Contents

Preface ... 25

1 Overview of GlassFish Server Administration .. 33
 Default Settings and Locations ... 33
 Configuration Tasks .. 34
 Initial Configuration Tasks .. 35
 How Dotted Names Work for Configuration ... 37
 Configuration Files .. 38
 Impact of Configuration Changes ... 38
 Administration Tools ... 42
 Administration Console ... 42
 asadmin Utility ... 43
 REST Interfaces .. 43
 Update Tool .. 44
 keytool Utility .. 44
 Java Monitoring and Management Console (JConsole) .. 44
 Instructions for Administering GlassFish Server ... 45

Part I Runtime Administration ... 47

2 General Administration ... 49
 Using the asadmin Utility ... 49
 Path to the asadmin Utility ... 50
 asadmin Utility Syntax ... 50
 ▼ To Run an asadmin Utility Subcommand in Single Mode ... 51
 ▼ To Display Help Information for the asadmin Utility or a Subcommand ... 52
 ▼ To Start a Multimode Session ... 53
4 Administering the Virtual Machine for the Java Platform ... 137
 Administering JVM Options .. 137
 ▼ To Create JVM Options .. 138
 ▼ To List JVM Options .. 138
 ▼ To Delete JVM Options ... 139
 ▼ To Generate a JVM Report ... 140
 Administering the Profiler .. 141
 ▼ To Create a Profiler ... 141
 ▼ To Delete a Profiler .. 142

5 Administering Thread Pools .. 143
 About Thread Pools ... 143
 Configuring Thread Pools ... 144
 ▼ To Create a ThreadPool ... 144
 ▼ To List Thread Pools .. 145
 ▼ To Update a ThreadPool .. 145
 ▼ To Delete a ThreadPool .. 146

6 Administering Web Applications .. 147
 Invoking a Servlet by Alternate Means .. 147
 Changing Log Output for a Servlet .. 148
 ▼ To Use the default-web.xml File .. 149
 Redirecting a URL .. 149
 Administering mod_jk ... 150
 ▼ To Enable mod_jk .. 150
 ▼ To Load Balance Using mod_jk and GlassFish Server ... 152
 ▼ To Enable SSL Between the mod_jk Load Balancer and the Browser 154
 ▼ To Enable SSL Between the mod_jk Load Balancer and GlassFish Server 155

7 Administering the Logging Service .. 157
 About Logging ... 157
 Log Files .. 157
 Logger Namespaces .. 160
Part II Resources and Services Administration ... 263

12 Administering Database Connectivity ... 265
 About Database Connectivity ... 265
 Setting Up the Database ... 266
 ▼ To Install the Database and Database Driver ... 267
 ▼ To Start the Database .. 267
 ▼ To Stop the Database .. 268
 Java DB Utility Scripts ... 268
 Configuring Access to the Database .. 269
 Administering JDBC Connection Pools .. 270
 Administering JDBC Resources ... 278
 Enabling the jdbc/_default Resource in a Clustered Environment 281
 Integrating the JDBC Driver ... 282
 Configuration Specifics for JDBC Drivers .. 283
 IBM DB2 Database Type 2 Driver ... 283
 IBM DB2 Database Type 4 Driver ... 284
 Java DB/Derby Type 4 Driver .. 284
 MySQL Server Database Type 4 Driver .. 285
 Oracle 10 Database Driver .. 285
 Oracle 11 Database Driver ... 286
 PostgreSQL Type 4 Driver ... 287
 DataDirect Type 4 Driver for IBM DB2 Database .. 287
 DataDirect Type 4 Driver for IBM Informix ... 288
 DataDirect Type 4 Driver for Microsoft SQL Server Database 288
 DataDirect Type 4 Driver for MySQL Server Database .. 289
 DataDirect Type 4 Driver for Oracle 11 Database ... 289
 DataDirect Type 4 Driver for Sybase Database ... 290
 Inet Oraxo Driver for Oracle Database .. 290
13 Administering EIS Connectivity ... 293

About EIS Connectivity .. 294
Administering Connector Connection Pools .. 295
 ▼ To Create a Connector Connection Pool ... 295
 ▼ To List Connector Connection Pools ... 296
 ▼ To Connect to (Ping) or Reset (Flush) a Connector Connection Pool 297
 ▼ To Update a Connector Connection Pool ... 297
 ▼ To Delete a Connector Connection Pool ... 298
Administering Connector Resources ... 298
 ▼ To Create a Connector Resource ... 298
 ▼ To List Connector Resources .. 299
 ▼ To Update a Connector Resource ... 300
 ▼ To Delete a Connector Resource ... 300
Administering the Resource Adapter Configuration 301
 ▼ To Create Configuration Information for a Resource Adapter 301
 ▼ To List Resource Adapter Configurations .. 302
 ▼ To Update a Resource Adapter Configuration 302
 ▼ To Delete a Resource Adapter Configuration 303
Administering Connector Security Maps ... 303
 ▼ To Create a Connector Security Map ... 304
 ▼ To List Connector Security Maps ... 304
 ▼ To Update a Connector Security Map .. 305
 ▼ To Delete a Connector Security Map ... 306
Administering Connector Work Security Maps .. 306
 ▼ To Create a Connector Work Security Map .. 307
 ▼ To List Connector Work Security Maps ... 308
 ▼ To Update a Connector Work Security Map 308
 ▼ To Delete a Connector Work Security Map .. 309
Administering Administered Objects .. 309
 ▼ To Create an Administered Object .. 310
 ▼ To List Administered Objects .. 310
14 Administering Internet Connectivity ..313
 About Internet Connectivity ..313
 About HTTP Network Listeners ..313
 About Virtual Servers ...314
 Administering HTTP Network Listeners ...315
 ▼ To Create an Internet Connection ..316
 Administering HTTP Protocols ..316
 Administering HTTP Configurations ..318
 Administering HTTP Transports ...319
 Administering HTTP Network Listeners ...321
 Administering Virtual Servers ..325
 ▼ To Create a Virtual Server ...326
 ▼ To List Virtual Servers ...327
 ▼ To Update a Virtual Server ..327
 ▼ To Delete a Virtual Server ...327
 To Assign a Default Web Module to a Virtual Server328
 ▼ To Assign a Virtual Server to an Application or Module328
 ▼ To Set JSESSIONIDSSO Cookie Attributes ..329

15 Administering the Object Request Broker (ORB)331
 About the ORB ...331
 Configuring the ORB ..332
 Administering IIOP Listeners ...332
 ▼ To Create an IIOP Listener ...332
 ▼ To List IIOP Listeners ..333
 ▼ To Update an IIOP Listener ..333
 ▼ To Delete an IIOP Listener ...334

16 Administering the JavaMail Service ..335
 About JavaMail ..335
 Administering JavaMail Resources ..336
18 Administering the Java Naming and Directory Interface (JNDI) Service ..387
 About JNDI ..387
 Java EE Naming Environment ...388
 How the Naming Environment and the Container Work Together ..388
 Naming References and Binding Information ..389
 Administering JNDI Resources ...389
 Administering Custom JNDI Resources ...390
 Administering External JNDI Resources ..392

19 Administering Transactions ..397
 About Transactions ..397
 Transaction Resource Managers ..399
 Transaction Scope ..399
 Configuring the Transaction Service ...400
 Managing the Transaction Service for Rollbacks ...401
 ▼ To Stop the Transaction Service ...402
 ▼ To Roll Back a Transaction ...402
 ▼ To Restart the Transaction Service ..403
 Determining Local Transaction Completion at Shutdown ...404
 Recovering Transactions ...404
 Automatic Transaction Recovery ..404
 ▼ To Manually Recover Transactions ..405
 Distributed Transaction Recovery ..406
 Recovery Workarounds and Limitations ..406
 Transaction Logging ...408
 ▼ To Store Transaction Logs in a Database ...408

Part III Appendixes ...411

A Subcommands for the asadmin Utility ...413
 General Administration Subcommands ..414
 Connectivity Subcommands ...416
 Domain Subcommands ..419
 Internet Connectivity Subcommands ...420
Figures

FIGURE 2–1 Web Page for the REST Resource for Managing a Domain 66
FIGURE 2–2 Web Page for the REST Resource That Provides Class Loader Statistics 95
Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE 1–1</td>
<td>Default Administration Values</td>
</tr>
<tr>
<td>TABLE 1–2</td>
<td>Default Locations</td>
</tr>
<tr>
<td>TABLE 2–1</td>
<td>REST Resource Methods for Administering Monitoring and Configuration Data</td>
</tr>
<tr>
<td>TABLE 6–1</td>
<td>URL Fields for Servlets Within an Application</td>
</tr>
<tr>
<td>TABLE 8–1</td>
<td>HTTP Listener Common Monitoring Statistics</td>
</tr>
<tr>
<td>TABLE 8–2</td>
<td>JVM Common Monitoring Statistics</td>
</tr>
<tr>
<td>TABLE 8–3</td>
<td>Web Module Common Monitoring Statistics</td>
</tr>
<tr>
<td>TABLE 8–4</td>
<td>Example Resources Level Dotted Names</td>
</tr>
<tr>
<td>TABLE 8–5</td>
<td>EJB Cache Monitoring Statistics</td>
</tr>
<tr>
<td>TABLE 8–6</td>
<td>EJB Container Monitoring Statistics</td>
</tr>
<tr>
<td>TABLE 8–7</td>
<td>EJB Method Monitoring Statistics</td>
</tr>
<tr>
<td>TABLE 8–8</td>
<td>EJB Pool Monitoring Statistics</td>
</tr>
<tr>
<td>TABLE 8–9</td>
<td>Timer Monitoring Statistics</td>
</tr>
<tr>
<td>TABLE 8–10</td>
<td>HTTP Service Virtual Server Monitoring Statistics</td>
</tr>
<tr>
<td>TABLE 8–11</td>
<td>Jersey Statistics</td>
</tr>
<tr>
<td>TABLE 8–12</td>
<td>Connector Connection Pool Monitoring Statistics (JMS)</td>
</tr>
<tr>
<td>TABLE 8–13</td>
<td>Connector Work Management Monitoring Statistics (JMS)</td>
</tr>
<tr>
<td>TABLE 8–14</td>
<td>JVM Monitoring Statistics for Java SE Class Loading</td>
</tr>
<tr>
<td>TABLE 8–15</td>
<td>JVM Monitoring Statistics for Java SE - Threads</td>
</tr>
<tr>
<td>TABLE 8–16</td>
<td>JVM Monitoring Statistics for Java SE Compilation</td>
</tr>
<tr>
<td>TABLE 8–17</td>
<td>JVM Monitoring Statistics for Java SE Garbage Collectors</td>
</tr>
<tr>
<td>TABLE 8–18</td>
<td>JVM Monitoring Statistics for Java SE Memory</td>
</tr>
<tr>
<td>TABLE 8–19</td>
<td>JVM Statistics for the Java SE Operating System</td>
</tr>
<tr>
<td>TABLE 8–20</td>
<td>JVM Monitoring Statistics for Java SE Runtime</td>
</tr>
<tr>
<td>TABLE 8–21</td>
<td>Network Keep Alive Statistics</td>
</tr>
<tr>
<td>TABLE 8–22</td>
<td>Network Connection Queue Statistics</td>
</tr>
<tr>
<td>TABLE 8–23</td>
<td>Network File Cache Statistics</td>
</tr>
<tr>
<td>TABLE 8–24</td>
<td>Network Thread Pool Statistics</td>
</tr>
<tr>
<td>TABLE 8–25</td>
<td>ORB Monitoring Statistics (Connection Manager)</td>
</tr>
<tr>
<td>TABLE 8–26</td>
<td>General Resource Monitoring Statistics (Connection Pool)</td>
</tr>
<tr>
<td>TABLE 8–27</td>
<td>Application Specific Resource Monitoring Statistics (Connection Pool)</td>
</tr>
<tr>
<td>TABLE 8–28</td>
<td>EJB Security Monitoring Statistics ..</td>
</tr>
<tr>
<td>TABLE 8–29</td>
<td>Web Security Monitoring Statistics ..</td>
</tr>
<tr>
<td>TABLE 8–30</td>
<td>Realm Security Monitoring Statistics ..</td>
</tr>
<tr>
<td>TABLE 8–31</td>
<td>Thread Pool Monitoring Statistics ..</td>
</tr>
<tr>
<td>TABLE 8–32</td>
<td>JVM Monitoring Statistics for Java SE - Thread Info</td>
</tr>
<tr>
<td>TABLE 8–33</td>
<td>Transaction Service Monitoring Statistics ..</td>
</tr>
<tr>
<td>TABLE 8–34</td>
<td>Web Module Servlet Statistics ..</td>
</tr>
<tr>
<td>TABLE 8–35</td>
<td>Web JSP Monitoring Statistics ..</td>
</tr>
<tr>
<td>TABLE 8–36</td>
<td>Web Request Monitoring Statistics ..</td>
</tr>
<tr>
<td>TABLE 8–37</td>
<td>Web Servlet Monitoring Statistics ..</td>
</tr>
<tr>
<td>TABLE 8–38</td>
<td>Web Session Monitoring Statistics ..</td>
</tr>
<tr>
<td>TABLE 11–1</td>
<td>Oracle GlassFish Server Preconfigured Repositories</td>
</tr>
<tr>
<td>TABLE 11–2</td>
<td>GlassFish Server Open Source Edition Preconfigured Repositories</td>
</tr>
<tr>
<td>TABLE 14–1</td>
<td>Default Ports for Listeners ..</td>
</tr>
<tr>
<td>TABLE 18–1</td>
<td>JNDI Lookup Names and Their Associated References</td>
</tr>
</tbody>
</table>
Examples

<table>
<thead>
<tr>
<th>Example</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXAMPLE 1–1</td>
<td>Determining if the DAS Requires Restart</td>
<td>40</td>
</tr>
<tr>
<td>EXAMPLE 1–2</td>
<td>Determining if an Instance Requires Restart</td>
<td>40</td>
</tr>
<tr>
<td>EXAMPLE 2–1</td>
<td>Running an asadmin Utility Subcommand in Single Mode</td>
<td>52</td>
</tr>
<tr>
<td>EXAMPLE 2–2</td>
<td>Specifying an asadmin Utility Option With a Subcommand in Single Mode</td>
<td>52</td>
</tr>
<tr>
<td>EXAMPLE 2–3</td>
<td>Specifying an asadmin Utility Option and a Subcommand Option in Single Mode</td>
<td>52</td>
</tr>
<tr>
<td>EXAMPLE 2–4</td>
<td>Displaying Help Information for the asadmin Utility</td>
<td>53</td>
</tr>
<tr>
<td>EXAMPLE 2–5</td>
<td>Displaying Help Information for an asadmin Utility Subcommand</td>
<td>53</td>
</tr>
<tr>
<td>EXAMPLE 2–6</td>
<td>Starting a Multimode Session With asadmin Utility Options</td>
<td>54</td>
</tr>
<tr>
<td>EXAMPLE 2–7</td>
<td>Starting a Multimode Session by Using the multimode Subcommand</td>
<td>54</td>
</tr>
<tr>
<td>EXAMPLE 2–8</td>
<td>Running a Subcommand in a Multimode Session</td>
<td>54</td>
</tr>
<tr>
<td>EXAMPLE 2–9</td>
<td>Running a Set of asadmin Subcommands From a File</td>
<td>55</td>
</tr>
<tr>
<td>EXAMPLE 2–10</td>
<td>Creating a System Property</td>
<td>56</td>
</tr>
<tr>
<td>EXAMPLE 2–11</td>
<td>Listing System Properties</td>
<td>57</td>
</tr>
<tr>
<td>EXAMPLE 2–12</td>
<td>Deleting a System Property</td>
<td>58</td>
</tr>
<tr>
<td>EXAMPLE 2–13</td>
<td>Adding Resources</td>
<td>58</td>
</tr>
<tr>
<td>EXAMPLE 2–14</td>
<td>Displaying Version Information</td>
<td>59</td>
</tr>
<tr>
<td>EXAMPLE 2–15</td>
<td>Listing Applications</td>
<td>60</td>
</tr>
<tr>
<td>EXAMPLE 2–16</td>
<td>Listing Containers</td>
<td>60</td>
</tr>
<tr>
<td>EXAMPLE 2–17</td>
<td>Listing Modules</td>
<td>61</td>
</tr>
<tr>
<td>EXAMPLE 2–18</td>
<td>Listing Subcommands</td>
<td>62</td>
</tr>
<tr>
<td>EXAMPLE 2–19</td>
<td>Listing Timers</td>
<td>63</td>
</tr>
<tr>
<td>EXAMPLE 2–20</td>
<td>Showing Status of a Component</td>
<td>63</td>
</tr>
<tr>
<td>EXAMPLE 2–21</td>
<td>Determining the Methods and Method Parameters That an Object in the Tree Supports</td>
<td>68</td>
</tr>
<tr>
<td>EXAMPLE 2–22</td>
<td>Retrieving Data for an Object in the Tree</td>
<td>70</td>
</tr>
<tr>
<td>EXAMPLE 2–23</td>
<td>Adding an Object to the Tree</td>
<td>71</td>
</tr>
<tr>
<td>EXAMPLE 2–24</td>
<td>Updating an Object in the Tree</td>
<td>73</td>
</tr>
<tr>
<td>EXAMPLE 2–25</td>
<td>Deleting an Object From the Tree</td>
<td>75</td>
</tr>
<tr>
<td>Example Number</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>EXAMPLE 3-1</td>
<td>Creating a Domain</td>
<td>104</td>
</tr>
<tr>
<td>EXAMPLE 3-2</td>
<td>Listing Domains</td>
<td>108</td>
</tr>
<tr>
<td>EXAMPLE 3-3</td>
<td>Logging In To a Domain on a Remote Machine</td>
<td>109</td>
</tr>
<tr>
<td>EXAMPLE 3-4</td>
<td>Logging In to a Domain on the Default Port of Localhost</td>
<td>110</td>
</tr>
<tr>
<td>EXAMPLE 3-5</td>
<td>Deleting a Domain</td>
<td>110</td>
</tr>
<tr>
<td>EXAMPLE 3-6</td>
<td>Starting a Domain</td>
<td>111</td>
</tr>
<tr>
<td>EXAMPLE 3-7</td>
<td>Stopping a Domain (or Server)</td>
<td>112</td>
</tr>
<tr>
<td>EXAMPLE 3-8</td>
<td>Restarting a Domain (or Server)</td>
<td>113</td>
</tr>
<tr>
<td>EXAMPLE 3-9</td>
<td>Restarting a Domain in a Browser</td>
<td>113</td>
</tr>
<tr>
<td>EXAMPLE 3-10</td>
<td>Creating a Service to Restart a DAS Automatically on Windows</td>
<td>114</td>
</tr>
<tr>
<td>EXAMPLE 3-11</td>
<td>Querying the Service to Restart a DAS Automatically on Windows</td>
<td>115</td>
</tr>
<tr>
<td>EXAMPLE 3-12</td>
<td>Creating a Service to Restart a DAS Automatically on Linux</td>
<td>116</td>
</tr>
<tr>
<td>EXAMPLE 3-13</td>
<td>Creating a Service to Restart a Domain Automatically on Oracle Solaris</td>
<td>117</td>
</tr>
<tr>
<td>EXAMPLE 3-14</td>
<td>Suspending the Default Domain</td>
<td>119</td>
</tr>
<tr>
<td>EXAMPLE 3-15</td>
<td>Resuming the Default Domain</td>
<td>120</td>
</tr>
<tr>
<td>EXAMPLE 3-16</td>
<td>Creating a Backup Configuration</td>
<td>122</td>
</tr>
<tr>
<td>EXAMPLE 3-17</td>
<td>Listing All Backup Configurations</td>
<td>122</td>
</tr>
<tr>
<td>EXAMPLE 3-18</td>
<td>Listing Details for a Backup Configuration</td>
<td>123</td>
</tr>
<tr>
<td>EXAMPLE 3-19</td>
<td>Enabling a Backup Configuration</td>
<td>123</td>
</tr>
<tr>
<td>EXAMPLE 3-20</td>
<td>Disabling a Backup Configuration</td>
<td>124</td>
</tr>
<tr>
<td>EXAMPLE 3-21</td>
<td>Deleting a Backup Configuration</td>
<td>124</td>
</tr>
<tr>
<td>EXAMPLE 3-22</td>
<td>Creating a Schedule</td>
<td>125</td>
</tr>
<tr>
<td>EXAMPLE 3-23</td>
<td>Listing Schedules</td>
<td>126</td>
</tr>
<tr>
<td>EXAMPLE 3-24</td>
<td>Deleting a Schedule</td>
<td>126</td>
</tr>
<tr>
<td>EXAMPLE 3-25</td>
<td>Backing Up the Default Domain</td>
<td>127</td>
</tr>
<tr>
<td>EXAMPLE 3-26</td>
<td>Restoring the Default Domain</td>
<td>128</td>
</tr>
<tr>
<td>EXAMPLE 3-27</td>
<td>Listing Backups of the Default Domain</td>
<td>129</td>
</tr>
<tr>
<td>EXAMPLE 3-28</td>
<td>Displaying the DAS Uptime</td>
<td>132</td>
</tr>
<tr>
<td>EXAMPLE 3-29</td>
<td>Changing the Administration Port of a Domain</td>
<td>134</td>
</tr>
<tr>
<td>EXAMPLE 4-1</td>
<td>Creating JVM Options</td>
<td>138</td>
</tr>
<tr>
<td>EXAMPLE 4-2</td>
<td>Listing JVM Options</td>
<td>138</td>
</tr>
<tr>
<td>EXAMPLE 4-3</td>
<td>Deleting a JVM Option</td>
<td>139</td>
</tr>
<tr>
<td>EXAMPLE 4-4</td>
<td>Deleting Multiple JVM Options</td>
<td>140</td>
</tr>
<tr>
<td>EXAMPLE 4-5</td>
<td>Generating a JVM Report</td>
<td>140</td>
</tr>
<tr>
<td>EXAMPLE 4-6</td>
<td>Creating a Profiler</td>
<td>141</td>
</tr>
<tr>
<td>EXAMPLE 4-7</td>
<td>Deleting a Profiler</td>
<td>142</td>
</tr>
<tr>
<td>Example 9–1</td>
<td>Running a Script for Monitoring GlassFish Server</td>
<td>218</td>
</tr>
<tr>
<td>Example 9–2</td>
<td>Listing All Events</td>
<td>219</td>
</tr>
<tr>
<td>Example 9–3</td>
<td>Displaying Detailed Information About an Event</td>
<td>220</td>
</tr>
<tr>
<td>Example 9–4</td>
<td>Registering a Script as a Listener for an Event</td>
<td>222</td>
</tr>
<tr>
<td>Example 9–5</td>
<td>Displaying Information From a Script</td>
<td>222</td>
</tr>
<tr>
<td>Example 9–6</td>
<td>Generating a Counter Statistic</td>
<td>223</td>
</tr>
<tr>
<td>Example 9–7</td>
<td>Generating a Timer Statistic</td>
<td>224</td>
</tr>
<tr>
<td>Example 9–8</td>
<td>Counting the Number of Loaded JSP Technology Pages</td>
<td>225</td>
</tr>
<tr>
<td>Example 9–9</td>
<td>Measuring the Time to Process Web Service Requests</td>
<td>226</td>
</tr>
<tr>
<td>Example 10–1</td>
<td>Creating a Life Cycle Module</td>
<td>232</td>
</tr>
<tr>
<td>Example 10–2</td>
<td>Listing Life Cycle Modules</td>
<td>233</td>
</tr>
<tr>
<td>Example 10–3</td>
<td>Updating a Life Cycle Module</td>
<td>234</td>
</tr>
<tr>
<td>Example 10–4</td>
<td>Deleting a Life Cycle Module</td>
<td>234</td>
</tr>
<tr>
<td>Example 11–1</td>
<td>Starting a Local Repository Daemon</td>
<td>258</td>
</tr>
<tr>
<td>Example 11–2</td>
<td>Configuring the pkg Command to Use a Local Repository</td>
<td>260</td>
</tr>
<tr>
<td>Example 12–1</td>
<td>Starting a Database</td>
<td>267</td>
</tr>
<tr>
<td>Example 12–2</td>
<td>Stopping a Database</td>
<td>268</td>
</tr>
<tr>
<td>Example 12–3</td>
<td>Creating a JDBC Connection Pool</td>
<td>271</td>
</tr>
<tr>
<td>Example 12–4</td>
<td>Listing JDBC Connection Pools</td>
<td>271</td>
</tr>
<tr>
<td>Example 12–5</td>
<td>Contacting a Connection Pool</td>
<td>272</td>
</tr>
<tr>
<td>Example 12–6</td>
<td>Resetting (Flushing) a Connection Pool</td>
<td>273</td>
</tr>
<tr>
<td>Example 12–7</td>
<td>Deleting a JDBC Connection Pool</td>
<td>274</td>
</tr>
<tr>
<td>Example 12–8</td>
<td>Creating a JDBC Resource</td>
<td>279</td>
</tr>
<tr>
<td>Example 12–9</td>
<td>Listing JDBC Resources</td>
<td>280</td>
</tr>
<tr>
<td>Example 12–10</td>
<td>Updating a JDBC Resource</td>
<td>280</td>
</tr>
<tr>
<td>Example 12–11</td>
<td>Deleting a JDBC Resource</td>
<td>281</td>
</tr>
<tr>
<td>Example 13–1</td>
<td>Creating a Connector Connection Pool</td>
<td>296</td>
</tr>
<tr>
<td>Example 13–2</td>
<td>Listing Connector Connection Pools</td>
<td>296</td>
</tr>
<tr>
<td>Example 13–3</td>
<td>Deleting a Connector Connection Pool</td>
<td>298</td>
</tr>
<tr>
<td>Example 13–4</td>
<td>Creating a Connector Resource</td>
<td>299</td>
</tr>
<tr>
<td>Example 13–5</td>
<td>Listing Connector Resources</td>
<td>299</td>
</tr>
<tr>
<td>Example 13–6</td>
<td>Deleting a Connector Resource</td>
<td>301</td>
</tr>
<tr>
<td>Example 13–7</td>
<td>Creating a Resource Adapter Configuration</td>
<td>301</td>
</tr>
<tr>
<td>Example 13–8</td>
<td>Listing Configurations for a Resource Adapter</td>
<td>302</td>
</tr>
<tr>
<td>Example 13–9</td>
<td>Deleting a Resource Adapter Configuration</td>
<td>303</td>
</tr>
<tr>
<td>Example 13–10</td>
<td>Creating a Connector Security Map</td>
<td>304</td>
</tr>
</tbody>
</table>
EXAMPLE 13–11 Listing All Connector Security Maps for a Connector Connection Pool305
EXAMPLE 13–12 Listing Principals for a Specific Security Map for a Connector Connection Pool ...305
EXAMPLE 13–13 Listing Principals of All Connector Security Maps for a Connector Connection Pool ..305
EXAMPLE 13–14 Updating a Connector Security Map ..306
EXAMPLE 13–15 Deleting a Connector Security Map ..306
EXAMPLE 13–16 Creating Connector Work Security Maps ...307
EXAMPLE 13–17 Listing the Connector Work Security Maps ..308
EXAMPLE 13–18 Updating a Connector Work Security Map ..309
EXAMPLE 13–19 Deleting a Connector Work Security Map ..309
EXAMPLE 13–20 Creating an Administered Object ..310
EXAMPLE 13–21 Listing Administered Objects ..311
EXAMPLE 13–22 Deleting an Administered Object ..311
EXAMPLE 14–1 Creating an HTTP Protocol ...317
EXAMPLE 14–2 Listing the Protocols ...317
EXAMPLE 14–3 Deleting a Protocol ..318
EXAMPLE 14–4 Creating an HTTP Configuration ...319
EXAMPLE 14–5 Deleting an HTTP Configuration ...319
EXAMPLE 14–6 Creating a Transport ..320
EXAMPLE 14–7 Listing HTTP Transports ..320
EXAMPLE 14–8 Deleting a Transport ..321
EXAMPLE 14–9 Creating an HTTP Listener ...322
EXAMPLE 14–10 Creating a Network Listener ..322
EXAMPLE 14–11 Listing HTTP Listeners ..322
EXAMPLE 14–12 Updating an HTTP Network Listener ..323
EXAMPLE 14–13 Deleting an HTTP Listener ...323
EXAMPLE 14–14 Configuring an HTTP Listener for SSL ...324
EXAMPLE 14–15 Deleting SSL From an HTTP Listener ...324
EXAMPLE 14–16 Creating a Virtual Server ...326
EXAMPLE 14–17 Listing Virtual Servers ...327
EXAMPLE 14–18 Deleting a Virtual Server ..328
EXAMPLE 15–1 Creating an IIOP Listener ...332
EXAMPLE 15–2 Listing IIOP Listeners ...333
EXAMPLE 15–3 Updating an IIOP Listener ..333
EXAMPLE 15–4 Deleting an IIOP Listener ..334
<table>
<thead>
<tr>
<th>Example</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 16-1</td>
<td>Creating a JavaMail Resource</td>
<td>337</td>
</tr>
<tr>
<td>Example 16-2</td>
<td>Listing JavaMail Resources</td>
<td>337</td>
</tr>
<tr>
<td>Example 16-3</td>
<td>Updating a JavaMail Resource</td>
<td>338</td>
</tr>
<tr>
<td>Example 16-4</td>
<td>Deleting a JavaMail Resource</td>
<td>338</td>
</tr>
<tr>
<td>Example 17-1</td>
<td>Creating a JMS Host</td>
<td>346</td>
</tr>
<tr>
<td>Example 17-2</td>
<td>Listing JMS Hosts</td>
<td>346</td>
</tr>
<tr>
<td>Example 17-3</td>
<td>Updating a JMS Host</td>
<td>348</td>
</tr>
<tr>
<td>Example 17-4</td>
<td>Deleting a JMS Host</td>
<td>348</td>
</tr>
<tr>
<td>Example 17-5</td>
<td>Creating a JMS Connection Factory</td>
<td>350</td>
</tr>
<tr>
<td>Example 17-6</td>
<td>Creating a JMS Destination</td>
<td>350</td>
</tr>
<tr>
<td>Example 17-7</td>
<td>Listing All JMS Resources</td>
<td>351</td>
</tr>
<tr>
<td>Example 17-8</td>
<td>Listing a JMS Resources of a Specific Type</td>
<td>351</td>
</tr>
<tr>
<td>Example 17-9</td>
<td>Deleting a JMS Resource</td>
<td>352</td>
</tr>
<tr>
<td>Example 17-10</td>
<td>Creating a JMS Physical Destination</td>
<td>353</td>
</tr>
<tr>
<td>Example 17-11</td>
<td>Listing JMS Physical Destinations</td>
<td>353</td>
</tr>
<tr>
<td>Example 17-12</td>
<td>Flushing Messages From a JMS Physical Destination</td>
<td>354</td>
</tr>
<tr>
<td>Example 17-13</td>
<td>Deleting a Physical Destination</td>
<td>355</td>
</tr>
<tr>
<td>Example 18-1</td>
<td>Creating a Custom Resource</td>
<td>390</td>
</tr>
<tr>
<td>Example 18-2</td>
<td>Listing Custom Resources</td>
<td>391</td>
</tr>
<tr>
<td>Example 18-3</td>
<td>Updating a Custom JNDI Resource</td>
<td>391</td>
</tr>
<tr>
<td>Example 18-4</td>
<td>Deleting a Custom Resource</td>
<td>391</td>
</tr>
<tr>
<td>Example 18-5</td>
<td>Registering an External JNDI Resource</td>
<td>392</td>
</tr>
<tr>
<td>Example 18-6</td>
<td>Listing JNDI Resources</td>
<td>393</td>
</tr>
<tr>
<td>Example 18-7</td>
<td>Listing JNDI Entries</td>
<td>393</td>
</tr>
<tr>
<td>Example 18-8</td>
<td>Updating an External JNDI Resource</td>
<td>394</td>
</tr>
<tr>
<td>Example 18-9</td>
<td>Deleting an External JNDI Resource</td>
<td>394</td>
</tr>
<tr>
<td>Example 19-1</td>
<td>Stopping the Transaction Service</td>
<td>402</td>
</tr>
<tr>
<td>Example 19-2</td>
<td>Rolling Back a Transaction</td>
<td>403</td>
</tr>
<tr>
<td>Example 19-3</td>
<td>Restarting the Transaction Service</td>
<td>403</td>
</tr>
<tr>
<td>Example 19-4</td>
<td>Manually Recovering Transactions</td>
<td>405</td>
</tr>
</tbody>
</table>
Preface

Oracle GlassFish Server 3.1 Administration Guide provides instructions for configuring and administering Oracle GlassFish Server.

This preface contains information about and conventions for the entire Oracle GlassFish Server (GlassFish Server) documentation set.

GlassFish Server 3.1 is developed through the GlassFish project open-source community at http://glassfish.java.net/. The GlassFish project provides a structured process for developing the GlassFish Server platform that makes the new features of the Java EE platform available faster, while maintaining the most important feature of Java EE: compatibility. It enables Java developers to access the GlassFish Server source code and to contribute to the development of the GlassFish Server. The GlassFish project is designed to encourage communication between Oracle engineers and the community.

The following topics are addressed here:
- “GlassFish Server Documentation Set” on page 25
- “Related Documentation” on page 27
- “Typographic Conventions” on page 28
- “Symbol Conventions” on page 29
- “Default Paths and File Names” on page 29
- “Documentation, Support, and Training” on page 30
- “Searching Oracle Product Documentation” on page 30
- “Third-Party Web Site References” on page 31

GlassFish Server Documentation Set

The GlassFish Server documentation set describes deployment planning and system installation. For an introduction to GlassFish Server, refer to the books in the order in which they are listed in the following table.
TABLE P-1 Books in the GlassFish Server Documentation Set

<table>
<thead>
<tr>
<th>Book Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release Notes</td>
<td>Provides late-breaking information about the software and the documentation and includes a comprehensive, table-based summary of the supported hardware, operating system, Java Development Kit (JDK), and database drivers.</td>
</tr>
<tr>
<td>Quick Start Guide</td>
<td>Explains how to get started with the GlassFish Server product.</td>
</tr>
<tr>
<td>Installation Guide</td>
<td>Explains how to install the software and its components.</td>
</tr>
<tr>
<td>Upgrade Guide</td>
<td>Explains how to upgrade to the latest version of GlassFish Server. This guide also describes differences between adjacent product releases and configuration options that can result in incompatibility with the product specifications.</td>
</tr>
<tr>
<td>Deployment Planning Guide</td>
<td>Explains how to build a production deployment of GlassFish Server that meets the requirements of your system and enterprise.</td>
</tr>
<tr>
<td>Administration Guide</td>
<td>Explains how to configure, monitor, and manage GlassFish Server subsystems and components from the command line by using the <code>asadmin(1M)</code> utility. Instructions for performing these tasks from the Administration Console are provided in the Administration Console online help.</td>
</tr>
<tr>
<td>Security Guide</td>
<td>Provides instructions for configuring and administering GlassFish Server security.</td>
</tr>
<tr>
<td>Application Deployment Guide</td>
<td>Explains how to assemble and deploy applications to the GlassFish Server and provides information about deployment descriptors.</td>
</tr>
<tr>
<td>Application Development Guide</td>
<td>Explains how to create and implement Java Platform, Enterprise Edition (Java EE platform) applications that are intended to run on the GlassFish Server. These applications follow the open Java standards model for Java EE components and application programmer interfaces (APIs). This guide provides information about developer tools, security, and debugging.</td>
</tr>
<tr>
<td>Add-On Component Development Guide</td>
<td>Explains how to use published interfaces of GlassFish Server to develop add-on components for GlassFish Server. This document explains how to perform only those tasks that ensure that the add-on component is suitable for GlassFish Server.</td>
</tr>
<tr>
<td>Embedded Server Guide</td>
<td>Explains how to run applications in embedded GlassFish Server and to develop applications in which GlassFish Server is embedded.</td>
</tr>
<tr>
<td>High Availability Administration Guide</td>
<td>Explains how to configure GlassFish Server to provide higher availability and scalability through failover and load balancing.</td>
</tr>
<tr>
<td>Performance Tuning Guide</td>
<td>Explains how to optimize the performance of GlassFish Server.</td>
</tr>
<tr>
<td>Book Title</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Troubleshooting Guide</td>
<td>Describes common problems that you might encounter when using GlassFish Server and explains how to solve them.</td>
</tr>
<tr>
<td>Error Message Reference</td>
<td>Describes error messages that you might encounter when using GlassFish Server.</td>
</tr>
<tr>
<td>Reference Manual</td>
<td>Provides reference information in man page format for GlassFish Server administration commands, utility commands, and related concepts.</td>
</tr>
<tr>
<td>Message Queue Release Notes</td>
<td>Describes new features, compatibility issues, and existing bugs for GlassFish Server Message Queue.</td>
</tr>
<tr>
<td>Message Queue Technical Overview</td>
<td>Provides an introduction to the technology, concepts, architecture, capabilities, and features of the Message Queue messaging service.</td>
</tr>
<tr>
<td>Message Queue Administration Guide</td>
<td>Explains how to set up and manage a Message Queue messaging system.</td>
</tr>
<tr>
<td>Message Queue Developer's Guide for JMX Clients</td>
<td>Describes the application programming interface in Message Queue for programmatically configuring and monitoring Message Queue resources in conformance with the Java Management Extensions (JMX).</td>
</tr>
<tr>
<td>Message Queue Developer's Guide for Java Clients</td>
<td>Provides information about concepts and procedures for developing Java messaging applications (Java clients) that work with GlassFish Server.</td>
</tr>
<tr>
<td>Message Queue Developer's Guide for C Clients</td>
<td>Provides programming and reference information for developers working with Message Queue who want to use the C language binding to the Message Queue messaging service to send, receive, and process Message Queue messages.</td>
</tr>
</tbody>
</table>

Related Documentation

The following tutorials explain how to develop Java EE applications:

- **Your First Cup: An Introduction to the Java EE Platform** (http://download.oracle.com/javaee/6/firstcup/doc/). For beginning Java EE programmers, this short tutorial explains the entire process for developing a simple enterprise application. The sample application is a web application that consists of a component that is based on the Enterprise JavaBeans specification, a JAX-RS web service, and a JavaServer Faces component for the web front end.

- **The Java EE 6 Tutorial** (http://download.oracle.com/javaee/6/tutorial/doc/). This comprehensive tutorial explains how to use Java EE 6 platform technologies and APIs to develop Java EE applications.
Javadoc tool reference documentation for packages that are provided with GlassFish Server is available as follows.

- The API specification for version 6 of Java EE is located at http://download.oracle.com/javaee/6/api/.
- The API specification for GlassFish Server 3.1, including Java EE 6 platform packages and nonplatform packages that are specific to the GlassFish Server product, is located at http://glassfish.java.net/nonav/docs/v3/api/.

Additionally, the Java EE Specifications (http://www.oracle.com/technetwork/java/javaee/tech/index.html) might be useful.

For information about creating enterprise applications in the NetBeans Integrated Development Environment (IDE), see the NetBeans Documentation, Training & Support page (http://www.netbeans.org/kb/).

For information about the JavaDB database for use with the GlassFish Server, see the JavaDB product page (http://www.oracle.com/technetwork/java/javadb/overview/index.html).

The Java EE Samples project is a collection of sample applications that demonstrate a broad range of Java EE technologies. The Java EE Samples are bundled with the Java EE Software Development Kit (SDK) and are also available from the Java EE Samples project page (http://java.net/projects/glassfish-samples).

Typographic Conventions

The following table describes the typographic changes that are used in this book.

<table>
<thead>
<tr>
<th>Typeface</th>
<th>Meaning</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>AaBbCc123</td>
<td>The names of commands, files, and directories, and onscreen computer output</td>
<td>Edit your .login file. Use ls -a to list all files. machine_name% you have mail.</td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>What you type, contrasted with onscreen computer output</td>
<td>machine_name% su Password:</td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>A placeholder to be replaced with a real name or value</td>
<td>The command to remove a file is rm filename.</td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>Book titles, new terms, and terms to be emphasized (note that some emphasized items appear bold online)</td>
<td>Read Chapter 6 in the User’s Guide. A cache is a copy that is stored locally. Do not save the file.</td>
</tr>
</tbody>
</table>
Symbol Conventions

The following table explains symbols that might be used in this book.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Example</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>Contains optional arguments and command options.</td>
<td>ls [-l]</td>
<td>The -l option is not required.</td>
</tr>
<tr>
<td>{</td>
<td>}</td>
<td>Contains a set of choices for a required command option.</td>
<td>-d {y</td>
</tr>
<tr>
<td>${ }</td>
<td>Indicates a variable reference.</td>
<td>${com.sun.javaRoot}</td>
<td>References the value of the com.sun.javaRoot variable.</td>
</tr>
<tr>
<td>-</td>
<td>Joins simultaneous multiple keystrokes.</td>
<td>Control-A</td>
<td>Press the Control key while you press the A key.</td>
</tr>
<tr>
<td>+</td>
<td>Joins consecutive multiple keystrokes.</td>
<td>Ctrl+A+N</td>
<td>Press the Control key, release it, and then press the subsequent keys.</td>
</tr>
<tr>
<td>→</td>
<td>Indicates menu item selection in a graphical user interface.</td>
<td>File → New → Templates</td>
<td>From the File menu, choose New. From the New submenu, choose Templates.</td>
</tr>
</tbody>
</table>

Default Paths and File Names

The following table describes the default paths and file names that are used in this book.

<table>
<thead>
<tr>
<th>Placeholder</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>as-install</td>
<td>Represents the base installation directory for GlassFish Server. In configuration files, as-install is represented as follows: ${com.sun.aas.installRoot}</td>
<td>Installations on the Oracle Solaris operating system, Linux operating system, and Mac OS operating system: <code>user's-home-directory/glassfish3/glassfish</code> Windows, all installations: <code>SystemDrive:glassfish3\glassfish</code></td>
</tr>
</tbody>
</table>
TABLE P-4 Default Paths and File Names (Continued)

<table>
<thead>
<tr>
<th>Placeholder</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>as-install-parent</td>
<td>Represents the parent of the base installation directory for GlassFish Server.</td>
<td>Installations on the Oracle Solaris operating system, Linux operating system, and Mac operating system: user's-home-directory/glassfish3 Windows, all installations: SystemDrive:\glassfish3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>as-install/</td>
</tr>
<tr>
<td>domain-root-dir</td>
<td>Represents the directory in which a domain is created by default.</td>
<td>domain-root-dir/domain-name</td>
</tr>
<tr>
<td>domain-dir</td>
<td>Represents the directory in which a domain's configuration is stored.</td>
<td>domain-root-dir/domain-name</td>
</tr>
<tr>
<td></td>
<td>In configuration files, domain-dir is represented as follows:</td>
<td>${com.sun.aas.instanceRoot}</td>
</tr>
</tbody>
</table>

Documentation, Support, and Training

The Oracle web site provides information about the following additional resources:

- Documentation (http://www.oracle.com/technetwork/indexes/documentation/index.html)
- Training (http://education.oracle.com/)

Searching Oracle Product Documentation

Besides searching Oracle product documentation from the Oracle Documentation (http://www.oracle.com/technetwork/indexes/documentation/index.html) web site, you can use a search engine by typing the following syntax in the search field:

search-term site:oracle.com

For example, to search for “broker,” type the following:

broker site:oracle.com
Third-Party Web Site References

Third-party URLs are referenced in this document and provide additional, related information.

Note – Oracle is not responsible for the availability of third-party web sites mentioned in this document. Oracle does not endorse and is not responsible or liable for any content, advertising, products, or other materials that are available on or through such sites or resources. Oracle will not be responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by or in connection with use of or reliance on any such content, goods, or services that are available on or through such sites or resources.
Overview of GlassFish Server Administration

Oracle GlassFish Server provides a server for developing and deploying Java Platform Enterprise Edition (Java EE) applications and web Java Web Services.

As an administrator of GlassFish Server, your main responsibilities are to establish a secure GlassFish Server environment and to oversee the services, resources, and users that participate in that environment. Your key tasks include configuring resources and services, managing GlassFish Server at runtime, and fixing problems that are associated with the server. You might also be involved in installing software, integrating add-on components, and deploying applications.

The following topics are addressed here:

- "Default Settings and Locations" on page 33
- "Configuration Tasks" on page 34
- "Administration Tools" on page 42
- "Instructions for Administering GlassFish Server" on page 45

Default Settings and Locations

After installation, you might need to perform some immediate configuration tasks to make your installation function as intended. If configuration defaults have been accepted, some features are enabled and some not. For an overview of initial configuration tasks for GlassFish Server services and resources, see "Initial Configuration Tasks" on page 35.

In addition, you might want to reset default passwords, change names or locations of files, and so on. The following tables list the default administration values.

Note – For the zip bundle of GlassFish Server 3.1, the default administrator login is admin, with no password, which means that no login is required.
Default Administration Values

<table>
<thead>
<tr>
<th>Item</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain Name</td>
<td>domain1</td>
</tr>
<tr>
<td>Master Password</td>
<td>changeit</td>
</tr>
<tr>
<td>Administration Password</td>
<td>admin</td>
</tr>
<tr>
<td>Administration Server Port</td>
<td>4848</td>
</tr>
<tr>
<td>HTTP Port</td>
<td>8080</td>
</tr>
<tr>
<td>HTTPS Port</td>
<td>8181</td>
</tr>
<tr>
<td>Pure JMX Clients Port</td>
<td>8686</td>
</tr>
<tr>
<td>Message Queue Port</td>
<td>7676</td>
</tr>
<tr>
<td>IIOP Port</td>
<td>3700</td>
</tr>
<tr>
<td>IIOP/SSL Port</td>
<td>3820</td>
</tr>
<tr>
<td>IIOP/SSL Port With Mutual Authentication</td>
<td>3920</td>
</tr>
</tbody>
</table>

Default Locations

<table>
<thead>
<tr>
<th>Item</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command-line Utility (asadmin)</td>
<td>as-install/bin</td>
</tr>
<tr>
<td>Configuration Files</td>
<td>domain-dir/config</td>
</tr>
<tr>
<td>Log Files</td>
<td>domain-dir/logs</td>
</tr>
<tr>
<td>Upgrade Tool (asupgrade Command)</td>
<td>as-install/bin</td>
</tr>
<tr>
<td>Update Tool and pkg Command</td>
<td>as-install-parent/bin</td>
</tr>
</tbody>
</table>

For information about replaceable items and default paths and files, see “Default Paths and File Names” on page 29.

Configuration Tasks

Some configuration tasks must be performed directly after installation for your GlassFish Server environment to work as intended. For example, if you are using a database with GlassFish Server, you need to set up database connectivity right away.
Some configuration situations are ongoing and will require you to make changes many times during the life of your installation. You can use either the Administration Console or the asadmin utility to modify the configuration. Changes are automatically applied to the appropriate configuration file.

The following topics are addressed here:
- “Initial Configuration Tasks” on page 35
- “How Dotted Names Work for Configuration” on page 37
- “Configuration Files” on page 38
- “Impact of Configuration Changes” on page 38

Initial Configuration Tasks

This section maps the common configuration tasks to the command–line procedures in this guide. In some situations, the resource or service is automatically enabled and your configuration tasks involve adjusting or changing the default settings to suit your specific needs.

The following resources and services frequently require configuration immediately after installation:

System Properties
See “Administering System Properties” on page 56.

Domains
The initial domain1 is created during installation. Additional configuration tasks might include such tasks as configuring additional domains or setting up automatic restart. See Chapter 3, “Administering Domains.”

JVM
The initial tasks for configuring the JVM include creating JVM options and profilers. See Chapter 4, “Administering the Virtual Machine for the Java Platform.”

Logging
By default, logging is enabled, so basic logging works without additional configuration. However, you might want to change log levels, property values, or the location of log files. See Chapter 7, “Administering the Logging Service.”

Monitoring
By default, the monitoring service is enabled. However, monitoring for the individual modules is not enabled, so your first monitoring task is to enable monitoring for the modules that you want to monitor. See Chapter 8, “Administering the Monitoring Service.”

Life Cycle Modules
See Chapter 10, “Administering Life Cycle Modules.”
Security

- **System Security.** Initial configuration tasks might include setting up passwords, audit modules, and certificates. See Chapter 1, “Administering System Security,” in Oracle GlassFish Server 3.1 Security Guide.

- **Message Security.** Initial configuration tasks might include configuring a Java Cryptography Extension (JCE) provider, enabling default and non-default security providers, and configuring message protection policies. See Chapter 3, “Administering Message Security,” in Oracle GlassFish Server 3.1 Security Guide.

Database Connectivity

The initial tasks involved in configuring GlassFish Server to connect to the Java DB database include creating a Java Database Connectivity (JDBC) connection pool, creating a JDBC resource, and integrating a JDBC driver. See Chapter 12, “Administering Database Connectivity.”

EIS Connectivity

The initial tasks involved in configuring GlassFish Server to connect to an enterprise information system (EIS) include creating a connector connection pool, creating a connector resource, editing a resource adapter configuration, creating a connector security map, creating a connector work security map, and creating an administered object (if needed). See Chapter 13, “Administering EIS Connectivity.”

Internet Connectivity

The initial tasks involved in making deployed web applications accessible by internet clients include creating HTTP network listeners and virtual servers, and configuring the HTTP listeners for SSL (if needed). See Chapter 14, “Administering Internet Connectivity.”

Object Request Broker (ORB)

An initial configuration task might involve creating an IIOP listener. See Chapter 15, “Administering the Object Request Broker (ORB).”

JavaMail Service

An initial configuration task might involve creating a JavaMail resource. See Chapter 16, “Administering the JavaMail Service.”

Java Message Service (JMS)

Initial configuration tasks might include creating a physical destination, creating connection factories or destination resources, creating a JMS host (if the default JMS host is not adequate), adjusting connection pool settings (if needed), and configuring resource adapters for JMS. See Chapter 17, “Administering the Java Message Service (JMS).”

JNDI Service

An initial configuration task might involve creating a JNDI resource. See Chapter 18, “Administering the Java Naming and Directory Interface (JNDI) Service.”
Information and instructions for accomplishing the tasks by using the Administration Console are contained in the Administration Console online help.

How Dotted Names Work for Configuration

After the initial configuration is working, you will continue to manage ongoing configuration for the life of your GlassFish Server installation. You might need to adjust resources to improve productivity, or issues might arise that require settings to be modified or defaults to be reset. In some situations, an asadmin subcommand is provided for updating, such as the update-connector-work-security-map subcommand. However, most updating is done by using the list, get, and set subcommands with dotted names. For detailed information about dotted names, see the dotted-names(5ASC) help page.

Note – Dotted names also apply to monitoring, but the method is different. For information on using dotted names for monitoring, see “How the Monitoring Tree Structure Works” on page 176.

The general process for working with configuration changes on the command line is as follows:

1. List the modules for the component of interest.
 - The following single mode example uses the | (pipe) character and the grep command to narrow the search:

```
asadmin list "*" | grep http | grep listener
```

 Information similar to the following is returned:

 configs.config.server-config.network-config.network-listeners.network-listener.http-listener-1
 configs.config.server-config.network-config.protocols.protocol.admin-listener.admin
 configs.config.server-config.network-config.protocols.protocol.admin-listener.http
 configs.config.server-config.network-config.protocols.protocol.admin-listener.http.file-cache
 configs.config.server-config.network-config.protocols.protocol.http-listener-1
 configs.config.server-config.network-config.protocols.protocol.http-listener-1.http
 configs.config.server-config.network-config.protocols.protocol.http-listener-2
 configs.config.server-config.network-config.protocols.protocol.http-listener-2.ssl

2. Get the attributes that apply to the module you are interested in.
 - The following multimode example gets the attributes and values for http-listener-1:

```
asadmin> get server-config.network-config.network-listeners.network-listener.http-listener-1.*
```

 Information similar to the following is returned:

 server.http-service.http-listener.http-listener-1.address = 0.0.0.0
3. Modify an attribute by using the `set` subcommand.

 This example sets the `security-enabled` attribute of `http-listener-1` to true:

   ```
   ```

Configuration Files

The bulk of the configuration information about GlassFish Server resources, applications, and instances is stored in the `domain.xml` configuration file. This file is the central repository for a given administrative domain and contains an XML representation of the GlassFish Server domain model. The default location for the `domain.xml` file is `as-install/domains/domain-name/config`.

Note
GlassFish Server maintains a backup of the `domain.xml` file that is named `domain.xml.bak`. The purpose of this file is solely to enable GlassFish Server to start a domain if the `domain.xml` file cannot be read. Do not modify or delete the `domain.xml.bak` file and do not use this file for any other purpose.

The `logging.properties` file is used to configure logging levels for individual modules. The default `logging.properties` file is located in the same directory as the `domain.xml` file. For further information on the `logging.properties` file, see "Logging Properties" on page 161.

The `asenv.conf` file is located in the `as-install/config` directory. Its purpose is to store the GlassFish Server environment variables, such as the installation location of the database, Message Queue, and so on.

Note
Changes are automatically applied to the appropriate configuration file. Do not edit the configuration files directly. Manual editing is prone to error and can have unexpected results.

Impact of Configuration Changes

Some configuration changes require that you restart the DAS or GlassFish Server instances for the changes to take effect. Other changes are applied dynamically without requiring that the
DAS or instances be restarted. The procedures in this guide indicate when a restart is required. GlassFish Server enables you to determine whether the DAS or an instance must be restarted to apply configuration changes.

Some changes to resources or connection pools affect the applications that use the resources or connection pools. These changes do not require restart. However, any applications that use the resources or connection pools must be disabled and re-enabled or redeployed for the change to take effect.

The following topics are addressed here:

- “To Determine Whether the DAS or an Instance Requires Restart” on page 39
- “Configuration Changes That Require Restart” on page 40
- “Dynamic Configuration Changes” on page 41
- “Changes That Affect Applications” on page 41

To Determine Whether the DAS or an Instance Requires Restart

1. **Ensure that the DAS is running.**
 To obtain information about the DAS or an instance, a running server is required.

2. **Do one of the following:**
 - **To determine if the DAS requires restart, list the domains in your GlassFish Server installation.**
 Use the `list-domains(1)` subcommand for this purpose.
     ```
     asadmin> list-domains [--domaindir <domain-dir>]
     domain-dir
     The directory that contains the directories in which individual domains' configuration is stored. The default is `as-install/domains`, where `as-install` is the base installation directory of the GlassFish Server software.
     ```
 If the DAS requires restart, a statement that restart is required is displayed.

 - **To determine if an instance requires restart, list information about the instance.**
 Use the `list-instances(1)` subcommand for this purpose.
     ```
     asadmin> list-instances instance-name
     instance-name
     The name of the instance for which you are listing information.
     ```
 If the instance requires restart, one of the following pieces of information is displayed:
 - A statement that restart is required
 - A list of configuration changes that are not yet applied to the instance
Determining if the DAS Requires Restart

This example determines that the DAS for the domain domain1 requires restart to apply configuration changes.

```
asadmin> list-domains
domain1 running, restart required to apply configuration changes
Command list-domains executed successfully.
```

Determining if an Instance Requires Restart

This example determines that the instance pmd-i1 requires restart to apply configuration changes.

```
asadmin> list-instances pmd-i1
pmd-i1 running; requires restart
Command list-instances executed successfully.
```

See Also

- list-domains(1)
- list-instances(1)

You can also view the full syntax and options of the subcommands by typing the following commands at the command line.

- asadmin help list-domains
- asadmin help list-instances

Configuration Changes That Require Restart

The following configuration changes require restart for the changes to take effect:

- Changing JVM options
- Changing port numbers

Note – Changes to some port numbers, for example HTTP listener ports, do not require restart.

- Changing log handler elements
- Configuring certificates
- Managing HTTP, JMS, IIOP, JNDI services
- Enabling or disabling secure administration as explained in “Running Secure Admin” in Oracle GlassFish Server 3.1 Security Guide
Dynamic Configuration Changes

With *dynamic configuration*, changes take effect while the DAS or instance is running. The following configuration changes do not require restart:

- Adding or deleting add-on components
- Adding or removing JDBC, JMS, and connector resources and pools (Exception: Some connection pool properties affect applications.)
- Changing a system property that is not referenced by a JVM option or a port
- Adding file realm users
- Changing logging levels
- Enabling and disabling monitoring
- Changing monitoring levels for modules
- Enabling and disabling resources and applications
- Deploying, undeploying, and redeploying applications

Changes That Affect Applications

Some changes to resources or connection pools affect the applications that use the resources or connection pools. These changes do not require restart. However, any applications that use the resources or connection pools must be disabled and re-enabled or redeployed for the change to take effect.

Note – If you do not know which applications use the changed resources or connection pools, you can apply these changes by restarting the clusters or GlassFish Server instances to which applications are deployed. However, to minimize the disruption to the services that your applications provide, avoid restarting clusters or instances to apply these changes if possible.

The following changes affect applications:

- Creating or deleting resources (Exception: Changes to some JDBC, JMS, or connector resources do not affect applications.)
- Modifying the following JDBC connection pool properties:
 - `datasource-classname`
 - `associate-with-thread`
 - `lazy-connection-association`
 - `lazy-connection-enlistment`
 - JDBC driver vendor-specific properties
- Modifying the following connector connection pool properties:
 - `resource-adapter-name`
 - `connection-definition-name`
Administration Tools

For the most part, you can perform the same tasks by using either the graphical Administration Console or the asadmin command-line utility, however, there are exceptions.

The following GlassFish Server administration tools are described here:

- "Administration Console” on page 42
- "asadmin Utility” on page 43
- “REST Interfaces” on page 43
- “Update Tool” on page 44
- "keytool Utility” on page 44
- “Java Monitoring and Management Console (JConsole)” on page 44

Administration Console

The Administration Console is a browser-based utility that features an easy-to-navigate graphical interface that includes extensive online help for the administrative tasks.

To use the Administration Console, the domain administration server (DAS) must be running. Each domain has its own DAS, which has a unique port number. When GlassFish Server was installed, you chose a port number for the DAS, or used the default port of 4848. You also specified a user name and password if you did not accept the default login (admin with no password).

When specifying the URL for the Administration Console, use the port number for the domain to be administered. The format for starting the Administration Console in a web browser is http://hostname:port. For example:

http://kindness.example.com:4848

If the Administration Console is running on the host where GlassFish Server was installed, specify localhost for the host name. For example:

http://localhost:4848

For Microsoft Windows, an alternate way to start the GlassFish Server Administration Console is by using the Start menu.
You can display the help material for a page in the Administration Console by clicking the Help button on the page. The initial help page describes the functions and fields of the page itself. Associated task instructions can be accessed on additional pages by clicking a link in the See Also list.

asadmin Utility

The asadmin utility is a command-line tool that runs subcommands for identifying the operation or task that you want to perform. You can run asadmin subcommands either from a command prompt or from a script. Running asadmin subcommands from a script is helpful for automating repetitive tasks. Basic information about how the asadmin utility works can be found in the asadmin(1M) help page. For instructions on using the asadmin utility, see "Using the asadmin Utility" on page 49.

To issue an asadmin subcommand in the standard command shell (single mode), go to the as-install/bin directory and type the asadmin command followed by a subcommand. For example:

```
asadmin list-jdbc-resources
```

You can invoke multiple command mode (multimode) by typing asadmin at the command prompt, after which the asadmin> prompt is presented. The asadmin utility continues to accept subcommands until you exit multimode and return to the standard command shell. For example:

```
asadmin> list-jdbc-resources
```

You can display a help page for any asadmin subcommand by typing help before the subcommand name. For example:

```
asadmin> help restart-domain
```

or

```
asadmin help restart-domain
```

A collection of the asadmin help pages is available in HTML and PDF format in the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

REST Interfaces

GlassFish Server provides representational state transfer (REST) interfaces to enable you to access monitoring and configuration data for GlassFish Server, including data that is provided by newly installed add-on components. For more information, see "Using REST Interfaces to Administer GlassFish Server" on page 63.
Update Tool

GlassFish provides a set of image packaging system (IPS) tools for updating software on a deployed GlassFish Server. Typical updates include new releases of GlassFish Server, and new or revised releases of GlassFish Server add-on components or modules.

- The Update Tool graphical utility can either be run in the Administration Console, or invoked from the command line by using the `updatetool` command. You can use either tool to add components. However, to update or remove existing components, you must use the standalone version. Instructions for using the graphical versions of the Update Tool are contained in the Administration Console online help and the standalone Update Tool online help.

- The `pkg` command is the command-line version of Update Tool. Instructions for using the `pkg` command with add-on components are contained in Chapter 11, “Extending and Updating GlassFish Server.”

Two distributions are supported for GlassFish Server: the Web Profile and the Full Platform. After installation, you can view the modules on your system by using the graphical Update Tool or the `pkg` command.

Note – If you chose the Web Profile, you can change to the Full Platform by selecting the comparable Full Platform package in Update Tool. All dependent modules are automatically added.

You can add and delete individual modules from a distribution, but such configurations are not supported.

If you need information on upgrading your domain configuration data to work with a new version of GlassFish Server, see *Oracle GlassFish Server 3.1 Upgrade Guide*.

keytool Utility

The `keytool` utility is used to set up and work with Java Security Socket Extension (JSSE) digital certificates. See “Administering JSSE Certificates” in *Oracle GlassFish Server 3.1 Security Guide* for instructions on using `keytool`.

Java Monitoring and Management Console (JConsole)

Java SE provides tools to connect to an MBean server and view the MBeans that are registered with the server. JConsole is one such popular JMX Connector Client and is available as part of the standard Java SE distribution. For instructions on implementing JConsole in the GlassFish Server environment, see “Configuring JConsole to View GlassFish Server Monitoring Data” on page 214.
Instructions for Administering GlassFish Server

Information and instructions on performing most of the administration tasks from the command line are provided in this document and in the asadmin utility help pages. For instructions on accessing asadmin online help, see “To Display Help Information for the asadmin Utility or a Subcommand” on page 52).

Information and instructions for accomplishing the tasks by using the Administration Console are contained in the Administration Console online help.

Note – Instructions written for the GlassFish Server tools use standard UNIX® forward slashes (/) for directory path separators in commands and file names. If you are running GlassFish Server on a Microsoft Windows system, use backslashes (\) instead. For example:

- UNIX: as-install/bin/asadmin
- Windows: as-install\bin\asadmin

The following additional documents address specific administration areas:

- Installing GlassFish Server software; updating add-on components using the Update Tool
 Oracle GlassFish Server 3.1 Installation Guide
- Verifying and deploying applications
 Oracle GlassFish Server 3.1 Application Deployment Guide
- Diagnosing and resolving problems
 Oracle GlassFish Server 3.1 Troubleshooting Guide
P A R T I

Runtime Administration
This chapter provides instructions for performing general administration tasks in the Oracle GlassFish Server 3.1 environment by using the \texttt{asadmin} command-line utility.

The following topics are addressed here:

- “Using the \texttt{asadmin} Utility” on page 49
- “Administering System Properties” on page 56
- “Administering Resources” on page 58
- “Listing Various System Elements” on page 59
- “Using REST Interfaces to Administer GlassFish Server” on page 63

Instructions for accomplishing the tasks in this chapter by using the Administration Console are contained in the Administration Console online help.

Using the \texttt{asadmin} Utility

Use the \texttt{asadmin} utility to perform administrative tasks for GlassFish Server from the command line or from a script. You can use this utility instead of the Administration Console interface.

The following topics are addressed here:

- “Path to the \texttt{asadmin} Utility” on page 50
- “\texttt{asadmin} Utility Syntax” on page 50
- “To Run an \texttt{asadmin} Utility Subcommand in Single Mode” on page 51
- “To Display Help Information for the \texttt{asadmin} Utility or a Subcommand” on page 52
- “To Start a Multimode Session” on page 53
- “To End a Multimode Session” on page 54
- “To Run a Set of \texttt{asadmin} Subcommands From a File” on page 55
Path to the `asadmin` Utility

The `asadmin` utility is located in the `as-install/bin` directory. To run the `asadmin` utility without specifying the path, ensure that this directory is in your path.

`asadmin` Utility Syntax

The syntax for running the `asadmin` utility is as follows:

```
asadmin [asadmin-util-options] [subcommand [subcommand-options] [operands]]
```

The replaceable items in this syntax are described in the subsections that follow. For full details of this syntax, see the `asadmin(1M)` help page.

Subcommands of the `asadmin` Utility

The `subcommand` identifies the operation or task that you are performing. Subcommands are case-sensitive. Each subcommand is either a local subcommand or a remote subcommand.

- A local subcommand can be run without a running domain administration server (DAS). However, to run the subcommand and have access to the installation directory and the domain directory, the user must be logged in to the machine that hosts the domain.
- A remote subcommand is always run by connecting to a DAS and running the subcommand there. A running DAS is required.

For a list of the subcommands for this release of GlassFish Server, see Section 1 of Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

`asadmin` Utility Options and Subcommand Options

Options control the behavior of the `asadmin` utility and its subcommands. Options are case-sensitive.

The `asadmin` utility has the following types of options:

- **asadmin utility options.** These options control the behavior of the `asadmin` utility, not the subcommand. The `asadmin` utility options may precede or follow the subcommand, but `asadmin` utility options after the subcommand are deprecated. All `asadmin` utility options must either precede or follow the subcommand. If `asadmin` utility options are specified both before and after the subcommand, an error occurs. For a description of the `asadmin` utility options, see the `asadmin(1M)` help page.

- **Subcommand Options.** These options control the behavior of the subcommand, not the `asadmin` utility. Subcommand options must follow the subcommand. For a description of a subcommand's options, see the entry for the subcommand in Oracle GlassFish Server 3.1-3.1.1 Reference Manual.
Note – Not all subcommand options are supported for this release of GlassFish Server. If you specify an unsupported option, a syntax error does not occur. Instead, the command runs successfully and the unsupported option is silently ignored.

A subcommand option may have the same name as an `asadmin` utility option, but the effects of the two options are different.

Options have a long form and a short form.

- The short form of an option has a single dash (`-`) followed by a single character.
- The long form of an option has two dashes (`--`) followed by an option word.

For example, the short form and the long form of the option for specifying terse output are as follows:

- Short form: `-t`
- Long form: `--terse`

Most options require argument values, except Boolean options, which toggle to enable or disable a feature.

Operands of `asadmin` Utility Subcommands

Operands specify the items on which the subcommand is to act. Operands must follow the argument values of subcommand options, and are set off by a space, a tab, or double dashes (`--`). The `asadmin` utility treats anything that follows the subcommand options and their values as an operand.

To Run an `asadmin` Utility Subcommand in Single Mode

In single mode, you must type a separate `asadmin` command for each subcommand that you want to use. After the subcommand has run, you are returned to the operating system’s command shell. Any `asadmin` utility options must be specified in each separate `asadmin` command that you run. If you require the same `asadmin` utility options for multiple subcommands, use the `asadmin` utility in multimode. For more information, see “To Start a Multimode Session” on page 53.

- In the operating system’s command shell, run the `asadmin` utility, specifying the subcommand.
 If necessary, also specify any required `asadmin` utility options, subcommand options, and operands.
Example 2–1 Running an asadmin Utility Subcommand in Single Mode

This example runs the `list-applications(1)` subcommand in single mode. In this example, the default values for all options are used.

The example shows that the application `hello` is deployed on the local host.

```bash
asadmin list-applications
hello <web>
Command list-applications executed successfully.
```

Example 2–2 Specifying an asadmin Utility Option With a Subcommand in Single Mode

This example specifies the `--host asadmin` utility option with the `list-applications` subcommand in single mode. In this example, the DAS is running on the host `srvr1.example.com`.

The example shows that the applications `basic-ezcomp`, `scrumtoys`, `ejb31-war`, and `automatic-timer-ejb` are deployed on the host `srvr1.example.com`.

```bash
asadmin --host srvr1.example.com list-applications
basic-ezcomp <web>
scrumtoys <web>
ejb31-war <ejb, web>
automatic-timer-ejb <ejb>
Command list-applications executed successfully.
```

Example 2–3 Specifying an asadmin Utility Option and a Subcommand Option in Single Mode

This example specifies the `--host asadmin` utility option and the `--type` subcommand option with the `list-applications` subcommand in single mode. In this example, the DAS is running on the host `srvr1.example.com` and applications of type `web` are to be listed.

```bash
asadmin --host srvr1.example.com list-applications --type web
basic-ezcomp <web>
scrumtoys <web>
ejb31-war <ejb, web>
Command list-applications executed successfully.
```

▼ To Display Help Information for the asadmin Utility or a Subcommand

GlassFish Server provides help information about the syntax, purpose, and options of the asadmin utility and its subcommands. This help information is written in the style of UNIX platform man pages. This help information is also available in Oracle GlassFish Server 3.1-3.1.1 Reference Manual.
If you are displaying help information for a remote subcommand, ensure that the server is running.
Remote subcommands require a running server.

Specify the subcommand of interest as the operand of the **help** subcommand.
If you run the **help** subcommand without an operand, help information for the asadmin utility is displayed.

Example 2–4 Displaying Help Information for the asadmin Utility
This example displays the help information for the asadmin utility.
```
asadmin help
```

Example 2–5 Displaying Help Information for an asadmin Utility Subcommand
This example displays the help information for the create-jdbc-resource subcommand.
```
asadmin help create-jdbc-resource
```

See Also
To display the available subcommands, use the **list-commands(1)** subcommand. Local subcommands are displayed before remote subcommands. If the server is not running, only local subcommands are displayed.

To Start a Multimode Session
The asadmin utility can be used in multiple command mode, or **multimode**. In multimode, you run the asadmin utility once to start a multimode session. During the session, the asadmin utility continues to accept subcommands until you end the session and return to the operating system's command shell. Any asadmin utility options that you set for your multimode session are used for all subsequent subcommands in the session.

Note – Starting a multimode session does not require a running DAS.

Do one of the following:

- Run the **asadmin** utility without a subcommand.

- Use the **multimode(1)** subcommand.

If necessary, also specify any asadmin utility options that will apply throughout the multimode session.
In a multimode session, the `asadmin>` prompt is displayed on the command line. You can now type `asadmin` subcommands at this prompt to administer GlassFish Server.

Example 2-6 Starting a Multimode Session With asadmin Utility Options

This example starts a multimode session in which the `asadmin` utility options `-user` and `-passwordfile` are set for the session.

```
asadmin -user admin1 -passwordfile pwd.txt multimode
```

Example 2-7 Starting a Multimode Session by Using the multimode Subcommand

This example uses the `multimode` subcommand to start a multimode session in which the default `asadmin` utility options are used.

```
asadmin multimode
```

The `asadmin>` prompt is displayed on the command line.

Example 2-8 Running a Subcommand in a Multimode Session

This example starts a multimode session and runs the `list-domains` subcommand in the session.

```
asadmin
Enter commands one per "line", ^D to quit
asadmin> list-domains
Name: domain1 Status: Running
Command list-domains executed successfully.
asadmin>
```

More Information Starting a Multimode Session From Within an Existing Multimode Session

You can start a multimode session from within an existing session by running the `multimode` subcommand from within the existing session. After you end the second multimode session, you return to your original multimode session.

See Also

You can also view the full syntax and options of the subcommand by typing `asadmin help multimode` at the command line.

To End a Multimode Session

- At the `asadmin>` prompt, type one of the following commands or key combinations:
 - `exit`
 - `quit`
Caution – Do not type Ctrl-C to end a multimode session. If a domain or GlassFish Server instance is started from the multimode session, typing Ctrl-C kills the domain or instance process.

You are returned to the operating system’s command shell and the asadmin> prompt is no longer displayed. If the asadmin> prompt is still displayed, you might have opened a multimode session within a multimode session. In this situation, repeat this procedure to end the remaining multimode session.

To Run a Set of asadmin Subcommands From a File

Running a set of asadmin subcommands from a file enables you to automate repetitive tasks.

1. Create a plain text file that contains the sequence of subcommands that you want to run.

2. Run the multimode() subcommand, specifying the file that you created.
 If necessary, also specify any asadmin utility options that are required to enable subcommands in the file to run.

Example 2–9 Running a Set of asadmin Subcommands From a File

This example contains the following:

- A listing of a file that is named commands_file.txt, which contains a sequence of asadmin subcommands
- The command to run the subcommands in the file commands_file.txt

The commands_file.txt file contains the asadmin utility subcommands to perform the following sequence of operations:

1. Creating the domain customdomain
2. Starting the domain customdomain
3. Listing all available subcommands
4. Stopping the domain customdomain
5. Deleting the domain customdomain

The content of the commands_file.txt file is as follows:

create-domain --portbase 9000 customdomain
start-domain customdomain
list-commands
customdomain
delete-domain customdomain
This example runs the sequence of subcommands in the commands_file.txt file. Because the --portbase option is specified for the create-domain subcommand in the file, the --port asadmin utility option must also be set.

```
asadmin --port 9048 multimode --file commands_file.txt
```

See Also

For more information about the subcommands in the preceding example, see the following help pages:
- create-domain(1)
- delete-domain(1)
- list-commands(1)
- multimode(1)
- start-domain(1)
- stop-domain(1)

Administering System Properties

Shared server instances will often need to override attributes defined in their referenced configuration. Any configuration attribute can be overridden through a system property of the corresponding name.

The following topics are addressed here:
- “To Create System Properties” on page 56
- “To List System Properties” on page 57
- “To Delete a System Property” on page 57

To Create System Properties

Use the create-system-properties subcommand in remote mode to create or update one or more system properties of the domain or configuration. Any configuration attribute can be overwritten through a system property of the corresponding name.

1 Ensure that the server is running.
Remote subcommands require a running server.

2 Create system properties by using the create-system-properties(1) subcommand.
Information about properties for the subcommand is included in this help page.

Example 2–10 Creating a System Property

This example creates a system property associated with http-listener-port=1088 on localhost.
Asadmin> create-system-properties http-listener-port=1088
Command create-system-properties executed successfully.

See Also
You can also view the full syntax and options of the subcommand by typing asadmin help create-system-properties at the command line.

▼ To List System Properties

Use the list-system-properties subcommand in remote mode to list the system properties that apply to a domain or configuration.

1 Ensure that the server is running.
 Remote subcommands require a running server.

2 List system properties by using the list-system-properties(1) subcommand.
 The existing system properties are displayed, including predefined properties such as HTTP_LISTENER_PORT and HTTP_SSL_LISTENER_PORT.

Example 2–11 Listing System Properties

This example lists the system properties on host localhost.

Asadmin> list-system-properties
http-listener-port=1088
Command list-system-properties executed successfully.

See Also
You can also view the full syntax and options of the subcommand by typing asadmin help list-system-properties at the command line.

▼ To Delete a System Property

Use the delete-system-property subcommand in remote mode to delete system properties.

1 Ensure that the server is running.
 Remote subcommands require a running server.

2 List the existing system properties by using the list-system-properties(1) subcommand.

3 Delete the system property by using the delete-system-property(1) subcommand.

4 If necessary, notify users that the system property has been deleted.
Deleting a System Property

This example deletes a system property named http-listener-port from localhost.

```
asadmin> delete-system-property http-listener-port
Command delete-system-property executed successfully.
```

You can also view the full syntax and options of the subcommand by typing `asadmin help delete-system-property` at the command line.

Administering Resources

This section contains instructions for integrating resources into the GlassFish Server environment. Information about administering specific resources, such as JDBC, is contained in other chapters.

To Add Resources From an XML File

Use the `add-resources` subcommand in remote mode to create the resources named in the specified XML file. The following resources are supported: JDBC connection pool and resource, JMS, JNDI, and JavaMail resources, custom resource, connector resource and work security map, admin object, and resource adapter configuration.

The XML file must reside in the `as-install/domains/domain1/config` directory. If you specify a relative path or simply provide the name of the XML file, this subcommand will prepend `as-install/domains/domain1/config` to this operand.

1 **Ensure that the server is running.**
 Remote subcommands require a running server.

2 **Add resources from an XML file by using the `add-resources()` subcommand.**
 Information about properties for the subcommand is included in this help page.

3 **Restart GlassFish Server.**
 See “To Restart a Domain” on page 112.

Adding Resources

This example creates resources using the contents of the `resource.xml` file on localhost.

```
asadmin> add-resources c:\tmp\resource.xml
Command : JDBC resource jdbc1 created successfully.
Command : JDBC connection pool poolA created successfully.
Command add-resources executed successfully.
```
Listing Various System Elements

The following topics are addressed here:

- “To Display the GlassFish Server Version” on page 59
- “To List Applications” on page 59
- “To List Containers” on page 60
- “To List Modules” on page 61
- “To List Subcommands” on page 62
- “To List Timers” on page 62
- “To Show Component Status” on page 63

▼ To Display the GlassFish Server Version

Use the version subcommand in remote mode to display information about the GlassFish Server version for a particular server. If the subcommand cannot communicate with the server by using the specified login (user/password) and target (host/port) information, then the local version is displayed along with a warning message.

1 Ensure that the server is running.
Remote subcommands require a running server.

2 Display the version by using the version(1) subcommand.

Example 2–14 Displaying Version Information

This example displays the version of GlassFish Server on the local host.

```
asadmin> version
Version = Oracle GlassFish Server 3.0.1 (build 19)
Command version executed successfully.
```

See Also You can also view the full syntax and options of the subcommand by typing asadmin help version at the command line.

▼ To List Applications

Use the list-applications subcommand in remote mode to list the deployed Java applications. If the --type option is not specified, all applications are listed.
1 Ensure that the server is running.
Remote subcommands require a running server.

2 List applications by using the list-applications(1) subcommand.

Example 2–15 Listing Applications

This example lists the web applications on localhost.

```sh
cdome>< list-applications --type web
hellojsp <web>
Command list-applications executed successfully.
```

See Also You can also view the full syntax and options of the subcommand by typing asadmin help list-applications at the command line.

▼ To List Containers

Use the list-containers subcommand in remote mode to list application containers.

1 Ensure that the server is running.
Remote subcommands require a running server.

2 List containers by using the list-containers(1) subcommand.

Example 2–16 Listing Containers

This example lists the containers on localhost.

```sh
cdome>< list-containers
List all known application containers
Container : grizzly
Container : ejb
Container : webservices
Container : ear
Container : appclient
Container : connector
Container : jpa
Container : web
Container : security
Container : webbeans
Command list-containers executed successfully.
```

See Also You can also view the full syntax and options of the subcommand by typing asadmin help list-containers at the command line.
To List Modules

Use the `list-modules` subcommand in remote mode to list the modules that are accessible to the GlassFish Server module subsystem. The status of each module is included. Possible statuses include NEW and READY.

1. **Ensure that the server is running.**
 Remote subcommands require a running server.

2. **List modules by using the `list-modules(1)` subcommand.**

Example 2-17 Listing Modules

This example lists the accessible modules.

```
asadmin> list-modules
```

Information similar to the following is displayed (partial output):

```
List Of Modules
Module : org.glassfish.web.jstl-connector:10.0.0.b28
  properties=(visibility=public,State=READY,Sticky=true)
  Module Characteristics : List of Jars implementing the module
  Jar : file:/C:/Preview/v3_Preview_release/distributions/web/target/glass
        fish/modules/web/jstl-connector.jar
  Module Characteristics : List of imported modules
  Module Characteristics : Provides to following services
Module : org.glassfish.admin.gui.console-common:10.0.0.b28
  properties=(visibility=public,State=NEW,Sticky=true)
Module : org.glassfish.admin.launcher:10.0.0.b28
  properties=(visibility=public,State=NEW,Sticky=true)
Module : org.glassfish.external.commons-codec-repackaged:10.0.0.b28
  properties=(visibility=public,State=NEW,Sticky=true)
Module : com.sun.enterprise.tiger-types-osgi:0.3.32.Preview-b28
  properties=(visibility=public,State=READY,Sticky=true)
  Module Characteristics : List of imported modules
  Module Characteristics : Provides to following services
  Module Characteristics : List of Jars implementing the module
  Jar : file:/C:/Preview/v3_Preview_release/distributions/web/target/glass
        fish/modules/tiger-types-osgi.jar.
...```

Command `list-modules` executed successfully.

See Also  You can also view the full syntax and options of the subcommand by typing `asadmin help list-modules` at the command line.
To List Subcommands

Use the list-commands subcommand in remote mode to list the deployed asadmin subcommands. You can specify that only remote subcommands or only local subcommands are listed. By default, this subcommand displays a list of local subcommands followed by a list of remote subcommands.

1 Ensure that the server is running.
   Remote subcommands require a running server.

2 List subcommands by using the list-commands(1) subcommand.

Example 2–18 Listing Subcommands

This example lists only local subcommands.

    asadmin> list-commands --localonly
    create-domain
    delete-domain
    list-commands
    list-domains
    login
    monitor
    start-database
    start-domain
    stop-domain
    stop-database
    version
    Command list-commands executed successfully.

See Also You can also view the full syntax and options of the subcommand by typing asadmin help list-commands at the command line.

To List Timers

The timer service is a persistent and transactional notification service that is provided by the enterprise bean container and is used to schedule notifications or events used by enterprise beans. All enterprise beans except stateful session beans can receive notifications from the timer service. Persistent timers set by the service are not destroyed when the server is shut down or restarted.

Use the list-timers subcommand in remote mode to list the persistent timers owned by a specific server instance. You can use this information to decide whether to do a timer migration, or to verify that a migration has been completed successfully.

1 Ensure that the server is running.
   Remote subcommands require a running server.
List timers by using the `list-timers(1)` subcommand.

**Example 2–19  Listing Timers**

This example lists the timers in a particular standalone server instance. There is one currently active timer set.

```shell
asadmin> list-timers server
1
The list-timers command was executed successfully.
```

**To Show Component Status**

Use the `show-component-status` subcommand in remote mode to get the status (either enabled or disabled) of the specified deployed component.

1  **Ensure that the server is running.**
Remote subcommands require a running server.

2  **Show component status by using the `show-component-status(1)` subcommand.**

**Example 2–20  Showing Status of a Component**

This example shows the status of the `MEjbApp` component.

```shell
asadmin> show-component-status MEjbApp
Status of MEjbApp is enabled
Command show-component-status executed successfully.
```

**Using REST Interfaces to Administer GlassFish Server**

GlassFish Server provides representational state transfer (REST) interfaces to enable you to access monitoring and configuration data for GlassFish Server, including data that is provided by newly installed add-on components.

You can access the GlassFish Server REST interfaces through client applications such as:

- Web browsers
- `cURL` ([http://curl.haxx.se/](http://curl.haxx.se/))
You can also use the GlassFish Server REST interfaces in REST client applications that are developed in languages such as:

- JavaScript
- Ruby
- Perl
- Java
- JavaFX

The implementation of the GlassFish Server REST interfaces is based on the project Jersey. Project Jersey is the reference implementation of the Java Specification Request (JSR) 311: JAX-RS: The Java API for RESTful Web Services. Information about JSR 311 is also available from the JSR 311 project home page.

The following topics are addressed here:

- "Using REST URLs to Administer GlassFish Server" on page 64
- "Using REST Resource Methods to Administer GlassFish Server" on page 67
- "Resources for asadmin Subcommands That Perform Non-CRUD Operations" on page 76
- "Securing GlassFish Server REST Interfaces" on page 77
- "Formats for Resource Representation of Configuration Objects" on page 78
- "Formats for Resource Representation of Monitoring Objects" on page 88
- "Formats for Resource Representation of Log File Details" on page 96
- "Supported Content Types in Requests to REST Resources" on page 100

Using REST URLs to Administer GlassFish Server

Each object in the configuration and monitoring object trees is represented as a REST resource that is accessible through an HTTP uniform resource locator (URL). Access to REST resources for GlassFish Server monitoring and configuration data requires a running DAS.

REST URLs to Resources for Configuration and Monitoring Objects

The formats of the URLs to resources that represent objects in the configuration and monitoring object trees are as follows:

- **Configuration**: http://host:port/management/domain/path
- **Monitoring**: http://host:port/monitoring/domain/path

The replaceable items in these URLs are as follows:

- **host**
  The host where the DAS is running.

- **port**
  The HTTP port or HTTPS port for administration.
path
The path to the object. The path is the dotted name of the object in which each dot (.) is replaced with a slash (/).

**Note** – The path to a GlassFish Server instance is `servers/server/instance-name`, where `instance-name` is the name of the instance. For the DAS, `instance-name` is `server` and the path is `servers/server/server`.

For more information, see the following documentation:
- The [dotted-names(5ASC)](5ASC) help page
- "How the Monitoring Tree Structure Works" on page 176
- "How Dotted Names Work for Configuration" on page 37

If the URL to a REST resource for GlassFish Server monitoring or configuration data is opened in a web browser, the browser displays a web page that contains the following information about the resource:
- A list of the attributes of the resource and their values. If the resource represents an object in the configuration tree, these attributes are presented in an HTML form that you can use to update the resource. Attributes of a resource for an object in the monitoring tree are read only.
- A list of hypertext links to the children of the resource. This list of links enables you to traverse the tree that contains the resource and to discover the all resources in the tree.
- A list of hypertext links to resources that represent asadmin subcommands for non-CRUD operations on the resource.

The following figure shows the web page for the REST resource for managing a domain.
The server .log file of the DAS is represented as a child that is named view-log of the resource for managing the domain. A child of the resource for the server .log file represents the log file details.

The formats of the URLs to resources that represent the log file are as follows:

- **Log file**: http://host:port/management/domain/view-log
- **Log file details**: http://host:port/monitoring/domain/view-log/details

---

**REST URLs for Accessing the Log File**

![REST Resource for Managing a Domain](http://localhost:4848/management/domain/nodes/node/sj01)
The replaceable items in these URLs are as follows:

- **host**
  - The host where the DAS is running.

- **port**
  - The HTTP port or HTTPS port for administration.

You can use the optional `start` parameter in the URL to the resource for the log file to specify the number of characters at the start of the file to skip. For example, to skip 10,000 characters, specify the URL as `http://localhost:4848/management/domain/view-log?start=10000`. This example assumes that the DAS is running on the local host and uses the default port for administration.

The resource for the log file returns the HTTP header "X-Text-Append-Next", which contains the entire URL to pass to the GET method to return the changes since the last call. You can use this header in client applications to get all log entries that were added in particular interval. For example, by testing the value of the "X-Text-Append-Next" header in a client thread every 10 seconds, you can monitor the log entries that were added in the last 10 seconds.

---

**Using REST Resource Methods to Administer GlassFish Server**

The GlassFish Server REST interfaces support methods for accessing objects in the monitoring and configuration object trees.

The following table shows the REST methods for administering monitoring and configuration data and the tasks that you can perform with each method. These methods are HTTP 1.1 primitives. For the detailed specification of these primitives, see Hypertext Transfer Protocol -- HTTP/1.1 ([http://www.w3.org/Protocols/rfc2616/rfc2616.html](http://www.w3.org/Protocols/rfc2616/rfc2616.html)).

<table>
<thead>
<tr>
<th>Task</th>
<th>REST Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determine the methods and method parameters that an object in the tree supports</td>
<td>GET</td>
</tr>
<tr>
<td>Retrieve data for an object in the tree</td>
<td>GET</td>
</tr>
<tr>
<td>Add an object to the tree</td>
<td>POST</td>
</tr>
<tr>
<td>Update an object in the tree</td>
<td>POST</td>
</tr>
<tr>
<td>Delete an object from the tree</td>
<td>DELETE</td>
</tr>
</tbody>
</table>
The GET determines the methods and method parameters that an object in the tree supports and provides additional information about the object. For details, see “To Retrieve Data for an Object in the Tree” on page 69.

To Determine the Methods and Method Parameters That an Object in the Tree Supports

The methods and method parameters that an object in the tree supports depend on the REST resource that represents the object:

- REST resources for monitoring support only the GET method.
- All REST resources for configuration support the GET method. However, only some REST resources for configuration also support the POST method and the DELETE method.

Before performing any operations on an object in the tree, determine the methods and method parameters that the object supports.

You can specify the format in which this information is presented. For more information, see “Formats for Resource Representation of Configuration Objects” on page 78.

Note – Each POST method and DELETE method that a REST resource supports has an equivalent asadmin subcommand. The parameters of a POST method or a DELETE method correspond to the options of the method’s equivalent asadmin subcommand. For information about the options of asadmin subcommand, see Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

1 Ensure that the server is running.

Operations on REST resources for GlassFish Server data require a running server.

2 Use the GET method on the REST resource that represents the object.

The GET method returns the list of methods that the resource supports. For each method, the list of acceptable message parameters or the list of acceptable query parameters are returned.

Example 2–21 Determining the Methods and Method Parameters That an Object in the Tree Supports

This example uses the cURL utility to determine the methods and method parameters that the resource for the node sj01 supports. The example uses the following options of the cURL utility:

- -X to specify that the GET method is used
- -H to specify that the resource is represented in JavaScript Object Notation (JSON)
In this example, the DAS is running on the local host and the HTTP port for administration is 4848. The resource supports the GET method and the POST method.

Line breaks and white space are added to enhance readability.

{
  "command":"Node",
  "exit_code":"SUCCESS",
  "extraProperties":{
    "commands":{
      ("path": delete-node","command":"delete-node","method":"DELETE"),
      ("path": update-node","command":"update-node","method":"POST"),
      ("path": ping-node-ssh","command":"ping-node-ssh","method":"GET"),
      ("path": update-node-ssh","command":"update-node-ssh","method":"POST"),
      ("path": update-node-config","command":"update-node-config","method":"POST"),
    "methods":{
      ("name":"GET"),
      ("name":"POST","messageParameters":{
        "installDir":("optional":true,"type":string","key":"false"),
        "nodeDir":("optional":true,"type":string","key":"false"),
        "nodeHost":("optional":true,"type":string","key":"false"),
        "method":("optional":true,"type":string","key":"false")
      })
    }
  },
  "entity":{
    "installDir":\"/export/glassfish3",
    "name":"sj01",
    "nodeDir":null,
    "nodeHost":
    "sj01.example.com",
    "type":"SSH"
  },
  "childResources":{
    "application-ref":
    "https:\/\/localhost:4848\/management\/domain\/nodes\/node\/sj01\/application-ref",
    "resource-ref":
    "https:\/\/localhost:4848\/management\/domain\/nodes\/node\/sj01\/resource-ref",
    "ssh-connector":
    "https:\/\/localhost:4848\/management\/domain\/nodes\/node\/sj01\/ssh-connector"
  }
}

▼ To Retrieve Data for an Object in the Tree

Retrieving data for an object in the tree obtains the following information about the REST resource that represents the object:

- A list of the REST methods that the resource supports
- A list of the attributes of the resource and their values
- A list of URLs to the children of the resource

You can specify the format in which this information is presented. For more information, see “Formats for Resource Representation of Configuration Objects” on page 78.
1 Ensure that the server is running.
Operations on REST resources for GlassFish Server data require a running server.

2 Use the GET method on the REST resource that represents the object.

Example 2–22 Retrieving Data for an Object in the Tree

This example uses the cURL utility to retrieve data for the resource for the node sj01. The example uses the following options of the cURL utility:

- `-X` to specify that the GET method is used
- `-H` to specify that the resource is represented in JavaScript Object Notation (JSON)

In this example, the DAS is running on the local host and the HTTP port for administration is 4848.

Line breaks and white space are added to enhance readability.

{
  "command":null,
  "exit_code":null,
  "extraProperties":{
    "commands":{
      "path":null,
      "command":null,
      "method":null
    },
    "methods":{
      "name":null,
      "messageParameters":{
        "installDir":null,
        "nodeDir":null,
        "nodeHost":null,
        "type":null
      }
    }
  },
  "entity":{
    "installDir":null,
    "nodeDir":null,
    "nodeHost":null,
    "type":null
  },
  "childResources":{
    "application-ref":null,
    "resource-ref":null,
    "ssh-connector":null
  }
}
To Add an Object to the Tree

1. **Ensure that the server is running.**
   Operations on REST resources for GlassFish Server data require a running server.

2. **Determine the acceptable message parameters for the POST method of the resource that represents the parent of the object.**
   For information about how to perform this step, see “To Determine the Methods and Method Parameters That an Object in the Tree Supports” on page 68.

3. **Use the POST method on the REST resource that represents the parent of the object that you are adding.**

4. **Confirm that the object has been added.**
   Perform this step on the resource that represents the object that you have just added, not the parent. For information about how to perform this step, see “To Retrieve Data for an Object in the Tree” on page 69.

**Example 2–23 Adding an Object to the Tree**

This example uses the cURL utility to add a JDBC resource object to the tree by creating a REST resource to represent the JDBC resource.

In this example, the DAS is running on the local host and the HTTP port for administration is 4848.

Line breaks are added to enhance readability.

1. This step determines the acceptable message parameters for the POST method of the resource jdbc-resource.

```bash
```
"id":{"acceptableValues":"","optional":"false","type":"string","defaultValue":""},
"poolName":{"acceptableValues":"","optional":"false","type":"string","defaultValue":""},
"property":{"acceptableValues":"","optional":"true","type":"string","defaultValue":""},
"target":{"acceptableValues":"","optional":"true","type":"string","defaultValue":""}
]
}
"childResources":{
 "jdbc\_TimerPool":
 "https:\/\/[localhost:4848\/management\/domain\/resources\/]jdbc-resource\/jdbc%2F\_TimerPool",
 "jdbc\_default":
 "https:\/\/[localhost:4848\/management\/domain\/resources\/]jdbc-resource\/jdbc%2F\_default"
}

2. This step adds a resource as a child of the jdbc-resource resource. The -d option of the cURL utility sets the required message parameters as follows:
   - id is set to jdbc/myjdbcresource.
   - connectionpoolid is set to DerbyPool.

   curl -X POST -d id=jdbc/myjdbcresource -d id=poolName=DerbyPool

3. This step confirms that the object has been added by retrieving data for the REST resource that represents the object.

   curl -X GET -H "Accept: application/json"
   http://localhost:4848/management/domain/resources/
   jdbc-resource/jdbc%2Fmyjdbcresource
   
   
   
   
   "command":"Jdbc-resource",
   "exit_code":"SUCCESS",
   "extraProperties":{
   "commands":[]
   }
   "methods":{
   "name":"GET",
   "name":"POST","messageParameters":{
   "description":{"optional":"true","type":"string","key":"false"},
   "enabled":{"optional":"true","type":"boolean","defaultValue":"true","key":"false"},
   "jndiName":{"optional":"true","type":"string","key":"true"},
   "objectType":{"optional":"true","type":"string","defaultValue":"user","key":"false"},
   "poolName":{"optional":"true","type":"string","key":"false"}
   }},
   "name":"DELETE","messageParameters":{
   "target":{"acceptableValues":"","optional":"true","type":"string","defaultValue":"
   "}}
}
"childResources":{
   "property":
   "https:\/\/[localhost:4848\/management\/domain\/resources\/]jdbc-resource\/jdbc%2Fmyjdbcresource\/property"
}
}
ToUpdateanObjectintheTree

1 Ensure that the server is running.
Operations on REST resources for GlassFish Server data require a running server.

2 Determine the acceptable message parameters for the POST method of the resource that represents the object.
For information about how to perform this step, see “To Determine the Methods and Method Parameters That an Object in the Tree Supports” on page 68.

3 Use the POST method on the REST resource that represents the object that you are updating.

4 Confirm that the object has been updated.
For information about how to perform this step, see “To Retrieve Data for an Object in the Tree” on page 69.

Example 2–24 Updating an Object in the Tree
This example uses the cURL utility to update a JDBC resource in the tree by modifying the REST resource that represents the JDBC resource.
In this example, the DAS is running on the local host and the HTTP port for administration is 4848.
Line breaks are added to enhance readability.

1. This step determines the acceptable message parameters for the POST method of the resource jdbc-myjdbcrercource.

```plaintext
curl -X OPTIONS -H "Accept: application/json"
http://localhost:4848/management/domain/resources/
jdbc-resource/jdbc-myjdbcrercource
{
 "command":"jdbc-resource",
 "exit_code":"SUCCESS",
 "extraProperties":{
 "commands":{},
 "methods":{
 "{"name":"GET"},
 "{"name":"POST","messageParameters":{
 "description":{"optional":true,"type":string",key":"false"},
 "enabled":{"optional":true,"type":boolean",defaultValue":true","key":"false"},
 "jndiName":{"optional":true,"type":string",key":"true"},
 "objectType":{"optional":true,"type":string",defaultValue":true",key":"false"},
 "poolName":{"optional":true,"type":string",key":"false"}
 }
 }"}
 "DELETE",messageParameters":{
 "target":{"acceptableValues":"","optional":true,"type":string",defaultValue":""}
 }
}
Using REST Interfaces to Administer GlassFish Server

2. This step updates the REST resource `jdbc-myjdbcresource` to disable the JDBC resource that `jdbc-myjdbcresource` represents. The `-d` option of the cURL utility sets the `enabled` message parameter to disabled.

```bash
curl -X POST -d "enabled=false"
```

3. This step confirms that the object has been updated by retrieving data for the REST resource that represents the object.

```bash
curl -X GET -H "Accept: application/json"
```

```
"command":"Jdbc-resource",
"exit_code":"SUCCESS",
"extraProperties":{
 "commands":[]
", "methods":{
 "name":"GET",
 "name":"POST","messageParameters":{
 "description":{"optional":true,"type":string,"key":false},
 "enabled":{"optional":true,"type":boolean,"defaultValue":true,"key":false},
 "jndiName":{"optional":true,"type":string,"key":true},
 "objectType":{"optional":true,"type":string,"defaultValue":"
 "user","key":false},
 "poolName":{"optional":true,"type":string,"key":false}
 }
 
,"name":"DELETE","messageParameters":{
 "target":{"acceptableValues":null,"optional":true,"type":string,"defaultValue":null}
 }
 }
 
"entity":{
 "description":null,
 "enabled":false,
 "jndiName":jdbc\myjdbcresource",
 "objectType":"
 "user",
 "poolName":"DerbyPool"
 },
 "childResources":{
 "property":
 "https://\localhost:4848\management\domain\resources\jdbc-resource\jdbc%2Fmyjdbcresource\property"
 }
}
To Delete an Object From the Tree

1. **Ensure that the server is running.**
   Operations on REST resources for GlassFish Server data require a running server.

2. **Confirm that the object can be deleted.**
   For information about how to perform this step, see “To Determine the Methods and Method Parameters That an Object in the Tree Supports” on page 68.

3. **Confirm that the object has been deleted.**
   Perform this step on the resource that represents the parent of the object that you have just deleted. For information about how to perform this step, see “To Retrieve Data for an Object in the Tree” on page 69.

Example 2–25 Deleting an Object From the Tree

This example uses the cURL utility to delete a JDBC resource from the tree by deleting the REST resource that represents the JDBC resource.

In this example, the DAS is running on the local host and the HTTP port for administration is 4848.

Line breaks and white space are added to enhance readability.

1. **This step confirms that the object can be deleted by retrieving the REST methods that the resource jdbc-myjdbcresource supports.**

```bash
{
 "command":"jdbc-resource",
 "exit_code":"SUCCESS",
 "extraProperties":{
 "commands":[]
 },
 "methods":{
 "name":"GET",
 "name":"POST","messageParameters":{
 "description":{"optional":true,"type":"string","key":"false"},
 "enabled":{"optional":true,"type":boolean,"defaultValue":true,"key":"false"},
 "jndiName":{"optional":true,"type":"string","key":true},
 "objectType":{"optional":true,"type":"string","defaultValue":user,"key":false},
 "poolName":{"optional":true,"type":"string","key":false}
 }
 },
 "name":"DELETE","messageParameters":{
 "target":{"acceptableValues":null,"optional":true,"type":string,"defaultValue":""}
 }
}
```
Resources for asadmin Subcommands That Perform Non-CRUD Operations

The GlassFish Server REST interfaces also support operations other than create, read, update, and delete (CRUD) operations, for example:

- State management
- Queries
- Application deployment
These operations are supported through REST resources that represent the asadmin subcommands for performing these operations. Each resource is a child of the resource on which the operation is performed. The child resources do not represent objects in the configuration object tree.

For example, the resource that represents a node provides child resources for the following asadmin subcommands that perform non-CRUD operations on the node:

- ping-node-ssh
- update-node-config
- update-node-ssh

**Securing GlassFish Server REST Interfaces**

The GlassFish Server REST interfaces support the following authentication schemes for securing the REST interfaces:

- Basic authentication over a secure connection
- Authentication by using session tokens

When security is enabled, you must specify https as the protocol in the URLs to REST resources and provide a username and password.

**Setting Up Basic Authentication Over a Secure Connection**

Setting up basic authentication over a secure connection to secure GlassFish Server REST interfaces involves the following sequence of tasks:

1. Adding an admin-realm user to the asadmin user group
2. Enabling Secure Sockets Layer (SSL)

For information about how to perform these tasks from the command line, see the following documentation:

- "To Create an Authentication Realm" in *Oracle GlassFish Server 3.1 Security Guide*
- "To Create a File User" in *Oracle GlassFish Server 3.1 Security Guide*
- "To Configure an HTTP Listener for SSL" on page 324

For information about how to perform these tasks by using the Administration Console, see the following topics in the Administration Console online help:

- To Add a User to the Admin Realm
- To Edit SSL Settings for a Protocol
To Secure REST Interfaces by Using Session Tokens

Basic authentication requires a REST client to cache a user’s credentials to enable the client to pass the credentials with each request. If you require a REST client not to cache credentials, your client must use session tokens for authentication.

1 Request a session token by using the GET method on the resource at http://host:port/management/sessions.
   GlassFish Server uses basic authentication to authenticate the client, generates a session token, and passes the token to the client.

2 In each subsequent request that requires authentication, use the token to authenticate the client.
   a. Create a cookie that is named gfresttoken the value of which is the token.
   b. Send the cookie with the request.

3 When the token is no longer required, retire the token by using the DELETE method on the resource at http://host:port/management/sessions/{tokenvalue}.

   Note – If a client does not explicitly retire a token, the token is retired after 30 minutes of inactivity.

Formats for Resource Representation of Configuration Objects

The GlassFish Server REST interfaces represent resources for configuration objects in the following formats:

- JSON (http://www.json.org/)
- XML
- HTML

GlassFish Server enables you to specify the resource representation through the filename extension in the URL or through the HTTP header:

- To specify the resource representation through the filename extension in the URL, specify the appropriate extension as follows:
  - For JSON, specify the .json extension.
  - For XML, specify the .xml extension.
  - For HTML, omit the extension.
How to specify the resource representation through the HTTP header depends on the client that you are using to access the resource. For example, if you are using the cURL utility, specify the resource representation through the -H option as follows:

- For JSON, specify -H "Accept: application/json".
- For XML, specify -H "Accept: application/xml".
- For HTML, omit the -H option.

**JSON Resource Representation for Configuration Objects**

The general format for the JSON representation of a resource for a configuration object is as follows:

```json
{
 "command": "resource",
 "exit_code": "code",
 "extraProperties": {
 "commands": ["command-list"],
 "methods": ["method-list"],
 "entity": "attributes",
 "childResources": "children"
 }
}
```

The replaceable items in this format are as follows:

- **resource**
  - The name of the resource.

- **code**
  - The result of the attempt to get the resource.

- **command-list**
  - One or more metadata sets separated by a comma (,) that represent the asadmin subcommands for performing non—CRUD operations on the resource. For the format of each metadata set, see "JSON Representation of a Command in a Command List" on page 80.

- **method-list**
  - One or more metadata sets separated by a comma (,) that represent the methods that the resource supports. For the format of each metadata set, see "JSON Representation of a Method in a Method List" on page 80.

- **attributes**
  - Zero or more name-value pairs separated by a comma (,). Each name-value pair is specified as "name": value.

- **children**
  - Zero or more child resources separated by a comma (,). Each child resource is specified as "resource-name": "url".
resource-name
The name of the resource as displayed in client applications that access the parent of the resource.

url
The URL to the child resource.

**JSON Representation of a Command in a Command List**

The JSON representation of a command in a command list is as follows:

```
{
 "path":"command-path",
 "command":"command-name",
 "method":"rest-method"
}
```

The replaceable items in this format are as follows:

- **command-path**
  The relative path to REST resource that represents the command. This path is relative to the URL of the REST resource that is the parent of the resource that represents the command.

- **command-name**
  The name of the command as displayed in client applications that access the resource.

- **rest-method**
  The REST resource method that the command invokes when the command is run. The method is GET, POST, or DELETE.

**JSON Representation of a Method in a Method List**

The JSON representation of a method in a method list is as follows:

```
{
 "name":"method-name",
 "messageParameters":{
 "message-parameter-list"
 },
 "queryParameters":{
 "queryparameter-list"
 }
}
```

The replaceable items in this format are as follows:

- **method-name**
  The name of the method, which is GET, POST, or DELETE.
message-parameter-list
Zero or more metadata sets separated by a comma (,) that represent the message parameters that are allowed for the method. For the format of each metadata set, see “JSON Representation of a Message Parameter or a Query Parameter” on page 81.

query-parameter-list
Zero or more metadata sets separated by a comma (,) that represent the query parameters that are allowed for the method. For the format of each metadata set, see “JSON Representation of a Message Parameter or a Query Parameter” on page 81.

**JSON Representation of a Message Parameter or a Query Parameter**

The JSON representation of a message parameter or a query parameter is as follows:

"parameter-name": {attribute-list}

The replaceable items in this format are as follows:

parameter-name
The name of the parameter.

attribute-list
A comma-separated list of name-value pairs of attributes for the parameter. Each pair is in the following format:

"name": "value"

Possible attributes are as follows:

defaultValue
The default value of the parameter.

acceptableValues
The set or range of acceptable values for the parameter.

type
The data type of the parameter, which is one of the following types:

- boolean
- int
- string

optional
Indicates whether the parameter is optional. If true, the parameter is optional. If false, the parameter is required.

key
Indicates whether the parameter is key. If true, the parameter is key. If false, the parameter is not key.
Example JSON Resource Representation for a Configuration Object

This example shows the JSON representation of the resource for the node sj01. In this example, the DAS is running on the local host and the HTTP port for administration is 4848. The URL to the resource in this example is http://localhost:4848/management/domain/nodes/node/sj01.

Line breaks and white space are added to enhance readability.

```json
{
 "command":"Node",
 "exit_code":"SUCCESS",
 "extraProperties":{
 "commands":{
 "path":"delete-node","command":"delete-node","method":"DELETE"},
 "path":"update-node","command":"update-node","method":"POST"},
 "path":"ping-node-ssh","command":"ping-node-ssh","method":"GET"},
 "path":"update-node-ssh","command":"update-node-ssh","method":"POST"},
 "methods":[
 "name":"GET"},
 "name":"POST","messageParameters":{
 "installDir":{"optional":true,"type":string","key":"false"},
 "nodeName":{"optional":true,"type":string,"key":"false"},
 "nodeHost":{"optional":true,"type":string,"key":"false"},
 "type":{"optional":true,"type":string,"key":"false"}
 }
],
 "entity":{
 "installDir":/export/glassfish3",
 "name":"sj01",
 "nodeName":null,
 "nodeHost":
 "sj01.example.com",
 "type":"SSH"},
 "childResources":{
 "application-ref":
 "https://\localhost:4848\management\domain\nodes\node\sj01\application-ref",
 "resource-ref":
 "https://\localhost:4848\management\domain\nodes\node\sj01\resource-ref",
 "ssh-connector":
 "https://\localhost:4848\management\domain\nodes\node\sj01\ssh-connector"}]
}
```

XML Resource Representation for Configuration Objects

The general format for the XML representation of a resource for a configuration object is as follows:

```xml
<map>
 <entry key="extraProperties">
 <map>
 ...
 </map>
 </entry>
</map>
```
The replaceable items in this format are as follows:

methods
One or more XML elements that represent the methods that the resource supports. For the format of each element, see “XML Representation of a Resource Method” on page 84.

attributes
Zero or more XML elements that represent the attributes of the resource. Each element specifies a name-value pair as follows:

<entry key="name" value="value"></entry>

commands
One or more XML elements that represent the asadmin subcommands for performing non—CRUD operations on the resource. For the format of each element, see “XML Representation of a Command” on page 84.

children
Zero or more XML elements that represent the children of the resource. Each element is specified as follows:

<entry key="resource-name" value="url"></entry>

resource-name
The name of the resource as displayed in client applications that access the parent of the resource.

url
The URL to the child resource.
code
The result of the attempt to get the resource.

resource
The name of the resource.

**XML Representation of a Resource Method**

The XML representation of a method in a method list is as follows:

```xml
<map>
 <entry key="name" value="method-name"></entry>
 <entry key="messageParameters">
 message-parameter-list
 </entry>
 <entry key="queryParameters">
 message-parameter-list
 </entry>
</map>
```

The replaceable items in this format are as follows:

- **method-name**
  The name of the method, which is GET, POST, or DELETE.

- **message-parameter-list**
  Zero or more XML elements that represent the message parameters that are allowed for the method. For the format of each element, see “XML Representation of a Message Parameter or a Query Parameter” on page 85.

- **query-parameter-list**
  Zero or more XML elements that represent the query parameters that are allowed for the method. For the format of each element, see “XML Representation of a Message Parameter or a Query Parameter” on page 85.

**XML Representation of a Command**

The XML representation of a command is as follows:

```xml
<map>
 <entry key="command" value="command-name"></entry>
 <entry key="path" value="command-path"></entry>
 <entry key="method" value="rest-method"></entry>
</map>
```

The replaceable items in this format are as follows:

- **command-name**
  The name of the command as displayed in client applications that access the resource.
command-path
The relative path to REST resource that represents the command. This path is relative to the URL of the REST resource that is the parent of the resource that represents the command.

rest-method
The REST resource method that the command invokes when the command is run. The method is GET, POST, or DELETE.

XML Representation of a Message Parameter or a Query Parameter
The XML representation of a message parameter or a query parameter is as follows:

```xml
<map>
 <entry key="parameter-name">
 <map>
 <attributes/>
 </map>
 </entry>
</map>
```

The replaceable items in this format are as follows:

parameter-name
The name of the parameter.

attributes
One or more XML elements that represent the attributes for the parameter. Each element specifies a name-value pair as follows:

```xml
<entry key="name" value="value"></entry>
```

Possible attributes are as follows:

defaultValue
The default value of the parameter.

acceptableValues
The set or range of acceptable values for the parameter.

type
The data type of the parameter, which is one of the following types:

- boolean
- int
- string

optional
Indicates whether the parameter is optional. If true, the parameter is optional. If false, the parameter is required.

key
Indicates whether the parameter is key. If true, the parameter is key. If false, the parameter is not key.
Example XML Resource Representation

This example shows the XML representation of the resource for the node sj01. In this example, the DAS is running on the local host and the HTTP port for administration is 4848. The URL to the resource in this example is http://localhost:4848/management/domain/nodes/node/sj01.

Line breaks and white space are added to enhance readability.

```xml
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<map>
 <entry key="extraProperties">
 <map>
 <entry key="methods">
 <list>
 <map>
 <entry key="name" value="GET"/>
 </map>
 <map>
 <entry key="name" value="POST"/>
 </map>
 </list>
 <map>
 <entry key="installDir">
 <map>
 <entry key="optional" value="true"/>
 <entry key="type" value="string"/>
 <entry key="key" value="false"/>
 </map>
 </entry>
 <entry key="nodeDir">
 <map>
 <entry key="optional" value="true"/>
 <entry key="type" value="string"/>
 <entry key="key" value="false"/>
 </map>
 </entry>
 <entry key="type">
 <map>
 <entry key="optional" value="true"/>
 <entry key="type" value="string"/>
 <entry key="key" value="false"/>
 </map>
 </entry>
 <entry key="nodeHost">
 <map>
 <entry key="optional" value="true"/>
 <entry key="type" value="string"/>
 <entry key="key" value="false"/>
 </map>
 </entry>
 </map>
 </map>
 </map>
 </entry>
</map>
```
<entry key="installDir" value="/export/glassfish3"/>
<entry key="name" value="sj01"/>
<entry key="nodeDir" value=""/>
<entry key="type" value="SSH"/>
<entry key="nodeHost" value="sj01.example.com"/>
</map>
</entry>
<entry key="commands">
<list>
<map>
<entry key="command" value="delete-node"/>
<entry key="path" value="_delete-node"/>
<entry key="method" value="DELETE"/>
</map>
<map>
<entry key="command" value="update-node"/>
<entry key="path" value="_update-node"/>
<entry key="method" value="POST"/>
</map>
<map>
<entry key="command" value="ping-node-ssh"/>
<entry key="path" value="ping-node-ssh"/>
<entry key="method" value="GET"/>
</map>
<map>
<entry key="command" value="update-node-ssh"/>
<entry key="path" value="update-node-ssh"/>
<entry key="method" value="POST"/>
</map>
<map>
<entry key="command" value="update-node-config"/>
<entry key="path" value="update-node-config"/>
<entry key="method" value="POST"/>
</map>
</list>
</entry>
<entry key="childResources">
<map>
<entry key="application-ref" value="https://localhost:4848/management/domain/nodes/node/sj01/application-ref"/>
<entry key="ssh-connector" value="https://localhost:4848/management/domain/nodes/node/sj01/ssh-connector"/>
<entry key="resource-ref" value="https://localhost:4848/management/domain/nodes/node/sj01/resource-ref"/>
</map>
</entry>
</map>
</entry>
<entry key="message"/>
<entry key="exit_code" value="SUCCESS"/>
<entry key="command" value="Node"/>
</map>
**HTML Resource Representation for Configuration Objects**

The format for the HTML representation of a resource for a configuration object is a web page that provides the following information about the resource:

- A list of the attributes of the resource and their values.
- A list of the methods and method parameters that the resource supports. Each method and its parameters are presented as a field of the appropriate type in an HTML form.
- A list of hypertext links to the children of the resource.
- A list of hypertext links to resources that represent asadmin subcommands for non-CRUD operations on the resource.

For a sample web page, see Figure 2–1. In this example, the DAS is running on the local host and the HTTP port for administration is 4848. The URL to the resource in this example is http://localhost:4848/management/domain/nodes/node/sj01.

**Formats for Resource Representation of Monitoring Objects**

The GlassFish Server REST interfaces represent resources for monitoring data in the following formats:

- **JSON** ([http://www.json.org/](http://www.json.org/))
- **XML**
- **HTML**

**JSON Resource Representation for Monitoring Objects**

The general format for the JSON representation of a resource for a monitoring object is as follows:

```json
{
 "message": "",
 "command": "Monitoring Data",
 "exit_code": "code",
 "extraProperties": {
 "entity": {
 "statistics-list",
 "childResources": {
 "children"
 }
 }
 }
}
```

The replaceable items in this format are as follows:

- **code**: The result of the attempt to get the resource.
statistics-list
Zero or more metadata sets separated by a comma (,) that represent the statistics that the monitoring object provides. For the format of each metadata set, see "JSON Representation of a Statistic in a Statistics List" on page 89.

children
Zero or more child resources separated by a comma (,). Each child resource is specified as "resource-name": "url".

resource-name
The name of the resource as displayed in client applications that access the parent of the resource.

url
The URL to the child resource.

**JSON Representation of a Statistic in a Statistics List**

The JSON representation of a counter statistic in a statistics list is as follows:

```json
"statistic": {
 "count": count,
 "lastsampletime": last-sample-time,
 "description": "description",
 "unit": "unit",
 "name": "name",
 "starttime": start-time
}
```

The JSON representation of a range statistic in a statistics list is as follows:

```json
"statistic": {
 "highwatermark": highest-value,
 "lowwatermark": lowest-value,
 "current": current-value
 "lastsampletime": last-sample-time,
 "description": "description",
 "unit": "unit",
 "name": "name",
 "starttime": start-time
}
```

The replaceable items in these formats are as follows:

statistic
The name of the statistic.

count
Counter statistics only: The current value of the statistic.

highest-value
Range statistics only: The highest value of the statistic since monitoring of the statistic began.
**lowest-value**
Range statistics only: The lowest value of the statistic since monitoring of the statistic began.

**current-value**
Range statistics only: The lowest value of the statistic since monitoring of the statistic began.

**last-sample-time**
The time in UNIX time at which the statistic was last sampled.

**description**
A textual description of what the statistic represents.

**unit**
The unit of measurement of the statistic, which is one of the following units of measurement:

**name**
The name of the statistic as displayed in client applications that access the resource that contains the statistic.

**start-time**
The time in UNIX time at which monitoring of the statistic began.

---

**Example JSON Resource Representation for a Monitoring Object**

This example shows the JSON representation of the monitoring object that provides class loader statistics for the virtual machine for the Java platform. In this example, the DAS is running on the local host and the HTTP port for administration is 4848. The URL to the resource in this example is `http://localhost:4848/monitoring/domain/server/jvm/class-loading-system`.

Line breaks and white space are added to enhance readability.

```json
{
 "message": "",
 "command": "Monitoring Data",
 "exit_code": "SUCCESS",
 "extraProperties": {
 "entity": {
 "loadedclass-count": {
 "count": 8521,
 "lastsampletime": 1300726961018,
 "description": "Number of classes currently loaded in the Java virtual machine",
 "unit": "count",
 "name": "LoadedClassCount",
 "startime": 1300483924126
 },
 "totalloadedclass-count": {
 "count": 8682,
 "lastsampletime": 1300726961018,
 "description": "Total number of classes that have been loaded since the Java virtual machine has started execution",
```
XML Resource Representation for Monitoring Objects

The general format for the XML representation of a resource for a monitoring object is as follows:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<map>
 <entry key="extraProperties">
 <map>
 <entry key="entity">
 <map>
 statistics
 </map>
 </entry>
 <entry key="childResources">
 <map>
 children
 </map>
 </entry>
 </map>
 </entry>
</map>
```

The replaceable items in this format are as follows:

- **statistics**
  - Zero or more XML elements that represent the statistics that the monitoring object provides. For the format of each element, see "XML Representation of a Statistic" on page 92.

- **children**
  - Zero or more XML elements that represent the children of the resource. Each element is specified as follows:
    ```xml
 <entry key="resource-name" value="url"/>
    ```
resource-name
The name of the resource as displayed in client applications that access the parent of the resource.

url
The URL to the child resource.

code
The result of the attempt to get the resource.

**XML Representation of a Statistic**

The XML representation of a counter statistic is as follows:

```xml
<entry key="statistic">
 <map>
 <entry key="unit" value="unit"></entry>
 <entry key="starttime">
 <number>start-time</number>
 </entry>
 <entry key="count">
 <number>count</number>
 </entry>
 <entry key="description">
 <string>description</string>
 </entry>
 <entry key="name">
 <string>name</string>
 </entry>
 <entry key="lastsampletime">
 <number>last-sample-time</number>
 </entry>
 </map>
</entry>
```

The XML representation of a range statistic is as follows:

```xml
<entry key="statistic">
 <map>
 <entry key="unit" value="unit"></entry>
 <entry key="starttime">
 <number>start-time</number>
 </entry>
 <entry key="highwatermark">
 <number>highest-value</number>
 </entry>
 <entry key="lowwatermark">
 <number>lowest-value</number>
 </entry>
 <entry key="current">
 <number>current-value</number>
 </entry>
 <entry key="description">
 <string>description</string>
 </entry>
 <entry key="name">
 <string>name</string>
 </entry>
 <entry key="lastsampletime">
 <number>last-sample-time</number>
 </entry>
 </map>
</entry>
```
The replaceable items in these formats are as follows:

**statistic**
The name of the statistic.

**unit**
The unit of measurement of the statistic, which is one of the following units of measurement:

**start-time**
The in time in UNIX time at which monitoring of the statistic began.

**count**
Counter statistics only: The current value of the statistic.

**highest-value**
Range statistics only: The highest value of the statistic since monitoring of the statistic began.

**lowest-value**
Range statistics only: The lowest value of the statistic since monitoring of the statistic began.

**current-value**
Range statistics only: The lowest value of the statistic since monitoring of the statistic began.

**description**
A textual description of what the statistic represents.

**name**
The name of the statistic as displayed in client applications that access the resource that contains the statistic.

**last-sample-time**
The time in UNIX time at which the statistic was last sampled.

### Example XML Resource Representation for a Monitoring Object

This example shows the XML representation of the monitoring object that provides class loader statistics for the virtual machine for the Java platform. In this example, the DAS is running on the local host and the HTTP port for administration is 4848. The URL to the resource in this example is http://localhost:4848/monitoring/domain/server/jvm/class-loading-system.

Line breaks and white space are added to enhance readability.

```xml
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<map>
 <entry key="extraProperties">
 <map>
 <entry key="entity">
 <map>
 <entry key="unloadedclass-count">
 <map>
```
HTML Resource Representation for Monitoring Objects

The format for the HTML representation of a resource for a monitoring object is a web page that provides the following information about the resource:

- A list of the statistics that the resource provides.
- A list of hypertext links to the children of the resource.

The following figure shows the web page for the REST resource that provides class loader statistics for the virtual machine for the Java platform.

**GlassFish REST Interface**

- **loadeclass-count**
  - count : 9787
  - lastsampletime : 1300741760533
  - description : Number of classes currently loaded in the Java virtual machine
  - unit : count
  - name : LoadedClassCount
  - starttime : 1300483924126

- **totalloadedclass-count**
  - count : 9972
  - lastsampletime : 1300741760533
  - description : Total number of classes that have been loaded since the Java virtual machine has started execution
  - unit : count
  - name : TotalLoadedClassCount
  - starttime : 1300483924127

- **unloadedclass-count**
  - count : 185
  - lastsampletime : 1300741760533
  - description : Total number of classes unloaded since the Java virtual machine has started execution
  - unit : count
  - name : UnLoadedClassCount
  - starttime : 1300483924127
Formats for Resource Representation of Log File Details

The GlassFish Server REST interfaces represent resources for log file details in the following formats:

- JSON (http://www.json.org/)
- XML

**JSON Resource Representation for Log File Details**

The general format for the JSON representation of a resource for log file details is as follows:

```json
{
 "records": [record-list]
}
```

The replaceable items in this format are as follows:

**record-list**
One or more metadata sets separated by a comma (,) that represent the log records in the log file. For the format of each metadata set, see "JSON Representation of a Log Record in a Record List" on page 96.

**JSON Representation of a Log Record in a Record List**

The JSON representation of a log record in a record list is as follows:

```json
{
 "recordNumber": record-number,
 "loggedDateTimeInMS": logged-date,
 "loggedLevel": log-level,
 "productName": productName,
 "loggerName": logger-name,
 "nameValuePairs": ThreadID=thread-id;ThreadName=thread-name;,
 "messageID": message-id,
 "Message": message-text
}
```

The replaceable items in this format are as follows:

**record-number**
A serial number in the form of a decimal integer that uniquely identifies the log record.

**logged-date**
The date and time in UNIX time that the record was created.

**log-level**
The severity level of the message in the log record. For more information, see "Setting Log Levels" on page 164.
The application that created the log message, for example, glassfish3.1.

The fully qualified name of the Java class of the logger class that created the log message. Each component of GlassFish Server provides its own logger class. For detailed information about the names of logger classes in GlassFish Server, see “Logger Namespaces” on page 160.

The numerical identifier of the thread that created the message.

The name of the thread that created the message.

A unique identifier for the message. For messages from GlassFish Server, this identifier consists of a module code and a numerical value, for example, CORE5004. All SEVERE and WARNING messages and some INFO messages from GlassFish Server contain a message identifier. For more information, see Oracle GlassFish Server 3.1 Error Message Reference.

The text of the log message.

Example JSON Resource Representation for Log File Details

This example shows the JSON representation of the resource for log file details. In this example, the DAS is running on the local host and the HTTP port for administration is 4848. The URL to the resource in this example is http://localhost:4848/management/domain/view-log/details.

Line breaks and white space are added to enhance readability.

```
{
 "records": [
 {
 "recordNumber":475,
 "dateTime":1300743782815,
 "level":"INFO",
 "product":"glassfish3.1",
 "loggerName":"org.glassfish.admingui",
 "nameValuePairs": "_ThreadID=25;_ThreadName=Thread-1;",
 "messageID":"",
 "message":"Admin Console: Initializing Session Attributes..."
 },
 {
 "recordNumber":474,
 "dateTime":1300728893368,
 "level":"INFO",
 "product":"glassfish3.1",
 "loggerName":"javax.enterprise.system.core.com.sun.enterprise.v3.admin.adapter",
 "nameValuePairs": "_ThreadID=238;_ThreadName=Thread-1;",
 "messageID":"",
 }
]
}
```
"Message":"The Admin Console application is loaded."

{ "recordNumber":473,  "loggedDateTimeInMS":1300728893367,  "loggedLevel":"INFO",  "productName":"glassfish3.1",  "loggerName":"javax.enterprise.system.core.com.sun.enterprise.v3.server",  "nameValuePairs":"ThreadID=238; ThreadName=Thread-1;",  "messageID":"CORE10010",  "Message":"Loading application __admingui done in 40,063 ms"
}

**XML Resource Representation for Log File Details**

The general format for the XML representation of a resource for log file details is as follows:

```
<records>
 records
</records>
```

The replaceable items in this format are as follows:

- **records**
  One or more XML elements that represent the log records in the log file. For the format of each element, see “XML Representation of a Log Record” on page 98.

**XML Representation of a Log Record**

The XML representation of a log record is as follows:

```
<record loggedDateTimeInMS="logged-date" loggedLevel="log-level"
 loggerName="logger-class-name" messageID="message-id"
 nameValuePairs="ThreadID=thread-id; thread-name;" productName="product-name"
 recordNumber="record-number"/>
```

The replaceable items in this format are as follows:

- **logged-date**
  The date and time in UNIX time that the record was created.

- **log-level**
  The severity level of the message in the log record. For more information, see “Setting Log Levels” on page 164.

- **logger-class-name**
  The fully qualified name of the Java class of the logger class that created the log message. Each component of GlassFish Server provides its own logger class. For detailed information about the names of logger classes in GlassFish Server, see "Logger Namespaces" on page 160.
message-id
A unique identifier for the message. For messages from GlassFish Server, this identifier consists of a module code and a numerical value, for example, CORE5004. All SEVERE and WARNING messages and some INFO messages from GlassFish Server contain a message identifier. For more information, see Oracle GlassFish Server 3.1 Error Message Reference.

thread-id
The numerical identifier of the thread that created the message.

thread-name
The name of the thread that created the message.

product-name
The application that created the log message, for example, glassfish3.1.

record-number
A serial number in the form of a decimal integer that uniquely identifies the log record.

Example XML Resource Representation for Log File Details

This example shows the XML representation of the resource for log file details. In this example, the DAS is running on the local host and the HTTP port for administration is 4848. The URL to the resource in this example is http://localhost:4848/management/domain/view-log/details.

Line breaks and white space are added to enhance readability.

```xml
<records>
 <record loggedDateTimeInMS="1300743782815" loggedLevel="INFO"
 loggerName="org.glassfish.admingui" messageID=""
 nameValuePairs="_ThreadID=25; _ThreadName=Thread-1;"
 productName="glassfish3.1" recordNumber="475"/>
 <record loggedDateTimeInMS="1300728893368" loggedLevel="INFO"
 loggerName="javax.enterprise.system.core.com.sun.enterprise.v3.admin.adapter"
 messageID="" nameValuePairs="_ThreadID=238; _ThreadName=Thread-1;"
 productName="glassfish3.1" recordNumber="474"/>
 <record loggedDateTimeInMS="1300728893367" loggedLevel="INFO"
 loggerName="javax.enterprise.system.core.com.sun.enterprise.v3.server"
 messageID="CORE10010" nameValuePairs="_ThreadID=238; _ThreadName=Thread-1;"
 productName="glassfish3.1" recordNumber="473"/>
</records>
```
Supported Content Types in Requests to REST Resources

The GlassFish Server REST interfaces support the following types in the content-type header of a client request:

- JSON (http://www.json.org/)
- XML
- Form URL encoded

How to specify the type in the content-type header depends on how you are sending the request. For example, if you are using the cURL utility, specify the type through the -H option as follows:

- For JSON, specify `-H "Content-type: application/json"`.
- For XML, specify `-H "Content-type: application/xml"`.
- For form URL encoded, specify `-H "Content-type: application/x-www-form-urlencoded"`. 
Administering Domains

This chapter provides procedures for administering domains in the Oracle GlassFish Server environment by using the asadmin command-line utility.

The following topics are addressed here:

- "About Administering Domains" on page 101
- "Creating, Logging In To, and Deleting a Domain" on page 103
- "Starting and Stopping a Domain" on page 111
- "Configuring a DAS or a GlassFish Server Instance for Automatic Restart" on page 113
- "Suspending and Resuming a Domain" on page 118
- "Setting Up Automatic Backups of a Domain" on page 120
- "Backing Up and Restoring a Domain" on page 127
- "Re-Creating the Domain Administration Server (DAS)" on page 129
- "Additional Domain Tasks" on page 131

Instructions for accomplishing the tasks in this chapter by using the Administration Console are contained in the Administration Console online help.

About Administering Domains

A domain contains a group of GlassFish Server instances that are administered together. Each domain has a domain administration server (DAS) that hosts administrative applications. These concepts are explained in more detail in the following sections:

- "GlassFish Server Instances" on page 102
- "Domains for Administering GlassFish Server" on page 102
- "Domain Administration Server (DAS)" on page 103
GlassFish Server Instances

A GlassFish Server instance is a single Virtual Machine for the Java platform (Java Virtual Machine or JVM machine) on a single node in which GlassFish Server is running. A node defines the host where the GlassFish Server instance resides. The JVM machine must be compatible with the Java Platform, Enterprise Edition (Java EE).

GlassFish Server instances form the basis of an application deployment.

Whenever a domain is created, GlassFish Server creates a default instance that is named server. If a single instance meets your requirements, you can use this instance for deploying applications without the need to administer GlassFish Server instances explicitly. You administer the default instance when you administer its domain.

If you require multiple instances, you must administer the instances explicitly. For more information, see Chapter 5, “Administering GlassFish Server Instances,” in Oracle GlassFish Server 3.1-3.1.1 High Availability Administration Guide.

For an instance, you can also create virtual servers. Virtual servers do not span instances. For many purposes, you can use virtual servers instead of multiple instances in operational deployments. Virtual servers enable you to offer, within a single instance, separate domain names, IP addresses, and some administration capabilities to organizations or individuals. To these users, a virtual server behaves like a dedicated web server, but without the hardware and basic web server maintenance.

For more information about virtual servers, see “Administering Virtual Servers” on page 325.

Domains for Administering GlassFish Server

A domain is an administrative boundary that contains a group of GlassFish Server instances that are administered together. Each instance can belong to only one domain. A domain provides a preconfigured runtime for user applications. Each domain has its own configuration data, log files, and application deployment areas that are independent of other domains. If the configuration is changed for one domain, the configurations of other domains are not affected.

Domains enable different organizations and administrators to share securely a single GlassFish Server installation. Each organization or administrator can administer the instances in a single domain without affecting the instances in other domains.

At installation time, GlassFish Server creates a default domain that is named domain1. After installation, you can create additional domains as necessary.

When a domain is created, you are prompted for the administration user name and password. If you accept the default, the user admin is created without password. To reset the administration password, see “To Change an Administration Password” in Oracle GlassFish Server 3.1 Security Guide.
Domain Administration Server (DAS)

The **domain administration server** (DAS) is a specially designated GlassFish Server instance that hosts administrative applications. The DAS is similar to any other GlassFish Server instance, except that the DAS has additional administration capabilities. The DAS authenticates the administrator, accepts requests from administration tools, and communicates with other instances in the domain to carry out the requests from administration tools.

Each domain has its own DAS with a unique administration port number. The default administration port is 4848, but a different port can be specified when a domain is created.

The DAS has the master copy of the configuration data for all instances in a domain. If an instance is destroyed, for example, because a host failed, the instance can be re-created from the data in the DAS.

The DAS is the default GlassFish Server instance in a domain and is named `server`. If a single instance meets your requirements, you can use the DAS for deploying applications and for administering the domain.

The graphical Administration Console communicates with a specific DAS to administer the domain that is associated with the DAS. Each Administration Console session enables you to configure and manage only one domain. If you create multiple domains, you must start a separate Administration Console session to manage each domain.

Creating, Logging In To, and Deleting a Domain

The following topics are addressed here:

- “To Create a Domain” on page 103
- “To Create a Domain From a Custom Template” on page 104
- “To List Domains” on page 108
- “To Log In to a Domain” on page 108
- “To Delete a Domain” on page 110

**To Create a Domain**

After installing GlassFish Server and creating the default domain (`domain1`), you can create additional domains by using the local `create-domain` subcommand. This subcommand creates the configuration of a domain. Any user who has access to the `asadmin` utility on a given system can create a domain and store the domain configuration in a folder of choice. By default, the domain configuration is created in the default directory for domains. You can override this location to store the configuration elsewhere.

You are required to specify an administrative user when you create a domain, or you can accept the default login identity which is `username admin` with no password.
1 Select a name for the domain that you are creating.
You can verify that a name is not already in use by using the list-domains(1) subcommand.

2 Create a domain by using the create-domain(1) subcommand.
Information about the options for this subcommand is included in this help page.

3 Type an admin user name and password for the domain.
To avoid setting up an admin login, you can accept the default admin, with no password.
Pressing Return also selects the default.

Example 3–1 Creating a Domain
This example creates a domain named domain1. When you type the command, you might be
prompted for login information.

```
asadmin> create-domain --adminport 4848 domain1
Enter admin user name[Enter to accept default]>
Using port 4848 for Admin.
Default port 8080 for HTTP Instance is in use. Using 1161
Using default port 7676 for JMS.
Using default port 3700 for IIOP.
Using default port 8081 for HTTP SSL.
Using default port 3820 for IIOP SSL.
Using default port 3920 for IIOP MUTUALAUTH.
Default port 8686 for JMX ADMIN is in use. Using 1162
Distinguished Name of the self-signed X.509 Server Certificate is:
[CN=moonbeam.gateway.2wire.net,OU=GlassFish,O=Oracle Corp.,L=Redwood Shores,ST
California,C=US]
Domain domain1 created.
Command create-domain executed successfully.
```

To start the Administration Console in a browser, enter the URL in the following format:

```
http://hostname:5000
```

For this example, the domain's log files, configuration files, and deployed applications now
reside in the following directory:

```
domain-root-dir/mydomain
```

See Also You can also view the full syntax and options of the subcommand by typing asadmin help
create-domain at the command line.

To Create a Domain From a Custom Template
A custom template enables you to customize the configuration of any domain that you create
from the template.
1 Create a domain to use as the basis for the template.
   For more information, see “To Create a Domain” on page 103.

2 Use the asadmin utility or the Administration Console to configure the domain.
   Your configuration changes will be included in the template that you create from the domain.

3 Copy the domain's domain.xml file under a new name to the as-install/lib/templates directory.
   A domain's domain.xml file is located in the domain-dir/config directory.

4 In a plain text editor, edit the file that you copied to replace with tokens values that are to be substituted when a domain is created.
   Each token is identified as %%token-name%%, where token-name is one of the following names:

   ADMIN_PORT
   Represents the port number of the HTTP port or the HTTPS port for administration. This token is replaced with one of the following values in the command to create a domain from the template:
   - The value of the --adminport option
   - The value of the domain.adminPort property

   CONFIG_MODEL_NAME
   Represents the name of the configuration that is created for the domain that is being created. This token is replaced with the string server-config.

   DOMAIN_NAME
   Represents the name of the domain that is being created. This token is replaced with the operand of create-domain subcommand.

   HOST_NAME
   Represents the name of the host on which the domain is being created. This token is replaced with the fully qualified hostname of the host where the domain is being created.

   HTTP_PORT
   Represents the port number of the port that is used to listen for HTTP requests. This token is replaced with one of the following values in the command to create a domain from the template:
   - The value of the --instanceport option
   - A value that the create-domain subcommand calculates from the value of the --portbase option
   - The value of the domain.instancePort property
HTTP_SSL_PORT
Represents the port number of the port that is used to listen for secure HTTP requests. This token is replaced with one of the following values in the command to create a domain from the template:
- A value that the create-domain subcommand calculates from the value of the --portbase option
- The value of the http.ssl.port property

JAVA_DEBUGGER_PORT
Represents the port number of the port that is used for connections to the Java Platform Debugger Architecture (JPDA) debugger. This token is replaced with one of the following values in the command to create a domain from the template:
- A value that the create-domain subcommand calculates from the value of the --portbase option
- The value of the java.debugger.port property

JMS_PROVIDER_PORT
Represents the port number for the Java Message Service provider. This token is replaced with one of the following values in the command to create a domain from the template:
- A value that the create-domain subcommand calculates from the value of the --portbase option
- The value of the jms.port property

JMX_SYSTEM_CONNECTOR_PORT
Represents the port number on which the JMX connector listens. This token is replaced with one of the following values in the command to create a domain from the template:
- A value that the create-domain subcommand calculates from the value of the --portbase option
- The value of the domain.jmxPort property

ORB_LISTENER_PORT
Represents the port number of the port that is used for IIOP connections. This token is replaced with one of the following values in the command to create a domain from the template:
- A value that the create-domain subcommand calculates from the value of the --portbase option
- The value of the orb.listener.port property

ORB_MUTUALAUTH_PORT
Represents the port number of the port that is used for secure IIOP connections with client authentication. This token is replaced with one of the following values in the command to create a domain from the template:
A value that the `create-domain` subcommand calculates from the value of the `--portbase` option

The value of the `orb.mutualauth.port` property

**ORB_SSL_PORT**
Represents the port number of the port that is used for secure IIOP connections. This token is replaced with one of the following values in the command to create a domain from the template:

- A value that the `create-domain` subcommand calculates from the value of the `--portbase` option
- The value of the `orb.ssl.port` property

**OSGI_SHELL_TELNET_PORT**
Represents the port number of the port that is used for connections to the Apache Felix Remote Shell. This shell uses the Felix shell service to interact with the OSGi module management subsystem. This token is replaced with one of the following values in the command to create a domain from the template:

- A value that the `create-domain` subcommand calculates from the value of the `--portbase` option
- The value of the `osgi.shell.telnet.port` property

**SERVER_ID**
Represents the name of the DAS for the domain that is being created. This token is replaced with the string `server`.

---

**Tip** – For information about how these tokens are used in the default template, examine the `as-install/lib/templates/domain.xml` file.

---

5  **Create the domain that you want to be based on a custom template.**

In the command to create the domain, pass the name of file that you edited in the previous step as the `--template` option of the `create-domain(1)` subcommand.

6  **Before starting the domain, verify that the domain's domain.xml file is valid.**

Use the `verify-domain-xml(1)` subcommand for this purpose.

Information about the options for this subcommand is included in the subcommand's help page.

**See Also**

- "To Create a Domain" on page 103
- `create-domain(1)`
- `verify-domain-xml(1)`
You can also view the full syntax and options of the subcommands by typing the following commands at the command line.

- `asadmin help create-domain`
- `asadmin help verify-domain-xml`

## To List Domains

Use the `list-domains` subcommand to display a list of domains and their statuses. If the domain directory is not specified, the contents of the default `as-install/domains` directory is listed. If there is more than one domain, the domain name must be specified.

To list domains that were created in other directories, specify the `--domaindir` option.

- **List domains by using the `list-domains()` subcommand.**

### Example 3–2 Listing Domains

This example lists the domains in the default `as-install/domains` directory:

```
asadmin> list-domains
Name: domain1 Status: Running
Name: domain4 Status: Not Running
Name: domain6 Status: Not Running
Command list-domains executed successfully.
```

**See Also** You can also view the full syntax and options of the subcommand by typing `asadmin help list-domain` at the command line.

## To Log In to a Domain

All remote subcommands require that credentials be specified in terms of an administration user name and its password. By default, the domain is created with an identity that allows an `asadmin` user to perform administrative operations when no identity is explicitly or implicitly specified.

The default identity is in the form of a user whose name is `admin` and has no password. If you specify no user name on the command line or on prompt, and specify no password in the `--passwordfile` option or on prompt, and you have never logged in to a domain using either the `login` subcommand or the `create-domain` subcommand with the `----savelogin` option, then the `asadmin` utility will attempt to perform a given administrative operation without specifying any identity.
A server (domain) allows administrative operations to be run using this default identity if the following conditions are true:

- The server (domain) uses file realm for authentication of administrative users.
  If this condition is not true, you will need to specify the user name and password.
- The file realm has one and only one user (what the user name is does not matter).
  If this condition is not true, you will also need to specify the user name.
- That one user has no password.
  If this condition is not true, you will need to specify the password.

By default, all of these conditions are true, unless you have created the domain with a specific user name and password. Thus, by default, the only administrative user is `admin` with no password.

Use the `login` subcommand in local mode to authenticate yourself (log in to) a specific domain. After such login, you do not need to specify the administration user or password for subsequent operations on the domain. The `login` subcommand can only be used to specify the administration password. For other passwords that remote subcommands require, use the `--passwordfile` option, or specify the password at the command prompt. You are always prompted for the administration user name and password.

There is no logout subcommand. If you want to log in to another domain, invoke `asadmin login` with new values for `--host` and `--port`.

1 **Determine the name of the domain that you are logging in to.**

To list the existing domains:
```
asadmin list-domains
```

2 **Log in to the domain by using the `login(1)` command.**

Example 3–3 Logging In To a Domain on a Remote Machine

This example logs into a domain located on another machine. Options are specified before the `login` subcommand.

```
asadmin> --host foo --port 8282 login
Please enter the admin user name>admin Please enter the admin password>
Trying to authenticate for administration of server at host [foo] and port [8282] ...
Login information relevant to admin user name [admin] for host [foo] and admin port [8282] stored at [./asadminpass] successfully. Make sure that this file remains protected. Information stored in this file will be used by asadmin commands to manage associated domain.
```
Example 3–4 Logging In to a Domain on the Default Port of Localhost

This example logs into a domain on `myhost` on the default port. Options are specified before the login subcommand.

```bash
asadmin> --host myhost login
Please enter the admin user name>admin
Please enter the admin password>
Trying to authenticate for administration of server at host [myhost] and port [4848] ...
An entry for login exists for host [myhost] and port [4848], probably from an earlier login operation.
Do you want to overwrite this entry (y/n)?y
Login information relevant to admin user name [admin] for host [myhost] and admin port [4848] stored at [/home/joe/.asadminpass] successfully.
Make sure that this file remains protected. Information stored in this file will be used by asadmin commands to manage associated domain.
```

See Also You can also view the full syntax and options of the subcommand by typing `asadmin help login` at the command line. For additional information about passwords, see “Administering Passwords” in Oracle GlassFish Server 3.1 Security Guide.

To Delete a Domain

Use the `delete-domain` subcommand to delete an existing domain from a server. Only the root user or the operating system user who is authorized to administer the domain can run this subcommand.

Before You Begin A domain must be stopped before it can be deleted.

1 List domains by using the `list-domains(1)` subcommand.

2 If necessary, notify domain users that the domain is being deleted.

3 Ensure that the domain you want to delete is stopped.
   If needed, see “To Stop a Domain” on page 112.

4 Delete the domain by using the `delete-domain(1)` subcommand.

Example 3–5 Deleting a Domain

This example deletes a domain named `domain1` from the location specified.

```bash
asadmin> delete-domain --domaindir ..\domains domain1
Domain domain1 deleted.
Command delete-domain executed successfully.
```

See Also You can also view the full syntax and options of the subcommand by typing `asadmin help delete-domain` at the command line.
Starting and Stopping a Domain

The following topics are addressed here:

- “To Start a Domain” on page 111
- “To Stop a Domain” on page 112
- “To Restart a Domain” on page 112

To Start a Domain

When you start a domain or server, the domain administration server (DAS) is started. After startup, the DAS runs constantly, listening for and accepting requests.

If the domain directory is not specified, the domain in the default `as-install/domains` directory is started. If there are two or more domains, the `domain_name` operand must be specified. Each domain must be started separately.

**Note** – For Microsoft Windows, you can use an alternate method to start a domain. From the Windows Start menu, select the command for your distribution of GlassFish Server:

- If you are using the Full Platform, select Programs → Oracle GlassFish Server → Start Admin Server.
- If you are using the Web Profile, select Programs → Oracle GlassFish Server Web Profile → Start Admin Server.

This subcommand is supported in local mode only.

Start a domain by using the `start-domain(1)` subcommand.

**Example 3–6  Starting a Domain**

This example starts `domain2` in the default domain directory.

```
asadmin start-domain domain2
```

If there is only one domain, you can omit the domain name. If you do not include the password, you might be prompted to supply it.

Name of the domain started: [domain1] and its location:  
[C:\prelude\v3_prelude_release\distributions\web\target\glassfish_domains\domain1].
Admin port for the domain: [4848].

**See Also** You can also view the full syntax and options of the subcommand by typing `asadmin help start-domain` at the command line.
**To Stop a Domain**

Stopping a domain or server shuts down its domain administration server (DAS). When stopping a domain, the DAS stops accepting new connections and then waits for all outstanding connections to complete. This shutdown process takes a few seconds. While the domain is stopped, the Administration Console and most of the asadmin subcommands cannot be used. This subcommand is particularly useful in stopping a runaway server. For more controlled situations, you can use the `restart-domain(1)` subcommand.

---

**Note** – For Microsoft Windows, you can use an alternate method to stop a domain. From the Start menu, select the command for your distribution of GlassFish Server:

- If you are using the Full Platform, select Programs → Oracle GlassFish Server → Stop Admin Server.
- If you are using the Web Profile, select Programs → Oracle GlassFish Server Web Profile → Stop Admin Server.

---

**Note** – If you stop a suspended domain, it will not be in the suspended state when you start it again; it will be running.

1. If necessary, notify users that you are going to stop the domain.
2. Stop the domain by using the `stop-domain(1)` subcommand.

**Example 3–7**  
**Stopping a Domain (or Server)**

This example stops `domain1` in the default directory, where `domain1` is the only domain present in the directory.

```
> asadmin> stop-domain
Waiting for the domain to stop
Command stop-domain executed successfully.
```

**See Also**  
You can also view the full syntax and options of the subcommand by typing `asadmin help stop-domain` at the command line.

---

**To Restart a Domain**

Use the `restart-domain` subcommand in remote mode to restart the Domain Administration Server (DAS) of the specified host. When restarting a domain, the DAS stops accepting new
connections and then waits for all outstanding connections to complete. This shutdown process takes a few seconds. Until the domain has restarted, the Administration Console and most of the asadmin subcommands cannot be used.

This subcommand is particularly useful for environments where the server machine is secured and difficult to get to. With the right credentials, you can restart the server from a remote location as well as from the same machine.

If the server will not restart, use the stop-domain(1) subcommand followed by the start-domain(1) subcommand.

Note – If you restart a suspended domain, it will not be in the suspended state when it starts; it will be running.

1 Ensure that the server is running.
Remote subcommands require a running server.

2 Restart the domain by using the restart-domain(1) subcommand.

Example 3–8 Restarting a Domain (or Server)
This example restarts mydomain4 in the default directory.

asadmin> restart-domain mydomain4
Waiting for the domain to restart ............
Command restart-domain executed successfully.

Example 3–9 Restarting a Domain in a Browser
This example invokes the restart-domain subcommand in a browser.

http://yourhost:4848/__asadmin/restart-domain

See Also You can also view the full syntax and options of the subcommand by typing asadmin help restart-domain at the command line.

Configuring a DAS or a GlassFish Server Instance for Automatic Restart

Use the create-service subcommand in local mode to configure your system to automatically restart a domain administration server (DAS) or a GlassFish Server instance. GlassFish Server enables you to configure a DAS or an instance for automatic restart on the following operating systems:
To ensure that automatic restart functions correctly on Windows, you must prevent service shutdown when a user logs out.

The following topics are addressed here:

- “To Configure a DAS or an Instance for Automatic Restart on Windows” on page 114
- “To Configure a DAS or an Instance for Automatic Restart on Linux” on page 115
- “To Configure a DAS or an Instance for Automatic Restart on Oracle Solaris” on page 116
- “To Prevent Service Shutdown When a User Logs Out on Windows” on page 118

▼ To Configure a DAS or an Instance for Automatic Restart on Windows

On Windows systems, the `create-service` subcommand creates a Windows service to represent the DAS or instance. The service is created in the disabled state. After this subcommand creates the service, you must use the Windows Services Manager or the Windows Services Wrapper to start, stop, uninstall, or install the service. To administer the service from the Windows command line, use the `sc.exe` tool.

This subcommand must be run as the OS-level administrator user.

1 Create the service by using the `create-service(1)` subcommand.

2 After the service is created, start the service by using the Windows Services Manager or the Windows Services Wrapper.

   For example, to start the service for the default domain by using the `sc.exe` tool, type:
   ```
 C:\> sc start domain1
   ```

   If you are using the `sc.exe` tool to administer the service, use the tool as follows:

   - To obtain information about the service, use the `sc query` command.
   - To stop the service, use the `sc stop` command.
   - To uninstall the service, use the `sc delete` command.

Example 3–10  Creating a Service to Restart a DAS Automatically on Windows

This example creates a service for the default domain on a system that is running Windows.

```
asadmin> create-service
Found the Windows Service and successfully uninstalled it.
The Windows Service was created successfully. It is ready to be started. Here are
```
the details:
ID of the service: domain1
Display Name of the service: domain1 GlassFish Server
Domain Directory: C:\glassfishv3\glassfish\domains\domain1
Configuration file for Windows Services Wrapper: C:\glassfishv3\glassfish\domains\domain1\bin\domain1Service.xml
The service can be controlled using the Windows Services Manager or you can use the Windows Services Wrapper instead:
Start Command: C:\glassfishv3\glassfish\domains\domain1\bin\domain1Service.exe start
Stop Command: C:\glassfishv3\glassfish\domains\domain1\bin\domain1Service.exe stop
Uninstall Command: C:\glassfishv3\glassfish\domains\domain1\bin\domain1Service.exe uninstall
Install Command: C:\glassfishv3\glassfish\domains\domain1\bin\domain1Service.exe install
This message is also available in a file named PlatformServices.log in the domain’s root directory
Command create-service executed successfully.

Example 3–11  Querying the Service to Restart a DAS Automatically on Windows

This obtains information about the service for the default domain on a system that is running Windows.

C:\> sc query domain1

SERVICE_NAME: domain1
    TYPE : 10 WIN32 OWN PROCESS
    STATE : 1 STOPPED
    WIN32_EXIT_CODE : 1077 (0x435)
    SERVICE_EXIT_CODE : 0 (0x0)
    CHECKPOINT : 0x0
    WAIT_HINT : 0x0

▼ To Configure a DAS or an Instance for Automatic Restart on Linux

On Linux systems, the create-service subcommand creates a System-V-style initialization script /etc/init.d/GlassFish_domain-or-instance-name and installs a link to this script in any /etc/rcN.d directory that is present, where N is 0, 1, 2, 3, 4, 5, 6, and S. After this subcommand creates the script, you must use this script to start, stop, or restart the domain or instance.

The script automatically restarts the domain or instance only during a reboot. If the domain or instance is stopped, but the host remains running, the domain or instance is not restarted automatically. To restart the domain or instance, you must run the script manually.

You might no longer require the domain or instance to be automatically restarted during a reboot. In this situation, use the operating system to delete the initialization script and the link to the script that the create-service subcommand creates.
The `create-service` subcommand must be run as the OS-level root user.

- **Create the service by using the `create-service(1)` subcommand.**

**Example 3–12  Creating a Service to Restart a DAS Automatically on Linux**

This example creates a service for the default domain on a system that is running Linux.

```
asadmin> create-service
Found the Linux Service and successfully uninstalled it.
The Service was created successfully. Here are the details:
Name of the service: domain1
Type of the service: Domain
Configuration location of the service:/etc/init.d/GlassFish_domain1
User account that will run the service: root
You have created the service but you need to start it yourself.
Here are the most typical Linux commands of interest:

* /etc/init.d/GlassFish_domain1 start
* /etc/init.d/GlassFish_domain1 stop
* /etc/init.d/GlassFish_domain1 restart

For your convenience this message has also been saved to this file:
/export/glassfish3/glassfish/domains/domain1/PlatformServices.log
```

**To Configure a DAS or an Instance for Automatic Restart on Oracle Solaris**

On Oracle Solaris systems, the `create-service` subcommand creates an Oracle Solaris Service Management Facility (SMF) service that restarts a DAS or an instance. The service grants to the process the privileges of the user that runs the process. When you create an SMF service, the default user is the superuser. If you require a different user to run the process, specify the user in `method_credential`.

If your process is to bind to a privileged port of Oracle Solaris, the process requires the `net_privaddr` privilege. The privileged ports of the Oracle Solaris operating system have port numbers less than 1024.

To determine if a user has the `net_privaddr` privilege, log in as that user and type the command `ppriv -l | grep net_privaddr`.

After you create and enable the SMF service, if the domain or instance is stopped, SMF restarts it.

**Before You Begin**

To run the `create-service` subcommand, you must have `solaris.smf.*` authorization. For information about how to set the authorizations, see the `useradd(1M)` man page and the `usermod(1M)` man page. You must also have write permission in the directory tree:
/var/svc/manifest/application/SUNWappserver. Usually, the superuser has both of these permissions. Additionally, Oracle Solaris administration commands such as `svccfg(1M)`, `svcs(1)`, and `auths(1)` must be available in the PATH.

If a particular GlassFish Server domain or instance should not have default user privileges, modify the manifest of the service and reimport the service.

1. **Create the service by using the `create-service(1)` subcommand.**

2. **After the service is created, enable the service by using the `svcadm enable` command.**

   For example, to enable the SMF service for the default domain, type:
   ```
 svcadm enable /appserver/domains/domain1
   ```

**Example 3–13 Creating a Service to Restart a Domain Automatically on Oracle Solaris**

This example creates a service for the default domain on a system that is running Oracle Solaris.

```
asadmin> create-service
The Service was created successfully. Here are the details:
Name of the service:application/GlassFish/domain1
Type of the service:Domain
Configuration location of the service:/home/gfuser/glassfish-installations/glassfishv3/glassfish/domains
Manifest file location on the system:/var/svc/manifest/application/GlassFish/domain1_home_gfuser_glassfish-installations_glassfishv3_glassfish_domains/Domain-service-smf.xml.
You have created the service but you need to start it yourself.
Here are the most typical Solaris commands of interest:
* /usr/bin/svcs -a | grep domain1 // status
* /usr/sbin/svcadm enable domain1 // start
* /usr/sbin/svcadm disable domain1 // stop
* /usr/sbin/svccfg delete domain1 // uninstall
Command create-service executed successfully
```

**See Also**

For information about administering the service, see the following Oracle Solaris documentation:

- Chapter 18, "Managing Services (Overview)," in System Administration Guide: Basic Administration
- Chapter 19, "Managing Services (Tasks)," in System Administration Guide: Basic Administration
- `auths(1)`
- `svcs(1)`
- `svcadm(1M)`
- `svccfg(1M)`
- `useradd(1M)`
To Prevent Service Shutdown When a User Logs Out on Windows

By default, the Java Virtual Machine (VM) receives signals from Windows that indicate that Windows is shutting down, or that a user is logging out of Windows, which causes the system to shut itself down cleanly. This behavior causes the GlassFish Server service to shut down. To prevent the service from shutting down when a user logs out, you must set the `-Xrs` Java VM option (http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/tools/solaris/java.html).

1. Ensure that the DAS is running.

2. Set the `-Xrs` Java VM option for the DAS.
   Use the `create-jvm-options(1)` subcommand for this purpose.
   ```bash
 asadmin> create-jvm-options -Xrs
   ```

3. Set the `-Xrs` Java VM option for the Java VM within which the `asadmin` utility runs.
   To set this option, edit the `asadmin.bat` file to add the `-Xrs` option to the line that runs the `admin-cli.jar` file.
   ```bash
 In the `as-install\bin\asadmin.bat` file, edit the line to read as follows:
 %JAVA% -Xrs -jar "%~dp0..\modules\admin-cli.jar" %*
   ```
   ```bash
 In the `as-install-parent\bin\asadmin.bat` file, edit the line to read as follows:
 %JAVA% -Xrs -jar "%~dp0..\glassfish\modules\admin-cli.jar" %*
   ```

4. If the GlassFish Server service is running, restart the service for your changes to take effect.

Suspending and Resuming a Domain

The following topics are addressed here:

- “To Suspend a Domain” on page 119
- “To Resume a Domain” on page 119
To Suspend a Domain

Use the `suspend-domain` subcommand in remote mode to suspend a specified domain.

Suspending a domain causes the domain administration server (DAS) to enter a state where it will not accept any `asadmin`, Administration Console, or REST API command that might alter the configuration or content of the domain. However, because the DAS is still running, commands that do not change the configuration or content of the domain are accepted and performed. For example, `asadmin list` and `get` commands are available, and the Administration Console is available with view-only access.

Ensure that the server is running.
Remote subcommands require a running server.

Suspend the domain by using the `suspend-domain` subcommand:

```
asadmin> suspend-domain --timeout seconds --message display-message
```

- **--timeout**
  Specifies a time in seconds to wait for certain running operations to complete before suspending the domain. If any such running operation does not complete in this time, the `suspend-domain` subcommand fails. The default time is 30 seconds.

- **--message**
  An optional message that is displayed to administrators who try to perform operations that would be blocked because the domain is suspended. If this option is not used, administrators are only informed that the domain has been suspended and when it was suspended.

### Example 3–14 Suspending the Default Domain

This example suspends the default domain, `domain1`, using the default timeout of 30 seconds and providing an informative message about the suspension.

```
asadmin> suspend-domain --message "Manual backup in progress"
```

The domain was successfully suspended on Sun, 15 Jan 2011 08:30:22 PST. Command suspend-domain executed successfully.

See Also You can also view the full syntax and options of the subcommand by typing `asadmin help suspend-domain` at the command line.

To Resume a Domain

Use the `resume-domain` subcommand in remote mode to resume a specified domain.

Resuming a domain that is suspended causes the domain administration server (DAS) to return to a fully operational state where it will accept and perform all `asadmin`, Administration Console, and REST API commands.
Resume the domain by using the `resume-domain(1)` subcommand.

Example 3–15  Resuming the Default Domain

This example resumes the default domain, `domain1`.

```bash
asadmin> resume-domain
The domain is resumed. (Sun, 15 Jan 2011 08:32:17 PST)
Command `resume-domain` executed successfully.
```

See Also  You can also view the full syntax and options of the subcommand by typing `asadmin help resume-domain` at the command line.

Setting Up Automatic Backups of a Domain

Creating backups is part of regular administrative duties, and GlassFish Server supports two ways to perform this duty:

- Automatically on a scheduled basis, as described in this section
- Manually, as described in “To Back Up a Domain” on page 127

To set up automatic backups, you provide the following information:

- When to perform the backups
- Where to store the backups
- What to back up: the entire content of the domain’s directory or just the content of its `config` subdirectory
- Whether to suspend the domain or to leave it running during the backup operation
- How many previous backups to keep before deleting the oldest one to create a new one

To provide this information, you create and administer `backup configurations`. You can create multiple backup configurations, and so set up automatic backups that serve different purposes. For example, you could create one backup configuration that backs up the entire content of the domain’s directory once every month, and another backup configuration that backs up just the domain’s `config` subdirectory once every week.

When you create a backup configuration, you provide information about when to perform automatic backups by specifying the name of a `schedule` that defines a single event at a specified date and time or a series of events occurring with a specified frequency. Therefore, you must create a backup configuration’s schedule before you create the backup configuration itself. Alternatively, you can use an existing schedule that meets your needs, such as one of the schedules predefined in GlassFish Server: daily, weekly and monthly.
The domain must be running when a backup configuration’s schedule triggers an automatic backup; otherwise, the backup operation will not occur. Additionally, if a scheduled automatic backup is missed because the domain was stopped, the backup is not performed when the domain is started.

By default, when GlassFish Server performs an automatic backup, it suspends the domain before performing the backup operation and resumes the domain after completing the backup operation. You can override this suspension of the domain by using the --activebackupenabled option of the create-backup-config(1) subcommand.

To create and manage backup configurations and schedules in the Administration Console, click the Domain node in the navigation tree and then click the Backup tab on the Domain Attributes page.

The following topics are addressed here:
- “To Create a Backup Configuration” on page 121
- “To List Backup Configurations” on page 122
- “To Enable a Backup Configuration” on page 123
- “To Disable a Backup Configuration” on page 124
- “To Delete a Backup Configuration” on page 124
- “To Create a Schedule” on page 125
- “To List Schedules” on page 126
- “To Delete a Schedule” on page 126

▼ To Create a Backup Configuration

Use the create-backup-config subcommand in remote mode to create a backup configuration.

By default, a backup configuration is enabled when it is created.

Before You Begin

When creating a backup configuration, you specify the name of the schedule that determines when automatic backups are to be performed. Use the list-schedules --full subcommand to find out whether an existing schedule meets your needs. If necessary, use the create-schedule subcommand to create a schedule.

1. **Ensure that the server is running.**
   Remote subcommands require a running server.

2. **Create the backup configuration by using the create-backup-config(1) subcommand:**

   $ sudo -u admin create-backup-config --schedule schedule-name
   - --backupdir backup-directory --configonly=true-or-false
   - --activebackupenabled=true-or-false --autobackupenabled=true-or-false
   - --recyclelimit recycle-limit backup-config-name
--schedule
   Specifies the name of the schedule that determines when automatic backups are to be performed.

--backupdir
   Optionally specifies a directory other than the default
   /install/domains/domain-name/backups where automatic backups are to be stored.

--configonly
   Optionally specifies whether automatic backups are to contain only the config subdirectory
   of the domain or all subdirectories of the domain. The default value is false.

--activebackupenabled
   Optionally specifies whether the automatic backups are to be performed without suspending
   the domain during the backup operation. The default value is false.

--autobackupenabled
   Optionally specifies whether automatic backups are enabled. The default value is true.

--recyclelimit
   Optionally specifies how many backup files to keep. After this limit is reached, the oldest
   existing backup is deleted when a new backup needs to be created. The default value is 25.

Example 3–16  Creating a Backup Configuration

This example creates the backup configuration monthly-full.

```
asadmin> create-backup-config --schedule monthly
 --backupdir /net/backups.example.com/glassfish monthly-full
Command create-backup-config executed successfully.
```

See Also
You can also view the full syntax and options of the subcommand by typing asadmin help
create-backup-config at the command line.

To List Backup Configurations

Use the list-backup-configs subcommand in remote mode to list backup configurations
defined in the domain.

1  Ensure that the server is running.
   Remote subcommands require a running server.

2  List backup configurations by using the list-backup-configs(1) subcommand.

Example 3–17  Listing All Backup Configurations

This example lists all backup configurations.
Example 3–18  Listing Details for a Backup Configuration

This example lists details for the quarterly-full backup configuration.

```
asadmin> list-backup-configs --long quarterly-full
Name of Backup Config :quarterly-full
Auto Backup Enabled :true
Schedule :quarterly
Recycle Limit :25
Config Only backup :false
Active Backup Enabled :false
Backup Directory :/net/backups.example.com/glassfish
Last Backup Attempt :Sat Jan 01 00:00:01 PST 2011
Last Successful Backup :Sat Jan 01 00:00:01 PST 2011

Schedule Details:
NAME SECOND MINUTE HOUR DAY OF WEEK DAY OF MONTH MONTH YEAR
quarterly 0 0 0 * 1 1,4,7,10 *
```

You can also view the full syntax and options of the subcommand by typing asadmin help list-backup-configs at the command line.

To Enable a Backup Configuration

Use the enable-backup-config subcommand in remote mode to enable automatic backups triggered by a specified backup configuration.

Using the enable-backup-config subcommand is equivalent to using the set subcommand to set the auto-backup-enabled attribute of a backup configuration to true.

1  Ensure that the server is running.
Remote subcommands require a running server.

2  Enable the backup configuration by using the enable-backup-config(1) subcommand:
```
asadmin> enable-backup-config backup-config-name
```

Example 3–19  Enabling a Backup Configuration

This example enables the backup configuration quarterly-full.

```
asadmin> enable-backup-config quarterly-full
Command enable-backup-config executed successfully.
```
**To Disable a Backup Configuration**

Use the `disable-backup-config` subcommand in remote mode to disable automatic backups triggered by a specified backup configuration.

Using the `disable-backup-config` subcommand is equivalent to using the `set` subcommand to set the `auto-backup-enabled` attribute of a backup configuration to `false`.

1. Ensure that the server is running.
   Remote subcommands require a running server.

2. Disable the backup configuration by using the `disable-backup-config(1)` subcommand:
   ```
 asadmin> disable-backup-config backup-config-name
   ```

**Example 3–20**  Disabling a Backup Configuration

This example disables the backup configuration `quarterly-full`.

```
asadmin> disable-backup-config quarterly-full
Command disable-backup-config executed successfully.
```

**See Also** You can also view the full syntax and options of the subcommand by typing `asadmin help disable-backup-config` at the command line.

**To Delete a Backup Configuration**

Use the `delete-backup-config` subcommand in remote mode to delete a specified backup configuration.

1. Ensure that the server is running.
   Remote subcommands require a running server.

2. Delete the backup configuration by using the `delete-backup-config(1)` subcommand:
   ```
 asadmin> delete-backup-config backup-config-name
   ```

**Example 3–21**  Deleting a Backup Configuration

This example deletes the backup configuration `quarterly-full`.

```
asadmin> delete-backup-config quarterly-full
Command delete-backup-config executed successfully.
```
To Create a Schedule

Use the create-schedule subcommand in remote mode to create a schedule.

A schedule defines a single event at a specified date and time, such as “on January 1, 2012 at 8:00:00”, or a series of events occurring with a specified frequency, such as “on the first and sixteenth of every month as midnight”.

The create-schedule subcommand uses an event-specification model similar to EJB timers to define a single event or a recurring event. It provides event control for year, month, hour, minute and second units directly, and for day units in terms of both days of the week and days of the month. See create-schedule(1) for complete information about recurrence options for each unit.

GlassFish Server provides three predefined schedules:

- daily, which specifies every day at midnight
- weekly, which specifies every week on Sunday at midnight
- monthly, which specifies every month on the first at midnight

You can use these schedules just as they are defined, or you can edit them to suit your needs.

1 Ensure that the server is running.
Remote subcommands require a running server.

2 Create the schedule by using the create-schedule(1) subcommand.

Example 3–22 Creating a Schedule

This example creates the schedule quarterly, which specifies a recurring frequency of “on the first day of every quarter at midnight”.

```
asadmin> create-schedule --dayofmonth 1 --month 1,4,7,10 quarterly
Command create-schedule executed successfully.
```

See Also You can also view the full syntax and options of the subcommand by typing asadmin help delete-backup-config at the command line.
To List Schedules

Use the list-schedules subcommand in remote mode to list schedules defined in the domain.

1 Ensure that the server is running.
Remote subcommands require a running server.

2 List schedules by using the list-schedules(1) subcommand.

Example 3–23 Listing Schedules

This example lists all schedules using the --long option to display details for each schedule.

```
asadmin> list-schedules --long
NAME SECOND MINUTE HOUR DAY OF WEEK DAY OF MONTH MONTH YEAR
daily 0 0 0 * * * *
weekly 0 0 0 Sun * * *
monthly 0 0 0 * 1 * *
quartely 0 0 0 * 1 1,4,7,10 *
```

Command list-schedules executed successfully.

See Also You can also view the full syntax and options of the subcommand by typing asadmin help list-schedules at the command line.

To Delete a Schedule

Use the delete-schedule subcommand in remote mode to delete a specified schedule.

Note – If you attempt to delete a schedule that is in use by a backup configuration, the delete-schedule subcommand fails.

1 Ensure that the server is running.
Remote subcommands require a running server.

2 Delete the schedule by using the delete-schedule(1) subcommand:
```
asadmin> delete-schedule schedule-name
```

Example 3–24 Deleting a Schedule

This example deletes the schedule quarterly.
```
asadmin> delete-schedule quarterly
Command delete-schedule executed successfully.
```
You can also view the full syntax and options of the subcommand by typing `asadmin help delete-schedule` at the command line.

# Backing Up and Restoring a Domain

Creating backups is part of regular administrative duties, and GlassFish Server supports two ways to perform this duty:

- Automatically on a scheduled basis, as described in “Setting Up Automatic Backups of a Domain” on page 120
- Manually, as described in this section

The following topics are addressed here:

- “To Back Up a Domain” on page 127
- “To Restore a Domain” on page 128
- “To List Domain Backups” on page 129

## To Back Up a Domain

Use the `backup-domain` subcommand in local mode to make a backup of a specified domain.

When you use the `backup-domain` subcommand, GlassFish Server creates a ZIP file backup of all the files and subdirectories in the domain’s directory, `domain-root-dir/domain-name`, except for the backups subdirectory.

The `backup-domain` subcommand provides several options to meet particular needs, including:

- `-backupdir` to specify a directory in which to store the backup instead of the default `domain-root-dir/domain-name/backups`.
- `-description` to provide a description of the backup to be stored in the backup itself.

1. **Ensure that the domain is stopped or suspended.**
   
   The `backup-domain` subcommand operates only when the domain is stopped or suspended.

2. **Back up the domain by using the `backup-domain(1)` subcommand.**

3. **Restore the domain to its previous state, if necessary.**

   Start or resume the domain.

### Example 3–25  Backing Up the Default Domain

This example makes a backup of the default domain, `domain1`, storing the backup file in `/net/backups.example.com/glassfish`:  

```bash
$ asadmin backup-domain domain1 -backupdir /net/backups.example.com/glassfish
```
To Restore a Domain

Use the `restore-domain` subcommand in local mode to use a backup file to restore the files and subdirectories in a specified domain's directory.

The `restore-domain` subcommand can use backup files created by the `backup-domain` subcommand and by automatic backup configurations, both full backups and configuration-only backups. Automatic backup configurations are available only in Oracle GlassFish Server.

1. **If necessary, notify domain users that the domain is being restored from backup.**

2. **Ensure that the domain is stopped.**
   The `restore-domain` subcommand operates only when the domain is stopped.
   To determine whether the domain is running, use the `list-domains(1)` subcommand, as described in “To List Domains” on page 108.
   To stop the domain, use the `stop-domain(1)` subcommand as described in “To Stop a Domain” on page 112.

3. **Restore backup files for a domain by using the `restore-domain(1)` subcommand.**

4. **Verify that the restore has succeeded.**

5. **If necessary, notify users that the domain has been restored and is available.**

**Example 3–26** Restoring the Default Domain

This example restores files for the default domain, `domain1`, from the most recent backup stored in a specified backup directory:

```
asadmin> restore-domain --backupdir /net/backups.example.com/glassfish domain1
Restored the domain (domain1) to /home/user1/glassfish3/glassfish/domains/domain1
Command restore-domain executed successfully.
```

**See Also** You can also view the full syntax and options of the subcommand by typing `asadmin help restore-domain` at the command line.
To List Domain Backups

Use the `list-backups` subcommand in local mode to display information about backups of a specified domain stored in a specified backup directory.

The `list-backups` subcommand provides several options to meet particular needs, including:

- `-backupdir` to specify a directory where backups are stored instead of the default `domain-root-dir/domain-name/backups`.

List backups by using the `list-backups(1)` subcommand.

Example 3–27 Listing Backups of the Default Domain

This example lists the backups of the default domain, domain1, that are stored in the `/net/backups.example.com/glassfish` directory:

```
$ asadmin list-backups -backupdir /net/backups.example.com/glassfish domain1

CONFIG USER BACKUP DATE FILENAME
 monthly-full user1 Mon Jan 17 08:16:22 PST 2011 domain1_2011_01_17_v00001.zip
monthly-full user1 Wed Dec 01 00:00:00 PST 2010 domain1_2010_12_01_v00001.zip
monthly-full user1 Sat Jan 01 00:00:03 PST 2011 domain1_2011_01_01_v00001.zip
monthly-full user1 Tue Feb 01 00:00:01 PST 2011 domain1_2011_02_01_v00001.zip
```

Note that this listing includes backups created automatically by a backup configuration. This feature is available only in Oracle GlassFish Server.

See Also You can also view the full syntax and options of the subcommand by typing `asadmin help list-backups` at the command line.

Re-Creating the Domain Administration Server (DAS)

For mirroring purposes, and to provide a working copy of the DAS, you must have:

- One host (olddashost) that contains the original DAS.
- A second host (apphost) that contains a cluster with server instances running applications and catering to clients. The cluster is configured using the DAS on the first host.
- A third host (newdashost) where the DAS needs to be re-created in a situation where the first host crashes or is being taken out of service.
Note – You must maintain a backup of the DAS from the first host using the `backup-domain` subcommand as described in “To Back Up a Domain” on page 127. You can automatically maintain a backup of the DAS using the automatic backups feature of Oracle GlassFish Server.

▼ To Migrate the DAS

The following steps are required to migrate the DAS from the first host (olddashost) to the third host (newdashost).

1 Install GlassFish Server on newdashost just as it was installed on olddashost.
   This is required so that the DAS can be properly restored on newdashost without causing path conflicts.

2 Use the `restore-domain` subcommand to restore the latest backup file onto newdashost.
   For example:
   ```shell
 asadmin> restore-domain --backupdir /net/backups.example.com/glassfish
   ```
   This example assumes that backups are stored in a network-accessible location. If this is not the case, manually copy the latest backup file from offline storage to a directory on newdashost.
   If you have both configuration-only and full backups, restore the latest full backup first. Then, restore the latest configuration-only backup if it is newer than the latest full backup. Use the `--backupconfig` option of the `restore-domain` subcommand to specify the appropriate full and configuration-only backups.
   You can backup any domain. However, while re-creating the domain, the domain name should be same as the original.

3 Stop the domain on olddashost, if it is running.

4 Start the domain on newdashost by using the `start-domain` subcommand.
   For example:
   ```shell
 asadmin> start-domain domain1
   ```

5 If the domain on olddashost was centrally administered, set up centralized administration on newdashost.

6 Verify that instances on other hosts are visible to the new DAS on newdashost:
   ```shell
 asadmin> list-instances --long
   ```
7 Update instances on apphost to communicate with the new DAS.
   If the domain uses centralized administration, use the `update-admin-server-coordinates` subcommand on newdashost:
   ```
asadmin> update-admin-server-coordinates
   ```
   If the domain does not use centralized administration, use the `update-admin-server-local-coordinates` subcommand on apphost:
   ```
asadmin> update-admin-server-local-coordinates
 --adminhost host3 --adminport port-number node-name
   ```

8 Use the new DAS to restart clusters and standalone instances on apphost:
   Restarting the clustered and standalone instances on apphost triggers their recognition of the new DAS on newdashost.
   a. Use the `list-clusters` subcommand to list the clusters in the domain.
   b. Use the `stop-cluster` subcommand to stop each cluster.
   c. Use the `list-instances` subcommand to list the instances in the domain.
   d. Use the `restart-instance` subcommand to restart each standalone instance.
   e. Use the `start-cluster` subcommand to start each cluster.
      If the domain does not use centralized administration, use the `start-local-instance` subcommand to start the cluster instances on apphost.

9 Verify that instances on apphost are running:
   ```
asadmin> list-instances --long
   ```

10 Decommission and discontinue use of the DAS on olddashost.

### Additional Domain Tasks

The following topics are addressed here:

- “To Display Domain Uptime” on page 132
- “To Switch a Domain to Another Supported Java Version” on page 132
- “To Change the Administration Port of a Domain” on page 133
To Display Domain Uptime

Use the uptime subcommand in remote mode to display the length of time that the domain administration server (DAS) has been running since it was last started.

1. Ensure that the server is running.
   Remote subcommands require a running server.

2. Display uptime by using the uptime(1) subcommand.

   **Example 3–28** 
   Displaying the DAS Uptime
   This example displays the length of time that the DAS has been running.
   ```
 asadmin> uptime
 Uptime: 1 Weeks, 4 days, 0 hours, 17 minutes, 14 seconds, Total milliseconds: 951434595
 Command uptime executed successfully.
   ```

   See Also
   You can also view the full syntax and options of the subcommand by typing asadmin help uptime at the command line.

To Switch a Domain to Another Supported Java Version

GlassFish Server 3.1 requires Version 6 Java SE platform as the underlying virtual machine for the Java platform (Java Virtual Machine or JVM machine).

**Note** – Do not downgrade to an earlier Java version after a domain has been created with a newer JVM machine. If you must downgrade your JVM machine, downgrade it only for individual domains.

1. If you have not already done so, download the desired Java SDK (not the JRE) and install it on your system.
   The Java SDK can be downloaded from the Java SE Downloads page (http://www.oracle.com/technetwork/java/javase/downloads/index.html).

2. Start the domain for which you are changing the JDK.
   Use the following format:
   ```
 as-install/bin/asadmin start-domain domain-name
   ```
   For a valid JVM installation, locations are checked in the following order:

   a. domain.xml (java-home inside java-config)
b. `asenv.conf` (setting `AS_JAVA="path to java home"`)  
If a legal JDK is not found, a fatal error occurs and the problem is reported back to you.

3 **If necessary, change the JVM machine attributes for the domain.**  
In particular, you might need to change the `JAVA_HOME` environment variable. For example, to change the `JAVA_HOME` variable, type:  
`as-install/bin/asadmin set "server.java-config.java-home=path-to-java-home"

▼ **To Change the Administration Port of a Domain**

Use the `set` subcommand in remote mode to change the administration port of a domain.

The HTTP port or the HTTPS port for administration of a domain is defined by the `--adminport` option of the `create-domain(1)` subcommand when the domain is created. If this port must be reallocated for another purpose, change the port on which the DAS listens for administration requests.

1 **Ensure that the server is running.**  
Remote subcommands require a running server.

2 **Set the port number to its new value.**  
Use the `set(1)` subcommand for this purpose.

```
$ asadmin set
server-config.network-config.network-listeners.network-listener.admin-listener.port=new-port-number
```

   new-port-number

   The new value that you are setting for the port number.

**Note** – After you set the port number to its new value, running the `list-domains` subcommand incorrectly reports that the DAS is not running. The `list-domains` subcommand reports the correct state again only after you stop and restart the domain as explained in the steps that follow.

3 **Stop the domain, specifying the host on which the DAS is running and the old administration port number of the domain.**  
You must specify the old port number because the DAS is still listening for administration requests on this port. If you omit the port number, the command fails because the `stop-domain` subcommand attempts to contact the DAS through the new port number.
Note – Only the options that are required to complete this task are provided in this step. For information about all the options for controlling the behavior of the domain, see the stop-domain(1) help page.

$ asadmin --host host-name --port old-port-number stop-domain

host-name
The name of the host on which the DAS is running. If you run the stop-domain subcommand on the host where the DAS is running, you must specify the actual host name and not localhost. If you specify localhost, the stop-domain subcommand fails.

old-port-number
The value of administration port number of the domain before you changed it in the preceding step.

4 Start the domain.

Note – Only the options that are required to complete this task are provided in this step. For information about all the options for controlling the behavior of the domain, see the start-domain(1) help page.

$ start-domain [domain-name]

domain-name
The name of the domain to start. If only one domain subdirectory is contained in the domains directory, you may omit this option.

Example 3-29 Changing the Administration Port of a Domain

This example changes the administration port of the domain domain1 from 4848 to 4849. The DAS is running on the host xk01.example.com.

$ asadmin set
server-config.network-config.network-listeners.network-listener.admin-listener.port=4849
server-config.network-config.network-listeners.network-listener.admin-listener.port=4849
Command set executed successfully.

$ asadmin --host xk01.example.com --port 4848 stop-domain
Waiting for the domain to stop ....
Command stop-domain executed successfully.

$ asadmin start-domain
Waiting for domain1 to start ......................
Successfully started the domain : domain1
domain Location: /export/glassfish3/glassfish/domains/domain1
Log File: /export/glassfish3/glassfish/domains/domain1/logs/server.log
Admin Port: 4849
Command start-domain executed successfully.
See Also
- create-domain(1)
- set(1)
- start-domain(1)
- stop-domain(1)

You can also view the full syntax and options of the subcommands by typing the following commands at the command line:
- asadmin help create-domain
- asadmin help set
- asadmin help start-domain
- asadmin help stop-domain
Administering the Virtual Machine for the Java Platform

This chapter provides procedures for administering the Virtual Machine for the Java platform (Java Virtual Machine) or JVM machine) in the Oracle GlassFish Server 3.1 environment by using the asadmin command-line utility.

The following topics are addressed here:
- “Administering JVM Options” on page 137
- “Administering the Profiler” on page 141

Instructions for accomplishing these tasks by using the Administration Console are contained in the Administration Console online help.

Administering JVM Options

The Java Virtual Machine is an interpretive computing engine responsible for running the byte codes in a compiled Java program. The virtual machine translates the Java byte codes into the native instructions of the host machine. GlassFish Server, being a Java process, requires a virtual machine to run and support the Java applications running on it. JVM settings are part of an GlassFish Server configuration.

The following topics are addressed here:
- “To Create JVM Options” on page 138
- “To List JVM Options” on page 138
- “To Delete JVM Options” on page 139
- “To Generate a JVM Report” on page 140
To Create JVM Options

Use the create-jvm-options subcommand in remote mode to create JVM options in the Java configuration or the profiler elements of the domain.xml file. If JVM options are created for a profiler, these options are used to record the settings that initiate the profiler.

1. **Ensure that the server is running.**
   Remote subcommands require a running server.

2. **Create JVM options by using the create-jvm-options(1) subcommand.**
   To create more than one JVM option, use a colon (:) to separate the options. If the JVM option itself contains a colon (:) use the backslash (\) to offset the colon delimiter.
   Information about properties for the subcommand is included in this help page.

3. **To apply your changes, restart GlassFish Server.** See “To Restart a Domain” on page 112.

Example 4–1  Creating JVM Options

This example sets multiple Java system properties.

```
asadmin> create-jvm-options -Dunixlocation=/root/example:
 -Dvariable=$HOME:
 -Dwindowslocation=d:\\sun\\appserver:
 -Doption1=value1
created 4 option(s)
Command create-jvm-options executed successfully.
```

See Also  You can also view the full syntax and options of the subcommand by typing asadmin help create-jvm-options at the command line.

To List JVM Options

Use the list-jvm-options subcommand in remote mode to list the existing JVM options.

1. **Ensure that the server is running.**
   Remote subcommands require a running server.

2. **List JVM options by using the list-jvm-options(1) subcommand.**

Example 4–2  Listing JVM Options

This example lists all JVM options.
asadmin> list-jvm-options
  -Djava.security.auth.login.config=${com.sun.aas.instanceRoot}/config/login.conf
  -XX: LogVMOutput
  -XX: UnlockDiagnosticVMOptions
  -Dcom.sun.enterprise.config.config_environment_factory_class=com.sun.enterprise.
  config.serverbeans.AppserverConfigEnvironmentFactory
  -Djavax.net.ssl.keyStore=${com.sun.aas.instanceRoot}/config/keystore.jks
  -XX:NewRatio=2
  -Djavax.net.ssl.trustStore=${com.sun.aas.instanceRoot}/config/cacerts.jks
  -Djdbc.drivers=org.apache.derby.jdbc.ClientDriver
  -Djavax.net.ssl.client
  -Djava.ext.dirs=${com.sun.aas.javaRoot}/lib/ext${path.separator}${com.sun.aas.ja
  vaRoot}/jre/lib/ext${path.separator}${com.sun.aas.instanceRoot}/lib/ext${path.se
  parator}${com.sun.aas.derbyRoot}/lib
  -Xmx512m
  -XX:LogFile=${com.sun.aas.instanceRoot}/logs/jvm.log
  -Djava.endorsed.dirs=${com.sun.aas.installRoot}/lib/endorsed
  Command list-jvm-options executed successfully.

See Also You can also view the full syntax and options of the subcommand by typing asadmin help
list-jvm-options at the command line.

To Delete JVM Options
Use the delete-jvm-options subcommand in remote mode to delete JVM options from the
Java configuration or profiler elements of the domain.xml file.

1 Ensure that the server is running.
Remote subcommands require a running server.

2 List JVM options by using the list-jvm-options(1) subcommand.

3 If necessary, notify users that the JVM option is being deleted.

4 Delete JVM options by using the delete-jvm-options(1) subcommand.
To remove more than one JVM option, use a colon (:) to separate the options. If the JVM option
itself contains a colon, use the backslash (\) to offset the colon delimiter.

5 To apply your changes, restart GlassFish Server. See “To Restart a Domain” on page 112.

Example 4-3 Deleting a JVM Option
This example removes a single JVM option.

asadmin> delete-jvm-options -Dopt1=A
deleted 1 option(s)
Command delete-jvm-options executed successfully.
Example 4–4  Deleting Multiple JVM Options

This example removes multiple JVM options.

```
asadmin> delete-jvm-options -Doption1=-value1:-Dvariable=$HOME
deleted 2 option(s)
Command delete-jvm-options executed successfully.
```

See Also  You can also view the full syntax and options of the subcommand by typing `asadmin help delete-jvm-options` at the command line.


To Generate a JVM Report

Use the `generate-jvm-report` subcommand in remote mode to generate a JVM report showing the threads (dump of a stack trace), classes, memory, and loggers for a specified domain administration server (DAS). You can generate the following types of reports: summary (default), class, thread, log.

1  Ensure that the server is running.
   Remote subcommands require a running server.

2  Generate the report by using the `generate-jvm-report(1)` subcommand.

Example 4–5  Generating a JVM Report

This example displays summary information about the threads, classes, and memory.

```
asadmin> generate-jvm-report --type summary
Operating System Information:
Name of the Operating System: Windows XP
Binary Architecture name of the Operating System: x86, Version: 5.1
Number of processors available on the Operating System: 2
System load on the available processors for the last minute: NOT_AVAILABLE.
(Sum of running and queued runnable entities per minute).

user.home = C:\Documents and Settings\Jennifer
user.language = en
user.name = Jennifer
user.timezone = America/New_York
user.variant =
variable = $HOME
web.home = C:\Preview\v3_Preview_release\distributions\web\target\glassfish\modules\web
Command generate-jvm-report executed successfully.
```

See Also  You can also view the full syntax and options of the subcommand by typing `asadmin help generate-jvm-report` at the command line.
Administering the Profiler

A profiler generates information used to analyze server performance.

The following topics are addressed here:

- “To Create a Profiler” on page 141
- “To Delete a Profiler” on page 142

To Create a Profiler

A server instance is tied to a particular profiler by the profiler element in the Java configuration. If JVM options are created for a profiler, the options are used to record the settings needed to activate a particular profiler. Use the `create-profiler` subcommand in remote mode to create the profiler element in the Java configuration.

Only one profiler can exist. If a profiler already exists, you receive an error message that directs you to delete the existing profiler before creating a new one.

1 Ensure that the server is running.
   Remote subcommands require a running server.

2 Create a profiler by using the `create-profiler(1)` subcommand.
   Information about properties for the subcommand is included in this help page.

3 To apply your changes, restart GlassFish Server.
   See “To Restart a Domain” on page 112.

Example 4–6 Creating a Profiler

This example creates a profiler named `sample_profiler`.

```bash
asadmin create-profiler --classpath=/home/appserver/ --nativelibrarypath=/u/home/lib --enabled=false --property=defaultuser=admin:password=adminadmin sample_profiler
Command create-profiler executed successfully.
```

See Also You can also view the full syntax and options of the subcommand by typing `asadmin help create-profiler` at the command line.
To Delete a Profiler

Use the delete-profiler subcommand in remote mode to delete the profiler element from the Java configuration. You can then create a new profiler.

1. Ensure that the server is running.
   Remote subcommands require a running server.

2. Delete the profiler by using the delete-profiler(1) subcommand.

3. To apply your changes, restart GlassFish Server.
   See “To Restart a Domain” on page 112.

Example 4–7 Deleting a Profiler

This example deletes the profiler named sample_profiler.

```bash
asadmin> delete-profiler sample_profiler
Command delete-profiler executed successfully.
```

See Also You can also view the full syntax and options of the subcommand by typing asadmin help delete-profiler at the command line.
Administering Thread Pools

This chapter provides procedures for administering thread pools in the Oracle GlassFish Server 3.1 environment by using the `asadmin` command-line utility.

The following topics are addressed here:

- “About Thread Pools” on page 143
- “Configuring Thread Pools” on page 144

Instructions for accomplishing these tasks by using the Administration Console are contained in the Administration Console online help.

**About Thread Pools**

The Virtual Machine for the Java platform (Java Virtual Machine) or JVM machine) can support many threads of execution simultaneously. To help performance, GlassFish Server maintains one or more thread pools. It is possible to assign specific thread pools to connector modules, to network listeners, or to the Object Request Broker (ORB).

One thread pool can serve multiple connector modules and enterprise beans. Request threads handle user requests for application components. When GlassFish Server receives a request, it assigns the request to a free thread from the thread pool. The thread executes the client’s requests and returns results. For example, if the request needs to use a system resource that is currently busy, the thread waits until that resource is free before allowing the request to use that resource.
Configuring Thread Pools

You can specify the minimum and maximum number of threads that are reserved for requests from applications. The thread pool is dynamically adjusted between these two values.

The following topics are addressed here:

- “To Create a ThreadPool” on page 144
- “ToList Thread Pools” on page 145
- “To Update a ThreadPool” on page 145
- “ToDelete a ThreadPool” on page 146

▼ To Create a ThreadPool

Use the create-threadpool subcommand in remote mode to create a thread pool.

The minimum thread pool size that is specified signals the server to allocate at least that many threads in reserve for application requests. That number is increased up to the maximum thread pool size that is specified. Increasing the number of threads available to a process allows the process to respond to more application requests simultaneously.

If one resource adapter or application occupies all the GlassFish Server threads, thread starvation might occur. You can avoid this by dividing the GlassFish Server threads into different thread pools.

1 Ensure that the server is running.
   Remote subcommands require a running server.

2 Create a new thread pool by using the create-threadpool(1) subcommand.
   Information about options for the subcommand is included in this help page.

3 To apply your changes, restart GlassFish Server.
   See “To Restart a Domain” on page 112.

   **Note** – Restart is not necessary for thread pools used by the web container.

**Example 5–1** Creating a Thread Pool

This example creates threadpool-1.

```bash
asadmin> create-threadpool --maxthreadpoolsiz 100
--minthreadpoolsiz 20 --idletimeout 2 --workqueues 100 threadpool-1
Command create-threadpool executed successfully
```
You can also view the full syntax and options of the subcommand by typing asadmin help create-threadpool at the command line.

**To List Thread Pools**

Use the list-threadpools subcommand in remote mode to list the existing thread pools.

1. **Ensure that the server is running.**
   Remote subcommands require a running server.

2. **List the existing thread pools by using the list-threadpools(1) subcommand.**

   **Example 5–2** Listing Thread Pools
   This example lists the existing thread pools.
   
   asadmin> list-threadpools
   threadpool-1
   Command list-threadpools executed successfully

   **See Also** You can also view the full syntax and options of the subcommand by typing asadmin help list-threadpools at the command line.

**To Update a Thread Pool**

Use the set subcommand to update the values for a specified thread pool.

1. **List the existing thread pools by using the list-threadpools(1) subcommand.**

2. **Modify the values for a thread pool by using the set(1) subcommand.**
   The thread pool is identified by its dotted name.

3. **To apply your changes, restart GlassFish Server.**
   See “To Restart a Domain” on page 112.

   **Note** – Restart is not necessary for thread pools used by the web container.

   **Example 5–3** Updating a Thread Pool
   This example sets the max-thread-pool-size from its previous value to 8.
   
   Command set executed successfully
You can also view the full syntax and options of the subcommand by typing `asadmin help set` at the command line.

▼ To Delete a ThreadPool

Use the `delete-threadpool` subcommand in remote mode to delete an existing thread pool. Deleting a thread pool will fail if that pool is referenced by a network listener.

1  Ensure that the server is running.
Remote subcommands require a running server.

2  List the existing thread pools by using the `list-threadpools(1)` subcommand.

3  Delete the specified thread pool by using the `delete-threadpool(1)` subcommand.

4  To apply your changes, restart GlassFish Server.
See “To Restart a Domain” on page 112.

Note – Restart is not necessary for thread pools used by the web container.

Example 5–4  Deleting a ThreadPool

This example deletes `threadpool-1`.

```
 asadmin> delete-threadpool threadpool-1
 Command delete-threadpool executed successfully
```

See Also  You can also view the full syntax and options of the subcommand by typing `asadmin help delete-threadpool` at the command line.
Administering Web Applications

This chapter explains how to administer web applications in the Oracle GlassFish Server 3.1 environment.

The following topics are addressed here:

- “Invoking a Servlet by Alternate Means” on page 147
- “Changing Log Output for a Servlet” on page 148
- “Defining Global Features for Web Applications” on page 148
- “Redirecting a URL” on page 149
- “Administering mod_jk” on page 150

Instructions for accomplishing some of these tasks by using the Administration Console are contained in the Administration Console online help.

Invoking a Servlet by Alternate Means

You can call a servlet deployed to GlassFish Server by using a URL in a browser or embedded as a link in an HTML or JSP file. The format of a servlet invocation URL is as follows:

http://server:port/context-root/servlet-mapping?name=value

The following table describes each URL section.

<table>
<thead>
<tr>
<th>URL element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>server:port</td>
<td>The IP address (or host name) and optional port number.</td>
</tr>
<tr>
<td></td>
<td>To access the default web module for a virtual server, specify only this URL section. You do not need to specify the context-root or servlet-name unless you also wish to specify name-value parameters.</td>
</tr>
</tbody>
</table>
TABLE 6–1  URL Fields for Servlets Within an Application  (Continued)

<table>
<thead>
<tr>
<th>URL element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>context-root</td>
<td>For an application, the context root is defined in the context-root element of the application.xml, sun-application.xml, or sun-web.xml file. For an individually deployed web module, the context root is specified during deployment. For both applications and individually deployed web modules, the default context root is the name of the WAR file minus the .war suffix.</td>
</tr>
<tr>
<td>servlet-mapping</td>
<td>The servlet-mapping as configured in the web.xml file.</td>
</tr>
<tr>
<td>?name=value...</td>
<td>Optional request parameters.</td>
</tr>
</tbody>
</table>

EXAMPLE 6–1  Invoking a Servlet With a URL

In this example, localhost is the host name, MortPages is the context root, and calcMortgage is the servlet mapping.

http://localhost:8080/MortPages/calcMortgage?rate=8.0&per=360&bal=180000

EXAMPLE 6–2  Invoking a Servlet From Within a JSP File

To invoke a servlet from within a JSP file, you can use a relative path. For example:

<jsp:forward page="TestServlet"/>
<jsp:include page="TestServlet"/>

Changing Log Output for a Servlet

ServletContext.log messages are sent to the server log. By default, the System.out and System.err output of servlets are sent to the server log. During startup, server log messages are echoed to the System.err output. Also by default, there is no Windows-only console for the System.err output.

You can change these defaults using the Administration Console Write to System Log box. If this box is checked, System.out output is sent to the server log. If it is unchecked, System.out output is sent to the system default location only.

Defining Global Features for Web Applications

You can use the default-web.xml file to define features such as filters and security constraints that apply to all web applications.

For example, directory listings are disabled by default for added security. To enable directory listings in your domain’s default-web.xml file, search for the definition of the servlet whose servlet-name is equal to default, and set the value of the init-param named listings to true. Then restart the server.
If listings is set to true, you can also determine how directory listings are sorted. Set the value of the init-param named sortedBy to NAME, SIZE, or LAST_MODIFIED. Then restart the server.

```xml
<init-param>
 <param-name>sortedBy</param-name>
 <param-value>LAST_MODIFIED</param-value>
</init-param>
```

The mime-mapping elements in default-web.xml are global and inherited by all web applications. You can override these mappings or define your own using mime-mapping elements in your web application’s web.xml file. For more information about mime-mapping elements, see the Servlet specification.

You can use the Administration Console to edit the default-web.xml file, or edit the file directly using the following steps.

▼ **To Use the default-web.xml File**

1. Place the JAR file for the filter, security constraint, or other feature in the domain-dir/lib directory.

2. Edit the domain-dir/config/default-web.xml file to refer to the JAR file.

3. To apply your changes, restart GlassFish Server.
   See “To Restart a Domain” on page 112.

### Redirecting a URL

You can specify that a request for an old URL be treated as a request for a new URL. This is called redirecting a URL.

To specify a redirected URL for a virtual server, use the redirect_n property, where n is a positive integer that allows specification of more than one. Each of these redirect_n properties is inherited by all web applications deployed on the virtual server.
The value of each redirect\_n property has two components which can be specified in any order:

- The first component, from, specifies the prefix of the requested URI to match.
- The second component, url\_prefix, specifies the new URL prefix to return to the client. The from prefix is replaced by this URL prefix.

**Example 6-3 Redirecting a URL**

This example redirects from dummy to etude:

```xml
<property name="redirect_1" value="from=/dummy url-prefix=http://etude"/>
```

## Administering mod\_jk

The Apache Tomcat Connector mod\_jk can be used to connect the web container with web servers such as Apache HTTP Server. By using mod\_jk, which comes with GlassFish Server, you can front GlassFish Server with Apache HTTP Server.

The following topics are addressed here:

- "To Enable mod\_jk" on page 150
- "To Load Balance Using mod\_jk and GlassFish Server" on page 152
- "To Enable SSL Between the mod\_jk Load Balancer and the Browser" on page 154
- "To Enable SSL Between the mod\_jk Load Balancer and GlassFish Server" on page 155

### To Enable mod\_jk

You can front GlassFish Server with Apache HTTP Server by enabling the mod\_jk protocol for one of GlassFish Server's network listeners, as described in this procedure. A typical use for mod\_jk would be to have Apache HTTP Server handle requests for static resources, while having requests for dynamic resources, such as servlets and JavaServer Pages (JSPs), forwarded to, and handled by the GlassFish Server back-end instance.

When you use the jk\_enabled attribute of the network listener, you do not need to copy any additional JAR files into the /tlib directory. You can also create JK connectors under different virtual servers by using the network listener attribute jk\_enabled.

1. **Install Apache HTTP Server and mod\_jk.**
   - For information on installing Apache HTTP Server, see [http://httpd.apache.org/docs/2.2/install.html](http://httpd.apache.org/docs/2.2/install.html).
   - For information on installing mod\_jk, see [http://tomcat.apache.org/connectors-doc/webserver_howto/apache.html](http://tomcat.apache.org/connectors-doc/webserver_howto/apache.html).
Configure the following files:

- `apache2/conf/httpd.conf`, the main Apache configuration file
- `apache2/conf/workers.properties` or `domain-dir/conf/glassfish-jk.properties` (to use non-default values of attributes described at http://tomcat.apache.org/tomcat-5.5-doc/config/ajp.html)

If you use both the `workers.properties` file and the `glassfish-jk.properties` file, the file referenced by `httpd.conf` first takes precedence.

3 Start Apache HTTP Server (`httpd`).

4 Start GlassFish Server with at least one web application deployed.

   In order for the `mod_jk`-enabled network listener to start listening for requests, the web container must be started. Normally, this is achieved by deploying a web application.

5 Create an HTTP listener by using the `create-http-listener(1)` subcommand.

   Use the following format:
   ```
 asadmin> create-http-listener --listenerport 8009 --listeneraddress 0.0.0.0 --defaultvs server listener-name
   ```

   where `listener-name` is the name of the new listener.

6 Enable `mod_jk` by using the `set(1)` subcommand.

   ```
 asadmin> create-network-listener --protocol http-listener-1 --listenerport 8009 --jkenabled true jk-connector
   ```
   ```
 asadmin> set server-config.network-config.network-listeners.network-listener.2.jk-connector.jk-configuration-file=domain-dir/config/glassfish-jk.properties
   ```

7 If you are using the `glassfish-jk.properties` file and not referencing it in the `httpd.conf` file, point to the properties file by using the `create-jvm-options(1)` subcommand.

   Use the following format:
   ```
 asadmin> create-jvm-options -Dcom.sun.enterprise.web.connector.enableJK.propertyFile=domain-dir/config/glassfish-jk.properties
   ```

8 To apply your changes, restart GlassFish Server.

   See “To Restart a Domain” on page 112.

**Example 6–4**  `httpd.conf` File for `mod_jk`

This example shows an `httpd.conf` file that is set for `mod_jk`. In this example, `mod_jk` used as a simple pass-through.

```
LoadModule jk_module /usr/lib/httpd/modules/mod_jk.so
JkWorkersFile /etc/httpd/conf/worker.properties
Where to put jk logs
```
JkLogFile /var/log/httpd/mod_jk.log
# Set the jk log level [debug/error/info]
JkLogLevel debug
# Select the log format
JkLogStampFormat "[%a %b %d %H:%M:%S %Y] "
# JkOptions indicate to send SSL KEY SIZE,
JkOptions +ForwardKeySize +ForwardURICompat -ForwardDirectories
# JkRequestLogFormat set the request format
JkRequestLogFormat "%w %V %T"
# Send all jsp requests to GlassFish
JkMount /*.jsp worker1
# Send all glassfish-test requests to GlassFish
JkMount /glassfish-test/* worker1

Example 6–5  workers.properties File for mod_jk
This example shows a workers.properties or glassfish-jk.properties file that is set for mod_jk. This workers.properties file is referenced in Example Example 6–4.

# Define 1 real worker using ajp13
worker.list=worker1
# Set properties for worker1 (ajp13)
worker.worker1.type=ajp13
worker.worker1.host=localhost
worker.worker1.port=8009

See Also  For more information on Apache, see http://httpd.apache.org/.

For more information on Apache Tomcat Connector, see http://tomcat.apache.org/connectors-doc/index.html.

▼ To Load Balance Using mod_jk and GlassFish Server
Load balancing is the process of dividing the amount of work that a computer has to do between two or more computers so that more work gets done in the same amount of time. Load balancing can be configured with or without security.

In order to support stickiness, the Apache mod_jk load balancer relies on a jvmRoute system property that is included in any JSESSIONID received by the load balancer. This means that every GlassFish Server instance that is front-ended by the Apache load balancer must be configured with a unique jvmRoute system property.

1  On each of the instances, perform the steps in "To Enable mod_jk" on page 150.
If your instances run on the same machine, you must choose different JK ports. The ports must match worker.worker*.port in your workers.properties file. See the properties file in Example 6–5.
2 On each of the instances, create the jvmRoute system property of GlassFish Server by using the
create-jvm-options(1) subcommand.

Use the following format:

```
asadmin> create-jvm-options "-DjvmRoute=/instance-worker-name"/
```

where instance-worker-name is the name of the worker that you defined to represent the
instance in the workers.properties file.

3 To apply your changes, restart Apache HTTP Server and GlassFish Server.

Example 6–6 httpd.conf File for Load Balancing

This example shows an httpd.conf file that is set for load balancing.

```
LoadModule jk_module /usr/lib/httpd/modules/mod_jk.so
JkWorkersFile /etc/httpd/conf/worker.properties
Where to put jk logs
JkLogFile /var/log/httpd/mod_jk.log
Set the jk log level [debug/error/info]
JkLogLevel debug
Select the log format
JkLogStampFormat "[%a %b %d %H:%M:%S %Y] "
JKOptions indicate to send SSL KEY SIZE,
JkOptions +ForwardKeySize +ForwardURICompat -ForwardDirectories
JkRequestLogFormat set the request format
JkRequestLogFormat "%w %V %T"
Send all jsp requests to GlassFish
JkMount /*.jsp worker1
Send all glassfish-test requests to GlassFish
JkMount /glassfish-test/* loadbalancer
```

Example 6–7 workers.properties File for Load Balancing

This example shows a workers.properties or glassfish-jk.properties file that is set for
load balancing. The worker.worker*.port should match with JK ports you created.

```
worker.list=worker1,worker2,loadbalancer
worker.worker1.type=ajp13
worker.worker1.host=localhost
worker.worker1.port=8009
worker.worker1.lbfactor=1
worker.worker1.socket_keepalive=1
worker.worker1.socket_timeout=300
worker.worker2.type=ajp13
worker.worker2.host=localhost
worker.worker2.port=8010
worker.worker2.lbfactor=1
worker.worker2.socket_keepalive=1
worker.worker2.socket_timeout=300
worker.loadbalancer.type=lb
worker.loadbalancer.balance_workers=worker1,worker2
```
To Enable SSL Between the mod_jk Load Balancer and the Browser

To activate security for mod_jk on GlassFish Server, you must first generate a Secure Socket Layer (SSL) self-signed certificate on the Apache HTTP Server with the mod_ssl module. The tasks include generating a private key, a Certificate Signing Request (CSR), a self-signed certificate, and configuring SSL-enabled virtual hosts.

Before You Begin

The mod_jk connector must be enabled.

1. Generate the private key as follows:
   ```
   ```
   where file1:file2: and so on represents the random compressed files.

2. Remove the pass-phrase from the key as follows:
   ```
 openssl rsa -in server.key -out server.pem
   ```

3. Generate the CSR as follows:
   ```
 openssl req -new -key server.pem -out server.csr
   ```
   Enter the information you are prompted for.

4. Generate a temporary certificate as follows:
   ```
 openssl x509 -req -days 60 -in server.csr -signkey server.pem -out server.crt
   ```
   This temporary certificate is good for 60 days.

5. Create the http-ssl.conf file under the /etc/apache2/conf.d directory.

6. In the http-ssl.conf file, add one of the following redirects:
   - Redirect a web application, for example, JkMount /hello/* worker1.
   - Redirect all requests, for example, JkMount /* worker1.

   ```
 # Send all jsp requests to GlassFish
 JkMount /*.jsp worker1
 # Send all glassfish-test requests to GlassFish
 JkMount /glassfish-test/* loadbalancer
   ```

Example 6–8

http-ssl.conf File for mod_jk Security

A basic SSL-enabled virtual host will appear in the http-ssl.conf file. In this example, all requests are redirected.
Listen 443  
<VirtualHost _default_:443>
SSLEngine on
SSLCertificateFile "/etc/apache2/2.2/server.crt"
SSLCertificateKeyFile "/etc/apache2/2.2/server.pem"
JkMount /* worker1
</VirtualHost>

▼ To Enable SSL Between the mod_jk Load Balancer and GlassFish Server

Before You Begin
The self-signed certificate must be configured.

1 Perform the steps in “To Enable mod_jk” on page 150.

2 Start another GlassFish Server with at least one web application deployed.
In order for the mod_jk–enabled network listener to start listening for requests, the web container must be started. Normally, this is achieved by deploying a web application.

3 Follow instructions from “To Configure an HTTP Listener for SSL” on page 324 on the mod_jk connector.
Use the following format:
asadmin> create-ssl --type http-listener --certname sampleCert new-listener

4 Add the following directives in the httpd.conf file under the /etc/apache2/conf.d directory:
   # Should mod_jk send SSL information (default is On)
   JkExtractSSL On
   # What is the indicator for SSL (default is HTTPS)
   JkHTTPSIndicator HTTPS
   # What is the indicator for SSL session (default is SSL_SESSION_ID)
   JkSESSIONIndicator SSL_SESSION_ID
   # What is the indicator for client SSL cipher suit (default is SSL_CIPHER)
   JkCIPHERIndicator SSL_CIPHER
   # What is the indicator for the client SSL certificated? (default is SSL_CLIENT_CERT)
   JkCERTSIndicator SSL_CLIENT_CERT

5 To apply your changes, restart Apache HTTP Server and GlassFish Server.
Administering the Logging Service

This chapter provides instructions on how to configure logging and how to view log information in the Oracle GlassFish Server 3.1 environment.

The following topics are addressed here:

- “About Logging” on page 157
- “Configuring the Logging Service” on page 162
- “Viewing Log Records” on page 173

Instructions for accomplishing these tasks and editing logging service properties in the Administration Console are available from the Administration Console online help.

About Logging

Logging is the process by which Oracle GlassFish Server captures information about events that occur, such as configuration errors, security failures, or server malfunction. This data is recorded in log files and is usually the first source of information when problems occur. Analyzing the log files can help you to determine the health of the server.

Although application components can use the Apache Commons Logging Library to record messages, the platform standard JSR 047 API is recommended for better log configuration.

The following topics are addressed here:

- “Log Files” on page 157
- “Logger Namespaces” on page 160
- “Logging Targets” on page 161
- “Logging Properties” on page 161

Log Files

Oracle GlassFish Server log records are captured in one of two general types of log files:
Server log files, which capture information about the operation of a server instance running in the domain. Each instance, managed server instance (that is, each cluster member), and the domain administration server (DAS) has an individual server log file.

Cluster log files, which capture information about the operation of a cluster instance, if one or more are configured in the domain. Each managed server instance that is a member of a cluster has a cluster log file in addition to a server log file. However, the contents of the cluster log file may differ from one instance to another depending on factors such as how instances are apportioned in the cluster, applications running on them, how load balancing is configured, and failover state.

The following topics are addressed here:

- "Log File Names and Locations" on page 158
- "Log Records" on page 159
- "Log Rotation" on page 159

### Log File Names and Locations

In an Oracle GlassFish Server domain, log files have the following names and locations by default:

<table>
<thead>
<tr>
<th>Instance</th>
<th>Default Log File Name and Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAS</td>
<td>domain-dir/logs/server.log</td>
</tr>
<tr>
<td>Each server instance</td>
<td>instance-dir/logs/server.log</td>
</tr>
<tr>
<td>Cluster instance</td>
<td>instance-dir/logs/cluster.log</td>
</tr>
</tbody>
</table>

For example, in a domain hosted on a given machine that includes a cluster with two managed servers (ClusterServer1 and ClusterServer2) and a standalone instance (StandaloneServer), the log files might be arranged in the following directory structure. In this directory structure, the server.log file for the DAS is located in domain-dir/logs.

```
as-install-parent directory
 glassfish/
 domains/
 domain-name/
 logs/
 server.log
 nodes/
 hostname/
 ClusterServer1/
 logs/
 server.log
 cluster.log
 ClusterServer2/
 logs/
 server.log
```
You can change the default name or location of a log file by modifying the logging properties file for the corresponding instance, described in “To Change the Name and Location of the Log File” on page 162.

**Log Records**

Oracle GlassFish Server log records follow a uniform format:

\[#|yyyy-mm-ddThh:mm:ss.SSSS-Z|LogLevel|ProductName-Version|LoggerName|KeyValuePairs|Message|#]  

- [# and #] mark the beginning and end of the record.  
- The vertical bar (|) separates the fields of the record.  
- yyyy-mm-ddThh:mm:ss.SSSS-Z represents the date and time that the record was created. For example: 2006-10-21T13:25:53.852-0400  
- LogLevel represents the log level. You can set any of the following values: SEVERE, WARNING, INFO, CONFIG, FINE, FINER, and FINEST. The default is INFO.  
- ProductName-Version represents the current version of the Oracle GlassFish Server. For example: glassfish  
- LoggerName represents a hierarchical logger namespace that identifies the source of the log module. For example: javax.enterprise.system.core  
- KeyValuePairs represents pairs of key names and values, typically a thread ID. For example: 
  `_ThreadID=13;`  
- Message represents the text of the log message. For all Oracle GlassFish Server SEVERE and WARNING messages and for many INFO messages, the message begins with a message ID that consists of a module code and a numerical value. For example: CORE5004

The following is an example of a log record:

```
[#]2006-10-21T13:25:53.852-0400[INFO]GlassFish10.0|javax.enterprise.system.core|ThreadID=13;|CORE5004: Resource Deployed:
[cr:jms/DurableConnectionFactory].|#]
```

The Administration Console presents log records in a more readable display.

**Log Rotation**

By default, when a log file grows to 2 MB, Oracle GlassFish Server renames (rotates) the file to incorporate a timestamp and creates a new log file. The log file is renamed as log-type\.log_date, where log-type represents either server or cluster, and date represents the time of rotation.

You can configure the logging service to change the default settings for log file rotation, as explained in “Setting Log File Rotation” on page 168.
Logger Namespaces

Oracle GlassFish Server provides a logger for each of its modules. The following list is an example of the logger namespaces in a server instance as they appear when using the list-log-levels subcommand.

java.util.logging.ConsoleHandler <FINEST>
javax.enterprise.resource.corba <INFO>
javax.enterprise.resource.javamail <INFO>
javax.enterprise.resource.jms <INFO>
javax.enterprise.resource.jta <INFO>
javax.enterprise.resource.resourceadapter <INFO>
javax.enterprise.resource.sqltrace <INFO>
javax.enterprise.resource.webcontainer.jsf.application <INFO>
javax.enterprise.resource.webcontainer.jsf.config <INFO>
javax.enterprise.resource.webcontainer.jsf.context <INFO>
javax.enterprise.resource.webcontainer.jsf.lifecycle <INFO>
javax.enterprise.resource.webcontainer.jsf.managedbean <INFO>
javax.enterprise.resource.webcontainer.jsf.renderkit <INFO>
javax.enterprise.resource.webcontainer.jsf.resource <INFO>
javax.enterprise.resource.webcontainer.jsf.taglib <INFO>
javax.enterprise.resource.webcontainer.jsf.timing <INFO>
javax.enterprise.system.container.cmp <INFO>
javax.enterprise.system.container.ejb <INFO>
javax.enterprise.system.container.ejb.mdb <INFO>
javax.enterprise.system.container.web <INFO>
javax.enterprise.system.core.classloading <INFO>
javax.enterprise.system.core.config <INFO>
javax.enterprise.system.core.naming <INFO>
javax.enterprise.system.core.security <INFO>
javax.enterprise.system.core.selfmanagement <INFO>
javax.enterprise.system.core.transaction <INFO>
javax.enterprise.system <INFO>
javax.enterprise.system.tools.admin <INFO>
javax.enterprise.system.tools.backup <INFO>
javax.enterprise.system.tools.deployment <INFO>
javax.enterprise.system.util <INFO>
javax.enterprise.system.webservices.registry <INFO>
javax.enterprise.system.webservices.rpc <INFO>
javax.enterprise.system.webservices.saaj <INFO>
java <INFO>
org.apache.catalina <INFO>
org.apache.coyote <INFO>
or.g.jvnet.hk2.osgiadapter <INFO>

For information about how to display logger namespaces and log levels, see “To List Log Levels” on page 165.
Logging Targets

Each instance in an Oracle GlassFish Server domain has a dedicated log file, and each instance and cluster has its own logging properties file. To configure logging for an instance or a cluster, Oracle GlassFish Server allows you to target specific log files or logging properties files when you do the following:

- Set global or module-specific log levels
- Rotate log files or compress them into a ZIP archive
- Change logging property attributes
- List log levels or log attributes

The following subcommands optionally accept a target specification. A target can be a configuration name, server name, cluster name, or instance name, and is specified as either an operand or as a value passed using the --target option. If no target is specified when using any of these subcommands, the default target is the DAS.

<table>
<thead>
<tr>
<th>Subcommand</th>
<th>Description</th>
<th>Target Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>collect-log-files()</td>
<td>Collects all available log files into a ZIP archive.</td>
<td>--target=target-name</td>
</tr>
<tr>
<td>list-log-attributes()</td>
<td>Lists logging attributes in the logging properties file.</td>
<td>target-name operand</td>
</tr>
<tr>
<td>list-log-levels()</td>
<td>Lists the loggers in the logging properties file and their log levels.</td>
<td>target-name operand</td>
</tr>
<tr>
<td>rotate-log()</td>
<td>Rotates the log file by renaming it and creating a new log file to store new messages.</td>
<td>--target=target-name</td>
</tr>
<tr>
<td>set-log-attributes()</td>
<td>Sets the specified logging attributes in the logging properties file.</td>
<td>--target=target-name</td>
</tr>
<tr>
<td>set-log-levels()</td>
<td>Sets the log level for one or more loggers listed in the logging properties file.</td>
<td>--target=target-name</td>
</tr>
</tbody>
</table>

Logging Properties

The DAS as well as each configuration, instance, and cluster has its own set of logging properties that are maintained in individual configuration files. A logging properties file is named logging.properties and includes the following information:

- Log file name and location
- Logger names and levels
- Properties for custom handlers
- Log rotation and logger format properties

By default in an Oracle GlassFish Server domain, logging properties files are created in the following locations:
Target Default Location of Logging Properties File

<table>
<thead>
<tr>
<th>Target</th>
<th>Default Location of Logging Properties File</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAS</td>
<td>domain-dir/config/logging.properties</td>
</tr>
<tr>
<td>A configuration</td>
<td>domain-dir/config/config-name/logging.properties, where config-name represents the name of a configuration that is shared by one or more instances or clusters.</td>
</tr>
<tr>
<td>An instance</td>
<td>domain-dir/config/instance-name-config/logging.properties, where instance-name represents the name of the instance.</td>
</tr>
<tr>
<td>A cluster</td>
<td>domain-dir/config/cluster-name-config/logging.properties, where cluster-name represents the name of the cluster.</td>
</tr>
</tbody>
</table>

For information about configuring logging properties, see “Configuring the Logging Service” on page 162.

### Configuring the Logging Service

This section contains the following topics:

- “Changing the Name and Location of Logging Service Files” on page 162
- “Setting Log Levels” on page 164
- “Setting Log File Rotation” on page 168
- “Adding a Custom Logging Handler” on page 172

### Changing the Name and Location of Logging Service Files

This section explains how to change the name and location of the following logging service files:

- Log file
- Logging properties file

▼ **To Change the Name and Location of the Log File**

To change the name and location of the log file, first use the `list-log-attributes` subcommand to obtain the current log attribute setting for the log file name and location. Then use the `set-log-attributes` subcommand to specify the new name or location. The default target for these two subcommands is the DAS. However, you can optionally specify one of the following targets:

- Configuration name — to target all instances or clusters that share a specific configuration name.
- Server name — to target only a specific server.
Instance name — to target only a specific instance.
Cluster name — to target only a specific cluster.

1 Ensure that the target server or cluster is running.
Remote subcommands require a running server.

2 Use the `list-log-attributes(1)` subcommand in remote mode to obtain the current log attribute settings.
The name and location of the log file is set with the `com.sun.enterprise.server.logging.GFFileHandler.file` attribute of the logging properties file. Optionally you can target a configuration, server, instance, or cluster. If you do not specify a target, the log attribute settings for the DAS are displayed.

3 Use the `set-log-attributes(1)` subcommand in remote mode to define a custom name or location of the log file.
If you do not specify a target, the log file for the DAS is targeted by default. If you target a cluster, the name of the cluster log file for each member instance can be changed (the server log file name cannot).

Example 7–1 Changing the Name and Location of a Cluster’s Log File
This example changes the name of the cluster log file for Cluster1 to `cluster1.log`. Cluster1 has two server instances: ClusterServer1 and ClusterServer2.

```
asadmin> list-log-attributes Cluster1
com.sun.enterprise.server.logging.GFFileHandler.alarms <false>
com.sun.enterprise.server.logging.GFFileHandler.file
<${com.sun.aas.instanceRoot}/logs/server.log>
com.sun.enterprise.server.logging.GFFileHandler.flushFrequency <1>
.
.
log4j.logger.org.hibernate.validator.util.Version <warn>
Command list-log-attributes executed successfully.
asadmin> set-log-attributes --target Cluster1
com.sun.enterprise.server.logging.GFFileHandler.file=${com.sun.aas.instanceRoot}/logs/cluster1.log
logging attribute set with value ${com.sun.aas.instanceRoot}/logs/cluster1.log
These logging attributes are set for Cluster1.
ClusterServer1:
com.sun.enterprise.server.logging.GFFileHandler.file
logging attribute set with value ${com.sun.aas.instanceRoot}/logs/cluster1.log
These logging attributes are set for Cluster1.
.
ClusterServer2:
com.sun.enterprise.server.logging.GFFileHandler.file
logging attribute set with value ${com.sun.aas.instanceRoot}/logs/cluster1.log
These logging attributes are set for Cluster1.
```
Command set-log-attributes executed successfully.

**See Also**
You can view the full syntax and options of these subcommands by typing asadmin help list-log-levels and asadmin help set-log-attributes at the command line.

▼ **To Change the Name and Location of the Logging Properties File**
You can set the name and location of the logging properties file by setting the java.util.logging.config.file system property. By setting this system property, you can have a single logging properties file that is used by all instances running on the same host.

---
**Note** – Setting the java.util.logging.config.file system property causes all other Oracle GlassFish Server logging properties files on the host to be overridden.

1 **Set the java.util.logging.config.file system property.**
For example, you can use the following java command:

```
java -Djava.util.logging.config.file=properties_file
```
Alternatively, you can use the Administration Console to set this system property.

2 **To apply your change, restart Oracle GlassFish Server.**

---
**Example 7–2** Setting the java.util.logging.config.file System Property
The following example changes the location of the logging properties file to /space/mylogging/logging.properties:

```
java -Djava.util.logging.config.file=/space/mylogging/logging.properties
```

**Setting Log Levels**
The log level determines the granularity of the message that is logged, from error only (SEVERE) to detailed debug (FINEST). The following values apply: SEVERE, WARNING, INFO, CONFIG, FINE, FINER, and FINEST. These log levels are hierarchically inclusive, which means that if you set a particular log level, such as INFO, the messages that have log levels above that level (SEVERE and WARNING) are also included. If you set the log level to the lowest level, FINEST, your output includes all the messages in the file. The default setting is INFO.

You can list current log levels of all loggers specified in the logging properties file. In some cases, loggers that have not been created by the respective containers will also appear in the list.
You can set log levels that are global or logger-specific. When you set a global log level, the log level goes into effect for all loggers. If you set the log level for a specific logger that is different from the global log level, the logger-specific setting takes precedence. In addition, when setting log levels, you can target a configuration, server, instance, or cluster.

Because setting log levels is a dynamic operation, you do not need to restart Oracle GlassFish Server for changes to take effect.

Setting either global or logger-specific log levels is done by using the `set-log-levels` subcommand. Listing log levels is done by using the `list-log-levels` subcommand.

The following topics are addressed here:
- “To List Log Levels” on page 165
- “To Set the Global Log Level” on page 166
- “To Set Module Log Levels” on page 167

### To List Log Levels
Oracle GlassFish Server provides the means to list all loggers and their log levels. Listing the loggers provides a convenient means to view current loggers and log levels either prior to or after making log level changes.

Use the `list-log-levels` subcommand in remote mode to list the modules and their current log levels. The default target for this subcommand is the DAS. However, you can optionally specify one of the following targets:
- Configuration name — to target all instances or clusters that share a specific configuration name.
- Server name — to target a specific server.
- Instance name — to target a specific instance.
- Cluster name — to target a specific cluster.

1. **Ensure that the DAS is running.**
   Remote subcommands require a running server.

2. **List the existing module loggers and log levels by using the `list-log-levels` subcommand.**

   **Example 7-3  Listing Logger Levels for Modules**
   This example shows a partial list of the existing loggers and their log levels in the DAS.

   ```
asadmin> list-log-levels
javax.enterprise.system.container.cmp <INFO>
javax.enterprise.system.tools.admin <INFO>
java.util.logging.ConsoleHandler <FINEST>
```
javax.enterprise.system.container.web <INFO>
javax.enterprise.system.util <INFO>
javax.enterprise.resource.webcontainer.jsf.timing <INFO>
javax <INFO>
javax.enterprise.resource.corba <INFO>
...
Command list-log-levels executed successfully.

Example 7–4  Listing Log Levels for an Instance

This example shows a partial list of the loggers and log levels for the instance MyServer2.

```sh
asadmin> list-log-levels MyServer2
java.util.logging.ConsoleHandler <FINEST>
javax.enterprise.resource.corba <INFO>
javax.enterprise.resource.javamail <INFO>
javax.enterprise.resource.jdo <INFO>
javax.enterprise.resource.jms <INFO>
javax.enterprise.resource.jta <INFO>
javax.enterprise.resource.resourceadapter <INFO>
javax.enterprise.resource.sqltrace <FINE>
...
Command list-log-levels executed successfully.
```

See Also  You can view the full syntax and options of the subcommand by typing asadmin help list-log-levels at the command line.

To Set the Global Log Level

The global log level specifies the events that are logged across all loggers. The default level for messages output to the console is INFO (which also includes SEVERE and WARNING messages).

Use the set-log-levels subcommand in remote mode to set the global log level. The default target for this subcommand is the DAS. However, you can optionally specify one of the following targets using the -t target option:

- Configuration name — to target all instances or clusters that share a specific configuration name.
- Server name — to target a specific server.
- Instance name — to target a specific instance.
- Cluster name — to target a specific cluster.

1 Ensure that the target server or cluster is running.

2 Set the global log level by using the set-log-levels(1) subcommand, specifying the log level of the java.util.logging.ConsoleHandler logger.

The ConsoleHandler has a separate log level setting that limits the messages that are displayed. For example:

```sh
java.util.logging.ConsoleHandler <FINEST>
```
Changing the Global Log Level for All Module Loggers

By setting the log level of the ConsoleHandler, you set the global log level for all loggers. This example sets the global log level in the DAS to INFO:

```
asadmin> set-log-levels java.util.logging.ConsoleHandler=INFO
java.util.logging.ConsoleHandler package set with log level INFO. These logging levels are set for server.
```

Command set-log-levels executed successfully.

**See Also** You can view the full syntax and options of the subcommand by typing asadmin help set-log-levels at the command line.

To Set Module Log Levels

A module log level specifies the events that are logged for a particular logger. The default level for messages output to the console is INFO (which also includes SEVERE and WARNING messages). The global log level is overridden by a module-specific log level.

By default, the module log level is set to FINE. The lines for the loggers in the logging properties file might look like this (the modules are indicated in bold):

```
javax.enterprise.system.tools.level=FINE
javax.enterprise.system.container.ejb.level=FINE
javax.enterprise.system.core.security.level=FINE
javax.enterprise.system.tools.admin.level=FINE
javax.enterprise.level=FINE
javax.enterprise.system.container.web.level=FINE
```

Because setting log levels is a dynamic operation, you do not need to restart Oracle GlassFish Server for changes to take effect.

1 **Ensure that the target server or cluster is running.**
   Remote subcommands require a running server.

2 **List the existing module loggers and their log levels by using the list-log-levels(1) subcommand.**

3 **Set the log level for a module by using the set-log-levels(1) subcommand.**
   Your choices are SEVERE, WARNING, INFO, CONFIG, FINE, FINER, and FINEST.

Setting the Log Level for a Module Logger

This example sets the log level for the web container logger to WARNING on the target instance ManagedServer1:

```
java.util.logging.getLogger("javax.enterprise.system.container.web")
```
Configure the Logging Service

asadmin> set-log-levels --target ManagedServer1
javax.enterprise.system.container.web=WARNING
javax.enterprise.system.container.web package set with log level WARNING.
These logging levels are set for ManagedServer1.
ManagedServer1 :
javax.enterprise.system.container.web package set with log level WARNING.
These logging levels are set for ManagedServer1.

Command set-log-levels executed successfully.

Example 7–7 Setting Log Levels for Multiple Loggers

The following example sets the log level for security and web container loggers in the DAS.

asadmin> set-log-levels javax.enterprise.system.core.security=FINE:
javax.enterprise.system.container.web=WARNING
javax.enterprise.system.container.web package set with log level WARNING.
javax.enterprise.system.core.security package set with log level FINE.
These logging levels are set for server.

Command set-log-levels executed successfully.

See Also You can view the full syntax and options of the subcommand by typing asadmin help
set-log-levels at the command line.

Setting Log File Rotation

As explained in “Log Files” on page 157, Oracle GlassFish Server by default rotates log files
when they reach 2 MB in size. However, you can change the default rotation settings. For
example, you can change the file size at which the server rotates the log file or you can configure
a server to rotate log files based on a time interval. In addition to changing when rotation
occurs, you can also:

- Specify the maximum number of rotated files that can accumulate.
  By default, Oracle GlassFish Server does not limit the number of rotated log files that are
  retained. However, you can set a limit. After the number of log files reaches this limit,
  subsequent file rotations delete the oldest rotated log file.
- Rotate the log file manually.
  A manual rotation forces the immediate rotation of the target log file.

Changing the default log rotation settings is done using the set-log-attributes
subcommand, and rotating log files manually is done using the rotate-log subcommand, as
explained in the following sections:

- “To Change the Rotation File Size” on page 169
- “To Change the File Rotation Interval” on page 169
- “To Change the Limit Number of Retained Files” on page 170
To Change the Rotation File Size

Use the `set-log-attributes` subcommand in remote mode to change the log rotation file size. The default target of this subcommand is the DAS. Optionally, you can target a configuration, server, instance, or cluster. The minimum size that can be set is 500 KB.

1. Ensure that the target server or cluster is running.

2. Change the rotation file size limit by using the `set-log-attributes(1)` subcommand, specifying the following attribute and the desired limit in bytes:
   
   ```
 com.sun.enterprise.server.logging.GFFileHandler.rotationLimitInBytes=bytes
   ```

3. To apply your change, restart Oracle GlassFish Server.

Example 7–8  Changing the Rotation Size

The following example sets the log file rotation size to 1 MB for the standalone instance ManagedServer1:

```
asadmin> set-log-attributes --target ManagedServer1
com.sun.enterprise.server.logging.GFFileHandler.rotationLimitInBytes=1000000
com.sun.enterprise.server.logging.GFFileHandler.rotationLimitInBytes
logging attribute set with value 1000000.
These logging attributes are set for ManagedServer1.
ManagedServer1:
com.sun.enterprise.server.logging.GFFileHandler.rotationLimitInBytes
logging attribute set with value 1000000.
These logging attributes are set for ManagedServer1.
Command set-log-attributes executed successfully.
```

See Also

You can view the full syntax and options of the subcommand by typing `asadmin help set-log-attributes` at the command line.

To Change the File Rotation Interval

Use the `set-log-attributes` subcommand in remote mode to change the log file rotation time limit interval. The default target of this subcommand is the DAS. Optionally, you can target a configuration, server, instance, or cluster. The default value is 0.

1. Ensure that the target server or cluster is running.

2. Change the rotation time limit by using the `set-log-attributes(1)` subcommand, specifying the following attribute and the desired limit in minutes:

   ```
 com.sun.enterprise.server.logging.GFFileHandler.rotationTimelimitInMinutes=minutes
   ```
3 To apply your change, restart Oracle GlassFish Server.

Example 7–9 Changing the Rotation Interval

The following example sets the log file rotation time limit for the cluster Cluster1, which has the instances ClusterServer1 and ClusterServer2.

```
asadmin> set-log-attributes --target Cluster1
com.sun.enterprise.server.logging.GFFileHandler.rotationTimelimitInMinutes=10
These logging attributes are set for Cluster1.
ClusterServer1:
com.sun.enterprise.server.logging.GFFileHandler.rotationTimelimitInMinutes
logging attribute set with value 10.
These logging attributes are set for Cluster1.
ClusterServer2:
com.sun.enterprise.server.logging.GFFileHandler.rotationTimelimitInMinutes
logging attribute set with value 10.
These logging attributes are set for Cluster1.
```

Command set-log-attributes executed successfully.

See Also You can view the full syntax and options of the subcommand by typing asadmin help set-log-attributes at the command line.

▼ To Change the Limit Number of Retained Files

Use the set-log-attributes subcommand in remote mode to change the limit on the number of log files that the server creates to store old log messages. The default target of this subcommand is the DAS. Optionally, you can target a configuration, server, instance, or cluster. The default limit value is 0, which results in no limit placed on the number of rotated log files that are retained.

1 Ensure that the target server or cluster is running.

2 Change the limit number of retained log files by using the set-log-attributes(1) subcommand, specifying the following attribute and the desired file limit number:

```
com.sun.enterprise.server.logging.GFFileHandler.maxHistoryFiles=minutes
```

The behavior of the
```
com.sun.enterprise.server.logging.GFFileHandler.maxHistoryFiles attribute is as follows:
```

- If the property is not set, Oracle GlassFish Server keeps a maximum of 10 rotated log files.
- If the property is set to an invalid number or null, Oracle GlassFish Server keeps a maximum of 10 rotated log files.
If the property is set to 0, Oracle GlassFish Server retains all rotated log files (that is, no sets no maximum).

3 To apply your change, restart Oracle GlassFish Server.

Example 7–10 Changing the Limit Number of Retained Files

The following example sets the log limit number of retained log files for the DAS to 10.

```
asadmin> set-log-attributes
com.sun.enterprise.server.logging.GFFileHandler.maxHistoryFiles=10
com.sun.enterprise.server.logging.GFFileHandler.maxHistoryFiles
logging attribute set with value 10.
These logging attributes are set for server.
Command set-log-attributes executed successfully.
```

See Also You can view the full syntax and options of the subcommand by typing asadmin help set-log-attributes at the command line.

▼ To Rotate Log Files Manually

You can rotate log files manually by using the rotate-log subcommand in remote mode. The default target of this subcommand is the DAS. Optionally, you can target a configuration, server, instance, or cluster. When you use this subcommand, the target log file is immediately moved to a new time-stamped file and a new log file is created.

Because log rotation is a dynamic operation, you do not need to restart Oracle GlassFish Server for changes to take effect.

1 Ensure that the target server or cluster is running.

2 Rotate log files by using the rotate-log(1) subcommand.

Example 7–11 Rotating Log Files Manually

The following example rotates the server.log file for ManagedServer2 to server.log_yyyy-mm-ddThh-mm-ss, where yyyy-mm-ddThh-mm-ss represents the time when the file is rotated, and creates a new server.log file in the default location.

```
asadmin> rotate-log --target ManagedServer2
Command rotate-log executed successfully.
```

See Also You can view the full syntax and options of the subcommand by typing asadmin help rotate-log at the command line.
Adding a Custom Logging Handler

By default, Oracle GlassFish Server log records are captured in a server log file using the format described in “Log Records” on page 159. However, you may find that you want to log messages to a different location, such as a database or a remote server, or log messages from specific loggers to your own file. This can be done by implementing a custom log handler. This section explains how to add a custom log handler to the Oracle GlassFish Server logging service.

▼ To Add a Custom Log Handler

A comma-separated list of log handlers is installed during startup of the Java Virtual Machine (JVM) host. The default log handler that is provided in the logging.properties file, ConsoleHandler, is configured as follows:

```
handlers=java.util.logging.ConsoleHandler
```

In Oracle GlassFish Server, the best approach to developing a custom handler is to define a Hundred-Kilobyte Kernel (HK2) component that implements the handler contract. Oracle GlassFish Server registers this handler automatically because it is an HK2 component. There is no task required of the administrator.

To configure a custom handler that is not developed as an HK2 component, add the new handler to the logging.properties file after the developer has put the custom handler JAR file into the domain-dir/lib/ext directory.

Before You Begin

If you set a handler by setting the handlers attribute in the logging properties file, the class that extends java.util.logging.Handler must be in the server classpath.

1. Ensure that the target server or cluster is running.
   Remote subcommands require a running server.

2. Use the set-log-attributes(1) subcommand to add the handler to the handlers attribute.
   The default target of this subcommand is the DAS. Optionally you can target a configuration, server, instance, or cluster.

3. To apply your changes, restart Oracle GlassFish Server.
   See “To Restart a Domain” on page 112.

Example 7–12 Adding a New Log Handler

This example adds the custom logger com.example.logging.MyHandler to the logging properties file of the DAS.

```
asadmin> set-log-attributes
 handlers=java.util.logging.ConsoleHandler,com.example.logging.MyHandler
 handlers logging attribute set with value
```
java.util.logging.ConsoleHandler, com.example.logging.MyHandler. These logging attributes are set for server. Command set-log-attributes executed successfully.

See Also You can view the full syntax and options of the subcommand by typing asadmin help set-log-attributes at the command line.

Viewing Log Records

The recommended means for general viewing of logging information is to use the Log Viewer in the Administration Console. The Log Viewer simplifies reading, searching, and filtering log file contents. For instructions, see the Administration Console online help.

Oracle GlassFish Server also allows you to collect log files into a ZIP archive, which provides the means to obtain and view log files for an instance or cluster even when it is not currently running. The following section explains how to collect all available log files for an instance or cluster and compile them into a single ZIP archive, which is done by using the collect-log-files subcommand.

▼ To Collect Log Files into a ZIP Archive

Use the collect-log-files subcommand in remote mode to collect log files into a ZIP archive. The default target of this subcommand is the DAS. Optionally you can target a configuration, server, instance, or cluster.

1 Ensure that the target server or cluster is running.
   Remote subcommands require a running server.

2 Use the collect-log-files(1) subcommand to create the ZIP archive.
   The default location in which the ZIP archive is created is the domain-dir/collected-logs directory. The collect-log-files subcommand allows you to specify a nondefault directory in which the ZIP archive is to be created by using the --retrieve option set to true, followed by the directory name.

   The name of the ZIP file contains the timestamp, as follows:
   
   log_yyyy-mm-dd_hh-min-sec.zip

Example 7–13 Creating a ZIP Archive

This example shows collecting the log files for the cluster MyCluster and compiling them into a ZIP archive in the /space/output directory.
asadmin> collect-log-files --target MyCluster
   --retrieve true /space/output
Log files are downloaded for ClusterServer1.
Log files are downloaded for ClusterServer2.
Command collect-log-files executed successfully.

When the ZIP file created by the preceding command is uncompressed, the following directory structure is created:

```
as-install-parent/
glassfish/
 domains/
 domain-name/
 collected_logs/
 logs/
 ClusterServer1/
 server.log
 ClusterServer2/
 server.log
```

See Also  You can view the full syntax and options of the subcommand by typing asadmin help collect-log-files at the command line.
Administering the Monitoring Service

This chapter explains how to monitor the Oracle GlassFish Server 3.1 components and services by using the asadmin command-line utility. Instructions for configuring JConsole to monitor GlassFish Server resources are also provided.

The following topics are addressed here:

- “About Monitoring” on page 175
- “Configuring Monitoring” on page 182
- “Viewing Common Monitoring Data” on page 185
- “Viewing Comprehensive Monitoring Data” on page 187
- “Configuring JConsole to View GlassFish Server Monitoring Data” on page 214

Instructions for monitoring by using the Administration Console are contained in the Administration Console online help.

For information on using REST interfaces for monitoring, see “Using REST Interfaces to Administer GlassFish Server” on page 63.

About Monitoring

*Monitoring* is the process of reviewing the statistics of a system to improve performance or solve problems. The monitoring service can track and display operational statistics, such as the number of requests per second, the average response time, and the throughput. By monitoring the state of various components and services deployed in GlassFish Server, you can identify performance bottlenecks, predict failures, perform root cause analysis, and ensure that everything is functioning as expected. Data gathered by monitoring can also be useful in performance tuning and capacity planning.

For this release of GlassFish Server, monitoring is exposed in a modular way so that many client modules can access and display the monitoring statistics. These clients include the Administration Console, the asadmin utility, AMX, and REST interfaces.
The following topics are addressed here:

- “How the Monitoring Tree Structure Works” on page 176
- “About Monitoring for Add-on Components” on page 181
- “Tools for Monitoring GlassFish Server” on page 182

**How the Monitoring Tree Structure Works**

A monitorable object is a component, subcomponent, or service that can be monitored. GlassFish Server uses a tree structure to track monitorable objects. Because the tree is dynamic, the tree changes as GlassFish Server components are added or removed.

In the tree, a monitorable object can have child objects (nodes) that represent exactly what can be monitored for that object. All child objects are addressed using the dot (.) character as a separator. These constructed names are referred to as dotted names. Detailed information on dotted names is available in the [dotted-names](#) help page.

The following command lists the monitorable child objects of the instance server:

```
asadmin> list --monitor "server.*"
```

```
server.applications
server.connector-service
server.http-service
server.jms-service
server.jvm
server.network
server.orb
server.resources
server.security
server.thread-pool
server.transaction-service
server.web
```

Each object is represented by a dotted name. Dotted names can also address specific attributes in monitorable objects. For example, the jvm object has a memory attribute with a statistic called maxheapsize. The following dotted name addresses the attribute:

```
server.jvm.memory.maxheapsize
```

Although an object is monitorable, it is not necessarily being actively monitored. For instructions on activating monitoring, see “Configuring Monitoring” on page 182.

**Tree Structure of Monitorable Objects**

Each monitorable object has a hierarchical tree structure. In the tree, a replaceable such as “statistics” represents the name of the attribute that you can show statistics for.
The following node tree hierarchies are addressed here:

- "Applications Tree Hierarchy" on page 177
- "Connector Service Tree Hierarchy" on page 178
- "HTTP Service Tree Hierarchy" on page 178
- "JMS/Container Service Tree Hierarchy" on page 179
- "JVM Tree Hierarchy" on page 179
- "Network Tree Hierarchy" on page 179
- "ORB Tree Hierarchy" on page 180
- "Resources Tree Hierarchy" on page 180
- "Security Tree Hierarchy" on page 180
- "Thread Pool Tree Hierarchy" on page 180
- "Transactions Service Tree Hierarchy" on page 181
- "Web Tree Hierarchy" on page 181

**Applications Tree Hierarchy**

The applications tree contains the following nodes:

```plaintext
server.applications
 |--- application1
 | |--- ejb-module-1
 | | |--- ejb1 *
 | | | |--- bean-cache (for entity/sfsb) *
 | | | |--- bean-pool (for slsb/mdb/entity) *
 | | | |--- bean-methods
 | | | | |--- method1 *
 | | | | |--- method2 *
 | | | |--- timers (for slsb/entity/mdb) *
 | |--- web-module-1
 | | |--- virtual-server-1 *
 | | | |--- servlet1 *
 | | | |--- servlet2 *
 |--- standalone-web-module-1
 | |----- virtual-server-2 *
 | | |--- servlet3 *
 | | |--- servlet4 *
 | |----- virtual-server-3 *
 | | |--- servlet3 *(same servlet on different vs)
 | | |--- servlet5 *
 |--- standalone-ejb-module-1
 | |--- ejb2 *
 | | |--- bean-cache (for entity/sfsb) *
 | | |--- bean-pool (for slsb/mdb/entity) *
 | | |--- bean-methods
 | | | |--- method1 *
 | | | |--- method2 *
 |--- jersey-application-1
 | |--- jersey
 | | |--- resources
 | | | |--- resource-0
 | | | | |hitcount
```

About Monitoring

Chapter 8 • Administering the Monitoring Service 177
An example dotted name might be:

\texttt{server.applications.hello.server.request.maxtime}

An example dotted name under the EJB method node might be:

\texttt{server.applications.ejbsfappl.ejbsfapplejbmod1.jar.SFApp1EJB1}

An example Jersey dotted name might be:

\texttt{server.applications.helloworld-webapp.jersey.resources.resource-0.hitcount.resourcehitcount-count}

For available statistics, see “EJB Statistics” on page 191, “Jersey Statistics” on page 196, and “Web Statistics” on page 211.

### Connector Service Tree Hierarchy

The connector-service tree holds monitorable attributes for pools such as the connector connection pool. The connector-service tree contains the following nodes:

\texttt{server.connector-service}

\hspace{1cm}

\texttt{resource-adapter-1}

\hspace{1cm}

\texttt{connection-pools}

\hspace{1cm}

\texttt{pool-1}

\hspace{1cm}

\texttt{work-management}

An example dotted name might be:

\texttt{server.connector-service.resource-adapter-1.connection-pools.pool-1}

For available statistics, see “JMS/Connector Service Statistics” on page 196.

### HTTP Service Tree Hierarchy

The http-service tree contains the following nodes:

\texttt{server.http-service}

\hspace{1cm}

\texttt{virtual-server}

\hspace{1cm}

\texttt{request}

\hspace{1cm}

\texttt{*statistic}

\hspace{1cm}

\texttt{-asadmin}

\hspace{1cm}

\texttt{request}

\hspace{1cm}

\texttt{*statistic}

An example dotted name under the \texttt{virtual-server} node might be:

\texttt{server.http-service.virtual-server1.request.requestcount}

For available statistics, see “HTTP Service Statistics” on page 194.
JMS/Container Service Tree Hierarchy

The jms-service tree holds monitorable attributes for connection factories (connection pools for resource adapters) and work management (for Message Queue resource adapters). The jms-service tree contains the following nodes:

server.jms-service
  connection-factories
    connection-factory-1
  work-management

An example dotted name under the connection-factories node might be server.jms-service.connection-factories.connection-factory-1 which shows all the statistics for this connection factory. For available statistics, see “JMS/Connector Service Statistics” on page 196.

JVM Tree Hierarchy

The jvm tree contains the following nodes:

server.jvm
  class-loading-system
  compilation-system
  garbage-collectors
  memory
  operating-system
  runtime

An example dotted name under the memory node might be server.jvm.memory.maxheapsize. For available statistics, see “JVM Statistics” on page 198.

Network Tree Hierarchy

The network statistics apply to the network listener, such as admin-listener, http-listener-1, http-listener-2. The network tree contains the following nodes:

server.network
  type-of-listener
  keep-alive
    *statistic
  file-cache
    *statistic
  thread-pool
    *statistic
  connection-queue
    *statistic

An example dotted name under the network node might be server.network.admin-listener.keep-alive.maxrequests-count. For available statistics, see “Network Statistics” on page 202.
ORB Tree Hierarchy

The orb tree holds monitorable attributes for connection managers. The orb tree contains the following nodes:

```
server.orb
 transport
 connectioncache
 inbound
 *statistic
 outbound
 *statistic
```

An example dotted name might be `server.orb.transport.connectioncache.inbound.connectionsidle-count`. For available statistics, see "ORB Statistics (Connection Manager)" on page 205.

Resources Tree Hierarchy

The resources tree holds monitorable attributes for pools such as the JDBC connection pool and connector connection pool. The resources tree contains the following nodes:

```
server.resources
 connection-pool
 request
 *statistic
```

An example dotted name might be `server.resources.jdbc-connection-pool1.numconnfree.count`. For available statistics, see "Resource Statistics (Connection Pool)" on page 206.

Security Tree Hierarchy

The security tree contains the following nodes:

```
server.security
 ejb
 *statistic
 web
 *statistic
 realm
 *statistic
```

An example dotted name might be `server.security.realm.realmcount-starttime`. For available statistics, see "Security Statistics" on page 208.

ThreadPool Tree Hierarchy

The thread-pool tree holds monitorable attributes for connection managers, and contains the following nodes:
An example dotted name might be
server.thread-pool.orb.threads.pool.threads.pool-1.averagetimeinqueue-current. For available statistics, see “Thread Pool Statistics” on page 209.

**Transactions Service Tree Hierarchy**

The transaction-service tree holds monitorable attributes for the transaction subsystem for the purpose of rolling back transactions. The transaction-service tree contains the following nodes:

```
server.transaction-service
 statistic
```

An example dotted name might be server.transaction-service.activeids. For available statistics, see "Transaction Service Statistics" on page 211.

**Web Tree Hierarchy**

The web tree contains the following nodes:

```
server.web
 jsp
 statistic
 servlet
 statistic
 session
 statistic
 request
 statistic
```

An example dotted name for the servlet node might be server.web.servlet.activesservletsloadedcount. For available statistics, see “Web Module Common Statistics” on page 186.

**About Monitoring for Add-on Components**

An add-on component typically generates statistics that GlassFish Server can gather at runtime. Adding monitoring capabilities enables an add-on component to provide statistics to GlassFish Server in the same way as components that are supplied in the GlassFish Server distributions. As a result, you can use the same administrative interfaces to monitor statistics from any installed GlassFish Server component, regardless of the origin of the component.
Tools for Monitoring GlassFish Server

The following asadmin subcommands are provided for monitoring the services and components of GlassFish Server:

- The enable-monitoring, disable-monitoring, or the get and set subcommands are used to turn monitoring on or off. For instructions, see “Configuring Monitoring” on page 182.
- The monitor --type subcommand is used to display basic data for a particular type of monitorable object. For instructions, see ”Viewing Common Monitoring Data” on page 185.
- The list --monitor subcommand is used to display the objects that can be monitored with the monitor subcommand. For guidelines and instructions, see “Guidelines for Using the list and get Subcommands for Monitoring” on page 187.
- The get subcommand is used to display comprehensive data, such as the attributes and values for a dotted name. The get subcommand used with a wildcard parameter displays all available attributes for any monitorable object. For additional information, see “Guidelines for Using the list and get Subcommands for Monitoring” on page 187.

Configuring Monitoring

By default, the monitoring service is enabled for GlassFish Server, but monitoring for the individual modules is not. To enable monitoring for a module, you change the monitoring level for that module to LOW or HIGH, You can choose to leave monitoring OFF for objects that do not need to be monitored.

- **LOW.** Simple statistics, such as create count, byte count, and so on
- **HIGH.** Simple statistics plus method statistics, such as method count, duration, and so on
- **OFF.** No monitoring, no impact on performance

The following tasks are addressed here:

- “To Enable Monitoring” on page 182
- “To Disable Monitoring” on page 183

▼ To Enable Monitoring

Use the enable-monitoring subcommand to enable the monitoring service itself, or to enable monitoring for individual modules. Monitoring is immediately activated, without restarting GlassFish Server.

You can also use the set(1) subcommand to enable monitoring for a module. Using the set command is not a dynamic procedure, so you need to restart GlassFish Server for your changes to take effect.
1 Determine which services and components are currently enabled for monitoring.

   asadmin> get server.monitoring-service.module-monitoring-levels.*

   This example output shows that the HTTP service is not enabled (OFF for monitoring), but other objects are enabled:

   configs.config.server-config.monitoring-service.module-monitoring-levels.web-container=HIGH
   configs.config.server-config.monitoring-service.module-monitoring-levels.http-service=OFF
   configs.config.server-config.monitoring-service.module-monitoring-levels.jvm=HIGH

2 Enable monitoring by using the `enable-monitoring(1)` subcommand.

   Server restart is not required.

Example 8–1 Enabling the Monitoring Service Dynamically

   This example enables the monitoring service without affecting monitoring for individual modules.

   asadmin> enable-monitoring
   Command enable-monitoring executed successfully

Example 8–2 Enabling Monitoring for Modules Dynamically

   This example enables monitoring for the ejb-container module.

   asadmin> enable-monitoring --level ejb-container=HIGH
   Command enable-monitoring executed successfully

Example 8–3 Enabling Monitoring for Modules by Using the set Subcommand

   This example enables monitoring for the HTTP service by setting the monitoring level to HIGH (you must restart the server for changes to take effect).

   asadmin> set server.monitoring-service.module-monitoring-levels.http-service=HIGH
   Command set executed successfully

See Also You can also view the full syntax and options of the subcommand by typing asadmin help enable-monitoring at the command line.

▼ To Disable Monitoring

Use the `disable-monitoring` subcommand to disable the monitoring service itself, or to disable monitoring for individual modules. Monitoring is immediately stopped, without restarting GlassFish Server.
You can also use the `set(1)` subcommand to disable monitoring for a module. Using the set command is not a dynamic procedure, so you need to restart GlassFish Server for your changes to take effect.

```
1 Determine which services and components currently are enabled for monitoring.
 asadmin get server.monitoring-service.module-monitoring-levels.*
```

This example output shows that monitoring is enabled for `web-container`, `http-service`, and `jvm`:

```
configs.config.server-config.monitoring-service.module-monitoring-levels.web-container=HIGH
configs.config.server-config.monitoring-service.module-monitoring-levels.http-service=HIGH
configs.config.server-config.monitoring-service.module-monitoring-levels.jvm=HIGH
```

```
2 Disable monitoring for a service or module by using the `disable-monitoring(1)` subcommand.
 Server restart is not required.
```

**Example 8–4** Disabling the Monitoring Service Dynamically

This example disables the monitoring service without changing the monitoring levels for individual modules.

```
asadmin> disable-monitoring
Command disable-monitoring executed successfully
```

**Example 8–5** Disabling Monitoring for Modules Dynamically

This example disables monitoring for specific modules. Their monitoring levels are set to OFF.

```
asadmin> disable-monitoring --modules web-container,ejb-container
Command disable-monitoring executed successfully
```

**Example 8–6** Disabling Monitoring by Using the `set` Subcommand

This example disables monitoring for the HTTP service (you must restart the server for changes to take effect).

```
asadmin> set server.monitoring-service.module-monitoring-levels.http-service=OFF
Command set executed successfully
```

**See Also** You can also view the full syntax and options of the subcommand by typing `asadmin help disable-monitoring` at the command line.
Viewing Common Monitoring Data

Use the `monitor` subcommand to display basic data on commonly-monitored objects.

- “To View Common Monitoring Data” on page 185
- “Common Monitoring Statistics” on page 186

**To View Common Monitoring Data**

Use the `--type` option of the `monitor` subcommand to specify the object for which you want to display data, such as `httplistener`, `jvm`, `webmodule`. If you use the `monitor` subcommand without specifying a type, an error message is displayed.

Output from the subcommand is displayed continuously in a tabular format. The `--interval` option can be used to display output at a particular interval (the default is 30 seconds).

**Before You Begin**

A monitorable object must be configured for monitoring before you can display data on the object. See “To Enable Monitoring” on page 182.

1. **Determine which type of monitorable object you want to monitor.**
   Your choices for 3.1 are `jvm`, `httplistener`, and `webmodule`.

2. **Request the monitoring data by using the `monitor(1)` subcommand.**

**Example 8–7** Viewing Common Monitoring Data

This example requests common data for type `jvm` on instance `server`.

```bash
asadmin> monitor --type jvm server
```

<table>
<thead>
<tr>
<th>UpTime(ms)</th>
<th>Heap and NonHeap Memory(bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>current</td>
<td>min</td>
</tr>
<tr>
<td>9437266</td>
<td>8585216</td>
</tr>
<tr>
<td>9467250</td>
<td>8585216</td>
</tr>
</tbody>
</table>

**See Also** You can also view the full syntax and options of the subcommand by typing `asadmin help monitor` at the command line.
Common Monitoring Statistics

Common monitoring statistics are described in the following sections:

- "HTTP Listener Common Statistics" on page 186
- "JVM Common Statistics" on page 186
- "Web Module Common Statistics" on page 186

HTTP Listener Common Statistics

The statistics available for the http listener type are shown in the following table.

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ec</td>
<td>Error count. Cumulative value of the error count</td>
</tr>
<tr>
<td>mt</td>
<td>Maximum time. Longest response time for a request; not a cumulative value, but the largest response time from among the response times</td>
</tr>
<tr>
<td>pt</td>
<td>Processing time. Cumulative value of the times taken to process each request, with processing time being the average of request processing times over request</td>
</tr>
<tr>
<td>rc</td>
<td>Request count. Cumulative number of requests processed so far</td>
</tr>
</tbody>
</table>

JVM Common Statistics

The statistics available for the jvm type are shown in the following table.

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>Amount of memory (in bytes) that is guaranteed to be available for use by the JVM machine</td>
</tr>
<tr>
<td>high</td>
<td>Retained for compatibility with other releases</td>
</tr>
<tr>
<td>low</td>
<td>Retained for compatibility with other releases</td>
</tr>
<tr>
<td>max</td>
<td>The maximum amount of memory that can be used for memory management.</td>
</tr>
<tr>
<td>min</td>
<td>Initial amount of memory (in bytes) that the JVM machine requests from the operating system for memory management during startup</td>
</tr>
<tr>
<td>UpTime</td>
<td>Number of milliseconds that the JVM machine has been running since it was last started</td>
</tr>
</tbody>
</table>

Web Module Common Statistics

The statistics available for the webmodule type are shown in the following table.
### TABLE 8–3  Web Module Common Monitoring Statistics

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ajlc</td>
<td>Number of active JavaServer Pages (JSP) technology pages that are loaded</td>
</tr>
<tr>
<td>asc</td>
<td>Current active sessions</td>
</tr>
<tr>
<td>aslc</td>
<td>Number of active servlets that are loaded</td>
</tr>
<tr>
<td>ast</td>
<td>Total active sessions</td>
</tr>
<tr>
<td>mjlc</td>
<td>Maximum number of JSP pages that are loaded</td>
</tr>
<tr>
<td>mslc</td>
<td>Maximum number of servlets that are loaded</td>
</tr>
<tr>
<td>rst</td>
<td>Total rejected sessions</td>
</tr>
<tr>
<td>st</td>
<td>Total sessions</td>
</tr>
<tr>
<td>tjlc</td>
<td>Total number of JSP pages that are loaded</td>
</tr>
<tr>
<td>tslc</td>
<td>Total number of servlets that are loaded</td>
</tr>
</tbody>
</table>

### Viewing Comprehensive Monitoring Data

By applying the `list` and `get` subcommands against the tree structure using dotted names, you can display more comprehensive monitoring data, such as a description of each of the statistics and its unit of measurement.

The following topics are addressed here:

- “Guidelines for Using the `list` and `get` Subcommands for Monitoring” on page 187
- “To View Comprehensive Monitoring Data” on page 188
- “Comprehensive Monitoring Statistics” on page 190

### Guidelines for Using the `list` and `get` Subcommands for Monitoring

The underlying assumptions for using the `list` and `get` subcommands with dotted names are:

- A `list` subcommand that specifies a dotted name that is *not* followed by a wildcard (*) lists the current node’s immediate children. For example, the following subcommand lists all immediate children belonging to the `server` node:

  ```
 list --monitor server
  ```
A list subcommand that specifies a dotted name followed by a wildcard of the form \(.*\) lists a hierarchical tree of child nodes from the specified node. For example, the following subcommand lists all children of the applications node, their subsequent child nodes, and so on:

```
list --monitor server.applications.*
```

A list subcommand that specifies a dotted name preceded or followed by a wildcard of the form \(^{*dottedname\ or\ dotted\ name}\ or\ dottedname\ ^{*\} lists all nodes and their children that match the regular expression created by the specified matching pattern.

A get subcommand followed by a \(.*\) or a \(^*\) gets the set of attributes and their values that belong to the node specified.

For example, the following table explains the output of the list and get subcommands used with the dotted name for the resources node.

<table>
<thead>
<tr>
<th>Table 8-4 Example Resources Level Dotted Names</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Subcommand</strong></td>
</tr>
<tr>
<td>list --monitor</td>
</tr>
<tr>
<td>list --monitor</td>
</tr>
<tr>
<td>get --monitor</td>
</tr>
</tbody>
</table>

For detailed information on dotted names, see the dotted-names(5ASC) help page.

**To View Comprehensive Monitoring Data**

Although the monitor subcommand is useful in many situations, it does not offer the complete list of all monitorable objects. To work with comprehensive data for an object type, use the list --monitor and the get --monitor subcommands followed by the dotted name of a monitorable object.

**Before You Begin**

A monitorable object must be configured for monitoring before you can display information about the object. See "To Enable Monitoring" on page 182 if needed.
1 List the objects that are enabled for monitoring by using the `list(1)` subcommand.

For example, the following subcommand lists all components and services that have monitoring enabled for instance server.

```
asadmin> list --monitor "*"
server.web
server.connector-service
server.orb
server.jms-service
server.jvm
server.applications
server.http-service
server.thread-pools
```

2 Get data for a monitored component or service by using the `get(1)` subcommand.

**Example 8–8 Viewing Attributes for a Specific Type**

This example gets information about all the attributes for object type `jvm` on instance `server`.

```
asadmin> get --monitor server.jvm.*
server.jvm.class-loading-system.loadedclasscount = 3715
server.jvm.class-loading-system.totalloadedclasscount = 3731
server.jvm.class-loading-system.unloadedclasscount = 16
server.jvm.compilation-system.name-current = HotSpot Client Compiler
server.jvm.compilation-system.totalcompilationtime = 769
server.jvm.garbage-collectors.Copy.collectioncount = 285
server.jvm.garbage-collectors.Copy.collectiontime = 980
server.jvm.garbage-collectors.MarkSweepCompact.collectioncount = 2
server.jvm.garbage-collectors.MarkSweepCompact.collectiontime = 383
server.jvm.memory.committedheapsize = 23498752
server.jvm.memory.committednonheapsize = 13598720
server.jvm.memory.initheapsize = 0
server.jvm.memory.initnonheapsize = 0
```

```server.jvm.memory.maxheapsize = 66650112
server.jvm.memory.maxnonheapsize = 100663296
server.jvm.memory.objectpendingfinalizationcount = 0
server.jvm.memory.usedheapsize = 19741184
server.jvm.memory.usednonheapsize = 13398352
server.jvm.operating-system.arch-current = x86
server.jvm.operating-system.availableprocessors = 2
server.jvm.operating-system.name-current = Windows XP
server.jvm.operating-system.version-current = 5.1
server.jvm.runtime.classpath-current = glassfish.jar
server.jvm.runtime.inputarguments-current = []
server.jvm.runtime.managementspecversion-current = 1.0
server.jvm.runtime.name-current = 4372@ABBAGANI_WORK
server.jvm.runtime.specname-current = Java Virtual Machine Specification
server.jvm.runtime.specvendor-current = Sun Microsystems Inc.
server.jvm.runtime.specversion-current = 1.0
server.jvm.runtime.uptime = 84813
server.jvm.runtime.vmname-current = Java HotSpot(TM) Client VM
server.jvm.runtime.vmvendor-current = Sun Microsystems Inc.
server.jvm.runtime.vmversion-current = 1.5.0_11-b03
```
Viewing Comprehensive Monitoring Data

Example 8–9  Viewing Monitorable Applications

This example lists all the monitorable applications for instance server.

```
asadmin> list --monitor server.applications.*
server.applications.app1
server.applications.app2
server.applications.app1.virtual-server1
server.applications.app2.virtual-server1
```

Example 8–10  Viewing Attributes for an Application

This example gets information about all the attributes for application hello.

```
asadmin> get --monitor server.applications.hello.*
server.applications.hello.server.activatedsessionstotal = 0
server.applications.hello.server.activejspssloadecount = 1
server.applications.hello.server.activeappletsloadecount = 1
server.applications.hello.server.activeappletssessionscurrent = 1
server.applications.hello.server.activeappletssessionshigh = 1
server.applications.hello.server.errorcount = 0
server.applications.hello.server.expiredsessionstotal = 0
server.applications.hello.server.maxjspssloadecount = 1
server.applications.hello.server.maxappletsloadecount = 0
server.applications.hello.server.maxappletsessionscurrent = 0
server.applications.hello.server.maxappletsessionshigh = 0
server.applications.hello.server.maxprocessingtime = 0.0
server.applications.hello.server.maxrequeststotal = 0
server.applications.hello.server.maxrejectedrequeststotal = 0
server.applications.hello.server.maxsessionstotal = 0
server.applications.hello.server.maxtotalappletsloadedcount = 0
server.applications.hello.server.maxtotalappletsloadedcount = 0
```

Example 8–11  Viewing a Specific Attribute

This example gets information about the jvm attribute runtime.vmversion-current on instance server.

```
asadmin> get --monitor server.jvm.runtime.vmversion-current
server.jvm.runtime.vmversion-current = 10.0-b23
```

Comprehensive Monitoring Statistics

You can get comprehensive monitoring statistics by forming a dotted name that specifies the statistic you are looking for. For example, the following dotted name will display the cumulative number of requests for the HTTP service on virtual-server1:

```
server.http-service.virtual-server1.request.requestcount
```
The tables in the following sections list the statistics that are available for each monitorable object:

- “EJB Statistics” on page 191
- “HTTP Service Statistics” on page 194
- “Jersey Statistics” on page 196
- “JMS/Connector Service Statistics” on page 196
- “JVM Statistics” on page 198
- “Network Statistics” on page 202
- “ORB Statistics (Connection Manager)” on page 205
- “Resource Statistics (Connection Pool)” on page 206
- “Security Statistics” on page 208
- “Thread Pool Statistics” on page 209
- “Transaction Service Statistics” on page 211
- “Web Statistics” on page 211

### EJB Statistics

EJBs fit into the tree of objects as shown in “Applications Tree Hierarchy” on page 177. Use the following dotted name pattern to get EJB statistics for an application:

```
server.applications.appname.ejbmodulename.ejbname.bean-cache.statistic
```

**Note** – EJB statistics for an application are available after the application is executed. If the application is deployed but has not yet been executed, all counts will show default values. When the application is undeployed, all its monitoring data is lost.

Statistics available for applications are shown in the following sections:

- “EJB Cache Statistics” on page 191
- “EJB Container Statistics” on page 192
- “EJB Method Statistics” on page 193
- “EJB Pool Statistics” on page 193
- “Timer Statistics” on page 194

### EJB Cache Statistics

Use the following dotted name pattern for EJB cache statistics:

```
server.applications.appname.ejbmodulename.bean-cache.ejbname.statistic
```

The statistics available for EJB caches are listed in the following table.
### EJBCacheMonitoringStatistics

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cachemisses</td>
<td>RangeStatistic</td>
<td>The number of times a user request does not find a bean in the cache.</td>
</tr>
<tr>
<td>cachehits</td>
<td>RangeStatistic</td>
<td>The number of times a user request found an entry in the cache.</td>
</tr>
<tr>
<td>numbeansincache</td>
<td>RangeStatistic</td>
<td>The number of beans in the cache. This is the current size of the cache.</td>
</tr>
<tr>
<td>numpassivations</td>
<td>CountStatistic</td>
<td>Number of passivated beans. Applies only to stateful session beans.</td>
</tr>
<tr>
<td>numpassivationerrors</td>
<td>CountStatistic</td>
<td>Number of errors during passivation. Applies only to stateful session beans.</td>
</tr>
<tr>
<td>numexpiredsessionsremoved</td>
<td>CountStatistic</td>
<td>Number of expired sessions removed by the cleanup thread. Applies only to stateful session beans.</td>
</tr>
<tr>
<td>numpassivationsuccess</td>
<td>CountStatistic</td>
<td>Number of times passivation completed successfully. Applies only to stateful session beans.</td>
</tr>
</tbody>
</table>

### EJB Container Statistics

Use the following dotted name pattern for EJB container statistics:

`server.applications.appname.ejbmodulename.container.ejbname`

The statistics available for EJB containers are listed in the following table.

### EJB Container Monitoring Statistics

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>createcount</td>
<td>CountStatistic</td>
<td>Number of times an EJB's create method is called.</td>
</tr>
<tr>
<td>messagecount</td>
<td>CountStatistic</td>
<td>Number of messages received for a message-driven bean.</td>
</tr>
<tr>
<td>methodreadycount</td>
<td>RangeStatistic</td>
<td>Number of stateful or stateless session beans that are in the MethodReady state.</td>
</tr>
<tr>
<td>passivecount</td>
<td>RangeStatistic</td>
<td>Number of stateful session beans that are in Passive state.</td>
</tr>
<tr>
<td>pooledcount</td>
<td>RangeStatistic</td>
<td>Number of entity beans in pooled state.</td>
</tr>
</tbody>
</table>
TABLE 8–6  EJB Container Monitoring Statistics  (Continued)

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>readycount</td>
<td>RangeStatistic</td>
<td>Number of entity beans in ready state.</td>
</tr>
<tr>
<td>removecount</td>
<td>CountStatistic</td>
<td>Number of times an EJB's remove method is called.</td>
</tr>
</tbody>
</table>

**EJB Method Statistics**

Use the following dotted name pattern for EJB method statistics:

```
server.applications.appname.ejbmodulename.bean-methods.ejbname.statistic
```

The statistics available for EJB method invocations are listed in the following table.

TABLE 8–7  EJB Method Monitoring Statistics

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>executiontime</td>
<td>CountStatistic</td>
<td>Time, in milliseconds, spent executing the method for the last successful/ unsuccessful attempt to run the operation. This is collected for stateless and stateful session beans and entity beans if monitoring is enabled on the EJB container.</td>
</tr>
<tr>
<td>methodstatistic</td>
<td>TimeStatistic</td>
<td>Number of times an operation is called; the total time that is spent during the invocation, and so on.</td>
</tr>
<tr>
<td>totalnumerrors</td>
<td>CountStatistic</td>
<td>Number of times the method execution resulted in an exception. This is collected for stateless and stateful session beans and entity beans if monitoring is enabled for the EJB container.</td>
</tr>
<tr>
<td>totalnumsuccess</td>
<td>CountStatistic</td>
<td>Number of times the method successfully executed. This is collected for stateless and stateful session beans and entity beans if monitoring enabled is true for EJB container.</td>
</tr>
</tbody>
</table>

**EJB Pool Statistics**

Use the following dotted name pattern for EJB pool statistics:

```
server.applications.appname.ejbmodulename.bean-pool.ejbname.statistic
```

The statistics available for EJB pools are listed in the following table.
### EJB Pool Monitoring Statistics

<table>
<thead>
<tr>
<th>Statistic</th>
<th>DataType</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>jmsmaxmessagesload</td>
<td>CountStatistic</td>
<td>The maximum number of messages to load into a JMS session at one time for a message-driven bean to serve. Default is 1. Applies only to pools for message driven beans.</td>
</tr>
<tr>
<td>numbeansinpool</td>
<td>RangeStatistic</td>
<td>Number of EJBs in the associated pool, providing information about how the pool is changing.</td>
</tr>
<tr>
<td>numthreadsWaiting</td>
<td>RangeStatistic</td>
<td>Number of threads waiting for free beans, giving an indication of possible congestion of requests.</td>
</tr>
<tr>
<td>totalbeanscreated</td>
<td>CountStatistic</td>
<td>Number of beans created in associated pools since the gathering of data started.</td>
</tr>
<tr>
<td>totalbeansdestroyed</td>
<td>CountStatistic</td>
<td>Number of beans destroyed from associated pool since the gathering of data started.</td>
</tr>
</tbody>
</table>

### Timer Statistics

Use the following dotted name pattern for timer statistics:

```
server.applications.appname.ejbmodulename.timers.ejbname.statistic
```

The statistics available for timers are listed in the following table.

<table>
<thead>
<tr>
<th>Statistic</th>
<th>DataType</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>numtimerscreated</td>
<td>CountStatistic</td>
<td>Number of timers created in the system.</td>
</tr>
<tr>
<td>numtimersdelivered</td>
<td>CountStatistic</td>
<td>Number of timers delivered by the system.</td>
</tr>
<tr>
<td>numtimersremoved</td>
<td>CountStatistic</td>
<td>Number of timers removed from the system.</td>
</tr>
</tbody>
</table>

### HTTP Service Statistics

The HTTP service fits into the tree of objects as shown in “HTTP Service Tree Hierarchy” on page 178.

### HTTP Service Virtual Server Statistics

Use the following dotted name pattern for HTTP service virtual server statistics:

```
server.http-service.virtual-server.request.statistic
```

The HTTP service statistics for virtual servers are shown in the following table.
### TABLE 8-10  HTTP Service Virtual Server Monitoring Statistics

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>count200</td>
<td>CountStatistic</td>
<td>Number of responses with a status code equal to 200</td>
</tr>
<tr>
<td>count2xx</td>
<td>CountStatistic</td>
<td>Number of responses with a status code in the 2xx range</td>
</tr>
<tr>
<td>count302</td>
<td>CountStatistic</td>
<td>Number of responses with a status code equal to 302</td>
</tr>
<tr>
<td>count304</td>
<td>CountStatistic</td>
<td>Number of responses with a status code equal to 304</td>
</tr>
<tr>
<td>count3xx</td>
<td>CountStatistic</td>
<td>Number of responses with a status code equal in the 3xx range</td>
</tr>
<tr>
<td>count400</td>
<td>CountStatistic</td>
<td>Number of responses with a status code equal to 400</td>
</tr>
<tr>
<td>count401</td>
<td>CountStatistic</td>
<td>Number of responses with a status code equal to 401</td>
</tr>
<tr>
<td>count403</td>
<td>CountStatistic</td>
<td>Number of responses with a status code equal to 403</td>
</tr>
<tr>
<td>count404</td>
<td>CountStatistic</td>
<td>Number of responses with a status code equal to 404</td>
</tr>
<tr>
<td>count4xx</td>
<td>CountStatistic</td>
<td>Number of responses with a status code equal in the 4xx range</td>
</tr>
<tr>
<td>count503</td>
<td>CountStatistic</td>
<td>Number of responses with a status code equal to 503</td>
</tr>
<tr>
<td>count5xx</td>
<td>CountStatistic</td>
<td>Number of responses with a status code equal in the 5xx range</td>
</tr>
<tr>
<td>countother</td>
<td>CountStatistic</td>
<td>Number of responses with a status code outside the 2xx, 3xx, 4xx, and 5xx range</td>
</tr>
<tr>
<td>errorcount</td>
<td>CountStatistic</td>
<td>Cumulative value of the error count, with error count representing the number of cases where the response code was greater than or equal to 400</td>
</tr>
<tr>
<td>hosts</td>
<td>StringStatistic</td>
<td>The host (alias) names of the virtual server</td>
</tr>
<tr>
<td>maxtime</td>
<td>CountStatistic</td>
<td>Longest response time for a request; not a cumulative value, but the largest response time from among the response times</td>
</tr>
</tbody>
</table>
TABLE 8–10  HTTP Service Virtual Server Monitoring Statistics  (Continued)

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>processingtime</td>
<td>CountStatistic</td>
<td>Cumulative value of the times taken to process each request, with processing time being the average of request processing times over the request count.</td>
</tr>
<tr>
<td>requestcount</td>
<td>CountStatistic</td>
<td>Cumulative number of requests processed so far.</td>
</tr>
<tr>
<td>state</td>
<td>StringStatistic</td>
<td>The state of the virtual server.</td>
</tr>
</tbody>
</table>

**Jersey Statistics**

Jersey fits into the tree of objects as shown in “Applications Tree Hierarchy” on page 177.

Use the following dotted name pattern for Jersey statistics:

```
server.applications.jersey-application.jersey.resources.resource-0.hitcount.statistic
```

The statistics available for Jersey are shown in the following table.

TABLE 8–11  Jersey Statistics

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>resourcehitcount</td>
<td>CountStatistic</td>
<td>Number of hits on this resource class</td>
</tr>
<tr>
<td>rootresourcehitcount</td>
<td>CountStatistic</td>
<td>Number of hits on this root resource class</td>
</tr>
</tbody>
</table>

**JMS/Connector Service Statistics**

The JMS/Connector Service fits into the tree of objects as shown in ”JMS/Container Service Tree Hierarchy” on page 179.

JMS/Connector Service statistics are shown in the following sections:

- “Connector Connection Pool Statistics (JMS)” on page 196
- “Connector Work Management Statistics (JMS)” on page 198

**Connector Connection Pool Statistics (JMS)**

Use the following dotted name pattern for JMS/Connector Service connection pool statistics:

```
server.connector-service.resource-adapter-1.connection-pool.statistic
```

JMS/Connector Service statistics available for the connector connection pools are shown in the following table. 
Note – In order to improve system performance, connection pools are initialized lazily; that is, a pool is not initialized until an application first uses the pool or the pool is explicitly pinged. Monitoring statistics for a connection pool are not available until the pool is initialized.

**TABLE 8–12** Connector Connection Pool Monitoring Statistics (JMS)

<table>
<thead>
<tr>
<th>Statistic</th>
<th>DataType</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>averageconnwaittime</td>
<td>CountStatistic</td>
<td>Average wait time of connections before they are serviced by the connection pool.</td>
</tr>
<tr>
<td>connectionrequestwaittime</td>
<td>RangeStatistic</td>
<td>The longest and shortest wait times of connection requests. The current value indicates the wait time of the last request that was serviced by the pool.</td>
</tr>
<tr>
<td>numconnfailedvalidation</td>
<td>CountStatistic</td>
<td>Total number of connections in the connection pool that failed validation from the start time until the last sample time.</td>
</tr>
<tr>
<td>numconnused</td>
<td>RangeStatistic</td>
<td>Total number of connections that are currently being used, as well as information about the maximum number of connections that were used (the high water mark).</td>
</tr>
<tr>
<td>numconnfree</td>
<td>RangeStatistic</td>
<td>Total number of free connections in the pool as of the last sampling.</td>
</tr>
<tr>
<td>numconntimedout</td>
<td>CountStatistic</td>
<td>Total number of connections in the pool that timed out between the start time and the last sample time.</td>
</tr>
<tr>
<td>numconncreated</td>
<td>CountStatistic</td>
<td>Number of physical connections, in milliseconds, that were created since the last reset.</td>
</tr>
<tr>
<td>numconndestroyed</td>
<td>CountStatistic</td>
<td>Number of physical connections that were destroyed since the last reset.</td>
</tr>
<tr>
<td>numconnacquired</td>
<td>CountStatistic</td>
<td>Number of logical connections acquired from the pool.</td>
</tr>
<tr>
<td>numconnreleased</td>
<td>CountStatistic</td>
<td>Number of logical connections released to the pool.</td>
</tr>
<tr>
<td>waitqueuelength</td>
<td>CountStatistic</td>
<td>Number of connection requests in the queue waiting to be serviced.</td>
</tr>
</tbody>
</table>
Connector Work Management Statistics (JMS)

Use the following dotted name pattern for JMS/Connector Service work management statistics:

server.connector-service.resource-adapter-1.work-management.statistic

JMS/Connector Service statistics available for connector work management are listed in the following table.

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>activeworkcount</td>
<td>RangeStatistic</td>
<td>Number of work objects executed by the connector.</td>
</tr>
<tr>
<td>completedworkcount</td>
<td>CountStatistic</td>
<td>Number of work objects that were completed.</td>
</tr>
<tr>
<td>rejectedworkcount</td>
<td>CountStatistic</td>
<td>Number of work objects rejected by the GlassFish Server.</td>
</tr>
<tr>
<td>submittedworkcount</td>
<td>CountStatistic</td>
<td>Number of work objects submitted by a connector module.</td>
</tr>
<tr>
<td>waitqueuelength</td>
<td>RangeStatistic</td>
<td>Number of work objects waiting in the queue before executing.</td>
</tr>
<tr>
<td>workrequestwaittime</td>
<td>RangeStatistic</td>
<td>Longest and shortest wait of a work object before it gets executed.</td>
</tr>
</tbody>
</table>

JVM Statistics

The JVM fits into the tree of objects as show in “JVM Tree Hierarchy” on page 179.

The statistics that are available for the Virtual Machine for Java platform (Java Virtual Machine) or JVM machine are shown in the following sections:

- “JVM Class Loading System Statistics” on page 198
- “JVM Compilation System Statistics” on page 200
- “JVM Garbage Collectors Statistics” on page 200
- “JVM Memory Statistics” on page 200
- “JVM Operating System Statistics” on page 201
- “JVM Runtime Statistics” on page 202

JVM Class Loading System Statistics

Use the following dotted name pattern for JVM class loading system statistics:

server.jvm.class-loading-system.statistic
With Java SE, additional monitoring information can be obtained from the JVM. Set the monitoring level to LOW to enable the display of this additional information. Set the monitoring level to HIGH to also view information pertaining to each live thread in the system. More information about the additional monitoring features for Java SE is available in *Monitoring and Management for the Java Platform* (http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/guides/management/).

The Java SE monitoring tools are discussed at http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/tools/.

The statistics that are available for class loading in the JVM for Java SE are shown in the following table.

<table>
<thead>
<tr>
<th>Statistic</th>
<th>DataType</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>loadedclasscount</td>
<td>CountStatistic</td>
<td>Number of classes that are currently loaded in the JVM</td>
</tr>
<tr>
<td>totalloadedclasscount</td>
<td>CountStatistic</td>
<td>Total number of classes that have been loaded since the JVM began execution</td>
</tr>
<tr>
<td>unloadedclasscount</td>
<td>CountStatistic</td>
<td>Number of classes that have been unloaded from the JVM since the JVM began execution</td>
</tr>
</tbody>
</table>

The statistics available for threads in the JVM in Java SE are shown in the following table.

<table>
<thead>
<tr>
<th>Statistic</th>
<th>DataType</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>allthreadids</td>
<td>StringStatistic</td>
<td>List of all live thread ids.</td>
</tr>
<tr>
<td>currentthreadcputime</td>
<td>CountStatistic</td>
<td>CPU time for the current thread (in nanoseconds) if CPU time measurement is enabled. If CPU time measurement is disabled, returns -1.</td>
</tr>
<tr>
<td>daemonthreadcount</td>
<td>CountStatistic</td>
<td>Current number of live daemon threads.</td>
</tr>
<tr>
<td>monitoreadlockedthreads</td>
<td>StringStatistic</td>
<td>List of thread ids that are monitor deadlocked.</td>
</tr>
<tr>
<td>peakthreadcount</td>
<td>CountStatistic</td>
<td>Peak live thread count since the JVM started or the peak was reset.</td>
</tr>
<tr>
<td>threadcount</td>
<td>CountStatistic</td>
<td>Current number of live daemon and non-daemon threads.</td>
</tr>
<tr>
<td>totalstartedthreadcount</td>
<td>CountStatistic</td>
<td>Total number of threads created and/or started since the JVM started.</td>
</tr>
</tbody>
</table>
**JVM Compilation System Statistics**

Use the following dotted name pattern for JVM compilation system statistics:

```java
server.jvm.compilation-system.statistic
```

The statistics that are available for compilation in the JVM for Java SE are shown in the following table.

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name-current</td>
<td>StringStatistic</td>
<td>Name of the current compiler</td>
</tr>
<tr>
<td>totalCompilationTime</td>
<td>CountStatistic</td>
<td>Accumulated time (in milliseconds) spent in compilation</td>
</tr>
</tbody>
</table>

**JVM Garbage Collectors Statistics**

Use the following dotted name pattern for JVM garbage collectors statistics:

```java
server.jvm.garbage-collectors.statistic
```

The statistics that are available for garbage collection in the JVM for Java SE are shown in the following table.

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>collectionCount</td>
<td>CountStatistic</td>
<td>Total number of collections that have occurred</td>
</tr>
<tr>
<td>collectionTime</td>
<td>CountStatistic</td>
<td>Accumulated time (in milliseconds) spent in collection</td>
</tr>
</tbody>
</table>

**JVM Memory Statistics**

Use the following dotted name pattern for JVM memory statistics:

```java
server.jvm.memory.statistic
```

The statistics that are available for memory in the JVM for Java SE are shown in the following table.
**TABLE 8–18  JVM Monitoring Statistics for Java SE Memory**

<table>
<thead>
<tr>
<th>Statistic</th>
<th>DataType</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>committedheapsize</td>
<td>CountStatistic</td>
<td>Amount of heap memory (in bytes) that is committed for the JVM to use</td>
</tr>
<tr>
<td>committednonheapsize</td>
<td>CountStatistic</td>
<td>Amount of non-heap memory (in bytes) that is committed for the JVM to use</td>
</tr>
<tr>
<td>initheapsize</td>
<td>CountStatistic</td>
<td>Size of the heap initially requested by the JVM</td>
</tr>
<tr>
<td>initnonheapsize</td>
<td>CountStatistic</td>
<td>Size of the non-heap area initially requested by the JVM</td>
</tr>
<tr>
<td>maxheapsize</td>
<td>CountStatistic</td>
<td>Maximum amount of heap memory (in bytes) that can be used for memory management</td>
</tr>
<tr>
<td>maxnonheapsize</td>
<td>CountStatistic</td>
<td>Maximum amount of non-heap memory (in bytes) that can be used for memory management</td>
</tr>
<tr>
<td>objectpendingfinalizationcount</td>
<td>CountStatistic</td>
<td>Approximate number of objects that are pending finalization</td>
</tr>
<tr>
<td>usedheapsize</td>
<td>CountStatistic</td>
<td>Size of the heap currently in use</td>
</tr>
<tr>
<td>usednonheapsize</td>
<td>CountStatistic</td>
<td>Size of the non-heap area currently in use</td>
</tr>
</tbody>
</table>

**JVM Operating System Statistics**

Use the following dotted name pattern for JVM operating system statistics:

`server.jvm.operating-system.statistic`

The statistics that are available for the operating system for the JVM machine in Java SE are shown in the following table.

**TABLE 8–19  JVM Statistics for the Java SE Operating System**

<table>
<thead>
<tr>
<th>Statistic</th>
<th>DataType</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>arch-current</td>
<td>StringStatistic</td>
<td>Operating system architecture</td>
</tr>
<tr>
<td>availableprocessors</td>
<td>CountStatistic</td>
<td>Number of processors available to the JVM</td>
</tr>
<tr>
<td>name-current</td>
<td>StringStatistic</td>
<td>Operating system name</td>
</tr>
<tr>
<td>version-current</td>
<td>StringStatistic</td>
<td>Operating system version</td>
</tr>
</tbody>
</table>
JVM Runtime Statistics

Use the following dotted name pattern for JVM runtime statistics:

```
server.jvm.runtime.statistic
```

The statistics that are available for the runtime in the JVM runtime for Java SE are shown in the following table.

### TABLE 8-20  JVM Monitoring Statistics for Java SE Runtime

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>classpath-current</td>
<td>StringStatistic</td>
<td>Classpath that is used by the system class loader to search for class files</td>
</tr>
<tr>
<td>inputarguments-current</td>
<td>StringStatistic</td>
<td>Input arguments passed to the JVM; not including arguments to the main method</td>
</tr>
<tr>
<td>managementspecversion-current</td>
<td>StringStatistic</td>
<td>Management specification version implemented by the JVM</td>
</tr>
<tr>
<td>name-current</td>
<td>StringStatistic</td>
<td>Name representing the running JVM</td>
</tr>
<tr>
<td>specname-current</td>
<td>StringStatistic</td>
<td>JVM specification name</td>
</tr>
<tr>
<td>specvendor-current</td>
<td>StringStatistic</td>
<td>JVM specification vendor</td>
</tr>
<tr>
<td>specversion-current</td>
<td>StringStatistic</td>
<td>JVM specification version</td>
</tr>
<tr>
<td>uptime</td>
<td>CountStatistic</td>
<td>Uptime of the JVM (in milliseconds)</td>
</tr>
<tr>
<td>vmmname-current</td>
<td>StringStatistic</td>
<td>JVM implementation name</td>
</tr>
<tr>
<td>vmmvendor-current</td>
<td>StringStatistic</td>
<td>JVM implementation vendor</td>
</tr>
<tr>
<td>vmversion-current</td>
<td>StringStatistic</td>
<td>JVM implementation version</td>
</tr>
</tbody>
</table>

Network Statistics

Network fits into the tree of objects as shown in “Network Tree Hierarchy” on page 179.

Network statistics are described in the following sections:

- "Network Keep Alive Statistics" on page 203
- "Network Connection Queue Statistics" on page 203
- "Network File Cache Statistics" on page 204
- "Network Thread Pool Statistics" on page 205
Network Keep Alive Statistics

Use the following dotted name pattern for network keep alive statistics:

\texttt{server.network.type-of-listener.keep-alive.statistic}

Statistics available for network keep alive are shown in the following table.

\textbf{TABLE 8–21} \hspace{1em} Network Keep Alive Statistics

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>countconnections</td>
<td>CountStatistic</td>
<td>Number of connections in keep-alive mode.</td>
</tr>
<tr>
<td>counttimeouts</td>
<td>CountStatistic</td>
<td>Number of keep-alive connections that timed out.</td>
</tr>
<tr>
<td>secondtimeouts</td>
<td>CountStatistic</td>
<td>Keep-alive timeout value in seconds.</td>
</tr>
<tr>
<td>maxrequests</td>
<td>CountStatistic</td>
<td>Maximum number of requests allowed on a single keep-alive connection.</td>
</tr>
<tr>
<td>countflushes</td>
<td>CountStatistic</td>
<td>Number of keep-alive connections that were closed.</td>
</tr>
<tr>
<td>counthits</td>
<td>CountStatistic</td>
<td>Number of requests received by connections in keep-alive mode.</td>
</tr>
<tr>
<td>countrefusals</td>
<td>CountStatistic</td>
<td>Number of keep-alive connections that were rejected.</td>
</tr>
</tbody>
</table>

Network Connection Queue Statistics

Use the following dotted name pattern for network connection queue statistics:

\texttt{server.network.type-of-listener.connection-queue.statistic}

Statistics available for network connection queue are shown in the following table.

\textbf{TABLE 8–22} \hspace{1em} Network Connection Queue Statistics

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>countopenconnections</td>
<td>CountStatistic</td>
<td>The number of open/active connections</td>
</tr>
<tr>
<td>countoverflows</td>
<td>CountStatistic</td>
<td>Number of times the queue has been too full to accommodate a connection</td>
</tr>
<tr>
<td>countqueued</td>
<td>CountStatistic</td>
<td>Number of connections currently in the queue</td>
</tr>
<tr>
<td>countqueued15minutesaverage</td>
<td>CountStatistic</td>
<td>Average number of connections queued in the last 15 minutes</td>
</tr>
</tbody>
</table>
### Network Connection Queue Statistics

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>countqueued1minuteaverage</td>
<td>CountStat</td>
<td>Average number of connections queued in the last 1 minute</td>
</tr>
<tr>
<td>countqueued5minutesaverage</td>
<td>CountStat</td>
<td>Average number of connections queued in the last 5 minutes</td>
</tr>
<tr>
<td>counttotalconnections</td>
<td>CountStat</td>
<td>Total number of connections that have been accepted</td>
</tr>
<tr>
<td>counttotalqueued</td>
<td>CountStat</td>
<td>Total number of connections that have been queued</td>
</tr>
<tr>
<td>maxqueued</td>
<td>CountStat</td>
<td>Maximum size of the connection queue</td>
</tr>
<tr>
<td>peakqueued</td>
<td>CountStat</td>
<td>Largest number of connections that were in the queue simultaneously</td>
</tr>
<tr>
<td>tickstotalqueued</td>
<td>CountStat</td>
<td>(Unsupported) Total number of ticks that connections have spent in the queue</td>
</tr>
</tbody>
</table>

### Network File Cache Statistics

Use the following dotted name pattern for network file cache statistics:

```
server.network.type-of-listener.file-cache.statistic
```

Statistics available for network file cache are shown in the following table.

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>contenthits</td>
<td>CountStat</td>
<td>Number of hits on cached file content</td>
</tr>
<tr>
<td>contentmisses</td>
<td>CountStat</td>
<td>Number of misses on cached file content</td>
</tr>
<tr>
<td>heapsize</td>
<td>CountStat</td>
<td>Current cache size in bytes</td>
</tr>
<tr>
<td>hits</td>
<td>CountStat</td>
<td>Number of cache lookup hits</td>
</tr>
<tr>
<td>infohits</td>
<td>CountStat</td>
<td>Number of hits on cached file info</td>
</tr>
<tr>
<td>infomisses</td>
<td>CountStat</td>
<td>Number of misses on cached file info</td>
</tr>
<tr>
<td>mappedmemorysize</td>
<td>CountStat</td>
<td>Size of mapped memory used for caching in bytes</td>
</tr>
<tr>
<td>maxheapsize</td>
<td>CountStat</td>
<td>Maximum heap space used for cache in bytes</td>
</tr>
<tr>
<td>maxmappedmemorysize</td>
<td>CountStat</td>
<td>Maximum memory map size used for caching in bytes</td>
</tr>
</tbody>
</table>
Network File Cache Statistics

Use the following dotted name pattern for network file cache statistics:

server.network.type-of-listener.thread-pool.statistic

Statistics available for network file cache are shown in the following table.

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>misses</td>
<td>CountStatistic</td>
<td>Number of cache lookup misses data type</td>
</tr>
<tr>
<td>opencacheentries</td>
<td>CountStatistic</td>
<td>Number of current open cache entries</td>
</tr>
</tbody>
</table>

Network Thread Pool Statistics

Use the following dotted name pattern for network thread pool statistics:

server.network.type-of-listener.thread-pool.statistic

Statistics available for network thread pool are shown in the following table.

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>corethreads</td>
<td>CountStatistic</td>
<td>Core number of threads in the thread pool</td>
</tr>
<tr>
<td>currentthreadcount</td>
<td>CountStatistic</td>
<td>Provides the number of request processing threads currently in the listener thread pool</td>
</tr>
<tr>
<td>currentthreadsbusy</td>
<td>CountStatistic</td>
<td>Provides the number of request processing threads currently in use in the listener thread pool serving requests</td>
</tr>
<tr>
<td>maxthreads</td>
<td>CountStatistic</td>
<td>Maximum number of threads allowed in the thread pool</td>
</tr>
<tr>
<td>toalexecutedtasks</td>
<td>CountStatistic</td>
<td>Provides the total number of tasks, which were executed by the thread pool</td>
</tr>
</tbody>
</table>

ORB Statistics (Connection Manager)

The ORB fits into the tree of objects as shown in “ORB Tree Hierarchy” on page 180.

Use the following dotted name patterns for ORB statistics:

server.orb.transport.connectioncache.inbound.statistic
server.orb.transport.connectioncache.outbound.statistic

The statistics available for the connection manager in an ORB are listed in the following table.

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>connectionsidle</td>
<td>CountStatistic</td>
<td>Total number of connections that are idle to the ORB</td>
</tr>
</tbody>
</table>
Resource Statistics (Connection Pool)

By monitoring connection pool resources you can measure performance and capture resource usage at runtime. Connections are expensive and frequently cause performance bottlenecks in applications. It is important to monitor how a connection pool is releasing and creating new connections and how many threads are waiting to retrieve a connection from a particular pool.

The connection pool resources fit into the tree of objects as shown in “Resources Tree Hierarchy” on page 180.

Use the following dotted name pattern for general connection pool statistics:

```
server.resources.pool-name.statistic
```

Use the following dotted name pattern for application-scoped connection pool statistics:

```
server.applications.application-name.resources.pool-name.statistic
```

Use the following dotted name pattern for module-scoped connection pool statistics:

```
server.applications.application-name.module-name.resources.pool-name.statistic
```

The connection pool statistics are shown in the following tables.

---

**Note** – In order to improve system performance, connection pools are initialized lazily; that is, a pool is not initialized until an application first uses the pool or the pool is explicitly pinged. Monitoring statistics for a connection pool are not available until the pool is initialized.

---

**TABLE 8–26** General Resource Monitoring Statistics (Connection Pool)

<table>
<thead>
<tr>
<th>Statistic</th>
<th>DataType</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>averageconnwaittime</td>
<td>CountStatistic</td>
<td>Average wait-time-duration per successful connection request</td>
</tr>
<tr>
<td>connrequestwaittime</td>
<td>RangeStatistic</td>
<td>Longest and shortest wait times, in milliseconds, of connection requests since the last sampling. Current value indicates the wait time of the last request that was serviced by the pool</td>
</tr>
<tr>
<td>Statistic</td>
<td>Data Type</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>numconnacquired</td>
<td>CountStatistic</td>
<td>Number of logical connections acquired from the pool since the last sampling</td>
</tr>
<tr>
<td>numconncreated</td>
<td>CountStatistic</td>
<td>Number of physical connections that were created by the pool since the last reset</td>
</tr>
<tr>
<td>numconndestroyed</td>
<td>CountStatistic</td>
<td>Number of physical connections that were destroyed since the last reset</td>
</tr>
<tr>
<td>numconnfailedvalidation</td>
<td>CountStatistic</td>
<td>Number of connections in the connection pool that failed validation from the start time until the last sampling time</td>
</tr>
<tr>
<td>numconnfree</td>
<td>RangeStatistic</td>
<td>Number of free connections in the pool as of the last sampling</td>
</tr>
<tr>
<td>numconnnotsuccessfullymatched</td>
<td>CountStatistic</td>
<td>Number of connections rejected during matching</td>
</tr>
<tr>
<td>numconnreleased</td>
<td>CountStatistic</td>
<td>Number of connections released back to the pool since the last sampling</td>
</tr>
<tr>
<td>numconnsuccessfullymatched</td>
<td>CountStatistic</td>
<td>Number of connections successfully matched</td>
</tr>
<tr>
<td>numconn timout</td>
<td>CountStatistic</td>
<td>Number of connections in the pool that timed out between the start time and the last sampling time</td>
</tr>
<tr>
<td>numconnused</td>
<td>RangeStatistic</td>
<td>Number of connections that are currently being used, as well as information about the maximum number of connections that were used (high water mark)</td>
</tr>
<tr>
<td>frequsedsqlqueries</td>
<td>StringStatistic</td>
<td>List of the most frequently used SQL queries (Available only when SQL Tracing is enabled)</td>
</tr>
<tr>
<td>numpotentialconnleak</td>
<td>CountStatistic</td>
<td>Number of potential connection leaks</td>
</tr>
<tr>
<td>numpotentialstatementleak</td>
<td>CountStatistic</td>
<td>Number of potential statement leaks (Available only when Statement Leak Detection is enabled)</td>
</tr>
<tr>
<td>numstatementcachehit</td>
<td>CountStatistic</td>
<td>Number of statements that were found in the statement cache (Available only when the Statement Cache is enabled)</td>
</tr>
<tr>
<td>numstatementcachemiss</td>
<td>CountStatistic</td>
<td>Number of statements that were not found in the statement cache (Available only when the Statement Cache is enabled)</td>
</tr>
</tbody>
</table>
**TABLE 8–26  General Resource Monitoring Statistics (Connection Pool) (Continued)**

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>waitqueuelength</td>
<td>CountStatistic</td>
<td>Number of connection requests in the queue waiting to be serviced</td>
</tr>
</tbody>
</table>

**TABLE 8–27  Application Specific Resource Monitoring Statistics (Connection Pool)**

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>numconnacquired</td>
<td>CountStatistic</td>
<td>Number of logical connections acquired from the pool since the last sampling</td>
</tr>
<tr>
<td>numconnreleased</td>
<td>CountStatistic</td>
<td>Number of connections released back to the pool since the last sampling</td>
</tr>
<tr>
<td>numconnused</td>
<td>RangeStatistic</td>
<td>Number of connections that are currently being used, as well as information about the maximum number of connections that were used (high water mark)</td>
</tr>
</tbody>
</table>

**Security Statistics**

Security fits into the tree of objects as shown in “Security Tree Hierarchy” on page 180.

Statistics available for security are shown in the following sections:

- “EJB Security Statistics” on page 208
- “Web Security Statistics” on page 209
- “Realm Security Statistics” on page 209

**EJB Security Statistics**

Use the following dotted name pattern for EJB security statistics:

```
server.security.ejb.statistic
```

The statistics available for EJB security are listed in the following table.

**TABLE 8–28  EJB Security Monitoring Statistics**

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>policyconfigurationcount</td>
<td>CountStatistic</td>
<td>Number of policy configuration</td>
</tr>
<tr>
<td>securitymanagercount</td>
<td>CountStatistic</td>
<td>Number of EJB security managers</td>
</tr>
</tbody>
</table>
Web Security Statistics

Use the following dotted name pattern for web security statistics:

\texttt{server.security.web.statistic}

The statistics available for web security are listed in the following table.

\begin{table}[h]
\centering
\begin{tabular}{lll}
\hline
Statistic & DataType & Description \\
\hline
websecuritymanagercount & CountStatistic & Number of security managers \\
webpolicyconfigurationcount & CountStatistic & Number of policy configuration objects \\
\hline
\end{tabular}
\end{table}

Realm Security Statistics

Use the following dotted name pattern for realm security statistics:

\texttt{server.security.realm.statistic}

The statistics available for realm security are listed in the following table.

\begin{table}[h]
\centering
\begin{tabular}{lll}
\hline
Statistic & DataType & Description \\
\hline
realmcount & CountStatistic & Number of realms \\
\hline
\end{tabular}
\end{table}

ThreadPool Statistics

The thread pool fits into the tree of objects as shown in “Thread Pool Tree Hierarchy” on page 180.

The statistics available for thread pools are shown in the following sections:

- “Thread Pool Monitoring Statistics” on page 209
- "JVM Statistics for Java SE-Thread Information” on page 210

ThreadPool Monitoring Statistics

Use the following dotted name pattern for thread pool statistics:

\texttt{server.thread-pool.thread-pool.statistic}

The statistics available for the thread pool are shown in the following table.
### TABLE 8–31  Thread Pool Monitoring Statistics

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>averagetimeinqueue</td>
<td>BoundedRangeStatistic</td>
<td>Average amount of time (in milliseconds) a request waited in the queue before being processed</td>
</tr>
<tr>
<td>averageworkcomplettiontime</td>
<td>BoundedRangeStatistic</td>
<td>Average amount of time (in milliseconds) taken to complete an assignment</td>
</tr>
<tr>
<td>currentbusythreads</td>
<td>CountStatistic</td>
<td>Number of busy threads</td>
</tr>
<tr>
<td>currentnumberofthreads</td>
<td>BoundedRangeStatistic</td>
<td>Current number of request processing threads</td>
</tr>
<tr>
<td>numberofavailablethreads</td>
<td>CountStatistic</td>
<td>Number of available threads</td>
</tr>
<tr>
<td>numberofworkitemsinqueue</td>
<td>BoundedRangeStatistic</td>
<td>Current number of work items waiting in queue</td>
</tr>
<tr>
<td>totalworkitemsadded</td>
<td>CountStatistic</td>
<td>Total number of work items added to the work queue as of last sampling</td>
</tr>
</tbody>
</table>

### JVM Statistics for Java SE-Thread Information

The statistics available for ThreadInfo in the JVM in Java SE are shown in the following table.

### TABLE 8–32  JVM Monitoring Statistics for Java SE - Thread Info

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>blockedcount</td>
<td>CountStatistic</td>
<td>Total number of times that the thread entered the BLOCKED state.</td>
</tr>
<tr>
<td>blockedtime</td>
<td>CountStatistic</td>
<td>Time elapsed (in milliseconds) since the thread entered the BLOCKED state. Returns -1 if thread contention monitoring is disabled.</td>
</tr>
<tr>
<td>lockname</td>
<td>StringStatistic</td>
<td>String representation of the monitor lock that the thread is blocked to enter or waiting to be notified through the Object.wait method.</td>
</tr>
<tr>
<td>lockownerid</td>
<td>CountStatistic</td>
<td>ID of the thread that holds the monitor lock of an object on which this thread is blocking.</td>
</tr>
<tr>
<td>lockownername</td>
<td>StringStatistic</td>
<td>Name of the thread that holds the monitor lock of the object this thread is blocking on.</td>
</tr>
<tr>
<td>stacktrace</td>
<td>StringStatistic</td>
<td>Stack trace associated with this thread.</td>
</tr>
<tr>
<td>threadid</td>
<td>CountStatistic</td>
<td>ID of the thread.</td>
</tr>
<tr>
<td>threadname</td>
<td>StringStatistic</td>
<td>Name of the thread.</td>
</tr>
</tbody>
</table>
TABLE 8–32  JVM Monitoring Statistics for Java SE - Thread Info  (Continued)

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>threadstate</td>
<td>StringStatistic</td>
<td>State of the thread.</td>
</tr>
<tr>
<td>waitedtime</td>
<td>CountStatistic</td>
<td>Elapsed time (in milliseconds) that the thread has been in a WAITING state. Returns -1 if thread contention monitoring is disabled.</td>
</tr>
<tr>
<td>waitedcount</td>
<td>CountStatistic</td>
<td>Total number of times the thread was in WAITING or TIMED_WAITING states.</td>
</tr>
</tbody>
</table>

**Transaction Service Statistics**

The transactions service allows the client to freeze the transaction subsystem in order to roll back transactions and determine which transactions are in process at the time of the freeze. The transaction service fits into the tree of objects as shown in "Transactions Service Tree Hierarchy" on page 181.

Use the following dotted name pattern for transaction service statistics:

```
server.transaction-service.statistic
```

The statistics available for the transaction service are shown in the following table.

TABLE 8–33  Transaction Service Monitoring Statistics

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>activecount</td>
<td>CountStatistic</td>
<td>Number of transactions currently active.</td>
</tr>
<tr>
<td>activeids</td>
<td>StringStatistic</td>
<td>The ID's of the transactions that are currently active. Every such transaction can be rolled back after freezing the transaction service.</td>
</tr>
<tr>
<td>committedcount</td>
<td>CountStatistic</td>
<td>Number of transactions that have been committed.</td>
</tr>
<tr>
<td>rolledbackcount</td>
<td>CountStatistic</td>
<td>Number of transactions that have been rolled back.</td>
</tr>
<tr>
<td>state</td>
<td>StringStatistic</td>
<td>Indicates whether or not the transaction has been frozen.</td>
</tr>
</tbody>
</table>

**Web Statistics**

The web module fits into the tree of objects as shown in "Web Tree Hierarchy" on page 181.

The available web statistics shown in the following sections:

- "Web Module Servlet Statistics" on page 212
- "Web JSP Statistics" on page 212
Web Module Servlet Statistics

Use the following dotted name pattern for web module servlet statistics:

```java
server.applications.web-module.virtual-server.servlet.statistic
server.applications.application.web-module.virtual-server.servlet.statistic
```

The available web module servlet statistics are shown in the following table.

**TABLE 8–34  Web Module Servlet Statistics**

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>errorcount</td>
<td>CountStatistic</td>
<td>Cumulative number of cases where the response code is greater than or equal to 400.</td>
</tr>
<tr>
<td>maxtime</td>
<td>CountStatistic</td>
<td>Maximum amount of time the web container waits for requests.</td>
</tr>
<tr>
<td>processingtime</td>
<td>CountStatistic</td>
<td>Cumulative value of the amount of time required to process each request. The processing time is the average of request processing times divided by the request count.</td>
</tr>
<tr>
<td>requestcount</td>
<td>CountStatistic</td>
<td>The total number of requests processed so far.</td>
</tr>
<tr>
<td>servicetime</td>
<td>CountStatistic</td>
<td>Aggregate response time in milliseconds.</td>
</tr>
</tbody>
</table>

Web JSP Statistics

Use the following dotted name pattern for web JSP statistics:

```java
server.applications.web-module.virtual-server.statistic
server.applications.application.web-module.virtual-server.statistic
```

The available web JSP statistics are shown in the following table.

**TABLE 8–35  Web JSP Monitoring Statistics**

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>jspcount-current</td>
<td>RangeStatistic</td>
<td>Number of active JSP pages</td>
</tr>
<tr>
<td>jsperrorcount</td>
<td>CountStatistic</td>
<td>Total number of errors triggered by JSP page invocations</td>
</tr>
<tr>
<td>jspreloadedcount</td>
<td>CountStatistic</td>
<td>Total number of JSP pages that were reloaded</td>
</tr>
</tbody>
</table>
### Web JSP Monitoring Statistics

<table>
<thead>
<tr>
<th>Statistic</th>
<th>DataType</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>totaljspcount</td>
<td>CountStatistic</td>
<td>Total number of JSP pages ever loaded</td>
</tr>
</tbody>
</table>

#### Web Request Statistics

Use the following dotted name pattern for web request statistics:

```
server.applications.web-module.virtual-server.statistic
server.applications.application.web-module.virtual-server.statistic
```

The available web request statistics are shown in the following table.

<table>
<thead>
<tr>
<th>Statistic</th>
<th>DataType</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>errorcount</td>
<td>CountStatistic</td>
<td>Cumulative value of the error count, with error count representing the number of cases where the response code was greater than or equal to 400</td>
</tr>
<tr>
<td>maxtime</td>
<td>CountStatistic</td>
<td>Longest response time for a request; not a cumulative value, but the largest response time from among the response times</td>
</tr>
<tr>
<td>processingtime</td>
<td>CountStatistic</td>
<td>Average request processing time, in milliseconds</td>
</tr>
<tr>
<td>requestcount</td>
<td>CountStatistic</td>
<td>Cumulative number of the requests processed so far</td>
</tr>
</tbody>
</table>

#### Web Servlet Statistics

Use the following dotted name pattern for web servlet statistics:

```
server.applications.web-module.virtual-server.statistic
server.applications.application.web-module.virtual-server.statistic
```

The available web servlet statistics are shown in the following table.

<table>
<thead>
<tr>
<th>Statistic</th>
<th>DataType</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>activeservletsloadedcount</td>
<td>RangeStatistic</td>
<td>Number of currently loaded servlets</td>
</tr>
<tr>
<td>servletprocessingtimes</td>
<td>CountStatistic</td>
<td>Cumulative servlet processing times, in milliseconds</td>
</tr>
<tr>
<td>totalservletsloadedcount</td>
<td>CountStatistic</td>
<td>Cumulative number of servlets that have been loaded into the web module</td>
</tr>
</tbody>
</table>
**Web Session Statistics**

Use the following dotted name pattern for web session statistics:

```
server.applications.web-module.virtual-server.statistic
server.applications.application.web-module.virtual-server.statistic
```

The available web session statistics are shown in the following table.

<table>
<thead>
<tr>
<th>Statistic</th>
<th>DataType</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>activatedsessiontotal</td>
<td>CountStatistic</td>
<td>Total number of activated sessions</td>
</tr>
<tr>
<td>activesessionscurrent</td>
<td>RangeStatistic</td>
<td>Number of currently active sessions</td>
</tr>
<tr>
<td>activesessionshigh</td>
<td>CountStatistic</td>
<td>Maximum number of concurrently active sessions</td>
</tr>
<tr>
<td>expiredsessiontotal</td>
<td>CountStatistic</td>
<td>Total number of expired sessions</td>
</tr>
<tr>
<td>passivatedsessiontotal</td>
<td>CountStatistic</td>
<td>Total number of passivated sessions</td>
</tr>
<tr>
<td>persistedsessiontotal</td>
<td>CountStatistic</td>
<td>Total number of persisted sessions</td>
</tr>
<tr>
<td>rejectedsessiontotal</td>
<td>CountStatistic</td>
<td>Total number of rejected sessions</td>
</tr>
<tr>
<td>sessiontotal</td>
<td>CountStatistic</td>
<td>Total number of sessions created</td>
</tr>
</tbody>
</table>

**Configuring JConsole to View GlassFish Server Monitoring Data**

Java SE provides tools to connect to an MBean Server and view the MBeans registered with the server. JConsole is one such popular JMX Connector Client and is available as part of the standard Java SE distribution. When you configure JConsole for use with GlassFish Server, GlassFish Server becomes the JMX Connector’s server end and JConsole becomes the JMX connector’s client end.

**To Connect JConsole to GlassFish Server**

Java SE 6 enhances management and monitoring of the virtual machine by including a Platform MBean Server and by including managed beans (MBeans) to configure the virtual machine.

To view all MBeans, GlassFish Server provides a configuration of the standard JMX connector server called System JMX Connector Server. As part of GlassFish Server startup, an instance of this JMX Connector Server is started. Any compliant JMX connector client can connect to the server using the JMX Connector Server.
By default, GlassFish Server is configured with a non-secure System JMX Connector Server. If this is an issue, the JMX connector can be removed. However, access can be restricted to a specific IP address (for example, the loopback address) by setting address to localhost.

1 **Start the domain.**
   
   For instructions, see “To Start a Domain” on page 111.

2 **Start JConsole using this format:** 
   
   *JDK_HOME*/bin/jconsole
   
   For example:
   
   `/usr/java/bin/jconsole`
   
   The JConsole Connect to Agent window is displayed.

3 **Click the Remote tab and type the host name and port.**
   
   Always connect remotely with JConsole, otherwise MBeans will not load automatically.

4 **Click Connect.**

5 **In the Remote Process text box, specify the JMX Service URL.**

   For example:
   
   `service:jmx:rmi:///jndi/rmi://localhost:8686/jmxrmi`
   
   The JMX Service URL is emitted by the server at startup, looking something like this:

   `[#|2009-12-03T10:25:17.737-0800|INFO|glassfishv3.0|` 
   
   `x..system.tools.admin.org.glassfish.server|ThreadID=20;` 
   
   `ThreadName=Thread-26;|JMXStartupService: Started JMXConnector, JMXService` 
   

   However, in most cases, simply entering `host:port` is fine, such as, `192.168.1.150:8686`. The long Service URL is not needed.

   **Note** – Another host name can be substituted for localhost. The default port number (8686) could change if the jmx-connector configuration has been modified.

6 **Click Connect.**

   In the JConsole window you will see all your MBeans, JVM information, and so on, in various tabs. Most of the useful MBeans are to be found in the amx and java.lang domains.

**See Also**  
For more information about JConsole, see [http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/guides/management/jconsole.html](http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/guides/management/jconsole.html).
Writing and Running JavaScript Clients to Monitor GlassFish Server

Monitoring is the process of reviewing the statistics of a system to improve performance or solve problems. By monitoring the state of components and services that are deployed in Oracle GlassFish Server, system administrators can identify performance bottlenecks, predict failures, perform root cause analysis, and ensure that everything is functioning as expected. Monitoring data can also be useful in performance tuning and capacity planning.

This chapter explains how to write and run clients in the JavaScript programming language to provide monitoring data about GlassFish Server. The ability to program in the JavaScript language is assumed.

Using JavaScript Clients to monitor GlassFish Server has little impact on the runtime performance of a running server. Therefore, you can monitor GlassFish Server in this way both during development and in production.

The following topics are addressed here:
- “Running a Script for Monitoring GlassFish Server” on page 217
- “Writing Scripts in the JavaScript Language for Monitoring GlassFish Server” on page 218
- “Sample JavaScript Programs for Monitoring GlassFish Server” on page 225
- “JavaScript Monitoring Client API Reference” on page 228

Running a Script for Monitoring GlassFish Server

GlassFish Server provides an asadmin subcommand to run scripts for monitoring GlassFish Server. To ensure that scripts can receive and process events correctly, you must use the subcommand that is provided to run these scripts.
To Run a Script for Monitoring GlassFish Server

1. Ensure that all the server instances or clusters on which you want to run the script are running. Remote subcommands require running servers.

2. Run the run-script subcommand.
   If monitoring for GlassFish Server is disabled, running the run-script subcommand automatically enables it.

Example 9–1 Running a Script for Monitoring GlassFish Server

This example runs the script /tools/mon/modulestarted.js on all server instances in the cluster named cluster1.

asadmin> run-script --target cluster1 /tools/mon/modulestarted.js

See Also You can view the full syntax and options of the subcommand by typing asadmin help run-script at the command line.

Writing Scripts in the JavaScript Language for Monitoring GlassFish Server

You can write clients in the JavaScript programming language to provide monitoring data about Oracle GlassFish Server.

The following topics are addressed here:

- “Obtaining Information About Events That Provide Monitoring Data” on page 218
- “To Register a Script as a Listener for an Event” on page 221
- “To Display Information From a Script” on page 222
- “Writing an Event Callback Function” on page 223

Obtaining Information About Events That Provide Monitoring Data

Components and services that are deployed in the GlassFish Server typically generate statistics that the GlassFish Server can gather at run time. To provide statistics to GlassFish Server, components define events for the operations that generate these statistics. At runtime, components send these events when performing the operations for which the events are defined. For example, to enable the number of received requests to be monitored, a component sends a “request received” event each time that the component receives a request.
You can list all events that are provided for monitoring GlassFish Server. Detailed information about each of these events is provided to enable you to identify which events provide the statistics that you want to monitor.

Use this information to process appropriately the events of interest in JavaScript programs that you write for monitoring GlassFish Server.

### To Obtain a List of Events That Provide Monitoring Data

1. **Ensure that the server is running.**
   Remote subcommands require a running server.

2. **Ensure that monitoring is enabled for GlassFish Server.**
   Monitoring is enabled by default. However, if monitoring for GlassFish Server has been disabled, no events are listed.

   For information about how to enable monitoring for GlassFish Server, see “To Enable Monitoring” on page 182.

3. **To include in the list events that are related to a container, ensure that the container is loaded.**
   Events that are related to a container are listed only if the container is loaded. For example, to list events that are related to the EJB container, you must ensure that the EJB container is loaded by deploying a standalone EJB module or an application that includes an EJB module in GlassFish Server.

4. **Run the list-probes(1) subcommand.**
   The signatures of all events for all installed components of GlassFish Server are displayed.

   An event signature consists of the event identifier (ID) followed in parentheses by a comma-separated list of the event’s parameters. Each parameter is listed as its type followed by its name.

   For detailed information about the format of an event signature, see the help page for the list-probes subcommand.

### Example 9–2 Listing All Events

This command lists all events for monitoring GlassFish Server. For better readability, some events that would listed by this example are not shown.

```
 asadmin> list-probes
 glassfish:jdbc:connection-pool:connectionRequestDequeuedEvent (java.lang.String poolName)
 glassfish:jca:connection-pool:connectionsFreedEvent (java.lang.String poolName, int count)
```
To Obtain Detailed Information About an Event That Provides Monitoring Data

The following detailed information is available about events for monitoring GlassFish Server:

- The event's signature
- A description of the event, including an indication of what the event signifies and an explanation of what causes the event to be sent
- A description of each parameter in the event

1. **Ensure that the server is running.**
   Remote subcommands require a running server.

2. **If necessary, obtain the event ID of the event for which you want detailed information.**
   For details, see “To Obtain a List of Events That Provide Monitoring Data” on page 219.

3. **Specify the --details option of the list-probes subcommand and the ID of the event as the operand of the subcommand.**

### Example 9-3 Displaying Detailed Information About an Event

This example displays detailed information about the glassfish:web:web-module:webModuleStartedEvent event.

```bash
asadmin list-probes --details glassfish:web:web-module:webModuleStartedEvent
```

Information similar to the following is displayed.
Events
glassfish:web:web-module:webModuleStartedEvent(5GFP)

NAME
glassfish:web:web-module:webModuleStartedEvent - web module started event

SYNOPSIS
glassfish:web:web-module:webModuleStartedEvent(
java.lang.String appName,
java.lang.String hostName)

DESCRIPTION
This event is sent whenever an application has been started (for example, as part of its deployment).

PARAMETERS
appName
The name of the web application that has been started.

hostName
The name of the virtual server on which the application has been deployed.

Java EE 6 Last change: 19 Nov 2009

Command list-probes executed successfully.

▼ To Register a Script as a Listener for an Event

Registering a script as listener for an event enables the script to listen for the event and to receive callbacks when the script receives the event. The script can then collect data from the event. Registering a script as listener for an event also specifies the event callback function that is to be called when the event is received. For information about writing an event callback function, see “Writing an Event Callback Function” on page 223.

1 Create an array of the event parameters to pass to the event callback function.
This array may contain any number of the event’s parameters in any order.

2 Invoke the scriptContainer.registerListener method.
In the invocation of the scriptContainer.registerListener method, pass the following information as parameters to the method:

■ The event ID of the event
■ The array of event parameters that you created in the previous step
■ The name of the event callback function that is to be called when the event is received
Registering a Script as a Listener for an Event

This example registers a script as a listener for the event `glassfish:web:jsp:jspLoadedEvent`. When this event is received, the event parameter `hostName` is passed to the `jspLoaded()` event callback function. For clarity, the declaration of the event callback function `jspLoaded()` is also shown in this example.

```javascript
function jspLoaded(hostName) {
 ...
}
params = java.lang.reflect.Array.newInstance(java.lang.String, 1);
params[0] = "hostName";
scriptContainer.registerListener('glassfish:web:jsp:jspLoadedEvent',
 params, 'jspLoaded');
```

To Display Information From a Script

To provide statistics to system administrators, a script must display information when the script is run. GlassFish Server provides a pre-instantiated object that has a method for displaying information from scripts. You must use this method to display updated information on standard output on the client system where the script is run. You cannot use the standard printing mechanisms of the JavaScript language because they write information to the server log.

- **Invoke the `client.print` method.**
  In the invocation of the `client.print` method, pass the text string to display as the parameter to the method.

Displaying Information From a Script

This example displays a string similar to the following in standard output each time the function `jspLoaded()` is called.

```javascript
js> jsp loaded event called on host = server and count = 1

var njspLoaded=0;
function jspLoaded(hostName) {
 njspLoaded = njspLoaded + 1;
 client.print("\n js> jsp loaded event called on ' +
 'host = ' + hostName +
 ' and count = ' + njspLoaded);}
...
Writing an Event Callback Function

An event callback function is a function in a script that GlassFish Server calls in response to an event.

In your event callback functions, provide code to generate statistics from the data in events. Typically, the following types of statistics can be generated from the data in events:

- **Counter statistics.** These types of statistics typically correspond to a single event. For example, to calculate the number of received requests, only one event is required, for example, a “request received” event. Every time that a “request received” event is sent, the number of received requests is increased by 1.

- **Timer statistics.** These types of statistics typically correspond to multiple events. For example, to calculate the time to process a request, two events are required, for example, a “request received” event and a “request completed” event.

▼ To Generate Counter Statistics

Counter statistics typically correspond to a single event. For example, to calculate the number of received requests, only one event is required, for example, a “request received” event. Every time that a “request received” event is sent, the number of received requests is increased by 1.

1. Declare and initialize a variable.

2. Increase or decrease the variable each time the appropriate event is received.

Example 9–6 Generating a Counter Statistic

This example declares and initializes to zero the variable njspLoaded. Each time the callback function jspLoaded() is invoked, the value of this counter is increased by 1.

For the complete listing of the script from which this example is extracted, see Example 9–8.

```javascript
var njspLoaded=0;
function jspLoaded(hostName) {
    njspLoaded = njspLoaded + 1;

    // Code...
}
```

▼ To Generate a Timer Statistic

Timer statistics typically correspond to multiple events. For example, to calculate the time to process a request, two events are required, for example, a “request received” event and a “request completed” event.
For operations that have a measurable duration, GlassFish Server provides pairs of events to indicate the start and the end of the operations. For example, to indicate the initiation and completion of an HTTP request that has been received by the web container, GlassFish Server provides the following pair of events:

- `glassfish:web:http-service:requestStartEvent`
- `glassfish:web:http-service:requestEndEvent`

Use pairs of events that indicate the start and end of an operation to generate a timer statistic.

1. Write an event callback function to calculate the start time.

2. Ensure that the function to calculate the start time is called when the “operation started” event is received.

 For details, see “To Register a Script as a Listener for an Event” on page 221.

3. Write an event callback function to calculate the end time.

4. Ensure that the function to calculate the end time is called when the “operation ended” event is received.

 For details, see “To Register a Script as a Listener for an Event” on page 221.

Example 9–7 Generating a Timer Statistic

This example uses the following events to measure the time to process web service requests:

- `glassfish:web:http-service:requestStartEvent`
- `glassfish:web:http-service:requestEndEvent`

The events for a single request are sent in the same thread of control. Therefore, the identity of the thread can be used as a key to associate the start event and the end event for the request.

For the complete listing of the script from which this example is extracted, see Example 9–9.

```javascript
...
var startTime;
var object = new Object();
...

function requestStartEvent(appName,hostName,serverName,serverPort,contextPath, servletPath){
  ...
  startTime = (new Date()).getTime();
  // insert the request time in Map
  key = java.lang.Thread.currentThread().getId();
  object[key] = startTime;
  ...
}
```
Sample JavaScript Programs for Monitoring GlassFish Server

The sample JavaScript programs in this section show how to use GlassFish Server events to generate and present statistics for system administrators who are monitoring GlassFish Server.

EXAMPLE 9-8 Counting the Number of Loaded JSP Technology Pages

This example uses the `glassfish:web:jsp:jspLoadedEvent` event to count the number of JavaServer Pages (JSP) technology pages that GlassFish Server has loaded.

```
var njspLoaded=0;

function jspLoaded(hostName) {
    njspLoaded = njspLoaded + 1;
    client.print( '\n js> jsp loaded event called on ' +
        'host = ' + hostName +
        ' and count = ' + njspLoaded);
}

params = java.lang.reflect.Array.newInstance(java.lang.String, 1);
params[0]="hostName";

scriptContainer.registerListener('glassfish:web:jsp:jspLoadedEvent',
    params, 'jspLoaded');
```

This script can be run with a command similar to the following:

```
asadmin run-script jsp-loaded-count.js
```

Information similar to the following is displayed each time that GlassFish Server loads a JSP technology page:

```
js> jsp loaded event called on host = server and count = 1
```

The script runs until a user types Ctrl-C to stop the script.
EXAMPLE 9–9 Measuring the Time to Process Web Service Requests

This example uses the following events to measure the time to process web service requests:

- `glassfish:web:http-service:requestStartEvent`
- `glassfish:web:http-service:requestEndEvent`

The script also displays the information that is contained in the parameters of these events.

```javascript
// http request related probes
// glassfish:web:http-service:requestStartEvent requestStartEvent(
// java.lang.String appName,
// java.lang.String hostName,
// java.lang.String serverName,
// int serverPort,
// java.lang.String contextPath,
// java.lang.String servletPath)

request_params = java.lang.reflect.Array.newInstance(java.lang.String, 6);
request_params[0]="appName";
request_params[1]="hostName";
request_params[2]="serverName";
request_params[3]="serverPort";
request_params[4]="contextPath";
request_params[5]="servletPath";

var startTime;
var object = new Object();
var nrequestStartEvent=0;

function requestStartEvent(appName,hostName,serverName,serverPort,contextPath,
servletPath){
  nrequestStartEvent=nrequestStartEvent+1;
  startTime = (new Date()).getTime();
  //insert the request time in Map
  key = java.lang.Thread.currentThread().getId();
  object[key] = startTime;
  client.print(
    'Count: '+ nrequestStartEvent +'
    'Event: glassfish:web:http-service:requestStartEvent' +'
    'Application: '+appName+'
    'Host: ' + hostName +'
    'Server: ' + serverName +'
    'HTTP Port: ' + serverPort +'
    'Context Path: ' + contextPath +'
    'Servlet Path: ' + servletPath +
    'Current Thread: ' + java.lang.Thread.currentThread().getId() +
    '
  ');
}

scriptContainer.registerListener('glassfish:web:http-service:requestStartEvent',
  request_params , 'requestStartEvent');

// glassfish:web:http-service:requestEndEvent requestEndEvent(
```
EXAMPLE 9–9 Measuring the Time to Process Web Service Requests (Continued)

// java.lang.String appName,
// java.lang.String hostName,
// java.lang.String serverName,
// int server Port,
// java.lang.String contextPath,
// java.lang.String servletPath,
// int statusCode)

request1_params = java.lang.reflect.Array.newInstance(java.lang.String, 7);
request1_params[0]="appName";
request1_params[1]="hostName";
request1_params[2]="serverName";
request1_params[3]="serverPort";
request1_params[4]="contextPath";
request1_params[5]="servletPath";
request1_params[6]="statusCode";

var nrequestEndEvent=0;

function requestEndEvent(appName,hostName,serverName,serverPort,contextPath,
servletPath,statusCode){
 nrequestEndEvent=nrequestEndEvent+1;
 key = java.lang.Thread.currentThread().getId();
 startTime = object[key];
 if (startTime == null)
 client.print("Error getting the startTime for thread = " + key);
 else
 delete[key];
 totalTime = (new Date()).getTime() - startTime;
 client.print('Time Taken: ' + ((new Date()).getTime()-startTime) + ' ms
' + 'Count: '+nrequestEndEvent+'
'+ 'Event: glassfish:web:http-service:requestEndEvent' +'
' + 'Application: '+appName+'\n' + 'Host: ' + hostName +\n' + 'Server: ' + serverName +\n' + 'HTTP Port: ' + serverPort +\n' + 'Context Path: ' + contextPath +\n' + 'Servlet Path: ' + servletPath +\n' + 'Status Code: ' + statusCode +\n' + 'Current Thread: ' + java.lang.Thread.currentThread().getId() + \n' + '\n\n');

 scriptContainer.registerListener('glassfish:web:http-service:requestEndEvent',
 request1_params, 'requestEndEvent');

This script can be run with a command similar to the following:

asadmin run-script web-service-request-timer.js

Information similar to the following is displayed each time that a web service request is
initiated:
EXAMPLE 9–9 Measuring the Time to Process Web Service Requests (Continued)

Count: 2
Event: glassfish:web:http-service:requestStartEvent
Application: __admingui
Host: __asadmin
Server: localhost
HTTP Port: 4848
Context Path:
Servlet Path: /common/commonTask.jsf
Current Thread: 98

Information similar to the following is displayed each time that a web service request is completed:

Time Taken: 1704 ms
Count: 2
Event: glassfish:web:http-service:requestEndEvent
Application: __admingui
Host: __asadmin
Server: localhost
HTTP Port: 4848
Context Path:
Servlet Path: /common/commonTask.jsf
Status Code: 200
Current Thread: 98

The script runs until a user types Ctrl-C to stop the script.

JavaScript Monitoring Client API Reference

The JavaScript Monitoring Client API is a set of pre-instantiated objects that enable scripts to interact with GlassFish Server.

The following topics are addressed here:

- “Object client” on page 228
- “Object scriptContainer” on page 229

Object client

Method Summary

void print(String string)

Prints a string to the standard output on the system where the script is running.
Method Detail

print

void print(String string)

Prints a string to the standard output on the system where the script is running.

The parameters of this method are as follows:

string
 The string to be printed.

Object scriptContainer

Method Summary

void registerListener(String event-id, String[] params, String callback)

Registers a script as a listener for a specific event.

Method Detail

registerListener

void registerListener (String event-id, String[] params, String callback)

Registers a script as a listener for a specific event.

The parameters of this method are as follows:

event-id
 The event identifier (ID) of the event for which the script is to listen.

params
 An array of the event parameters to pass to the event callback function that is called when the event is received.

callback
 The event callback function that is called when the event is received.
This chapter provides procedures for administering life cycle modules in the Oracle GlassFish Server 3.1 environment.

The following topics are addressed here:

- "About Life Cycle Modules" on page 231
- "Configuring Life Cycle Modules" on page 232

Instructions for accomplishing the tasks in this chapter by using the Administration Console are contained in the Administration Console online help.

About Life Cycle Modules

Life cycle modules, also known as initialization services, provide a means of running short or long duration Java-based tasks within the GlassFish Server environment. These modules are automatically initiated at server startup and are notified at various phases of the server life cycle. Configured properties for a life cycle module are passed as properties during server initialization.

All life cycle module classes and interfaces are in the `as-install/glassfish/modules/glassfish-api.jar` file.

A life cycle module listens for and performs its tasks in response to the following GlassFish Server sequence of events:

1. Initialization. The server reads the configuration, initializes built-in subsystems (such as security and logging services), and creates the containers.
2. Startup. The server loads and initializes deployed applications.
4. Shutdown. The server shuts down the applications and stops.
5. **Termination.** The server closes the containers, the built-in subsystems, and the server runtime environment.

These events are defined in the `LifecycleEvent` class. For information on creating life cycle modules, see Chapter 12, "Developing Lifecycle Listeners," in *Oracle GlassFish Server 3.1 Application Development Guide.*

Note – If the `is-failure-fatal` setting is set to true (the default is false), life cycle module failure prevents server initialization or startup, but not shutdown or termination.

Configuring Life Cycle Modules

The following topics are addressed here:

- “To Create a Life Cycle Module” on page 232
- “To List Life Cycle Modules” on page 233
- “To Update a Life Cycle Module” on page 233
- “To Delete a Life Cycle Module” on page 234

▼ To Create a Life Cycle Module

Use the `create-lifecycle-module` subcommand in remote mode to create a life cycle module.

1. **Ensure that the server is running.**
 Remote subcommands require a running server.

2. **Create a new life cycle modules by using the `create-lifecycle-module(1)` subcommand.**
 Information about options and properties for the subcommand are included in this help page.

3. **Restart the server for your changes to take effect.**
 See “To Restart a Domain” on page 112.

Example 10–1 Creating a Life Cycle Module

This example creates the `customSetup` life cycle module:

```bash
asadmin> create-lifecycle-module --classname com.acme.CustomSetup
--classpath="/export/customSetup" --loadorder 1 --failurefatal=true
--description "this is a sample customSetup"
--property rmi="Server\:acme1:7070":timeout=30 customSetup
Command create-lifecycle-module executed successfully
```
You can also view the full syntax and options of the subcommand by typing asadmin help create-lifecycle-module at the command line.

To List Life Cycle Modules

Use the list-lifecycle-modules subcommand in remote mode to list the existing life cycle modules.

1. Ensure that the server is running.
 Remote subcommands require a running server.

2. List life cycle modules by using the list-lifecycle-modules(1) subcommand.

Example 10–2 Listing Life Cycle Modules

This example lists the existing life cycle modules.

```bash
asadmin> list-lifecycle-modules
WSTCPConnectorLCModule
Command list-lifecycle-modules executed successfully
```

You can also view the full syntax and options of the subcommand by typing asadmin help list-lifecycle-modules at the command line.

To Update a Life Cycle Module

Use the set subcommand to update an existing life cycle module.

1. List the properties that can be updated for a life cycle module by using the get(1) subcommand.
 For example (single mode):
   ```bash
   asadmin get "*" | grep sampleLCM
   applications.application.sampleLCMmodule.availability-enabled=false
   applications.application.sampleLCMmodule.directory-deployed=false
   applications.application.sampleLCMmodule.enabled=true
   applications.application.sampleLCMmodule.name=sampleLCMmodule
   applications.application.sampleLCMmodule.object-type=user
   applications.application.sampleLCMmodule.property.class-name=example.lc.SampleModule
   applications.application.sampleLCMmodule.property.classpath=/build/lcm.jar
   applications.application.sampleLCMmodule.property.is-failure-fatal=false
   applications.application.sampleLCMmodule.property.isLifecycle=true
   ```

2. Update a life cycle module by using the set(1) subcommand.

3. Restart the server for your changes to take effect.
 See “To Restart a Domain” on page 112.
Example 10–3 Updating a Life Cycle Module

This example updates the classpath property.

 asadmin> set applications.application.sampleLCMmodule.
 property.classpath=/build/lcm_new.jar
 applications.application.
 sampleLCMmodule.property.classpath=/build/lcm_new.jar
 Command set executed successfully.

See Also You can also view the full syntax and options of the subcommand by typing asadmin help set
at the command line.

▼ To Delete a Life Cycle Module

Use the delete-lifecycle-module subcommand in remote mode to delete a life cycle module.

1 Ensure that the server is running.
 Remote subcommands require a running server.

2 List the current life cycle modules by using the list-lifecycle-modules(1) subcommand.

3 Delete a life cycle module by using the delete-lifecycle-module(1) subcommand.

Example 10–4 Deleting a Life Cycle Module

This example deletes the customSetup life cycle module.

 asadmin> delete-lifecycle-module customSetup
 Command delete-lifecycle-module executed successfully

See Also You can also view the full syntax and options of the subcommand by typing asadmin help
delete-lifecycle-module at the command line.
Extending and Updating GlassFish Server

This chapter explains how to extend and update a deployed Oracle GlassFish Server 3.1 installation.

The following topics are addressed here:

- “About Add-On Components” on page 235
- “Preconfigured Repositories for GlassFish Server” on page 236
- “Tools for Extending and Updating GlassFish Server” on page 239
- “Adding Components” on page 241
- “Updating Installed Components” on page 244
- “Removing Installed Components” on page 247
- “Upgrading to Oracle GlassFish Server From GlassFish Server Open Source Edition” on page 250
- “Extending and Updating GlassFish Server Inside a Closed Network” on page 254

About Add-On Components

GlassFish Server is designed to provide its functionality in a modular form so that you can choose to include the functionality that you need and leave out the functionality that is not needed. OSGi modules, also called bundles, provide add-on functionality for your deployed GlassFish Server. As new add-on components are developed and existing components are modified, you can extend and update GlassFish Server by installing these components. You can add components during runtime, without stopping the server. But you must stop the server before updating or removing an installed component.
Preconfigured Repositories for GlassFish Server

Image Packaging System (IPS) tools for updating GlassFish Server software obtain updates from repositories that contain the OSGi modules and other content for GlassFish Server.

Oracle GlassFish Server and GlassFish Server Open Source Edition each have their own set of repositories, as explained in the following sections:

- “Oracle GlassFish Server Repositories” on page 236
- “GlassFish Server Open Source Edition Repositories” on page 239

Oracle GlassFish Server Repositories

Table 11–1 lists the preconfigured repositories for Oracle GlassFish Server.

<table>
<thead>
<tr>
<th>Publisher</th>
<th>URL</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>release.glassfish.oracle.com</td>
<td>pkg.oracle.com/glassfish/v3/release/</td>
<td>Commercial, production quality versions of the core components and add-on components of Oracle GlassFish Server</td>
</tr>
<tr>
<td>contrib.glassfish.oracle.com</td>
<td>pkg.oracle.com/glassfish/v3/contrib/</td>
<td>Additional add-on components that are contributed by Oracle partners</td>
</tr>
<tr>
<td>contrib.glassfish.org</td>
<td>pkg.glassfish.org/v3/contrib/</td>
<td>Additional add-on components that are contributed by the GlassFish community</td>
</tr>
<tr>
<td>dev.glassfish.oracle.com</td>
<td>pkg.oracle.com/glassfish/v3/dev/</td>
<td>Developmental, beta, and prerelease versions of the components in the pkg.oracle.com/glassfish/v3/release/repository</td>
</tr>
</tbody>
</table>

For Oracle GlassFish Server installations, the release.glassfish.oracle.com publisher is designated as the preferred publisher. To ensure that installations contain only commercial, production quality version of components by default, the preferred publisher is treated specially by the tools for updating GlassFish Server software:

- If an add-on component is available from the preferred publisher and from other publishers, the Update Tool GUI and the pkg CLI list and install the component from the preferred publisher.
- After a component has been installed from the preferred publisher, the Update Tool, Software Update, and desktop notifier GUIs search for updates to that component only from the preferred publisher.
If you have support for Oracle GlassFish Server, you can change the preferred publisher's repository URL from the Oracle GlassFish Server release repository to the Oracle GlassFish Server support repository. For more information, see “Enabling the Oracle GlassFish Server Support Repository” on page 237.

Enabling the Oracle GlassFish Server Support Repository

If you have support for Oracle GlassFish Server, you can change the repository URL for the preferred provider, release.glassfish.oracle.com, to refer to the support repository instead of the release repository. This support repository includes the content provided by the release repository, but also includes commercial, production quality updates that resolve issues reported by Oracle GlassFish Server customers.

Enabling the Oracle GlassFish Server support repository involves two tasks:

1. Your company’s technical contact acquires the key and certificate files needed to access the support repository.
2. GlassFish Server administrators use the key and certificate files to change the release.glassfish.oracle.com publisher's repository URL to the support repository.

Note – The key and certificate files needed to enable access to the support repository expire. When they expire, you need to acquire new ones and apply them to your Oracle GlassFish Server installations.

▼ **To Acquire the Key and Certificate Files for the Support Repository**

To acquire the key and certificate files for the Oracle GlassFish Server support repository, your company’s technical contact uses the pkg-register.oracle.com Certificate Generator.

Before You Begin

Before using the Certificate Generator, you must add your Oracle GlassFish Server Customer Support Identification (CSI) numbers to your My Oracle Support account. If you do not yet have a My Oracle Support account, you can create one at https://support.oracle.com.

1. **In a web browser, go to https://pkg-register.oracle.com and sign in using your My Oracle Support account information.**

 After signing in, the Certificate Requests page displays, showing “Oracle GlassFish Server 3 Support” as one of the products for which you can request a certificate.

2. **Select “Oracle GlassFish Server 3 Support” and then click Submit.**

 The Certificate Requests: Additional Information page displays.

3. **Enter an optional comment if desired, and then click Submit.**

 The Certificate Information page displays.
4 Note down the expiration date of the certificate.
When the current certificate expires, you will need to repeat this process to acquire new certificates.

5 Click Download Key and save the Oracle_GlassFish_Server_3_Support.key.pem file.

6 Click Download Certificate and save the Oracle_GlassFish_Server_3_Support.certificate.pem file.

7 Sign out of the Certificate Generator site.

8 Make the key and certificate files you saved available to your company's Oracle GlassFish Server administrators.

Note – If you accidentally delete or misplace these files, you can sign into https://pkg-register.oracle.com using your My Oracle Support account information and get replacement copies of them.

▼ To Change the release.glassfish.oracle.com Publisher's URL to the Support Repository

Use the pkg utility to change the repository URL for the release.glassfish.oracle.com publisher to the Oracle GlassFish Server support repository for an Oracle GlassFish Server installation.

Before You Begin

Before you use the pkg utility, you must copy the Oracle_GlassFish_Server_3_Support.key.pem key file and the Oracle_GlassFish_Server_3_Support.certificate.pem certificate file to a location accessible from the host where Oracle GlassFish Server is installed.

1 On the host where Oracle GlassFish Server is installed, navigate to the parent installation directory:
 cd as-install-parent
The default parent installation directory is glassfish3.

2 Use the pkg set-publisher command to change the repository URL:
 - On Unix systems (including Mac OS), where backslash (\) is the command line continuation character:

 bin/pkg set-publisher -P \\n -k path-to-key-file/Oracle_GlassFish_Server_3_Support.key.pem \\n -c path-to-certificate-file/Oracle_GlassFish_Server_3_Support.certificate.pem \\n -O https://pkg.oracle.com/glassfish/v3/support release.glassfish.oracle.com
On Windows systems, where caret (^) is the command line continuation character:

```
bin\pkg set-publisher -P ^
-k path-to-key-file\Oracle_GlassFish_Server_3_Support.key.pem ^
-c path-to-certificate-file\Oracle_GlassFish_Server_3_Support.certificate.pem ^
-O https://pkg.oracle.com/glassfish/v3/support release.glassfish.oracle.com
```

GlassFish Server Open Source Edition Repositories

Table 11–2 lists the preconfigured repositories for GlassFish Server Open Source Edition.

<table>
<thead>
<tr>
<th>Publisher</th>
<th>URL</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>contrib.glassfish.oracle.com</td>
<td>pkg.sun.com/glassfish/v3/contrib/</td>
<td>Additional add-on components that are contributed by Oracle partners.</td>
</tr>
<tr>
<td>contrib.glassfish.org</td>
<td>pkg.glassfish.org/v3/contrib/</td>
<td>Additional add-on components that are contributed by the GlassFish community.</td>
</tr>
<tr>
<td>dev.glassfish.org</td>
<td>pkg.glassfish.org/v3/dev/</td>
<td>Developmental, beta, and prerelease versions of the components in the pkg.sun.com/javaesdk/6/release/repository.</td>
</tr>
</tbody>
</table>

For GlassFish Server Open Source Edition installations, stable.glassfish.org is the preferred publisher.

Tools for Extending and Updating GlassFish Server

GlassFish Server provides the following tools for updating software on a deployed server:

- “Update Tool” on page 240
- “The pkg Command” on page 240
- “Administration Console” on page 240
Update Tool

Update Tool is a standalone graphical tool bundled with GlassFish Server that can be used to find and install updates and add-ons on a deployed GlassFish Server instance.

To start Update Tool, type the following command:

```
as-install-parent/bin/updatetool
```

For instructions for using Update Tool, see the Update Tool online help.

For additional information about Update Tool, see the following wikis:
- Multi-platform Packaging for Layered Distros
- Toolkit Documentation

The pkg Command

The `pkg` command is the command-line equivalent to Update Tool. Most of the tasks that can be performed with the graphical Update Tool can be performed from a command line using the `pkg` tool.

The `pkg` command is located in the `as-install-parent/bin` directory. To run the `pkg` command without specifying the path, ensure that this directory is in your path.

The `pkg` command enables you to create update scripts and to update software on headless systems. A headless system does not have a monitor, graphics card, or keyboard.

Most of the procedures in this chapter are based on the `pkg` command. A set of reference pages that contain details about using the `pkg` command is included with GlassFish Server in the `as-install-parent/pkg/man` directory.

Administration Console

The Administration Console enables you to perform the following tasks that are related to extending and updating GlassFish Server:
- Installing add-on components
- Viewing available updates to installed components
- Viewing installed components

For more information, see the Administration Console online help.
Note – The Administration Console does not enable you to update or remove installed components. Instead, you must stop the GlassFish Server domain and use Update Tool or the pkg command.

When the Administration Console starts, it automatically checks the package repositories for updates to installed components. In situations where the GlassFish Server host does not have access to the package repositories, you can disable this automatic check by setting a JVM option:

```
asadmin> create-jvm-options -Dcom.sun.enterprise.tools.admingui.NO_NETWORK=true
```

After setting this JVM option, restart the domain.

Adding Components

This section provides instructions for using the pkg command to install GlassFish Server add-on components on your deployed GlassFish Server.

● To Install an Add-on Component

The pkg command enables you to install an add-on component on your system. If multiple versions of a package are available, the latest one is applied unless you specify otherwise. The pkg command, located in the as-install-parent/bin directory,

```
Before You Begin
```

GlassFish Server 3.1 must be fully deployed before you can install additional components. If you need installation instructions, see Oracle GlassFish Server 3.1 Installation Guide.

1 To ensure that the pkg command can locate the application image, change to the base installation directory for GlassFish Server.
 `cd as-install`
 `as-install`
 The base installation directory for GlassFish Server.

2 List your installed components:
 `pkg list`
Information similar to the following is displayed:

<table>
<thead>
<tr>
<th>NAME (PUBLISHER)</th>
<th>VERSION</th>
<th>STATE</th>
<th>UFIX</th>
</tr>
</thead>
<tbody>
<tr>
<td>felix</td>
<td>2.0.2-0</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-applclient</td>
<td>3.0.1-14</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-cmp</td>
<td>3.0.1-14</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-common</td>
<td>3.0.1-14</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-common-full</td>
<td>3.0.1-14</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-corba</td>
<td>3.0.0-41</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-corba-base</td>
<td>3.0.0-41</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-ejb</td>
<td>3.0.1-14</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-ejb-lite</td>
<td>3.0.1-14</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-full-incorporation</td>
<td>3.0.1-14</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-full-profile</td>
<td>3.0.1-14</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-grizzly</td>
<td>1.9.18-9</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-grizzly-full</td>
<td>1.9.18-9</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-gui</td>
<td>3.0.1-14</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-hk2</td>
<td>3.0.1-14</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-javahelp</td>
<td>2.0.2-0</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-jca</td>
<td>3.0.1-14</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-jcdi</td>
<td>3.0.1-14</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-jdbc</td>
<td>3.0.1-14</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-jms</td>
<td>3.0.1-14</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-jpa</td>
<td>3.0.1-14</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-jpa</td>
<td>3.0.2-10</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-jta</td>
<td>3.0.1-14</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-jts</td>
<td>3.0.1-14</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-management</td>
<td>3.0.1-14</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-nucleus</td>
<td>3.0.1-14</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-registration</td>
<td>3.0.1-14</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-scripting</td>
<td>3.0.1-14</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-upgrade</td>
<td>3.0.1-14</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-web</td>
<td>3.0.1-14</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-web-incorporation</td>
<td>3.0.1-14</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-web-profile</td>
<td>3.0.1-14</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>javadb-client</td>
<td>10.5.3.0-1</td>
<td>installed</td>
<td>----</td>
</tr>
<tr>
<td>javadb-common</td>
<td>10.5.3.0-1</td>
<td>installed</td>
<td>----</td>
</tr>
<tr>
<td>javadb-core</td>
<td>10.5.3.0-1</td>
<td>installed</td>
<td>----</td>
</tr>
<tr>
<td>jersey</td>
<td>1.1.5-1.0</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>metro</td>
<td>2.0-29</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>mq-bin-exe</td>
<td>4.4.2-2.7</td>
<td>installed</td>
<td>----</td>
</tr>
<tr>
<td>mq-bin-sh</td>
<td>4.4.2-2.7</td>
<td>installed</td>
<td>----</td>
</tr>
<tr>
<td>mq-config-gf</td>
<td>4.4.2-2.7</td>
<td>installed</td>
<td>----</td>
</tr>
<tr>
<td>mq-core</td>
<td>4.4.2-2.7</td>
<td>installed</td>
<td>----</td>
</tr>
<tr>
<td>mq-server</td>
<td>4.4.2-2.7</td>
<td>installed</td>
<td>----</td>
</tr>
<tr>
<td>pkg</td>
<td>1.122.2-38.2493</td>
<td>installed</td>
<td>----</td>
</tr>
<tr>
<td>pkg-java</td>
<td>1.122-38.2493</td>
<td>installed</td>
<td>----</td>
</tr>
<tr>
<td>pkg-toolkit-incorporation</td>
<td>2.3.0-38.2493</td>
<td>installed</td>
<td>----</td>
</tr>
<tr>
<td>python2.4-minimal</td>
<td>2.4.4.0-38.2493</td>
<td>installed</td>
<td>----</td>
</tr>
</tbody>
</table>

3 List all packages that are available:

`pkg list -a`

Information similar to the following is displayed from the repository. For clarity, some items are omitted from this example.

<table>
<thead>
<tr>
<th>NAME (PUBLISHER)</th>
<th>VERSION</th>
<th>STATE</th>
<th>UFIX</th>
</tr>
</thead>
<tbody>
<tr>
<td>ant (contrib.glassfish.org)</td>
<td>1.7.1-0.6</td>
<td>known</td>
<td>----</td>
</tr>
</tbody>
</table>
felix (dev.glassfish.org) 2.0.2-0 known ----
felix 2.0.2-0 installed u---
felix (release.glassfish.oracle.com) 2.0.2-0 known u---
glassfish-appclient (dev.glassfish.org) 3.0.1-15 known ----
glassfish-appclient 3.0.1-14 installed u---
glassfish-appclient (release.glassfish.oracle.com) 3.0-74.2 known u---
glassfish-branding (release.glassfish.oracle.com) 3.0-74.2 known ----
glassfish-branding-gui (release.glassfish.oracle.com) 3.0-74.2 known ----
glassfish-cluster-util (contrib.glassfish.org) 1.0-0.0 known ----
glassfish-cmp (dev.glassfish.org) 3.0.10.1-35 known ----
glassfish-cmp 3.0.1-14 known u---
glassfish-cmp (release.glassfish.oracle.com) 3.0-74.2 known u---
glassfish-branding-gui (release.glassfish.oracle.com) 3.0-74.2 known ----
...
metro (dev.glassfish.org) 2.0.1-3 known ----
micro 2.0.29 known u---
micro (release.glassfish.oracle.com) 2.0.29 known u---
mq-bin-exe (dev.glassfish.org) 4.4.2-2.7 known ----
mq-bin-exe (release.glassfish.oracle.com) 4.4.1-7.2 known u---
mq-bin-sh (dev.glassfish.org) 4.4.2-2.7 known ----
mq-bin-sh (release.glassfish.oracle.com) 4.4.1-7.2 known u---
mq-locale (dev.glassfish.org) 4.4.1-7.2 known ----
mq-locale (release.glassfish.oracle.com) 4.4.1-7.2 known u---
mq-server (dev.glassfish.org) 4.4.1-7.2 known ----
mq-server (release.glassfish.oracle.com) 4.4.1-7.2 known u---
...
sdk-branding-full (release.glassfish.oracle.com) 3.0-74.2 known ----
sdk-branding-web (release.glassfish.oracle.com) 3.0-74.2 known ----
sun-javaee-engine (dev.glassfish.org) 3.0.1-15 known ----
sun-javaee-engine 3.0-74.2 known u---
updatetool 2.3.0-38.2493 known ----
updatetool (dev.glassfish.org) 2.3.0-38.2493 known ----
updatetool (release.glassfish.oracle.com) 2.3.0-38.2493 known ----
wxpython2.8-minimal (dev.glassfish.org) 2.8.10.1-38.2493 known ----
wxpython2.8-minimal (release.glassfish.oracle.com) 2.8.10.1-38.2493 known ----
wxpython2.8-minimal 2.8.71-8.724 known ----

4 Install a package from the available packages list.

```
pkg install package-name
```

For example:

```
pkg install javadb
```
The most recent version of the component is installed and information similar to the following is displayed:

<table>
<thead>
<tr>
<th>DOWNLOAD</th>
<th>PKGS</th>
<th>FILES</th>
<th>XFER (MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>javadb</td>
<td>0/1</td>
<td>61/200</td>
<td>2.10/7.26</td>
</tr>
</tbody>
</table>

PHASE ACTIONS

Install Phase 222/222

To apply your changes, restart GlassFish Server.
See “To Restart a Domain” on page 112.

See Also

For the full syntax and options of the pkg command, see the pkg(1) man page. This man page is installed only after the pkg utilities have been fully installed.

To view this man page on UNIX and Linux systems, type the following command in a terminal window:

```
man -M as-install-parent/pkg/man/ pkg
```

To view this man page on Windows systems, use the type command to view the file `as-install-parent\pkg\man\cat1\pkg.1`.

Updating Installed Components

This section provides the following instructions for updating GlassFish Server components after they have been installed:

- “To Update an Installed Component” on page 244
- “To Update All Installed Components in an Image” on page 246

To Update an Installed Component

When you install an updated version of a component, only those files that have been modified are downloaded and installed. Files that have been removed in the updated package are removed during the update process.

1. **Stop GlassFish Server.**
 See “To Stop a Domain” on page 112.

2. **To ensure that the pkg command can locate the application image, change to the base installation directory for GlassFish Server.**

   ```
   cd as-install
   ```
as-install
The base installation directory for GlassFish Server.

3 Obtain a list of only the installed packages that have available updates:
 pkg list -u
 Information similar to the following is displayed:

 NAME (AUTHORITY) VERSION STATE UFIX
 glassfish-ejb 3.0.1-14 installed u---
 glassfish-hk2 3.0.1-14 installed u---
 glassfish-jca 3.0.1-14 installed u---
 glassfish-jcdi 3.0.1-14 installed u---
 glassfish-web 3.0.1-14 installed u---
 glassfish-web-incorporation 3.0.1-14 installed u---
 glassfish-web-profile 3.0.1-14 installed u---
 jersey 1.1.5-1.0 installed u---
 metro 2.0-29 installed u---

4 Install a new version of a package.
 pkg install package-name
 For example:

 pkg install metro
 Information similar to the following is displayed:

 DOWNLOAD PKGS FILES XFER (MB)
 Completed 1/1 5/5 0.49/0.49

 PHASE ACTIONS
 Removal Phase 2/2
 Update Phase 7/7
 Install Phase 2/2

5 Start GlassFish Server.
 See “To Start a Domain” on page 111.

See Also For the full syntax and options of the pkg command, see the pkg(1) man page. This man page is
installed only after the pkg utilities have been fully installed.

To view this man page on UNIX and Linux systems, type the following command in a terminal
window:

 man -M as-install-parent/pkg/man/ pkg

To view this man page on Windows systems, use the type command to view the file
as-install-parent\pkg\man\cat1\pkg.1.
To Update All Installed Components in an Image

GlassFish Server enables you to maintain multiple installation images on a single system. When you update an installation image, all the components that are present in that image are updated to new versions, if new versions are available. When you install updated versions of components, only those files that have been modified are downloaded and installed. Files that have been removed in the updated package are removed during the update process.

1 Stop GlassFish Server.

See “To Stop a Domain” on page 112.

2 To ensure that the pkg command can locate the application image, change to the base installation directory for GlassFish Server.

cd as-install

as-install

The base installation directory for GlassFish Server.

3 Install all packages for the image.

pkg image-update

Information similar to the following is displayed:

<table>
<thead>
<tr>
<th>PHASE</th>
<th>ACTIONS</th>
<th>PKGS</th>
<th>FILES</th>
<th>XFER (MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Update Phase</td>
<td>253/253</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Install Phase</td>
<td>584/584</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4 Start GlassFish Server.

See “To Start a Domain” on page 111.

See Also

For the full syntax and options of the pkg command, see the pkg(1) man page. This man page is installed only after the pkg utilities have been fully installed.

To view this man page on UNIX and Linux systems, type the following command in a terminal window:

```bash
man -M as-install-parent/pkg/man/ pkg
```

To view this man page on Windows systems, use the type command to view the file as-install-parent\pkg\man\cat1\pkg.1.
Removing Installed Components

If you are discontinuing use of a component and want to remove it from your system, you can do this by using the `uninstall` command. If you need to revert to a prior version of a component, you will need to uninstall the current version and install the prior version by specifying the version number.

- “To Uninstall an Installed Component” on page 247
- “To Uninstall and Revert to an Older Version of a Component” on page 249

▼ To Uninstall an Installed Component

1 Stop GlassFish Server.
 See “To Stop a Domain” on page 112.

2 To ensure that the `pkg` command can locate the application image, change to the base installation directory for GlassFish Server.
   ```
   cd as-install
   as-install
   The base installation directory for GlassFish Server.
   ```

3 Obtain a list of all your installed components.
   ```
   pkg list
   ```

<table>
<thead>
<tr>
<th>NAME (PUBLISHER)</th>
<th>VERSION</th>
<th>STATE</th>
<th>UFIX</th>
</tr>
</thead>
<tbody>
<tr>
<td>felix</td>
<td>2.0.2-0</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-appclient</td>
<td>3.0.1-14</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-cmp</td>
<td>3.0.1-14</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-common</td>
<td>3.0.1-14</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-common-full</td>
<td>3.0.1-14</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-corba</td>
<td>3.0.0-41</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-corba-base</td>
<td>3.0.0-41</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-ejb</td>
<td>3.0.1-14</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-ejb-lite</td>
<td>3.0.1-14</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-full-incorporation</td>
<td>3.0.1-14</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-full-profile</td>
<td>3.0.1-14</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-grizzly</td>
<td>1.9.18-9</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-grizzly-full</td>
<td>1.9.18-9</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-gui</td>
<td>3.0.1-14</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-hk2</td>
<td>3.0.1-14</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-javahelp</td>
<td>2.0.2-0</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-jca</td>
<td>3.0.1-14</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-jcdi</td>
<td>3.0.1-14</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-jdbc</td>
<td>3.0.1-14</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-jms</td>
<td>3.0.1-14</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-jpa</td>
<td>3.0.1-14</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-jsf</td>
<td>2.0.2-10</td>
<td>installed</td>
<td>u---</td>
</tr>
<tr>
<td>glassfish-jsf</td>
<td>3.0.1-14</td>
<td>installed</td>
<td>u---</td>
</tr>
</tbody>
</table>
Removing Installed Components

4 Uninstall the component that you want to remove from your system.

pkg uninstall *package-name*

For example:

```
pkg uninstall python2.4-minimal
```

5 Start GlassFish Server.

See “To Restart a Domain” on page 112.

See Also For the full syntax and options of the pkg command, see the pkg(1) man page. This man page is installed only after the pkg utilities have been fully installed.

To view this man page on UNIX and Linux systems, type the following command in a terminal window:

```
man -M as-install-parent/pkg/man/ pkg
```

To view this man page on Windows systems, use the type command to view the file

```
as-install-parent\pkg\man\cat1\pkg.1
```
To Uninstall and Revert to an Older Version of a Component

If there is a malfunction in an installed component, you might want to revert to an older version of that component. The way to restore an older version of a component is to first uninstall the current version of the component, then install the specific older version that you want to reinstate.

Before You Begin

Be sure to verify that the older version of the component is in the repository before you uninstall your current version.

1 Stop GlassFish Server.
See “To Stop a Domain” on page 112.

2 To ensure that the pkg command can locate the application image, change to the base installation directory for GlassFish Server.

 cd as-install
 as-install
 The base installation directory for GlassFish Server.

3 Verify that the older version of the component is still available:

 pkg list -fa pkg-name
 For example:

 pkg list -fa jersey

 NAME (PUBLISHER) VERSION STATE UFIX
 jersey 1.1.5-1.0 installed ----
 jersey 1.1.4.1-1.0 known u---
 jersey 1.1.4.1-1.0 known u---
 jersey 1.1.4.1-1.0 known u---

4 Obtain a list of your installed components:

 pkg list

5 Uninstall the currently-installed component that you want to replace.

 pkg uninstall package-name
 For example:

 pkg uninstall jersey

6 Install the older version of the component.

 pkg install package-name@version
For example:

```bash
pkg install jersey@0.7-0.2
```

7 Verify that the older version is installed:

```bash
cpkg list
```

8 Start GlassFish Server.

See “To Start a Domain” on page 111.

See Also For the full syntax and options of the pkg command, see the pkg(1) man page. This man page is installed only after the pkg utilities have been fully installed.

To view this man page on UNIX and Linux systems, type the following command in a terminal window:

```bash
man -M as-install-parent/pkg/man/ pkg
```

To view this man page on Windows systems, use the type command to view the file `as-install-parent\pkg\man\cat1\pkg.1`.

Upgrading to Oracle GlassFish Server From GlassFish Server Open Source Edition

Oracle provides software support only for Oracle GlassFish Server, not for GlassFish Server Open Source Edition. Additionally, some features of Oracle GlassFish Server are not available in GlassFish Server Open Source Edition.

If you are using GlassFish Server Open Source Edition, you can upgrade to Oracle GlassFish Server by purchasing a right-to-use and installing the add-on component for upgrading GlassFish Server Open Source Edition. To obtain this component, and to ensure the reliability of your upgraded installation, you must configure your GlassFish Server installation to obtain updates from the appropriate repositories.

Note – To use Oracle GlassFish Server in production after the upgrade, you must obtain a right to use this software from Oracle.

You can upgrade to Oracle GlassFish Server by using either Update Tool or the pkg command.
To Upgrade to Oracle GlassFish Server by Using Update Tool

The procedure explains how to use Update Tool to obtain and install the add-on component for upgrading GlassFish Server Open Source Edition to Oracle GlassFish Server. For general instructions for using Update Tool, see the Update Tool online help.

Before You Begin

Ensure that GlassFish Server Open Source Edition 3.1 is installed on your machine.

1. Start Update Tool.

 \texttt{as-install-parent/bin/updatetool}

2. From the Application Images list, select GlassFish Server Open Source Edition.

3. Click Edit Properties.

The Image Properties window opens.

4. (Optional) In the Image Properties window, change image title to Oracle GlassFish Server.

5. Remove the following publishers from the list of software sources for the image:

 ■ dev.glassfish.org
 ■ stable.glassfish.org
 ■ release.javaesdk.oracle.com

 Remove each publisher as follows:

 a. In the Image Properties window, select the publisher that you are removing.

 b. Click Remove.

6. Add repositories for Oracle GlassFish Server to the application image.

 Add each repository as follows:

 a. In the Image Properties window, click Add.

 The Publisher Properties window opens.

 b. In the Publisher Properties window, specify the properties of the repository that you are adding and click OK.

 The properties to specify for each repository are listed in the following table.
For more information about these repositories, see “Oracle GlassFish Server Repositories” on page 236.

The Publisher Properties window closes. The publisher is added to the Software Sources list in the Image Properties window.

7 In the Image Properties window, set the Preferred option for the release.glassfish.oracle.com publisher and click OK.

8 Under GlassFish Server Open Source Edition in the Available Images list, select Available Add-ons.

9 Select the add-on component for upgrading the distribution of GlassFish Server Open Source Edition that is installed:

 - If the Web Profile distribution is installed, select the Oracle GlassFish Server Web Profile add-on component.
 - If the Full Platform distribution is installed, install the Oracle GlassFish Server Full Platform add-on component.

10 Click Install.

11 To apply your changes, restart GlassFish Server.

 See “To Restart a Domain” on page 112.

▼ To Upgrade to Oracle GlassFish Server by Using the pkg Command

Before You Begin
Ensure that GlassFish Server Open Source Edition 3.1 is installed on your machine.

1 To ensure that the pkg command can locate the application image, change to the base installation directory for GlassFish Server.

 cd as-install

 as-install

 The base installation directory for GlassFish Server.
2 Remove the following publishers from the list of publishers for the image:

- dev.glassfish.org
- stable.glassfish.org
- release.javaeesdk.oracle.com

```
pkg unset-publisher dev.glassfish.org stable.glassfish.org \release.javaeesdk.oracle.com
```

3 Add repositories for Oracle GlassFish Server to the application image.

The properties to specify for each repository are listed in the following table.

<table>
<thead>
<tr>
<th>Publisher Name</th>
<th>Origin Uniform Resource Identifier (URI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>dev.glassfish.oracle.com</td>
<td>http://pkg.oracle.com/glassfish/v3/dev/</td>
</tr>
</tbody>
</table>

The publisher release.glassfish.oracle.com must be the preferred publisher.

For more information about these repositories, see “Oracle GlassFish Server Repositories” on page 236.

a. Add the repository whose publisher is release.glassfish.oracle.com, which must be the preferred publisher.

```
```

b. Add the repository whose publisher is dev.glassfish.oracle.com.

```
pkg set-publisher -O http://pkg.oracle.com/glassfish/v3/dev/ \dev.glassfish.oracle.com
```

4 Install the add-on component for upgrading the distribution of GlassFish Server Open Source Edition that is installed:

- If the Web Profile distribution is installed, install the Oracle GlassFish Server Web Profile add-on component.

  ```
pkg install glassfish-enterprise-web-profile
```

- If the Full Platform distribution is installed, install the Oracle GlassFish Server Full Platform add-on component.

  ```
pkg install glassfish-enterprise-full-profile
```

5 To apply your changes, restart GlassFish Server.

See “To Restart a Domain” on page 112.
Extending and Updating GlassFish Server Inside a Closed Network

See Also

For the full syntax and options of the pkg command, see the pkg(1) man page. This man page is installed only after the pkg utilities have been fully installed.

To view this man page on UNIX and Linux systems, type the following command in a terminal window:

```
man -M as-install-parent/pkg/man/ pkg
```

To view this man page on Windows systems, use the type command to view the file
`as-install-parent\pkg\man\cat1\pkg.1`.

Extending and Updating GlassFish Server Inside a Closed Network

GlassFish Server might be installed on a machine without an Internet connection. For example, for security reasons, GlassFish Server might be installed behind a restrictive firewall, or it might be installed on a LAN that is physically isolated from other networks. In such situations, neither the graphical Update Tool nor the pkg command-line utility that are included with GlassFish Server can contact a public repository server to download and install updates. Therefore, a local repository server must be configured inside the closed network and the GlassFish Server updates installed from there.

The following topics are addressed here:

1. Installing the Pre-Installed Toolkit Image inside a closed network
 The Pre-Installed Toolkit Image provides the software components that are required to run a local repository server inside a closed network.

2. Configuring and running a local repository server on a locally accessible host
 A local repository server makes it possible for a GlassFish Server installation to obtain packages and updates from inside a closed network rather than from the default public repository servers.

3. Configuring a GlassFish Server installation to obtain updates from the local repository server
 Each GlassFish Server installation that will be updated inside a closed network must be configured to use a local repository server instead of the default public repository servers.

4. Installing the GlassFish Server updates
 The GlassFish Server updates inside the closed network are performed normally, but use the local repository server instead of the public repository servers.
To Install the Pre-Installed Toolkit Image Inside a Closed Network

The Pre-Installed Toolkit Image provides the software components that are required to configure and run a local repository server inside a closed network. Running a local repository server makes it possible for a GlassFish Server installation to obtain packages and updates from within the closed network rather than from the default public GlassFish Server repositories.

Before You Begin

- The first three steps of this procedure require access to a machine that is connected to the Internet. This machine must also be able to write to some type of removable medium, such as CD, DVD, USB drive, or flash memory card.
- The remaining steps in the procedure are performed on the machines that are inside the closed network, and do not require access to an Internet connection.

1 In a Web browser on the machine that is connected to the Internet, open the Pre-installed Toolkit Images and Starter Repositories (http://wikis.sun.com/display/IpsBestPractices/Downloads) page.

2 Download the ZIP file that contains the Pre-Installed Toolkit Image that is correct for your server's operating system and save it to the location of your choice.

 The ZIP files are named according to operating system and architecture, using the following format:

 pkg-toolkit-2.3.3-platform-arch.zip

 For example, the ZIP file for 32-bit Linux operating systems is named:

 pkg-toolkit-2.3.3-linux-i386.zip

 Download the correct ZIP file for the operating system and architecture on each of the following machines:

 - The machine on which the local repository server will be run
 - Each machine on which one or more GlassFish Server installations will be updated inside the closed network

3 Copy each Pre-Installed Toolkit Image ZIP file to a removable medium that you can physically transport to the machines inside the closed network.

4 Copy the correct Pre-Installed Toolkit Image ZIP file for each operating system from the removable medium to the directories of your choice on the following machines:

 - The machine on which the local repository server will be run
 - Each machine on which one or more GlassFish Server installations will be updated inside the closed network
5 **Unzip the Pre-Installed Toolkit Image ZIP file on each machine to which you copied the ZIP file in the preceding step.**

The size of the expanded Pre-Installed Toolkit Image ZIP file depends on the operating system:

- On Windows systems, the expanded ZIP file is approximately 11 Mbytes.
- On Linux and Solaris systems, the expanded ZIP file is approximately 13 Mbytes.

6 **(Optional) On each machine to which you copied the Pre-Installed Toolkit Image, verify that the pkg command-line tool is correctly installed.**

 a. **Change to the pkg/bin subdirectory of the directory that contains the unzipped Pre-Installed Toolkit Image.**

   ```
   cd toolkit-dir/pkg/bin
   ```

 toolkit-dir The directory that contains the unzipped Pre-Installed Toolkit Image.

 b. **Display the pkg version.**

   ```
   ./pkg version
   ```

 Output similar to the following is displayed:

   ```
   1.122.2-38.2791
   ```

To Configure a Local Repository Server Inside a Closed Network

A local repository server makes it possible for a GlassFish Server installation to obtain packages and updates from within a closed network, rather than from the default public repository servers.

Before You Begin

Ensure that the following conditions are met:

- You have access to a machine that is connected to the Internet.
- The machine that is connected to the Internet can write to some type of removable medium, such as CD, DVD, USB drive, or flash memory card.
- The Pre-Installed Toolkit Image has been installed as described in “To Install the Pre-Installed Toolkit Image Inside a Closed Network” on page 255.
1 In a Web browser on the machine that is connected to the Internet, download the ZIP file that contains the GlassFish Server repository for the operating system on which GlassFish Server is running.

The repository ZIP files for GlassFish Server are distributed as patches through the My Oracle Support Web site.

a. Log in to the My Oracle Support (https://support.oracle.com) site.

b. Click the Patches & Updates tab.

c. Enter the desired patch number in the Patch Name or Number field and then click Search.

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Patch ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>sunos-sparc</td>
<td>145091</td>
</tr>
<tr>
<td>sunos-i386</td>
<td>145092</td>
</tr>
<tr>
<td>linux-i386</td>
<td>145093</td>
</tr>
<tr>
<td>windows-i386</td>
<td>145094</td>
</tr>
<tr>
<td>mac-universal</td>
<td>145095</td>
</tr>
</tbody>
</table>

A list of patches appears at the bottom of the page.

d. Download the ZIP file for the latest version of the desired patch.

2 Copy each ZIP file that you downloaded from My Oracle Support onto a removable medium that you can physically transport to the local repository server.

Each My Oracle Support ZIP file is approximately 270 Mbytes in size.

3 Copy each My Oracle Support ZIP file from the removable medium to the local repository server machine.

The directory used for the My Oracle Support ZIP files should be different than the directory in which the Pre-Installed Toolkit Image was copied, as described in “To Install the Pre-Installed Toolkit Image Inside a Closed Network” on page 255.

4 Unzip each My Oracle Support ZIP file that you copied in the preceding step.

The My Oracle Support ZIP files are wrappers that contain a GlassFish Server repository ZIP file, a README file, and a license file. For example, the My Oracle Support ZIP file for Linux contains the following files:

- LEGAL_LICENSE.TXT
- README.145093-01
- ogs-3.0.1-repo-linux-i386.zip
In this example, the GlassFish Server repository ZIP file is named ogs-3.0.1-repo-linux-i386.zip.

a. **Unzip the My Oracle Support ZIP file.**

 For example:
   ```
   unzip 145093-01
   ```

b. **Change to the directory that was created when the My Oracle Support ZIP file was unzipped.**

 For example:
   ```
   cd 145093-01
   ```

c. **Unzip the GlassFish Server repository ZIP file.**

 For example:
   ```
   unzip ogs-3.0.1-repo-linux-i386.zip
   ```

5 **On the local repository server machine, start the repository server daemon.**

a. **Change to the Pre-Installed Toolkit Image pkg/bin directory.**

   ```
   cd toolkit-dir/pkg/bin
   ```

 toolkit-dir
 The directory that contains the unzipped Pre-Installed Toolkit Image.

b. **Start the pkg.depotd daemon.**

   ```
   ./pkg.depotd -d repository-dir -p port
   ```

 repository-dir
 The directory that contains the unzipped GlassFish Server repository.

 port
 Your choice of port number for requests to the repository server. The default is 80.

Several startup messages are displayed as the repository daemon initializes, as shown in the following example.

Example 11–1
Starting a Local Repository Daemon

This example starts the pkg.depotd daemon using the following parameters:

```
./pkg.depotd -d /opt/145093-01/linux-i386/ -p 30000
```

```
[ Jun 15 08:06:38 ] ENGINE Listening for SIGHUP.
[ Jun 15 08:06:38 ] ENGINE Listening for SIGTERM.
[ Jun 15 08:06:38 ] ENGINE Listening for SIGUSR1.
```
To Configure a GlassFish Server Installation to Use a Local Repository Server Inside a Closed Network

Each GlassFish Server installation that will be updated inside a closed network must be configured to use a local repository server instead of the default public repository servers. This procedure must be completed on each GlassFish Server installation on which updates will be performed inside the closed network.

Ensure that the following conditions are met:

- The Pre-Installed Toolkit Image is installed on each machine on which one or more GlassFish Server installations will be upgraded, as described in “To Install the Pre-Installed Toolkit Image Inside a Closed Network” on page 255.
- The local repository server is configured, as described in “To Configure a Local Repository Server Inside a Closed Network” on page 256.

1. Set the http_proxy environment variable for the local repository server, if necessary.
 This step is required if a proxy is needed to access the local repository from within the closed network.
   ```
   export http_proxy=proxy-host:port
   ``
   *proxy-host* The fully qualified URL for the proxy host.
   *port* The port on which the *proxy-host* listens.

2. Change to the GlassFish Server installation directory.
   ```
 cd as-install
 ``
 as-install The path to the directory that contains the GlassFish Server installation that is to be updated.

 Note – The remainder of this procedure must be performed from within the GlassFish Server installation directory.

3. Use the `pkg` command in the Pre-Installed Image Toolkit installation directory to tell the GlassFish Server installation to use the local repository server.
   ```
   toolkit-dir/pkg/bin/pkg -R as-install set-publisher -Pe -O http://repo-host:port publisher
   ```
toolkit-dir The directory that contains the unzipped Pre-Installed Toolkit Image.

as-install The path to the directory that contains the GlassFish Server installation that is to be updated.

repo-host The name of the server on which the pkg.depotd repository server daemon is running.

port The port used for the pkg.depotd daemon, as specified in “To Configure a Local Repository Server Inside a Closed Network” on page 256.

publisher The name of the preconfigured GlassFish Server publisher. For GlassFish Server, use release.glassfish.oracle.com as the publisher.

4 (Optional) Verify that the local GlassFish Server repository is configured correctly.

/toolkit/pkg/bin/pkg publisher

The name of the local server repository and publisher should be listed, as shown in the following example.

Example 11–2 Configuring the pkg Command to Use a Local Repository

This example configures a GlassFish Server installation to use a local repository server. The following parameters are used:

/opt/glassfish The GlassFish Server installation directory.

/opt/toolkit The Pre-Installed Toolkit Image directory.

repo-host The host name of the local repository server.

30000 The port number used by the repository server.

/output/toolkit/pkg/bin/pkg -R /opt/glassfish set-publisher -P --enable "-O http://repo-host:30000 release.glassfish.oracle.com"
/output/toolkit/pkg/bin/pkg publisher

PUBLISHER TYPE STATUS URI
release.glassfish.oracle.com (preferred) origin online http://repo-host:30000/

▼ To Install Updates From a Local Repository

After configuring a GlassFish Server installation to use a local repository server, as described in the previous procedures in this section, GlassFish Server updates inside a closed network are performed normally. The only difference is that the GlassFish Server installation being updated inside the closed network will use a local repository server instead of the public repository servers.

Perform the following procedure on each GlassFish Server installation that will be updated.
Ensure that each GlassFish Server installation that will be updated is configured to use the local repository server, as described in “To Configure a GlassFish Server Installation to Use a Local Repository Server Inside a Closed Network” on page 259.

1 Stop GlassFish Server.
 See “To Stop a Domain” on page 112.

2 Change to the GlassFish Server installation directory.
 cd $as_install

 Note – The remainder of this procedure must be performed from within the GlassFish Server installation directory.

3 Use either the graphical Update Tool or the pkg command-line utility to perform the desired updates.
 For detailed instructions on updating or installing GlassFish Server components, see “Updating Installed Components” on page 244.

4 Start GlassFish Server.
 See “To Restart a Domain” on page 112.
PART II

Resources and Services Administration
This chapter provides procedures for performing database connectivity tasks in the Oracle GlassFish Server 3.1 environment by using the asadmin command-line utility.

The following topics are addressed here:

- “About Database Connectivity” on page 265
- “Setting Up the Database” on page 266
- “Configuring Access to the Database” on page 269
- “Configuration Specifics for JDBC Drivers” on page 283

Instructions for accomplishing these tasks by using the Administration Console are contained in the Administration Console online help.

About Database Connectivity

A database management system (DBMS) provides facilities for storing, organizing, and retrieving data. The information in databases is often described as persistent data because it is saved on disk and exists after the application process ends. Most business applications store data in relational databases. Applications can access database information by using the Java Database Connectivity (JDBC) API.

The key elements of database connectivity are the following:

- **Database.** The repository where data is stored for an enterprise. Java EE applications access relational databases through the JDBC API. For administration procedures, see “Setting Up the Database” on page 266.
- **JDBC Connection Pool.** A JDBC connection pool is a group of reusable connections for a particular database. For administration procedures, see “Administering JDBC Connection Pools” on page 270.
JDBC Resource. A JDBC resource (data source) provides applications with a means of connecting to a database. To create a JDBC resource, specify the connection pool with which it is associated. Multiple JDBC resources can specify a single connection pool. A JDBC resource is identified by its Java Naming and Directory Interface (JNDI) name. For administration procedures, see “Administering JDBC Resources” on page 278.

JDBC Driver. A database driver is a software component that enables a Java application to interact with a database connectivity API. Each database requires its own driver. For administration procedures, see “Integrating the JDBC Driver” on page 282.

At runtime, the following sequence occurs when an application connects to a database:

1. The application gets the JDBC resource associated with the database by making a call through the JNDI API.
 - Using the JNDI name of the resource, the naming and directory service locates the JDBC resource. Each JDBC resource specifies a connection pool.
2. Using the JDBC resource, the application gets a database connection.
 - GlassFish Server retrieves a physical connection from the connection pool that corresponds to the database. The pool defines connection attributes such as the database name (URL), user name, and password.
3. After the database connection is established, the application can read, modify, and add data to the database.
 - The application accesses the database by making calls to the JDBC API. The JDBC driver translates the application’s JDBC calls into the protocol of the database server.
4. When the application is finished accessing the database, the application closes the connection and returns the connection to the connection pool.

Setting Up the Database

Most applications use relational databases to store, organize, and retrieve data. Applications access relational databases through the Java Database Connectivity (JDBC) API.

The following topics are addressed here:

- “To Install the Database and Database Driver” on page 267
- “To Start the Database” on page 267
- “To Stop the Database” on page 268
- “Java DB Utility Scripts” on page 268
To Install the Database and Database Driver

1. **Install a supported database product.**
 To see the current list of database products supported by GlassFish Server, refer to the Oracle GlassFish Server 3.1-3.1.1 Release Notes.

2. **Install a supported JDBC driver for the database product.**
 For a list of drivers supported by GlassFish Server, see “Configuration Specifics for JDBC Drivers” on page 283.

3. **Make the JDBC driver JAR file accessible to the domain administration server (DAS).**
 See “Integrating the JDBC Driver” on page 282.

4. **Create the database.**
 The application provider usually delivers scripts for creating and populating the database.

 Next Steps
 You are now ready to create a connection pool for the database, and a JDBC resource that points to the connection pool. See “To Create a JDBC Connection Pool” on page 270 and “To Create a JDBC Resource” on page 279. The final step is to integrate the JDBC driver into an administrative domain as described in “Integrating the JDBC Driver” on page 282.

To Start the Database

GlassFish Server includes an implementation of Java DB (formerly known as Derby), however, you can use any JDBC-compliant database. The database is not started automatically when you start GlassFish Server, so if you have applications that require a database, you need to start Java DB manually by using the local start-database subcommand.

● **Start the database by using the `start-database(1)` subcommand.**

 When the database server starts, or a client connects to it successfully, the following files are created at the location that is specified by the `-dbhome` option:
 - The `derby.log` file contains the database server process log along with its standard output and standard error information.
 - The database files contain your schema (for example, database tables).

Example 12–1 Starting a Database

This example starts Derby on the host host1 and port 5001.
Starting database in the background.
Log redirected to /opt/SUNWappserv/database/javadb.log.
Command start-database executed successfully.

You can also view the full syntax and options of the subcommand by typing asadmin help start-database at the command line.

To Stop the Database

Use the local stop-database subcommand to stop JavaDB on a specified port. A single host can have multiple database server processes running on different ports.

1. If necessary, notify users that the database is being stopped.
2. Stop the database by using the stop-database subcommand.

Example Stopping a Database

This example stops JavaDB on port 5001 of localhost.

asadmin> stop-database --dbhost=localhost --dbport=5001
connection obtained for host: localhost, port number 5001.
Apache Derby Network Server - 10.2.2.1 - (538595) shutdown
at 2008-10-17 23:34:27 7.218 GMT
Command stop-database executed successfully.

Troubleshooting

For a laptop that roams between networks, you might have trouble shutting down the database. If you start JavaDB and then change your IP address, you will not be able to stop JavaDB unless you add a specific --dbhost argument. For example, if you run asadmin start-database --dbhost = 0.0.0.0, and then disconnect Ethernet and switch to wifi, you should run a command similar to the following to stop the database:

asadmin stop-database --dbhost localhost

You can also view the full syntax and options of the subcommand by typing asadmin help stop-database at the command line.

JavaDB Utility Scripts

The JavaDB configuration that is available for use with GlassFish Server includes scripts that can help you use JavaDB. The following scripts are available in the as-install/javadb/frameworks/NetworkServer/bin directory:
To Configure Your Environment to Run Java DB Utility Scripts

1. Ensure that the JAVA_HOME environment variable specifies the directory where the JDK is installed.

2. Set the JAVADB_HOME environment variable to point to the as-install/derby directory.

See Also
For more information about these utilities, see the following documentation:
- Derby Tools and Utilities Guide (http://db.apache.org/derby/docs/10.6/tools/)
- Derby Server and Administration Guide (http://db.apache.org/derby/docs/10.6/adminguide/)

Configuring Access to the Database

After establishing the database, you are ready to set up access for GlassFish Server applications. The high-level steps include creating a JDBC connection pool, creating a JDBC resource for the connection pool, and integrating a JDBC driver into an administrative domain.

Instructions for performing these steps are contained in the following sections:
- "Administering JDBC Connection Pools" on page 270
- "Administering JDBC Resources" on page 278
- "Enabling the jdbc/__default Resource in a Clustered Environment" on page 281
- "Integrating the JDBC Driver" on page 282
Administering JDBC Connection Pools

A JDBC connection pool is a group of reusable connections for a particular database. Because creating each new physical connection is time consuming, GlassFish Server maintains a pool of available connections. When an application requests a connection, it obtains one from the pool. When an application closes a connection, the connection is returned to the pool. JDBC connection pools can be globally accessible or be scoped to an enterprise application, web module, EJB module, connector module or application client module, as described in “Application-Scoped Resources” in Oracle GlassFish Server 3.1 Application Deployment Guide.

A JDBC resource is created by specifying the connection pool with which the resource is associated. Multiple JDBC resources can specify a single connection pool. The properties of connection pools can vary with different database vendors. Some common properties are the database name (URL), the user name, and the password.

The following tasks and information are used to administer JDBC connection pools:

- “To Create a JDBC Connection Pool” on page 270
- “To List JDBC Connection Pools” on page 271
- “To Contact (Ping) a Connection Pool” on page 272
- “To Reset (Flush) a Connection Pool” on page 272
- “To Update a JDBC Connection Pool” on page 273
- “To Delete a JDBC Connection Pool” on page 274
- “Configuring Specific JDBC Connection Pool Features” on page 274

▼ To Create a JDBC Connection Pool

Use the create-jdbc-connection-pool subcommand in remote mode to register a new JDBC connection pool with the specified JDBC connection pool name. A JDBC connection pool or a connector connection pool can be created with authentication. You can either use a subcommand option to specify user, password, or other connection information using the asadmin utility, or specify the connection information in the XML descriptor file.

One connection pool is needed for each database, possibly more depending on the application. When you are building the connection pool, certain data specific to the JDBC driver and the database vendor is required. You can find some of the following specifics in “Configuration Specifics for JDBC Drivers” on page 283:

- Database vendor name
- Resource type, such as javax.sql.DataSource (local transactions only) javax.sql.XADataSource (global transactions)
- Data source class name
- Required properties, such as the database name (URL), user name, and password
Creating a JDBC connection pool is a dynamic event and does not require server restart. However, there are some parameters that do require server restart. See “Configuration Changes That Require Restart” on page 40.

Before You Begin
Before creating the connection pool, you must first install and integrate the database and its associated JDBC driver. For instructions, see “Setting Up the Database” on page 266.

1 **Ensure that the server is running.**
Remote subcommands require a running server.

2 **Create the JDBC connection pool by using the `create-jdbc-connection-pool(1)` subcommand.**

3 **(Optional) If needed, restart the server.**
Some parameters require server restart. See “Configuration Changes That Require Restart” on page 40.

Example 12–3 Creating a JDBC Connection Pool

This example creates a JDBC connection pool named `sample_derby_pool` on `localhost`.

```
asadmin> create-jdbc-connection-pool
                --datasourceclassname org.apache.derby.jdbc.ClientDataSource
                --restype javax.sql.XADataSource
                --property portNumber=1527;password=APP:user=APP:serverName=
localhost:databaseName=sun-appserv-samples:connectionAttributes=
;create=true sample_derby_pool
Command create-jdbc-connection-pool executed successfully.
```

See Also
You can also view the full syntax and options of the subcommand by typing `asadmin help create-jdbc-connection-pool` at the command line.

To List JDBC Connection Pools

Use the `list-jdbc-connection-pools` subcommand in remote mode to list all existing JDBC connection pools.

1 **Ensure that the server is running.**
Remote subcommands require a running server.

2 **List the JDBC connection pools by using the `list-jdbc-connection-pools(1)` subcommand.**

Example 12–4 Listing JDBC Connection Pools

This example lists the JDBC connection pools that are on `localhost`.
To Contact (Ping) a Connection Pool

Use the `ping-connection-pool` subcommand in remote mode to test if a connection pool is usable. For example, if you create a new JDBC connection pool for an application that is expected to be deployed later, you can test the JDBC pool with this subcommand before the application is deployed. Running a ping will force the creation of the pool if it hasn’t already been created.

Before You Begin

Before you can contact a connection pool, the connection pool must be created with authentication, and the server or database must be running.

1. **Ensure that the server is running.**
 Remote subcommands require a running server.

2. **Ping a connection pool by using the `ping-connection-pool(1)` subcommand.**

Example 12–5 Contacting a Connection Pool

This example tests to see if the DerbyPool connection pool is usable.

```
asadmin> ping-connection-pool DerbyPool
Command ping-connection-pool executed successfully
```

To Reset (Flush) a Connection Pool

Use the `flush-connection-pool` in remote mode to reinitialize all connections established in the specified connection pool without the need for reconfiguring the pool. Connection pool reconfiguration can result in application redeployment, which is a time-consuming operation.
The JDBC connection pool or connector connection pool is reset to its initial state. Any existing live connections are destroyed, which means that the transactions associated with these connections are lost and must be retried. The subcommand then recreates the initial connections for the pool, and restores the pool to its steady pool size.

1 Ensure that the server is running.
 Remote subcommands require a running server.

2 Reset a connection pool by using the `flush-connection-pool(1)` subcommand.

Example 12–6 Resetting (Flushing) a Connection Pool

This example resets the JDBC connection pool named __TimerPool to its steady pool size.

```
asadmin> flush-connection-pool __TimerPool
Command flush-connection-pool executed successfully.
```

See Also You can also view the full syntax and options of the subcommand by typing `asadmin help flush-connection-pool` at the command line.

To Update a JDBC Connection Pool

You can change all of the settings for an existing pool except its name. Use the get and set subcommands to view and change the values of the JDBC connection pool properties.

1 List the JDBC connection pools by using the `list-jdbc-connection-pools(1)` subcommand.

2 View the attributes of the JDBC connection pool by using the get subcommand.
 For example:
```
asadmin> get resources.jdbc-connection-pool.DerbyPool.property
```

3 Set the attribute of the JDBC connection pool by using the set subcommand.
 For example:
```
asadmin> set resources.jdbc-connection-pool.DerbyPool.steady-pool-size=9
```

4 (Optional) If needed, restart the server.
 Some parameters require server restart. See “Configuration Changes That Require Restart” on page 40.

See Also For information about how to tune a connection pool, see the Oracle GlassFish Server 3.1 Performance Tuning Guide.
To Delete a JDBC Connection Pool

Use the `delete-jdbc-connection-pool` subcommand in remote mode to delete an existing JDBC connection pool. Deleting a JDBC connection pool is a dynamic event and does not require server restart.

Before You Begin

Before deleting a JDBC connection pool, all associations to the resource must be removed.

1. **Ensure that the server is running.**
 Remote subcommands require a running server.

2. **List the JDBC connection pools by using the `list-jdbc-connection-pools(1)` subcommand.**

3. **If necessary, notify users that the JDBC connection pool is being deleted.**

4. **Delete the connection pool by using the `delete-jdbc-connection-pool(1)` subcommand.**

Example 12–7

Deleting a JDBC Connection Pool

This example deletes the JDBC connection pool named DerbyPool.

```
asadmin> delete-jdbc-connection-pool jdbc/DerbyPool
Command delete-jdbc-connection-pool executed successfully.
```

See Also

You can also view the full syntax and options of the subcommand by typing `asadmin help delete-jdbc-connection-pool` at the command line.

Configuring Specific JDBC Connection Pool Features

In GlassFish Server, JDBC Connection Pools support a variety of features to simplify administration, monitoring and performance tuning. The following topics address several of these features:

- “Transparent Pool Reconfiguration” on page 274
- “Using an Initialization Statement” on page 275
- “Setting a Statement Timeout” on page 275
- “Statement Leak Detection and Leaked Statement Reclamation” on page 276
- “Statement Caching” on page 277
- “Statement Tracing” on page 277

Transparent Pool Reconfiguration

When the properties or attributes of a JDBC connection pool are changed, the connection pool is destroyed and re-created. Normally, applications using the connection pool must be redeployed as a consequence. This restriction can be avoided by enabling transparent JDBC...
connection pool reconfiguration. When this feature is enabled, applications do not need to be redeployed. Instead, requests for new connections are blocked until the reconfiguration operation completes. Connection requests from any in-flight transactions are served using the old pool configuration so as to complete the transaction. Then, connections are created using the pool’s new configuration, and any blocked connection requests are served with connections from the re-created pool.

To enable transparent JDBC connection pool reconfiguration, set the dynamic-reconfiguration-wait-timeout-in-seconds property of the JDBC connection pool to a positive, nonzero value in one of the following ways:

- Add it as a property in the Edit JDBC Connection Pool Properties page in the Administration Console. For more information, click the Help button in the Administration Console.
- Specify it using the --property option in the create-jdbc-connection-pool subcommand. For more information, see create-jdbc-connection-pool(1).
- Set it using the set subcommand. For example:

 asadmin set resources.jdbc-connection-pool.pool-name.property.dynamic-reconfiguration-wait-timeout-in-seconds=15

This property specifies the time in seconds to wait for in-use connections to close and in-flight transactions to complete. Any connections in use or transaction in flight past this time must be retried.

Using an Initialization Statement

You can specify a statement that executes each time a physical connection to the database is created (not reused) from a JDBC connection pool. This is useful for setting request or session specific properties and is suited for homogeneous requests in a single application. Set the Init SQL attribute of the JDBC connection pool to the SQL string to be executed in one of the following ways:

- Enter an Init SQL value in the Edit Connection Pool Advanced Attributes page in the Administration Console. For more information, click the Help button in the Administration Console.
- Specify the --initsql option in the asadmin create-jdbc-connection-pool command. For more information, see create-jdbc-connection-pool(1).
- Specify the init-sql option in the asadmin set command. For example:

 asadmin set domain1.resources.jdbc-connection-pool.DerbyPool.init-sql="sql-string"

Setting a Statement Timeout

An abnormally long running JDBC query executed by an application may leave it in a hanging state unless a timeout is explicitly set on the statement. Setting a statement timeout guarantees that all queries automatically time out if not completed within the specified period. When
statements are created, the queryTimeout is set according to the statement timeout setting. This works only when the underlying JDBC driver supports queryTimeout for Statement, PreparedStatement, CallableStatement, and ResultSet.

You can specify a statement timeout in the following ways:

- Enter a Statement Timeout value in the Edit Connection Pool Advanced Attributes page in the Administration Console. For more information, click the Help button in the Administration Console.
- Specify the --statementtimeout option in the asadmin create-jdbc-connection-pool command. For more information, see create-jdbc-connection-pool(1).

Statement Leak Detection and Leaked Statement Reclamation

If statements are not closed by an application after use, it is possible for the application to run out of cursors. Enabling statement leak detection causes statements to be considered as leaked if they are not closed within a specified period. Additionally, leaked statements can be reclaimed automatically.

To enable statement leak detection, set Statement Leak Timeout In Seconds for the JDBC connection pool to a positive, nonzero value in one of the following ways:

- Specify the --statementleaktimeout option in the create-jdbc-connection-pool subcommand. For more information, see create-jdbc-connection-pool(1).
- Specify the statement-leak-timeout-in-seconds option in the set subcommand. For example:

```
asadmin set resources.jdbc-connection-pool.pool-name.statement-leak-timeout-in-seconds=300
```

When selecting a value for Statement Leak Timeout In Seconds, make sure that:

- It is less than the Connection Leak Timeout; otherwise, the connection could be closed before the statement leak is recognized.
- It is greater than the Statement Timeout; otherwise, a long running query could be mistaken as a statement leak.

After enabling statement leak detection, enable leaked statement reclamation by setting Reclaim Leaked Statements for the JDBC connection pool to a true value in one of the following ways:

- Specify the --statementleakreclaim=true option in the create-jdbc-connection-pool subcommand. For more information, see create-jdbc-connection-pool(1).
- Specify the statement-leak-reclaim option in the set subcommand. For example:

```
asadmin set resources.jdbc-connection-pool.pool-name.statement-leak-reclaim=true
```
Statement Caching

Statement caching stores statements, prepared statements, and callable statements that are executed repeatedly by applications in a cache, thereby improving performance. Instead of the statement being prepared each time, the cache is searched for a match. The overhead of parsing and creating new statements each time is eliminated.

Statement caching is usually a feature of the JDBC driver. The GlassFish Server provides caching for drivers that do not support caching. To enable this feature, set the Statement Cache Size for the JDBC connection pool in one of the following ways:

- Enter a Statement Cache Size value in the Edit Connection Pool Advanced Attributes page in the Administration Console. For more information, click the Help button in the Administration Console.
- Specify the --statementcachesize option in the asadmin create-jdbc-connection-pool command. For more information, see create-jdbc-connection-pool(1).
- Specify the statement-cache-size option in the asadmin set command. For example:

 asadmin set domain1.resources.jdbc-connection-pool.DerbyPool.statement-cache-size=10

By default, this attribute is set to zero and the statement caching is turned off. To enable statement caching, you can set any positive nonzero value. The built-in cache eviction strategy is LRU-based (Least Recently Used). When a connection pool is flushed, the connections in the statement cache are recreated.

Statement Tracing

You can trace the SQL statements executed by applications that use a JDBC connection pool. Set the SQL Trace Listeners attribute to a comma-separated list of trace listener implementation classes in one of the following ways:

- Enter an SQL Trace Listeners value in the Edit Connection Pool Advanced Attributes page in the Administration Console. For more information, click the Help button in the Administration Console.
- Specify the --sqltracelisteners option in the asadmin create-jdbc-connection-pool command. For more information, see create-jdbc-connection-pool(1).
- Specify the sql-trace-listeners option in the asadmin set command. For example:

 asadmin set domain1.resources.jdbc-connection-pool.DerbyPool.sql-trace-listeners=listeners

The GlassFish Server provides a public interface, org.glassfish.api.jdbc.SQLTraceListener, that implements a means of recording SQLTraceRecord objects. To make custom implementations of this interface available to the GlassFish Server, place the implementation classes in as-install/lib.

The GlassFish Server provides an SQL tracing logger to log the SQL operations in the form of SQLTraceRecord objects in the server.log file. The module name under which the SQL
operation is logged is javax.enterprise.resource.sqltrace. SQL traces are logged as FINE messages along with the module name to enable easy filtering of the SQL logs. A sample SQL trace record looks like this:

```
| ThreadID=29 | ThreadName=Thread-1;ClassName=com.sun.gjc.util.SQLTraceLogger;MethodName=sqlTrace;
|ThreadID=77 |ThreadName=p: thread-pool-1; w: 6 |TimeStamp=1259317012202
| ClassName=com.sun.gjc.spi.jdbc40.PreparedStatementWrapper40 | MethodName=executeUpdate
| arg[0]=insert into table1(colName) values(100) | arg[1]=columnNames | #]
```

This trace shows that an `executeUpdate(String sql, String columnNames)` operation is being done.

When SQL statement tracing is enabled and JDBC connection pool monitoring is enabled, GlassFish Server maintains a tracing cache of recent queries and their frequency of use. The following JDBC connection pool properties can be configured to control this cache and the monitoring statistics available from it:

- **time-to-keep-queries-in-minutes**
 Specifies how long in minutes to keep a query in the tracing cache, tracking its frequency of use. The default value is 5 minutes.

- **number-of-top-queries-to-report**
 Specifies how many of the most used queries, in frequency order, are listed in the monitoring report. The default value is 10 queries.

Set these parameters in one of the following ways:

- Add them as properties in the Edit JDBC Connection Pool Properties page in the Administration Console. For more information, click the Help button in the Administration Console.

- Specify them using the `-property` option in the `create-jdbc-connection-pool` subcommand. For more information, see `create-jdbc-connection-pool(1)`.

- Set them using the `set` subcommand. For example:

```
asadmin set resources.jdbc-connection-pool.pool-name.property.time-to-keep-queries-in-minutes=10
```

Administering JDBC Resources

A **JDBC resource**, also known as a data source, provides an application with a means of connecting to a database. Typically, you create a JDBC resource for each database that is accessed by the applications deployed in a domain. Multiple JDBC resources can be specified for a database. JDBC resources can be globally accessible or be scoped to an enterprise application, web module, EJB module, connector module or application client module, as described in “Application Scoped Resources” in Oracle GlassFish Server 3.1 Application Deployment Guide.
A JDBC resource is created by specifying the connection pool with which the resource will be associated. Use a unique Java Naming and Directory Interface (JNDI) name to identify the resource. For example, the JNDI name for the resource of a payroll database might be java:comp/env/jdbc/payrolldb.

The following tasks and information are used to administer JDBC resources:

- “To Create a JDBC Resource” on page 279
- “To List JDBC Resources” on page 280
- “To Update a JDBC Resource” on page 280
- “To Delete a JDBC Resource” on page 280

▼ To Create a JDBC Resource

Use the create-jdbc-resource subcommand in remote mode to create a JDBC resource. Creating a JDBC resource is a dynamic event and does not require server restart.

Because all JNDI names are in the java:comp/env subcontext, when specifying the JNDI name of a JDBC resource in the Administration Console, use only the jdbc/name format. For example, a payroll database might be specified as jdbc/payrolldb.

Before You Begin

Before creating a JDBC resource, you must first create a JDBC connection pool. For instructions, see “To Create a JDBC Connection Pool” on page 270.

1 Ensure that the server is running.

Remote subcommands require a running server.

2 Create a JDBC resource by using the create-jdbc-resource(1) subcommand.

Information about properties for the subcommand is included in this help page.

3 If necessary, notify users that the new resource has been created.

Example 12–8 Creating a JDBC Resource

This example creates a JDBC resource named DerbyPool.

asadmin> create-jdbc-resource --connectionpoolid DerbyPool jdbc/DerbyPool
Command create-jdbc-resource executed successfully.

See Also

You can also view the full syntax and options of the subcommand by typing asadmin help create-jdbc-resource at the command line.
To List JDBC Resources

Use the `list-jdbc-resources` subcommand in remote mode to list the existing JDBC resources.

1 Ensure that the server is running.

Remote subcommands require a running server.

2 List JDBC resources by using the `list-jdbc-resources` subcommand.

Example 12–9 Listing JDBC Resources

This example lists JDBC resources for localhost.

```
asadmin> list-jdbc-resources
jdbc/_TimerPool
jdbc/DerbyPool
jdbc/_default
jdbc1
Command list-jdbc-resources executed successfully.
```

See Also You can also view the full syntax and options of the subcommand by typing `asadmin help list-jdbc-resources` at the command line.

To Update a JDBC Resource

You can enable or disable a JDBC resource by using the `set` subcommand. The JDBC resource is identified by its dotted name.

1 List JDBC resources by using the `list-jdbc-resources` subcommand.

2 Modify the values for the specified JDBC resource by using the `set` subcommand.

Example 12–10 Updating a JDBC Resource

This example changes the `res1` enabled setting to false.

```
asadmin> set resources.jdbc-resource.res1.enabled=false
```

To Delete a JDBC Resource

Use the `delete-jdbc-resource` subcommand in remote mode to delete an existing JDBC resource. Deleting a JDBC resource is a dynamic event and does not require server restart.

Before You Begin Before deleting a JDBC resource, all associations with this resource must be removed.
1 Ensure that the server is running.
 Remote subcommands require a running server.

2 List JDBC resources by using the `list-jdbc-resources(1)` subcommand.

3 If necessary, notify users that the JDBC resource is being deleted.

4 Delete a JDBC resource by using the `delete-jdbc-resource(1)` subcommand.

Example 12–11 Deleting a JDBC Resource
 This example deletes a JDBC resource named DerbyPool.

```
   asadmin delete-jdbc-resource jdbc/DerbyPool
   Command delete-jdbc-resource executed successfully.
```

See Also You can also view the full syntax and options of the subcommand by typing `asadmin help delete-jdbc-resource` at the command line.

Enabling the `jdbc/__default` Resource in a Clustered Environment
 GlassFish Server 3.1 includes a preconfigured JDBC resource with the JNDI name `jdbc/__default`. This `jdbc/__default` resource is not enabled by default, so you need to explicitly enable it if you want to use it in a cluster.

▼ To Enable the `jdbc/__default` Resource for a Clustered Environment
 Instructions for creating JDBC resources in general are provided in “To Create a JDBC Resource” on page 279. Use the following procedure to enable the preconfigured `jdbc/__default` resource for a clustered GlassFish Server environment.

1 Create the `jdbc/__default` resource reference for the cluster.
 `asadmin create-resource-ref --target cluster-name jdbc/__default`

2 (Optional) Enable the resource on the DAS that manages the cluster.
 `asadmin set resources.jdbc-connection-pool.DerbyPool.property.serverName=DAS-machine-name`
 This step is only required if the cluster includes remote instances.

3 Restart the DAS and the target cluster(s).
 `asadmin stop-cluster cluster-name`
 `asadmin stop-domain domain-name`
 `asadmin start-domain domain-name`
 `asadmin start-cluster cluster-name`
Integrating the JDBC Driver

To use JDBC features, you must choose a JDBC driver to work with the GlassFish Server, then you must set up the driver. This section covers these topics:

- “Supported Database Drivers” on page 282
- “Making the JDBC Driver JAR Files Accessible” on page 282
- “Automatic Detection of Installed Drivers” on page 282

Supported Database Drivers

Supported JDBC drivers are those that have been fully tested by Oracle. For a list of the JDBC drivers currently supported by the GlassFish Server, see the Oracle GlassFish Server 3.1-3.1.1 Release Notes. For configurations of supported and other drivers, see "Configuration Specifics for JDBC Drivers” on page 283.

Note – Because the drivers and databases supported by the GlassFish Server are constantly being updated, and because database vendors continue to upgrade their products, always check with Oracle technical support for the latest database support information.

Making the JDBC Driver JAR Files Accessible

To integrate the JDBC driver into a GlassFish Server domain, copy the JAR files into the domain-dir/lib directory, then restart the server. This makes classes accessible to all applications or modules deployed on servers that share the same configuration. For more information about GlassFish Server class loaders, see Chapter 2, “Class Loaders,” in Oracle GlassFish Server 3.1 Application Development Guide.

If you are using an Oracle database with EclipseLink extensions, copy the JAR files into the domain-dir/lib/ext directory, then restart the server. For details, see “Oracle Database Enhancements” in Oracle GlassFish Server 3.1 Application Development Guide.

Automatic Detection of Installed Drivers

The Administration Console detects installed JDBC Drivers automatically when you create a JDBC connection pool. To create a JDBC connection pool using the Administration Console, open the Resources component, open the JDBC component, select Connection Pools, and click on the New button. This displays the New JDBC Connection Pool page.

Based on the Resource Type and Database Vendor you select on the New JDBC Connection Pool page, data source or driver implementation class names are listed in the Datasource Classname or Driver Classname field when you click on the Next button. When you choose a specific implementation class name on the next page, additional properties relevant to the installed JDBC driver are displayed in the Additional Properties section.
Configuration Specifics for JDBC Drivers

GlassFish Server is designed to support connectivity to any database management system by using a corresponding JDBC driver. Configuration information is provided for these JDBC drivers:

- “IBM DB2 Database Type 2 Driver” on page 283
- “IBM DB2 Database Type 4 Driver” on page 284
- “Java DB/Derby Type 4 Driver” on page 284
- “MySQL Server Database Type 4 Driver” on page 285
- “Oracle 10 Database Driver” on page 285
- “Oracle 11 Database Driver” on page 286
- “PostgreSQL Type 4 Driver” on page 287
- “DataDirect Type 4 Driver for IBM DB2 Database” on page 287
- “DataDirect Type 4 Driver for IBM Informix” on page 288
- “DataDirect Type 4 Driver for Microsoft SQL Server Database” on page 288
- “DataDirect Type 4 Driver for MySQL Server Database” on page 289
- “DataDirect Type 4 Driver for Oracle 11 Database” on page 289
- “DataDirect Type 4 Driver for Sybase Database” on page 290
- “Inet Oraxo Driver for Oracle Database” on page 290
- “Inet Merlia Driver for Microsoft SQL Server Database” on page 291
- “Inet Sybelux Driver for Sybase Database” on page 291
- “JConnect Type 4 Driver for Sybase ASE 12.5 Database” on page 292

IBM DB2 Database Type 2 Driver

The JAR files for the DB2 driver are db2jcc.jar, db2jcc_license_cu.jar, and db2java.zip.

Set your environment variables. For example:

LD_LIBRARY_PATH=/usr/db2user/sqllib/lib:${Java EE.home}/lib
DB2OIR=/opt/IBM/db2/V8.2
DB2INSTANCE=db2user
INSTHOME=/usr/db2user
WSPATH=/usr/db2user/sqllib
THREADS_FLAG=native

Configure the connection pool using the following settings:

- **Name**: Use this name when you configure the JDBC resource later.
- **Resource Type**: Specify the appropriate value.
- **Database Vendor**: DB2
- **DataSource Classname**: com.ibm.db2.jcc.DB2SimpleDataSource
- **Properties**:
 - **databaseName** - Set as appropriate.
Configuration Specifics for JDBC Drivers

- **user** – Set as appropriate.
- **password** – Set as appropriate.
- **driverType** – Set to 2.
- **deferPrepares** – Set to false.

IBM DB2 Database Type 4 Driver

The JAR file for the DB2 driver is `db2jcc.jar`. Configure the connection pool using the following settings:

- **Name:** Use this name when you configure the JDBC resource later.
- **Resource Type:** Specify the appropriate value.
- **Database Vendor:** DB2
- **DataSource Classname:** `com.ibm.db2.jcc.DB2SimpleDataSource`
- **Properties:**
 - **databaseName** – Set as appropriate.
 - **user** – Set as appropriate.
 - **password** – Set as appropriate.
 - **driverType** – Set to 4.

Java DB/Derby Type 4 Driver

The Java DB/Derby JDBC driver is included with GlassFish Server by default, so you do not need to integrate this JDBC driver with GlassFish Server.

The JAR file for the Java DB driver is `derbyclient.jar`. (Java DB is based upon Apache Derby.) Configure the connection pool using the following settings:

- **Name:** Use this name when you configure the JDBC resource later.
- **Resource Type:** Specify the appropriate value.
- **Database Vendor:** JavaDB
- **DataSource Classname:** Specify one of the following:
 - `org.apache.derby.jdbc.ClientDataSource`
 - `org.apache.derby.jdbc.ClientXADataSource`
- **Properties:**
 - **servername** – Specify the host name or IP address of the database server.
 - **portNumber** – Specify the port number of the database server if it is different from the default.
 - **databaseName** – Specify the name of the database.
 - **user** – Specify the database user.
This is only necessary if Java DB is configured to use authentication. Java DB does not use authentication by default. When the user is provided, it is the name of the schema where the tables reside.

- **password** – Specify the database password.

 This is only necessary if Java DB is configured to use authentication.

MySQL Server Database Type 4 Driver

The JAR file for the MySQL driver is `mysql-connector-java-5.1.14-bin.jar`. Configure the connection pool using the following settings:

- **Name**: Use this name when you configure the JDBC resource later.
- **Resource Type**: Specify the appropriate value.
- **Database Vendor**: MySql
- **DataSource Classname**:

 - `com.mysql.jdbc.jdbc2.optional.MysqlDataSource`
 - `com.mysql.jdbc.jdbc2.optional.MysqlXADataSource`
- **Properties**:

 - **serverName** – Specify the host name or IP address of the database server.
 - **portNumber** – Specify the port number of the database server.
 - **databaseName** – Set as appropriate.
 - **user** – Set as appropriate.
 - **password** – Set as appropriate.

Oracle 10 Database Driver

The JAR file for the Oracle 10 database driver is `ojdbc14.jar`. Make sure that the shared library is available through `LD_LIBRARY_PATH` and that the `ORACLE_HOME` property is set.

To make the Oracle driver behave in a Java EE-compliant manner, you must define the following JVM property:

```
-Doracle.jdbc.J2EE13Compliant=true
```

Configure the connection pool using the following settings:

- **Name**: Use this name when you configure the JDBC resource later.
- **Resource Type**: Specify the appropriate value.
- **Database Vendor**: Oracle
- **DataSource Classname**: Specify one of the following:
The JAR file for the Oracle 11 database driver is ojdbc6.jar.

To make the Oracle driver behave in a Java EE-compliant manner, you must define the following JVM property:

-Doracle.jdbc.J2EE13Compliant=true

Configure the connection pool using the following settings:

- **Name**: Use this name when you configure the JDBC resource later.
- **Resource Type**: Specify the appropriate value.
- **Database Vendor**: Oracle
- **DataSource Classname**: Specify one of the following:

 - oracle.jdbc.pool.OracleDataSource
 - oracle.jdbc.xa.client.OracleXADataSource

 - **Properties**:
 - **user** – Set as appropriate.
 - **password** – Set as appropriate.
Note – For this driver, the XAResource.recover method repeatedly returns the same set of in-doubt Xids regardless of the input flag. According to the XA specifications, the Transaction Manager initially calls this method with TMSTARTSCANS and then with TMNOFLAGS repeatedly until no Xids are returned. The XAResource.commit method also has some issues.

To disable this GlassFish Server workaround, the oracle-xa-recovery-workaround property value must be set to false.

Additionally, in order for the transaction manager to recover transactions, the JDBC connection pool’s database user must be given certain Oracle permissions:

- SELECT permission on DBA_PENDING_TRANSACTIONS, PENDING_TRANSS$,
 DBA_2PC_PENDING and DBA_2PC_NEIGHBORS.
- EXECUTE permissions on DBMS_XA and DBMS_SYSTEM.

PostgreSQL Type 4 Driver

The JAR file for the PostgreSQL driver is postgresql-9.0-801.jdbc4.jar. Configure the connection pool using the following settings:

- **Name:** Use this name when you configure the JDBC resource later.
- **Resource Type:** Specify the appropriate value.
- **Database Vendor:** Postgresql
- **DataSource Classname:** org.postgresql.ds.PGSimpleDataSource
- **Properties:**
 - `serverName` – Specify the host name or IP address of the database server.
 - `portNumber` – Specify the port number of the database server.
 - `databaseName` – Set as appropriate.
 - `user` – Set as appropriate.
 - `password` – Set as appropriate.

DataDirect Type 4 Driver for IBM DB2 Database

The JAR file for DataDirect driver is db2.jar. Configure the connection pool using the following settings:

- **Name:** Use this name when you configure the JDBC resource later.
- **Resource Type:** Specify the appropriate value.
- **Database Vendor:** DataDirect-DB2
DataSource Classname: com.ddtek.jdbcx.db2.DB2DataSource

Properties:
- `serverName` – Specify the host name or IP address of the database server.
- `portNumber` – Specify the port number of the database server.
- `databaseName` – Set as appropriate.
- `user` – Set as appropriate.
- `password` – Set as appropriate.

DataDirect Type 4 Driver for IBM Informix

Configure the connection pool using the following settings:

- **Name:** Use this name when you configure the JDBC resource later.
- **Resource Type:** Specify the appropriate value.
- **Database Vendor:** DataDirect-Informix

DataSource Classname: Specify one of the following:

```
com.informix.jdbcx.IfxDataSource
com.informix.jdbcx.IfxXADataSource
```

DataDirect DataSource Classname: com.ddtek.jdbcx.informix.InformixDataSource

Properties:
- `serverName` – Specify the Informix database server name.
- `portNumber` – Specify the port number of the database server.
- `databaseName` – Set as appropriate. This is optional.
- `user` – Set as appropriate.
- `password` – Set as appropriate.
- `IfxIFXHost` – Specify the host name or IP address of the database server.

DataDirect Type 4 Driver for Microsoft SQL Server Database

The JAR file for the DataDirect driver is sqlserver.jar. Configure the connection pool using the following settings:

- **Name:** Use this name when you configure the JDBC resource later.
- **Resource Type:** Specify the appropriate value.
- **Database Vendor:** DataDirect-Microsoft SQL Server

DataSource Classname: com.ddtek.jdbcx.sqlserver.SQLServerDataSource

Properties:
serverName – Specify the host name or IP address and the port of the database server.
portNumber – Specify the port number of the database server.
user – Set as appropriate.
password – Set as appropriate.
selectMethod – Set to cursor.

DataDirect Type 4 Driver for MySQL Server Database

The JAR file for the DataDirect driver is mysql.jar. Configure the connection pool using the following settings:

- **Name**: Use this name when you configure the JDBC resource later.
- **Resource Type**: Specify the appropriate value.
- **Database Vendor**: DataDirect-MySQL
- **DataSource**: com.ddtek.jdbcx.mysql.MySQLDataSource
- **Properties**:
 - serverName – Specify the host name or IP address and the port of the database server.
 - portNumber – Specify the port number of the database server.
 - user – Set as appropriate.
 - password – Set as appropriate.
 - selectMethod – Set to cursor.

DataDirect Type 4 Driver for Oracle 11 Database

The JAR file for the DataDirect driver is oracle.jar. To make the Oracle driver behave in a Java EE-compliant manner, you must define the following JVM property:

- Doracle.jdbc.J2EE13Compliant=true

Configure the connection pool using the following settings:

- **Name**: Use this name when you configure the JDBC resource later.
- **Resource Type**: Specify the appropriate value.
- **Database Vendor**: DataDirect-Oracle
- **DataSource Classname**: com.ddtek.jdbcx.oracle.OracleDataSource
- **Properties**:
serverName – Specify the host name or IP address of the database server.
portNumber – Specify the port number of the database server.
user – Set as appropriate.
password – Set as appropriate.

DataDirect Type 4 Driver for Sybase Database

The JAR file for the DataDirect driver is sybase.jar. Configure the connection pool using the following settings:

- **Name**: Use this name when you configure the JDBC resource later.
- **Resource Type**: Specify the appropriate value.
- **Database Vendor**: DataDirect-Sybase
- **DataSource Classname**: com.ddtek.jdbcx.sybase.SybaseDataSource
- **Properties**:
 - **serverName**: Specify the host name or IP address of the database server.
 - **portNumber**: Specify the port number of the database server.
 - **databaseName**: Set as appropriate. This is optional.
 - **user**: Set as appropriate.
 - **password**: Set as appropriate.

Note – In some situations, using this driver can cause exceptions to be thrown because the driver creates a stored procedure for every parameterized PreparedStatement by default. If this situation arises, add the property **PrepareMethod**, setting its value to **direct**.

Inet Oraxo Driver for Oracle Database

The JAR file for the Inet Oracle driver is oranxo.jar. Configure the connection pool using the following settings:

- **Name**: Use this name when you configure the JDBC resource later.
- **Resource Type**: Specify the appropriate value.
- **Database Vendor**: Oracle
- **DataSource Classname**: com.inet.ora.OraDataSource
- **Properties**:
 - **serverName**: Specify the host name or IP address of the database server.
 - **portNumber**: Specify the port number of the database server.
 - **user**: Specify the database user.
password – Specify the database password.

serviceName – Specify the URL of the database. The syntax is as follows:

```
jdbc:inetora:server:port:dbname
```

For example:

```
jdbc:inetora:localhost:1521:payrolldb
```

In this example, `localhost` is the name of the host running the Oracle server, 1521 is the Oracle server's port number, and `payrolldb` is the SID of the database. For more information about the syntax of the database URL, see the Oracle documentation.

streamstolob - If the size of BLOB or CLOB data types exceeds 4 KB and this driver is used for CMP, this property must be set to `true`.

Inet Merlia Driver for Microsoft SQL Server Database

The JAR file for the Inet Microsoft SQL Server driver is `Merlia.jar`. Configure the connection pool using the following settings:

- **Name**: Use this name when you configure the JDBC resource later.
- **Resource Type**: Specify the appropriate value.
- **Database Vendor**: MicrosoftSqlServer
- **DataSource Classname**: `com.inet.tds.TdsDataSource`
- **Properties**:
 - **serviceName** – Specify the host name or IP address and the port of the database server.
 - **portNumber** – Specify the port number of the database server.
 - **user** – Set as appropriate.
 - **password** – Set as appropriate.

Inet Sybelux Driver for Sybase Database

The JAR file for the Inet Sybase driver is `Sybelux.jar`. Configure the connection pool using the following settings:

- **Name**: Use this name when you configure the JDBC resource later.
- **Resource Type**: Specify the appropriate value.
- **Database Vendor**: Sybase
- **DataSource Classname**: `com.inet.syb.SybDataSource`
- **Properties**:
 - **serviceName** – Specify the host name or IP address of the database server.
portNumber – Specify the port number of the database server.

databaseName – Set as appropriate. Do not specify the complete URL, only the database name.

user – Set as appropriate.

password – Set as appropriate.

JConnect Type 4 Driver for Sybase ASE 12.5 Database

The JAR file for the Sybase driver is jconn4.jar. Configure the connection pool using the following settings:

- **Name**: Use this name when you configure the JDBC resource later.
- **Resource Type**: Specify the appropriate value.
- **Database Vendor**: Sybase
- **DataSource Classname**: Specify one of the following:
 - `com.sybase.jdbc4.jdbc.SybDataSource`
 - `com.sybase.jdbc4.jdbc.SybXADataSource`
- **Properties**:
 - **serverName** – Specify the host name or IP address of the database server.
 - **portNumber** – Specify the port number of the database server.
 - **databaseName** – Set as appropriate. Do not specify the complete URL, only the database name.
 - **user** – Set as appropriate.
 - **password** – Set as appropriate.
 - **BE_AS_JDBC_COMPLIANT_AS_POSSIBLE** – Set to true.
 - **FAKE_METADATA** – Set to true.
Administering EIS Connectivity

This chapter provides information and procedures for administering connections to enterprise information system (EconIS) data in the Oracle GlassFish Server 3.1 environment by using the asadmin command-line utility.

Note - If you installed the Web Profile, connector modules that use only outbound communication features and work-management that does not involve inbound communication features are supported. Other connector features are supported only in the Full Platform Profile.

The following topics are addressed here:

- “About EIS Connectivity” on page 294
- “Administering Connector Connection Pools” on page 295
- “Administering Connector Resources” on page 298
- “Administering the Resource Adapter Configuration” on page 301
- “Administering Connector Security Maps” on page 303
- “Administering Connector Work Security Maps” on page 306
- “Administering Administered Objects” on page 309

Instructions for accomplishing the tasks in this chapter by using the Administration Console are contained in the Administration Console online help.

For information about database connectivity, see Chapter 12, “Administering Database Connectivity.”
About EIS Connectivity

Enterprise information system (EIS) refers to any system that holds the data of an organization. It can be a mainframe, a messaging system, a database system, or an application. Connection resources are used by applications and modules to access EIS software.

The key elements of EIS connectivity are the following:

- **Connector Module.** A connector module, also called a resource adapter, is a Java EE component that enables applications to interact with EIS software. A connector module is used by GlassFish Server to implement Java Message Service (JMS). Like other Java EE modules, a connector module is installed when it is deployed. For instructions on creating a connector module, see Chapter 11, “Developing Connectors,” in Oracle GlassFish Server 3.1 Application Development Guide.

- **Connector Connection Pool.** A connector connection pool is a group of reusable connections for a particular EIS. A connector connection pool is created when you specify the connector module that is associated with the pool. For administration procedures, see “Administering Connector Connection Pools” on page 295.

- **Connector Resource.** A connector resource is a program object that provides an application with a connection to an EIS. A connector resource is created when you specify its JNDI name and its associated connection pool. The JNDI name of a connector resource for an EIS is usually in the java:comp/env/eis-specific subcontext. For administration procedures, see “Administering Connector Resources” on page 298.

- **Connector Module Configuration.** A connector module configuration is the information that resides in the domain configuration file (domain.xml) for the particular connector module (resource adapter). For administration procedures, see “Administering the Resource Adapter Configuration” on page 301.

- **Connector Security Map.** A connector security map associates the caller identity of the application (principal or user group) to a suitable EIS principal or group. For administration procedures, see “Administering Connector Security Maps” on page 303.

- **Connector Work Security Map.** A connector work security map associates the caller identity of the work submitted by the connector module (resource adapter) EIS principal or EIS user group to a suitable principal or user group in the GlassFish Server security domain. For administration procedures, see “Administering Connector Work Security Maps” on page 306.

- **Administered Object.** An administered object provides specialized functionality for an application, such as providing access to a parser that is specific to the connector module and its associated EIS. For administration procedures, see “Administering Administered Objects” on page 309.

At runtime, the following sequence occurs when an application connects to an EIS:

1. The application gets the connector resource (data source) associated with the EIS by making a call through the JNDI API.
Using the JNDI name of the connector resource, the naming and directory service locates the resource. Each EIS resource specifies a connector connection pool.

2. Using the connector resource, the application gets an EIS connection.
 GlassFish Server retrieves a physical connection from the connection pool that corresponds to the EIS resource. The pool defines connection attributes such as the EIS name, user name, and password.

3. After the EIS connection is established, the application can read, modify, and add data to the EIS.
 The application accesses the EIS information by making calls to the JMS API.

4. When the application is finished accessing the EIS, the application closes the connection and returns the connection to the connection pool.

Administering Connector Connection Pools

After a connector module has been deployed, you are ready to create a connector connection pool for it.

The following topics are addressed here:

- “To Create a Connector Connection Pool” on page 295
- “To List Connector Connection Pools” on page 296
- “To Connect to (Ping) or Reset (Flush) a Connector Connection Pool” on page 297
- “To Update a Connector Connection Pool” on page 297
- “To Delete a Connector Connection Pool” on page 298

To Create a Connector Connection Pool

Use the `create-connector-connection-pool` subcommand in remote mode to create a connector connection pool for a deployed connector module. When you are building the connector connection pool, certain data specific to the EIS will be required. The value in the mandatory `--connection-definition` option provides the EIS info.

Multiple connector resources can specify a single connection pool.

Creating a connector connection pool is a dynamic event and does not require server restart. However, there are some parameters that do require server restart. See "Configuration Changes That Require Restart" on page 40.

Before You Begin

Before creating the connector connection pool, the connector must be installed.

1 **Ensure that the server is running.**
 Remote subcommands require a running server.
2 Create the connector connection pool by using the `create-connector-connection-pool` subcommand.
Information about properties for the subcommand is included in this help page.

3 (Optional) If needed, restart the server.
Some properties require server restart. See “Configuration Changes That Require Restart” on page 40. If your server needs to be restarted, see “To Restart a Domain” on page 112.

4 (Optional) You can verify that a connection pool is usable by using the `ping-connection-pool` subcommand.
For instructions, see “To Contact (Ping) a Connection Pool” on page 272.

Example 13–1 Creating a Connector Connection Pool

This example creates the new `jms/qConnPool` pool for the
`javax.jms.QueueConnectionFactory` connector module.

```
asadmin> create-connector-connection-pool -- steadypoolsize 20 -- maxpoolsize 100
-- poolresize 2 -- maxwait 60000 -- raname jmsra -- connectiondefinition
javax.jms.QueueConnectionFactory jms/qConnPool
Command create-connector-connection-pool executed successfully
```

See Also You can also view the full syntax and options of the subcommand by typing `asadmin help create-connector-connection-pool` at the command line.

To List Connector Connection Pools

Use the `list-connector-connection-pools` subcommand in remote mode to list the pools that have been created.

1 Ensure that the server is running.
Remote subcommands require a running server.

2 List the connector connection pools by using the `list-connector-connection-pools` subcommand.

Example 13–2 Listing Connector Connection Pools

This example lists the existing connector connection pools.

```
asadmin> list-connector-connection-pools
jms/qConnPool
Command list-connector-connection-pools executed successfully
```
You can also view the full syntax and options of the subcommand by typing `asadmin help list-connector-connection-pools` at the command line.

▼ To Connect to (Ping) or Reset (Flush) a Connector Connection Pool

Use the `ping-connection-pool` or `flush-connection-pool` subcommands in remote mode to perform these tasks on a connection pools. See “To Contact (Ping) a Connection Pool” on page 272 or “To Reset (Flush) a Connection Pool” on page 272 for instructions.

1 Ensure that the server is running.
 Remote subcommands require a running server.

2 Connect to or reset a connector connection pool by using the `flush-connection-pool(1)` subcommand or the `ping-connection-pool(1)` subcommand.

▼ To Update a Connector Connection Pool

Use the `get` and `set` subcommands to view and change the values of the connector connection pool properties.

1 List the connector connection pools by using the `list-connector-connection-pools(1)` subcommand.

2 View the properties of the connector connection pool by using the `get(1)` subcommand.
 For example:
   ```
   asadmin> get domain.resources.connector-connection-pool.connectionpoolname.*
   ```

3 Set the property of the connector connection pool by using the `set(1)` subcommand.
 For example:
   ```
   asadmin> set domain.resources.connector-connection-pool.connectionpoolname.validate-atmost-once-period-in-seconds=3
   ```

4 (Optional) If needed, restart the server.
 Some properties require server restart. See “Configuration Changes That Require Restart” on page 40. If your server needs to be restarted, see “To Restart a Domain” on page 112.
To Delete a Connector Connection Pool

Use the delete-connector-connection-pool subcommand in remote mode to remove a connector connection pool.

1 Ensure that the server is running.
 Remote subcommands require a running server.

2 List the connector connection pools by using the list-connector-connection-pools(1) subcommand.

3 If necessary, notify users that the connector connection pool is being deleted.

4 Delete the connector connection pool by using the delete-connector-connection-pool(1) subcommand.

Example 13–3 Deleting a Connector Connection Pool

This example deletes the connection pool named jms/qConnPool.

```
asadmin> delete-connector-connection-pool --cascade=false jms/qConnPool
Command delete-connector-connection-pool executed successfully
```

See Also You can also view the full syntax and options of the subcommand by typing asadmin help delete-connector-connection-pool at the command line.

Administering Connector Resources

A connector resource provides an application or module with the means of connecting to an EIS. Typically, you create a connector resource for each EIS that is accessed by the applications deployed in the domain.

The following topics are addressed here:

- "To Create a Connector Resource" on page 298
- "To List Connector Resources" on page 299
- "To Update a Connector Resource" on page 300
- "To Delete a Connector Resource" on page 300

To Create a Connector Resource

Use the create-connector-resource subcommand in remote mode to register a new connector resource with its JNDI name.
Creating a connector resource is a dynamic event and does not require server restart. However, there are some parameters that do require server restart. See "Configuration Changes That Require Restart" on page 40.

Before You Begin
Before creating a connector resource, you must first create a connector connection pool. For instructions, see “To Create a Connector Connection Pool” on page 295.

1 Ensure that the server is running.
Remote subcommands require a running server.

2 Create the connector resource by using the create-connector-resource subcommand.
Information about properties for the subcommand is included in this help page.

3 (Optional) If needed, restart the server.
Some properties require server restart. See “Configuration Changes That Require Restart” on page 40. If your server needs to be restarted, see “To Restart a Domain” on page 112.

Example 13–4 Creating a Connector Resource
This example creates a new resource named jms/qConnFactory for the jms/qConnPool connection pool.

 asadmin> create-connector-resource --poolname jms/qConnPool
 --description "creating sample connector resource" jms/qConnFactory
 Command create-connector-resource executed successfully

See Also
You can also view the full syntax and options of the subcommand by typing asadmin help create-connector-resource at the command line.

To List Connector Resources
Use the list-connector-resources subcommand in remote mode to list the connector resources that have been created.

1 Ensure that the server is running.
Remote subcommands require a running server.

2 List the connector connection pools by using the list-connector-resources subcommand.

Example 13–5 Listing Connector Resources
This example lists the existing connector resources.
asadmin> list-connector-resources
jms/qConnFactory
Command list-connector-resources executed successfully

See Also You can also view the full syntax and options of the subcommand by typing asadmin help list-connector-resources at the command line.

▼ To Update a Connector Resource
Use the get and set subcommands to view and change the values of the connector resource properties.

1 List the connector connection pools by using the list-connector-resources(1) subcommand.

2 View the properties of the connector resource by using the get(1) subcommand.
 For example
 asadmin> get domain.resources.connector-resource.jms/qConnFactory

3 Set the property of the connector resource by using the set(1) subcommand.
 For example:
 asadmin> set domain.resources.connector-resource.jms/qConnFactory.enabled=true

4 (Optional) If needed, restart the server.
 Some properties require server restart. See “Configuration Changes That Require Restart” on page 40. If your server needs to be restarted, see “To Restart a Domain” on page 112.

▼ To Delete a Connector Resource
Use the delete-connector-resource subcommand in remote mode to remove a connector resource by specifying the JNDI name.

Before You Begin Before deleting a resource, all associations with the resource must be removed.

1 Ensure that the server is running.
 Remote subcommands require a running server.

2 List the connector connection pools by using the list-connector-resources(1) subcommand.

3 If necessary, notify users that the connector resource is being deleted.

4 Delete the connector resource by using the delete-connector-resource(1) subcommand.
Example 13–6 Deleting a Connector Resource

This example deletes the jms/qConnFactory connector resource.

```
asadmin> delete-connector-resource jms/qConnFactory
Command delete-connector-resources executed successfully
```

See Also You can also view the full syntax and options of the subcommand by typing asadmin help delete-connector-resource at the command line.

Administering the Resource Adapter Configuration

The following topics are addressed here:

- “To Create Configuration Information for a Resource Adapter” on page 301
- “To List Resource Adapter Configurations” on page 302
- “To Update a Resource Adapter Configuration” on page 302
- “To Delete a Resource Adapter Configuration” on page 303

▼ To Create Configuration Information for a Resource Adapter

Use the `create-resource-adapter-config` subcommand in remote mode to create configuration information for a resource adapter, also known as a connector module. You can run the subcommand before deploying a resource adapter, so that the configuration information is available at the time of deployment. The resource adapter configuration can also be created after the resource adapter is deployed. In this situation, the resource adapter is restarted with the new configuration.

1 **Ensure that the server is running.**
Remote subcommands require a running server.

2 **Create configuration information by using the `create-resource-adapter-config` subcommand.**
Information about properties for the subcommand is included in this help page.

Example 13–7 Creating a Resource Adapter Configuration

This example creates the configuration for resource adapter ra1.

```
asadmin> create-resource-adapter-config --property foo=bar
--threadpoolid mycustomerthreadpool ra1
Command create-resource-adapter-config executed successfully
```
You can also view the full syntax and options of the subcommand by typing \texttt{asadmin help create-resource-adapter-config} at the command line.

\section*{To List Resource Adapter Configurations}

Use the \texttt{list-resource-adapter-configs} subcommand in remote mode to list the configuration information contained in the domain configuration file (\texttt{domain.xml}) for the specified resource adapter (connector module).

1. \textbf{Ensure that the server is running.}
 Remote subcommands require a running server.

2. \textbf{List the configurations for a resource adapter by using the \texttt{list-resource-adapter-configs(1)} subcommand.}

\begin{example}
\textbf{Example 13–8 Listing Configurations for a Resource Adapter}

This example lists all the resource adapter configurations.

\begin{verbatim}
 asadmin> list-resource-adapter-configs
 ra1
 ra2
 Command list-resource-adapter-configs executed successfully
\end{verbatim}
\end{example}

You can also view the full syntax and options of the subcommand by typing \texttt{asadmin help list-resource-adapter-configs} at the command line.

\section*{To Update a Resource Adapter Configuration}

Use the \texttt{get} and \texttt{set} subcommands to view and change the values of the resource adapter configuration properties.

1. \textbf{List the configurations for a resource adapter by using the \texttt{list-resource-adapter-configs(1)} subcommand.}

2. \textbf{View the properties of the connector resource by using the \texttt{get(1)} subcommand.}
 For example:
 \begin{verbatim}
 asadmin> get domain.resources.resource-adapter-config.ra1.*
 \end{verbatim}

3. \textbf{Set the property of the connector resource by using the \texttt{set(1)} subcommand.}
 For example:
 \begin{verbatim}
 asadmin> set domain.resources.resource-adapter-config.ra1.raSpecificProperty=value
 \end{verbatim}
To Delete a Resource Adapter Configuration

Use the `delete-resource-adapter-config` subcommand in remote mode to delete the configuration information contained in the domain configuration file (`domain.xml`) for a specified resource adapter (connector module).

1. **Ensure that the server is running.**
 Remote subcommands require a running server.

2. **List the configurations for a resource adapter by using the**
 `list-resource-adapter-configs(1)` subcommand.

3. **Delete the configuration for a resource adapter by using the**
 `delete-resource-adapter-config(1)` subcommand.

Example 13–9 Deleting a Resource Adapter Configuration

This example deletes the configuration for resource adapter `ra1`.

```
asadmin> delete-resource-adapter-config ra1
Command delete-resource-adapter-config executed successfully
```

See Also You can also view the full syntax and options of the subcommand by typing `asadmin help delete-resource-adapter-config` at the command line.

Administering Connector Security Maps

The EIS is any system that holds the data of an organization. It can be a mainframe, a messaging system, a database system, or an application. The connector security map is used to map the application’s credentials to the EIS credentials.

A security map applies to a particular connector connection pool. One or more named security maps can be associated with a connector connection pool.

The following topics are addressed here:

- “To Create a Connector Security Map” on page 304
- “To List Connector Security Maps” on page 304
- “To Update a Connector Security Map” on page 305
- “To Delete a Connector Security Map” on page 306
To Create a Connector Security Map

Use the create-connector-security-map subcommand in remote mode to create a security map for the specified connector connection pool. If the security map is not present, a new one is created. You can specify back-end EIS principals or back-end EIS user groups. The connector security map configuration supports the use of the wild card asterisk (*) to indicate all users or all user groups.

You can also use this subcommand to map the caller identity of the application (principal or user group) to a suitable EIS principal in container-managed authentication scenarios.

Before You Begin
For this subcommand to succeed, you must have first created a connector connection pool. For instructions, see “To Create a Connector Connection Pool” on page 295.

1 Ensure that the server is running.
Remote subcommands require a running server.

2 Create a connector security map by using the create-connector-security-map subcommand.
Information about the options for the subcommand is included in this help page.

3 (Optional) If needed, restart the server.
Some properties require server restart. See “Configuration Changes That Require Restart” on page 40. If your server needs to be restarted, see “To Restart a Domain” on page 112.

Example 13–10 Creating a Connector Security Map
This example creates a connector security map securityMap1 for connection-pool1.

asadmin> create-connector-security-map --poolname connector-pool1
--principals principal1, principal2 --mappedusername backend-username securityMap1
Command create-connector-security-map executed successfully

To List Connector Security Maps

Use the list-connector-security-maps subcommand in remote mode to list the existing security maps belonging to the specified connector connection pool. You can get a simple listing of the connector security maps for a connector connection pool, or you can get a more comprehensive listing that shows the principals of the map.

1 Ensure that the server is running.
Remote subcommands require a running server.
List existing connector connection pools by using the `list-connector-connection-pools(1)` subcommand.

List the security maps for a specific connector connection pool by using the `list-connector-security-maps(1)` subcommand.

Example 13–11 Listing All Connector Security Maps for a Connector Connection Pool

This example lists the connector security maps associated with `connector-Pool1`.

```
asadmin> list-connector-security-maps connector-Pool1
securityMap1
Command list-connector-security-maps executed successfully.
```

Example 13–12 Listing Principals for a Specific Security Map for a Connector Connection Pool

This example lists the principals associated with `securityMap1`.

```
asadmin> list-connector-security-maps --securitymap securityMap1 connector-Pool1
principal1
principal1
Command list-connector-security-maps executed successfully.
```

Example 13–13 Listing Principals of All Connector Security Maps for a Connector Connection Pool

This example lists the connector security maps associated with `connector-Pool1`.

```
asadmin> list-connector-security-maps --verbose connector-Pool1
securityMap1
principal1
principal1
Command list-connector-security-maps executed successfully.
```

To Update a Connector Security Map

Use the `update-connector-security-map` subcommand in remote mode to create or modify a security map for the specified connector connection pool.

1 **Ensure that the server is running.**
 Remote subcommands require a running server.

2 List existing connector security maps by using the `list-connector-security-maps(1)` subcommand.

3 Modify a security map for a specific connector connection pool by using the `update-connector-security-map(1)` subcommand.
4 (Optional) If needed, restart the server.
Some properties require server restart. See “Configuration Changes That Require Restart” on page 40. If your server needs to be restarted, see “To Restart a Domain” on page 112.

Example 13–14 Updating a Connector Security Map

This example adds principals to securityMap1.

```
asadmin> update-connector-security-map --poolname connector-pool1 --addprincipals principal1, principal2 securityMap1
Command update-connector-security-map executed successfully.
```

To Delete a Connector Security Map

Use the delete-connector-security-map subcommand in remote mode to delete a security map for the specified connector connection pool.

1 Ensure that the server is running.
Remote subcommands require a running server.

2 List existing connector connection pools by using the list-connector-connection-pools(1) subcommand.

3 Delete a security map for a specific connector connection pool by using the delete-connector-security-map(1) subcommand.
Information about options for this subcommand is included in this help page.

Example 13–15 Deleting a Connector Security Map

This example deletes securityMap1 from connector-pool1.

```
asadmin> delete-connector-security-map --poolname connector-pool1 securityMap1
Command delete-connector-security-map executed successfully
```

Administering Connector Work Security Maps

The EIS is any system that holds the data of an organization. It can be a mainframe, a messaging system, a database system, or an application. The connector work security map is used to is used to map the EIS credentials to the credentials of GlassFish Server security domain.

A security map applies to a particular connector connection pool. One or more named security maps can be associated with a connector connection pool.
The following topics are addressed here:

- “To Create a Connector Work Security Map” on page 307
- “To List Connector Work Security Maps” on page 308
- “To Update a Connector Work Security Map” on page 308
- “To Delete a Connector Work Security Map” on page 309

To Create a Connector Work Security Map

Use the `create-connector-work-security-map` subcommand in remote mode to map the caller identity of the work submitted by the connector module (resource adapter) EIS principal or EIS user group to a suitable principal or user group in the GlassFish Server security domain. One or more work security maps can be associated with a connector module.

The connector security map configuration supports the use of the wild card asterisk (*) to indicate all users or all user groups.

Before You Begin

Before creating a connector work security map, you must first create a connector connection pool. For instructions, see “To Create a Connector Connection Pool” on page 295.

1. Ensure that the server is running.
 Remote subcommands require a running server.

2. Create the connector work security map by using the `create-connector-work-security-map` subcommand.
 Information about properties for the subcommand is included in this help page.

3. (Optional) If needed, restart the server.
 Some properties require server restart. See “Configuration Changes That Require Restart” on page 40. If your server needs to be restarted, see “To Restart a Domain” on page 112.

Example 13–16 Creating Connector Work Security Maps

The following examples create `workSecurityMap1` and `workSecurityMap2` for `my-resource-adapter-name`.

```
asadmin> create-connector-work-security-map --rename my-resource-adapter-name
--principalsmap eis-principal-1=server-principal-1,eis-principal-2=server-principal-2,
    eis-principal-3=server-principal-1 workSecurityMap1

asadmin> create-connector-work-security-map --rename my-resource-adapter-name
--groupsmap eis-group-1=server-group-1,eis-group-2=server-group-2,
    eis-group-3=server-group-1 workSecurityMap2
```

Command `create-connector-work-security-map` executed successfully.
You can also view the full syntax and options of the subcommand by typing `asadmin help create-connector-work-security-map` at the command line.

▼ To List Connector Work Security Maps

Use the `list-connector-work-security-maps` subcommand in remote mode to list the work security maps that belong to a specific connector module.

1 Ensure that the server is running.
Remote subcommands require a running server.

2 List the connector work security maps by using the `list-connector-work-security-maps` subcommand.

Example 13–17 Listing the Connector Work Security Maps

This example lists the generic work security maps.

```
asadmin> list-connector-work-security-maps generic-ra
generic-ra-groups-map: EIS group=eis-group, mapped group=glassfish-group
generic-ra-principals-map: EIS principal=eis-bar, mapped principal=bar
generic-ra-principals-map: EIS principal=eis-foo, mapped principal=foo
Command list-connector-work-security-maps executed successfully.
```

See Also You can also view the full syntax and options of the subcommand by typing `asadmin help list-connector-work-security-maps` at the command line.

▼ To Update a Connector Work Security Map

Use the `update-connector-work-security-map` subcommand in remote to modify a work security map that belongs to a specific resource adapter (connector module).

1 Ensure that the server is running.
Remote subcommands require a running server.

2 List the connector work security maps by using the `list-connector-work-security-maps` subcommand.

3 If necessary, notify users that the connector work security map is being modified.

4 Update a connector work security map by using the `update-connector-work-security-map` subcommand.
Example 13–18 Updating a Connector Work Security Map

This example removes a principal from a work security map.

```
asadmin> update-connector-work-security-map --rename generic-ra
    --removeprincipals eis-foo generic-ra-principals-map
Command update-connector-work-security-map executed successfully.
```

See Also You can also view the full syntax and options of the subcommand by typing asadmin help update-connector-work-security-map at the command line.

▼ To Delete a Connector Work Security Map

Use the delete-connector-work-security-map subcommand in remote mode to delete a work security map that belongs to a specific connector module (resource adapter).

1 Ensure that the server is running.
Remote subcommands require a running server.

2 List the connector work security maps by using the list-connector-work-security-maps(1) subcommand.

3 Delete a connector work security map by using the delete-connector-work-security-map(1) subcommand.

Example 13–19 Deleting a Connector Work Security Map

This example deletes the worksecuritymap1 map from the my_ra connector module.

```
asadmin> delete-connector-work-security-map --rename my_ra worksecuritymap1
Command delete-connector-work-security-map executed successfully.
```

See Also You can also view the full syntax and options of the subcommand by typing asadmin help delete-connector-work-security-map at the command line.

Administering Administered Objects

Packaged within a connector module, an administered object provides specialized functionality for an application. For example, an administered object might provide access to a parser that is specific to the connector module and its associated EIS.
The following topics are addressed here:

- “To Create an Administered Object” on page 310
- “To List Administered Objects” on page 310
- “To Update an Administered Object” on page 311
- “To Delete an Administered Object” on page 311

▼ **To Create an Administered Object**

Use the `create-admin-object` subcommand to create an administered object resource. When creating an administered object resource, name-value pairs are created, and the object is associated to a JNDI name.

Before You Begin

The resource adapter must be deployed before running this subcommand (`jmsrar.rar`).

1. **Create an administered object by using the `create-admin-object(1)` subcommand.**

 Information about properties for the subcommand is included in this help page.

2. **(Optional) If needed, restart the server.**

 Some properties require server restart. See “Configuration Changes That Require Restart” on page 40. If your server needs to be restarted, see “To Restart a Domain” on page 112.

Example 13–20 Creating an Administered Object

For this example, the `javax.jms.Queue` resource type is obtained from the `ra.xml` file. The JNDI name of the new administered object is `jms/samplequeue`.

```
asadmin> create-admin-object --restype javax.jms.Queue --raname jmsra
--description "sample administered object" --property Name=sample.jmsqueue jms/samplequeue
Command create-admin-object executed successfully
```

See Also

You can also view the full syntax and options of the subcommand by typing `asadmin help create-admin-object` at the command line.

▼ **To List Administered Objects**

Use the `list-admin-object` subcommand in remote mode to list the existing administered objects.

1. **Ensure that the server is running.**

 Remote subcommands require a running server.

2. **List the administered objects by using the `list-admin-objects(1)` subcommand.**
Example 13–21 Listing Administered Objects

This example lists the existing administered objects.

```
asadmin> list-admin-objects
jms/samplequeue
Command list-admin-objects executed successfully
```

See Also You can also view the full syntax and options of the subcommand by typing asadmin help list-admin-object at the command line.

To Update an Administered Object

Use the `get` and `set` subcommands to view and change the values of the administered objects properties.

1. List the administered objects by using the `list-admin-objects(1)` subcommand.

2. View the properties of the administered object by using the `get(1)` subcommand.
 For example:
   ```
asadmin> get domain.resources.admin-object-resource.jms/samplequeue.*
```

3. Set the property of the administered object by using the `set(1)` subcommand.
 For example:
   ```
asadmin> set domain.resources.admin-object-resource.jms/samplequeue.enabled=false
```

4. (Optional) If needed, restart the server.
 Some properties require server restart. See “Configuration Changes That Require Restart” on page 40. If your server needs to be restarted, see “To Restart a Domain” on page 112.

To Delete an Administered Object

Use the `delete-admin-object` subcommand to delete an administered objects.

1. List the administered objects by using the `list-admin-objects(1)` subcommand.

2. If necessary, notify users that the administered object is being deleted.

3. Delete an administered object by using the `delete-admin-object(1)` subcommand.

Example 13–22 Deleting an Administered Object

This example deletes the administered object with the JNDI name jms/samplequeue.
asadmin> delete-admin-object jms/samplequeue
Command delete-admin-object executed successfully

See Also You can also view the full syntax and options of the subcommand by typing asadmin help delete-admin-object at the command line.
Administering Internet Connectivity

This chapter provides procedures for performing internet connectivity tasks in the Oracle GlassFish Server 3.1 environment by using the asadmin command-line utility.

The following topics are addressed here:
- “About Internet Connectivity” on page 313
- “Administering HTTP Network Listeners” on page 315
- “Administering Virtual Servers” on page 325

Instructions for accomplishing the tasks in this chapter by using the Administration Console are contained in the Administration Console online help.

About Internet Connectivity

The HTTP service provides functionality for deploying web applications and for making deployed web applications accessible by Internet clients, either in a single application server instance or in a cluster of multiple server instances. HTTP services are provided by two kinds of related objects: listeners and virtual servers.

For more information about clusters, see the Oracle GlassFish Server 3.1-3.1.1 High Availability Administration Guide.

The following topics are addressed here:
- “About HTTP Network Listeners” on page 313
- “About Virtual Servers” on page 314

About HTTP Network Listeners

An HTTP listener, also known as a network listener, is a listen socket that has an Internet Protocol (IP) address, a port number, a server name, and a default virtual server. Each virtual server provides connections between the server and clients through one or more listeners. Each
listener must have a unique combination of port number and IP address. For example, an
HTTP listener can listen for a host on all configured IP addresses on a given port by specifying
the IP address 0.0.0.0. Alternatively, the listener can specify a unique IP address for each listener
while using the same port.

Because an HTTP listener is a combination of IP address and port number, you can have
multiple HTTP listeners with the same IP address and different port numbers, or with different
IP addresses and the same port number (if your host was configured to respond to these
addresses). However, if an HTTP listener uses the 0.0.0.0 IP address, which listens on all IP
addresses on a port, you cannot create HTTP listeners for additional IP addresses that listen on
the same port for a specific IP address. For example, if an HTTP listener uses 0.0.0.0:8080 (all IP
addresses on port 8080), another HTTP listener cannot use 1.2.3.4:8080. The host running the
GlassFish Server typically has access to only one IP address. HTTP listeners typically use the
0.0.0.0 IP address and different port numbers, with each port number serving a different
purpose. However, if the host does have access to more than one IP address, each address can
serve a different purpose.

To access a web application deployed on GlassFish Server, use the URL
http://localhost:8080/ (or https://localhost:8081/ for a secure application), along with
the context root specified for the web application.

To access the Administration Console, use the URL https://localhost:4848/ or

About Virtual Servers

A virtual server, sometimes called a virtual host, is an object that allows the same physical server
to host multiple Internet domain names. All virtual servers hosted on the same physical server
share the IP address of that physical server. A virtual server associates a domain name for a
server (such as www.aaa.com) with the particular server on which GlassFish Server is running.
Each virtual server must be registered with the DNS server for your network.

Note – Do not confuse an Internet domain with the administrative domain of GlassFish Server.

For example, assume that you want to host the following domains on your physical server:
www.aaa.com, www.bbb.com, and www.ccc.com. Assume that these domains are respectively
associated with web modules web1, web2, and web3. This means that the following URLs are
handled by your physical server:

http://www.aaa.com:8080/web1
http://www.bbb.com:8080/web2
http://www.ccc.com:8080/web3
The first URL is mapped to virtual server www.aaa.com, the second URL is mapped to virtual server www.bbb.com, and the third is mapped to virtual server www.ccc.com. For this mapping to work, www.aaa.com, www.bbb.com, and www.ccc.com must all resolve to your physical server’s IP address and each virtual server must be registered with the DNS server for your network. In addition, on a UNIX system, add these domains to your /etc/hosts file (if the setting for hosts in your /etc/nsswitch.conf file includes files).

Administering HTTP Network Listeners

By default, when GlassFish Server starts, the following HTTP listeners are started automatically:

- HTTP listeners associated with the virtual server named server:
 - The listener named http-listener-1 does not have security enabled.
 - The listener named http-listener-2 has security enabled
- An HTTP listener named admin-listener, associated with the virtual server named __asadmin. For this listener, security is not enabled.

The following table describes the GlassFish Server default ports for the listeners that use ports.

TABLE 14-1 Default Ports for Listeners

<table>
<thead>
<tr>
<th>Listener</th>
<th>Default Port</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrative server</td>
<td>4848</td>
<td>A domain's administrative server is accessed by the Administration Console and the asadmin utility. For the Administration Console, specify the port number in the URL of the browser. When running an asadmin subcommand remotely, specify the port number by using the --port option.</td>
</tr>
<tr>
<td>HTTP</td>
<td>8080</td>
<td>The web server listens for HTTP requests on a port. To access deployed web applications and services, clients connect to this port.</td>
</tr>
<tr>
<td>HTTPS</td>
<td>8181</td>
<td>Web applications configured for secure communications listen on a separate port.</td>
</tr>
</tbody>
</table>

The following topics are addressed here:

- “To Create an Internet Connection” on page 316
- “Administering HTTP Protocols” on page 316
- “Administering HTTP Configurations” on page 318
- “Administering HTTP Transports” on page 319
- “Administering HTTP Network Listeners” on page 321
To Create an Internet Connection

Use the subcommands in this procedure to create an internet connection with the full range of listener options. A network listener is created behind the scenes. For the shortcut version of this process, see “To Create an HTTP Network Listener” on page 321.

1 **Ensure that the server is running.**
Remote subcommands require a running server.

2 **Create an HTTP or HTTPS protocol by using the create-protocol(1) subcommand with the --securityenabled option.**
To use the built-in http-listener-1 HTTP protocol, or http-listener-2 HTTPS protocol, skip this step.

3 **Create an HTTP configuration by using the create-http(1) subcommand.**
To use a built-in protocol, skip this step.

4 **Create a transport by using the create-transport(1) subcommand.**
To use the built-in tcp transport, skip this step.

5 **(Optional) Create a thread pool by using the create-threadpool(1) subcommand.**
To avoid using a thread pool, or to use the built-in http-thread-pool thread pool, skip this step.

For additional thread pool information, see Chapter 5, “Administering Thread Pools.”

6 **Create an HTTP listener by using the create-network-listener(1) subcommand.**
Specify a protocol and transport, optionally a thread pool.

7 **To apply your changes, restart GlassFish Server.**
See “To Restart a Domain” on page 112.

See Also
You can also view the full syntax and options of the subcommand by typing a command such as asadmin help create-http-listener at the command line.

Administering HTTP Protocols

Each HTTP listener has an HTTP protocol, which is created either by using the create-protocol subcommand or by using the built-in protocols that are applied when you follow the instructions in “To Create an HTTP Network Listener” on page 321.
The following topics are addressed here:
- "To Create a Protocol" on page 317
- "To List Protocols" on page 317
- "To Delete a Protocol" on page 318

▼ To Create a Protocol
Use the `create-protocol` subcommand in remote mode to create a protocol.

1 Ensure that the server is running.
 Remote subcommands require a running server.

2 Create a protocol by using the `create-protocol(1)`
 Information about options and properties for the subcommand are included in this help page.

Example 14–1 Creating an HTTP Protocol
This example creates a protocol named http-1 with security enabled.

```bash
asadmin> create-protocol --securityenabled=true http-1
Command create-protocol executed successfully.
```

See Also
You can also view the full syntax and options of the subcommand by typing `asadmin help create-protocol` at the command line.

▼ To List Protocols
Use the `list-protocols` subcommand in remote mode to list the existing HTTP protocols.

1 Ensure that the server is running.
 Remote subcommands require a running server.

2 List the existing protocols by using the `list-protocols(1)` subcommand.

Example 14–2 Listing the Protocols
This example lists the existing protocols.

```bash
asadmin> list-protocols
admin-listener
http-1
http-listener-1
http-listener-2
Command list-protocols executed successfully.
```
You can also view the full syntax and options of the subcommand by typing `asadmin help list-protocols` at the command line.

To Delete a Protocol

Use the `delete-protocol` subcommand in remote mode to remove a protocol.

1. **Ensure that the server is running.**
 Remote subcommands require a running server.

2. **Delete a protocol by using the `delete-protocol` subcommand**

   ```
   asadmin> delete-protocol http-1
   Command delete-protocol executed successfully.
   ```

Administering HTTP Configurations

Each HTTP listener has an HTTP configuration, which is created either by using the `create-http` subcommand or by using the built-in configurations that are applied when you follow the instructions in “To Create an HTTP Network Listener” on page 321.

The following topics are addressed here:

- “To Create an HTTP Configuration” on page 318
- “To Delete an HTTP Configuration” on page 319

To Create an HTTP Configuration

Use the `create-http` subcommand in remote mode to create a set of HTTP parameters for a protocol. This set of parameters configures one or more network listeners,

1. **Ensure that the server is running.**
 Remote subcommands require a running server.

2. **Create an HTTP configuration by using the `create-http` subcommand.**

 Information about options and properties for the subcommand are included in this help page.
Creating an HTTP Configuration

This example creates an HTTP parameter set for the protocol named http-1.

```
asadmin> create-http --timeout-seconds 60 --default-virtual-server server http-1
Command create-http executed successfully.
```

See Also
You can also view the full syntax and options of the subcommand by typing asadmin help create-http at the command line.

▼ To Delete an HTTP Configuration

Use the delete-http subcommand in remote mode to remove HTTP parameters from a protocol.

1 Ensure that the server is running.
Remote subcommands require a running server.

2 Delete the HTTP parameters from a protocol by using the delete-http subcommand.

Deleting an HTTP Configuration

This example deletes the HTTP parameter set from a protocol named http-1.

```
asadmin> delete-http http-1
Command delete-http executed successfully.
```

See Also
You can also view the full syntax and options of the subcommand by typing asadmin help delete-http at the command line.

Administering HTTP Transports

Each HTTP listener has an HTTP transport, which is created either by using the create-transport subcommand or by using the built-in transports that are applied when you follow the instructions in “To Create an HTTP Network Listener” on page 321.

The following topics are addressed here:

- “To Create a Transport” on page 320
- “To List Transports” on page 320
- “To Delete a Transport” on page 321
To Create a Transport

Use the `create-transport` subcommand in remote mode to create a transport for a network listener,

1. **Ensure that the server is running.**
 Remote subcommands require a running server.

2. **Create a transport by using the `create-transport(1)` subcommand.**
 Information about options and properties for the subcommand are included in this help page.

Example 14–6 Creating a Transport

This example creates a transport named `http1-trans` that uses a non-default number of acceptor threads.

```
asadmin> create-transport --acceptorthreads 100 http1-trans
Command create-transport executed successfully.
```

See Also You can also view the full syntax and options of the subcommand by typing `asadmin help create-transport` at the command line.

To List Transports

Use the `list-transports` subcommand in remote mode to list the existing HTTP transports.

1. **Ensure that the server is running.**
 Remote subcommands require a running server.

2. **List the existing transports by using the `list-transports(1)` subcommand.**

Example 14–7 Listing HTTP Transports

This example lists the existing transports.

```
asadmin> list-transports
http1-trans
tcp
Command list-transports executed successfully.
```

See Also You can also view the full syntax and options of the subcommand by typing `asadmin help list-transports` at the command line.
To Delete a Transport

Use the `delete-transport` subcommand in remote mode to remove a transport.

1. **Ensure that the server is running.**
 Remote subcommands require a running server.

2. **Delete a transport by using the `delete-transport(1)` subcommand.**

 Example 14–8 Deleting a Transport

 This example deletes the transport named `http1-trans`.

   ```
   asadmin> delete-transport http1-trans
   Command delete-transport executed successfully.
   ```

See Also
You can also view the full syntax and options of the subcommand by typing `asadmin help delete-transport` at the command line.

Administering HTTP Network Listeners

The following topics are addressed here:

- "To Create an HTTP Network Listener" on page 321
- "To List HTTP Network Listeners" on page 322
- "To Update an HTTP Network Listener" on page 323
- "To Delete an HTTP Network Listener" on page 323
- "To Configure an HTTP Listener for SSL" on page 324
- "To Delete SSL From an HTTP Listener" on page 324
- "To Assign a Default Virtual Server to an HTTP Listener" on page 325

To Create an HTTP Network Listener

Use the `create-http-listener` subcommand or the `create-network-listener` subcommand in remote mode to create a listener. These subcommands provide backward compatibility and also provide a shortcut for creating network listeners that use the HTTP protocol. Behind the scenes, a network listener is created as well as its associated protocol, transport, and HTTP configuration. This method is a convenient shortcut, but it gives access to only a limited number of options. If you want to specify the full range of listener options, follow the instructions in "To Create an Internet Connection" on page 316.

1. **Ensure that the server is running.**
 Remote subcommands require a running server.
Create an HTTP network listener by using the `create-network-listener(1)` subcommand or the `create-http-listener(1)` subcommand.

If needed, restart the server.

If you edit the special HTTP network listener named `admin-listener`, you must restart the server for changes to take effect. See “To Restart a Domain” on page 112.

Example 14–9 Creating an HTTP Listener

This example creates an HTTP listener named `sampleListener` that uses a non-default number of acceptor threads. Security is not enabled at runtime.

```
> create-http-listener --listeneraddress 0.0.0.0
--listenerport 7272 --defaultvss server --servername host1.sun.com
--acceptorthreads 100 --securityenabled=false
--enabled=false sampleListener
Command create-http-listener executed successfully.
```

Example 14–10 Creating a Network Listener

This example a network listener named `sampleListener` that is not enabled at runtime:

```
> create-network-listener --listenerport 7272 protocol http-1
--enabled=false sampleListener
Command create-network-listener executed successfully.
```

See Also

You can also view the full syntax and options of the subcommand by typing `asadmin help create-http-listener` or `asadmin help create-network-listener` at the command line.

To List HTTP Network Listeners

Use the `list-http-listeners` subcommand or the `list-network-listeners` subcommand in remote mode to list the existing HTTP listeners.

1. Ensure that the server is running.

Remote subcommands require a running server.

2. List HTTP listeners by using the `list-http-listeners(1)` or `list-network-listeners(1)` subcommand.

Example 14–11 Listing HTTP Listeners

This example lists the HTTP listeners. The same output is given if you use the `list-network-listeners` subcommand.
To Update an HTTP Network Listener

1 List HTTP listeners by using the `list-http-listeners` or `list-network-listeners` subcommand.

2 Modify the values for the specified listener by using the `set` subcommand.
 The listener is identified by its dotted name.

Example 14–12 Updating an HTTP Network Listener

This example changes security-enabled to false on `http-listener-2`.

```
asadmin> set server.network-config.protocols.protocol.http-listener-2.security-enabled=false
Command set executed successfully.
```

To Delete an HTTP Network Listener

Use the `delete-http-listener` or `delete-network-listener` subcommand in remote mode to delete an existing HTTP listener. This disables secure communications for the listener.

1 Ensure that the server is running.
 Remote subcommands require a running server.

2 List HTTP listeners by using the `list-http-listeners` subcommand.

3 Delete an HTTP listener by using the `delete-http-listener` or `delete-network-listener` subcommand.

4 To apply your changes, restart GlassFish Server.
 See “To Restart a Domain” on page 112.

Example 14–13 Deleting an HTTP Listener

This example deletes the HTTP listener named `sampleListener`:
To Configure an HTTP Listener for SSL

Use the `create-ssl` subcommand in remote mode to create and configure an SSL element in the specified listener. This enables secure communication for the listener.

1. Ensure that the server is running.
 Remote subcommands require a running server.

2. Configure an HTTP listener by using the `create-ssl(1)` subcommand.

3. To apply your changes, restart GlassFish Server.
 See “To Restart a Domain” on page 112.

Example 14–14 Configuring an HTTP Listener for SSL

This example enables the HTTP listener named `http-listener-1` for SSL:

```
asadmin> create-ssl --type http-listener --certname sampleCert http-listener-1
Command create-ssl executed successfully.
```

See Also You can also view the full syntax and options of the subcommand by typing `asadmin help create-ssl` at the command line.

To Delete SSL From an HTTP Listener

Use the `delete-ssl` subcommand in remote mode to delete the SSL element in the specified listener. This disables secure communications for the listener.

1. Ensure that the server is running.
 Remote subcommands require a running server.

2. Delete SSL from an HTTP listener by using the `delete-ssl(1)` subcommand.

3. To apply your changes, restart GlassFish Server.
 See “To Restart a Domain” on page 112.

Example 14–15 Deleting SSL From an HTTP Listener

This example disables SSL for the HTTP listener named `http-listener-1`:
Administering Virtual Servers

A virtual server is a virtual web server that serves content targeted for a specific URL. Multiple virtual servers can serve content using the same or different host names, port numbers, or IP addresses. The HTTP service directs incoming web requests to different virtual servers based on the URL.

When you first install GlassFish Server, a default virtual server is created. You can assign a default virtual server to each new HTTP listener you create.

Web applications and Java EE applications containing web components (web modules) can be assigned to virtual servers during deployment. A web module can be assigned to more than one virtual server, and a virtual server can have more than one web module assigned to it. If you deploy a web application and don’t specify any assigned virtual servers, the web application is assigned to all currently defined virtual servers. If you then create additional virtual servers and want to assign existing web applications to them, you must redeploy the web applications. For more information about deployment, see the Oracle GlassFish Server 3.1 Application Deployment Guide.

You can define virtual server properties using the asadmin set command. For example:

```
asadmin> set server-config.http-service.virtual-server.MyVS.property.sso-enabled="true"
```

Some virtual server properties can be set for a specific web application. For details, see “glassfish-web-app” in Oracle GlassFish Server 3.1 Application Deployment Guide.

See Also

To Assign a Default Virtual Server to an HTTP Listener

1 In the Administration Console, open the HTTP Service component under the relevant configuration.

2 Open the HTTP Listeners component under the HTTP Service component.

3 Select or create a new HTTP listener.

4 Select from the Default Virtual Server drop-down list.

For more information, see “To Assign a Default Web Module to a Virtual Server” on page 328.

See Also

For details, click the Help button in the Administration Console from the HTTP Listeners page.
The following topics are addressed here:

- “To Create a Virtual Server” on page 326
- “ToList Virtual Servers” on page 327
- “ToUpdate a Virtual Server” on page 327
- “ToDelete a Virtual Server” on page 327
- “To Assign a Default Web Module to a Virtual Server” on page 328
- “To Assign a Virtual Server to an Application or Module” on page 328
- “To Set JSESSIONID SSO Cookie Attributes” on page 329

\[\text{To Create a Virtual Server}\]

By default, when GlassFish Server starts, the following virtual servers are started automatically:

- A virtual server named `server`, which hosts all user-defined web modules.
 For development, testing, and deployment of web services in a non-production environment, `server` is often the only virtual server required.

- A virtual server named `__asadmin`, which hosts all administration-related web modules (specifically, the Administration Console). This server is restricted, which means that you cannot deploy web modules to this virtual server.

In a production environment, additional virtual servers provide hosting facilities for users and customers so that each appears to have its own web server, even though there is only one physical server.

Use the `create-virtual-server` subcommand in remote mode to create the named virtual server.

Before You Begin

A virtual server must specify an existing HTTP listener. Because the virtual server cannot specify an HTTP listener that is already being used by another virtual server, create at least one HTTP listener before creating a new virtual server.

1. **Ensure that the server is running.**
 Remote subcommands require a running server.

2. **Create a virtual server by using the `create-virtual-server(1)` subcommand.**
 Information about properties for this subcommand is included in this help page.

3. **To apply your changes, restart GlassFish Server.**
 See “To Restart a Domain” on page 112.

Example 14–16

Creating a Virtual Server

This example creates a virtual server named `sampleServer` on `localhost`.
asadmin> create-virtual-server sampleServer
Command create-virtual-server executed successfully.

See Also You can also view the full syntax and options of the subcommand by typing asadmin help create-virtual-server at the command line.

▼ To List Virtual Servers

Use the list-virtual-servers subcommand in remote mode to list the existing virtual servers.

1 Ensure that the server is running.
Remote subcommands require a running server.

2 List virtual servers by using the list-virtual-servers(1) subcommand.

Example 14-17 Listing Virtual Servers

This example lists the virtual servers for localhost.

asadmin> list-virtual-servers
sampleListener
admin-listener
http-listener-2
http-listener-1
Command list-http-listeners executed successfully.

See Also You can also view the full syntax and options of the subcommand by typing asadmin help list-virtual-servers at the command line.

▼ To Update a Virtual Server

1 List virtual servers by using the list-virtual-servers(1) subcommand.

2 Modify the values for the specified virtual server by using the set(1) subcommand.
The virtual server is identified by its dotted name.

▼ To Delete a Virtual Server

Use the delete-virtual-server subcommand in remote mode to delete an existing virtual server.
1. Ensure that the server is running. Remote subcommands require a running server.

2. List virtual servers by using the `list-virtual-servers(1)` subcommand.

3. If necessary, notify users that the virtual server is being deleted.

4. Delete a virtual server by using the `delete-virtual-server(1)` subcommand.

5. To apply your changes, restart GlassFish Server. See “To Restart a Domain” on page 112.

Example 14–18 Deleting a Virtual Server

This example deletes the virtual server named `sampleServer` from `localhost`.

```
asadmin> delete-virtual-server sampleServer
Command delete-virtual-server executed successfully.
```

See Also You can also view the full syntax and options of the subcommand by typing `asadmin help delete-virtual-server` at the command line.

To Assign a Default Web Module to a Virtual Server

A default web module can be assigned to the default virtual server and to each new virtual server. To access the default web module for a virtual server, point the browser to the URL for the virtual server, but do not supply a context root. For example:

```
http://myvserver:3184/
```

A virtual server with no default web module assigned serves HTML or JavaServer Pages (JSP) content from its document root, which is usually `domain-dir/docroot`. To access this HTML or JSP content, point your browser to the URL for the virtual server, do not supply a context root, but specify the target file.

For example:

```
http://myvserver:3184/hellothere.jsp
```

To Assign a Virtual Server to an Application or Module

You can assign a virtual server to a deployed application or web module.
Before You Begin

The application or module must already be deployed. For more information, see Oracle GlassFish Server 3.1 Application Deployment Guide.

1. In the Administration Console, open the HTTP Service component under the relevant configuration.

2. Open the Virtual Servers component under the HTTP Service component.

3. Select the virtual server to which you want to assign a default web module.

4. Select the application or web module from the Default Web Module drop-down list.

To Set JSESSIONIDSS0 Cookie Attributes

Use the sso-cookie-http-only and sso-cookie-secure virtual server attributes to set the HttpOnly and Secure attributes of any JSESSIONIDSS0 cookies associated with web applications deployed to the virtual server.

- Use the set(1) subcommand to set the value of the sso-cookie-http-only and sso-cookie-secure virtual server attributes.

The values supported for these attributes are as follows:

- **sso-cookie-http-only**

 A boolean value that specifies whether the HttpOnly attribute is included in JSESSIONIDSS0 cookies. When set to true, which is the default, the HttpOnly attribute is included. When set to false, the HttpOnly attribute is not included.

- **sso-cookie-secure**

 A string value that specifies whether the Secure attribute is included in JSESSIONIDSS0 cookies. Allowed values are as follows:

 - true — The Secure attribute is included.
 - false — The Secure attribute is not included.
 - dynamic — The Secure attribute setting is inherited from the first session participating in SSO. This is the default value.
GlassFish Server supports a standard set of protocols and formats that ensure interoperability. Among these protocols are those defined by CORBA. The Object Request Broker (ORB) is the central component of CORBA. The ORB provides the required infrastructure to identify and locate objects, handle connection management, deliver data, and request communication. This chapter describes how to configure the ORB and the IIOP listeners.

The following topics are addressed here:
- “About the ORB” on page 331
- “Configuring the ORB” on page 332
- “Administering IIOP Listeners” on page 332

Instructions for accomplishing the tasks in this chapter by using the Administration Console are contained in the Administration Console online help.

About the ORB

The Common Object Request Broker Architecture (CORBA) model is based on clients requesting services from distributed objects or servers through a well-defined interface by issuing requests to the objects in the form of remote method requests. A *remote method request* carries information about the operation that needs to be performed, including the object name (called an object reference) of the service provider and parameters, if any, for the invoked method. CORBA automatically handles network programming tasks such as object registration, object location, object activation, request de-multiplexing, error-handling, marshalling, and operation dispatching.
Configuring the ORB

A CORBA object never talks directly with another. Instead, the object makes requests through a remote stub to the Internet Inter-Orb Protocol (IIOP) running on the local host. The local ORB then passes the request to an ORB on the other host using IIOP. The remote ORB then locates the appropriate object, processes the request, and returns the results.

IIOP can be used as a Remote Method Invocation (RMI) protocol by applications or objects using RMI-IIOP. Remote clients of enterprise beans (EJB modules) communicate with GlassFish Server by using RMI-IIOP.

Administering IIOP Listeners

An IIOP listener is a listen socket that accepts incoming connections from the remote clients of enterprise beans and from other CORBA-based clients. Multiple IIOP listeners can be configured for GlassFish Server. For each listener, specify a port number (optional; default 1072), a network address, and security attributes (optional). If you create multiple listeners, you must assign a different port number for each listener.

The following topics are addressed here:
- “To Create an IIOP Listener” on page 332
- “To List IIOP Listeners” on page 333
- “To Update an IIOP Listener” on page 333
- “To Delete an IIOP Listener” on page 334

▼ To Create an IIOP Listener

Use the create-iiop-listener subcommand in remote mode to create an IIOP listener.

1 Ensure that the server is running.
Remote subcommands require a running server.

2 Create an IIOP listener by using the create-iiop-listener(1) subcommand.
Information about the properties for the subcommand is included in this help page.

3 To apply your changes, restart GlassFish Server.
See “To Restart a Domain” on page 112.

Example 15–1 Creating an IIOP Listener

This example creates an IIOP listener named sample_iop_listener.
Asadmin>
create-iiop-listener --listeneraddress 192.168.1.100
--iioproport 1400 sample_iiop_listener
Command create-iiop-listener executed successfully.

See Also
You can also view the full syntax and options of the subcommand by typing asadmin help
create-iiop-listener at the command line.

To List IIOP Listeners

Use the list-iiop-listeners subcommand in remote mode to list the existing IIOP listeners.

1 Ensure that the server is running.
Remote subcommands require a running server.

2 List the IIOP listeners by using the list-iiop-listeners(1) subcommand.

Example 15–2
Listing IIOP Listeners
This example lists all the IIOP listeners for the server instance.

asadmin> list-iiop-listeners
orb-listener-1
SSL
SSL_MUTUALAUTH
sample_iiop_listener
Command list-iiop-listeners executed successfully.

See Also
You can also view the full syntax and options of the subcommand by typing asadmin help
list-iiop-listeners at the command line.

To Update an IIOP Listener

1 List the IIOP listeners by using the list-iiop-listeners(1) subcommand.

2 Modify the values for the specified IIOP listener by using the set(1) subcommand.
The listener is identified by its dotted name.

Example 15–3
Updating an IIOP Listener
This example changes SSL from enabled to disabled.

asadmin> set "server.iiop-service.iiop-listener.SSL.enabled"
server.iiop-service.iiop-listener.SSL.enabled=false
Command set executed successfully.
To Delete an IIOP Listener

Use the `delete-iiop-listener` subcommand in remote mode to delete an IIOP listener.

1. **Ensure that the server is running.**
 Remote subcommands require a running server.

2. **List the IIOP listeners by using the `list-iiop-listeners()` subcommand.**

3. **Delete an IIOP listener by using the `delete-iiop-listener()` subcommand.**

4. **To apply your changes, restart GlassFish Server.**
 See “To Restart a Domain” on page 112.

Example 15–4 Deleting an IIOP Listener

This example deletes the IIOP listener named `sample_iiop_listener`.

```bash
asadmin> delete-iiop-listener sample_iiop_listener
Command delete-iiop-listener executed successfully.
```

See Also You can also view the full syntax and options of the subcommand by typing `asadmin help delete-iiop-listener` at the command line.
GlassFish Server includes the JavaMail API along with JavaMail service providers that allow an application component to send email notifications over the Internet and to read email from IMAP and POP3 mail servers.

The following topics are addressed here:

- “About JavaMail” on page 335
- “Administering JavaMail Resources” on page 336

Instructions for accomplishing the tasks in this chapter by using the Administration Console are contained in the Administration Console online help.

About JavaMail

The JavaMail API is a set of abstract APIs that model a mail system. The JavaMail API provides a platform-independent and protocol-independent framework to build mail and messaging applications and provide facilities for reading and sending electronic messages. Service providers implement particular protocols. Using the API you can add email capabilities to your applications. JavaMail provides access from Java applications to Internet Message Access Protocol (IMAP) and Simple Mail Transfer Protocol (SMTP) capable mail servers on your network or the Internet. The API does not provide mail server functionality; you must have access to a mail server to use JavaMail.

The JavaMail API is implemented as an optional package in the Java platform and is also available as part of the Java EE platform.

To learn more about the JavaMail API, consult the JavaMail web site (http://www.oracle.com/technetwork/java/javamail/).
Administering JavaMail Resources

When you create a mail session, the server-side components and applications are enabled to access JavaMail services with JNDI, using the session properties you assign for them. When creating a mail session, you can designate the mail hosts, the transport and store protocols, and the default mail user so that components that use JavaMail do not have to set these properties. Applications that are heavy email users benefit because GlassFish Server creates a single session object and makes the session available to any component that needs it.

JavaMail settings such as the following can be specified:

- **JNDI Name.** The unique name for the mail session. Use the naming sub-context prefix mail/ for JavaMail resources. For example: `mail/MySession`.
- **Mail Host.** The host name of the default mail server. The connect methods of the store and transport objects use this value if a protocol-specific host property is not supplied. The name must be resolvable to an actual host name.
- **Default User.** The default user name to provide when connecting to a mail server. The connect methods of the store and transport objects use this value if a protocol-specific username property is not supplied.
- **Default Return Address.** The email address of the default user, in the form: `username@host.domain`.
- **Description.** A descriptive statement for the component.
- **Session.** Indicates whether or not mail session is enabled or disabled at this time.

The following topics are addressed here:

- “To Create a JavaMail Resource” on page 336
- “To List JavaMail Resources” on page 337
- “To Update a JavaMail Resource” on page 337
- “To Delete a JavaMail Resource” on page 338

▼ To Create a JavaMail Resource

Use the `create-javamail-resource` subcommand in remote mode to create a JavaMail session resource. The JNDI name for a JavaMail session resource customarily includes the mail/naming subcontext. For example: `mail/MyMailSession`.

1. **Ensure that the server is running.**
 Remote subcommands require a running server.

2. **Create a JavaMail resource by using the `create-javamail-resource(1)` subcommand.**
 Information about the properties for the subcommand is included in this help page.
3 To apply your changes, restart GlassFish Server.
See “To Restart a Domain” on page 112.

Example 16–1 Creating a JavaMail Resource
This example creates a JavaMail resource named mail/MyMailSession. The escape character (\) is used in the --fromaddress option to distinguish the dot (.) and at sign (@).

```bash
asadmin> create-javamail-resource --mailhost localhost --mailuser sample --fromaddress sample\@sun\.com mail/MyMailSession
Command create-javamail-resource executed successfully.
```

See Also You can also view the full syntax and options of the subcommand by typing asadmin help create-javamail-resource at the command line.

To List JavaMail Resources
Use the list-javamail-resources subcommand in remote mode to list the existing JavaMail session resources.

1 Ensure that the server is running.
Remote subcommands require a running server.

2 List the JavaMail resources by using the list-javamail-resources(1) subcommand.

Example 16–2 Listing JavaMail Resources
This example lists the JavaMail resources on localhost.

```bash
asadmin> list-javamail-resources
mail/MyMailSession
Command list-javamail-resources executed successfully.
```

See Also You can also view the full syntax and options of the subcommands by typing asadmin help list-javamail-resources at the command line.

To Update a JavaMail Resource

1 List the JavaMail resources by using the list-javamail-resources(1) subcommand.

2 Modify the values for the specified JavaMail source by using the set(1) subcommand.
The resource is identified by its dotted name.
Example 16–3 Updating a JavaMail Resource

This example changes joeserver to joe.

```
asadmin> set server.resources.mail-resource.mail/
    MyMailSession.user=joeserver.resources.mail-resource.mail/
    MyMailSession.user=joe
Command set executed successfully.
```

▼ To Delete a JavaMail Resource

Use the delete-javamail-resource subcommands in remote mode to delete a JavaMail session resource.

Before You Begin

References to the specified resource must be removed before running the delete-javamail-resource subcommands.

1 Ensure that the server is running.
 Remote subcommands require a running server.

2 List the JavaMail resources by using the list-javamail-resources(1) subcommands.

3 Delete a JavaMail resource by using the delete-javamail-resource(1) subcommands.

4 To apply your changes, restart GlassFish Server.
 See “To Restart a Domain” on page 112.

Example 16–4 Deleting a JavaMail Resource

This example deletes the JavaMail session resource named mail/MyMailSession.

```
asadmin> delete-javamail-resource mail/MyMailSession
Command delete-javamail-resource executed successfully.
```

See Also You can also view the full syntax and options of the subcommand by typing asadmin help delete-javamail-resource at the command line.
The Java Message Service (JMS) API is a messaging standard that allows Java EE applications and components, including message-driven beans (MDBs), to create, send, receive, and read messages. It enables distributed communication that is loosely coupled, reliable, and asynchronous.

GlassFish Server supports JMS messaging by communicating with a JMS provider through a Java EE Connector resource adapter. By default, GlassFish Server provides JMS messaging through its built-in jmsra resource adapter communicating with GlassFish Server Message Queue, which is included with GlassFish Server. This combination, known as the JMS Service, is tightly integrated with GlassFish Server, providing a rich set of asadmin subcommands and Administration Console pages to simplify JMS messaging administration tasks.

GlassFish Server also supports the Generic Resource Adapter for JMS (GenericJMSRA), available as an Add-On in the Administration Console’s Update Tool, for use as a resource adapter to connect to other JMS providers. The last section in this chapter, “Using the Generic Resource Adapter for JMS to Integrate Supported External JMS Providers” on page 356, describes the GenericJMSRA and provides instructions for using it to make other supported JMS providers available to GlassFish Server.

The following topics are addressed here:

- “About the JMS Service” on page 340
- “Updating the JMS Service Configuration” on page 341
- “Administering JMS Hosts” on page 343
- “Administering JMS Connection Factories and Destinations” on page 348
- “Administering JMS Physical Destinations” on page 352
- “Special Situations When Using the JMS Service” on page 355
- “Troubleshooting the JMS Service” on page 356
- “Using the Generic Resource Adapter for JMS to Integrate Supported External JMS Providers” on page 356

Instructions for accomplishing the task in this chapter by using the Administration Console are contained in the Administration Console online help.
About the JMS Service

To support JMS messaging, the JMS Service provides the following administrative objects:

JMS Service Configuration

The JMS service configuration is part of the overall configuration for a GlassFish standalone instance or cluster. It specifies how the JMS Service is to create and maintain connections with JMS Hosts.

JMS Hosts

JMS hosts are the message servers that host destinations, store messages, and interact with applications to send and receive messages across connections. In Message Queue, JMS hosts are called *brokers*.

The JMS service supports these types of JMS hosts:

- **Embedded** type, in which the JMS host runs in the same JVM as the GlassFish instance; its configuration and lifecycle are managed by the JMS service.
- **Local** type, in which the JMS host runs separately on the same host as the GlassFish instance; its configuration and lifecycle are managed by the JMS service.
- **Remote** type, in which the JMS host represents a Message Queue broker or broker cluster that is external to the JMS service; its operation is managed using Message Queue administrative tools.

For more information about JMS host types, see “About JMS Host Types” on page 343.

JMS Connection Factory Resources

JMS connection factory resources house the information that applications use to connect to a JMS provider. For each JMS connection factory, the JMS service automatically maintains a GlassFish connector resource and a GlassFish connector connection pool in order to support connection pooling and failover.

JMS Destination Resources

JMS destination resources house the information that applications use to specify the target destination of messages they produce and the source destination of messages they consume. For each JMS destination resource, the JMS service automatically maintains a GlassFish administered object.

JMS Physical Destinations

JMS physical destinations provide a means to create and manage JMS destinations administratively instead of having them created dynamically when needed by an application. While dynamic creation of destinations is often sufficient during application development, administratively created physical destinations are more suitable for production environments.
JMS Service High Availability

Just as GlassFish Server supports clusters of instances to provide high availability, Message Queue supports clusters of brokers to provide service availability or service and data availability, depending on the type of broker cluster, as described in Chapter 4, “Broker Clusters,” in Oracle GlassFish Server Message Queue 4.5 Technical Overview.

The JMS service takes advantage of this Message Queue capability and automatically creates and manages a Message Queue broker cluster when a GlassFish cluster’s configuration specifies Embedded or Local type JMS hosts. Additionally, both GlassFish clusters and standalone instances can use Message Queue broker clusters as Remote type JMS hosts.

For information about how the JMS service supports GlassFish clusters and Message Queue broker clusters, see Chapter 11, “Configuring Java Message Service High Availability,” in Oracle GlassFish Server 3.1-3.1.1 High Availability Administration Guide.

Updating the JMS Service Configuration

Because the JMS service configuration is part of the overall configuration for a standalone instance or cluster, it is created when the standalone instance or cluster is created. You can then update the JMS service configuration by using the Java Message Service page for the configuration in the Administration Console, or by using a set subcommand of the following form:

```
set configs.config.config-name.jms-service.attribute-name=attribute-value
```

The attributes you can set are:

- **type**
 The JMS host type the service is to use. Available choices are EMBEDDED, LOCAL and REMOTE. See “About JMS Host Types” on page 343 for more information.

- **init-timeout-in-seconds**
 The number of seconds GlassFish Server waits for the JMS service to start before aborting the startup.

- **start-args**
 A list of arguments the JMS service passes to Embedded and Local type JMS hosts on startup. Permissible arguments are the options supported by the Message Queue imqbrokerd command, as described in “Broker Utility” in Oracle GlassFish Server Message Queue 4.5 Administration Guide.

- **default-jms-host**
 The name of the default JMS host.
reconnect-enabled
When set to true, the JMS service attempts to reconnect to a JMS host (or one of the JMS hosts in the AddressList) when a connection is lost.

reconnect-attempts
The number of attempts to connect (or reconnect) for each JMS host in the AddressList before the JMS service tries the next address in the list. A value of -1 indicates that the number of reconnect attempts is unlimited (the JMS service attempts to connect to the first address until it succeeds).

reconnect-interval-in-seconds
The number of seconds between reconnect attempts. This interval applies for attempts on each JMS host in the AddressList and for successive addresses in the list. If it is too short, this time interval does not give a JMS host time to recover. If it is too long, the reconnect might represent an unacceptable delay.

addresslist-behavior
The order of connection attempts. Available choices are:
random
Select a JMS host from the AddressList randomly. If there are many clients attempting a connection using the same connection factory, specify random to prevent them from all being connected to the same JMS host.
priority
Always try to connect to the first JMS host in the AddressList and use another one only if the first one is not available.

addresslist-iterations
The number of times the JMS service iterates through the AddressList in an effort to establish (or reestablish) a connection. A value of -1 indicates that the number of attempts is unlimited.

mq-scheme
mq-service
The Message Queue address scheme name and connection service name to use for the AddressList if a non-default scheme or service is to be used. See “Connection Handling” in Oracle GlassFish Server Message Queue 4.5 Administration Guide for syntax information.

Note – After making changes to the JMS service configuration, GlassFish Server instances that use the configuration must be restarted in order for the changes to be propagated.
Setting Message Queue Broker Properties in the JMS Service Configuration

You can specify any Message Queue broker property in the JMS service configuration by adding it by name to the Additional Properties table on the Java Message Service page for the configuration in the Administration Console, or by using a `set` subcommand of the following form:

```
set configs.config.config-name.jms-service.property.broker-property-name=value
```

If the broker property name includes dots, preface the dots with two backslashes (`\`); for example, to set the `imq.system.max_count` property, specify `imq\.system\.max_count` in the `set` subcommand.

Note – You can also set broker properties in the JMS host. If you set the same broker property in both the JMS service configuration and the JMS host, the value specified in the JMS host is used.

Administering JMS Hosts

A JMS host represents a Message Queue broker. JMS contains a JMS hosts list (the `AddressList` property) that contains all the JMS hosts that are used by GlassFish Server. The JMS hosts list is populated with the hosts and ports of the specified Message Queue brokers and is updated whenever a JMS host configuration changes. When you create JMS resources or deploy message driven beans, the resources or beans inherit the JMS hosts list.

The following topics are addressed here:
- "About JMS Host Types" on page 343
- "Configuring Embedded and Local JMS Hosts" on page 344
- "To Create a JMS Host" on page 345
- "To List JMS Hosts" on page 346
- "To Update a JMS Host" on page 347
- "To Delete a JMS Host" on page 348

For information about administering JMS hosts that are servicing GlassFish clusters, see "Configuring GlassFish Clusters to Use Message Queue Broker Clusters" in Oracle GlassFish Server 3.1-3.1.1 High Availability Administration Guide.

About JMS Host Types

The JMS service uses Message Queue (MQ) brokers as JMS hosts, integrating them in three ways:
Embedded Type
When the JMS service configuration’s type attribute is EMBEDDED, the MQ broker is co-located in the same JVM as the GlassFish server instance it services. The JMS service starts it in-process and manages its configuration and lifecycle.

For this type, the JMS service uses lazy initialization to start the broker when the first JMS operation is requested instead of immediately when the GlassFish instance is started. If necessary, you can force startup of the broker by using the jms-ping(1) command.

Additionally, if the GlassFish instance is a standalone instance (not a clustered instance), JMS operations use a Message Queue feature called direct mode to bypass the networking stack, leading to performance optimization.

Local Type
When the JMS service configuration’s type attribute is LOCAL, the JMS service starts the MQ broker specified in the configuration as the default JMS host in a separate process on the same host as the GlassFish server instance. The JMS service manages its configuration and lifecycle.

For this type, the JMS service starts the broker immediately when the GlassFish instance is started.

The JMS service provides the Message Queue broker an additional port to start the RMI registry. This port number is equal to the broker’s JMS port plus 100. For example, if the JMS port number is 37676, then the additional port’s number will be 37776. Additionally, the start-args property of the JMS service configuration can be used to specify Message Queue broker startup options.

Remote Type
When the JMS service configuration’s type attribute is REMOTE, the JMS service uses the information defined by the default JMS host to communicate with an MQ broker or broker cluster that has been configured and started using Message Queue tools, as described in the Oracle GlassFish Server Message Queue 4.5 Administration Guide. Ongoing administration and tuning of the broker or broker cluster are also performed using Message Queue tools.

Configuring Embedded and Local JMS Hosts
Because the JMS service, not Message Queue, manages Embedded and Local JMS hosts automatically, you should avoid using Message Queue utilities to configure them. Instead, specify broker properties in the JMS service configuration or in the JMS host.

Should the need to use Message Queue utilities arise, you must use the -varhome option when running certain Message Queue utilities to specify the IMQ_VARHOME location of the Embedded or Local JMS host. This location depends on which GlassFish instance the JMS host is servicing:

- For server, the Domain Administration Server (DAS), the IMQ_VARHOME location is:
domain-root-dir/domain-name/imq

- For any other GlassFish instance, the IMQ_VARHOME location is:
 as-install/nodes/node-name/instance-name/imq

For example, the broker log file for an Embedded or Local JMS host servicing the DAS is available at domain-root-dir/domain-name/imq/instances/imqbroker/log/log.txt, and the broker log file for an Embedded or Local JMS host servicing any other GlassFish instance is available at as-install/nodes/node-name/instance-name/imq/instances/mq-instance-name/log/log.txt.

Note – When using Message Queue utilities on the Windows platform, you must explicitly use the Windows executable (.exe) versions of the utilities, even when running command shells such as Cygwin. For example, instead of running imqcmd, you must run imqcmd.exe.

To Create a JMS Host

The default JMS service configuration includes a JMS host, default_JMS_host. For most situations, this host is sufficient, so replacing it or creating additional JMS hosts is not often necessary and is a task for advanced users. Use the create-jms-host subcommand in remote asadmin mode to create an additional JMS host.

1. **Ensure that the server is running.**
 Remote asadmin subcommands require a running server.

2. **Create the JMS host by using the create-jms-host(1) subcommand:**

   ```bash
   asadmin> create-jms-host --mqhost hostname --mqport portNumber --mquser adminUser --mqpassword adminPassword --target glassfishTarget --property mqBrokerPropList jms-host-name
   ```

 - **--mqhost**
 The host name of the Message Queue broker.

 - **--mqport**
 The port number of the Message Queue broker.

 - **--mquser**
 The user name of the administrative user of the Message Queue broker.

 - **--mqpassword**
 The password of the administrative user of the Message Queue broker.

 - **--target**
 The GlassFish Server object for which the JMS host is being created. For details, see create-jms-host(1).
- --property
 A list of one or more Message Queue broker properties to configure the broker. The list is colon-separated (:) and has the form:

 prop1Name=prop1Value:prop2Name=prop2Value:...

 If a broker property name includes dots, preface the dots with two backslashes (\); for example, to include the imq.system.max_count property, specify imq\system\max_count in the --property option.

 Note – You can also set broker properties in the JMS service configuration. If you set the same broker property in both the JMS host and the JMS service configuration, the value specified in the JMS host is used.

jms-host-name

The unique name of the JMS host.

Example 17–1 Creating a JMS Host

This example creates a JMS host named MyNewHost.

```bash
asadmin> create-jms-host --mqhost pigeon --mqport 7677
--mquser admin --mqpassword admin MyNewHost
Jms Host MyNewHost created.
Command create-jms-host executed successfully.
```

See Also You can also view the full syntax and options of the subcommand by typing asadmin help create-jms-host at the command line.

To List JMS Hosts

Use the list-jms-hosts subcommand in remote asadmin mode to list the existing JMS hosts.

1. **Ensure that the server is running.**
 Remote asadmin subcommands require a running server.

2. **List the JMS hosts by using the list-jms-hosts(1) subcommand.**

Example 17–2 Listing JMS Hosts

The following subcommand lists the existing JMS hosts.
To Update a JMS Host

Use the set subcommand in remote asadmin mode to update an existing JMS host.

1. Ensure that the server is running.
 Remote asadmin subcommands require a running server.

2. Use the get(1) subcommand to list the current attribute values of the desired JMS host:
   ```bash
   asadmin> get configs.config.config-name.jms-service.jms-host.jms-host-name.*
   ```
 For information about JMS host attributes, see `create-jms-host(1)`.

3. Use the set(1) subcommand to modify a JMS host attribute:
   ```bash
   asadmin> set configs.config.config-name.jms-service.jmshost.
   jms-host-name.attribute-name=attribute-value
   ```
 The attributes you can set are:
 - **host**: The host name of the Message Queue broker.
 - **port**: The port number of the Message Queue broker.
 - **admin-user-name**: The user name of the administrative user of the Message Queue broker.
 - **admin-password**: The password of the administrative user of the Message Queue broker.
 - **property.\broker-property-name**: A Message Queue broker property. The property, and the value assigned to it, are used to configure the Message Queue broker.

 If the broker property name includes dots, preface the dots with two backslashes (\); for example, to include the imq.system.max_count property, specify `imq\system\max_count` in the set subcommand.

Note – You can also set broker properties in the JMS service configuration. If you set the same broker property in both the JMS host and the JMS service configuration, the value specified in the JMS host is used.
Example 17–3 Updating a JMS Host

This example changes the value of the host attribute of the JMS host default_JMS_Host. By default this value is localhost.

```bash
asadmin> set configs.config.server-config.jms-service.jms-host.default_JMS_host.host= "server1.middleware.example.com"
```

To Delete a JMS Host

Use the delete-jms-host subcommand in remote asadmin mode to delete a JMS host from the JMS service. If you delete the only JMS host, the JMS service will not be able to start until you create a new JMS host.

1 Ensure that the server is running.
 Remote asadmin subcommands require a running server.

2 List the JMS hosts by using the list-jms-hosts(1) subcommand.

3 Delete a JMS host by using the delete-jms-host(1) subcommand.

Example 17–4 Deleting a JMS Host

This example deletes a JMS host named MyNewHost.

```bash
asadmin> delete-jms-host MyNewHost
Command delete-jms-host executed successfully.
```

See Also You can also view the full syntax and options of the subcommand by typing asadmin help delete-jms-host at the command line.

Administering JMS Connection Factories and Destinations

The JMS API uses two kinds of administered objects. Connection factory objects allow an application to create other JMS objects programmatically. Destination objects serve as repositories for messages. How these objects are created is specific to each implementation of JMS. In GlassFish Server, JMS is implemented by performing the following tasks:

- Creating a connection factory
- Creating a destination, which requires creating a physical destination and a destination resource that refers to the physical destination
JMS applications use the Java Naming and Directory Interface (JNDI) API to access the connection factory and destination resources. A JMS application normally uses at least one connection factory and at least one destination. By studying the application or consulting with the application developer, you can determine what resources must be created. The order in which the resources are created does not matter.

GlassFish Server provides the following types of connection factory objects:
- QueueConnectionFactory objects, used for point-to-point communication
- TopicConnectionFactory objects, used for publish-subscribe communication
- ConnectionFactory objects, which can be used for both point-to-point and publish-subscribe communications (recommended for new applications)

GlassFish Server provides the following types of destination objects:
- Queue objects, used for point-to-point communication
- Topic objects, used for publish-subscribe communication

The following topics are addressed here:
- “To Create a Connection Factory or Destination Resource” on page 349
- “To List JMS Resources” on page 351
- “To Delete a Connection Factory or Destination Resource” on page 351

The subcommands in this section can be used to administer both the connection factory resources and the destination resources. For information on JMS service support of connection pooling and failover, see “Connection Failover” in Oracle GlassFish Server 3.1-3.1.1 High Availability Administration Guide. For instructions on administering physical destinations, see “Administering JMS Physical Destinations” on page 352.

To Create a Connection Factory or Destination Resource

For each JMS connection factory that you create, GlassFish Server creates a connector connection pool and connector resource. For each JMS destination that you create, GlassFish Server creates a connector admin object resource. If you delete a JMS resource, GlassFish Server automatically deletes the connector resources.

Use the create-jms-resource command in remote asadmin mode to create a JMS connection factory resource or a destination resource.
Tip – To specify the address list property (in the format `host:mqport,host2:mqport,host3:mqport`) for the `asadmin create-jms-resource` command, escape the `:` by using `\`. For example, `host1\:mqport,host2\:mqport,host3\:mqport`. For more information about using escape characters, see the `asadmin(1M)` concepts page.

To update a JMS connection factory, use the set subcommand for the underlying connector connection pool, See “To Update a Connector Connection Pool” on page 297.

To update a destination, use the set subcommand for the admin object resource. See “To Update an Administered Object” on page 311.

1. **Ensure that the server is running.**
 Remote `asadmin` subcommands require a running server.

2. **Create a JMS resource by using the `create-jms-resource` command.**
 Information about the properties for the subcommand is included in this help page.

3. **(Optional) If needed, restart the server.**
 Some properties require server restart. See “Configuration Changes That Require Restart” on page 40. If your server needs to be restarted, see “To Restart a Domain” on page 112.

Example 17–5 Creating a JMS Connection Factory

This example creates a connection factory resource of type `javax.jms.ConnectionFactory` whose JNDI name is `jms/DurableConnectionFactory`. The `ClientId` property sets a client ID on the connection factory so that it can be used for durable subscriptions. The JNDI name for a JMS resource customarily includes the `jms/` naming subcontext.

```
asadmin> create-jms-resource --restype javax.jms.ConnectionFactory
   --description "connection factory for durable subscriptions"
   --property ClientId=MyID jms/DurableConnectionFactory
Command create-jms-resource executed successfully.
```

Example 17–6 Creating a JMS Destination

This example creates a destination resource whose JNDI name is `jms/MyQueue`.

```
asadmin> create-jms-resource --restype javax.jms.Queue
   --property Name=PhysicalQueue jms/MyQueue
Command create-jms-resource executed successfully.
```

See Also You can also view the full syntax and options of the subcommand by typing `asadmin help create-jms-resource` at the command line.
▼ To List JMS Resources

Use the `list-jms-resources` subcommand in remote `asadmin` mode to list the existing connection factory and destination resources.

1. **Ensure that the server is running.**
 Remote `asadmin` subcommands require a running server.

2. **List the existing JMS resources by using the `list-jms-resources` subcommand.**

Example 17–7 Listing All JMS Resources

This example lists all the existing JMS connection factory and destination resources.

```
asadmin> list-jms-resources
jms/Queue
jms/ConnectionFactory
jms/DurableConnectionFactory
jms/Topic
Command list-jms-resources executed successfully
```

Example 17–8 Listing a JMS Resources of a Specific Type

This example lists the resources for the resource type `javax.jms.TopicConnectionFactory`.

```
asadmin> list-jms-resources --restype javax.jms.TopicConnectionFactory
jms/DurableTopicConnectionFactory
jms/TopicConnectionFactory
jms/TopicConnectionFactory
Command list-jms-resources executed successfully.
```

See Also You can also view the full syntax and options of the subcommand by typing `asadmin help list-jms-resources` at the command line.

▼ To Delete a Connection Factory or Destination Resource

Use the `delete-jms-resource` subcommand in remote `asadmin` mode to remove the specified connection factory or destination resource.

Before You Begin Ensure that you remove all references to the specified JMS resource before running this subcommand.

1. **Ensure that the server is running.**
 Remote `asadmin` subcommands require a running server.
List the existing JMS resources by using the `list-jms-resources(1)` subcommand.

Delete the JMS resource by using the `delete-jms-resource(1)` subcommand.

Example 17–9 Deleting a JMS Resource

This example deletes the `jms/Queue` resource.

```
asadmin> delete-jms-resource jms/Queue
Command delete-jms-resource executed successfully
```

You can also view the full syntax and options of the subcommand by typing `asadmin help delete-jms-resource` at the command line.

Administering JMS Physical Destinations

Messages are delivered for routing and delivery to consumers by using *physical destinations* in the JMS provider. A physical destination is identified and encapsulated by an administered object (such as a `Topic` or `Queue` destination resource) that an application component uses to specify the destination of messages it is producing and the source of messages it is consuming. For instructions on configuring a destination resource, see “To Create a Connection Factory or Destination Resource” on page 349.

If a message-driven bean is deployed and the physical destination it listens to does not exist, GlassFish Server automatically creates the physical destination and sets the value of the `maxNumActiveConsumers` property to -1. However, it is good practice to create the physical destination beforehand. The first time that an application accesses a destination resource, Message Queue automatically creates the physical destination specified by the Name property of the destination resource. This automatically created physical destination is temporary and expires after a period specified by a Message Queue configuration property, provided that there are no messages in it and no message producers or consumers connected to it.

The following topics are addressed here:

- “To Create a JMS Physical Destination” on page 352
- “To List JMS Physical Destinations” on page 353
- “To Purge Messages From a Physical Destination” on page 354
- “To Delete a JMS Physical Destination” on page 354

To Create a JMS Physical Destination

For production purposes, always create physical destinations. During the development and testing phase, however, this step is not required. Use the `create-jmsdest` subcommand in remote `asadmin` mode to create a physical destination.
Because a physical destination is actually a Message Queue object rather than a server object, you use Message Queue broker commands to update properties. For information on Message Queue properties, see Oracle GlassFish Server Message Queue 4.5 Administration Guide.

1 Ensure that the server is running.
Remote asadmin subcommands require a running server.

2 Create a JMS physical destination by using the create-jmsdest(1) subcommand.
Information about the properties for the subcommand is included in this help page.

3 (Optional) If needed, restart the server.
Some properties require server restart. See “Configuration Changes That Require Restart” on page 40. If your server needs to be restarted, see “To Restart a Domain” on page 112.

Example 17–10 Creating a JMS Physical Destination
This example creates a queue named PhysicalQueue.

```
asadmin> create-jmsdest --desttype queue --property User=public:Password=public PhysicalQueue
Command create-jmsdest executed successfully.
```

See Also You can also view the full syntax and options of the subcommand by typing asadmin help create-jmsdest at the command line.

To List JMS Physical Destinations
Use the list-jmsdest subcommand in remote asadmin mode to list the existing JMS physical destinations.

1 Ensure that the server is running.
Remote asadmin subcommands require a running server.

2 List the existing JMS physical destinations by using the list-jmsdest(1) subcommand.

Example 17–11 Listing JMS Physical Destinations
This example lists the physical destinations for the default server instance.

```
asadmin> list-jmsdest
PhysicalQueue queue {}
PhysicalTopic topic {}
Command list-jmsdest executed successfully.
```
You can also view the full syntax and options of the subcommand by typing `asadmin help list-jmsdest` at the command line.

▼ **To Purge Messages From a Physical Destination**

Use the `flush-jmsdest` subcommand in remote `asadmin` mode to purge the messages from a physical destination in the specified target's JMS service configuration.

1. **Ensure that the server is running.**
 Remote `asadmin` subcommands require a running server.

2. **Purge messages from the a JMS physical destination by using the `flush-jmsdest(1)` subcommand.**

3. *(Optional)* If needed, restart the server.
 Some properties require server restart. See “Configuration Changes That Require Restart” on page 40. If your server needs to be restarted, see “To Restart a Domain” on page 112.

Example 17–12 Flushing Messages From a JMS Physical Destination

This example purges messages from the queue named `PhysicalQueue`.

```
asadmin> flush-jmsdest --desttype queue PhysicalQueue
Command flush-jmsdest executed successfully
```

See Also You can also view the full syntax and options of the subcommand by typing `asadmin help flush-jmsdest` at the command line.

▼ **To Delete a JMS Physical Destination**

Use the `delete-jmsdest` subcommand in remote `asadmin` mode to remove the specified JMS physical destination.

1. **Ensure that the server is running.**
 Remote `asadmin` subcommands require a running server.

2. **List the existing JMS physical destinations by using the `list-jmsdest(1)` subcommand.**
Delete the physical resource by using the `delete-jmsdest(1)` subcommand.

Example 17–13 Deleting a Physical Destination

This example deletes the queue named PhysicalQueue.

```
$ asadmin> delete-jmsdest --desttype queue PhysicalQueue
Command delete-jmsdest executed successfully
```

See Also You can also view the full syntax and options of the subcommand by typing `asadmin help delete-jmsdest` at the command line.

Special Situations When Using the JMS Service

As mentioned earlier, Message Queue, through the built-in JMS resource adapter, is tightly integrated with GlassFish Server to provide JMS messaging managed through a rich set of `asadmin` subcommands and Administration Console pages to simplify JMS messaging administration tasks. In most instances, this tight integration is transparent and automatic, requiring no special effort on the part of an administrator. In certain special situations, though, an administrator must perform a task such as setting a Message Queue broker property or a GlassFish object attribute to enable or disable a capability of the integration. The topics in this section describe these situations.

Restarting an Embedded or Local Broker That Has Failed

Because the JMS service, not Message Queue, manages the lifecycle of brokers acting as Embedded and Local JMS hosts, do not use the `imqbrokerd` Message Queue utility to start such a broker that has failed. Instead, restart the GlassFish instance that the broker is servicing.

Changing the Admin User Password for an Embedded or Local Broker

Follow these steps to change the `admin` user password for an Embedded or Local broker:

1. Make sure the broker is running.
2. Use the `imqusermgr` Message Queue utility to change the password of the `admin` user.
3. Edit the configuration of the JMS host, changing the password of the `admin` user to the new password.
4. Restart the GlassFish instance that the broker is servicing.

When changing the password for the brokers in a broker cluster, first perform steps 1 and 2 on each broker. Then, perform step 3. Finally, perform step 4 on each broker.

Using SSL to Connect to an Oracle Internet Directory (OID) or Oracle Virtual Directory (OVD) User Repository

When using SSL to connect to an OID or OVD user repository, you must set the `imq.user_repository.ldap.ssl.socketfactory` Message Queue broker property to
Troubleshooting the JMS Service

If you encounter problems, consider the following:

- Use the `jms-ping(1)` subcommand to confirm that the Message Queue broker is running.
- View the GlassFish Server log file. For server, the Domain Administrations Server (DAS), the log is available at `domain-dir/logs/server.log`; for other GlassFish instances, the log is available at `as-install/nodes/node-name/instance-name/logs/server.log`.

 If the log file indicates that a Message Queue broker acting as a Remote JMS host did not respond to a message, stop the broker and then restart it.
- View the broker log. For a broker associated with the Domain Administration Server (DAS), the log is available at `domain-dir/imq/instances/imqbroker/log/log.txt`; for brokers associated with other GlassFish instances, the log is available at `as-install/nodes/node-name/instance-name/imq/instances/mq-instance-name/log/log.txt`.
- For Remote type JMS hosts, be sure to start Message Queue brokers first, then GlassFish Server instances.
- If all Message Queue brokers are down, it can take up to 30 minutes for GlassFish Server to go down or up when you are using the default values in JMS. You can change the default values for this timeout. For example:

  ```
  asadmin set domain1.jms-service.reconnect-interval-in-seconds=5
  ```

Using the Generic Resource Adapter for JMS to Integrate Supported External JMS Providers

GlassFish Server supports the integration and use of Oracle WebLogic JMS and IBM WebSphere MQ JMS providers through the use of the Generic Resource Adapter for JMS (GenericJMSRA), which is available as an Add-On in the Administration Console’s Update Tool. This Java EE connector 1.5 resource adapter can wrap the JMS client library of Oracle WebLogic JMS and IBM WebSphere MQ and make it available for use by GlassFish. The adapter is a .rar archive that can be deployed and configured using GlassFish Server administration tools.

The following topics are addressed here:

- “Configuring GenericJMSRA for Supported External JMS Providers” on page 357
- “Using GenericJMSRA with WebLogic JMS” on page 364
- “Using GenericJMSRA with IBM WebSphere MQ” on page 377
Configuring GenericJMSRA for Supported External JMS Providers

GenericJMSRA has three main properties that need to be configured: SupportXA, DeliveryType, and ProviderIntegrationMode. The values that need to be set for them depends on the capabilities of the JMS provider being used, as follows:

- **SupportXA** — indicates whether the JMS provider supports XA or not.
- **DeliveryType** — indicates whether an MDB should use a ConnectionConsumer or Consumer.receive() when consuming messages.
- **ProviderIntegrationMode** — indicates what mode of integration is required. The available integration modes are jndi and javabean. Some JMS providers support only one integration mode while others may offer the choice of both
 - If jndi is specified, then the resource adapter will obtain JMS connection factories and destinations from the JMS provider’s JNDI repository.
 - If javabean is specified then the resource adapter will obtain JMS connection factories and destinations by instantiating the appropriate classes directly.

Which option is specified determines which other properties need to be set.

▼ To Deploy and Configure GenericJMSRA

Before deploying GenericJMSRA, JMS client libraries must be made available to GlassFish Server. For some JMS providers, client libraries might also include native libraries. In such cases, these native libraries must be made available to any GlassFish Server JVMs.

1. **Download the genericra.rar archive as an Add-On in the Administration Console’s Update Tool.**

2. **Deploy GenericJMSRA the same way you would deploy a connector module.**
 See “Deploying a Connector Module” in Oracle GlassFish Server 3.1 Application Deployment Guide

3. **Configure the resource adapter’s properties.**
 See “GenericJMSRA Configuration Properties” on page 358.

4. **Create a connector connection pool.**
 See “To Create a Connector Connection Pool” on page 295.

5. **Create a connector resource.**
 See “To Create a Connector Resource” on page 298.
6 Create an administered object resource.
 See “To Create an Administered Object” on page 310.

GenericJMSRA Configuration Properties

The following table describes the properties that can be set to when configuring the resource adapter.

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Valid Values</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SupportsXA</td>
<td>true/false</td>
<td>false</td>
<td>Specifies whether the JMS client supports XA transactions.</td>
</tr>
<tr>
<td>DeliveryType</td>
<td>Synchronous/Asynchronous</td>
<td>Asynchronous</td>
<td>Specifies whether an MDB should use a ConnectionConsumer (Asynchronous) or consumer.receive() (Synchronous) when consuming messages.</td>
</tr>
<tr>
<td>QueueConnectionFactory</td>
<td>A valid class name</td>
<td>None</td>
<td>Class name of javax.jms.QueueConnectionFactory implementation of the JMS client. This class must be made available on the application server classpath. Used if ProviderIntegrationMode is javabean.</td>
</tr>
<tr>
<td>TopicConnectionFactory</td>
<td>A valid class name</td>
<td>None</td>
<td>Class name of javax.jms.TopicConnectionFactory implementation of the JMS client. This class must be made available on the application server classpath. Used if ProviderIntegrationMode is specified as javabean.</td>
</tr>
<tr>
<td>XAC ['',ConnectionFactory']</td>
<td>A valid class name</td>
<td>None</td>
<td>Class name of javax.jmsConnectionFactory implementation of the JMS client. This class must be made available on the application server classpath. Used if ProviderIntegrationMode is specified as javabean.</td>
</tr>
<tr>
<td>Property Name</td>
<td>Valid Values</td>
<td>Default Value</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------------</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>XAQueueConnectionFactory</td>
<td>A valid class name</td>
<td>None</td>
<td>Class name of <code>javax.jms.XAQueueConnectionFactory</code> implementation of the JMS client. This class must be made available on the application server classpath. Used if <code>ProviderIntegrationMode</code> is specified as <code>javabeen</code>.</td>
</tr>
<tr>
<td>XATopicConnectionFactory</td>
<td>A valid class name</td>
<td>None</td>
<td>Class name of <code>javax.jms.XATopicConnectionFactory</code> implementation of the JMS client. This class must be made available on the application server classpath. Used if <code>ProviderIntegrationMode</code> is <code>javabeen</code>.</td>
</tr>
<tr>
<td>TopicClassName</td>
<td>A valid class name</td>
<td>None</td>
<td>Class Name of <code>javax.jms.Topic</code> implementation of the JMS client. This class must be made available on the application server classpath. Used if <code>ProviderIntegrationMode</code> is <code>javabeen</code>.</td>
</tr>
<tr>
<td>QueueClassName</td>
<td>A valid class name</td>
<td>None</td>
<td>Class Name of <code>javax.jms.Queue</code> implementation of the JMS client. This class must be made available on the application server classpath. Used if <code>ProviderIntegrationMode</code> is specified as <code>javabeen</code>.</td>
</tr>
<tr>
<td>ConnectionFactoryProperties</td>
<td>Name value pairs separated by comma</td>
<td>None</td>
<td>Specifies the <code>javabeen</code> property names and values of the <code>ConnectionFactory</code> of the JMS client. Required only if <code>ProviderIntegrationMode</code> is <code>javabeen</code>.</td>
</tr>
<tr>
<td>JndiProperties</td>
<td>Name value pairs separated by comma</td>
<td>None</td>
<td>Specifies the JNDI provider properties to be used for connecting to the JMS provider's JNDI. Used only if <code>ProviderIntegrationMode</code> is <code>jndi</code>.</td>
</tr>
</tbody>
</table>
Property Name Valid Values Default Value Description

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Valid Values</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CommonSetter MethodName</td>
<td>Method name</td>
<td>None</td>
<td>Specifies the common setter method name that some JMS vendors use to set the properties on their administered objects. Used only if ProviderIntegrationMode is javabean. For example, in the case of Message Queue, this would be <code>setProperty</code>.</td>
</tr>
<tr>
<td>UserName</td>
<td>Name of the JMS user</td>
<td>None</td>
<td>User name to connect to the JMS Provider.</td>
</tr>
<tr>
<td>Password</td>
<td>Password for the JMS user</td>
<td>None</td>
<td>Password to connect to the JMS provider.</td>
</tr>
<tr>
<td>RMPolicy</td>
<td>ProviderManaged or OnePerPhysicalConnection</td>
<td>Provider Managed</td>
<td>The <code>isSameRM</code> method on an XAResource is used by the Transaction Manager to determine if the Resource Manager instance represented by two XAResources are the same. When <code>RMPolicy</code> is set to <code>ProviderManaged</code> (the default value), the JMS provider is responsible for determining the <code>RMPolicy</code> and the XAResource wrappers in GenericJMSRA merely delegate the <code>isSameRM</code> call to the JMS provider's XA resource implementations. This should ideally work for most JMS providers. Some XAResource implementations such as WebSphere MQ rely on a resource manager per physical connection and this causes issues when there is inbound and outbound communication to the same queue manager in a single transaction (for example, when an MDB sends a response to a destination). When <code>RMPolicy</code> is set to <code>OnePerPhysicalConnection</code>, the XAResource wrapper implementation's <code>isSameRM</code> in GenericJMSRA would check if both the XAResources use the same physical connection, before delegating to the wrapped objects.</td>
</tr>
</tbody>
</table>
Connection Factory Properties

ManagedConnectionFactory properties are specified when a connector-connection-pool is created. All the properties specified while creating the resource adapter can be overridden in a ManagedConnectionFactory. Additional properties available only in ManagedConnectionFactory are given below.

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Valid Value</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClientId</td>
<td>A valid client ID</td>
<td>None</td>
<td>ClientID as specified by JMS 1.1 specification.</td>
</tr>
<tr>
<td>ConnectionFactory JndiName</td>
<td>JNDI Name</td>
<td>None</td>
<td>JNDI name of the connection factory bound in the JNDI tree of the JMS provider. The administrator should provide all connection factory properties (except clientId) in the JMS provider itself. This property name will be used only if ProviderIntegrationMode is jndi.</td>
</tr>
<tr>
<td>ConnectionValidation Enabled</td>
<td>true/false</td>
<td>false</td>
<td>If set to true, the resource adapter will use an exception listener to catch any connection exception and will send a CONNECTION_ERROR_OCCURRED event to application server.</td>
</tr>
</tbody>
</table>

Destination Properties

Properties in this section are specified when a destination (queue or topic) is created. All the resource adapter properties can be overridden in a destination. Additional properties available only in the destination are given below.

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Valid Value</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DestinationJndiName</td>
<td>JNDI Name</td>
<td>None</td>
<td>JNDI name of the destination bound in the JNDI tree of the JMS provider. The Administrator should provide all properties in the JMS provider itself. This property name will be used only if ProviderIntegrationMode is jndi.</td>
</tr>
<tr>
<td>DestinationProperties</td>
<td>Name value pairs separated by a comma</td>
<td>None</td>
<td>Specifies the javabean property names and values of the destination of the JMS client. Required only if ProviderIntegrationMode is javabean.</td>
</tr>
</tbody>
</table>
Activation Spec Properties

Properties in this section are specified in the GlassFish Server `glassfish-ejb-jar.xml` deployment descriptor of an MDB as `activation-config-properties`. All the resource adapter properties can be overridden in an Activation Spec. Additional properties available only in ActivationSpec are given below.

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Valid Value</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MaxPoolSize</td>
<td>An integer</td>
<td>8</td>
<td>Maximum size of server session pool internally created by the resource adapter for achieving concurrent message delivery. This should be equal to the maximum pool size of MDB objects.</td>
</tr>
<tr>
<td>MaxWaitTime</td>
<td>An integer</td>
<td>3</td>
<td>The resource adapter will wait for the time in seconds specified by this property to obtain a server session from its internal pool. If this limit is exceeded, message delivery will fail.</td>
</tr>
<tr>
<td>SubscriptionDurability</td>
<td>Durable or Non-Durable</td>
<td>Non-Durable</td>
<td>SubscriptionDurability as specified by JMS 1.1 specification.</td>
</tr>
<tr>
<td>SubscriptionName</td>
<td>None</td>
<td></td>
<td>SubscriptionName as specified by JMS 1.1 specification.</td>
</tr>
<tr>
<td>MessageSelector</td>
<td>A valid message selector</td>
<td>None</td>
<td>MessageSelector as specified by JMS 1.1 specification.</td>
</tr>
<tr>
<td>ClientID</td>
<td>A valid client ID</td>
<td>None</td>
<td>ClientID as specified by JMS 1.1 specification.</td>
</tr>
<tr>
<td>ConnectionFactoryJndiName</td>
<td>A valid JNDI Name</td>
<td>None</td>
<td>JNDI name of connection factory created in JMS provider. This connection factory will be used by resource adapter to create a connection to receive messages. Used only if ProviderIntegrationMode is configured as jndi.</td>
</tr>
</tbody>
</table>
| DestinationJndiName | A valid JNDI Name | None | JNDI name of destination created in JMS provider. This destination will be used by resource adapter to create a connection to receive messages from. Used only if ProviderIntegrationMode is configured as jndi.
<table>
<thead>
<tr>
<th>Property Name</th>
<th>Valid Value</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DestinationType</td>
<td>javax.jms.Queue or javax.jms.Topic</td>
<td>Null</td>
<td>Type of the destination the MDB will listen to.</td>
</tr>
<tr>
<td>Destination Properties</td>
<td>Name-value pairs separated by comma</td>
<td>None</td>
<td>Specifies the javabean property names and values of the destination of the JMS client. Required only if ProviderIntegrationMode is javabean.</td>
</tr>
<tr>
<td>RedeliveryAttempts</td>
<td>integer</td>
<td></td>
<td>Number of times a message will be delivered if a message causes a runtime exception in the MDB.</td>
</tr>
<tr>
<td>RedeliveryInterval</td>
<td>time in seconds</td>
<td></td>
<td>Interval between repeated deliveries, if a message causes a runtime exception in the MDB.</td>
</tr>
<tr>
<td>SendBadMessages ToDMD</td>
<td>true/false</td>
<td>False</td>
<td>Indicates whether the resource adapter should send the messages to a dead message destination, if the number of delivery attempts is exceeded.</td>
</tr>
<tr>
<td>DeadMessage Destination JndiName</td>
<td>a valid JNDI name.</td>
<td>None</td>
<td>JNDI name of the destination created in the JMS provider. This is the target destination for dead messages. This is used only if ProviderIntegrationMode is jndi.</td>
</tr>
<tr>
<td>DeadMessage Destination ClassName</td>
<td>class name of destination object.</td>
<td>None</td>
<td>Used if ProviderIntegrationMode is javabean.</td>
</tr>
<tr>
<td>DeadMessage Destination Properties</td>
<td>Name Value Pairs separated by comma</td>
<td>None</td>
<td>Specifies the javabean property names and values of the destination of the JMS client. This is required only if ProviderIntegrationMode is javabean.</td>
</tr>
<tr>
<td>DeadMessage Connection FactoryJndiName</td>
<td>a valid JNDI name</td>
<td>None</td>
<td>JNDI name of the connection factory created in the JMS provider. This is the target connection factory for dead messages. This is used only if ProviderIntegrationMode is jndi.</td>
</tr>
<tr>
<td>DeadMessage DestinationType</td>
<td>queue or topic destination</td>
<td>None</td>
<td>The destination type for dead messages.</td>
</tr>
</tbody>
</table>
Using GenericResourceAdapter for JMS to Integrate Supported External JMS Providers

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Valid Value</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ReconnectAttempts</td>
<td>integer</td>
<td>0</td>
<td>Number of times a reconnect will be attempted in case exception listener catches an error on connection.</td>
</tr>
<tr>
<td>ReconnectInterval</td>
<td>time in seconds</td>
<td>0</td>
<td>Interval between reconnects.</td>
</tr>
</tbody>
</table>

Using GenericJMSRA with WebLogic JMS

You can configure GenericJMSRA to enable applications running in GlassFish Server to send messages to, and receive messages from, Oracle WebLogic JMS.

GenericJMSRA should be used in conjunction with the WebLogic Server Thin T3 Client. Due to the nature of this client, messages exchanged between GlassFish Server and WebLogic Server cannot be sent or received in XA transactions. There is also only limited support for asynchronous receipt of messages in an MDB, as described in detail in "Limitations When Using GenericJMSRA with WebLogic JMS" on page 371.

The following topics are addressed here:

- "Deploy the WebLogic Thin T3 Client JAR in GlassFish Server" on page 364
- "Configure WebLogic JMS Resources for Integration" on page 365
- "Create a Resource Adapter Configuration for GenericJMSRA to Work With WebLogic JMS" on page 365
- "Deploy the GenericJMSRA Resource Archive" on page 366
- "Configuring an MDB to Receive Messages from WebLogic JMS" on page 367
- "Accessing Connections and Destinations Directly" on page 368
- "Limitations When Using GenericJMSRA with WebLogic JMS" on page 371
- "Configuration Reference of GenericJMSRA Properties for WebLogic JMS" on page 373

Deploy the WebLogic Thin T3 Client JAR in GlassFish Server

WebLogic Server provides several different clients for use by standalone applications that run outside of WebLogic Server. These client are summarized in Overview of Stand-alone Clients in Programming Stand-alone Clients for Oracle WebLogic Server. When connecting from GlassFish Server to WebLogic JMS resources you must use the WebLogic Thin T3 client, wltint3client.jar.

There are a couple of methods to deploy the WebLogic Thin T3 client in GlassFish Server and make it available to GenericJMSRA:

- To make the Thin T3 client available to all applications, copy the wltint3client.jar to the as-install/lib directory under your GlassFish Server installation. The Thin T3 client can be found in a WebLogic Server installation in a directory similar to MW_HOME/server/lib.
It is also possible to deploy the Thin T3 client in a less global manner, so that it is specific to an individual application. For information on how to do this, see “Application-Specific Class Loading” in Oracle GlassFish Server 3.1 Application Development Guide.

Configure WebLogic JMS Resources for Integration

If you need to configure the necessary WebLogic JMS resources on the WebLogic Server from which you want to access messages using GlassFish Server, then follow the instructions in the WebLogic Server documentation for configuring the necessary resources, such as destinations, and connection factories.

- JMS System Module Configuration
- Queue and Topic Destination Configuration
- Connection Factory Configuration

The example code snippets in this section refer to a WebLogic JMS connection factory named WLoutboundQueueFactory and queue destination named WLoutboundQueue. For conceptual overviews on configuring WebLogic JMS resources, refer to Understanding JMS Resource Configuration in Configuring and Managing JMS for Oracle WebLogic Server. For detailed instructions on configuring WebLogic JMS resources, refer to Configure JMS system modules and add JMS resources in the WebLogic Administration Console Online Help.

Create a Resource Adapter Configuration for GenericJMSRA to Work With WebLogic JMS

When you deploy GenericJMSRA, you also need to create a resource adapter configuration in GlassFish Server. You can do this using either the Administration Console or the asadmin command. If you use the Administration Console then you need deploy the GenericJMSRA resource archive first. Here’s an example using asadmin:

```
asadmin create-resource-adapter-config --host localhost --port 4848
   --property SupportsXA=false:DeliveryType=Synchronous:ProviderIntegrationMode=jndi:JndiProperties=java.naming.factory.initial=
   =weblogic.jndi.WLInitialContextFactory,java.naming.provider.url\n   =t3://localhost:7001,java.naming.factory.url.pkgs=
   =weblogic.corba.client.naming genericra
```

This creates a resource adapter configuration with the name genericra, and Oracle recommends not changing the default name. The resource adapter configuration is configured with the properties specified using the --properties argument; multiple properties are configured as a colon-separated list of name-value pairs that are entered as a single line. You will also need to change the host and port that WebLogic Server is running on to suit your installation.

In this example, the following properties are configured:
Using the Generic Resource Adapter for JMS to Integrate Supported External JMS Providers

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SupportsXA</td>
<td>false</td>
</tr>
<tr>
<td>DeliveryType</td>
<td>Synchronous</td>
</tr>
<tr>
<td>ProviderIntegrationMode</td>
<td>jndi</td>
</tr>
<tr>
<td>JndiProperties</td>
<td>java.naming.factory.initial =weblogic.jndi.WLInitialContextFactory,java.naming.provider.url=t3://localhost:7001,java.naming.factory.url.pkgs=weblogic.corba.client.naming</td>
</tr>
</tbody>
</table>

You must use the same values for SupportsXA, DeliveryType and ProviderIntegrationMode as the required values that are used in this table. The JndiProperties value must be set to a list of JNDI properties needed for connecting to WebLogic JNDI.

Note – When using asadmin you need to escape each = and any : characters by prepending a backward slash \. The escape sequence is not necessary if the configuration is performed through the Administration Console.

For a description of all the resource adapter properties that are relevant for WebLogic JMS, see the “Configuration Reference of GenericJMSRA Properties for WebLogic JMS” on page 373.

▼ Deploy the GenericJMSRA Resource Archive

The supported version of the GenericJMSRA resource archive is available as an Add-On in the Administration Console’s Update Tool.

1. Download the GenericJMSRA resource archive (genericra.rar) using the Administration Console’s Update Tool.

2. Deploy the resource adapter. You can do this using either the Administration Console or the asadmin deploy command. Here’s an example using the asadmin deploy command:

   ```
   $ asadmin deploy --user admin --password adminadmin <location of the generic resource adapter rar file>
   ```

 If you deploy the resource adapter using the Administration Console, then after deployment you need to create a resource adapter configuration as described in “Create a Resource Adapter Configuration for GenericJMSRA to Work With WebLogic JMS” on page 365.
Configuring an MDB to Receive Messages from WebLogic JMS

In this example, all configuration information is defined in two deployment descriptor files: ejb-jar.xml and the GlassFish Server glassfish-ejb-jar.xml file. To configure a MDB to receive messages from WebLogic JMS, you would configure these deployment descriptor files as follows:

1 Configure the ejb-jar.xml deployment descriptor:

```xml
<ejb-jar>
  <enterprise-beans>
    <message-driven>
      <ejb-name>SimpleMessageEJB</ejb-name>
      <ejb-class>test.simple.queue.ejb.SimpleMessageBean</ejb-class>
      <transaction-type>Container</transaction-type>
    </message-driven>
  </enterprise-beans>
  <assembly-descriptor>
    <container-transaction>
      <method>
        <ejb-name>SimpleMessageEJB</ejb-name>
        <method-name>onMessage</method-name>
        <method-params>
          <method-param>javax.jms.Message</method-param>
        </method-params>
      </method>
      <trans-attribute>NotSupported</trans-attribute>
    </container-transaction>
  </assembly-descriptor>
</ejb-jar>
```

Note – If container-managed transactions are configured, then the transactional attribute must be set to NotSupported. For more information, see "Limitations When Using Generic JMSRA with WebLogic JMS" on page 371.

2 Configure the glassfish-ejb-jar.xml deployment descriptor:

```xml
<sun-ejb-jar>
  <enterprise-beans>
    <ejb>
      <ejb-name>SimpleMessageEJB</ejb-name>
      <mdb-resource-adapter>
        <resource-adapter-mid>genericra</resource-adapter-mid>
        <activation-config>
          <activation-config-property>
            <activation-config-property-name>
             ConnectionFactoryJndiName
            </activation-config-property-name>
            <activation-config-property-value>
              jms/WLInboundQueueFactory
            </activation-config-property-value>
          </activation-config-property>
          <activation-config-property>
            <activation-config-property-name>
              DestinationJndiName
            </activation-config-property-name>
          </activation-config-property>
        </activation-config>
      </mdb-resource-adapter>
    </ejb>
  </enterprise-beans>
</sun-ejb-jar>
```
where:

- The `<resource-adapter-mid>` element is used to specify the resource adapter and resource adapter configurations that was deployed in the "Create a Resource Adapter Configuration for GenericJMSRA to Work With WebLogic JMS" on page 365 instructions. It is recommended you stick to genericra as is used here.

- The `<activation-config>` element in `glassfish-ejb-jar.xml` is the one which defines how and where the MDB receives messages, as follows:
 - The `ConnectionFactoryJndiName` property must be set to the JNDI name of the connection factory in the WebLogic JNDI store that will be used to receive messages. Therefore, replace `jms/WLInboundQueueFactory` in the example above with the JNDI name used in your environment.
 - The `DestinationJndiName` property must be set to the JNDI name of the destination (the queue or topic from which messages will be consumed) in the WebLogic JNDI store. Therefore, replace `jms/WLInboundQueue` in the example above with the JNDI name used in your environment.

For a description of all the ActivationSpec properties that are relevant for WebLogic JMS, see the "Configuration Reference of GenericJMSRA Properties for WebLogic JMS" on page 373.

Make sure to use the appropriate WebLogic administration tools, such as the WebLogic Administration Console or the WebLogic Scripting Tool (WLST). For more information, see Configure Messaging in the WebLogic Server Administration Console Online Help and the WebLogic Server WLST Online and Offline Command Reference.

Accessing Connections and Destinations Directly

When configuring a MDB to consume messages from WebLogic JMS your code does not need to access the WebLogic JMS connection factory and destination directly. You simply define them in the activation configuration, as shown in "Configuring an MDB to Receive Messages from WebLogic JMS" on page 367. However when configuring an MDB to send messages, or when configuring an EJB, Servlet, or application client to either send or receive messages, your code needs to obtain these objects using a JNDI lookup.
If you want to configure connections and destination resources using the Administration Console, this is explained in the Administration Console online help. When using Administration Console, follow the instructions for creating a new Connector Connection Pool and Admin Object Resources, and not the instructions for creating a JMS Connection Pool and Destination Resources. For more information about using asadmin to create these resources, see "To Create a Connector Connection Pool" on page 295 and "To Create a Connector Resource" on page 298.

1 Looking up the connection factory and destination

The following code looks up a connection factory with the JNDI name jms/QCFactory and a queue with the name jms/outboundQueue from the GlassFish Server JNDI store:

```java
Context initialContext = new InitialContext();
QueueConnectionFactory queueConnectionFactory = (QueueConnectionFactory)
jndiContext.lookup("java:comp/env/jms/MyQCFactory");
Queue queue = (Queue) jndiContext.lookup("java:comp/env/jms/outboundQueue");
```

Note that the resources used are GlassFish Server resources, not WebLogic JMS resources. For every connection factory or destination that you want to use in the WebLogic JMS JNDI store, you need to create a corresponding connection factory or destination in the GlassFish Server JNDI store and configure the GlassFish Server object to point to the corresponding WebLogic JMS object.

2 Declaring the connection factory and destination

In accordance with standard Java EE requirements, these resources need to be declared in the deployment descriptor for the MDB, EJB or other component. For example, for a session bean, configure the ejb-jar.xml with <resource-env-ref> elements, as follows:

```xml
<ejb-jar>
  <enterprise-beans>
    <session>
      ...
      <resource-env-ref>
        <resource-env-ref-name>jms/QCFactory</resource-env-ref-name>
        <resource-env-ref-type>javax.jms.QueueConnectionFactory</resource-env-ref-type>
      </resource-env-ref>
      <resource-env-ref>
        <resource-env-ref-name>jms/outboundQueue</resource-env-ref-name>
        <resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>
      </resource-env-ref>
    </session>
  </enterprise-beans>
</ejb-jar>
```

3 Create a Connector Connection Pool and Connector Resource by entering the following asadmin commands, both all in one line:

In order to configure a JMS Connection Factory using GenericJMSRA, a Connector connection pool and resource need to be created in GlassFish Server using names that map to the corresponding connection factory in the WebLogic JNDI store.

```bash
asadmin create-connector-connection-pool --host localhost --port 4848
  --raname genericra --connectiondefinition javax.jms.QueueConnectionFactory
  --target server --transactionsupport LocalTransaction
```
--property ConnectionFactoryJndiName=jms/WLOutboundQueueFactory
qcpool

asadmin create-connector-resource --host localhost --port 4848
--poolname qcpool --target server jms/QCFactory

These asadmin commands together creates a connection factory in GlassFish Server and its
corresponding connection pool.

- The connection pool has the JNDI name jms/WLOutboundQueueFactory and obtains
 connections from a connection pool named qcpool.
- The connection pool qcpool uses the resource adapter genericra and contains objects of
 type javax.jms.QueueConnectionFactory.
- The transaction support argument is set to LocalTransaction, which specifies that the
 connection will be used in local transactions only. You can also specify NoTransaction.
 However, the default setting of XATransaction cannot be used. For more information, see
 “Limitations When Using GenericJMSRA with WebLogic JMS” on page 371.
- The connection pool is configured with the properties specified using the properties
 argument; multiple properties are configured as a colon-separated list of name-value pairs.
 Only one property is configured in this example, as follows:

 ConnectionFactoryJndiName=jms/WLOutboundQueueFactory

 The ConnectionFactoryJndiName property must be set to the JNDI name of the
 corresponding connection factory in the WebLogic JMS JNDI store. Therefore, replace
 jms/WLOutboundQueueFactory in the example above with the JNDI name used in your
 environment.
- For a description of the ManagedConnectionFactory properties that are relevant for
 WebLogic JMS, see the “Configuration Reference of GenericJMSRA Properties for
 WebLogic JMS” on page 373.

4 Create a destination object that refers to a corresponding WebLogic JMS destination by
 entering the following asadmin command, all in one line:

 asadmin create-admin-object --host localhost --port 4848 --target server
 --restype javax.jms.Queue --property DestinationJndiName=jms/WLOutboundQueue
 --raname genericra jms/outboundQueue

 This asadmin command creates a destination in GlassFish Server.

- The destination has the JNDI name jms/outboundQueue, uses the resource adapter
 genericra, and is of type javax.jms.Queue.
- The destination is configured with the properties specified using the properties argument;
 multiple properties are configured as a colon-separated list of name-value pairs. Only one
 property is configured in this example, as follows:

 DestinationJndiName=jms/WLOutboundQueue
The **DestinationJndiName** property *must* be set to the JNDI name of the corresponding destination in the WebLogic JMS JNDI store. Therefore, replace `jms/WLOutboundQueue` in the example above with the JNDI name used in your environment.

- For a description of the destination properties that are relevant for WebLogic JMS, see the "Configuration Reference of GenericJMSRA Properties for WebLogic JMS" on page 373.

Limitations When Using GenericJMSRA with WebLogic JMS

Due to the nature of the WebLogic T3 Thin Client there are a number of limitations in the way in which it can be used with GenericJMSRA.

No Support for XA Transactions

WebLogic JMS does not support the optional JMS "Chapter 8" interfaces for XA transactions in a form suitable for use outside of WebLogic Server. Therefore, the GenericJMSRA configuration must have the `SupportsXA` property set to `false`. This has a number of implications for the way in which applications may be used, as described in this section.

Using a MDB to Receive Messages: Container-managed Transactions (CMT)

- If container-managed transactions are used, the transactional attribute of a MDB should be set to `NotSupported`. No transaction will be started. Messages will be received in a non-transacted session with an `acknowledgeMode` of `AUTO_ACKNOWLEDGE`.
- A transactional `Required` attribute should not be used; otherwise, MDB activation will fail with an exception: `javax.resource.ResourceException: MDB is configured to use container managed transaction. But SupportsXA is configured to false in the resource adapter.`

 The remaining transactional attributes are normally considered inappropriate for use with a MDB. If used, the following behavior will occur:

 - If the transactional attribute is `RequiresNew`, then MDB activation will fail with an exception: `javax.resource.ResourceException: MDB is configured to use container managed transaction. But SupportsXA is configured to false in the resource adapter.`

 - If the transactional attribute is `Mandatory`, the MDB can be activated but a `TransactionRequiredException` (or similar) will always be thrown by the server.

 - If the transactional attribute is `Supports`, then no transaction will be started and the MDB will work as if `NotSupported` had been used.

 - If the transactional attribute is `Never`, then no transaction will be started and the MDB will work as if `NotSupported` had been used.

Using a MDB to Receive Messages: Bean-managed Transactions (BMT)

- If bean-managed transactions are configured in accordance with the EJB specification any `UserTransaction` started by the bean will have no effect on the consumption of messages.
Messages will be received in a non-transacted session with an acknowledgeMode of AUTO_Acknowledge.

Accessing Connections and Destinations Directly - Container-managed Transactions (CMT)

When accessing connections directly (such as when sending messages from a MDB or an EJB) and container-managed transactions are being used, the connection pool’s transaction-support property should be set to either LocalTransaction or NoTransaction. If the default value of XATransaction is used, an exception will be thrown at runtime when createConnection() is called. This is the case irrespective of the transactional attribute of the MDB or EJB. Note that MDBs must have their transactional attribute set to NotSupported as specified above; whereas, an EJB can use any transactional attribute.

If there is no transaction in progress within the bean method (for example, notSupported is being used) then it does not make any difference whether the connection pool’s transaction-support property is set to LocalTransaction or NoTransaction; the transactional behavior will be determined by the arguments to createSession(). If you want the outbound message to be sent without a transaction, call createSession(false, ...). If you want the outbound message to be sent in a local transaction call createSession(true, Session.SESSION_TRANSACTED), remembering to call session.commit() or session.rollback() after the message is sent.

If there is a transaction in progress within the bean method (which will only be possible for EJBs), then setting the connection pool’s transaction-support property to LocalTransaction or NoTransaction gives different results:

- If it is set to NoTransaction then a non-transacted session will be used.
- If it is set to LocalTransaction then a (local, non-XA) transacted session will be used, which will be committed or rolled back when the UserTransaction is committed or rolled back. In this case, calling session.commit() or session.rollback() will cause an exception.

No Support for Redelivery Limits and Dead Message Queue

Due to the lack of XA support when using WebLogic JMS, there is no support for GenericJMSRA’s dead message queue feature, in which a message that has been redelivered to a MDB a defined number of times is sent to a dead message queue.

Limited Support for Asynchronous Receipt of Messages In a MDB

WebLogic JMS does not support the optional JMS "Chapter 8" interfaces for "Concurrent Processing of a Subscription's Messages" (that is, Session, SessionPool and ConnectionConsumer) in a form suitable for use outside of WebLogic Server. Therefore, the generic JMSRA configuration must set the property DeliveryType to Synchronous.

This affects the way in which MDBs consume messages from a queue or topic as follows:
When messages are being received from a queue, each MDB instance will have its own session and consumer, and it will consume messages by repeatedly calling `receive(timeout)`. This allows the use of a pool of MDBs to process messages from the queue.

When messages are being received from a topic, only one MDB instance will be used irrespective of the configured pool size. This means that a pool of multiple MDBs cannot be used to share the load of processing messages, which may reduce the rate at which messages can be received and processed.

This restriction is a consequence of the semantics of synchronously consuming messages from topics in JMS: In the case of non-durable topic subscriptions, each consumer receives a copy of all the messages on the topic, so using multiple consumers would result in multiple copies of each message being received rather than allowing the load to be shared among the multiple MDBs. In the case of durable topic subscriptions, only one active consumer is allowed to exist at a time.

Configuration Reference of GenericJMSRA Properties for WebLogic JMS

The tables in this section list the properties that need to be set to configure the resource adapter and any activation specs, managed connections, and other administered objects that are relevant only when using GenericJMSRA to communicate with WebLogic JMS. For a complete list of properties, see the comprehensive table in “GenericJMSRA Configuration Properties” on page 358.

Resource Adapter Properties

These properties are used to configure the resource adapter itself when it is deployed, and can be specified using the `create-resource-adapter-config` command.

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Required Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SupportsXA</td>
<td>false</td>
<td>Specifies whether the JMS client supports XA transactions. Set to <code>false</code> for WebLogic JMS.</td>
</tr>
<tr>
<td>DeliveryType</td>
<td>Synchronous</td>
<td>Specifies whether an MDB should use a <code>ConnectionConsumer</code> (Asynchronous) or <code>consumer.receive()</code> (Synchronous) when consuming messages. Set to <code>Synchronous</code> for WebLogic JMS.</td>
</tr>
</tbody>
</table>
Using the Generic Resource Adapter for JMS to Integrate Supported External JMS Providers

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Required Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ProviderIntegration</td>
<td>jndi</td>
<td>Specifies that connection factories and destinations in GlassFish’s JNDI store are configured to refer to connection factories and destinations in WebLogic’s JNDI store. Set to jndi for WebLogic JMS.</td>
</tr>
<tr>
<td>JndiProperties</td>
<td>java.naming.factory.initial =weblogic.jndi.WLInitialContextFactory, java.naming.provider.url =t3://localhost:7001,java.naming.factory.url =weblogic.corba.client.naming (replace localhost:7001 with the host:port of WebLogic Server)</td>
<td>JNDI properties for connect to WebLogic JNDI, specified as comma-separated list of name=value pairs without spaces.</td>
</tr>
<tr>
<td>UserName</td>
<td>Name of the WebLogic JMS user</td>
<td>User name to connect to WebLogic JMS. The user name can be overridden in ActivationSpec and ManagedConnection. If no user name is specified anonymous connections will be used, if permitted.</td>
</tr>
<tr>
<td>Password</td>
<td>Password for the WebLogic JMS user</td>
<td>Password to connect to WebLogic JMS. The password can be overridden in ActivationSpec and ManagedConnection.</td>
</tr>
<tr>
<td>LogLevel</td>
<td>Desired log level of JDK logger</td>
<td>Used to specify the level of logging.</td>
</tr>
</tbody>
</table>

Connection Factory Properties

ManagedConnectionFactory objects are created in the GlassFish Server JNDI store using the Administration Console or the asadmin connector-connection-pool command. All the properties that can be set on a resource adapter configuration can be overridden by setting them on a destination object. The properties specific to ManagedConnectionFactory objects are listed in the following table.
Using the Generic Resource Adapter for JMS to Integrate Supported External JMS Providers

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Valid Value</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClientId</td>
<td>A valid client ID</td>
<td>None</td>
<td>Client ID as specified by JMS 1.1 specification.</td>
</tr>
<tr>
<td>ConnectionFactory\nJndiName</td>
<td>A valid JNDI Name</td>
<td>None</td>
<td>JNDI name of connection factory in the GlassFish Server JNDI store. This connection factory should be configured to refer to the physical connection factory in the WebLogic JNDI store.</td>
</tr>
<tr>
<td>ConnectionValidation\nEnabled</td>
<td>true or false</td>
<td>FALSE</td>
<td>If set to true, the resource adapter will use an exception listener to catch any connection exception and will send a CONNECTION_ERROR_OCCURED event to GlassFish Server.</td>
</tr>
</tbody>
</table>

Destination Properties

Destination (queue or topic) objects are created in the GlassFish Server JNDI store using the Administration Console or the \asadmin\ connector-admin-object command. All the properties that can be set on a resource adapter configuration can be overridden by setting them on a destination object. The properties specific to destination objects are listed in the following table.

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Valid Value</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DestinationJndiName</td>
<td>A valid JNDI name</td>
<td>None</td>
<td>JNDI name of the destination object in the GlassFish Server JNDI store. This destination object should be configured to refer to the corresponding physical destination in the WebLogic JNDI store.</td>
</tr>
</tbody>
</table>

ActivationSpec Properties

An ActivationSpec is a set of properties that configures a MDB. It is defined either in the MDB's GlassFish Server deployment descriptor glassfish-ejb-jar.xml using activation-config-property elements or in the MDB itself using annotation. All the resource adapter properties listed in the table above can be overridden in an ActivationSpec. Additional properties available only to a ActivationSpec are given below.
<table>
<thead>
<tr>
<th>Property Name</th>
<th>Valid Value</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MaxPoolSize</td>
<td>An integer</td>
<td>8</td>
<td>Maximum size of server session pool internally created by the resource adapter for achieving concurrent message delivery. This should be equal to the maximum pool size of MDB objects. Only used for queues; ignored for topics, when a value of 1 is always used.</td>
</tr>
<tr>
<td>Subscription Duration</td>
<td>Durable or Non-Durable</td>
<td>Non-Durable</td>
<td>Only used for topics. Specifies whether the subscription is durable or non-durable.</td>
</tr>
<tr>
<td>SubscriptionName</td>
<td>None</td>
<td>None</td>
<td>Only used for topics when SubscriptionDurability is Durable. Specifies the name of the durable subscription.</td>
</tr>
<tr>
<td>MessageSelector</td>
<td>A valid message selector</td>
<td>None</td>
<td>JMS message selector.</td>
</tr>
<tr>
<td>ClientID</td>
<td>A valid client ID</td>
<td>None</td>
<td>JMS ClientID.</td>
</tr>
<tr>
<td>ConnectionFactory JndiName</td>
<td>A valid JNDI Name</td>
<td>None</td>
<td>JNDI name of connection factory in the GlassFish Server JNDI store. This connection factory should be configured to refer to the physical connection factory in the WebLogic JNDI store.</td>
</tr>
<tr>
<td>DestinationJndiName</td>
<td>A valid JNDI Name</td>
<td>None</td>
<td>JNDI name of destination in the GlassFish Server JNDI store. This destination should be configured to refer to the physical destination in the WebLogic JNDI store.</td>
</tr>
<tr>
<td>DestinationType</td>
<td>javax.jms.Queue or javax.jms.Topic</td>
<td>Null</td>
<td>Specifies whether the configured DestinationJndiName refers to a queue or topic.</td>
</tr>
<tr>
<td>ReconnectAttempts</td>
<td>integer</td>
<td>0</td>
<td>Number of times a reconnect will be attempted in case exception listener catches an error on connection.</td>
</tr>
<tr>
<td>ReconnectInterval</td>
<td>time in seconds</td>
<td>0</td>
<td>Interval between reconnection attempts.</td>
</tr>
</tbody>
</table>
Using GenericJMSRA with IBM WebSphere MQ

You can configure GenericJMSRA to enable applications running in GlassFish Server to send messages to, and receive messages from, IBM WebSphere MQ. GlassFish Server only supports using GenericJMSRA with WebSphere MQ version 6.0 and WebSphere MQ version 7.0.

These instructions assume that the WebSphere MQ broker and GlassFish Server are deployed and running on the same physical host/machine. If you have the WebSphere MQ broker running on a different machine and need to access it remotely, refer to the WebSphere MQ documentation for configuration details. The resource adapter configuration and other application server related configuration remains unchanged.

The following topics are addressed here:

- "Preliminary Setup Procedures for WebSphere MQ Integration" on page 377
- "Configure the WebSphere MQ Administered Objects" on page 378
- "Create a Resource Adapter Configuration for GenericJMSRA to Work With WebSphere MQ" on page 381
- "Deploy the GenericJMSRA Archive" on page 383
- "Create the Connection Factories and Administered Objects in GlassFish Server" on page 383
- "Configuring an MDB to Receive Messages from WebSphere MQ" on page 385

Preliminary Setup Procedures for WebSphere MQ Integration

Before you can configure WebSphere MQ to exchange messages with GlassFish Server, you must complete the following tasks:

- The following permissions must be added to the server.policy and the client.policy file to deploy GenericJMSRA and to run the client application.
 - Use a text editor to modify the server.policy file in the
 ${appserver-install-dir}/domains/domain1/config/directory by adding the following line to the default grant block:
    ```
    permission java.util.logging.LoggingPermission "control";
    permission java.util.PropertyPermission "*", "read,write";
    ```
 - If you use an application client in your application, edit the client's client.policy file in the
 ${appserver-install-dir}/lib/appclient/ directory by adding the following permission:
    ```
    permission javax.security.auth.PrivateCredentialPermission
        "javax.resource.spi.security.PasswordCredential * \"\"","read";
    ```
 - To integrate GlassFish Server with WebSphere MQ 6.0 or 7.0, copy the necessary JAR files to the as-install/lib directory:
 - For WebSphere MQ 6.0, copy these JAR files to the as-install/lib directory:
      ```
      /opt/mqm/java/lib/com.ibm.mq.jar
      /opt/mqm/java/lib/com.ibm.mq.jms.Nojndi.jar
      /opt/mqm/java/lib/com.ibm.mq.soap.jar
      ```
where /opt/mqm is the location of the WebSphere MQ 6.0 installation.

- For WebSphere MQ 7.0, copy these JAR files to the as-install/lib directory:

```
/opt/mqm/java/lib/com.ibm.mq.jar,
/opt/mqm/java/lib/com.ibm.mq.jms.NoJndi.jar,
/opt/mqm/java/lib/com.ibm.mq.soap.jar,
/opt/mqm/java/lib/com.ibm.mq.jms.jar,
/opt/mqm/java/lib/com.ibm.mq.jms.jmsmq.jar,
/opt/mqm/java/lib/com.ibm.mq.jms.jmsmq.core.jar,
/opt/mqm/java/lib/com.ibm.mq.jms.jmsmq.jmsmq.jar,
/opt/mqm/java/lib/com.ibm.mq.jms.jmsmq.jmsmq.core.jar,
```

where /opt/mqm is the location of the WebSphere MQ 7.0 installation.

- Set the LD_LIBRARY_PATH environment variable to the java/lib directory, and then restart GlassFish Server. For example, in a UNIX—based system, with WebSphere MQ installed under /opt/mqm, you would enter:

```
$ export LD_LIBRARY_PATH=/opt/mqm/java/lib
```

Configure the WebSphere MQ Administered Objects

This section provides an example of how you could configure the necessary administered objects, such as destinations and connection factories, on the WebSphere MQ instance from which you want to access messages using GlassFish Server. Therefore, you will need to change the administered object names to suit your installation.

Before You Begin

If WebSphere MQ created a user and a group named mqm during the installation, then you must specify a password for the mqm user using the $ passwd mqm command.
1. Switch to the `mqm` user:
   ```
   $ su mqm
   ```

2. For Linux, set the following kernel version:
   ```
   $ export LD_ASSUME_KERNEL=2.2.5
   ```

3. Create a new MQ queue manager named "QM1":
   ```
   $ crtmqm QM1
   ```

4. Start the new MQ queue manager.
 In the image above, QM1 is associated with the IBM WebSphere MQ broker.
   ```
   $ strmqm QM1
   ```

5. Start the MQ listener:
   ```
   $ runmqlsr -t tcp -m QM1 -p 1414 &
   ```

6. Modify the default JMSAdmin console configuration as follows:
 a. Edit the JMSAdmin script in the `/opt/mqm/java/bin` directory to change the JVM to a location of a valid JVM your system.
   ```
   $ cd /opt/mqm/java/bin
   $ source setjmsenv
   ```
where /opt/mqm is the location of the WebSphere MQ installation.

c. Change the JMSAdmin.config file to indicate the Initial Context Factory you will be using by setting the following name-value pairs and commenting out the rest:

```
INITIAL_CONTEXT_FACTORY=com.sun.jndi.fscontext.RefFSContextFactory
PROVIDER_URL=file:/opt/tmp
```

7. Create WebSphere MQ queues using the runmqsc console and MQJMS_PSQ.mqsc script.

```
$ runmqsc QM1 < MQJMS_PSQ.mqsc
```

8. Create user defined physical queue for your application using runmqsc console and an appropriate physical queue name. An example of how this could be done is shown below.

In the image above, ORANGE.LOCAL.QUEUE is associated with QM1.

```
$ runmqsc QM1
> DEFINE QLOCAL(ORANGE.LOCAL.QUEUE)
> end
```

9. Start the WebSphere MQ Broker:

```
$ strmqbrk -m QM1
```

10. In the WebSphere MQ JMSAdmin console, use the following commands to create the connection factories, XA connection factories, and destinations for your application, as shown in the following sample, which lists each of the various JMS administered objects.

In the image above, QCF (for QM1) and TQueue (associated with ORANGE.LOCAL.QUEUE) are defined in the FileSystem Naming Context.

```
$ ./JMSAdmin

InitCtx>def qcf<JNDI name to be given to the Queue Connection Factory>
    hostname=IBM MQ server hostname port(1414) channel(SYSTEM.DEF.SVRCONN)
    transport(CLIENT) qmanager<name of queue manager defined>

    For example:
    def qcf(QCF) hostname(localhost) port(1414) channel(SYSTEM.DEF.SVRCONN)
    transport(CLIENT) qmanager(QM1)

InitCtx>def xaqcf<JNDI name to be given to the XA Queue Connection Factory>
    hostname=IBM MQ server hostname port(1414) channel(SYSTEM.DEF.SVRCONN)
    transport(CLIENT) qmanager<name of queue manager defined>

    For example:
    def xaqcf(XAQCF) hostname(localhost) port(1414) channel(SYSTEM.DEF.SVRCONN)
    transport(CLIENT) qmanager(QM1)

InitCtx>def q<JNDI Name to be given to the Queue> queue<physical queue name>
    qmanager<name of queue manager defined>

    For example: def q(TQueue) queue(ORANGE.LOCAL.QUEUE) qmanager(QM1)

InitCtx>def tcf<JNDI Name to be given to the Topic Connection Factory>
    qmanager<name of queue manager defined>
```
For example: def tcf(TCF) qmanager(QM1)
InitCtx%
def xatcf<JNDI Name to be given to the XA Topic Connection Factory>
qmanager(name of queue manager defined)
For example: def xatcf(XATCF) qmanager(QM1)
InitCtx%
def t<JNDI Name to be given to the Topic> topic<sample topic name>
For example: def t(TTopic) topic(topic)

Create a Resource Adapter Configuration for GenericJMSRA to Work With WebSphere MQ

Before deploying GenericJMSRA, you need to create a resource adapter configuration in GlassFish Server. You can do this using either the Administration Console or the asadmin command. Use the following asadmin command to create a resource adapter configuration for genericra to configure it to work with WebSphere MQ.

```
asadmin> create-resource-adapter-config
   --user <adminname> --password <admin password>
   --property SupportsXA=true:ProviderIntegrationMode
   =jndi:UserName=mqm:Password=###:RMPolicy
   =OnePerPhysicalConnection:JndiProperties
   =java.naming.factory.url.pkgs=
   =com.ibm.mq.jms.naming,java.naming.factory.initial=
   =com.sun.jndi.fscontext.RefsContextFactory,java.naming.provider.url=
   =file:\:\\\\opt\\tmp:LogLevel=finest genericra
```

Note – When using asadmin you need to escape each = and any : characters by prepending a backward slash \. The escape sequence is not necessary if the configuration is performed through the Administration Console. Also, ensure that the provider URL is configured correctly depending on the platform. For example, on Windows systems it should be file://C:/opt/tmp and on UNIX—based systems it is file://opt/tmp.

This creates a resource adapter configuration with the name genericra, and Oracle recommends not changing the default name. The resource adapter configuration is configured with the properties specified using the --properties argument; multiple properties are configured as a colon-separated list of name-value pairs that are entered as a single line.

In this example, the following properties are configured:

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SupportsXA</td>
<td>true</td>
</tr>
<tr>
<td>ProviderIntegrationMode</td>
<td>jndi</td>
</tr>
<tr>
<td>UserName</td>
<td>mqm</td>
</tr>
<tr>
<td>Password</td>
<td>###</td>
</tr>
<tr>
<td>RMPolicy</td>
<td>OnePerPhysicalConnection:JndiProperties</td>
</tr>
<tr>
<td>JavaNamingFactoryURL</td>
<td>java.naming.factory.url.pkgs=com.ibm.mq.jms.naming,java.naming.factory.initial=com.sun.jndi.fscontext.RefsContextFactory,java.naming.provider.url=file:///opt/tmp:LogLevel=finest</td>
</tr>
</tbody>
</table>

Note – The tables in this section describe the GenericJMSRA properties that are relevant only when integrating with WebSphere MQ. For a complete list of properties, see the comprehensive table in “GenericJMSRA Configuration Properties” on page 358.
Using the Generic Resource Adapter for JMS to Integrate Supported External JMS Providers

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Required Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SupportsXA</td>
<td>true</td>
<td>Set the supports distributed transactions attribute to true. The level of transactional support the adapter provides -- none, local, or XA -- depends on the capabilities of the Enterprise Information System (EIS) being adapted. If an adapter supports XA transactions and this attribute is XA, the application can use distributed transactions to coordinate the EIS resource with JDBC and JMS resources.</td>
</tr>
<tr>
<td>ProviderIntegration Mode</td>
<td>jndi</td>
<td>Specifies that connection factories and destinations in GlassFish's JNDI store are configured to refer to connection factories and destinations in WebSphere MQ's JNDI store.</td>
</tr>
<tr>
<td>JndiProperties</td>
<td>JndiProperties= java.naming.factory.url.pkgs=com.ibm.mq.jms.naming,java.naming.factory.initial=com.sun.jndi.fscontext.RefFSContextFactory,java.naming.provider.url=file::\\opt\\tmp:LogLevel=finest genericra</td>
<td>JNDI properties for connecting to WebSphere MQ's JNDI, specified as comma-separated list of name=value pairs without spaces.</td>
</tr>
<tr>
<td>UserName</td>
<td>Name of the WebSphere MQ user</td>
<td>User name to connect to WebSphere MQ. The user name can be overridden in ActivationSpec and ManagedConnection. If no user name is specified, anonymous connections will be used, if permitted.</td>
</tr>
<tr>
<td>Password</td>
<td>Password for the WebSphere MQ user</td>
<td>Password to connect to WebSphere MQ. The password can be overridden in ActivationSpec and ManagedConnection.</td>
</tr>
</tbody>
</table>
Property Name | Required Value | Description
--- | --- | ---
RMIPolicy | OnePerPhysicalConnection | Some XAResource implementations, such as WebSphere MQ, rely on a Resource Manager per Physical Connection, and this causes issues when there is inbound and outbound communication to the same queue manager in a single transaction (for example, when an MDB sends a response to a destination). When RMIPolicy is set to OnePerPhysicalConnection, the XAResource wrapper implementation's isSameRM in GenericJMSRA would check if both the XAResources use the same physical connection, before delegating to the wrapped objects. Therefore, ensure that this attribute is set to OnePerPhysicalConnection if the application uses XA.

LogLevel | Desired log level of JDK logger | Used to specify the level of logging.

Note – You must use the values for SupportsXA, RMIPolicy and ProviderIntegrationMode as the required values that are used in this table.

Deploy the GenericJMSRA Archive

The GenericJMSRA archive is available as an Add-On in the Administration Console’s Update Tool.

For instructions on downloading and deploying GenericJMSRA, see "Deploy the GenericJMSRA Resource Archive” on page 366.

Create the Connection Factories and Administered Objects in GlassFish Server

In order to configure a JMS Connection Factory using GenericJMSRA, a Connector Connection Pool and resource needs to be created in GlassFish Server, as described in this section.
Using the example WebSphere MQ configuration in “Configure the WebSphere MQ Administered Objects” on page 378, you will see mypool (pointing to GenericJMSRA and QCF) and jms/MyQCF (for mypool) created in GlassFish Server.

Note – If you want configure connections and destination resources using the Administration Console, this is explained in the Administration Console online help. When using Administration Console, following the, instructions for creating a new **Connector Connection Pool** and **Admin Object Resources**, and not the instructions for creating a JMS Connection Pool and Destination Resources. For more information about using asadmin to create these resources, see “To Create a Connector Connection Pool” on page 295 and “To Create a Connector Resource” on page 298.

Creating Connections and Destinations

In order to configure a JMS Connection Factory, using GenericJMSRA, a Connector Connection Pool and Destination resources need to be created in GlassFish Server using names that map to the corresponding connection and destination resources in WebSphere MQ. The connections and destination name in these steps map to the example WebSphere MQ configuration in “Configure the WebSphere MQ Administered Objects” on page 378.

1. **Create connection pools that point to the connection pools in WebSphere MQ**.

 The following asadmin command creates a Connection Pool called mypool and points to the XAQCF created in WebSphere MQ:

   ```bash
   asadmin create-connector-connection-pool --rename genericra connectiondefinition javax.jms.QueueConnectionFactory --transactionsupport XATransaction --property ConnectionFactoryJndiName=QCF mypool
   ```

 The following asadmin command creates a Connection Pool called mypool2 and points to the XATCF created in WebSphere MQ:

   ```bash
   asadmin create-connector-connection-pool --rename genericra connectiondefinition javax.jms.TopicConnectionFactory --transactionsupport XATransaction --property ConnectionFactoryJndiName=XATCF mypool2
   ```

2. **Create the connector resources**.

 The following asadmin command creates a connector resource named jms/MyQCF and binds this resource to JNDI for applications to use:

   ```bash
   asadmin create-connector-resource --poolname mypool jms/MyQCF
   ```

 The following asadmin command creates a connector resource named jms/MyTCF and binds this resource to JNDI for applications to use:

   ```bash
   asadmin create-connector-resource --poolname mypool2 jms/MyTCF
   ```
3 Create the JMS destination resources as administered objects.

In the image above, jms/MyQueue (pointing to GenericJMSRA and TQueue) is created in
GlassFish Server.

The following asadmin command creates a javax.jms.Queue administered object and binds it
to the GlassFish Server JNDI tree at jms/MyQueue and points to the jms/TQueue created in
WebSphere MQ.

```
asadmin create-admin-object --rename genericra --restype javax.jms.Queue
--property DestinationJndiName=TQueue jms/MyQueue
```

The following asadmin command creates a javax.jms.Topic administered object and binds it
to the GlassFish Server JNDI tree at jms/MyTopic and points to the jms/TTopic created in
WebSphere MQ.

```
asadmin create-admin-object --rename genericra --restype javax.jms.Topic
--property DestinationJndiName=TTopic jms/MyTopic
```

Configuring an MDB to Receive Messages from WebSphere MQ

The administered object names in the sample deployment descriptor below map to the example
WebSphere MQ configuration in "Configure the WebSphere MQ Administered Objects" on
page 378. The deployment descriptors need to take into account the resource adapter and the
connection resources that have been created. A sample sun-ejb-jar.xml for a Message Driven
Bean that listens to a destination called TQueue in WebSphere MQ, and publishes back reply
messages to a destination resource named jms/replyQueue in GlassFish Server, as shown
below.

```
<enterprise-beans>
  <unique-id.1/></unique-id>
  <ejb>
    <ejb-name>SimpleMessageEJB</ejb-name>
    <jndi-name>jms/SampleQueue</jndi-name>
    <!-- QCF used to publish reply messages -->
    <resource-ref>
      <res-ref-name>jms/MyQueueConnectionFactory</res-ref-name>
      <jndi-name>jms/MyQCF</jndi-name>
      <default-resource-principal>
        <name>mqm</name>
        <password>mqm</password>
      </default-resource-principal>
    </resource-ref>
    <!-- reply destination resource> Creating of this replyQueue destination resource is not
shown above, but the steps are similar to creating the "jms/MyQueue" resource -->
    <resource-env-ref>
      <resource-env-ref-name>jms/replyQueue</resource-env-ref-name>
      <jndi-name>jms/replyQueue</jndi-name>
    </resource-env-ref>
    <!-- Activation related RA specific configuration for this MDB -->
    <mdb-resource-adapter>
    </mdb-resource-adapter>
  </ejb>
</enterprise-beans>
```
The business logic encoded in Message Driven Bean could then lookup the configured QueueConnectionFactory/Destination resource to create a connection as shown below.

```java
Context context = null;
ConnectionFactory connectionFactory = null;
logger.info("In PublisherBean.ejbCreate()");
try {
    context = new InitialContext();
    queue = (javax.jms.Queue) context.lookup("java:comp/env/jms/replyQueue");
    connectionFactory = (ConnectionFactory) context.lookup("java:comp/env/jms/MyQueueConnectionFactory");
    connection = connectionFactory.createConnection();
} catch (Throwable t) {
    logger.severe("PublisherBean.ejbCreate:" + "Exception: " + t.toString());
}
```
Administering the Java Naming and Directory Interface (JNDI) Service

The Java Naming and Directory Interface (JNDI) API is used for accessing different kinds of naming and directory services. Java EE components locate objects by invoking the JNDI lookup method.

The following topics are addressed here:
- “About JNDI” on page 387
- “Administering JNDI Resources” on page 389

Instructions for accomplishing the tasks in this chapter by using the Administration Console are contained in the Administration Console online help.

About JNDI

By making calls to the JNDI API, applications locate resources and other program objects. A resource is a program object that provides connections to systems, such as database servers and messaging systems. A JDBC resource is sometimes referred to as a data source. Each resource object is identified by a unique, people-friendly name, called the JNDI name. A resource object and its JNDI name are bound together by the naming and directory service, which is included with the GlassFish Server.

When a new name-object binding is entered into the JNDI, a new resource is created.

The following topics are addressed here:
- “Java EE Naming Environment” on page 388
- "How the Naming Environment and the Container Work Together” on page 388
- “Naming References and Binding Information” on page 389
Java EE Naming Environment

JNDI names are bound to their objects by the naming and directory service that is provided by a Java EE server. Because Java EE components access this service through the JNDI API, the object usually uses its JNDI name. For example, the JNDI name of the PointBase database is jdbc/Pointbase. At startup, the GlassFish Server reads information from the configuration file and automatically adds JNDI database names to the name space, one of which is jdbc/Pointbase.

Java EE application clients, enterprise beans, and web components must have access to a JNDI naming environment.

The application component’s naming environment is the mechanism that allows customization of the application component’s business logic during deployment or assembly. This environment allows you to customize the application component without needing to access or change the source code of the component. A Java EE container implements the provides the environment to the application component instance as a JNDI naming context.

How the Naming Environment and the Container Work Together

The application component’s environment is used as follows:

- The application component’s business methods access the environment using the JNDI interfaces. In the deployment descriptor, the application component provider declares all the environment entries that the application component expects to be provided in its environment at runtime.
- The container provides an implementation of the JNDI naming context that stores the application component environment. The container also provides the tools that allow the deployer to create and manage the environment of each application component.
- A deployer uses the tools provided by the container to initialize the environment entries that are declared in the application component’s deployment descriptor. The deployer sets and modifies the values of the environment entries.
- The container makes the JNDI context available to the application component instances at runtime. These instances use the JNDI interfaces to obtain the values of the environment entries.

Each application component defines its own set of environment entries. All instances of an application component within the same container share the same environment entries. Application component instances are not allowed to modify the environment at runtime.
Naming References and Binding Information

A resource reference is an element in a deployment descriptor that identifies the component’s coded name for the resource. For example, jdbc/SavingsAccountDB. More specifically, the coded name references a connection factory for the resource.

The JNDI name of a resource and the resource reference name are not the same. This approach to naming requires that you map the two names before deployment, but it also decouples components from resources. Because of this decoupling, if at a later time the component needs to access a different resource, the name does not need to change. This flexibility makes it easier for you to assemble Java EE applications from preexisting components.

The following table lists JNDI lookups and their associated resource references for the Java EE resources used by the GlassFish Server.

<table>
<thead>
<tr>
<th>JNDI Lookup Name</th>
<th>Associated Resource Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>java:comp/env</td>
<td>Application environment entries</td>
</tr>
<tr>
<td>java:comp/env/jdbc</td>
<td>JDBC DataSource resource manager connection factories</td>
</tr>
<tr>
<td>java:comp/env/ejb</td>
<td>EJB References</td>
</tr>
<tr>
<td>java:comp/UserTransaction</td>
<td>UserTransaction references</td>
</tr>
<tr>
<td>java:comp/env/mail</td>
<td>JavaMail Session Connection Factories</td>
</tr>
<tr>
<td>java:comp/env/url</td>
<td>URL Connection Factories</td>
</tr>
<tr>
<td>java:comp/env/jms</td>
<td>JMS Connection Factories and Destinations</td>
</tr>
<tr>
<td>java:comp/ORB</td>
<td>ORB instance shared across application components</td>
</tr>
</tbody>
</table>

Administering JNDI Resources

Within GlassFish Server, you can configure your environment for custom and external JNDI resources. A custom resource accesses a local JNDI repository; an external resource accesses an external JNDI repository. Both types of resources need user-specified factory class elements, JNDI name attributes, and so on.

- “Administering Custom JNDI Resources” on page 390
- “Administering External JNDI Resources” on page 392
Administering Custom JNDI Resources

A custom resource specifies a custom server-wide resource object factory that implements the javax.naming.spi.ObjectFactory interface.

The following topics are addressed here:
- “To Create a Custom JNDI Resource” on page 390
- “To List Custom JNDI Resources” on page 390
- “To Update a Custom JNDI Resource” on page 391
- “To Delete a Custom JNDI Resource” on page 391

▼ To Create a Custom JNDI Resource

Use the create-custom-resource subcommand in remote mode to create a custom resource.

1 Ensure that the server is running.
Remote subcommands require a running server.

2 Create a custom resource by using the create-custom-resource(1) subcommand.
Information on properties for the subcommand is contained in this help page.

3 Restart GlassFish Server.
See “To Restart a Domain” on page 112.

Example 18–1 Creating a Custom Resource

This example creates a custom resource named sample-custom-resource.

```
asadmin> create-custom-resource --restype topic --factoryclass com.imq.topic sample_custom_resource
Command create-custom-resource executed successfully.
```

See Also You can also view the full syntax and options of the subcommand by typing asadmin help create-custom-resource at the command line.

▼ To List Custom JNDI Resources

Use the list-custom-resources subcommand in remote mode to list the existing custom resources.

1 Ensure that the server is running.
Remote subcommands require a running server.

2 List the custom resources by using the list-custom-resources(1) subcommand.
Example 18–2 Listing Custom Resources
This example lists the existing custom resources.

```bash
asadmin> list-custom-resources
sample_custom_resource01
sample_custom_resource02
Command list-custom-resources executed successfully
```

See Also You can also view the full syntax and options of the subcommand by typing `asadmin help list-custom-resources` at the command line.

▼ To Update a Custom JNDI Resource

1 List the custom resources by using the `list-custom-resources(1)` subcommand.
2 Use the `set(1)` subcommand to modify a custom JNDI resource.

Example 18–3 Updating a Custom JNDI Resource
This example modifies a custom resource.

```bash
asadmin> set server.resources.custom-resource.custom
/my-custom-resource.property.value=2010
```

▼ To Delete a Custom JNDI Resource
Use the `delete-custom-resource` subcommand in remote mode to delete a custom resource.

1 Ensure that the server is running.
Remote subcommands require a running server.
2 List the custom resources by using the `list-custom-resources(1)` subcommand.
3 Delete a custom resource by using the `delete-custom-resource(1)` subcommand.

Example 18–4 Deleting a Custom Resource
This example deletes a custom resource named `sample-custom-resource`.

```bash
asadmin> delete-custom-resource sample_custom_resource
Command delete-custom-resource executed successfully.
```

See Also You can also view the full syntax and options of the subcommand by typing `asadmin help delete-custom-resource` at the command line.
Administering External JNDI Resources

Applications running on GlassFish Server often require access to resources stored in an external JNDI repository. For example, generic Java objects might be stored in an LDAP server according to the Java schema. External JNDI resource elements let you configure such external resource repositories.

The following topics are addressed here:

- “To Register an External JNDI Resource” on page 392
- “To List External JNDI Resources” on page 393
- “To List External JNDI Entries” on page 393
- “To Update an External JNDI Resource” on page 394
- “To Delete an External JNDI Resource” on page 394
- “Example of Using an External JNDI Resource” on page 394
- “To Disable GlassFish Server v2 Vendor-Specific JNDI Names” on page 395

▼ To Register an External JNDI Resource

Use the create-jndi-resource subcommand in remote mode to register an external JNDI resource.

Before You Begin

The external JNDI factory must implement the javax.naming.spi.InitialContextFactory interface.

1 Ensure that the server is running.
 Remote subcommands require a running server.

2 Register an external JNDI resource by using the create-jndi-resource(1) subcommand.
 Information on properties for the subcommand is contained in this help page.

3 Restart GlassFish Server.
 See “To Restart a Domain” on page 112.

Example 18–5 Registering an External JNDI Resource

In this example sample_jndi_resource is registered.

```
asadmin> create-jndi-resource --jndilookupname sample_jndi
   --restype queue --factoryclass sampleClass --description “this is a sample jndi
   resource” sample_jndi_resource
Command create-jndi-resource executed successfully
```

See Also
You can also view the full syntax and options of the subcommand by typing asadmin help create-jndi-resource at the command line.
To List External JNDI Resources

Use the `list-jndi-resources` subcommand in remote mode to list all existing JNDI resources.

1. **Ensure that the server is running.**
 Remote subcommands require a running server.

2. **List the existing JNDI resources by using the `list-jndi-resources(1)` subcommand.**

Example 18–6 Listing JNDI Resources

This example lists the JNDI resources.

```bash
asadmin> list-jndi-resources
jndi_resource1
jndi_resource2
jndi_resource3
Command list-jndi-resources executed successfully
```

See Also
You can also view the full syntax and options of the subcommand by typing `asadmin help list-jndi-resources` at the command line.

To List External JNDI Entries

Use the `list-jndi-entries` subcommand in remote mode to browse and list the entries in the JNDI tree. You can either list all entries, or you can specify the JNDI context or subcontext to list specific entries.

1. **Ensure that the server is running.**
 Remote subcommands require a running server.

2. **List the JNDI entries for a configuration by using the `list-jndi-entries(1)` subcommand.**

Example 18–7 Listing JNDI Entries

This example lists all the JNDI entries for the naming service.

```bash
asadmin> list-jndi-entries
jndi_entry03
jndi_entry72
jndi_entry76
Command list-jndi-resources executed successfully
```

See Also
You can also view the full syntax and options of the subcommand by typing `asadmin help list-jndi-entries` at the command line.
To Update an External JNDI Resource

1. List the existing JNDI resources by using the `list-jndi-resources(1)` subcommand.

2. Use the `set(1)` subcommand to modify an external JNDI resource.

Example 18–8 Updating an External JNDI Resource

This example modifies an external resource.

```bash
asadmin> set server.resources.external-jndi-resource.my-jndi-resource.
 jndi-lookup-name=bar
```

To Delete an External JNDI Resource

Use the `delete-jndi-resource` subcommand in remote mode to remove a JNDI resource.

1. Ensure that the server is running.
 Remote subcommands require a running server.

2. Remove an external JNDI entry by using the `delete-jndi-resource(1)` subcommand.

Example 18–9 Deleting an External JNDI Resource

This example deletes an external JNDI resource:

```bash
asadmin> delete-jndi-resource jndi_resource2
Command delete-jndi-resource executed successfully.
```

See Also

You can also view the full syntax and options of the subcommand by typing `asadmin help delete-jndi-resource` at the command line.

Example of Using an External JNDI Resource

```xml
<resources>
<!-- external-jndi-resource element specifies how to access Java EE resources
-- stored in an external JNDI repository. This example
-- illustrates how to access a java object stored in LDAP.
-- factory-class element specifies the JNDI InitialContext factory that
-- needs to be used to access the resource factory. property element
-- corresponds to the environment applicable to the external JNDI context
-- and jndi-lookup-name refers to the JNDI name to lookup to fetch the
-- designated (in this case the java) object. -->
<external-jndi-resource jndi-name="test/myBean"
 jndi-lookup-name="cn=myBean"
 res-type="test.myBean"
```
To Disable GlassFish Server v2 Vendor-Specific JNDI Names

The EJB 3.1 specification supported by GlassFish Server 3.1 defines portable EJB JNDI names. Because of this, there is less need to continue to use older vendor-specific JNDI names.

By default, GlassFish Server v2–specific JNDI names are applied automatically by GlassFish Server 3.1 for backward compatibility. However, this can lead to some ease-of-use issues. For example, deploying two different applications containing a Remote EJB component that exposes the same remote interface causes a conflict between the default JNDI names.

The default handling of v2–specific JNDI names in GlassFish Server 3.1 can be managed with the asadmin command or with the disable-nonportable-jndi-names boolean property for the ejb-container element in glassfish-ejb-jar.xml.

Use the asadmin command or directly modify the glassfish-ejb-jar.xml file to set the disable-nonportable-jndi-names property.

- Using the asadmin command:

 asadmin> set server.ejb-container.property.disable-nonportable-jndi-names="true"

- Directly modifying the glassfish-ejb-jar.xml file.

 a. Add the disable-nonportable-jndi-names property to the ejb-container element in glassfish-ejb-jar.xml.

 b. Set the value of the disable-nonportable-jndi-names boolean, as desired.

 - false — Enables the automatic use of GlassFish Server v2–specific JNDI names. This is the default setting.

 - true — Disables the automatic use of v2–specific JNDI names. In all cases, 3.1-compatible JNDI names will be used.

 c. Save the glassfish-ejb-jar.xml file and restart the GlassFish Server domain.

 This setting applies to all EJBs deployed to the server.

```xml
<property name="PROVIDER-URL" value="ldap://ldapserver:389/o=myObjects"/>
<property name="SECURITY_AUTHENTICATION" value="simple"/>
<property name="SECURITY_PRINCIPAL", value="cn=joeSmith, o=Engineering"/>
<property name="SECURITY_CREDENTIALS" value="changeit"/>
</external-jndi-resource>
</resources>

▼

To Disable GlassFish Server v2 Vendor-Specific JNDI Names

The EJB 3.1 specification supported by GlassFish Server 3.1 defines portable EJB JNDI names. Because of this, there is less need to continue to use older vendor-specific JNDI names.

By default, GlassFish Server v2–specific JNDI names are applied automatically by GlassFish Server 3.1 for backward compatibility. However, this can lead to some ease-of-use issues. For example, deploying two different applications containing a Remote EJB component that exposes the same remote interface causes a conflict between the default JNDI names.

The default handling of v2–specific JNDI names in GlassFish Server 3.1 can be managed with the asadmin command or with the disable-nonportable-jndi-names boolean property for the ejb-container element in glassfish-ejb-jar.xml.

Use the asadmin command or directly modify the glassfish-ejb-jar.xml file to set the disable-nonportable-jndi-names property.

- Using the asadmin command:
  
  asadmin> set server.ejb-container.property.disable-nonportable-jndi-names="true"

- Directly modifying the glassfish-ejb-jar.xml file.
  
  a. Add the disable-nonportable-jndi-names property to the ejb-container element in glassfish-ejb-jar.xml.

  b. Set the value of the disable-nonportable-jndi-names boolean, as desired.
    
    - false — Enables the automatic use of GlassFish Server v2–specific JNDI names. This is the default setting.
    
    - true — Disables the automatic use of v2–specific JNDI names. In all cases, 3.1-compatible JNDI names will be used.

  c. Save the glassfish-ejb-jar.xml file and restart the GlassFish Server domain.

  This setting applies to all EJBs deployed to the server.

```
This chapter discusses how to manage the transaction service for the Oracle GlassFish Server environment by using the asadmin command-line utility. Instructions for manually recovering transactions are also included.

The following topics are addressed here:

- “About Transactions” on page 397
- “Configuring the Transaction Service” on page 400
- “Managing the Transaction Service for Rollbacks” on page 401
- “Recovering Transactions” on page 404
- “Transaction Logging” on page 408

Instructions for accomplishing the tasks in this chapter by using the Administration Console are contained in the Administration Console online help.

For more information about the Java Transaction API (JTA) and Java Transaction Service (JTS), see the following sites: http://www.oracle.com/technetwork/java/javaee/tech/jta-138684.html and http://www.oracle.com/technetwork/java/javaee/tech/jts-140022.html.

You might also want to read Chapter 44, “Transactions,” in The Java EE 6 Tutorial.

About Transactions

A transaction is a series of discreet actions in an application that must all complete successfully. By enclosing one or more actions in an indivisible unit of work, a transaction ensures data integrity and consistency. If all actions do not complete, the changes are rolled back.

For example, to transfer funds from a checking account to a savings account, the following steps typically occur:

1. Check to see if the checking account has enough money to cover the transfer.
2. Debit the amount from the checking account.
3. Credit the amount to the savings account.
4. Record the transfer to the checking account log.
5. Record the transfer to the savings account log.

These steps together are considered a single transaction.

If all the steps complete successfully, the transaction is committed. If any step fails, all changes from the preceding steps are rolled back, and the checking account and savings account are returned to the states they were in before the transaction started. This type of event is called a rollback. A normal transaction ends in either a committed state or a rolled back state.

The following elements contribute to reliable transaction processing by implementing various APIs and functionalities:

- **Transaction Manager.** Provides the services and management functions required to support transaction demarcation, transactional resource management, synchronization, and transaction context propagation.
- **GlassFish Server.** Provides the infrastructure required to support the application runtime environment that includes transaction state management.
- **Resource Manager.** Through a resource adapter, the resource manager provides the application access to resources. The resource manager participates in distributed transactions by implementing a transaction resource interface used by the transaction manager to communicate transaction association, transaction completion, and recovery work. An example of such a resource manager is a relational database server.
- **Resource Adapter.** A system-level software library is used by GlassFish Server or a client to connect to a resource manager. A resource adapter is typically specific to a resource manager. The resource adapter is available as a library and is used within the address space of the client using it. An example of such a resource adapter is a Java Database Connectivity (JDBC) driver. For information on supported JDBC drivers, see "Configuration Specifics for JDBC Drivers" on page 283.
- **Transactional User Application.** In the GlassFish Server environment, the transactional user application uses Java Naming and Directory Interface (JNDI) to look up transactional data sources and, optionally, the user transaction). The application might use declarative transaction attribute settings for enterprise beans, or explicit programmatic transaction demarcation. For more information, see "The Transaction Manager, the Transaction Synchronization Registry, and UserTransaction” in Oracle GlassFish Server 3.1 Application Development Guide.

The following topics are addressed here:

- “Transaction Resource Managers” on page 399
- “Transaction Scope” on page 399
Transaction Resource Managers

There are three types of transaction resource managers:

- **Databases** - Use of transactions prevents databases from being left in inconsistent states due to incomplete updates. For information about JDBC transaction isolation levels, see “Using JDBC Transaction Isolation Levels” in Oracle GlassFish Server 3.1 Application Development Guide.

 The GlassFish Server supports a variety of JDBC XA drivers. For a list of the JDBC drivers currently supported by the GlassFish Server, see the Oracle GlassFish Server 3.1-3.1.1 Release Notes. For configurations of supported and other drivers, see “Configuration Specifics for JDBC Drivers” on page 283.

- **Java Message Service (JMS) Providers** - Use of transactions ensures that messages are reliably delivered. The GlassFish Server is integrated with GlassFish Server Message Queue, a fully capable JMS provider. For more information about transactions and the JMS API, see Chapter 17, “Administering the Java Message Service (JMS).”

- **J2EE Connector Architecture (CA) components** - Use of transactions prevents legacy EIS systems from being left in inconsistent states due to incomplete updates. For more information about connectors, see Chapter 13, “Administering EIS Connectivity.”

Transaction Scope

A local transaction involves only one non-XA resource and requires that all participating application components execute within one process. Local transaction optimization is specific to the resource manager and is transparent to the Java EE application.

In the GlassFish Server, a JDBC resource is non-XA if it meets either of the following criteria:

- In the JDBC connection pool configuration, the DataSource class does not implement the javax.sql.XADataSource interface.
- The Resource Type setting is not set to javax.sql.XADataSource.

A transaction remains local if the following conditions remain true:

- One and only one non-XA resource is used. If any additional non-XA resource is used, the transaction is aborted, because the transaction manager must use XA protocol to commit two or more resources.
- No transaction importing or exporting occurs.

Transactions that involve multiple resources or multiple participant processes are distributed or global transactions. A global transaction can involve one non-XA resource if last agent optimization is enabled. Otherwise, all resources must be XA. The use-last-agent-optimization property is set to true by default. For details about how to set this property, see “Configuring the Transaction Service” on page 400.
If only one XA resource is used in a transaction, one-phase commit occurs, otherwise the transaction is coordinated with a two-phase commit protocol.

A two-phase commit protocol between the transaction manager and all the resources enlisted for a transaction ensures that either all the resource managers commit the transaction or they all abort. When the application requests the commitment of a transaction, the transaction manager issues a PREPARE_TO_COMMIT request to all the resource managers involved. Each of these resources can in turn send a reply indicating whether it is ready for commit (PREPARED) or not (NO). Only when all the resource managers are ready for a commit does the transaction manager issue a commit request (COMMIT) to all the resource managers. Otherwise, the transaction manager issues a rollback request (ABORT) and the transaction is rolled back.

Configuring the Transaction Service

You can configure the transaction service in the GlassFish Server in the following ways:

- To configure the transaction service using the Administration Console, open the Transaction Service component under the relevant configuration. For details, click the Help button in the Administration Console.
- To configure the transaction service, use the `set(1)` subcommand to set the following attributes.

The following examples show the `server-config` configuration, but values for any configuration can be set. For example, if you create a cluster named `cluster1` and a configuration named `cluster1-config` is automatically created for it, you can use `cluster1-config` in the `set` subcommand to get the transaction service settings for that cluster.

```
server-config.transaction-service.automatic-recovery = false
server-config.transaction-service.heuristic-decision = rollback
server-config.transaction-service.keypoint-interval = 2048
server-config.transaction-service.retry-timeout-in-seconds = 600
server-config.transaction-service.timeout-in-seconds = 0
server-config.transaction-service.tx-log-dir = domain-dir/logs
```

You can also set these properties:

```
server-config.transaction-service.property.oracle-xa-recovery-workaround = true
server-config.transaction-service.property.sybase-xa-recovery-workaround = false
server-config.transaction-service.property.disable-distributed-transaction-logging = false
server-config.transaction-service.property.xaresource-txn-timeout = 0
server-config.transaction-service.property.pending-txn-clean-up-interval = .1
server-config.transaction-service.property.use-last-agent-optimization = true
server-config.transaction-service.property.delegated-recovery = false
server-config.transaction-service.property.wait-time-before-recovery-insec = 60
server-config.transaction-service.property.purge-cancelled-transactions-after = 0
server-config.transaction-service.property.commit-one-phase-during-recovery = false
server-config.transaction-service.property.add-wait-point-during-recovery = 0
server-config.transaction-service.property.db-logging-resource = jdbc/TxnDS
server-config.transaction-service.property.xa-servername = myserver
```
Default property values are shown where they exist. For `db-logging-resource` and `xa-servername`, typical values are shown. Values that are not self-explanatory are as follows:

- The `xaresource-txn-timeout` default of 0 means there is no timeout. The units are seconds.
- The `pending-txn-cleanup-interval` default of -1 means the periodic recovery thread doesn’t run. The units are seconds.
- The `purge-cancelled-transactions-after` default of 0 means cancelled transactions are not purged. The units are the number of cancellations in between purging attempts.
- The `add-wait-point-during-recovery` property does not have a default value. If this property is unset, recovery does not wait. The units are seconds.
- The `db-logging-resource` property does not have a default value. It is unset by default. However, if you set `db-logging-resource` to an empty value, the value used is `jdbc/TxnDS`.
- The `xa-servername` property does not have a default value. Use this property to override server names that can cause errors.

You can use the `get(1)` subcommand to list all the transaction service attributes and the properties that have been set. For details, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

Changing `keypoint-interval`, `retry-timeout-in-seconds`, or `timeout-in-seconds` does not require a server restart. Changing other attributes or properties requires a server restart.

You can also set the following system properties:

```
ALLOW_MULTIPLE_ENLISTS_DELISTS=false
JTA_RESOURCE_TABLE_MAX_ENTRIES=8192
JTA_RESOURCE_TABLE_DEFAULT_LOAD_FACTOR=0.75f
```

The `JTA_RESOURCE_TABLE_DEFAULT_LOAD_FACTOR` default is the default Map resizing value.

Managing the Transaction Service for Rollbacks

You can roll back a single transaction by using the `asadmin` subcommands described in this section. To do so, the transaction service must be stopped (and later restarted), allowing you to see the active transactions and correctly identify the one that needs to be rolled back.

The following topics are addressed here:

- “To Stop the Transaction Service” on page 402
- “To Roll Back a Transaction” on page 402
- “To Restart the Transaction Service” on page 403
- “Determining Local Transaction Completion at Shutdown” on page 404
To Stop the Transaction Service

Use the `freeze-transaction-service` subcommand in remote mode to stop the transaction service. When the transaction service is stopped, all in-flight transactions are immediately suspended. You must stop the transaction service before rolling back any in-flight transactions.

Running this subcommand on a stopped transaction subsystem has no effect. The transaction service remains suspended until you restart it by using the `unfreeze-transaction-service` subcommand.

1. **Ensure that the server is running.**
 Remote subcommands require a running server.

2. **Stop the transaction service by using the `freeze-transaction-service` subcommand.**

 Example 19–1
 Stopping the Transaction Service

 This example stops the transaction service.

   ```
   asadmin> freeze-transaction-service --target instance1
   Command freeze-transaction-service executed successfully
   ```

 See Also
 You can also view the full syntax and options of the subcommand by typing `asadmin help freeze-transaction-service` at the command line.

To Roll Back a Transaction

In some situations, you might want to roll back a particular transaction. Before you can roll back a transaction, you must first stop the transaction service so that transaction operations are suspended. Use the `rollback-transaction` subcommand in remote mode to roll back a specific transaction.

1. **Ensure that the server is running.**
 Remote subcommands require a running server.

2. **Enable monitoring using the `set` subcommand.** For example:

   ```
   asadmin> set cluster1-config.monitoring-service.module-monitoring-levels.transaction-service=HIGH
   ```

3. **Use the `freeze-transaction-service` subcommand to halt in-process transactions.** See “To Stop the Transaction Service” on page 402.
Identify the ID of the transaction you want to roll back.
To see a list of IDs of active transactions, use the `get` subcommand with the `--monitor` option to get the monitoring data for the `activeids` statistic. See “Transaction Service Statistics” on page 211. For example:

```
asadmin> get --monitor instance1.server.transaction-service.activeids-current
```

Roll back the transaction by using the `rollback-transaction(1)` subcommand.
The transaction is not rolled back at the time of this command’s execution, but only marked for rollback. The transaction is rolled back when it is completed.

Example 19–2 Rolling Back a Transaction

This example rolls back the transaction with transaction ID `0000000000000001_00`.

```
asadmin> rollback-transaction --target instance1 0000000000000001_00
Command rollback-transaction executed successfully
```

See Also You can also view the full syntax and options of the subcommand by typing `asadmin help rollback-transaction` at the command line.

To Restart the Transaction Service

Use the `unfreeze-transaction-service` subcommand in remote mode to resume all the suspended in-flight transactions. Run this subcommand to restart the transaction service after it has been frozen.

1 Ensure that the server is running.
Remote subcommands require a running server.

2 Restart the suspended transaction service by using the `unfreeze-transaction-service(1)` subcommand.

Example 19–3 Restarting the Transaction Service

This example restarts the transaction service after it has been frozen.

```
asadmin> unfreeze-transaction-service --target instance1
Command unfreeze-transaction-service executed successfully
```

See Also You can also view the full syntax and options of the subcommand by typing `asadmin help unfreeze-transaction-service` at the command line.
Determining Local Transaction Completion at Shutdown

When you shut down a GlassFish Server instance, all database connections are closed. When an Oracle JDBC driver-based database connection is closed in the middle of a non-XA transaction, all pending changes are committed. Other databases usually roll back pending changes when a connection is closed without being explicitly committed. To determine the exact behavior for your database, refer to the documentation from your JDBC driver vendor.

To explicitly specify whether GlassFish Server commits or rolls back non-XA transactions at server shutdown, set the com.sun.enterprise.in-progress-local-transaction.completion-mode JVM option to either commit or rollback using the create-jvm-options(1) subcommand. For example:

```
asadmin> create-jvm-options -Dcom.sun.enterprise.in-progress-local-transaction.completion-mode=rollback
```

Recovering Transactions

There are some situations where the commit or rollback operations might be interrupted, typically because the server crashed or a resource manager crashed. Crash situations can leave some transactions stranded between steps. GlassFish Server is designed to recover from these failures. If the failed transaction spans multiple servers, the server that started the transaction can contact the other servers to get the outcome of the transaction. If the other servers are unreachable, the transaction uses heuristic decision information to determine the outcome.

The following topics are addressed here:

- “Automatic Transaction Recovery” on page 404
- “To Manually Recover Transactions” on page 405
- “Distributed Transaction Recovery” on page 406
- “Recovery Workarounds and Limitations” on page 406

Automatic Transaction Recovery

GlassFish Server can perform automatic recovery in these ways:

- Pending transactions are completed upon server startup if automatic-recovery is set to true.
- Periodic automatic recovery is performed by a background thread if the pending-txn-cleanup-interval property is set to a positive value.

Changing these settings requires a server restart. For more information about how to change these settings, see “Configuring the Transaction Service” on page 400.
If commit fails during recovery, a message is written to the server log.

▼ **To Manually Recover Transactions**

Use the `recover-transactions` subcommand in remote mode to manually recover transactions that were pending when a resource or a server instance failed.

For a standalone server, do not use manual transaction recovery to recover transactions after a server failure. For a standalone server, manual transaction recovery can recover transactions only when a resource fails, but the server is still running. If a standalone server fails, only the full startup recovery process can recover transactions that were pending when the server failed.

For an installation of multiple server instances, you can use manual transaction recovery from a surviving server instance to recover transactions after a server failure. For manual transaction recovery to work properly, transaction logs must be stored on a shared file system that is accessible to all server instances. See “Transaction Logging” on page 408.

When you execute `recover-transactions` in non-delegated mode, you can recover transactions that didn't complete two-phase commit because of a resource crash. To use manual transaction recovery in this way, the following conditions must be met:

- The `recover-transactions` command should be executed after the resource is restarted.
- Connection validation should be enabled so the connection pool is refreshed when the resource is accessed after the recovery. For more information, see “Connection Validation Settings” in Oracle GlassFish Server 3.1 Performance Tuning Guide.

If commit fails during recovery, a message is written to the server log.

Note – A JMS resource crash is handled the same way as any other resource.

You can list in-doubt GlassFish Server Message Queue transactions using the `imqcmd list txn` subcommand. For more information, see “Managing Transactions” in Oracle GlassFish Server Message Queue 4.5 Administration Guide.

1. **Ensure that the server is running.**
 Remote subcommands require a running server.

2. **Manually recover transactions by using the `recover-transactions(1)` subcommand.**

Example 19–4 Manually Recovering Transactions

This example performs manual recovery of transactions on `instance1`, saving them to `instance2`.

asadmin recover-transactions --target instance2 instance1
Transaction recovered.

See Also
You can also view the full syntax and options of the subcommand by typing asadmin help recover-transactions at the command line.

Distributed Transaction Recovery

To enable cluster-wide automatic recovery, you must first facilitate storing of transaction logs in a shared file system. See “Transaction Logging” on page 408.

Next, you must set the transaction service’s delegated-recovery property to true (the default is false). For information about setting tx-log-dir and delegated-recovery, see “Configuring the Transaction Service” on page 400.

Recovery Workarounds and Limitations

The GlassFish Server provides workarounds for some known issues with transaction recovery implementations.

Note – These workarounds do not imply support for any particular JDBC driver.

General Recovery Limitations

The following general limitations apply to transaction recovery:

- Recovery succeeds if there are no exceptions during the process. This is independent of the number of transactions that need to be recovered.
- Only transactions that did not complete the two-phase commit can be recovered (one of the XA resources failed or GlassFish Server crashed after resources were prepared).
- Manual transaction recovery cannot recover transactions after a server crash on a standalone server instance. Manual operations are intended for cases when a resource dies unexpectedly while the server is running. In case of a server crash, only startup recovery can recover in-doubt transactions.
- It is not possible to list transaction IDs for in-doubt transactions.
- Delegated transaction recovery (by a different server instance in a cluster) is not possible if the failed instance used an EMBEDDED Message Queue broker, or if it used a LOCAL or REMOTE Message Queue broker and the broker also failed. In this case, only automatic recovery on server instance restart is possible. This is because for conventional Message Queue clustering, state information in a failed broker is not available until the broker restarts.
Oracle Setup for Transaction Recovery

You must configure the following grant statements in your Oracle database to set up transaction recovery:

```sql
grant select on SYS.DBA_PENDING_TRANSACTIONS to user;
grant execute on SYS.DBMS_SYSTEM to user;
grant select on SYS.PENDING_TRANS$ to user;
grant select on SYS.DBA_2PC_NEIGHBORS to user;
grant execute on SYS.DBMS_XA to user;
grant select on SYS.DBA_2PC_PENDING to user;
```

The `user` is the database administrator. On some versions of the Oracle driver the last grant execute fails. You can ignore this.

Oracle Thin Driver

In the Oracle thin driver, the XAResource.recover method repeatedly returns the same set of in-doubt Xids regardless of the input flag. According to the XA specifications, the Transaction Manager initially calls this method with TMSTARTSCAN and then with TMNOFLAGS repeatedly until no Xids are returned. The XAResource.commit method also has some issues.

To disable the GlassFish Server workaround, set the oracle-xa-recovery-workaround property value to false. For details about how to set this property, see "Configuring the Transaction Service" on page 400. This workaround is used unless explicitly disabled.

Delegated Recovery After Server Crash Doesn't Work on MySQL

The MySQL database supports XA transaction recovery only when the database crashes. When a GlassFish Server instance crashes, MySQL rolls back prepared transactions.

Call to XATerminator.recover() During ResourceAdapter.start() Hangs If Automatic Recovery Is Enabled

Calls to XATerminator.recover() from the ResourceAdapter.start() method never return because GlassFish Server deadlocks. This only occurs when automatic recovery is enabled.

It is not advisable to do transactional activities, such as starting a transaction or calling XATerminator.recover(), during ResourceAdapter.start(). For more information, see http://markmail.org/message/ogc7qndhaywfkdrp#query:+page:1+mid:kyyzpcexusbnv7ri+state:results.
Transaction Logging

The transaction service writes transactional activity into transaction logs so that transactions can be recovered. You can control transaction logging in these ways:

- Set the location of the transaction log files in one of these ways:
 - Set the GlassFish Server’s `log-root` setting to a shared file system base directory and set the transaction service’s `tx-log-dir` attribute to a relative path.
 - Set `tx-log-dir` to an absolute path to a shared file system directory, in which case `log-root` is ignored for transaction logs.
 - Set a system property called `TX-LOG-DIR` to a shared file system directory. For example:

    ```
    asadmin> create-system-properties --target server TX-LOG-DIR=/inst1/logs
    ```

 For information about setting `log-root` and other general logging settings, see Chapter 7, “Administering the Logging Service.”

- Turn off transaction logging by setting the `disable-distributed-transaction-logging` property to `true` and the `automatic-recovery` attribute to `false`. Do this only if performance is more important than transaction recovery.

 Note – All instances in a cluster must be owned by the same user (uid), and read/write permissions for that user must be set on the transaction log directories.

 Transaction logs should be stored in a high-availability network file system (NFS) to avoid a single point of failure.

▼ **To Store Transaction Logs in a Database**

For multi-core machines, logging transactions to a database may be more efficient.

This feature is intended for resource recovery on a standalone server instance while the instance is healthy, not for a server crash. It is not intended for use on a cluster.

1. Create a JDBC connection Pool, and set the `non-transactional-connections` attribute to `true`.

2. Create a JDBC resource that uses the connection pool and note the JNDI name of the JDBC resource.

3. Create a table named `txn_log_table` with the following schema:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>JDBC Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The size of the SERVERNAME column should be at least the length of the GlassFish Server host name plus 10 characters.

The size of the GTRID column should be at least 64 bytes.

4 Add the db-logging-resource property to the transaction service. For example:

 asadmin set server-config.transaction-service.property.db-logging-resource="jdbc/TxnDS"

 The property's value should be the JNDI name of the JDBC resource configured previously.

5 To disable file synchronization, use the following asadmin create-jvm-options command:

 asadmin create-jvm-options -Dcom.sun.appserv.transaction.nofdsync

6 Restart the server.

Next Steps

To define the SQL used by the transaction manager when it is storing its transaction logs in the database, use the following flags:

-Dcom.sun.jts.dblogging.insertquery=sql statement

-Dcom.sun.jts.dblogging.deletequery=sql statement

The default statements are as follows:

-Dcom.sun.jts.dblogging.insertquery=insert into txn_log_table values (?, ?, ?)

-Dcom.sun.jts.dblogging.deletequery=delete from txn_log_table where localtid = ? and servername = ?

To set one of these flags using the asadmin create-jvm-options command, you must quote the statement. For example:

 create-jvm-options '-Dcom.sun.jts.dblogging.deletequery=delete from txn_log_table where gtrid = ?'

 You can also set JVM options in the Administration Console. Select the JVM Settings component under the relevant configuration. These flags and their statements must also be quoted in the Administration Console. For example:

 '-Dcom.sun.jts.dblogging.deletequery=delete from txn_log_table where gtrid = ?'

See Also

For information about JDBC connection pools and resources, see Chapter 12, “Administering Database Connectivity.” For more information about the asadmin create-jvm-options command, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.
PART III

Appendixes
Subcommands for the asadmin Utility

This appendix lists the asadmin subcommands that are included with this release of the Oracle GlassFish Server 3.1 software.

- “General Administration Subcommands” on page 414
- “Connectivity Subcommands” on page 416
- “Domain Subcommands” on page 419
- “Internet Connectivity Subcommands” on page 420
- “JavaMail Subcommands” on page 421
- “JMS Subcommands” on page 422
- “JNDI Subcommands” on page 423
- “JVM Subcommands” on page 424
- “Life Cycle Module Subcommands” on page 424
- “Logging and Monitoring Subcommands” on page 425
- “ORB Subcommands” on page 426
- “ThreadPool Subcommands” on page 426
- “Transaction Service Subcommands” on page 426

For information and instructions on using the asadmin application deployment subcommands, see Oracle GlassFish Server 3.1 Application Deployment Guide.

Online help for the asadmin subcommands can be invoked on the command line, for example, asadmin create-domain --help. The Oracle GlassFish Server 3.1-3.1.1 Reference Manual also provides a collection of these help pages.

Note – The common options used with remote subcommands are described in the asadmin(1M) help page.
General Administration Subcommands

add-resources(1) Creates the resources named in the specified XML file. Supported in remote mode only. For procedural information in this guide, see “To Add Resources From an XML File” on page 58.

asadmin(1M) Describes how the asadmin utility works.

create-service(1) Configures the starting of a domain administration server (DAS) on an unattended boot. On Oracle Solaris 10, this subcommand uses the Service Management Facility (SMF). For procedural information in this guide, see “To Configure a DAS or an Instance for Automatic Restart on Oracle Solaris” on page 116.

create-system-properties(1) Creates or updates system properties. Supported in remote mode only. For procedural information in this guide, see “To Create System Properties” on page 56.

delete-system-property(1) Deletes system properties of a domain or configuration, or server instance. Supported in remote mode only. For procedural information in this guide, see “To Delete a System Property” on page 57.

get(1) Gets an attribute of an element in the domain.xml file. With the -m option, gets the names and values of the monitorable or configurable attributes. For procedural information in this guide, see “Guidelines for Using the list and get Subcommands for Monitoring” on page 187.

list(1) Lists the configurable element. On Oracle Solaris, quotes are needed when running subcommands with * as the option value or operand. For procedural information in this guide, see “Guidelines for Using the list and get Subcommands for Monitoring” on page 187.

list-commands(1) Lists all the asadmin subcommands, local subcommands first, then remote subcommands. You can specify that only remote subcommands or only local subcommands be displayed. Supported in remote mode only. For procedural information in this guide, see “To List Subcommands” on page 62.
list-containers(1) Lists application containers and the status of each container. Supported in remote mode only. For procedural information in this guide, see “To List Containers” on page 60.

list-modules(1) Lists modules that are accessible to the GlassFish Server subsystem. The status of each module is included. Supported in remote mode only. For procedural information in this guide, see “To List Modules” on page 61.

list-system-properties(1) Lists the system properties of a domain or configuration. Supported in remote mode only. For procedural information in this guide, see “To List System Properties” on page 57.

list-timers(1) List the timers owned by a specific server instance. Supported in remote mode only. For procedural information in this guide, see “To List Timers” on page 62.

multimode(1) Provides an asadmin> prompt for running multiple subcommands while preserving options and environment settings. Supported in local mode only. For procedural information, see “Using the asadmin Utility” on page 49.

set(1) Sets the values of one or more configurable attributes. For procedural information in this guide, see “Configuring Monitoring” on page 182.

show-component-status(1) Lists the status of existing components. Supported in remote mode only. For procedural information in this guide, see “To Show Component Status” on page 63.

start-database(1) Starts the Java DB server. Use this subcommand only for working with applications deployed to the GlassFish Server. For procedural information in this guide, see “To Start the Database” on page 267.

stop-database(1) Stops a process of the Java DB database server. For procedural information in this guide, see “To Stop the Database” on page 268.

version(1) Displays the version information for the option specified in archive or folder format. Supported in remote mode only. For procedural information in this guide, see “To Display the GlassFish Server Version” on page 59.
Connectivity Subcommands

create-admin-object(1)
Creates an administered object. For procedural information in this guide, see “To Create an Administered Object” on page 310.

create-connector-connection-pool(1)
Adds a new connector connection pool with the specified connection pool name. For procedural information in this guide, see “To Create a Connector Connection Pool” on page 295.

create-connector-resource(1)
Creates a connector resource. For procedural information in this guide, see “To Create a Connector Resource” on page 298.

create-connector-security-map(1)
Creates a connector security map for the specified connector connection pool. For procedural information, see “To Create a Connector Security Map” on page 304.

create-connector-work-security-map(1)
Creates a connector work security map for the specified resource adapter. Supported in remote mode only. For procedural information in this guide, see “To Create a Connector Work Security Map” on page 307.

create-jdbc-resource(1)
Creates a new JDBC resource. Supported in remote mode only. For procedural information in this guide, see “To Create a JDBC Resource” on page 279.

create-jdbc-connection-pool(1)
Registers a new JDBC connection pool with the specified JDBC connection pool name. Supported in remote mode only. For procedural information in this guide, see “To Create a JDBC Connection Pool” on page 270.

create-resource-adapter-config(1)
Creates configuration information for the connector module. Supported in remote mode only. For procedural information in this guide, see “To Create Configuration Information for a Resource Adapter” on page 301.

delete-admin-object(1)
Deletes an administered object. For procedural information in this guide, see “To Delete an Administered Object” on page 311.
<table>
<thead>
<tr>
<th>Subcommand</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>delete-connector-connection-pool(1)</td>
<td>Removes the connector connection pool specified using the <code>connector_connection_pool</code> name operand. For procedural information in this guide, see “To Delete a Connector Connection Pool” on page 298.</td>
</tr>
<tr>
<td>delete-connector-resource(1)</td>
<td>Deletes connector resource. For procedural information in this guide, see “To Delete a Connector Resource” on page 300.</td>
</tr>
<tr>
<td>delete-connector-security-map(1)</td>
<td>Deletes a specified connector security map. Supported in remote mode only. For procedural information in this guide, see “To Delete a Connector Security Map” on page 306.</td>
</tr>
<tr>
<td>delete-connector-work-security-map(1)</td>
<td>Deletes a specified connector work security map. Supported in remote mode only. For procedural information in this guide, see “To Delete a Connector Work Security Map” on page 309.</td>
</tr>
<tr>
<td>delete-jdbc-connection-pool(1)</td>
<td>Deletes the specified JDBC connection pool. Supported in remote mode only. For procedural information in this guide, see “To Delete a JDBC Connection Pool” on page 274.</td>
</tr>
<tr>
<td>delete-jdbc-resource(1)</td>
<td>Deletes a JDBC resource. The specified JNDI name identifies the resource to be deleted. Supported in remote mode only. For procedural information in this guide, see “To Delete a JDBC Resource” on page 280.</td>
</tr>
<tr>
<td>delete-resource-adapter-config(1)</td>
<td>Deletes configuration information for the connector module. Supported in remote mode only. For procedural information in this guide, see “To Delete a Resource Adapter Configuration” on page 303.</td>
</tr>
<tr>
<td>flush-connection-pool(1)</td>
<td>Reinitializes all connections established in the specified connection. For procedural information in this guide, see “To Reset (Flush) a Connection Pool” on page 272.</td>
</tr>
</tbody>
</table>
list-admin-objects(1)
Lists administered objects. For procedural information in this guide, see “To List Administered Objects” on page 310.

list-connector-connection-pools(1)
Lists the connector connection pools that have been created. For procedural information in this guide, see “To List Connector Connection Pools” on page 296.

list-connector-resources(1)
Creates connector resources. For procedural information in this guide, see “To List Connector Resources” on page 299.

list-connector-security-maps(1)
Lists the connector security maps belonging to a specified connector connection pool. For procedural information in this guide, see “To List Connector Security Maps” on page 304.

list-connector-work-security-maps(1)
Lists the existing connector work security maps for a resource adapter. Supported in remote mode only. For procedural information in this guide, see “To List Connector Work Security Maps” on page 308.

list-jdbc-connection-pools(1)
Lists the existing JDBC connection pools. Supported in remote mode only. For procedural information in this guide, see “To List JDBC Connection Pools” on page 271.

list-jdbc-resources(1)
Lists the existing JDBC resources. Supported in remote mode only. For procedural information in this guide, see “To List JDBC Resources” on page 280.

list-resource-adapter-configs(1)
Lists configuration information for the connector modules. Supported in remote mode only. For procedural information in this guide, see “To List Resource Adapter Configurations” on page 302.

ping-connection-pool(1)
Tests if a JDBC connection pool is usable. Supported in remote mode only. For procedural information in this guide, see “To Contact (Ping) a Connection Pool” on page 272.

update-connector-security-map(1)
Modifies a security map for the specified connector connection pool. For procedural
Domain Subcommands

create-domain

Creates the configuration of a domain. A domain can exist independent of other domains. Any user who has access to the asadmin utility on a given host can create a domain and store its configuration in a location of choice. For procedural information in this guide, see “To Create a Domain” on page 103.

delete-domain

Deletes the specified domain. The domain must be stopped before it can be deleted. For procedural information in this guide, see “To Delete a Domain” on page 110.

list-domains

Lists the existing domains and their statuses. If the domain directory is not specified, the domains in the default as-install/domains directory is displayed. For procedural information in this guide, see “To List Domains” on page 108.

login

Allows you to log in to a domain. For procedural information in this guide, see “To Log In to a Domain” on page 108.

restart-domain

Restarts the Domain Administration Server (DAS) of the specified domain. Supported in remote mode only. For procedural information in this guide, see “To Restart a Domain” on page 112.

start-domain

Starts a domain. If the domain directory is not specified, the default domain1 in the default as-install/domains directory is started. If there are two or more domains, the domain_name operand must be specified. For procedural information in this guide, see “To Start a Domain” on page 111.

stop-domain

Stops the domain administration server (DAS) of the specified domain. Supported in remote mode only. For procedural information in this guide, see “To Stop a Domain” on page 112.

uptime

Displays the length of time that the domain administration server (DAS) has been running since the last restart. Supported in remote mode only. For procedural information in this guide, see “To Display
Internet Connectivity Subcommands

create-http(1) Creates a set of HTTP parameters for a protocol, which in turn configures one or more network listeners. Supported in remote mode only. For procedural information in this guide, see “To Create an HTTP Configuration” on page 318.

create-http-listener(1) Creates a new HTTP listener socket. Supported in remote mode only. For procedural information in this guide, see “To Create an Internet Connection” on page 316.

create-network-listener(1) Creates a new HTTP listener socket. Supported in remote mode only. For procedural information in this guide, see “To Create an Internet Connection” on page 316.

create-protocol(1) Creates a protocol for a listener. Supported in remote mode only. For procedural information in this guide, see “To Create a Protocol” on page 317.

create-transport(1) Creates a transport for a listener. Supported in remote mode only. For procedural information in this guide, see “To Create a Transport” on page 320.

create-virtual-server(1) Creates the specified virtual server element. Supported in remote mode only. For procedural information in this guide, see “To Create a Virtual Server” on page 326.

create-ssl(1) Creates and configures the SSL element in the selected HTTP listener to enable secure communication on that listener/service. Supported in remote mode only. For procedural information in this guide, see “To Configure an HTTP Listener for SSL” on page 324.

delete-http(1) Deletes an existing HTTP configuration. Supported in remote mode only. For procedural information in this guide, see “To Delete an HTTP Configuration” on page 319.

delete-http-listener(1) Deletes the specified HTTP listener. Supported in remote mode only. For procedural information in this guide, see “To Delete an HTTP Network Listener” on page 323.

delete-network-listener(1) Deletes the specified HTTP listener. Supported in remote mode only. For procedural information in this guide, see “To Delete an HTTP Network Listener” on page 323.
delete-protocol(1)
Deletes and existing HTTP protocol. Supported in remote mode only. For procedural information in this guide, see “To Delete a Protocol” on page 318.

delete-ssl(1)
Deletes the SSL element in the selected HTTP listener. Supported in remote mode only. For procedural information in this guide, see “To Delete SSL From an HTTP Listener” on page 324.

delete-transport(1)
Deletes and existing HTTP transport. Supported in remote mode only. For procedural information in this guide, see “To Delete a Transport” on page 321.

delete-virtual-server(1)
Deletes the specified virtual server element. Supported in remote mode only. For procedural information in this guide, see “To Delete a Virtual Server” on page 327.

list-http-listeners(1)
Lists the existing HTTP listeners. Supported in remote mode only. For procedural information in this guide, see “To List HTTP Network Listeners” on page 322.

list-network-listeners(1)
Lists the existing HTTP listeners. Supported in remote mode only. For procedural information in this guide, see “To List HTTP Network Listeners” on page 322.

list-protocols(1)
Lists the existing HTTP protocols. Supported in remote mode only. For procedural information in this guide, see “To List Protocols” on page 317.

list-transports(1)
Lists the existing HTTP transports. Supported in remote mode only. For procedural information in this guide, see “To List Transports” on page 320.

list-virtual-servers(1)
Lists the existing virtual servers. Supported in remote mode only. For procedural information in this guide, see “To List Virtual Servers” on page 327.

JavaMail Subcommands

create-javamail-resource(1)
Creates a JavaMail session resource. Supported in remote mode only. For procedural information in this guide, see “To Create a JavaMail Resource” on page 336.

delete-javamail-resource(1)
Deletes a JavaMail session resource. Supported in remote mode only. For procedural information in this guide, see “To Delete a JavaMail Resource” on page 338.
JMS Subcommands

list-javamail-resources(1) Creates JavaMail session resources. Supported in remote mode only. For procedural information in this guide, see “To List JavaMail Resources” on page 337.

JMS Subcommands

create-jmsdest(1) Creates a JMS physical destination. Along with the physical destination, you use the `create-jms-resource` subcommand to create a JMS destination resource that has a `Name` property that specifies the physical destination. Supported in remote mode only. For procedural information in this guide, see “To Create a JMS Physical Destination” on page 352.

create-jms-host(1) Creates a JMS host within the JMS service. Supported in remote mode only. For procedural information in this guide, see “To Create a JMS Host” on page 345.

create-jms-resource(1) Creates a JMS connection factory resource or JMS destination resource. Supported in remote mode only. Supported in remote mode only. For procedural information in this guide, see “To Create a Connection Factory or Destination Resource” on page 349.

delete-jmsdest(1) Removes the specified JMS destination. Supported in remote mode only. For procedural information in this guide, see “To Delete a JMS Physical Destination” on page 354.

delete-jms-host(1) Deletes a JMS host within the JMS service. Supported in remote mode only. For procedural information in this guide, see “To Delete a JMS Host” on page 348.

delete-jms-resource(1) Deletes a JMS connection factory resource or JMS destination resource. Supported in remote mode only. For procedural information in this guide, see “To Delete a Connection Factory or Destination Resource” on page 351.

flush-jmsdest(1) Purges the messages from a physical destination in the specified JMS Service configuration of the specified target. Supported in remote mode only. For procedural information in this guide, see “To Purge Messages From a Physical Destination” on page 354.

jms-ping(1) Checks if the JMS service (also known as the JMS provider) is up and running. Supported in remote mode only. For procedural information in this guide, see “Troubleshooting the JMS Service” on page 356.
<table>
<thead>
<tr>
<th>Subcommand</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>list-jmsdest(1)</td>
<td>Lists the JMS physical destinations. Supported in remote mode only. For procedural information in this guide, see “To List JMS Physical Destinations” on page 353.</td>
</tr>
<tr>
<td>list-jms-hosts(1)</td>
<td>Lists the existing JMS hosts. Supported in remote mode only. For procedural information in this guide, see “To List JMS Hosts” on page 346.</td>
</tr>
<tr>
<td>list-jms-resources(1)</td>
<td>Lists the existing JMS connection factory or destination resources. Supported in remote mode only. For procedural information in this guide, see “To List JMS Resources” on page 351.</td>
</tr>
<tr>
<td>create-custom-resource(1)</td>
<td>Creates a custom JNDI resource. Supported in remote mode only. For procedural information in this guide, see “To Create a Custom JNDI Resource” on page 390.</td>
</tr>
<tr>
<td>create-jndi-resource(1)</td>
<td>Creates an external JNDI resource. Supported in remote mode only. For procedural information in this guide, see “To Register an External JNDI Resource” on page 392.</td>
</tr>
<tr>
<td>delete-custom-resource(1)</td>
<td>Deletes a custom JNDI resource. Supported in remote mode only. For procedural information in this guide, see “To Delete a Custom JNDI Resource” on page 391.</td>
</tr>
<tr>
<td>delete-jndi-resource(1)</td>
<td>Deletes an external JNDI resource. Supported in remote mode only. For procedural information in this guide, see “To Delete an External JNDI Resource” on page 394.</td>
</tr>
<tr>
<td>list-custom-resources(1)</td>
<td>Lists the existing custom JNDI resources. Supported in remote mode only. For procedural information in this guide, see “To List Custom JNDI Resources” on page 390.</td>
</tr>
<tr>
<td>list-jndi-entries(1)</td>
<td>Lists the entries in the JNDI tree. Supported in remote mode only. For procedural information in this guide, see “To List External JNDI Entries” on page 393.</td>
</tr>
<tr>
<td>list-jndi-resources(1)</td>
<td>Lists the existing external JNDI resources. Supported in remote mode only. For procedural information in this guide, see “To List External JNDI Resources” on page 393.</td>
</tr>
</tbody>
</table>
JVM Subcommands

- **create-jvm-options(1)**: Creates a JVM option in the Java configuration or profiler elements of the `domain.xml` file. Supported in remote mode only. For procedural information in this guide, see “To Create JVM Options” on page 138.

- **create-profiler(1)**: Creates a profiler element. Supported in remote mode only. For procedural information in this guide, see “To Create a Profiler” on page 141.

- **delete-jvm-options(1)**: Deletes the specified JVM option from the Java configuration or profiler elements of the `domain.xml` file. Supported in remote mode only. For procedural information in this guide, see “To Delete JVM Options” on page 139.

- **delete-profiler(1)**: Deletes the specified profiler element. Supported in remote mode only. For procedural information in this guide, see “To Delete a Profiler” on page 142.

- **generate-jvm-report(1)**: Generates a report showing the threads, classes, and memory for the virtual machine that runs GlassFish Server. For procedural information in this guide, see “To Generate a JVM Report” on page 140.

- **list-jvm-options(1)**: Lists the command-line options that are passed to the Java application launcher when GlassFish Server is started. Supported in remote mode only. For procedural information in this guide, see “To List JVM Options” on page 138.

Life Cycle Module Subcommands

- **create-lifecycle-module(1)**: Creates a new life cycle module. Supported in remote mode only. For procedural information in this guide, see “To Create a Life Cycle Module” on page 232.

- **list-lifecycle-modules(1)**: Lists life cycle modules. Supported in remote mode only. For procedural information in this guide, see “To List Life Cycle Modules” on page 233.

- **delete-lifecycle-module(1)**: Deletes an existing life cycle module. Supported in remote mode only. For procedural information in this guide, see “To Delete a Life Cycle Module” on page 234.
Logging and Monitoring Subcommands

<table>
<thead>
<tr>
<th>Subcommand</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>collect-log-files(1)</td>
<td>Collects all available log files and creates a ZIP archive. Supported in remote mode only. For procedural information in this guide, see “To Collect Log Files into a ZIP Archive” on page 173.</td>
</tr>
<tr>
<td>disable-monitoring(1)</td>
<td>Disables the monitoring service. Supported in remote mode only. For procedural information in this guide, see “To Disable Monitoring” on page 183.</td>
</tr>
<tr>
<td>enable-monitoring(1)</td>
<td>Enables the monitoring service. Supported in remote mode only. For procedural information in this guide, see “To Enable Monitoring” on page 182.</td>
</tr>
<tr>
<td>list-log-attributes(1)</td>
<td>Lists log file attributes. Supported in remote mode only. For procedural information in this guide, see “Configuring the Logging Service” on page 162.</td>
</tr>
<tr>
<td>list-log-levels(1)</td>
<td>Lists the existing loggers. Supported in remote mode only. For procedural information in this guide, see “To List Log Levels” on page 165.</td>
</tr>
<tr>
<td>monitor(1)</td>
<td>Displays monitoring information for the common GlassFish Server resources. Supported in remote mode only. For procedural information in this guide, see “To View Common Monitoring Data” on page 185.</td>
</tr>
<tr>
<td>rotate-log(1)</td>
<td>Rotates the server.log file and stores the old data in a time-stamped file. Supported in remote mode only. For procedural information in this guide, see “To Rotate Log Files Manually” on page 171.</td>
</tr>
<tr>
<td>set-log-attributes(1)</td>
<td>Sets log file attributes. Supported in remote mode only. For procedural information in this guide, see “Configuring the Logging Service” on page 162.</td>
</tr>
<tr>
<td>set-log-levels(1)</td>
<td>Sets the log level for a module. Supported in remote mode only. For procedural information in this guide, see “Setting Log Levels” on page 164.</td>
</tr>
</tbody>
</table>
ORB Subcommands

- **create-iiop-listener(1)** Creates an IIOP listener. Supported in remote mode only. For procedural information in this guide, see “To Create an IIOP Listener” on page 332.

- **delete-iiop-listener(1)** Deletes an IIOP listener. Supported in remote mode only. For procedural information in this guide, see “ToDelete an IIOP Listener” on page 334.

- **list-iiop-listeners(1)** Lists the existing IIOP listeners. Supported in remote mode only. For procedural information in this guide, see “ToList IIOP Listeners” on page 333.

Thread Pool Subcommands

- **create-threadpool(1)** Creates a new thread pool. Supported in remote mode only. For procedural information in this guide, see “To Create a Thread Pool” on page 144.

- **delete-threadpool(1)** Deletes the specified thread pool. Supported in remote mode only. For procedural information in this guide, see “ToDelete a Thread Pool” on page 146.

- **list-threadpools(1)** Lists the existing thread pools. Supported in remote mode only. For procedural information in this guide, see “ToList Thread Pools” on page 145.

Transaction Service Subcommands

- **freeze-transaction-service(1)** Freezes the transaction subsystem during which time all the in-flight transactions are suspended. Supported in remote mode only. For procedural information, see “To Stop the Transaction Service” on page 402.

- **recover-transactions(1)** Manually recovers pending transactions. Supported in remote mode only. For procedural information, see “To Manually Recover Transactions” on page 405.

- **rollback-transaction(1)** Rolls back the named transaction. Supported in remote mode only. For procedural information, see “To Roll Back a Transaction” on page 402.
| Command: unfreeze-transaction-service(1) | Description: Resumes all the suspended in-flight transactions. Invoke this subcommand on an already frozen transaction. Supported in remote mode only. For procedural information, see "To Restart the Transaction Service" on page 403. |
A
accessing a database, 266–269
add-on components
 about monitoring, 181
 installing, 241
 overview, 235
 repositories, 236–239
 reverting to prior version, 247–250
 updating, 244–245
 updating an image, 246
add-resources command, 58
adding
 a logging handler, 172–173
 new components, 241
 resources, 58
additional information, Update Tool, 240
Admin Console
 Edit Connection Pool Advanced Attributes page
 SQL Trace Listeners field, 277
 Statement Cache Size field, 277
 Statement Timeout field, 276
 Edit Connection Pool page
 Init SQL field, 275
 Transaction Log Location field, 408
 Transaction Service page, 400
administered objects
 creating, 310
 deleting, 311–312
 editing, 311
 listing, 310–311
Administration Console
 extending GlassFish Server, 240–241
Administration Console (Continued)
 overview, 42
 starting, 42
 updating GlassFish Server, 240–241
anonymous login, 33
applications
 listing, 59
 monitoring statistics, 191
asadmin command
 create-jdbc-connection-pool
 --initsqloption, 275
 --sqltracelistenersoption, 277
 --statementcachesizeoption, 277
 --statementtimeoutoption, 276
 create-jvm-options
 com.sun.appserv.transaction.nofdsynchoption, 409
 get, 401
 set
 init-sqloption, 275
 sql-tracelistenersoption, 277
 statementcachesizeoption, 277
 transaction service settings, 400
asadmin utility
 command syntax, 50–51
 commands listing, 413–427
 help information, 52–53
 listing commands, 62
 man pages, 52–53
 operands, 51
 options, 50–51
 overview, 43, 49–56
Index

asadmin utility (Continued)
 path settings, 50
 scripts, 55–56
 single mode, 51–52
 subcommand options, 50–51
 subcommands, 50

B
backing up, domain, 127
backup-domain command, 127
bean-cache, monitoring statistics, 191

C
cache, (EJB) monitoring statistics, 191
certificates, creating for mod_jk, 154
class loading monitoring statistics for JVM, 198
cluster, log, 157–159
command-line utility, overview, 43
commands, for asadmin utility, 413–427
compilation monitoring statistics for JVM, 200
component status, showing, 63
configuration
 overview, 34–42
 REST methods, 67–76
 REST URLs, 64–65
configuration (HTTP), creating, 318–319
configuration objects, REST resources, 78–88
configuring
 database access, 269–282
 generic resource adapter, 357–358
 HTTP listeners for SSL, 324
 IIOP listeners, 332–334
 JDBC resources, 278–281
 JVM, 137–142
 life cycle modules, 232–234
 logging service, 162–173
 monitoring, 182–184
 the ORB, 332
 using dotted names, 37–38
connection factory
 creating, 349–350
connections
 connection factory (Continued)
 deleting, 351–352, 354–355
 updating, 349–350
connection manager, ORB monitoring statistics, 205
connection pools
 monitoring statistics, 196
 overview, 270–278
 pinging, 272
 resetting, 272–273
connection pools (JDBC)
 configuring, 269–282
 deleting, 274
 editing, 273
 listing, 271–272
connectivity, setting up for databases, 265–292
connector connection pool
 connecting to (ping), 297
 resetting (flush), 297
connector connection pools
 administering, 295–298
 creating, 295–296
 deleting, 298
 editing, 297
 listing, 296–297
 pinging, 296
connector resources
 administering, 298–301
 creating, 298–299
 deleting, 300–301
 editing, 300
 listing, 299–300
connector security maps
 administering, 303–306
 creating, 304
 deleting, 306
 listing, 304–305
 updating, 305–306
connector work security map, updating, 308–309
connector work security maps
 administering, 306–309
 creating, 307–308
 deleting, 309
 listing, 308
connectors, and transactions, 399
contacting connection pools (ping), 272
container monitoring statistics for web, 212
containers, listing, 60
content-type header, 100
context root, 148
contrib.glassfish.oracle.com, publisher, 236, 239
contrib.glassfish.org, publisher, 236
CORBA, 331
create-admin-object command, 310
create-connector-security-map command, 304
create-connector-work-security-map command, 307–308
create-connector-connection-pool command, 295–296
create-custom-resource command, 390
create-domain subcommand, 103
create-http-listener command, 321–322
for mod_jk, 151
create-http subcommand, 318–319
create-iiop-listener command, 332–333
create-javamail-resource command, 336–337
create-jdbc-connection-pool command, 270–271
--initsqloption, 275
--sqltrace-listeners option, 277
--statementcachesize option, 277
--statementtimeout option, 276
create-jdbc-resource subcommand, 279
create-jms-host command, 345–346
create-jms-resource command, 349–350
create-jmsdest command, 352–353
create-jndi-resource command, 392
create-jvm-options command, 138
com.sun.appserv.transaction.nofdsyncoption, 409
create-lifecycle-module subcommand, 232–233
create-network-listener command, 316, 321–322
create-profiler command, 141
create-protocol subcommand, 317
create-resource-adapter-config command, 301–302
create-schedule subcommand, 125
create-service command, 114–115, 115–116, 116
create-ssl command, 324
create-system-properties command, 56
create-threadpool command, 144–145
create-transport subcommand, 320
create-virtual-server command, 326–327
create-connector-resource command, 298–299
creating
administered objects, 310
connector connection pool, 295–296
connector resource, 298–299
connector security map, 304
connector work security map, 307–308
custom resource, 390
domain, 103
external JNDI resource, 392
HTTP configuration, 318–319
HTTP listeners, 321–322
HTTP protocol, 317
HTTP transport, 320
IIOP listeners, 332–333
internet connection, 316
JavaMail resource, 336–337
JDBC connection pools, 270–271
JDBC resource, 279
JMS hosts, 345–346
JMS physical destination, 352–353
JMS resource, 349–350
JVM options, 138
life cycle modules, 232–233
profilers, 141
resource-adapter-config, 301–302
system properties, 56
threadpools, 144–145
virtual servers, 326–327
cURL, 63
custom resources
creating, 390
deleting, 391
listing, 390–391
updating, 391
customizing, domains, 104–108

D
DAS
displaying uptime, 132
overview, 103
Index

databases
administering connectivity, 265–292
as transaction resource managers, 399
detecting, 282
JNDI names, 388
resource references, 389
setting up access, 266–269
starting, 267–268
stopping, 268
supported, 282, 283–292
default listener ports, 315
default login, 102
default login identity, 33, 103, 108–110
default virtual server, 325
default web module, 147, 328
default-web.xml file, 148–149
defaults, server, 102
delete-admin-object command, 311–312
delete-connector-connection-pool command, 298
delete-connector-resource command, 300–301
delete-connector-security-map command, 306
delete-connector-work-security-map command, 309
delete-custom-resource command, 391
delete-domain command, 110
delete-http command, 319
delete-http-listener command, 323–324
delete-iiop-listener command, 334
delete-javamail-resource command, 338
delete-jdbc-connection-pool command, 274
delete-jdbc-resource command, 280–281
delete-jms-host command, 348
delete-jms-resource command, 351–352
delete-jmsdest command, 354–355
delete-jndi-resource command, 394
delete-jvm-options command, 139–140
delete-lifecycle-module subcommand, 234
delete-network-listener command, 323–324
delete-profiler command, 142
delete-protocol command, 318
delete-resource-adapter-config command, 303
delete-ssl command, 324–325
delete-system-property command, 57
delete-threadpool command, 146
delete-transport command, 321
delete-virtual-server command, 327–328
deleting
administered object, 311–312
connector connection pool, 298
connector resource, 300–301
connector security map, 306
connector work security map, 309
custom resource, 391
domain, 110
external JNDI resource, 394
HTTP configuration, 319
HTTP listeners, 323–324
HTTP protocol, 318
IIOP listeners, 334
JavaMail resource, 338
JDBC connection pools, 274
JDBC resources, 280–281
JMS hosts, 348
JMS physical destination, 354–355
JMS resource, 351–352
JVM options, 139–140
life cycle modules, 234
profilers, 142
resource adapter configuration, 303
SSL from HTTP listeners, 324–325
system properties, 57
threadpools, 146
transport, 321
virtual servers, 327–328
deployment, REST interfaces, 76–77
Derby JDBC driver, 284–285
destination (physical), deleting, 354–355
destination resource
creating, 349–350
deleting, 351–352
updating, 349–350
dev.glassfish.oracle.com publisher, 236
dev.glassfish.org publisher, 239
directory listings, disabling, 148
disable-monitoring subcommand, 183–184
disabling, monitoring, 183–184
displaying
domain uptime, 132
version information, 59
Index

document root, 328
domains
 administering, 101–135
 backing up, 127
 changing administration port, 133–135
 creating, 103
 customizing, 104–108
 deleting, 110
 displaying uptime, 132
 listing, 108
 overview, 102
 restarting, 113
 restarting automatically, 114–115, 115–116, 116
 restoring, 119, 121, 122, 123, 124, 126, 128
 starting, 111
 stopping, 112
 switching to another Java version, 132
templates, 104–108
dotted names
 comparison with REST URLs, 65
 for configuration, 37–38
 for monitoring, 176, 187–188, 188–190
dynamic configuration changes, 41
document root, 328
domains
 administering, 101–135
 backing up, 127
 changing administration port, 133–135
 creating, 103
 customizing, 104–108
 deleting, 110
 displaying uptime, 132
 listing, 108
 overview, 102
 restarting, 113
 restarting automatically, 114–115, 115–116, 116
 restoring, 119, 121, 122, 123, 124, 126, 128
 starting, 111
 stopping, 112
 switching to another Java version, 132
templates, 104–108
dotted names
 comparison with REST URLs, 65
 for configuration, 37–38
 for monitoring, 176, 187–188, 188–190
dynamic configuration changes, 41

E
 editing
 administered object, 311
 connector connection pool, 297
 connector resource, 300
 JDBC connection pools, 273
 resource adapter configuration, 302
 EJB
 cache monitoring statistics, 191
 container monitoring statistics, 192
 method monitoring statistics, 193
 pool monitoring statistics, 193, 194
 enable-monitoring subcommand, 182–183
 enabling
 mod_jk, 150
 monitoring, 182–183
 ending, multimode session, 54–55
 extending GlassFish Server, 235–261
 external JNDI resource
 creating, 392
 deleting, 394
 updating, 394
 external JNDI resources, listing, 393
 external repositories, accessing, 392

F
 flush-connection-pool command, 272–273
 flush-jmsdest command, 354
 flushing (purging) messages from JMS physical destination, 354
 formats
 REST resources
 configuration objects, 78–88
 content types, 100
 log files, 96–99
 monitoring objects, 88–95
 freeze–transaction–service subcommand, 402

G
 garbage collectors monitoring statistics for JVM, 200
 generate-jvm-report command, 140
 generating, JVM report, 140
 generic resource adapter, configuring, 357–358
 get command, 183–184, 188–190, 401
 guidelines, 187–188
 get subcommand, 182–183
 glassfish-jk.properties file, 151
 GlassFish Server
 extending, 235–261
 updating, 235–261
 GlassFish Server Open Source Edition
 repositories, 239
 upgrading from, 250–254
 global log levels, setting, 166–167
 headless systems, updating, 240

433
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>help information, asadmin utility</td>
<td>52–53</td>
</tr>
<tr>
<td>HK2 component</td>
<td>172</td>
</tr>
<tr>
<td>HTML format</td>
<td></td>
</tr>
<tr>
<td>REST resources</td>
<td>88</td>
</tr>
<tr>
<td>configuration objects</td>
<td>95</td>
</tr>
<tr>
<td>monitoring objects</td>
<td></td>
</tr>
<tr>
<td>HTTP configuration</td>
<td></td>
</tr>
<tr>
<td>creating</td>
<td>318–319</td>
</tr>
<tr>
<td>deleting</td>
<td>319</td>
</tr>
<tr>
<td>HTTP listeners</td>
<td></td>
</tr>
<tr>
<td>administering</td>
<td>315–325</td>
</tr>
<tr>
<td>common monitoring statistics</td>
<td>186</td>
</tr>
<tr>
<td>configuring for SSL</td>
<td>324</td>
</tr>
<tr>
<td>creating</td>
<td>321–322</td>
</tr>
<tr>
<td>deleting</td>
<td>323–324</td>
</tr>
<tr>
<td>deleting SSL from</td>
<td>324–325</td>
</tr>
<tr>
<td>for mod_jk</td>
<td>151</td>
</tr>
<tr>
<td>listing</td>
<td>322–323</td>
</tr>
<tr>
<td>overview</td>
<td>314</td>
</tr>
<tr>
<td>ports</td>
<td>315</td>
</tr>
<tr>
<td>updating</td>
<td>323</td>
</tr>
<tr>
<td>HTTP protocol, creating</td>
<td>317</td>
</tr>
<tr>
<td>HTTP protocols, listing</td>
<td>317–318</td>
</tr>
<tr>
<td>HTTP service</td>
<td></td>
</tr>
<tr>
<td>administering</td>
<td>313–329</td>
</tr>
<tr>
<td>monitoring statistics</td>
<td>194</td>
</tr>
<tr>
<td>virtual server statistics</td>
<td>194</td>
</tr>
<tr>
<td>HTTP transport, creating</td>
<td>320</td>
</tr>
<tr>
<td>HTTP transports, listing</td>
<td>320</td>
</tr>
<tr>
<td>httpd.conf file</td>
<td>151</td>
</tr>
<tr>
<td>Informix Type 4 JDBC driver</td>
<td>288</td>
</tr>
<tr>
<td>installed components</td>
<td></td>
</tr>
<tr>
<td>uninstalling</td>
<td>247–248</td>
</tr>
<tr>
<td>updating</td>
<td>244–245</td>
</tr>
<tr>
<td>installing</td>
<td></td>
</tr>
<tr>
<td>add-on components</td>
<td>241</td>
</tr>
<tr>
<td>database and driver</td>
<td>267</td>
</tr>
<tr>
<td>instances</td>
<td></td>
</tr>
<tr>
<td>overview</td>
<td>102</td>
</tr>
<tr>
<td>restarting automatically</td>
<td>114–115, 115–116, 116</td>
</tr>
<tr>
<td>internet connection, creating</td>
<td>316</td>
</tr>
<tr>
<td>Java, switching version for a domain</td>
<td>132</td>
</tr>
<tr>
<td>Java DB, utility scripts</td>
<td>268–269</td>
</tr>
<tr>
<td>Java DB driver</td>
<td>284–285</td>
</tr>
<tr>
<td>Java Message Service</td>
<td>See JMS</td>
</tr>
<tr>
<td>JavaMail</td>
<td>335–338</td>
</tr>
<tr>
<td>creating a resource</td>
<td>336–337</td>
</tr>
<tr>
<td>deleting a resource</td>
<td>338</td>
</tr>
<tr>
<td>listing resources</td>
<td>337</td>
</tr>
<tr>
<td>overview</td>
<td>335</td>
</tr>
<tr>
<td>updating a resource</td>
<td>337–338</td>
</tr>
<tr>
<td>JavaScript Object Notation</td>
<td>See JSON</td>
</tr>
<tr>
<td>JConsole, setting up connectivity</td>
<td>214–215</td>
</tr>
<tr>
<td>JDBC</td>
<td></td>
</tr>
<tr>
<td>configuring</td>
<td>265–292</td>
</tr>
<tr>
<td>configuring resources</td>
<td>278–281</td>
</tr>
<tr>
<td>creating a resource</td>
<td>279</td>
</tr>
<tr>
<td>creating connection pool</td>
<td>270–271</td>
</tr>
<tr>
<td>database setup</td>
<td>266–269</td>
</tr>
<tr>
<td>deleting connection pools</td>
<td>274</td>
</tr>
<tr>
<td>deleting resources</td>
<td>280–281</td>
</tr>
<tr>
<td>detecting drivers</td>
<td>282</td>
</tr>
<tr>
<td>flushing connection pools</td>
<td>272–273</td>
</tr>
<tr>
<td>integrating driver JAR files</td>
<td>282</td>
</tr>
<tr>
<td>listing connection pools</td>
<td>271–272</td>
</tr>
<tr>
<td>listing resources</td>
<td>280</td>
</tr>
<tr>
<td>pinging connection pools</td>
<td>272</td>
</tr>
<tr>
<td>supported drivers</td>
<td>282, 283–292</td>
</tr>
<tr>
<td>updating resources</td>
<td>280</td>
</tr>
<tr>
<td>JDBC connection pools</td>
<td></td>
</tr>
<tr>
<td>creating</td>
<td>270–271</td>
</tr>
<tr>
<td>IBM DB2 JDBC driver</td>
<td>283–284, 287–288</td>
</tr>
<tr>
<td>IIOP listeners</td>
<td></td>
</tr>
<tr>
<td>configuring</td>
<td>332–334</td>
</tr>
<tr>
<td>creating</td>
<td>332–333</td>
</tr>
<tr>
<td>deleting</td>
<td>334</td>
</tr>
<tr>
<td>listing</td>
<td>333</td>
</tr>
<tr>
<td>updating</td>
<td>333</td>
</tr>
<tr>
<td>image, updating all installed components</td>
<td>246</td>
</tr>
<tr>
<td>Inet MSSQL JDBC driver</td>
<td>291</td>
</tr>
<tr>
<td>Inet Oracle JDBC driver</td>
<td>290–291</td>
</tr>
<tr>
<td>Inet Sybase JDBC driver</td>
<td>291–292</td>
</tr>
<tr>
<td>JDBC connection pools</td>
<td></td>
</tr>
</tbody>
</table>
JDBC connection pools (Continued)
deleting, 274
flushing, 272–273
listing, 271–272
monitoring statistics, 206
pinging, 272
Jersey
monitoring statistics, 196
JMS
and transactions, 399
configuring, 341–343
creating a host, 345–346
creating a physical destination, 352–353
creating a resource, 349–350
deleting a host, 348
deleting a physical destination, 354–355
deleting a resource, 351–352
high availability, 341
listing hosts, 346–347
listing physical destinations, 353–354
listing resources, 351
monitoring statistics, 196–198
connector connection pool, 196
overview, 340–341, 348–352
purging (flushing) messages, 354
resource adapter, generic, 357–358
system connector for, 340–341
troubleshooting, 356
updating a host, 347–348
updating a physical destination properties, 352–353
updating a resource, 349–350
work management monitoring statistics, 198
jmsra system JMS connector, 340–341
JNDI
creating a custom resource, 390
creating an external resource, 392
deleting a custom resource, 391
deleting an external resource, 394
external repositories, 392
listing custom resources, 390–391
listing entries, 393
listing external JNDI resources, 393
lookups and associated references, 389
overview, 387–389
JNDI (Continued)
updating a custom resource, 391
updating an external resource, 394
vendor-specific names, 395
JNDI resource, registering, 392
JSON format
REST resources
configuration objects, 79–82
log file details, 96–98
monitoring objects, 88–91
JSP monitoring statistics for web, 212
JVM
configuring, 137–142
creating options, 138
deleting options, 139–140
generating a report, 140
listing options, 138–139
monitoring statistics, 186, 198
class loading system statistics, 198
compilation system statistics, 200
garbage collectors statistics, 200
memory statistics, 200
operating system statistics, 201
runtime statistics, 202
tuning, 137–140
L
last agent optimization, 399
levels
listing for logging, 165–166
setting for logging, 167–168
life cycle modules
configuring, 232–234
creating, 232–233
deleting, 234
listing, 233
updating, 233–234
Linux, restarting domain or instance automatically, 115–116
list-admin–objects command, 310–311
list-applications command, 59
list-backups subcommand, 129
list command, 188–190
list command (Continued)
guidelines, 187–188
list-commands subcommand, 62
list-connector-security-map command, 304–305
list-connector-connection-pools command, 296–297
list-connector-resources command, 299–300
list-connector-work-security-maps command, 308
list-containers command, 60
list-custom-resources command, 390–391
list-domains subcommand, 108
list-http-listeners subcommand, 322–323
list-iiop-listeners command, 333
list-javamail-resources command, 337
list-jdbc-connection-pools command, 271–272
list-jdbc-resources command, 280
list-jms-hosts command, 346–347
list-jms-resources command, 351
list-jndi-entries command, 393
list-jndi-resources command, 393
list-jvm-options command, 138–139
list-lifecycle-modules subcommand, 233
list-log-attributes subcommand, 162–163
list-log-levels subcommand, 165–166,167–168
list-modules command, 61
list-network-listeners subcommand, 322–323
list-protocols subcommand, 317–318
list-resource-adapter-configs command, 302
list-system-properties command, 57
list-threadpools command, 145
list-timers command, 62–63
list-transport-subs command, 320
list-virtual-servers command, 327
list-jmsdest command, 353–354
listener ports, 315
listing (Continued)
domain, 108
external JNDI resources, 393
HTTP listeners, 322–323
HTTP protocols, 317–318
HTTP transports, 320
IIOP listeners, 333
JavaMail resources, 337
JDBC connection pools, 271–272
JDBC resources, 280
JMS hosts, 346–347
JMS physical destinations, 353–354
JMS resources, 351
JNDI entries, 393
JVM options, 138–139
life cycle modules, 233
module log levels, 165–166
modules, 61
remote commands, 62
resource adapter configurations, 302
system properties, 57
threadpools, 145
timers, 62–63
version information, 59
virtual servers, 327
load balancing
enabling security for mod_jk, 154,155
load balancing with mod_jk, 152
local subcommands, 50
log file, REST URLs, 66–67
log files
about, 157–159
changing name or location, 162–164
cluster, 157–159
locations, 158–159
REST resources, 96–99
rotation, 159
server, 157–159
setting rotation, 168–171
log in using default identity, 33, 103
log in with default identity, 108–110
log levels
global settings, 166–167
setting, 164–168
log record format, 159
log targets, 161
logging
 administering, 157–174
 configuration file, 166
 log level listing, 165–166
 log level setting, 167–168
 namespaces, 160
 output from servlets, 148
 overview, 157–162
 rotating logs, 171
logging in to a domain (server), 108–110
logging properties, 161–162
logging.properties file, 166
logging service, configuring, 162–173
login command, 108–110

M
 man pages, asadmin utility, 52–53
 memory monitoring statistics for JVM, 200
 Message Queue, connector for, 340–341
 messages, purging (flushing) from physical destination, 354
 method (EJB) monitoring, EJB method, 193
 methods, REST interfaces, 67–76
 mime-mapping element, 149
 mod_jk, 150–155
 enabling, 150
 Implementing security, 154
 load balancing, 152
 load balancing with SSL, 155
 modules, listing, 61
 monitor command, 185
 monitoring, 175–215
 administrator tasks, 182
 applications statistics, 191
 bean-cache attributes, 191
 common statistics, 186–187
 configuring, 182–184
 disabling, 183–184
 EJB container, 192
 EJB pool, 193, 194
 enabling, 182–183
 monitoring (Continued)
 for add-on components, 181
 HTTP service statistics, 194
 HTTP service virtual server statistics, 194
 Jersey statistics, 196
 JMS connector connection pool statistics, 196
 JMS statistics, 196–198
 JVM statistics, 198
 network statistics, 202
 ORB service statistics, 205
 overview, 175–182
 resource statistics, 206
 REST methods, 67–76
 REST URLs, 64–65
 security statistics, 208
 statistics
 JVM, 186
 Web module, 186–187
 thread pool statistics, 209
 timer statistics, 194
 transaction service statistics, 211
 viewing common data, 185
 viewing comprehensive data, 188–190
 web statistics, 211
 monitoring objects, REST resources, 88–95
 MSSQL Inet JDBC driver, 291
 MSSQL/SQL Server2000 Data Direct JDBC driver, 288–289
 multimode
 ending session, 54–55
 overview, 53–54
 starting session, 53–54
 multimode command, 53–54
 MySQL Server2000 Data Direct JDBC driver, 289
 MySQL Type 4 JDBC driver, 285

N
 namespaces (logging), 160
 naming, JNDI and resource reference, 389
 network, monitoring statistics, 202
 network listeners
 See HTTP listeners
 overview, 314
network service, administering, 313–329
non-CRUD operations, REST interfaces, 76–77

O
Object Request Broker (ORB), 331
offline updates, pkg command, 254–261
online help
asadmin utility, 52–53
overview, 43
Update Tool, 44
operands, asadmin utility subcommands, 51
operating system monitoring statistics for JVM, 201
options
asadmin utility, 50–51
specifying for multiple subcommands, 53–54
Oracle Data Direct JDBC driver, 289–290
Oracle GlassFish Server
repositories, 236–239
upgrading to, 250–254
Oracle Inet JDBC driver, 290–291
Oracle OCI JDBC driver, 285–286
Oracle Solaris, restarting domain or instance automatically, 116
Oracle Thin Type 4 Driver, workaround for, 407
Oracle Thin Type 4 JDBC driver, 286–287
workaround for, 287
oracle-xa-recovery-workaround property, 287, 407
ORB
configuring, 332
IIOP listeners, 332–334
overview, 331
service, monitoring, 205
OSGi modules, See add-on components
overview
Administration Console, 42
asadmin utility, 43, 49–56
configuration, 34–42
DAS, 103
domains, 102
extending GlassFish Server, 235
GlassFish Server tools, 42–44
HTTP listeners, 314
instances, 102
overview (Continued)
JavaMail, 335
JConsole, 44
JMS, 340–341
JMS resources, 348–352
JNDI, 387–389
keytool utility, 44
logging, 157–162
monitoring, 175–182
multimode, 53–54
network listeners, 314
ORB, 331
thread pools, 143
transactions, 397–400
Update Tool, 44
virtual servers, 314

P
path settings, asadmin utility, 50
paths, pkg command, 240
physical destination (JMS), creating, 352–353
ping-connection-pool command, 272, 296
pkg command, 240
pkg command, 44, 241
offline updates, 254–261
repositories, 254–261
pkg.depotd, 254–261
plug-ins, See add-on components
ports
changing for domain, 133–135
defaults for listeners, 315
PostgreSQL JDBC driver, 287
preferred publisher, 236
profilers
administering, 141–142
creating, 141
deleting, 142
elements in domain.xml, 138
properties, administering for system, 56–58
protocol
creating, 317
deleting, 318
protocols, listing, 317–318
Q
queries, REST interfaces, 76–77

R
recover–transactions subcommand, 405–406
recovery
transactions automatically, 404–405
transactions manually, 405–406
redirecting a URL, 149–150
registering, JNDI resource, 392
release.glassfish.oracle.com publisher, 236
release.javaeesdk.oracle.com publisher, 239
remote commands, listing, 62
remote subcommands, 50
repositories
IPS, 236–239
pkg command, 254–261
representational state transfer interfaces, See REST interfaces
request monitoring statistics for web, 213
resetting connection pools (flush), 272–273
resource adapter, generic, JMS, 357–358
resource adapter configuration,
administering, 301–303
resource adapter configurations
creating, 301–302
deleting, 303
editing, 302
listing, 302
resource managers, 399
resource references, 389
resources
adding, 58
custom, 390
resources (JDBC), administering, 278–281
REST interfaces, 43
comparison of dotted names with URLs, 65
configuration, 64–65, 67–76
content types, 100
HTML representation
configuration objects, 88
monitoring objects, 95

REST interfaces (Continued)
JSON representation
configuration objects, 79–82
log file details, 96–98
monitoring objects, 88–91
log file, 66–67
methods, 67–76
monitoring, 64–65, 67–76
non-CRUD operations, 76–77
representation of resources
configuration objects, 78–88
log files, 96–99
monitoring objects, 88–95
security, 77–78
URLs, 64–67
XML representation
configuration objects, 82–87
log file details, 98–99
monitoring objects, 91–94
restart domain (server), 111, 112, 113
restart-domain command, 113
restarting domain (server) automatically, 114–115, 115–116, 116
restarting instance automatically, 114–115, 115–116, 116
restore-domain command, 119, 121, 122, 123, 124, 126, 128
restoring
domain, 119, 121, 122, 123, 124, 126, 128
reverting, to a prior add-on component, 247–250
rollback–transaction subcommand, 402–403
rolling back, transactions, 402–403
rotate-log subcommand, 171
rotating log files, 159
runtime monitoring statistics for JVM, 202

S
scripts
asadmin utility, 55–56
for Java DB, 268–269
subcommands, 55–56
security
disabling directory listings, 148
security (Continued)
 monitoring statistics, 208
 REST interfaces, 77–78
self-signed certificate, 154
server, log, 157–159
ServletContext.log messages, 148
servlets
 changing log output, 148
 invoking using a URL, 147
 specification
 mime-mapping, 149
session monitoring statistics for web, 214
set command
 for updating a thread pool, 145–146
 init-sql option, 275
 sql-trace-listeners option, 277
 statement-cache-size option, 277
 transaction service settings, 400
 updating a connection factory, 349–350
 updating a custom JNDI resource, 391
 updating a JavaMail resource, 337–338
 updating a JMS host, 347–348
 updating an external JNDI resource, 394
set-log-attributes subcommand, 162–173
set-log-levels subcommand, 164–168
set subcommand, 183–184
settings
 global log levels, 166–167
 JConsole, 214–215
 module log level, 167–168
 monitoring, 182–184
show-component-status command, 63
showing, component status, 63
single mode, asadmin utility, 51–52
SSL
 applying to mod_jk, 154
 configuring for HTTP listener, 324
 deleting from HTTP listener, 324–325
stable.glassfish.org publisher, 239
start-database command, 267–268
start-domain command, 111
starting (Continued)
 domains, 111
 multimode session, 53–54
 the transaction service, 403
 Update Tool, 240
 Windows default domain, 111
state management, REST interfaces, 76–77
statistics
 applications monitoring, 191
 EJB, 193
 for common monitoring, 186–187
 for comprehensive monitoring, 190–214
 HTTP monitoring, 194–196
 Jersey, 196
 JMS, 196
 JVM class loading system monitoring, 198
 JVM compilation system monitoring, 200
 JVM garbage collectors monitoring, 200
 JVM memory monitoring, 200
 JVM operating system monitoring, 201
 JVM runtime monitoring, 202
 network monitoring, 202
 ORB monitoring, 205–206
 resource (connection pool) monitoring, 206
 security monitoring, 208
 thread pool monitoring, 209
 timers monitoring, 194
 transactions monitoring, 211
 web monitoring, 211
stop-database command, 268
stop-domain command, 112
stopping
 databases, 268
 domains, 112
 multimode session, 54–55
 the transaction service, 402
 Windows default domain, 112
subcommands
 definition, 50
 help information, 52–53
 man pages, 52–53
 operands, 51
 options, 50–51
 scripts, 55–56
Sybase Data Direct JDBC driver, 290
Sybase Inet JDBC driver, 291–292
Sybase JConnect Type 4 JDBC driver, 292
system properties
 administering, 56–58
 creating, 56
 deleting, 57
 listing, 57
transactions (Continued)
 stopping (freezing) the service, 402
transport
 creating, 320
 deleting, 321
 transports, listing, 320
tree structure for monitoring, 176–181
troubleshooting, JMS, 356
tuning the JVM, 137–140

T
tasks for administration, monitoring, 182
templates, domains, 104–108
thread pools, 143–146
 monitoring statistics, 209
 overview, 143
thread pools
 creating, 144–145
 deleting, 146
 listing, 145
 updating, 145–146
timers
 listing, 62–63
 statistics, 194
Tomcat, Apache Connector mod_jk, 152
tools
 for administering GlassFish Server, 42–44
 overview, 42–44
transaction service, monitoring, 211
transactions, 397–409
 configuring, 400–401
 JMS and Message Queue, 405
 local or global scope of, 399–400
 logging for recovery, 408–409
 logging to a database, 408–409
 manual recovery limitation, 406
 overview, 397–400
 recovering, 404–407
 recovering automatically, 404–405
 recovering manually, 405–406
 recovery limitations, 406–407
 resource managers, 399
 rolling back, 402–403
 starting (unfreezing) the service, 403
unfreeze–transaction–service subcommand, 403
uninstalling, installed components, 247–248
update-connector-security-map command, 305–306
update-connector-work-security-map command, 308–309
update-http-listener subcommand, 323
update-iiop-listener command, 333
update-javamail-resource command, 337–338
update-jdbc-resource command, 280
update-network-listener subcommand, 323
Update Tool, 240
 offline updates, 254–261
 overview, 44
 using the pkg command, 235, 254–261
update-virtual-server command, 327
updatetool command, 44
updating
 all installed components in an image, 246
 connection factory, 349–350
 connector security map, 305–306
 connector work security map, 308–309
 custom resource, 391
 external JNDI resource, 394
 HTTP listeners, 323
 IIOP listeners, 333
 installed components, 244–245
 JavaMail resource, 337–338
 JDBC resources, 280
 JMS host, 347–348
 JMS physical destination properties, 352–353
 life cycle modules, 233–234
 thread pools, 145–146
Index

updating (Continued)
 virtual servers, 327
upgrading GlassFish Server, 235–261
uptime command, 132
URL, redirecting, 149–150
URLs, REST interfaces, 64–67

V
vendor-specific, JNDI names, 395
version command, 59
viewing
 applications, 59
 common monitoring data, 185
 comprehensive monitoring data, 188–190
 containers, 60
 DAS uptime, 132
 GlassFish Server version, 59
 JDBC connection pools, 271–272
 JDBC resources, 280
 JVM options, 138–139
 modules, 61
 subcommands, 62
 system properties, 57
 virtual servers, 327
virtual servers
 administering, 325–329
 creating, 326–327
 default, 325
 deleting, 327–328
 listing, 327
 monitoring statistics, 194
 overview, 314
 updating, 327

W
web
 monitoring statistics, 211
 JSP statistics, 212
 request statistics, 213
 session statistics, 214
 applications
 default, 147, 328
 defining global features, 148–149
 redirecting a URL, 149–150
 ways to invoke a servlet, 147
 container, monitoring statistics, 212
 module, monitoring statistics, 186–187
 Wget, 63
Windows
 invoking the Administration Console, 42
 restarting domain or instance
 automatically, 114–115
 starting the default domain, 111
 stopping the default domain, 112
 work management, monitoring, 198
 work security maps, 306–309
 workers.properties file, 151

X
XA resource, 399–400
XML format
 REST resources
 configuration objects, 82–87
 log file details, 98–99
 monitoring objects, 91–94