D Sun.

microsystems

ChorusOS man pages section
2DL: Data Link Services

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303-4900
US.A.

Part No: 806-3325
December 10, 1999

Copyright 1999 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun
and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, ChorusOS, and Solaris are trademarks, registered
trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are
based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer
industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who
implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and
FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 1999 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, Californie 94303-4900 Etats-Unis. Tous droits réserveés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent I’utilisation, la copie, la distribution, et
la décompilation. Aucune partie de ce produit ou document ne peut étre reproduite sous aucune forme, par quelque moyen que ce soit, sans
I'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie
relative aux polices de caractéres, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront étre dérivées du systéme Berkeley BSD licenciés par I’'Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, ChorusOS, et Solaris sont des marques de fabrique ou des
marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont
utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres
pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L'interface dutilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnait les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour I'industrie de I'informatique. Sun détient une licence non exclusive de Xerox sur I'interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place I'interface d’utilisation graphiqgue OPEN LOOK et qui en outre se
conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L'ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N'EST ACCORDEE, Y COMPRIS
DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

. 4.4
ca &S
Adobe PostScript Please

Recycle

Contents

PREFACE 5

svDataLink(2DL) 11
svDataLinkAttach(2DL) 11
svOutFrameFree(2DL) 11
svinputFrameDeliver(2DL) 11
svDataLink(2DL) 15
svDataLinkAttach(2DL) 15
svOutFrameFree(2DL) 15
svinputFrameDeliver(2DL) 15
svDataLink(2DL) 19
svDataLinkAttach(2DL) 19
svOutFrameFree(2DL) 19
svinputFrameDeliver(2DL) 19
svDataLink(2DL) 23
svDataLinkAttach(2DL) 23
svOutFrameFree(2DL) 23
svinputFrameDeliver(2DL) 23
Index 26

Contents 3

4

ChorusOS man pages section 2DL: Data Link Services ¢ December 10, 1999

PREFACE

Overview

A man page is provided for both the naive user, and sophisticated user who is familiar
with the ChorusOS™ operating system and is in need of on-line information. A man
page is intended to answer concisely the question “What does it do?” The man pages in
general comprise a reference manual. They are not intended to be a tutorial.

The following is a list of sections in the ChorusOS man pages and the information
it references:

Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section

1CC: User Utilities; Host and Target Utilities

1M: System Management Ultilities

2DL: System Calls; Data Link Services

2K: System Calls; Kernel Services

2MON: System Calls; Monitoring Services

2POSIX: System Calls; POSIX System Calls
2RESTART: System Calls; Hot Restart and Persistent Memory
2SEG: System Calls; Virtual Memory Segment Services
3FTPD: Libraries; FTP Daemon

3M: Libraries; Mathematical Libraries

3POSIX: Libraries; POSIX Library Functions

3RPC: Libraries; RPC Services

3STDC: Libraries; Standard C Library Functions
3TELD: Libraries; Telnet Services

4CC: Files

PREFACE 5

Section
Section
Section
Section
Section

Section

ChorusOS
per section

Below is a

5FEA: ChorusOS Features and APIs
7P: Protocols

7S: Services

9DDI: Device Driver Interfaces
9DKI: Driver to Kernel Interface
9DRV: Driver Implementations

man pages are grouped in Reference Manuals, with one reference manual

generic format for man pages. The man pages of each manual section

generally follow this order, but include only needed headings. For example, if there are

no bugs to

report, there is no BUGS section. See the intro pages for more information

and detail about each section, and man(1) for more information about man pages in

general.

NAME

SYNOPSIS

This section gives the names of the commands
or functions documented, followed by a brief
description of what they do.

This section shows the syntax of commands or
functions. When a command or file does not
exist in the standard path, its full pathname is
shown. Options and arguments are alphabetized,
with single letter arguments first, and options
with arguments next, unless a different argument
order is required.

The following special characters are used in
this section:

[1] The option or argument enclosed in these
brackets is optional. If the brackets are
omitted, the argument must be specified.

Ellipses. Several values may be
provided for the previous argument,
or the previous argument can be
specified multiple times, for example, *
"filename .. .".

| Separator. Only one of the arguments
separated by this character can be
specified at time.

{} Braces. The options and/or
arguments enclosed within braces are

6 ChorusOS man pages section 2DL: Data Link Services ¢ December 10, 1999

FEATURES

DESCRIPTION

OPTIONS

OPERANDS

OUTPUT

RETURN VALUES

ERRORS

interdependent, such that everything
enclosed must be treated as a unit.

This section provides the list of features which
offer an interface. An APl may be associated with
one or more system features. The interface will
be available if one of the associated features

has been configured.

This section defines the functionality and
behavior of the service. Thus it describes
concisely what the command does. It does not
discuss OPTIONS or cite EXAMPLES.. Interactive
commands, subcommands, requests, macros,
functions and such, are described under USAGE.

This lists the command options with a concise
summary of what each option does. The options
are listed literally and in the order they appear
in the SYNOPSIS section. Possible arguments

to options are discussed under the option, and
where appropriate, default values are supplied.

This section lists the command operands and
describes how they affect the actions of the
command.

This section describes the output - standard
output, standard error, or output files - generated
by the command.

If the man page documents functions that
return values, this section lists these values and
describes the conditions under which they are
returned. If a function can return only constant
values, such as 0 or -1, these values are listed
in tagged paragraphs. Otherwise, a single
paragraph describes the return values of each
function. Functions declared void do not return
values, so they are not discussed in RETURN
VALUES.

On failure, most functions place an error code in
the global variable errno indicating why they
failed. This section lists alphabetically all error
codes a function can generate and describes the
conditions that cause each error. When more than
one condition can cause the same error, each
condition is described in a separate paragraph
under the error code.

USAGE

EXAMPLES

ENVIRONMENT VARIABLES

EXIT STATUS

FILES

SEE ALSO

DIAGNOSTICS

WARNINGS

NOTES

This section is provided as a guidance on use.
This section lists special rules, features and
commands that require in-depth explanations.
The subsections listed below are used to explain
built-in functionality:

Commands .
Th|,§/I %Flﬁgp provides examples of usage or of
iflers .
hoW Yge.a command or function. Wherever
pogsy gsi:&qnplete example including command
Iin? n mgphine response is shown.

n T .
Whenever an example is given, the prompt is
shown as example% or if the user must be
superuser, example# . Examples are followed
by explanations, variable substitution rules,
or returned values. Most examples illustrate
concepts from the SYNOPSIS, DESCRIPTION,
OPTIONS and USAGE sections.

This section lists any environment variables that
the command or function affects, followed by a
brief description of the effect.

This section lists the values the command returns
to the calling program or shell and the conditions
that cause these values to be returned. Usually,
zero is returned for successful completion

and values other than zero for various error
conditions.

This section lists all filenames referred to by the
man page, files of interest, and files created or
required by commands. Each is followed by a
descriptive summary or explanation.

This section lists references to other man
pages, in-house documentation and outside
publications.

This section lists diagnostic messages with a brief
explanation of the condition causing the error.

This section lists warnings about special
conditions which could seriously affect your
working conditions. This is not a list of
diagnostics.

This section lists additional information that
does not belong anywhere else on the page. It
takes the form of an aside to the user, covering
points of special interest. Critical information is
never covered here.

8 ChorusOS man pages section 2DL: Data Link Services ¢ December 10, 1999

BUGS This section describes known bugs and wherever
possible, suggests workarounds.

CHAPTER

Data Link Services

10

Data Link Services

NAME

SYNOPSIS

FEATURES
DESCRIPTION

svDataLink(2DL)

svDataLink, svDataLinkAttach, svOutFrameFree, svinputFrameDeliver — Attach
a Chorus IPC Data Link Driver; Free an outgoing frame; Deliver an incoming
frame

#include <ipc/extDtLink.h>
int svDataLinkAttach (ExtDtLink * dtLink);

void svOutFrameFree (CnOutFrame * outFrame);

void svinputFrameDeliver (ExtDtLink * dtLink, CnInFrame * inputFr);
IPC_REMOTE

ChorusOS includes an implementation of remote Chorus IPC over Ethernet
(through the DATALINK_INET feature, when combined with ETHERNET). The
system calls described below allow users to implement the transmission of
Chorus IPC messages over other network types. To implement Chorus IPC over
a new network medium, perform the following steps:

m Unset any DATALINK _ features from the system configuration.

m Load a supervisor actor which declares itself to the ChorusOS kernel using
the svDataLinkAttach system call. This actor is called a data link driver .

The primary function of a data link driver is to transmit Chorus IPC message
frames between Chorus sites, in both unicast and broadcast modes. The
maximum frame size is defined by the data link driver, rather than being
imposed by the ChorusOS kernel. The only transmission guarantee expected
from the data link driver is frame integrity (the data link driver must insure that
the frame contents are preserved during transmission). In addition, to ensure
proper Chorus IPC performance, the data link driver should transmit every
frame and maintain a FIFO ordering. Disordered or lost frames are tolerated by
IPC protocols, but should be avoided.

svDatalLinkAttach function registers a new data link driver. The dtLink parameter
is a pointer to an ExtDtLink structure whose members are the following:

typedef struct ExtDtLink_t {
void* cookie; /* Reserved - only used by the kernel */
char* dtLinkName; /* Data link driver name */
unsigned int frameHdrSize; /* e.g. 14 for Ethernet */
unsigned int maxFrameSize; /* Must include frameHdrSize */

FrameSend frameSend; /* To a particular remote site */
FrameSend frameBcast; /* To all reachable sites */
} ExtDtLink;

The data link driver sends the following information to the ChorusOS kernel:

Last modified December 1999 Chorus0S 4.0 11

svDatalLink(2DL)

12

Data Link Services

m The name of the data link driver as a character string, pointed to by
dtLinkName .

m The size of its frame header,expressed in bytes in frameHdrSize; this
information will allow the kernel to allocate room for the data link header
within each frame.

m The maximum frame size (including the frame header), expressed in bytes
in maxframeSize

m The function which the kernel will invoke when sending a unicast frame,
in frameSend .

m The function which the kernel will invoke when sending a broadcast frame,
in frameBcast .

Both frameSend and frameBcast are pointers to functions whose arguments are
the following:

void frameSend (
CnOutFrame* frame,
ExtDtLink* dtLink);

The dtLink parameter is a pointer to the ExtDtLink structure declared by the
data link driver when it attaches itself. The frame parameter is a pointer to a
CnOutFrame structure, which describes the frame to be sent, as follows:

typedef struct CnOutFrame_t {
struct CnOutFrame_t* next;

unsigned int totalLength;
MemBuffer* bufList;
unsigned int destSite;

} CnOutFrame;

The destSite parameter identifies the Chorus site number to the frameSend
function. When sent to the frameBcast function, destSite is set to OXFFFFFFFF.
This allows data link drivers to implement a single function, and to check for
broadcast mode from the destination site number.

The bufList parameter is the first of a single-linked list of MemBuffer structures
which describe the memory buffers holding the frame data, as follows:

typedef struct MemBuffer_t {
struct MemBuffer_t* next;

char* address;
unsigned int size;
} MemBuffer;
Chorus0S 4.0 Last modified December 1999

Data Link Services

RETURN VALUE

svDataLink(2DL)

The next pointer indicates the next MemBuffer on the list, and is NULL in the
last buffer. The address pointer indicates the first byte of the memory buffer, and
size is the size of the memory buffer, expressed in bytes.

The total frame size is given by totalLength, and is assumed to be lower than or
equal to the maxFrameSize field of dtLink.

When a frame is passed to the data link driver, the space for storing the data
link header has been reserved at the beginning of the first memory buffer. The
size field of the first memory buffer, as well as the totalLength field of the frame
descriptor both include the size of the data link header.

When the data link driver is invoked to send a frame, it should perform the
following functions:

m Resolve the address(es) of the destination node(s) from the Chorus site
number (destSite).

m Update its header within the frame.
m Send or broadcast the frame.

The frameSend function may be invoked from an interrupt (time-out handler)
by the kernel.

When a frame has been sent, the data link driver must invoke svOutFrameFree in
order to notify the kernel that the frame data can be freed.

When receiving a frame from the network, the data link driver must invoke the
svinputFrameDeliver system call. The dtLink parameter is a pointer to the data
link descriptor, inputFr is a pointer to the CninFrame structure, which describes
the frame received, as follows:
typedef struct CninFrame_t {

struct CninFrame_t* next;

unsigned int totalLength;

MemBuffer* bufList;
} CninFrame;

The next , totalLength and bufList have the same meanings as in the CnOutFrame
structure.

The svinputFrameDeliver function is intended to be invoked from an interrupt.
Upon return from svinputFrameDeliver, the data described by inputFr has been
copied by the kernel into receiver memory, and the data link driver can reuse it
(for example, put it back into a network controller receive ring).

The svDataLinkAttach function returns a value of 0 when successfully completed.
Otherwise, a negative error code is returned.

Last modified December 1999 Chorus0S 4.0 13

svDatalLink(2DL)

14

ERRORS

ATTRIBUTES

[K_EINVAL]
[K_ENOMEM]

Data Link Services

A data link driver has already declared itself.

The system is out of resources.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Evolving

ChorusOS 4.0

Last modified December 1999

Data Link Services

NAME

SYNOPSIS

FEATURES
DESCRIPTION

svDataLinkAttach(2DL)

svDataLink, svDataLinkAttach, svOutFrameFree, svinputFrameDeliver — Attach
a Chorus IPC Data Link Driver; Free an outgoing frame; Deliver an incoming
frame

#include <ipc/extDtLink.h>
int svDataLinkAttach (ExtDtLink * dtLink);

void svOutFrameFree (CnOutFrame * outFrame);

void svinputFrameDeliver (ExtDtLink * dtLink, CnInFrame * inputFr);
IPC_REMOTE

ChorusOS includes an implementation of remote Chorus IPC over Ethernet
(through the DATALINK_INET feature, when combined with ETHERNET). The
system calls described below allow users to implement the transmission of
Chorus IPC messages over other network types. To implement Chorus IPC over
a new network medium, perform the following steps:

m Unset any DATALINK _ features from the system configuration.

m Load a supervisor actor which declares itself to the ChorusOS kernel using
the svDataLinkAttach system call. This actor is called a data link driver .

The primary function of a data link driver is to transmit Chorus IPC message
frames between Chorus sites, in both unicast and broadcast modes. The
maximum frame size is defined by the data link driver, rather than being
imposed by the ChorusOS kernel. The only transmission guarantee expected
from the data link driver is frame integrity (the data link driver must insure that
the frame contents are preserved during transmission). In addition, to ensure
proper Chorus IPC performance, the data link driver should transmit every
frame and maintain a FIFO ordering. Disordered or lost frames are tolerated by
IPC protocols, but should be avoided.

svDatalLinkAttach function registers a new data link driver. The dtLink parameter
is a pointer to an ExtDtLink structure whose members are the following:

typedef struct ExtDtLink_t {
void* cookie; /* Reserved - only used by the kernel */
char* dtLinkName; /* Data link driver name */
unsigned int frameHdrSize; /* e.g. 14 for Ethernet */
unsigned int maxFrameSize; /* Must include frameHdrSize */

FrameSend frameSend; /* To a particular remote site */
FrameSend frameBcast; /* To all reachable sites */
} ExtDtLink;

The data link driver sends the following information to the ChorusOS kernel:

Last modified December 1999 Chorus0S 4.0 15

svDataLinkAttach(2DL) Data Link Services

16

m The name of the data link driver as a character string, pointed to by
dtLinkName .

m The size of its frame header,expressed in bytes in frameHdrSize; this
information will allow the kernel to allocate room for the data link header
within each frame.

m The maximum frame size (including the frame header), expressed in bytes
in maxframeSize

m The function which the kernel will invoke when sending a unicast frame,
in frameSend .

m The function which the kernel will invoke when sending a broadcast frame,
in frameBcast .

Both frameSend and frameBcast are pointers to functions whose arguments are
the following:

void frameSend (
CnOutFrame* frame,
ExtDtLink* dtLink);

The dtLink parameter is a pointer to the ExtDtLink structure declared by the
data link driver when it attaches itself. The frame parameter is a pointer to a
CnOutFrame structure, which describes the frame to be sent, as follows:

typedef struct CnOutFrame_t {
struct CnOutFrame_t* next;

unsigned int totalLength;
MemBuffer* bufList;
unsigned int destSite;

} CnOutFrame;

The destSite parameter identifies the Chorus site number to the frameSend
function. When sent to the frameBcast function, destSite is set to OXFFFFFFFF.
This allows data link drivers to implement a single function, and to check for
broadcast mode from the destination site number.

The bufList parameter is the first of a single-linked list of MemBuffer structures
which describe the memory buffers holding the frame data, as follows:

typedef struct MemBuffer_t {
struct MemBuffer_t* next;

char* address;
unsigned int size;
} MemBuffer;
Chorus0S 4.0 Last modified December 1999

Data Link Services

RETURN VALUE

svDataLinkAttach(2DL)

The next pointer indicates the next MemBuffer on the list, and is NULL in the
last buffer. The address pointer indicates the first byte of the memory buffer, and
size is the size of the memory buffer, expressed in bytes.

The total frame size is given by totalLength, and is assumed to be lower than or
equal to the maxFrameSize field of dtLink.

When a frame is passed to the data link driver, the space for storing the data
link header has been reserved at the beginning of the first memory buffer. The
size field of the first memory buffer, as well as the totalLength field of the frame
descriptor both include the size of the data link header.

When the data link driver is invoked to send a frame, it should perform the
following functions:

m Resolve the address(es) of the destination node(s) from the Chorus site
number (destSite).

m Update its header within the frame.
m Send or broadcast the frame.

The frameSend function may be invoked from an interrupt (time-out handler)
by the kernel.

When a frame has been sent, the data link driver must invoke svOutFrameFree in
order to notify the kernel that the frame data can be freed.

When receiving a frame from the network, the data link driver must invoke the
svinputFrameDeliver system call. The dtLink parameter is a pointer to the data
link descriptor, inputFr is a pointer to the CninFrame structure, which describes
the frame received, as follows:
typedef struct CninFrame_t {

struct CninFrame_t* next;

unsigned int totalLength;

MemBuffer* bufList;
} CninFrame;

The next , totalLength and bufList have the same meanings as in the CnOutFrame
structure.

The svinputFrameDeliver function is intended to be invoked from an interrupt.
Upon return from svinputFrameDeliver, the data described by inputFr has been
copied by the kernel into receiver memory, and the data link driver can reuse it
(for example, put it back into a network controller receive ring).

The svDataLinkAttach function returns a value of 0 when successfully completed.
Otherwise, a negative error code is returned.

Last modified December 1999 Chorus0S 4.0 17

svDataLinkAttach(2DL)

18

ERRORS

ATTRIBUTES

[K_EINVAL]
[K_ENOMEM]

Data Link Services

A data link driver has already declared itself.

The system is out of resources.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Evolving

ChorusOS 4.0

Last modified December 1999

Data Link Services

NAME

SYNOPSIS

FEATURES
DESCRIPTION

svinputFrameDeliver(2DL)

svDataLink, svDataLinkAttach, svOutFrameFree, svinputFrameDeliver — Attach
a Chorus IPC Data Link Driver; Free an outgoing frame; Deliver an incoming
frame

#include <ipc/extDtLink.h>
int svDataLinkAttach (ExtDtLink * dtLink);

void svOutFrameFree (CnOutFrame * outFrame);

void svinputFrameDeliver (ExtDtLink * dtLink, CnInFrame * inputFr);
IPC_REMOTE

ChorusOS includes an implementation of remote Chorus IPC over Ethernet
(through the DATALINK_INET feature, when combined with ETHERNET). The
system calls described below allow users to implement the transmission of
Chorus IPC messages over other network types. To implement Chorus IPC over
a new network medium, perform the following steps:

m Unset any DATALINK _ features from the system configuration.

m Load a supervisor actor which declares itself to the ChorusOS kernel using
the svDataLinkAttach system call. This actor is called a data link driver .

The primary function of a data link driver is to transmit Chorus IPC message
frames between Chorus sites, in both unicast and broadcast modes. The
maximum frame size is defined by the data link driver, rather than being
imposed by the ChorusOS kernel. The only transmission guarantee expected
from the data link driver is frame integrity (the data link driver must insure that
the frame contents are preserved during transmission). In addition, to ensure
proper Chorus IPC performance, the data link driver should transmit every
frame and maintain a FIFO ordering. Disordered or lost frames are tolerated by
IPC protocols, but should be avoided.

svDatalLinkAttach function registers a new data link driver. The dtLink parameter
is a pointer to an ExtDtLink structure whose members are the following:

typedef struct ExtDtLink_t {
void* cookie; /* Reserved - only used by the kernel */
char* dtLinkName; /* Data link driver name */
unsigned int frameHdrSize; /* e.g. 14 for Ethernet */
unsigned int maxFrameSize; /* Must include frameHdrSize */

FrameSend frameSend; /* To a particular remote site */
FrameSend frameBcast; /* To all reachable sites */
} ExtDtLink;

The data link driver sends the following information to the ChorusOS kernel:

Last modified December 1999 Chorus0S 4.0 19

svinputFrameDeliver(2DL) Data Link Services

20

m The name of the data link driver as a character string, pointed to by
dtLinkName .

m The size of its frame header,expressed in bytes in frameHdrSize; this
information will allow the kernel to allocate room for the data link header
within each frame.

m The maximum frame size (including the frame header), expressed in bytes
in maxframeSize

m The function which the kernel will invoke when sending a unicast frame,
in frameSend .

m The function which the kernel will invoke when sending a broadcast frame,
in frameBcast .

Both frameSend and frameBcast are pointers to functions whose arguments are
the following:

void frameSend (
CnOutFrame* frame,
ExtDtLink* dtLink);

The dtLink parameter is a pointer to the ExtDtLink structure declared by the
data link driver when it attaches itself. The frame parameter is a pointer to a
CnOutFrame structure, which describes the frame to be sent, as follows:

typedef struct CnOutFrame_t {
struct CnOutFrame_t* next;

unsigned int totalLength;
MemBuffer* bufList;
unsigned int destSite;

} CnOutFrame;

The destSite parameter identifies the Chorus site number to the frameSend
function. When sent to the frameBcast function, destSite is set to OXFFFFFFFF.
This allows data link drivers to implement a single function, and to check for
broadcast mode from the destination site number.

The bufList parameter is the first of a single-linked list of MemBuffer structures
which describe the memory buffers holding the frame data, as follows:

typedef struct MemBuffer_t {
struct MemBuffer_t* next;

char* address;
unsigned int size;
} MemBuffer;
Chorus0S 4.0 Last modified December 1999

Data Link Services

RETURN VALUE

svinputFrameDeliver(2DL)

The next pointer indicates the next MemBuffer on the list, and is NULL in the
last buffer. The address pointer indicates the first byte of the memory buffer, and
size is the size of the memory buffer, expressed in bytes.

The total frame size is given by totalLength, and is assumed to be lower than or
equal to the maxFrameSize field of dtLink.

When a frame is passed to the data link driver, the space for storing the data
link header has been reserved at the beginning of the first memory buffer. The
size field of the first memory buffer, as well as the totalLength field of the frame
descriptor both include the size of the data link header.

When the data link driver is invoked to send a frame, it should perform the
following functions:

m Resolve the address(es) of the destination node(s) from the Chorus site
number (destSite).

m Update its header within the frame.
m Send or broadcast the frame.

The frameSend function may be invoked from an interrupt (time-out handler)
by the kernel.

When a frame has been sent, the data link driver must invoke svOutFrameFree in
order to notify the kernel that the frame data can be freed.

When receiving a frame from the network, the data link driver must invoke the
svinputFrameDeliver system call. The dtLink parameter is a pointer to the data
link descriptor, inputFr is a pointer to the CninFrame structure, which describes
the frame received, as follows:
typedef struct CninFrame_t {

struct CninFrame_t* next;

unsigned int totalLength;

MemBuffer* bufList;
} CninFrame;

The next , totalLength and bufList have the same meanings as in the CnOutFrame
structure.

The svinputFrameDeliver function is intended to be invoked from an interrupt.
Upon return from svinputFrameDeliver, the data described by inputFr has been
copied by the kernel into receiver memory, and the data link driver can reuse it
(for example, put it back into a network controller receive ring).

The svDataLinkAttach function returns a value of 0 when successfully completed.
Otherwise, a negative error code is returned.

Last modified December 1999 Chorus0S 4.0 21

svinputFrameDeliver(2DL)

22

ERRORS

ATTRIBUTES

[K_EINVAL]
[K_ENOMEM]

Data Link Services

A data link driver has already declared itself.

The system is out of resources.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Evolving

ChorusOS 4.0

Last modified December 1999

Data Link Services

NAME

SYNOPSIS

FEATURES
DESCRIPTION

svOutFrameFree(2DL)

svDataLink, svDataLinkAttach, svOutFrameFree, svinputFrameDeliver — Attach
a Chorus IPC Data Link Driver; Free an outgoing frame; Deliver an incoming
frame

#include <ipc/extDtLink.h>
int svDataLinkAttach (ExtDtLink * dtLink);

void svOutFrameFree (CnOutFrame * outFrame);

void svinputFrameDeliver (ExtDtLink * dtLink, CnInFrame * inputFr);
IPC_REMOTE

ChorusOS includes an implementation of remote Chorus IPC over Ethernet
(through the DATALINK_INET feature, when combined with ETHERNET). The
system calls described below allow users to implement the transmission of
Chorus IPC messages over other network types. To implement Chorus IPC over
a new network medium, perform the following steps:

m Unset any DATALINK _ features from the system configuration.

m Load a supervisor actor which declares itself to the ChorusOS kernel using
the svDataLinkAttach system call. This actor is called a data link driver .

The primary function of a data link driver is to transmit Chorus IPC message
frames between Chorus sites, in both unicast and broadcast modes. The
maximum frame size is defined by the data link driver, rather than being
imposed by the ChorusOS kernel. The only transmission guarantee expected
from the data link driver is frame integrity (the data link driver must insure that
the frame contents are preserved during transmission). In addition, to ensure
proper Chorus IPC performance, the data link driver should transmit every
frame and maintain a FIFO ordering. Disordered or lost frames are tolerated by
IPC protocols, but should be avoided.

svDatalLinkAttach function registers a new data link driver. The dtLink parameter
is a pointer to an ExtDtLink structure whose members are the following:

typedef struct ExtDtLink_t {
void* cookie; /* Reserved - only used by the kernel */
char* dtLinkName; /* Data link driver name */
unsigned int frameHdrSize; /* e.g. 14 for Ethernet */
unsigned int maxFrameSize; /* Must include frameHdrSize */

FrameSend frameSend; /* To a particular remote site */
FrameSend frameBcast; /* To all reachable sites */
} ExtDtLink;

The data link driver sends the following information to the ChorusOS kernel:

Last modified December 1999 Chorus0S 4.0 23

svOutFrameFree(2DL)

24

Data Link Services

m The name of the data link driver as a character string, pointed to by
dtLinkName .

m The size of its frame header,expressed in bytes in frameHdrSize; this
information will allow the kernel to allocate room for the data link header
within each frame.

m The maximum frame size (including the frame header), expressed in bytes
in maxframeSize

m The function which the kernel will invoke when sending a unicast frame,
in frameSend .

m The function which the kernel will invoke when sending a broadcast frame,
in frameBcast .

Both frameSend and frameBcast are pointers to functions whose arguments are
the following:

void frameSend (
CnOutFrame* frame,
ExtDtLink* dtLink);

The dtLink parameter is a pointer to the ExtDtLink structure declared by the
data link driver when it attaches itself. The frame parameter is a pointer to a
CnOutFrame structure, which describes the frame to be sent, as follows:

typedef struct CnOutFrame_t {
struct CnOutFrame_t* next;

unsigned int totalLength;
MemBuffer* bufList;
unsigned int destSite;

} CnOutFrame;

The destSite parameter identifies the Chorus site number to the frameSend
function. When sent to the frameBcast function, destSite is set to OXFFFFFFFF.
This allows data link drivers to implement a single function, and to check for
broadcast mode from the destination site number.

The bufList parameter is the first of a single-linked list of MemBuffer structures
which describe the memory buffers holding the frame data, as follows:

typedef struct MemBuffer_t {
struct MemBuffer_t* next;

char* address;
unsigned int size;
} MemBuffer;
Chorus0S 4.0 Last modified December 1999

Data Link Services

RETURN VALUE

svOutFrameFree(2DL)

The next pointer indicates the next MemBuffer on the list, and is NULL in the
last buffer. The address pointer indicates the first byte of the memory buffer, and
size is the size of the memory buffer, expressed in bytes.

The total frame size is given by totalLength, and is assumed to be lower than or
equal to the maxFrameSize field of dtLink.

When a frame is passed to the data link driver, the space for storing the data
link header has been reserved at the beginning of the first memory buffer. The
size field of the first memory buffer, as well as the totalLength field of the frame
descriptor both include the size of the data link header.

When the data link driver is invoked to send a frame, it should perform the
following functions:

m Resolve the address(es) of the destination node(s) from the Chorus site
number (destSite).

m Update its header within the frame.
m Send or broadcast the frame.

The frameSend function may be invoked from an interrupt (time-out handler)
by the kernel.

When a frame has been sent, the data link driver must invoke svOutFrameFree in
order to notify the kernel that the frame data can be freed.

When receiving a frame from the network, the data link driver must invoke the
svinputFrameDeliver system call. The dtLink parameter is a pointer to the data
link descriptor, inputFr is a pointer to the CninFrame structure, which describes
the frame received, as follows:
typedef struct CninFrame_t {

struct CninFrame_t* next;

unsigned int totalLength;

MemBuffer* bufList;
} CninFrame;

The next , totalLength and bufList have the same meanings as in the CnOutFrame
structure.

The svinputFrameDeliver function is intended to be invoked from an interrupt.
Upon return from svinputFrameDeliver, the data described by inputFr has been
copied by the kernel into receiver memory, and the data link driver can reuse it
(for example, put it back into a network controller receive ring).

The svDataLinkAttach function returns a value of 0 when successfully completed.
Otherwise, a negative error code is returned.

Last modified December 1999 Chorus0S 4.0 25

svOutFrameFree(2DL) Data Link Services

ERRORS [K_EINVAL] A data link driver has already declared itself.
[K_ENOMEM] The system is out of resources.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

26 ChorusOS 4.0 Last modified December 1999

Index

S

svDataLink — Attach a Chorus IPC Data Link
Driver; Free an outgoing
frame; Deliver an incoming
frame 11, 15, 19, 23

svDataLinkAttach — Attach a Chorus IPC Data
Link Driver; Free an outgoing
frame; Deliver an incoming
frame 11, 15, 19, 23

svinputFrameDeliver — Attach a Chorus IPC
Data Link Driver; Free an
outgoing frame; Deliver an
incoming frame 11, 15, 19, 23

svOutFrameFree — Attach a Chorus IPC Data
Link Driver; Free an outgoing
frame; Deliver an incoming
frame 11,15, 19, 23

Index-27

