Contents

Preface ...15

Part I Development Tasks and Tools ...23

1 Setting Up a Development Environment ...25
Installing and Preparing the Server for Development ...25
High Availability Features ..26
Development Tools ..26
 The asadmin Command ...27
 The Administration Console ...27
 The Migration Tool ...27
 The NetBeans IDE ..27
 The Eclipse IDE ...28
 Debugging Tools ...28
 Profiling Tools ...28
Sample Applications ...28

2 Class Loaders ..29
The Class Loader Hierarchy ..30
Delegation ...31
Using the Java Optional Package Mechanism ...31
Using the Endorsed Standards Override Mechanism ..32
Class Loader Universes ..32
Application-Specific Class Loading ...32
Circumventing Class Loader Isolation ..34
 Using the Common Class Loader ...34
 Sharing Libraries Across a Cluster ..34
3 Debugging Applications ...37
 Enabling Debugging ...37
 ▼ To Set the Server to Automatically Start Up in Debug Mode ..38
 JPDA Options ..38
 Generating a Stack Trace for Debugging ..38
 Application Client Debugging ...39
 GlassFish Server Message Queue Debugging ..40
 Enabling Verbose Mode ...40
 Class Loader Debugging ...40
 GlassFish Server Logging ...41
 Profiling Tools ...41
 The NetBeans Profiler ..41
 The HPROF Profiler ..42
 The JProbe Profiler ..43

Part II Developing Applications and Application Components45

4 Securing Applications ...47
 Security Goals ..48
 GlassFish Server Specific Security Features ...48
 Container Security ...49
 Declarative Security ..49
 Programmatic Security ...50
 Roles, Principals, and Principal to Role Mapping ...50
 Realm Configuration ...52
 Supported Realms ..52
 How to Configure a Realm ...52
 How to Set a Realm for an Application or Module ..53
 Creating a Custom Realm ..53
 JACC Support ..56
 Pluggable Audit Module Support ..56
Virtual Server Properties ... 137
Class Loader Delegation .. 137
Using the default-web.xml File .. 138
Configuring Logging and Monitoring in the Web Container 139
Configuring Idempotent URL Requests 139
Header Management ... 140
Configuring Valves and Catalina Listeners 140
Alternate Document Roots .. 140
Using a context.xml File ... 142
Enabling WebDav ... 143
Using SSI ... 144
Using CGI ... 145

8 Using Enterprise JavaBeans Technology 149
Value Added Features ... 149
Read-Only Beans .. 150
The pass-by-reference Element ... 150
Pooling and Caching ... 151
Priority Based Scheduling of Remote Bean Invocations 152
Immediate Flushing ... 152
EJB Timer Service .. 153
▼ To Deploy an EJB Timer to a Cluster .. 154
Using Session Beans ... 156
About the Session Bean Containers .. 156
Stateful Session Bean Failover .. 157
Session Bean Restrictions and Optimizations 162
Using Read-Only Beans ... 163
Read-Only Bean Characteristics and Life Cycle 164
Read-Only Bean Good Practices .. 165
Refreshing Read-Only Beans ... 165
Deploying Read-Only Beans .. 166
Using Message-Driven Beans .. 167
Message-Driven Bean Configuration 167
Message-Driven Bean Restrictions and Optimizations 168
9 Using Container-Managed Persistence ... 171
 GlassFish Server Support for CMP ... 171
 CMP Mapping ... 172
 Mapping Capabilities .. 172
 The Mapping Deployment Descriptor File .. 173
 Mapping Considerations .. 174
 Automatic Schema Generation for CMP .. 177
 Supported Data Types for CMP ... 177
 Generation Options for CMP ... 179
 Schema Capture ... 182
 Automatic Database Schema Capture .. 183
 Using the capture-schema Utility ... 183
 Configuring the CMP Resource .. 184
 Performance-Related Features ... 184
 Version Column Consistency Checking .. 184
 Relationship Prefetching ... 185
 Read-Only Beans .. 186
 Default Fetch Group Flags ... 186
 Configuring Queries for 1.1 Finders ... 187
 About JDOQL Queries .. 187
 Query Filter Expression .. 188
 Query Parameters ... 189
 Query Variables ... 189
 JDOQL Examples ... 189
 CMP Restrictions and Optimizations .. 191
 Disabling ORDER BY Validation ... 191
 Setting the Heap Size on DB2 .. 191
 Eager Loading of Field State ... 192
 Restrictions on Remote Interfaces ... 192
 PostgreSQL Case Insensitivity ... 192
 No Support for lock-when-loaded on Sybase ... 192
 Sybase Finder Limitation ... 193
 Date and Time Fields ... 193
 Set RECURSIVE_TRIGGERS to false on MSSQL 193
 MySQL Database Restrictions ... 194
10 Developing Java Clients

Introducing the Application Client Container ... 197
ACC Security .. 198
ACC Naming .. 198
Application Client Annotation ... 198
Java Web Start .. 199
Application Client JAR File ... 199

Developing Clients Using the ACC .. 199
▼ To Access an EJB Component From an Application Client ... 199
▼ To Access a JMS Resource From an Application Client ... 201
Using Java Web Start .. 202
Using the Embeddable ACC .. 212
Running an Application Client Using the appclient Script .. 213
Using the package-appclient Script ... 214
The client.policy File ... 214
Using RMI/IIOP Over SSL ... 214
Connecting to a Remote EJB Module Through a Firewall .. 216
Specifying a Splash Screen ... 216
Setting Login Retries ... 217
Using Libraries with Application Clients ... 217

Developing Clients Without the ACC .. 217
▼ To access an EJB component from a stand-alone client .. 218
▼ To access an EJB component from a server-side module .. 219
▼ To access a JMS resource from a stand-alone client .. 221

11 Developing Connectors ... 223
Connector Support in the GlassFish Server .. 224
Connector Architecture for JMS and JDBC .. 225
Connector Configuration ... 225
Advanced Connector Configuration Options .. 225
Thread Associations ... 226
Security Maps .. 226
Work Security Maps ... 227
Overriding Configuration Properties ... 227
Testing a Connector Connection Pool ... 228
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flushing a Connector Connection Pool ... 228</td>
</tr>
<tr>
<td>Handling Invalid Connections .. 229</td>
</tr>
<tr>
<td>Setting the Shutdown Timeout ... 229</td>
</tr>
<tr>
<td>Specifying the Class Loading Policy .. 230</td>
</tr>
<tr>
<td>Using Last Agent Optimization of Transactions .. 230</td>
</tr>
<tr>
<td>Disabling Pooling for a Connection ... 231</td>
</tr>
<tr>
<td>Using Application-Scoped Connectors ... 231</td>
</tr>
<tr>
<td>Inbound Communication Support .. 231</td>
</tr>
<tr>
<td>Outbound Communication Support .. 232</td>
</tr>
<tr>
<td>Configuring a Message Driven Bean to Use a Resource Adapter .. 232</td>
</tr>
<tr>
<td>12 Developing Lifecycle Listeners 235</td>
</tr>
<tr>
<td>Server Life Cycle Events .. 236</td>
</tr>
<tr>
<td>The LifecycleListener Interface .. 236</td>
</tr>
<tr>
<td>The LifecycleEvent Class ... 236</td>
</tr>
<tr>
<td>The Server Lifecycle Event Context .. 237</td>
</tr>
<tr>
<td>Deploying a Lifecycle Module .. 237</td>
</tr>
<tr>
<td>Considerations for Lifecycle Modules ... 238</td>
</tr>
<tr>
<td>13 Developing OSGi-enabled Java EE Applications ... 239</td>
</tr>
<tr>
<td>Overview of OSGi Application and GlassFish Server .. 239</td>
</tr>
<tr>
<td>Benefits of Using OSGi in Enterprise Java Applications .. 240</td>
</tr>
<tr>
<td>Developing OSGi Application Bundles for GlassFish Server ... 240</td>
</tr>
<tr>
<td>Developing Plain OSGi Bundles ... 241</td>
</tr>
<tr>
<td>Developing Web Application Bundles .. 244</td>
</tr>
<tr>
<td>Developing EJB Application Bundles .. 246</td>
</tr>
<tr>
<td>Deploying OSGi Bundles in GlassFish Server ... 247</td>
</tr>
<tr>
<td>Part III Using Services and APIs .. 249</td>
</tr>
<tr>
<td>14 Using the JDBC API for Database Access .. 251</td>
</tr>
<tr>
<td>Statements ... 252</td>
</tr>
<tr>
<td>Using an Initialization Statement ... 252</td>
</tr>
<tr>
<td>Setting a Statement Timeout .. 252</td>
</tr>
</tbody>
</table>
Statement Leak Detection and Leaked Statement Reclamation ... 253
Statement Caching ... 253
Statement Tracing ... 254
Connections .. 255
Transparent Pool Reconfiguration .. 256
Disabling Pooling ... 256
Associating Connections with Threads ... 257
Custom Connection Validation ... 258
Sharing Connections .. 258
Marking Bad Connections ... 259
Handling Invalid Connections ... 259
Connection Wrapping ... 260
Obtaining a Physical Connection From a Wrapped Connection .. 261
Using the Connection.unwrap() Method ... 261
Allowing Non-Component Callers .. 262
Using Application-Scoped Resources .. 262
Restrictions and Optimizations ... 263
Disabling StoredProcedure Creation on Sybase ... 263

15 Using the Transaction Service ... 265
Handling Transactions with Databases .. 265
Using JDBC Transaction Isolation Levels ... 266
Using Non-Transactional Connections .. 267
Handling Transactions with Enterprise Beans ... 268
Flat Transactions ... 269
Global and Local Transactions ... 269
Commit Options ... 269
Bean-Level Container-Managed Transaction Timeouts ... 270
Handling Transactions with the Java Message Service ... 270
Transactions and Non-Persistent Messages ... 270
Using the ConfigurableTransactionSupport Interface ... 270
The Transaction Manager, the Transaction Synchronization Registry, and
UserTransaction ... 271
16 Using the Java Naming and Directory Interface
- Accessing the Naming Context ... 273
 - Global JNDI Names .. 274
 - Accessing EJB Components Using the CosNaming Naming Context 275
 - Accessing EJB Components in a Remote GlassFish Server 275
 - Naming Environment for Lifecycle Modules ... 276
- Configuring Resources .. 276
 - External JNDI Resources ... 277
 - Custom Resources ... 277
 - Built-in Factories for Custom Resources ... 277
 - Disabling GlassFish Server V2 Vendor-Specific JNDI Names 279
 - Using Application Scoped Resources .. 280
- Using a Custom jndi.properties File ... 280
- Mapping References.. 280

17 Using the Java Message Service
- Using Application Scoped JMS Resources .. 283
 - Load-Balanced Message Inflow ... 284
 - Authentication With ConnectionFactory ... 284
 - Delivering SOAP Messages Using the JMS API 285
 - ▼ To Send SOAP Messages Using the JMS API 285
 - ▼ To Receive SOAP Messages Using the JMS API 286

18 Using the JavaMail API
- Introducing JavaMail ... 289
 - Creating a JavaMail Session .. 290
 - JavaMail Session Properties ... 290
 - Looking Up a JavaMail Session ... 290
 - Sending and Reading Messages Using JavaMail 291
 - ▼ To Send a Message Using JavaMail .. 291
 - ▼ To Read a Message Using JavaMail .. 292
 - Using Application Scoped JavaMail Resources 292

Index
- ... 293
Tables

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE 2–1</td>
<td>Oracle GlassFish Server Class Loaders</td>
<td>30</td>
</tr>
<tr>
<td>TABLE 4–1</td>
<td>Predefined System Properties</td>
<td>59</td>
</tr>
<tr>
<td>TABLE 4–2</td>
<td>Message Security Provider Properties</td>
<td>65</td>
</tr>
<tr>
<td>TABLE 6–1</td>
<td>The asadmin deploy and asadmin deploydir Generation Options</td>
<td>97</td>
</tr>
<tr>
<td>TABLE 6–2</td>
<td>The asadmin undeploy Generation Options</td>
<td>97</td>
</tr>
<tr>
<td>TABLE 7–1</td>
<td>The cache Attributes</td>
<td>112</td>
</tr>
<tr>
<td>TABLE 7–2</td>
<td>The flush Attributes</td>
<td>114</td>
</tr>
<tr>
<td>TABLE 7–3</td>
<td>Object Types Supported for Java EE Web Application Session State Failover</td>
<td>117</td>
</tr>
<tr>
<td>TABLE 7–4</td>
<td>SSIServlet init-param Values</td>
<td>145</td>
</tr>
<tr>
<td>TABLE 7–5</td>
<td>CGIServlet init-param Values</td>
<td>146</td>
</tr>
<tr>
<td>TABLE 8–1</td>
<td>Object Types Supported for Java EE Stateful Session Bean State Failover</td>
<td>158</td>
</tr>
<tr>
<td>TABLE 9–1</td>
<td>Java Type to JDBC Type Mappings for CMP</td>
<td>177</td>
</tr>
<tr>
<td>TABLE 9–2</td>
<td>Mappings of JDBC Types to Database Vendor Specific Types for CMP</td>
<td>179</td>
</tr>
<tr>
<td>TABLE 9–3</td>
<td>The glassfish-ejb-jar.xml Generation Elements</td>
<td>180</td>
</tr>
<tr>
<td>TABLE 9–4</td>
<td>The asadmin deploy and asadmin deploydir Generation Options for CMP</td>
<td>181</td>
</tr>
<tr>
<td>TABLE 9–5</td>
<td>The asadmin undeploy Generation Options for CMP</td>
<td>182</td>
</tr>
<tr>
<td>TABLE 10–1</td>
<td>Owned JNLP File Content</td>
<td>211</td>
</tr>
<tr>
<td>TABLE 10–2</td>
<td>Defaulted JNLP File Content</td>
<td>211</td>
</tr>
<tr>
<td>TABLE 10–3</td>
<td>Merged JNLP File Content</td>
<td>211</td>
</tr>
<tr>
<td>TABLE 15–1</td>
<td>Transaction Isolation Levels</td>
<td>266</td>
</tr>
</tbody>
</table>
Preface

This Application Development Guide describes how to create and run Java Platform, Enterprise Edition (Java EE platform) applications that follow the open Java standards model for Java EE components and APIs in the Oracle GlassFish Server environment. Topics include developer tools, security, and debugging. This book is intended for use by software developers who create, assemble, and deploy Java EE applications using Oracle servers and software.

This preface contains information about and conventions for the entire Oracle GlassFish Server (GlassFish Server) documentation set.

GlassFish Server 3.1 is developed through the GlassFish project open-source community at http://glassfish.java.net/. The GlassFish project provides a structured process for developing the GlassFish Server platform that makes the new features of the Java EE platform available faster, while maintaining the most important feature of Java EE: compatibility. It enables Java developers to access the GlassFish Server source code and to contribute to the development of the GlassFish Server. The GlassFish project is designed to encourage communication between Oracle engineers and the community.

The following topics are addressed here:

- “GlassFish Server Documentation Set” on page 15
- “Related Documentation” on page 17
- “Typographic Conventions” on page 18
- “Symbol Conventions” on page 19
- “Default Paths and File Names” on page 19
- “Documentation, Support, and Training” on page 20
- “Searching Oracle Product Documentation” on page 20
- “Third-Party Web Site References” on page 21

GlassFish Server Documentation Set

The GlassFish Server documentation set describes deployment planning and system installation. For an introduction to GlassFish Server, refer to the books in the order in which they are listed in the following table.
Table P-1 Books in the GlassFish Server Documentation Set

<table>
<thead>
<tr>
<th>Book Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release Notes</td>
<td>Provides late-breaking information about the software and the documentation and includes a comprehensive, table-based summary of the supported hardware, operating system, Java Development Kit (JDK), and database drivers.</td>
</tr>
<tr>
<td>Quick Start Guide</td>
<td>Explains how to get started with the GlassFish Server product.</td>
</tr>
<tr>
<td>Installation Guide</td>
<td>Explains how to install the software and its components.</td>
</tr>
<tr>
<td>Upgrade Guide</td>
<td>Explains how to upgrade to the latest version of GlassFish Server. This guide also describes differences between adjacent product releases and configuration options that can result in incompatibility with the product specifications.</td>
</tr>
<tr>
<td>Deployment Planning Guide</td>
<td>Explains how to build a production deployment of GlassFish Server that meets the requirements of your system and enterprise.</td>
</tr>
<tr>
<td>Administration Guide</td>
<td>Explains how to configure, monitor, and manage GlassFish Server subsystems and components from the command line by using the asadmin(1M) utility. Instructions for performing these tasks from the Administration Console are provided in the Administration Console online help.</td>
</tr>
<tr>
<td>Security Guide</td>
<td>Provides instructions for configuring and administering GlassFish Server security.</td>
</tr>
<tr>
<td>Application Deployment Guide</td>
<td>Explains how to assemble and deploy applications to the GlassFish Server and provides information about deployment descriptors.</td>
</tr>
<tr>
<td>Application Development Guide</td>
<td>Explains how to create and implement Java Platform, Enterprise Edition (Java EE platform) applications that are intended to run on the GlassFish Server. These applications follow the open Java standards model for Java EE components and application programmer interfaces (APIs). This guide provides information about developer tools, security, and debugging.</td>
</tr>
<tr>
<td>Add-On Component Development Guide</td>
<td>Explains how to use published interfaces of GlassFish Server to develop add-on components for GlassFish Server. This document explains how to perform only those tasks that ensure that the add-on component is suitable for GlassFish Server.</td>
</tr>
<tr>
<td>Embedded Server Guide</td>
<td>Explains how to run applications in embedded GlassFish Server and to develop applications in which GlassFish Server is embedded.</td>
</tr>
<tr>
<td>High Availability Administration Guide</td>
<td>Explains how to configure GlassFish Server to provide higher availability and scalability through failover and load balancing.</td>
</tr>
<tr>
<td>Performance Tuning Guide</td>
<td>Explains how to optimize the performance of GlassFish Server.</td>
</tr>
</tbody>
</table>
Related Documentation

The following tutorials explain how to develop Java EE applications:

- **Your First Cup: An Introduction to the Java EE Platform** (http://download.oracle.com/javaee/6/firstcup/doc/). For beginning Java EE programmers, this short tutorial explains the entire process for developing a simple enterprise application. The sample application is a web application that consists of a component that is based on the Enterprise JavaBeans specification, a JAX-RS web service, and a JavaServer Faces component for the web front end.

- **The Java EE 6 Tutorial** (http://download.oracle.com/javaee/6/tutorial/doc/). This comprehensive tutorial explains how to use Java EE 6 platform technologies and APIs to develop Java EE applications.
Javadoc tool reference documentation for packages that are provided with GlassFish Server is available as follows.

- The API specification for version 6 of Java EE is located at `http://download.oracle.com/javaee/6/api/`.
- The API specification for GlassFish Server 3.1, including Java EE 6 platform packages and nonplatform packages that are specific to the GlassFish Server product, is located at `http://glassfish.java.net/nonav/docs/v3/api/`.

Additionally, the Java EE Specifications (`http://www.oracle.com/technetwork/java/javaee/tech/index.html`) might be useful.

For information about creating enterprise applications in the NetBeans Integrated Development Environment (IDE), see the NetBeans Documentation, Training & Support page (`http://www.netbeans.org/kb/`).

For information about the Java DB database for use with the GlassFish Server, see the Java DB product page (`http://www.oracle.com/technetwork/java/javadb/overview/index.html`).

The Java EE Samples project is a collection of sample applications that demonstrate a broad range of Java EE technologies. The Java EE Samples are bundled with the Java EE Software Development Kit (SDK) and are also available from the Java EE Samples project page (`http://java.net/projects/glassfish-samples`).

Typographic Conventions

The following table describes the typographic changes that are used in this book.

<table>
<thead>
<tr>
<th>Typeface</th>
<th>Meaning</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>AaBbCc123</td>
<td>The names of commands, files, and directories, and onscreen computer output</td>
<td>Edit your .login file.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Use <code>ls -a</code> to list all files.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>machine_name% you have mail.</code></td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>What you type, contrasted with onscreen computer output</td>
<td><code>machine_name% su</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>Password:</code></td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>A placeholder to be replaced with a real name or value</td>
<td>The command to remove a file is <code>rm filename</code>.</td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>Book titles, new terms, and terms to be emphasized (note that some emphasized items appear bold online)</td>
<td><code>Use Chapter 6 in the User's Guide. </code></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A <code>cache</code> is a copy that is stored locally.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>Do not save the file.</code></td>
</tr>
</tbody>
</table>
Symbol Conventions

The following table explains symbols that might be used in this book.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Example</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>Contains optional arguments and command options.</td>
<td><code>ls [-l]</code></td>
<td>The <code>-l</code> option is not required.</td>
</tr>
<tr>
<td>{ }</td>
<td>Contains a set of choices for a required command option.</td>
<td>`-d {y</td>
<td>n}`</td>
</tr>
<tr>
<td>$()</td>
<td>Indicates a variable reference.</td>
<td><code>${com.sun.javaRoot}</code></td>
<td>References the value of the <code>com.sun.javaRoot</code> variable.</td>
</tr>
<tr>
<td>-</td>
<td>Joins simultaneous multiple keystrokes.</td>
<td>Control-A</td>
<td>Press the Control key while you press the A key.</td>
</tr>
<tr>
<td>+</td>
<td>Joins consecutive multiple keystrokes.</td>
<td>Ctrl+A+N</td>
<td>Press the Control key, release it, and then press the subsequent keys.</td>
</tr>
<tr>
<td>→</td>
<td>Indicates menu item selection in a graphical user interface.</td>
<td>File → New → Templates</td>
<td>From the File menu, choose New. From the New submenu, choose Templates.</td>
</tr>
</tbody>
</table>

Default Paths and File Names

The following table describes the default paths and file names that are used in this book.

<table>
<thead>
<tr>
<th>Placeholder</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>as-install</code></td>
<td>Represents the base installation directory for GlassFish Server. In configuration files, <code>as-install</code> is represented as follows: <code>${com.sun.aas.installRoot}</code></td>
<td>Installations on the Oracle Solaris operating system, Linux operating system, and Mac OS operating system: <code>user’s-home-directory/glassfish3/glassfish</code></td>
</tr>
</tbody>
</table>
TABLE P-4 Default Paths and File Names (Continued)

<table>
<thead>
<tr>
<th>Placeholder</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
</table>
| *as-install-parent* | Represents the parent of the base installation directory for GlassFish Server. | Installations on the Oracle Solaris operating system, Linux operating system, and Mac operating system:
 * user's-home-directory/glassfish3
 Windows, all installations:
 SystemDrive:\glassfish3 |
| *domain-root-dir* | Represents the directory in which a domain is created by default. | *as-install/domains/* |
| *domain-dir* | Represents the directory in which a domain's configuration is stored. | *domain-root-dir/domain-name* |
 In configuration files, *domain-dir*
 is represented as follows:
 ${com.sun.aas.instanceRoot} |

Documentation, Support, and Training

The Oracle web site provides information about the following additional resources:

- Training (http://education.oracle.com/)

Searching Oracle Product Documentation

Besides searching Oracle product documentation from the Oracle Documentation (http://www.oracle.com/technetwork/indexes/documentation/index.html) web site, you can use a search engine by typing the following syntax in the search field:

(search-term site:oracle.com)

For example, to search for “broker,” type the following:

broker site:oracle.com
Third-Party Web Site References

Third-party URLs are referenced in this document and provide additional, related information.

Note – Oracle is not responsible for the availability of third-party web sites mentioned in this document. Oracle does not endorse and is not responsible or liable for any content, advertising, products, or other materials that are available on or through such sites or resources. Oracle will not be responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by or in connection with use of or reliance on any such content, goods, or services that are available on or through such sites or resources.
PART I

Development Tasks and Tools
This chapter gives guidelines for setting up an application development environment in the Oracle GlassFish Server. Setting up an environment for creating, assembling, deploying, and debugging your code involves installing the mainstream version of the GlassFish Server and making use of development tools. In addition, sample applications are available.

The following topics are addressed here:

- “Installing and Preparing the Server for Development” on page 25
- “High Availability Features” on page 26
- “Development Tools” on page 26
- “Sample Applications” on page 28

Installing and Preparing the Server for Development

For more information about GlassFish Server installation, see the *Oracle GlassFish Server 3.1 Installation Guide*.

The following components are included in the full installation.

- JDK
- GlassFish Server core
 - Java Platform, Standard Edition (Java SE) 6
 - Java EE 6 compliant application server
 - Administration Console
 - asadmin utility
 - Other development and deployment tools
 - GlassFish Server Message Queue software
 - Java DB database, based on the Derby database from Apache (http://db.apache.org/derby/manuals)
 - Load balancer plug-ins for web servers
The NetBeans Integrated Development Environment (IDE) bundles the GlassFish edition of the GlassFish Server, so information about this IDE is provided as well.

After you have installed GlassFish Server, you can further optimize the server for development in these ways:

- Locate utility classes and libraries so they can be accessed by the proper class loaders. For more information, see “Using the Common Class Loader” on page 34.
- Set up debugging. For more information, see Chapter 3, "Debugging Applications."
- Configure the Virtual Machine for the Java platform (JVM software). For more information, see Chapter 4, “Administering the Virtual Machine for the Java Platform,” in Oracle GlassFish Server 3.1 Administration Guide.

High Availability Features

High availability features such as load balancing and session failover are discussed in detail in the Oracle GlassFish Server 3.1-3.1.1 High Availability Administration Guide. This book describes the following features in the following sections:

- For information about HTTP session persistence, see "Distributed Sessions and Persistence" on page 116.
- For information about checkpointing of the stateful session bean state, see "Stateful Session Bean Failover" on page 157.
- For information about failover and load balancing for Java clients, see Chapter 10, "Developing Java Clients."
- For information about load balancing for message-driven beans, see "Load-Balanced Message Inflow" on page 284.

Development Tools

The following general tools are provided with the GlassFish Server:

- “The asadmin Command” on page 27
- “The Administration Console” on page 27

The following development tools are provided with the GlassFish Server or downloadable from Oracle:

- “The Migration Tool” on page 27
- “The NetBeans IDE” on page 27

The following third-party tools might also be useful:

- “The Eclipse IDE” on page 28
The asadmin Command

The asadmin command allows you to configure a local or remote server and perform both administrative and development tasks at the command line. For general information about asadmin, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

The asadmin command is located in the as-install/bin directory. Type asadmin help for a list of subcommands.

The Administration Console

The Administration Console lets you configure the server and perform both administrative and development tasks using a web browser. For general information about the Administration Console, click the Help button in the Administration Console. This displays the GlassFish Server online help.

To access the Administration Console, type http://host:4848 in your browser. The host is the name of the machine on which the GlassFish Server is running. By default, the host is localhost. For example:

http://localhost:4848

The Migration Tool

The Migration Tool converts and reassembles Java EE applications and modules developed on other application servers. This tool also generates a report listing how many files are successfully and unsuccessfully migrated, with reasons for migration failure. For more information and to download the Migration Tool, see http://java.sun.com/j2ee/tools/migration/index.html.

The NetBeans IDE

The NetBeans IDE allows you to create, assemble, and debug code from a single, easy-to-use interface. The GlassFish edition of the GlassFish Server is bundled with the NetBeans 6.1 IDE. To download the NetBeans IDE, see http://www.netbeans.org. This site also provides documentation on how to use the NetBeans IDE with the bundled GlassFish edition of the GlassFish Server.

You can also use the GlassFish Server with the Java Studio Enterprise software, which is built on the NetBeans IDE. For more information, see http://developers.sun.com/jsenterprise/.
The Eclipse IDE

A plug-in for the Eclipse IDE is available at https://glassfishplugins.dev.java.net/. This site also provides documentation on how to register the GlassFish Server and use GlassFish Server deployment descriptors.

Debugging Tools

You can use several debugging tools with the GlassFish Server. For more information, see Chapter 3, “Debugging Applications.”

Profiling Tools

You can use several profilers with the GlassFish Server. For more information, see “Profiling Tools” on page 41.

Sample Applications

Sample applications that you can examine and deploy to the GlassFish Server are available. If you installed the GlassFish Server as part of installing the Java EE 6 SDK bundle from Java EE 6 Downloads (http://www.oracle.com/technetwork/java/javaee/downloads/index.html), the samples may already be installed. You can download these samples separately from the Code Samples (http://www.oracle.com/technetwork/java/javaee/documentation/index.html) page if you installed the GlassFish Server without them initially.

Most GlassFish Server samples have the following directory structure:

- The docs directory contains instructions for how to use the sample.
- The build.xml file defines Ant targets for the sample.
- The src/java directory under each component contains source code for the sample.
- The src/conf directory under each component contains the deployment descriptors.

With a few exceptions, sample applications follow the standard directory structure described here: http://java.sun.com/blueprints/code/projectconventions.html.

The samples-install-dir/bp-project/main.xml file defines properties common to all sample applications and implements targets needed to compile, assemble, deploy, and undeploy sample applications. In most sample applications, the build.xml file imports main.xml.

In addition to the Java EE 6 sample applications, samples are also available at GlassFish Samples (https://glassfish-samples.dev.java.net/) and at as-install/glassfish/samples/.
Understanding Oracle GlassFish Server class loaders can help you determine where to place supporting JAR and resource files for your modules and applications. For general information about J2SE class loaders, see Understanding Network Class Loaders (http://java.sun.com/developer/technicalArticles/Networking/classloaders/).

In a JVM implementation, the class loaders dynamically load a specific Java class file needed for resolving a dependency. For example, when an instance of java.utilEnumeration needs to be created, one of the class loaders loads the relevant class into the environment.

The following topics are addressed here:

- “The Class Loader Hierarchy” on page 30
- “Delegation” on page 31
- “Using the Java Optional Package Mechanism” on page 31
- “Using the Endorsed Standards Override Mechanism” on page 32
- “Class Loader Universes” on page 32
- “Application-Specific Class Loading” on page 32
- “Circumventing Class Loader Isolation” on page 34

Note – The Web Profile of the GlassFish Server supports the EJB 3.1 Lite specification, which allows enterprise beans within web applications, among other features. The full GlassFish Server supports the entire EJB 3.1 specification. For details, see JSR 318 (http://jcp.org/en/jsr/detail?id=318).

For information about class loader debugging, see “ClassLoader Debugging” on page 40.
The Class Loader Hierarchy

Class loaders in the GlassFish Server runtime follow a delegation hierarchy that is fully described in Table 2–1.

The following table describes the class loaders in the GlassFish Server.

<table>
<thead>
<tr>
<th>Class Loader</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bootstrap</td>
<td>The Bootstrap class loader loads the basic runtime classes provided by the JVM software.</td>
</tr>
<tr>
<td>Extension</td>
<td>The Extension class loader loads classes from JAR files present in the system extensions directory, domain-dir/lib/ext. It is parent to the Public API class loader. See “Using the Java Optional Package Mechanism” on page 31.</td>
</tr>
<tr>
<td>Public API</td>
<td>The Public API class loader makes available all classes specifically exported by the GlassFish Server runtime for use by deployed applications. This includes, but is not limited to, Java EE APIs and other Oracle APIs. It is parent to the Common class loader.</td>
</tr>
<tr>
<td>Common</td>
<td>The Common class loader loads JAR files in the as-install/lib directory, then classes in the domain-dir/lib/classes directory, followed by JAR files in the domain-dir/lib directory. Using domain-dir/lib/classes or domain-dir/lib is recommended whenever possible, and required for custom login modules and realms. It is parent to the Connector class loader. See "Using the Common Class Loader" on page 34.</td>
</tr>
<tr>
<td>Connector</td>
<td>The Connector class loader is a single class loader instance that loads individually deployed connector modules, which are shared across all applications. It is parent to the Applib class loader and the LifeCycleModule class loader.</td>
</tr>
<tr>
<td>LifeCycleModule</td>
<td>The LifeCycleModule class loader is created once per lifecycle module. Each lifecycle module's classpath is used to construct its own class loader. For more information on lifecycle modules, see Chapter 12, "Developing Lifecycle Listeners."</td>
</tr>
<tr>
<td>Applib</td>
<td>The Applib class loader loads the library classes, specified during deployment, for a specific enabled module or Java EE application; see "Application-Specific Class Loading" on page 32. One instance of this class loader is present in each class loader universe; see "ClassLoader Universes" on page 32. It is parent to the Archive class loader. When multiple deployed applications use the same library, they share the same instance of the library. One library cannot reference classes from another library.</td>
</tr>
<tr>
<td>Archive</td>
<td>The Archive class loader loads classes from the WAR, EAR, and JAR files or directories (for directory deployment) of applications or modules deployed to the GlassFish Server. This class loader also loads any application-specific classes generated by the GlassFish Server runtime, such as stub classes or servlets generated by JSP pages.</td>
</tr>
</tbody>
</table>
Delegation

Note that the class loader hierarchy is not a Java inheritance hierarchy, but a delegation hierarchy. In the delegation design, a class loader delegates class loading to its parent before attempting to load a class itself. If the parent class loader cannot load a class, the class loader attempts to load the class itself. In effect, a class loader is responsible for loading only the classes not available to the parent. Classes loaded by a class loader higher in the hierarchy cannot refer to classes available lower in the hierarchy.

The Java Servlet specification recommends that a web module's class loader look in the local class loader before delegating to its parent. You can make this class loader follow the delegation inversion model in the Servlet specification by setting delegate="false" in the class-loader element of the glassfish-web.xml file. It is safe to do this only for a web module that does not interact with any other modules. For details, see “class-loader” in Oracle GlassFish Server 3.1 Application Deployment Guide.

The default value is delegate="true", which causes a web module's class loader to delegate in the same manner as the other class loaders. You must use delegate="true" for a web application that accesses EJB components or that acts as a web service client or endpoint. For details about glassfish-web.xml, see Oracle GlassFish Server 3.1 Application Deployment Guide.

For a number of packages, including java.* and javax.*, symbol resolution is always delegated to the parent class loader regardless of the delegate setting. This prevents applications from overriding core Java runtime classes or changing the API versions of specifications that are part of the Java EE platform.

Using the Java Optional Package Mechanism

Optional packages are packages of Java classes and associated native code that application developers can use to extend the functionality of the core platform.

To use the Java optional package mechanism, copy the JAR files into the domain-dir/lib/ext directory, then restart the server.

For more information, see Optional Packages - An Overview (http://download.oracle.com/javase/6/docs/technotes/guides/extensions/extensions.html) and Understanding Extension Class Loading (http://download.oracle.com/javase/tutorial/ext/basics/load.html).
Using the Endorsed Standards Override Mechanism

Endorsed standards handle changes to classes and APIs that are bundled in the JDK but are subject to change by external bodies.

To use the endorsed standards override mechanism, copy the JAR files into the domain-dir/lib/endorsed directory, then restart the server.

For more information and the list of packages that can be overridden, see Endorsed Standards Override Mechanism (http://download.oracle.com/javase/6/docs/technotes/guides/standards/).

Class Loader Universes

Access to components within applications and modules installed on the server occurs within the context of isolated class loader universes, each of which has its own Applib and Archive class loaders.

- **Application Universe** – Each Java EE application has its own class loader universe, which loads the classes in all the modules in the application.
- **Individually Deployed Module Universe** – Each individually deployed EJB JAR or web WAR has its own class loader universe, which loads the classes in the module.

A resource such as a file that is accessed by a servlet, JSP, or EJB component must be in one of the following locations:

- A directory pointed to by the Libraries field or ----libraries option used during deployment
- A directory pointed to by the library-directory element in the application.xml deployment descriptor
- A directory pointed to by the application or module's classpath; for example, a web module's classpath includes these directories:

 module-name/WEB-INF/classes
 module-name/WEB-INF/lib

Application-Specific Class Loading

You can specify module- or application-specific library classes during deployment in one of the following ways:

- Use the Administration Console. Open the Applications component, then go to the page for the type of application or module. Select the Deploy button. Type the comma-separated paths in the Libraries field. For details, click the Help button in the Administration Console.
- Use the `asadmin deploy` command with the `----libraries` option and specify comma-separated paths. For details, see the *Oracle GlassFish Server 3.1-3.1.1 Reference Manual.*

Note - The Libraries field in the Administration Console's deployment page and the `----libraries` option of the `asadmin deploy` command do not apply to application clients. For more information, see “Using Libraries with Application Clients” on page 217.

You can only specify module- or application-specific library classes during deployment. You can update a library JAR file using dynamic reloading or by restarting (disabling and re-enabling) a module or application. To add or remove library JAR files, you must redeploy the module or application.

Application libraries are included in the Applib class loader. Paths to libraries can be relative or absolute. A relative path is relative to `domain-dir/lib/applibs`. If the path is absolute, the path must be accessible to the domain administration server (DAS). The GlassFish Server automatically synchronizes these libraries to all remote cluster instances when the cluster is restarted. However, libraries specified by absolute paths are not guaranteed to be synchronized.

Tip – You can use application-specific class loading to specify a different XML parser than the default GlassFish Server XML parser.

You can also use application-specific class loading to access different versions of a library from different applications.

If multiple applications or modules refer to the same libraries, classes in those libraries are automatically shared. This can reduce the memory footprint and allow sharing of static information. However, applications or modules using application-specific libraries are not portable. Other ways to make libraries available are described in “Circumventing Class Loader Isolation” on page 34.

One library cannot reference classes from another library.

For general information about deployment, including dynamic reloading, see the *Oracle GlassFish Server 3.1 Application Deployment Guide.*

Note – If you see an access control error message when you try to use a library, you may need to grant permission to the library in the server. policy file. For more information, see “Changing Permissions for an Application” on page 59.
Circumventing Class Loader Isolation

Since each application or individually deployed module class loader universe is isolated, an application or module cannot load classes from another application or module. This prevents two similarly named classes in different applications or modules from interfering with each other.

To circumvent this limitation for libraries, utility classes, or individually deployed modules accessed by more than one application, you can include the relevant path to the required classes in one of these ways:

- “Using the Common Class Loader” on page 34
- “Sharing Libraries Across a Cluster” on page 34
- “Packaging the Client JAR for One Application in Another Application” on page 35

Using the Common Class Loader

To use the Common class loader, copy the JAR files into the `domain-dir/lib` or `as-install/lib` directory or copy the `.class` files (and other needed files, such as `.properties` files) into the `domain-dir/lib/classes` directory, then restart the server.

Using the Common class loader makes an application or module accessible to all applications or modules deployed on servers that share the same configuration. However, this accessibility does not extend to application clients. For more information, see “Using Libraries with Application Clients” on page 217.

For example, using the Common class loader is the recommended way of adding JDBC drivers to the GlassFish Server. For a list of the JDBC drivers currently supported by the GlassFish Server, see the Oracle GlassFish Server 3.1-3.1.1 Release Notes. For configurations of supported and other drivers, see “Configuration Specifics for JDBC Drivers” in Oracle GlassFish Server 3.1 Administration Guide.

To activate custom login modules and realms, place the JAR files in the `domain-dir/lib` directory or the class files in the `domain-dir/lib/classes` directory, then restart the server.

Sharing Libraries Across a Cluster

To share libraries across a specific cluster, copy the JAR files to the `domain-dir/config/cluster-config-name/lib/classes` directory.
Packaging the Client JAR for One Application in Another Application

By packaging the client JAR for one application in a second application, you allow an EJB or web component in the second application to call an EJB component in the first (dependent) application, without making either of them accessible to any other application or module.

As an alternative for a production environment, you can have the Common class loader load the client JAR of the dependent application as described in “Using the Common Class Loader” on page 34. Restart the server to make the dependent application accessible to all applications or modules deployed on servers that share the same configuration.

▼ To Package the Client JAR for One Application in Another Application

1 Deployp the dependent application.

2 Add the dependent application’s client JAR file to the calling application.
 - For a calling EJB component, add the client JAR file at the same level as the EJB component. Then add a Class-Path entry to the MANIFEST.MF file of the calling EJB component. The Class-Path entry has this syntax:

 Class-Path: filepath1.jar filepath2.jar ...

 Each filepath is relative to the directory or JAR file containing the MANIFEST.MF file. For details, see the Java EE specification.
 - For a calling web component, add the client JAR file under the WEB-INF/lib directory.

3 If you need to package the client JAR with both the EJB and web components, set delegate=”true” in the class-loader element of the glassfish-web.xml file. This changes the Web class loader so that it follows the standard class loader delegation model and delegates to its parent before attempting to load a class itself.
 - For most applications, packaging the client JAR file with the calling EJB component is sufficient. You do not need to package the client JAR file with both the EJB and web components unless the web component is directly calling the EJB component in the dependent application.

4 Deploy the calling application.
 - The calling EJB or web component must specify in its glassfish-ejb-jar.xml or glassfish-web.xml file the JNDI name of the EJB component in the dependent application. Using an ejb-link mapping does not work when the EJB component being called resides in another application.
Circumventing Class Loader Isolation

You do not need to restart the server.
This chapter gives guidelines for debugging applications in the Oracle GlassFish Server.

The following topics are addressed here:
- “Enabling Debugging” on page 37
- “JPDA Options” on page 38
- “Generating a Stack Trace for Debugging” on page 39
- “Application Client Debugging” on page 39
- “GlassFish Server Message Queue Debugging” on page 40
- “Enabling Verbose Mode” on page 40
- “Class Loader Debugging” on page 40
- “GlassFish Server Logging” on page 41
- “Profiling Tools” on page 41

Enabling Debugging

When you enable debugging, you enable both local and remote debugging. To start the server in debug mode, use the `-debug` option as follows:

```
asadmin start-domain --debug [domain-name]
```

You can then attach to the server from the Java Debugger (`jdb`) at its default Java Platform Debugger Architecture (JPDA) port, which is 9009. For example, for UNIX systems:

```
jdb -attach 9009
```

For Windows:

```
jdb -connect com.sun.jdi.SocketAttach:port=9009
```

For more information about the `jdb` debugger, see the following links:
GlassFish Server debugging is based on the JPDA. For more information, see “JPDA Options” on page 38.

You can attach to the GlassFish Server using any JPDA compliant debugger, including that of NetBeans (http://www.netbeans.org), Java Studio Enterprise, JBuilder, Eclipse, and so on.

You can enable debugging even when the GlassFish Server is started without the ----debug option. This is useful if you start the GlassFish Server from the Windows Start Menu, or if you want to make sure that debugging is always turned on.

▼ To Set the Server to Automatically Start Up in Debug Mode

1. Use the Administration Console. Select the JVM Settings component under the relevant configuration.

2. Check the Debug Enabled box.

3. To specify a different port (from 9009, the default) to use when attaching the JVM software to a debugger, specify address=port-number in the Debug Options field.

4. To add JPDA options, add any desired JPDA debugging options in Debug Options. See “JPDA Options” on page 38.

See Also For details, click the Help button in the Administration Console from the JVM Settings page.

JPDA Options

The default JPDA options in GlassFish Server are as follows:

-Xdebug -Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=9009

For Windows, you can change dt_socket to dt_shmem.

If you substitute suspend=y, the JVM software starts in suspended mode and stays suspended until a debugger attaches to it. This is helpful if you want to start debugging as soon as the JVM software starts.
To specify a different port (from 9009, the default) to use when attaching the JVM software to a debugger, specify address=port-number.

You can include additional options. A list of JPDA debugging options is available at http://java.sun.com/javase/technologies/core/toolsapis/jpda/.

Generating a Stack Trace for Debugging

To generate a Java stack trace for debugging, use the asadmin generate-jvm-report --type=thread command. The stack trace goes to the domain-dir/logs/server.log file and also appears on the command prompt screen. For more information about the asadmin generate-jvm-report command, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

Application Client Debugging

When the appclient script executes the java command to run the Application Client Container (ACC), which in turn runs the client, it includes on the command line the value of the VMARGS environment variable. You can set this variable to any suitable value. For example:

 VMARGS=-Xdebug -Xrunjdwp:transport=dt_socket,server=y,suspend=y,address=8118

The following example also works:

 set VMARGS=-Xdebug -agentlib:jdwp=transport=dt_socket,server=y,suspend=y,address=8118

For debugging an application client, you should set suspend to y so you can connect the debugger to the client before any code has actually executed. Otherwise, the client may start running and execute past the point you want to examine.

You should use different ports for the server and client if you are debugging both concurrently. For details about setting the port, see "JPDA Options" on page 38.

You can also include JVM options such as -Xdebug and -Xrunjdwp in the appclient script directly. For information about the appclient script, see Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

Note – The Application Client Container is supported only in the full GlassFish Server, not in the Web Profile. See Chapter 10, “Developing Java Clients.”
GlassFish Server Message Queue Debugging

GlassFish Server Message Queue has a broker logger, which can be useful for debugging Java Message Service (JMS) applications, including message-driven bean applications. You can adjust the logger's verbosity, and you can send the logger output to the broker's console using the broker's -tty option. For more information, see the Oracle GlassFish Server Message Queue 4.5 Administration Guide.

Note – JMS resources are supported only in the full GlassFish Server, not in the Web Profile. See Chapter 17, “Using the Java Message Service.”

Enabling Verbose Mode

To have the server logs and messages printed to System.out on your command prompt screen, you can start the server in verbose mode. This makes it easy to do simple debugging using print statements, without having to view the server.log file every time.

To start the server in verbose mode, use the --verbose option as follows:

```
asadmin start-domain --verbose [domain-name]
```

When the server is in verbose mode, messages are logged to the console or terminal window in addition to the log file. In addition, pressing Ctrl-C stops the server and pressing Ctrl-\ (on UNIX platforms) or Ctrl-Break (on Windows platforms) prints a thread dump. On UNIX platforms, you can also print a thread dump using the jstack command (see http://download.oracle.com/javase/6/docs/technotes/tools/share/jstack.html) or the command kill -QUIT process_id.

Class Loader Debugging

To generate class loading messages, use the following asadmin create-jvm-options command:

```
asadmin create-jvm-options -verbose:class
```

To send the JVM messages to a special JVM log file instead of stdout, use the following asadmin create-jvm-options commands:

```
asadmin create-jvm-options -XX:+LogVMOutput
asadmin create-jvm-options -XX:LogFile=${com.sun.aas.instanceRoot}/logs/jvm.log
```
Note – These -XX options are specific to the OpenJDK (or Hotspot) JVM and do not work with the JRockit JVM.

To send the GlassFish Server messages to the Administration Console instead of stderr, start the domain in verbose mode as described in “Enabling Verbose Mode” on page 40.

GlassFish Server Logging

You can use the GlassFish Server’s log files to help debug your applications. Use the Administration Console. Select the Stand-Alone Instances component, select the instance from the table, then click the View Log Files button in the General Information page. Or select the Cluster component, select the cluster from the table, select the Instances tab, select the instance from the table, then click the View Log Files button in the General Information page.

To change logging settings, select Logger Settings under the relevant configuration.

For details about logging, click the Help button in the Administration Console.

Profiling Tools

You can use a profiler to perform remote profiling on the GlassFish Server to discover bottlenecks in server-side performance. This section describes how to configure profilers for use with GlassFish Server.

The following topics are addressed here:

- “The NetBeans Profiler” on page 41
- “The HPROF Profiler” on page 42
- “The JProbe Profiler” on page 43

The NetBeans Profiler

For information on how to use the NetBeans profiler, see http://profiler.netbeans.org/index.html.
The HPROF Profiler

The Heap and CPU Profiling Agent (HPROF) is a simple profiler agent shipped with the Java 2 SDK. It is a dynamically linked library that interacts with the Java Virtual Machine Profiler Interface (JVMPI) and writes out profiling information either to a file or to a socket in ASCII or binary format.

HPROF can monitor CPU usage, heap allocation statistics, and contention profiles. In addition, it can also report complete heap dumps and states of all the monitors and threads in the Java virtual machine. For more details on the HPROF profiler, see the technical article at http://java.sun.com/developer/technicalArticles/Programming/HPROF.html.

After HPROF is enabled using the following instructions, its libraries are loaded into the server process.

▼ To Use HPROF Profiling on UNIX

1 Use the Administration Console. Select the JVM Settings component under the relevant configuration. Then select the Profiler tab.

2 Edit the following fields:

 ■ Profiler Name – hprof
 ■ Profiler Enabled – true
 ■ Classpath – (leave blank)
 ■ Native Library Path – (leave blank)
 ■ JVM Option – Select Add, type the HPROF JVM option in the Value field, then check its box. The syntax of the HPROF JVM option is as follows:

   ```
   -Xrunhprof[:help][:param=value,param2=value2, ...]
   ```

 Here is an example of params you can use:

   ```
   -Xrunhprof:file=log.txt,thread=y,depth=3
   ```

 The file parameter determines where the stack dump is written.

 Using help lists parameters that can be passed to HPROF. The output is as follows:

   ```
   Hprof usage: -Xrunhprof[:help][:<option>=<value>, ...]
   ```

Option Name and Value	Description	Default
heap=dump/sites/all	heap profiling	all
cpu=samples	old	CPU usage
format=a	b	ascii or binary output
file=<file>	write data to file	java.hprof
(.txt for ascii)		
Profiling Tools

net=<host>:<port> send data over a socket write to file
depth=<size> stack trace depth 4

cutoff=<value> output cutoff point 0.0001
lineno=y|n line number in traces? y
thread=y|n thread in traces? n
doe=y|n dump on exit? y

Note – Do not use help in the JVM Option field. This parameter prints text to the standard output and then exits.

The help output refers to the parameters as options, but they are not the same thing as JVM options.

3 Restart the GlassFish Server.
This writes an HPROF stack dump to the file you specified using the file HPROF parameter.

The JProbe Profiler

Information about JProbe from Sitraka is available at http://www.quest.com/jprobe/.

After JProbe is installed using the following instructions, its libraries are loaded into the server process.

▼ To Enable Remote Profiling With JProbe

1 Install JProbe 3.0.1.1.
 For details, see the JProbe documentation.

2 Configure GlassFish Server using the Administration Console:
 a. Select the JVM Settings component under the relevant configuration. Then select the Profiler tab.
 b. Edit the following fields before selecting Save and restarting the server:
 ▪ Profiler Name – jprobe
 ▪ Profiler Enabled – true
 ▪ Classpath – (leave blank)
 ▪ Native Library Path – JProbe-dir/profiler
 ▪ JVM Option – For each of these options, select Add, type the option in the Value field, then check its box
 -Xbootclasspath/p:JProbe-dir/profiler/jpagent.jar
Note – If any of the configuration options are missing or incorrect, the profiler might experience problems that affect the performance of the GlassFish Server.

When the server starts up with this configuration, you can attach the profiler.

3 Set the following environment variable:

```jprobe ARGS_0=-jp_input=JPL-file-path```

See Step 6 for instructions on how to create the JPL file.

4 Start the server instance.

5 Launch the jprofiler and attach to Remote Session. The default port is 4444.

6 Create the JPL file using the JProbe Launch Pad. Here are the required settings:

   a. Select Server Side for the type of application.

   b. On the Program tab, provide the following details:

      - Target Server – `other-server`
      - Server home Directory – `as-install`
      - Server class File – `com.sun.enterprise.server.J2EERunner`
      - Working Directory – `as-install`
      - Classpath – `as-install/lib/appserv-rt.jar`
      - Source File Path – `source-code-dir` (in case you want to get the line level details)
      - Server class arguments – (optional)
      - Main Package – `com.sun.enterprise.server`

   You must also set VM, Attach, and Coverage tabs appropriately. For further details, see the JProbe documentation. After you have created the JPL file, use this an input to `JPROBE_ARGS_0`. 

-Xrunjprobeagent
-Xnoclassgc
PART II

Developing Applications and Application Components
This chapter describes how to write secure Java EE applications, which contain components that perform user authentication and access authorization for the business logic of Java EE components.

For information about administrative security for the Oracle GlassFish Server, see the Oracle GlassFish Server 3.1 Security Guide.


The following topics are addressed here:

- “Security Goals” on page 48
- “GlassFish Server Specific Security Features” on page 48
- “Container Security” on page 49
- “Roles, Principals, and Principal to Role Mapping” on page 50
- “Realm Configuration” on page 52
- “JACC Support” on page 56
- “Pluggable Audit Module Support” on page 56
- “The server.policy File” on page 58
- “Configuring Message Security for Web Services” on page 62
- “Programmatic Login” on page 72
- “User Authentication for Single Sign-on” on page 74
- “Adding Authentication Mechanisms to the Servlet Container” on page 76

Note – The Web Profile of the GlassFish Server supports the EJB 3.1 Lite specification, which allows enterprise beans within web applications, among other features. The full GlassFish Server supports the entire EJB 3.1 specification. For details, see JSR 318 (http://jcp.org/en/jsr/detail?id=318).
Security Goals

In an enterprise computing environment, there are many security risks. The goal of the GlassFish Server is to provide highly secure, interoperable, and distributed component computing based on the Java EE security model. Security goals include:

- Full compliance with the Java EE security model. This includes EJB and servlet role-based authorization.
- Support for single sign-on across all GlassFish Server applications within a single security domain.
- Support for web services message security.
- Security support for application clients.
- Support for several underlying authentication realms, such as simple file and Lightweight Directory Access Protocol (LDAP). Certificate authentication is also supported for Secure Socket Layer (SSL) client authentication. For Solaris, OS platform authentication is supported in addition to these.
- Support for declarative security through GlassFish Server specific XML-based role mapping.
- Support for Java Authentication Service Provider Interface for Containers as included in the Java EE specification and defined by JSR 196 (http://www.jcp.org/en/jsr/detail?id=196).
- Support for Web Services Interoperability Technologies (WSIT) as described in Metro Users Guide (https://metro.dev.java.net/guide/).

GlassFish Server Specific Security Features

The GlassFish Server supports the Java EE security model, as well as the following features which are specific to the GlassFish Server:

- Message security; see “Configuring Message Security for Web Services” on page 62
- Single sign-on across all GlassFish Server applications within a single security domain; see “User Authentication for Single Sign-on” on page 74
- Programmatic login; see “Programmatic Login” on page 72
Container Security

The component containers are responsible for providing Java EE application security. The container provides two security forms:

- “Declarative Security” on page 49
- “Programmatic Security” on page 50

Annotations (also called metadata) enable a declarative style of programming, and so encompass both the declarative and programmatic security concepts. Users can specify information about security within a class file using annotations. When the application is deployed, this information can either be used by or overridden by the application or module deployment descriptor.

Declarative Security

Declarative security means that the security mechanism for an application is declared and handled externally to the application. Deployment descriptors describe the Java EE application’s security structure, including security roles, access control, and authentication requirements.

The GlassFish Server supports the deployment descriptors specified by Java EE and has additional security elements included in its own deployment descriptors. Declarative security is the application deployer’s responsibility. For more information about GlassFish Server deployment descriptors, see the Oracle GlassFish Server 3.1 Application Deployment Guide.

There are two levels of declarative security, as follows:

- “Application Level Security” on page 49
- “Component Level Security” on page 50

Application Level Security

For an application, roles used by any application must be defined in @DeclareRoles annotations in the code or role-name elements in the application deployment descriptor (application.xml). Those role names are scoped to the EJB XML deployment descriptors (ejb-jar.xml and glassfish-ejb-jar.xml files) and to the servlet XML deployment descriptors (web.xml and glassfish-web.xml files). For an individually deployed web or EJB module, you define roles using @DeclareRoles annotations or role-name elements in the Java EE deployment descriptor files web.xml or ejb-jar.xml.

To map roles to principals and groups, define matching security-role-mapping elements in the glassfish-application.xml, glassfish-ejb-jar.xml, or glassfish-web.xml file for each role-name used by the application. For more information, see “Roles, Principals, and Principal to Role Mapping” on page 50.
Component Level Security

Component level security encompasses web components and EJB components.

A secure web container authenticates users and authorizes access to a servlet or JSP by using the security policy laid out in the servlet XML deployment descriptors (web.xml and glassfish-web.xml files).

The EJB container is responsible for authorizing access to a bean method by using the security policy laid out in the EJB XML deployment descriptors (ejb-jar.xml and glassfish-ejb-jar.xml files).

Programmatic Security

*Programmatic security* involves an EJB component or servlet using method calls to the security API, as specified by the Java EE security model, to make business logic decisions based on the caller or remote user's security role. Programmatic security should only be used when declarative security alone is insufficient to meet the application's security model.

The Java EE specification defines programmatic security as consisting of two methods of the EJB EJBContext interface and two methods of the servlet HttpServletRequest interface. The GlassFish Server supports these interfaces as specified in the specification.

For more information on programmatic security, see the following:

- The Java EE Specification
- "Programmatic Login" on page 72

Roles, Principals, and Principal to Role Mapping

For applications, you define roles in @DeclareRoles annotations or the Java EE deployment descriptor file application.xml. You define the corresponding role mappings in the GlassFish Server deployment descriptor file glassfish-application.xml. For individually deployed web or EJB modules, you define roles in @DeclareRoles annotations or the Java EE deployment descriptor files web.xml or ejb-jar.xml. You define the corresponding role mappings in the GlassFish Server deployment descriptor files glassfish-web.xml or glassfish-ejb-jar.xml.

For more information regarding Java EE deployment descriptors, see the Java EE Specification. For more information regarding GlassFish Server deployment descriptors, see Appendix C, “Elements of the GlassFish Server Deployment Descriptors,” in Oracle GlassFish Server 3.1 Application Deployment Guide.

Each security-role-mapping element in the glassfish-application.xml, glassfish-web.xml, or glassfish-ejb-jar.xml file maps a role name permitted by the application or module to principals and groups. For example, a glassfish-web.xml file for an individually deployed web module might contain the following:
A role can be mapped to either specific principals or to groups (or both). The principal or group names used must be valid principals or groups in the realm for the application or module. Note that the role-name in this example must match the @DeclareRoles annotations or the role-name in the security-role element of the corresponding web.xml file.

You can also specify a custom principal implementation class. This provides more flexibility in how principals can be assigned to roles. A user’s JAAS login module now can authenticate its custom principal, and the authenticated custom principal can further participate in the GlassFish Server authorization process. For example:

```xml
<security-role-mapping>
 <role-name>administrator</role-name>
 <principal-name class-name="CustomPrincipalImplClass">dsmith</principal-name>
</security-role-mapping>
```

You can specify a default principal and a default principal to role mapping, each of which applies to the entire GlassFish Server instance. The default principal to role mapping maps group principals to the same named roles. Web modules that omit the run-as element in web.xml use the default principal. Applications and modules that omit the security-role-mapping element use the default principal to role mapping. These defaults are part of the Security Service, which you can access in the following ways:

- In the Administration Console, select the Security component under the relevant configuration. For details, click the Help button in the Administration Console.
- Use the `asadmin set` command. For details, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual. For example, you can set the default principal as follows.

```
asadmin set server-config.security-service.default-principal=dsmith
asadmin set server-config.security-service.default-principal-password=secret
```

You can set the default principal to role mapping as follows.

```
asadmin set server-config.security-service.activate-default-principal-to-role-mapping=true
asadmin set server-config.security-service.mapped-principal-class=CustomPrincipalImplClass
```
Realm Configuration

The following topics are addressed here:

- "Supported Realms" on page 52
- "How to Configure a Realm" on page 52
- "How to Set a Realm for an Application or Module" on page 53
- "Creating a Custom Realm" on page 53

Supported Realms

The following realms are supported in the current release of the GlassFish Server:

- file – Stores user information in a file. This is the default realm when you first install the GlassFish Server.
- ldap – Stores user information in an LDAP directory.
- jdbc – Stores user information in a database.

  In the JDBC realm, the server gets user credentials from a database. The GlassFish Server uses the database information and the enabled JDBC realm option in the configuration file. For digest authentication, a JDBC realm should be created with jdbcDigestRealm as the JAAS context.

- certificate – Sets up the user identity in the GlassFish Server security context, and populates it with user data obtained from cryptographically verified client certificates.
- solaris – Allows authentication using Solaris username+password data. This realm is only supported on the Solaris operating system, version 9 and above.

For information about configuring realms, see “How to Configure a Realm” on page 52.

How to Configure a Realm

You can configure a realm in one of these ways:

- In the Administration Console, open the Security component under the relevant configuration and go to the Realms page. For details, click the Help button in the Administration Console.
- Use the asadmin create-auth-realm command to configure realms on local servers. For details, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.
How to Set a Realm for an Application or Module

The following deployment descriptor elements have optional realm or realm-name data subelements or attributes that override the domain’s default realm:

- glassfish-application element in glassfish-application.xml
- web-app element in web.xml
- as-context element in glassfish-ejb-jar.xml
- client-container element in sun-acc.xml
- client-credential element in sun-acc.xml

If modules within an application specify realms, these are ignored. If present, the realm defined in glassfish-application.xml is used, otherwise the domain’s default realm is used.

For example, a realm is specified in glassfish-application.xml as follows:

```xml
<glassfish-application>
 ...
 <realm>ldap</realm>
</glassfish-application>
```

For more information about the deployment descriptor files and elements, see Appendix C, “Elements of the GlassFish Server Deployment Descriptors,” in Oracle GlassFish Server 3.1 Application Deployment Guide.

Creating a Custom Realm

You can create a custom realm by providing a custom Java Authentication and Authorization Service (JAAS) login module class and a custom realm class. Note that client-side JAAS login modules are not suitable for use with the GlassFish Server.

To activate the custom login modules and realms, place the JAR files in the domain-dir/lib directory or the class files in the domain-dir/lib/classes directory. For more information about class loading in the GlassFish Server, see Chapter 2, “Class Loaders.”

JAAS is a set of APIs that enable services to authenticate and enforce access controls upon users. JAAS provides a pluggable and extensible framework for programmatic user authentication and authorization. JAAS is a core API and an underlying technology for Java EE security mechanisms. For more information about JAAS, refer to the JAAS specification for Java SDK, available at http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html.

For general information about realms and login modules, see “Working with Realms, Users, Groups, and Roles” in The Java EE 6 Tutorial.

For Javadoc tool pages relevant to custom realms, go to http://glassfish.java.net/nonav/docs/v3/api/ and click on the com.sun.appserv.security package.
Custom login modules must extend the `com.sun.appserv.security.AppservPasswordLoginModule` class. This class implements `javax.security.auth.spi.LoginModule`. Custom login modules must not implement `LoginModule` directly.

Custom login modules must provide an implementation for one abstract method defined in `AppservPasswordLoginModule`:

```java
abstract protected void authenticateUser() throws LoginException
```

This method performs the actual authentication. The custom login module must not implement any of the other methods, such as `login`, `logout`, `abort`, `commit`, or `initialize`. Default implementations are provided in `AppservPasswordLoginModule` which hook into the GlassFish Server infrastructure.

The custom login module can access the following protected object fields, which it inherits from `AppservPasswordLoginModule`. These contain the user name and password of the user to be authenticated:

```java
protected String _username;
protected String _password;
```

The `authenticateUser` method must end with the following sequence:

```java
String[] grpList;
// populate grpList with the set of groups to which
// _username belongs in this realm, if any
commitUserAuthentication(_username, _password,
_currentRealm, grpList);
```

Custom realms must extend the `com.sun.appserv.security.AppservRealm` class and implement the following methods:

```java
public void init(Properties props) throws BadRealmException,
NoSuchRealmException
```

This method is invoked during server startup when the realm is initially loaded. The `props` argument contains the properties defined for this realm. The realm can do any initialization it needs in this method. If the method returns without throwing an exception, the GlassFish Server assumes that the realm is ready to service authentication requests. If an exception is thrown, the realm is disabled.

```java
public String getAuthType()
```

This method returns a descriptive string representing the type of authentication done by this realm.

```java
public abstract Enumeration getGroupNames(String username) throws
InvalidOperationException, NoSuchUserException
``
This method returns an Enumeration (of String objects) enumerating the groups (if any) to which the given username belongs in this realm.

Custom realms that manage users must implement the following additional methods:

```java
public abstract boolean supportsUserManagement();
```
This method returns true if the realm supports user management.

```java
public abstract Enumeration getGroupNames() throws BadRealmException;
```
This method returns an Enumeration of all group names.

```java
public abstract Enumeration getUserNames() throws BadRealmException;
```
This method returns an Enumeration of all usernames.

```java
public abstract void refresh() throws BadRealmException;
```
This method refreshes the realm data so that new users and groups are visible.

```java
public abstract void persist() throws BadRealmException;
```
This method persists the realm data to permanent storage.

```java
public abstract User getUser(String name) throws NoSuchUserException, BadRealmException;
```
This method returns the information recorded about a particular named user.

```java
public abstract void addUser(String name, String password, String[] groupList) throws BadRealmException, IASSecurityException;
```
This method adds a new user, who cannot already exist.

```java
public abstract void removeUser(String name) throws NoSuchUserException, BadRealmException;
```
This method removes a user, who must exist.

```java
public abstract void updateUser(String name, String newName, String password, String[] groups) throws NoSuchUserException, BadRealmException, IASSecurityException;
```
This method updates data for a user, who must exist.
Note – The array passed to the commitUseAuthentication method should be newly created and otherwise unreferenced. This is because the group name array elements are set to null after authentication as part of cleanup. So the second time your custom realm executes it returns an array with null elements.

Ideally, your custom realm should not return member variables from the authenticate method. It should return local variables as the default JDBCRealm does. Your custom realm can create a local String array in its authenticate method, copy the values from the member variables, and return the String array. Or it can use clone on the member variables.

JACC Support

JACC (Java Authorization Contract for Containers) is part of the Java EE specification and defined by JSR 115 (http://www.jcp.org/en/jsr/detail?id=115). JACC defines an interface for pluggable authorization providers. Specifically, JACC is used to plug in the Java policy provider used by the container to perform Java EE caller access decisions. The Java policy provider performs Java policy decisions during application execution. This provides third parties with a mechanism to develop and plug in modules that are responsible for answering authorization decisions during Java EE application execution. The interfaces and rules used for developing JACC providers are defined in the JACC 1.0 specification.

The GlassFish Server provides a simple file-based JACC-compliant authorization engine as a default JACC provider, named default. An alternate provider named simple is also provided. To configure an alternate provider using the Administration Console, open the Security component under the relevant configuration, and select the JACC Providers component. For details, click the Help button in the Administration Console.

Pluggable Audit Module Support

Audit modules collect and store information on incoming requests (servlets, EJB components) and outgoing responses. You can create a custom audit module.

The following topics are addressed here:

- "Configuring an Audit Module” on page 56
- "The AuditModule Class" on page 57

For additional information about audit modules, see Audit Callbacks (http://developers.sun.com/appserver/reference/techart/ws_mgmt3.html).

Configuring an Audit Module

To configure an audit module, you can perform one of the following tasks:
To specify an audit module using the Administration Console, open the Security component under the relevant configuration, and select the Audit Modules component. For details, click the Help button in the Administration Console.

You can use the `asadmin create-audit-module` command to configure an audit module. For details, see the *Oracle GlassFish Server 3.1.1 Reference Manual*.

The AuditModule Class

You can create a custom audit module by implementing a class that extends `com.sun.enterprise.security.audit.AuditModule`.

The `AuditModule` class provides default "no-op" implementations for each of the following methods, which your custom class can override.

```java
public void init(Properties props)
```

The preceding method is invoked during server startup when the audit module is initially loaded. The `props` argument contains the properties defined for this module. The module can do any initialization it needs in this method. If the method returns without throwing an exception, the GlassFish Server assumes the module realm is ready to service audit requests. If an exception is thrown, the module is disabled.

```java
public void authentication(String user, String realm, boolean success)
```

This method is invoked when an authentication request has been processed by a realm for the given user. The `success` flag indicates whether the authorization was granted or denied.

```java
public void webInvocation(String user, HttpServletRequest req, String type, boolean success)
```

This method is invoked when a web container call has been processed by authorization. The `success` flag indicates whether the authorization was granted or denied. The `req` object is the standard `HttpServletRequest` object for this request. The `type` string is one of `hasUserDataPermission` or `hasResourcePermission` (see JSR 115(http://www.jcp.org/en/jsr/detail?id=115)).

```java
public void ejbInvocation(String user, String ejb, String method, boolean success)
```

This method is invoked when an EJB container call has been processed by authorization. The `success` flag indicates whether the authorization was granted or denied. The `ejb` and `method` strings describe the EJB component and its method that is being invoked.

```java
public void webServiceInvocation(String uri, String endpoint, boolean success)
```
This method is invoked during validation of a web service request in which the endpoint is a servlet. The `uri` is the URL representation of the web service endpoint. The `endpoint` is the name of the endpoint representation. The `success` flag indicates whether the authorization was granted or denied.

```java
public void ejbAsWebServiceInvocation(String endpoint, boolean success)
```

This method is invoked during validation of a web service request in which the endpoint is a stateless session bean. The `endpoint` is the name of the endpoint representation. The `success` flag indicates whether the authorization was granted or denied.

The `server.policy` File

Each GlassFish Server domain has its own global J2SE policy file, located in `domain-dir/config`. The file is named `server.policy`.

The GlassFish Server is a Java EE compliant application server. As such, it follows the requirements of the Java EE specification, including the presence of the security manager (the Java component that enforces the policy) and a limited permission set for Java EE application code.

The following topics are addressed here:

- “Default Permissions” on page 58
- “System Properties” on page 59
- “Changing Permissions for an Application” on page 59
- “Enabling and Disabling the Security Manager” on page 61

Default Permissions

Internal server code is granted all permissions. These are covered by the `AllPermission` grant blocks to various parts of the server infrastructure code. Do not modify these entries.

Application permissions are granted in the default grant block. These permissions apply to all code not part of the internal server code listed previously. The GlassFish Server does not distinguish between EJB and web module permissions. All code is granted the minimal set of web component permissions (which is a superset of the EJB minimal set). Do not modify these entries.

A few permissions above the minimal set are also granted in the default `server.policy` file. These are necessary due to various internal dependencies of the server implementation. Java EE application developers must not rely on these additional permissions. In some cases, deleting these permissions might be appropriate. For example, one additional permission is granted specifically for using connectors. If connectors are not used in a particular domain, you should remove this permission, because it is not otherwise necessary.
The following predefined system properties, also called variables, are available for use in the server.policy file. The system property most frequently used in server.policy is \${com.sun.aas.instanceRoot}. For more information about system properties, see the asadmin create-system-properties command in the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

TABLE 4-1 Predefined System Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>com.sun.aas.installRoot</td>
<td>depends on operating system</td>
<td>Specifies the directory where the GlassFish Server is installed.</td>
</tr>
<tr>
<td>com.sun.aas.instanceRoot</td>
<td>depends on operating system</td>
<td>Specifies the top level directory for a server instance.</td>
</tr>
<tr>
<td>com.sun.aas.hostName</td>
<td>none</td>
<td>Specifies the name of the host (machine).</td>
</tr>
<tr>
<td>com.sun.aas.javaRoot</td>
<td>depends on operating system</td>
<td>Specifies the installation directory for the Java runtime.</td>
</tr>
<tr>
<td>com.sun.aas.imqLib</td>
<td>depends on operating system</td>
<td>Specifies the library directory for the GlassFish Server Message Queue software.</td>
</tr>
<tr>
<td>com.sun.aas.configName</td>
<td>server-config</td>
<td>Specifies the name of the configuration used by a server instance.</td>
</tr>
<tr>
<td>com.sun.aas.instanceName</td>
<td>server1</td>
<td>Specifies the name of the server instance. This property is not used in the default configuration, but can be used to customize configuration.</td>
</tr>
<tr>
<td>com.sun.aas.clusterName</td>
<td>cluster1</td>
<td>Specifies the name of the cluster. This property is only set on clustered server instances. This property is not used in the default configuration, but can be used to customize configuration.</td>
</tr>
<tr>
<td>com.sun.aas.domainName</td>
<td>domain1</td>
<td>Specifies the name of the domain. This property is not used in the default configuration, but can be used to customize configuration.</td>
</tr>
</tbody>
</table>

Changing Permissions for an Application

The default policy for each domain limits the permissions of Java EE deployed applications to the minimal set of permissions required for these applications to operate correctly. Do not add extra permissions to the default set (the grant block with no codebase, which applies to all code). Instead, add a new grant block with a codebase specific to the applications requiring the extra permissions, and only add the minimally necessary permissions in that block.

If you develop multiple applications that require more than this default set of permissions, you can add the custom permissions that your applications need. The com.sun.aas.instanceRoot variable refers to the domain-dir. For example:
You can add permissions to stub code with the following grant block:

```java
grant codeBase "file:${com.sun.aas.instanceRoot}/generated/-
```  
In general, you should add extra permissions only to the applications or modules that require them, not to all applications deployed to a domain. For example:

```java
grant codeBase "file:${com.sun.aas.instanceRoot}/applications/MyApp/-
```  
For a module:

```java
grant codeBase "file:${com.sun.aas.instanceRoot}/applications/MyModule/-
```  

Note – Deployment directories may change between GlassFish Server releases.

An alternative way to add permissions to a specific application or module is to edit the granted policy file for that application or module. The granted policy file is located in the
`domain-dir/generated/policy/app-or-module-name` directory. In this case, you add permissions to the default grant block. Do not delete permissions from this file.

When the GlassFish Server policy subsystem determines that a permission should not be granted, it logs a server policy message specifying the permission that was not granted and the protection domains, with indicated code source and principals that failed the protection check. For example, here is the first part of a typical message:

```
[###2005-12-17T16:32.671-0200[INFO|sun-appserver-pe9.1|
javax.enterprise.system.core.security|_ThreadID=14;_ThreadName=Thread-31;|
JACC Policy Provider: PolicyWrapper.implies, context(null),
permission((java.util.PropertyPermission java.security.manager write))
domain that failed(ProtectionDomain
(file://E:/glassfish/domains/domain1/applications/cejug-clfds/ ... )
```

Granting the following permission eliminates the message:

```java
grant codeBase "file:${com.sun.aas.instanceRoot}/applications/cejug-clfds/-" {
   permission java.util.PropertyPermission "java.security.manager", "write";
}
**Note** - Do not add `java.security.AllPermission` to the `server.policy` file for application code. Doing so completely defeats the purpose of the security manager, yet you still get the performance overhead associated with it.

As noted in the Java EE specification, an application should provide documentation of the additional permissions it needs. If an application requires extra permissions but does not document the set it needs, contact the application author for details.

As a last resort, you can iteratively determine the permission set an application needs by observing `AccessControlException` occurrences in the server log.

If this is not sufficient, you can add the `-Djava.security.debug=failure` JVM option to the domain. Use the following `asadmin create-jvm-options` command, then restart the server:

```
asadmin create-jvm-options -Djava.security.debug=failure
```

For more information about the `asadmin create-jvm-options` command, see the *Oracle GlassFish Server 3.1-3.1.1 Reference Manual*.

You can use the J2SE standard policy tool or any text editor to edit the `server.policy` file. For more information, see [http://download.oracle.com/javase/tutorial/security/tour2/index.html](http://download.oracle.com/javase/tutorial/security/tour2/index.html).

For detailed information about policy file syntax, see [http://download.oracle.com/javase/6/docs/technotes/guides/security/PolicyFiles.html](http://download.oracle.com/javase/6/docs/technotes/guides/security/PolicyFiles.html).

For information about using system properties in the `server.policy` file, see [http://download.oracle.com/javase/6/docs/technotes/guides/security/PolicyFiles.html](http://download.oracle.com/javase/6/docs/technotes/guides/security/PolicyFiles.html).

For detailed information about the permissions you can set in the `server.policy` file, see [http://download.oracle.com/javase/6/docs/technotes/guides/security/permissions.html](http://download.oracle.com/javase/6/docs/technotes/guides/security/permissions.html).

The Javadoc for the `Permission` class is at [http://download.oracle.com/javase/6/docs/api/java/security/Permission.html](http://download.oracle.com/javase/6/docs/api/java/security/Permission.html).

### Enabling and Disabling the Security Manager

The security manager is disabled by default.

In a production environment, you may be able to safely disable the security manager if all of the following are true:

- Performance is critical
Deployment to the production server is carefully controlled
Only trusted applications are deployed
Applications don’t need policy enforcement

Disabling the security manager may improve performance significantly for some types of applications.

To enable the security manager, do one of the following:

- To use the Administration Console, open the Security component under the relevant configuration, and check the Security Manager Enabled box. Then restart the server. For details, click the Help button in the Administration Console.
- Use the following asadmin create-jvm-options command, then restart the server:

  asadmin create-jvm-options -Djava.security.manager

To disable the security manager, use the corresponding delete-jvm-options command.
For more information about the create-jvm-options and asadmin delete-jvm-options commands, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

Configuring Message Security for Web Services

In message security, security information is applied at the message layer and travels along with the web services message. Web Services Security (WSS) is the use of XML Encryption and XML Digital Signatures to secure messages. WSS profiles the use of various security tokens including X.509 certificates, Security Assertion Markup Language (SAML) assertions, and username/password tokens to achieve this.

Message layer security differs from transport layer security in that it can be used to decouple message protection from message transport so that messages remain protected after transmission, regardless of how many hops they travel.

Note – Message security (JSR 196) is supported only in the full GlassFish Server, not in the Web Profile.

Note – In this release of the GlassFish Server, message layer annotations are not supported.

For more information about web services, see Chapter 5, “Developing Web Services.”

For more information about message security, see the following:

- Chapter 39, “Introduction to Security in the Java EE Platform,” in The Java EE 6 Tutorial
- Oracle GlassFish Server 3.1 Security Guide
The following topics are addressed here:

- “Message Security Providers” on page 63
- “Message Security Responsibilities” on page 65
- “Application-Specific Message Protection” on page 66
- “Understanding and Running the Sample Application” on page 69

**Message Security Providers**

When you first install the GlassFish Server, the providers `XWS_ServerProvider` and `XWS_ClientProvider` are configured but disabled. You can enable them in one of the following ways:

- To enable the message security providers using the Administration Console, open the Security component under the relevant configuration, select the Message Security component, and select SOAP. Then select `XWS_ServerProvider` from the Default Provider list and `XWS_ClientProvider` from the Default Client Provider list. For details, click the Help button in the Administration Console.

- You can enable the message security providers using the following commands.

  ```
 asadmin set
 server-config.security-service.message-security-config.SOAP.default_provider=XWS_ServerProvider
 asadmin set
 server-config.security-service.message-security-config.SOAP.default_client_provider=XWS_ClientProvider

 For more information about the asadmin set command, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.
  ```

The example described in “Understanding and Running the Sample Application” on page 69 uses the `ClientProvider` and `ServerProvider` providers, which are enabled when the Ant targets are run. You don’t need to enable these on the GlassFish Server prior to running the example.

If you install the OpenSSO, you have these additional provider choices:
AMClientProvider and AMServerProvider – These providers secure web services and Simple Object Access Protocol (SOAP) messages using either WS-I BSP or Liberty ID-WSF tokens. These providers are used automatically if they are configured as the default providers. If you wish to override any provider settings, you can configure these providers in message-security-binding elements in the glassfish-web.xml, glassfish-ejb-jar.xml, and glassfish-application-client.xml deployment descriptor files.

AMHttpProvider – This provider handles the initial end user authentication for securing web services using Liberty ID-WSF tokens and redirects requests to the OpenSSO for single sign-on. To use this provider, specify it in the httpservlet-security-provider attribute of the glassfish-web-app element in the glassfish-web.xml file.

Liberty specifications can be viewed at http://www.projectliberty.org/resources/specifications.php. The WS-I BSP specification can be viewed at http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html.

For more information about the GlassFish Server deployment descriptor files, see the Oracle GlassFish Server 3.1 Application Deployment Guide.

For information about configuring these providers in the GlassFish Server, see the Oracle GlassFish Server 3.1 Security Guide. For additional information about overriding provider settings, see “Application-Specific Message Protection” on page 66.

You can create new message security providers in one of the following ways:

- To create a message security provider using the Administration Console, open the Security component under the relevant configuration, and select the Message Security component. For details, click the Help button in the Administration Console.

- You can use the asadmin create-message-security-provider command to create a message security provider. For details, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

In addition, you can set a few optional provider properties using the asadmin set command. For example:

```bash
asadmin set server-config.security-service.message-security-config.provider-config.property.debug=true
```

The following table describes these message security provider properties.
TABLE 4–2  Message Security Provider Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>security.config</td>
<td>domain-dir/</td>
<td>Specifies the location of the message security configuration file. To point to a configuration file in the domain-dir/config directory, use the system property</td>
</tr>
<tr>
<td></td>
<td>wss-server-</td>
<td>${com.sun.aas.instanceRoot}/config/, for example:</td>
</tr>
<tr>
<td></td>
<td>config-1.0.xml</td>
<td>${com.sun.aas.instanceRoot}/config/wss-server-config-1.0.xml</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See “System Properties” on page 59.</td>
</tr>
<tr>
<td>debug</td>
<td>false</td>
<td>If true, enables dumping of server provider debug messages to the server log.</td>
</tr>
<tr>
<td>dynamic.username.</td>
<td>false</td>
<td>If true, signals the provider runtime to collect the user name and password from the CallbackHandler for each request. If false, the user name and password for wsse:UsernameToken(s) is collected once, during module initialization. This property is only applicable for a ClientAuthModule.</td>
</tr>
<tr>
<td>password</td>
<td></td>
<td></td>
</tr>
<tr>
<td>encryption.key.</td>
<td>s1as</td>
<td>Specifies the encryption key used by the provider. The key is identified by its keystore alias.</td>
</tr>
<tr>
<td>signature.key.</td>
<td>s1as</td>
<td>Specifies the signature key used by the provider. The key is identified by its keystore alias.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Message Security Responsibilities**

In the GlassFish Server, the system administrator and application deployer roles are expected to take primary responsibility for configuring message security. In some situations, the application developer may also contribute, although in the typical case either of the other roles may secure an existing application without changing its implementation and without involving the developer.

The following topics are addressed here:

- “Application Developer Responsibilities” on page 65
- “Application Deployer Responsibilities” on page 66
- “System Administrator Responsibilities” on page 66

**Application Developer Responsibilities**

The application developer can turn on message security, but is not responsible for doing so. Message security can be set up by the system administrator so that all web services are secured, or set up by the application deployer when the provider or protection policy bound to the application must be different from that bound to the container.

The application developer is responsible for the following:

- Determining if an application-specific message protection policy is required by the application. If so, ensuring that the required policy is specified at application assembly which may be accomplished by communicating with the application deployer.
Determining if message security is necessary at the GlassFish Server level. If so, ensuring that this need is communicated to the system administrator, or taking care of implementing message security at the GlassFish Server level.

**Application Deployer Responsibilities**

The application deployer is responsible for the following:

- Specifying (at application assembly) any required application-specific message protection policies if such policies have not already been specified by upstream roles (the developer or assembler)
- Modifying GlassFish Server deployment descriptors to specify application-specific message protection policies information (message-security-binding elements) to web service endpoint and service references

These security tasks are discussed in “Application-Specific Message Protection” on page 66. A sample application using message security is discussed in “Understanding and Running the Sample Application” on page 69.

**System Administrator Responsibilities**

The system administrator is responsible for the following:

- Configuring message security providers on the GlassFish Server.
- Managing user databases.
- Managing keystore and truststore files.
- Installing the sample. This is only done if the xms sample application is used to demonstrate the use of message layer web services security.

A system administrator uses the Administration Console to manage server security settings and uses a command line tool to manage certificate databases. Certificates and private keys are stored in key stores and are managed with keytool. If Network Security Services (NSS) is installed, certificates and private keys are stored in an NSS database, where they are managed using certutil. System administrator tasks are discussed in the *Oracle GlassFish Server 3.1 Security Guide*.

**Application-Specific Message Protection**

When the GlassFish Server provided configuration is insufficient for your security needs, and you want to override the default protection, you can apply application-specific message security to a web service.

Application-specific security is implemented by adding the message security binding to the web service endpoint, whether it is an EJB or servlet web service endpoint. Modify GlassFish Server XML files to add the message binding information.
Message security can also be specified using a WSIT security policy in the WSDL file. For details, see the WSIT page at https://wsit.dev.java.net/.

For more information about message security providers, see “Message Security Providers” on page 63.

For more details on message security binding for EJB web services, servlet web services, and clients, see the XML file descriptions in Appendix C, “Elements of the GlassFish Server Deployment Descriptors,” in Oracle GlassFish Server 3.1 Application Deployment Guide.

- For glassfish-ejb-jar.xml, see “The glassfish-ejb-jar.xml File” in Oracle GlassFish Server 3.1 Application Deployment Guide.
- For glassfish-web.xml, see “The glassfish-web.xml File” in Oracle GlassFish Server 3.1 Application Deployment Guide.
- For glassfish-application-client.xml, see “The glassfish-application-client.xml file” in Oracle GlassFish Server 3.1 Application Deployment Guide.

The following topics are addressed here:

- “Using a Signature to Enable Message Protection for All Methods” on page 67
- “Configuring Message Protection for a Specific Method Based on Digital Signatures” on page 68

### Using a Signature to Enable Message Protection for All Methods

To enable message protection for all methods using digital signature, update the message-security-binding element for the EJB web service endpoint in the application’s glassfish-ejb-jar.xml file. In this file, add request-protection and response-protection elements, which are analogous to the request-policy and response-policy elements discussed in the Oracle GlassFish Server 3.1 Security Guide. To apply the same protection mechanisms for all methods, leave the method-name element blank. "Configuring Message Protection for a Specific Method Based on Digital Signatures” on page 68 discusses listing specific methods or using wildcard characters.

This section uses the sample application discussed in “Understanding and Running the Sample Application” on page 69 to apply application-level message security to show only the differences necessary for protecting web services using various mechanisms.

### To Enable Message Protection for All Methods Using Digital Signature

1. In a text editor, open the application’s glassfish-ejb-jar.xml file.

   For the xms example, this file is located in the directory app-dir/xms-ejb/src/conf, where app-dir is defined in “To Set Up the Sample Application” on page 70.
2 Modify the `glassfish-ejb-jar.xml` file by adding the `message-security-binding` element as shown:

```xml
<glassfish-ejb-jar>
 <enterprise-beans>
 <unique-id>1</unique-id>
 <ejb>
 <ejb-name>HelloWorld</ejb-name>
 <jndi-name>HelloWorld</jndi-name>
 <webservice-endpoint>
 <port-component-name>HelloIF</port-component-name>
 <endpoint-address-uri>service/HelloWorld</endpoint-address-uri>
 <message-security-binding auth-layer="SOAP">
 <message-security>
 <request-protection auth-source="content"/>
 <response-protection auth-source="content"/>
 </message-security>
 </message-security-binding>
 </webservice-endpoint>
 </ejb>
 </enterprise-beans>
</glassfish-ejb-jar>
```

3 Compile, deploy, and run the application as described in “To Run the Sample Application” on page 71.

### Configuring Message Protection for a Specific Method Based on Digital Signatures

To enable message protection for a specific method, or for a set of methods that can be identified using a wildcard value, follow these steps. As in the example discussed in “Using a Signature to Enable Message Protection for All Methods” on page 67, to enable message protection for a specific method, update the `message-security-binding` element for the EJB web service endpoint in the application’s `glassfish-ejb-jar.xml` file. To this file, add `request-protection` and `response-protection` elements, which are analogous to the `request-policy` and `response-policy` elements discussed in the *Oracle GlassFish Server 3.1 Security Guide*. The administration guide includes a table listing the set and order of security operations for different request and response policy configurations.

This section uses the sample application discussed in “Understanding and Running the Sample Application” on page 69 to apply application-level message security to show only the differences necessary for protecting web services using various mechanisms.

To Enable Message Protection for a Particular Method or Set of Methods Using Digital Signature

1 In a text editor, open the application’s `glassfish-ejb-jar.xml` file.

For the XMS example, this file is located in the directory `app-dir/xms-ejb/src/conf`, where `app-dir` is defined in “To Set Up the Sample Application” on page 70.
2 Modify the glassfish-ejb-jar.xml file by adding the message-security-binding element as shown:

```xml
<glassfish-ejb-jar>
 <enterprise-beans>
 <unique-id>1</unique-id>
 <ejb>
 <ejb-name>HelloWorld</ejb-name>
 <jndi-name>HelloWorld</jndi-name>
 <webservice-endpoint>
 <port-component-name>HelloIF</port-component-name>
 <endpoint-address-uri>service/HelloWorld</endpoint-address-uri>
 <message-security-binding auth-layer="SOAP">
 <message-security>
 <message>
 <java-method>
 <method-name>ejbCreate</method-name>
 </java-method>
 </message>
 <message>
 <java-method>
 <method-name>sayHello</method-name>
 </java-method>
 </message>
 <request-protection auth-source="content"/>
 <response-protection auth-source="content"/>
 </message-security>
 </message-security-binding>
 </webservice-endpoint>
 </ejb>
 </enterprise-beans>
</glassfish-ejb-jar>
```

3 Compile, deploy, and run the application as described in “To Run the Sample Application” on page 71.

Understanding and Running the Sample Application

This section discusses the WSS sample application. This sample application is installed on your system only if you installed the J2EE 1.4 samples. If you have not installed these samples, see “To Set Up the Sample Application” on page 70.

The objective of this sample application is to demonstrate how a web service can be secured with WSS. The web service in the xms example is a simple web service implemented using a Java EE EJB endpoint and a web service endpoint implemented using a servlet. In this example, a service endpoint interface is defined with one operation, sayHello, which takes a string then sends a response with Hello prefixed to the given string. You can view the WSDL file for the service endpoint interface at app-dir/xms-ejb/src/conf>HelloWorld.wsdl, where app-dir is defined in “To Set Up the Sample Application” on page 70.
In this application, the client looks up the service using the JNDI name
java:comp/env/service/HelloWorld and gets the port information using a static stub to
invoke the operation using a given name. For the name Duke, the client gets the response Hello
Duke!

This example shows how to use message security for web services at the GlassFish Server level. For information about using message security at the application level, see “Application-Specific Message Protection” on page 66. The WSS message security mechanisms implement message-level authentication (for example, XML digital signature and encryption) of SOAP web services invocations using the X.509 and username/password profiles of the OASIS WS-Security standard, which can be viewed from the following URL: http://
docs.oasis-open.org/

The following topics are addressed here:

■ “To Set Up the Sample Application” on page 70
■ “To Run the Sample Application” on page 71

▼ To Set Up the Sample Application

Before You Begin
To have access to this sample application, you must have previously installed the J2EE 1.4 samples. If the samples are not installed, follow the steps in the following section.

After you follow these steps, the sample application is located in the directory
as-install/j2ee14-samples/samples/webservices/security/ejb/apps/xms/ or in a
directory of your choice. For easy reference throughout the rest of this section, this directory is referred to as simply app-dir.

1 Go to the J2EE 1.4 download URL (http://www.oracle.com/technetwork/java/javaee/
download-141771.html) in your browser.

2 Click on the Download button for the Samples Bundle.

3 Click on Accept License Agreement.

4 Click on the J2EE SDK Samples link.

5 Choose a location for the j2esdk-1_4_03-samples.zip file.
   Saving the file to as-install is recommended.

6 Unzip the file.
   Unzipping to the as-install/j2ee14–samples directory is recommended. For example, you can
   use the following command.
   unzip j2esdk-1_4_03-samples.zip -d j2ee14-samples
To Run the Sample Application

1. Make sure that the GlassFish Server is running.
   Message security providers are set up when the Ant targets are run, so you do not need to configure these on the GlassFish Server prior to running this example.

2. If you are not running HTTP on the default port of 8080, change the WSDL file for the example to reflect the change, and change the common.properties file to reflect the change as well.
   The WSDL file for this example is located at app-dir/xms-ear/src/conf/HelloWorld.wsdl. The port number is in the following section:
   ```xml
 <service name="HelloWorld">
 <port name="HelloIFPort" binding="tns:HelloIFBinding">
 <soap:address location="http://localhost:8080/service/HelloWorld"/>
 </port>
 </service>
   ```
   Verify that the properties in the as-install/samples/common.properties file are set properly for your installation and environment. If you need a more detailed description of this file, refer to the "Configuration" section for the web services security applications at as-install/j2ee14–samples/samples/webservices/security/docs/common.html#Logging.

3. Change to the app-dir directory.

4. Run the following Ant targets to compile, deploy, and run the example application:
   a. To compile samples:
      ```
 ant
      ```
   b. To deploy samples:
      ```
 ant deploy
      ```
   c. To run samples:
      ```
 ant run
      ```

      If the sample has compiled and deployed properly, you see the following response on your screen after the application has run:
      ```
 run:[echo] Running the xms program:[exec] Established message level security : Hello Duke!
      ```

5. To undeploy the sample, run the following Ant target:
   ```
 ant undeploy
   ```
   All of the web services security examples use the same web service name (HelloWorld) and web service ports. These examples show only the differences necessary for protecting web services using various mechanisms. Make sure to undeploy an application when you have completed
Programmatic Login

Programmatic login allows a deployed Java EE application or module to invoke a login method. If the login is successful, a SecurityContext is established as if the client had authenticated using any of the conventional Java EE mechanisms. Programmatic login is supported for servlet and EJB components on the server side, and for stand-alone or application clients on the client side. Programmatic login is useful for an application having special needs that cannot be accommodated by any of the Java EE standard authentication mechanisms.

**Note** – Programmatic login is specific to the GlassFish Server and not portable to other application servers.

The following topics are addressed here:
- “Programmatic Login Precautions” on page 72
- “Granting Programmatic Login Permission” on page 73
- “The ProgrammaticLogin Class” on page 73

**Programmatic Login Precautions**

The GlassFish Server is not involved in how the login information (user, password) is obtained by the deployed application. Programmatic login places the burden on the application developer with respect to assuring that the resulting system meets security requirements. If the application code reads the authentication information across the network, the application determines whether to trust the user.

Programmatic login allows the application developer to bypass the GlassFish Server-supported authentication mechanisms and feed authentication data directly to the security service. While flexible, this capability should not be used without some understanding of security issues.

Since this mechanism bypasses the container-managed authentication process and sequence, the application developer must be very careful in making sure that authentication is established before accessing any restricted resources or methods. It is also the application developer’s responsibility to verify the status of the login attempt and to alter the behavior of the application accordingly.

The programmatic login state does not necessarily persist in sessions or participate in single sign-on.
Lazy authentication is not supported for programmatic login. If an access check is reached and the deployed application has not properly authenticated using the programmatic login method, access is denied immediately and the application might fail if not coded to account for this occurrence. One way to account for this occurrence is to catch the access control or security exception, perform a programmatic login, and repeat the request.

**Granting Programmatic Login Permission**

The `ProgrammaticLoginPermission` permission is required to invoke the programmatic login mechanism for an application if the security manager is enabled. For information about the security manager, see "The server.policy File" on page 58. This permission is not granted by default to deployed applications because this is not a standard Java EE mechanism.

To grant the required permission to the application, add the following to the `domain-dir/config/server.policy` file:

```
grant codeBase "file:jar-file-path" {
 permission com.sun.appserv.security.ProgrammaticLoginPermission
 "login";
};
```

The `jar-file-path` is the path to the application's JAR file.

**The ProgrammaticLogin Class**

The `com.sun.appserv.security.ProgrammaticLogin` class enables a user to perform login programmatically.


The `ProgrammaticLogin` class has four `login` methods, two for servlets or JSP files and two for EJB components.

The `login` methods for servlets or JSP files have the following signatures:

```java
public java.lang.Boolean login(String user, String password,
 javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response)
```

```java
public java.lang.Boolean login(String user, String password,
 String realm, javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response, boolean errors)
```

The `login` methods for EJB components have the following signatures:

```java
public java.lang.Boolean login(String user, String password)
```
public java.lang.Boolean login(String user, String password,
        String realm, boolean errors) throws java.lang.Exception

All of these login methods accomplish the following:

- Perform the authentication
- Return true if login succeeded, false if login failed

The login occurs on the realm specified unless it is null, in which case the domain’s default realm is used. The methods with no realm parameter use the domain’s default realm.

If the errors flag is set to true, any exceptions encountered during the login are propagated to the caller. If set to false, exceptions are thrown.

On the client side, realm and errors parameters are ignored and the actual login does not occur until a resource requiring a login is accessed. A java.rmi.AccessException with COBRANO_PERMISSION occurs if the actual login fails.

The logout methods for servlets or JSP files have the following signatures:

public java.lang.Boolean logout(HttpServletRequest request,
        HttpServletResponse response)

public java.lang.Boolean logout(HttpServletRequest request,
        HttpServletResponse response, boolean errors)
        throws java.lang.Exception

The logout methods for EJB components have the following signatures:

public java.lang.Boolean logout()

public java.lang.Boolean logout(boolean errors)
        throws java.lang.Exception

All of these logout methods return true if logout succeeded, false if logout failed.

If the errors flag is set to true, any exceptions encountered during the logout are propagated to the caller. If set to false, exceptions are thrown.

User Authentication for Single Sign-on

The single sign-on feature of the GlassFish Server allows multiple web applications deployed to the same virtual server to share the user authentication state. With single sign-on enabled, users who log in to one web application become implicitly logged into other web applications on the same virtual server that require the same authentication information. Otherwise, users would have to log in separately to each web application whose protected resources they tried to access.

A sample application using the single sign-on scenario could be a consolidated airline booking service that searches all airlines and provides links to different airline web sites. After the user
signs on to the consolidated booking service, the user information can be used by each individual airline site without requiring another sign-on.

Single sign-on operates according to the following rules:

- Single sign-on applies to web applications configured for the same realm and virtual server. The realm is defined by the realm-name element in the web.xml file. For information about virtual servers, see Chapter 14, “Administering Internet Connectivity,” in Oracle GlassFish Server 3.1 Administration Guide.

- As long as users access only unprotected resources in any of the web applications on a virtual server, they are not challenged to authenticate themselves.

- As soon as a user accesses a protected resource in any web application associated with a virtual server, the user is challenged to authenticate himself or herself, using the login method defined for the web application currently being accessed.

- After authentication, the roles associated with this user are used for access control decisions across all associated web applications, without challenging the user to authenticate to each application individually.

- When the user logs out of one web application (for example, by invalidating the corresponding session), the user's sessions in all web applications are invalidated. Any subsequent attempt to access a protected resource in any application requires the user to authenticate again.

The single sign-on feature utilizes HTTP cookies to transmit a token that associates each request with the saved user identity, so it can only be used in client environments that support cookies.

To configure single sign-on, set the following virtual server properties:

- sso-enabled - If false, single sign-on is disabled for this virtual server, and users must authenticate separately to every application on the virtual server. The default is false.

- sso-max-inactive-seconds - Specifies the time after which a user's single sign-on record becomes eligible for purging if no client activity is received. Since single sign-on applies across several applications on the same virtual server, access to any of the applications keeps the single sign-on record active. The default value is 5 minutes (300 seconds). Higher values provide longer single sign-on persistence for the users at the expense of more memory use on the server.

- sso-reap-interval-seconds - Specifies the interval between purges of expired single sign-on records. The default value is 60.

Here are example asadmin set commands with default values:

```
asadmin set server-config.http-service.virtual-server.vsrv1.property.sso-enabled="true"
asadmin set server-config.http-service.virtual-server.vsrv1.property.sso-max-inactive-seconds="300"
asadmin set server-config.http-service.virtual-server.vsrv1.property.sso-reap-interval-seconds="60"
```
For more information about the `asadmin set` command, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

## Adding Authentication Mechanisms to the Servlet Container

You can use JSR 196 in the web tier to facilitate the injection of pluggable authentication modules within the servlet constraint processing engine. The GlassFish Server includes implementations of a number of HTTP layer authentication mechanisms such as basic, form, and digest authentication. You can add alternative implementations of the included mechanisms or implementations of new mechanisms such as HTTP Negotiate/SPNEGO, OpenID, or CAS.

The following topics are addressed here:

- “The GlassFish Server and JSR 196” on page 76
- “Writing a Server Authentication Module” on page 77
- “Sample Server Authentication Module” on page 78
- “Compiling and Installing a Server Authentication Module” on page 82
- “Configuring a Server Authentication Module” on page 82
- “Binding a Server Authentication Module to Your Application” on page 83

### The GlassFish Server and JSR 196

The GlassFish Server implements the Servlet Container Profile of JSR 196, Java Authentication Service Provider Interface for Containers. JSR 196 defines a standard service provider interface (SPI) that extends the concepts of the Java Authentication and Authorization Service (JAAS) to enable pluggability of message authentication modules in message processing runtimes. The JSR 196 standard defines profiles that establish contracts for the use of the SPI in specific contexts. The Servlet Container Profile of JSR 196 defines the use of the SPI by a Servlet container such that:

- The resulting container can be configured with new authentication mechanisms.
- The container employs the configured mechanisms in its enforcement of the declarative servlet security model (declared in a `web.xml` file using `security-constraint` elements).

The JSR 196 specification defines a simple message processing model composed of four interaction points:

1. `secureRequest` on the client
2. `validateRequest` on the server
3. `secureResponse` on the server
4. `validateResponse` on the client
A message processing runtime uses the SPI at these interaction points to delegate the corresponding message security processing to authentication providers, also called *authentication modules*, integrated into the runtime by way of the SPI.

A compatible server-side message processing runtime, such as the GlassFish Server servlet container, supports the `validateRequest` and `secureResponse` interaction points of the message processing model. The servlet container uses the SPI at these interaction points to delegate the corresponding message security processing to a *server authentication module* (SAM), integrated by the SPI into the container.

## Writing a Server Authentication Module

A key step in adding an authentication mechanism to a compatible server-side message processing runtime such as the GlassFish Server servlet container is acquiring a SAM that implements the desired authentication mechanism. One way to do that is to write the SAM yourself.

A SAM implements the `javax.security.auth.message.module.ServerAuthModule` interface as defined by JSR 196. A SAM is invoked indirectly by the message processing runtime at the `validateRequest` and `secureResponse` interaction points. A SAM must implement the five methods of the `ServerAuthModule` interface:

- `getSupportedMessageTypes` — An array of `Class` objects where each element defines a message type supported by the SAM. For a SAM to be compatible with the Servlet Container Profile, the returned array must include the `HttpServletRequest.class` and `HttpServletResponse.class` objects.

- `initialize(MessagePolicy requestPolicy, MessagePolicy responsePolicy, CallbackHandler Map options)` — The container calls this method to provide the SAM with configuration values and with a `CallbackHandler`. The configuration values are returned in the policy arguments and in the options `Map`. The SAM uses `CallbackHandler` to access services, such as password validation, provided by the container.

- `AuthStatus validateRequest(MessageInfo messageInfo, Subject clientSubject, Subject serviceSubject)` — The container calls this method to process each received `HttpServletRequest`. The request and its associated `HttpServletResponse` are passed by the container to the SAM in the `messageInfo` argument. The SAM processes the request and may establish the response to be returned by the container. The SAM uses the provided `Subject` arguments to convey its authentication results. The SAM returns different status values to control the container’s invocation processing. The status values and the circumstances under which they are returned are as follows:

  - `AuthStatus.SUCCESS` is returned when the application request message is successfully validated. The container responds to this status value by using the returned client `Subject` to invoke the target of the request. When this value is returned, the SAM
Adding Authentication Mechanisms to the Servlet Container

(provided a custom AuthConfigProvider is not being used) must use its CallbackHandler to handle a CallerPrincipalCallback using the clientSubject as an argument to the callback.

- AuthStatus.SEND_CONTINUE indicates that message validation is incomplete and that the SAM has established a preliminary response as the response message in messageInfo. The container responds to this status value by sending the response to the client.
- AuthStatus.SEND_FAILURE indicates that message validation failed and that the SAM has established an appropriate failure response message in messageInfo. The container responds to this status value by sending the response to the client.
- AuthStatus.SEND_SUCCESS is not typically returned. This status value indicates the end of a multi-message security dialog originating after the service interaction and during the processing of the application response. The container responds to this status value by sending the response to the client.

The validateRequest method may also throw an AuthException to indicate that the message processing by the SAM failed without establishing a failure response message in messageInfo.

- secureResponse(MessageInfo messageInfo, Subject serviceSubject) — The container calls this method before sending a response, resulting from an application invocation, to the client. The response is passed to the SAM in the messageInfo argument. In most cases, this method should just return the SEND_SUCCESS status.
- cleanSubject(MessageInfo messageInfo, Subject subject) — This method removes the mechanism-specific principals, credentials, or both from the subject. This method is not currently called by the container. A legitimate implementation could remove all the principals from the argument subject.

See the Servlet Container Profile section in the JSR 196 specification for additional background and details.

Sample Server Authentication Module

The class MySam.java is a sample SAM implementation. Notice that the sample implements the five methods of the ServerAuthModule interface. This SAM implements an approximation of HTTP basic authentication.

```java
package tip.sam;
import java.io.IOException;
import java.util.Map;
import javax.security.auth.Subject;
import javax.security.auth.callback.Callback;
import javax.security.auth.callback.UnsupportedCallbackException;
```

Oracle GlassFish Server 3.1 Application Development Guide • July 2011
public class MySam implements ServerAuthModule {
    protected static final Class[]
        supportedMessageTypes = new Class[]{
            HttpServletRequest.class,
            HttpServletResponse.class
        };

    private MessagePolicy requestPolicy;
    private MessagePolicy responsePolicy;
    private CallbackHandler handler;
    private Map options;
    private String realmName = null;
    private String defaultGroup[] = null;
    private static final String REALM_PROPERTY_NAME = "realm.name";
    private static final String GROUP_PROPERTY_NAME = "group.name";
    private static final String BASIC = "Basic";
    static final String AUTHORIZATION_HEADER = "authorization";
    static final String AUTHENTICATION_HEADER = "WWW-Authenticate";

    public void initialize(MessagePolicy reqPolicy,
                           MessagePolicy resPolicy,
                           CallbackHandler cBH, Map opts)
        throws AuthException {
        requestPolicy = reqPolicy;
        responsePolicy = resPolicy;
        handler = cBH;
        options = opts;
        if (options != null) {
            realmName = (String) options.get(REALM_PROPERTY_NAME);
            if (options.containsKey(GROUP_PROPERTY_NAME)) {
                defaultGroup = new String[]{(String) options.get(GROUP_PROPERTY_NAME)};
            }
        }
    }

    public Class[] getSupportedMessageTypes() {
        return supportedMessageTypes;
    }

    public AuthStatus validateRequest(
        HttpServletRequest req,
        HttpServletResponse res,
        Map options)
        throws AuthException {
        return AuthStatus.SUCCESS;
    }
}
MessageInfo msgInfo, Subject client,
Subject server) throws AuthException {
try {
    String username =
        processAuthorizationToken(msgInfo, client);
    if (username ==
        null & requestPolicy.isMandatory()) {
        return sendAuthenticateChallenge(msgInfo);
    }

    setAuthenticationResult(
        username, client, msgInfo);
    return AuthStatus.SUCCESS;
} catch (Exception e) {
    AuthException ae = new AuthException();
    ae.initCause(e);
    throw ae;
}

private String processAuthorizationToken(
    MessageInfo msgInfo, Subject s)
throws AuthException {

    HttpServletRequest request =
        (HttpServletRequest)
        msgInfo.getRequestMessage();

    String token =
        request.getHeader(AUTHORIZATION_HEADER);

    if (token != null & token.startsWith(BASIC + "")) {
        token = token.substring(6).trim();

        // Decode and parse the authorization token
        String decoded =
            new String(Base64.decode(token.getBytes()));

        int colon = decoded.indexOf(':');
        if (colon <= 0 || colon == decoded.length() - 1) {
            return (null);
        }

        String username = decoded.substring(0, colon);

        // use the callback to ask the container to
        // validate the password
        PasswordValidationCallback pVC =
            new PasswordValidationCallback(s, username,
                decoded.substring(colon + 1).toCharArray());

        try {
            handler.handle(new Callback[]{pVC});
            pVC.clearPassword();
        } catch (Exception e) {
            AuthException ae = new AuthException();
            ae.initCause(e);
        }

        // caller should use the callback to get the
        // challenge

        return UsernamePasswordAuthenticationToken
            .valueOf(username);
    }

    return null;
}
throw ae;

if (pVC.getResult()) {
    return username;
}
return null;

private AuthStatus sendAuthenticateChallenge(
    MessageInfo msgInfo) {
    String realm = realmName;
    // if the realm property is set use it,
    // otherwise use the name of the server
    // as the realm name.
    if (realm == null) {
        HttpServletRequest request =
            (HttpServletRequest)
            msgInfo.getRequestMessage();
        realm = request.getServerName();
    }
    HttpServletResponse response =
        (HttpServletResponse)
        msgInfo.getResponseMessage();
    String header = BASIC + " realm=" + realm + "\n";
    response.setHeader(AUTHENTICATION_HEADER, header);
    response.setStatus(HttpServletResponse.SC_UNAUTHORIZED);
    return AuthStatus.SEND_CONTINUE;
}

public AuthStatus secureResponse(
    MessageInfo msgInfo, Subject service)
    throws AuthException {
    return AuthStatus.SEND_SUCCESS;
}

public void cleanSubject(MessageInfo msgInfo,
    Subject subject)
    throws AuthException {
    if (subject != null) {
        subject.getPrincipals().clear();
    }
}

private static final String AUTH_TYPE_INFO_KEY =
    "javax.servlet.http.authType";

    // distinguish the caller principal
    // and assign default groups
private void setAuthenticationResult(String name,
    Subject s, MessageInfo m)
    throws IOException,
UnsupportedCallbackException {
    handler.handle(new Callback[]{
        new CallerPrincipalCallback(s, name)
    });
    if (name != null) {
        // add the default group if the property is set
        if (defaultGroup != null) {
            handler.handle(new Callback[]{
                new GroupPrincipalCallback(s, defaultGroup)
            });
        }
        m.getMap().put(AUTH_TYPE_INFO_KEY, "MySAM");
    }
}

Note that the initialize method looks for the group.name and realm.name properties. The
group.name property configures the default group assigned as a result of any successful
authentication. The realm.name property defines the realm value sent back to the browser in
the WWW-Authenticate challenge.

Compiling and Installing a Server Authentication Module

Before you can use the sample SAM, you need to compile, install, and configure it. Then you
can bind it to an application.

To compile the SAM, include the SPI in your classpath. When the GlassFish Server is installed,
the JAR file containing the SPI, jmac-api.jar, is installed in the as-install/lib directory. After
you compile the SAM, install it by copying a JAR file containing the compiled SAM to the
as-install/lib directory.

Configuring a Server Authentication Module

You can configure a SAM in one of these ways:

- In the Administration Console, open the Security component under the relevant
  configuration and go to the Message Security page. Set the following options:
    - Authentication Layer — HttpServlet
    - Provider Type — server or client-server
    - Provider ID — Specify a unique name for the SAM, for example MySAM
    - Class Name — Specify the fully qualified class name, for example tip.sam.MySam
    - Additional Property — Name: group-name Value: user
    - Additional Property — Name: realm-name Value: Sam

    For details, click the Help button in the Administration Console.
- Use the `asadmin create-message-security-provider` command to configure a SAM. Set the following options:
  - `----layer HttpServlet`
  - `----providertype server` or `----providertype client-server`
  - `----classname tip.sam.MySam`
  - `----property group-name=user:realm-name=Sam`
- Provider name operand — Specify a unique name for the SAM, for example `MySAM`

For details, see the *Oracle GlassFish Server 3.1-3.1.1 Reference Manual*.

## Binding a Server Authentication Module to Your Application

After you install and configure the SAM, you can bind it for use by the container on behalf of one or more of your applications. You have two options in how you bind the SAM, depending on whether you are willing to repackage and redeploy your application:

- If you are willing to repackage and redeploy, you can bind the SAM using the `glassfish-web.xml` file. Set the value of the `httpservlet-security-provider` attribute of the `glassfish-web-app` element to the SAM’s configured provider ID, for example, `MySAM`. For more information about the `glassfish-web.xml` file, see the *Oracle GlassFish Server 3.1 Application Deployment Guide*. This option leverages the native AuthConfigProvider implementation that ships with the GlassFish Server.

- Another approach is to develop your own AuthConfigProvider and register it with the GlassFish Server AuthConfigFactory for use on behalf of your applications. For example, a simple AuthConfigProvider can obtain, through its initialization properties, the classname of a SAM to configure on behalf of the applications for which the provider is registered. You can find a description of the functionality of an AuthConfigProvider and of the registration facilities provided by an AuthConfigFactory in the JSR 196 specification.
Developing Web Services

This chapter describes Oracle GlassFish Server support for web services. Java API for XML-Based Web Services (JAX-WS) version 2.2 is supported. Java API for XML-Based Remote Procedure Calls (JAX-RPC) version 1.1 is supported for backward compatibility.

The following topics are addressed here:

- “Creating Portable Web Service Artifacts” on page 86
- “Deploying a Web Service” on page 86
- “The Web Service URI, WSDL File, and Test Page” on page 87
- “GlassFish Java EE Service Engine” on page 88

Note – If you installed the Web Profile, web services are not supported unless the optional Metro Web Services Stack add-on component is downloaded from the Update Tool. Without the Metro add-on component, a servlet or EJB component cannot be a web service endpoint, and the `glassfish-web.xml` and `glassfish-ejb-jar.xml` elements related to web services are ignored. For information about the Update Tool, see “Update Tool” in Oracle GlassFish Server 3.1 Administration Guide.

Part III, “Web Services,” in The Java EE 6 Tutorial shows how to deploy simple web services to the GlassFish Server.


For information about web services security, see “Configuring Message Security for Web Services” on page 62.

The Fast Infoset standard specifies a binary format based on the XML Information Set. This format is an efficient alternative to XML. For information about using Fast Infoset, see the following links:
Creating Portable Web Service Artifacts

For a tutorial that shows how to use the wsimport and wsgen commands, see Part III, “Web Services,” in The Java EE 6 Tutorial. For reference information on these commands, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

Deploying a Web Service

You deploy a web service endpoint to the GlassFish Server just as you would any servlet, stateless session bean (SLSB), or application.

Note – For complex services with dependent classes, user specified WSDL files, or other advanced features, autodeployment of an annotated file is not sufficient.

The GlassFish Server deployment descriptor files glassfish-web.xml and glassfish-ejb-jar.xml provide optional web service enhancements in the webservice-endpoint and webservice-description elements, including a debugging-enabled subelement that enables the creation of a test page. The test page feature is enabled by default and described in “The Web Service URI, WSDL File, and Test Page” on page 87.

For more information about deployment, autodeployment, and deployment descriptors, see the Oracle GlassFish Server 3.1 Application Deployment Guide. For more information about the asadmin deploy command, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.
The Web Service URI, WSDL File, and Test Page

Clients can run a deployed web service by accessing its service endpoint address URI, which has the following format:

http://host:port/context-root/servlet-mapping-url-pattern

The context-root is defined in the application.xml or web.xml file, and can be overridden in the glassfish-application.xml or glassfish-web.xml file. The servlet-mapping-url-pattern is defined in the web.xml file.

In the following example, the context-root is my-ws and the servlet-mapping-url-pattern is /simple:

http://localhost:8080/my-ws/simple

You can view the WSDL file of the deployed service in a browser by adding ?WSDL to the end of the URI. For example:

http://localhost:8080/my-ws/simple?WSDL

For debugging, you can run a test page for the deployed service in a browser by adding ?Tester to the end of the URL. For example:

http://localhost:8080/my-ws/simple?Tester

You can also test a service using the Administration Console. Open the Web Services component, select the web service in the listing on the General tab, and select Test. For details, click the Help button in the Administration Console.

Note – The test page works only for WS-I compliant web services. This means that the tester servlet does not work for services with WSDL files that use RPC/encoded binding.

Generation of the test page is enabled by default. You can disable the test page for a web service by setting the value of the debugging-enabled element in the glassfish-web.xml and glassfish-ejb-jar.xml deployment descriptor to false. For more information, see the Oracle GlassFish Server 3.1 Application Deployment Guide.
GlassFish Java EE Service Engine

GlassFish Server 3.1 provides the GlassFish Java EE Service Engine, a JSR 208 compliant Java Business Integration (JBI) runtime component that connects Java EE web services to JBI components. The Java EE Service Engine is installed as an add-on component using the Update Tool. Look for the JBI component named Java EE Service Engine. A JBI runtime is not installed with or integrated into GlassFish Server 3.1 and must be obtained separately. For more information about using the Update Tool to obtain the Java EE Service Engine and other add-on components, see “Update Tool” in Oracle GlassFish Server 3.1 Administration Guide.

The Java EE Service Engine acts as a bridge between the Java EE and JBI runtime environments for web service providers and web service consumers. The Java EE Service Engine provides better performance than a SOAP over HTTP binding component due to in-process communication between components and additional protocols provided by JBI binding components such as JMS, SMTP, and File.

The JSR 208 (http://jcp.org/en/jsr/detail?id=208) specification allows transactions to be propagated to other components using a message exchange property specified in the JTA_TRANSACTION_PROPERTY_NAME field. The Java EE Service Engine uses this property to set and get a transaction object from the JBI message exchange. It then uses the transaction object to take part in a transaction. This means a Java EE application or module can take part in a transaction started by a JBI application. Conversely, a JBI application can take part in a transaction started by a Java EE application or module.

Similarly, the JSR 208 specification allows a security subject to be propagated as a message exchange property named javax.jbi.security.subject. Thus a security subject can be propagated from a Java EE application or module to a JBI application or the reverse.

To deploy a Java EE application or module as a JBI service unit, use the asadmin deploy command, or autodeployment. For more information about the asadmin deploy command, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual. For more information about autodeployment, see “To Deploy an Application or Module Automatically” in Oracle GlassFish Server 3.1 Application Deployment Guide.

Using the jbi.xml File

Section 6.3.1 of the JSR 208 specification describes the jbi.xml file. This is a deployment descriptor, located in the META-INF directory. To deploy a Java EE application or module as a JBI service unit, you need only specify a small subset of elements in the jbi.xml file. Here is an example provider:

```xml
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<jbi version="1.0" xmlns="http://java.sun.com/xml/ns/jbi" xmlns:ns0="http://ejbws.jbi.misc/"
 <services binding-component="false">
 <provides endpoint-name="MiscPort" interface-name="ns0:Misc" service-name="ns0:MiscService"/>
```
Here is an example consumer:

```xml
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<jbi version="1.0" xmlns="http://java.sun.com/xml/ns/jbi" xmlns:ns0="http://message.hello.jbi/"
 xmlns:ns1="http://message.hello.jbi/">
 <services binding-component="false">
 <consumes endpoint-name="MsgPort" interface-name="ns0:Msg" service-name="ns0:MsgService"/>
 </services>
</jbi>
```

The Java EE Service Engine enables the endpoints described in the provides section of the jbi.xml file in the JBI runtime. Similarly, the Java EE Service Engine routes invocations of the endpoints described in the consumes section from the Java EE web service consumer to the JBI runtime.
Using the Java Persistence API

Oracle GlassFish Server support for the Java Persistence API includes all required features described in the Java Persistence Specification, also known as JSR 317 (http://jcp.org/en/jsr/detail?id=317). The Java Persistence API can be used with non-EJB components outside the EJB container.

The Java Persistence API provides an object-relational mapping facility to Java developers for managing relational data in Java applications. For basic information about the Java Persistence API, see Part VI, “Persistence,” in The Java EE 6 Tutorial.

This chapter contains GlassFish Server specific information on using the Java Persistence API.

The following topics are addressed here:

- “Specifying the Database” on page 92
- “Additional Database Properties” on page 94
- “Configuring the Cache” on page 94
- ”Setting the Logging Level” on page 94
- ”Using Lazy Loading” on page 94
- ”Primary Key Generation Defaults” on page 95
- ”Automatic Schema Generation” on page 95
- ”Query Hints” on page 98
- ”Changing the Persistence Provider” on page 98
- ”Restrictions and Optimizations” on page 99

Note – The default persistence provider in the GlassFish Server is based on the EclipseLink Java Persistence API implementation. All configuration options in EclipseLink are available to applications that use the GlassFish Server’s default persistence provider.
Specifying the Database

The GlassFish Server uses the bundled Java DB (Derby) database by default, named jdbc/__default. If the transaction-type element is omitted or specified as JTA and both the jta-data-source and non-jta-data-source elements are omitted in the persistence.xml file, Java DB is used as a JTA data source. If transaction-type is specified as RESOURCE_LOCAL and both jta-data-source and non-jta-data-source are omitted, Java DB is used as a non-JTA data source.

To use a non-default database, either specify a value for the jta-data-source element, or set the transaction-type element to RESOURCE_LOCAL and specify a value for the non-jta-data-source element.

If you are using the default persistence provider, the provider attempts to automatically detect the database type based on the connection metadata. This database type is used to issue SQL statements specific to the detected database type’s dialect. You can specify the optional eclipselink.target-database property to guarantee that the database type is correct. For example:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence">
 <persistence-unit name="em1">
 <jta-data-source>jdbc/MyDB2DB</jta-data-source>
 <properties>
 <property name="eclipselink.target-database" value="DB2"/>
 </properties>
 </persistence-unit>
</persistence>
```

The following eclipselink.target-database property values are allowed. Supported platforms have been tested with the GlassFish Server and are found to be Java EE compatible.

//Supported platforms
JavaDB
Derby
Oracle
MySQL4
//Others available
SQLServer
DB2
Sybase
For more information about the `eclipselink.target-database` property, see Using EclipseLink JPA Extensions for Session, Target Database and Target Application Server.

To use the Java Persistence API outside the EJB container (in Java SE mode), do not specify the `jta-data-source` or `non-jta-data-source` elements. Instead, specify the `provider` element and any additional properties required by the JDBC driver or the database. For example:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence" version="1.0">
 <persistence-unit name="em2">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
 <class>ejb3.war.servlet.JpaBean</class>
 <properties>
 <property name="eclipselink.target-database" value="Derby"/>
 <!-- JDBC connection properties -->
 <property name="eclipselink.jdbc.driver" value="org.apache.derby.jdbc.ClientDriver"/>
 <property name="eclipselink.jdbc.url" value="jdbc:derby://localhost:1527/testdb;retrieveMessagesFromServerOnGetMessage=true;create=true;"/>
 <property name="eclipselink.jdbc.user" value="APP"/>
 <property name="eclipselink.jdbc.password" value="APP"/>
 </properties>
 </persistence-unit>
</persistence>

For more information about `eclipselink` properties, see “Additional Database Properties” on page 94.

For a list of the JDBC drivers currently supported by the GlassFish Server, see the Oracle GlassFish Server 3.1-3.1.1 Release Notes. For configurations of supported and other drivers, see “Configuration Specifics for JDBC Drivers” in Oracle GlassFish Server 3.1 Administration Guide.

To change the persistence provider, see “Changing the Persistence Provider” on page 98.
Additional Database Properties

If you are using the default persistence provider, you can specify in the persistence.xml file the database properties listed at How to Use EclipseLink JPA Extensions for JDBC Connection Communication.

For schema generation properties, see “Generation Options” on page 96. For query hints, see “QueryHints” on page 98.

Configuring the Cache

If you are using the default persistence provider, you can configure whether caching occurs, the type of caching, the size of the cache, and whether client sessions share the cache. Caching properties for the default persistence provider are described in detail at Using EclipseLink JPA Extensions for Entity Caching.

Setting the Logging Level

One of the default persistence provider’s properties that you can set in the persistence.xml file is eclipselink.logging.level. For example, setting the logging level to FINE or higher logs all SQL statements. For details about this property, see Using EclipseLink JPA Extensions for Logging.

You can also set the EclipseLink logging level globally in the GlassFish Server by setting a JVM option using the asadmin create-jvm-options command. For example:

```
asadmin create-jvm-options -D< propri ety >= < value >
```

Setting the logging level to OFF disables EclipseLink logging. A logging level set in the persistence.xml file takes precedence over the global logging level.

Using Lazy Loading

OneToMany and ManyToMany mappings are loaded lazily by default in compliance with the Java Persistence Specification. OneToOne and ManyToOne mappings are loaded eagerly by default.

For basic information about lazy loading, see What You May Need to Know About EclipseLink JPA Lazy Loading.
Primary Key Generation Defaults

In the descriptions of the @GeneratedValue, @SequenceGenerator, and @TableGenerator annotations in the Java Persistence Specification, certain defaults are noted as specific to the persistence provider. The default persistence provider’s primary key generation defaults are listed here.

@GeneratedValue defaults are as follows:

- Using strategy=AUTO (or no strategy) creates a@TableGenerator named SEQ_GEN with default settings. Specifying a generator has no effect.
- Using strategy=TABLE without specifying a generator creates a@TableGenerator named SEQ_GEN_TABLE with default settings. Specifying a generator but no@TableGenerator creates and names a@TableGenerator with default settings.
- Using strategy=IDENTITY or strategy=SEQUENCE produces the same results, which are database-specific.
 - For Oracle databases, not specifying a generator creates a@SequenceGenerator named SEQ_GEN_SEQUENCE with default settings. Specifying a generator but no@SequenceGenerator creates and names a@SequenceGenerator with default settings.
 - For PostgreSQL databases, a SERIAL column named entity-table_pk-column_SEQ is created.
 - For MySQL databases, an AUTO_INCREMENT column is created.
 - For other supported databases, an IDENTITY column is created.

The@SequenceGenerator annotation has one default specific to the default provider. The default sequenceName is the specified name.

@TableGenerator defaults are as follows:

- The default table is SEQUENCE.
- The default pkColumnName is SEQ_NAME.
- The default valueColumnName is SEQ_COUNT.
- The default pkColumnValue is the specified name, or the default name if no name is specified.

Automatic Schema Generation

The automatic schema generation feature of the GlassFish Server defines database tables based on the fields or properties in entities and the relationships between the fields or properties. This insulates developers from many of the database related aspects of development, allowing them to focus on entity development. The resulting schema is usable as-is or can be given to a database administrator for tuning with respect to performance, security, and so on.
The following topics are addressed here:

- “Annotations” on page 96
- “Generation Options” on page 96

Note – Automatic schema generation is supported on an all-or-none basis: it expects that no tables exist in the database before it is executed. It is not intended to be used as a tool to generate extra tables or constraints.

Deployment won’t fail if all tables are not created, and undeployment won’t fail if not all tables are dropped. Instead, an error is written to the server log. This is done to allow you to investigate the problem and fix it manually. You should not rely on the partially created database schema to be correct for running the application.

Annotations

The following annotations are used in automatic schema generation: @AssociationOverride, @AssociationOverrides, @AttributeOverride, @AttributeOverides, @Column, @DiscriminatorColumn, @DiscriminatorValue, @Embedded, @EmbeddedId, @GeneratedValue, @Id, @IdClass, @JoinColumn, @JoinColumns, @JoinTable, @Lob, @ManyToMany, @ManyToMany, @ManyToOne, @OneToMany, @OneToOne, @PrimaryKeyJoinColumn, @PrimaryKeyJoinColumns, @SecondaryTable, @SecondaryTables, @SequenceGenerator, @Table, @TableGenerator, @UniqueConstraint, and @Version. For information about these annotations, see the Java Persistence Specification.

For @Column annotations, the insertable and updatable elements are not used in automatic schema generation.

For @OneToMany and @ManyToOne annotations, no ForeignKeyConstraint is created in the resulting DDL files.

Generation Options

Schema generation properties or asadmin command line options can control automatic schema generation by the following:

- Creating tables during deployment
- Dropping tables during undeployment
- Dropping and creating tables during redeployment
- Generating the DDL files
Note – Before using these options, make sure you have a properly configured database. See “Specifying the Database” on page 92.

Optional schema generation properties control the automatic creation of database tables. You can specify them in the persistence.xml file. For more information, see Using EclipseLink JPA Extensions for Schema Generation.

The following options of the asadmin deploy or asadmin deploydir command control the automatic creation of database tables at deployment.

TABLE 6–1 The asadmin deploy and asadmin deploydir Generation Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--createTables</td>
<td>none</td>
<td>If true, causes database tables to be created for entities that need them. No unique constraints are created. If false, does not create tables. If not specified, the value of the eclipselink.ddl-generation property in persistence.xml is used.</td>
</tr>
<tr>
<td>--dropAndCreateTables</td>
<td>none</td>
<td>If true, and if tables were automatically created when this application was last deployed, tables from the earlier deployment are dropped and fresh ones are created. If true, and if tables were not automatically created when this application was last deployed, no attempt is made to drop any tables. If tables with the same names as those that would have been automatically created are found, the deployment proceeds, but a warning is thrown to indicate that tables could not be created. If false, the eclipselink.ddl-generation property setting in persistence.xml is overridden.</td>
</tr>
</tbody>
</table>

The following options of the asadmin undeploy command control the automatic removal of database tables at undeployment.

TABLE 6–2 The asadmin undeploy Generation Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--dropTables</td>
<td>none</td>
<td>If true, causes database tables that were automatically created when the entities were last deployed to be dropped when the entities are undeployed. If false, does not drop tables. If not specified, tables are dropped only if the eclipselink.ddl-generation property setting in persistence.xml is drop-and-create-tables.</td>
</tr>
</tbody>
</table>

For more information about the asadmin deploy, asadmin deploydir, and asadmin undeploy commands, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

When asadmin deployment options and persistence.xml options are both specified, the asadmin deployment options take precedence.
Query Hints

Query hints are additional, implementation-specific configuration settings. You can use hints in your queries in the following format:

```java
setHint("hint-name", hint-value)
```

For example:

```java
customer = (Customer)entityMgr.
    .createNamedQuery("findCustomerBySSN").
    setParameter("SSN", "123-12-1234").
    setHint("eclipselink.refresh", true).
    getSingleResult();
```

For more information about the query hints available with the default provider, see How to Use EclipseLink JPA Query Hints.

Changing the Persistence Provider

Note – The previous sections in this chapter apply only to the default persistence provider. If you change the provider for a module or application, the provider-specific database properties, query hints, and schema generation features described in this chapter do not apply.

You can change the persistence provider for an application in the manner described in the Java Persistence API Specification.

First, install the provider. Copy the provider JAR files to the `domain-dir/lib` directory, and restart the GlassFish Server. For more information about the `domain-dir/lib` directory, see “Using the Common Class Loader” on page 34. The new persistence provider is now available to all modules and applications deployed on servers that share the same configuration. However, the default provider remains the same.

In your persistence unit, specify the provider and any properties the provider requires in the `persistence.xml` file. For example:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence">
  <persistence-unit name="em3">
    <provider>com.company22.persistence.PersistenceProviderImpl</provider>
    <properties>
      <property name="company22.database.name" value="MyDB"/>
    </properties>
  </persistence-unit>
</persistence>
```
To migrate from Oracle TopLink to EclipseLink, see Migrating from Oracle TopLink to EclipseLink (http://wiki.eclipse.org/EclipseLink/Examples/MigratingFromOracleTopLink).

Restrictions and Optimizations

This section discusses restrictions and performance optimizations that affect using the Java Persistence API.

The following topics are addressed here:

- “Oracle Database Enhancements” on page 99
- “Extended Persistence Context” on page 99
- “Using @OrderBy with a Shared Session Cache” on page 100
- “Using BLOB or CLOB Types with the Inet Oraxo JDBC Driver” on page 100
- “Database Case Sensitivity” on page 100
- “Sybase Finder Limitation” on page 101
- “MySQL Database Restrictions” on page 102

Oracle Database Enhancements

EclipseLink features a number of enhancements for use with Oracle databases. These enhancements require classes from the Oracle JDBC driver JAR files to be visible to EclipseLink at runtime. If you place the JDBC driver JAR files in domain-dir/lib, the classes are not visible to GlassFish Server components, including EclipseLink.

If you are using an Oracle database, put JDBC driver JAR files in domain-dir/lib/ext instead. This ensures that the JDBC driver classes are visible to EclipseLink.

If you do not want to take advantage of Oracle-specific extensions from EclipseLink or you cannot put JDBC driver JAR files in domain-dir/lib/ext, set the eclipselink.target-database property to the value org.eclipse.persistence.platform.database.OraclePlatform. For more information about the eclipselink.target-database property, see “Specifying the Database” on page 92.

Extended Persistence Context

The Java Persistence API specification does not specify how the container and persistence provider should work together to serialize an extended persistence context. This also prevents successful serialization of a reference to an extended persistence context in a stateful session bean.

Even in a single-instance environment, if a stateful session bean is passivated, its extended persistence context could be lost when the stateful session bean is activated.
Therefore, in GlassFish Server, a stateful session bean with an extended persistence context is never passivated and cannot be failed over.

Using @OrderBy with a Shared Session Cache

Setting @OrderBy on a ManyToMany or OneToMany relationship field in which a List represents the Many side doesn’t work if the session cache is shared. Use one of the following workarounds:

- Have the application maintain the order so the List is cached properly.
- Refresh the session cache using EntityManager.refresh() if you don’t want to maintain the order during creation or modification of the List.
- Disable session cache sharing in persistence.xml as follows:

  ```xml
  <property name="eclipselink.cache.shared.default" value="false"/>
  ```

Using BLOB or CLOB Types with the Inet Oraxo JDBC Driver

To use BLOB or CLOB data types larger than 4 KB for persistence using the Inet Oraxo JDBC Driver for Oracle Databases, you must set the database’s streamsToBlob property value to true.

Database Case Sensitivity

Mapping references to column or table names must be in accordance with the expected column or table name case, and ensuring this is the programmer’s responsibility. If column or table names are not explicitly specified for a field or entity, the GlassFish Server uses upper case column names by default, so any mapping references to the column or table names must be in upper case. If column or table names are explicitly specified, the case of all mapping references to the column or table names must be in accordance with the case used in the specified names.

The following are examples of how case sensitivity affects mapping elements that refer to columns or tables. Programmers must keep case sensitivity in mind when writing these mappings.

Unique Constraints

If column names are not explicitly specified on a field, unique constraints and foreign key mappings must be specified using uppercase references. For example:

```java
@Table(name="Department", uniqueConstraints={ @UniqueConstraint ( columnNames= { "DEPTNAME" } ) })
```

The other way to handle this is by specifying explicit column names for each field with the required case. For example:
Otherwise, the ALTER TABLE statement generated by the GlassFish Server uses the incorrect case, and the creation of the unique constraint fails.

Foreign Key Mapping

Use @OneToMany(mappedBy="COMPANY") or specify an explicit column name for the Company field on the Many side of the relationship.

SQL Result Set Mapping

Use the following elements:

```
<sql-result-set-mapping name="SRSMName">
  <entity-result entity-class="entities.someEntity" />
  <column-result name="UPPERCASECOLUMNNAME" />
</sql-result-set-mapping>
```

Or specify an explicit column name for the upperCaseColumnName field.

Named Native Queries and JDBC Queries

Column or table names specified in SQL queries must be in accordance with the expected case. For example, MySQL requires column names in the SELECT clause of JDBC queries to be uppercase, while PostgreSQL and Sybase require table names to be uppercase in all JDBC queries.

PostgreSQL Case Sensitivity

PostgreSQL stores column and table names in lower case. JDBC queries on PostgreSQL retrieve column or table names in lowercase unless the names are quoted. For example:

```
use aliases Select m.ID AS "ID" from Department m
```

Use the backslash as an escape character in the class file, but not in the persistence.xml file.

Sybase Finder Limitation

If a finder method with an input greater than 255 characters is executed and the primary key column is mapped to a VARCHAR column, Sybase attempts to convert type VARCHAR to type TEXT and generates the following error:

```
com.sybase.jdbc2.jdbc.SybSQLException: Implicit conversion from datatype 'TEXT' to 'VARCHAR' is not allowed. Use the CONVERT function to run this query.
```
To avoid this error, make sure the finder method input is less than 255 characters.

MySQL Database Restrictions

The following restrictions apply when you use a MySQL database with the GlassFish Server for persistence.

- MySQL treats `int1` and `int2` as reserved words. If you want to define `int1` and `int2` as fields in your table, use 'int1' and 'int2' field names in your SQL file.
- When `VARCHAR` fields get truncated, a warning is displayed instead of an error. To get an error message, start the MySQL database in strict SQL mode.
- The order of fields in a foreign key index must match the order in the explicitly created index on the primary table.
- The `CREATE TABLE` syntax in the SQL file must end with the following line.

```sql
) Engine=InnoDB;
```

InnoDB provides MySQL with a transaction-safe (ACID compliant) storage engine having commit, rollback, and crash recovery capabilities.

- For a `FLOAT` type field, the correct precision must be defined. By default, MySQL uses four bytes to store a `FLOAT` type that does not have an explicit precision definition. For example, this causes a number such as 12345.67890123 to be rounded off to 12345.7 during an `INSERT`. To prevent this, specify `FLOAT(10,2)` in the DDL file, which forces the database to use an eight-byte double-precision column. For more information, see http://dev.mysql.com/doc/mysql/en/numeric-types.html.

- MySQL always starts a new connection when `autoCommit==true` is set. This ensures that each SQL statement forms a single transaction on its own. If you try to rollback or commit an SQL statement, you get an error message.

```java
javax.transaction.SystemException: java.sql.SQLException: Can't call rollback when autocommit=true
javax.transaction.SystemException: java.sql.SQLException: Error open transaction is not closed
```


- MySQL does not allow a `DELETE` on a row that contains a reference to itself. Here is an example that illustrates the issue.

```sql
create table EMPLOYEE (  
empId int NOT NULL,  
```
This example fails with the following error message.

ERROR 1217 (23000): Cannot delete or update a parent row: a foreign key constraint fails

To resolve this issue, change the table creation script to the following:

```sql
create table EMPLOYEE (  
  empId int NOT NULL,  
  salary float(25,2) NULL,  
  mgrId int NULL,  
  PRIMARY KEY (empId),  
  FOREIGN KEY (mgrId) REFERENCES EMPLOYEE (empId)  
) ENGINE=InnoDB;
```

```sql
insert into Employee values (1, 1234.34, 1);
delete from Employee where empId = 1;
```

This can be done only if the foreign key field is allowed to be null. For more information, see http://dev.mysql.com/doc/mysql/en/innodb-foreign-key-constraints.html.
This chapter describes how web applications are supported in the Oracle GlassFish Server.

The following topics are addressed here:

- “Using Servlets” on page 105
- “Using JavaServer Pages” on page 110
- “Creating and Managing Sessions” on page 114
- “Using Comet” on page 122
- “Advanced Web Application Features” on page 135

For general information about web applications, see Part II, “The Web Tier,” in The Java EE 6 Tutorial.

Note – The Web Profile of the GlassFish Server supports the EJB 3.1 Lite specification, which allows enterprise beans within web applications, among other features. The full GlassFish Server supports the entire EJB 3.1 specification. For details, see JSR 318 (http://jcp.org/en/jsr/detail?id=318).

Using Servlets

GlassFish Server supports the Java Servlet Specification version 3.0.

Note – Servlet API version 3.0 is fully backward compatible with versions 2.3, 2.4, and 2.5, so all existing servlets should work without modification or recompilation.

To develop servlets, use the Java Servlet API. For information about using the Java Servlet API, see the documentation at http://www.oracle.com/technetwork/java/javaee/servlet/index.html.
The GlassFish Server provides the `wscompile` and `wsdeploy` tools to help you implement a web service endpoint as a servlet. For more information about these tools, see the *Oracle GlassFish Server 3.1-3.1.1 Reference Manual*.

This section describes how to create effective servlets to control application interactions running on a GlassFish Server, including standard-based servlets. In addition, this section describes the GlassFish Server features to use to augment the standards.

The following topics are addressed here:
- “Caching Servlet Results” on page 106
- “About the Servlet Engine” on page 109

Caching Servlet Results

The GlassFish Server can cache the results of invoking a servlet, a JSP, or any URL pattern to make subsequent invocations of the same servlet, JSP, or URL pattern faster. The GlassFish Server caches the request results for a specific amount of time. In this way, if another data call occurs, the GlassFish Server can return the cached data instead of performing the operation again. For example, if your servlet returns a stock quote that updates every 5 minutes, you set the cache to expire after 300 seconds.

Whether to cache results and how to cache them depends on the data involved. For example, it makes no sense to cache the results of a quiz submission, because the input to the servlet is different each time. However, it makes sense to cache a high level report showing demographic data taken from quiz results that is updated once an hour.

To define how a GlassFish Server web application handles response caching, you edit specific fields in the `glassfish-web.xml` file.

Note – A servlet that uses caching is not portable.

For information about JSP caching, see “JSP Caching” on page 111.

The following topics are addressed here:
- “Caching Features” on page 107
- “Default Cache Configuration” on page 107
- “Caching Example” on page 108
- “The CacheKeyGenerator Interface” on page 109
Caching Features

The GlassFish Server has the following web application response caching capabilities:

- Caching is configurable based on the servlet name or the URI.
- When caching is based on the URI, this includes user specified parameters in the query string. For example, a response from /garden/catalog?category=roses is different from a response from /garden/catalog?category=lilies. These responses are stored under different keys in the cache.
- Cache size, entry timeout, and other caching behaviors are configurable.
- Entry timeout is measured from the time an entry is created or refreshed. To override this timeout for an individual cache mapping, specify the cache-mapping subelement timeout.
- To determine caching criteria programmatically, write a class that implements the com.sun.appserv.web.cache.CacheHelper interface. For example, if only a servlet knows when a backend data source was last modified, you can write a helper class to retrieve the last modified timestamp from the data source and decide whether to cache the response based on that timestamp.
- To determine cache key generation programmatically, write a class that implements the com.sun.appserv.web.cache.CacheKeyGenerator interface. See “The CacheKeyGenerator Interface” on page 109.
- All non-ASCII request parameter values specified in cache key elements must be URL encoded. The caching subsystem attempts to match the raw parameter values in the request query string.
- Since newly updated classes impact what gets cached, the web container clears the cache during dynamic deployment or reloading of classes.
- The following HttpServletRequest request attributes are exposed.
 - com.sun.appserv.web.cachedServletName, the cached servlet target
 - com.sun.appserv.web.cachedURLPattern, the URL pattern being cached
- Results produced by resources that are the target of a RequestDispatcher.include() or RequestDispatcher.forward() call are cached if caching has been enabled for those resources. For details, see “cache-mapping” in Oracle GlassFish Server 3.1 Application Deployment Guide and “dispatcher” in Oracle GlassFish Server 3.1 Application Deployment Guide. These are elements in the glassfish-web.xml file.

Default Cache Configuration

If you enable caching but do not provide any special configuration for a servlet or JSP, the default cache configuration is as follows:

- The default cache timeout is 30 seconds.
- Only the HTTP GET method is eligible for caching.
- HTTP requests with cookies or sessions automatically disable caching.
No special consideration is given to Pragma:, Cache-control:, or Vary: headers.

The default key consists of the Servlet Path (minus pathInfo and the query string).

A “least recently used” list is maintained to evict cache entries if the maximum cache size is exceeded.

Key generation concatenates the servlet path with key field values, if any are specified.

Results produced by resources that are the target of a RequestDispatcher.include() or RequestDispatcher.forward() call are never cached.

Caching Example

Here is an example cache element in the glassfish-web.xml file:

```xml
<cache max-capacity="8192" timeout="60">
  <cache-helper name="myHelper" class-name="MyCacheHelper"/>
  <cache-mapping>
    <servlet-name>myservlet</servlet-name>
    <timeout name="timefield">120</timeout>
    <http-method>GET</http-method>
    <http-method>POST</http-method>
  </cache-mapping>
  <cache-mapping>
    <url-pattern> /catalog/* </url-pattern>
    <!-- cache the best selling category; cache the responses to -->
    <!-- this resource only when the given parameters exist. Cache -->
    <!-- only when the catalog parameter has 'lilies' or 'roses' -->
    <!-- but no other catalog varieties: -->
    <!-- /orchard/catalog?best&category='lilies' -->
    <!-- /orchard/catalog?best&category='roses' -->
    <!-- but not the result of -->
    <!-- /orchard/catalog?best&category='wild' -->
    <!---->
    <constraint-field name='best' scope='request.parameter'/>
    <constraint-field name='category' scope='request.parameter'>
      <value> roses </value>
      <value> lilies </value>
    </constraint-field>
    <!-- Specify that a particular field is of given range but the -->
    <!-- field doesn't need to be present in all the requests -->
    <constraint-field name='SKUnum' scope='request.parameter'>
      <value match-expr='in-range'> 1000 - 2000 </value>
    </constraint-field>
    <!-- cache when the category matches with any value other than -->
    <!-- a specific value -->
    <constraint-field name='category' scope='request.parameter'>
      <value match-expr="equals" cache-on-match-failure='true'>
        bogus
      </value>
    </constraint-field>
  </cache-mapping>
  <cache-mapping>
    <servlet-name> InfoServlet </servlet-name>
    <cache-helper-ref>myHelper</cache-helper-ref>
  </cache-mapping>
</cache>
```
For more information about the glassfish-web.xml caching settings, see “cache” in Oracle GlassFish Server 3.1 Application Deployment Guide.

The CacheKeyGenerator Interface

The built-in default CacheHelper implementation allows web applications to customize the key generation. An application component (in a servlet or JSP) can set up a custom CacheKeyGenerator implementation as an attribute in the ServletContext.

The name of the context attribute is configurable as the value of the cacheKeyGeneratorAttributeName property in the default-helper element of the glassfish-web.xml deployment descriptor. For more information, see “default-helper” in Oracle GlassFish Server 3.1 Application Deployment Guide.

About the Servlet Engine

Servlets exist in and are managed by the servlet engine in the GlassFish Server. The servlet engine is an internal object that handles all servlet meta functions. These functions include instantiation, initialization, destruction, access from other components, and configuration management.

The following topics are addressed here:

- "Instantiating and Removing Servlets" on page 109
- "Request Handling" on page 109

Instantiating and Removing Servlets

After the servlet engine instantiates the servlet, the servlet engine calls the servlet’s init method to perform any necessary initialization. You can override this method to perform an initialization function for the servlet’s life, such as initializing a counter.

When a servlet is removed from service, the servlet engine calls the destroy method in the servlet so that the servlet can perform any final tasks and deallocate resources. You can override this method to write log messages or clean up any lingering connections that won’t be caught in garbage collection.

Request Handling

When a request is made, the GlassFish Server hands the incoming data to the servlet engine. The servlet engine processes the request’s input data, such as form data, cookies, session information, and URL name-value pairs, into an HttpServletRequest request object type.

The servlet engine also creates an HttpServletResponse response object type. The engine then passes both as parameters to the servlet’s service method.
In an HTTP servlet, the default service method routes requests to another method based on the HTTP transfer method: POST, GET, DELETE, HEAD, OPTIONS, PUT, or TRACE. For example, HTTP POST requests are sent to the doPost method, HTTP GET requests are sent to the doGet method, and so on. This enables the servlet to process request data differently, depending on which transfer method is used. Since the routing takes place in the service method, you generally do not override service in an HTTP servlet. Instead, override doGet, doPost, and so on, depending on the request type you expect.

To perform the tasks to answer a request, override the service method for generic servlets, and the doGet or doPost methods for HTTP servlets. Very often, this means accessing EJB components to perform business transactions, then collating the information in the request object or in a JDBC ResultSet object.

Using JavaServer Pages

The GlassFish Server supports the following JSP features:

- JavaServer Pages (JSP) Specification
- Precompilation of JSP files, which is especially useful for production servers
- JSP tag libraries and standard portable tags

For information about creating JSP files, see the JavaServer Pages web site at http://www.oracle.com/technetwork/java/javaee/jsp/index.html.

For information about Java Beans, see the JavaBeans web page at http://www.oracle.com/technetwork/java/javase/tech/index-jsp-138795.html.

This section describes how to use JavaServer Pages (JSP files) as page templates in a GlassFish Server web application.

The following topics are addressed here:

- "JSP Tag Libraries and Standard Portable Tags" on page 110
- "JSP Caching" on page 111
- "Options for Compiling JSP Files" on page 114

JSP Tag Libraries and Standard Portable Tags

GlassFish Server supports tag libraries and standard portable tags. For more information, see the JavaServer Pages Standard Tag Library (JSTL) page at http://www.oracle.com/technetwork/java/index-jsp-135995.html.

Web applications don’t need to bundle copies of the jsf-impl.jar or appserv-jstl.jar JSP tag libraries (in as-install/lib) to use JavaServer Faces technology or JSTL, respectively. These tag libraries are automatically available to all web applications.
However, the \texttt{as-install/lib/jspcachtags.jar} tag library for JSP caching is not automatically available to web applications. See “JSP Caching” on page 111, next.

JSP Caching

JSP caching lets you cache tag invocation results within the Java engine. Each can be cached using different cache criteria. For example, suppose you have invocations to view stock quotes, weather information, and so on. The stock quote result can be cached for 10 minutes, the weather report result for 30 minutes, and so on.

The following topics are addressed here:

- “Enabling JSP Caching” on page 111
- “Caching Scope” on page 112
- “The cache Tag” on page 112
- “The flush Tag” on page 113

For more information about response caching as it pertains to servlets, see “Caching Servlet Results” on page 106.

Enabling JSP Caching

To globally enable JSP caching, set the \texttt{jspCachingEnabled} property to \texttt{true}. The default is \texttt{false}. For example:

\begin{verbatim}
asadmin set server-config.web-container.property.jspCachingEnabled=true
\end{verbatim}

For more information about the \texttt{asadmin set} command, see the \textit{Oracle GlassFish Server 3.1-3.1.1 Reference Manual}.

To enable JSP caching for a single web application, follow these steps:

1. Extract the \texttt{META-INF/jspcachtags.tld} file from the \texttt{as-install/glassfish/modules/web-glue.jar} file.
2. Create a new JAR file (for example, jspcachtags.jar) containing just the \texttt{META-INF/jspcachtags.tld} file previously extracted.
3. Bundle this new JAR file in the \texttt{WEB-INF/lib} directory of your web application.

\textbf{Note} – Web applications that use JSP caching without bundling the tag library are not portable.

Refer to GlassFish Server tags in JSP files as follows:

\begin{verbatim}
<%@ taglib prefix="prefix" uri="http://glassfish.org/ taglibs/cache" %>
\end{verbatim}

Subsequently, the cache tags are available as \texttt{<prefix:cache>} and \texttt{<prefix:flush>}. For example, if your \texttt{prefix} is \texttt{mypfx}, the cache tags are available as \texttt{<mypfx:cache>} and \texttt{<mypfx:flush>}.
Caching Scope

JSP caching is available in three different scopes: request, session, and application. The default is application. To use a cache in request scope, a web application must specify the com.sun.appserv.web.taglibs.cache.CacheRequestListener in its web.xml deployment descriptor, as follows:

```xml
<listener>
  <listener-class>
    com.sun.appserv.web.taglibs.cache.CacheRequestListener
  </listener-class>
</listener>
```

Likewise, for a web application to utilize a cache in session scope, it must specify the com.sun.appserv.web.taglibs.cache.CacheSessionListener in its web.xml deployment descriptor, as follows:

```xml
<listener>
  <listener-class>
    com.sun.appserv.web.taglibs.cache.CacheSessionListener
  </listener-class>
</listener>
```

To utilize a cache in application scope, a web application need not specify any listener. The com.sun.appserv.web.taglibs.cache.CacheContextListener is already specified in the jspcachetags.tld file.

The cache Tag

The cache tag caches the body between the beginning and ending tags according to the attributes specified. The first time the tag is encountered, the body content is executed and cached. Each subsequent time it is run, the cached content is checked to see if it needs to be refreshed and if so, it is executed again, and the cached data is refreshed. Otherwise, the cached data is served.

Attributes of cache

The following table describes attributes for the cache tag.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>key</td>
<td>ServletPath_Suffix</td>
<td>(optional) The name used by the container to access the cached entry. The cache key is suffixed to the servlet path to generate a key to access the cached entry. If no key is specified, a number is generated according to the position of the tag in the page.</td>
</tr>
</tbody>
</table>
TABLE 7–1 The cache Attributes (Continued)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>timeout</td>
<td>60s</td>
<td>(optional) The time in seconds after which the body of the tag is executed and the cache is refreshed. By default, this value is interpreted in seconds. To specify a different unit of time, add a suffix to the timeout value as follows: s for seconds, m for minutes, h for hours, d for days. For example, 2h specifies two hours.</td>
</tr>
<tr>
<td>nocache</td>
<td>false</td>
<td>(optional) If set to true, the body content is executed and served as if there were no cache tag. This offers a way to programmatically decide whether the cached response is sent or whether the body has to be executed, though the response is not cached.</td>
</tr>
<tr>
<td>refresh</td>
<td>false</td>
<td>(optional) If set to true, the body content is executed and the response is cached again. This lets you programmatically refresh the cache immediately regardless of the timeout setting.</td>
</tr>
<tr>
<td>scope</td>
<td>application</td>
<td>(optional) The scope of the cache. Can be request, session, or application. See “Caching Scope” on page 112.</td>
</tr>
</tbody>
</table>

Example of cache

The following example represents a cached JSP file:

```jsp
<%@ taglib prefix="mypfx" uri="http://glassfish.org/taglibs/cache" %>
<%@ taglib prefix="c" url="http://java.sun.com/jsp/jstl/core" %>
<mypfx:cache
    nocache="${param.nocache}"
    refresh="${param.refresh}"
    timeout="10m">
    <c:choose>
        <c:when test="${param.page == 'frontPage'}">
            <%- get headlines from database --%>
        </c:when>
        <c:otherwise>
            ...
        </c:otherwise>
    </c:choose>
</mypfx:cache>
<h2> Local News </h2>
<%-- get the headline news and cache them --%>
</mypfx:cache>
```

The flush Tag

Forces the cache to be flushed. If a key is specified, only the entry with that key is flushed. If no key is specified, the entire cache is flushed.

Attributes of flush

The following table describes attributes for the flush tag.
TABLE 7-2 The flush Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>key</td>
<td>ServletPath_Suffix</td>
<td>(optional) The name used by the container to access the cached entry. The cache key is suffixed to the servlet path to generate a key to access the cached entry. If no key is specified, a number is generated according to the position of the tag in the page.</td>
</tr>
<tr>
<td>scope</td>
<td>application</td>
<td>(optional) The scope of the cache. Can be request, session, or application. See “Caching Scope” on page 112.</td>
</tr>
</tbody>
</table>

Examples of flush

To flush the entry with key="foobar":

```xml
<myfx:flush key="foobar"/>
```

To flush the entire cache:

```xml
<c:if test="${empty sessionScope.clearCache}">
<myfx:flush />
</c:if>
```

Options for Compiling JSP Files

GlassFish Server provides the following ways of compiling JSP source files into servlets:

- JSP files are automatically compiled at runtime.
- The `asadmin deploy` command has a `----precompilejsp` option. For details, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.
- The `jspc` command line tool allows you to precompile JSP files at the command line. For details, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

Creating and Managing Sessions

This section describes how to create and manage HTTP sessions that allows users and transaction information to persist between interactions.

The following topics are addressed here:

- “Configuring Sessions” on page 115
- “Session Managers” on page 118
Configuring Sessions

The following topics are addressed here:

- “HTTP Sessions, Cookies, and URL Rewriting” on page 115
- “Coordinating Session Access” on page 115
- “Saving Sessions During Redeployment” on page 115
- “Logging Session Attributes” on page 116
- “Distributed Sessions and Persistence” on page 116

HTTP Sessions, Cookies, and URL Rewriting

To configure whether and how HTTP sessions use cookies and URL rewriting, edit the session-properties and cookie-properties elements in the glassfish-web.xml file for an individual web application. For more about the properties you can configure, see “session-properties” in Oracle GlassFish Server 3.1 Application Deployment Guide and “cookie-properties” in Oracle GlassFish Server 3.1 Application Deployment Guide.

For information about configuring default session properties for the entire web container, see “Using the default-web.xml File” on page 138 and the Oracle GlassFish Server 3.1-3.1.1 High Availability Administration Guide.

Coordinating Session Access

Make sure that multiple threads don’t simultaneously modify the same session object in conflicting ways. If the persistence type is replicated (see “The replicated Persistence Type” on page 120), the following message in the log file indicates that this might be happening:

Primary Key Constraint violation while saving session session_id

This is especially likely to occur in web applications that use HTML frames where multiple servlets are executing simultaneously on behalf of the same client. A good solution is to ensure that one of the servlets modifies the session and the others have read-only access.

Saving Sessions During Redeployment

Whenever a redeployment is done, the sessions at that transit time become invalid unless you use the - -keepstate=true option of the asadmin redeploy command. For example:

```
asadmin redeploy - -keepstate=true --name hello.war
```

For details, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

The default for - -keepstate is false. This option is supported only on the default server instance, named server. It is not supported and ignored for any other target.

For web applications, this feature is applicable only if in the glassfish-web-app.xml file the persistence-type attribute of the session-manager element is file.
If any active web session fails to be preserved or restored, none of the sessions will be available when the redeployment is complete. However, the redeployment continues and a warning is logged.

The new class loader of the redeployed application is used to deserialize any sessions previously saved. The usual restrictions about serialization and deserialization apply. For example, any application-specific class referenced by a session attribute may evolve only in a backward-compatible fashion. For more information about class loaders, see Chapter 2, “Class Loaders.”

Logging Session Attributes

You can write session attribute values to an access log. The access log format token `%session.name` logs one of the following:

- The value of the session attribute with the name `name`
- `NULL-SESSION-ATTRIBUTE-name` if the named attribute does not exist in the session
- `NULL-SESSION` if no session exists

For more information about access logging and format tokens, see online help for the Access Log tab of the HTTP Service page in the Administration Console.

Distributed Sessions and Persistence

A distributed HTTP session can run in multiple GlassFish Server instances, provided the following criteria are met:

- Each server instance has the same distributable web application deployed to it. The `web-app` element of the `web.xml` deployment descriptor file must have the `distributable` subelement specified.
- The web application uses high-availability session persistence. If a non-distributable web application is configured to use high-availability session persistence, a warning is written to the server log, and the session persistence type reverts to `memory`. See “The replicated Persistence Type” on page 120.
- All objects bound into a distributed session must be of the types listed in Table 7–3.
- The web application must be deployed using the `deploy` or `deploydir` command with the `--availabilityenabled` option set to true. See the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.
Note – Contrary to the Servlet 3.0 specification, GlassFish Server does not throw an `IllegalArgumentException` if an object type not supported for failover is bound into a distributed session.

Keep the distributed session size as small as possible. Session size has a direct impact on overall system throughput.

In the event of an instance or hardware failure, another server instance can take over a distributed session, with the following limitations:

- If a distributable web application references a Java EE component or resource, the reference might be lost. See Table 7–3 for a list of the types of references that `HTTPRequestSession failover` supports.
- References to open files or network connections are lost.

For information about how to work around these limitations, see the *Oracle GlassFish Server 3.1 Deployment Planning Guide*.

In the following table, *No* indicates that failover for the object type might not work in all cases and that no failover support is provided. However, failover might work in some cases for that object type. For example, failover might work because the class implementing that type is serializable.

For more information about the `InitialContext`, see “Accessing the Naming Context” on page 273. For more information about transaction recovery, see Chapter 15, “Using the Transaction Service.” For more information about Administered Objects, see “Administering JMS Physical Destinations” in *Oracle GlassFish Server 3.1 Administration Guide*.

<table>
<thead>
<tr>
<th>Java Object Type</th>
<th>Failover Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colocated or distributed stateless session, stateful session, or entity bean reference</td>
<td>Yes</td>
</tr>
<tr>
<td>JNDI context</td>
<td>Yes, <code>InitialContext</code> and <code>java:comp/env</code></td>
</tr>
<tr>
<td>UserTransaction</td>
<td>Yes, but if the instance that fails is never restarted, any prepared global transactions are lost and might not be correctly rolled back or committed.</td>
</tr>
<tr>
<td>JDBC DataSource</td>
<td>No</td>
</tr>
<tr>
<td>Java Message Service (JMS) ConnectionFactory, Destination</td>
<td>No</td>
</tr>
<tr>
<td>JavaMail Session</td>
<td>No</td>
</tr>
</tbody>
</table>
Session Managers

A session manager automatically creates new session objects whenever a new session starts. In some circumstances, clients do not join the session, for example, if the session manager uses cookies and the client does not accept cookies.

GlassFish Server offers these session management options, determined by the `session-manager` element’s `persistence-type` attribute in the `glassfish-web.xml` file:

- “The memory Persistence Type” on page 118, the default
- “The file Persistence Type” on page 119, which uses a file to store session data
- “The replicated Persistence Type” on page 120, which uses other servers in the cluster for session persistence
- “The coherence-web Persistence Type” on page 121, which uses Coherence*Web for session persistence

Note – If the session manager configuration contains an error, the error is written to the server log and the default (memory) configuration is used.

For more information, see “session-manager” in Oracle GlassFish Server 3.1 Application Deployment Guide.

The memory Persistence Type

This persistence type is not designed for a production environment that requires session persistence. It provides no session persistence. However, you can configure it so that the session state in memory is written to the file system prior to server shutdown.

To specify the memory persistence type for a specific web application, edit the `glassfish-web.xml` file as in the following example. The `persistence-type` attribute is optional, but must be set to `memory` if included. This overrides the web container availability settings for the web application.
The only manager property that the memory persistence type supports is sessionFilename, which is listed under “manager-properties” in Oracle GlassFish Server 3.1 Application Deployment Guide. The sessionFilename property specifies the name of the file where sessions are serialized and persisted if the web application or the server is stopped. To disable this behavior, specify an empty string as the value of sessionFilename. The default value is an empty string.

For more information about the glassfish-web.xml file, see Oracle GlassFish Server 3.1 Application Deployment Guide.

The file Persistence Type

This persistence type provides session persistence to the local file system, and allows a single server domain to recover the session state after a failure and restart. The session state is persisted in the background, and the rate at which this occurs is configurable. The store also provides passivation and activation of the session state to help control the amount of memory used. This option is not supported in a production environment. However, it is useful for a development system with a single server instance.

Note - Make sure the delete option is set in the server.policy file, or expired file-based sessions might not be deleted properly. For more information about server.policy, see “The server.policy File” on page 58.

To specify the file persistence type for a specific web application, edit the glassfish-web.xml file as in the following example. Note that persistence-type must be set to file. This overrides the web container availability settings for the web application.

```xml
<glassfish-web-app>
  ...
  <session-config>
    <session-manager persistence-type="file">
      <store-properties>
        <property name="directory" value="sessiondir" />
      </store-properties>
    </session-manager>
  </session-config>
  ...
</glassfish-web-app>
```
The file persistence type supports all the manager properties listed under "manager-properties" in Oracle GlassFish Server 3.1 Application Deployment Guide except sessionFilename, and supports the directory store property listed under "store-properties" in Oracle GlassFish Server 3.1 Application Deployment Guide.

For more information about the glassfish-web.xml file, see Oracle GlassFish Server 3.1 Application Deployment Guide.

The replicated Persistence Type

The replicated persistence type uses other servers in the cluster for session persistence. Clustered server instances replicate session state. Each backup instance stores the replicated data in memory. This allows sessions to be distributed. For details, see “Distributed Sessions and Persistence” on page 116. In addition, you can configure the frequency and scope of session persistence. The other servers are also used as the passivation and activation store. Use this option in a production environment that requires session persistence.

To use the replicated persistence type, you must enable availability. Select the Availability Service component under the relevant configuration in the Administration Console. Check the Availability Service box. To enable availability for the web container, select the Web Container Availability tab, then check the Availability Service box. All instances in an GlassFish Server cluster should have the same availability settings to ensure consistent behavior. For details, see the Oracle GlassFish Server 3.1-3.1.1 High Availability Administration Guide.

To change settings such as persistence frequency and persistence scope for the entire web container, use the Persistence Frequency and Persistence Scope drop-down lists on the Web Container Availability tab in the Administration Console, or use the asadmin set command. For example:

```
asadmin set
server-config.availability-service.web-container-availability.persistence-frequency=time-based
```

For more information, see the description of the asadmin set command in the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

To specify the replicated persistence type for a specific web application, edit the glassfish-web.xml file as in the following example. Note that persistence-type must be set to replicated. This overrides the web container availability settings for the web application.

```
<glassfish-web-app>
  ...
  <session-config>
    <session-manager persistence-type="replicated">
      <manager-properties/>
    </session-manager>
  </session-config>
</glassfish-web-app>
```
The replicated persistence type supports all the manager properties listed under "manager-properties" in Oracle GlassFish Server 3.1 Application Deployment Guide except sessionFilename, and supports the persistenceScope store property listed under "store-properties" in Oracle GlassFish Server 3.1 Application Deployment Guide.

For more information about the glassfish-web.xml file, see Oracle GlassFish Server 3.1 Application Deployment Guide.

To specify that web sessions for which high availability is enabled are first buffered and then replicated using a separate asynchronous thread, use the --asyncreplication=true option of the asadmin deploy command. For example:

```
asadmin deploy --availabilityenabled=true --asyncreplication=true --name hello.war
```

If --asyncreplication is set to true (the default), performance is improved but availability is reduced. If the instance where states are buffered but not yet replicated fails, the states are lost. If set to false, performance is reduced but availability is guaranteed. States are not buffered but immediately transmitted to other instances in the cluster.

The coherence-web Persistence Type

Built on top of Oracle Coherence, Coherence*Web is an HTTP session management module dedicated to managing session state in clustered environments. Starting with Coherence 3.7 and GlassFish Server 3.1, there is a new feature of Coherence*Web called ActiveCache for GlassFish. ActiveCache for GlassFish provides Coherence*Web functionality in web applications deployed on GlassFish Servers. Within GlassFish Server, Coherence*Web functions as an additional web container persistence type, named coherence-web.

For information about how to configure and deploy Coherence*Web on GlassFish Server, see Using Coherence*Web with GlassFish Server (http://download.oracle.com/docs/cd/E18686_01/coh.37/e18690/glassfish.htm).
Using Comet

This section explains the Comet programming technique and how to create and deploy a Comet-enabled application with the Oracle GlassFish Server.

The following topics are addressed here:
- “Introduction to Comet” on page 122
- “Grizzly Comet” on page 124
- “Bayeux Protocol” on page 133

Introduction to Comet

Comet is a programming technique that allows a web server to send updates to clients without requiring the clients to explicitly request them.

This kind of programming technique is called server push, which means that the server pushes data to the client. The opposite style is client pull, which means that the client must pull the data from the server, usually through a user-initiated event, such as a button click.

Web applications that use the Comet technique can deliver updates to clients in a more timely manner than those that use the client-pull style while avoiding the latency that results from clients frequently polling the server.

One of the many use cases for Comet is a chat room application. When the server receives a message from one of the chat clients, it needs to send the message to the other clients without requiring them to ask for it. With Comet, the server can deliver messages to the clients as they are posted rather than expecting the clients to poll the server for new messages.

To accomplish this scenario, a Comet application establishes a long-lived HTTP connection. This connection is suspended on the server side, waiting for an event to happen before resuming. This kind of connection remains open, allowing an application that uses the Comet technique to send updates to clients when they are available rather than expecting clients to reopen the connection to poll the server for updates.

The Grizzly Implementation of Comet

A limitation of the Comet technique is that you must use it with a web server that supports non-blocking connections to avoid poor performance. Non-blocking connections are those that do not need to allocate one thread for each request. If the web server were to use blocking connections then it might end up holding many thousands of threads, thereby hindering its scalability.

The GlassFish server includes the Grizzly HTTP Engine, which enables asynchronous request processing (ARP) by avoiding blocking connections. Grizzly’s ARP implementation accomplishes this by using the Java NIO API.
With Java NIO, Grizzly enables greater performance and scalability by avoiding the limitations experienced by traditional web servers that must run a thread for each request. Instead, Grizzly’s ARP mechanism makes efficient use of a thread pool system and also keeps the state of requests so that it can keep requests alive without holding a single thread for each of them.

Grizzly supports two different implementations of Comet:

- **“Grizzly Comet” on page 124** — Based on ARP, this includes a set of APIs that you use from a web component to enable Comet functionality in your web application. Grizzly Comet is specific to the Oracle GlassFish Server.

- **“Bayeux Protocol” on page 133** — Often referred to as Comet, it consists of the JSON-based Bayeux message protocol, a set of Dojo or Ajax libraries, and an event handler. The Bayeux protocol uses a publish/subscribe model for server/client communication. The Bayeux protocol is portable, but it is container dependent if you want to invoke it from an Enterprise Java Beans (EJB) component. The Grizzly implementation of Comet consists of a servlet that you reference from your web application.

Client Technologies to Use With Comet

In addition to creating a web component that uses the Comet APIs, you need to enable your client to accept asynchronous updates from the web component. To accomplish this, you can use JavaScript, IFrames, or a framework, such as Dojo.

An IFrame is an HTMLelement that allows you to include other content in an HTML page. As a result, the client can embed updated content in the IFrame without having to reload the page.

The example in this tutorial employs a combination of JavaScript and IFrames to allow the client to accept asynchronous updates. A servlet included in the example writes out JavaScript code to one of the IFrames. The JavaScript code contains the updated content and invokes a function in the page that updates the appropriate elements in the page with the new content.

The next section explains the two kinds of connections that you can make to the server. While you can use any of the client technologies listed in this section with either kind of connection, it is more difficult to use JavaScript with an HTTP-streaming connection.

Types of Comet Connections

When working with Comet, as implemented in Grizzly, you have two different ways to handle client connections to the server:

- HTTP Streaming
- Long Polling

HTTP Streaming

The HTTP Streaming technique keeps a connection open indefinitely. It never closes, even after the server pushes data to the client.
In the case of HTTP streaming, the application sends a single request and receives responses as they come, reusing the same connection forever. This technique significantly reduces the network latency because the client and the server don’t need to open and close the connection.

The basic life cycle of an application using HTTP-streaming is:

request --> suspend --> data available --> write response --> data available --> write response

The client makes an initial request and then suspends the request, meaning that it waits for a response. Whenever data is available, the server writes it to the response.

Long Polling

The long-polling technique is a combination of server-push and client-pull because the client needs to resume the connection after a certain amount of time or after the server pushes an update to the client.

The basic life cycle of an application using long-polling is:

request --> suspend --> data available --> write response --> resume

The client makes an initial request and then suspends the request. When an update is available, the server writes it to the response. The connection closes, and the client optionally resumes the connection.

How to Choose the Type of Connection

If you anticipate that your web application will need to send frequent updates to the client, you should use the HTTP-streaming connection so that the client does not have to frequently reestablish a connection. If you anticipate less frequent updates, you should use the long-polling connection so that the web server does not need to keep a connection open when no updates are occurring. One caveat to using the HTTP-streaming connection is that if you are streaming through a proxy, the proxy can buffer the response from the server. So, be sure to test your application if you plan to use HTTP-streaming behind a proxy.

Grizzly Comet

The following topics are addressed here:

- “The Grizzly Comet API” on page 125
- “The Hidden Frame Example” on page 125
- “Creating a Comet-Enabled Application” on page 126
- “Developing the Web Component” on page 126
- “Creating the Client Pages” on page 130
- “Creating the Deployment Descriptor” on page 132
The Grizzly Comet API

Grizzly's support for Comet includes a small set of APIs that make it easy to add Comet functionality to your web applications. The Grizzly Comet APIs that developers use most often are the following:

- **CometContext**: A Comet context, which is a shareable space to which applications subscribe to receive updates.
- **CometEngine**: The entry point to any component using Comet. Components can be servlets, JavaServer Pages (JSP), JavaServer Faces components, or pure Java classes.
- **CometEvent**: Contains the state of the CometContext object.
- **CometHandler**: The interface an application implements to be part of one or more Comet contexts.

The way a developer would use this API in a web component is to perform the following tasks:

1. Register the context path of the application with the CometContext object:

   ```java
   CometEngine cometEngine = CometEngine.getEngine();
   CometContext cometContext = cometEngine.register(contextPath)
   ```

2. Register the CometHandler implementation with the CometContext object:

   ```java
   cometContext.addCometHandler(handler)
   ```

3. Notify one or more CometHandler implementations when an event happens:

   ```java
   cometContext.notify((Object)(handler))
   ```

The Hidden Frame Example

This rest of this tutorial uses the Hidden Frame example to explain how to develop Comet-enabled web applications. You can download the example from grizzly.dev.java.net at Hidden example download. From there, you can download a prebuilt WAR file as well as a JAR file containing the servlet code.

The Hidden Frame example is so called because it uses hidden IFrames. The example allows multiple clients to increment a counter on the server. When a client increments the counter, the server broadcasts the new count to the clients using the Comet technique.

The Hidden Frame example uses the long-polling technique, but you can easily modify it to use HTTP-streaming by removing two lines. See “To Notify the Comet Handler of an Event” on page 129 and “To Create a HTML Page That Updates and Displays the Content” on page 130 for more information on converting the example to use the HTTP-streaming technique.

The client side of the example uses hidden IFrames with embedded JavaScript tags to connect to the server and to asynchronously post content to and accept updates from the server.
The server side of the example consists of a single servlet that listens for updates from clients, updates the counter, and writes JavaScript code to the client that allows it to update the counter on its page.

See “Deploying and Running a Comet-Enabled Application” on page 132 for instructions on how to deploy and run the example.

When you run the example, the following happens:

1. The index.html page opens.
2. The browser loads three frames: The first one accesses the servlet using an HTTP GET; the second one loads the count.html page, which displays the current count; and the third one loads the button.html page, which is used to send the POST request.
3. After clicking the button on the button.html page, the page submits a POST request to the servlet.
4. The doPost method calls the onEvent method of the Comet handler and redirects the incremented count along with some JavaScript to the count.html page on the client.
5. The updateCount() JavaScript function on the count.html page updates the counter on the page.
6. Because this example uses long-polling, the JavaScript code on count.html calls doGet again to resume the connection after the servlet pushes the update.

Creating a Comet-Enabled Application

This section uses the Hidden Frame example application to demonstrate how to develop a Comet application. The main tasks for creating a simple Comet-enabled application are the following:

Developing the Web Component

This section shows you how to create a Comet-enabled web component by giving you instructions for creating the servlet in the Hidden Frame example.

Developing the web component involves performing the following steps:

1. Create a web component to support Comet requests.
2. Register the component with the Comet engine.
3. Define a Comet handler that sends updates to the client.
4. Add the Comet handler to the Comet context.
5. Notify the Comet handler of an event using the Comet context.
To Create a Web Component to Support Comet

1 Create an empty servlet class, like the following:
   ```java
   import javax.servlet.*;
   
   public class HiddenCometServlet extends HttpServlet {
       private static final long serialVersionUID = 1L;
       private String contextPath = null;
       
       @Override
       public void init(ServletConfig config) throws ServletException {}
       
       @Override
       protected void doGet(HttpServletRequest req,
                              HttpServletResponse res)
                              throws ServletException, IOException {
       }
       
       @Override
       protected void doPost(HttpServletRequest req,
                              HttpServletResponse res)
                              throws ServletException, IOException {};
   }
   ```

2 Import the following Comet packages into the servlet class:
   ```java
   import com.sun.grizzly.comet.CometContext;
   import com.sun.grizzly.comet.CometEngine;
   import com.sun.grizzly.comet.CometEvent;
   import com.sun.grizzly.comet.CometHandler;
   ```

3 Import these additional classes that you need for incrementing a counter and writing output to the clients:
   ```java
   import java.io.IOException;
   import java.io.PrintWriter;
   import java.util.concurrent.atomic.AtomicInteger;
   ```

4 Add a private variable for the counter:
   ```java
   private final AtomicInteger counter = new AtomicInteger();
   ```

To Register the Servlet With the Comet Engine

1 In the servlet's `init` method, add the following code to get the component's context path:
   ```java
   ServletContext context = config.getServletContext();
   contextPath = context.getContextPath() + "\hidden_comet";
   ```

2 Get an instance of the Comet engine by adding this line after the lines from Step 1:
   ```java
   CometEngine engine = CometEngine.getEngine();
   ```

3 Register the component with the Comet engine by adding the following lines after those from Step 2:
   ```java
   CometContext cometContext = engine.register(contextPath);
   cometContext.setExpirationDelay(30 * 1000);
   ```
To Define a Comet Handler to Send Updates to the Client

1. Create a private class that implements CometHandler and add it to the servlet class:

   ```java
   private class CounterHandler
       implements CometHandler<HttpServletResponse> {
       private HttpServletResponse response;
   }
   ```

2. Add the following methods to the class:

   ```java
   public void onInitialize(CometEvent event) throws IOException {}
   public void onInterrupt(CometEvent event) throws IOException {
       removeThisFromContext();
   }
   public void onTerminate(CometEvent event) throws IOException {
       removeThisFromContext();
   }
   public void attach(HttpServletResponse attachment) {
       this.response = attachment;
   }
   private void removeThisFromContext() throws IOException {
       response.getWriter().close();
       CometContext context = CometEngine.getEngine().getCometContext(contextPath);
       context.removeCometHandler(this);
   }
   ```

You need to provide implementations of these methods when implementing CometHandler. The `onInterrupt` and `onTerminate` methods execute when certain changes occur in the status of the underlying TCP communication. The `onInterrupt` method executes when communication is resumed. The `onTerminate` method executes when communication is closed. Both methods call `removeThisFromContext`, which removes the CometHandler object from the CometContext object.

To Add the Comet Handler to the Comet Context

1. Get an instance of the Comet handler and attach the response to it by adding the following lines to the `doGet` method:

   ```java
   CounterHandler handler = new CounterHandler();
   handler.attach(res);
   ```

2. Get the Comet context by adding the following lines to `doGet`:

   ```java
   CometEngine engine = CometEngine.getEngine();
   CometContext context = engine.getCometContext(contextPath);
   ```
3 Add the Comet handler to the Comet context by adding this line to doGet:

```java
context.addCometHandler(handler);
```

To Notify the Comet Handler of an Event

1 Add an `onEvent` method to the CometHandler implementation class to define what happens when an event occurs:

```java
public void onEvent(CometEvent event) throws IOException {
    if (CometEvent.NOTIFY == event.getType()) {
        int count = counter.get();
        PrintWriter writer = response.getWriter();
        writer.write("<script type='text/javascript'>\n" +
            "parent.counter.updateCount('" + count + ":') +
            "</script>\n");
        writer.flush();
        event.getCometContext().resumeCometHandler(this);
    }
}
```

This method first checks if the event type is `NOTIFY`, which means that the web component is notifying the CometHandler object that a client has incremented the count. If the event type is `NOTIFY`, the `onEvent` method gets the updated count, and writes out JavaScript to the client. The JavaScript includes a call to the `updateCount()` function, which will update the count on the clients’ pages.

The last line resumes the Comet request and removes it from the list of active CometHandler objects. By this line, you can tell that this application uses the long-polling technique. If you were to delete this line, the application would use the HTTP-Streaming technique.

- **For HTTP-Streaming:**

 Add the same code as for long-polling, except do not include the following line:

  ```java
  event.getCometContext().resumeCometHandler(this);
  ```

You don’t include this line because you do not want to resume the request. Instead, you want the connection to remain open.

2 Increment the counter and forward the response by adding the following lines to the doPost method:

```java
counter.incrementAndGet();
CometEngine engine = CometEngine.getEngine();
CometContext<?> context = engine.getCometContext(contextPath);
context.notify(null);
req.getRequestDispatcher("count.html").forward(req, res);
```

When a user clicks the button, the doPost method is called. The doPost method increments the counter. It then obtains the current CometContext object and calls its notify method. By calling `context.notify`, the doPost method triggers the `onEvent` method you created in the previous step. After `onEvent` executes, `doPost` forwards the response to the clients.
Creating the Client Pages

Developing the HTML pages for the client involves performing these steps:

1. Create a welcome HTML page, called index.html, that contains: one hidden frame for connecting to the servlet through an HTTP GET; one IFrame that embeds the count.html page, which contains the updated content; and one IFrame that embeds the button.html page, which is used for posting updates using HTTP POST.

2. Create the count.html page that contains an HTML element that displays the current count and the JavaScript for updating the HTML element with the new count.

3. Create the button.html page that contains a button for the users to submit updates.

▼ To Create a HTML Welcome Page That Contains IFrames for Receiving and Sending Updates

1 Create an HTML page called index.html.

2 Add the following content to the page:

```html
<html>
<head>
<title>Comet Example: Counter with Hidden Frame</title>
</head>
<body>
</body>
</html>
```

3 Add IFrames for connecting to the server and receiving and sending updates to index.html in between the body tags:

```html
<frameset>
  <iframe name="hidden" src="hidden_comet" frameborder="0" height="0" width="100%"></iframe>
  <iframe name="counter" src="count.html" frameborder="0" height="100%" width="100%"></iframe>
  <iframe name="button" src="button.html" frameborder="0" height="30%" width="100%"></iframe>
</frameset>
```

The first frame, which is hidden, points to the servlet by referencing its context path. The second frame displays the content from count.html, which displays the current count. The second frame displays the content from button.html, which contains the submit button for incrementing the counter.

▼ To Create a HTML Page That Updates and Displays the Content

1 Create an HTML page called count.html and add the following content to it:

```html
<html>
<head>
</head>
```
This page displays the current count.

2 **Add JavaScript code that updates the count in the page.** Add the following lines in between the head tags of `count.html`:

```html
<script type='text/javascript'>
  function updateCount(c) {
    document.getElementById('count').innerHTML = c;
    parent.hidden.location.href = "hidden_comet";
  }
</script>
```

The JavaScript takes the updated count it receives from the servlet and updates the count element in the page. The last line in the `updateCount()` function invokes the servlet's `doGet` method again to reestablish the connection.

- **For HTTP-Streaming:**
 Add the same code as for long-polling, except for the following line:
  ```javascript
  parent.hidden.location.href = "hidden_comet"
  ```
 This line invokes the `doGet` method of `CometServlet` again, which would reestablish the connection. In the case of HTTP-Streaming, you want the connection to remain open. Therefore, you don't include this line of code.

▼ **To Create the HTML Page That Allows Submitting Updates**

- **Create an HTML page called `button.html` and add the following content to it:**

  ```html
  <html>
  <head>
  </head>
  <body>
    <center>
      <form method="post" action="hidden_comet">
        <input type="submit" value="Click">
      </form>
    </center>
  </body>
  </html>
  ```

 This page displays a form with a button that allows a user to update the count on the server. The servlet will then broadcast the updated count to all clients.
Creating the Deployment Descriptor

This section describes how to create a deployment descriptor to specify how your Comet-enabled web application should be deployed.

▼ To Create the Deployment Descriptor

- Create a file called \texttt{web.xml} and put the following contents in it:

  ```xml
  <?xml version="1.0" encoding="UTF-8"?>
  <web-app version="3.0"
    xmlns="http://java.sun.com/xml/ns/javaee"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
    http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">
    <servlet>
      <servlet-name>HiddenCometServlet</servlet-name>
      <servlet-class>
        com.sun.grizzly.samples.comet.HiddenCometServlet
      </servlet-class>
      <load-on-startup>0</load-on-startup>
    </servlet>
    <servlet-mapping>
      <servlet-name>HiddenCometServlet</servlet-name>
      <url-pattern>/hidden_comet</url-pattern>
    </servlet-mapping>
  </web-app>
  ```

This deployment descriptor contains a servlet declaration and mapping for \texttt{HiddenCometServlet}. The \texttt{load-on-startup} attribute must be set to 0 so that the Comet-enabled servlet will not load until the client makes a request to it.

Deploying and Running a Comet-Enabled Application

Before running a Comet-enabled application in the GlassFish Server, you need to enable Comet in the server. Then you can deploy the application just as you would any other web application.

When running the application, you need to connect to it from at least two different browsers to experience the effect of the servlet updating all clients in response to one client posting an update to the server.

Enabling Comet in the GlassFish Server

Before running a Comet-enabled application, you need to enable Comet in the HTTP listener for your application by setting a special attribute in the associated protocol configuration. The following example shows the \texttt{asadmin set} command that adds this attribute:

```shell
asadmin set server-config.network-config.protocols.protocol.http-1.http.comet-support-enabled=true
```

Substitute the name of the protocol for \texttt{http-1}.
To Deploy the Example
These instructions tell you how to deploy the Hidden Frame example.

1 Download grizzly-comet-hidden-1.7.3.1.war.

2 Run the following command to deploy the example:
 \texttt{as-install/bin/asadmin deploy grizzly-comet-hidden-1.7.3.1.war}

To Run the Example
These instructions tell you how to run the Hidden Frame example.

1 Open two web browsers, preferably two different brands of web browser.

2 Enter the following URL in both browsers:
 \texttt{http://localhost:8080/grizzly-comet-hidden/index.html}

3 When the first page loads in both browsers, click the button in one of the browsers and watch the count change in the other browser window.

Bayeux Protocol
The Bayeux protocol, often referred to as Cometd, greatly simplifies the use of Comet. No server-side coding is needed for servers such as GlassFish Server that support the Bayeux protocol. Just enable Comet and the Bayeux protocol, then write and deploy the client.

The following topics are addressed here:
- “Enabling Comet” on page 133
- “To Configure the web.xml File” on page 134
- “To Write, Deploy, and Run the Client” on page 134

Enabling Comet
Before running a Comet-enabled application, you need to enable Comet in the HTTP listener for your application by setting a special attribute in the associated protocol configuration. The following example shows the \texttt{asadmin set} command that adds this attribute:

\texttt{asadmin set server-config.network-config.protocols.protocol.http-1.http.comet-support-enabled="true"}

Substitute the name of the protocol for \texttt{http-1}.
To Configure the web.xml File

To enable the Bayeux protocol on the GlassFish Server, you must reference the CometdServlet in your web application’s web.xml file. In addition, if your web application includes a servlet, set the load-on-startup value for your servlet to 0 (zero) so that it will not load until the client makes a request to it.

1. Open the web.xml file for your web application in a text editor.

2. Add the following XML code to the web.xml file:

```xml
<servlet>
  <servlet-name>Grizzly Cometd Servlet</servlet-name>
  <servlet-class>com.sun.grizzly.cometd.servlet.CometdServlet</servlet-class>
  <init-param>
    <description>
      expirationDelay is the long delay before a request is resumed. -1 means never.
    </description>
    <param-name>expirationDelay</param-name>
    <param-value>-1</param-value>
  </init-param>
  <load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>
  <servlet-name>Grizzly Cometd Servlet</servlet-name>
  <url-pattern>/cometd/*</url-pattern>
</servlet-mapping>
```

Note that the load-on-startup value for the CometdServlet is 1.

3. If your web application includes a servlet, set the load-on-startup value to 0 for your servlet (not the CometdServlet) as follows:

```xml
<servlet>
  ...
  <load-on-startup>0</load-on-startup>
</servlet>
```


To Write, Deploy, and Run the Client

1. Add script tags to the HTML page. For example:

```html
<script type="text/javascript" src="chat.js"></script>
```

2. In the script, call the needed libraries. For example:

```javascript
dojo.require("dojo.io.cometd");
```
In the script, use `publish` and `subscribe` methods to send and receive messages. For example:

```java
cometd.subscribe("/chat/demo", false, room, "_chat");
cometd.publish("/chat/demo", { user: room._username, chat: text });
```

4. Deploy the web application as you would any other web application. For example:

```bash
asadmin deploy cometd-example.war
```

5. Run the application as you would any other web application.

The context root for the example chat application is `/cometd` and the HTML page is `index.html`. So the URL might look like this:

```text
http://localhost:8080/cometd/index.html
```

See Also

For more information about deployment in the GlassFish Server, see the *Oracle GlassFish Server 3.1 Application Deployment Guide*.

For more information about the Bayeux protocol, see Bayeux Protocol (http://svn.cometd.com/trunk/bayeux/bayeux.html).

For more information about the Dojo toolkit, see http://dojotoolkit.org/.

For information about REpresentational State Transfer (RESTful) web services and Comet, see RESTful Web Services and Comet (http://developers.sun.com/appserver/reference/techart/cometslideshow.html).

Advanced Web Application Features

The following topics are addressed here:

- "Internationalization Issues" on page 136
- "Virtual Server Properties" on page 137
- "ClassLoader Delegation" on page 137
- "Using the default-web.xml File" on page 138
- "Configuring Logging and Monitoring in the Web Container” on page 139
- "Configuring Idempotent URL Requests" on page 139
- "Header Management” on page 140
- "Configuring Valves and Catalina Listeners” on page 140
- "Alternate Document Roots” on page 140
- "Using a context.xml File” on page 142
- "Enabling WebDav” on page 143
- "Using SSI” on page 144
- "Using CGI” on page 145
Internationalization Issues

The following topics are addressed here:

- “The Server's Default Locale” on page 136
- “Servlet Character Encoding” on page 136

The Server's Default Locale

To set the default locale of the entire GlassFish Server, which determines the locale of the Administration Console, the logs, and so on, use the Administration Console. Select the domain component. Then type a value in the Locale field. For details, click the Help button in the Administration Console.

Servlet Character Encoding

This section explains how the GlassFish Server determines the character encoding for the servlet request and the servlet response. For encodings you can use, see http://download.oracle.com/javase/6/docs/technotes/guides/intl/encoding.doc.html.

ServletRequest

When processing a servlet request, the server uses the following order of precedence, first to last, to determine the request character encoding:

- The getCharacterEncoding method
- A hidden field in the form, specified by the form-hint-field attribute of the parameter-encoding element in the glassfish-web.xml file
- The default-charset attribute of the parameter-encoding element in the glassfish-web.xml file
- The default, which is ISO-8859-1

For details about the parameter-encoding element, see “parameter-encoding” in Oracle GlassFish Server 3.1 Application Deployment Guide.

ServletResponse

When processing a servlet response, the server uses the following order of precedence, first to last, to determine the response character encoding:

- The setCharacterEncoding or setContentType method
- The setLocale method
- The default, which is ISO-8859-1
Virtual Server Properties

You can set virtual server properties in the following ways:

- You can define virtual server properties using the `asadmin create-virtual-server` command. For example:
  ```
  asadmin create-virtual-server --hosts localhost --property authRealm=ldap MyVS
  ```
 For details and a complete list of virtual server properties, see `create-virtual-server(1)`.

- You can define virtual server properties using the `asadmin set` command. For example:
  ```
  asadmin set server-config.http-service.virtual-server.MyVS.property.authRealm="ldap"
  ```
 For details, see `set(1)`.

- You can define virtual server properties using the Administration Console. Select the HTTP Service component under the relevant configuration, select Virtual Servers, and select the desired virtual server. Select Add Property, enter the property name and value, check the enable box, and select Save. For details and a complete list of virtual server properties, click the Help button in the Administration Console.

Some virtual server properties can be set for a specific web application. For details, see "glassfish-web-app" in Oracle GlassFish Server 3.1 Application Deployment Guide.

Class Loader Delegation

The Servlet specification recommends that a web application class loader look in the local class loader before delegating to its parent. To make the web application class loader follow the delegation model in the Servlet specification, set `delegate=false` in the `class-loader` element of the `glassfish-web.xml` file. It's safe to do this only for a web module that does not interact with any other modules.

The default value is `delegate=true`, which causes the web application class loader to delegate in the same manner as the other class loaders. Use `delegate=true` for a web application that accesses EJB components or that acts as a web service client or endpoint. For details about `glassfish-web.xml`, see Oracle GlassFish Server 3.1 Application Deployment Guide.

For a number of packages, including `java.*` and `javax.*`, symbol resolution is always delegated to the parent class loader regardless of the `delegate` setting. This prevents applications from overriding core Java runtime classes or changing the API versions of specifications that are part of the Java EE platform.

For general information about class loaders, see Chapter 2, “Class Loaders.”
Using the `default-web.xml` File

You can use the `default-web.xml` file to define features such as filters and security constraints that apply to all web applications.

For example, directory listings are disabled by default for added security. To enable directory listings, in your domain’s `default-web.xml` file, search for the definition of the servlet whose `servlet-name` is equal to `default`, and set the value of the `init-param` named `listings` to `true`. Then redeploy your web application if it has already been deployed, or restart the server.

```xml
<init-param>
  <param-name>listings</param-name>
  <param-value>true</param-value>
</init-param>
```

If `listings` is set to `true`, you can also determine how directory listings are sorted. Set the value of the `init-param` named `sortedBy` to `NAME`, `SIZE`, or `LAST_MODIFIED`. Then redeploy your web application if it has already been deployed, or restart the server.

```xml
<init-param>
  <param-name>sortedBy</param-name>
  <param-value>LAST_MODIFIED</param-value>
</init-param>
```

The `mime-mapping` elements in `default-web.xml` are global and inherited by all web applications. You can override these mappings or define your own using `mime-mapping` elements in your web application’s `web.xml` file. For more information about `mime-mapping` elements, see the Servlet specification.

You can use the Administration Console to edit the `default-web.xml` file. For details, click the Help button in the Administration Console. As an alternative, you can edit the file directly using the following steps.

▼ To Use the `default-web.xml` File

1. Place the JAR file for the filter, security constraint, or other feature in the `domain-dir/lib` directory.

2. Edit the `domain-dir/config/default-web.xml` file to refer to the JAR file.

3. Restart the server.
Configuring Logging and Monitoring in the Web Container

For information about configuring logging and monitoring in the web container using the Administration Console, click the Help button in the Administration Console. Select Logger Settings under the relevant configuration, or select the Stand-Alone Instances component, select the instance from the table, and select the Monitor tab.

Configuring Idempotent URL Requests

An idempotent request is one that does not cause any change or inconsistency in an application when retried. To enhance the availability of your applications deployed on an GlassFish Server cluster, configure the load balancer to retry failed idempotent HTTP requests on all the GlassFish Server instances in a cluster. This option can be used for read-only requests, for example, to retry a search request.

The following topics are addressed here:

- “Specifying an Idempotent URL” on page 139
- “Characteristics of an Idempotent URL” on page 139

Specifying an Idempotent URL

To configure idempotent URL response, specify the URLs that can be safely retried in idempotent-url-pattern elements in the glassfish-web.xml file. For example:

```
<idempotent-url-pattern url-pattern="sun_java/*" no-of-retries="10"/>
```

For details, see "idempotent-url-pattern" in Oracle GlassFish Server 3.1 Application Deployment Guide.

If none of the server instances can successfully serve the request, an error page is returned.

Characteristics of an Idempotent URL

Since all requests for a given session are sent to the same application server instance, and if that GlassFish Server instance is unreachable, the load balancer returns an error message. Normally, the request is not retried on another GlassFish Server instance. However, if the URL pattern matches that specified in the glassfish-web.xml file, the request is implicitly retried on another GlassFish Server instance in the cluster.

In HTTP, some methods (such as GET) are idempotent, while other methods (such as POST) are not. In effect, retrying an idempotent URL should not cause values to change on the server or in the database. The only difference should be a change in the response received by the user.

Examples of idempotent requests include search engine queries and database queries. The underlying principle is that the retry does not cause an update or modification of data.
A search engine, for example, sends HTTP requests with the same URL pattern to the load balancer. Specifying the URL pattern of the search request to the load balancer ensures that HTTP requests with the specified URL pattern are implicitly retried on another GlassFish Server instance.

For example, if the request URL sent to the GlassFish Server is of the type `/search/something.html`, then the URL pattern can be specified as `/search/*`.

Examples of non-idempotent requests include banking transactions and online shopping. If you retry such requests, money might be transferred twice from your account.

Header Management

In all Editions of the GlassFish Server, the `Enumeration` from `request.getHeaders()` contains multiple elements (one element per request header) instead of a single, aggregated value.

The header names used in `HttpServletResponse.addXXXHeader()` and `HttpServletResponse.setXXXHeader()` are returned as they were created.

Configuring Valves and Catalina Listeners

You can configure custom valves and Catalina listeners for web modules or virtual servers by defining properties. A valve class must implement the `org.apache.catalina.Valve` interface from Tomcat or previous GlassFish Server releases, or the `org.glassfish.web.valve.GlassFishValve` interface from the current GlassFish Server release. A listener class for a virtual server must implement the `org.apache.catalina.ContainerListener` or `org.apache.catalina.LifecycleListener` interface. A listener class for a web module must implement the `org.apache.catalina.ContainerListener`, `org.apache.catalina.LifecycleListener`, or `org.apache.catalina.InstanceListener` interface.

In the `glassfish-web.xml` file, valve and listener properties for a web module look like this:

```
<glassfish-web-app ...>
  ...
  <property name="valve_1" value="org.glassfish.extension.Valve"/>
  <property name="listener_1" value="org.glassfish.extension.MyLifecycleListener"/>
</glassfish-web-app>
```

You can define these same properties for a virtual server. For more information, see “Virtual Server Properties” on page 137.

Alternate Document Roots

An alternate document root (docroot) allows a web application to serve requests for certain resources from outside its own docroot, based on whether those requests match one (or more) of the URI patterns of the web application’s alternate docroots.
To specify an alternate docroot for a web application or a virtual server, use the `alternatedocroot_n` property, where \(n \) is a positive integer that allows specification of more than one. This property can be a subelement of a `glassfish-web-app` element in the `glassfish-web.xml` file or a virtual server property. For more information about these elements, see “`glassfish-web-app`” in Oracle GlassFish Server 3.1 Application Deployment Guide or.

A virtual server’s alternate docroots are considered only if a request does not map to any of the web modules deployed on that virtual server. A web module’s alternate docroots are considered only once a request has been mapped to that web module.

If a request matches an alternate docroot’s URI pattern, it is mapped to the alternate docroot by appending the request URI (minus the web application’s context root) to the alternate docroot’s physical location (directory). If a request matches multiple URI patterns, the alternate docroot is determined according to the following precedence order:

- Exact match
- Longest path match
- Extension match

For example, the following properties specify three `glassfish-web.xml` docroots. The URI pattern of the first alternate docroot uses an exact match, whereas the URI patterns of the second and third alternate docroots use extension and longest path prefix matches, respectively.

```xml
<property name="alternatedocroot_1" value="from=/my.jpg dir=/srv/images/jpg"/>
<property name="alternatedocroot_2" value="from=*.jpg dir=/srv/images/jpg"/>
<property name="alternatedocroot_3" value="from=/jpg/* dir=/src/images"/>
```

The value of each alternate docroot has two components: The first component, `from`, specifies the alternate docroot’s URI pattern, and the second component, `dir`, specifies the alternate docroot’s physical location (directory).

Suppose the above examples belong to a web application deployed at `http://company22.com/myapp`. The first alternate docroot maps any requests with this URL:

`http://company22.com/myapp/my.jpg`

To this resource:

`/srv/images/jpg/my.jpg`

The second alternate docroot maps any requests with a `*.jpg` suffix, such as:

`http://company22.com/myapp/*.jpg`

To this physical location:

`/srv/images/jpg`
The third alternate docroot maps any requests whose URI starts with /myapp/jpg/, such as:

http://company22.com/myapp/jpg/*

To the same directory as the second alternate docroot.

For example, the second alternate docroot maps this request:

http://company22.com/myapp/abc/def/my.jpg

To:

/srv/images/jpg/abc/def/my.jpg

The third alternate docroot maps:

http://company22.com/myapp/jpg/abc/resource

To:

/srv/images/jpg/abc/resource

If a request does not match any of the target web application’s alternate docroots, or if the target web application does not specify any alternate docroots, the request is served from the web application’s standard docroot, as usual.

Using a context.xml File

You can define a context.xml file for all web applications, for web applications assigned to a specific virtual server, or for a specific web application.

To define a global context.xml file, place the file in the domain-dir/config directory and name it context.xml.

Use the contextXmlDefault property to specify the name and the location, relative to domain-dir, of the context.xml file for a specific virtual server. Specify this property in one of the following ways:

- In the Administration Console, open the HTTP Service component under the relevant configuration. Open the Virtual Servers component and scroll down to the bottom of the page. Enter contextXmlDefault as the property name and the path and file name relative to domain-dir as the property value.
- Use the asadmin create-virtual-server command. For example:

 asadmin create-virtual-server --property contextXmlDefault=config/vslctx.xml vs1
- Use the asadmin set command for an existing virtual server. For example:

 asadmin set server-config.http-service.virtual-server.vs1.property.contextXmlDefault=config/myctx.xml
To define a context.xml file for a specific web application, place the file in the META-INF directory and name it context.xml.

For more information about virtual server properties, see "Virtual Server Properties" on page 137. For more information about the context.xml file, see The Context Container (http://tomcat.apache.org/tomcat-5.5-doc/config/context.html). Context parameters, environment entries, and resource definitions in context.xml are supported in the GlassFish Server.

Enabling WebDav

To enable WebDav in the GlassFish Server, you edit the web.xml and glassfish-web.xml files as follows.

First, enable the WebDav servlet in your web.xml file:

```xml
<servlet>
    <servlet-name>webdav</servlet-name>
    <servlet-class>org.apache.catalina.servlets.WebdavServlet</servlet-class>
    <init-param>
        <param-name>debug</param-name>
        <param-value>0</param-value>
    </init-param>
    <init-param>
        <param-name>listings</param-name>
        <param-value>true</param-value>
    </init-param>
    <init-param>
        <param-name>readonly</param-name>
        <param-value>false</param-value>
    </init-param>
</servlet>
```

Then define the servlet mapping associated with your WebDav servlet in your web.xml file:

```xml
<servlet-mapping>
    <servlet-name>webdav</servlet-name>
    <url-pattern>/webdav/*</url-pattern>
</servlet-mapping>
```

To protect the WebDav servlet so other users can’t modify it, add a security constraint in your web.xml file:

```xml
<security-constraint>
    <web-resource-collection>
        <web-resource-name>Login Resources</web-resource-name>
        <url-pattern>/webdav/*</url-pattern>
    </web-resource-collection>
    <auth-constraint>
        <role-name>Admin</role-name>
    </auth-constraint>
</security-constraint>
```
Then define a security role mapping in your glassfish-web.xml file:

<security-role-mapping>
 <role-name>Admin</role-name>
 <group-name>Admin</group-name>
</security-role-mapping>

If you are using the file realm, create a user and password. For example:

asadmin create-file-user --groups Admin --authrealmname default admin

Enable the security manager as described in "Enabling and Disabling the Security Manager" on page 61.

You can now use any WebDav client by connecting to the WebDav servlet URL, which has this format:

http://host:port/context-root/webdav/file

For example:

You can add the WebDav servlet to your default-web.xml file to enable it for all applications, but you can’t set up a security role mapping to protect it.

Using SSI

To enable SSI (server-side includes) processing for a specific web module, add the SSIServlet to your web .xml file as follows:

<web-app>
 <servlet>
 <servlet-name>ssi</servlet-name>
 <servlet-class>org.apache.catalina.ssi.SSIServlet</servlet-class>
 </servlet>
 ...
 <servlet-mapping>
 <servlet-name>ssi</servlet-name>
 </servlet-mapping>
</web-app>
To enable SSI processing for all web modules, un-comment the corresponding sections in the default-web.xml file.

If the mime-mapping is not specified in web.xml, GlassFish Server attempts to determine the MIME type from default-web.xml or the operating system default.

You can configure the following init-param values for the SSIServlet.

TABLE 7-4 SSIServlet init-param Values

<table>
<thead>
<tr>
<th>init-param</th>
<th>Type</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>buffered</td>
<td>boolean</td>
<td>false</td>
<td>Specifies whether the output should be buffered.</td>
</tr>
<tr>
<td>debug</td>
<td>int</td>
<td>0 (for no debugging)</td>
<td>Specifies the debugging level.</td>
</tr>
<tr>
<td>expires</td>
<td>Long</td>
<td>Expires header in HTTP response not set</td>
<td>Specifies the expiration time in seconds.</td>
</tr>
<tr>
<td>inputEncoding</td>
<td>String</td>
<td>operating system encoding</td>
<td>Specifies encoding for the SSI input if there is no URL content encoding specified.</td>
</tr>
<tr>
<td>isVirtualWebappRelative</td>
<td>boolean</td>
<td>false (relative to the given SSI file)</td>
<td>Specifies whether the virtual path of the #include directive is relative to the content-root.</td>
</tr>
<tr>
<td>outputEncoding</td>
<td>String</td>
<td>UTF-8</td>
<td>Specifies encoding for the SSI output.</td>
</tr>
</tbody>
</table>

For more information about SSI, see http://httpd.apache.org/docs/2.2/mod/mod_include.html.

Using CGI

To enable CGI (common gateway interface) processing for a specific web module, add the CGIServlet to your web.xml file as follows:

```xml
<web-app>
  <servlet>
    <servlet-name>cgi</servlet-name>
  </servlet>
</web-app>
```
To enable CGI processing for all web modules, un-comment the corresponding sections in the default-web.xml file.

Package the CGI program under the cgiPathPrefix. The default cgiPathPrefix is WEB-INF/cgi. For security, it is highly recommended that the contents and binaries of CGI programs be prohibited from direct viewing or download. For information about hiding directory listings, see "Using the default-web.xml File" on page 138.

Invoke the CGI program using a URL of the following format:

http://host:8080/context-root/cgi-bin/cgi-name

For example:

http://localhost:8080/mycontext/cgi-bin/hello

You can configure the following init-param values for the CGIServlet.

TABLE 7-5 CGIServlet init-param Values

<table>
<thead>
<tr>
<th>Init-param</th>
<th>Type</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cgiPathPrefix</td>
<td>String</td>
<td>WEB-INF/cgi</td>
<td>Specifies the subdirectory containing the CGI programs.</td>
</tr>
<tr>
<td>debug</td>
<td>int</td>
<td>0 (for no debugging)</td>
<td>Specifies the debugging level.</td>
</tr>
<tr>
<td>executable</td>
<td>String</td>
<td>perl</td>
<td>Specifies the executable for running the CGI script.</td>
</tr>
<tr>
<td>parameterEncoding</td>
<td>String</td>
<td>System.getProperty("file.encoding", "UTF-8")</td>
<td>Specifies the parameter’s encoding.</td>
</tr>
<tr>
<td>passShellEnvironment</td>
<td>boolean</td>
<td>false</td>
<td>Specifies whether to pass shell environment properties to the CGI program.</td>
</tr>
</tbody>
</table>

To work with a native executable, do the following:

1. Set the value of the init-param named executable to an empty String in the web.xml file.
2. Make sure the executable has its executable bits set correctly.
3. Use directory deployment to deploy the web module. Do not deploy it as a WAR file, because the executable bit information is lost during the process of `jar` and `unjar`. For more information about directory deployment, see the *Oracle GlassFish Server 3.1 Application Deployment Guide*.
Using Enterprise JavaBeans Technology

This chapter describes how Enterprise JavaBeans (EJB) technology is supported in the Oracle GlassFish Server.

The following topics are addressed here:

- "Value Added Features" on page 149
- "EJB Timer Service" on page 153
- "Using Session Beans" on page 156
- "Using Read-Only Beans" on page 163
- "Using Message-Driven Beans" on page 167

For general information about enterprise beans, see Part IV, “Enterprise Beans,” in The Java EE 6 Tutorial.

Note – The Web Profile of the GlassFish Server supports the EJB 3.1 Lite specification, which allows enterprise beans within web applications, among other features. The full GlassFish Server supports the entire EJB 3.1 specification. For details, see JSR 318 (http://jcp.org/en/jsr/detail?id=318).

The GlassFish Server is backward compatible with 1.1, 2.0, 2.1, and 3.0 enterprise beans. However, to take advantage of version 3.1 features, you should develop new beans as 3.1 enterprise beans.

Value Added Features

The GlassFish Server provides a number of value additions that relate to EJB development. References to more in-depth material are included.
The following topics are addressed here:

- "Read-Only Beans" on page 150
- "The pass-by-reference Element" on page 150
- "Pooling and Caching" on page 151
- "Priority Based Scheduling of Remote Bean Invocations" on page 152
- "Immediate Flushing" on page 152

Read-Only Beans

Another feature that the GlassFish Server provides is the read-only bean, an EJB 2.1 entity bean that is never modified by an EJB client. Read-only beans avoid database updates completely.

Note – Read-only beans are specific to the GlassFish Server and are not part of the Enterprise JavaBeans Specification, v2.1. Use of this feature for an EJB 2.1 bean results in a non-portable application.

To make an EJB 3.0 entity read-only, use @Column annotations to mark its columns insertable=false and updatable=false.

A read-only bean can be used to cache a database entry that is frequently accessed but rarely updated (externally by other beans). When the data that is cached by a read-only bean is updated by another bean, the read-only bean can be notified to refresh its cached data.

The GlassFish Server provides a number of ways by which a read-only bean’s state can be refreshed. By setting the refresh-period-in-seconds element in the glassfish-ejb-jar.xml file and the trans-attribute element (or @TransactionAttribute annotation) in the ejb-jar.xml file, it is easy to configure a read-only bean that is one of the following:

- Always refreshed
- Periodically refreshed
- Never refreshed
- Programmatically refreshed

Read-only beans are best suited for situations where the underlying data never changes, or changes infrequently. For further information and usage guidelines, see “Using Read-Only Beans” on page 163.

The pass-by-reference Element

The pass-by-reference element in the glassfish-ejb-jar.xml file allows you to specify the parameter passing semantics for colocated remote EJB invocations. This is an opportunity to improve performance. However, use of this feature results in non-portable applications. See "pass-by-reference" in *Oracle GlassFish Server 3.1 Application Deployment Guide*.
Pooling and Caching

The EJB container of the GlassFish Server pools anonymous instances (message-driven beans, stateless session beans, and entity beans) to reduce the overhead of creating and destroying objects. The EJB container maintains the free pool for each bean that is deployed. Bean instances in the free pool have no identity (that is, no primary key associated) and are used to serve method calls. The free beans are also used to serve all methods for stateless session beans.

Bean instances in the free pool transition from a Pool state to a Cached state after ejbCreate and the business methods run. The size and behavior of each pool is controlled using pool-related properties in the EJB container or the glassfish-ejb-jar.xml file.

In addition, the GlassFish Server supports a number of tunable parameters that can control the number of “stateful” instances (stateful session beans and entity beans) cached as well as the duration they are cached. Multiple bean instances that refer to the same database row in a table can be cached. The EJB container maintains a cache for each bean that is deployed.

To achieve scalability, the container selectively evicts some bean instances from the cache, usually when cache overflows. These evicted bean instances return to the free bean pool. The size and behavior of each cache can be controlled using the cache-related properties in the EJB container or the glassfish-ejb-jar.xml file.

Pooling and caching parameters for the glassfish-ejb-jar.xml file are described in "bean-cache" in Oracle GlassFish Server 3.1 Application Deployment Guide.

Pooling Parameters

One of the most important parameters for GlassFish Server pooling is steady-pool-size. When steady-pool-size is set to a value greater than 0, the container not only pre-populates the bean pool with the specified number of beans, but also attempts to ensure that this number of beans is always available in the free pool. This ensures that there are enough beans in the ready-to-serve state to process user requests.

Note that the steady-pool-size and max-pool-size parameters only govern the number of instances that are pooled over a long period of time. They do not necessarily guarantee that the number of instances that may exist in the JVM at a given time will not exceed the value specified by max-pool-size. For example, suppose an idle stateless session container has a fully-populated pool with a steady-pool-size of 10. If 20 concurrent requests arrive for the EJB component, the container creates 10 additional instances to satisfy the burst of requests. The advantage of this is that it prevents the container from blocking any of the incoming requests. However, if the activity dies down to 10 or fewer concurrent requests, the additional 10 instances are discarded.

Another parameter, pool-idle-timeout-in-seconds, allows the administrator to specify the amount of time a bean instance can be idle in the pool. When pool-idle-timeout-in-seconds is set to greater than 0, the container removes or destroys any bean instance that is idle for this specified duration.
Caching Parameters

GlassFish Server provides a way that completely avoids caching of entity beans, using commit option C. Commit option C is particularly useful if beans are accessed in large number but very rarely reused. For additional information, refer to “Commit Options” on page 269.

The GlassFish Server caches can be either bounded or unbounded. Bounded caches have limits on the number of beans that they can hold beyond which beans are passivated. For stateful session beans, there are three ways (LRU, NRU and FIFO) of picking victim beans when cache overflow occurs. Caches can also passivate beans that are idle (not accessed for a specified duration).

Priority Based Scheduling of Remote Bean Invocations

You can create multiple thread pools, each having its own work queues. An optional element in the glassfish-ejb-jar.xml file, use-thread-pool-id, specifies the thread pool that processes the requests for the bean. The bean must have a remote interface, or use-thread-pool-id is ignored. You can create different thread pools and specify the appropriate thread pool ID for a bean that requires a quick response time. If there is no such thread pool configured or if the element is absent, the default thread pool is used.

Immediate Flushing

Normally, all entity bean updates within a transaction are batched and executed at the end of the transaction. The only exception is the database flush that precedes execution of a finder or select query.

Since a transaction often spans many method calls, you might want to find out if the updates made by a method succeeded or failed immediately after method execution. To force a flush at the end of a method’s execution, use the flush-at-end-of-method element in the glassfish-ejb-jar.xml file. Only non-finder methods in an entity bean can be flush-enabled. (For an EJB 2.1 bean, these methods must be in the Local, Local Home, Remote, or Remote Home interface.) See "flush-at-end-of-method" in Oracle GlassFish Server 3.1 Application Deployment Guide.

Upon completion of the method, the EJB container updates the database. Any exception thrown by the underlying data store is wrapped as follows:

- If the method that triggered the flush is a create method, the exception is wrapped with CreateException.
- If the method that triggered the flush is a remove method, the exception is wrapped with RemoveException.
- For all other methods, the exception is wrapped with EJBJException.
All normal end-of-transaction database synchronization steps occur regardless of whether the database has been flushed during the transaction.

EJB Timer Service

The EJB Timer Service uses a database to store persistent information about EJB timers. The EJB Timer Service in GlassFish Server is preconfigured to use an embedded version of the Java DB database.

The EJB Timer Service configuration can store persistent timer information in any database supported by the GlassFish Server for persistence. For a list of the JDBC drivers currently supported by the GlassFish Server, see the Oracle GlassFish Server 3.1-3.1.1 Release Notes. For configurations of supported and other drivers, see “Configuration Specifics for JDBC Drivers” in Oracle GlassFish Server 3.1 Administration Guide.

The timer service is automatically enabled when you deploy an application or module that uses it. You can verify that the timer service is running by accessing the following URL:

http://localhost:8080/ejb-timer-service-app/timer

To change the database used by the EJB Timer Service, set the EJB Timer Service's Timer DataSource setting to a valid JDBC resource. If the EJB Timer Service has already been started in a server instance, you must also create the timer database table. DDL files are located in as-install/lib/install/databases.

Using the EJB Timer Service is equivalent to interacting with a single JDBC resource manager. If an EJB component or application accesses a database either directly through JDBC or indirectly (for example, through an entity bean's persistence mechanism), and also interacts with the EJB Timer Service, its data source must be configured with an XA JDBC driver.

You can change the following EJB Timer Service settings. You must restart the server for the changes to take effect.

Minimum Delivery Interval
 Specifies the minimum time in milliseconds before an expiration for a particular timer can occur. This guards against extremely small timer increments that can overload the server. The default is 1000.

Maximum Redeliveries
 Specifies the maximum number of times the EJB timer service attempts to redeliver a timer expiration after an exception or rollback of a container-managed transaction. The default is 1.

Redelivery Interval
 Specifies how long in milliseconds the EJB timer service waits after a failed ejbTimeout delivery before attempting a redelivery. The default is 5000.
Timer DataSource

Specifies the database used by the EJB Timer Service. The default is jdbc/_TimerPool.

Caution – Do not use the jdbc/_TimerPool resource for timers in clustered GlassFish Server environments. You must instead use a custom JDBC resource or the jdbc/_default resource. See the instructions below, in “To Deploy an EJB Timer to a Cluster” on page 154. Also refer to “Enabling the jdbc/_default Resource in a Clustered Environment” in Oracle GlassFish Server 3.1 Administration Guide.

For information about the asadmin list-timers and asadmin migrate-timers subcommands, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual. For information about migrating EJB timers, see “Migrating EJB Timers” in Oracle GlassFish Server 3.1-3.1.1 High Availability Administration Guide.

You can use the - -keepstate option of the asadmin redeploy command to retain EJB timers between redeployments.

The default for - -keepstate is false. This option is supported only on the default server instance, named server. It is not supported and ignored for any other target.

When the - -keepstate is set to true, each application that uses an EJB timer is assigned an ID in the timer database. The EJB object that is associated with a given application is assigned an ID that is constructed from the application ID and a numerical suffix. To preserve active timer data, GlassFish Server stores the application ID and the EJB ID in the timer database. To restore the data, the class loader of the newly redeployed application retrieves the EJB timers that correspond to these IDs from the timer database.

For more information about the asadmin redeploy command, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

To Deploy an EJB Timer to a Cluster

This procedure explains how to deploy an EJB timer to a cluster.

By default, the GlassFish Server 3.1 timer service points to the preconfigured jdbc/_TimerPool resource, which uses an embedded Java DB (Derby) database configuration that will not work in clustered environments.

The problem is that embedded Java DB runs in the GlassFish Server Java VM, so when you use the jdbc/_TimerPool resource, each DAS and each clustered server instance will have its own database table. Because of this, clustered server instances will not be able to find the database table on the DAS, and the DAS will not be able to find the tables on the clustered server instances.
The solution is to use either a custom JDBC resource or the jdbc/__default resource that is preconfigured but not enabled by default in GlassFish Server. The jdbc/__default resource does not use embedded Java DB by default.

Before You Begin
If creating a new timer resource, the resource should be created before deploying applications that will use the timer.

Caution – Do not use the jdbc/__TimerPool resource for timers in clustered GlassFish Server environments. You must instead use a custom JDBC resource or the jdbc/__default resource. See “Enabling the jdbc/__default Resource in a Clustered Environment” in Oracle GlassFish Server 3.1 Administration Guide.

1 Execute the following command:
 asadmin set configs.config.cluster_name-config.ejb-container.ejb-timer-service.timer-datasource=jdbc/my-timer-resource

2 Restart the DAS and the target cluster(s).
 asadmin stop-cluster cluster-name
 asadmin stop-domain domain-name
 asadmin start-domain domain-name
 asadmin start-cluster cluster-name

Troubleshooting
If you inadvertently used the jdbc/__TimerPool resource for your EJB timer in a clustered GlassFish Server environment, the DAS and the clustered server instances will be using separate Java DB database tables that are running in individual Java VMs. For timers to work in a clustered environment, the DAS and the clustered server instances must share a common database table.

If you attempt to deploy an application with EJB timers without setting the timer resource correctly, the startup will fail, and you will be left with a marker file, named ejb-timer-service-app, on the DAS that will prevent the Timer Service from correctly creating the database table.

The solution is to remove the marker file on the DAS, restart the DAS and the clusters, and then redploy any applications that rely on the offending EJB timer. The marker file is located on the DAS in as-install-parent/glassfish/domains/domain-name/generated/ejb/ ejb-timer-service-app.
Using Session Beans

This section provides guidelines for creating session beans in the GlassFish Server environment.

The following topics are addressed here:

- “About the Session Bean Containers” on page 156
- "Stateful Session Bean Failover” on page 157
- “Session Bean Restrictions and Optimizations” on page 162

About the Session Bean Containers

Like an entity bean, a session bean can access a database through Java Database Connectivity (JDBC) calls. A session bean can also provide transaction settings. These transaction settings and JDBC calls are referenced by the session bean’s container, allowing it to participate in transactions managed by the container.

A container managing stateless session beans has a different charter from a container managing stateful session beans.

The following topics are addressed here:

- "Stateless Container” on page 156
- "Stateful Container” on page 157

Stateless Container

The stateless container manages stateless session beans, which, by definition, do not carry client-specific states. All session beans (of a particular type) are considered equal.

A stateless session bean container uses a bean pool to service requests. The GlassFish Server specific deployment descriptor file, glassfish-ejb-jar.xml, contains the properties that define the pool:

- steady-pool-size
- resize-quantity
- max-pool-size
- pool-idle-timeout-in-seconds

For more information about glassfish-ejb-jar.xml, see “The glassfish-ejb-jar.xml File” in Oracle GlassFish Server 3.1 Application Deployment Guide.

The GlassFish Server provides the ws compile and ws deploy tools to help you implement a web service endpoint as a stateless session bean. For more information about these tools, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.
Stateful Container

The stateful container manages the stateful session beans, which, by definition, carry the client-specific state. There is a one-to-one relationship between the client and the stateful session beans. At creation, each stateful session bean (SFSB) is given a unique session ID that is used to access the session bean so that an instance of a stateful session bean is accessed by a single client only.

Stateful session beans are managed using cache. The size and behavior of stateful session beans cache are controlled by specifying the following glassfish-ejb-jar.xml parameters:

- max-cache-size
- resize-quantity
- cache-idle-timeout-in-seconds
- removal-timeout-in-seconds
- victim-selection-policy

The max-cache-size element specifies the maximum number of session beans that are held in cache. If the cache overflows (when the number of beans exceeds max-cache-size), the container then passivates some beans or writes out the serialized state of the bean into a file. The directory in which the file is created is obtained from the EJB container using the configuration APIs.

For more information about glassfish-ejb-jar.xml, see “The glassfish-ejb-jar.xml File” in Oracle GlassFish Server 3.1 Application Deployment Guide.

The passivated beans are stored on the file system. The Session Store Location setting in the EJB container allows the administrator to specify the directory where passivated beans are stored. By default, passivated stateful session beans are stored in application-specific subdirectories created under domain-dir/session-store.

Note – Make sure the delete option is set in the server.policy file, or expired file-based sessions might not be deleted properly. For more information about server.policy, see “The server.policy File” on page 58.

The Session Store Location setting also determines where the session state is persisted if it is not highly available; see “Choosing a Persistence Store” on page 159.

Stateful Session Bean Failover

An SFSB’s state can be saved in a persistent store in case a server instance fails. The state of an SFSB is saved to the persistent store at predefined points in its life cycle. This is called checkpointing. If SFSB checkpointing is enabled, checkpointing generally occurs after any transaction involving the SFSB is completed, even if the transaction rolls back.
However, if an SFSB participates in a bean-managed transaction, the transaction might be committed in the middle of the execution of a bean method. Since the bean’s state might be undergoing transition as a result of the method invocation, this is not an appropriate instant to checkpoint the bean’s state. In this case, the EJB container checkpoints the bean’s state at the end of the corresponding method, provided the bean is not in the scope of another transaction when that method ends. If a bean-managed transaction spans across multiple methods, checkpointing is delayed until there is no active transaction at the end of a subsequent method.

The state of an SFSB is not necessarily transactional and might be significantly modified as a result of non-transactional business methods. If this is the case for an SFSB, you can specify a list of checkpointed methods. If SFSB checkpointing is enabled, checkpointing occurs after any checkpointed methods are completed.

The following table lists the types of references that SFSB failover supports. All objects bound into an SFSB must be one of the supported types. In the table, No indicates that failover for the object type might not work in all cases and that no failover support is provided. However, failover might work in some cases for that object type. For example, failover might work because the class implementing that type is serializable.

<table>
<thead>
<tr>
<th>Java Object Type</th>
<th>Failover Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colocated or distributed stateless session, stateful session, or entity bean reference</td>
<td>Yes</td>
</tr>
<tr>
<td>JNDI context</td>
<td>Yes, InitialContext and java:comp/env</td>
</tr>
<tr>
<td>UserTransaction</td>
<td>Yes, but if the instance that fails is never restarted, any prepared global transactions are lost and might not be correctly rolled back or committed.</td>
</tr>
<tr>
<td>JDBC DataSource</td>
<td>No</td>
</tr>
<tr>
<td>Java Message Service (JMS) ConnectionFactory, Destination</td>
<td>No</td>
</tr>
<tr>
<td>JavaMail Session</td>
<td>No</td>
</tr>
<tr>
<td>Connection Factory</td>
<td>No</td>
</tr>
<tr>
<td>Administered Object</td>
<td>No</td>
</tr>
<tr>
<td>Web service reference</td>
<td>No</td>
</tr>
<tr>
<td>Serializable Java types</td>
<td>Yes</td>
</tr>
<tr>
<td>Extended persistence context</td>
<td>No</td>
</tr>
</tbody>
</table>
For more information about the InitialContext, see “Accessing the Naming Context” on page 273. For more information about transaction recovery, see Chapter 15, “Using the Transaction Service.” For more information about Administered Objects, see “Administering JMS Physical Destinations” in Oracle GlassFish Server 3.1 Administration Guide.

Note – Idempotent URLs are supported along the HTTP path, but not the RMI-IIOP path. For more information, see “Configuring Idempotent URL Requests” on page 139.

If a server instance to which an RMI-IIOP client request is sent crashes during the request processing (before the response is prepared and sent back to the client), an error is sent to the client. The client must retry the request explicitly. When the client retries the request, the request is sent to another server instance in the cluster, which retrieves session state information for this client.

HTTP sessions can also be saved in a persistent store in case a server instance fails. In addition, if a distributable web application references an SFSB, and the web application’s session fails over, the EJB reference is also failed over. For more information, see “Distributed Sessions and Persistence” on page 116.

If an SFSB that uses session persistence is undeployed while the GlassFish Server instance is stopped, the session data in the persistence store might not be cleared. To prevent this, undeploy the SFSB while the GlassFish Server instance is running.

Configure SFSB failover by:
- “Choosing a Persistence Store” on page 159
- “Enabling Checkpointing” on page 161
- “Specifying Methods to Be Checkpointed” on page 161

Choosing a Persistence Store

The following types of persistent storage are supported for passivation and checkpointing of the SFSB state:

- **The local file system** - Allows a single server instance to recover the SFSB state after a failure and restart. This store also provides passivation and activation of the state to help control the amount of memory used. This option is not supported in a production environment that requires SFSB state persistence. This is the default storage mechanism if availability is not enabled.

- **Other servers** - Uses other server instances in the cluster for session persistence. Clustered server instances replicate session state. Each backup instance stores the replicated data in memory. This is the default storage mechanism if availability is enabled.
Choose the persistence store in one of the following ways:

- To use the local file system, first disable availability. Select the Availability Service component under the relevant configuration in the Administration Console. Uncheck the Availability Service box. Then select the EJB Container component and edit the Session Store Location value. The default is `domain-dir/session-store`.

- To use other servers, select the Availability Service component under the relevant configuration in the Administration Console. Check the Availability Service box. To enable availability for the EJB container, select the EJB Container Availability tab, then check the Availability Service box. All instances in an GlassFish Server cluster should have the same availability settings to ensure consistent behavior.

For more information about SFSB state persistence, see the Oracle GlassFish Server 3.1-3.1.1 High Availability Administration Guide.

Using the --keepstate Option

If you are using the file system for persistence, you can use the `--keepstate` option of the `asadmin redeploy` command to retain the SFSB state between redeployments.

The default for `--keepstate` is false. This option is supported only on the default server instance, named `server`. It is not supported and ignored for any other target.

Some changes to an application between redeployments prevent this feature from working properly. For example, do not change the set of instance variables in the SFSB bean class.

If any active SFSB instance fails to be preserved or restored, `none` of the SFSB instances will be available when the redeployment is complete. However, the redeployment continues and a warning is logged.

To preserve active state data, GlassFish Server serializes the data and saves it in memory. To restore the data, the class loader of the newly redeployed application deserializes the data that was previously saved.

For more information about the `asadmin redeploy` command, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

Using the --asyncreplication Option

If you are using replication on other servers for persistence, you can use the `--asyncreplication` option of the `asadmin deploy` command to specify that SFSB states are first buffered and then replicated using a separate asynchronous thread. If `--asyncreplication` is set to true (default), performance is improved but availability is reduced. If the instance where states are buffered but not yet replicated fails, the states are lost. If set to false, performance is reduced but availability is guaranteed. States are not buffered but immediately transmitted to other instances in the cluster.
For more information about the `asadmin deploy` command, see the *Oracle GlassFish Server 3.1-3.1.1 Reference Manual*.

Enabling Checkpointing

The following sections describe how to enable SFSB checkpointing:

- "Server Instance and EJB Container Levels" on page 161
- "Application and EJB Module Levels" on page 161
- "SFSB Level" on page 161

Server Instance and EJB Container Levels

To enable SFSB checkpointing at the server instance or EJB container level, see "Choosing a Persistence Store" on page 159.

Application and EJB Module Levels

To enable SFSB checkpointing at the application or EJB module level during deployment, use the `asadmin deploy` or `asadmin deploydir` command with the `--availabilityenabled` option set to `true`. For details, see the *Oracle GlassFish Server 3.1-3.1.1 Reference Manual*.

SFSB Level

To enable SFSB checkpointing at the SFSB level, set `availability-enabled="true"` in the `ejb` element of the SFSB's `glassfish-ejb-jar.xml` file as follows:

```xml
<glassfish-ejb-jar>
  ...
  <enterprise-beans>
    ...
    <ejb availability-enabled="true">
      <ejb-name>MySFSB</ejb-name>
    </ejb>
    ...
  </enterprise-beans>
</glassfish-ejb-jar>
```

Specifying Methods to Be Checkpointed

If SFSB checkpointing is enabled, checkpointing generally occurs after any transaction involving the SFSB is completed, even if the transaction rolls back.

To specify additional optional checkpointing of SFSBs at the end of non-transactional business methods that cause important modifications to the bean's state, use the `checkpoint-at-end-of-method` element within the `ejb` element in `glassfish-ejb-jar.xml`.

For example:
For details, see “checkpoint-at-end-of-method” in Oracle GlassFish Server 3.1 Application Deployment Guide.

The non-transactional methods in the checkpoint-at-end-of-method element can be the following:

- create methods defined in the home or business interface of the SFSB, if you want to checkpoint the initial state of the SFSB immediately after creation
- For SFSBs using container managed transactions only, methods in the remote interface of the bean marked with the transaction attribute TX_NOT_SUPPORTED or TX_NEVER
- For SFSBs using bean managed transactions only, methods in which a bean managed transaction is neither started nor committed

Any other methods mentioned in this list are ignored. At the end of invocation of each of these methods, the EJB container saves the state of the SFSB to persistent store.

Note – If an SFSB does not participate in any transaction, and if none of its methods are explicitly specified in the checkpoint-at-end-of-method element, the bean’s state is not checkpointed at all even if availability-enabled="true" for this bean.

For better performance, specify a small subset of methods. The methods chosen should accomplish a significant amount of work in the context of the Java EE application or should result in some important modification to the bean’s state.

Session Bean Restrictions and Optimizations

This section discusses restrictions on developing session beans and provides some optimization guidelines.

- “Optimizing Session Bean Performance” on page 163
- “Restricting Transactions” on page 163
- “EJB Singletons” on page 163
Optimizing Session Bean Performance

For stateful session beans, colocating the stateful beans with their clients so that the client and bean are executing in the same process address space improves performance.

Restricting Transactions

The following restrictions on transactions are enforced by the container and must be observed as session beans are developed:

- A session bean can participate in, at most, a single transaction at a time.
- If a session bean is participating in a transaction, a client cannot invoke a method on the bean such that the trans-attribute element (or @TransactionAttribute annotation) in the ejb-jar.xml file would cause the container to execute the method in a different or unspecified transaction context or an exception is thrown.
- If a session bean instance is participating in a transaction, a client cannot invoke the remove method on the session object’s home or business interface object, or an exception is thrown.

EJB Singletons

EJB Singletons are created for each server instance in a cluster, and not once per cluster.

Using Read-Only Beans

A read-only bean is an EJB 2.1 entity bean that is never modified by an EJB client. The data that a read-only bean represents can be updated externally by other enterprise beans, or by other means, such as direct database updates.

Note – Read-only beans are specific to the GlassFish Server and are not part of the Enterprise JavaBeans Specification, v2.1. Use of this feature for an EJB 2.1 bean results in a non-portable application.

To make an EJB 3.0 entity bean read-only, use@Column annotations to mark its columns insertable=false and updatable=false.

Read-only beans are best suited for situations where the underlying data never changes, or changes infrequently.

The following topics are addressed here:

- “Read-Only Bean Characteristics and Life Cycle” on page 164
- “Read-Only Bean Good Practices” on page 165
- “Refreshing Read-Only Beans” on page 165
Read-Only Bean Characteristics and Life Cycle

Read-only beans are best suited for situations where the underlying data never changes, or changes infrequently. For example, a read-only bean can be used to represent a stock quote for a particular company, which is updated externally. In such a case, using a regular entity bean might incur the burden of calling \texttt{ejbStore}, which can be avoided by using a read-only bean.

Read-only beans have the following characteristics:

- Only entity beans can be read-only beans.
- Either bean-managed persistence (BMP) or container-managed persistence (CMP) is allowed. If CMP is used, do not create the database schema during deployment. Instead, work with your database administrator to populate the data into the tables. See Chapter 9, “Using Container-Managed Persistence.”
- Only container-managed transactions are allowed; read-only beans cannot start their own transactions.
- Read-only beans don’t update any bean state.
- \texttt{ejbStore} is never called by the container.
- \texttt{ejbLoad} is called only when a transactional method is called or when the bean is initially created (in the cache), or at regular intervals controlled by the bean’s \texttt{refresh-period-in-seconds} element in the \texttt{glassfish-ejb-jar.xml} file.
- The home interface can have any number of find methods. The return type of the find methods must be the primary key for the same bean type (or a collection of primary keys).
- If the data that the bean represents can change, then \texttt{refresh-period-in-seconds} must be set to refresh the beans at regular intervals. \texttt{ejbLoad} is called at this regular interval.

A read-only bean comes into existence using the appropriate find methods.

Read-only beans are cached and have the same cache properties as entity beans. When a read-only bean is selected as a victim to make room in the cache, \texttt{ejbPassivate} is called and the bean is returned to the free pool. When in the free pool, the bean has no identity and is used only to serve any finder requests.

Read-only beans are bound to the naming service like regular read-write entity beans, and clients can look up read-only beans the same way read-write entity beans are looked up.
Read-Only Bean Good Practices

For best results, follow these guidelines when developing read-only beans:

- Avoid having any create or remove methods in the home interface.
- Use any of the valid EJB 2.1 transaction attributes for the trans-attribute element.

 The reason for having TX_SUPPORTED is to allow reading uncommitted data in the same transaction. Also, the transaction attributes can be used to force ejbLoad.

Refreshing Read-Only Beans

There are several ways of refreshing read-only beans, as addressed in the following sections:

- “Invoking a Transactional Method” on page 165
- “Refreshing Periodically” on page 165
- “Refreshing Programmatically” on page 166

Invoking a Transactional Method

Invoking any transactional method invokes ejbLoad.

Refreshing Periodically

Use the refresh-period-in-seconds element in the glassfish-ejb-jar.xml file to refresh a read-only bean periodically.

- If the value specified in refresh-period-in-seconds is zero or not specified, which is the default, the bean is never refreshed (unless a transactional method is accessed).
- If the value is greater than zero, the bean is refreshed at the rate specified.

Note — This is the only way to refresh the bean state if the data can be modified external to the GlassFish Server.

By default, a single timer is used for all instances of a read-only bean. When that timer fires, all bean instances are marked as expired and are refreshed from the database the next time they are used.

Use the -Dcom.sun.ejb.containers.readonly.relative.refresh.mode=true flag to refresh each bean instance independently upon access if its refresh period has expired. The default is false. Note that each instance still has the same refresh period. This additional level of granularity can improve the performance of read-only beans that do not need to be refreshed at the same time.

To set this flag, use the asadmin create-jvm-options command. For example:
asadmin create-jvm-options -Dcom.sun.ejb.containers.readonly.relative.refresh.mode=true

Refreshing Programatically

Typically, beans that update any data that is cached by read-only beans need to notify the read-only beans to refresh their state. Use ReadOnlyBeanNotifier to force the refresh of read-only beans.

To do this, invoke the following methods on the ReadOnlyBeanNotifier bean:

```java
public interface ReadOnlyBeanNotifier extends java.rmi.Remote {
    refresh(Object PrimaryKey) throws RemoteException;
}
```

The implementation of the ReadOnlyBeanNotifier interface is provided by the container. The bean looks up ReadOnlyBeanNotifier using a fragment of code such as the following example:

```java
com.sun.appserv.ejb.ReadOnlyBeanHelper helper =
    new com.sun.appserv.ejb.ReadOnlyBeanHelper();
com.sun.appserv.ejb.ReadOnlyBeanNotifier notifier =
    helper.getReadOnlyBeanNotifier("java:comp/env/ejb/ReadOnlyCustomer");
notifier.refresh(PrimaryKey);
```

For a local read-only bean notifier, the lookup has this modification:

```java
helper.getReadOnlyBeanLocalNotifier("java:comp/env/ejb/LocalReadOnlyCustomer");
```

Beans that update any data that is cached by read-only beans need to call the refresh methods. The next (non-transactional) call to the read-only bean invokes ejbLoad.

For Javadoc tool pages relevant to read-only beans, go to http://glassfish.java.net/nonav/docs/v3/api/ and click on the com.sun.appserv.ejb package.

Deploying Read-Only Beans

Read-only beans are deployed in the same manner as other entity beans. However, in the entry for the bean in the `glassfish-ejb-jar.xml` file, the `is-read-only-bean` element must be set to true. That is:

```xml
<is-read-only-bean>true</is-read-only-bean>
```

Also, the `refresh-period-in-seconds` element in the `glassfish-ejb-jar.xml` file can be set to some value that specifies the rate at which the bean is refreshed. If this element is missing, no refresh occurs.

All requests in the same transaction context are routed to the same read-only bean instance. Set the `allow-concurrent-access` element to either true (to allow concurrent accesses) or false (to serialize concurrent access to the same read-only bean). The default is false.
For further information on these elements, refer to “The glassfish-ejb-jar.xml File” in Oracle GlassFish Server 3.1 Application Deployment Guide.

Using Message-Driven Beans

This section describes message-driven beans and explains the requirements for creating them in the GlassFish Server environment.

The following topics are addressed here:
- “Message-Driven Bean Configuration” on page 167
- “Message-Driven Bean Restrictions and Optimizations” on page 168

Message-Driven Bean Configuration

The following topics are addressed here:
- “Connection Factory and Destination” on page 167
- “Message-Driven Bean Pool” on page 167
- “Domain-Level Settings” on page 168

For information about setting up load balancing for message-driven beans, see “Load-Balanced Message Inflow” on page 284.

Connection Factory and Destination

A message-driven bean is a client to a Connector inbound resource adapter. The message-driven bean container uses the JMS service integrated into the GlassFish Server for message-driven beans that are JMS clients. JMS clients use JMS Connection Factory- and Destination-administered objects. A JMS Connection Factory administered object is a resource manager Connection Factory object that is used to create connections to the JMS provider.

The mdb-connection-factory element in the glassfish-ejb-jar.xml file for a message-driven bean specifies the connection factory that creates the container connection to the JMS provider.

The jndi-name element of the ejb element in the glassfish-ejb-jar.xml file specifies the JNDI name of the administered object for the JMS Queue or Topic destination that is associated with the message-driven bean.

Message-Driven Bean Pool

The container manages a pool of message-driven beans for the concurrent processing of a stream of messages. The glassfish-ejb-jar.xml file contains the elements that define the pool (that is, the bean-pool element):
Domain-Level Settings

You can control the following domain-level message-driven bean settings in the EJB container:

Initial and Minimum Pool Size
Specifies the initial and minimum number of beans maintained in the pool. The default is 0.

Maximum Pool Size
Specifies the maximum number of beans that can be created to satisfy client requests. The default is 32.

Pool Resize Quantity
Specifies the number of beans to be created if a request arrives when the pool is empty (subject to the Initial and Minimum Pool Size), or the number of beans to remove if idle for more than the Idle Timeout. The default is 8.

Idle Timeout
Specifies the maximum time in seconds that a bean can remain idle in the pool. After this amount of time, the bean is destroyed. The default is 600 (10 minutes). A value of 0 means a bean can remain idle indefinitely.

For information on monitoring message-driven beans, click the Help button in the Administration Console. Select the Stand-Alone Instances component, select the instance from the table, and select the Monitor tab. Or select the Clusters component, select the cluster from the table, select the Instances tab, select the instance from the table, and select the Monitor tab.

Note – Running monitoring when it is not needed might impact performance, so you might choose to turn monitoring off when it is not in use. For details, see Chapter 8, “Administering the Monitoring Service,” in Oracle GlassFish Server 3.1 Administration Guide.

Message-Driven Bean Restrictions and Optimizations

This section discusses the following restrictions and performance optimizations that pertain to developing message-driven beans:

- “Pool Tuning and Monitoring” on page 169
- “The onMessage Runtime Exception” on page 169
Pool Tuning and Monitoring

The message-driven bean pool is also a pool of threads, with each message-driven bean instance in the pool associating with a server session, and each server session associating with a thread. Therefore, a large pool size also means a high number of threads, which impacts performance and server resources.

When configuring message-driven bean pool properties, make sure to consider factors such as message arrival rate and pattern, onMessage method processing time, overall server resources (threads, memory, and so on), and any concurrency requirements and limitations from other resources that the message-driven bean accesses.

When tuning performance and resource usage, make sure to consider potential JMS provider properties for the connection factory used by the container (the $\texttt{mdb-connection-factory}$ element in the $\texttt{glassfish-ejb-jar.xml}$ file). For example, you can tune the GlassFish Server Message Queue flow control related properties for connection factory in situations where the message incoming rate is much higher than max-pool-size can handle.

Refer to Chapter 8, “Administering the Monitoring Service,” in Oracle GlassFish Server 3.1 Administration Guide for information on how to get message-driven bean pool statistics.

The onMessage RuntimeException

Message-driven beans, like other well-behaved MessageListeners, should not, in general, throw runtime exceptions. If a message-driven bean’s onMessage method encounters a system-level exception or error that does not allow the method to successfully complete, the Enterprise JavaBeans Specification, v3.0 provides the following guidelines:

- If the bean method encounters a runtime exception or error, it should simply propagate the error from the bean method to the container.
- If the bean method performs an operation that results in a checked exception that the bean method cannot recover, the bean method should throw the $\texttt{javax.ejb.EJBException}$ that wraps the original exception.
- Any other unexpected error conditions should be reported using $\texttt{javax.ejb.EJBException}$ ($\texttt{javax.ejb.EJBException}$ is a subclass of $\texttt{java.lang.RuntimeException}$).

Under container-managed transaction demarcation, upon receiving a runtime exception from a message-driven bean’s onMessage method, the container rolls back the container-started transaction and the message is redelivered. This is because the message delivery itself is part of the container-started transaction. By default, the GlassFish Server container closes the container’s connection to the JMS provider when the first runtime exception is received from a message-driven bean instance’s onMessage method. This avoids potential message redelivery looping and protects server resources if the message-driven bean’s onMessage method continues misbehaving. To change this default container behavior, use the $\texttt{cmt-max-runtime-exceptions}$ property of the MDB container. Here is an example asadmin set command that sets this property:
asadmin set server-config.mdb-container.property.cmt-max-runtime-exceptions="5"

For more information about the asadmin set command, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

The cmt-max-runtime-exceptions property specifies the maximum number of runtime exceptions allowed from a message-driven bean’s onMessage method before the container starts to close the container's connection to the message source. By default this value is 1; -1 disables this container protection.

A message-driven bean’s onMessage method can use the javax.jms.Message.getJMSRedelivered method to check whether a received message is a redelivered message.

Note – The cmt-max-runtime-exceptions property is deprecated.
Using Container-Managed Persistence

This chapter contains information on how EJB 2.1 container-managed persistence (CMP) works in Oracle GlassFish Server.

The following topics are addressed here:

- “GlassFish Server Support for CMP” on page 171
- “CMP Mapping” on page 172
- “Automatic Schema Generation for CMP” on page 177
- “Schema Capture” on page 182
- “Configuring the CMP Resource” on page 184
- “Performance-Related Features” on page 184
- “Configuring Queries for 1.1 Finders” on page 187
- “CMP Restrictions and Optimizations” on page 191

Note – The Web Profile of the GlassFish Server supports the EJB 3.1 Lite specification, which allows enterprise beans within web applications, among other features. The full GlassFish Server supports the entire EJB 3.1 specification. For details, see JSR 318 (http://jcp.org/en/jsr/detail?id=318).

GlassFish Server Support for CMP

GlassFish Server support for EJB 2.1 CMP beans includes:

- Full support for the J2EE v1.4 specification’s CMP model. Extensive information on CMP is contained in chapters 10, 11, and 14 of the Enterprise JavaBeans Specification, v2.1. This includes the following:
 - Support for commit options B and C for transactions. See “Commit Options” on page 269.
The primary key class must be a subclass of `java.lang.Object`. This ensures portability, and is noted because some vendors allow primitive types (such as `int`) to be used as the primary key class.

The GlassFish Server CMP implementation, which provides the following:

- An Object/Relational (O/R) mapping tool that creates XML deployment descriptors for EJB JAR files that contain beans that use CMP.
- Support for compound (multi-column) primary keys.
- Support for sophisticated custom finder methods.
- Standards-based query language (EJBQL).
- CMP runtime support. See “Configuring the CMP Resource” on page 184.

GlassFish Server performance-related features, including the following:

- Version column consistency checking
- Relationship prefetching
- Read-Only Beans

For details, see “Performance-Related Features” on page 184.

CMP Mapping

Implementation for entity beans that use CMP is mostly a matter of mapping CMP fields and CMR fields (relationships) to the database.

The following topics are addressed here:

- “Mapping Capabilities” on page 172
- “The Mapping Deployment Descriptor File” on page 173
- “Mapping Considerations” on page 174

Mapping Capabilities

Mapping refers to the ability to tie an object-based model to a relational model of data, usually the schema of a relational database. The CMP implementation provides the ability to tie a set of interrelated beans containing data and associated behaviors to the schema. This object representation of the database becomes part of the Java application. You can also customize this mapping to optimize these beans for the particular needs of an application. The result is a single data model through which both persistent database information and regular transient program data are accessed.

The mapping capabilities provided by the GlassFish Server include:

- Mapping a CMP bean to one or more tables
- Mapping CMP fields to one or more columns
- Mapping CMP fields to different column types
- Mapping tables with compound primary keys
- Mapping tables with unknown primary keys
- Mapping CMP relationships to foreign keys
- Mapping tables with overlapping primary and foreign keys

The Mapping Deployment Descriptor File

Each module with CMP beans must have the following files:

- **glassfish-ejb-jar.xml** – The GlassFish Server standard file for assembling enterprise beans. For a detailed description, see “The glassfish-ejb-jar.xml File” in Oracle GlassFish Server 3.1 Application Deployment Guide.
- **sun-cmp-mappings.xml** – The mapping deployment descriptor file, which describes the mapping of CMP beans to tables in a database. For a detailed description, see “The sun-cmp-mappings.xml File” in Oracle GlassFish Server 3.1 Application Deployment Guide.

The sun-cmp-mappings.xml file can be automatically generated and does not have to exist prior to deployment. For details, see “Generation Options for CMP” on page 179.

The sun-cmp-mappings.xml file maps CMP fields and CMR fields (relationships) to the database. A primary table must be selected for each CMP bean, and optionally, multiple secondary tables. CMP fields are mapped to columns in either the primary or secondary table(s). CMR fields are mapped to pairs of column lists (normally, column lists are the lists of columns associated with primary and foreign keys).

Note – Table names in databases can be case-sensitive. Make sure that the table names in the sun-cmp-mappings.xml file match the names in the database.

Relationships should always be mapped to the primary key field(s) of the related table.

The sun-cmp-mappings.xml file conforms to the sun-cmp-mapping_1_2.dtd file and is packaged with the user-defined bean classes in the EJB JAR file under the META-INF directory.

The GlassFish Server creates the mappings in the sun-cmp-mappings.xml file automatically during deployment if the file is not present.

To map the fields and relationships of your entity beans manually, edit the sun-cmp-mappings.xml deployment descriptor. Only do this if you are proficient in editing XML.
The mapping information is developed in conjunction with the database schema (.dbschema) file, which can be automatically captured when you deploy the bean (see "Automatic Database Schema Capture" on page 183). You can manually generate the schema using the capture-schema utility ("Using the capture-schema Utility" on page 183).

Mapping Considerations

The following topics are addressed here:

- “Join Tables and Relationships” on page 174
- “Automatic Primary Key Generation” on page 174
- “Fixed Length CHAR Primary Keys” on page 175
- “Managed Fields” on page 175
- “BLOB Support” on page 175
- “CLOB Support” on page 176

The data types used in automatic schema generation are also suggested for manual mapping. These data types are described in “Supported Data Types for CMP” on page 177.

Join Tables and Relationships

Use of join tables in the database schema is supported for all types of relationships, not just many-to-many relationships. For general information about relationships, see section 10.3.7 of the Enterprise JavaBeans Specification, v2.1.

Automatic Primary Key Generation

The GlassFish Server supports automatic primary key generation for EJB 1.1, 2.0, and 2.1 CMP beans. To specify automatic primary key generation, give the prim-key-class element in the ejb-jar.xml file the value `java.lang.Object`. CMP beans with automatically generated primary keys can participate in relationships with other CMP beans. The GlassFish Server does not support database-generated primary key values.

If the database schema is created during deployment, the GlassFish Server creates the schema with the primary key column, then generates unique values for the primary key column at runtime.

If the database schema is not created during deployment, the primary key column in the mapped table must be of type `NUMERIC` with a precision of 19 or more, and must not be mapped to any CMP field. The GlassFish Server generates unique values for the primary key column at runtime.
Fixed Length CHAR Primary Keys

If an existing database table has a primary key column in which the values vary in length, but the type is CHAR instead of VARCHAR, the GlassFish Server automatically trims any extra spaces when retrieving primary key values. It is not a good practice to use a fixed length CHAR column as a primary key. Use this feature with schemas that cannot be changed, such as a schema inherited from a legacy application.

Managed Fields

A managed field is a CMP or CMR field that is mapped to the same database column as another CMP or CMR field. CMP fields mapped to the same column and CMR fields mapped to exactly the same column lists always have the same value in memory. For CMR fields that share only a subset of their mapped columns, changes to the columns affect the relationship fields in memory differently. Basically, the GlassFish Server always tries to keep the state of the objects in memory synchronized with the database.

A managed field can have any fetched-with subelement. If the fetched-with subelement is <default/>, the -DAllowManagedFieldsInDefaultFetchGroup flag must be set to true. See "Default Fetch Group Flags" on page 186 and “fetched-with” in Oracle GlassFish Server 3.1 Application Deployment Guide.

BLOB Support

Binary Large Object (BLOB) is a data type used to store values that do not correspond to other types such as numbers, strings, or dates. Java fields whose types implement java.io.Serializable or are represented as byte[] can be stored as BLOBs.

If a CMP field is defined as Serializable, it is serialized into a byte[] before being stored in the database. Similarly, the value fetched from the database is deserialized. However, if a CMP field is defined as byte[], it is stored directly instead of being serialized and deserialized when stored and fetched, respectively.

To enable BLOB support in the GlassFish Server environment, define a CMP field of type byte[] or a user-defined type that implements the java.io.Serializable interface. If you map the CMP bean to an existing database schema, map the field to a column of type BLOB.

To use BLOB or CLOB data types larger than 4 KB for CMP using the Inet Oraxo JDBC Driver for Oracle Databases, you must set the streamsToLob property value to true.

For a list of the JDBC drivers currently supported by the GlassFish Server, see the Oracle GlassFish Server 3.1-3.1.1 Release Notes. For configurations of supported and other drivers, see “Configuration Specifics for JDBC Drivers” in Oracle GlassFish Server 3.1 Administration Guide.
For automatic mapping, you might need to change the default BLOB column length for the generated schema using the `schema-generator-properties` element in `glassfish-ejb-jar.xml`. See your database vendor documentation to determine whether you need to specify the length. For example:

```
<schema-generator-properties>
  <property>
    <name>Employee.voiceGreeting.jdbc-type</name>
    <value>BLOB</value>
  </property>
  <property>
    <name>Employee.voiceGreeting.jdbc-maximum-length</name>
    <value>10240</value>
  </property>
  ...
</schema-generator-properties>
```

CLOB Support

Character Large Object (CLOB) is a data type used to store and retrieve very long text fields. CLOBs translate into long strings.

To enable CLOB support in the GlassFish Server environment, define a CMP field of type `java.lang.String`. If you map the CMP bean to an existing database schema, map the field to a column of type CLOB.

To use BLOB or CLOB data types larger than 4 KB for CMP using the Inet Oraxo JDBC Driver for Oracle Databases, you must set the `streamstolob` property value to `true`.

For a list of the JDBC drivers currently supported by the GlassFish Server, see the Oracle GlassFish Server 3.1.1 Release Notes. For configurations of supported and other drivers, see “Configuration Specifics for JDBC Drivers” in Oracle GlassFish Server 3.1 Administration Guide.

For automatic mapping, you might need to change the default CLOB column length for the generated schema using the `schema-generator-properties` element in `glassfish-ejb-jar.xml`. See your database vendor documentation to determine whether you need to specify the length. For example:

```
<schema-generator-properties>
  <property>
    <name>Employee.resume.jdbc-type</name>
    <value>CLOB</value>
  </property>
  <property>
    <name>Employee.resume.jdbc-maximum-length</name>
    <value>10240</value>
  </property>
  ...
</schema-generator-properties>
```
Automatic Schema Generation for CMP

The automatic schema generation feature provided in the GlassFish Server defines database tables based on the fields in entity beans and the relationships between the fields. This insulates developers from many of the database related aspects of development, allowing them to focus on entity bean development. The resulting schema is usable as-is or can be given to a database administrator for tuning with respect to performance, security, and so on.

The following topics are addressed here:

- “Supported Data Types for CMP” on page 177
- “Generation Options for CMP” on page 179

Note – Automatic schema generation is supported on an all-or-none basis: it expects that no tables exist in the database before it is executed. It is not intended to be used as a tool to generate extra tables or constraints.

Deployment won’t fail if all tables are not created, and undeployment won’t fail if not all tables are dropped. This is done to allow you to investigate the problem and fix it manually. You should not rely on the partially created database schema to be correct for running the application.

Supported Data Types for CMP

CMP supports a set of JDBC data types that are used in mapping Java data fields to SQL types. Supported JDBC data types are as follows: BIGINT, BIT, BLOB, CHAR, CLOB, DATE, DECIMAL, DOUBLE, FLOAT, INTEGER, NUMERIC, REAL, SMALLINT, TIME, TIMESTAMP, TINYINT, VARCHAR.

The following table contains the mappings of Java types to JDBC types when automatic mapping is used.

<table>
<thead>
<tr>
<th>Java Type</th>
<th>JDBC Type</th>
<th>Nullability</th>
</tr>
</thead>
<tbody>
<tr>
<td>boolean</td>
<td>BIT</td>
<td>No</td>
</tr>
<tr>
<td>java.lang.Boolean</td>
<td>BIT</td>
<td>Yes</td>
</tr>
<tr>
<td>byte</td>
<td>TINYINT</td>
<td>No</td>
</tr>
<tr>
<td>java.lang.Byte</td>
<td>TINYINT</td>
<td>Yes</td>
</tr>
<tr>
<td>double</td>
<td>DOUBLE</td>
<td>No</td>
</tr>
<tr>
<td>java.lang.Double</td>
<td>DOUBLE</td>
<td>Yes</td>
</tr>
</tbody>
</table>
TABLE 9–1 Java Type to JDBC Type Mappings for CMP (Continued)

<table>
<thead>
<tr>
<th>Java Type</th>
<th>JDBC Type</th>
<th>Nullability</th>
</tr>
</thead>
<tbody>
<tr>
<td>float</td>
<td>REAL</td>
<td>No</td>
</tr>
<tr>
<td>java.lang.Float</td>
<td>REAL</td>
<td>Yes</td>
</tr>
<tr>
<td>int</td>
<td>INTEGER</td>
<td>No</td>
</tr>
<tr>
<td>java.lang.Integer</td>
<td>INTEGER</td>
<td>Yes</td>
</tr>
<tr>
<td>long</td>
<td>BIGINT</td>
<td>No</td>
</tr>
<tr>
<td>java.lang.Long</td>
<td>BIGINT</td>
<td>Yes</td>
</tr>
<tr>
<td>short</td>
<td>SMALLINT</td>
<td>No</td>
</tr>
<tr>
<td>java.lang.Short</td>
<td>SMALLINT</td>
<td>Yes</td>
</tr>
<tr>
<td>java.math.BigDecimal</td>
<td>DECIMAL</td>
<td>Yes</td>
</tr>
<tr>
<td>java.math.BigInteger</td>
<td>DECIMAL</td>
<td>Yes</td>
</tr>
<tr>
<td>char</td>
<td>CHAR</td>
<td>No</td>
</tr>
<tr>
<td>java.lang.Character</td>
<td>CHAR</td>
<td>Yes</td>
</tr>
<tr>
<td>java.lang.String</td>
<td>VARCHAR or CLOB</td>
<td>Yes</td>
</tr>
<tr>
<td>Serializable</td>
<td>BLOB</td>
<td>Yes</td>
</tr>
<tr>
<td>byte[]</td>
<td>BLOB</td>
<td>Yes</td>
</tr>
<tr>
<td>java.util.Date</td>
<td>DATE (Oracle only) TIMESTAMP (all other databases)</td>
<td>Yes</td>
</tr>
<tr>
<td>java.sql.Date</td>
<td>DATE</td>
<td>Yes</td>
</tr>
<tr>
<td>java.sql.Time</td>
<td>TIME</td>
<td>Yes</td>
</tr>
<tr>
<td>java.sql.Timestamp</td>
<td>TIMESTAMP</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Note – Java types assigned to CMP fields must be restricted to Java primitive types, Java Serializable types, java.util.Date, java.sql.Date, java.sql.Time, or java.sql.Timestamp. An entity bean local interface type (or a collection of such) can be the type of a CMR field.

The following table contains the mappings of JDBC types to database vendor-specific types when automatic mapping is used. For a list of the JDBC drivers currently supported by the GlassFish Server, see the Oracle GlassFish Server 3.1-3.1.1 Release Notes. For configurations of supported and other drivers, see "Configuration Specifics for JDBC Drivers" in Oracle GlassFish Server 3.1 Administration Guide.
TABLE 9–2 Mappings of JDBC Types to Database Vendor Specific Types for CMP

<table>
<thead>
<tr>
<th>JDBC Type</th>
<th>Java DB, Derby, CloudScape</th>
<th>Oracle</th>
<th>DB2</th>
<th>Sybase ASE 12.5</th>
<th>MS-SQL Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIT</td>
<td>SMALLINT</td>
<td>SMALLINT</td>
<td>SMALLINT</td>
<td>TINYINT</td>
<td>BIT</td>
</tr>
<tr>
<td>TINYINT</td>
<td>SMALLINT</td>
<td>SMALLINT</td>
<td>SMALLINT</td>
<td>TINYINT</td>
<td>TINYINT</td>
</tr>
<tr>
<td>SMALLINT</td>
<td>SMALLINT</td>
<td>SMALLINT</td>
<td>SMALLINT</td>
<td>SMALLINT</td>
<td>SMALLINT</td>
</tr>
<tr>
<td>INTEGER</td>
<td>INTEGER</td>
<td>INTEGER</td>
<td>INTEGER</td>
<td>INTEGER</td>
<td>INTEGER</td>
</tr>
<tr>
<td>BIGINT</td>
<td>BIGINT</td>
<td>NUMBER</td>
<td>BIGINT</td>
<td>NUMERIC</td>
<td>NUMERIC</td>
</tr>
<tr>
<td>REAL</td>
<td>REAL</td>
<td>REAL</td>
<td>FLOAT</td>
<td>FLOAT</td>
<td>REAL</td>
</tr>
<tr>
<td>DOUBLE</td>
<td>DOUBLE PRECISION</td>
<td>DOUBLE PRECISION</td>
<td>DOUBLE</td>
<td>DOUBLE PRECISION</td>
<td>FLOAT</td>
</tr>
<tr>
<td>DECIMAL(p,s)</td>
<td>DECIMAL(p,s)</td>
<td>NUMBER(p,s)</td>
<td>DECIMAL(p,s)</td>
<td>DECIMAL(p,s)</td>
<td>DECIMAL(p,s)</td>
</tr>
<tr>
<td>VARCHAR</td>
<td>VARCHAR</td>
<td>VARCHAR2</td>
<td>VARCHAR</td>
<td>VARCHAR</td>
<td>VARCHAR</td>
</tr>
<tr>
<td>DATE</td>
<td>DATE</td>
<td>DATE</td>
<td>DATE</td>
<td>DATETIME</td>
<td>DATETIME</td>
</tr>
<tr>
<td>TIME</td>
<td>TIME</td>
<td>TIME</td>
<td>TIME</td>
<td>DATETIME</td>
<td>DATETIME</td>
</tr>
<tr>
<td>TIMESTAMP</td>
<td>TIMESTAMP</td>
<td>TIMESTAMP(9)</td>
<td>TIMESTAMP</td>
<td>DATETIME</td>
<td>DATETIME</td>
</tr>
<tr>
<td>BLOB</td>
<td>BLOB</td>
<td>BLOB</td>
<td>BLOB</td>
<td>IMAGE</td>
<td>IMAGE</td>
</tr>
<tr>
<td>CLOB</td>
<td>CLOB</td>
<td>CLOB</td>
<td>CLOB</td>
<td>TEXT</td>
<td>NTEXT</td>
</tr>
</tbody>
</table>

Generation Options for CMP

Deployment descriptor elements or asadmin command line options can control automatic schema generation by the following:

- Creating tables during deployment
- Dropping tables during undeployment
- Dropping and creating tables during redeployment
- Specifying the database vendor
- Specifying that table names are unique
- Specifying type mappings for individual CMP fields
Note – Before using these options, make sure you have a properly configured CMP resource. See “Configuring the CMP Resource” on page 184.

For a read-only bean, do not create the database schema during deployment. Instead, work with your database administrator to populate the data into the tables. See “Using Read-Only Beans” on page 163.

Automatic schema generation is not supported for beans with version column consistency checking. Instead, work with your database administrator to create the schema and add the required triggers. See “Version Column Consistency Checking” on page 184.

The following optional data subelements of the *cmp-resource* element in the *glassfish-ejb-jar.xml* file control the automatic creation of database tables at deployment. For more information about the *cmp-resource* element, see “*cmp-resource*” in Oracle GlassFish Server 3.1 Application Deployment Guide and “Configuring the CMP Resource” on page 184.

<table>
<thead>
<tr>
<th>TABLE 9-3 The glassfish-ejb-jar.xml Generation Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
</tr>
<tr>
<td>create-tables-at-deploy</td>
</tr>
<tr>
<td>drop-tables-at-undeploy</td>
</tr>
<tr>
<td>database-vendor-name</td>
</tr>
</tbody>
</table>
TABLE 9–3 The \textit{glassfish-ejb-jar.xml} Generation Elements
\textit{(Continued)}

<table>
<thead>
<tr>
<th>Element</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{schema-generator-properties}</td>
<td>none</td>
<td>Specifies field-specific column attributes in property subelements. Each property name is of the following format: \n</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For example: \texttt{Employee.firstName.jdbc-type}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Also allows you to set the \texttt{use-unique-table-names} property. \textit{If} \texttt{true,} this property specifies that generated table names are unique within each GlassFish Server domain. The default is \texttt{false.}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For further information and an example, see "\texttt{schema-generator-properties}" in \textit{Oracle GlassFish Server 3.1 Application Deployment Guide}.</td>
</tr>
</tbody>
</table>

The following options of the \texttt{asadmin deploy} or \texttt{asadmin deploydir} command control the automatic creation of database tables at deployment.

TABLE 9–4 The \texttt{asadmin deploy} and \texttt{asadmin deploydir} Generation Options for CMP

<table>
<thead>
<tr>
<th>Option</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--createtables</td>
<td>none</td>
<td>If \texttt{true,} causes database tables to be created for beans that need them. No unique constraints are created. If \texttt{false,} does not create tables. If not specified, the value of the \texttt{create-tables-at-deploy} attribute in \texttt{glassfish-ejb-jar.xml} is used.</td>
</tr>
<tr>
<td>--dropandcreatetables</td>
<td>none</td>
<td>If \texttt{true}, and if tables were automatically created when this application was last deployed, tables from the earlier deployment are dropped and fresh ones are created. If \texttt{true}, and if tables were \textit{not} automatically created when this application was last deployed, no attempt is made to drop any tables. If tables with the same names as those that would have been automatically created are found, the deployment proceeds, but a warning indicates that tables could not be created. If \texttt{false,} settings of \texttt{create-tables-at-deploy} or \texttt{drop-tables-at-undeploy} in the \texttt{glassfish-ejb-jar.xml} file are overridden.</td>
</tr>
<tr>
<td>--uniquetablenames</td>
<td>none</td>
<td>If \texttt{true,} specifies that table names are unique within each GlassFish Server domain. If not specified, the value of the \texttt{use-unique-table-names} property in \texttt{glassfish-ejb-jar.xml} is used.</td>
</tr>
</tbody>
</table>
If one or more of the beans in the module are manually mapped and you use any of the asadmin deploy or asadmin deploydir options, the deployment is not harmed in any way, but the options have no effect, and a warning is written to the server log.

The following options of the asadmin undeploy command control the automatic removal of database tables at undeployment.

<table>
<thead>
<tr>
<th>Option</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--droptables</td>
<td>none</td>
<td>If true, causes database tables that were automatically created when the bean(s) were last deployed to be dropped when the bean(s) are undeployed. If false, does not drop tables. If not specified, the value of the drop-tables-at-undeploy attribute in glassfish-ejb-jar.xml is used.</td>
</tr>
</tbody>
</table>

For more information about the asadmin deploy, asadmin deploydir, and asadmin undeploy commands, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

When command line and glassfish-ejb-jar.xml options are both specified, the asadmin options take precedence.

Schema Capture

The following topics are addressed here:

- "Automatic Database Schema Capture" on page 183
- "Using the capture-schema Utility" on page 183
Automatic Database Schema Capture

You can configure a CMP bean in GlassFish Server to automatically capture the database metadata and save it in a .dbschema file during deployment. If the sun-cmp-mappings.xml file contains an empty <schema/> entry, the cmp-resource entry in the glassfish-ejb-jar.xml file is used to get a connection to the database, and automatic generation of the schema is performed.

Note – Before capturing the database schema automatically, make sure you have a properly configured CMP resource. See “Configuring the CMP Resource” on page 184.

Using the capture-schema Utility

You can use the capture-schema command to manually generate the database metadata (.dbschema) file. For details, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

The capture-schema utility does not modify the schema in any way. Its only purpose is to provide the persistence engine with information about the structure of the database (the schema).

Keep the following in mind when using the capture-schema command:

- The name of a .dbschema file must be unique across all deployed modules in a domain.
- If more than one schema is accessible for the schema user, more than one table with the same name might be captured if the -schemaname option of capture-schema is not set.
- The schema name must be upper case.
- Table names in databases are case-sensitive. Make sure that the table name matches the name in the database.
- PostgreSQL databases internally convert all names to lower case. Before running the capture-schema command on a PostgreSQL database, make sure table and column names are lower case in the sun-cmp-mappings.xml file.
- An Oracle database user running the capture-schema command needs ANALYZE ANY TABLE privileges if that user does not own the schema. These privileges are granted to the user by the database administrator.
Configuring the CMP Resource

An EJB module that contains CMP beans requires the JNDI name of a JDBC resource in the `jndi-name` subelement of the `cmp-resource` element in the `glassfish-ejb-jar.xml` file. Set `PersistenceManagerFactory` properties as properties of the `cmp-resource` element in the `glassfish-ejb-jar.xml` file. See "cmp-resource" in Oracle GlassFish Server 3.1 Application Deployment Guide.

In the Administration Console, open the Resources component, then select JDBC. Click the Help button in the Administration Console for information on creating a new JDBC resource.

For a list of the JDBC drivers currently supported by the GlassFish Server, see the Oracle GlassFish Server 3.1-3.1.1 Release Notes. For configurations of supported and other drivers, see "Configuration Specifics for JDBC Drivers" in Oracle GlassFish Server 3.1 Administration Guide.

For example, if the JDBC resource has the JNDI name `jdbc/MyDatabase`, set the CMP resource in the `glassfish-ejb-jar.xml` file as follows:

```xml
<cmp-resource>
  <jndi-name>jdbc/MyDatabase</jndi-name>
</cmp-resource>
```

Performance-Related Features

The GlassFish Server provides the following features to enhance performance or allow more fine-grained data checking. These features are supported only for entity beans with container managed persistence.

The following topics are addressed here:

- "Version Column Consistency Checking" on page 184
- "Relationship Prefetching" on page 185
- "Read-Only Beans" on page 186
- "Default Fetch Group Flags" on page 186

Note – Use of any of these features results in a non-portable application.

Version Column Consistency Checking

The version consistency feature saves the bean state at first transactional access and caches it between transactions. The state is copied from the cache instead of being read from the database. The bean state is verified by primary key and version column values at flush for custom queries (for dirty instances only) and at commit (for clean and dirty instances).
To Use Version Consistency

1. Create the version column in the primary table.
2. Give the version column a numeric data type.
3. Provide appropriate update triggers on the version column.
 These triggers must increment the version column on each update of the specified row.
4. Specify the version column.
 This is specified in the \texttt{check-version-of-accessed-instances} subelement of the \texttt{consistency} element in the \texttt{sun-cmp-mappings.xml} file. See “consistency” in \textit{Oracle GlassFish Server 3.1 Application Deployment Guide}.
5. Map the CMP bean to an existing schema.
 Automatic schema generation is not supported for beans with version column consistency checking. Instead, work with your database administrator to create the schema and add the required triggers.

Relationship Prefetching

In many cases when an entity bean’s state is fetched from the database, its relationship fields are always accessed in the same transaction. Relationship prefetching saves database round trips by fetching data for an entity bean and those beans referenced by its CMR fields in a single database round trip.

To enable relationship prefetching for a CMR field, use the \texttt{default} subelement of the \texttt{fetched-with} element in the \texttt{sun-cmp-mappings.xml} file. By default, these CMR fields are prefetched whenever \texttt{findByPrimaryKey} or a custom finder is executed for the entity, or when the entity is navigated to from a relationship. (Recursive prefetching is not supported, because it does not usually enhance performance.) See “fetched-with” in \textit{Oracle GlassFish Server 3.1 Application Deployment Guide}.

To disable prefetching for specific custom finders, use the \texttt{prefetch-disabled} element in the \texttt{glassfish-ejb-jar.xml} file. See “prefetch-disabled” in \textit{Oracle GlassFish Server 3.1 Application Deployment Guide}.

Multilevel relationship prefetching is supported for CMP 2.1 entity beans. To enable multilevel relationship prefetching, set the following property using the \texttt{asadmin create-jvm-options} command:

\texttt{asadmin create-jvm-options -Dcom.sun.jdo.spi.persistence.support.sqlstore.MULTILEVEL_PREFETCH=true}
Read-Only Beans

Another feature that the GlassFish Server provides is the read-only bean, an entity bean that is never modified by an EJB client. Read-only beans avoid database updates completely.

Note – Read-only beans are specific to the GlassFish Server and are not part of the Enterprise JavaBeans Specification, v2.1. Use of this feature for an EJB 2.1 bean results in a non-portable application.

A read-only bean can be used to cache a database entry that is frequently accessed but rarely updated (externally by other beans). When the data that is cached by a read-only bean is updated by another bean, the read-only bean can be notified to refresh its cached data.

The GlassFish Server provides a number of ways by which a read-only bean's state can be refreshed. By setting the refresh-period-in-seconds element in the glassfish-ejb-jar.xml file and the trans-attribute element (or @TransactionAttribute annotation) in the ejb-jar.xml file, it is easy to configure a read-only bean that is one of the following:

- Always refreshed
- Periodically refreshed
- Never refreshed
- Programmatically refreshed

Access to CMR fields of read-only beans is not supported. Deployment will succeed, but an exception will be thrown at runtime if a get or set method is invoked.

Read-only beans are best suited for situations where the underlying data never changes, or changes infrequently. For further information and usage guidelines, see “Using Read-Only Beans” on page 163.

Default Fetch Group Flags

Using the following flags can improve performance.

Setting -DAllowManagedFieldsInDefaultFetchGroup=true allows CMP fields that by default cannot be placed into the default fetch group to be loaded along with all other fields that are fetched when the CMP state is loaded into memory. These could be multiple fields mapped to the same column in the database table, for example, an instance field and a CMR. By default this flag is set to false.

For additional information, see “level” in Oracle GlassFish Server 3.1 Application Deployment Guide.
Setting `-DAllowMediatedWriteInDefaultFetchGroup` specifies how updated CMP fields are written back to the database. If the flag is `false`, all fields in the CMP bean are written back to the database if at least one field in the default fetch group has been changed in a transaction. If the flag is `true`, only fields modified by the bean are written back to the database. Specifying `true` can improve performance, particularly on database tables with many columns that have not been updated. By default this flag is set to `false`.

To set one of these flags, use the `asadmin create-jvm-options` command. For example:

```bash
asadmin create-jvm-options -DAllowManagedFieldsInDefaultFetchGroup=true
```

Configuring Queries for 1.1 Finders

The following topics are addressed here:

- "About JDOQL Queries" on page 187
- "Query Filter Expression" on page 188
- "Query Parameters" on page 189
- "Query Variables" on page 189
- "JDOQL Examples" on page 189

About JDOQL Queries

The Enterprise JavaBeans Specification, v1.1 does not specify the format of the finder method description. The GlassFish Server uses an extension of Java Data Objects Query Language (JDOQL) queries to implement finder and selector methods. You can specify the following elements of the underlying JDOQL query:

- **Filter expression** - A Java-like expression that specifies a condition that each object returned by the query must satisfy. Corresponds to the WHERE clause in EJB QL.

- **Query parameter declaration** - Specifies the name and the type of one or more query input parameters. Follows the syntax for formal parameters in the Java language.

- **Query variable declaration** - Specifies the name and type of one or more query variables. Follows the syntax for local variables in the Java language. A query filter might use query variables to implement joins.

- **Query ordering declaration** - Specifies the ordering expression of the query. Corresponds to the ORDER BY clause of EJB QL.

The GlassFish Server specific deployment descriptor (`glassfish-ejb-jar.xml`) provides the following elements to store the EJB 1.1 finder method settings:

```xml
query-filter
query-params
query-variables
query-ordering
```
The bean developer uses these elements to construct a query. When the finder method that uses these elements executes, the values of these elements are used to execute a query in the database. The objects from the JDOQL query result set are converted into primary key instances to be returned by the EJB 1.1 ejbFind method.

The JDO specification, JSR 12 (http://jcp.org/en/jsr/detail?id=12), provides a comprehensive description of JDOQL. The following information summarizes the elements used to define EJB 1.1 finders.

Query Filter Expression

The filter expression is a String containing a Boolean expression evaluated for each instance of the candidate class. If the filter is not specified, it defaults to true. Rules for constructing valid expressions follow the Java language, with the following differences:

- Equality and ordering comparisons between primitives and instances of wrapper classes are valid.
- Equality and ordering comparisons of Date fields and Date parameters are valid.
- Equality and ordering comparisons of String fields and String parameters are valid.
- White space (non-printing characters space, tab, carriage return, and line feed) is a separator and is otherwise ignored.
- The following assignment operators are not supported.
 - Comparison operators such as =, +=, and so on
 - Pre- and post-increment
 - Pre- and post-decrement
- Methods, including object construction, are not supported, except for these methods.

```java
Collection.contains(Object o)
Collection.isEmpty()
String.startsWith(String s)
String.endsWith(String e)
```

In addition, the GlassFish Server supports the following nonstandard JDOQL methods.

```java
String.like(String pattern)
String.like(String pattern, char escape)
String.substring(int start, int length)
String.indexOf(String str)
String.indexOf(String str, int start)
String.length()
Math.abs(numeric n)
Math.sqrt(double d)
```

- Navigation through a null-valued field, which throws a NullPointerException, is treated as if the sub-expression returned false.
Note – Comparisons between floating point values are by nature inexact. Therefore, equality comparisons (== and ! =) with floating point values should be used with caution. Identifiers in the expression are considered to be in the name space of the candidate class, with the addition of declared parameters and variables. As in the Java language, this is a reserved word, and refers to the current instance being evaluated.

The following expressions are supported.

- Relational operators (==, ! =, >, <, >=, <=)
- Boolean operators (&, &&, |, ||, ~, !)
- Arithmetic operators (+, -, *, /)
- String concatenation, only for String + String
- Parentheses to explicitly mark operator precedence
- Cast operator
- Promotion of numeric operands for comparisons and arithmetic operations

The rules for promotion follow the Java rules extended by BigDecimal, BigInteger, and numeric wrapper classes. See the numeric promotions of the Java language specification.

Query Parameters

The parameter declaration is a String containing one or more parameter type declarations separated by commas. This follows the Java syntax for method signatures.

Query Variables

The type declarations follow the Java syntax for local variable declarations.

JDOQL Examples

This section provides a few query examples.

Example 1

The following query returns all players called Michael. It defines a filter that compares the name field with a string literal:

```java
name == "Michael"
```

The finder element of the glassfish-ejb-jar.xml file looks like this:
<finder>
 <method-name>findPlayerByName</method-name>
 <query-filter>name == "Michael"</query-filter>
</finder>

Example 2
This query returns all products in a specified price range. It defines two query parameters which are the lower and upper bound for the price: double low, double high. The filter compares the query parameters with the price field:

\[
\text{low} < \text{price} \land \text{price} < \text{high}
\]

Query ordering is set to price ascending.

The finder element of the glassfish-ejb-jar.xml file looks like this:

<finder>
 <method-name>findInRange</method-name>
 <query-params>double low, double high</query-params>
 <query-filter>low < price \&\& price < high</query-filter>
 <query-ordering>price ascending</query-ordering>
</finder>

Example 3
This query returns all players having a higher salary than the player with the specified name. It defines a query parameter for the name java.lang.String name. Furthermore, it defines a variable to which the player's salary is compared. It has the type of the persistence capable class that corresponds to the bean:

mypackage.PlayerEJB_170160966_JDOState player

The filter compares the salary of the current player denoted by the this keyword with the salary of the player with the specified name:

\[
(this.\text{salary} > \text{player.salary}) \land (\text{player.name} == \text{name})
\]

The finder element of the glassfish-ejb-jar.xml file looks like this:

<finder>
 <method-name>findByHigherSalary</method-name>
 <query-params>java.lang.String name</query-params>
 <query-filter>
 (this.\text{salary} > \text{player.salary}) \land (\text{player.name} == \text{name})
 </query-filter>
 <query-variables>
 mypackage.PlayerEJB_170160966_JDOState player
 </query-variables>
</finder>
CMP Restrictions and Optimizations

This section discusses restrictions and performance optimizations that pertain to using CMP.

The following topics are addressed here:

- “Disabling ORDER BY Validation” on page 191
- “Setting the Heap Size on DB2” on page 191
- “Eager Loading of Field State” on page 192
- “Restrictions on Remote Interfaces” on page 192
- “PostgreSQL Case Insensitivity” on page 192
- “No Support for lock-when-loaded on Sybase” on page 192
- “Sybase Finder Limitation” on page 193
- “Date and Time Fields” on page 193
- “Set RECURSIVE_TRIGGERS to false on MSSQL” on page 193
- “MySQL Database Restrictions” on page 194

Disabling ORDER BY Validation

EJB QL as defined in the EJB 2.1 Specification defines certain restrictions for the SELECT clause of an ORDER BY query (see section 11.2.8 ORDER BY Clause). This ensures that a query does not order by a field that is not returned by the query. By default, the EJB QL compiler checks the above restriction and throws an exception if the query does not conform.

However, some databases support SQL statements with an ORDER BY column that is not included in the SELECT clause. To disable the validation of the ORDER BY clause against the SELECT clause, set the DISABLE_ORDERBY_VALIDATION JVM option as follows:

```
asadmin create-jvm-options
-Dcom.sun.jdo.spi.persistence.support.ejb.ejbqlc.DISABLE_ORDERBY_VALIDATION=true
```

The DISABLE_ORDERBY_VALIDATION option is set to false by default. Setting it to true results in a non-portable module or application.

Setting the Heap Size on DB2

On DB2, the database configuration parameter APPLHEAPSZ determines the heap size. If you are using the Oracle or DataDirect database driver, set this parameter to at least 2048 for CMP. For more information, see http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp?topic=com.ibm.db2.udb.doc/opt/tsbp2024.htm.
Eager Loading of Field State

By default, the EJB container loads the state for all persistent fields (excluding relationship, BLOB, and CLOB fields) before invoking the ejbLoad method of the abstract bean. This approach might not be optimal for entity objects with large state if most business methods require access to only parts of the state.

Use the fetched-with element in sun-cmp-mappings.xml for fields that are used infrequently. See “fetched-with” in Oracle GlassFish Server 3.1 Application Deployment Guide.

Restrictions on Remote Interfaces

The following restrictions apply to the remote interface of an EJB 2.1 bean that uses CMP:

- Do not expose the get and set methods for CMR fields or the persistence collection classes that are used in container-managed relationships through the remote interface of the bean. However, you are free to expose the get and set methods that correspond to the CMP fields of the entity bean through the bean’s remote interface.
- Do not expose the container-managed collection classes that are used for relationships through the remote interface of the bean.
- Do not expose local interface types or local home interface types through the remote interface or remote home interface of the bean.

Dependent value classes can be exposed in the remote interface or remote home interface, and can be included in the client EJB JAR file.

PostgreSQL Case Insensitivity

Case-sensitive behavior cannot be achieved for PostgreSQL databases. PostgreSQL databases internally convert all names to lower case, which makes the following workarounds necessary:

- In the CMP 2.1 runtime, PostgreSQL table and column names are not quoted, which makes these names case insensitive.
- Before running the capture-schema command on a PostgreSQL database, make sure table and column names are lower case in the sun-cmp-mappings.xml file.

No Support for lock-when-loaded on Sybase

For EJB 2.1 beans, the lock-when-loaded consistency level is implemented by placing update locks on the data corresponding to a bean when the data is loaded from the database. There is no suitable mechanism available on Sybase databases to implement this feature. Therefore, the lock-when-loaded consistency level is not supported on Sybase databases. See “consistency” in Oracle GlassFish Server 3.1 Application Deployment Guide.
Sybase Finder Limitation

If a finder method with an input greater than 255 characters is executed and the primary key column is mapped to a VARCHAR column, Sybase attempts to convert type VARCHAR to type TEXT and generates the following error:

```
com.sybase.jdbc2.jdbc.SybSQLException: Implicit conversion from datatype 'TEXT' to 'VARCHAR' is not allowed. Use the CONVERT function to run this query.
```

To avoid this error, make sure the finder method input is less than 255 characters.

Date and Time Fields

If a field type is a Java date or time type (java.util.Date, java.sql.Date, java.sql.Time, java.sql.Timestamp), make sure that the field value exactly matches the value in the database.

For example, the following code uses a java.sql.Date type as a primary key field:

```java
java.sql.Date myDate = new java.sql.Date(System.currentTimeMillis())
BeanA.create(myDate, ...);
```

For some databases, this code results in only the year, month, and date portion of the field value being stored in the database. Later if the client tries to find this bean by primary key as follows, the bean is not found in the database because the value does not match the one that is stored in the database.

```java
myBean = BeanA.findByPrimaryKey(myDate);
```

Similar problems can happen if the database truncates the timestamp value while storing it, or if a custom query has a date or time value comparison in its WHERE clause.

For automatic mapping to an Oracle database, fields of type java.util.Date, java.sql.Date, and java.sql.Time are mapped to Oracle's DATE data type. Fields of type java.sql.Timestamp are mapped to Oracle's TIMESTAMP(9) data type.

Set RECURSIVE TRIGGERS to false on MSSQL

For version consistency triggers on MSSQL, the property RECURSIVE TRIGGERS must be set to false, which is the default. If set to true, triggers throw a java.sql.SQLException.

Set this property as follows:

```
EXEC sp_dboption 'database-name', 'recursive triggers', 'FALSE'
```

```go```
You can test this property as follows:

```sql
SELECT DATABASEPROPERTYEX('database-name', 'IsRecursiveTriggersEnabled')
go
```

### MySQL Database Restrictions

The following restrictions apply when you use a MySQL database with the GlassFish Server for persistence.

- MySQL treats `int1` and `int2` as reserved words. If you want to define `int1` and `int2` as fields in your table, use `int1` and `int2` field names in your SQL file.
- When `VARCHAR` fields get truncated, a warning is displayed instead of an error. To get an error message, start the MySQL database in strict SQL mode.
- The order of fields in a foreign key index must match the order in the explicitly created index on the primary table.
- The `CREATE TABLE` syntax in the SQL file must end with the following line.
  ```sql
) Engine=InnoDB;
  ```
  InnoDB provides MySQL with a transaction-safe (ACID compliant) storage engine having commit, rollback, and crash recovery capabilities.
- For a `FLOAT` type field, the correct precision must be defined. By default, MySQL uses four bytes to store a `FLOAT` type that does not have an explicit precision definition. For example, this causes a number such as 12345.67890123 to be rounded off to 12345.7 during an `INSERT`. To prevent this, specify `FLOAT(10,2)` in the DDL file, which forces the database to use an eight-byte double-precision column. For more information, see [http://dev.mysql.com/doc/mysql/en/numeric-types.html](http://dev.mysql.com/doc/mysql/en/numeric-types.html).
- MySQL always starts a new connection when `autoCommit==true` is set. This ensures that each SQL statement forms a single transaction on its own. If you try to rollback or commit an SQL statement, you get an error message.

```
javax.transaction.SystemException: java.sql.SQLException:
 Can’t call rollback when autocommit=true
javax.transaction.SystemException: java.sql.SQLException:
 Error open transaction is not closed
```

- Change the trigger create format from the following:
CREATE TRIGGER T_UNKNOWNPKVC1
BEFORE UPDATE ON UNKNOWNPKVC1
FOR EACH ROW
    WHEN (NEW.VERSION = OLD.VERSION)
    BEGIN
        :NEW.VERSION := :OLD.VERSION + 1;
    END;
/

To the following:

DELIMITER |
CREATE TRIGGER T_UNKNOWNPKVC1
BEFORE UPDATE ON UNKNOWNPKVC1
FOR EACH ROW
    WHEN (NEW.VERSION = OLD.VERSION)
    BEGIN
        :NEW.VERSION := :OLD.VERSION + 1;
    END
|
DELIMITER ;

For more information, see http://dev.mysql.com/doc/mysql/en/create-trigger.html.

- MySQL does not allow a DELETE on a row that contains a reference to itself. Here is an example that illustrates the issue.

    create table EMPLOYEE (  
        empId int NOT NULL,  
        salary float(25,2) NULL,  
        mgrId int NULL,  
        PRIMARY KEY (empId),  
        FOREIGN KEY (mgrId) REFERENCES EMPLOYEE (empId)  
    ) ENGINE=InnoDB;

    insert into Employee values (1, 1234.34, 1);
    delete from Employee where empId = 1;

    This example fails with the following error message.

    ERROR 1217 (23000): Cannot delete or update a parent row:
    a foreign key constraint fails

    To resolve this issue, change the table creation script to the following:

    create table EMPLOYEE (  
        empId int NOT NULL,  
        salary float(25,2) NULL,  
        mgrId int NULL,  
        PRIMARY KEY (empId),  
        FOREIGN KEY (mgrId) REFERENCES EMPLOYEE (empId)  
            ON DELETE SET NULL  
    ) ENGINE=InnoDB;

    insert into Employee values (1, 1234.34, 1);
    delete from Employee where empId = 1;

    This can be done only if the foreign key field is allowed to be null. For more information, see http://dev.mysql.com/doc/mysql/en/innodb-foreign-key-constraints.html.
When an SQL script has foreign key constraints defined, `capture-schema` fails to capture the table information correctly. To work around the problem, remove the constraints and then run `capture-schema`. Here is an example that illustrates the issue.

```
CREATE TABLE ADDRESSBOOKBEANTABLE (ADDRESSBOOKNAME VARCHAR(255)
 NOT NULL PRIMARY KEY,
CONNECTEDUSERS BLOB NULL,
OWNER VARCHAR(256),
FK_FOR_ACCESSPRIVILEGES VARCHAR(256),
CONSTRAINT FK_ACCESSPRIVILEGE FOREIGN KEY (FK_FOR_ACCESSPRIVILEGES)
 REFERENCES ACCESSPRIVILEGESBEANTABLE (ROOT)
) ENGINE=InnoDB;
```

To resolve this issue, change the table creation script to the following:

```
CREATE TABLE ADDRESSBOOKBEANTABLE (ADDRESSBOOKNAME VARCHAR(255)
 NOT NULL PRIMARY KEY,
CONNECTEDUSERS BLOB NULL,
OWNER VARCHAR(256),
FK_FOR_ACCESSPRIVILEGES VARCHAR(256)
) ENGINE=InnoDB;
```
This chapter describes how to develop, assemble, and deploy Java clients.

The following topics are addressed here:

- "Introducing the Application Client Container" on page 197
- "Developing Clients Using the ACC" on page 199
- "Developing Clients Without the ACC" on page 217

**Note** – The Web Profile of the Oracle GlassFish Server supports the EJB 3.1 Lite specification, which allows enterprise beans within web applications, among other features. The full GlassFish Server supports the entire EJB 3.1 specification. For details, see JSR 318 (http://jcp.org/en/jsr/detail?id=318).

Accordingly, the Application Client Container is supported only in the full GlassFish Server, not in the Web Profile.

JMS resources are supported only in the full GlassFish Server, not in the Web Profile. See Chapter 17, "Using the Java Message Service."

### Introducing the Application Client Container

The Application Client Container (ACC) includes a set of Java classes, libraries, and other files that are required for and distributed with Java client programs that execute in their own Java Virtual Machine (JVM). The ACC manages the execution of Java EE application client components (application clients), which are used to access a variety of Java EE services (such as JMS resources, EJB components, web services, security, and so on.) from a JVM outside the Oracle GlassFish Server.

The ACC communicates with the GlassFish Server using RMI-IIOP protocol and manages the details of RMI-IIOP communication using the client ORB that is bundled with it. Compared to other Java EE containers, the ACC is lightweight.
For information about debugging application clients, see “Application Client Debugging” on page 39.

**Note** – Interoperability between application clients and GlassFish Servers running under different major versions is not supported.

## ACC Security

The ACC determines when authentication is needed. This typically occurs when the client refers to an EJB component that requires authorization or when annotations in the client’s main class trigger injection which, in turn, requires contact with the GlassFish Server’s naming service. To authenticate the end user, the ACC prompts for any required information, such as a username and password. The ACC itself provides a very simple dialog box to prompt for and read these values.

The ACC integrates with the GlassFish Server’s authentication system. It also supports SSL (Secure Socket Layer)/IIOP if configured and when necessary; see “Using RMI/IIOP Over SSL” on page 214.

You can provide an alternate implementation to gather authentication information, tailored to the needs of the application client. To do so, include the class to perform these duties in the application client and identify the fully-qualified name of this class in the `callback-handler` element of the `application-client.xml` descriptor for the client. The ACC uses this class instead of its default class for asking for and reading the authentication information. The class must implement the `javax.security.auth.callback.CallbackHandler` interface. See the Java EE specification, section 9.2, *Application Clients: Security*, for more details.

Application clients can use “Programmatic Login” on page 72.

## ACC Naming

The client container enables the application clients to use the Java Naming and Directory Interface (JNDI) to look up Java EE services (such as JMS resources, EJB components, web services, security, and so on.) and to reference configurable parameters set at the time of deployment.

## Application Client Annotation

Annotation is supported for the main class and the optional callback handler class in application clients. For more information, see “Deployment Descriptors and Annotations” in *Oracle GlassFish Server 3.1 Application Deployment Guide*. 
Java Web Start

Java Web Start allows your application client to be easily launched and automatically downloaded and updated. It is enabled for all application clients by default. For more information, see “Using Java Web Start” on page 202.

Application Client JAR File

In GlassFish Server 3.1, the downloaded appclient JAR file is smaller than in previous releases, with dependent classes in separate JAR files. When copying the downloaded appclient to another location, make sure to include the JAR files containing the dependent classes as well. You can also use the `asadmin get-client-stubs` command to retrieve the appclient and all associated application JAR files and place them in another location.

Developing Clients Using the ACC

This section describes the procedure to develop, assemble, and deploy client applications using the ACC.

The following topics are addressed here:

- “To Access an EJB Component From an Application Client” on page 199
- “To Access a JMS Resource From an Application Client” on page 201
- “Using Java Web Start” on page 202
- “Using the Embeddable ACC” on page 212
- "Running an Application Client Using the appclient Script" on page 213
- "Using the package-appclient Script" on page 214
- “The client.policy File” on page 214
- “Using RMI/IIOP Over SSL” on page 214
- “Connecting to a Remote EJB Module Through a Firewall” on page 216
- “Specifying a Splash Screen” on page 216
- “Setting Login Retries” on page 217
- “Using Libraries with Application Clients” on page 217

To Access an EJB Component From an Application Client

1. In your client code, reference the EJB component by using an `@EJB` annotation or by looking up the JNDI name as defined in the `ejb-jar.xml` file.

   For more information about naming and lookups, see “Accessing the Naming Context” on page 273.
If load balancing is enabled as in Step 7 and the EJB components being accessed are in a different cluster, the endpoint list must be included in the lookup, as follows:

corbaname: host1:port1, host2:port2, .../NameService#ejb/jndi-name

2 Define the @EJB annotations or the ejb-ref elements in the application-client.xml file. Define the corresponding ejb-ref elements in the glassfish-application-client.xml file.

For more information on the glassfish-application-client.xml file, see “The glassfish-application-client.xml file” in Oracle GlassFish Server 3.1 Application Deployment Guide. For a general explanation of how to map JNDI names using reference elements, see “Mapping References” on page 280.

3 Deploy the application client and EJB component together in an application.

For more information on deployment, see the Oracle GlassFish Server 3.1 Application Deployment Guide. To get the client JAR file, use the --retrieve option of the asadmin deploy command.

To retrieve the stubs and ties generated during deployment, use the asadmin get-client-stubs command. For details, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

4 Ensure that the client JAR file includes the following files:

- A Java class to access the bean.
- application-client.xml - (optional) Java EE application client deployment descriptor.
- glassfish-application-client.xml - (optional) GlassFish Server specific client deployment descriptor. For information on the glassfish-application-client.xml file, see “The glassfish-application-client.xml file” in Oracle GlassFish Server 3.1 Application Deployment Guide.
- The MANIFEST.MF file. This file contains a reference to the main class, which states the complete package prefix and class name of the Java client.

5 Prepare the client machine.

This step is not needed for Java Web Start. This step is not needed if the client and server machines are the same.

If you are using the appclient script, package the GlassFish Server system files required to launch application clients on remote systems using the package-appclient script, then retrieve the application client itself using the asadmin get-client-stubs command.

For more information, see “Using the package-appclient Script” on page 214 and the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

6 To access EJB components that are residing in a remote system, make the following changes to the sun-acc.xml file or the appclient script. This step is not needed for Java Web Start.
Define the target-server element's address and port attributes to reference the remote server machine and its ORB port. See "target-server" in Oracle GlassFish Server 3.1 Application Deployment Guide.

Use the -targetserver option of the appclient script to reference the remote server machine and its ORB port. For more information, see "Running an Application Client Using the appclient Script" on page 213.

To determine the ORB port on the remote server, use the asadmin get command. For example:

```
asadmin --host rmtsrv get server-config.iio-service.iio-listener.iio-listener1.port
```

For more information about the asadmin get command, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

7 To set up load balancing and failover of remote EJB references, define at least two target-server elements in the sun-acc.xml file or the appclient script. This step is not needed for Java Web Start.

If the GlassFish Server instance on which the application client is deployed participates in a cluster, the ACC finds all currently active IIOP endpoints in the cluster automatically. However, a client should have at least two endpoints specified for bootstrapping purposes, in case one of the endpoints has failed.

The target-server elements in the sun-acc.xml file specify one or more IIOP endpoints used for load balancing. The address attribute is an IPv4 address or host name, and the port attribute specifies the port number. See "client-container" in Oracle GlassFish Server 3.1 Application Deployment Guide.

The - -targetserver option of the appclient script specifies one or more IIOP endpoints used for load balancing. For more information, see “Running an Application Client Using the appclient Script” on page 213.

Next Steps

- For instructions on running the application client, see “Using Java Web Start” on page 202 or “Running an Application Client Using the appclient Script” on page 213.
- For more information about RMI-IIOP load balancing and failover, see Chapter 12, “RMI-IIOP Load Balancing and Failover,” in Oracle GlassFish Server 3.1-3.1.1 High Availability Administration Guide.

To Access a JMS Resource From an Application Client

1 Create a JMS client.

For detailed instructions on developing a JMS client, see "Chapter 33: The Java Message Service API" in the The Java EE 6 Tutorial (http://download.oracle.com/javaee/6/tutorial/doc/).
Next, configure a JMS resource on the GlassFish Server.

For information on configuring JMS resources, see “Administering JMS Connection Factories and Destinations” in Oracle GlassFish Server 3.1 Administration Guide.

Define the @Resource or @Resources annotations or the resource-ref elements in the application-client.xml file. Define the corresponding resource-ref elements in the glassfish-application-client.xml file.

For more information on the glassfish-application-client.xml file, see “The glassfish-application-client.xml file” in Oracle GlassFish Server 3.1 Application Deployment Guide. For a general explanation of how to map JNDI names using reference elements, see “Mapping References” on page 280.

Ensure that the client JAR file includes the following files:

- A Java class to access the resource.
- application-client.xml - (optional) Java EE application client deployment descriptor.
- glassfish-application-client.xml - (optional) GlassFish Server specific client deployment descriptor. For information on the glassfish-application-client.xml file, see “The glassfish-application-client.xml file” in Oracle GlassFish Server 3.1 Application Deployment Guide.
- The MANIFEST.MF file. This file contains a reference to the main class, which states the complete package prefix and class name of the Java client.

Prepare the client machine.

This step is not needed for Java Web Start. This step is not needed if the client and server machines are the same.

If you are using the appclient script, package the GlassFish Server system files required to launch application clients on remote systems using the package-appclient script, then retrieve the application client itself using the asadmin get-client-stubs command.

For more information, see “Using the package-appclient Script” on page 214 and the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

Run the application client.

See “Using Java Web Start” on page 202 or “Running an Application Client Using the appclient Script” on page 213.

Using Java Web Start

Java Web Start allows your application client to be easily launched and automatically downloaded and updated. General information about Java Web Start is available at http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136112.html.
The following topics are addressed here:

- "Enabling and Disabling Java Web Start" on page 203
- "Downloading and Launching an Application Client" on page 203
- "The Application Client URL" on page 204
- "Signing JAR Files Used in Java Web Start" on page 205
- "Error Handling" on page 207
- "Vendor Icon, SplashScreen, and Text" on page 207
- "Creating a Custom JNLP File" on page 208

**Enabling and Disabling Java Web Start**

Java Web Start is enabled for all application clients by default.

The application developer or deployer can specify that Java Web Start is always disabled for an application client by setting the value of the `eligible` element to `false` in the `glassfish-application-client.xml` file. See the Oracle GlassFish Server 3.1 Application Deployment Guide.

The GlassFish Server administrator can disable Java Web Start for a previously deployed eligible application client using the `asadmin set` command.

To disable Java Web Start for all eligible application clients in an application, use the following command:

```
asadmin set applications.application.app-name.property.java-web-start-enabled="false"
```

To disable Java Web Start for a stand-alone eligible application client, use the following command:

```
asadmin set applications.application.module-name.property.java-web-start-enabled="false"
```

Setting `java-web-start-enabled="true"` re-enables Java Web Start for an eligible application client. For more information about the `asadmin set` command, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

**Downloading and Launching an Application Client**

If Java Web Start is enabled for your deployed application client, you can launch it for testing. Simply click on the Launch button next to the application client or application's listing on the App Client Modules page in the Administration Console.

On other machines, you can download and launch the application client using Java Web Start in the following ways:

- Using a web browser, directly enter the URL for the application client. See "The Application Client URL" on page 204.
- Click on a link to the application client from a web page.
Use the Java Web Start command `javaws`, specifying the URL of the application client as a command line argument.

If the application has previously been downloaded using Java Web Start, you have additional alternatives.

- Use the desktop icon that Java Web Start created for the application client. When Java Web Start downloads an application client for the first time it asks you if such an icon should be created.
- Use the Java Web Start control panel to launch the application client.

When you launch an application client, Java Web Start contacts the server to see if a newer client version is available. This means you can redeploy an application client without having to worry about whether client machines have the latest version.

### The Application Client URL

The default URL for an application or module generally is as follows:

```
http://host:port/context-root
```

The default URL for a stand-alone application client module is as follows:

```
http://host:port/appclient-module-id
```

The default URL for an application client module embedded within an application is as follows. Note that the relative path to the application client JAR file is included.

```
http://host:port/application-id/appclient-path
```

If the `context-root`, `appclient-module-id`, or `application-id` is not specified during deployment, the name of the JAR or EAR file without the extension is used. If the application client module or application is not in JAR or EAR file format, an `appclient-module-id` or `application-id` is generated.

Regardless of how the `context-root` or `id` is determined, it is written to the server log when you deploy the application. For details about naming, see “Naming Standards” in Oracle GlassFish Server 3.1 Application Deployment Guide.

To set a different URL for an application client, use the `context-root` subelement of the `java-web-start-access` element in the `glassfish-application-client.xml` file. This overrides the `appclient-module-id` or `application-id`. See Oracle GlassFish Server 3.1 Application Deployment Guide.

You can also pass arguments to the ACC or to the application client’s `main` method as query parameters in the URL. If multiple application client arguments are specified, they are passed in the order specified.
A question mark separates the context root from the arguments. Ampersands (&) separate the arguments and their values. Each argument and each value must begin with `arg=`. Here is an example URL with a `-color` argument for a stand-alone application client. The `-color` argument is passed to the application client's `main` method.

```
```

**Note** – If you are using the `javaws URL` command to launch Java Web Start with a URL that contains arguments, enclose the URL in double quotes (") to avoid breaking the URL at the ampersand (&) symbol.

Ideally, you should build your production application clients with user-friendly interfaces that collect information which might otherwise be gathered as command-line arguments. This minimizes the degree to which users must customize the URLs that launch application clients using Java Web Start. Command-line argument support is useful in a development environment and for existing application clients that depend on it.

**Signing JAR Files Used in Java Web Start**

Java Web Start enforces a security sandbox. By default it grants any application, including application clients, only minimal privileges. Because Java Web Start applications can be so easily downloaded, Java Web Start provides protection from potentially harmful programs that might be accessible over the network. If an application requires a higher privilege level than the sandbox permits, the code that needs privileges must be in a JAR file that was signed.

When Java Web Start downloads such a signed JAR file, it displays information about the certificate that was used to sign the JAR if that certificate is not trusted. It then asks you whether you want to trust that signed code. If you agree, the code receives elevated permissions and runs. If you reject the signed code, Java Web Start does not start the downloaded application.

Your first Java Web Start launch of an application client is likely to involve this prompting because by default GlassFish Server uses a self-signed certificate that is not linked to a trusted authority.

The GlassFish Server serves two types of signed JAR files in response to Java Web Start requests. One type is a JAR file installed as part of the GlassFish Server, which starts an application client during a Java Web Start launch: `as-install/lib/gf-client.jar`.

The other type is a generated application client JAR file. As part of deployment, the GlassFish Server generates a new application client JAR file that contains classes, resources, and descriptors needed to run the application client on end-user systems. When you deploy an application with the `asadmin deploy` command's `--retrieve` option, use the `asadmin get-client-stubs` command, or select the Generate RMIStubs option from the EJB Modules deployment page in the Administration Console, this is one of the JAR files retrieved to your system. Because application clients need access beyond the minimal sandbox permissions to
work in the Java Web Start environment, the generated application client JAR file must be signed before it can be downloaded to and executed on an end-user system.

A JAR file can be signed automatically or manually.

The following topics are addressed here:
- “Automatically Signing JAR Files” on page 206
- “Using the jar-signing-alias Deployment Property” on page 206

Automatically Signing JAR Files

The GlassFish Server automatically creates a signed version of the required JAR file if none exists. When a Java Web Start request for the gf-client.jar file arrives, the GlassFish Server looks for domain-dir/java-web-start/gf-client.jar. When a request for an application’s generated application client JAR file arrives, the GlassFish Server looks in the directory domain-dir/java-web-start/app-name for a file with the same name as the generated JAR file created during deployment.

In either case, if the requested signed JAR file is absent or older than its unsigned counterpart, the GlassFish Server creates a signed version of the JAR file automatically and deposits it in the relevant directory. Whether the GlassFish Server just signed the JAR file or not, it serves the file from the domain-dir/java-web-start directory tree in response to the Java Web Start request.

To sign these JAR files, by default the GlassFish Server uses its self-signed certificate. When you create a new domain, either by installing the GlassFish Server or by using the asadmin create-domain command, the GlassFish Server creates a self-signed certificate and adds it to the domain’s key store.

A self-signed certificate is generally untrustworthy because no certification authority vouches for its authenticity. The automatic signing feature uses the same certificate to create all required signed JAR files.

Using the jar-signing-alias Deployment Property

The asadmin deploy command property jar-signing-alias specifies the alias for the security certificate with which the application client container JAR file is signed.

Java Web Start won’t execute code requiring elevated permissions unless it resides in a JAR file signed with a certificate that the user’s system trusts. For your convenience, GlassFish Server signs the JAR file automatically using the self-signed certificate from the domain, s1as. Java Web Start then asks the user whether to trust the code and displays the GlassFish Server certificate information.

To sign this JAR file with a different certificate, first add the certificate to the domain keystore. You can use a certificate from a trusted authority, which avoids the Java Web Start prompt. To add a certificate to the domain keystore, see ”Administering JSSE Certificates” in Oracle GlassFish Server 3.1 Security Guide.
Next, deploy your application using the `jar-signing-alias` property. For example:

```
asadmin deploy --property jar-signing-alias=MyAlias MyApp.ear
```

For more information about the `asadmin deploy` command, see the *Oracle GlassFish Server 3.1-3.1.1 Reference Manual*.

**Error Handling**

When an application client is launched using Java Web Start, any error that the application client logic does not catch and handle is written to `System.err` and displayed in a dialog box. This display appears if an error occurs even before the application client logic receives control. It also appears if the application client code does not catch and handle errors itself.

**Vendor Icon, Splash Screen, and Text**

To specify a vendor-specific icon, splash screen, text string, or a combination of these for Java Web Start download and launch screens, use the `vendor` element in the `glassfish-application-client.xml` file. The complete format of this element’s data is as follows:

```
<vendor>icon-image-URI::splash-screen-image-URI::vendor-text</vendor>
```

The following example vendor element contains an icon, a splash screen, and a text string:

```
<vendor>images/icon.jpg::otherDir/splash.jpg::MyCorp, Inc.</vendor>
```

The following example vendor element contains an icon and a text string:

```
<vendor>images/icon.jpg::MyCorp, Inc.</vendor>
```

The following example vendor element contains a splash screen and a text string; note the initial double colon:

```
<vendor>::otherDir/splash.jpg::MyCorp, Inc.</vendor>
```

The following example vendor element contains only a text string:

```
<vendor>MyCorp, Inc.</vendor>
```

The default value is the text string `Application Client`.

For more information about the `glassfish-application-client.xml` file, see the *Oracle GlassFish Server 3.1 Application Deployment Guide*.

You can also specify a vendor-specific icon, splash screen, text string, or a combination by using a custom JNLP file; see “Creating a Custom JNLP File” on page 208.
Creating a Custom JNLP File

You can partially customize the Java Network Launching Protocol (JNLP) file that GlassFish Server uses for Java Web Start.

The following topics are addressed here:

- "Specifying the JNLP File in the Deployment Descriptor" on page 208
- "Referring to JAR Files from the JNLP File" on page 208
- "Referring to Other JNLP Files" on page 209
- "Combining Custom and Automatically Generated Content" on page 209

For more information about JNLP, see the Java Web Start Architecture JNLP Specification and API Documentation (http://java.sun.com/javase/technologies/desktop/javawebstart/download-spec.html).

Specifying the JNLP File in the Deployment Descriptor

To specify a custom JNLP file for Java Web Start, use the jnlp-doc element in the glassfish-application-client.xml file. If none is specified, a default JNLP file is generated.

The value of the jnlp-doc element is a relative path with the following format:

```
[path-to-JAR-in-EAR!] path-to-JNLP-in-JAR
```

The default path-to-JAR-in-EAR is the current application client JAR file. For example, if the JNLP file is in the application client JAR file at custom/myInfo.jnlp, the element value would look like this:

```
<jnlp-doc>custom/myInfo.jnlp</jnlp-doc>
```

If the application client is inside an EAR file, you can place the custom JNLP file inside another JAR file in the EAR. For example, if the JNLP file is in a JAR file at other/myLib.jar, the element value would look like this, with an exclamation point (!) separating the path to the JAR from the path in the JAR:

```
<jnlp-doc>other/myLib.jar!custom/myInfo.jnlp</jnlp-doc>
```

For more information about the glassfish-application-client.xml file, see the Oracle GlassFish Server 3.0.1 Application Deployment Guide.

Referring to JAR Files from the JNLP File

As with any JNLP document, the custom JNLP file can refer to JAR files the application client requires.
Do not specify every JAR on which the client depends. GlassFish Server automatically handles JAR files that the Java EE specification requires to be available to the application client. This includes JAR files listed in the application client JAR file’s manifest Class-Path and JAR files in the EAR file’s library directory (if any) and their transitive closures. The custom JNLP file should specify only those JAR files the client needs that GlassFish Server would not otherwise include.

Package these JAR files in the EAR file, as with any JAR file required by an application client. Use relative URIs in the <jar href="..."/> and <nativelib href="..."/> elements to point to the JAR files. The codebase that GlassFish Server assigns for the final client JNLP file corresponds to the top level of the EAR file. Therefore, relative href references correspond directly to the relative path to the JAR files within the EAR file.

Neither the Java EE specification nor GlassFish Server supports packaging JAR files inside the application client JAR file itself. Nothing prevents this, but GlassFish Server does no special processing of such JAR files. They do not appear in the runtime class path and they cannot be referenced from the custom JNLP file.

**Referring to Other JNLP Files**

The JNLP file can also refer to other custom JNLP files using <extension href="..."/> elements. To be consistent with relative href references to JAR files, the relative href references to JNLP files are resolved within the EAR file. You can place these JNLP files directly in the EAR file or inside JAR files that the EAR file contains. Use one of these formats for these href references:

```
[path-to-JAR-in-EAR!]path-to-JNLP-in-JAR
```

```
path-to-JNLP-in-EAR
```

Note that these formats are not equivalent to the format of the jnlp-doc element in the `glassfish-application-client.xml` file.

These formats follow the standard entry-within-a-JAR URI syntax and semantics. Support for this syntax comes from the automated Java Web Start support in GlassFish Server. This is not a feature of Java Web Start or the JNLP standard.

**Combining Custom and Automatically Generated Content**

GlassFish Server recognizes these types of content in the JNLP file:

- **Owned** — GlassFish Server owns the content and ignores any custom content
- **Merged** — Automatically generated content and custom content are merged
- **Defaulted** — Custom content is used if present, otherwise default content is provided
You can compose a complete JNLP file and package it with the application client. GlassFish Server then combines it with its automatically generated JNLP file. You can also provide content that only adds to or replaces what GlassFish Server generates. The custom content must conform to the general structure of the JNLP format so that GlassFish Server can properly place it in the final JNLP file.

For example, to specify a single native library to be included only for Windows systems, the new element to add might be as follows:

<nativelib href="windows/myLib.jar"/>

However, you must indicate where in the overall document this element belongs. The actual custom JNLP file should look like this:

<jnlp>
  <resources os="Windows">
    <nativelib href="windows/myLib.jar"/>
  </resources>
</jnlp>

GlassFish Server provides default <information> and <resources> elements, without specifying attributes such as os, arch, platform, or locale. GlassFish Server merges its own content within those elements with custom content under those elements. Further, you can provide your own <information> and <resources> elements (and fragments within them) that specify at least one of these attributes.

In general, you can perform the following customizations:

- Override the GlassFish Server defaults for the child elements of <information> elements that have no attribute settings for os, arch, platform, and locale. Among these child elements are <title>, <vendor>, <description>, <icon>, and so on.
- Add <information> elements with os, arch, platform, or locale settings. You can also add child elements.
- Add child elements of <resources> elements that have no attribute settings for os, arch, or locale. Among these child elements are <jar>, <property>, <nativelib>, and so on. You can also customize attributes of the <java> child element.
- Add <resources> elements that specify at least one of os, arch, or locale. You can also add child elements.

This flexibility allows you to add JAR files to the application (including platform-specific native libraries) and set properties to control the behavior of your application clients.

The following tables provide more detail about what parts of the JNLP file you can add to and modify.
TABLE 10–1 Owned JNLP File Content

<table>
<thead>
<tr>
<th>JNLP File Fragment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>&lt;jnlp codebase=&quot;xxx&quot; ...&gt;</code></td>
<td>GlassFish Server controls this content for application clients packaged in EAR files. The developer controls this content for application clients packaged in WAR files.</td>
</tr>
<tr>
<td><code>&lt;jnlp href=&quot;xxx&quot; ...&gt;</code></td>
<td>GlassFish Server controls this content for application clients packaged in EAR files. The developer controls this content for application clients packaged in WAR files.</td>
</tr>
<tr>
<td><code>&lt;jnlp&gt;</code> <code>&lt;security&gt;</code></td>
<td>GlassFish Server must control the permissions requested for each JNLP file. All permissions are needed for the main file, which launches the ACC. The permissions requested for other JNLP documents depend on whether the JAR files referenced in those documents are signed.</td>
</tr>
<tr>
<td><code>&lt;jnlp&gt;</code> <code>&lt;application-desc&gt;</code> <code>&lt;argument&gt;</code></td>
<td>GlassFish Server sets the main-class and the arguments to be passed to the client.</td>
</tr>
</tbody>
</table>

TABLE 10–2 Defaulted JNLP File Content

<table>
<thead>
<tr>
<th>JNLP File Fragment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>&lt;jnlp spec=&quot;xxx&quot; ...&gt;</code></td>
<td>Specifies the JNLP specification version.</td>
</tr>
<tr>
<td><code>&lt;jnlp&gt;</code> <code>&lt;information [no-attributes]&gt;</code></td>
<td>Specifies the application title, vendor, home page, various description text values, icon images, and whether offline execution is allowed.</td>
</tr>
<tr>
<td><code>&lt;jnlp&gt;</code> <code>&lt;resources [no-attributes]&gt;</code> <code>&lt;java version=&quot;xxx&quot; java-vm-args=&quot;yyy&quot; ...&gt;</code></td>
<td>Specifies the Java SE version or selected VM parameter settings.</td>
</tr>
</tbody>
</table>

TABLE 10–3 Merged JNLP File Content

<table>
<thead>
<tr>
<th>JNLP File Fragment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>&lt;jnlp&gt;</code> <code>&lt;information [attributes]&gt;</code></td>
<td>You can specify one or more of the os, arch, platform, and locale attributes for the <code>&lt;information&gt;</code> element. You can also specify child elements; GlassFish Server provides no default children.</td>
</tr>
<tr>
<td><code>&lt;jnlp&gt;</code> <code>&lt;resources [attributes]&gt;</code></td>
<td>You can specify one or more of the os, arch, platform, and locale attributes for the <code>&lt;resources&gt;</code> element. You can also specify child elements; GlassFish Server provides no default children.</td>
</tr>
</tbody>
</table>


### Using the Embeddable ACC

You can embed the ACC into your application client. If you place the `as-install/lib/gf-client.jar` file in your runtime classpath, your application creates the ACC after your application code has started, then requests that the ACC start the application client portion. The basic model for coding is as follows:

1. Create a builder object.
2. Operate on the builder to configure the ACC.
3. Obtain a new ACC instance from the builder.
4. Present a client archive or class to the ACC instance.
5. Start the client running within the newly created ACC instance.

Your code should follow this general pattern:

```java
// one TargetServer for each ORB endpoint for bootstrapping
TargetServer[] servers = ...;

// Get a builder to set up the ACC
AppClientContainer.Builder builder = AppClientContainer.newBuilder(servers);

// Fine-tune the ACC's configuration. Note ability to "chain" invocations.
builder.callbackHandler("com.acme.MyHandler").authRealm("myRealm"); // Modify config
```

---

**TABLE 10–3 Merged JNLP File Content (Continued)**

<table>
<thead>
<tr>
<th>JNLP File Fragment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>&lt;jnlp&gt;</code> <code>&lt;resources [no-attributes]&gt;</code> <code>&lt;jar ...&gt;</code></td>
<td>Adds JAR files to be included in the application to the JAR files provided by GlassFish Server.</td>
</tr>
<tr>
<td><code>&lt;jnlp&gt;</code> <code>&lt;resources [no-attributes]&gt;</code> <code>&lt;nativelib ...&gt;</code></td>
<td>Adds native libraries to be included in the application. Each entry in a JAR listed in a <code>&lt;nativelib&gt;</code> element must be a native library for the correct platform. The full syntax of the <code>&lt;nativelib&gt;</code> element lets the developer specify the platform for that native library.</td>
</tr>
<tr>
<td><code>&lt;jnlp&gt;</code> <code>&lt;resources [no-attributes]&gt;</code> <code>&lt;property ...&gt;</code></td>
<td>Adds system properties to be included in the application to the system properties defined by GlassFish Server.</td>
</tr>
<tr>
<td><code>&lt;jnlp&gt;</code> <code>&lt;resources [no-attributes]&gt;</code> <code>&lt;extension ...&gt;</code></td>
<td>Specifies another custom JNLP file.</td>
</tr>
<tr>
<td><code>&lt;jnlp&gt;</code> <code>&lt;component-desc ...&gt;</code></td>
<td>Includes another custom JNLP file that specifies a component extension.</td>
</tr>
<tr>
<td><code>&lt;jnlp&gt;</code> <code>&lt;installer-desc ...&gt;</code></td>
<td>Includes another custom JNLP file that specifies an installer extension.</td>
</tr>
</tbody>
</table>
// Get a container for a client.
URI clientURI = ...; // URI to the client JAR
AppClientContainer acc = builder.newContainer(clientURI);

or

Class mainClass = ...;
AppClientContainer acc = builder.newContainer(mainClass);

// In either case, start the client running.
String[] appArgs = ...;
acc.startClient(appArgs); // Start the client

...

acc.close(); // close the ACC(optional)

The ACC loads the application client's main class, performs any required injection, and transfers control to the static main method. The ACC's run method returns to the calling application as soon as the client's main method returns to the ACC.

If the application client's main method starts any asynchronous activity, that work continues after the ACC returns. The ACC has no knowledge of whether the client's main method triggers asynchronous work. Therefore, if the client causes work on threads other than the calling thread, and if the embedding application needs to know when the client's asynchronous work completes, the embedding application and the client must agree on how this happens.

The ACC's shutdown handling is invoked from the ACC's close method. The calling application can invoke acc.close() to close down any services started by the ACC. If the application client code started any asynchronous activity that might still depend on ACC services, invoking close before that asynchronous activity completes could cause unpredictable and undesirable results. The shutdown handling is also run automatically at VM shutdown if the code has not invoked close before then.

The ACC does not prevent the calling application from creating or running more than one ACC instance during a single execution of the application either serially or concurrently. However, other services used by the ACC (transaction manager, security, ORB, and so on) might or might not support such serial or concurrent reuse.

Running an Application Client Using the appclient Script

To run an application client, you can launch the ACC using the appclient script, whether or not Java Web Start is enabled. This is optional. This script is located in the as-install/bin directory. For details, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.
**Using the package-appclient Script**

You can package the GlassFish Server system files required to launch application clients on remote systems into a single JAR file using the package-appclient script. This is optional. This script is located in the as-install/bin directory. For details, see the *Oracle GlassFish Server 3.1-3.1.1 Reference Manual*.

**The client.policy File**

The client.policy file is the J2SE policy file used by the application client. Each application client has a client.policy file. The default policy file limits the permissions of Java EE deployed application clients to the minimal set of permissions required for these applications to operate correctly. If an application client requires more than this default set of permissions, edit the client.policy file to add the custom permissions that your application client needs. Use the J2SE standard policy tool or any text editor to edit this file.


For more information about the permissions you can set in the client.policy file, see [http://download.oracle.com/javase/6/docs/technotes/guides/security/permissions.html](http://download.oracle.com/javase/6/docs/technotes/guides/security/permissions.html).

**Using RMI/IIOP Over SSL**

You can configure RMI/IIOP over SSL in two ways: using a username and password, or using a client certificate.

To use a username and password, configure the ior-security-config element in the glassfish-ejb-jar.xml file. The following configuration establishes SSL between an application client and an EJB component using a username and password. The user has to login to the ACC using either the sun-acc.xml mechanism or the “Programmatic Login” on page 72 mechanism.

```xml
<ior-security-config>
 <transport-config>
 <integrity>required</integrity>
 <confidentiality>required</confidentiality>
 <establish-trust-in-target>supported</establish-trust-in-target>
 <establish-trust-in-client>none</establish-trust-in-client>
 </transport-config>
 <as-context>
 <auth-method>username_password</auth-method>
 <realm>default</realm>
 <required>true</required>
 </as-context>
</ior-security-config>
```
For more information about the glassfish-ejb-jar.xml and sun-acc.xml files, see the Oracle GlassFish Server 3.1 Application Deployment Guide.

To use a client certificate, configure the ior-security-config element in the glassfish-ejb-jar.xml file. The following configuration establishes SSL between an application client and an EJB component using a client certificate.

```
<ior-security-config>
 <transport-config>
 <integrity>required</integrity>
 <confidentiality>required</confidentiality>
 <establish-trust-in-target>supported</establish-trust-in-target>
 <establish-trust-in-client>required</establish-trust-in-client>
 </transport-config>
 <as-context>
 <auth-method>none</auth-method>
 <realm>default</realm>
 <required>false</required>
 </as-context>
 <sas-context>
 <caller-propagation>none</caller-propagation>
 </sas-context>
</ior-security-config>
```

To use a client certificate, you must also specify the system properties for the keystore and truststore to be used in establishing SSL. To use SSL with the Application Client Container (ACC), you need to set these system properties in one of the following ways:

- Use the new syntax of the appclient script and specify the system properties as JVM options. See "Running an Application Client Using the appclient Script" on page 213.

- Set the environment variable VMARGS in the shell. For example, in the ksh or bash shell, the command to set this environment variable would be as follows:

  ```
 export VMARGS="-Djavax.net.ssl.keyStore=${keystore.db.file}
 -Djavax.net.ssl.trustStore=${truststore.db.file}
 -Djavax.net.ssl.keyStorePassWord=${ssl.password}
 -Djavax.net.ssl.trustStorePassword=${ssl.password}"
  ```

- Optionally, you can set the env element using Ant. For example:

  ```
 <target name="runclient">
 <exec executable="${S1AS_HOME}/bin/appclient">
 <env key="VMARGS" value="-Djavax.net.ssl.keyStore=${keystore.db.file}
 -Djavax.net.ssl.trustStore=${truststore.db.file}
 -Djavax.net.ssl.keyStorePassWord=${ssl.password}
 -Djavax.net.ssl.trustStorePassword=${ssl.password}"/>
 <arg value="-client"/>
 <arg value="${appClient.jar}"/>
 </exec>
 </target>
  ```
Connecting to a Remote EJB Module Through a Firewall

To deploy and run an application client that connects to an EJB module on a GlassFish Server instance that is behind a firewall, you must set ORB Virtual Address Agent Implementation (ORBVAA) options. Use the `asadmin create-jvm-options` command as follows:

```
asadmin create-jvm-options -Dcom.sun.corba.ee.ORBVAAHost=public-IP-address
asadmin create-jvm-options -Dcom.sun.corba.ee.ORBVAAPort=public-port
```

Set the ORBVAAHost and ORBVAAPort options to the host and port of the public address. The ORBUserConfigurators option tells the ORB to create an instance of the VirtualAddressAgentImpl class and invoke the configure method on the resulting object, which must implement the com.sun.corba.ee.spi.orb.ORBConfigurator interface. The ORBUserConfigurators value doesn’t matter. Together, these options create an ORB that in turn creates Object references (the underlying implementation of remote EJB references) containing the public address, while the ORB listens on the private address specified for the IIOP port in the GlassFish Server configuration.

Specifying a Splash Screen

Java SE 6 offers splash screen support, either through a Java command-line option or a manifest entry in the application’s JAR file. To take advantage of this Java SE feature in your application client, you can do one of the following:

- Create the appclient JAR file so that its manifest contains a SplashScreen-Image entry that specifies the path to the image in the client. The java command displays the splash screen before starting the ACC or your client, just as with any Java application.
- Use the new appclient ... -jar launch format, using the -splash command-line option at runtime or the SplashScreen-Image manifest entry at development time. See “Running an Application Client Using the appclient Script” on page 213.
- In the environment that runs the appclient script, set the VMOPTS environment variable to include the -splash option before invoking the appclient script to launch the client.
- Build an application client that uses the embeddable ACC feature and specify the splash screen image using one of the following:
  - The -splash option of the java command
  - SplashScreen-Image in the manifest for your program (not the manifest for the application client)

See "Using the Embeddable ACC” on page 212."
During application (EAR file) deployment, the GlassFish Server generates façade JAR files, one for the application and one for each application client in the application. During application client module deployment, the GlassFish Server generates a single facade JAR for the application client. The appclient script supports splash screens inside the application client JAR only if you launch an application client facade or appclient client JAR. If you launch the facade for an application or the undeployed application itself, the appclient script cannot take advantage of the Java SE 6 splash screen feature.

### Setting Login Retries

You can set a JVM option using the appclient script that determines the number of login retries allowed. This option is `-Dorg.glassfish.appclient.acc.maxLoginRetries=n` where `n` is a positive integer. The default number of retries is 3.

This retry loop happens when the ACC attempts to perform injection if you annotated the client's main class (for example, using `@Resource`). If instead of annotations your client uses the `InitialContext` explicitly to look up remote resources, the retry loop does not apply. In this case, you could write logic to catch an exception around the lookup and retry explicitly.

For details about the appclient script syntax, see the *Oracle GlassFish Server 3.1-3.1.1 Reference Manual*.

### Using Libraries with Application Clients

The Libraries field in the Administration Console's deployment page and the `--libraries` option of the `asadmin deploy` command do not apply to application clients. Neither do the `as-install/lib`, `domain-dir/lib`, and `domain-dir/lib/classes` directories comprising the Common Class Loader. These apply only to applications and modules deployed to the server. For more information, see Chapter 2, “Class Loaders.”

To use libraries with an application client, package the application client in an application (EAR file). Then, either place the libraries in the `/lib` directory of the EAR file or specify their location in the application client JAR file's manifest `Class-Path`.

### Developing Clients Without the ACC

This section describes the procedure to create, assemble, and deploy a Java-based client that is not packaged using the Application Client Container (ACC).
The following topics are addressed here:

- “To access an EJB component from a stand-alone client” on page 218
- “To access an EJB component from a server-side module” on page 219
- “To access a JMS resource from a stand-alone client” on page 221

For information about using the ACC, see “Developing Clients Using the ACC” on page 199. For general information about EJB components and clients, see EJB FAQ (http://glassfish.java.net/javaee5/ejb/EJB_FAQ.html).

▼ To access an EJB component from a stand-alone client

1 **In your client code, instantiate the InitialContext:**

   InitialContext ctx = new InitialContext();

   It is not necessary to explicitly instantiate a naming context that points to the CosNaming service.

2 **In the client code, look up the home object by specifying the JNDI name of the home object.**

   Here is an EJB 2.x example:

   ```java
 Object ref = ctx.lookup("jndi-name");
 BeanAHome = (BeanAHome)PortableRemoteObject.narrow(ref,BeanAHome.class);
   ```

   Here is an EJB 3.x example:

   ```java
 BeanRemoteBusiness bean = (BeanRemoteBusiness) ctx.lookup("com.acme.BeanRemoteBusiness");
   ```

   If load balancing is enabled as in Step 6 and the EJB components being accessed are in a different cluster, the endpoint list must be included in the lookup, as follows:

   ```java
 corbaname:host1:port1,host2:port2,.../NameService#ejb/jndi-name
   ```

   For more information about naming and lookups, see “Accessing the Naming Context” on page 273.

3 **Deploy the EJB component to be accessed.**

   For more information on deployment, see “About Deployment Tools” in *Oracle GlassFish Server 3.1 Application Deployment Guide.*

4 **Copy the as-install/Lib/gf-client.jar file to the client machine and include it in the classpath on the client side.**

   The gf-client.jar file references GlassFish Server JAR files in its MANIFEST.MF file. If there is no GlassFish Server installation on the client machine, you must also copy the as-install/modules directory to the client machine and maintain its directory structure relative to the as-install/lib/gf-client.jar file. Or you can use the package-appclient script; see “Using the package-appclient Script” on page 214.
To access EJB components that are residing in a remote system, set the following system properties for the Java Virtual Machine startup options:

-Dorg.omg.CORBA.ORBInitialHost=${ORBhost}
-Dorg.omg.CORBA.ORBInitialPort=${ORBport}

Here ORBhost is the Application Server hostname and ORBport is the ORB port number (default is 3700 for the default server instance, named server).

You can use the asadmin get command to get the IIOP port numbers. For example:

```
asadmin get ^configs.config.server-config.iiop-service.iiop-listener.orb-listener-1.*
```

To set up load balancing and remote EJB reference failover, define the endpoints property as follows:

-Dcom.sun.appserv.iiop.endpoints=host1:port1,host2:port2,...

The endpoints property specifies a comma-separated list of one or more IIOP endpoints used for load balancing. An IIOP endpoint is in the form host:port, where the host is an IPv4 address or host name, and the port specifies the port number.

If the endpoints list is changed dynamically in the code, the new list is used only if a new InitialContext is created.

Run the stand-alone client.

As long as the client environment is set appropriately and the JVM is compatible, you merely need to run the main class.

To access an EJB component from a server-side module

A server-side module can be a servlet, another EJB component, or another type of module.

In your module code, instantiate the InitialContext:

```
InitialContext ctx = new InitialContext();
```

It is not necessary to explicitly instantiate a naming context that points to the CosNaming service.

To set up load balancing and remote EJB reference failover, define the endpoints property as follows:

```
Hashtable env = new Hashtable();
env.put("com.sun.appserv.iiop.endpoints","host1:port1,host2:port2,...");
InitialContext ctx = new InitialContext(env);
```
The endpoints property specifies a comma-separated list of one or more IIOP endpoints used for load balancing. An IIOP endpoint is in the form host:port, where the host is an IPv4 address or host name, and the port specifies the port number.

You can use the asadmin get command to get the IIOP port numbers. For example:

```
asadmin get "configs.config.server-config.iiop-service.iiop-listener.orb-listener-1.*"
```

If the endpoints list is changed dynamically in the code, the new list is used only if a new InitialContext is created.

2 In the module code, look up the home object by specifying the JNDI name of the home object.

Here is an EJB 2.x example:

```
Object ref = ctx.lookup("jndi-name");
BeanAHome = (BeanAHome)PortableRemoteObject.narrow(ref,BeanAHome.class);
```

Here is an EJB 3.x example:

```
BeanRemoteBusiness bean = (BeanRemoteBusiness) ctx.lookup("com.acme.BeanRemoteBusiness");
```

If load balancing is enabled as in Step 1 and the EJB components being accessed are in a different cluster, the endpoint list must be included in the lookup, as follows:

```
corbaname:host1:port1,host2:port2,.../NameService#ejb/jndi-name
```

For more information about naming and lookups, see “Accessing the Naming Context” on page 273.

3 Deploy the EJB component to be accessed.

For more information on deployment, see “About Deployment Tools” in Oracle GlassFish Server 3.1 Application Deployment Guide.

4 To access EJB components that are residing in a remote system, set the following system properties for the Java Virtual Machine startup options:

```
-Dorg.omg.CORBA.ORBInitialHost=${ORBhost}
-Dorg.omg.CORBA.ORBInitialPort=${ORBport}
```

Here ORBhost is the Application Server hostname and ORBport is the ORB port number (default is 3700 for the default server instance, named server).

5 Deploy the module.

For more information on deployment, see “About Deployment Tools” in Oracle GlassFish Server 3.1 Application Deployment Guide.
To access a JMS resource from a stand-alone client

1 Create a JMS client.
   For detailed instructions on developing a JMS client, see Chapter 48, "Java Message Service Examples," in The Java EE 6 Tutorial.

2 Configure a JMS resource on GlassFish Server.
   For information on configuring JMS resources, see “Administering JMS Connection Factories and Destinations” in Oracle GlassFish Server 3.1 Administration Guide.

3 Copy the following JAR files to the client machine and include them in the classpath on the client side:
   - gf-client.jar - available at as-install/lib
   - imqjmsra.jar - available at as-install/lib/install/aplications/jmsra
   The gf-client.jar file references GlassFish Server JAR files in its MANIFEST.MF file. If there is no GlassFish Server installation on the client machine, you must also copy the as-install/modules directory to the client machine and maintain its directory structure relative to the as-install/lib/gf-client.jar file. Or you can use the package-appclient script; see “Using the package-appclient Script” on page 214.

4 To access EJB components that are residing in a remote system, set the following system properties for the Java Virtual Machine startup options:
   -Dorg.omg.CORBA.ORBInitialHost=${ORBhost}
   -Dorg.omg.CORBA.ORBInitialPort=${ORBport}
   Here ORBhost is the Application Server hostname and ORBport is the ORB port number (default is 3700 for the default server instance, named server).
   You can use the asadmin get command to get the IIOP port numbers. For example:
   asadmin get "configs.config.server-config.iiop-service.iiop-listener.orb-listener-1.*"

5 Run the stand-alone client.
   As long as the client environment is set appropriately and the JVM is compatible, you merely need to run the main class.
This chapter describes Oracle GlassFish Server support for the Java EE 1.6 Connector Architecture, also known as JSR 322 (http://jcp.org/en/jsr/detail?id=322).

The Java EE Connector Architecture provides a Java solution to the problem of connectivity between multiple application servers and existing enterprise information systems (EISs). By using the Java EE Connector architecture, EIS vendors no longer need to customize their product for each application server. Application server vendors who conform to the Java EE Connector architecture do not need to write custom code to add connectivity to a new EIS.

This chapter uses the terms connector and resource adapter interchangeably. Both terms refer to a resource adapter module that is developed in conformance with the Java EE Connector Architecture Specification.

**Note** – If you installed the Web Profile, connector modules that use only outbound communication features and work-management that does not involve inbound communication features are supported. Other connector features are supported only in the full GlassFish Server.

For more information about connectors, see [Java EE Connector Architecture](http://java.sun.com/j2ee/connector/) and “Chapter 37: Java EE Connector Architecture” in the [The Java EE 6 Tutorial](http://download.oracle.com/javaee/6/tutorial/doc/).


For information about deploying a connector to the GlassFish Server, see the [Oracle GlassFish Server 3.1 Application Deployment Guide](http://download.oracle.com/otndocs/glassfish/3.1/docs/).
The following topics are addressed here:

- “Connector Support in the GlassFish Server” on page 224
- “Advanced Connector Configuration Options” on page 225
- “Inbound Communication Support” on page 231
- “Outbound Communication Support” on page 232
- “Configuring a Message Driven Bean to Use a Resource Adapter” on page 232

**Connector Support in the GlassFish Server**

The GlassFish Server supports the development and deployment of resource adapters that are compatible with the Connector 1.6 specification (and, for backward compatibility, the Connector 1.0 and 1.5 specifications).

The Connector 1.0 specification defines the outbound connectivity system contracts between the resource adapter and the GlassFish Server. The Connector 1.5 specification introduces major additions in defining system level contracts between the GlassFish Server and the resource adapter with respect to inbound connectivity, life cycle management, and thread management. The Connector 1.6 specification introduces further additions in defining system level contracts between the GlassFish Server and the resource adapter with respect to the following:

- **Generic work context contract** — A generic contract that enables a resource adapter to control the execution context of a Work instance that it has submitted to the GlassFish Server for execution. The Generic work contract provides the mechanism for a resource adapter to augment the runtime context of a Work instance with additional contextual information flown-in from the EIS. This contract enables a resource adapter to control, in a more flexible manner, the contexts in which the Work instances submitted by it are executed by the application server’s WorkManager.

- **Security work context** — A standard contract that enables a resource adapter to establish security information while submitting a Work instance for execution to a WorkManager and while delivering messages-to-message endpoints residing in the GlassFish Server. This contract provides a mechanism to support the execution of a Work instance in the context of an established identity. It also supports the propagation of user information or Principal information from an EIS to a MessageEndpoint during message inflow.

- **Transaction context** — The transaction context contract between the resource adapter and the application server leverages the Generic Work Context mechanism by describing a standard WorkContext, the TransactionContext. It represents the standard interface a resource adapter can use to propagate transaction context information from the EIS to the application server.
Connector Architecture for JMS and JDBC

In the Administration Console, connector, JMS, and JDBC resources are handled differently, but they use the same underlying Connector architecture. In the GlassFish Server, all communication to an EIS, whether to a message provider or an RDBMS, happens through the Connector architecture. To provide JMS infrastructure to clients, the GlassFish Server uses the GlassFish Server Message Queue software. To provide JDBC infrastructure to clients, the GlassFish Server uses its own JDBC system resource adapters. The GlassFish Server automatically makes these system resource adapters available to any client that requires them.

For more information about JMS in the GlassFish Server, see Chapter 17, “Using the Java Message Service.” For more information about JDBC in the GlassFish Server, see Chapter 14, “Using the JDBC API for Database Access.”

Connector Configuration

The GlassFish Server does not need to use sun-ra.xml, which previous GlassFish Server versions used, to store server-specific deployment information inside a Resource Adapter Archive (RAR) file. (However, the sun-ra.xml file is still supported for backward compatibility.) Instead, the information is stored in the server configuration. As a result, you can create multiple connector connection pools for a connection definition in a functional resource adapter instance, and you can create multiple user-accessible connector resources (that is, registering a resource with a JNDI name) for a connector connection pool. In addition, dynamic changes can be made to connector connection pools and the connector resource properties without restarting the GlassFish Server.

Advanced Connector Configuration Options

The following topics are addressed here:

- “Thread Associations” on page 226
- “Security Maps” on page 226
- “Work Security Maps” on page 227
- “Overriding Configuration Properties” on page 227
- “Testing a Connector Connection Pool” on page 228
- “Flushing a Connector Connection Pool” on page 228
- “Handling Invalid Connections” on page 229
- “Setting the Shutdown Timeout” on page 229
- “Specifying the Class Loading Policy” on page 230
- “Using Last Agent Optimization of Transactions” on page 230
- “Disabling Pooling for a Connection” on page 231
- “Using Application-Scoped Connectors” on page 231
Thread Associations

Connectors can submit work instances to the GlassFish Server for execution. By default, the GlassFish Server services work requests for all connectors from its default thread pool. However, you can associate a specific user-created thread pool to service work requests from a connector. A thread pool can service work requests from multiple resource adapters. To create a thread pool:

- In the Administration Console, select Thread Pools under the relevant configuration. For details, click the Help button in the Administration Console.
- Use the `asadmin create-threadpool` command. For details, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

To associate a connector with a thread pool:

- In the Administration Console, open the Applications component and select Resource Adapter Configs. Specify the name of the thread pool in the Thread Pool ID field. For details, click the Help button in the Administration Console.
- Use the `----threadpoolid` option of the `asadmin create-resource-adapter-config` command. For details, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

If you create a resource adapter configuration for a connector module that is already deployed, the connector module deployment is restarted with the new configuration properties.

Security Maps

Create a security map for a connector connection pool to map an application principal or a user group to a back end EIS principal. The security map is usually used in situations where one or more EIS back end principals are used to execute operations (on the EIS) initiated by various principals or user groups in the application.

To create or update security maps for a connector connection pool:

- In the Administration Console, open the Resources component, select Connectors, select Connector Connection Pools, and select the Security Maps tab. For details, click the Help button in the Administration Console.
- Use the `asadmin create-connector-security-map` command. For details, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

If a security map already exists for a connector connection pool, the new security map is appended to the previous one. The connector security map configuration supports the use of the wildcard asterisk (*) to indicate all users or all user groups.

When an application principal initiates a request to an EIS, the GlassFish Server first checks for an exact match to a mapped back end EIS principal using the security map defined for the
connector connection pool. If there is no exact match, the GlassFish Server uses the wild card character specification, if any, to determined the mapped back end EIS principal.

**Work Security Maps**

A work security map for a resource adapter maps an EIS principal or group to a application principal or group. A work security map is useful in situations where one or more application principals execute operations initiated by principals or user groups in the EIS. A resource adapter can have multiple work security maps. A work security map can map either principals or groups, but not both.

To create a work security map, use the `asadmin create-connector-work-security-map` command. For details, see the *Oracle GlassFish Server 3.1-3.1.1 Reference Manual*.

The work security map configuration supports the wildcard asterisk (*) character to indicate all users or all user groups. When an EIS principal sends a request to the GlassFish Server, the GlassFish Server first checks for an exact match to a mapped application principal using the work security map defined for the resource adapter. If there is no exact match, the GlassFish Server uses the wild card character specification, if any, to determine the application principal.

**Overriding Configuration Properties**

You can override the properties (*config-property elements*) specified in the *ra.xml* file of a resource adapter:

- In the Administration Console, open the Resources component and select Resource Adapter Configs. Create a new resource adapter configuration or select an existing one to edit. Then enter property names and values in the Additional Properties table. For details, click the Help button in the Administration Console.
- Use the `asadmin create-resource-adapter-config` command to create a configuration for a resource adapter. Use this command’s `- - - property` option to specify a name-value pair for a resource adapter property. For details, see the *Oracle GlassFish Server 3.1-3.1.1 Reference Manual*.

You can specify configuration properties either before or after resource adapter deployment. If you specify properties after deploying the resource adapter, the existing resource adapter is restarted with the new properties.

You can also use token replacement for overriding resource adapter configuration properties in individual server instances when the resource adapter is deployed to a cluster. For example, for a property called `inboundPort`, you can assign the value `${inboundPort}`. You can then assign a different value to this property for each server instance. Changes to system properties take effect upon server restart.
Testing a Connector Connection Pool

You can test a connector connection pool for usability in one of these ways:

- In the Administration Console, open the Resources component, open the Connector component, select Connection Pools, and select the connection pool you want to test. Then select the Ping button in the top right corner of the page. For details, click the Help button in the Administration Console.
- Use the `asadmin ping-connection-pool` command. For details, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

Both these commands fail and display an error message unless they successfully connect to the connection pool.

You can also specify that a connection pool is automatically tested when created or reconfigured by setting the Ping attribute to `true` (the default is `false`) in one of the following ways:

- Enter a Ping value in the Connector Connection Pools page in the Administration Console. For more information, click the Help button in the Administration Console.
- Specify the `-ping` option in the `asadmin create-connector-connection-pool` command. For more information, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

Flushing a Connector Connection Pool

Flushing a connector connection pool recreates all the connections in the pool and brings the pool to the steady pool size without the need for reconfiguring the pool. Connection pool reconfiguration can result in application redeployment, which is a time-consuming operation. Flushing destroys existing connections, and any existing transactions are lost and must be retired.

You can flush a connector connection pool in one of these ways:

- In the Administration Console, open the Resources component, open the Connector component, select Connection Pools, and select the connection pool you want to flush. Then select the Flush button in the top right corner of the page. For details, click the Help button in the Administration Console.
- Use the `asadmin flush-connection-pool` command. For details, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.
Handling Invalid Connections

If a resource adapter generates a ConnectionErrorOccured event, the GlassFish Server considers the connection invalid and removes the connection from the connection pool. Typically, a resource adapter generates a ConnectionErrorOccured event when it finds a ManagedConnection object unusable. Reasons can be network failure with the EIS, EIS failure, fatal problems with the resource adapter, and so on.

If the fail-all-connections setting in the connection pool configuration is set to true, and a single connection fails, all connections are closed and recreated. If this setting is false, individual connections are recreated only when they are used. The default is false.

The is-connection-validation-required setting specifies whether connections have to be validated before being given to the application. If a resource's validation fails, it is destroyed, and a new resource is created and returned. The default is false.

The prefer-validate-over-recreate property specifies that validating idle connections is preferable to closing them. This property has no effect on non-idle connections. If set to true, idle connections are validated during pool resizing, and only those found to be invalid are destroyed and recreated. If false, all idle connections are destroyed and recreated during pool resizing. The default is false.

You can set the fail-all-connections, is-connection-validation-required, and prefer-validate-over-recreate configuration settings during creation of a connector connection pool. Or, you can use the asadmin set command to dynamically reconfigure a setting. For example:

```bash
asadmin set server.resources.connector-connection-pool.CCP1.fail-all-connections="true"
asadmin set server.resources.connector-connection-pool.CCP1.is-connection-validation-required="true"
asadmin set server.resources.connector-connection-pool.CCP1.property.prefer-validate-over-recreate="true"
```

For details, see the Oracle GlassFish Server 3.1.1 Reference Manual.

The interface ValidatingManagedConnectionFactory exposes the method getInvalidConnections to allow retrieval of the invalid connections. The GlassFish Server checks if the resource adapter implements this interface, and if it does, invalid connections are removed when the connection pool is resized.

Setting the Shutdown Timeout

According to the Connector specification, while an application server shuts down, all resource adapters should be stopped. A resource adapter might hang during shutdown, since shutdown is typically a resource intensive operation. To avoid such a situation, you can set a timeout that aborts resource adapter shutdown if exceeded. The default timeout is 30 seconds per resource adapter module. To configure this timeout:
In the Administration Console, select Connector Service under the relevant configuration and edit the shutdown Timeout field. For details, click the Help button in the Administration Console.

Use the following asadmin set command:

```
asadmin set server.connector-service.shutdown-timeout-in-seconds="num-secs"
```

For details, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

The GlassFish Server deactivates all message-driven bean deployments before stopping a resource adapter.

### Specifying the Class Loading Policy

Use the class-loading-policy setting to determine which resource adapters accessible to applications. Allowed values are:

- **derived** — Applications access resource adapters based on references in their deployment descriptors. These references can be resource-ref, resource-env-ref, resource-adapter-mid, or equivalent annotations.
- **global** — All stand-alone resource adapters are available to all applications.

To configure this setting, use the asadmin set command. For example:

```
asadmin set server.connector-service.class-loading-policy="global"
```

For details, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

### Using Last Agent Optimization of Transactions

Transactions that involve multiple resources or multiple participant processes are distributed or global transactions. A global transaction can involve one non-XA resource if last agent optimization is enabled. Otherwise, all resources must be XA. For more information about transactions in the GlassFish Server, see Chapter 15, "Using the Transaction Service."

The Connector specification requires that if a resource adapter supports XATransaction, the ManagedConnection created from that resource adapter must support both distributed and local transactions. Therefore, even if a resource adapter supports XATransaction, you can configure its connector connection pools as non-XA or without transaction support for better performance. A non-XA resource adapter becomes the last agent in the transactions in which it participates.

The value of the connection pool configuration property transaction-support defaults to the value of the transaction-support property in the ra.xml file. The connection pool
configuration property can override the ra.xml file property if the transaction level in the connection pool configuration property is lower. If the value in the connection pool configuration property is higher, it is ignored.

**Disabling Pooling for a Connection**

To disable connection pooling, set the Pooling attribute to false. The default is true. You can enable or disable connection pooling in one of the following ways:

- Enter a Pooling value in the Connector Connection Pools page in the Administration Console. For more information, click the Help button in the Administration Console.
- Specify the \----pooling option in the asadmin create-connector-connection-pool command. For more information, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

**Using Application-Scoped Connectors**

You can define an application-scoped connector or other resource for an enterprise application, web module, EJB module, connector module, or application client module by supplying a glassfish-resources.xml deployment descriptor file. For details, see “Application-Scoped Resources” in Oracle GlassFish Server 3.1 Application Deployment Guide.

**Inbound Communication Support**

The Connector specification defines the transaction and message inflow system contracts for achieving inbound connectivity from an EIS. The message inflow contract also serves as a standard message provider pluggability contract, thereby allowing various message providers to seamlessly plug in their products with any application server that supports the message inflow contract. In the inbound communication model, the EIS initiates all communication to an application. An application can be composed of enterprise beans (session, entity, or message-driven beans), which reside in an EJB container.

Incoming messages are received through a message endpoint, which is a message-driven bean. This message-driven bean asynchronously consumes messages from a message provider. An application can also synchronously send and receive messages directly using messaging style APIs.

A resource adapter supporting inbound communication provides an instance of an ActivationSpec JavaBean class for each supported message listener type. Each class contains a set of configurable properties that specify endpoint activation configuration information during message-driven bean deployment. The required config-property element in the ra.xml file provides a list of configuration property names required for each activation...
specification. An endpoint activation fails if the required property values are not specified. Values for the properties that are overridden in the message-driven bean’s deployment descriptor are applied to the ActivationSpec JavaBean when the message-driven bean is deployed.

Administered objects can also be specified for a resource adapter, and these JavaBeans are specific to a messaging style or message provider. For example, some messaging styles may need applications to use special administered objects (such as Queue and Topic objects in JMS). Applications use these objects to send and synchronously receive messages using connection objects using messaging style APIs. For more information about administered objects, see Chapter 17, “Using the Java Message Service.”

**Outbound Communication Support**

The Connector specification defines the system contracts for achieving outbound connectivity from an EIS. A resource adapter supporting outbound communication provides an instance of a ManagedConnectionFactory JavaBean class. A ManagedConnectionFactory JavaBean represents outbound connectivity information to an EIS instance from an application.

The 1.6 Connector specification introduces a mechanism through which the transaction level of a ManagedConnectionFactory can be detected at runtime. During the configuration of a ManagedConnectionFactory in the Connector Connection Pools page in the Administration Console, the Administration Console can instantiate the ManagedConnectionFactory and show the level of transaction support. The three levels are no-tx, local-tx, xa-tx. If a ManagedConnectionFactory returns local-tx as the level it can support, it is assumed that xa-tx is not supported, and the Administration Console shows only no-tx and local-tx as the available support levels.

For more information, click the Help button in the Administration Console.

**Configuring a Message Driven Bean to Use a Resource Adapter**

The Connectors specification’s message inflow contract provides a generic mechanism to plug in a wide-range of message providers, including JMS, into a Java-EE-compatible application server. Message providers use a resource adapter and dispatch messages to message endpoints, which are implemented as message-driven beans.

The message-driven bean developer provides activation configuration information in the message-driven bean’s ejb-jar.xml file. Configuration information includes messaging-style-specific configuration details, and possibly message-provider-specific details as well. The message-driven bean deployer uses this configuration information to set up the activation specification JavaBean. The activation configuration properties specified in ejb-jar.xml override configuration properties in the activation specification definition in the ra.xml file.
According to the EJB specification, the messaging-style-specific descriptor elements contained within the activation configuration element are not specified because they are specific to a messaging provider. In the following sample message-driven bean ejb-jar.xml, a message-driven bean has the following activation configuration property names: destinationType, SubscriptionDurability, and MessageSelector.

```xml
<!-- A sample MDB that listens to a JMS Topic -->
<!-- message-driven bean deployment descriptor -->
...
<activation-config>
 <activation-config-property>
 <activation-config-property-name>destinationType</activation-config-property-name>
 <activation-config-property-value>javax.jms.Topic</activation-config-property-value>
 </activation-config-property>
 <activation-config-property>
 <activation-config-property-name>SubscriptionDurability</activation-config-property-name>
 <activation-config-property-value>Durable</activation-config-property-value>
 </activation-config-property>
 <activation-config-property>
 <activation-config-property-name>MessageSelector</activation-config-property-name>
 <activation-config-property-value>JMSType = 'car' AND color = 'blue'</activation-config-property-value>
 </activation-config-property>
...</activation-config>
...'

When the message-driven bean is deployed, the value for the resource-adapter-mid element in the glassfish-ejb-jar.xml file is set to the resource adapter module name that delivers messages to the message endpoint (to the message-driven bean). In the following example, the.jmsra JMS resource adapter, which is the bundled resource adapter for the Message Queue message provider, is specified as the resource adapter module identifier for the SampleMDB bean.

```xml
<glassfish-ejb-jar>
<enterprise-beans>
  <unique-id>1</unique-id>
  <ejb>
    <ejb-name>SampleMDB</ejb-name>
    <jndi-name>SampleQueue</jndi-name>
  </ejb>
  <mdb-resource-adapter>
    <resource-adapter-mid>jmsra</resource-adapter-mid>
  </mdb-resource-adapter>
</enterprise-beans>
```
When the message-driven bean is deployed, the GlassFish Server uses the resourceadapter-mid setting to associate the resource adapter with a message endpoint through the message inflow contract. This message inflow contract with the GlassFish Server gives the resource adapter a handle to the MessageEndpointFactory and the ActivationSpec JavaBean, and the adapter uses this handle to deliver messages to the message endpoint instances (which are created by the MessageEndpointFactory).

When a message-driven bean first created for use on the GlassFish Server 7 is deployed, the Connector runtime transparently transforms the previous deployment style to the current connector-based deployment style. If the deployer specifies neither a resource-adapter-mid element nor the Message Queue resource adapter’s activation configuration properties, the Connector runtime maps the message-driven bean to the jmsra system resource adapter and converts the JMS-specific configuration to the Message Queue resource adapter’s activation configuration properties.
Lifecycle listener modules provide a means of running short or long duration Java-based tasks within the Oracle GlassFish Server environment, such as instantiation of singletons or RMI servers. These modules are automatically initiated at server startup and are notified at various phases of the server lifecycle.

Note – Lifecycle listener modules are deprecated. Support for them is included for backward compatibility. Implementing the org.glassfish.api.Startup interface instead is recommended.

All lifecycle module classes and interfaces are in the `as-install/modules/glassfish-api.jar` file.

The following topics are addressed here:

- “Server Life Cycle Events” on page 236
- “The LifecycleListener Interface” on page 236
- “The LifecycleEvent Class” on page 236
- “The Server Lifecycle Event Context” on page 237
- “Deploying a Lifecycle Module” on page 237
- “Considerations for Lifecycle Modules” on page 238
Server Life Cycle Events

A lifecycle module listens for and performs its tasks in response to the following events in the server life cycle:

- After the INIT_EVENT, the server reads the configuration, initializes built-in subsystems (such as security and logging services), and creates the containers.
- After the STARTUP_EVENT, the server loads and initializes deployed applications.
- After the READY_EVENT, the server is ready to service requests.
- After the SHUTDOWN_EVENT, the server destroys loaded applications and stops.
- After the TERMINATION_EVENT, the server closes the containers, the built-in subsystems, and the server runtime environment.

These events are defined in the LifecycleEvent class.

The lifecycle modules that listen for these events implement the LifecycleListener interface.

The LifecycleListener Interface

To create a lifecycle module is to configure a customized class that implements the com.sun.appserv.server.LifecycleListener interface. You can create and simultaneously execute multiple lifecycle modules.

The LifecycleListener interface defines this method:

```java
public void handleEvent(com.sun.appserv.server.LifecycleEvent event)
throws ServerLifecycleException
```

This method responds to a lifecycle event and throws a com.sun.appserv.server.ServerLifecycleException if an error occurs.

A sample implementation of the LifecycleListener interface is the LifecycleListenerImpl.java file, which you can use for testing lifecycle events.

The LifecycleEvent Class

The com.sun.appserv.server.LifecycleEvent class defines a server life cycle event. The following methods are associated with the event:

- `public java.lang.Object getData()`
 - This method returns an instance of java.util.Properties that contains the properties defined for the lifecycle module.
- `public int getEventType()`
This method returns the type of the last event, which is INIT_EVENT, STARTUP_EVENT, READY_EVENT, SHUTDOWN_EVENT, or TERMINATION_EVENT.

- public
 com.sun.appserv.server.LifecycleEventContext.getLifecycleEventContext()
 This method returns the lifecycle event context, described next.

A LifecycleEvent instance is passed to the LifecycleListener.handleEvent method.

The Server Lifecycle Event Context

The com.sun.appserv.server.LifecycleEventContext interface exposes runtime information about the server. The lifecycle event context is created when the LifecycleEvent class is instantiated at server initialization. The LifecycleEventContext interface defines these methods:

- public java.lang.String[].getCmdLineArgs()
 This method returns the server startup command-line arguments.
- public java.lang.String.getInstallRoot()
 This method returns the server installation root directory.
- public java.lang.String.getInstanceName()
 This method returns the server instance name.
- public javax.naming.InitialContext.getInitialContext()
 This method returns the initial JNDI naming context. The naming environment for lifecycle modules is installed after the STARTUP_EVENT. A lifecycle module can look up any resource by its jndi-name attribute after the READY_EVENT.

If a lifecycle module needs to look up resources, it can do so after the READY_EVENT. It can use the getInitialContext method to get the initial context to which all the resources are bound.

Deploying a Lifecycle Module

For instructions on how to deploy a lifecycle module, see the Oracle GlassFish Server 3.1 Application Deployment Guide, or see the asadmin create-lifecycle-module command in the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

You do not need to specify a classpath for the lifecycle module if you place it in the domain-dir/lib or domain-dir/lib/classes directory for the Domain Administration Server. Do not place it in the lib directory for a particular instance, or it will be deleted when that instance synchronizes with the Domain Administration Server.
Considerations for Lifecycle Modules

The resources allocated at initialization or startup should be freed at shutdown or termination. The lifecycle module classes are called synchronously from the main server thread, therefore it is important to ensure that these classes don’t block the server. Lifecycle modules can create threads if appropriate, but these threads must be stopped in the shutdown and termination phases.

The LifeCycleModule class loader is the parent class loader for lifecycle modules. Each lifecycle module’s classpath is used to construct its class loader. All the support classes needed by a lifecycle module must be available to the LifeCycleModule class loader or its parent, the Connector class loader.

You must ensure that the server.policy file is appropriately set up, or a lifecycle module trying to perform a System.exec() might cause a security access violation. For details, see “The server.policy File” on page 58.

The configured properties for a lifecycle module are passed as properties after the INIT_EVENT. The JNDI naming context is not available before the STARTUP_EVENT. If a lifecycle module requires the naming context, it can get this after the STARTUP_EVENT, READY_EVENT, or SHUTDOWN_EVENT.
Developing OSGi-enabled Java EE Applications

This chapter describes the features and interfaces that GlassFish Server provides to develop OSGi-enabled enterprise applications. This chapter includes the following sections:

- “Overview of OSGi Application and GlassFish Server” on page 239
- “Developing OSGi Application Bundles for GlassFish Server” on page 240
- “Deploying OSGi Bundles in GlassFish Server” on page 247

Note – Many of the features and interfaces presented in this chapter are demonstrated in samples and video clips available from the OSGi section of the GlassFish Server wiki. See http://wikis.sun.com/display/GlassFish/Osgi for more information.

Overview of OSGi Application and GlassFish Server

GlassFish Server is fully-compliant with Java EE 6, so it provides the latest Java EE APIs and frameworks. It is built using OSGi technology, and includes as its OSGi module management subsystem the Apache Felix OSGi framework, which is a fully-compliant implementation of the OSGi Service Platform R4 Version 4.2 specification. GlassFish Server supports deployment of OSGi-based applications using this framework. OSGi applications can make use of core as well as enterprise OSGi features. GlassFish Server makes available many of its Java EE platform services, such as the transaction service, HTTP service, JDBC Service and JMS, as OSGi services. It also enables use of Java EE programming model in OSGi applications, so enterprise Java application developers can continue to leverage their existing skills in OSGi-based applications. See “Benefits of Using OSGi in Enterprise Java Applications” on page 240 for more information.

OSGi applications are deployed as one or more OSGi bundles, and the GlassFish Server deployment and administration infrastructure enables you to deploy and manage your OSGi bundles. This chapter classifies OSGi bundles into two categories based on the features they use:

- **Plain OSGi Application Bundles** – bundles that do not contain any Java EE components. See “Developing Plain OSGi Bundles” on page 241.
Hybrid Application Bundles – bundles that are an OSGi bundle as well as a Java EE module. At runtime, such modules have both an OSGi bundle context and a Java EE context. GlassFish Server supports the following hybrid application bundles:
- Web Application Bundles (or WABs), see “Developing Web Application Bundles” on page 244.
- EJB Application Bundles, see “Developing EJB Application Bundles” on page 246.

Benefits of Using OSGi in Enterprise Java Applications

Enterprise applications typically need transactional, secured access to data stores, messaging systems and other such enterprise information systems, and have to cater to a wide variety of clients such as web browsers and desktop applications, and so on. Java EE makes development of such applications easier with a rich set of APIs and frameworks. It also provides a scalable, reliable and easy to administer runtime to host such applications.

The OSGi platform complements these features with modularity. It enables applications to be separated into smaller, reusable modules with a well defined and robust dependency specification. A module explicitly specifies its capabilities and requirements. This explicit dependency specification encourages developers to visualize dependencies among their modules and help them make their modules highly cohesive and less coupled. The OSGi module system is dynamic: it allows modules to be added and removed at runtime. OSGi has very good support for versioning: it supports package versioning as well module versioning. In fact, it allows multiple versions of the same package to coexist in the same runtime, thus allowing greater flexibility to deployers. The service layer of the OSGi platform encourages a more service-oriented approach to build a system. The service-oriented approach and dynamic module system used together allow a system to be more agile during development as well as in production. It makes them better suited to run in an Platform-as-a-Service (PaaS) environment.

With GlassFish Server, you do not have to chose one of the two platforms. A hybrid approach like OSGi enabling your Java EE applications allows new capabilities to applications hitherto unavailable to applications built using just one of the two platforms.

Developing OSGi Application Bundles for GlassFish Server

GlassFish Server enables interaction between OSGi components and Java EE components. OSGi services managed by the OSGi framework can invoke Java EE components managed by the Java EE container and vice versa. For example, developers can declaratively export EJBs as OSGi services without having to write any OSGi code. This allows any plain OSGi component, which is running without the Java EE context, to discover the EJB and invoke it. Similarly, Java EE components can locate OSGi services provided by plain OSGi bundles and use them as well. GlassFish Server extends the Java EE Context and Dependency Injection (CDI) framework to make it easier for Java EE components to consume dynamic OSGi services in a type-safe manner.
Developing Plain OSGi Bundles

Java EE components (like an EJB or Servlet) can lookup Java EE platform services using JNDI names in the associated Java EE naming context. Such code can rely on the Java EE container to inject the required services as well. Unfortunately, neither of them works when the code runs outside a Java EE context. An example of such code is the BundleActivator of an OSGi bundle. For such code to access Java EE platform services, GlassFish Server makes key services and resources of the underlying Java EE platform available as OSGi services. Thus, an OSGi bundle deployed in GlassFish Server can access these services using OSGi Service look-up APIs or by using a white board pattern. The following Java EE services are available as OSGi services:

- “HTTP Service” on page 241
- “Transaction Service” on page 242
- “JDBC DataSource Service” on page 243
- “JMS Resource Service” on page 243

HTTP Service

The GlassFish Server web container is made available as a service for OSGi users who do not use OSGi Web Application Bundles (WABs). This service is made available using the standard OSGi/HTTP service specification, which is a light API that predates the concept of a web application as we know it today. This simple API allows users to register servlets and static resources dynamically and draw a boundary around them in the form of a HttpContext. This simple API can be used to build feature-rich web applications, such as the Felix Web Console for example.

The GlassFish Server web container has one or more virtual servers. A virtual server has one or more web application deployed in it. Each web application has a distinct context path. Each virtual server has a set of HTTP listeners. Each HTTP listener listens on a particular port. When multiple virtual servers are present, one of them is treated as the default virtual server. Every virtual server comes configured with a default web application. The default web application is used to serve static content from the docroot of GlassFish Server. This default web application uses / as the context path. A web application contains static and dynamic resources. Each virtual server is mapped to an org.osgi.services.http.HttpService instance. When there are multiple virtual servers present, there will be multiple occurrences of HttpService registered in the service registry. In order to distinguish one service from another, each service is registered with a service property named VirtualServer, whose value is the name of the virtual server. The service corresponding to default virtual server has the highest ranking, so when looking up a service of type HttpService without any additional criteria returns the
HttpService corresponding to the default virtual server. In a typical GlassFish Server installation, the default virtual server is configured to listen on port 8080 for the HTTP protocol and port 8181 for the HTTPS protocol.

The context path / is reserved for the default web application. Every resource and servlet registered using the registerResource() and registerServlet() methods of HttpService are made available under a special context path named /osgi in the virtual server. The /osgi context path can be changed to some other value by setting an appropriate value in the OSGi configuration property or in a system property called org.glassfish.osgi.http.ContextPath.

For example, HelloWorldServlet will be available at http://localhost:8080/osgi/helloworld when the following code is executed:

```java
HttpService httpService = getHttpService(); // Obtain HttpService
httpService.registerServlet(httpService.registerServlet("/helloworld",
new HelloWorldServlet(), null, ctx);
```

Transaction Service

The Java Transaction API (JTA) defines three interfaces to interact with the transaction management system: UserTransaction, TransactionManager, and TransactionSynchronizationRegistry. They all belong to the javax.transaction package. TransactionManager and TransactionSynchronizationRegistry are intended for system level code, such as a persistence provider. Whereas, UserTransaction is the entity that you should use to control transactions. All the objects of the underlying JTA layer are made available in the OSGi service registry using the following service interfaces:

- javax.transaction.UserTransaction
- javax.transaction.TransactionManager
- javax.transaction.TransactionSynchronizationRegistry

There is no additional service property associated with them. Although UserTransaction appears to be a singleton, in reality any call to it gets rerouted to the actual transaction associated with the calling thread. Code that runs in the context of a Java EE component typically gets a handle on UserTransaction by doing a JNDI lookup in the component naming context or by using injection, as shown here:

```java
(UserTransaction)(new InitialContext().lookup("java:comp/UserTransaction"));
```

or

```java
@Resource UserTransaction utx;
```

When certain code (such as an OSGi Bundle Activator), which does not have a Java EE component context, wants to get hold of UserTransaction, or any of the other JTA artifacts, then they can look it up in the service registry. Here is an example of such code:
BundleContext context;
ServiceReference txRef =
 context.getServiceReference(UserTransaction.class.getName());
UserTransaction utx = (UserTransaction);
context.getService(txRef);

JDBC Data Source Service

Any JDBC data source created in GlassFish Server is automatically made available as an OSGi Service; therefore, OSGi bundles can track availability of JDBC data sources using the ServiceTracking facility of the OSGi platform. The life of the OSGi service matches that of the underlying data source created in GlassFish Server. For instructions on administering JDBC resources in GlassFish Server, see the *Oracle GlassFish Server 3.1 Administration Guide*.

GlassFish Server registers each JDBC data source as an OSGi service with objectClass = "javax.sql.DataSource" and a service property called jndi-name, which is set to the JNDI name of the data source. Here is a code sample that looks up a data source service:

```java
@Inject
@OSGiService(true,
  "(jndi-name=jdbc/MyDS)"
private DataSource ds;
```

JMS Resource Service

Like JDBC data sources, JMS administered objects, such as destinations and connection factories, are also automatically made available as OSGi services. Their service mappings are as follows.

<table>
<thead>
<tr>
<th>JMS Object</th>
<th>Service Interface</th>
<th>Service Properties</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>JMS Queue destination</td>
<td>javax.jms.Queue</td>
<td>jndi-name</td>
<td>jndi-name is set to the JNDI name of the queue</td>
</tr>
<tr>
<td>JMS Topic destination</td>
<td>javax.jms.Topic</td>
<td>jndi-name</td>
<td>jndi-name is set to the JNDI name of the topic</td>
</tr>
</tbody>
</table>
| JMS connection factory | javax.jms.QueueConnectionFactory | jndi-name | jndi-name is set to the JNDI name of the topic. The actual service interface depends on which type of connection factory was created.
| | javax.jms.TopicConnectionFactory | | |
| | javax.jms.ConnectionFactory | | |
Developing Web Application Bundles

When a web application is packaged and deployed as an OSGi bundle, it is called a Web Application Bundle (WAB). WAB support is based on the OSGi Web Application specification, which is part of the OSGi Service Platform, Enterprise Specification, Release 4, Version 4.2. A WAB is packaged as an OSGi bundle, so all the OSGi packaging rules apply to WAB packaging. When a WAB is not packaged like a WAR, the OSGi Web Container of GlassFish Server maps the WAB to the hierarchical structure of web application using the following rules:

- The root of the WAB corresponds to the docroot of the web application.
- Every JAR in the Bundle-ClassPath of the WAB is treated like a JAR in WEB-INF/lib/.
- Every directory except "" in the Bundle-ClassPath of the WAB is treated like WEB-INF/classes/.
- Bundle-ClassPath entry of type "" is treated as if the entire WAB is a JAR in WEB-INF/lib/.
- Bundle-ClassPath includes the Bundle-ClassPath entries of any attached fragment bundles.

The simplest way to avoid knowing these mapping rules is to avoid the problem in the first place. Moreover, there are many packaging tools and development time tools that understand WAR structure. Therefore, we strongly recommend that you package the WAB exactly like a WAR, with only additional OSGi metadata.

Required WAB Metadata

In addition to the standard OSGi metadata, the main attributes of META-INF/MANIFEST.MF of the WAB must have an additional attribute called Web-ContextPath. The Web-ContextPath attribute specifies the value of the context path of the web application. Since the root of a WAB is mapped to the docroot of the web application, it should not be used in the Bundle-ClassPath. Moreover, WEB-INF/classes/ should be specified ahead of WEB-INF/lib/ in the Bundle-ClassPath in order to be compliant with the search order used for traditional WAR files.

Assuming the WAB is structured as follows:

```
foo.war/
   index.html
   foo.jsp
   WEB-INF/classes/
      foo/BarServlet.class
   WEB-INF/lib/lib1.jar
   WEB-INF/lib/lib2.jar
```

Then the OSGi metadata for the WAB as specified in META-INF/MANIFEST.MF of the WAB would appear as follows:

```
MANIFEST.MF:Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-SymbolicName: com.acme.foo
```
How WABs Consume OSGi Services

Since a WAB has a valid Bundle-Context, it can consume OSGi services. Although you are free to use any OSGi API to locate OSGi services, GlassFish Server makes it easy for WAB users to use OSGi services by virtue of extending the Context and Dependency Injection (CDI) framework. Here's an example of the injection of an OSGi Service into a Servlet:

```java
@WebServlet
public class MyServlet extends HttpServlet {
    @Inject @OSGiService(dynamic=true)
    FooService fooService;
}
```

To learn more about this feature, refer to “OSGi CDI Extension for WABs” on page 245.

OSGi CDI Extension for WABs

GlassFish Server includes a CDI extension that enables web applications, such as servlets, that are part of WABs to express a type-safe dependency on an OSGi service using CDI APIs. An OSGi service can be provided by any OSGi bundle without any knowledge of Java EE/CDI, and they are allowed to be injected transparently in a type-safe manner into a web application.

A custom CDI Qualifier, `@org.glassfish.osgicdi.OSGiService`, is used by the component to represent dependency on an OSGi service. The qualifier has additional metadata to customize the service discovery and injection behavior. The following `@OSGiService` attributes are currently available:

- `serviceCriteria` — An LDAP filter query used for service selection in the OSGi service registry.
- `waitTimeout` — Waits the specified duration for a service that matches the criteria specified to appear in the OSGi service registry.
- `dynamic` — Dynamically obtain a service reference (true/false).

Since OSGi services are dynamic, they may not match the life cycle of the application component that has injected a reference to the service. Through this attribute, you could indicate that a service reference can be obtained dynamically or not. For stateless or idempotent services, a dynamic reference to a service implementation would be useful. The container then injects a proxy to the service and dynamically switches to an available implementation when the current service reference is invalid.
Example of a WAB Using CDI

In this example, Bundle B0 defines a service contract called `com.acme.Foo` and exports the `com.acme` package for use by other bundles. Bundle B1 in turn provides a service implementation, `FooImpl`, of the `com.acme.Foo` interface. It then registers the service `FooImpl` service with the OSGi service registry with `com.acme.Foo` as the service interface.

Bundle B2 is a hybrid application bundle that imports the `com.acme` package. It has a component called BarServlet that expresses a dependency to `com.acme.Foo` by adding a field/setter method and qualifies that injection point with `@ osgiService`. For instance, BarServlet could look like:

```java
@Servlet
public void BarServlet extends HttpServlet{
    @Inject @OSGiService(dynamic=true)
    private com.acme.Foo f;
}
```

Developing EJB Application Bundles

Another type of hybrid application bundle is the EJB Application Bundle. When an EJB Jar is packaged with additional OSGi metadata and deployed as an OSGi bundle it is called an EJB Application Bundle. GlassFish Server supports only packaging the OSGi bundle as a simple JAR file with required OSGi metadata, just as you would package an `ejb-jar` file.

Required EJB Metadata

An EJB Application Bundle must have a manifest metadata called Export-EJB in order to be considered as an EJB Bundle. For syntax of Export-EJB header, please refer to the Publishing EJB as OSGi Service section. Here’s an example of an EJB Application Bundle with its metadata:

```text
myEjb.jar/
    com/acme/Foo
    com/acme/impl/FooEJB
META-INF/MANIFEST.MF
MANIFEST.MF:
    Manifest-Version: 1.0
    Bundle-ManifestVersion: 2
    Bundle-SymbolicName: com.acme.foo EJB bundle
    Bundle-Version: 1.0.0.BETA
    Bundle-Name: com.acme.foo EJB bundle version 1.0.0.BETA
    Export-EJB: ALL
    Export-Package: com.acme; version=1.0
    Import-Package: javax.ejb; version=[3.0, 4.0), com.acme; version=[1.0, 1.1]
```

How EJB Bundles Consume OSGi Services

Since an EJB has a valid Bundle-Context, it can consume OSGi services. Although you are free to use any OSGi API to locate OSGi services, GlassFish Server makes it easy to use OSGi services
by virtue of extending the Context and Dependency Injection (CDI) framework. Here's an example of injection of an OSGi Service into a servlet:

```java
@Stateless
public class MyEJB {
    @Inject @OSGiService(dynamic=true)
    Foo foo;
    ...
}
```

To learn more about this feature, refer to “Using the OSGi CDI Extension With EJB Bundles” on page 247.

Using the OSGi CDI Extension With EJB Bundles

GlassFish Server includes a CDI extension that enables EJB application bundles to express a type-safe dependency on an OSGi Service using CDI APIs. An OSGi service can be provided by any OSGi bundle without any knowledge of Java EE/CDI, and they are allowed to be injected transparently in a type-safe manner into an EJB bundle.

A custom CDI Qualifier, `@org.glassfish.osgicdi.OSGiService`, is used by the component to represent dependency on an OSGi service. The qualifier has additional metadata to customize the service discovery and injection behavior. The following `@OSGiService` attributes are currently available:

- `dynamic` — Dynamically obtain a service reference (true/false).
- `waitTimeout` — Waits for specified duration for a service to appear in the OSGi service registry.
- `serviceCriteria` — An LDAP filter query used for service selection.

Deploying OSGi Bundles in GlassFish Server

For instruction on deploying OSGi bundle, see “OSGi Bundle Deployment Guidelines” in Oracle GlassFish Server 3.1 Application Deployment Guide.
PART III

Using Services and APIs
Using the JDBC API for Database Access

This chapter describes how to use the Java Database Connectivity (JDBC) API for database access with the Oracle GlassFish Server. This chapter also provides high level JDBC implementation instructions for servlets and EJB components using the GlassFish Server. If the JDK version 1.6 is used, the GlassFish Server supports the JDBC 4.0 API.

A useful JDBC tutorial is located at http://download.oracle.com/javase/tutorial/jdbc/index.html.

Note – The GlassFish Server does not support connection pooling or transactions for an application’s database access if it does not use standard Java EE DataSource objects.

The following topics are addressed here:

- "Statements" on page 252
- "Connections" on page 255
- "Connection Wrapping" on page 260
- "Allowing Non-Component Callers" on page 262
- "Using Application-Scoped Resources" on page 262
- "Restrictions and Optimizations" on page 263
Statements

The following topics are addressed here:

- “Using an Initialization Statement” on page 252
- “Setting a Statement Timeout” on page 252
- “Statement Leak Detection and Leaked Statement Reclamation” on page 253
- “Statement Caching” on page 253
- “Statement Tracing” on page 254

Using an Initialization Statement

You can specify a statement that executes each time a physical connection to the database is created (not reused) from a JDBC connection pool. This is useful for setting request or session specific properties and is suited for homogeneous requests in a single application. Set the Init SQL attribute of the JDBC connection pool to the SQL string to be executed in one of the following ways:

- Enter an Init SQL value in the Edit Connection Pool Advanced Attributes page in the Administration Console. For more information, click the Help button in the Administration Console.
- Specify the --initSql option in the asadmin create-jdbc-connection-pool command. For more information, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.
- Specify the init-sql option in the asadmin set command. For example:

  ```
  asadmin set domain1.resources.jdbc-connection-pool.DerbyPool.init-sql="sql-string"
  ```

 For more information, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

Setting a Statement Timeout

An abnormally long running JDBC query executed by an application may leave it in a hanging state unless a timeout is explicitly set on the statement. Setting a statement timeout guarantees that all queries automatically time out if not completed within the specified period. When statements are created, the queryTimeout is set according to the statement timeout setting. This works only when the underlying JDBC driver supports queryTimeout for Statement, PreparedStatement, CallableStatement, and ResultSet.

You can specify a statement timeout in the following ways:

- Enter a Statement Timeout value in the Edit Connection Pool Advanced Attributes page in the Administration Console. For more information, click the Help button in the Administration Console.
- Specify the --statementtimeout option in the asadmin create-jdbc-connection-pool command. For more information, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

Statement Leak Detection and Leaked Statement Reclamation

If statements are not closed by an application after use, it is possible for the application to run out of cursors. Enabling statement leak detection causes statements to be considered as leaked if they are not closed within a specified period. Additionally, leaked statements can be reclaimed automatically.

To enable statement leak detection, set Statement Leak Timeout In Seconds for the JDBC connection pool to a positive, nonzero value in one of the following ways:

- Specify the --statementleaktimeout option in the create-jdbc-connection-pool subcommand. For more information, see `create-jdbc-connection-pool(1)`.
- Specify the statement-leak-timeout-in-seconds option in the set subcommand. For example:

```
  asadmin set resources.jdbc-connection-pool.pool-name.statement-leak-timeout-in-seconds=300
```

When selecting a value for Statement Leak Timeout In Seconds, make sure that:

- It is less than the Connection Leak Timeout; otherwise, the connection could be closed before the statement leak is recognized.
- It is greater than the Statement Timeout; otherwise, a long running query could be mistaken as a statement leak.

After enabling statement leak detection, enable leaked statement reclamation by setting Reclaim Leaked Statements for the JDBC connection pool to a `true` value in one of the following ways:

- Specify the --statementleakreclaim=true option in the create-jdbc-connection-pool subcommand. For more information, see `create-jdbc-connection-pool(1)`.
- Specify the statement-leak-reclaim option in the set subcommand. For example:

```
  asadmin set resources.jdbc-connection-pool.pool-name.statement-leak-reclaim=true
```

Statement Caching

Statement caching stores statements, prepared statements, and callable statements that are executed repeatedly by applications in a cache, thereby improving performance. Instead of the statement being prepared each time, the cache is searched for a match. The overhead of parsing and creating new statements each time is eliminated.
Statement caching is usually a feature of the JDBC driver. The GlassFish Server provides caching for drivers that do not support caching. To enable this feature, set the Statement Cache Size for the JDBC connection pool in one of the following ways:

- Enter a Statement Cache Size value in the Edit Connection Pool Advanced Attributes page in the Administration Console. For more information, click the Help button in the Administration Console.
- Specify the --statementcachesize option in the asadmin create-jdbc-connection-pool command. For more information, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.
- Specify the statement-cache-size option in the asadmin set command. For example:

  ```shell
  asadmin set domain1.resources.jdbc-connection-pool.DerbyPool.statement-cache-size=10
  ```

 For more information, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

By default, this attribute is set to zero and the statement caching is turned off. To enable statement caching, you can set any positive nonzero value. The built-in cache eviction strategy is LRU-based (Least Recently Used). When a connection pool is flushed, the connections in the statement cache are recreated.

Statement Tracing

You can trace the SQL statements executed by applications that use a JDBC connection pool. Set the SQL Trace Listeners attribute to a comma-separated list of trace listener implementation classes in one of the following ways:

- Enter an SQL Trace Listeners value in the Edit Connection Pool Advanced Attributes page in the Administration Console. For more information, click the Help button in the Administration Console.
- Specify the --sqltracelisteners option in the asadmin create-jdbc-connection-pool command. For more information, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.
- Specify the sql-trace-listeners option in the asadmin set command. For example:

  ```shell
  asadmin set domain1.resources.jdbc-connection-pool.DerbyPool.sql-trace-listeners=listeners
  ```

 For more information, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

The GlassFish Server provides a public interface, org.glassfish.api.jdbc.SQLTraceListener, that implements a means of recording SQLTraceRecord objects. To make custom implementations of this interface available to the GlassFish Server, place the implementation classes in `as-install/lib`.

The GlassFish Server provides an SQL tracing logger to log the SQL operations in the form of SQLTraceRecord objects in the `server.log` file. The module name under which the SQL
operation is logged is javax.enterprise.resource.sqltrace. SQL traces are logged as FINE messages along with the module name to enable easy filtering of the SQL logs. A sample SQL trace record looks like this:

```
 | ThreadID=29; ThreadName=Thread-1; ClassName=com.sun.gjc.util.SQLTraceLogger; MethodName=sqlTrace;
 | ThreadID=77 | ThreadName=p: thread-pool-1; w: 6 | TimeStamp=1259317012202
 | ClassName=com.sun.gjc.spi.jdbc40.PreparedStatementWrapper40 | MethodName=executeUpdate
 | arg[0]=insert into table1(colName) values(100) | arg[1]=columnNames | ]
```

This trace shows that an `executeUpdate(String sql, String columnNames)` operation is being done.

When SQL statement tracing is enabled and JDBC connection pool monitoring is enabled, GlassFish Server maintains a tracing cache of recent queries and their frequency of use. The following JDBC connection pool properties can be configured to control this cache and the monitoring statistics available from it:

- **time-to-keep-queries-in-minutes**
 Specifies how long in minutes to keep a query in the tracing cache, tracking its frequency of use. The default value is 5 minutes.

- **number-of-top-queries-to-report**
 Specifies how many of the most used queries, in frequency order, are listed in the monitoring report. The default value is 10 queries.

Set these parameters in one of the following ways:

- Add them as properties in the Edit JDBC Connection Pool Properties page in the Administration Console. For more information, click the Help button in the Administration Console.
- Specify them using the `-property` option in the `create-jdbc-connection-pool` subcommand. For more information, see `create-jdbc-connection-pool(1)`.
- Set them using the `set` subcommand. For example:

```
asadmin set resources.jdbc-connection-pool.<pool-name>.property.time-to-keep-queries-in-minutes=10
```

Connections

The following topics are addressed here:

- "Transparent Pool Reconfiguration" on page 256
- "Disabling Pooling" on page 256
- "Associating Connections with Threads" on page 257
- "Custom Connection Validation" on page 258
- "Sharing Connections" on page 258
- "Marking Bad Connections" on page 259
Transparent Pool Reconfiguration

When the properties or attributes of a JDBC connection pool are changed, the connection pool is destroyed and re-created. Normally, applications using the connection pool must be redeployed as a consequence. This restriction can be avoided by enabling transparent JDBC connection pool reconfiguration. When this feature is enabled, applications do not need to be redeployed. Instead, requests for a new connections are blocked until the reconfiguration operation completes. Connection requests from any in-flight transactions are served using the old pool configuration so as to complete the transaction. Then, connections are created using the pool’s new configuration, and any blocked connection requests are served with connections from the re-created pool..

To enable transparent JDBC connection pool reconfiguration, set the `dynamic-reconfiguration-wait-timeout-in-seconds` property of the JDBC connection pool to a positive, nonzero value in one of the following ways:

- Add it as a property in the Edit JDBC Connection Pool Properties page in the Administration Console. For more information, click the Help button in the Administration Console.
- Specify it using the `--property` option in the `create-jdbc-connection-pool` subcommand. For more information, see `create-jdbc-connection-pool(1)`.
- Set it using the `set` subcommand. For example:

  ```
  asadmin set resources.jdbc-connection-pool.pool-name.property.dynamic-reconfiguration-wait-timeout-in-seconds=15
  ```

 This property specifies the time in seconds to wait for in-use connections to close and in-flight transactions to complete. Any connections in use or transaction in flight past this time must be retried.

Disabling Pooling

To disable connection pooling, set the Pooling attribute to false. The default is true. You can enable or disable connection pooling in one of the following ways:

- Enter a Pooling value in the Edit Connection Pool Advanced Attributes page in the Administration Console. For more information, click the Help button in the Administration Console.
- Specify the `--pooling` option in the `asadmin create-jdbc-connection-pool` command. For more information, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.
- Specify the `pooling` option in the `asadmin set` command. For example:

  ```
  asadmin set domain1.resources.jdbc-connection-pool.DerbyPool.pooling=false
  ```
For more information, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

The pooling option and the system property com.sun.enterprise.connectors.acccConnectionPooling, which turns off connection pooling in the Application Client Container, do not affect each other.

An exception is thrown if associate-with-thread is set to true and pooling is disabled. An exception is thrown if you attempt to flush a connection pool when pooling is disabled. A warning is logged if the following attributes are used, because they are useful only in a pooled environment:

- connection-validation
- validate-atmost-once-period
- match-connections
- max-connection-usage
- idle-timeout

Associating Connections with Threads

To associate connections with a thread, set the Associate With Thread attribute to true. The default is false. A true setting allows connections to be saved as ThreadLocal in the calling thread. Connections get reclaimed only when the calling thread dies or when the calling thread is not in use and the pool has run out of connections. If the setting is false, the thread must obtain a connection from the pool each time the thread requires a connection.

The Associate With Thread attribute associates connections with a thread such that when the same thread is in need of connections, it can reuse the connections already associated with that thread. In this case, the overhead of getting connections from the pool is avoided. However, when this value is set to true, you should verify that the value of the Max Pool Size attribute is comparable to the Max Thread Pool Size attribute of the thread pool. If the Max Thread Pool Size value is much higher than the Max Pool Size value, a lot of time is spent associating connections with a new thread after dissociating them from an older one. Use this attribute in cases where the thread pool should reuse connections to avoid this overhead.

You can set the Associate With Thread attribute in the following ways:

- Enter an Associate With Thread value in the Edit Connection Pool Advanced Attributes page in the Administration Console. For more information, click the Help button in the Administration Console.
- Specify the --associate-with-thread option in the asadmin create-jdbc-connection-pool command. For more information, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.
- Specify the associate-with-thread option in the asadmin set command. For example:

 asadmin set domain1.resources.jdbc-connection-pool.DerbyPool.associate-with-thread=true
Custom Connection Validation

You can specify a custom implementation for Connection Validation that is faster or optimized for a specific database. Set the Validation Method attribute to the value custom-validation. (Other validation methods available are table (the default), auto-commit, and meta-data.) The GlassFish Server provides a public interface, org.glassfish.api.jdbc.ConnectionValidation, which you can implement to plug in your implementation. A new attribute, Validation Classname, specifies the fully qualified name of the class that implements the ConnectionValidation interface. The Validation Classname attribute is required if Connection Validation is enabled and Validation Method is set to Custom Validation.

To enable this feature, set Connection Validation, Validation Method, and Validation Classname for the JDBC connection pool in one of the following ways:

- Enter Connection Validation, Validation Method, and Validation Classname values in the Edit Connection Pool Advanced Attributes page in the Administration Console. You can select from among validation class names for common databases in the Validation Classname field. For more information, click the Help button in the Administration Console.

- Specify the --is-connection-validation-required, --validation-method, and --validation-classname options in the asadmin create-jdbc-connection-pool command. For more information, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

- Specify the is-connection-validation-required, connection-validation-method, and validation-classname options in the asadmin set command. For example:

  ```
  asadmin set domain1.resources.jdbc-connection-pool.MyPool.is-connection-validation-required=true
  asadmin set domain1.resources.jdbc-connection-pool.MyPool.connection-validation-method=custom-validation
  asadmin set domain1.resources.jdbc-connection-pool.MyPool.validation-classname=impl-class
  ```

 For more information, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

By default, optimized validation mechanisms are provided for DB2, Java DB, MSSQL, MySQL, Oracle, PostgreSQL and Sybase databases. Additionally, for JDBC 4.0 compliant database drivers, a validation mechanism is provided that uses the Connection.isValid(0) implementation.

Sharing Connections

When multiple connections acquired by an application use the same JDBC resource, the connection pool provides connection sharing within the same transaction scope. For example, suppose Bean A starts a transaction and obtains a connection, then calls a method in Bean B. If
Bean B acquires a connection to the same JDBC resource with the same sign-on information, and if Bean A completes the transaction, the connection can be shared.

Connections obtained through a resource are shared only if the resource reference declared by the Java EE component allows it to be shareable. This is specified in a component's deployment descriptor by setting the `res-sharing-scope` element to `Shareable` for the particular resource reference. To turn off connection sharing, set `res-sharing-scope` to `Unshareable`.

For general information about connections and JDBC URLs, see Chapter 12, “Administering Database Connectivity,” in Oracle GlassFish Server 3.1 Administration Guide.

Marking Bad Connections

The `DataSource` implementation in the GlassFish Server provides a `markConnectionAsBad` method. A marked bad connection is removed from its connection pool when it is closed. The method signature is as follows:

```java
public void markConnectionAsBad(java.sql.Connection con)
```

For example:

```java
com.sun.appserv.jdbc.DataSource ds = (com.sun.appserv.jdbc.DataSource)context.lookup("dataSource");
Connection con = ds.getConnection();
Statement stmt = null;
try{
    stmt = con.createStatement();
    stmt.executeUpdate("Update");
} catch (BadConnectionException e){
    ds.markConnectionAsBad(con) //marking it as bad for removal
} finally{
    stmt.close();
    con.close(); //Connection will be destroyed during close.
}
```

Handling Invalid Connections

If a `ConnectionErrorOccurred` event occurs, the GlassFish Server considers the connection invalid and removes the connection from the connection pool. Typically, a JDBC driver generates a `ConnectionErrorOccurred` event when it finds a `ManagedConnection` object unusable. Reasons can be database failure, network failure with the database, fatal problems with the connection pool, and so on.

If the `fail-all-connections` setting in the connection pool configuration is set to `true`, and a single connection fails, all connections are closed and recreated. If this setting is `false`, individual connections are recreated only when they are used. The default is `false`.
The `is-connection-validation-required` setting specifies whether connections have to be validated before being given to the application. If a resource's validation fails, it is destroyed, and a new resource is created and returned. The default is `false`.

The `prefer-validate-over-recreate` property specifies that validating idle connections is preferable to closing them. This property has no effect on non-idle connections. If set to `true`, idle connections are validated during pool resizing, and only those found to be invalid are destroyed and recreated. If `false`, all idle connections are destroyed and recreated during pool resizing. The default is `false`.

You can set the `fail-all-connections`, `is-connection-validation-required`, and `prefer-validate-over-recreate` configuration settings during creation of a JDBC connection pool. Or, you can use the `asadmin set` command to dynamically reconfigure a setting. For example:

```sh
asadmin set server.resources.jdbc-connection-pool.JCPool1.fail-all-connections="true"
asadmin set server.resources.jdbc-connection-pool.JCPool1.is-connection-validation-required="true"
asadmin set server.resources.jdbc-connection-pool.JCPool1.property.prefer-validate-over-recreate="true"
```

For details, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

The interface ValidatingManagedConnectionFactory exposes the method `getInvalidConnections` to allow retrieval of the invalid connections. The GlassFish Server checks if the JDBC driver implements this interface, and if it does, invalid connections are removed when the connection pool is resized.

Connection Wrapping

The following topics are addressed here:

- “Wrapping Connections” on page 260
- “Obtaining a Physical Connection From a Wrapped Connection” on page 261
- “Using the `Connection.unwrap()` Method” on page 261

Wrapping Connections

If the Wrap JDBC Objects option is `true` (the default), wrapped JDBC objects are returned for `Statement`, `PreparedStatement`, `CallableStatement`, `ResultSet`, and `DatabaseMetaData`.

This option ensures that `Statement.getConnection()` is the same as `DataSource.getConnection()`. Therefore, this option should be `true` when both `Statement.getConnection()` and `DataSource.getConnection()` are done.

You can specify the Wrap JDBC Objects option in the following ways:
Check or uncheck the Wrap JDBC Objects box on the Edit Connection Pool Advanced Attributes page in the Administration Console. For more information, click the Help button in the Administration Console.

Specify the `--wrapjdbcobjects` option in the `asadmin create-jdbc-connection-pool` command. For more information, see the *Oracle GlassFish Server 3.1-3.1.1 Reference Manual*.

Obtaining a Physical Connection From a Wrapped Connection

The `DataSource` implementation in the GlassFish Server provides a `getConnection` method that retrieves the JDBC driver's `SQLConnection` from the GlassFish Server's `Connection` wrapper. The method signature is as follows:

```java
public java.sql.Connection getConnection(java.sql.Connection con) throws java.sql.SQLException
```

For example:

```java
InitialContext ctx = new InitialContext();
com.sun.appserv.jdbc.DataSource ds = (com.sun.appserv.jdbc.DataSource)
    ctx.lookup("jdbc/MyBase");
Connection con = ds.getConnection();
Connection drivercon = ds.getConnection(con); //get physical connection from wrapper
// Do db operations.
// Do not close driver connection.
con.close(); // return wrapped connection to pool.
```

Using the `Connection.unwrap()` Method

If the JDK version 1.6 is used, the GlassFish Server supports JDBC 4.0 if the JDBC driver is JDBC 4.0 compliant. Using the `Connection.unwrap()` method on a vendor-provided interface returns an object or a wrapper object implementing the vendor-provided interface, which the application can make use of to do vendor-specific database operations. Use the `Connection.isWrapperFor()` method on a vendor-provided interface to check whether the connection can provide an implementation of the vendor-provided interface. Check the JDBC driver vendor's documentation for information on these interfaces.
Allowing Non-Component Callers

You can allow non-Java-EE components, such as servlet filters, lifecycle modules, and third party persistence managers, to use this JDBC connection pool. The returned connection is automatically enlisted with the transaction context obtained from the transaction manager. Standard Java EE components can also use such pools. Connections obtained by non-component callers are not automatically closed at the end of a transaction by the container. They must be explicitly closed by the caller.

You can enable non-component callers in the following ways:

■ Check the Allow Non Component Callers box on the Edit Connection Pool Advanced Attributes page in the Administration Console. The default is false. For more information, click the Help button in the Administration Console.

■ Specify the --allownoncomponentcallers option in the asadmin create-jdbc-connection-pool command. For more information, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

■ Specify the allow-non-component-callers option in the asadmin set command. For example:

```
asadmin set domain1.resources.jdbc-connection-pool.DerbyPool.allow-non-component-callers=true
```

For more information, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

■ Create a JDBC resource with a __pm suffix.

Accessing a DataSource using the Synchronization.beforeCompletion() method requires setting Allow Non Component Callers to true. For more information about the Transaction Synchronization Registry, see “The Transaction Manager, the Transaction Synchronization Registry, and UserTransaction” on page 271.

Using Application-Scoped Resources

You can define an application-scoped database or other resource for an enterprise application, web module, EJB module, connector module, or application client module by supplying a glassfish-resources.xml deployment descriptor file. For details, see “Application-Scoped Resources” in Oracle GlassFish Server 3.1 Application Deployment Guide.
Restrictions and Optimizations

This section discusses restrictions and performance optimizations that affect using the JDBC API.

Disabling Stored Procedure Creation on Sybase

By default, DataDirect and Oracle JDBC drivers for Sybase databases create a stored procedure for each parameterized PreparedStatement. On the GlassFish Server, exceptions are thrown when primary key identity generation is attempted. To disable the creation of these stored procedures, set the property PrepareMethod=direct for the JDBC connection pool.
Using the Transaction Service

The Java EE platform provides several abstractions that simplify development of dependable transaction processing for applications. This chapter discusses Java EE transactions and transaction support in the Oracle GlassFish Server.

The following topics are addressed here:

- "Handling Transactions with Databases" on page 265
- "Handling Transactions with Enterprise Beans" on page 268
- "Handling Transactions with the Java Message Service" on page 270
- "The Transaction Manager, the Transaction Synchronization Registry, and UserTransaction" on page 271

You might also want to read Chapter 44, “Transactions,” in The Java EE 6 Tutorial.

Handling Transactions with Databases

The following topics are addressed here:

- “Using JDBC Transaction Isolation Levels” on page 266
- “Using Non-Transactional Connections” on page 267
Using JDBC Transaction Isolation Levels

Not all database vendors support all transaction isolation levels available in the JDBC API. The GlassFish Server permits specifying any isolation level your database supports. The following table defines transaction isolation levels.

<table>
<thead>
<tr>
<th>Transaction Isolation Level</th>
<th>getTransactionIsolation Return Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>read-uncommitted</td>
<td>1</td>
<td>Dirty reads, non-repeatable reads, and phantom reads can occur.</td>
</tr>
<tr>
<td>read-committed</td>
<td>2</td>
<td>Dirty reads are prevented; non-repeatable reads and phantom reads can occur.</td>
</tr>
<tr>
<td>repeatable-read</td>
<td>4</td>
<td>Dirty reads and non-repeatable reads are prevented; phantom reads can occur.</td>
</tr>
<tr>
<td>serializable</td>
<td>8</td>
<td>Dirty reads, non-repeatable reads and phantom reads are prevented.</td>
</tr>
</tbody>
</table>

By default, the transaction isolation level is undefined (empty), and the JDBC driver’s default isolation level is used. You can specify the transaction isolation level in the following ways:

- Select the value from the Transaction Isolation drop-down list on the New JDBC Connection Pool or Edit Connection Pool page in the Administration Console. For more information, click the Help button in the Administration Console.
- Specify the --isolationlevel option in the asadmin create-jdbc-connection-pool command. For more information, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.
- Specify the transaction-isolation-level option in the asadmin set command. For example:

  ```
  asadmin set domain1.resources.jdbc-connection-pool.DerbyPool.transaction-isolation-level=serializable
  ```

 For more information, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

Note that you cannot call setTransactionIsolation during a transaction.

You can set the default transaction isolation level for a JDBC connection pool. For details, see “To Create a JDBC Connection Pool” in Oracle GlassFish Server 3.1 Administration Guide.

To verify that a level is supported by your database management system, test your database programmatically using the supportsTransactionIsolationLevel method in java.sql.DatabaseMetaData, as shown in the following example:
InitialContext ctx = new InitialContext();
DataSource ds = (DataSource) ctx.lookup("jdbc/MyBase");
Connection con = ds.getConnection();
DatabaseMetaData dbmd = con.getMetaData();
if (dbmd.supportsTransactionIsolationLevel(TRANSACTION_SERIALIZABLE)) {
 Connection.setTransactionIsolation(TRANSACTION_SERIALIZABLE);
}

For more information about these isolation levels and what they mean, see the JDBC API specification.

Setting or resetting the transaction isolation level for every getConnection call can degrade performance. So by default the isolation level is not guaranteed.

Applications that change the transaction isolation level on a pooled connection programmatically risk polluting the JDBC connection pool, which can lead to errors. If an application changes the isolation level, enabling the is-isolation-level-guaranteed setting in the pool can minimize such errors.

You can guarantee the transaction isolation level in the following ways:

- Check the Isolation Level Guaranteed box on the New JDBC Connection Pool or Edit Connection Pool page in the Administration Console. For more information, click the Help button in the Administration Console.
- Specify the --is-isolation-guaranteed option in the asadmin create-jdbc-connection-pool command. For more information, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.
- Specify the is-isolation-level-guaranteed option in the asadmin set command. For example:

 \`\`asadmin set domain1.resources.jdbc-connection-pool.DerbyPool.is-isolation-level-guaranteed=true\`

 For more information, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

Using Non-Transactional Connections

You can specify a non-transactional database connection in any of these ways:

- Check the Non-Transactional Connections box on the New JDBC Connection Pool or Edit Connection Pool page in the Administration Console. The default is unchecked. For more information, click the Help button in the Administration Console.
- Specify the --non-transactional-connections option in the asadmin create-jdbc-connection-pool command. For more information, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.
- Specify the non-transactional-connections option in the asadmin set command. For example:

 \`\`asadmin set domain1.resources.jdbc-connection-pool.DerbyPool.non-transactional-connections=true\`

 For more information, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.
For more information, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

- Use the DataSource implementation in the GlassFish Server, which provides a getNonTxConnection method. This method retrieves a JDBC connection that is not in the scope of any transaction. There are two variants.

 public java.sql.Connection getNonTxConnection() throws java.sql.SQLException
 public java.sql.Connection getNonTxConnection(String user, String password) throws java.sql.SQLException

- Create a resource with the JNDI name ending in __nontx. This forces all connections looked up using this resource to be non transactional.

Typically, a connection is enlisted in the context of the transaction in which a getConnection call is invoked. However, a non-transactional connection is not enlisted in a transaction context even if a transaction is in progress.

The main advantage of using non-transactional connections is that the overhead incurred in enlisting and delisting connections in transaction contexts is avoided. However, use such connections carefully. For example, if a non-transactional connection is used to query the database while a transaction is in progress that modifies the database, the query retrieves the unmodified data in the database. This is because the in-progress transaction hasn’t committed. For another example, if a non-transactional connection modifies the database and a transaction that is running simultaneously rolls back, the changes made by the non-transactional connection are not rolled back.

Here is a typical use case for a non-transactional connection: a component that is updating a database in a transaction context spanning over several iterations of a loop can refresh cached data by using a non-transactional connection to read data before the transaction commits.

Handling Transactions with Enterprise Beans

This section describes the transaction support built into the Enterprise JavaBeans programming model for the GlassFish Server.

As a developer, you can write an application that updates data in multiple databases distributed across multiple sites. The site might use EJB servers from different vendors.

The following topics are addressed here:

- “Flat Transactions” on page 269
- “Global and Local Transactions” on page 269
- “Commit Options” on page 269
- “Bean-Level Container-Managed Transaction Timeouts” on page 270
Flat Transactions

The Enterprise JavaBeans Specification, v3.0 requires support for flat (as opposed to nested) transactions. In a flat transaction, each transaction is decoupled from and independent of other transactions in the system. Another transaction cannot start in the same thread until the current transaction ends.

Flat transactions are the most prevalent model and are supported by most commercial database systems. Although nested transactions offer a finer granularity of control over transactions, they are supported by far fewer commercial database systems.

Global and Local Transactions

Both local and global transactions are demarcated using the javax.transaction.UserTransaction interface, which the client must use. Local transactions bypass the XA commit protocol and are faster. For more information, see “The Transaction Manager, the Transaction Synchronization Registry, and UserTransaction” on page 271.

Commit Options

The EJB protocol is designed to give the container the flexibility to select the disposition of the instance state at the time a transaction is committed. This allows the container to best manage caching an entity object’s state and associating an entity object identity with the EJB instances.

There are three commit-time options:

- **Option A** – The container caches a ready instance between transactions. The container ensures that the instance has exclusive access to the state of the object in persistent storage. In this case, the container does not have to synchronize the instance’s state from the persistent storage at the beginning of the next transaction.

 Note – Commit option A is not supported for this GlassFish Server release.

- **Option B** – The container caches a ready instance between transactions, but the container does not ensure that the instance has exclusive access to the state of the object in persistent storage. This is the default. In this case, the container must synchronize the instance’s state by invoking ejbLoad from persistent storage at the beginning of the next transaction.

- **Option C** – The container does not cache a ready instance between transactions, but instead returns the instance to the pool of available instances after a transaction has completed.

 The life cycle for every business method invocation under commit option C looks like this.
ejbActivate .ejbLoad business method .ejbStore ejbPassivate

If there is more than one transactional client concurrently accessing the same entity, the first client gets the ready instance and subsequent concurrent clients get new instances from the pool.

The glassfish-ejb-jar.xml deployment descriptor has an element, commit-option, that specifies the commit option to be used. Based on the specified commit option, the appropriate handler is instantiated.

Bean-Level Container-Managed Transaction Timeouts

The transaction timeout for the domain is specified using the Transaction Timeout setting of the Transaction Service. A transaction started by the container must commit (or rollback) within this time, regardless of whether the transaction is suspended (and resumed), or the transaction is marked for rollback. The default value, 0, specifies that the server waits indefinitely for a transaction to complete.

To override this timeout for an individual bean, use the optional cmt-timeout-in-seconds element in glassfish-ejb-jar.xml. The default value, 0, specifies that the Transaction Service timeout is used. The value of cmt-timeout-in-seconds is used for all methods in the bean that start a new container-managed transaction. This value is *not* used if the bean joins a client transaction.

Handling Transactions with the Java Message Service

The following topics are addressed here:

- “Transactions and Non-Persistent Messages” on page 270
- “Using the ConfigurableTransactionSupport Interface” on page 270

Transactions and Non-Persistent Messages

During transaction recovery, non-persistent messages might be lost. If the broker fails between the transaction manager's prepare and commit operations, any non-persistent message in the transaction is lost and cannot be delivered. A message that is not saved to a persistent store is not available for transaction recovery.

Using the ConfigurableTransactionSupport Interface

The Java EE Connector 1.6 specification allows a resource adapter to use the transaction-support attribute to specify the level of transaction support that the resource
adapter handles. However, the resource adapter vendor does not have a mechanism to figure out the current transactional context in which a ManagedConnectionFactory is used.

If a ManagedConnectionFactory implements an optional interface called com.sun.appserv.connectors.spi.ConfigurableTransactionSupport, the GlassFish Server notifies the ManagedConnectionFactory of the transaction support configured for the connection pool when the ManagedConnectionFactory instance is created for the pool. Connections obtained from the pool can then be used with a transaction level at or lower than the configured value. For example, a connection obtained from a pool that is set to XA_TRANSACTION could be used as a LOCAL resource in a last-agent-optimized transaction or in a non-transactional context.

The Transaction Manager, the Transaction Synchronization Registry, and UserTransaction

To access a UserTransaction instance, you can either look it up using the java:comp/UserTransaction JNDI name or inject it using the @Resource annotation.

Accessing a DataSource using the Synchronization.beforeCompletion() method requires setting Allow Non Component Callers to true. The default is false. For more information about non-component callers, see “Allowing Non-Component Callers” on page 262.

If possible, you should use the javax.transaction.TransactionSynchronizationRegistry interface instead of javax.transaction.TransactionManager, for portability. You can look up the implementation of this interface by using the JNDI name java:comp/TransactionSynchronizationRegistry. For details, see the Javadoc page for Interface TransactionSynchronizationRegistry (http://download.oracle.com/javaee/5/api/javax/transaction/TransactionSynchronizationRegistry.html) and Java Specification Request (JSR) 907 (http://www.jcp.org/en/jsr/detail?id=907).

If accessing the javax.transaction.TransactionManager implementation is absolutely necessary, you can look up the GlassFish Server implementation of this interface using the JNDI name java:appserver/TransactionManager. This lookup should not be used by the application code.
A naming service maintains a set of bindings, which relate names to objects. The Java EE naming service is based on the Java Naming and Directory Interface (JNDI) API. The JNDI API allows application components and clients to look up distributed resources, services, and EJB components. For general information about the JNDI API, see http://www.oracle.com/technetwork/java/jndi/index.html. You can also see the JNDI tutorial at http://download.oracle.com/javase/jndi/tutorial/.

The following topics are addressed here:

- “Accessing the Naming Context” on page 273
- “Configuring Resources” on page 276
- “Using a Custom jndi.properties File” on page 280
- “Mapping References” on page 280

Note – The Web Profile of the GlassFish Server supports the EJB 3.1 Lite specification, which allows enterprise beans within web applications, among other features. The full GlassFish Server supports the entire EJB 3.1 specification. For details, see JSR 318 (http://jcp.org/en/jsr/detail?id=318).

Accessing the Naming Context

The Oracle GlassFish Server provides a naming environment, or context, which is compliant with standard Java EE requirements. A Context object provides the methods for binding names to objects, unbinding names from objects, renaming objects, and listing the bindings. The InitialContext is the handle to the Java EE naming service that application components and clients use for lookups.

The JNDI API also provides subcontext functionality. Much like a directory in a file system, a subcontext is a context within a context. This hierarchical structure permits better organization...
of information. For naming services that support subcontexts, the Context class also provides methods for creating and destroying subcontexts.

The following topics are addressed here:
- “Global JNDI Names” on page 274
- “Accessing EJB Components Using the CosNaming Naming Context” on page 275
- “Accessing EJB Components in a Remote GlassFish Server” on page 275
- “Naming Environment for Lifecycle Modules” on page 276

Note – Each resource within a server instance must have a unique name. However, two resources in different server instances or different domains can have the same name.

Global JNDI Names

Global JNDI names are assigned according to the following precedence rules:

1. A global JNDI name assigned in the glassfish-ejb-jar.xml, glassfish-web.xml, or glassfish-application-client.xml deployment descriptor file has the highest precedence. See “Mapping References” on page 280.

2. A global JNDI name assigned in a mapped-name element in the ejb-jar.xml, web.xml, or application-client.xml deployment descriptor file has the second highest precedence. The following elements have mapped-name subelements: resource-ref, resource-env-ref, ejb-ref, message-destination, message-destination-ref, session, message-driven, and entity.

3. A global JNDI name assigned in a mappedName attribute of an annotation has the third highest precedence. The following annotations have mappedName attributes: @javax.annotation.Resource, @javax.ejb.EJB, @javax.ejb.Stateless, @javax.ejb.Singleton, @javax.ejb.Stateful, and @javax.ejb.MessageDriven.

4. A default global JNDI name is assigned in some cases if no name is assigned in deployment descriptors or annotations.
 - For an EJB 2.x dependency or a session or entity bean with a remote interface, the default is the fully qualified name of the home interface.
 - For an EJB 3.0 dependency or a session bean with a remote interface, the default is the fully qualified name of the remote business interface.
 - If both EJB 2.x and EJB 3.0 remote interfaces are specified, or if more than one 3.0 remote interface is specified, there is no default, and the global JNDI name must be specified.
 - For all other component dependencies that must be mapped to global JNDI names, the default is the name of the dependency relative to java:comp/env. For example, in the @Resource(name=“jdbc/Foo”) DataSource ds; annotation, the global JNDI name is jdbc/Foo.
Accessing EJB Components Using the CosNaming Naming Context

The preferred way of accessing the naming service, even in code that runs outside of a Java EE container, is to use the no-argument InitialContext constructor. However, if EJB client code explicitly instantiates an InitialContext that points to the CosNaming naming service, it is necessary to set the java.naming.factory.initial property to com.sun.jndi.cosncing.CNCtxFactory in the client JVM software when accessing EJB components. You can set this property as a command-line argument, as follows:

-Djava.naming.factory.initial=com.sun.jndi.cosncing.CNCtxFactory

Or you can set this property in the code, as follows:

Properties properties = null;
try {
 properties = new Properties();
 properties.put("java.naming.factory.initial",
 "com.sun.jndi.cosncing.CNCtxFactory");
...}

The java.naming.factory.initial property applies to only one instance. The property is not cluster-aware.

Accessing EJB Components in a Remote GlassFish Server

The recommended approach for looking up an EJB component in a remote GlassFish Server from a client that is a servlet or EJB component is to use the Interoperable Naming Service syntax. Host and port information is prepended to any global JNDI names and is automatically resolved during the lookup. The syntax for an interoperable global name is as follows:

corbaname:iiop:host:port#a/b/name

This makes the programming model for accessing EJB components in another GlassFish Server exactly the same as accessing them in the same server. The deployer can change the way the EJB components are physically distributed without having to change the code.

For Java EE components, the code still performs a java:comp/env lookup on an EJB reference. The only difference is that the deployer maps the ejb-reference element to an interoperable name in a GlassFish Server deployment descriptor file instead of to a simple global JNDI name.

For example, suppose a servlet looks up an EJB reference using java:comp/env/ejb/Foo, and the target EJB component has a global JNDI name of a/b/Foo.

The ejb-ref element in glassfish-web.xml looks like this:
<ejb-ref>
 <ejb-ref-name>ejb/Foo</ejb-ref-name>
 <jndi-name>corbaname:iiop:host:port#a/b/Foo</jndi-name>
</ejb-ref>

The code looks like this:

```java
Context ic = new InitialContext();
Object o = ic.lookup("java:comp/env/ejb/Foo");
```

For a client that doesn’t run within a Java EE container, the code just uses the interoperable
global name instead of the simple global JNDI name. For example:

```java
Context ic = new InitialContext();
Object o = ic.lookup("corbaname:iiop:host:port#a/b/Foo");
```

Objects stored in the interoperable naming context and component-specific (java:comp/env)
naming contexts are transient. On each server startup or application reloading, all relevant
objects are re-bound to the namespace.

Naming Environment for Lifecycle Modules

Lifecycle listener modules provide a means of running short or long duration tasks based on
Java technology within the GlassFish Server environment, such as instantiation of singletons or
RMI servers. These modules are automatically initiated at server startup and are notified at
various phases of the server life cycle. For details about lifecycle modules, see Chapter 12,
“Developing Lifecycle Listeners.”

The configured properties for a lifecycle module are passed as properties during server
initialization (the INIT_EVENT). The initial JNDI naming context is not available until server
initialization is complete. A lifecycle module can get the InitialContext for lookups using the
method LifecycleEventContext.getInitialContext() during, and only during, the
STARTUP_EVENT, READY_EVENT, or SHUTDOWN_EVENT server life cycle events.

Configuring Resources

The GlassFish Server exposes special resources in the naming environment.

- “External JNDI Resources” on page 277
- “Custom Resources” on page 277
- “Built-in Factories for Custom Resources” on page 277
- “Disabling GlassFish Server V2 Vendor-Specific JNDI Names” on page 279
- “Using Application-Scoped Resources” on page 280
External JNDI Resources

An external JNDI resource defines custom JNDI contexts and implements the javax.naming.spi.InitialContextFactory interface. There is no specific JNDI parent context for external JNDI resources, except for the standard java:comp/env/.

Create an external JNDI resource in one of these ways:

- To create an external JNDI resource using the Administration Console, open the Resources component, open the JNDI component, and select External Resources. For details, click the Help button in the Administration Console.
- To create an external JNDI resource, use the asadmin create-jndi-resource command. For details, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

Custom Resources

A custom resource specifies a custom server-wide resource object factory that implements the javax.naming.spi.ObjectFactory interface. There is no specific JNDI parent context for external JNDI resources, except for the standard java:comp/env/.

Create a custom resource in one of these ways:

- To create a custom resource using the Administration Console, open the Resources component, open the JNDI component, and select Custom Resources. For details, click the Help button in the Administration Console.
- To create a custom resource, use the asadmin create-custom-resource command. For details, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

Built-in Factories for Custom Resources

The GlassFish Server provides built-in factories for the following types of custom resources:

- "JavaBeanFactory" on page 277
- "PropertiesFactory" on page 278
- "PrimitivesAndStringFactory" on page 278
- "URLFactory" on page 279

Template glassfish-resources.xml files for these built-in factories and a README file are available at as-install/lib/install/templates/resources/custom/. For more information about the glassfish-resources.xml file, see the Oracle GlassFish Server 3.1 Application Deployment Guide.

JavaBeanFactory

To create a custom resource that provides instances of a JavaBean class, follow these steps:
1. Set the custom resource's factory class to
 `org.glassfish.resources.custom.factory.JavaBeanFactory`.
2. Create a property in the custom resource for each setter method in the JavaBean class.
 For example, if the JavaBean class has a method named `setAccount`, specify a property
 named `account` and give it a value.
3. Make sure the JavaBean class is accessible to the GlassFish Server.
 For example, you can place the JavaBean class in the `as-install/lib` directory.

PropertiesFactory

To create a custom resource that provides properties to applications, set the custom resource's
factory class to `org.glassfish.resources.custom.factory.PropertiesFactory`, then
specify one or both of the following:

- Create a property in the custom resource named `org.glassfish.resources.
custom.factory.PropertiesFactory.fileName` and specify as its value the path to a
 properties file or an XML file.
 The path can be absolute or relative to `as-install`. The file must be accessible to the GlassFish
 Server.
 If an XML file is specified, it must match the document type definition (DTD) specified in
 the API definition of `java.util.Properties`
 (http://download.oracle.com/javase/6/docs/api/java/util/Properties.html).
- Create the desired properties directly as properties of the custom resource.
 If both the `fileName` property and other properties are specified, the resulting property set is
 the union. If the same property is defined in the file and directly in the custom resource, the
 value of the latter takes precedence.

PrimitivesAndStringFactory

To create a custom resource that provides Java primitives to applications, follow these steps:

1. Set the custom resource's factory class to
 `org.glassfish.resources.custom.factory.PrimitivesAndStringFactory`.
2. Set the custom resource's resource type to one of the following or its fully qualified wrapper
class name equivalent:
 - `int`
 - `long`
 - `double`
 - `float`
 - `char`
 - `short`
 - `byte`
3. Create a property in the custom resource named `value` and give it the value needed by the application.
 For example, if the application requires a `double` of value 22.1, create a property with the name `value` and the value 22.1.

URLFactory

To create a custom resource that provides URL instances to applications, follow these steps:

1. Set the custom resource’s factory class to `org.glassfish.resources.custom.factory.URLObjectFactory`.
2. Choose which of the following constructors to use:
 - `URL(protocol, host, port, file)`
 - `URL(protocol, host, file)`
 - `URL(spec)`
3. Define properties according to the chosen constructor.
 For example, for the first constructor, define properties named `protocol`, `host`, `port`, and `file`. Example values might be `http`, `localhost`, `8085`, and `index.html`, respectively.
 For the third constructor, define a property named `spec` and assign it the value of the entire URL.

Disabling GlassFish Server V2 Vendor-Specific JNDI Names

The EJB 3.1 specification supported by GlassFish Server 3.1 defines portable EJB JNDI names. Because of this, there is less need to continue to use older vendor-specific JNDI names.

By default, GlassFish Server V2-specific JNDI names are applied automatically by GlassFish Server 3.1 for backward compatibility. However, this can lead to some ease-of-use issues. For example, deploying two different applications containing a remote EJB component that exposes the same remote interface causes a conflict between the default JNDI names.

The default handling of V2-specific JNDI names in GlassFish Server 3.1 can be managed by using the `asadmin` command:

```bash
asadmin> set server.ejb-container.property.disable-nonportable-jndi-names="true"
```

disable-nonportable-jndi-names is a boolean property that can take the following values:

- `false` Enables the automatic use of GlassFish Server V2-specific JNDI names. This is the default setting.
true
Disables the automatic use of V2-specific JNDI names. In all cases, 3.1-compatible JNDI names are used.

Note that this setting applies to all EJB components deployed to the server.

Using Application-Scoped Resources

You can define an application-scoped JNDI or other resource for an enterprise application, web module, EJB module, connector module, or application client module by supplying a glassfish-resources.xml deployment descriptor file. For details, see “Application-Scoped Resources” in Oracle GlassFish Server 3.1 Application Deployment Guide.

Using a Custom jndi.properties File

To use a custom jndi.properties file, place the file in the domain-dir/lib/classes directory or JAR it and place it in the domain-dir/lib directory. This adds the custom jndi.properties file to the Common class loader. For more information about class loading, see Chapter 2, “Class Loaders.”

For each property found in more than one jndi.properties file, the Java EE naming service either uses the first value found or concatenates all of the values, whichever makes sense.

Mapping References

The following XML elements in the GlassFish Server deployment descriptors map resource references in application client, EJB, and web application components to JNDI names configured in the GlassFish Server:

- resource-env-ref - Maps the @Resource or @Resources annotation (or the resource-env-ref element in the corresponding Java EE XML file) to the absolute JNDI name configured in the GlassFish Server.
- resource-ref - Maps the @Resource or @Resources annotation (or the resource-ref element in the corresponding Java EE XML file) to the absolute JNDI name configured in the GlassFish Server.
- ejb-ref - Maps the @EJB annotation (or the ejb-ref element in the corresponding Java EE XML file) to the absolute JNDI name configured in the GlassFish Server.

JNDI names for EJB components must be unique. For example, appending the application name and the module name to the EJB name is one way to guarantee unique names. In this case, mycompany.pkg1ng.pkg1ngEJB.MyEJB would be the JNDI name for an EJB in the module pkg1ngEJB.jar, which is packaged in the pkg1ng.ear application.
These elements are part of the glassfish-web.xml, glassfish-application-client.xml, glassfish-ejb-jar.xml, and glassfish-application.xml deployment descriptor files. For more information about how these elements behave in each of the deployment descriptor files, see Appendix C, "Elements of the GlassFish Server Deployment Descriptors," in Oracle GlassFish Server 3.1 Application Deployment Guide.

The rest of this section uses an example of a JDBC resource lookup to describe how to reference resource factories. The same principle is applicable to all resources (such as JMS destinations, JavaMail sessions, and so on).

The @Resource annotation in the application code looks like this:

```java
@Resource(name="jdbc/helloDbDs") javax.sql.DataSource ds;
```

This references a resource with the JNDI name of java:jdbc/helloDbDs. If this is the JNDI name of the JDBC resource configured in the GlassFish Server, the annotation alone is enough to reference the resource.

However, you can use a GlassFish Server specific deployment descriptor to override the annotation. For example, the resource-ref element in the glassfish-web.xml file maps the res-ref-name (the name specified in the annotation) to the JNDI name of another JDBC resource configured in the GlassFish Server.

```xml
<resource-ref>
  <res-ref-name>jdbc/helloDbDs</res-ref-name>
  <jndi-name>jdbc/helloDbDataSource</jndi-name>
</resource-ref>
```
Using the Java Message Service

This chapter describes how to use the Java Message Service (JMS) API. The Oracle GlassFish Server has a fully integrated JMS provider: the GlassFish Server Message Queue software.

Note – JMS resources are supported only in the full GlassFish Server, not in the Web Profile.

For general information about the JMS API, see “Chapter 31: The Java Message Service API” in the [The Java EE 6 Tutorial](http://download.oracle.com/javaee/6/tutorial/doc/).

For detailed information about JMS concepts and JMS support in the GlassFish Server, see Chapter 17, “Administering the Java Message Service (JMS),” in [Oracle GlassFish Server 3.1 Administration Guide](http://download.oracle.com/职能部门/oracle/glassfish/3.1/docs/glassfish_admin/).

For more information about Message Queue software, see the [Oracle GlassFish Server Message Queue 4.5 Administration Guide](http://download.oracle.com/职能部门/oracle/glassfish/4.5/docs/glassfish45_admin/).

The following topics are addressed here:

- “Using Application-Scoped JMS Resources” on page 283
- “Load-Balanced Message Inflow” on page 284
- “Authentication With ConnectionFactory” on page 284
- “Delivering SOAP Messages Using the JMS API” on page 285

Using Application-Scoped JMS Resources

You can define an application-scoped JMS or other resource for an enterprise application, web module, EJB module, connector module, or application client module by supplying a `glassfish-resources.xml` deployment descriptor file. For details, see “Application-Scoped Resources” in [Oracle GlassFish Server 3.1 Application Deployment Guide](http://download.oracle.com/职能部门/oracle/glassfish/3.1/docs/glassfish_admin/).
Load-Balanced Message Inflow

You can configure ActivationSpec properties of the jmsra resource adapter in the glassfish-ejb-jar.xml file for a message-driven bean using activation-config-property elements. Whenever a message-driven bean (EndPointFactory) is deployed, the connector runtime engine finds these properties and configures them accordingly in the resource adapter. See “activation-config-property” in Oracle GlassFish Server 3.1 Application Deployment Guide.

The GlassFish Server transparently enables messages to be delivered in random fashion to message-driven beans having same ClientID. The ClientID is required for durable subscribers.

For nondurable subscribers in which the ClientID is not configured, all instances of a specific message-driven bean that subscribe to same topic are considered equal. When a message-driven bean is deployed to multiple instances of the GlassFish Server, only one of the message-driven beans receives the message. If multiple distinct message-driven beans subscribe to same topic, one instance of each message-driven bean receives a copy of the message.

To support multiple consumers using the same queue, set the maxNumActiveConsumers property of the physical destination to a large value. If this property is set, the Oracle Message Queue software allows multiple message-driven beans to consume messages from same queue. The message is delivered randomly to the message-driven beans. If maxNumActiveConsumers is set to -1, there is no limit to the number of consumers.

To ensure that local delivery is preferred, set addressList-behavior to priority. This setting specifies that the first broker in the AddressList is selected first. This first broker is the local colocated Message Queue instance. If this broker is unavailable, connection attempts are made to brokers in the order in which they are listed in the AddressList. This setting is the default for GlassFish Server instances that belong to a cluster.

Authentication With ConnectionFactory

If your web, EJB, or client module has res-auth set to Container, but you use the ConnectionFactory.createConnection("user","password") method to get a connection, the GlassFish Server searches the container for authentication information before using the supplied user and password. Version 7 of the GlassFish Server threw an exception in this situation.
Delivering SOAP Messages Using the JMS API

Web service clients use the Simple Object Access Protocol (SOAP) to communicate with web services. SOAP uses a combination of XML-based data structuring and Hyper Text Transfer Protocol (HTTP) to define a standardized way of invoking methods in objects distributed in diverse operating environments across the Internet.

For more information about SOAP, see the Apache SOAP web site at http://xml.apache.org/soap/index.html.

You can take advantage of the JMS provider's reliable messaging when delivering SOAP messages. You can convert a SOAP message into a JMS message, send the JMS message, then convert the JMS message back into a SOAP message.

The following topics are addressed here:

- “To Send SOAP Messages Using the JMS API” on page 285
- “To Receive SOAP Messages Using the JMS API” on page 286

▼ To Send SOAP Messages Using the JMS API

1 Import the MessageTransformer library.

```java
import com.sun.messaging.xml.MessageTransformer;
```

This is the utility whose methods you use to convert SOAP messages to JMS messages and the reverse. You can then send a JMS message containing a SOAP payload as if it were a normal JMS message.

2 Initialize the TopicConnectionFactory, TopicConnection, TopicSession, and publisher.

```java
tcf = new TopicConnectionFactory();
tc = tcf.createTopicConnection();
session = tc.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);
topic = session.createTopic(topicName);
publisher = session.createPublisher(topic);
```

3 Construct a SOAP message using the SOAP with Attachments API for Java (SAAJ).

```java
/* construct a default soap MessageFactory */
MessageFactory mf = MessageFactory.newInstance();
/* Create a SOAP message object */
SOAPMessage soapMessage = mf.createMessage();
/* Get SOAP part */
SOAPPart soapPart = soapMessage.getSOAPPart();
/* Get SOAP envelope */
SOAPEnvelope soapEnvelope = soapPart.getEnvelope();
/* Get SOAP body */
SOAPBody soapBody = soapEnvelope.getBody();
/* Create a name object with name space */
/* http://www.sun.com/imq */
```
Name name = soapEnvelope.createName("HelloWorld", "hw", "http://www.sun.com/imq");
* Add child element with the above name. */
SOAPElement element = soapBody.addChildElement(name)
/* Add another child element. */
element.addTextNode("Welcome to GlassFish Web Services.");
/* Create an attachment with activation API. */
URL url = new URL("http://java.sun.com/webservices/");
DataHandler dh = new DataHandler(url);
AttachmentPart ap = soapMessage.createAttachmentPart(dh);
/* set content type/ID. */
ap.setContentType("text/html");
ap.setContentId("cid-001");
/** add the attachment to the SOAP message. */
soapMessage.addAttachmentPart(ap);
soapMessage.saveChanges();

4 Convert the SOAP message to a JMS message by calling the MessageTransformer.SOAPMessageIntoJMSMessage() method.
Message m = MessageTransformer.SOAPMessageIntoJMSMessage (soapMessage, session);

5 Publish the JMS message.
publisher.publish(m);

6 Close the JMS connection.
tc.close();

▼ To Receive SOAP Messages Using the JMS API

1 Import the MessageTransformer library.
import com.sun.messaging.xml.MessageTransformer;
This is the utility whose methods you use to convert SOAP messages to JMS messages and the reverse. The JMS message containing the SOAP payload is received as if it were a normal JMS message.

messageFactory = MessageFactory.newInstance();
tcf = new com.sun.messaging.TopicConnectionFactory();
tc = tcf.createTopicConnection();
session = tc.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);
topic = session.createTopic(topicName);
subscriber = session.createSubscriber(topic);
subscriber.setMessageListener(this);
tc.start();
3 Use the OnMessage method to receive the message. Use the SOAPMessageFromJMSMessage method to convert the JMS message to a SOAP message.

```java
public void onMessage (Message message) {
    SOAPMessage soapMessage =
        MessageTransformer.SOAPMessageFromJMSMessage( message,
                                                messageFactory );
}
```

4 Retrieve the content of the SOAP message.
Using the JavaMail API

This chapter describes how to use the JavaMail API, which provides a set of abstract classes defining objects that comprise a mail system.

The following topics are addressed here:

- "Introducing JavaMail" on page 289
- "Creating a JavaMail Session" on page 290
- "JavaMail Session Properties" on page 290
- "Looking Up a JavaMail Session" on page 290
- "Sending and Reading Messages Using JavaMail" on page 291
- "Using Application-Scoped JavaMail Resources" on page 292

Note – JavaMail resources are supported only in the full Oracle GlassFish Server, not in the Web Profile.

Introducing JavaMail

The JavaMail API defines classes such as Message, Store, and Transport. The API can be extended and can be subclassed to provide new protocols and to add functionality when necessary. In addition, the API provides concrete subclasses of the abstract classes. These subclasses, including MimeMessage and MimeBodyPart, implement widely used Internet mail protocols and conform to the RFC822 and RFC2045 specifications. The JavaMail API includes support for the IMAP4, POP3, and SMTP protocols.

The JavaMail architectural components are as follows:

- The abstract layer declares classes, interfaces, and abstract methods intended to support mail handling functions that all mail systems support.
- The internet implementation layer implements part of the abstract layer using the RFC822 and MIME internet standards.
JavaMail uses the JavaBeans Activation Framework (JAF) to encapsulate message data and to handle commands intended to interact with that data.

Creating a JavaMail Session

You can create a JavaMail session in the following ways:

- In the Administration Console, open the Resources component and select JavaMail Sessions. For details, click the Help button in the Administration Console.
- Use the asadmin create-javamail-resource command. For details, see the Oracle GlassFish Server 3.1-3.1.1 Reference Manual.

JavaMail Session Properties

You can set properties for a JavaMail Session object. Every property name must start with a mail- prefix. The GlassFish Server changes the dash (-) character to a period (.) in the name of the property and saves the property to the MailConfiguration and JavaMail Session objects. If the name of the property doesn’t start with mail-, the property is ignored.

For example, if you want to define the property mail.from in a JavaMail Session object, first define the property as follows:

- Name - mail.from
- Value - john.doe@sun.com

Looking Up a JavaMail Session

The standard Java Naming and Directory Interface (JNDI) subcontext for JavaMail sessions is java:comp/env/mail.

Registering JavaMail sessions in the mail naming subcontext of a JNDI namespace, or in one of its child subcontexts, is standard. The JNDI namespace is hierarchical, like a file system’s directory structure, so it is easy to find and nest references. A JavaMail session is bound to a logical JNDI name. The name identifies a subcontext, mail, of the root context, and a logical name. To change the JavaMail session, you can change its entry in the JNDI namespace without having to modify the application.

The resource lookup in the application code looks like this:
Sending and Reading Messages Using JavaMail

The following topics are addressed here:

- "To Send a Message Using JavaMail" on page 291
- "To Read a Message Using JavaMail" on page 292

▲ To Send a Message Using JavaMail

1 Import the packages that you need.

```
import java.util.*;
import javax.activation.*;
import javax.mail.*;
import javax.mail.internet.*;
import javax.naming.*;
```

2 Look up the JavaMail session.

```
InitialContext ic = new InitialContext();
String snName = "java:comp/env/mail/MyMailSession";
Session session = (Session)ic.lookup(snName);
```

For more information, see "Looking Up a JavaMail Session" on page 290.

3 Override the JavaMail session properties if necessary.

For example:

```
Properties props = session.getProperties();
props.put("mail.from", "user2@mailserver.com");
```

4 Create a MimeMessage.

The msgRecipient, msgSubject, and msgTxt variables in the following example contain input from the user:

```
Message msg = new MimeMessage(session);
msg.setSubject(msgSubject);
msg.setSentDate(new Date());
msg.setFrom();
msg.setRecipients(Message.RecipientType.TO, InternetAddress.parse(msgRecipient, false));
msg.setText(msgTxt);
```
Send the message.
Transport.send(msg);

To Read a Message Using JavaMail

1 Import the packages that you need.
import java.util.*;
import javax.activation.*;
import javax.mail.*;
import javax.mail.internet.*;
import javax.naming.*;

2 Look up the JavaMail session.
InitialContext ic = new InitialContext();
String snName = "java:comp/env/mail/MyMailSession";
Session session = (javax.mail.Session)ic.lookup(snName);

For more information, see “Looking Up a JavaMail Session” on page 290.

3 Override the JavaMail session properties if necessary.
For example:
Properties props = session.getProperties();
props.put("mail.from", "user2@mailserver.com");

4 Get a Store object from the Session, then connect to the mail server using the Store object's connect method.
You must supply a mail server name, a mail user name, and a password.
Store store = session.getStore();
store.connect("MailServer", "MailUser", "secret");

5 Get the INBOX folder.
Folder folder = store.getFolder("INBOX");

6 It is efficient to read the Message objects (which represent messages on the server) into an array.
Message[] messages = folder.getMessages();

Using Application-Scoped JavaMail Resources

You can define an application-scoped JavaMail or other resource for an enterprise application, web module, EJB module, connector module, or application client module by supplying a glassfish-resources.xml deployment descriptor file. For details, see "Application-Scoped Resources" in Oracle GlassFish Server 3.1 Application Deployment Guide.
Index

Numbers and Symbols
@OrderBy and session cache sharing, 100

A
ACC, 197–199
naming, 198
security, 198, 214–215
ACC clients
appclient script, 213
failover, 201
invoking a JMS resource, 201–202
invoking an EJB component, 199–201
Java Web Start, 202–212
libraries, 217
load balancing, 201
making a remote call, 200
package-appclient script, 214
running, 202–212, 213
SSL, 198, 214–215
activation-config-property element, 284
ActivationSpec properties, 284
ActiveCache for GlassFish, 121
Admin Console, 27
App Client Modules page, 203
Audit Modules page, 57
CMP resource configuration, 184
Connector Connection Pools page
Flush button, 228
Ping button, 228
Ping field, 228
Admin Console, Connector Connection Pools page (Continued)
Pooling field, 231
Connector Service page
Shutdown Timeout field, 230
collector thread pool assignment, 226
Debug Enabled field, 38
Edit Connection Pool Advanced Attributes page
Allow Non Component Callers field, 262
Associate With Thread field, 257
Connection Validation field, 258
Pooling field, 256
SQL Trace Listeners field, 254
Statement Cache Size field, 254
Statement Timeout field, 252
Validation Classname field, 258
Validation Method field, 258
Wrap JDBC Objects field, 261
Edit Connection Pool page
Init SQL field, 252
Isolation Level Guaranteed option, 267
Non-Transactional Connections field, 267
Transaction Isolation field, 266
Generate RMIStubs field, 205
HPROF configuration, 42
JACC Providers page, 56
JavaMail Sessions page, 290
JNDI page
Custom Resources page, 277
External Resources page, 277
JProbe configuration, 43
Libraries field, 32
Admin Console (Continued)
Locale field, 136
Logging tab, 41, 139
Message Security page, 82
creating providers, 64
enabling providers, 63
Monitor tab, 139
New JDBC Connection Pool page
Isolation Level Guaranteed option, 267
Non-Transaction Connections field, 267
Transaction Isolation field, 266
online help for, 27
Realms page, 52
Resource Adapter Configs, 227
role mapping configuration, 51
Security Manager Enabled field, 62
Security Maps tab, 226
Thread Pools page, 226
Web Services page
Test button, 87
allow-concurrent-access element, 166
AllowManagedFieldsInDefaultFetchGroup flag, 186
AllowMediatedWriteInDefaultFetchGroup flag, 187
alternate document roots, 140–142
annotation
application clients, 198
JNDI names, 274
message layer, 62
schema generation, 96
security, 49
appclient script, 213
Applib class loader, 30
Application Client Container, See ACC
application client JAR file, 199
application clients, annotation, 198
application-scoped
connectors, 231
resources, 262, 280, 283, 292
applications, examples, 28
AppservPasswordLoginModule class, 54
AppservRealm class, 54
Archive class loader, 30
asadmin command, 27
create-audit-module, 57
asadmin command (Continued)
create-audit-module, 57
create-auth-realm, 52
create-connector-connection-pool
--ping option, 228
--pooling option, 231
create-connector-security-map, 226
create-custom-resource, 277
create-domain, 206
create-javamail-resource, 290
create-jdbc-connection-pool
--allowoncomponentcallers option, 262
--associatewiththread option, 257
--initsql option, 252
--isolation guaranteed option, 258
--isolation guaranteed option, 267
--isolation level option, 266
--nontransactionalconnections option, 267
--pooling option, 256
--sqltrace listeners option, 254
--statement cache size option, 254
--statement timeout option, 253
--validationclassname option, 258
--validationmethod option, 258
--wrapjdbcobjects option, 261
create-jndi-resource, 277
create-jvm-options, 165, 187
java.security.debug option, 61
create-message-security-provider, 64, 83
create-resource-adapter-config, 226, 227
create-threadpool, 226
delete-jvm-options
java.security.manager option, 62
deploy
--availability enabled option, 161
--libraries option, 33
--precompilejsp option, 114
--retrieve option, 200, 205
schema generation, 97, 181
deploydir
--availability enabled option, 161
schema generation, 97, 181
flush-connection-pool, 228
generate-jvm-report, 39
get-client-stubs, 199, 200, 205
asadmin command (Continued)
 list-timers, 154
 migrate-timers, 154
 ping-connection-pool, 228
set
 allow-non-component-callers option, 262
 associate-with-thread option, 257
 connection-validation-method option, 258
 default message security provider, 63
 default principal settings, 51
 init-sql option, 252
 is-connection-validation-required option, 258
 is-isolation-level-guaranteed option, 267
 java-web-start-enabled attribute, 203
 non-transactional-connections option, 267
 pooling option, 256
 sql-trace-listeners option, 254
 statement-cache-size option, 254
 transaction-isolation-level option, 266
 validation-classname option, 258
undeploy
 schema generation, 97, 182
audit modules, 56–58
AuditModule class, 57–58
authentication
 application clients, 198
 audit modules, 57
 JAAS, 53–56
 JMS, 284
 message-level, 70
 programmatic login, 72
 realms, 52
 single sign-on, 74–76
authentication mechanisms for the Servlet container, 76–83
authorization
 audit modules, 57
 JAAS, 53–56
 JACC, 56
 roles, 50–51
automatic schema generation
 for CMP, 177–182
 Java Persistence options, 96–97
availability
 configuring HTTP session persistence, 120–121
 feature summary, 26
 for ACC clients, 201
 for stateful session beans, 157–162
 for web modules, 116–118
 of message-driven beans, 284

B
Bayeux protocol, 133–135
BLOB support, 175–176
Bootstrap class loader, 30
build.xml file, 28

C
cache for servlets
 default configuration, 107
 example configuration, 108
 helper class, 107, 109
 cache sharing and @OrderBy, 100
 cache tag, 112–113
 CacheHelper interface, 109
 cacheKeyGenerator AttrName property, 109
 caching
 a bean’s state using version consistency, 184
 data using a non-transactional connection, 268
 EJB components, 151
 entities, 269
 JSP files, 111–114
 read-only beans, 164
 servlet results, 106–109
 stateful session beans, 157
 using a read-only bean for, 150, 166, 186
 capture-schema command, 183
 Catalina listeners, defining custom, 140
 certificate realm, 52
 CGI, 145–147
 checkpoint-at-end-of-method element, 161
 checkpointing, 157
 selecting methods for, 161
 class-loader element, 31, 137
class loaders, 29–36
 application-specific, 32–34
circumventing isolation, 34–36
delegation hierarchy, 30–31
isolation, 32
client JAR file, 35, 199
client.policy file, 214
clients, non-ACC, 217–221
CLOB support, 176
CMP, See container-managed persistence
cmp-resource element, 184
cmt-max-runtime-exceptions property, 169
Coherence*Web, 121
Comet, 122–135
Cometd, 133–135
command-line server configuration, See asadmin command
commit options, 269
Common class loader, 30
 using to circumvent isolation, 34
common gateway interface, 145–147
compiling JSP files, 114
ConfigurableTransactionSupport interface, 270–271
connection factory, 167
Connector class loader, 30, 238
connectors, 223–234
 and JDBC, 225
 and JMS, 225
 and message-driven beans, 232–234
application-scoped, 231
class loading policy, 230
configuration options, 225–231
configuring, 225
flushing connection pools, 228
inbound connectivity, 231–232
invalid connections, 229
last agent optimization, 230–231
Oracle GlassFish Server support, 224–225
outbound connectivity, 232
shutdown timeout, 229–230
testing connection pools, 228
thread associations, 226
container-managed persistence
 configuring 1.1 finders, 187–188
container-managed persistence (Continued)
data types for mapping, 177–179
deployment descriptor, 173–179
mapping, 172–173
performance features, 184–186
prefetching, 185
resource manager, 184
restrictions, 191–196
support, 171–172
version consistency, 184–185
context, for JNDI naming, 273–276
context.xml file, 142–143
CosNaming naming service, 275
create-audit-module command, 57
create-auth-realm command, 52
create-connector-connection-pool command
 --ping option, 228
 --pooling option, 231
create-connector-security-map command, 226
create-connector-security-map command
create-custom-resource command, 277
create-domain command, 206
create-javamail-resource command, 290
create-jdbc-connection-pool command
 --allownoncomponentcallers option, 262
 --associatewiththread option, 257
 --initsql option, 252
 --isconnectionvalidatereq option, 258
 --isolationguaranteed option, 267
 --isolationlevel option, 266
 --nontransactionalconnections option, 267
 --pooling option, 256
 --sqltraceisteners option, 254
 --statementcachesize option, 254
 --statementtimeout option, 253
 --validationclassname option, 258
 --validationmethod option, 258
 --wrapjdbcobjects option, 261
create-jndi-resource command, 277
create-jvm-options command, 165, 187
 java.security.debug option, 61
create-message-security-provider command, 64, 83
create-resource-adapter-config command, 226, 227
create-threadpool command, 226
custom resource, 277
custom resource (Continued)

D
data types, for CMP mapping, 177–179
database properties, 94
databases
 CMP resource manager, 184
 properties, 94
 schema capture, 183
 specifying for Java Persistence, 92–93
debug property, 65
debugging, 37–44
 application clients, 39
 enabling, 37–38
 generating a stack trace, 39
 JPD A options, 38–39
DeclareRoles annotation, 50–51
default-web.xml file, 138
delegation, class loader, 31
delete-jvm-options command, java.security.manager
 option, 62
deploy command
 --availability-enabled option, 161
 --libraries option, 33
 --precompile-jsp option, 114
 --retrieve option, 200, 205
 schema generation, 97, 181
deploydir command
 --availability-enabled option, 161
 schema generation, 97, 181
deployment
 read-only beans, 166
 signing JAR files, 206–207
deployment descriptor files, 281
destroy method, 109
development environment
 creating, 25–28
tools for developers, 26–28
digest authentication, 52
directory listings, disabling, 138
distributable web application, 116
distributed HTTP sessions, 116–118
document roots, alternate, 140–142
doGet method, 110
doPost method, 110
dynamic.username.password property, 65

e
Eclipse IDE, 28
EclipseLink, 91
eclipselink.target-database property, 92
EJB, singletons, 163
EJB 3.0, Java Persistence, 91–103
EJB components
 caching, 151–152
 calling from a different application, 35
 flushing, 152–153
 pooling, 151–152, 156
 remote bean invocations, 152
 security, 50
 thread pools, 152
EJB QL queries, 187–188
ejb-ref element, 280
ejb-ref mapping, using JNDI name instead, 35
EJB reference failover, 201
EJB Timer Service, 153–155
ejbPassivate, 164
encoding, of servlets, 136
encryption.key.alias property, 65
endorsed standards override mechanism, 32
events, server life cycle, 236
example applications, 28
Extension class loader, 30
external JNDI resource, 277

F
fail-all-connections setting, 229, 259–260
failover
 for ACC clients, 201
 object types supported for, 117–118, 158–159
 of stateful session bean state, 157–162
 of web module sessions, 116–118
 fetch group, options for, 186–187
file realm, 52
finder limitation for Sybase, 101–102, 193
finder methods, 187–188
flat transactions, 269
flush-connection-pool command, 228
flush tag, 113–114
flushing of EJB components, 152–153

G
generate-jvm-report command, 39
get-client-stubs command, 199, 200, 205
getCharacterEncoding method, 136
getCmdLineArgs method, 237
getConnection method, 261
data method, 236
getInitialContext method, 237, 276
getInstallRoot method, 237
getInstanceName method, 237
getLifecycleEventContext method, 237
gf-client.jar file, 205
glassfish-api.jar file, 235
glassfish-ejb-jar.xml file, 161
GlassFish Java EE Service Engine, 88–89
GlassFish Server Message Queue, debugging, 40
glassfish-web.xml file
 and class loaders, 31, 137
Grizzly, Comet, 124–133

H
handling requests, 109
header management, 140
help for Admin Console tasks, 27
high availability, See availability
HPROF profiler, 42–43
HTTP sessions (Continued)
octet types supported for failover, 117–118
session managers, 118–121
URL rewriting, 115
HttpServletRequest, 107

I
idempotent requests, 139
IMAP4 protocol, 289–290
inbound connectivity, 231–232
Inet Oracle JDBC driver, 100, 175, 176
INIT_EVENT, 236
init method, 109
InitialContext naming service handle, 273–276
installation, 25–26
instantiating servlets, 109
internationalization, 136
Interoperable Naming Service, 275–276
is-connection-validation-required setting, 229, 259–260
is-read-only-bean element, 166
isolation of class loaders, 32, 34–36

J
J2SE policy file, 214
JACC, 56
JAR file, client for a deployed application, 35
jar-signing-alias property, 206–207
Java Authentication and Authorization Service (JAAS), 53–56
Java Authorization Contract for Containers, See JACC
Java Business Integration (JBI), 88–89
Java Database Connectivity, See JDBC
Java DB database, 92–93
Java Debugger (jdb), 37
Java EE, security model, 48
Java EE Connector architecture, 223–234
Java EE Service Engine, 88–89
Java EE tutorial, 105
Java Message Service
 See JMS
Java Naming and Directory Interface, See JNDI
Java optional package mechanism, 31
Java Persistence, 91–103
 annotation for schema generation, 96
 changing the provider, 98–99
 database for, 92–93
 deployment options for schema generation, 96–97
 restrictions, 99–103
Java Platform Debugger Architecture, See JPDA
Java Servlet API, 105
Java Studio Enterprise, 27
Java Transaction API (JTA), 265–271
Java Transaction Service (JTS), 265–271
Java Web Start, 202–212
 signing client JAR files, 205–207
JavaBeanFactory, 277–278
JavaBeans, 110
JavaMail
 and JNDI lookups, 290–291
 architecture, 289
 creating sessions, 290
 defined, 289–292
 messages
 reading, 292
 sending, 291–292
 session properties, 290
 specification, 290
JDBC
 and the Transaction Synchronization Registry, 262
 Connection wrapper, 261
 integrating driver JAR files, 34
 invalid connections, 259–260
 non-component callers, 262
 non-transactional connections, 267–268
 restrictions, 263
 sharing connections, 258–259
 specification, 251
 transaction isolation levels, 266
 tutorial, 251
jdbc realm, 52
JDOQL, 187–188
JMS, 167, 283–287
 authentication, 284
JMS (Continued)
 ConfigurableTransactionSupport
 interface, 270–271
 debugging, 40
 load balancing, 284
 SOAP messages, 285–287
 transactions and non-persistent messages, 270
JNDI
 and EJB components, 280
 and JavaMail, 290–291
 and lifecycle modules, 237, 238, 276
 custom resource, 277
 custom resource factories, 277–279
 defined, 273–281
 external JNDI resources, 277
 for message-driven beans, 167
 global names, 274
 mapping references, 280–281
 name for container-managed persistence, 184
 tutorial, 273
 using instead of ejb-ref mapping, 35
 vendor-specific names, 279–280
join tables, 174
JPDA debugging options, 38–39
JProbe profiler, 43–44
JSP files
 caching, 111–114
 command-line compiler, 114
 precompiling, 114
 specification, 110
 tag libraries, 110–111
jspc command, 114
jspcachetags.jar file, 111
jspcachetags.tld file, 111
JSR 109, 85
JSR 115, 48, 56, 57
JSR 12, 188
JSR 181, 86
JSR 196, 48, 63, 76–83
JSR 220, 91
JSR 224, 85
JSR 907, 271
K
key attribute
 of cache tag, 112
 of flush tag, 114

L
last agent optimization, 230–231
ldap realm, 52
lib directory
 and the Common class loader, 30
 for a web application, 35
libraries, 32–34, 34
 and application clients, 217
lifecycle modules, 235
 allocating and freeing resources, 238
 and class loaders, 238
 and the server.policy file, 238
 deployment, 237
 naming environment, 276
LifecycleEvent class, 236
LifecycleEventContext interface, 237
LifecycleListener interface, 236
LifecycleListenerImpl.java file, 236
LifecycleModule class loader, 30, 238
list-timers command, 154
listeners, Catalina, defining custom, 140
load balancing
 and idempotent requests, 139
 of ACC clients, 201
 of message-driven beans, 284
locale, setting default, 136
lock-when-loaded consistency level, 192
logging, 41
 in the web container, 139
login, programmatic, 72
login method, 73
login retries, 217
LoginModule, 54
managed fields, 175
mapping for container-managed persistence
 considerations, 174–176
 data types, 177–179
 features, 172
mapping resource references, 280–281
markConnectionAsBad method, 259
mdb-connection-factory element, 167, 169
message-driven beans, 167
 administering, 168
 connection factory, 167
 debugging, 40
 load balancing, 284
 monitoring, 168
 onMessage runtime exception, 169–170
 pool monitoring, 169
 pooling, 167
 restrictions, 168–170
 using with connectors, 232–234
message security, 62–72
 application-specific, 66–69
 responsibilities, 65
 sample application, 69–72
migrate-timers command, 154
Migration Tool, 27
mime-mapping element, 138
modules, lifecycle, 235
monitoring in the web container, 139
MSSQL version consistency triggers, 193–194
MySQL database restrictions, 102–103, 194–196

N
naming service, 273–281
native library path
 configuring for hprof, 42
 configuring for JProbe, 43
nested transactions, 269
NetBeans
 about, 27
 profiler, 41
nocache attribute, of cache tag, 113
non-ACC clients, 217–221
O
Oasis Web Services Security, See message security
object references supported for failover, 117–118,
158–159
online help, 27
onMessage method, 169, 287
Oracle automatic mapping of date and time fields, 193
Oracle Inet JDBC driver, 100, 175, 176
Oracle TopLink, 99
ORDER BY validation, disabling, 191
outbound connectivity, 232

P
package-appclient script, 214
pass-by-reference element, 150
permissions
changing in server.policy, 59–61
default in server.policy, 58
persistence, Coherence*Web, 121
persistence store
for HTTP sessions, 116–118, 120–121
for stateful session bean state, 157–162
persistence.xml file, 92–93, 97
ping-connection-pool command, 228
pool monitoring for MDBs, 169
pooling, 164
POP3 protocol, 289–290
precompiling JSP files, 114
prefer-validate-over-recreate property, 229, 259–260
prefetching, 185
primary key, 172, 174, 175
PrimitivesAndStringFactory, 278–279
profilers, 41–44
programmatic login, 72
ProgrammaticLogin class, 73
ProgrammaticLoginPermission permission, 73
PropertiesFactory, 278
Public API class loader, 30

Q
query hints, 98

R
read-only beans, 150, 163–167, 186
deploying, 166
refreshing, 165–166
readonly.relative.refresh.mode flag, 165
ReadOnlyBeanNotifier, 166
READY_EVENT, 236
realms
application-specific, 53
configuring, 52
custom, 53–56
supported, 52
references supported for failover, 117–118, 158–159
refresh attribute, of cache tag, 113
refresh-period-in-seconds element, 164
removing servlets, 109
request object, 109
res-sharing-scope deployment descriptor
setting, 258–259
resource-adaptemid element, 233
resource adapters, See connectors
resource-env-ref element, 280
resource-ref element, 280
resource references, mapping, 280–281
resources
application-scoped, 262, 280, 283, 292
RMI/IIOP over SSL, 214–215
roles, 50–51

S
sample applications, 28
schema capture, 183
schema generation
automatic for CMP, 177–182
Java Persistence options for automatic, 96–97
scope attribute
of cache tag, 113
of flush tag, 114
secondary table, 173
security, 47–83
ACC, 198, 214–215
annotations, 49
application level, 49
security (Continued)
 audit modules, 56–58
 declarative, 49
 disabling directory listings, 138
 EJB components, 50
GlassFish Server features, 48
goals, 48
JACC, 56
Java EE model, 48
JMS, 284
 message security, 62–72
 of containers, 49–50
programmatic, 50
 programmatic login, 72
 roles, 50–51
 server.policy file, 58–62
 web applications, 50
security.config property, 65
security manager, enabling and disabling, 61–62
security map, 226–227
server
 installation, 25–26
 lib directory of, 30
 life cycle events, 236
 optimizing for development, 26
 value-added features, 149–153
Server Authentication Module, 76–83
server.policy file, 58–62
 and lifecycle modules, 238
 changing permissions, 59–61
 default permissions, 58
 ProgrammaticLoginPermission, 73
server-side includes, 144–145
ServerLifecycleException, 236
service method, 110
Servlet container, authentication mechanisms, 76–83
 servlets, 105–110
 caching, 106–109
 character encoding, 136
 destroying, 109
 engine, 109
 instantiating, 109
 removing, 109
 request handling, 109

servlets (Continued)
 specification, 105
 class loading, 137
 mime-mapping, 138
 object unsupported for failover, 117
session beans, 156
 container for, 156–157
 EJB singletons, 163
 optimizing performance, 163
 restrictions, 162–163
 transactions, 163
session cache sharing and @OrderBy, 100
session managers, 118–121
session persistence
 Coherence*Web, 121
 for stateful session beans, 157–162
 for web modules, 116–118
 object types supported, 117–118, 158–159
set command
 allow-non-component-callers option, 262
 associate-with-thread option, 257
 connection-validation-method option, 258
 default message security provider, 63
 default principal settings, 51
 init-sql option, 252
 is-connection-validation-required option, 258
 is-isolation-level-guaranteed option, 267
 java-web-start-enabled attribute, 203
 non-transactional-connections option, 267
 pooling option, 256
 sql-trace-listeners option, 254
 statement-cache-size option, 254
 transaction-isolation-level option, 266
 validation-classname option, 258
setAttribute method, 136
setContentType method, 136
setLocale method, 136
setTransactionIsolation method, 266
SHUTDOWN_EVENT, 236
signature.key.alias property, 65
signing client JAR files, 205–207
signing JAR files at deployment, 206–207
Simple Object Access Protocol, See SOAP messages
single sign-on, 74–76
singleton, EJB, 163
Sitraka web site, 43–44
SMTP protocol, 289–290
SOAP messages, 285–287
SOAP with Attachments API for Java (SAAJ), 285
Solaris realm, 52
specification
 application clients, 198
 connectors, 223
 EJB 2.1 and CMP, 171
 EJB 2.1 and JDOQL queries, 187
 JAAS, 53
 Java Persistence, 91
 JavaBeans, 110
 JDBC, 251
 JSP, 110
 Liberty Alliance Project, 63
 programmatic security, 50
 security manager, 58
 servlet, 105
 class loading, 31
 WSS, 63
splash screen, 216–217
SSI, 144–145
stack trace, generating, 39
STARTUP_EVENT, 236, 237
stateful session beans, 157
 object references supported for failover, 158–159
 session persistence, 157–162
stateless session beans, 156
sun-cmp-mappings.xml file, 173
sun-ra.xml file, 225
supportsTransactionIsolationLevel method, 266
Sybase
 finder limitation, 101–102, 193
 lock-when-loaded limitation, 192
timeout attribute, of cache tag, 113
tools, for developers, 26–28
transaction-support property, 230
transactions, 265–271
 and EJB components, 268–270
 and non-component callers, 271
 and non-persistent JMS messages, 270
 and session beans, 163
 and session persistence, 158, 161
 commit options, 269
 ConfigurableTransactionSupport interface, 270–271
 flat, 269
 global, 269
 in the Java EE tutorial, 265
 JDBC isolation levels, 266
 local, 269
 nested, 269
 timeouts, 270
 transaction manager, 271
 transaction synchronization registry, 271
 UserTransaction, 271
U
undeploy command
 schema generation, 97, 182
unwrap method, 261
URL rewriting, 115
URLFactory, 279
use-thread-pool-id element, 152
use-unique-table-names property, 181
utility classes, 32–34, 34
V
valves, defining custom, 140
vendor-specific, JNDI names, 279–280
verbose mode, 40
version consistency, 184–185
 triggers, 193–194
virtual server properties, 137
Index

W

web application class loader
 changing delegation in, 31, 137
web applications, 105–147, 239–247
 distributable, 116
 security, 50
web container, logging and monitoring, 139
web services, 85–89
 creating portable artifacts, 86
 debugging, 86, 87
 deployment, 86
 in the Java EE tutorial, 85
 JBI, 88–89
 security
 See message security
test page, 87
URL, 87
WSDL file, 87
WebDav, 143–144
work security map, 227
WSIT, 48
WSS, See message security

X

XML parser, specifying alternative, 33