to satisfy client-
specific requirements.

9. The system should only implement generic business requirements and leave the client-
specific requirement to the configuration.

10. The system should be extensible via extension points configured and implemented for
client implementations.

11. The system should easily integrate with other technology components.

12. The system should leverage open standards wherever possible.

4. OIPA Key Concepts

4.1 Activity Processing
Activity processing is a fundamental part of the Oracle Insurance Policy Administration system.
Almost every event that occurs in the insurance domain can be modeled as an activity in the
system. An activity records all the changes it makes and provides the ability to undo any such
changes. Activities are therefore fundamental to corrective processing in OIPA. Activities are
transactional units of work, so they never leave a business entity in an invalid state.

Page 10 of 33

The behavior of activities from capturing the input data to the resulting changes is configured in
XML using the Rules Palette. The configured XML is called a transaction. An activity is an
instance of a transaction.

Some typical OIPA transactions at the policy level are premium, billing and anniversary
processing. Quite often as in policy administration, one event on a policy triggers another, such
as a notification letter or recalculation. OIPA supports this by providing the ability to one or more
activities as a result of processing an activity.

The above diagram illustrates the activity processing at a high level. The transaction XML
configures input fields for the activities, the math to transform data, a set of rules to persist the
changes, new activities that could be spawned, and so on.

An activity may be created by a user from the user interface, by another activity or as a result of
incoming data from a web service. An activity is processed by the Shared Rules Engine, which
is a component responsible for executing OIPA transactions and business rules. The results of
activity processing are then stored in the database.

Page 11 of 33

4.2 Screen Configuration

4.2.1 Screen Business Rules
Out of the box, the pages of the OIPA web-based user interface only implement generic
functionality that is deemed to be of value to a cross-section of insurers. The pages can be
customized through business rules to meet specific insurance product needs. The business
rules are created and maintained by the Oracle Insurance Rules Palette in XML format and
considered a part of a custom implementation, along with transactions and other configuration.

Business rules that govern the content, look and behavior of pages are called screen business
rules. The screen rules provide a wide variety of features that allow customizing pages to meet
client-specific needs.

• A comprehensive set of input components: text, date, currency, drop-down combo-box,
radio button, and so on.

• The ability to specify locale-specific field labels.

• The ability to set default field values that depend on the existing data, transformed, if
needed, by complex math calculations.

• The ability to specify events and actions in response to user input: changing field values,
disabling and enabling fields, showing and hiding fields, displaying field and page
messages.

• Support for multiple languages, currencies, date formats, and so on.

• The ability to specify masks for input text depending on the user’s security privileges.

• Validation of screen data triggered after data changes or by a page submission; alerting
user with field and page validation messages.

As with other business rules, screen rules can be set up so that pages look and behave
differently for different products and jurisdictions.

Page 12 of 33

The above diagram illustrates the concept of the page configuration. A screen business rule is
used to create a set of fields that are displayed on a page. A set of Java classes, generated at
run-time and based on the rule’s logic, is responsible for handling screen events – page load,
page submit and field value changes.

Converting the rule logic from XML to Java classes does away with the inefficiencies of an
interpreted language like XML and replaces it with the compiled efficiency of Java, improving
system performance. Furthermore, when the system has to parse the same screen rule again, it
recognizes the existence of a generated class and uses it, instead of regenerating the class.

When the user performs an action to save the information entered on the screen, the configured
validation in the screen rule is invoked. Only after the screen rule configuration confirms the
validity of the data does the system persist information to the database.

Page 13 of 33

4.2.2 Configurable Dynamic Fields
Configuring the pages of the OIPA application with client-specific rules essentially customizes
the application data model to satisfy customer’s business requirements. The base application
data model is extremely flexible and can be extended as required for a particular client
implementation.

Only a few generic data fields, known as fixed fields and shared between all client-specific
implementations, are stored by default in the application database. Fixed fields are represented
as columns in the database tables. The dynamic fields that are configured through the screen
business rules as described in the previous section are stored in the tables with names that
have a suffix of Field (As<EntityName>Field). A value of a configured field of a business entity is
stored in its own row in the corresponding Field table:

The above example shows a screen rule for a hypothetical business entity called Entity. Some
business entity examples are Policy, Client, and Activity. The rule specifies that the Entity has
two dynamic fields. The Entity’s fixed attributes are stored in one row as column values in the
AsEntity table. The AsEntityField table stores dynamic fields, one value per row, that match the
configuration in the Entity screen business rule. Each row contains a GUID of a parent entity,
field name, field data type, and value that is stored depending on field’s data type.

Page 14 of 33

This approach to data configuration and storage enables clients to extend the application data
model without affecting the database schema. This not only makes database administration
easier but also reduces the effort required to upgrade, because schema changes made in the
core product with new releases will not conflict with changes made by clients.

Processing Incoming Data
The OIPA application provides a web service called AsFile or FileReceived to electronically
submit data to the system. The AsFile/FileFeceived web service allows an external system to
send data in XML format to OIPA. Based on the client-specific configuration, the data can be
transformed, validated, and inserted in the OIPA database followed by processing of related
activities.

As the above diagram illustrates, a SOAP message is sent by an external system to the
FileReceived web service and includes two parameters: FileID and XML data. FileID identifies
the configuration from the AsFile table that will be used for processing and transforming inbound
XML to OIPA business entities. Then, the created entities are persisted in the OIPA database.
The AsFile configuration may also specify additional processing after the incoming date is
stored in the database. Activities will be created and processed as dictated by business
requirements for processing electronic submissions into the OIPA application.

At the end of the processing, a SOAP message is sent back to the external caller that includes
the result of the processed request. If the processing has been successful, the outcome may
also include an output XML constructed based on the provided configuration for the AsFile
response.

Page 15 of 33

Integration with external systems, including outgoing calls, is supported through extensions and
is discussed later in this document.

Cycle Processing
Cycle is a high-performance distributed subsystem of OIPA designed to process as many
pending activities as possible in the shortest amount of time. Depending on the configuration of
the pending activities, Cycle executes scheduled one-time and repeating insurance events.
Cycle uses a distributed computing grid, concurrency techniques, multiple threads, automatic
failover and scaling to deliver a robust batch processing solution.

In addition to processing pending activities, Cycle is also used to value insurance policies as
frequently as specified by a customer. Typically, policy valuation is scheduled to be batch-
processed by Cycle quarterly, semi-annually or annually.

In addition, Cycle is used to advance the current business date used in the processing of
activities. The current business date is stored in the application database and is advanced to the
next available business date.

Page 16 of 33

5. System Architecture

Architecture Overview
The OIPA system is implemented as a multi-tier J2EE-based server-side application. The
presentation, business logic and data access have been developed and maintained as
independent layers that run inside a single JVM. The Spring framework is used as a component
container to assemble the components together and to access available services across the
layers.

This is an architectural diagram of the OIPA application:

The following is the glossary of terms used in the diagram:

Data Access Layer (Dal) – an architectural layer that consists of Dal objects and which
implements the data access, hiding the details of implementation within the tier.

Business Logic Layer (Bll) – an architectural layer composed of Bll objects that implements
business logic as services available to the presentation layer, and also deals with some
infrastructure aspects such as caching and transactional processing.

Data Carrier Layer (Dcl) – data carrier objects that carry data throughout the system.

Page 17 of 33

Presentation Layer – an architectural layer responsible for implementation of the presentation
logic; consists of the two tiers mentioned below.

Presentation Services (Uip) – a technology-independent presentation tier that provides
presentation services to an outer presentation tier.

JSF/IceFaces Pages – a UI front end built using JSF/IceFaces frameworks.

Model – an object implemented for a user interface page that contains data displayed on the
page; a data carrier between the two presentation tiers.

SRE (Shared Rules Engine) – a standalone component responsible for executing OIPA
transactions and business rules

APE (Application Process Executor) – a class that implements a business rule executed
within a transaction.

Extensions – configurable call interceptors that allow modification of the out-of-box functionality
for client-specific implementations.

AsFile/Services – a component that exposes the business layer services as web services.

An application’s data access details are hidden from the rest of the application inside of the
Data Access layer. Java Persistence API is used to implement the data persistence for most of
the data access requirements. Data access from the Shared Rules Engine that sometimes
requires a greater degree of control over the generated SQL traffic is implemented using JDBC.
The services provided by the Data Access layer are available through the Spring container and
exchange data using the Data Carrier (Dcl) objects.

The Business Logic layer contains generic business logic shared between all custom
implementations of the system that is complemented by the configured business rules. The
exposed services include activity processing, accounting, allocations, and so on. The layer also
deals with such infrastructure aspects of the application as transactional and grid processing,
and caching. The services provided by the Business Logic layer are consumed by the
presentation layer with the data exchanged through the Dcl objects, by the cycle agent for the
batch processing, and also exposed through the web services to be used by external systems.

The Presentation Logic layer itself is two-tiered. The Presentation services are independent of
any particular user-interface technology and implement the presentation logic required in the
application. An additional tier that relies on IceFaces and Java Server Faces and consumes the
technology-agnostic presentation services implements the browser-based user interface.

The Shared Rules Engine is a separate and independent component responsible for processing
activities and math configured in the OIPA business rules. The web services component that
uses the Apache Axis framework allows configurable electronic submissions into OIPA and, in
general, exposes OIPA business services to external systems.

The following is a list of the most significant frameworks and technologies used by OIPA:

• Spring framework as an application component container

Page 18 of 33

• JPA as a primary method to access persistent data

• JDBC for accessing persistent data from SRE to ensure maximum data access
performance

• IceFaces/JSF frameworks to implement browser-based user interface

• Apache Axis to implement web services

• Coherence cache for caching rarely changed persistent data

• Coherence processing pattern as a grid computing framework

5.2 Shared Rules Engine
The Shared Rules Engine (SRE) component performs activity processing in the OIPA
application. Activity processing manages insurance events. SRE loads a transaction and
processes the data according to the business rules and math associated with the transaction
The transaction, business rules and actual insurance data are retrieved from the database.

The above diagram shows a high level interaction between the calling application and SRE.
OIPA calls SRE, provides input data, and implements interfaces to call back when additional
date is needed by SRE. SRE does not directly make calls to the database, except for loading
the transaction and rules associated with the current activity. When processing is complete, the

Page 19 of 33

results are packaged and returned to the calling application. Then, the results are committed to
the database within a single database transaction.

It is important to note that the transaction XML is translated into a generated Java class that will
be executed by SRE to ensure the best possible performance.

The following components of SRE come together in processing an activity:

1. Processor
2. Java code generator that includes a math translator
3. Data access components implemented by OIPA to retrieve input data and persist results
4. Application Process Executor (APE) business rules invoked by SRE
5. SRE client-specific extensions

Configuration-based Code Generation
Most of the OIPA application business logic is configurable and contained in the business rules
and transactions stored in the database in XML format. Some of these XML transactions and
rules are executed during the batch processing, others from the browser-based user interface in
real time. In either case, the performance is extremely important.

In order to provide the best possible performance, the XML rules and transactions are
transformed by the Shared Rules Engine into generated Java classes that are then compiled
and executed like any other Java classes in the application. There is no difference in the
performance between executing business logic hard coded in the application by developers and
when configured in XML by business analysts.

The process of code generation and compilation is expensive and is only done once, with the
result being cached and used for all consecutive requests. The cache can distinguish between
development and production application modes and detect when the business rule XML
changes and requires re-generation of a corresponding Java class.

Security

Authentication
OIPA performs user authentication for both interactive users using Internet browser to access
the system and web service calls. The users are prompted to provide a user name and
password on the application’s login page; these are then sent to the server. The web services
are protected with the WS-Security that requires incoming web service calls to carry a security
header with the user name and password.

Both web service and user authentication is implemented through the same authentication
service provided by the business logic tier of the OIPA application. The authentication service
retrieves a matching user record from the OIPA database that contains basic user information
and a secure digest of a password. The password digest is then compared to the digest of the
incoming password and an authentication decision is made based on the result of the
comparison. User records in the OIPA database are usually created by the Rules Palette.

Page 20 of 33

Using OIPA extensions, it is possible to implement alternative methods of user authentication to
satisfy specific security requirements of a particular customer.

User Privileges and Role-Based Security
The OIPA user privileges and access restrictions implementation is based on the role-based
access control (RBAC) model. According to this model, user permissions are assigned to
specific roles or groups that are created for various job functions. A user that is assigned
particular roles, gains through those roles permissions to perform particular system functions. A
user may belong to multiple groups that result in access granted to all resources authorized
across the groups the user belongs to.

For example, users that are assigned to the CSR group (or have the CSR role) may not be able
to execute such activities as issuing a policy or paying a death benefit. An Underwriter should
be able to issue a policy. An administrator group is usually allowed access to all resources.

The following diagram shows what application resources are protected by the OIPA security:

Page 21 of 33

Internationalization and Localization
The OIPA application may be adapted to different languages, regional differences and technical
requirements of a particular target market through rules configuration. A configured OIPA-based
solution is capable of supporting multiple locales and users of different languages by allowing
the co-existence of several languages within the user interface. Configuring a locale and,
therefore, adding support for a language though rules, does not require re-engineering or
changing system’s code.

The system also provides the ability to:

• Translate the content between languages

• Store and display content in multiple languages

• Use regional formats for dates, numbers, and calendars to enter dates

• Display and enter names and addresses in forms native for supported locales

• Handle multiple currencies

• Store country and jurisdiction information that could be used for tax and other purposes

• Allow further customization through configurable extensions to satisfy client-specific
localization requirements

The most important internationalization and localization features of the OIPA application are:

• OIPA localization is based on the locale of the current user. A number of locales exist in
a configured OIPA system and determine which language, translations, date and
number format, and so on, will be used when displaying the user interface for a user.

• Data in OIPA are represented in Unicode, the industry standard for the consistent
encoding, representing and handling of text data in most languages.

• Data is stored in the database using multi-byte character types.

• Text data displayed on the screen come through a translation layer (with the exception
of text entered by users) where the translation is performed based on the locale of the
user. The translation is applied to configured text data, validation and error messages,
field labels, and so on.

• OIPA uses Java parsing and formatting facilities to support locale-based formatting of
dates and numbers. This “out-of-the-box” formatting can be enhanced or even
overridden to satisfy the most diverse customer requirements.

• OIPA has an extensive support for using multiple currencies.

• OIPA allows configuration of the name and address displays to be customized based on
the needs of a particular region.

Page 22 of 33

Configuration of locales, translations, screen rules, and so on, is performed by using the Oracle
Insurance Rules Palette.

Support for Multiple Currencies Overview

OIPA provides extensive multi-currency support in a single instance of the system, including:

• Currency Entry / Display – the ability to allow users to input monetary values in different
currency denominations

• Currency Formatting – the ability for the system to support various formatting and
rounding rules based on a currency

• Currency Conversion – the ability for the system to convert money from one currency
denomination to another, and track the conversion details

Support for Multiple Currencies
Currency Entry describes the ability for the system to accept entry of monetary values in
different currency denominations. What currencies are enabled depends solely on the
configuration of the system. The configurable elements include:

• The currency designation for a given field – a field on a screen may be assigned a single
currency or a list of acceptable currencies with a default currency.

• The default currency for a product – when no currency is configured for a field, or
monetary data is displayed on any screen, the default currency that is configured for the
current product will be used to display the currency.

• The default currency for a company – when a screen does not pertain to a particular
product, the default currency that is configured for the company the product belongs to
will be applied when displaying monetary data.

• The system-wide default currency - when a screen does not pertain to a particular plan
or company, the default currency that is configured for the application will be applied
when displaying monetary data.

Currency Formatting

OIPA formats monetary amounts that are displayed in the application. There are two completely
separate pieces of the functionality: number formatting and currency rounding.

Number Formatting refers to how the number appears to the end user, irrespective of the
currency. The way the number appears to the end user is determined by the logged-in user's
locale. The locale determines the grouping character, decimal point character, and negative
inflection of a number.

Currency Rounding is the process of rounding a number before it is displayed to the user, used
in processing, or accepted as input by the user. The rounding rules for a currency are
configured in the database as part of the configuration of the OIPA application.

Page 23 of 33

Currency Conversion
Currency conversion is the process of converting a number of units of one currency
denomination to another. For example, converting 100,000 USD (U.S. Dollars) to Japanese yen
will require a conversion. The conversion that takes place is based on foreign exchange rates. A
foreign exchange transaction is the exchange of money from one currency to another. The
foreign exchange rate is a price; the number of units of one nation’s currency that must be
surrendered in order to acquire one unit of another nation’s currency.

The currency conversion in OIPA happens in two places: money movement and configured
math. The condition of moving money from one currency to another is automatically detected
during transaction processing, so the currency conversion happens automatically. Whenever a
currency is converted, there is a cost incurred in converting the money. This currency
conversion cost is captured by the system when the conversion takes place.

Configured math supports the ability to convert from one currency to another as a simple
formula, and there is no tracking of the currency conversion details that take place in math.
When the currency conversion happens, the application will look up the exchange rates for the
currencies using the latest exchange rates.

OIPA stores information on currencies, exchange rates, and rules that different market makers
use to convert currencies.

Scalability
Scalability refers to the ability of a system to cope with growing loads with stable performance
by replicating the system’s hardware and software components.

As the following diagram illustrates, the OIPA architecture addresses the scalability of the
system by allowing the system resources to be scaled up as needed and minimizing contention
on the resources that are most likely to become bottlenecks.

Page 24 of 33

• The system performance may be increased by replicating the JVM/Application server
instances that serve the user requests. This requires clustering the servers and imposes
an additional overhead of the load balancing.

• It is fairly easy to replicate the application instances, but at some point the database will
become a bottleneck. While it is possible to increase the database performance by
upgrading the hardware, OIPA tries to increase database performance by optimizing the
traffic between the application and the database as much as possible. The generated
SQL, returned data sets, databases indexes are analyzed and optimized throughout the
design, development, testing and configuration of the OIPA system.

• Much of the persistent data that rarely change are stored in the distributed Coherence
cache that further decreases the load on the database and increases the scalability of
the system.

The same scalability approach is applicable to the batch processing performed by the OIPA
Cycle components described in the following section.

Cycle
The Cycle subsystem drives processing of transactions through a Cycle Grid, which is
comprised of a set of Cycle agents. Each Cycle Agent is a separate JVM instance, which acts

Page 25 of 33

as a processing node in the Grid. A special application called a Cycle client submits tasks to the
Cycle Grid to direct what type of Cycle processing should be performed. The following is a high-
level diagram showing how the different collaborators work together to start processing a Cycle
run.

Cycle Agents are the programs that execute the tasks that comprise the Cycle batch process.
Each Cycle Agent runs in its own Java Virtual Machine (JVM). Depending on the number of
tasks that must be executed during Cycle processing, any number of JVMs may be used to run
the desired number of Cycle Agents. The JVMs may be started on one or more physical
machines. If more than one machine is used, they will be effectively clustered via the
Coherence clustered caching and messaging system.

Caching
Caching is a technique to improve performance by transparently storing data that future
requests for the data can be served faster from the cache. OIPA uses a cache to save
configuration data and data that rarely change. Transactions, business rules, currencies and
authentication data are just a few examples of the data cached in the system.

There are two cache providers being used: Coherence and EhCache. Coherence provides
distributed caching services for all nodes in the same cluster.

Page 26 of 33

There are three cache regions defined for the Coherence distributed cache. Each cache region
has its own data store, therefore objects saved in a region will not be found in other regions.

The three cache regions are:

1. Region CORE for the Shared libraries

2. Region SRE for the SRE components

3. Region PAS for the OIPA-specific data

Since these cache regions are distributed across all nodes in cluster, other Oracle Insurance
systems built on top of the Shared SRE components, such as OINBU, can possibly share the
same set of cached data.

EhCache provides separate caching services local to each node and is mostly used to store
Java classes generated for business rules and transactions. Only one region with the name
SRE is defined for the EhChache-based cache.

6. OIPA-based Solutions

6.1 OIPA-based Solution
The following diagram is a high-level deployment view of an insurance administration solution
based on the OIPA application:

Page 27 of 33

The view contains the following elements:

• OIPA J2EE Application Server – This node represents installations of a J2EE Application
Server, such as Oracle WebLogic or IBM WebSphere, running instances of the OIPA web
application. Every OIPA-based solution will be different depending on the customer’s
environment, number of users, availability and other requirements. Typically, there will be
multiple application servers spread out across multiple machines in order to enable load
balancing and failover.

• Cycle Agent J2EE Application Server – This node represents J2EE Application Servers
running OIPA Cycle Agents. The Cycle Agent adds grid computing to the OIPA-based
system, and is responsible for executing batch processing of queued insurance activities.
Typically, there will be multiple OIPA Cycle Application server instances per customer
installation in order to support high-volume transaction processing requirements.

Page 28 of 33

• Rules Palette Utility J2EE Application Server – This node is an instance of the utility
application used for configuration and authentication of the Rules Palette instances on the
business analyst’s desktops.

• Web Service Clients – A node that represents external applications or middleware that
consume web services provided by the OIPA application.

• User Desktop – This represents interactive users that access the OIPA Web application
through the Internet Explorer browser. A typical OIPA solution is deployed in a home office
of an insurance company and allows access to the server-based web application within a
secured intranet.

• Cycle Client Console – This node is a console-based client application that initiates
specific Cycle processing.

• Rules Palette BA Desktop – This node represents the business analyst’s workstations that
run the Rules Palette. The Rules Palette is a Java desktop application built to configure an
OIPA-based solution. It provides a rich user interface including drag-and-drop capabilities to
work with business rules, transactions, user security, and so on.

• OIPA Database – This node represents an OIPA application database that contains both
business data and configuration.

• Rules Palette IVS Database – This represents a database that stores versioning
information of the system’s configuration. The versioning data is used by the Rules Palette
that implements a configuration management system with versioning and revision control
capabilities.

6.2 Configuring a Solution

Page 29 of 33

The diagram above represents the processing executed outside of OIPA, as well as the main
processing within OIPA using a generic life cycle of an individual life policy.

The top block called New Sale represents the New Business and Underwriting processes that
execute externally of the OIPA solution. Data from these processes may be transmitted to OIPA
through the FileReceived web service or through manual entry via configurable screens.

On the left, in red, begins the representation of the OIPA solution processing, starting with an
individual product setup perspective. This represents a portion of the configuration that would
constitute a saleable product. After product setup and availability, the data from specific sales of
the product create policies in OIPA.

The diagram highlights a few of the configuration driven elements of a policy; client, policy, role,
benefits, coverages, and fund allocation.

The next block represents the recordkeeping, or Activity processing. This processing comprises
business events or transactions to support Policy Servicing and product required processing
(anniversary, premium, annual statement). These sections, all denoted in red, are controlled by
rules. All rules are configured (using the Rules Palette) as part of a product implementation.

The bullet points in red are emphasis on strengths of activity processing within OIPA.

The data retained in the OIPA database may be sent to downstream systems through real time
requests from external sources or through the OIPA cycle process.

Database Optimization
As discussed in the Scalability section, the database performance is paramount to maintaining
stable performance of the entire system. Because most of the application’s business logic is
contained in the configurable business rules, the final database optimization cannot be
performed until the configuration step has been completed. Additionally, the performance of the
database indexes may need to be fine-tuned with the actual customer’s data. This also can be
done only after the configuration is finished.

Out of the box, the OIPA database comes with indexes built and optimized for SQL queries that
are independent of the configuration. The transactions and business rules configured to
implement a customer’s business requirements usually contain a significant number of SQL
queries as well. Also, the configuration, for example, for search screens, may change SQL
queries issued from the application code.

The customer-specific and configuration-dependent queries need to be analyzed to ensure they
are efficient, executed quickly and does not retrieve data that are not used. A new set of
database indexes may be needed to provide the best possible performance for the customer-
specific queries.

The final step of the database optimization should be performed with the actual business data
during the performance and load testing of the configured OIPA-based solution.

Page 30 of 33

Extensions and Integration
The ability to integrate the OIPA application with external systems and extend it beyond what
could be done through business rule configuration gives the system unlimited flexibility and
allows implementation of specific customer requirements. The OIPA system provides several
mechanisms for extensibility.

Currently, all extensions are implemented as Java classes that are injected into specific points
or levels in the OIPA infrastructure. Extension developers only need to implement the requisite
Java interfaces in order to access this powerful OIPA feature.

There are two levels of extensions: transaction level and system level.

• The transaction level extensions allow for custom logic within the context of a
transaction.

• The system level extensions allow for fine-tuned customization of specific system events
and are implemented through the Extensibility framework.

Transaction Level Extensions
The key benefits of transaction level extensions are that they allow for greater control over a
policy’s lifecycle and are fairly easy to implement. Since transaction level extensions are
provided with data from running transactions, they are also powerful tools for integration.

Transaction level processing is the logic that executes when an activity or event is run against a
policy. In the following example, a policy lifecycle includes the OIPA transactions of Premium
Receipt, Issue and Billing respectively. The first two transactions illustrate how the system can
perform messaging over an enterprise service bus (ESB). The last transaction, Billing, illustrates
MQ series integration.

There are several facilities in place that enable extensibility within transaction processing. They
are in the Math processing of a transaction rule, via the ExternalProcess business rule and
through the FileReceived Web Service.

Page 31 of 33

System Level Extensions
When fine-tuned control over specific system events is required, system level extensions can be
employed. System level extensions are provided through the Extensibility Framework.

Below is a simplified rules engine processing example that illustrates how system level
extensions can provide pre- or post-processing or replace a processing step altogether.

1) Default implementation

2) Pre-processing added via an extension

3) Post-processing added via an extension

4) Math processing lifecycle step is replaced with custom math via an extension

The Extensibility Framework provides a mechanism by which system event lifecycles can be
extended. Custom Java code can be added before or after a lifecycle step and it can also
replace the lifecycle step altogether. The Extensibility framework is present at the transaction
processing, web service and user interface levels as shown in the OIPA architectural diagram in
section 5.1. The Extensibility framework maps custom Java classes to named points in the
system.

Document Generation
The OIPA application provides users with the ability to generate documents in PDF format. Out
of the box, the document generating system uses Crystal Reports. The standard Crystal
Reports report files are used as the document templates.

The Rules Palette provides the tools to configure necessary components of the Document
Generator. Configuring a document generation involves the following steps:

1. A transaction that generates a document should be configured.

2. A GenerateDocument business rule should be configured and attached to the
transaction. The rule prepares business data needed to generate a document and

Page 32 of 33

specifies the name of the document template. Each individual transaction that generates
documents can be configured to use a specific template.

3. A Crystal Reports document template should be created and made available to the
document generation system.

After a transaction that generates documents is processed, generated documents are available
on the activity results screen.

The document generation in the OIPA application is implemented as a pre-packaged system
extension that internally uses a document generation web service. When implementing a client-
specific solution, a different extension can be built and configured to use alternative document
generating technologies.

This approach has been employed to implement a document generation extension that uses the
OIPA extension framework to integrate with Oracle Documaker. Oracle Documaker is a leading
Enterprise Document Automation solution. The OIPA extension allows using Documaker as a
document generating technology instead of Crystal Reports.

Page 33 of 33

Technology Stack
The version 9.4 of the OIPA application has been certified with the following software products:

Type of Software Software Product Version

Database SQL Server SQL Server 2005

Database Oracle 11gR2

Database DB2 9.7 Fix Pack 3

J2EE Application server Websphere 6.1.0.35

J2EE Application server WebLogic 10.3.3.0

J2EE Application server JBoss EAP 4.2

Java JDK 1.5

Internet Browser Internet Explorer 6 and 7

	1. Product Overview
	2. Key Features and Benefits of OIPA solutions
	2.1 Line-of-business and Product Agnostic
	2.2 Web-based, Modern, Highly Extensible
	2.3 Unparalleled, Flexible Rules Configuration
	2.4 Powerful Rules Engine
	2.5 Rules Palette
	2.6 Integrated Debugger
	2.7 Pre-configured Product Examples
	2.8 Product Cloning
	2.9 Corrective Processing
	2.10 Complete Traceability of Data
	2.11 Proven Performance – Tested Scalability
	2.12 Release Management
	2.13 Globalization / Localization Support

	3. OIPA Architecture Design Principles
	4. OIPA Key Concepts
	4.1 Activity Processing
	4.2 Screen Configuration
	4.2.1 Screen Business Rules
	4.2.2 Configurable Dynamic Fields
	Processing Incoming Data
	Cycle Processing

	5. System Architecture
	Architecture Overview
	5.2 Shared Rules Engine
	Configuration-based Code Generation
	Security
	Authentication
	User Privileges and Role-Based Security
	Internationalization and Localization
	Support for Multiple Currencies Overview
	Support for Multiple Currencies
	Currency Formatting
	Currency Conversion
	Scalability
	Cycle
	Caching

	6. OIPA-based Solutions
	6.1 OIPA-based Solution
	6.2 Configuring a Solution
	Database Optimization
	Extensions and Integration
	Transaction Level Extensions
	System Level Extensions
	Document Generation
	Technology Stack

