»
< Sun

microsystems

ChorusOS 4.0 Device Driver
Framework Guide

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303-4900
U.S.A.

Part Number 806-0616—10
December 1999



Copyright 1999 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered
trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, ChorusOS, Sun Embedded Workshop and Solaris are
trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products
bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s
licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and
FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS 1S” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

Copyright 1999 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, Californie 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent I'utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut étre reproduite sous aucune forme, par quelque
moyen gue ce soit, sans I'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et
qui comprend la technologie relative aux polices de caractéres, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront étre dérivées du systéme Berkeley BSD licenciés par I’'Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, ChorusOS, Sun Embedded Workshop et Solaris sont des
marques de fabrique ou des marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.
Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International,
Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

L'interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnait les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour I'industrie de I'informatique. Sun détient une licence non exclusive de Xerox sur I'interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place I'interface d’utilisation graphique OPEN LOOK et qui en outre
se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N'EST ACCORDEE, Y
COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE
UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE
GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

. 4.4
ca &S
Adobe PostScript Please

Recycle



Contents

Preface 7

Introduction to the ChorusOS Driver Framework 11
Introduction 11
Benefits of Using the Driver Framework 12
Framework Architecture Overview 12
Driver Framework APIs 15
Driver/Kernel Interface (DKI) 16
Device Drivers Interface (DDI) 17
Driver Framework Mechanisms and Principles 18
Driver Registration 18
Driver Initialization 19
Driver Framework Components 21
Source Files 21
Organization (trees) 22
Manpage Documentation 23
Device Driver Conventions 23
Driver Names 24
Driver Information 24

Message Logging 25



4

Use of ASSERT Macro 25
2. Driver Kernel Interface Overview 27
Common Driver Services 27
Synchronization 27
Device and Driver Registration 29
General Purpose Memory Allocation 33
Special Purpose Physical Memory Allocation 33
Timeouts 34
Precise Busy Wait 34
System Event Management 35
Global Interrupts Masking 35
Thread Preemption Disabling 36
Specific Input/Output Services 36
Processor Family Specific DKI Services 37
3. Writing Device Drivers 39
Include the Appropriate APIs (DKI/DDI) 39
Register the Driver (using main function) 40
Write Device Driver-Class-Specific Functions 42
Write Device Driver Registry Functions 45
Write the Probe Function 45
Write the Bind Function 46
Write the Init Function 47
Write Unload Function 51
Write Bus Events Handler Function 54
4, Writing Bus Drivers 63
Include the Appropriate APIs (DKI/DDI) 63
Register the Driver (using main function) 64

Write Bus Driver Class-Specific Functions 66

ChorusOS 4.0 Device Driver Framework Guide ¢ December 1999



Write General Functions 66

Write Registry Functions 69
Write the Probe Function 69
Write the Bind Function 71
Write the Init Function 72
Write the Unload Function 76

Write Event Handler Function 79
Hot-Plug Removal 83

Write Load Handler Function 85

Further Information 89

Index 91

Contents 5



6

ChorusOS 4.0 Device Driver Framework Guide ¢ December 1999



Preface

The ChorusOS 4.0 Device Driver Framework Guide explains the set of tools provided
within the ChorusOS operating system to build device and bus drivers, and how to
use them. It provides an overview of the device and bus driver architecture within
the ChorusOS operating system environment, and explains how the Driver
Framework can be used to build highly portable, platform-independent drivers, as
well as highly tunable, processor-family specific drivers using the same software
paradigm. It also contains a summary of the APIs that make up the Driver
Framework, although details of the API calls are discussed in the man pages.

Who Should Use This Guide

This book is designed to be used by developers already familiar with building bus
and device drivers. For this reason, there is no general description of the tasks
involved in building bus or device drivers. It is recommended that the reader consult
books and/or websites dealing specifically with the architecture of the different
device, bus, and processor architectures for this kind of information.

Before You Read This Guide

Before starting to build drivers using the ChorusOS operating system, read the
ChorusOS 4.0 Introduction. The introduction provides an overview of the features
and components of the ChorusOS operating system and explains how to create an
application that runs on the ChorusOS operating system.



8

How This Guide is Organized

This book is organized into the following sections.

Chapter 1 provides an introduction to the toolset, gives an overview of hardware
representation in the ChorusOS operating system, and outlines some of the benefits
of using the Driver Framework.

Chapter 2 outlines tasks and services common to device and bus driver production
within the Driver Framework Device Kernel Interface API.

Chapter 3 provides a step-by-step overview of writing device drivers in the Driver
Framework, using a working driver as an example.

Chapter 4 provides a step-by-step overview of writing bus drivers in the Driver
Framework, using a working driver as an example.

Appendix A provides pointers to detailed information.

Related Reading

The ChorusOS 4.0 Introduction introduces the features and components of the
ChorusOS operating system. It explains how to use ChorusOS and how to create an
application that runs on the ChorusOS operating system.

The ChorusOS Release Notes contain information about new features and restrictions
in this release of the product.

The following books describe how to use ChorusOS

m ChorusOS 4.0 File Systems User’s Guide explains how to use the file systems
provided with the ChorusOS operating system. It includes information about
using the NFS server.

ChorusOS 4.0 Installation Guide for Solaris Hosts explains how to download and
install ChorusOS on a Solaris host.

ChorusOS 4.0 Installation Guide for Windows NT Hosts explains how to
download and install ChorusOS on a Windows NT host.

m ChorusOS 4.0 Network Administration Guide explains how to use various network
protocols with the ChorusOS operating system, including the point-to-point
protocol (PPP) and the serial line internet protocol (SLIP).

m ChorusOS 4.0 Hot Restart Programmer’s Guide describes the support for hot
restart provided in the ChorusOS operating system and explains how to use it.

ChorusOS 4.0 Device Driver Framework Guide ¢ December 1999



Ordering Sun Documents

Fatbrain.com, an Internet professional bookstore, stocks select product
documentation from Sun Microsystems, Inc.

For a list of documents and how to order them, visit the Sun Documentation Center
on Fatbrain.com at http://www1.fatbrain.com/documentation/sun

Accessing Sun Documentation Online

The docs.sun.coms™ Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com

What Typographic Conventions Mean

The following table describes the typographic changes used in this book.

TABLE P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files, and Edit your .login file.

directories; on-screen computer output Use Is -a to list all files.

machine_name% you have

mail.
AaBbCc123 What you type, contrasted with machine_name% su
on-screen computer output Password:

Preface 9



TABLE P-1  Typographic Conventions (continued)

Typeface or

Symbol Meaning Example

AaBbCcl123 Command-line placeholder: replace To delete a file, type rm
with a real name or value filename.

AaBbCc123 Book titles, new words, or terms, or Read Chapter 6 in User’s
words to be emphasized. Guide.

These are called class options.

You must be root to do this.

Shell Prompts in Command Examples

The following table shows the default system prompt and superuser prompt for the
C shell, Bourne shell, and Korn shell.

TABLE P-2 Shell Prompts

Shell Prompt

C shell prompt machine_name%
C shell superuser prompt machine_namet##
Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser #

prompt

10 ChorusOS 4.0 Device Driver Framework Guide ¢ December 1999



CHAPTER 1

Introduction to the ChorusOS Driver
Framework

Introduction

The ChorusOS system provides a driver framework, allowing the third-party
developer to develop device drivers on top of a binary system distribution. The
Driver Framework provides a well-defined, structured and easy-to-use environment
to develop both new drivers and client applications for existing drivers.

Host bus drivers written with the Driver Framework are processor-family specific,
meaning that they are portable within that processor family (UltraSPARC™,
PowerPC, Intel ix86 processor families). Drivers that occupy a higher place in the
hierarchical bus structure (sub-bus drivers and device drivers) are usually portable
between processor families.

Device Driver implementation is based on services (provided by a set of APlIs, such
as PCI or ISA) which allow the developer to choose the optimizability and
portability of the driver they create. This allows the driver to be written to the parent
bus class, and not the underlying platform. Drivers written within the Driver
Framework may also take advantage of processor-specific services, allowing
maximum optimization for a particular processor family.

11



Benefits of Using the Driver Framework

Using the Driver Framework to build bus and device drivers in the ChorusOS
operating system provides the following benefits to the user:

m A structured framework, easing the task of building drivers
m Hierarchical structure of drivers in Driver Framework mirrors hardware structure
m Ensures compliance and functionality within the ChorusOS operating system

m Enables the user to develop multi-bus device drivers, which may run on all buses
supporting the Common Bus Driver Interface

m Drivers built with the Driver Framework are homogeneous across various system
profiles (flat memory, protected memory, virtual memory)

m Allows dynamic configuration (and re-configuration) needed for plug-and-play,
hot-plug and hot-swap support

m Supports the binary driver model
m APIs are version resilient

m Is adaptive (in terms of the memory footprint and complexity) to the various
system profiles and customer requirements

m Supports the dynamic loading and unloading of driver components

m Meets real-time requirements, by providing non-blocking (asynchronous) run-time
APIs

Framework Architecture Overview

In the ChorusOS operating system, a driver entity is a software abstraction of the
physical bus or device. Creating a device driver using the Driver Framework allows
the device or bus to be represented to and managed in the ChorusOS operating
system. The hierarchical structure of the driver software within the ChorusOS
operating system mirrors the structure of the physical device / bus.

Each device or bus is represented by its own driver. A driver’s component code is
linked separately from the microkernel as a supervisor actor, with the device-specific
code strongly localized in the corresponding device driver.

Note that a supervisor actor containing a driver code should be considered as a
container only rather than as a real supervisor actor with its own execution
personality. Driver code runs either in the interrupt execution environment (typically
up-calls) or in the driver client execution environment (typically down-calls). In other

12 ChorusOS 4.0 Device Driver Framework Guide ¢ December 1999



words, the driver component code logically belongs to the current driver client
(microkernel module or supervisor actor).

Note - The driver is always considered a trusted system component.

This means that the Driver Framework defines a structure and principle, but since
the driver is a trusted system component, parameter and logic checking are not
performed on most drivers in release mode. Even if the task of creating drivers with
the Driver Framework seems relatively simple, care should be taken to ensure that
drivers are written in conformance with the framework. Some checking can be added
in debug mode, but this can not replace writing the driver in compliance with the
Driver Framework.

Driver components are organized, through a services-provider/user relationship, into
hierarchical layers which mirror the hardware buses/devices connections.

Interactions between these drivers are implemented via simple indirect function calls
(down-calls and up-calls).

Introduction to the ChorusOS Driver Framework 13



sthecrnet hocd disk oo-AoH UKRT £ Lloppy . E
e 1 deiver deiver Ariver driwer i

farararanei -..--...-...i.--..---.--.i.--..--...-.t...--..---.- e ——

P LTI TSTS| SPTSTS TS TS TS PRSI ] P A B W [STSTISTSTSTRTTSISTRIST CPRTS TS PSPSTepSTYSTRPS]  [TSTSTSTST YSPSpe T

SE5T hamt Lue sdapter lan Eux hridge
Ariver driver

3 3
T i

bur draverw

POl buz boidge
Ariver H

mErmEE e e e e e s e e el e e e e e g e e ek

niccobernel basic secvices

[0 interrupky ronogerent; mewory monageeent |

Figure 1-1  Bus/Device Hierarchy, in Hardware and Software

To sum up, the ChorusOS operating system Driver Framework can be considered in
two ways:

m A hierarchical set of APIs which defines the services provided for and used by
each bus or device driver at each layer of the architecture. This approach ensures
portability and functionality across various platforms and continued validity of
drivers across subsequent system releases.

14 ChorusOS 4.0 Device Driver Framework Guide ¢ December 1999



m A set of mechanisms implemented by the ChorusOS microkernel, ensuring
compliance and synchronicity with the ChorusOS operating system architecture

and methods.

Figure 1-2 shows the objects involved in the ChorusOS Driver Framework:

devios handke

regesty local fdevice) data

Figure 1-2  Driver Framework Objects

Driver Framework APIs

One of the key attributes allowing portability and modularity of devices constructed
using the Driver Framework is the hierarchical structure of the APIs, which can also
be seen as the layered interface. Within this model, all calls to the microkernel are
performed through the Driver Kernel Interface (DKI) API, while all calls between
drivers are handled through the Device Driver Interface (DDI) API.

Introduction to the ChorusOS Driver Framework 15



The figure below represents the layered (hierarchical) structure of the Driver

Framework APIs.

8 8 8 e 8 8 R Y R N R SRR BN B N RN R B N g

| Deaver clianky |
|
1

L
5 B i B B B B B B

I e —— [
; wkhernek hard di=k (Ll =t LERT Loy § E
; driver driver drluwse deiwwc dAriver i [
g i
Y T S — .,..,u.,_.u.,_.,.j_.,_._.,_.,..,_“ O .
SR T TR oot o oot T ey R ot E oot ] mETmEEETm - I'|l'|l'|l'|'|l'|l'|l'|l'|'|l'|l'|l--|'|l'|l'|l'|l'|'|l'|l'|l'|1 E
DOL nnt ; E
SCS1 hoat bus sdapter I bur bridge ul H
drivec driwer u ; .
31 2]
H 1 i :]-—-.
! PO buy boaidge i =3
driwec ;
.
Faruly opecific DL mwcvices
HI OP-H E ML
Figure 1-3  Device Interface Layering

Driver/Kernel Interface (DKI)

The DKI interface defines all services provided by the microkernel to driver
components. Following the layered interface model, all services implemented by the
DKI are called by the drivers, and take place in the microkernel.

Common DKI services are services common to all platforms and processors, usable by
all drivers, no matter what layer in the hierarchical model they inhabit. These
services are globally designed by the DKI class name.

Common DKI services cover:

m Synchronization through the DKI thread

m Device tree
m Driver registry

m Device registry

m General purpose memory allocation

m Timeout

ChorusOS 4.0 Device Driver Framework Guide ¢ December 1999




m Precise busy wait

m Special-purpose physical memory allocation
m System event management

m Global interrupts masking

m Specific 1/0 services

Processor family specific DKI services are defined and available only for a given
processor family and should be used only by the lowest-level drivers. Lowest-level
drivers are those for buses and devices which are directly connected to the processor
local bus. Note that these drivers typically use only the DKI services (no available
layer of DDI). These services are globally designed by the FDKI class name (for
Family DKI).

Processor family specific DKI (FDKI) services cover:
m Processor interrupts management

m Processor caches management

m Processor specific 1/0 services

m Physical to virtual memory mapping

All DKI services are implemented as part of the embedded system library
(libebd.s.a ). Most of them are implemented as microkernel system calls. Note that
the dki(9)  man page gives an entry point to a detailed description of all DKI APIs.

Device Drivers Interface (DDI)

The DDI defines several layers of interface between different layers of device drivers
in the driver’s hierarchy. Typically an API is defined for each class of bus or device,
as a part of the DDI.

Note that a driver’s client application may itself be a driver component (as a device
driver is a client of the bus driver API). In this way, it can be seen that all DDI
services are implemented by a driver component, and are in turn called by
upper-layer drivers (or directly by the driver’s client applications).

As illustrated earlier, in Figure 1-3, the DDI set of APIs is further divided along
hierarchical lines into two principle interface layers — Bus Driver Interfaces and
Device Driver Interfaces.

Introduction to the ChorusOS Driver Framework 17



Bus Driver Interface APIs

This layer of interfaces is implemented by the lowest level layer of drivers, using
DKI services. This set of drivers can itself be composed of multiple sub-layers to
reflect the bus hierarchy of a given platform.

Typically, only the primary (host) bus driver is built solely using DKI services.
Subsequent drivers, those occupying a “downstream” position in the hierarchy,
interface with the primary (host) bus. As all different 1/0 buses share a subset of
features, and then have their particular specificities, the bus driver interfaces layer
offers a subset of services called "Common bus driver interface" (CBDI) , which is
independent of the bus type, offering a set of services common for all bus classes.

In addition to the CBDI, there is of course a collection of bus specific interfaces (such
as PCI, VME, ISA) to implement bus-specific driver services.

Device Driver Interface APIs

This layer of interfaces is implemented by the device drivers, and is built upon the
lower layer of services (bus driver interfaces). This set of device drivers provides
different interfaces for each different class/type of device. Typically, there are
different interfaces for timer devices, UART devices, Ethernet devices and so on.

Each of these APIs may be used by the driver’s client application to manage the
associated devices. Note that the ddi(9) manpage gives an entry point to a detailed
description of all DDI APIs.

Driver Framework Mechanisms and
Principles

As mentioned above, the ChorusOS operating system microkernel implements
mechanisms to enforce a well-defined behavior regarding driver component
initialization, dynamic loading/Zunloading, and bus events management. An
overview of these mechanisms follows, while a more detailed examination is
provided in “Chapter 2, Driver Kernel Interface Overview”,”Chapter 3, Writing
Device Drivers” and “Chapter 4, Writing Bus Drivers.”

Driver Registration

The driver framework defines three device and driver registration entities which are
managed through the DKI interface:

m the Driver Registry is used to register and manage loaded driver components

18 ChorusOS 4.0 Device Driver Framework Guide ¢ December 1999



m the Device Tree is used to represent the hardware buses/devices hierarchy and
defines the properties of each hardware chip

m the Device Registry is used to register/retrieve driver component’s instances
servicing a given hardware device (bound to and initialized to manage a given
node in the device tree)

Driver Initialization

The microkernel initialization goes through the following steps:
1. device independent microkernel initialization

2. built-in device drivers initialization

3. device dependent microkernel initialization

At the first step, the microkernel performs initialization of device-independent
modules like executive, memory management and so on.

At the second step, the microkernel installs and launches the built-in device driver
actor(s) (drivers which are embedded in the ChorusOS operating system archive).
Note that each driver actor’s main()  function is invoked sequentially by the
microkernel initialization thread. The driver’s main()  function should perform a
self-registration of the driver component within the system, by using the DKI
interface.

When registering, the driver exports its properties to the system:
m information about the component (name, version)
m the required parent bus API class and version

m driver’s entry points, which have a well-defined semantic

Once the driver component is self-registered, future management of the driver is
controlled by its parent bus/nexus driver, using the properties registered.

The four possible entry points that a driver component may register are:

m a driver’s probe function (drv_probe ) to detect device(s) residing on the bus and
to create device tree node(s) corresponding to these types of device(s)

m a driver’s bind function (drv_bind ) to bind a driver to a device tree node

m a driver’s initialize function (drv_init ) to initialize the hardware device, and to
create a running instance of the driver component

m a driver’s unload function (drv_unload ) which is invoked by the driver registry
module when an application has to unload the driver component from the system

Introduction to the ChorusOS Driver Framework 19



Finally, once built-in driver components have been started, the microkernel performs
initialization of device dependent modules (like the "TICK" module which relies on a
TIMER class device).

Note - Interrupts are disabled at CPU level during the first, second and third
initialization steps. Once the built-in drivers are initialized, interrupts are enabled at
CPU level.

Once all of the driver’s main() functions are invoked, the microkernel initiates the
device initialization process. This can be seen as the microkernel implementing a
local bus driver (bound to the device tree root node) for a DKI/FDKI bus class.

The initialization process starts from driver components servicing bus or device
controllers directly connected to the CPU local bus; the driver registry is searched to
find out the appropriate drivers and to call their registered entry points. Typically,
the probe registered function is called for all driver components requiring a DKI/
FDKI parent bus class. After probing, the bind function is called for all driver
components requiring a DKI/FDKI parent bus class. Finally, after binding, the
initialize registered function is called for all driver components requiring a DKI/
FDKI parent bus class, that are bound to a child of the device tree root node (nodes
representing a bus or a device controller directly connected to the CPU local bus).

Note - The drv_probe , drv_bind and drv_init routines are all optional

The drv_probe routine detects device(s) residing on the bus and creates
corresponding device nodes in the device tree. The drv_bind routine allows drivers
to perform a driver-to-device binding. The driver examines the properties attached to
the device node in order to determine the type of device and to check whether the
device may be serviced by the driver. If the check is positive, the driver attaches a
driver property to the device node. The name of the driver node is “driver” and it
has a string type value, specifying its name. The initialization process is propagated
by the drv_init function of the bus/nexus drivers started by the microkernel.

In addition, when a driver instance is activated by a parent bus/nexus driver
(through its registered drv_init() function), it establishes a connection to its parent
bus driver (typically through an open service of the bus API) specifying a call-back
event handler and a load handler. The parent bus/nexus driver uses the call-back
event handler mechanism to propagate the bus events to the connected child driver
instances. These events are typically bus-class specific, but are usually used to shut
down child driver instances. The load handler is used (together with the unload
entry point) to manage dynamic loading/Zunloading of the driver components.

20 ChorusOS 4.0 Device Driver Framework Guide ¢ December 1999



Driver Framework Components

Source Files

Typically, a driver component is a ChorusOS operating system supervisor actor
written in 'C’ programming language. This type of component (named devx for the
example) is usually composed of the following files:

m A header file (named devxProp.h ) defining properties which are specific to this
devx driver component. This file should be visible from the component(s)
responsible for building the associated device tree node (to create the node’s
properties). This may be the boot program or any other "probe only" driver
component.

m An implementation file (devx.c ) which contains the C code for the driver
component. Note that for very big driver components, there may be multiple .c
files. Note also that the hardware related definitions and constants are sometimes
extracted from the .c file and put in a header file (devx.h ) where use is restricted
to the implementation file.

m An Imakefile that is used to generate a Makefile (through the imake tool) in order
to compile and link the driver component. Refer to the make and imake sections
in “ChorusOS 4.0 Introduction”, and the imake header file (see the TOOLS
directory: installation_directory/platformtype-bin/dtool) for details about the imake
macros that are available to build driver components.

Below is a typical example of an Imakefile, which exports a ravenProp.h file,
compiles a raven.c implementation file and then builds a D_raven.r  driver actor
which is embedded in the archive.

CSRCS = raven.c

OBJS = $(CSRCS:.c=.0)

BuiltinDriver(D_raven.r, $(OBJS), $(DRV_LIBS))
DistProgram(D_raven.r, $(DRV_DIST_BIN)$(REL_DIR))
Depend($(CSRCS))

FILES = ravenProp.h

DistFile($(FILES),)$(REL_DIR),$(DRV_DIST_INC)$(REL_DIR))

Introduction to the ChorusOS Driver Framework 21



22

Organization (trees)
All files related to driver components are organized in 4 file trees:

m The 'dki’ tree, populated by the ChorusOS operating system delivery and
exporting the DKI set of APIs (header files onl).

m The 'ddi’ tree, populated by the ChorusOS operating system delivery and
exporting the DDI set of APIs (header files only).

m The ’'drv’ tree, populated by generic driver components and exporting the
device-specific properties header files.
Generic driver components are drivers which do not use the family specific DKI
APIs, and therefore are portable across all families and platforms (header and ’c’
files).

m The 'drv_f’ tree, populated by processor family specific driver components and
exporting device specific properties header files.
Processor family-specific driver components are drivers which use one family
specific DKI API, and therefore can run only on this processor family (header and
’c’ files).

Note that both drv and drv_f trees are mainly populated by third party driver
writers (although ChorusOS system deliveries contain drivers for the reference
platform’s devices).

The main functional components of the 'dki’ tree are:
m  <dki/dki.h> which defines the Common DKI API
m <dki/f_dki.h> which defines the processor family-specific DKI API

All other file trees are organized following the bus/device class provided APIs. In
other words, there is a directory per class of bus and device, which contains the
header file defining the API provided by this device class.

For drv and drv_f, in each bus/device class directory there is one directory per bus/
device hardware controller for which a driver component is written.

Listed below are some path examples (header file paths are relative to the ChorusOS
operating system delivery root directory):

include/chorus/ddi/bus/bus.h -> DDI's Common bus class API
include/chorus/ddi/pci/pci.h -> DDI’s PCI bus class API
include/chorus/ddi/uart/uart.h -> DDI's UART device class API
drv_f/src/pci/raven/ravenProp.h -> family specific driver component
drv_f/src/pci/raven/raven.h for the Motorola RAVEN PCI host
drv_f/src/pci/raven/raven.c bridge

(continued)

ChorusOS 4.0 Device Driver Framework Guide ¢ December 1999



(Continuation)

drv_f/src/pci/raven/Imakefile

drv/src/uart/ns16550/ns16550Prop.h  -> Generic driver component for
drv/src/uart/ns16550/ns16550.h NS16x50 compatible UART devices.
drv/src/uart/ns16550/ns16550.c

drv/src/uart/ns16550/ Imakefile

Manpage Documentation

Typically, there is one manpage for each written driver component. The manpage file
for a devx driver component is called 'devx.9drv ’ and accessible through the
devx name. This manpage contains the following information:

m the hardware that can be serviced by the driver

m the driver name

m the driver framework features and mechanisms that are implemented in the driver
(probing, dynamic loading, and so on)

m the description of device tree node properties used by the driver

Device Driver Conventions

There are several conventions one should be aware of when writing device drivers,
pertaining to:

m Driver Names

m Driver Information

m Message Logging

m Use of ASSERT Macro

Introduction to the ChorusOS Driver Framework 23



Driver Names

Driver names in the Driver Framework must follow the following conventions, in
this order:

1. driver vendor name

2. bottom interface used by driver
3. chip supported by driver

4. top interface used by driver

For example:

sun:bus-ns16550-uart
sun:pci-cheerio-ether

where ”sun” is the vendor name, “bus” and “pci” are the bottom interfaces used,
“ns16550” and “cheerio” are the chips supported, and “uart” and “ether” are the top
interfaces.

In the case of a driver providing several top interfaces, these interfaces are specified
within parentheses, separated by commas:

sun:bus-mc146818—(rtc, timer)

Driver Information

Driver information is stored in the driver registry record, using the drv_info  field.
This info string must be built after the driver description and source management
version information of the driver module.

For example:

24 ChorusOS 4.0 Device Driver Framework Guide ¢ December 1999



NS16x50 UART driver [#ident \”@(#)ns16550.c 1.16 99/02/16 SMI\”]

Message Logging

Because messages are processed through the ChorusOS operating system, drivers
must never use sysLog or printf directly to display messages. The ChorusOS
operating system provides the following macros to handle message logging:

DKI_MSG ((format, ...)) /7 typically does: printf

DKI_WARN ((format, ...)) /7 typically does: printf + syslog
DKI_PANIC((format, ...)) // typically does: printf + syslog + callDebug
DKI_ERR((format, ... )) //typically does: printff + syslog

Moreover, message format conventions are as follows:

DKI_MSG > "<name>: <message>"
DKI_WARN -> "<pame>: warning — <message>"
DKI_ERR -> "<name>: error — <message>"
DKI_PANIC -> "<pame>: panic — <message>"

where <name> is either:

m the name of the driver (if the message is not related to a particular instance of the
driver)

m the path of the device in the device tree (if the message is related to a driver
instance)

Note - The dtreePathLeng() and dtreePathGet() calls can be used to get the
device tree path for a particular instance.

Use of ASSERT Macro

ASSERT is a macro (fully defined in util/macro.h ) which should only be used in
situations which should not logically be possible in construction of the software.

Situations such as critical resource allocation failures should be handled with the
DKI_ERR macro instead.

Introduction to the ChorusOS Driver Framework 25



ASSERT is enabled at compile time only, with
#define DEBUG

26 ChorusOS 4.0 Device Driver Framework Guide ¢ December 1999



CHAPTER 2

Driver Kernel Interface Overview

This chapter describes both the common and family-specific DKI services available
within the Driver Framework. Understanding the functions in this overview will
make the tasks shown in the next chapters (writing device drivers and writing bus
drivers) much clearer.

Refer to section 9DKI of the man pages for a complete description of each of the
commands included in this chapter.

Common Driver Services

This section describes services that are common to all processor families.

Synchronization

Synchronization services (handling calls for the same services from different threads)

are performed through the DKI thread. This thread is typically used for the
shutdown and initialization of drivers, so it makes sense that synchronization
services be handled within the DKI thread as well. The DKI thread is launched by
the ChorusOS operating system microkernel at initialization time.

By ensuring this type of synchronization the DKI thread avoids using any other
synchronization mechanism (locks) in the driver implementations.

The DKI thread acts as a synchronization mechanism in the following two cases:

27



Normal Case In the normal case, all calls related to
initialization/shutdown of the drivers are
performed implicitly in the context of the DKI
thread. This means that drivers need not be
concerned with synchronization issues, because
their routines are called directly from the DKI
thread.

Special Cases There are two special cases in which a driver
must use DKI thread services to ensure
synchronization:

m Hot-pluggable device drivers

With a hot-pluggable device driver, the
initialization/shutdown process must be
executed at runtime (not as part of the kernel/
drivers initialization process). In this case,
drivers use DKI thread services (described
below) to provide synchronization with any
running drivers.

m Deferred driver initialization

In some cases, a device driver may defer its
initialization until it is opened. In this scheme,
initialization/shutdown processes are
executed at runtime (at time of open/close)
and not as part of the kernel/driver’s
initialization process. Thus, this kind of driver
uses thread services to synchronize with
drivers that are already running.

This is a way to resolve conflicts that arise
when the same resources are used by multiple
drivers. By using deferred driver initialization,
drivers which share resources can be loaded at
the same time (as long as they are not opened
at the me time).

DKI thread related services are described below. See the man pages for complete
descriptions of the commands listed:

svDkiThreadCall synchronously invokes a routine in the context of
the DKI thread.

28 ChorusOS 4.0 Device Driver Framework Guide ¢ December 1999



svDkiThreadTrigger asynchronously invokes a routine in the context
of the DKI thread.

Device and Driver Registration

The driver and device registry mechanisms, described briefly in the first chapter, are
explained in more detail below.

Device Tree

The device tree is a data structure providing a description of the hardware topology
and device properties of a given device. The hardware topology is specified in terms
of parent/child relationships. Device properties associated with each device node in
the tree are device specific.

A device property is a name/value pair. The property name is a null terminated
ASCII string. The property value is a stream of bytes specified by the length/address
pair. Note that the property value format is property specific and has to be
standardized between the property producer and its consumers.

For instance, among all device node properties, there are some related to the bus
resources allocated to the device (for example, interrupt lines, 1/0 registers, DMA
channels). These properties must be standardized to be understood by the bus driver,
as well as any device drivers connected to the given bus.

The device tree data structure may be built either statically or dynamically.

m In the static case, the device tree is populated by the system booter.

For instance, the system booter may include a pre-defined sequence of device tree
function calls. Another possibility for the system booter is to build the device tree
from a hardware description provided by firmware.

m In the dynamic case, the device tree is populated at system initialization time
using an enumeration/probing mechanism. The device tree is populated by
propagating from parent to children.

Note that it is possible to combine both methods. In other words, an initial
(incomplete) device tree may be provided by the ChorusOS operating system booter,
which will later be completed dynamically using an enumeration/probing
mechanism. In any case, the device tree structure can be modified (extended/
truncated) dynamically at run time using hot-plug insertion/removal service (for
example, when using PCMCIA cards).

Driver Kernel Interface Overview 29



Device Tree related services are described below. See the man pages for complete
descriptions of the commands listed:

Device Tree Browsing

dtreeNodeRoot
dtreeNodeChild
dtreeNodePeer
dtreeNodeParent

dtreePathLeng

dtreePathGet

Device Tree Modification

dtreeNodeAlloc

dtreeNodeFree

dtreeNodeAttach

dtreeNodeDetach

Device Node Properties

dtreePropFind
dtreePropFindNext

dtreePropLength

returns the root device node

returns the first child node

returns the next “sibling” device node
returns the parent device node

returns the pathname length of the given device
node

returns, in buf, the absolute pathname of the
given device node. The trailing part of the
pathname is the name of the node and is read in

a node property. If this property does not exist,

the trailing part of the returned pathname is set
to 277"

allocates a new device node object

releases all memory and properties attached to
the node

adds a child node to the specified parent

detaches a node from its parent

return the first property of a node
return the next property of a node

returns the property value length (in bytes)

30 ChorusOS 4.0 Device Driver Framework Guide ¢ December 1999



dtreePropValue returns a pointer to the first byte of the property

value
dtreePropName returns a pointer to the property name
dtreePropAlloc allocates a new device property object
dtreePropFree releases the memory allocated by the property
object
dtreePropAttach attaches a property object to a device node
dtreePropDetach detaches a property object from a device node
Device tree high-level services
dtreeNodeAdd adds a named device node to the tree
dtreeNodeFind looks for a named node in the list of children of a

given device node

dtreePropAdd allocates a new property, sets its value and
attaches it to a given device node

Driver Registry

The driver registry module implements a data base of drivers registered in the
ChorusOS operating system. The driver registry data base is populated by drivers
which perform self-registration (using svDriverRegister ) at driver initialization
time.

The bus/nexus drivers perform a search in the driver registry data base to find a
driver they are interested in. Typically, there are two kinds of searches used by the
bus/nexus drivers. The first one is done at device enumeration/probing time when
the bus/nexus driver is interested in all drivers matching the bus/nexus class
(specified as the parent device class). The second is at device instance creation time,
when the bus/nexus driver looks for a driver which must be started for a particular
device node.

Driver Registry related services are described below. See the man pages for complete
descriptions of the commands listed:

svDriverRegister adds a driver entry to the driver registry

Driver Kernel Interface Overview 31



svDriverLookupFirst returns the id of the first driver entity

svDriverLookupNext returns the id of the next driver entity

svDriverRelease releases the lock of a driver

svDriverEntry returns a pointer to the driver entry structure
(using an id)

svDriverCap returns a pointer to the driver actor capability
(using an id)

svDriverUnregister removes a driver entry from the registry

Device Registry

The device registry microkernel module implements a data base of driver instances
servicing devices currently supported by the system. The device registry data base is
populated by drivers that perform self-registration (using svDeviceRegister ) at
device initialization time.

The device registry data base is accessed by driver clients in order to obtain a pointer
to the driver instance servicing a given (logical) device.

The device registry API is described in detail in the man pages. Note that only the
svDeviceLookup , svDeviceRelease and svDeviceEntry microkernel calls
should be used by driver clients. The rest of API is dedicated to device drivers.

Device Registry related services are described below. See the man pages for complete
descriptions of listed commands:

svDeviceAlloc allocates a device registry entry for a given
device driver instance

svDeviceRegister adds a given entry to the device registry
svDeviceUnregister removes an entry from the device registry
svDeviceEvent notifies the device registry module that a given

event has occurred

svDeviceFree releases a previously allocated device registry
entry
svDeviceLookup searches a device entry in the registry, matching

given device class and logical unit.

32 ChorusOS 4.0 Device Driver Framework Guide ¢ December 1999



svDeviceEntry returns the device entry associated to a client
identifier returned by svDeviceLookup

svDeviceRelease releases the lock on a looked-up device entry

General Purpose Memory Allocation

The microkernel provides general purpose memory management services for device
drivers that need to dynamically allocate and free pieces of memory in supervisor
memory space. As initialization schemes are normally dynamic, device drivers need
to dynamically allocate and free small pieces of supervisor data.

Typically, a device driver needs to dynamically allocate data associated to each
instance that it will register in the Device Registry at initialization time. Moreover,
most of the DDI services called from base level by the driver clients lead to the
dynamic allocation and freeing of certain linked list elements for internal
management purposes.

Note - The memory allocated using these services is anonymous. That means it is
not associated to any actor context. For this reason, all the allocated memory must be
freed by drivers before they terminate, as the kernel won’t be able to do it at actor
deletion time.

General purpose memory allocation related services are described below. See the
man pages for complete descriptions of listed commands:

svMemAlloc allocates a specified amount of memory from the
supervisor address space

svMemFree frees memory previously allocated with
svMemAlloc

Special Purpose Physical Memory Allocation

Typically, different 1/0 buses impose different constraints on the memory used by
their devices for Direct Memory Access (DMA), such as alignment, specific boundary
crossing, maximum size, or specific location within the physical memory space.

To satisfy all constraints on physical memory imposed by the different 1/0 buses,
(mainly for DMA purposes), the DKI provides an interface to allocate and free
special purpose physical memory that satisfy the given constraints.

Driver Kernel Interface Overview 33



Special purpose memory allocation related services are described below. See the man
pages for complete descriptions of listed commands:

svPhysAlloc allocates contiguous physical memory
svPhysFree frees memory allocated with svPhysAlloc
Timeouts

Device drivers may need timeout services to check whether there is activity on a
device, or to verify that a started action will terminate before a given time limit is
reached.

Note - As these services should be implemented using drivers, they are not available
and must not be used by drivers at initialization time.

Timeout related services are described below. See the man pages for complete
descriptions of listed commands:

svTimeoutSet sets a timeout request
svTimeoutCancel cancels a timeout request
svTimeoutGetRes returns the smallest possible difference between

two distinct “time” values

Precise Busy Wait

Device drivers may use precise busy wait services to wait for a very short time. Note
that busy wait means that the caller waits without releasing the CPU, as if executing
a busy loop.

Note that these services may be used during the driver initialization process.
Precise busy wait related services are described below. See the man pages for
complete descriptions of listed commands:

usecBusyWait waits for (at least) the given number of
micro-seconds

34 ChorusOS 4.0 Device Driver Framework Guide ¢ December 1999



System Event Management

System event management services are provided by the microkernel to the
lowest-layer drivers. They are intended to register event handlers for all the running
drivers, and to start propagating events from the microkernel.

Typically a system reboot starts propagating a specific event from the microkernel to
the lowest-layer drivers. Those drivers then recursively propagate the event to the
upper layer drivers by calling their event handler (BusEventHandler ) registered at
open time).

System event management related services are described below. See the man pages
for complete descriptions of listed commands:

svDkiOpen establishes connection between a child device
driver and the DKI

svDkiClose releases the DKI/driver connection

svDkiEvent starts the propagation of an event to the device
driver hierarchy

Global Interrupts Masking

Some of the Interrupt Management Service (IMS) routines are included as part of the
DKI to provide drivers with global interrupts masking services.

These services may be used by a driver to protect a critical section from interrupts, if
needed.

Global interrupts masking related services are described below. See the man pages
for complete descriptions of listed commands:

imsintrMask_f masks all maskable interrupts at processor level,
and increments imsintrMaskCount_f kernel
variable

imsintrUnmask_f unmasks interrupts at processor level (if calls are

not nested)

Driver Kernel Interface Overview 35



Thread Preemption Disabling

The DKI API provides a means for a driver to disable/enable the preemption of the
current thread. These services may be useful for a driver to prevent the current
thread being preempted while interrupts are masked at bus/device level. Note that
these services are implemented as macros.

DISABLE_PREEMPT() disables preemption of the currently executed
thread. Basically, this macro increments a
per-processor preemption mask count. When the
preemption mask count is not zero, the
ChorusOS scheduler is locked, such as when
there is a preemption request, the scheduler just
raises a pending preemption flag deferring the
real thread preemption until the preemption
mask count drops to zero

ENABLE_PREEMPT() enables preemption of the currently executed
thread which has been previously disabled by
DISABLE_PREEMPT(). Basically, this macro
decrements the preemption mask count and, if it
drops to zero, checks whether the current thread
should be preempted because the pending
preemption flag is raised.

Note that, as DISABLE_PREEMPT()/ENABLE_PREEMPT() rely on the preemption
mask count, a driver may issue nested calls to these services.

Specific Input/Output Services

The DKI provides specific 1/0 routines optimized to handle byte swapping.
Typically, these services are intended to be used by a host bus driver to handle
different byte ordering between the processor bus and the host bus.

Specific 170 services are defined below as sets of routines where the _xx suffix
indicates the bit length of the data on which the services apply. This suffix may take
one of the following values:

m _16 for 16-bit data
m 32 for 32-bit data
m _64 for 64-bit data

36 ChorusOS 4.0 Device Driver Framework Guide ¢ December 1999



Specific input/output related services are described below. See the man pages for
complete descriptions of listed commands:

loadSwap_xx loads data from a given address and returns the
corresponding byte swapped value. The addr
argument specifies the address to read from

storeSwap_xx stores into a given address the value byte
swapped
swap_Xx swap in place the bytes of the data stored at a

given address

Processor Family Specific DKI Services

Processor family specific DKI services are available only on a given processor family,
and should be used only by the drivers servicing devices directly connected to the
local CPU bus. Drivers using these DKI services become "processor specific" and
therefore can not be considered common.

Note that the availability of services is different between processor families, and not
all services are listed here. An overview of commonly available services is provided
below. For an accurate indication of what services are provided for each processor
family see the “Processor-Specific DKI Services” section in Appendix A (or the
appropriate 9DKI man pages).

Depending on the processor family architecture, the family-specific DKIs may offer
the following services:

Interrupt Management All processor families offer DKI services
to manage interrupts. These services
allow the driver to perform the
following tasks:

m attach a handler to a given interrupt

m mask an interrupt attached to a
handler

m unmask an interrupt attached to a
handler

m detach an interrupt handler

Driver Kernel Interface Overview 37



Cache management Allows the host bus to manage memory
coherence for DMA purposes by flushing
and/or invalidating caches

Specific 1/O services Provides interface to processor specific
1/0 instructions, managing:

m 1/0 ports

m Synchronization of memory mapped
1/0 operations

Physical to virtual memory mapping allows device drivers to map physical
space to virtual memory space. These
services are used mainly by the host bus
driver to map bus 1/0 space or DMA
memory.

38 ChorusOS 4.0 Device Driver Framework Guide ¢ December 1999



CHAPTER 3

Writing Device Drivers

This chapter takes a procedural approach to writing device drivers, using as its
example a leaf device driver. It follows a step-by-step, tutorial approach, explaining
at each step the Driver Framework APIs and mechanisms involved.

The ChorusOS operating system Driver Framework provides numerous device and
bus drivers as part of its installed package, and more are being developed constantly.
It is recommended that you take a look at the provided drivers as an example of
how to build your own. For information on the drivers provided with this release, as
well as the location of the code and header file for the drivers, see the 9DRV library
of the man pages.

Include the Appropriate APIs (DKI/
DDI)

As the first step, include the header files for the DKI and DDI APIs involved in the
device driver’s implementation. A device driver mainly uses its parent bus DDI API
(and some generic DKI services like memory allocator).

The driver implementation must include:

m The parent bus class API header file(s) (DKI and DDI) used by the driver.

Note that the services defined in these header files are those available to the writer
to implement its device driver.

m The device class API header file(s) (DDI).

Note that these header files define the sets of routines that have to be written in
the driver component, to be compliant with the Driver Framework.

39



Here is an example for a NS16x50 compatible UART device driver that uses DKI and
"Common bus driver" APIs, and provides "UART device driver" DDI API.

#include <dki/dki.h>
#include <ddi/bus/bus.h>
#include <ddi/uart/uart.h>

#;include "ns16550.h"
#include "ns16650Prop.h"

Register the Driver (using main
function)

A driver component may be downloaded in various ways. It may be built into the
system bootable image, or it may be downloaded dynamically as a supervisor actor
using the afexec system call.

In either case, the driver code must contain the main routine which is called by the
system once the driver component is downloaded. The only task of the driver main
routine is to perform the self-registration of the driver component within the
ChorusOS system.

To accomplish this task, the driver invokes the svDriverRegister microkernel call
passing as an argument a DrvRegEntry  data structure which specifies the driver
component properties. Once the driver component is self-registered, the future driver
management is largely undertaken by its parent bus/nexus driver using the
properties specified in the DrvRegEntry  structure.

DrvRegEntry  specifies four driver entry points as follows:

drv_probe invoked by the parent bus/nexus driver when
bus_class specified in the registry entry matches
the parent bus/nexus driver class

drv_bind invoked by the parent bus/nexus driver when
bus_class specified in the registry entry matches
the parent bus/nexus driver class

40 ChorusOS 4.0 Device Driver Framework Guide ¢ December 1999



drv_init invoked by the parent bus/nexus driver when

bus_class specified in the registry entry matches
the parent bus/nexus class and there is a node in
the device tree to which the driver is bound (a
hardware device to be managed by the driver
exists)

drv_unload invoked by the driver registry module when an

static

main

/*

*
*
*
*
*
*
*
*
*
*
*
*

*

application wishes to unload the driver
component from the system

NS16550 driver registry entry.

The driver requires the common bus driver interface
implemented by the parent bus driver. Thus, the driver
should work on any bus providing such an API (e.g. ISA,
PCl, PCMCIA).

Note that the driver does not provide any probe routine because
the probing mechanism is bus class specific. Thus, if one wants
to implement the NS16550 device probing, it may either add probe
routine(s) to the driver code or implement probe-only driver(s)

for NS16550 device.

DrvRegEntry nsl16_drv = {

NS16_DRV_NAME, /* drv_name */

"NS16x50 UART driver [#ident \"@(#)ns16550.c 1.16 99/02/16 SMI\"",
BUS_CLASS, /* bus_class */

BUS_VERSION_INITIAL, /* bus_version */

NULL, /* drv_probe */

NULL, /* drv_bind ¥/

ns16_init, /* drv_init */

ns16_unload /* drv_unload */

/*
*

*

*/
int

0

Driver main() routine.
Called by microkernel at driver initialization time.

KnError res;

/*
* Register the driver component in the driver registry.

}

*/

res

= svDriverRegister(&ns16_drv);

if (res = K_OK) {

DKI_ERR(("%s: error -- svDriverRegister() failed (%d)\n",
NS16_DRV_NAME, res));

return res;

Writing Device Drivers 41



Write Device Driver-Class-Specific
Functions

In this next step, you will write an implementation of the services specific to the
driver device class for a hardware device of the given class.

Once the code is written, these functions must be provided (made available) to the
device driver’s clients.

Note - None of these functions are directly exported, but all of them are defined as
static functions, and then grouped as indirect calls in an "operations data structure"
(typed by the device class API). The device driver component then provides this
"operations data structure" as a property when registering an instance of itself at
initialization time.

This way of providing the device driver operations allows for a dynamic binding
mechanism between device drivers and driver’s clients.

Each device class API is different. Thus, the functions to write are different for
different classes of device API. The complete list of the currently defined device class
APIs may be found in the ddi(9) man page.

The following code example illustrates this step for an NS16x50 compatible UART
device driver. In this example, the provided device class API is for the UART device
class.

Note - For clarity, only the code pertinent to this explanation is presented. Please
refer to the complete implementation file for more details.

The NS16_DEV_REMOVAL compilation flag is used to allow downsizing of the
driver component, at compile time, in case the device removal mechanism is not
needed.

/*
* Open device.
*/
static int
nsl6_open (Vartld id, ..) { ... }
/*
* Disable device interrupts.
*/
static void
nsl6_mask (Uartld id) { ... }
/*

42 ChorusOS 4.0 Device Driver Framework Guide ¢ December 1999



* Enable device interrupts.
*/
static void
ns1l6_unmask (Vartld id) { ... }
/*
* Send a buffer.
*/
static void
nsl16_transmit (Uartld id, ...) { ... }
/*
* Abort an output in progress.
*/
static void
nsl6_abort (Vartld id) { ... }
/*
* Send a break
*/
static void
nsl6_txbreak (Uartld id) { ... }
/*
* Set/reset the modem control signals.
*/
static void
nsl16_control (Vartld id, ..) { ... }
/*
* Set receive buffer.
*/
static void
ns16_rxbuffer (Uartld id, ...) { ... }
/*
* Close device.
*/
static void
nsl6_close (Uartld id) { ... }
/*
* NS16550 service routines:
*/
static UartDevOps nsl16_ops =
{
UART_VERSION_INITIAL,
ns16_open,
ns1l6_mask,
ns16_unmask,
ns16_transmit,
nsl1l6_abort,
nsl16_txbreak,
ns16_control,
ns16_rxbuffer,
nsl6_close

/*
* |nit the NS16x50 uart. Called by BUS driver.
*
/
static void
ns16_init (DevNode node, void* pOps, void* pld)
{
BusOps* busOps = (BusOps*)pOps;
Ns16_Device* dev;

/*

Writing Device Drivers 43



* Allocate the device descriptor
* (i.e. the driver instance local data)
*/
dev = (Ns16_Device*)svMemAlloc(sizeof(Ns16_Device));

dev->entry.dev_class = UART_CLASS;
dev->entry.dev_id = dev;
dev->entry.dev_node =

#if defined(NS16_DEV_REMOVAL)
bcopy(&ns16_ops, &(dev->devOps), sizeof(ns16_ops));
dev->entry.dev_ops = &(dev->devOps);

#else
dev->entry.dev_ops = &nsl16_ops

#endif

~
*

Allocate the device driver instance descriptor in the

device registry.

Note that the descriptor is allocated in an invalid state
and it is not visible for clients until svDeviceRegister()

is invoked.

On the other hand, the allocated device entry allows the
event handler (ns16_event) to invoke svDeviceEvent() on it.
If svDeviceEvent() is called on an invalid device entry,

the shutdown processing is deferred until svDeviceRegister().
In other words, if a shutdown event occurs during the
initialization phase, the event processing will be deferred
until the initialization is done.

R T T

*/
dev->regld = svDeviceAlloc(&(dev->entry),
UART_VERSION_INITIAL,
FALSE,
nsl6_release);

/*
* Finally, we register the new device driver instance
* in the device registry. In case when a shutdown event
* has been signaled during the initialization, the device entry
* remains invalid and the nsl16_release() handler is invoked
* to shutdown the device driver instance. Otherwise, the device
* entry becames valid and therefore visible for driver clients.
*/
svDeviceRegister(dev->regld);

DKI_MSG(("%s: %s driver started\n”, dpath, NS16_DRV_NAME));

44 ChorusOS 4.0 Device Driver Framework Guide ¢ December 1999



Write Device Driver Registry Functions

Write the Probe Function

The purpose of the probe routine is to detect devices residing on the bus and to
create device nodes corresponding to these devices.

The probe routine is optional, in cases where it is not provided (NULL entry point), a
device node should be statically created at boot time, or should be created by
another "probe only" driver component to activate the bus driver.

Actions taken by a probe routine may be summarized as follows:

m The probe routine creates nodes if, and only if, they do not already exist. In other
words, the probe routine is forbidden to create redundant nodes.

m The probe routine specifies a physical device ID as a device node property so that
the bus driver can find the appropriate device driver for this device node. Note
that the device ID is bus class specific. For instance, on PCI bus, the device ID is
the vendor/device IDs pair.

m The probe routine specifies resource requirements as device node properties so
that the bus driver can reserve resources required to initialize the device.

Basically, there are two kinds of probe routines:

m generic (bus class specific only)

m device specific (bus class and device specific)

A self-identifying bus (such as PCI) enumerator is a typical example of the generic
probe routine.

A device probing code on an ISA bus is a typical example of the device specific
probe routine.

Note that multiple probe routines for a given bus may be found in the driver registry.
The Driver Framework does not specify the order in which the probe routines will be
run. In addition, the probe routines may be invoked at run time when, for example,
the device insertion is detected on the bus. In the latter case, the probe routines must
be extremely careful about active device nodes (existing device nodes for which the
device drivers have been already started and may be already in use).

The following rules must be respected by generic and device specific probe routines:

Writing Device Drivers 45



m The generic and specific probe routines must access the device hardware only
through the bus service routines. The bus resources needed to access the device
hardware (such as 170 registers) must be allocated through the bus service
routines ( resource_alloc ). This prevents the probe routine from accessing
hardware which is currently in use. Upon unsuccessful probing, the used
hardware resources must be released through the bus service routines
(resource_free ).

m Neither generic nor specific probe routines are allowed to delete active device
nodes or modify their properties. An active device node is defined as a node for
which a device driver is already running. These nodes are flagged with the
"active" property.

m Device specific probe routines are allowed to override properties in an existing
node or to delete existing nodes.

m Generic probe routines are not allowed to override properties in existing nodes or
to delete existing nodes. In other words, device specific probe routines have
higher priority than generic ones.

m No probe routine is allowed to create redundant nodes. To run a probe routine,
either you must be positive that no other node exists for this device, or you must
be able to find any other nodes for this device. If for some reason it is impossible
to avoid creating redundant nodes, you cannot probe.

Write the Bind Function

The bind routine enables the driver to perform a driver-to-device binding. Typical
actions taken by a bind routine may be summarized as follows:

The driver examines properties attached to the device node to determine the type of
device and to check whether the device may be serviced by the driver. Note that the
properties examined by the driver are typically bus architecture specific. For
instance, a PCI driver would examine the vendor and device identifier properties.

If the check is positive, the driver attaches a "driver " property to the device node.
The property value specifies the driver name.

The parent bus/nexus driver should use the "driver" property to determine the
name of the driver servicing the device. The child driver gives its name to the parent
bus driver, through the "driver" property, asking the parent bus driver to invoke
the drv_init routine on that device.

Note that, if a "driver" property is already present in the device node, then the
drv_bind routine can not continue; drv_bind should not override an existing
driver-to-device binding.

The driver-to-device binding mechanism used in the framework enables multiple
implementations. A simple bind routine may be implemented by a device driver.

46 ChorusOS 4.0 Device Driver Framework Guide ¢ December 1999



Such an implementation would be device specific, only taking into account the
devices known by the driver to be compatible with the driver’s reference device.

Let us consider systems that support after-market, hot-plug devices and consult a
network lookup service to locate the driver for a new device. It would be reasonable
to provide a separate binder driver that would implement a smart driver-to-device
mapping and a driver component download. Note that such a (generic) binder
appears in the driver framework as a normal driver component. The binder driver
provides the bind routine only and does not provide the probe and initialize routines.

Write the Init Function

The initialization routine of a device driver component is optional. In case it is not
provided (NULL entry point), the driver is typically a "probe only" driver.

The initialization process ( drv_init ) of a leaf device driver goes through the
following steps:

m establishes connection to the parent bus/nexus driver
m allows access to the device hardware
m initializes the device hardware to an operational state

m registers the device driver instance in the device registry

First of all, the driver must establish connection to the parent driver by calling open
. In open, the driver specifies call-back handlers which will be used by the parent
driver to manage the device instance driver (such as to shutdown the driver
instance). In addition, global bus events (such as a catastrophic bus error) are
delivered to the driver through a call-back handler.

Once the child-to-parent connection is established, the driver may use services
provided by the parent driver. Typically, at this point, the driver asks its parent
driver to make the bus hardware resources needed for the device available.

Note - The bus resources needed for the device are specified as properties in the
device node. These resources are already allocated by the parent bus/nexus driver
prior to the drv_init invocation. To make a given bus resource available (such as
device 1/0 registers), the driver obtains an appropriate property value ("io-regs") and
calls an appropriate bus/nexus service routine (such as io_map ).

Once access to the device hardware is allowed, the driver initializes it to an
operational state. Once initialized, the driver performs self-registration in the device
registry to declare itself as a new device (such as a new device driver instance)
within the system.

Writing Device Drivers 47



Once the device (the device driver instance) is registered, a driver client may find it
in the registry (using the device registry API) and may perform operations on
device-calling driver service routines exported through the device registry entry.

Note - The driver is not necessarily required to register any device driver instances
or offer any device service routines through the device registry. Device driver instance
registration is required only for clients that find their devices through the device
registry. If other client-to-driver binding mechanisms are in use, the associated
devices need not take part in the device registry.

The drv_init routine is called in the context of the DKI thread. This makes it
possible to directly invoke the bus/nexus and DKI services allowed in the DKI
thread context.

Below is an example of the initialization function of the NS16x50 compatible UART
device driver. The NS16_DEV_REMOVAL and NS16_DRV_UNLOAD compilation
flags are used to allow downsizing of the driver component at compile time in case
these mechanisms are not needed.
/*
* |nit the NS16x50 uart. Called by BUS driver.
*/

static void
ns16_init (DevNode node, void* pOps, void* pld)
{

BusOps* busOps = (BusOps*)pOps;

DevProperty prop;
Ns16_Device* dev;

void* ioRegs;
void* intr;
KnError res;

char* dpath;

int dpathLeng;

dpathLeng = dtreePathLeng(node);

dpath (char*) svMemAlloc(dpathLeng);

if (!dpath) {
DKI_ERR(("%s: error -- no enough memory\n", NS16_DRV_NAME));
return;

}
dtreePathGet(node, dpath);

/*
* Allocate the device descriptor
* (i.e. the driver instance local data)
*/
dev = (Ns16_Device*)svMemAlloc(sizeof(Ns16_Device));
if (dev == NULL) {
DKI_ERR(("%s: error -- no enough memory\n“, dpath));
return;

}

bzero(dev, sizeof(Ns16_Device));

dev->dpath = dpath;
dev->dpathLeng = dpathLeng;

48 ChorusOS 4.0 Device Driver Framework Guide ¢ December 1999



dev->busOps = busOps;

dev->devEvent = DEV_EVENT_NULL;
dev->entry.dev_class = UART_CLASS;
dev->entry.dev_id = dev;

dev->entry.dev_node node;
/*
* If the hot-plug removal is supported, the device driver ops
* are located within the device descriptor. It makes possible
* to substitute the service routines (to an empty implementation)
* when a hot-plug removal occurs.
*/
#if defined(NS16_DEV_REMOVAL)
bcopy(&ns16_ops, &(dev->devOps), sizeof(ns16_ops));
dev->entry.dev_ops = &(dev->devOps);
#else
dev->entry.dev_ops = &nsl16_ops
#endif

~
*

Allocate the device driver instance descriptor in the

device registry.

Note that the descriptor is allocated in an invalid state
and it is not visible for clients until svDeviceRegister()

is invoked.

On the other hand, the allocated device entry allows the
event handler (ns16_event) to invoke svDeviceEvent() on it.
If svDeviceEvent() is called on an invalid device entry,

the shutdown processing is deferred until svDeviceRegister().
In other words, if a shutdown event occurs during the
initialization phase, the event processing will be deferred
until the initialization is done.

* ok k% ok ok % ok 3k ok ok 3k

*/
dev->regld = svDeviceAlloc(&(dev->entry),
UART_VERSION_INITIAL,
FALSE,
nsl6_release);
if (\dev->regld) {
DKI_ERR(("%s: error -- no enough memory\n", dpath));
svMemFree(dev, sizeof(Ns16_Device));
svMemFree(dpath, dpathLeng);
return;

/*
* Retrieve the device I/O base addr from device tree.
*/
prop = dtreePropFind(node, BUS_PROP_IO_REGS);
if (prop == NULL) {
DKI_ERR(("%s: error -- no '%s’ property\n", dpath, BUS_PROP_IO_REGS));
svDeviceFree(dev->regld);
svMemFree(dev, sizeof(Ns16_Device));
svMemFree(dpath, dpathLeng);
return;

ioRegs = dtreePropValue(prop);
/*

* Retrieve the device interrupt source from device tree.
*/

Writing Device Drivers

49



prop = dtreePropFind(node, BUS_PROP_INTR);
if (prop == NULL) {
DKI_ERR(("%s: error -- no '%s’ property\n", dpath, BUS_PROP_INTR));
svDeviceFree(dev->regld);
svMemFree(dev, sizeof(Ns16_Device));
svMemFree(dpath, dpathLeng);
return;

intr = dtreePropValue(prop);

/*
* Retrieve the device clock frequency from device tree.
* (if not specified, the default clock frequency is used)
*/
prop = dtreePropFind(node, PROP_CLOCK_FREQ);
if (prop == NULL) {
dev->clock = NS16_CLOCK_FREQ;
} else {
dev->clock = *(PropClockFreqg*)dtreePropValue(prop);
}

/*

* Open a connection to the parent bus.

*/
res = busOps->open(pld, node, nsl16_event, NULL, dev, &dev->devld);
if (res 1= K_OK) {

DKI_ERR(("%s: error -- open() failed (%d)\n", dpath, res));

svDeviceFree(dev->regld);

svMemFree(dev, sizeof(Ns16_Device));

svMemFree(dpath, dpathLeng);

return;

/*
* Map the device /O registers.
*/
res = busOps->io_map(dev->devld, ioRegs, nsl16_bus_error, dev,
&dev->i00ps, &dev->iold);
if (res != K_OK) {
DKI_ERR(("%s: error -- io_map() failed (%d)\n", dpath, res));
busOps->close(dev->devld);
svDeviceFree(dev->regld);
svMemFree(dev, sizeof(Ns16_Device));
svMemFree(dpath, dpathLeng);
return;

/*
* Connect interrupt handler to the bus interrupt source
* (mask interrupts at chip level first).

Note that the mask() routine is invoked indirecty because
it may be substituted by the event handler (if a device
removal event has been already occured).

EE .

*
UART_OPS(dev->entry.dev_ops)->mask((Uartld)dev);
res = busOps->intr_attach(dev->devld, intr, ns16_intr, dev,
&dev->intrOps, &dev->intrld);
if (res = K_OK) {
DKI_ERR(("%s: error -- intr_attach() failed (%d)\n", dpath, res));

50 ChorusOS 4.0 Device Driver Framework Guide ¢ December 1999



busOps->io_unmap(dev->iold);
busOps->close(dev->devid);
svDeviceFree(dev->regld);
svMemFree(dev, sizeof(Ns16_Device));
svMemFree(dpath, dpathLeng);

return;

/*
* If the driver unloading is supported, the list of active
* device driver instances is handled.
* Thus, we should add the new driver instance to the list.
*/
#if defined(NS16_DRV_UNLOAD)
dev->next = nsl6_devs;
nsl6_devs = dev;
#endif

/*
* Finally, we register the new device driver instance
* in the device registry. In case when a shutdown event
* has been signaled during the initialization, the device entry
* remains invalid and the ns16_release() handler is invoked
* to shutdown the device driver instance. Otherwise, the device
* entry becames valid and therefore visible for driver clients.
*/
svDeviceRegister(dev->regld);

DKI_MSG(("%s: %s driver started\n", dpath, NS16_DRV_NAME));

Write Unload Function

drv_unload s called by the driver registry module (more precisely by the
svDriverUnregister routine) when an application wishes to unload the driver
component from the system. The drv_unload routine is called in the context of
theyellOw DKI thread. This makes it possible to directly invoke the bus/nexus and
DKI services allowed in the DKI thread context.

The purpose of drv_unload s to check that the driver component is not currently
in use. For drv_unload to succeed, the driver clients must have closed their
connections with the driver and released the device registry lock

(svDeviceRelease ). On success, drv_unload returns K_OK otherwise K_EBUSYis
returned.

The drv_unload routine is optional. In cases when drv_unload is not provided,
the driver code cannot be unloaded.

The drv_unload is a global, per driver component routine. Therefore, to implement
unloading, the driver should handle a list of driver instances. When drv_unload is

Writing Device Drivers 51



called, the driver should go through the list, and for each driver instance, should
check whether the driver instance is currently in use.

Note - Once the check is positive, (a given instance is not used), the driver instance
must become invisible to potential clients. In other words, if drv_unload returns
K_OK all previously created driver instances (if any) must be deleted and all
previously allocated system resources (if any) must be released.

If drv_unload returns K_EBUSY the driver component will not be unloaded. In this
case, the driver component state must not be changed by drv_unload . For
instance, all registered driver instances must be in place.

Consider the driver unloading implementation for a driver using the standard
client-to-driver binding mechanism based on the device registry. In cases where
another client-to-driver binding mechanism is used, the driver unloading
implementation is binding mechanism dependent.

The drv_unload routine of a (leaf) device driver typically takes the following
actions:

1. Checks that the driver component is not in use.
drv_unload iterates through the driver instances list and, for each driver
instance, invokes svDeviceUnregister to remove the driver instance entry
from the registry.

Once svDeviceUnregister fails (returns K_EBUSY), the iteration is aborted
and drv_unload proceeds to step 3. Otherwise (if all device instances are
successfully unregistered), drv_unload proceeds to step 2.

2. Releases resources associated to the driver component.
drv_unload iterates through the driver instances list and, for each driver
instance, releases system resources associated to the instance ( io_unmap ,
mem_unmap...) and, finally, closes the connection to the parent bus. Once the
iteration is finished, drv_unload returns K_OK

3. Restores the initial state of the driver component.
drv_unload iterates through the driver instances list and, for each driver
instance which has been unregistered at step 1, invokes svDeviceRegister to
register the driver instance again. Once the iteration is finished, drv_unload
returns K_EBUSY

Note that drv_unload runs in the DKI thread context. This guarantees the stability
of driver instances during the drv_unload execution. In fact, a new driver instance
may be created only by the drv_init routine, which is also invoked in the DKI
thread context. In this way, drv_init is serialized with drv_unload by the DKI
thread.

The following example shows the unload function of the NS16x50 compatible UART
device driver. The NS16_DRV_UNLOAD compilation flag is used to allow

52 ChorusOS 4.0 Device Driver Framework Guide ¢ December 1999



downsizing
mechanism

/*
* Unloa

of the driver component, at compile time, in case the driver unload
is not needed.

d the NS16x50 uart driver.

* This routine is called by the driver registry when an application
* wishes to unload the NS16550 driver component.

*/
static Kn

Error

ns16_unload ()

{
/*

The driver unloading is an optional feature.

just returns K_EBUSY preventing the driver component to be

*

* In case when such a feature is not supported, ns16_unload()
*

*

unloaded.

*

#if defined(NS16_DRV_UNLOAD)
Ns16_Device* dev;
Ns16_Device* udev;

*/
udev =

Go through the driver instances list and try to unregister
all instances. Note that the device registry entry becomes
invalid if svDeviceUnregister() returns K_OK. The iteration
is aborted if svDeviceUnregister() fails.

nsl6_devs;

while (udev && (svDeviceUnregister(udev->regld) == K_OK)) {
udev = udev->next;

}

~
*

L T T T

*/

If all driver instances are unregistered successfully,

we invoke ns16_shutdown() for each instance in order to

shutdown it. Note that some shutdown events may be signaled by the
parent bus driver after the device entry has been unregistered.

In such a case, these events will be ignored. Indeed, once
unregistered, the device registry entry becomes invalid.

For invalid device entries, the device registry defers the events
processing until svDeviceRegister(). But, the entries will be

released (svDeviceFree) by nsl16_shutdown() rather than registered
again.

if (ludev) {

whi

le (ns16_devs) {
ns16_shutdown(ns16_devs);

}
return K_OK;

~
*

L

*/

If there is a driver instance in use (i.e. svDeviceUnregister()

failed) , the driver component cannot be unloaded.

We must register again the driver instances unregistered above.

Note that shutdown events may be signaled by the parent bus driver
after the device entry has been unregistered.

In such a case, these events will be processed at this moment.
Indeed, once unregistered, the device registry entry becomes

invalid. For invalid device entries, the device registry defers

the events processing until svDeviceRegister().

dev = nsl6_devs;

Writing Device Drivers

53



while (dev != udev) {
svDeviceRegister(dev->regld);
dev = dev->next;

}
#endif

return K_EBUSY;

Write Bus Events Handler Function

The event handler is invoked by the parent bus/nexus driver when a bus/nexus
event occurs. The event handler address is given to the bus/nexus driver when a
connection is established between the child driver and its parent bus/nexus driver.
The event handler may be called as an interrupt handler and therefore the event
handler implementation must be restricted to the API allowed at interrupt level.

Among all events which are mostly bus/nexus class specific, there are three
shutdown related events (specified by the common bus API) which are discussed in
this section:

SYS_SHUTDOWN system emergency shutdown

The SYS_SHUTDOWAVent notifies the driver
instance that the system is going to be shutdown.
The parent bus/nexus driver requires the child
driver instance to perform an emergency
shutdown of the device hardware.

DEV_SHUTDOWN normal device shutdown

The DEV_SHUTDOWNent notifies the driver
instance that a normal device shutdown is
requested by the bus/nexus driver.

DEV_REMOVAL surprise device removal

The DEV_REMOVA&vent notifies the driver
instance that the associated device has been
removed from the bus/nexus and therefore the
driver instance has to be shutdown.

54 ChorusOS 4.0 Device Driver Framework Guide ¢ December 1999



Note - The omitted prefix ( DKI_, BUS ...) means that the event semantics are the
same for all events.

In the standard case, the shutdown event processing goes through three phases:

1. shutdown prolog
2. shutdown mode
3. shutdown epilog

The shutdown prolog phase is processed synchronously within the event handler.
The main purpose of the shutdown prolog is to notify driver clients that the
shutdown event has occurred, in other words, to propagate the shutdown prolog
downstream (from driver to clients).

Once the shutdown event is processed by driver clients, the driver enters the
shutdown epilog phase. Basically, the shutdown epilog is invoked when the last
reference on the driver instance goes away. Between the shutdown prolog and
epilog, the driver operates in a special mode (called shutdown mode). In this mode,
the driver accepts only a subset of operations from clients allowing proper closure of
connections to the driver.

The table below shows typical actions taken by the shut-down prolog depending on
the event type:

Action SYS_SHUTDOWN | DEV_SHUTDOWN | DEV_REMOVAL

notify driver clients (with - + +
svDeviceEvent)

abort operations in - - +
progress

reset hardware + - -

The SYS_SHUTDOWMNolog of a leaf (device) driver does not notify driver clients
about the system shutdown event. The driver simply puts the hardware into a clean
state.

Note that the SYS_SHUTDOWAVent is processed synchronously, within the event
handler. In other words, the system shutdown epilog is empty.

The only purpose of the SYS_SHUTDOW&Vent is to put the board hardware into a
clean state to perform the system reboot (or restart) correctly.

Writing Device Drivers 55



56

The DEV_SHUTDOWMNolog simply notifies the driver clients that the
DEV_SHUTDOWANent has occurred. Actual shutdown of the device is deferred until
the DEV_SHUTDOWAilog.

The DEV_REMOVAprolog is closed to the DEV_SHUTDOWe. In addition, the
DEV_REMOVAprolog aborts all 1/0 operations in progress (otherwise, these
operations would never be completed).

Aborted operations return to callers with an error code.

As soon as the shutdown prolog is processed, the driver changes its internal state to
enter into a shutdown mode. In this mode, the driver accepts only a subset of
operations from client drivers:

m to abort queued operations
m to release previously allocated resources
m to close connection to the driver

All other operations (like opening a new connection, starting an 1/0 operation) are
refused by the driver. In other words, in shutdown mode, the driver is waiting until
a shutdown epilog condition is met. This allows clients to close existing connections
to the driver correctly. The shutdown epilog condition is met within a leaf device
driver when the device entry is released by the last driver client, and the callback
release handler is invoked by the device registry.

Note - The call-back release handler is called in the DKI thread context. Therefore,
the shutdown epilog is processed in the DKI thread context. This makes it possible to
directly invoke the parent bus/nexus and DKI services allowed in the DKI thread
context.

The table below shows typical actions taken by the shut-down epilog depending on
the event type:

Action DEV_SHUTDOWN DEV_REMOVAL
reset hardware + -
release system resources + +
close connection to the parent + +
driver

The DEV_SHUTDOWApilog puts hardware into a clean state, releases system
resources used by the driver instance (io_unmap , mem_unmap...) and finally, closes
connection to the parent driver (close).

ChorusOS 4.0 Device Driver Framework Guide ¢ December 1999



The DEV_REMOVAEpilog is similar to the DEV_SHUTDOWbe, except the device
hardware is not touched by the driver because the device hardware is no longer
present on the parent bus.

When a shutdown epilog closes the last connection to the parent bus driver, the
shutdown epilog condition may be met in the parent driver too. In such a way, the
shutdown epilog is propagated upstream (from child to parent).

Note - If one of the driver clients does not implement the shutdown procedure
properly (for example, if it simply does not support the shutdown), the driver may
be caught in shutdown mode forever. This type of driver would then never meet the
shutdown epilog condition.

In the following example, the bus events management code from the NS16x50
compatible UART device driver is shown.

The NS16_DEV_REMOVAL compilation flag is used to allow downsizing of the
driver component, at compile time, in case the device removal mechanism is not
needed.

/*
* nsl6_down_xxx stubs are used in the device removal mode in order
* to avoid to access the device hardware.
*/
#if defined(NS16_DEV_REMOVAL)

static void
ns16_down (Uartld id)
{
}

#define ns16_down_mask nsl6_down
#define ns16_down_unmask ns1l6_down
#define ns16_down_txbreak ns1l6_down

/*
* Open device.
*/

static int
ns16_down_open (Uartld id,
UartConfig*  cfg,
void* cookie,
UartCallBack* client_ops,
uint32_f* signals)

return K_EFAIL;

/*
* Send a buffer.
*/

static void
ns16_down_transmit (Uartld id,
uint8_f* buffer,
uint32_f count)

Writing Device Drivers 57



static void
ns16_down_control (Uartld id,
uint32_f signals)
{

}

static UartDevOps ns16_down_ops =

{
UART_VERSION_INITIAL,
ns16_down_open,
ns16_down_mask,
ns16_down_unmask,
ns16_down_transmit,
ns16_abort,
ns16_down_txbreak,
ns16_down_control,
ns16_rxbuffer,
ns16_close

/*

This routine aborts a pending operation (if any) on the device.
The driver client is notified by a call-back handler about

the operation failing.

*
*
*
*
* This routine is only used by the hot-plug management code
* in order to abort an operation in progress when a hot-plug removal
* occurs.

*/

static void
ns16_removal (Ns16_Device* dev)

if (dev->tx_csize || dev->tx_signals) {
uint32_f count = dev->tx_isize - dev->tx_csize;
uint32_f signals = dev->tx_signals | UART_SIG_TX_ABORTED;

dev->tx_cbuff = NULL;
dev->tx_csize = 0;
dev->tx_isize =0
dev->tx_signals = 0;

dev->clientOps->txdone(dev->cookie, count, signals);

}
}
#endif
/*
* NS16550 event handler
*
* The event handler is invoked by the parent bus driver when a bus
* event occurs in the bus.
*
* The NS16550 UART driver always supports the BUS_SYS_SHUTDOWN and
* BUS_DEV_SHUTDOWN events. The BUS_DEV_REMOVAL support is optional and
*

is provided only when NS16_DEV_REMOVAL is defined.
*/
static KnError

nsl6_event (void* id,

BusEvent event,

void* arg)

58 ChorusOS 4.0 Device Driver Framework Guide ¢ December 1999



KnError res = K _OK;
Ns16_Device* dev = NS16_DEV(id);
DevNode node = dev->entry.dev_node;

switch (event) {
/*
In case of system (emergancy) shutdown,
we only disable the device interruts, in order to
properly perform the system reboot (or restart).

* ok k% ok ok

Note that the mask() routine is invoked indirecty because
it may be substituted by the event handler.
*/
case BUS_SYS_SHUTDOWN: {
UART_OPS(dev->entry.dev_ops)->mask(id);
break;

~
*

The normal device shutdown is processed only from the
normal mode. In other words, this event is

ignored if the driver already operates in the device
shut-down or removal mode.

Here, we just flag that the device is entered into shutdown
mode (dev->devEvent) and ask the device registry to

notify clients about it. The real shutdown procedure will

ne done by the nsl6_release() handler. This handler is called
by device registry when the the reference to the driver
instance goes away (i.e. when svDeviceRelease() is called by
client).

* ok k% ok k% ok ok ok ok 3k

*/
case BUS_DEV_SHUTDOWN: {
if (dev->devEvent == DEV_EVENT_NULL) {

dev->devEvent = DEV_EVENT_SHUTDOWN;
svDeviceEvent(dev->regld, DEV_EVENT_SHUTDOWN, NULL);

DKI_MSG(("%s: entered into shut-down mode\n", dev->dpath));

break;
}
#if defined(NS16_DEV_REMOVAL)
/*
* The device removal is processed from either the
* normal mode or shutdown mode. In other words,
* this event is ignored if the driver already operates in the
* device removal mode.
*
* Here, we flag that the device is entered into removal
* mode (dev->devEvent). In addition, the device ops are
* substituted to empty routines in order to avoid to access
* the hardware which has been disappeared from the bus.
* Once ops are substituted, we ask the device registry to
* notify clients about the device removal event.
* The real shutdown procedure will be done by the ns16_release()
* handler. This handler is called by device registry when the
*

the reference to the driver instance goes away (i.e. when

Writing Device Drivers

59



svDeviceRelease() is called by client).
ns1l6_removal() is called in order to abort a transmission
in progess (if any).

Note that, receiving DEV_EVENT_REMOVAL, the driver client must
update pointers to the device service routines (ops) if they
have been previously copied by the client.

L N

*/
case BUS_DEV_REMOVAL: {
if (dev->devEvent != DEV_EVENT_REMOVAL) {

dev->devEvent = DEV_EVENT_REMOVAL;
bcopy(&ns16_down_ops, &(dev->devOps), sizeof(ns16_down_ops));
svDeviceEvent(dev->regld, DEV_EVENT_REMOVAL, NULL);

ns16_removal(dev);

DKI_MSG(("%s: entered into removal mode\n", dev->dpath));

}
break;
#endif
default: {
res = K_ENOTIMP;
break;
}
}
return res;
}
/*

* The error handler is called by the parent bus driver

* if a bus error occurs when accessing the device registers.

* In the current implementation, we consider that the device

* is not present on the bus if such an error occurs.

* Thus, an 1/O error is equivalent to the device removal event.
*/

static void
ns16_bus_error (void* id,
BusError* err)
{
DKI_ERR(("%s: error -- bus error (%d, 0x%x)\n",
NS16_DEV(id)->dpath, err->code, err->offset));
(void) ns16_event(id, BUS_DEV_REMOVAL, NULL);
}

/*
* ns16_shutdown() implements the real shutdown of a given
* device driver instance.
* This routine is called either by ns16_release() or ns16_unload().
* In both cases, this routine is invoked in the DKI thread context.
* Note that the device driver instance has been unregistered by the
* device registry, i.e. the corresponding device registry entry is
* invalid.
*/
static void
ns16_shutdown (Ns16_Device* dev)

60 ChorusOS 4.0 Device Driver Framework Guide ¢ December 1999



/*
* When the driver unloading is supported, we must remove
* the driver instance from the list.
*/
#if defined(NS16_DRV_UNLOAD)
Ns16_Device* cdev;
Ns16_Device** link = &nsl16_devs

while ((cdev = *link) != dev) {
link = &(cdev->next);
}

*link = dev->next;
#endif
/*
* Release bus resources and close connection to the bus.
*/
dev->busOps->intr_detach(dev->intrid);
dev->busOps->io_unmap(dev->iold);
dev->busOps->close(dev->devid);
/*
* Release the device registry entry.
*/
svDeviceFree(dev->regld);
DKI_MSG(("%s: %s driver stopped\n”, dev->dpath, NS16_DRV_NAME));
/*
* Finally, free memory allocated for the device descriptor.
*/
svMemFree(dev->dpath, dev->dpathLeng);
svMemFree(dev, sizeof(Ns16_Device));

/*
* The release handler is called by the device registry when
* a DEV_EVENT_SHUTDOWN or DEV_EVENT_REMOVAL event has been signaled
* (via svDeviceEvent()) and the (last) reference to the device driver
* instance goes away.
*/
static void
nsl6_release (DevRegEntry* entry)

ns16_shutdown(NS16_DEV(entry->dev_id));

Writing Device Drivers 61



62 ChorusOS 4.0 Device Driver Framework Guide ¢ December 1999



CHAPTER 4

Writing Bus Drivers

This chapter takes a procedural approach to writing both host and subsequent level
bus drivers.

The small differences in writing a driver for a host bus and for a sub-bus (bus to bus
bridge) are outlined in steps where they occur. Also, this chapter indicates the
additional steps required to provide the common bus driver API and to allow
multi-bus device drivers to run on top of your bus driver.

Include the Appropriate APIs (DKI/
DDI)

The first step to building a bus driver is to include the header files for the DKI and
DDI APIs involved in the bus driver’s implementation.

A host bus driver implementation uses only the DKI interface, because there is no
other driver component between the host bus and the microkernel API. On the other
hand, a bus-to-bus bridge driver typically uses its parent bus DDI API (and some
generic DKI services, like memory allocation).

In either case, the driver implementation must include:

m The parent bus class API header file(s) (DKI and/or DDI).

Note that the services available for bus driver implementation are defined in these
header files.

m The bus class API header file(s) (DDI).

63



Note that these header files define the routines that must be written for the driver
component to be compliant with the Driver Framework.

Shown below is an example for a PCI-to-ISA bridge bus driver that uses both DKI
and "PCI bus driver" APIs, and that provides both "Common bus driver" and "ISA
bus driver" APIs.
#include <dki/dki.h>

#include <ddi/pci/pci.h>
#include <ddif/isa/isa.h>

#include "w83c553.h"
#include "w83c553Prop.h"

Register the Driver (using main
function)

A driver component may be downloaded in various ways. It may be built into the
system bootable image or it may be downloaded dynamically as a supervisor actor
using the afexec system call. In either case, the driver code must contain the main
routine which will be called by the system once the driver component is
downloaded.

The only task of the driver’s main routine is to perform the self-registration of the
driver component within the system. To accomplish this task, the driver invokes the
svDriverRegister microkernel call, passing as an argument a DrvRegEntry data
structure which specifies the driver component properties.

Once the driver component is self-registered, any future driver management is
mostly undertaken by its parent bus/nexus driver (or the DKI module for a host bus
driver) using the properties specified in the DrvRegEntry  structure. The
DrvRegEntry specifies four driver’s entry points as follows:

drv_probe drv_probe is invoked by the parent bus/nexus
driver (or the DKI module for a host bus driver)
when bus_class specified in the registry entry
matches the parent bus/nexus driver class.

drv_bind drv_bind is invoked by the parent bus/nexus
driver (or the DKI module for a host bus driver)

64 ChorusOS 4.0 Device Driver Framework Guide ¢ December 1999



drv_

drv_

static
static
static

static

main

when bus_class specified in the registry entry
matches the parent bus/nexus driver class.

init drv_init is invoked by the parent bus/nexus
driver (or the DKI module for a host bus driver)
when bus_class (specified in the registry entry)
matches the parent bus class and the driver is
bound to a node in the device tree. (Or put more
simply, when a hardware device to be managed
by the driver exists.)

unload drv_unload is invoked by the driver registry
module when an application wishes to unload
the driver component from the system.

/*

* Driver registry entry for Winbond w83c553 PCI/IISA bridge

*/

void drv_bind (DevNode myNode);

void drv_init  (DevNode myNode, void* pciOps, void* pcild);
KnError drv_unload ();

DrvRegEntry w83c553Drv = {
WB83C553_DRV_NAME,
"Winbond w83c553 PCI to ISA bridge [#ident \"@(#)W830553C 1.5 99/02/23 SMI\'",

PCI_CLASS, [* parent bus class
PCI_VERSION_INITIAL, /* required bus version */
NULL, /* probe method */
drv_bind, /* bind method */
drv_init, /* init method */
drv_unload /* unload method */

/*

* Driver main() routine.

* Called by kernel at driver startup time.
*/

int

(int argc, char** argv)

KnError res = svDriverRegister(&w83c553Drv);

if (res 1= K_OK) {
DKI_ERR(("%s: error -- svDriverRegister() failed (%d)\n",
w83c553Drv.drv_name, res));

}

return res;

Writing Bus Drivers 65



Write Bus Driver Class-Specific
Functions

At this step, you write the implementation for a specific hardware bus controller. In
other words, the code has to be written for each function of the specified bus class,
as defined in the API. These functions must then be provided to the subsequent level
device drivers.

Note - None of these functions is directly exported, but that all of them are defined
as static functions, and then grouped as indirect calls in an "operations data
structure" typed by the bus class API. The bus driver then gives this "operations data
structure" as an argument to its child device driver’s "probe" and "initialize"
registered functions (see “Write Registry Functions” on page 69, below).

In this way you can ensure that the visibility and use of the bus API is restricted to
device drivers which are servicing a device connected to this bus.

Each bus class API is different. Thus, the functions to write are different for different
classes of bus API. The complete list of the currently defined bus class APIs may be
found in the ddi(9) man page.

Note - All of these steps are performed in the example provided for the “Write
General Functions” section below. See specifically the sections dealing with the ISA
bus.

Write General Functions

Once the bus class services are implemented in a bus driver component, you can also
write the additional functions needed to provide the Common bus API services (in
addition to those provided by the bus class API). This allows child device drivers to
be written to the common bus-driver interface (CBDI), making them bus class
independent (bottom-interface transparent).

In most cases, these services have already been implemented in the previous step.
There are normally only three functions that must be added to allow the subsequent
device drivers to perform independently of their bus type. These functions
essentially allow the bus driver’s clients to retrieve property elements from arrays.

The following code example illustrates this for a PCI-to-ISA bridge bus driver. In this
example, the ISA bus class is provided, and the additional functions are written to
provide the CBDI.

66 ChorusOS 4.0 Device Driver Framework Guide ¢ December 1999



Note - For clarity, only the code pertinent to this explanation is shown. Please refer
to a complete implementation file for more details.

/*
* |SA bus provided API
*
static KnError

open (Isald isald, ...) { ... }
static void

close (IsaDevid devid) { ... }
/*
* Interrupt management
*
static void

mask (Isalntrld intrid) { ... }
static void

unmask (Isalntrld intrid) { ... }
static IsalntrStatus

enable (Isalntrld intrld) { ... }

static IsalntrOps w83c553IntrOps = {
mask,
unmask,
enable,
unmask
static KnError
intr_attach (IsaDevld devid, ...) { ... }
static void
intr_detach (lsalntrld intrid) { ... }
/*
* /O management
*/
static KnError
io_ma/lp (IsaDevld devid, ...) { ... }
%
* Note that there is no io_unmap() method implementation.
* The PCI bridge io_unmap() method is directly used instead.
* This PCI method is set in the IsaBusOps at drv_init() time.
*/
/*
* DMA management
*/
static KnError
dma_attach (IsaDevld devid, ...) { ... }
static void
dma_detach (IsaDmald dmald) { ... }
/*
* Memory management
*/
static KnError
mem_map (IsaDevld devld, ...) { ... }
/*
* Note that there is no mem_unmap() method implementation.
* The PCI bridge mem_unmap() method is directly used instead.
* This PCI method is set in the IsaBusOps at drv_init() time.
*/

Writing Bus Drivers 67



68

/*
* Dynamic resource allocation
*/
static KnError
resource_alloc (PciDevld devld, DevProperty prop) { ... }
static void
resource_free (PciDevld devld, DevProperty prop) { ... }

/*
* Common bus interface miscellaneous routines
*/
static void*
intr_find (void* prop, int index)
return ((IsaProplintr*)prop) + index;

}
static void*
io_regs_find (void* prop, int index)

return ((IsaProploRegs*)prop) + index;

}
static void*
mem_rgn_find (void* prop, int index)

return ((IsaPropMemRgn*)prop) + index;

/*
* W83C553 driver initialization method
*
/
static void
drv_init (DevNode myNode, void* busOps, void* busld)
{
PciBusOps* pciOps = (PciBusOps*)busOps;
PciBusOps* pcild = (Pcild)busld;
DevRegEntry* w83c553Entry;
W83c553Data* w83c553;
R

* Allocate driver instance data
*
/
w83c553 = w83c553Alloc(path, pathSize);
if (W83c553 == NULL) {
DKI_ERR(("%s: error -- not enough memory\n", path));

return;
}
R
* |nitialize my base level ISA bus operations
*/
w83c553->isaOps->version = ISA_VERSION_INITIAL;
w83c553->isaOps->open = open;
w83c553->isaOps->close = close;
w83c553->isaOps->intr_attach = intr_attach;
w83c553->isaOps->intr_detach = intr_detach;
w83c553->isaOps->io_map = io_map;

w83c553->isaOps->io_unmap = pciOps->io_unmap;

w83c553->isaOps->dma_attach = dma_attach;
w83c553->isaOps->dma_detach = dma_detach;
w83c553->isaOps->mem_map = mem_map;

ChorusOS 4.0 Device Driver Framework Guide ¢ December 1999

[* parent bus ops

*/



w83c553->isaOps->mem_unmap = pciOps->mem_unmap; /* parent bus ops */
w83c553->isaOps->resource_alloc resource_alloc;
w83c553->isaOps->resource_free resource_free;

/*

* |Initialize my base level Common bus operations

*/

w83c553->busOps->version = BUS_VERSION_INITIAL;
w83c553->busOps->open = open;
w83c553->busOps->close = close;

w83c553->busOps->intr_attach
w83c553->busOps->intr_detach intr_detach;

w83c553->busOps->io_map = (KnError(*)()) io_map;
w83c553->busOps->io_unmap = pciOps->io_unmap; /* parent bus ops */

(KnError(*)()) intr_attach;

w83c553->busOps->mem_map (KnError(*)()) mem_map;
w83c553->busOps->mem_unmap pciOps->mem_unmap; /* parent bus ops */

w83c553->busOps->intr_find = intr_find;
w83c553->busOps->io_regs_find = io_regs_find;
w83c553->busOps->mem_rgn_find = mem_rgn_find;

/*
* Call children drv_probe() / drv_init() methods, if any.
*
/
childrenProbelnit(w83c553);

Write Registry Functions

Write the Probe Function

The purpose of the bus probe routine is to detect devices residing on the bus and to
create device nodes corresponding to these devices. The probe routine is optional. In
case it is not provided (NULL entry point), a device node should be statically created
at boot time, or should be created by another "probe only" driver component to
activate the bus driver.

Actions taken by a probe routine may be summarized as follows:

m The probe routine creates nodes if, and only if, they do not already exist. In other
words, the probe routine is forbidden to create redundant nodes.

m The probe routine specifies a physical device ID as a device node property so that
the bus driver can find the appropriate device driver for this device node.

Note that the device ID is bus class specific. For instance, on a PCI bus, the device
ID is the vendor/device IDs pair.

m The probe routine specifies resource requirements as device node properties so
that the bus driver can reserve resources required to initialize the device.

Writing Bus Drivers 69



There are two kinds of probe routines:

m generic (bus class specific only)

A self-identifying bus (such as PCI) enumerator is a typical example of the generic
probe routine.

m device specific (bus class and device specific)

A device probing code on ISA bus is a typical example of the device specific probe
routine.

Note that multiple probe routines for a given bus may be found in the driver
registry. The Driver Framework does not specify the order in which the probe
routines will be run. In addition, the probe routines may be invoked at run time
(when, for example, the device insertion is detected on the bus).

When invoked at runtime, the probe routines must exercise extreme care with regard
to active device nodes. Active device nodes are those for which the device drivers
have been already started and may already be in use.

The following rules must be respected by generic and device specific probe routines:

m The generic and specific probe routines must access the device hardware only
through the bus service routines. The bus resources needed to access the device
hardware (such as 170 registers) must be allocated through the bus service
routines (resource_alloc ). This prevents the probe routine from accessing
hardware which is currently in use. Upon unsuccessful probing, the hardware
resources used must be released through the bus service routines
(resource_free ).

m Neither generic nor specific probe routines are allowed to delete active device
nodes or to modify their properties. (Such nodes are flagged with the active
property.)

m Device specific probe routines are allowed to override properties in an existing
node or to delete existing nodes.

m Generic probe routines are not allowed to override properties in existing nodes or
to delete existing nodes. In other words, device specific probe routines have a
higher priority than generic ones.

m No probe routine is allowed to create redundant nodes. To run a probe routine,
either you must be positive that no other node exists for this device, or you must
be able to find any other nodes for this device. If for some reason it is impossible
to avoid creating redundant nodes, you cannot probe.

70 ChorusOS 4.0 Device Driver Framework Guide ¢ December 1999



Write the Bind Function

The bind routine enables the driver to perform a driver-to-device binding. Typical
actions taken by a bind routine may be summarized as follows:

The driver examines properties attached to the device node to determine the type of
device and to check whether the device may be serviced by the driver. Note that the
properties examined by the driver are typically bus architecture specific. For instance,
a PCI driver would examine the vendor and device identifier properties.

If the check is positive, the driver attaches a "driver " property to the device node.
The property value specifies the driver name.

The parent bus/nexus driver should use the "driver" property to determine the
name of the driver servicing the device. So, the child driver gives its name to the
parent bus driver, through the "driver" property, asking the parent bus driver to
invoke the drv_init routine on that device.

Note that, if a "driver" property is already present in the device node, then the
drv_bind routine can not continue; drv_bind should not override an existing
driver-to-device binding.

The driver-to-device binding mechanism used in the framework enables multiple
implementations. A simple bind routine may be implemented by a device driver.
Such an implementation would be device specific, only taking into account the

devices known by the driver to be compatible with the driver’s reference device.

Let us consider systems that support after-market, hot-plug devices and consult a
network lookup service to locate the driver for a new device. It would be reasonable
to provide a separate binder driver that would implement a smart driver-to-device
mapping and a driver component download. Note that such a (generic) binder
appears in the driver framework as a normal driver component. The binder driver
provides the bind routine only and does not provide the probe and initialize
routines.

/*
* W83C553 driver bind method
*/
static void
drv_bind (DevNode node)

{
}

pciDevDrvBind(node, W83C553_VEND_ID, W83C553_DEV_ID, w83c553Drv.drv_name);

The pciDevDrvBind() function, detailed below, is implemented in the
libebd.s.a library, not in the driver code itself.

/*
* Try to bind a given PCI driver to a given PCI device.
* Basically, the driver is bound to the device node if
* and only if the vendor/device ID pair specified by the
* driver matches the vendor/device ID pair specified in
* the device node.

Writing Bus Drivers 71



* This function is typically called by a drv_bind() method
* of a PCI driver.
*/
void
pciDevDrvBind (DevNode dev_node,
PciPropVendld drv_vid,
PciPropDevid drv_did,

char* drv_name)
{
PciPropVendld dev_vid,;
PciPropDevid dev_did,;
DevProperty prop;
/*
* Do not bind the driver to an active device node.
*
/
if (dtreePropFind(dev_node, PROP_ACTIVE)) {
return;
}
/*
* Do not override an existing binding.
*
/
if (dtreePropFind(dev_node, PROP_DRIVER)) {
return;
}
/*
* Do not bind the driver if one of vendor/device ID’s (or both)
* is not specified.
*/
prop = dtreePropFind(dev_node, PCI_PROP_VEND_ID);
if (‘prop) {
return;
b .
dev_vid = *(PciPropVendld*)dtreePropValue(prop);
prop = dtreePropFind(dev_node, PCI_PROP_DEV_ID);
if (‘prop) {
return;
}
dev_did = *(PciPropDevld*)dtreePropValue(prop);
/*
* Do not bind the driver if the device vendor/device IDs
* do not match the driver ones.
*
/
if ((dev_vid != drv_vid) || (dev_did != drv_did)) {
return;
}
/*
* Bind the driver to the device...
*
/
dtreePropAdd(dev_node, PROP_DRIVER, drv_name, strlen(drv_name)+1);
}

Write the Init Function

The initialization routine of a bus driver component is optional. In case it is not
provided (NULL entry point), the driver is typically either a probe only or bind only
driver. That is, either a driver that probes a bus to discover devices and create

72 ChorusOS 4.0 Device Driver Framework Guide ¢ December 1999



associated device nodes, or a driver that examines device node properties to perform
driver-to-device binding.

The initialization process (drv_init ) of a bus/nexus driver mainly goes through the
following steps:

bus/nexus device initialization

child device nodes creation (enumeration/probing)

bus resource allocation across child device nodes

driver-to-device binding

S

driver instances creation for child device nodes

A bus/nexus driver, like any device driver, needs to access its hardware (internal bus
bridge registers).. It therefore needs to establish connection to its parent bus/nexus
driver and needs to use services implemented by its parent driver.

Note - The bus/nexus driver does not need to register a new bus/nexus instance in
the device registry because the standard child-to-parent driver binding mechanism
does not use the device registry. The bus/nexus driver gives a pointer to its service
routines vector and its identifier to the child driver, when the drv_probe or
drv_init routine of the child driver is invoked.

Once the bus/nexus device is initialized, the bus/nexus driver searches drivers in
the driver registry which match the given bus/nexus class and implement the
drv_probe entry point.

The probe routine gives the child driver an opportunity to discover a device
(serviceable by that driver) residing on the bus/nexus and to create the device node
(associated to this device) in the device tree (see the section Write the Bind Function
for an example).

A device node specifies bus resource properties required for the associated device.
Note that some bus resources may be hardwired (such as fixed interrupt requests
(IRQs)), while for other bus resources, some constraints may be specified (such as
device address decoder constraints). When presented with configurable constraints,
the bus/nexus driver iterates through existing child nodes to allocate configurable
resources (with respect to constraints) and to check possible resource conflicts.

Note - If a resource conflict is detected, the bus/nexus driver behavior is
implementation specific. In any case, the bus/nexus driver must not activate any
driver on a node for which bus resources are not allocated successfully.

Once the bus resources allocation is done, the bus/nexus driver searches the driver
registry for drivers that implement the drv_bind entry point and that match the
given bus/nexus class. Once a driver is found, its drv_probe routine is invoked

Writing Bus Drivers 73



(once for each existing child device node). The drv_bind routine gives the child
driver an opportunity to bind itsekf to the device by attaching to its name.

When the driver-to-device binding is complete, the bus/nexus driver iterates
through the child nodes and, for each device node, tries to determine a driver
component to apply to the given device. Once a driver component is found, its
drv_init routine is invoked by the bus/nexus driver.

If the child device is not a leaf one, the initalization process is recursively continued
by the drv_init routine of the child driver.

The example below presents a drv_init routine for a PCI-to-ISA bus driver. The
W83C553_DRV_UNLOAD compilation flag is used to allow downsizing of the driver
component at compile time, in case the unload mechanism is not needed.

childrenPropbelnit()()

static void
childrenProbelnit (W83c553Data* bus)
{
/*
* Call probe methods for both supported bus classes: pci and bus.
*/
genBusDrvProbe(ISA_CLASS, ISA_VERSION_INITIAL,
bus->node, bus->isaOps, bus);
genBusDrvProbe(BUS_CLASS, BUS_VERSION_INITIAL,
bus->node, bus->busOps, bus);

/*

* Should check for resource overlapping between devices
* and allocate each resources through resource_alloc()

*/

/*
* Call bind methods for both supported bus classes: pci and bus.
*/
genBusDrvBind(ISA_CLASS, ISA_VERSION_INITIAL, bus->node);
genBusDrvBind(BUS_CLASS, BUS_VERSION_INITIAL, bus->node);
/*
* Call init methods for both supported bus classes: pci and bus.
*/
genBusDrvInit(ISA_CLASS, ISA_VERSION_INITIAL,
bus->node, bus->isaOps, bus);
genBusDrvInit(BUS_CLASS, BUS_VERSION_INITIAL,
bus->node, bus->busOps, bus);

}

The genBusDrvProbe() , genBusDrvBind()  and genBusDrvInit() functions,
detailed below, are implemented in the libebd.s.a library, not in the driver code
itself.

/*
* A generic (standard) probing loop performed by a bus driver.
Go through the driver registry. Check for each entry whether
it matches the bus class and provides a drv_probe() method.
If so, apply the drv_probe() method to the bus node.

/

*
*
*
*

74 ChorusOS 4.0 Device Driver Framework Guide ¢ December 1999



void
genBusDrvProbe (char* bus_class,
int bus_version,
DevNode bus_node,
void* bus_ops,
void*  bus_id)

{
DrvRegld drv_curr;
DrvRegld drv_prev;
DrvRegEntry* entry;
drv_curr = svDriverLookupFirst();
while (drv_curr) {
entry = svDriverEntry(drv_curr);
if (entry->drv_probe && !strcmp(bus_class, entry->bus_class) &&
(bus_version >= entry->bus_version)) {
entry->drv_probe(bus_node, bus_ops, bus_id);
}
drv_prev = drv_curr;
drv_curr = svDriverLookupNext(drv_curr);
svDriverRelease(drv_prev);
}
}
/*
* A generic (standard) binding loop performed by a bus driver.
* Go through the driver registry. Check for each entry whether
* it matches the bus class and provides a drv_bind() method.
* If so, apply the drv_bind() method to each child node
* attached to the bus node.
*/
void
genBusDrvBind (char*  bus_class,
int bus_version,
DevNode bus_node)
{
DevNode dev_node;
DrvRegld drv_curr;
DrvRegld drv_prev;
DrvRegEntry* entry;
drv_curr = svDriverLookupFirst();
while (drv_curr) {
entry = svDriverEntry(drv_curr);
if (entry->drv_bind && !strcmp(bus_class, entry->bus_class) &&
(bus_version >= entry->bus_version)) {
dev_node = dtreeNodeChild(bus_node);
while (dev_node) {
entry->drv_bind(dev_node);
dev_node = dtreeNodePeer(dev_node);
}
}
drv_prev = drv_curr;
drv_curr = svDriverLookupNext(drv_curr);
svDriverRelease(drv_prev);
}
}
/*

* A generic (standard) initialization loop performed by a bus driver.

Writing Bus Drivers



* Go through the child device nodes. Check for each node whether
* jt is inactive and has a driver bound to. If so, go through the
* driver registry. Check for each entry whether it matches the bus
* class, provides a drv_init() method and matches the driver name.
* If so, apply the drv_init() method to the child node. The iteration
* through the driver registry is aborted once the device node becomes
* active.
*/
void
genBusDrvInit (char* bus_class,
int bus_version,
DevNode bus_node,
void* bus_ops,
void* bus_id)
{
DevNode dev_node;
DrvRegld drv_curr;
DrvRegld drv_prev;
char* drv_name;

DrvRegEntry* entry;
DevProperty  prop;

dev_node =

dtreeNodeChild(bus_node);

while (dev_node) {

if (IdtreePropFind(dev_node, PROP_ACTIVE)) {
prop = dtreePropFind(dev_node, PROP_DRIVER);

it (prop) {
drv_name = (char*)dtreePropValue(prop);
drv_curr = svDriverLookupFirst();

}
}

dev_node =

while (drv_curr) {
entry = svDriverEntry(drv_curr);
if (entry->drv_init &&
Istrcmp(bus_class, entry->bus_class) &&
(bus_version >= entry->bus_version) &&
Istrcmp(drv_name, entry->drv_name)) {
entry->drv_init(dev_node, bus_ops, bus_id);
if (dtreePropFind(dev_node, PROP_ACTIVE)) {
svDriverRelease(drv_curr);
break;
}
}
drv_prev = drv_curr;
drv_curr = svDriverLookupNext(drv_curr);
svDriverRelease(drv_prev);

dtreeNodePeer(dev_node);

Write the Unload Function

drv_unload

svDriverUnregister
component from the system. The drv_unload

DKI thread.

is called by the driver registry module (more precisely, by the
routine) when an application wishes to unload the driver
routine is called in the context of the

76 ChorusOS 4.0 Device Driver Framework Guide ¢ December 1999



This makes it possible to invoke directly the bus/nexus and DKI services allowed in
the DKI thread context only. The purpose of drv_unload is to check that the driver
component is not currently in use. On success, drv_unload returns K_OK,
otherwise K_EBUSYis returned.

The drv_unload routine is optional. If drv_unload is not provided, the driver
code cannot be unloaded. drv_unload is a global, per driver component routine.
Therefore, to implement unloading, the driver should handle a list of driver
instances. When drv_unload s called, the driver should go through the list, and for
each driver instance, check whether the driver instance is currently in use.

Note - Once the check is positive (a given instance is not used), the driver instance
must become invisible for potential clients. In other words, if drv_unload returns
K_OK, all previously created driver instances (if any) must be deleted and all
previously allocated system resources (if any) must be released.

If drv_unload returns K_EBUSY the driver component will not be unloaded. In this
case, the driver component state must not be changed by drv_unload

The drv_unload routine of a bus/nexus driver typically takes the following actions:

1. Checks that the driver component is not in use.
drv_unload iterates through the driver instances list and, for each driver
instance, checks whether a connection is opened to the driver instance.

Once a driver instance with an open connection is found, the iteration is aborted
and K_EBUSYis returned. Otherwise, drv_unload proceeds to step 2.

2. Releases resources associated to the driver component.
drv_unload iterates through the driver instances list and, for each driver
instance, releases all system resources associated to the instance (io_unmap ,
mem_unmap, ...) and, finally, closes the connection to the parent bus. Once the
iteration is finished, drv_unload returns K_OK

Note that drv_unload runs in the DKI thread context.

This guarantees stability of the driver instances and open connections during the
drv_unload execution. Indeed, a new driver instance may be created only by the
drv_init routine and a new parent-to-child connection may be opened only by the
drv_init or drv_probe routines.

Both drv_init and drv_probe are invoked in the DKI thread context. Thus,
drv_init and drv_probe are serialized with drv_unload by the DKI thread.

On the other hand, if a bus/nexus driver supports hot-pluggable devices, it is up to
the bus/nexus driver to implement a synchronization mechanism with a hot-plug
insertion interrupt which may occur during the driver unloading.

Writing Bus Drivers 77



In the following example, the W83C553_DRV_UNLOAD compilation flag is used to
allow downsizing of the driver component, at compile time, if the unload mechanism

is not needed.

/*
* Unload the W83C553 driver.

* This routine is called by the driver registry when an application
* wishes to unload the driver component.

*/
static KnError
drv_unload ()

{
/*
* The driver unloading is an optional feature.
* In case when such a feature is not supported, drv_unload()

* just returns K_EBUSY preventing the driver component to be

* unloaded.
*/
#if defined(W83C553_DRV_UNLOAD)
W83c553Data* udev;
/*
* Go through the driver instances list and check if it is unused

* j.e. if the list of connected devices is empty.

*/
udev = w83c553Devs;
while (udev && (udev->dev

udev = udev->next;

== NULL)) {

}

/*
* If all driver instances are unused, we invoke shutdown()
* to shutdown each instance.
*/
if (ludev) {

while (w83c553Devs) {
shutdown(w83c553Devs);

}
return K_OK;

/*
* If there is a driver instance in use, we cannot unload the
* driver, and return K_EBUSY.
*/
#endif
return K_EBUSY;

ChorusOS 4.0 Device Driver Framework Guide ¢ December 1999



Write Event Handler Function

The event handler is invoked by the parent bus/nexus driver when an event occurs.
The event handler address is given to the parent bus/nexus driver when a
connection is established between the bus driver and its parent bus/nexus driver.

The event handler may be called as an interrupt handler and therefore the event
handler implementation must be restricted to the API allowed at interrupt level.
Among all events which are mostly bus/nexus class specific, there are three
shutdown related events (specified by the common bus API) which are discussed in

this section:

SYS_SHUTDOWN

DEV_SHUTDOWN

DEV_REMOVAL

system (emergency) shutdown

The SYS_SHUTDOWent notifies the driver
instance that the system is going to be shutdown.
The parent bus/nexus driver requires the child
driver instance to perform an emergency
shutdown of the device hardware.

normal device shutdown

The DEV_SHUTDOWAVent notifies the driver
instance that a normal device shutdown is
requested by the bus/nexus driver.

surprise device removal

The DEV_REMOVAEvent notifies the driver
instance that the associated device has been
removed from the bus/nexus and therefore the
driver instance has to be shutdown.

Note - The omitted prefix ( DKI_ , BUS_, ...) means that the event semantics are the

same for all such events.

In general, the shutdown event processing goes through three phases:

1. shutdown prolog
2. shutdown mode
3. shutdown epilog

Writing Bus Drivers 79



The first phase (called shutdown prolog) is processed synchronously within the
event handler. The main purpose of the shutdown prolog is to notify child drivers
that the shutdown event has occurred (to propagate the shutdown prolog
downstream, from parent to child). Once the shutdown event is processed by child
drivers, the driver begins the shutdown epilog. The shutdown epilog is invoked
when the last connection to the driver instance is closed. Between the shutdown
prolog and epilog, the driver operates in a special mode (called shutdown mode). In
shutdown mode, the driver accepts only a subset of operations from child drivers
allowing to close connections to the driver correctly.

The table below shows typical actions taken by the shutdown prolog depending on
the event type:

Action SYS_SHUTDOWN | DEV_SHUTDOWN | DEV_REMOVAL

notify child drivers (by + + +
calling children event
handler)

abort operations in - - +
progress

reset hardware + - -

The SYS_SHUTDOWAKTrolog of a bus/nexus driver invokes the event handlers of
child drivers connected to it. Once the invocation is done, the bus/nexus driver puts
the hardware into a clean state.

Note that the SYS_SHUTDOWABVent is processed synchronously, (that is, within the
event handler). The only purpose of the SYS_SHUTDOWABent is to put the board
hardware into a clean state to perform the system reboot (or restart) correctly.

The DEV_SHUTDOWARIrolog notifies child drivers that the DEV_SHUTDOWABVent has
occurred. The actual device shutdown is deferred until the DEV_SHUTDOW&®pilog.

The DEV_REMOVAlIprolog is closed to the DEV_SHUTDOWNRHrolog. In addition, the
DEV_REMOVAlprolog aborts all 1/0 operations in progress, because otherwise these
operations will never be completed. Aborted operations return an error code to
callers.

As soon as the shutdown prolog is processed, the driver changes its internal state to
enter into shutdown mode. In shutdown mode, the driver accepts only a subset of
operations from child drivers;

m to abort queued operations
m to release previously allocated resources

m to close the connection to the driver

80 ChorusOS 4.0 Device Driver Framework Guide ¢ December 1999



All other operations (like opening a new connection, or starting an 1/0 operation)
are refused by the driver. When in shutdown mode, the driver must wait until a
shutdown epilog condition is met. The shutdown epilog condition is met when the
last connection to the driver’s instance is closed. Because the shutdown epilog is
processed in the DKI thread context, it can call all services and avoid any
synchronization issues, even DKI services which can only be called in the DKI thread.

The following table shows typical actions taken by the shutdown epilog by event
type.

Action DEV_SHUTDOWN DEV_REMOVAL
reset hardware + -
release system resources + +
close connection to the parent + +
driver

The DEV_SHUTDOWApilog puts hardware into a clean state, releases system
resources used by the driver instance (io_unmap , mem_unmap...) and, finally, closes
connection to the parent driver (close ).

When a shutdown epilog closes the last connection to the parent driver, the
shutdown epilog condition may be met in the parent driver too. In such a way, the
shutdown epilog is propagated upstream (from child to parent). Note that if one of
the child drivers does not shutdown properly, the driver may get lost in the
shutdown mode forever, and never meet the shutdown epilog condition.

In the following example of a PCI bus events handler of a PCI-to-ISA bridge driver,
the W83C553_DEV_REMOVAL compilation flag is used to allow downsizing of the
driver component at compile time in case the device removal mechanism is not
needed.

/*
* The event handler is invoked by the parent driver (i.e. PCI bus)
* when an event occurs.
*
* The WB83C553 driver always supports the PCI_SYS_SHUTDOWN and
* PCI_DEV_SHUTDOWN events. The PCI_DEV_REMOVAL support is optional and
* is provided only when W83C553 DEV_REMOVAL is defined.
*/
static KnError
pciEventHandler (void* cookie, PciBusEvent event, void* arg)

{

KnError res = K_OK;
W83c553Data* w83c553 = (W83c553Data*)cookie;
IsaDev* isaDev;

switch (event) {
/*
* Mask all ISA interrupts.

Writing Bus Drivers 81




* Then propagate the event to connected device drivers
* and disconnect the controller from parent bus.
*/
case PCI_SYS_SHUTDOWN: {
w83c553->pcilntrOps->mask(w83c553->pcilntrid);
isaDev = w83c553->dev;
while (isaDev) {
if (isaDev->evtHandler) {
isaDev->evtHandler(isaDev->cookie, ISA_SYS_SHUTDOWN, arg);
}

isaDev = isaDev->next;

}
w83c553->pciConfOps->store_16(w83c553->pciConfld, PCI_COMMAND, 0);

break;
}
/*
* The normal device shutdown is processed only from the
* normal mode. In other words, this event is
* ignored if the driver already operates in the device
* shut-down or removal mode.
*
* Here, we just flag that the device is entered into shutdown
* mode and notify child drivers about it.
* The real shutdown procedure will be done by the last call to
*

close().
*/
case PCI_DEV_SHUTDOWN: {
if (I w83c553->evtState) {
w83ch53->evtState = PCI_DEV_SHUTDOWN;
isaDev = w83c553->dev;
while (isaDev) {
if (isaDev->evtHandler) {
isaDev->evtHandler(isaDev->cookie, ISA_SYS_SHUTDOWN, arg);
}

isaDev = isaDev->next;

}

DKI_MSG(("%s: entered into shut-down mode\n", w83c553->path));
}

break;

}
#if defined(W83C553_DEV_REMOVAL)

/*

* The device removal is processed from either the

* normal mode or shutdown mode. In other words,

* this event is ignored if the driver already operates in the
* device removal mode.

*

* Here, we flag that the device is entered into removal

* mode. In addition, the device ops (isa and bus) are

* substituted to empty routines in order to avoid to access
* the hardware which has been disappeared from the bus.
* Once ops are substituted, we propagate the event to the
* connected ISA drivers.

* The real shutdown procedure will be done by the last call
* to close().

* removal() is called in order to abort any operation

* in progess.

*

* Note that, receiving ISA_DEV_REMOVAL, the driver client must
*

update pointers to the device service routines (ops) if they

82 ChorusOS 4.0 Device Driver Framework Guide ¢ December 1999



* have been previously copied by the client.
*/
case PCI_DEV_REMOVAL: {
if (w83c553->evtState != PCI_DEV_REMOVAL) {
w83c553->evtState = PCI_DEV_REMOVAL;

w83c553->isaOps->open = (KnError(*)())downError;
w83c553->isaOps->intr_attach = (KnError(*)())downError;
w83c553->isaOps->io_map = (KnError(*)())downError;
w83c553->isaOps->mem_map = (KnError(*)())downError;
w83c553->isaOps->dma_attach = (KnError(*)())downError;
w83c553->isaOps->resource_alloc = (KnError(*)())downError;
w83c553->busOps->open = (KnError(*)())downError;
w83c553->busOps->intr_attach = (KnError(*)())downError;
w83c553->busOps->io_map = (KnError(*)())downError;
w83c553->busOps->mem_map = (KnError(*)())downError;

isaDev = w83c553->dev;

while (isaDev) {
isaDev->evtHandler(isaDev->cookie, ISA_DEV_REMOVAL, arg);
isaDev = isaDev->next;

}
removal(w83c553);
DKI_MSG(("%s: entered into removal mode\n", w83c553->path));
}
break;
}
#endif
/*
* WB83C553 does not drive the SERR# pin (p 55)
* and don't care about palette snoop
*/
default:
res = K_ENOTIMP;
}
return res;
}

Hot-Plug Removal
The hot-plug removal event is typically reported via interrupts.

To be notified when the hot-plug removal occurs, the bus driver connects an
interrupt handler to an appropriate interrupt source. Consider two typical
mechanisms of hot-plug removal:

surprise removal Surprise removal means a device can be removed
at any time with no warning. For instance,
PCMCIA is a surprise removal device.

non-surprise removal Non-surprise removal means that the device
cannot be removed until the system is prepared

Writing Bus Drivers 83



for it. For instance, Hot-Plug CompactPCl is a
non-surprise removal device.

Surprise Removal

The surprise removal interrupt notifies the bus driver that a device has been
removed from the bus. The bus driver interrupt handler usually detects the removed
device (and associated device node) using bus specific status register(s).

Once the device is detected, the interrupt handler checks whether the device node is
active. If the device node is inactive (there is no driver instance servicing the device),
the only task of the bus driver is to update the device tree removing the device node.
This frees all bus resources associated with the node .

Note - The bus driver is not able to accomplish this task immediately at interrupt
level because the services used are typically not available at interrupt level. These
types of services can typically be called in the DKI thread context only.

To satisfy the invocation context requirements, the bus driver calls
svDkiThreadTrigger requesting the DKI thread to invoke the removal procedure.
Using the DKI thread also allows you to serialize all actions related to initialization
and termination operations.

If the device node is active, the bus driver must shutdown the corresponding device
driver instance prior to invoking the removal procedure. To accomplish this task, the
bus driver invokes the device driver event handler signaling the DEV_REMOVAL
event. In fact, the bus driver performs the shutdown prolog for the given driver
instance (see the “Write Event Handler Function” on page 79 section). In other
words, the bus driver initiates the shutdown process for the given device sub-tree.
(The removed device node is the root of the sub-tree.)

As the last action in the shutdown event process, the child device driver closes the
connection to the bus driver and, at this moment, the bus driver performs the
removal procedure. Note that the removal procedure is executed in the DKI thread
context because the close service routine is called in the DKI thread context.

Non-Surprise Removal

The non-surprise removal interrupt requests the bus driver to enable the device
removal from the bus. This is discussed at length above (in the Surprise
Removalsection). The difference between surprise and non-surprise removal is that in
non-surprise removal, the bus driver requests the normal device shutdown service
(DEV_SHUTDOVWHAKather than the device removal service ( DEV_REMOVAL

84 ChorusOS 4.0 Device Driver Framework Guide ¢ December 1999



In addition, once the device tree is updated, the bus driver enables the device
removal. Device removal enabling is usually signaled by an LED, and/or by a card
ejection mechanism.

Write Load Handler Function

The load handler function resides in the bus driver, and is invoked by the parent
bus/nexus driver when a new driver appears in the system (as when a new driver is
downloaded at run time). The load handler address is given to the bus/nexus driver
when a connection is established between the child driver and its parent bus/nexus
driver.

Note - The load handler is optional. Load handler functions are usually used by a
bus-to-bus bridge which needs to apply a newly downloaded driver to its child
devices.

The actions taken by the load handler are essentially the same as those in the
initialization process, even though the bus/nexus device is already initialized:

child device nodes creation (enumeration/probing)
resource allocation for the newly created child nodes

1

2

3. driver-to-device binding

4. driver instances creation for non-active child device nodes
5

child load handlers invocation

Firstly, the bus/nexus driver invokes the probe routines registered in the driver
registry matching the bus/nexus class. The probing loop example given above in
“Write the Probe Function” on page 69 may be used as-is within the load handler.
Note that the probe routines already invoked at initalization time will probably be
invoked again.

Note that (as described in the “Write the Probe Function” on page 69 section) a probe
routine must be aware of existing device nodes to avoid the creation of redundant
nodes. In addition, a probe routine must explicitly ask for bus resources (being used
for probing) to avoid conflicts with bus resources currently in use.

In this way, the active device nodes and associated running driver instances are
protected against any disturbance caused by run-time probing. The probing process
may create new child device nodes because a new probe routine (implemented by a
newly downloaded driver) may be executed and, as a consequence, it may discover a
device previously unknown in the system.

Writing Bus Drivers 85



For this reason, the bus/nexus driver has to check/Zallocate the bus resources
required for these device nodes. Note that to satisfy this run-time resource request,
the bus/nexus driver may need to confiscate resources already assigned to existing
device nodes.

The bus/nexus driver is not allowed to confiscate resources in use (resources assigned
to active device nodes). Driver instances associated with an active node must be
shutdown by the bus/nexus driver before they can be re-allocated. To shutdown a
driver instance, the bus/nexus driver sends a shutdown event to the child driver,
requesting closure of the child-to-parent driver connection (by invoking close ).

Once the connection is closed, the resources are freed (and may be re-allocated). The
bus/nexus driver should start the driver instance again, invoking the driver
drv_init routine.

Once the bus resource allocation is done, the bus/nexus driver calls the drv_bind
routines registered in the driver registry for each inactive device node (as explained
in the “Write the Bind Function” on page 71 section).

Once the driver-to-device binding is done, the bus/nexus driver iterates through the
child nodes and, for each inactive device node, determines the driver component to
be applied to the given device. Once a driver component is found, the bus/nexus
driver calls the driver drv_init routine (see section entitled “Write the Init
Function” on page 72).

Finally, the bus/nexus driver invokes the child load handlers (if any) to propagate
the loading process downstream (from parent to child). In this way, the loading
process is recursively continued by the child driver load handler. The load handler is
called in the context of DKI thread. This means that it can call all services, without
worrying about synchronization, even those DKI services which can only be called in
the DKI thread.

The following example shows the load handler of the PCI-to-ISA bridge driver.

/*
* The load handler is invoked by the parent driver (i.e. PCI bus)
* when a new driver has been registered in the system (e.g. a
* loadable driver has been downloaded).
*/
static void
pciLoadHandler (void* cookie)
{
W83c553Data* w83c553 = (W83c553Data*)cookie;
IsaDev* isaDev;
/*
* Perform inactive children probing / initialization to start
* instances of the new loaded driver
*/
childrenProbelnit(w83c553);
/*
* Propagate to all load handlers connected by the device drivers.
*/
isaDev = w83c553->dev;
while (isaDev) {
if (isaDev->loadHandler) {

86 ChorusOS 4.0 Device Driver Framework Guide ¢ December 1999



isaDev->loadHandler(isaDev->cookie);

}

isaDev = isaDev->next;

Writing Bus Drivers 87



88 ChorusOS 4.0 Device Driver Framework Guide ¢ December 1999



APPENDIX A

Further Information

Type of Information

Information Location

List of common DKI services available

List of Processor-family specific DKI
services available

Details regarding one processor-family
specific DKI service

List of defined DDI APIs

Detailed information regarding one
specific DDI API

List of existing device drivers

Details regarding the configuration and
implementation of a driver for a
particular device

Header file(s) for a particular DDI
interface class (c)

Header file(s) - for common DKI services
- for family-specific DKI services

Property header file for a chip driver
implementation of class ’c’

Implementation files for a chip device
driver

intro (9DKI) man page
intro (9DKI) man page

Appropriate 9DKI man page

intro (9DDI) man page
Appropriate 9DDI man page

Intro.9drv man page

Appropriate 9DRV man page

include/chorus/ddi/c/*.h

include/chorus/dki/dki.h include/
chorus/dki/f_dki.h

include/chorus/drv/c/chip/chipProp.h

src/nucleus/bsp/drv/src/c/chip/* src/
nucleus/bsp/family/drv_f/src/c/chip/

*

89



90 ChorusOS 4.0 Device Driver Framework Guide ¢ December 1999



Index

A
actor 21
APl 39, 63

architecture 12

B

bind 5, 19, 20, 71, 86
bus events 4, 54
busy wait 34

C

cache management 38
commands
device tree 30
DKI thread 28
driver registry 31
event management 35
I/0 36
interrupts masking 35
memory allocation 33
thread 36

timeout 34
wait 34
common

driver services 27
conventions 23

ASSERT macro 25

driver information 24

message logging 25

naming 24

D

DDI 17, 22, 39
deferred driver initialization
DKI thread 28
device hierarchy 14
device registry
definition of 19
device tree 29
commands 30
definition of 19

Direct Memory Access (DMA) 33

DISABLE_PREEMPT() 36
DKI 16, 22, 39, 56, 63, 77

processor family specific services 37

thread 27

thread commands 28
driver

bind 4, 46

common bus API services

init 4, 47

initialization 19

load 4, 51

probe 4, 45

register 4, 40, 64

writing 4,

writing class-specific functions

driver framework
API 15
driver registry 18
commands 31
driver-to-device binding 71
DRV 22

66

66

91



DRV_F 22
dynamic loading/unloading
driver 20

E

ENABLE_PREEMPT() 36
event handler 5, 79, 84
event management 35

F

family-specific drivers 22

file
header 21
Imakefile 21
implementation 21
location 22
Makefile 21

function
bind 5, 19, 20, 40, 64, 71, 86
device driver-class-specific 42
event handler 4,5, 54, 79, 84
general 66
init 5, 19, 20, 41, 65, 72, 86
load handler 5, 85
main 4, 19, 20, 40, 64
probe 5, 19, 20, 40, 64, 69, 85
unload 4,5, 19, 41, 51, 65, 76

H

header file 21

hierarchy 14

hot-pluggable device drivers
DKI thread 28

1/0 services 36, 38

imake 21

Imakefile 21

implementation file 21
implementation, device driver 11
init 5, 19, 20, 72, 86

initialization 19, 20, 28

driver 19
microkernel 19, 20
interface

bus/driver 18
device driver 17, 18
driver/kernel 16
interrupt 35
interrupt management 37
interrupts 20

L
load handler 5, 20, 85

M

main() 20

Makefile 21

memory allocation 33
commands 33

memory mapping 38

microkernel
initialization 19, 20

N

naming conventions 24
non-surprise removal 83

P

probe 5, 19, 20, 69, 85
processor family specific 37

R

register
driver 40

registration
device 29
driver 29

registry
driver 18

removal, non-surprise 84
removal, surprise 84
resource allocation 86

S

shutdown 54
DEV_REMOVAL 79
DEV_SHUTDOWN 79

92 ChorusOS 4.0 Device Driver Framework Guide ¢ December 1999



SYS_ SHUTDOWN 79
supervisor actor 21
surprise removal 83
syncronisation 27

T

thread
DKl 27
thread preemption 36
timeout 34
tree

ddi 22
dki 22
drv 22
drv_f 22

U
unload 5, 19, 76

W

wait command 34

93



