D Sun.

microsystems

ChorusOS man pages section
2SEG: Virtual Memory Segment
Services

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303-4900
US.A.

Part No: 806-3330
December 10, 1999

Copyright 1999 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun
and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, ChorusOS, and Solaris are trademarks, registered
trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are
based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer
industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who
implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and
FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 1999 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, Californie 94303-4900 Etats-Unis. Tous droits réserveés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent I’utilisation, la copie, la distribution, et
la décompilation. Aucune partie de ce produit ou document ne peut étre reproduite sous aucune forme, par quelque moyen que ce soit, sans
I'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie
relative aux polices de caractéres, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront étre dérivées du systéme Berkeley BSD licenciés par I’'Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, ChorusOS, et Solaris sont des marques de fabrique ou des
marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont
utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres
pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L'interface dutilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnait les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour I'industrie de I'informatique. Sun détient une licence non exclusive de Xerox sur I'interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place I'interface d’utilisation graphiqgue OPEN LOOK et qui en outre se
conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L'ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N'EST ACCORDEE, Y COMPRIS
DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

. 4.4
ca &S
Adobe PostScript Please

Recycle

Contents

PREFACE 7

dcAlloc(2SEG) 13
dcFree(2SEG) 13
dcCluster(2SEG) 15
dcFillZero(2SEG) 16
dcSync(2SEG) 17
dcFlush(2SEG) 17
dcAlloc(2SEG) 20
dcFree(2SEG) 20
dcGetPages(2SEG) 22
dclsDirty(2SEG) 24
dcPgNumber(2SEG) 25
dcPxmDeclare(2SEG) 26
dcRead(2SEG) 27
dcWrite(2SEG) 27
dcSync(2SEG) 29
dcFlush(2SEG) 29
dcTrunc(2SEG) 32
dcRead(2SEG) 33

Contents 3

4

dcWrite(2SEG) 33
IcOpen(2SEG) 35
IcClose(2SEG) 35
IcCap(2SEG) 35
IcOpen(2SEG) 36
IcClose(2SEG) 36
IcCap(2SEG) 36
IcFillZero(2SEG) 37
IcFlush(2SEG) 39
IcSetRights(2SEG) 39
sgFlush(2SEG) 39
sgSyncAll(2SEG) 39
vmFlush(2SEG) 39
IcOpen(2SEG) 42
IcClose(2SEG) 42
IcCap(2SEG) 42
IcPushData(2SEG) 43
IcRead(2SEG) 45
IcWrite(2SEG) 45
IcFlush(2SEG) 47
IcSetRights(2SEG) 47
sgFlush(2SEG) 47
sgSyncAll(2SEG) 47
VMFIlush(2SEG) 47
IcStat(2SEG) 50
sgStat(2SEG) 50
IcTrunc(2SEG) 52
IcRead(2SEG) 54

ChorusOS man pages section 2SEG: Virtual Memory Segment Services ¢ December 10, 1999

IcWrite(2SEG) 54
MpCreate(2SEG) 56
MpGetAccess(2SEG) 57
MpPullin(2SEG) 61
MpPushOut(2SEG) 64
MpRelease(2SEG) 66
pageloDone(2SEG) 67
pageMap(2SEG) 68
pageUnmap(2SEG) 68
pagePhysAddr(2SEG) 70
pageSetDirty(2SEG) 71
pageSgld(2SEG) 72
pageMap(2SEG) 73
pageUnmap(2SEG) 73
PxmOpen(2SEG) 75
PxmClose(2SEG) 75
PxmGetAcc(2SEG) 77
PxmOpen(2SEG) 80
PxmClose(2SEG) 80
PxmPullin(2SEG) 82
PxmPushOutAsyn(2SEG) 83
PxmRelAccLock(2SEG) 85
PxmStat(2SEG) 86
PxmSwapOut(2SEG) 87
rgnFlush(2SEG) 89
rgninit(2SEG) 91
rgninitFromDtCache(2SEG) 93
rgnMap(2SEG) 95

Contents 5

6

rgnMapFromDtCache(2SEG) 97
IcFlush(2SEG) 99
IcSetRights(2SEG) 99
sgFlush(2SEG) 99
sgSyncAll(2SEG) 99
VvMFlush(2SEG) 99
sgRead(2SEG) 102
sgWrite(2SEG) 102
IcStat(2SEG) 104
sgStat(2SEG) 104
IcFlush(2SEG) 106
IcSetRights(2SEG) 106
sgFlush(2SEG) 106
sgSyncAll(2SEG) 106
vmFlush(2SEG) 106
sgRead(2SEG) 109
sgWrite(2SEG) 109
IcFlush(2SEG) 111
IcSetRights(2SEG) 111
sgFlush(2SEG) 111
sgSyncAll(2SEG) 111
VMFlush(2SEG) 111
Index 113

ChorusOS man pages section 2SEG: Virtual Memory Segment Services ¢ December 10, 1999

PREFACE

Overview

A man page is provided for both the naive user, and sophisticated user who is familiar
with the ChorusOS™ operating system and is in need of on-line information. A man
page is intended to answer concisely the question “What does it do?” The man pages in
general comprise a reference manual. They are not intended to be a tutorial.

The following is a list of sections in the ChorusOS man pages and the information
it references:

Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section
Section

1CC: User Utilities; Host and Target Utilities

1M: System Management Ultilities

2DL: System Calls; Data Link Services

2K: System Calls; Kernel Services

2MON: System Calls; Monitoring Services

2POSIX: System Calls; POSIX System Calls
2RESTART: System Calls; Hot Restart and Persistent Memory
2SEG: System Calls; Virtual Memory Segment Services
3FTPD: Libraries; FTP Daemon

3M: Libraries; Mathematical Libraries

3POSIX: Libraries; POSIX Library Functions

3RPC: Libraries; RPC Services

3STDC: Libraries; Standard C Library Functions
3TELD: Libraries; Telnet Services

4CC: Files

PREFACE 7

Section
Section
Section
Section
Section

Section

ChorusOS
per section

Below is a

5FEA: ChorusOS Features and APIs
7P: Protocols

7S: Services

9DDI: Device Driver Interfaces
9DKI: Driver to Kernel Interface
9DRV: Driver Implementations

man pages are grouped in Reference Manuals, with one reference manual

generic format for man pages. The man pages of each manual section

generally follow this order, but include only needed headings. For example, if there are

no bugs to

report, there is no BUGS section. See the intro pages for more information

and detail about each section, and man(1) for more information about man pages in

general.

NAME

SYNOPSIS

This section gives the names of the commands
or functions documented, followed by a brief
description of what they do.

This section shows the syntax of commands or
functions. When a command or file does not
exist in the standard path, its full pathname is
shown. Options and arguments are alphabetized,
with single letter arguments first, and options
with arguments next, unless a different argument
order is required.

The following special characters are used in
this section:

[1] The option or argument enclosed in these
brackets is optional. If the brackets are
omitted, the argument must be specified.

Ellipses. Several values may be
provided for the previous argument,
or the previous argument can be
specified multiple times, for example, *
"filename .. .".

| Separator. Only one of the arguments
separated by this character can be
specified at time.

{} Braces. The options and/or
arguments enclosed within braces are

8 ChorusOS man pages section 2SEG: Virtual Memory Segment Services ¢ December 10, 1999

FEATURES

DESCRIPTION

OPTIONS

OPERANDS

OUTPUT

RETURN VALUES

ERRORS

interdependent, such that everything
enclosed must be treated as a unit.

This section provides the list of features which
offer an interface. An APl may be associated with
one or more system features. The interface will
be available if one of the associated features

has been configured.

This section defines the functionality and
behavior of the service. Thus it describes
concisely what the command does. It does not
discuss OPTIONS or cite EXAMPLES.. Interactive
commands, subcommands, requests, macros,
functions and such, are described under USAGE.

This lists the command options with a concise
summary of what each option does. The options
are listed literally and in the order they appear
in the SYNOPSIS section. Possible arguments

to options are discussed under the option, and
where appropriate, default values are supplied.

This section lists the command operands and
describes how they affect the actions of the
command.

This section describes the output - standard
output, standard error, or output files - generated
by the command.

If the man page documents functions that
return values, this section lists these values and
describes the conditions under which they are
returned. If a function can return only constant
values, such as 0 or -1, these values are listed
in tagged paragraphs. Otherwise, a single
paragraph describes the return values of each
function. Functions declared void do not return
values, so they are not discussed in RETURN
VALUES.

On failure, most functions place an error code in
the global variable errno indicating why they
failed. This section lists alphabetically all error
codes a function can generate and describes the
conditions that cause each error. When more than
one condition can cause the same error, each
condition is described in a separate paragraph
under the error code.

USAGE

EXAMPLES

ENVIRONMENT VARIABLES

EXIT STATUS

FILES

SEE ALSO

DIAGNOSTICS

WARNINGS

NOTES

This section is provided as a guidance on use.
This section lists special rules, features and
commands that require in-depth explanations.
The subsections listed below are used to explain
built-in functionality:

Commands .
Th|,§/I %Flﬁgp provides examples of usage or of
iflers .
hoW Yge.a command or function. Wherever
pogsy gsi:&qnplete example including command
Iin? n mgphine response is shown.

n T .
Whenever an example is given, the prompt is
shown as example% or if the user must be
superuser, example# . Examples are followed
by explanations, variable substitution rules,
or returned values. Most examples illustrate
concepts from the SYNOPSIS, DESCRIPTION,
OPTIONS and USAGE sections.

This section lists any environment variables that
the command or function affects, followed by a
brief description of the effect.

This section lists the values the command returns
to the calling program or shell and the conditions
that cause these values to be returned. Usually,
zero is returned for successful completion

and values other than zero for various error
conditions.

This section lists all filenames referred to by the
man page, files of interest, and files created or
required by commands. Each is followed by a
descriptive summary or explanation.

This section lists references to other man
pages, in-house documentation and outside
publications.

This section lists diagnostic messages with a brief
explanation of the condition causing the error.

This section lists warnings about special
conditions which could seriously affect your
working conditions. This is not a list of
diagnostics.

This section lists additional information that
does not belong anywhere else on the page. It
takes the form of an aside to the user, covering
points of special interest. Critical information is
never covered here.

10 ChorusOS man pages section 2SEG: Virtual Memory Segment Services ¢ December 10, 1999

BUGS

This section describes known bugs and wherever
possible, suggests workarounds.

11

CHAPTER

Virtual Memory Segment
Services

12

Virtual Memory Segment Services dcAlloc(2SEG)

NAME

SYNOPSIS

FEATURES
DESCRIPTION

RESTRICTIONS
RETURN VALUE
ERRORS

ATTRIBUTES

SEE ALSO

dcAlloc, dcFree — Allocate a data cache for a segment; Free a previously allocated
data cache

#include <mem/chMem.h>
int dcAlloc (KnSgld sgid, KnExtPxMapper * pxm, VmFlags flags, KnLcld * Icidp);

void dcFree (KnLcld Icid);

PXM_EXT

Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The dcAlloc function allocates a new data cache object associated with the data
segment identified by the sgld parameter. Two subsequent calls to dcAlloc with
the same segment identifier will allocate two different data cache objects. It is
thus the responsibility of the invoker to insure a one-to- one mapping between
data cache objects and data segments. The sgld is an opaque value for the
nucleus which is only used as an argument within upcalls from the VM to the
external Proxy-Mapper managing the data segment. The pxm argument specifies
the routines which will be used to perform upcalls required for this data segment
(see dcPxmDeclare(2SEG)). The flags argument specifies the required properties
of the data segment. It must be either K_NOSWAPOUTthe data cache must not
be swapped, or 0. If successful, dcAlloc returns K_OKand sets the Icidp output
argument to the identifier of the newly allocated data cache object, otherwise

an error code is returned and the value of the Icidp field is undefined. The Icidp
returned by dcAlloc is an opaque for the External Proxy-Mapper and must only
be used as an argument for the appropriate nucleus calls. The dcFree nucleus
call destroys the data cache object specified by the Icidp argument. The External
Proxy-Mapper can destroy a data cache object only if it is empty (it does not
contain any physical pages) and the corresponding data segment is used neither
by the Proxy-Mapper nor by the VM.

The current implementation is only applicable to trusted supervisor actors.
If successful K_OK is returned, otherwise a negative error code is returned.

[K_ENOMEM] The system is out of resources.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

dcFlush (2SEG) , dcRead (2SEG) , dcWrite (2SEG) , dcFillZzero (2SEG)
, dcPgNumber (2SEG) , dcCluster (2SEG) , dcSync (2SEG)

Last modified December 1999 ChorusOS 4.0 13

dcAlloc(2SEG) Virtual Memory Segment Services

, dcPxmDeclare (2SEG) , rgnMapFromDtCache (2SEG) ,
rgninitFromDtCache (2SEG) , rgnFlush (2SEG)

14 ChorusOS 4.0 Last modified December 1999

Virtual Memory Segment Services dcCluster(2SEG)

NAME dcCluster — Set the input and output cluster sizes of a data cache

SYNOPSIS #include <mem/chMem.h>
int dcCluster (KnLcld Icid, VmSize incluster, VmSize outcluster);

FEATURES PXM_EXT

DESCRIPTION Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The dcCluster function sets the cluster size attributes of the data cache specified
by the Icid argument. The incluster argument specifies the preferred size for
both the pullln and getAcc up-calls. These invocations will therefore try to use
page lists starting on a boundary multiple of incluster and of a size equal to
incluster (there is no guarantee it will always be the case).

Similarly, the outcluster argument specifies the preferred size to be used by the
nucleus for building page lists to be passed to the proxy-mapper during the
pushOutAsyn up-call.

The default size in both cases is the page size. The nucleus takes the cluster size
into account if it is a power of two and greater than the page size. This call does
not acquire any VM lock and therefore cannot be blocked.

RESTRICTIONS The current implementation is only applicable to trusted supervisor actors.
RETURN VALUE If successful this call returns K_OK, otherwise the appropriate error code
is returned.
ERRORS [K_EROUND] At least one of the sizes is not a multiple of the
page size.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO dcAlloc (2SEG), dcFree (2SEG), dcFlush (2SEG), dcFillzero (2SEG),
dcRead (2SEG), dcWrite (2SEG), dcPgNumber (2SEG),

dcSync (2SEG), dcPxmDeclare (2SEG), rgnMapFromDtCache (2SEG),
rgninitFromDtCache (2SEG), rgnFlush (2SEG)

Last modified December 1999 Chorus0S 4.0 15

dcFillZero(2SEG)

NAME
SYNOPSIS

FEATURES
DESCRIPTION

RESTRICTIONS
RETURN VALUE
ERRORS

ATTRIBUTES

SEE ALSO

16

Virtual Memory Segment Services

dcFillZero - Fill a data segment with zero

#include <mem/chMem.h>
intdcFillZero (KnLcld Icid, VmOffset start, VmOffset end, VmOffset zeroStart);

PXM_EXT

Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The dcFillZero function gives write access rights to the nucleus for the

range of bytes between start and end. The start and end+1 arguments must

be “fragment”-aligned. A fragment is defined as the unit used by the VM to
manage access rigths for a segment. The size of a fragment is usually set to 512
bytes but may be implementation-dependent. It also fills with zeros the range of
bytes between the startZero and end arguments. The startZero argument has no
alignment constraints, however, it must be within the range of bytes defined by
the start and the end arguments. The corresponding part of the data cache is
marked as modified.

The current implementation is only applicable to trusted supervisor actors.
If successful K_OK is returned, otherwise a negative error code is returned.

[K_EROUND] At least one of the arguments is not

“fragment”-aligned.

[K_EOFFSET] The startZero offset is not within the range

defined by start, end.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

dcAlloc (2SEG), dcFlush (2SEG), dcFree (2SEG), dcRead (2SEG),
dcWrite (2SEG), dcPgNumber (2SEG), dcCluster (2SEG),

dcSync (2SEG), dcPxmDeclare (2SEG), rgnMapFromDtCache (2SEG),
rgninitFromDtCache (2SEG), rgnFlush (2SEG)

ChorusOS 4.0 Last modified December 1999

Virtual Memory Segment Services dcFlush(2SEG)

NAME
SYNOPSIS

FEATURES
DESCRIPTION

dcSync, dcFlush — Sync a data cache object; Flush a data cache object

#include <mem/chMem.h>
int dcSync (KnLcld Icid, int pagenb, VmOffset * offset);

int dcFlush (KnLcld Icid, KnPxmFlushReq * fldesc, void * pout);

PXM_EXT

Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The dcSync function scans the physical pages attached to the data cache object
specified by the Icid argument. The scanning is performed incrementally

by offset, the start page is defined by the offset argument. The pagenb defines
the maximum number of pages to be scanned. Each modified page will be
passed to the pushOutAsyn up-call. The way the pages are passed to this upcall
depends on the out cluster size as defined by dcCluster. The function returns
either a non-negative value, which means that all pages have been scanned. The
return value is the difference between pagenb and the number of scanned pages.
A value of -1 means that all pages specified have been scanned but that there
are still unscanned pages. In such a case, dcSync sets the offset output argument
to the first unscanned page offset.

The dcFlush nucleus call flushes physical pages associated to the data cache
object defined by the Icld argument, according to the structure pointed to by
fldesc. This structure is composed of the following members:

VmFlags flags ;

VmOffset desStart ;

VmOffset desEnd ;

VmOffset reqgStart ;
VmOffset reqEnd ;

The dcFlush call enables the flushing of all pages in the range defined by the
regStart and reqEnd offsets to be requested. It also permits the specification of a
desired range of pages to be flushed, by setting the desStart and desEnd fields to
the appropriate values. If no desired range is needed, the desStart field should be
set to the value of the regStart field. Similarly, the desEnd field should be set the
value of the reqEnd field. The desStart argument should be less than or equal to
regStart , and the desEnd argument should be greater than or equal to reqgend. The
system will flush all pages in the required range, and will try to flush pages in
the desired range. In particular, it will avoid being blocked for pages which are
in the desired range but not in the required range.

The dcFlush call may perform the flush in different ways according to the value
of the flags field. This field specifies the required flush mode and consists
of several parts:

Last modified December 1999 Chorus0S 4.0 17

dcFlush(2SEG)

K_FLUSH_ACCREC_NONE

K_FLUSH_ACCREC_WRITE
K_FLUSH_ACCREC_READ

K_FLUSH_ACCREC_INVAL

K_FLUSH_POUT_NONE

K_FLUSH_POUT_DIRTY

K_FLUSH_POUT ALL

K_FLUSH_PAGEFAULT

K_FLUSH_PAGELIST

18 ChorusQOS 4.0

Virtual Memory Segment Services

Access rights are left unchanged.
This is useful for flushing dirty pages
without modifiyng access rights
previously granted to the data cache
object.

Write access rights are recalled.

Read and write access rights are
recalled.

Read and write access rights are
recalled and pages in the desired
range are destroyed.

The pushOutAsyn up-call is never
invoked. This is useful for modifying
access rights without performing any
push out operations.

The pushOutAsyn up-call is
performed for dirty pages only.

The pushOutAsyn up-call is invoked
for all pages even if they are not dirty.

If this flag is set, dcFlush sets the
K_PAGEFAULT flag in the flags
argument of the pushOutAsyn up-call.

If this flag is set, dcFlush will invoke
the pushOutAsyn up-call with lists
of contiguous pages not aligned

on the cluster size defined for the
data cache object. If possible, the
entire desired range will be passed
as a single list to the pushOutAsyn
up-call. Several lists will be built

in the case of discontigous lists of
pages (in such a case, several up-calls
will be invoked).

The pout argument is an opaque for the VM and will be passed back as an
argument of the pushOutAsyn up-call, if any.

If successful, dcFlush returns K_OK, otherwise an error code is returned.

Last modified December 1999

Virtual Memory Segment Services dcFlush(2SEG)

The dcFlush call acquires an exclusive lock on pages being flushed. For pages
belonging to the desired range but not to the required range, dcFlush does not
block in order to acquire this lock;, if the lock cannot be acquired the page

will not be flushed. Pages specified in the getAcc up-call are not visible to the
dcFlush system call. Thus, VM insures that the dcFlush operation will never be
blocked by a getAcc up-call. In other words, there is no risk of deadlock (from a
VM point of view) when an Extrenal Proxy-Mapper performs a dcFlush while a
getAcc up-call is blocked in this PXM.

RESTRICTIONS The current implementation is only applicable to trusted supervisor actors.

RETURN VALUE If successful dcSync returns -1 when all pages specified have been scanned, but
there are still unscanned pages. Otherwise, it returns the difference between the
number of scanned pages and the pageNb argument.

The dcFlush call returns K_OK in case of success, otherwise an error code
is returned.

ERRORS [K_EROUND] At least one of the sizes is not a multiple of the
page size.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO dcAlloc (2SEG), dcFree (2SEG), dcFlush (2SEG), dcFillZero (2SEG)
, dcRead (2SEG) , dcWrite (2SEG) , dcPgNumber (2SEG) ,

dcSync (2SEG) , dcPxmDeclare (2SEG) , rgnMapFromDtCache (2SEG) ,
rgninitFromDtCache (2SEG) , rgnFlush (2SEG)

Last modified December 1999 Chorus0S 4.0 19

dcFree(2SEG)

NAME

SYNOPSIS

FEATURES
DESCRIPTION

RESTRICTIONS
RETURN VALUE
ERRORS

ATTRIBUTES

SEE ALSO

20

Virtual Memory Segment Services

dcAlloc, dcFree — Allocate a data cache for a segment; Free a previously allocated
data cache

#include <mem/chMem.h>
int dcAlloc (KnSgld sgid, KnExtPxMapper * pxm, VmFlags flags, KnLcld * Icidp);

void dcFree (KnLcld Icid);

PXM_EXT

Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The dcAlloc function allocates a new data cache object associated with the data
segment identified by the sgld parameter. Two subsequent calls to dcAlloc with
the same segment identifier will allocate two different data cache objects. It is
thus the responsibility of the invoker to insure a one-to- one mapping between
data cache objects and data segments. The sgld is an opaque value for the
nucleus which is only used as an argument within upcalls from the VM to the
external Proxy-Mapper managing the data segment. The pxm argument specifies
the routines which will be used to perform upcalls required for this data segment
(see dcPxmDeclare(2SEG)). The flags argument specifies the required properties
of the data segment. It must be either K_NOSWAPOUTthe data cache must not
be swapped, or 0. If successful, dcAlloc returns K_OKand sets the Icidp output
argument to the identifier of the newly allocated data cache object, otherwise

an error code is returned and the value of the Icidp field is undefined. The Icidp
returned by dcAlloc is an opaque for the External Proxy-Mapper and must only
be used as an argument for the appropriate nucleus calls. The dcFree nucleus
call destroys the data cache object specified by the Icidp argument. The External
Proxy-Mapper can destroy a data cache object only if it is empty (it does not
contain any physical pages) and the corresponding data segment is used neither
by the Proxy-Mapper nor by the VM.

The current implementation is only applicable to trusted supervisor actors.
If successful K_OK is returned, otherwise a negative error code is returned.

[K_ENOMEM] The system is out of resources.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

dcFlush (2SEG) , dcRead (2SEG) , dcWrite (2SEG) , dcFillZero (2SEG)
, dcPgNumber (2SEG) , dcCluster (2SEG) , dcSync (2SEG)

ChorusOS 4.0 Last modified December 1999

Virtual Memory Segment Services dcFree(2SEG)

, dcPxmDeclare (2SEG) , rgnMapFromDtCache (2SEG) ,
rgninitFromDtCache (2SEG) , rgnFlush (2SEG)

Last modified December 1999 Chorus0S 4.0 21

dcGetPages(2SEG)

NAME
SYNOPSIS

FEATURES
DESCRIPTION

RESTRICTIONS
RETURN VALUE
ERRORS

ATTRIBUTES

22

Virtual Memory Segment Services

dcGetPages — Get a list of pages for read-ahead purpose

#include <mem/chMem.h>
int dcGetPages (KnLcld Icid, VmOffset start, VmOffset end, VmFlags flags, KnPage **page);

PXM_EXT

Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The dcGetPages function enables a proxy-mapper to implement a read-ahead
policy. It scans the data cache identified by the Icid argument, looking for
pages belonging to the range defined by the start and end arguments. A new
physical page is allocated for each page missing in the data cache. These pages
are grouped in a contiguous list whose head is returned to the invoker at the
location defined by the argument page. They may then be mapped or unmapped
using the pageMap and pageUnmap nucleus calls, respectively. When pages have
been filled with meaningful data, the proxy-mapper informs the nucleus using
the pageloDone nucleus call.

When 170 is completed, access rights are granted to the nucleus according to
the values of the flags argument. If K_ READABLE is set, read access is granted
to the nucleus. If K_ WRITABLE is set write access is granted to the nucleus.
Pages returned by the nucleus to the proxy-mapper as a result of the dcGetPages
nucleus call are write-locked until the read-ahead completes. This insures

that concurrent access to these pages (mapping, reading, flushing,...) will be
blocked until the read-ahead completes.

If the K NOWAITFORMEMORY value is set in the flags argument, the nucleus
will not allocate free pages in case free memory is low.

The page list returned by the dcGetPages nucleus call starts with the first missing
page in the cache and will end at the first non missing page. However, this

list cannot be greater than the range specified by the start and end arguments
(which must be page aligned). The effective size of the list is also constrained by
the input cluster size of the data cache, except if the K PAGELIST value is set
within the flags argument.

The current implementation is only applicable to trusted supervisor actors.
If successful K_OK is returned, otherwise a negative error code is returned.

[K_EROUND] One of the start or end arguments is not page
aligned.

See attributes (5) for descriptions of the following attributes:

ChorusOS 4.0 Last modified December 1999

Virtual Memory Segment Services

dcGetPages(2SEG)

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Evolving

SEE ALSO dcAlloc (2SEG), dcFlush (2SEG), dcFree (2SEG), dcRead (2SEG),

Last modified December 1999

dcWrite (2SEG), dcPgNumber (2SEG), dcCluster
dcSync (2SEG), dcPxmDeclare (2SEG), rgnMapFromDtCache (2SEG),
rgninitFromDtCache (2SEG), rgnFlush (2SEG)

Chorus0S 4.0

(2SEG),

23

dclsDirty(2SEG)

NAME
SYNOPSIS

FEATURES
DESCRIPTION

RESTRICTIONS
RETURN VALUE
ERRORS
ATTRIBUTES

SEE ALSO

24

Virtual Memory Segment Services

dclsDirty — Test and reset data cache dirty bit

#include <mem/chMem.h>
int dcisDirty (KnLcld Icid);

PXM_EXT

Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The dclsDirty function returns 0 if the data cache defined by the Icid argument has
not been modified through mapping. It returns a non-null value if the data cache
defined by the Icid argument has been dirtied through mapping. The data cache
dirty bit is set whenever a dirty mapped page is unloaded from mmu tables or is
sync’ed. This may happen when a rgnFree nucleus call occurs or when a dcSync
or dcFlush call is invoked. After the dirty bit of the data cache has been tested, it
is reset. Thus, a subsequent call to dclsDirty will return a null value. Modification
of a data cache through a call to dcWrite will not set the data cache dirty bit.

This call is provided mainly to enable filesytems to determine whether a file
has been modified through mapping.

The current implementation is only applicable to trusted supervisor actors.
This function returns 0 if the data cache is not dirty, 1 otherwise.
No error messages are returned.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

dcAlloc (2SEG), dcFlush (2SEG), dcFree (2SEG), dcRead (2SEG),
dcWrite (2SEG), dcPgNumber (2SEG), dcCluster (2SEG),

dcSync (2SEG), dcPxmDeclare (2SEG), rgnMapFromDtCache (2SEG),
rgninitFromDtCache (2SEG), rgnFlush (2SEG)

ChorusOS 4.0 Last modified December 1999

Virtual Memory Segment Services dcPgNumber(2SEG)

NAME
SYNOPSIS

FEATURES
DESCRIPTION

RESTRICTIONS
RETURN VALUE
ERRORS
ATTRIBUTES

SEE ALSO

dcPgNumber — Get the number of pages for a data cache object

#include <mem/chMem.h>
int dcPgNumber (KnLcld Icid);

PXM_EXT

Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The dcPgNumber function returns the number of pages attached to the data
cache object specified by the Icid argument. This argument should have been
acquired via a previous call to dcAlloc. This call does not acquire a VM lock and
therefore cannot be blocked.

The current implementation is only applicable to trusted supervisor actors.
This call returns the number of pages.
No error messags are returned.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

dcAlloc (2SEG), dcFree (2SEG), dcFlush (2SEG), dcFillzero (2SEG),
dcRead (2SEG), dcWrite (2SEG), dcCluster (2SEG), dcSync (2SEG),
dcPxmDeclare (2SEG), rgninitFromDtCache (2SEG), rgnFlush (2SEG)

Last modified December 1999 Chorus0S 4.0 25

dcPxmDeclare(2SEG)

NAME
SYNOPSIS

FEATURES
DESCRIPTION

RESTRICTIONS
RETURN VALUE
ERRORS
ATTRIBUTES

SEE ALSO

26

Virtual Memory Segment Services

dcPxmDeclare — Initialize an external proxy-mapper descriptor

#include <mem/chMem.h>
int dcPxmDeclare (KnExtPxMapper *pxm);

PXM_EXT

Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The dcPxmDeclare function completes the initalization of the proxy-mapper
descriptor pointed to by the pxm argument. This descriptor can be used

later within dcAlloc nucleus calls. The proxy-mapper descriptor should have
previously been initialized by the invoker. This is done by creating the
appropriate laps to fill the following fields of the KnExtPxMapper data structure:
KnLapDesc openLap ;

KnLapDesc closeLap ;

KnLapDesc getAcclLap ;

KnLapDesc pullinLap ;

KnLapDesc pushOutAsynLap ;

KnLapDesc swapOutLap ;
KnLapDesc statLap ;

All local access point descriptors must be valid and remain valid as long as there
are data caches managed by a proxy-mapper. As the proxy-mapper descriptor is
not copied within the nucleus address space, this descriptor must remain valid
and accessible as long as there are data caches managed by a proxy-mapper.

Each of the laps correspond to a possible upcall made by the nucleus to perform
actions on the data segments managed by that proxy-mapper. The syntax and
semantics of these upcalls are described in the appropriate manual pages.

The swapOutLap may be initialised to 0, usually by means of the lapDescZero
nucleus call. This will prevent the nucleus from performing this upcall at
swapout time.

The current implementation is only applicable to trusted supervisor actors.
K_OK is always returned.
No error messages are returned.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

dcAlloc (2SEG), svLapCreate (2K), lapDescZero (2K)

ChorusOS 4.0 Last modified December 1999

Virtual Memory Segment Services dcRead(2SEG)

NAME
SYNOPSIS

FEATURES
DESCRIPTION

RESTRICTIONS
RETURN VALUE

ERRORS

dcRead, dcWrite — Read data from a data cache; Write data to a data cache

#include <mem/chMem.h>
int dcRead (KnLcld Icid, VmOffset start, VmOffset end, KnCap * actcap, VmAddr addr,
void * acclock);

int dcWrite (KnLcld Icid, VmOffset start, VmOffset end, KnCap * actcap, VmAddr addr,
void *acclock);

PXM_EXT

Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The dcRead function reads data from the data cache object named by Icid into
an actor address space. The source data is specified by the start and end offsets
which define the offset of the first byte to be read and the offset of the last byte to
be read. These offsets are related to the data segment associated with the data
cache object of a previous dcAlloc. The data is copied, starting at the location
defined by the addr input/output argument, within the actor defined by the
actcap argument. If actcap is set to the value K_MYACTOI#he destination actor is
the current one. The addr argument is updated by the dcRead nucleus call, and
upon return, points to an address beyond the last read byte upon return. The
acclock argument is an opaque field for the nucleus, which will be passed to the
external Proxy-Mapper as an argument of the getAcc up-call, if any.

The dcWrite function writes data from an actor address space to the data cache
object named by Icid .The destination data is specified by the start and end offsets
which define the offset of the first byte to be written and the offset of the last
byte to be written. These offsets are related to the data segment associated with
the data cache object by a previous dcAlloc. The data is copied, starting at the
location defined by the addr input/output argument, within the actor defined by
the actcap argument. If actcap is set to the value K_MYACTOHRhe source actor

is the current one. The addr argument is updated by the dcWrite nucleus call,
and upon return, points to an address beyond the last byte written. The acclock
argument is an opaque field for the nucleus, which will be passed to the external
Proxy-Mapper as an argument of the getAcc up-call, if any.

The current implementation is only applicable to trusted supervisor actors.

If successful K_OK is returned, otherwise a negative error code is returned.
In either case, the addr argument is set to an address beyond the last byte
read/written.

[K_EADDR] The address is outside any allocated region.

[K_EFAULT] Some of the arguments provided are outside the
caller’s or target’s address space.

Last modified December 1999 ChorusOS 4.0 27

dcRead(2SEG) Virtual Memory Segment Services

[K_EINVAL] An inconsistent actor capability was given.

[K_EOFFSET] Attempt to access a segment oustside its valid
offset range.

[K_EPROT] Attempt to write a read only data cache.

[K_EUNKNOWN] actcap does not specify a reachable actor.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO dcAlloc (2SEG), dcFree (2SEG), dcFlush (2SEG), dcFillZzero (2SEG)
, dcPgNumber (2SEG) , dcCluster (2SEG) , dcSync (2SEG)

, dcPxmDeclare (2SEG) , rgnMapFromDtCache (2SEG) ,
rgninitFromDtCache (2SEG) , rgnFlush (2SEG)

28 ChorusOS 4.0 Last modified December 1999

Virtual Memory Segment Services dcSync(2SEG)

NAME
SYNOPSIS

FEATURES
DESCRIPTION

dcSync, dcFlush — Sync a data cache object; Flush a data cache object

#include <mem/chMem.h>
int dcSync (KnLcld Icid, int pagenb, VmOffset * offset);

int dcFlush (KnLcld Icid, KnPxmFlushReq * fldesc, void * pout);

PXM_EXT

Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The dcSync function scans the physical pages attached to the data cache object
specified by the Icid argument. The scanning is performed incrementally

by offset, the start page is defined by the offset argument. The pagenb defines
the maximum number of pages to be scanned. Each modified page will be
passed to the pushOutAsyn up-call. The way the pages are passed to this upcall
depends on the out cluster size as defined by dcCluster. The function returns
either a non-negative value, which means that all pages have been scanned. The
return value is the difference between pagenb and the number of scanned pages.
A value of -1 means that all pages specified have been scanned but that there
are still unscanned pages. In such a case, dcSync sets the offset output argument
to the first unscanned page offset.

The dcFlush nucleus call flushes physical pages associated to the data cache
object defined by the Icld argument, according to the structure pointed to by
fldesc. This structure is composed of the following members:

VmFlags flags ;

VmOffset desStart ;

VmOffset desEnd ;

VmOffset reqgStart ;
VmOffset reqEnd ;

The dcFlush call enables the flushing of all pages in the range defined by the
regStart and reqEnd offsets to be requested. It also permits the specification of a
desired range of pages to be flushed, by setting the desStart and desEnd fields to
the appropriate values. If no desired range is needed, the desStart field should be
set to the value of the regStart field. Similarly, the desEnd field should be set the
value of the reqEnd field. The desStart argument should be less than or equal to
regStart , and the desEnd argument should be greater than or equal to reqgend. The
system will flush all pages in the required range, and will try to flush pages in
the desired range. In particular, it will avoid being blocked for pages which are
in the desired range but not in the required range.

The dcFlush call may perform the flush in different ways according to the value
of the flags field. This field specifies the required flush mode and consists
of several parts:

Last modified December 1999 Chorus0S 4.0 29

dcSync(2SEG)

K_FLUSH_ACCREC_NONE

K_FLUSH_ACCREC_WRITE
K_FLUSH_ACCREC_READ

K_FLUSH_ACCREC_INVAL

K_FLUSH_POUT_NONE

K_FLUSH_POUT_DIRTY

K_FLUSH_POUT ALL

K_FLUSH_PAGEFAULT

K_FLUSH_PAGELIST

30 ChorusQOS 4.0

Virtual Memory Segment Services

Access rights are left unchanged.
This is useful for flushing dirty pages
without modifiyng access rights
previously granted to the data cache
object.

Write access rights are recalled.

Read and write access rights are
recalled.

Read and write access rights are
recalled and pages in the desired
range are destroyed.

The pushOutAsyn up-call is never
invoked. This is useful for modifying
access rights without performing any
push out operations.

The pushOutAsyn up-call is
performed for dirty pages only.

The pushOutAsyn up-call is invoked
for all pages even if they are not dirty.

If this flag is set, dcFlush sets the
K_PAGEFAULT flag in the flags
argument of the pushOutAsyn up-call.

If this flag is set, dcFlush will invoke
the pushOutAsyn up-call with lists
of contiguous pages not aligned

on the cluster size defined for the
data cache object. If possible, the
entire desired range will be passed
as a single list to the pushOutAsyn
up-call. Several lists will be built

in the case of discontigous lists of
pages (in such a case, several up-calls
will be invoked).

The pout argument is an opaque for the VM and will be passed back as an
argument of the pushOutAsyn up-call, if any.

If successful, dcFlush returns K_OK, otherwise an error code is returned.

Last modified December 1999

Virtual Memory Segment Services dcSync(2SEG)

The dcFlush call acquires an exclusive lock on pages being flushed. For pages
belonging to the desired range but not to the required range, dcFlush does not
block in order to acquire this lock;, if the lock cannot be acquired the page

will not be flushed. Pages specified in the getAcc up-call are not visible to the
dcFlush system call. Thus, VM insures that the dcFlush operation will never be
blocked by a getAcc up-call. In other words, there is no risk of deadlock (from a
VM point of view) when an Extrenal Proxy-Mapper performs a dcFlush while a
getAcc up-call is blocked in this PXM.

RESTRICTIONS The current implementation is only applicable to trusted supervisor actors.

RETURN VALUE If successful dcSync returns -1 when all pages specified have been scanned, but
there are still unscanned pages. Otherwise, it returns the difference between the
number of scanned pages and the pageNb argument.

The dcFlush call returns K_OK in case of success, otherwise an error code
is returned.

ERRORS [K_EROUND] At least one of the sizes is not a multiple of the
page size.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO dcAlloc (2SEG), dcFree (2SEG), dcFlush (2SEG), dcFillZero (2SEG)
, dcRead (2SEG) , dcWrite (2SEG) , dcPgNumber (2SEG) ,

dcSync (2SEG) , dcPxmDeclare (2SEG) , rgnMapFromDtCache (2SEG) ,
rgninitFromDtCache (2SEG) , rgnFlush (2SEG)

Last modified December 1999 Chorus0S 4.0 31

dcTrunc(2SEG)

NAME
SYNOPSIS

FEATURES
DESCRIPTION

RESTRICTIONS
RETURN VALUE
ERRORS

ATTRIBUTES

SEE ALSO

32

Virtual Memory Segment Services

dcTrunc — Truncate a data segment

#include <mem/chMem.h>
intdcTrunc (KnLcld Icid, VmOffset start, VmOffset end, VmOffset zeroStart);

PXM_EXT

Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The dcTrunc call grants write access to the nucleus for the range of bytes between
start and end, and invalidates the [end+1, K MAXVMOFFSET] range of the

data cache specified by the Icid argument. It then fills with zeros the range of
bytes between the zeroStart and end arguments, and marks the range of bytes
defined by the start, end arguments as modified. The start and end arguments
must be fragment-aligned, and the zeroStart argument must be included between
these two limits.

Logically, dcTrunc is a combination of dcFlush and dcFillZero. The VM guarantees
that the dcTtrunc operation will never be blocked by a getAcc up-call.

The current implementation is only applicable to trusted supervisor actors.
If successful K_OK is returned, otherwise a negative error code is returned.

[K_EROUND] At least one of the arguments is not

fragment-aligned.

[K_EOFFSET] The startZero offset is not within the range

defined by start, end.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

dcAlloc (2SEG), dcFlush (2SEG), dcFillZero (2SEG), dcFree (2SEG),
dcRead (2SEG), dcWrite (2SEG), dcPgNumber (2SEG), dcCluster (2SEG),
dcSync (2SEG), dcPxmDeclare (2SEG), rgnMapFromDtCache (2SEG),
rgninitFromDtCache (2SEG), rgnFlush (2SEG)

Chorus0S 4.0 Last modified December 1999

Virtual Memory Segment Services dcWrite(2SEG)

NAME
SYNOPSIS

FEATURES
DESCRIPTION

RESTRICTIONS
RETURN VALUE

ERRORS

dcRead, dcWrite — Read data from a data cache; Write data to a data cache

#include <mem/chMem.h>
int dcRead (KnLcld Icid, VmOffset start, VmOffset end, KnCap * actcap, VmAddr addr,
void * acclock);

int dcWrite (KnLcld Icid, VmOffset start, VmOffset end, KnCap * actcap, VmAddr addr,
void *acclock);

PXM_EXT

Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The dcRead function reads data from the data cache object named by Icid into
an actor address space. The source data is specified by the start and end offsets
which define the offset of the first byte to be read and the offset of the last byte to
be read. These offsets are related to the data segment associated with the data
cache object of a previous dcAlloc. The data is copied, starting at the location
defined by the addr input/output argument, within the actor defined by the
actcap argument. If actcap is set to the value K_MYACTOI#he destination actor is
the current one. The addr argument is updated by the dcRead nucleus call, and
upon return, points to an address beyond the last read byte upon return. The
acclock argument is an opaque field for the nucleus, which will be passed to the
external Proxy-Mapper as an argument of the getAcc up-call, if any.

The dcWrite function writes data from an actor address space to the data cache
object named by Icid .The destination data is specified by the start and end offsets
which define the offset of the first byte to be written and the offset of the last
byte to be written. These offsets are related to the data segment associated with
the data cache object by a previous dcAlloc. The data is copied, starting at the
location defined by the addr input/output argument, within the actor defined by
the actcap argument. If actcap is set to the value K_MYACTOHRhe source actor

is the current one. The addr argument is updated by the dcWrite nucleus call,
and upon return, points to an address beyond the last byte written. The acclock
argument is an opaque field for the nucleus, which will be passed to the external
Proxy-Mapper as an argument of the getAcc up-call, if any.

The current implementation is only applicable to trusted supervisor actors.

If successful K_OK is returned, otherwise a negative error code is returned.
In either case, the addr argument is set to an address beyond the last byte
read/written.

[K_EADDR] The address is outside any allocated region.

[K_EFAULT] Some of the arguments provided are outside the
caller’s or target’s address space.

Last modified December 1999 Chorus0S 4.0 33

dcWrite(2SEG) Virtual Memory Segment Services

[K_EINVAL] An inconsistent actor capability was given.

[K_EOFFSET] Attempt to access a segment oustside its valid
offset range.

[K_EPROT] Attempt to write a read only data cache.

[K_EUNKNOWN] actcap does not specify a reachable actor.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO dcAlloc (2SEG), dcFree (2SEG), dcFlush (2SEG), dcFillZzero (2SEG)
, dcPgNumber (2SEG) , dcCluster (2SEG) , dcSync (2SEG)

, dcPxmDeclare (2SEG) , rgnMapFromDtCache (2SEG) ,
rgninitFromDtCache (2SEG) , rgnFlush (2SEG)

34 ChorusOS 4.0 Last modified December 1999

Virtual Memory Segment Services IcCap(2SEG)

NAME IcOpen, IcClose, IcCap — Find or create a local cache object for a segment; Release
a local cache object; Return the cabability of a local cache

SYNOPSIS #include <mem/chMem.h>
int IcOpen (KnCap * sgcap, VmFlags flags, int * cachelip);

int IcCap (int cacheli, KnCap * lccap);
int IcClose (int cacheli);
FEATURES MEM_VM

DESCRIPTION Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The IcOpen call allows the caller to force the kernel to use the same local cache
object for the segment specified until a subsequent IcClose call is received.

The sgcap argument is a pointer to the target segment capablity. The flags
argument must be zero. This argument will be used in future extensions
of the interface.

The IcOpen call returns into the variable pointed to by the cachelip argument,
a local id of the local cache object corresponding to the target segment. The
caller can then use the local id in a number of subsequent IcRead, IcWrite (see
IcRead(2SEG)) and IcCap (see below) calls. The local id must be released using
the IcClose call and should not be used any more.

The IcCap call finds the local cache object specified by its local id (cacheli
argument) and returns the local cache capability in the variable pointed to by
the Iccap argument.

RESTRICTIONS The current implementation is only applicable to trusted supervisor actors. An
attempt to pass an invalid local id may produce unpredictable system behavior.
RETURN VALUE If successful K_OK is returned, otherwise a negative error code is returned.
ERRORS [K_EFAULT] Some of the arguments provided are outside the
caller’s address space.
[K_ENOMEM] The system is out of resources.
ATTRIBUTES See attributes (5) for descriptions of the following attributes:
ATTRIBUTE TYPE ATTRIBUTE VALUE
Interface Stability Evolving

SEE ALSO vmsStat (2K) , MpGetAccess (2SEG) , MpPullin (2SEG) , rgnMap (2SEG) ,
IcFlush (2SEG) , IcFillZzero (2SEG) , IcTrunc (2SEG)

Last modified December 1999 Chorus0S 4.0 35

IcClose(2SEG)

NAME

SYNOPSIS

FEATURES
DESCRIPTION

RESTRICTIONS

RETURN VALUE
ERRORS

ATTRIBUTES

SEE ALSO

36

Virtual Memory Segment Services

IcOpen, IcClose, IcCap — Find or create a local cache object for a segment; Release
a local cache object; Return the cabability of a local cache

#include <mem/chMem.h>
int IcOpen (KnCap * sgcap, VmFlags flags, int * cachelip);

int IcCap (int cacheli, KnCap * lccap);
int IcClose (int cacheli);
MEM_VM

Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The IcOpen call allows the caller to force the kernel to use the same local cache
object for the segment specified until a subsequent IcClose call is received.

The sgcap argument is a pointer to the target segment capablity. The flags
argument must be zero. This argument will be used in future extensions
of the interface.

The IcOpen call returns into the variable pointed to by the cachelip argument,
a local id of the local cache object corresponding to the target segment. The
caller can then use the local id in a number of subsequent IcRead, IcWrite (see
IcRead(2SEG)) and IcCap (see below) calls. The local id must be released using
the IcClose call and should not be used any more.

The IcCap call finds the local cache object specified by its local id (cacheli
argument) and returns the local cache capability in the variable pointed to by
the Iccap argument.

The current implementation is only applicable to trusted supervisor actors. An
attempt to pass an invalid local id may produce unpredictable system behavior.

If successful K_OK is returned, otherwise a negative error code is returned.

[K_EFAULT] Some of the arguments provided are outside the

caller’s address space.

[K_ENOMEM] The system is out of resources.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

vmsStat (2K) , MpGetAccess (2SEG) , MpPullin (2SEG) , rgnMap (2SEG) ,
IcFlush (2SEG) , IcFillZzero (2SEG) , IcTrunc (2SEG)

ChorusOS 4.0 Last modified December 1999

Virtual Memory Segment Services IcFillZero(2SEG)

NAME
SYNOPSIS

FEATURES
DESCRIPTION

RETURN VALUE
ERRORS

ATTRIBUTES

IcFillZero — zero a range of a local cache

#include <mem/chMem.h>
int IcFillZero (KnObjDesc *lcdesc, VmFlags flags, unsigned longordernb);

MEM_VM

Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The IcFillZero call grants write access rights and zero-fills and marks as modified
the [lcdesc->startOffset, Icdesc->startOffset + Icdesc->size) range of the local
cache specified by the Icdesc->dataObject capability. The KnObjDesc structure is
described in IcFlush(2SEG).

The Icdesc->startOffset and Icdesc->size fields must be fragment-aligned. The size
of the fragment is implementation—dependent and is usually equal to the virtual
page size divided by 8 (number of bits in one byte).

The flags argument must be zero and will be used in future interface extensions.
The ordernb argument is ignored.

The IcFillZero operation will never be blocked either by a pure MpGetAccess
or by an impure MpPullln up-call.

If successful K_OK is returned, otherwise a negative error code is returned.

[K_EFAULT] Some of the arguments provided are outside the
caller’s address space.

[K_EINVAL] An inconsistent local cache capability was
provided.

[K_EUNKNOWN] Icdesc->dataObject does not specify a reachable
local cache.

[K_EROUND] Icdesc->startOffset or Icdesc->size is not
fragment-aligned.

[K_EOFFSET] Tried to fill a segment outside the valid offset
range in a segment, as returned by vmStat.

[K_EINVAL] The flags argument contains invalid flag values.

[K_EFAIL] An ipcCall transaction failed during the remote
IcFillZero.

[K_EMAPPER] The mapper doesn’t respect the vm/mapper
protocol.

See attributes (5) for descriptions of the following attributes:

Last modified December 1999 Chorus0S 4.0 37

IcFillZero(2SEG)

38

SEE ALSO

Virtual Memory Segment Services

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Evolving

MpGetAccess (2SEG), MpPullin (2SEG), rgnMap (2SEG), IcOpen (2SEG),

IcFlush (2SEG), IcTrunc (2SEG)

Chorus0S 4.0

Last modified December 1999

Virtual Memory Segment Services IcFlush(2SEG)

NAME

SYNOPSIS

FEATURES
DESCRIPTION

IcFlush, IcSetRights, sgFlush, sgSyncAll, vmFlush — flush local cache(s)

#include <mem/chMem.h>
int IcFlush (KnObjDesc * Icdesc, VmFlags flags, unsigned long ordernb);

int IcSetRights (KnObjDesc * Icdesc, VmFlags flags, unsigned long ordernb);
int sgFlush (KnObjDesc * segdesc, VmFlags flags);

int sgSyncAll (void);

int vmFlush (KnCap * actorcap, VmAddr address, VmSize size, VmFlags flags);

MEM_VM
Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The IcFlush call performs a flush operation on a range of a local cache. The lcdesc
argument points to a KnObjDesc structure whose members are the following:

KnCap dataObject ;
VmOffset startOffset ;
VmSize size ;

where the dataObject field is the local cache capability, the startOffset field is the
range start offset in the local cache, and the size field is the range size. Both
startOffset and size must be fragment-aligned. The size of the fragment is
implementation—-dependent and is usually equal to the virtual page size divided
by 8 (number of bits in one byte).

For IcFlush, the target local cache is directly specified by its capability; the flush
operation is applied even if the cache is managed by a remote site.

The sgFlush call takes the same arguments, except the dataObject field specifies
the capability of the cached segment. For sgFlush, the target local cache is
indirectly specified by the capability of the corresponding segment; the flush
operation implicitly applies to the segment’s cache(s) located on the caller’s site.

The vmFlush call performs a flush operation on the ranges of the local caches
mapped to an address range of an actor address space. The address range
must be page-aligned.

The target actor is specified by actorcap - a pointer to the actor capability. If
actorcap is K_MYACTOR, the address space of the current actor is used. If
actorcap is K_SVACTOR, the supervisor address space is used.

The flags argument specifies the mode of the flush and the upper access rights for
the target parts after the flush operation.

Last modified December 1999 Chorus0S 4.0 39

IcFlush(2SEG)

RETURN VALUE

40

ERRORS

Virtual Memory Segment Services

If the K_COPYBACK flag is set, xxFlush writes back any (even clean) cached data
of the target parts and keeps the parts access rights unchanged.

If the K_WRITABLE flag is set, xxFlush writes back all modified data of the target
parts and keeps the parts access rights unchanged.

If the K_READABLE flag is set, xxFlush writes back all modified data of the
target parts and then sets the parts to read access only.

If the K_FREEZE flag is set, xxFlush writes back all modified data of the target
parts and then sets the parts as non-accessible.

If the K_NOACCESS flag is set, xxFlush writes back all modified data of the
target parts and invalidates them.

If the K_DESTROY flag is set, xxFlush invalidates the target parts without
writing back.

If the K_ASYNC flag is set, the vm performs the write operations required by
the xxFlush asynchronously.

If K_PAGEFAULT flag is set, xxFlush is a result of a page fault. This type of
IcFlush operation could break the atomicity of a sgRead/sgWrite operation
running concurrently on the same local cache parts.

The K_ORDERED flag can only be used with an IcFlush or an IcSetRights request.
If the flags is set, the orderNb argument specifies the IcFlush message order
number. It allows the kernel to detect the situation when two mesages sent by a
mapper in one order are received by the kernel in another. For instance, if the
mapper grants certain access rights in a MpGetAccess reply first, then, processing
another request, calls an IcFlush to recall the access rights, considering the order
numbers, the kernel is aware that the access returned by the MpGetAccess reply
was already recalled by the mapper, and performs another MpGetAccess request.

The IcSetRights operation is similar to the IcFlush operation, except that it
only changes data protections without invalidation and/or writing back: the
K_WRITABLE flag is ignored, the K_READABLE flag sets the target parts
read—only, whereas the K_FREEZE and K_NOACCESS flags set the target
parts to non-accessible. The K_COPYBACK, K_ASYNC and K_DESTROY
flags are prohibited.

The sgSyncAll operation writes back asynchronously all dirty parts of all local
caches on the site, except the local caches mapped at least once to a region with
the K_NOSYNC attribute (see rgnMap(2SEG)).

If successful K_OK is returned, otherwise a negative error code is returned.

[K_EFAULT] Some of the arguments provided are outside the
caller’s address space.

Chorus0OS 4.0 Last modified December 1999

Virtual Memory Segment Services

[K_EINVAL]
[K_EUNKNOWN]
[K_EROUND]
[K_EROUND]

[K_EROUND]

[K_EADDR]

[K_EOFFSET]

[K_EINVAL]

[K_EBUSY]

[K_EFAIL]

[K_EMAPPER]

IcFlush(2SEG)

An inconsistent actor capability was provided.
actorcap does not specify a reachable actor.
address or size isn’t page-aligned.

Icdesc->startOffset or Icdesc->size isn’t
fragment-aligned.

segdesc->startOffset or segdesc->size isn’t
fragment-aligned.

Some or all the addresses from the target address
range are invalid.

Tried to flush a segment outside the valid offset
range in a segment, as returned by vmStat.

The flags argument contains invalid flag values.

Tried to invalidate or destroy a no—-demand
(mapped to a region with K_NODEMAND
attribute) physical memory.

An ipcCall transaction failed during the remote
IcFlush or IcSetRights.

The mapper doesn’t respect the vm/mapper
protocol.

RESTRICTIONS The target actor and the current actor must be located on the same site (vmFlush

only).

The sgFlush and sgSyncAll calls remain in the interface for backward
compatibility. They will be removed in a future release.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Evolving

SEE ALSO MpGetAccess (2SEG) , MpPullin (2SEG) , MpPushOut (2SEG) , rgnMap (2SEG) ,

IcOpen (2SEG), IcFillZero

Last modified December 1999

(2SEG) , IcTrunc (2SEG)

Chorus0S 4.0 41

IcOpen(2SEG)

NAME

SYNOPSIS

FEATURES
DESCRIPTION

RESTRICTIONS

RETURN VALUE
ERRORS

ATTRIBUTES

SEE ALSO

42

Virtual Memory Segment Services

IcOpen, IcClose, IcCap — Find or create a local cache object for a segment; Release
a local cache object; Return the cabability of a local cache

#include <mem/chMem.h>
int IcOpen (KnCap * sgcap, VmFlags flags, int * cachelip);

int IcCap (int cacheli, KnCap * lccap);
int IcClose (int cacheli);
MEM_VM

Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The IcOpen call allows the caller to force the kernel to use the same local cache
object for the segment specified until a subsequent IcClose call is received.

The sgcap argument is a pointer to the target segment capablity. The flags
argument must be zero. This argument will be used in future extensions
of the interface.

The IcOpen call returns into the variable pointed to by the cachelip argument,
a local id of the local cache object corresponding to the target segment. The
caller can then use the local id in a number of subsequent IcRead, IcWrite (see
IcRead(2SEG)) and IcCap (see below) calls. The local id must be released using
the IcClose call and should not be used any more.

The IcCap call finds the local cache object specified by its local id (cacheli
argument) and returns the local cache capability in the variable pointed to by
the Iccap argument.

The current implementation is only applicable to trusted supervisor actors. An
attempt to pass an invalid local id may produce unpredictable system behavior.

If successful K_OK is returned, otherwise a negative error code is returned.

[K_EFAULT] Some of the arguments provided are outside the

caller’s address space.

[K_ENOMEM] The system is out of resources.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

vmsStat (2K) , MpGetAccess (2SEG) , MpPullin (2SEG) , rgnMap (2SEG) ,
IcFlush (2SEG) , IcFillZzero (2SEG) , IcTrunc (2SEG)

ChorusOS 4.0 Last modified December 1999

Virtual Memory Segment Services IcPushData(2SEG)

NAME
SYNOPSIS

FEATURES
DESCRIPTION

IcPushData — push data from a source local cache to a target local cache

#include <mem/chMem.h>

#include <mem/chMapper.h>

int IcPushData (KnObjDesc *source, VmFlags sourceFlags, KnObjDesc *target, VmFlags
targetFlags, MpPullinld pullinld, unsigned long ordinalNb);

MEM_VM

Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The source argument points to a KnObjDesc structure whose members are
the following:

KnCap dataObject ;
VmOffset startOffset ;
VmSize size ;

where the dataObject field is the local cache capability, the startOffset field is the
start offset of the part in the local cache, and the size field is the part size. The
sourceFlags parameter indicates the new access level for the local cache which is
the source cache for the push data operation.

If the K_ READABLE flag is set, IcPushData sends the requested data to the target
local cache and sets the source access to read-only.

If the K_NOACCESS flag is set, IcPushData sends the requested data to the target
local cache and discards the source data.

If the K_PAGEFAULT flag is set, IcPushData is the result of a page fault. This
operation could break the atomicity of ansgRead/sgWrite operation running
concurrently on the same local cache parts.

If the K_ORDERED flag is set, the IcPushData request is an ordered message.

The target argument points to a KnObjDesc structure which contains the
capability of a local cache which is requesting data for an overlapping area
of the same segment. The targetFlags parameter can be used to pass access
information to the target site. The pullinld argument is provided in a Mpin
request from the target site.

The ordinalNb argument specifies the order number of the request. For each local
cache the kernel maintains a variable containing the order number expected for
the next ordered message. The variable is initialized with zero. When the kernel
receives an ordered message for a local cache, it compares the message order
number with the order number expected. If the message order number is greater
than or equal to the one expected, the kernel sets the expected order number

to the message order number plus one and then processes the message. If the

Last modified December 1999 ChorusQS 4.0 43

IcPushData(2SEG)

RETURN VALUE

RESTRICTIONS
ERRORS

ATTRIBUTES

SEE ALSO

44

Virtual Memory Segment Services

message order number is less than the one expected, the IcPushData request is
processed, but the expected order number is not modified.

This operation is applied even if the source cache is managed by a remote
site. The effect of IcPushData on the source cache is similar to IcFlush using the
same flags. The difference is that IcFlush causes modified data to be pushed
to the mapper.

If successful, IcPushData returns K_OK, otherwise a negative error code is
returned. The number of bytes pushed to the target cache is returned in
target->size.

The current implementation of IcPushData restricts the pushed data to one page.
[K_EBUSY] Tried to flush a part of a segment locked in
memory.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

IcFlush (2SEG), MpPullin (2SEG)

ChorusOS 4.0 Last modified December 1999

Virtual Memory Segment Services IcRead(2SEG)

NAME

SYNOPSIS

FEATURES
DESCRIPTION

RETURN VALUE
ERRORS

IcRead, IcWrite — Read data through a local cache into an actor address space;
Write data from an actor address space through a local cache

#include <mem/chMem.h>
int IcRead (int srccacheli, VmOffset srcoffseti, KnCap * dstactorcap, VmAdd dstaddress,
VmSize * sizep);

int IcWrite (int dstcacheli, VmOffset dstoffset, KnCap * srcactorcap, VmAddr srcaddress,
VmSize * sizep);

MEM_VM

Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The IcRead function reads data from a segment through a local cache into the
actor address space specified by dstactorcap - a pointer to the actor capability. If
dstactorcap is K_MYACTOR, the address space of the current actor is used. If
dstactorcap is K_SVACTOR, the supervisor address space is used.

The source data is specified by the srccacheli argument, which is the local id of
the local cache corresponding to the source segment and the srcoffset argument,
which is the data start offset within the segment. The destination is specified
by the dstaddress argument, which is the start address in the destination actor
address space.

The IcWrite function writes data from an actor address space into a segment
through a local cache. The source address space is specified by srcactorcap , which
is a pointer to the actor capability. If srcactorcap is K_MYACTOR, the address
space of the current actor is used. If srcactorcap is K_SVACTOR, the supervisor
address space is used.

The source data is specified by the srcaddress argument, which is the data start
address in the source actor address space. The destination is specified by the
dstcacheli argument, which is the local id of the local cache corresponding to the
destination segment and the dstoffset argument, which is the data start offset
within the segment.

The data size is specified by the sizep argument - a pointer to the variable
containing the size of data.

If any error occurs during an IcRead or IcWrite operation, the number of bytes
read or written before the error occurrred is returned to the variable pointed to
by the sizep argument.

If successful K_OK is returned, otherwise a negative error code is returned.

[K_EFAULT] Some of the arguments provided are outside the
caller’s address space.

Last modified December 1999 ChorusQS 4.0 45

IcRead(2SEG)

RESTRICTIONS

46

ATTRIBUTES

SEE ALSO

[K_EINVAL]
[K_EUNKNOWN]

[K_EOFFSET]

[K_EFAULT]
[K_EFAULT]

[K_EMAPPER]

Virtual Memory Segment Services

An inconsistent actor capability was provided.

dstactorcap or srcactorcap does not specify a
reachable actor.

Attempted to access a segment outside its valid
offset range as returned by vmStat.

Attempted to write to a read-only region.

The read or write buffer is outside any allocated
region.

The mapper doesn’t respect the vm/mapper
protocol.

The caller, the target actor and the local cache must be located on the same site.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Evolving

IcOpen (2SEG) , IcClose (2K)

ChorusOS 4.0

Last modified December 1999

Virtual Memory Segment Services IcSetRights(2SEG)

NAME

SYNOPSIS

FEATURES
DESCRIPTION

IcFlush, IcSetRights, sgFlush, sgSyncAll, vmFlush — flush local cache(s)

#include <mem/chMem.h>
int IcFlush (KnObjDesc * Icdesc, VmFlags flags, unsigned long ordernb);

int IcSetRights (KnObjDesc * Icdesc, VmFlags flags, unsigned long ordernb);
int sgFlush (KnObjDesc * segdesc, VmFlags flags);

int sgSyncAll (void);

int vmFlush (KnCap * actorcap, VmAddr address, VmSize size, VmFlags flags);

MEM_VM
Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The IcFlush call performs a flush operation on a range of a local cache. The lcdesc
argument points to a KnObjDesc structure whose members are the following:

KnCap dataObject ;
VmOffset startOffset ;
VmSize size ;

where the dataObject field is the local cache capability, the startOffset field is the
range start offset in the local cache, and the size field is the range size. Both
startOffset and size must be fragment-aligned. The size of the fragment is
implementation—-dependent and is usually equal to the virtual page size divided
by 8 (number of bits in one byte).

For IcFlush, the target local cache is directly specified by its capability; the flush
operation is applied even if the cache is managed by a remote site.

The sgFlush call takes the same arguments, except the dataObject field specifies
the capability of the cached segment. For sgFlush, the target local cache is
indirectly specified by the capability of the corresponding segment; the flush
operation implicitly applies to the segment’s cache(s) located on the caller’s site.

The vmFlush call performs a flush operation on the ranges of the local caches
mapped to an address range of an actor address space. The address range
must be page-aligned.

The target actor is specified by actorcap - a pointer to the actor capability. If
actorcap is K_MYACTOR, the address space of the current actor is used. If
actorcap is K_SVACTOR, the supervisor address space is used.

The flags argument specifies the mode of the flush and the upper access rights for
the target parts after the flush operation.

Last modified December 1999 Chorus0S 4.0 47

IcSetRights(2SEG)

RETURN VALUE

48

ERRORS

Virtual Memory Segment Services

If the K_COPYBACK flag is set, xxFlush writes back any (even clean) cached data
of the target parts and keeps the parts access rights unchanged.

If the K_WRITABLE flag is set, xxFlush writes back all modified data of the target
parts and keeps the parts access rights unchanged.

If the K_READABLE flag is set, xxFlush writes back all modified data of the
target parts and then sets the parts to read access only.

If the K_FREEZE flag is set, xxFlush writes back all modified data of the target
parts and then sets the parts as non-accessible.

If the K_NOACCESS flag is set, xxFlush writes back all modified data of the
target parts and invalidates them.

If the K_DESTROY flag is set, xxFlush invalidates the target parts without
writing back.

If the K_ASYNC flag is set, the vm performs the write operations required by
the xxFlush asynchronously.

If K_PAGEFAULT flag is set, xxFlush is a result of a page fault. This type of
IcFlush operation could break the atomicity of a sgRead/sgWrite operation
running concurrently on the same local cache parts.

The K_ORDERED flag can only be used with an IcFlush or an IcSetRights request.
If the flags is set, the orderNb argument specifies the IcFlush message order
number. It allows the kernel to detect the situation when two mesages sent by a
mapper in one order are received by the kernel in another. For instance, if the
mapper grants certain access rights in a MpGetAccess reply first, then, processing
another request, calls an IcFlush to recall the access rights, considering the order
numbers, the kernel is aware that the access returned by the MpGetAccess reply
was already recalled by the mapper, and performs another MpGetAccess request.

The IcSetRights operation is similar to the IcFlush operation, except that it
only changes data protections without invalidation and/or writing back: the
K_WRITABLE flag is ignored, the K_READABLE flag sets the target parts
read—only, whereas the K_FREEZE and K_NOACCESS flags set the target
parts to non-accessible. The K_COPYBACK, K_ASYNC and K_DESTROY
flags are prohibited.

The sgSyncAll operation writes back asynchronously all dirty parts of all local
caches on the site, except the local caches mapped at least once to a region with
the K_NOSYNC attribute (see rgnMap(2SEG)).

If successful K_OK is returned, otherwise a negative error code is returned.

[K_EFAULT] Some of the arguments provided are outside the
caller’s address space.

Chorus0OS 4.0 Last modified December 1999

Virtual Memory Segment Services

[K_EINVAL]
[K_EUNKNOWN]
[K_EROUND]
[K_EROUND]

[K_EROUND]

[K_EADDR]

[K_EOFFSET]

[K_EINVAL]

[K_EBUSY]

[K_EFAIL]

[K_EMAPPER]

IcSetRights(2SEG)

An inconsistent actor capability was provided.
actorcap does not specify a reachable actor.
address or size isn’t page-aligned.

Icdesc->startOffset or Icdesc->size isn’t
fragment-aligned.

segdesc->startOffset or segdesc->size isn’t
fragment-aligned.

Some or all the addresses from the target address
range are invalid.

Tried to flush a segment outside the valid offset
range in a segment, as returned by vmStat.

The flags argument contains invalid flag values.

Tried to invalidate or destroy a no—-demand
(mapped to a region with K_NODEMAND
attribute) physical memory.

An ipcCall transaction failed during the remote
IcFlush or IcSetRights.

The mapper doesn’t respect the vm/mapper
protocol.

RESTRICTIONS The target actor and the current actor must be located on the same site (vmFlush

only).

The sgFlush and sgSyncAll calls remain in the interface for backward
compatibility. They will be removed in a future release.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Evolving

SEE ALSO MpGetAccess (2SEG) , MpPullin (2SEG) , MpPushOut (2SEG) , rgnMap (2SEG) ,

IcOpen (2SEG), IcFillZero

Last modified December 1999

(2SEG) , IcTrunc (2SEG)

Chorus0S 4.0 49

IcStat(2SEG)

NAME
SYNOPSIS

FEATURES
DESCRIPTION

RETURN VALUE
ERRORS

ATTRIBUTES

50

Virtual Memory Segment Services

IcStat, sgStat — get the statistics of a local cache

#include <mem/chMem.h>
#include <mem/chMapper.h>
intlcStat (KnCap * Iccap, KnLcStat * stat);

int sgStat (KnCap * segcap, KnLcStat * stat);
MEM_VM

Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The IcStat and sgStat functions get the statistics of the local cache specified either
by Iccap - a local cache capability, or by segcap - a segment capability. In the latter
case, the statistics of the cache of the segment on the current site are returned.

The KnLcStat structure describes the statistics associated with a local cache,
as follows:

VmSize physMem ;

VmSize lockMem ;

KnCap segcap ;
KnCap Iccap ;

The physMem field specifies the physical memory size currently allocated for
the local cache.

The lockMem field specifies the physical memory size currently fixed for the
local cache.

The segcap field specifies the capability of the corresponding segment. It is
returned by the IcStat call only when the caller is a system actor or when the
current thread executes in privileged mode.

The Iccap field specifies the capability of the segment’s local cache on the current
site. It is returned by the sgStat call only when the caller is a system actor or
when the current thread executes in privileged mode.

If successful K_OK is returned, otherwise a negative error code is returned.

[K_EFAULT] Some of the arguments provided are outside the
caller’s address space.
[K_EUNDEF] The segment specified is not cached on the site.
See attributes (5) for descriptions of the following attributes:
ATTRIBUTE TYPE ATTRIBUTE VALUE
Interface Stability Evolving
ChorusQS 4.0 Last modified December 1999

Virtual Memory Segment Services IcStat(2SEG)

SEE ALSO | IcFlush (2SEG)

Last modified December 1999 Chorus0S 4.0 51

IcTrunc(2SEG)

NAME
SYNOPSIS

FEATURES
DESCRIPTION

RETURN VALUE
ERRORS

52

Virtual Memory Segment Services

IcTrunc — shape the end of a local cache

#include <mem/chMem.h>
intlcTrunc (KnObjDesc *lcdesc, VmOffset zerooffset, VmFlags flags, unsigned long ordernb);

MEM_VM

Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The IcTrunc function grants write access to the [Icdesc->startOffset,
Icdesc->startOffset + Icdesc->size)] range and recalls all access rights from the
[Icdesc->startOffset + Icdesc->size, K_ MAXVMOFFSET] range of the local cache
specified by the lcdesc->dataObject capability.

Then, IcTrunc caches the [lcdesc->startOffset, zerooffset) range in the local cache
and zeros the [zerooffset, lcdesc->startOffset + Icdesc->size) range (if not empty, in
other words, zerooffset == lcdesc->startOffset + Icdesc->size).

Finally, IcTrunc marks the [Icdesc->startOffset, Icdesc->startOffset + lcdesc->size)
range as modified.

If lcdesc->size is equal to zero the IcTrunc call simply invalidates the
[lcdesc->startOffset, K MAXVMOFFSET] range.

Both Icdesc->startOffset and Icdesc->size must be fragment-aligned. The size of the
fragment is implementation—-dependent and usually equal to the virtual page
size divided by 8 (number of bits in one byte).

If the K_ORDERED flag is set in the flags argument, the ordinalNumber argument
specifies the IcTrunc message order number. It allows the kernel to detect the
situation when two mesages sent by a mapper in one order are received by the
kernel in another. For instance, if the mapper grants certain access rights in a
MpGetAccess reply first, then, processing another request, calls an IcTrunc to
recall the access rights, using the order numbers, the kernel is aware that the
access returned by the MpGetAccess reply was already recalled by the mapper,
and performs another MpGetAccess request.

The IcTrunc operation cannot be blocked by either a pure MpGetAccess or by an
impure (combined with a MpGetAccess) MpPullin up-call.

If successful K_OK is returned, otherwise a negative error code is returned.

[K_EFAULT] Some of the arguments provided are outside the
caller’s address space.

[K_EINVAL] An inconsistent local cache capability was
provided.

[K_EUNKNOWN] Icdesc->dataObject does not specify a reachable
local cache.

Chorus0S 4.0 Last modified December 1999

Virtual Memory Segment Services IcTrunc(2SEG)

[K_EROUND] Icdesc->startOffset or Icdesc->size isn’t
fragment-aligned.

[K_EOFFSET] Tried to truncate a segment outside the valid
offset range in a segment, as returned by vmStat.

[K_EOFFSET] zeroofset is out of [lcdesc->startOffset,
Icdesc->startOffset + lcdesc->size] range.

[K_EINVAL] The flags argument contains invalid flag values.

[K_EBUSY] Tried to invalidate or destroy a no—-demand

(mapped to a region with the K_NODEMAND
attribute) physical memory.

[K_EFAIL] An ipcCall transaction failed during the remote
IcTrunc.

[K_EMAPPER] The mapper doesn’t respect the vm/mapper
protocol.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO MpGetAccess (2SEG), MpPullin (2SEG), rgnMap (2SEG), IcOpen (2SEG),
IcFlush (2SEG), IcFillZero (2SEG)

Last modified December 1999 Chorus0S 4.0 53

IcWrite(2SEG)

NAME

SYNOPSIS

FEATURES
DESCRIPTION

RETURN VALUE
ERRORS

54

Virtual Memory Segment Services

IcRead, IcWrite — Read data through a local cache into an actor address space;
Write data from an actor address space through a local cache

#include <mem/chMem.h>
int IcRead (int srccacheli, VmOffset srcoffseti, KnCap * dstactorcap, VmAdd dstaddress,
VmSize * sizep);

int IcWrite (int dstcacheli, VmOffset dstoffset, KnCap * srcactorcap, VmAddr srcaddress,
VmSize * sizep);

MEM_VM

Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The IcRead function reads data from a segment through a local cache into the
actor address space specified by dstactorcap - a pointer to the actor capability. If
dstactorcap is K_MYACTOR, the address space of the current actor is used. If
dstactorcap is K_SVACTOR, the supervisor address space is used.

The source data is specified by the srccacheli argument, which is the local id of
the local cache corresponding to the source segment and the srcoffset argument,
which is the data start offset within the segment. The destination is specified
by the dstaddress argument, which is the start address in the destination actor
address space.

The IcWrite function writes data from an actor address space into a segment
through a local cache. The source address space is specified by srcactorcap , which
is a pointer to the actor capability. If srcactorcap is K_MYACTOR, the address
space of the current actor is used. If srcactorcap is K_SVACTOR, the supervisor
address space is used.

The source data is specified by the srcaddress argument, which is the data start
address in the source actor address space. The destination is specified by the
dstcacheli argument, which is the local id of the local cache corresponding to the
destination segment and the dstoffset argument, which is the data start offset
within the segment.

The data size is specified by the sizep argument - a pointer to the variable
containing the size of data.

If any error occurs during an IcRead or IcWrite operation, the number of bytes
read or written before the error occurrred is returned to the variable pointed to
by the sizep argument.

If successful K_OK is returned, otherwise a negative error code is returned.

[K_EFAULT] Some of the arguments provided are outside the
caller’s address space.

Chorus0OS 4.0 Last modified December 1999

Virtual Memory Segment Services IcWrite(2SEG)

[K_EINVAL] An inconsistent actor capability was provided.

[K_EUNKNOWN] dstactorcap or srcactorcap does not specify a
reachable actor.

[K_EOFFSET] Attempted to access a segment outside its valid
offset range as returned by vmStat.

[K_EFAULT] Attempted to write to a read-only region.

[K_EFAULT] The read or write buffer is outside any allocated
region.

[K_EMAPPER] The mapper doesn’t respect the vm/mapper
protocol.

RESTRICTIONS The caller, the target actor and the local cache must be located on the same site.
ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO IcOpen (2SEG) , IcClose (2K)

Last modified December 1999 Chorus0S 4.0 55

MpCreate(2SEG)

NAME

SYNOPSIS

FEATURES
DESCRIPTION

ATTRIBUTES

SEE ALSO

56

Virtual Memory Segment Services

MpCreate — create a temporary segment at the default mapper

#include <mem/chMem.h>

#include <mem/chMapper.h>
MpCreate

request annex(KnMpCreate structure):

int Service;
VmFlags options;
response annex (KnMpCreateReply structure):
int diag;
KnCap segcap;
VmFlags options;
MEM_VM

Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

In order to create a temporary segment at the default mapper, the kernel memory
management system performs an MpCreate message transaction. In other words,
it sends, using ipcCall(2K), an MpCreate request message to a port or group of
ports identifying the mapper.

The request message consists of an annex (no body) whose head matches the
KnMpCreate structure defined above. The service field of this structure must
be set to KN_MPCREATE.

The mapper replies with a message, also consisting of an annex only, whose head
must match the KnMpCreateReply structure. The diag field is the operation return
code. The diag must be either 0 (K_OK) or a negative number. If a negative error
code is returned, the kernel returns it to the original kernel call (if any).

The segcap field contains the segment capability created.

The options field of the return message must be zero for backward compatibility
with future versions.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MpGetAccess (2SEG), MpPullin (2SEG), MpPushOut (2SEG),
MpRelease (2SEG)

ChorusOS 4.0 Last modified December 1999

Virtual Memory Segment Services

NAME

SYNOPSIS

FEATURES
DESCRIPTION

MpGetAccess(2SEG)

MpGetAccess — get access to data through a local cache

#include <mem/chMem.h>
#include <mem/chMapper.h>

MpGetAccess
request annex (KnMpGetAccess structure):
int service ;
KnKey segkey ;
KnCap Iccap ;
VmOffset accessOffset ;
VmSize accessSize ;
VmFlags requiredAccess ;
VmSize requiredAccessOffset ;
VmSize requiredAccessSize ;
response annex (KnMpGetAccessReply structure):
int diag ;
VmFlags grantedAccess ;
unsigned long ordinalNumber ;
VmOffset returnAccessOffset ;
VmSize returnAccessSize ;
VmSize inClusterSize ;
VmSize outClusterSize ;
MEM_VM

Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

In order to demand access rights for a range of a segment through a local cache,
the kernel memory management system performs an MpGetAccess message
transaction. In other words it sends, using ipcCall(2K), an MpGetAccess request
message to the mapper managing the segment. The mapper is identified by
the ui field of the segment capability.

The request message consists of an annex (no body) whose head matches the
KnMpGetAccess structure defined above. The service field of this structure must
be set to KN_MPGETACCESS.

The kernel demands access rights to accessSize bytes of data using the accessOffset,
the starting offset in the segment is specified by segkey on the invoked mapper,

Last modified December 1999 Chorus0S 4.0 57

MpGetAccess(2SEG)

58

Virtual Memory Segment Services

for the local cache specified by Iccap. Both accessOffset and accessSize are always
page-aligned.

The kernel also specifies in the message that access rights for requiredAccessSize
bytes of data with the requiredAccessOffset starting offset is mandatory.

The kernel guarantees that [accessOffset, accessOffset + accessSize] includes
[requiredAccessOffset, requiredAccessOffset + requiredAccessSize].

The kernel can send a get access request when it performs one of the following
operations:

m Ic(sg)Read or a lc(sg)Write kernel calls. In this case [requiredAccessOffset,
requiredAccessOffset + requiredAccessSize) specifies the exact (in bytes)
boundaries of the operation.

The kernel can perform a lIc(sg)Read/Write call without a MpGetAccess
transaction if it already has access to the required range.

m any other operation which acts on a range of the segment through a virtual
address space as a page fault or vmLock, vmCopy, rgnSetPaging, rgninit, for
example.

In this, and only this, case the K_PAGEFAULT flag is set in the requiredAccess
field.

The kernel can ask for access rights to the operation range (the operation
range of a page fault is the whole faulty page) using a number of
consecutive MpGetAccess transactions. The requiredAccessOffset of each
transaction is page-aligned and requiredSize % vmPageSize() is equal to 1 (the
last byte of the required range is the first byte of a page).

The kernel can perform the operation without an MpGetAccess request for
a particular page overlapping the operation range if it has already the
requested access to the whole page.

If the K_WRITABLE flag in the requiredAccess field is set, write access to the data
is requested, otherwise read-only access is requested.

The mapper must reply with a message, consisting of an annex (no body) whose
head matches the KnMpGetAccessReply structure.

The diag field is the transaction return code. The diag field must be either 0
(K_OK), or a negative number. When a negative error code is returned, there
are two possibilities:

m returnAccessSize is equal to zero. In this case the kernel immediately gives
up the processing of the original operation and returns from the original
kernel operation with a diag error code.

ChorusOS 4.0 Last modified December 1999

Virtual Memory Segment Services MpGetAccess(2SEG)

m returnAccessSize is positive. In this case the kernel reduces the original
operation range until returnAccessOffset + returnAccessSize, completes the
operation and returns from the original kernel operation with a diag error
code. Also, if it’s allowed by the interface of the operation (IcRead or IcWrite
calls), the number of bytes effectively processed will be returned.

If the original kernel operation is a page fault an error provokes exception
processing at the end of the page fault handler execution (see svExcHandler(2K)).

The K_MPIVERS bitmask defines a bit-field of the grantedAccess field which
specifies the version of the MpGetAccess protocol supported by the mapper. The
protocol version has to be equal to K_MPIVER1.

The mapper grants access to returnAccessSize bytes of data with the starting
offset in the segment equal to returnAccessOffset. The mapper has to guarantee
that [returnAccessOffset, returnAccessOffset + returnAccessSize] is included

in [accessOffset, accessOffset + accessSize] but includes [requiredAccessOffset,
requiredAccessOffset + requiredAccessSize]. Note that if diag is negative (see above)
the last condition can be not respected.

The kernel requires returnAccessOffset and returnAccessSize to be
"fragment"-aligned. The size of the fagment is implementation—dependent but
usually equal to the virtual page size devided by 8 (number of bits in one byte).

The alignment requirements above mean that the mapper can return access
rights to a partial page. The kernel implements the following policy with respect
to pages with partial access rights:

m The kernel maps the page to the target virtual address if required by the
target operation. The kernel page fault handler can map a page with
partial access rights to the faulty virtual address after the corresponding
MpGetAccess return. Note that in the case of another page fault on a page
with partial access rights, the kernel will call MpGetAccess again.

m The kernel doesn’t guarantee that the page compliment (the ranges of the
page without access rights) will be included in a subsequent mpPushOut
request even if it was modified using mmu. Neither does the kernel
guarantee that the page complement will not be included in any subsequent
mpPushOut request.

If the mapper grants write access, it sets the K WRITABLE flag in the
grantedAccess field, otherwise read only access is granted. The mapper could
grant write access in response to a read-only access request, but it must grant
write access in response to a write access request.

Last modified December 1999 Chorus0S 4.0 59

MpGetAccess(2SEG)

60

ATTRIBUTES

SEE ALSO

Virtual Memory Segment Services

If the K_ORDERED flag is set in the grantedAccess field, the ordinalNumber field
specifies the reply message order number. It allows the kernel to detect the
situation when two mesages sent by a mapper in one order are received by the
kernel in another. For instance, suppose the mapper grants access rights in an
MpGetAccess reply first, and then, processing another request, calls an IcFlush to
recall the access rights. In this case, the order numbers indicate to the kernel
that the access returned by the MpGetAccess reply was already recalled by the
mapper, and performs a MpGetAccess request again.

If the K_STALE flags is set in the grantedAccess field, any data already cached
from the returned range are considered as stale and will be destroyed by the
kernel upon receipt of the reply message.

The mapper may also set the K_RELEASE flag (in the grantedAccess field). In
this case the memory management has to perform an MpRelease request prior to
destroying the local cache.

If the K_GETATTR flag is set in the requiredAccess field of the request message,
the current MpGetAccess request is combined with a "get segment attributes"
request. When the mapper replies to a combined request it may return the
segment clustering attributes. If the mapper sets the K_CLUSTER flag (in the
grantedAccess field) the inClusterSize and outClusterSize fields define the segment
clustering attributes. The inClusterSize defines the optimal (from the mapper
point of view) data size for any future MpPullln operation performed on

the segment . The outClusterSize defines the optimal data size for any future
MpPushOut operation. Both inClusterSize and outClusterSize have to be a power
of two and page-aligned.

If the kernel detects that the mapper is not adhering to the protocol desscribed

above, the K_ EMAPPER error is returned to the orginal kernel operation. If the
original kernel operation is a page fault an error provokes exception processing
at the end of the page fault handler execution (see svExcHandler(2K)).

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MpPullln (2SEG), MpPushOut (2SEG), rgnMap (2SEG), IcOpen (2SEG),
IcFlush (2SEG), IcFillZero (2SEG), IcTrunc (2SEG)

ChorusOS 4.0 Last modified December 1999

Virtual Memory Segment Services

NAME MpPullin — read data into a local cache

SYNOPSIS #include <mem/chMem.h>

#include <mem/chMapper.h>
MpPullin

request annex (KnMplnle structure):

MpPullinlid ~ pullinid ;

int diag ;

VmFlags grantedAccess ;
unsigned ordinalNumber ;
VmOffset returnAccessOffset ;
VmSize returnAccessSize ;
VmSize inClusterSize ;
VmSize outClusterSize ;
VmOffset returnDataOffset ;
VmSize returnDataSize ;

response body:
unsigned char data [bodysize] ;

FEATURES MEM_VM

int service ;

KnCap segkey ;

KnCap Iccap ;

VmOffset accessOffset ;
VmSize accessSize ;
VmFlags requiredAccess ;
VmOffset requiredAccessOffset ;
VmSize requiredAccessSize ;
VmOffset dataOffset ;

VmSize dataSize ;

VmOffset requiredDataOffset ;
VmSize requiredDataSize ;

response annex (KnMplInReply structure) :

MpPullin(2SEG)

DESCRIPTION Caution - This system call is strictly reserved for internal use only. It MUST

NOT be used by any application.

Last modified December 1999 Chorus0S 4.0

61

MpPullIn(2SEG)

62

Virtual Memory Segment Services

In order to demand the contents of a range of a local cache to be updated from
the corresponding segment, the kernel memory management system performs a
MpPullln message transaction. It sends, using ipcCall(2K) a MpPullln request
message to the mapper managing the segment. The mapper is identified by

the ui field of the segment capability.

The request message consists of an annex (no body) whose head matches the
KnMpln structure defined above. The service field of this structure is set to
KN_MPPULLIN

The kernel demands dataSize bytes of data to be updated with the starting
offset specified by dataOffset,from the segment specified by segkey on the
invoked mapper, in the local cache specified by Iccap. The kernel also specifies
in the message that the update of requiredDataSize bytes of data with the
requiredDataOffset starting offset is mandatory. The kernel guarantees that
[dataOffset,dataOffset + dataSize] includes [requiredDataOffset, requiredDataOffset +
requiredDataSize]. The dataOffset, dataSize, requiredDataOffset and requiredDataSize
parameters are always page aligned. The pullinid identifier is the MpPullin
message transaction identifier used in IcPushData(2SEG).

The mapper must reply (using ipcReply(2K)) with a message whose annex head
matches the KnMpInReply structure, and whose body (if any) contains the data
to be put in the local cache.

The diag field is the operation return code. The diag field must be either 0
(K_OK), or a negative number. If a negative error code is returned, the kernel
returns it to the original kernel call.

The returnDataSize field specifies the size of the data to be put in the local cache,
and the returnDataOffset field specifies the starting offset of the data within the
segment. The mapper has to guarantee that [returnDataOffset, returnDataOffset
+ returnDataSize] is included in [dataOffset, dataOffset + dataSize] but includes
[requiredDataOffset, requiredDataOffset + requiredDataSize]. Both returnDataOffset
and returnDataSize must be page aligned.

The size of the body may be less or equal to the returnDataSize value. If the body
size is less than returnDataSize, the memory management system will fill the
remaining data with default values: zero or scratch. The default value is zero if
the mapper sets the K_FILLZERO flag in the grantedAccess field.

If the K_DIRTY flag is set in the grantedAccess field, the kernel considers the
returned data as dirty: the kernel will later perform an MpPushOut operation for
the data even if the data is not modified on the site.

If accessSize is not zero, the MpPullln data request is combined with a getAcceess
access request. The mapper must reply to the access request as described in the
MpGetAccess (2SEG) manual.

Chorus0S 4.0 Last modified December 1999

Virtual Memory Segment Services

MpPullin(2SEG)

In the case of a combined request, the mapper can defer data return until a
subsequent non-combined (pure) MpPullln request. To reply without data, the
mapper sets the returnDataSize field and the reply body size to zero.

If the mapper replies to a combined MpPullin request with data, it can’t use the
K_DIRTY and K_ORDERED flags together.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Evolving

SEE ALSO MpGetAccess (2SEG), MpPushOut (2SEG), rgnMap (2SEG), IcOpen (2SEG),

IcPushData (2SEG)

Last modified December 1999

Chorus0S 4.0

63

MpPushOut(2SEG)

NAME

SYNOPSIS

FEATURES
DESCRIPTION

64

Virtual Memory Segment Services

MpPushOut — write data back to mapper

#include <mem/chMem.h>

#include <mem/chMapper.h>
MpPushOut

request annex (KnMpOut structure) :

int service
KnKey segkey
KnCap Iccap
VmOffset dataOffset
VmSize dataSize
VmFlags options

KnAsynloDesc asynloDesc

request body:
unsigned char data [bodysize]

response annex (KnMpOutReply structure) :
int diag

MEM_VM

Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

In order to write back the contents of a range of a local cache to the corresponding
segment, the kernel memory management system performs a MpPushOut
message transaction. It sends, using ipcCall(2K) an MpPushOut request message
to the mapper managing the segment. The mapper is identified by the ui field of
the segment capability.

The request message consists of an annex whose head matches the KnMpOut
structure defined above, and a body containing the data to be written. The
service field is set to KN_MPPUSHOUT.

Upon receipt of such a request, the mapper writes data back to the segment
specified by segkey from the local cache specified by lccap. If the segment was
created using MpCreate(2SEG), the Iccap argument is undefined.

The dataOffset field specifies the starting offset of the data in the segment, and
the dataSize field the data size. Currently, the dataSize field is always equal to
the message body size and "fragment"-aligned. The size of the fragment is
implementation—dependent and usually equal to the virtual page size divided
by 8 (number of bits in one byte). The dataOffset field is always page-aligned.

Chorus0S 4.0 Last modified December 1999

Virtual Memory Segment Services MpPushOut(2SEG)

RESTRICTIONS

ATTRIBUTES

SEE ALSO

If the K_ASYN_REQUEST flag is set in the options field, the mapper can perform
an asynchronous write (see below). In this case the kernel fills the asynloDesc
structure which has to be passed as a parameter for a subsequent ioDone call.
The asynloDesc structure is opaque to the mapper.

The mapper must reply to a message whose annex head matches the
KnMpOutReply structure, where the diag field is the operation return code. The
diag field must be 0 (K_OK) or 1 (K_ASYN_REPLY) or a negative number. If a
negative error code is returned, the kernel returns it to the original kernel call
(if any). The K_ASYN_REPLY can be returned by the mapper if, and only if,
the K_ASYN_REQUEST flag was set by the kernel.

If K_ASYN_REPLY is returned (the mapper performs an asynchronous write),
the mapper must invoke an ioDone function in order to notify that a write
operation has been peformed, as follows:
void ioDone (diag, asynloDesc)

int diag ;

KnAsynloDesc* asynloDesc ;

The diag parameter must be either 0 (K_OK) or a negative number. If a negative
error code is returned, the kernel returns it to the original kernel call (if any).

The asynloDesc parameter points to the KnAsynloDesc structure corresponding
to the MpPushOut request.

The ioDone function can be called asynchronously (in respect of ipcCall reply)
from base or interrupt level.

The current kernel implementation never performs asynchronous MpPushOut
requests to a remote mapper.

The ioDone function implementation is only for trusted supervisor actors: an
attempt to pass an invalid asynloDesc may produce undefined system behavior.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MpPullin (2SEG), MpCreate (2SEG), IcFlush (2SEG), rgnMap (2SEG),
IcOpen (2SEG)

Last modified December 1999 Chorus0S 4.0 65

MpRelease(2SEG)

NAME

SYNOPSIS

FEATURES
DESCRIPTION

ATTRIBUTES

SEE ALSO

66

Virtual Memory Segment Services

MpRelease - release a temporary segment or notify a local cache destruction

#include <mem/chMem.h>
#include <mem/chMapper.h>
MpRelease
request annex (KnMpRelease structure) :
int service ;
KnKey segkey ;
KnCap Iccap ;
response annex (KnMpReleaseReply structure) :
int diag ;
MEM_VM
Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

When a temporary segment previously created using MpCreate(2SEG) is no
longer in use, an MpRelease message transaction is performed by the kernel. The
kernel also performs this request, when destroying a local cache for which the
K_RELEASE flag was set by the mapper (see MpGetAccess(2SEG)). This request
message is sent to the mapper managing the segment, using ipcCall(2K). The
mapper is identified by the ui field of the segment capability.

The request message consists of an annex (no body) whose head matches the
KnMpRelease structure defined above.

The service field is set to KN_MPRELEASE.

The segkey field identifies the segment and the Iccap field, if needed, identifies the
local cache just destroyed.

The mapper must reply with a message whose annex head matches the
KnMpReleaseReply structure, where the diag field is the operation return code.
The diag must be either 0 (K_OK) or a negative number. If a negative error code
is returned, the kernel returns it to the original kernel call (if any).

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MpCreate (2SEG), MpGetAccess (2SEG)

ChorusOS 4.0 Last modified December 1999

Virtual Memory Segment Services pageloDone(2SEG)

NAME pageloDone - Inform nucleus 170 is complete on a page list

SYNOPSIS #include <mem/chMem.h>
void pageloDone (KnPage *page, int diag);

FEATURES PXM_EXT

DESCRIPTION Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The pageloDonefunction must be invoked by the Proxy-Mapper when a write
operation previously triggered by a pushOutAsyn up-call is done, or when a
read operation following a dcGetPages is done. The page argument specifies
a page list which may be a sub-list of the original lists passed to pushOutAsyn
or returned to dcGetPages. The Proxy-Mapper may split the original lists

into a number ofsub-lists and perform the pageloDone call for each sub-list
independently. The diag argument specifies the result of the operation. If
successful it must be set to K_OK, otherwise it must be an error code.

Programmers should take care to invoke the pageUnmap nucleus call before
invoking the pageloDone call. Doing it the other way round is likely to lead to
unpredictable behaviour of the system.

Sub-lists passed to pageUnmap and to pageloDone do not need to be identical.
RESTRICTIONS The current implementation is only applicable to trusted supervisor actors.

RETURN VALUE NONE

ERRORS No error messages are returned.
ATTRIBUTES See attributes (5) for descriptions of the following attributes:
ATTRIBUTE TYPE ATTRIBUTE VALUE
Interface Stability Evolving

SEE ALSO pageMap(2SEG), PxmPushOutAsyn (2SEG), dcGetPages (2SEG)

Last modified December 1999 Chorus0S 4.0 67

pageMap(2SEG) Virtual Memory Segment Services

NAME pageMap, pageUnmap — Map a list of pages in the current actor address space;
Unmap a list of pages

SYNOPSIS #include <mem/chMem.h>
int pageMap(KnPage * page, VmFlags flags, VmAddr * addr, VmSize * size, VmOffset *
offset);

void pageUnmap(KnPage * page);
FEATURES PXM_EXT

DESCRIPTION Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The pageMap call contiguously maps the page list specified by the page argument
in the supervisor address space The flags argument consists of two parts:

m The K_KNPAGE_TYPE bit field which specifies the type of page list:
K_KNPAGE_IN For getAcc , pullln or dcGetPages page lists

K_KNPAGE_OUT For pushOutAsyn page lists

m The K_NOWAITFORMEMORY flag; if this flag is set, the call will return
immediately with the K ENOMEM error if there is no virtual address space
available. If not set, it will wait for virtual memory to become available.
This flag must be set if the pageMap call is invoked from interrupt level.

The pageMap call sets the addr output argument to the virtual address to which
the page list is mapped. It also sets the size output argument to the size of
the data, and the offset output argument to the offset of the first page of the list.
In the case of a pullin up-call, or of a dcGetPages, the output argument size is
set to the number of pages in the list multiplied by the page size. In the case
of a pushOutAsyn up-call, pageMap gives a valid data size which is less than or
equal to the number of pages of the list mutiplied by the page size (the last
page of the list may be partially valid).

The pageUnmap nucleus call unmaps a list of pages specified by the page
argument which were previously mapped through the pageMap call.

It should be noted that the list of pages may be freely split and joined, either
before invoking pageMap or pageUnmap . The lists provided are always sorted
incrementally by offset.

RESTRICTIONS The current implementation is only applicable to trusted supervisor actors.
RETURN VALUE If successful, K_OK is returned, otherwise an error code is returned.
ERRORS [K_ENOMEM] The system is out of resources.

68 ChorusOS 4.0 Last modified December 1999

Virtual Memory Segment Services

pageMap(2SEG)

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Evolving

SEE ALSO PxmGetAcc (2SEG) , dcGetPages (2SEG) , pageloDone (2SEG)

Last modified December 1999

Chorus0S 4.0

69

pagePhysAddr(2SEG)

NAME
SYNOPSIS

FEATURES
DESCRIPTION

RESTRICTIONS
RETURN VALUE
ERRORS
ATTRIBUTES

SEE ALSO

70

Virtual Memory Segment Services

pagePhysAddr — Get the physical address of a page

#include <mem/chMem.h>
PhAddr pagePhysAddr (KnPage *page, VmFlags flags, VmSize *size, VmOffset *offset);

PXM_EXT

Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The pagePhysAddr call returns the physical address of the physcial page specified
by the page argument. The flags argument specifies the type of page:
K_KNPAGE_IN Page is used for a getAcc, pullln or dcGetPages call.

K_KNPAGE_OUT Page is used for a pushOutAsyn call.

When flags is set to K_KNPAGE_IN, pagePhysAddr sets the size output
argument to the page size. When flags is set to K_KNPAGE_OUT, pagePhysAddr
gives the valid data size which is less than or equal to the page size. The
pagePhysAddr call sets the offset output argument to the page offset.

The current implementation is only applicable to trusted supervisor actors.
This call returns the physical address of the page.
none

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE
Interface Stability Evolving
pageMap(2SEG)
ChorusOS 4.0 Last modified December 1999

Virtual Memory Segment Services pageSetDirty(2SEG)

NAME
SYNOPSIS

FEATURES
DESCRIPTION

RESTRICTIONS
RETURN VALUE
ERRORS
ATTRIBUTES

SEE ALSO

pageSetDirty — Mark a page as dirty

#include <mem/chMem.h>
void pageSetDirty (KnPage *page);

PXM_EXT

Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The pageSetDirty call enables the proxy-mapper to mark as dirty a page being
read as part of a pullln, getAcc up-call or as part of read-ahead processing
following a call to dcGetPages. This is more flexible than marking a full page list
dirty, as a result of a getAcc or pullin up-call. Morevover, it also allows the
proxy-mapper to mark a page as being dirty during a read-ahead operation
following a dcGetPages invocation.

The current implementation is only applicable to trusted supervisor actors.
NONE
No error messages are returned.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

pageMap(2SEG), PxmPushOutAsyn (2SEG), dcGetPages (2SEG)

Last modified December 1999 Chorus0S 4.0 71

pageSgld(2SEG)

NAME
SYNOPSIS

FEATURES
DESCRIPTION

RESTRICTIONS
RETURN VALUE

ERRORS
ATTRIBUTES

SEE ALSO

72

Virtual Memory Segment Services

pageSgld — Get the segment identifier associated with a page

#include <mem/chMem.h>
int pageSgld (KnPage *page);

PXM_EXT

Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The pageSgld call returns the segment identifier corresponding to the data cache
to which the page (or page list) specified by the page argument is attached. This
segment identifier is the one defined by the proxy-mapper at dcAlloc(2SEG)
invocation.

Note that if the page list used is the one provided by a getAcc up-call, pageSgld
may return NULL, because conditionally attached pages may have been
detached by dcFillZero or dcTrunc.

The current implementation is only applicable to trusted supervisor actors.

This call returns the segment identifier, or NULL if there are no pages attached to
the data cache.

No error messages are returned.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

dcAlloc (2SEG), dcFlush (2SEG), dcFillzero (2SEG), dcTrunc (2SEG),
PxmGetAcc (2SEG), pageMap(2SEG)

ChorusOS 4.0 Last modified December 1999

Virtual Memory Segment Services pageUnmap(2SEG)

NAME pageMap, pageUnmap — Map a list of pages in the current actor address space;
Unmap a list of pages

SYNOPSIS #include <mem/chMem.h>
int pageMap(KnPage * page, VmFlags flags, VmAddr * addr, VmSize * size, VmOffset *
offset);

void pageUnmap(KnPage * page);
FEATURES PXM_EXT

DESCRIPTION Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The pageMap call contiguously maps the page list specified by the page argument
in the supervisor address space The flags argument consists of two parts:

m The K_KNPAGE_TYPE bit field which specifies the type of page list:
K_KNPAGE_IN For getAcc , pullln or dcGetPages page lists

K_KNPAGE_OUT For pushOutAsyn page lists

m The K_NOWAITFORMEMORY flag; if this flag is set, the call will return
immediately with the K ENOMEM error if there is no virtual address space
available. If not set, it will wait for virtual memory to become available.
This flag must be set if the pageMap call is invoked from interrupt level.

The pageMap call sets the addr output argument to the virtual address to which
the page list is mapped. It also sets the size output argument to the size of
the data, and the offset output argument to the offset of the first page of the list.
In the case of a pullln up-call, or of a dcGetPages, the output argument size is
set to the number of pages in the list multiplied by the page size. In the case
of a pushOutAsyn up-call, pageMap gives a valid data size which is less than or
equal to the number of pages of the list mutiplied by the page size (the last
page of the list may be partially valid).

The pageUnmap nucleus call unmaps a list of pages specified by the page
argument which were previously mapped through the pageMap call.

It should be noted that the list of pages may be freely split and joined, either
before invoking pageMap or pageUnmap . The lists provided are always sorted
incrementally by offset.

RESTRICTIONS The current implementation is only applicable to trusted supervisor actors.
RETURN VALUE If successful, K_OK is returned, otherwise an error code is returned.
ERRORS [K_ENOMEM] The system is out of resources.

Last modified December 1999 Chorus0S 4.0 73

pageUnmap(2SEG) Virtual Memory Segment Services

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO PxmGetAcc (2SEG) , dcGetPages (2SEG) , pageloDone (2SEG)

74 ChorusOS 4.0 Last modified December 1999

Virtual Memory Segment Services PxmClose(2SEG)

NAME
SYNOPSIS

FEATURES
DESCRIPTION

PxmOpen, PxmClose — Open a Data Segment; Close a Data Segment

#include <mem/chMem.h>
void PxmOpern(KnPxmOpenArgs * openArg, void * cookie);

void PxmClose (KnPxmCloseArgs * closeArgvoid, void * cookie);

PXM_EXT

Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The PxmOpen/PxmClose routines are provided by the Proxy-Mapper and are
invoked as up-calls by the CHORUS VM. They are invoked as laps ; their second
argument is the lap cookie as defined at svLapCreate time. The PxmOpen/PxmClose
up-calls are invoked by the VM in order to inform the Proxy-Mapper that the
data segment object is currently being used by the VM. The Proxy-Mapper must
not destroy an open data segment.

The KnPxmOpenArgs data structure has the following members:

KnDtPxMapper* pxm ;
KnSgld sgld ;
int write ;

The KnPxmCloseArgs data structure has exactly the same members. The pxm
field is a pointer to the KnExtPxMapper structure previously defined by a call to
dcPxmbDeclare . It is also associated with the data segment defined by the sgld
member of the structure at dcAlloc time. If the write field is set to 0, the data
cache will not be modified.If the value is not 0, it may be modified. This allows
the Proxy-Mapper to optimize sync or flush operations.

The PxmOpen up-call is invoked by the VM in the following cases:

m When rgnMapFromDtCache or rgninitFromDtCache are invoked

m When rgnMapFromActor or rgninitFromActor or rgnDup are invoked, and the
source region was created through a call to rgnMapFromDtCache

m When a physical page attached to the data cache will be destroyed by the
swapper.

The PxmClose up-call is invoked by the VM in the following cases:
m When a region mapping the data segment identified by the sgid field of the
KnPxmCloseArgs data structure is destroyed

m When a physical page attached to the corresponding data cache has been
destroyed

Last modified December 1999 Chorus0S 4.0 75

PxmClose(2SEG)

RESTRICTIONS
RETURN VALUE
ERRORS
ATTRIBUTES

SEE ALSO

76

Virtual Memory Segment Services

The current implementation is only applicable to trusted supervisor actors.

No error messages are returned.

none

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Evolving

dcPxmDeclare (2SEG), dcAlloc (2SEG), dcFree (2SEG), svLapCreate (2K),

laplnvoke (2K)

Chorus0S 4.0

Last modified December 1999

Virtual Memory Segment Services PxmGetAcc(2SEG)

NAME
SYNOPSIS

FEATURES
DESCRIPTION

PxmGetAcc — Get access rights and data on a part of a data segment

#include <mem/chMem.h>
void PxmGetAcc (KnPxmGetAccArgs *getArg, void *cookie);

PXM_EXT

Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The PxmGetAcc routine is provided by the Proxy-Mapper and is invoked as an
up-call by the CHORUS VM. It is invoked as a lap; its second argument is the
lap cookie as defined at svLapCreate time. The PxmGetAcc up-call is invoked by
the VM in order to obtain access rights needed to perform an operation on

the data cache.

The KnPxmGetAccArgs data structure has the following members:

KnDtPxMapper* pxm ;

KnSgld sgld ;
KnPxmAcc* accParms ;
KnPage* page ;
VmSize* size ;

The pxm field is a pointer to the KnExtPxMapper structure previously defined by
a call to dePxmDeclare and associated with the data segment defined by the sgld
member of the structure at dcAlloc time.

The access rights are specified by the data structure pointed to by the accParms
field. The KnPxmAcc structure contains the following fields:

KnPxmAccReq req ;
KnPxmAccRep rep ;
void* lock ;

The req field describes the access rights requested by the VM, while the rep field
is filled by the Proxy-Mapper to define the actual access rights returned to the
VM. The KnPxmAccReq structure contains the following members:

VmFlags access ;

VmOffset start ;

VmOffset end ;

VmOffset reqgStart ;
VmOffset reqEnd ;

The access field specifies the access rights, and may be set to either K READABLE
or K WRITABLE. When set to K_READABLE, the corresponding data will be
read—only by the VM. If set to K_ WRITABLE, the corresponding data may

be modified by the VM. In such a case, the Proxy-Mapper should insure that

Last modified December 1999 Chorus0S 4.0 77

PxmGetAcc(2SEG)

78

Virtual Memory Segment Services

backing store (if needed) will be available when data is to be pushed out. The
start and end fields specify the access range desired, the reqStart and reqEnd
specify the access range required.

The KnPxmAccRep structure contains the following members:

VmFlags access ;
VmOffset start ;
VmOffset end ;
int diag ;

where the access field specifies the access rights returned by the Proxy-Mapper to
the VM (either K READABLE or K_WRITABLE). The start and end fields specify
the range of bytes for which the Proxy-Mapper grants access rights to the VM

as a result of the PxmGetAcc up-call. The diag field contains the diagnostic
returned by the Proxy-Mapper to the VM. If set to K_OK, the up-call has been
successful and the fields returned are meaningful, otherwise it is set to the
appropriate error code. If the error code returned is K_EBUSY, the VM will
invoke the PxmGetAcc up-call again.

The Proxy-Mapper could grant write access in response to a read-only access
request, but it must grant write access in response to a write access request. The
Proxy-Mapper must guarantee that the [rep.start, rep.end] range is included in the
[reqg.start, req.end] range, but also includes the [req.reqStart, req.regEnd] range. .
The rep.start and rep.end+1 values must be fragment-aligned.

The VM may request data at the same time as access rights. In this case, the page
argument specifies the list of pages which should be read from the data segment.
The page field points to a KnPage structure which specifies the first page of the
list. The KnPage structure has the following members:

struct KnPage* next ;
void* work ;

The Proxy-Mapper must set the size output field to the size of valid data (from
the beginning of the page list). If no data are requested, the page is NULL and
the Proxy-Mapper must not refer to the size field. The KnPage structure is the
physical page descriptor exported by the VM. The next field points to the next
page of the list and is set to NULL for the last page of the list. The work field is
not used by the VM while the page is owned by the Proxy-Mapper, it may be
used by the Proxy-Mapper while it owns the page.

There are two VM operations which can invoke the PxmGetAcc up-call:

m dcRead/dcWrite invocations
m A page fault on a region created by rgnMapFromDtCache.

ChorusOS 4.0 Last modified December 1999

Virtual Memory Segment Services PxmGetAcc(2SEG)

RESTRICTIONS
RETURN VALUE
ERRORS
ATTRIBUTES

SEE ALSO

In the case of dcRead or dcWrite, the lock field contains the accLock argument of the
dcRead/dcWrite call. Thus, the lock field is an input argument when PxmGetAcc is
called as a result of dcRead or dcWrite.

In the case of a page fault, the lock field is set to NULL and the K_PAGEFAULT
bit is set in the req.access field. If the PxmGetAcc is performed successfully,

the VM invokes the PxmRelAccLock up-call passing the value of the lock field

as an arguemtn. This value is returned to the VM by the Proxy-Mapper at the
completion of the PxmGetAcc up-call. Thus, in the case of page fault, the lock field
is an input/output argument of the PxmGetAcc up-call. Note that the relAccLock
up-call is never invoked as a result of a dcRead or dcWrite nucleus call.

The pages of the getArg->page list are conditionally attached to the data cache. It
means that they are not visible to dcFlush and therefore dcFlush cannot be blocked
on them. If dcFillZero or dcTrunc find a conditionally attached page (which must
be filled) they perform the following actions:

m Detach this page from the data cache

m Allocate a new physical page and attach it to the data cache

m Invoke the PxmPullin up-call to read data from the data segment, if needed
m Fill the appropriate part of the page with zero, if needed

Once access rights are obtained, the VM attaches the pages to the data cache
fully (they become visible to dcFlush) and invokes the PxmRrelAccLock up-call(if
needed, for example in the case of a page fault). Note that, in the case of a pure
PxmGetAcc, the getArg->page is NULL The PxmRelAccLock up-call is invoked
when the access rights of the page have already been upgraded.

The current implementation is done only for trusted supervisor actors.
None.
none

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

dcPxmDeclare (2SEG), dcAlloc (2SEG), svLapCreate (2K),
laplnvoke (2K), pageMap(2SEG), dcRead (2SEG), dcWrite (2SEG),
rgnMapFromDtCache (2SEG), PxmRelAccLock (2SEG)

Last modified December 1999 Chorus0S 4.0 79

PxmOpen(2SEG)

NAME
SYNOPSIS

FEATURES
DESCRIPTION

80

Virtual Memory Segment Services

PxmOpen, PxmClose — Open a Data Segment; Close a Data Segment

#include <mem/chMem.h>
void PxmOpern(KnPxmOpenArgs * openArg, void * cookie);

void PxmClose (KnPxmCloseArgs * closeArgvoid, void * cookie);

PXM_EXT

Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The PxmOpen/PxmClose routines are provided by the Proxy-Mapper and are
invoked as up-calls by the CHORUS VM. They are invoked as laps ; their second
argument is the lap cookie as defined at svLapCreate time. The PxmOpen/PxmClose
up-calls are invoked by the VM in order to inform the Proxy-Mapper that the
data segment object is currently being used by the VM. The Proxy-Mapper must
not destroy an open data segment.

The KnPxmOpenArgs data structure has the following members:

KnDtPxMapper* pxm ;
KnSgld sgld ;
int write ;

The KnPxmCloseArgs data structure has exactly the same members. The pxm
field is a pointer to the KnExtPxMapper structure previously defined by a call to
dcPxmbDeclare . It is also associated with the data segment defined by the sgld
member of the structure at dcAlloc time. If the write field is set to 0, the data
cache will not be modified.If the value is not 0, it may be modified. This allows
the Proxy-Mapper to optimize sync or flush operations.

The PxmOpen up-call is invoked by the VM in the following cases:

m When rgnMapFromDtCache or rgninitFromDtCache are invoked

m When rgnMapFromActor or rgninitFromActor or rgnDup are invoked, and the
source region was created through a call to rgnMapFromDtCache

m When a physical page attached to the data cache will be destroyed by the
swapper.

The PxmClose up-call is invoked by the VM in the following cases:

m When a region mapping the data segment identified by the sgid field of the
KnPxmCloseArgs data structure is destroyed

m When a physical page attached to the corresponding data cache has been
destroyed

ChorusOS 4.0 Last modified December 1999

Virtual Memory Segment Services PxmOpen(2SEG)

RESTRICTIONS The current implementation is only applicable to trusted supervisor actors.
RETURN VALUE No error messages are returned.
ERRORS none
ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO dcPxmDeclare (2SEG), dcAlloc (2SEG), dcFree (2SEG), svLapCreate (2K),
laplnvoke (2K)

Last modified December 1999 Chorus0S 4.0 81

PxmPullIn(2SEG)

NAME
SYNOPSIS

FEATURES
DESCRIPTION

RESTRICTIONS
RETURN VALUE
ATTRIBUTES

SEE ALSO

82

Virtual Memory Segment Services

PxmPullln — Read data from a data segment

#include <mem/chMem.h>
void PxmPullin (KnPxmPulllnArgs *pullArg, void *cookie);

PXM_EXT

Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The PxmPullln routine is provided by the Proxy-Mapper and is invoked as an
up-call by the CHORUS VM. It is invoked as a lap; its second argument is the
lap cookie as defined at svLapCreate time. The PxmPullln up-call is invoked by
the VM in order to read data from the data segment into the data cache. The
KnPxmPulllnArgs structure has the following members:

KnDtPxMapper* pxm ;

KnSgld sgld ;
KnPage* page ;

The sgld field specifies the corresponding data segment. The page field field
specifies the list of pages to be read. It points to a KnPage structure (see
PxmGetAcc(2SEG)) which specifies the first page of the list.

The pages of the PxmPullln page list are fully attached to the data cache and
write locked (exclusively). This means that all Nucleus calls (including dcFlush,
dcFillZero and dcTrunc) which acquire a lock on this type of page are blocked
until pullln is finished.

The VM calls PxmPullin when access rights have already been obtained by a
previous PxmGetAcc. In the case of page fault, the PxmRelAccLock (see the
PxmGetAcc(2SEG) man page) up-call is invoked after PxmPullin.

The current implementation is only applicable to trusted supervisor actors.
None.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

dcPxmDeclare (2SEG), dcAlloc (2SEG), dcFree (2SEG), svLapCreate (2K),
laplnvoke (2K), PxmGetAcc (2SEG), PxmRelAccLock (2SEG), pageMap(2SEG)

ChorusOS 4.0 Last modified December 1999

Virtual Memory Segment Services PxmPushOutAsyn(2SEG)

NAME
SYNOPSIS

FEATURES
DESCRIPTION

PxmPushOutAsyn — Write asynchronously to a data segment

#include <mem/chMem.h>
void PxmPushOutAsyn (KnPxmPushOutArgs *pushArg, void *cookie);

PXM_EXT

Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The PxmPushOutAsyn routine is provided by the Proxy-Mapper and is invoked
as an up-call by the CHORUS VM. It is invoked as a lap; its second argument is
the lap cookie as defined at svLapCreate time. The PxmPushOutAsyn up-call is
invoked by the VM in order to write data to a data segment from the data cache.
The KnPxmPushOutArgs structure has the following members:

KnDtPxMapper* pxm ;

KnSgld sgld ;
KnPage* page ;
VmFlags flags ;
void* pdDesc ;

The sgld field specifies the corresponding data segment. The page field
specifies the list of pages to be written. It points to a KnPage structure (see
PxmGetAcc(2SEG)) which specifies the first page of the list.

If at least one page of the list has been modified, The VM sets the K_DIRTY bit in
the flags field. The flags field also contains the K_POUT_TYPE bit field which
specifies the reason for the PxmPushOutAsyn up-call:

K_POUT_FLUSH This up-call is the result of a call to dcFlush.
K_POUT_SYNC This up-call is the result of a call to dcSync.
K_POUT_SWAP This up-call is invoked by the swapper.

If PxmPushOutAsyn is invoked by dcFlush, the pdDesc field is the pout argument
of the dcFlush nucleus call, otherwise it is set to NULL.

The Proxy-Mapper must return from the PxmPushOutAsyn up-call and must
perform the pageloDone nucleus call after the write operation is completed.

This may be done either before or after returning from the PxmPushOutAsyn
up-call. There is no need for the Proxy-Mapper to invoke the pageloDone call
with the same page list. Multiple calls to pageloDone may be performed one with
disjointed sub-lists of pages.

The pages of the page list are fully attached to the data cache and locked. In
the case of dcFlush or swap, the pages are write locked (exclusively). In the
case of dcSync, the pages are read locked (share). Note that in order to avoid a

Last modified December 1999 Chorus0S 4.0 83

PxmPushOutAsyn(2SEG) Virtual Memory Segment Services

concurrent PxmPushOutAsyn of the same page, dcSync first acquires the write
lock, and then downgrades it to the read one. This implies that all Nucleus calls
(including dcFlush, dcFillZero and dcTrunc) which acquire a lock on this type of
page are blocked until pageloDone is finished.

RESTRICTIONS The current implementation is only applicable to trusted supervisor actors.
RETURN VALUE No error messages are returned.
ERRORS none
ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO dcPxmDeclare (2SEG), dcAlloc (2SEG), dcFree (2SEG), svLapCreate (2K),
laplnvoke (2K), PxmGetAcc (2SEG), PxmRelAccLock (2SEG), pageMap(2SEG),
pageloDone (2SEG)

84 ChorusOS 4.0 Last modified December 1999

Virtual Memory Segment Services PxmRelAccLock(2SEG)

NAME
SYNOPSIS

FEATURES
DESCRIPTION

RESTRICTIONS
RETURN VALUE
ERRORS
ATTRIBUTES

SEE ALSO

PxmRelAccLock — Release an access lock

#include <mem/chMem.h>
void PxmRelAccLock (KnPxmRelAccArgs *relArg, void *cookie);

PXM_EXT

Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The PxmRelAccLock routine is provided by the Proxy-Mapper and is invoked
as an up-call by the CHORUS VM. It is invoked as a lap; , its second argument
is the lap cookie as defined at svLapCreate time. The PxmRelAccLock up-call is
invoked by the VM after a previous up-call to PxmGetAcc resulting from a
page fault. In such a case, the Proxy-Mapper must set the output accLock field.
When the page fault has been fully processed by the VM, the VM invokes

the PxmRelAccLock up-call.

The KnPxmRelAccArgs structure has the following members:

KnDtPxMapper* pxm ;
KnSgld sgld ;
void* lock ;

The sgld identifies the data segment on which the previous PxmGetAcc up-call
was performed. The lock field is set to the value returned by the PxmGetAcc
up-call.

The current implementation is only applicable to trusted supervisor actors.
None.
No error messasges are returned.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

dcPxmDeclare (2SEG), dcAlloc (2SEG), dcFree (2SEG), svLapCreate (2K),
laplnvoke (2K), dcCluster (2SEG)

Last modified December 1999 Chorus0S 4.0 85

PxmStat(2SEG)

NAME
SYNOPSIS

FEATURES
DESCRIPTION

RESTRICTIONS
RETURN VALUE
ERRORS
ATTRIBUTES

SEE ALSO

86

Virtual Memory Segment Services

PxmStat — Get information about a data segment

#include <mem/chMem.h>
void PxmStat (KnPxmStatArgs *statArg, void *cookie);

PXM_EXT

Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The PxmStat routine is provided by the Proxy-Mapper and is invoked as an
up-call by the CHORUS VM. It is invoked as a lap; its second argument is the lap
cookie as defined at svLapCreate time. The PxmStat up-call is invoked by the VM
in order to obtain data segment—specific information as part of a call to rgnStat.
The KnPxmStatArgs structure is composed of the following fields:

KnDtPxMapper* pxm ;

KnSgld sgld ;
char* buff ;
int size ;

The sgld field specifies the corresponding data segment. The buff field points

to the buffer to which the information is to be copied. The size field specifies
the buffer size in bytes. If the buffer size is sufficient for the data segment
information to be copied, the Proxy-Mapper copies them to the buffer, otherwise,
it does nothing. The PxmStat funciton returns the size of the data segment
information.

The current implementation is only applicable to trusted supervisor actors.
If successful, PxmStat returns the size of the data segement information in bytes.
None.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

dcPxmDeclare (2SEG), dcAlloc (2SEG), dcFree (2SEG), svLapCreate (2K),
laplnvoke (2K), rgnStat (2K)

ChorusOS 4.0 Last modified December 1999

Virtual Memory Segment Services PxmSwapOut(2SEG)

NAME
SYNOPSIS

FEATURES
DESCRIPTION

RESTRICTIONS
RETURN VALUE
ERRORS
ATTRIBUTES

PxmSwapOut — Customize next swap out

#include <mem/chMem.h>
void PxmSwapOut(KnPxmSwapOutArgs *swArg, void *cookie);

PXM_EXT

Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The PxmSwapOut routine is provided by the Proxy-Mapper and is invoked as an
up-call by the CHORUS VM. It is invoked as a lap; its second argument is the lap
cookie as defined at svLapCreate time. The PxmSwapOut up-call is invoked by the
VM in order to inform the Proxy-Mapper that a page is going to be pushed out
(due to action by the VM daemons), as opposed to a push out resulting from

a dcFlush or a dcSync. This up-call is an opportunity for the Proxy-Mapper to
tailor the behavior of the VM, so that swap out will occur on ranges that suit
the Proxy-Mapper’s needs.

The KnPxmSwapOutArgs data structure has the following fields:
KnDtPxMapper* pxm ;

KnSgld sgld ;
KnPage* page ;
VmOffset* offset ;
VmOffset* end ;

The pxm field points to the Proxy-Mapper definition associated with the segment
at the time of dcAlloc. The sgld field specifies the corresponding data segment.
The page field points to the list of pages which are going to be pushed out by
the VM. The starting offset of this contiguous list of pages is provided at the
location pointed to by the offset field. The last offset of the range to be swapped
out is defined as the location pointed to by the end field. The PxmSwapOut
up-call enables the Proxy-Mapper to change the range of pages to be swapped
out, by changing the values pointed to by the input/output fields: offset and
end. If no PxmSwapOut up-call routine has been defined in the pxm structure
associated with the data segment at dcAlloc time, swap out will be performed by
the VM according to its own rules based on the cluster size (see dcCluster).

The current implementation is only applicable to trusted supervisor actors.
None.
No error codes are returned.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 Chorus0S 4.0 87

PxmSwapOut(2SEG)

SEE ALSO

88

Virtual Memory Segment Services

dcPxmDeclare (2SEG), dcAlloc (2SEG), dcFree (2SEG), svLapCreate (2K),
laplnvoke (2K), dcCluster (2SEG)

Chorus0S 4.0 Last modified December 1999

Virtual Memory Segment Services rgnFlush(2SEG)

NAME
SYNOPSIS

FEATURES
DESCRIPTION

RESTRICTIONS
RETURN VALUE
ERRORS

rgnFlush — Flush a region

#include <mem/chMem.h>
int rgnFlush (KnCap *actorcap, VmOffset start, VmSize size, VmFlags flags);

PXM_EXT

Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The rgnFlush call performs a flush operation on the ranges of data caches
mapped to an address range of an actor address space. The address range
must be page-aligned.

The target actor is specified by actorcap - a pointer to the actor capability. If
actorcap is K_MYACTOR, the address space of the current actor is used. If
actorcap is K_SVACTOR, the supervisor address space is used.

The flags argument specifies the way the flush is performed as well as the upper
access rights for the target parts after the flush operation.

If the K_COPYBACK flag is set, rgnFlush writes back all (even clean) cached data
of the target parts and does not change the parts’ access rights.

If the K_WRITABLE flag is set, rgnFlush writes back all modified data of the
target parts and does not change the parts’ access rights.

If the K_READABLE flag is set, rgnFlush writes back all modified data of the
target parts and sets the parts’ access rights to read only.

If the K_FREEZE flag is set, rgnFlush writes back all modified data of the target
parts and sets the parts to non-accessible.

If the K_NOACCESS flag is set, rgnFlush writes back all modified data of the
target parts and invalidates the parts.

If the K_DESTROY flag is set, rgnFlush invalidates the target parts without
writing back any data.

If K_ASYNC flag is set, the vm performs the asynchronous write operations
required by rgnFlush.

If K PAGEFAULT flag is set, rgnFlush is the result of a page fault. This type
of IcFlushoperation could break the atomicity of an sgRead/sgWrite operation
running concurrently on the same local cache parts.

The target actor and the current actor must be located on the same site.
If successful K_OK is returned, otherwise a negative error code is returned.

[K_EFAULT] Some of the arguments provided are outside the
caller’s address space.

Last modified December 1999 Chorus0S 4.0 89

rgnFlush(2SEG)

90

ATTRIBUTES

SEE ALSO

[K_EINVAL]
[K_EROUND]
[K_EADDR]

[K_EOFFSET]

[K_EINVAL]
[K_EBUSY]

Virtual Memory Segment Services

An inconsistent actor capability was provided.
start or size isn’'t page-aligned.

Some or all the addresses from the target address
range are invalid.

Tried to flush a segment outside the valid offset
range in a segment.

The flags argument contains invalid flag values.

Tried to invalidate or destroy a no-demand
(mapped to a region with the K_NODEMAND
attribute) physical memory.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Evolving

rgninitFromDtCache (2SEG), rgnAllocate (2K), rgnFree (2K)

ChorusOS 4.0

Last modified December 1999

Virtual Memory Segment Services rgninit(2SEG)

NAME

SYNOPSIS

FEATURES
DESCRIPTION

RETURN VALUE

rgninit — allocate a region in an actor address space and initialize it from
a segment

#include <mem/chMem.h>
intrgninit (KnCap *actorcap, KnRgnDesc *rgndesc, KnObjDesc *segdesc);

MEM_VM

Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The rgninit call creates a region in the address space of the target actor and maps
a volatile copy of a segment range to the region. The target actor is specified

by actorcap - a pointer to the target actor capability. If actorcap is K_ MYACTOR,
the address space of the current actor is used. If actorcap is K_SVACTOR, the
region is allocated in the supervisor address space and isn’t attached to any
particular supervisor actor; it cannot therefore be implicitly deallocated by an
actorDelete(2K) of a supervisor actor.

The rgndesc pointer points to a KnRgnDesc structure containing the specification
of the region to be created, as described in rgnAllocate (2K).

The segdesc pointer points to a KnObjDesc structure containing the source data
specification. The KnObjDesc fields are as follows:

KnCap dataObject ;
VmOffset startOffset ;
VmSize size ;

The dataObject field definesthe capability of the source segment.

The startOffset defines the starting offset of the data in the segment. Its value
must be aligned to a virtual page boundary.

The size field defines the size of the data.

The caller can specify any of the rgndesc->options as described in rgnAllocate (2K),
except that the K_RESERVED flag is prohibited. The K_FILLZERO option is
also interpreted differently here: only the range from rgndesc->startAddr +
segdesc->size to rgndesc->startAddr + rgndesc->size - 1 will be zero-filled.

The kernel uses the standard Chorus-IPC based kernel-mapper protocol (see
MpPullln(2SEG), MpGetAccess(2SEG)) to read the current state of the segment
prior to copying it to newly allocated volatile memory, and mapping the
memory to the region created. The kernel implementation can defer the effective
data reading and copy.

If successful K_OK is returned, otherwise a negative error code is returned.

Last modified December 1999 Chorus0S 4.0 91

rgninit(2SEG)

ERRORS

RESTRICTIONS
ATTRIBUTES

SEE ALSO

92

[K_EFAULT]

[K_EINVAL]
[K_EUNKNOWN]
[K_EROUND]
[K_EROUND]
[K_ESPACE]

[K_ESPACE]

[K_EOFFSET]

[K_ESIZE]

[K_EOVERLAP]

[K_EOVERLAP]

[K_EOVERLAP]
[K_ENOMEM]
[K_EMAPPER]

Virtual Memory Segment Services

Some of the arguements provided are outside the
caller’s address space.

An inconsistent actor capability was provided.
actorcap does not specify a reachable actor.
rgndesc->startAddr is not page-aligned.
segdesc->startOffset is not page-aligned.

Tried to create a region outside the valid range
for the address space of an actor as returned
by vmStat(2K).

rgndesc->size is zero.

Attempted to map a segment outside its valid
offset range as returned by vmStat(2K).

segdesc->size is greater than rgndesc->size.

The K_ANYWHERE option was specified and
there is insufficient room available in the address
space to create the region.

The K_RESTRICTIVE option was specified and
there is insufficient room in the target address
range.

the region created overlaps an existing region.
The system is out of resources.

The segment mapper doesn’t respect the
kernel/mapper protocol.

The target actor and the current actor must be located on the same site.

See attributes

(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Evolving

rgnAllocate
vmsStat (2K)

ChorusOS 4.0

(2K), rgnMap (2SEG), rgnStat

(2K), MpPullin (2SEG),

Last modified December 1999

Virtual Memory Segment Services rgninitFromDtCache(2SEG)

NAME

SYNOPSIS

FEATURES
DESCRIPTION

RESTRICTIONS
RETURN VALUE
ERRORS

rgninitFromDtCache — Create a region in an actor address space and initialize it
from a segment

#include <mem/chMem.h>
int rgninitFromDtCache (KnCap *actorcap, KnRgnDesc *rgndesc, KnLcld Icid, VmOffset
start, VmOffset end);

PXM_EXT

Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The rgninitFromDtCache call allocates a region in the actor address space
specified by actorcap. It initializes from the segment associated with the data
cache specified by Icid. If actorcap is set to K_MYACTORthe current actor is used.
If actorcap is set to K_SVACTORthe region is allocated in supervisor address
space and is not attached to any particular supervisor actor.

The rgnDesc pointer points to a KnRgnDesc structure containing the specification
for the region to be created, as described in rgnAllocate(2K). Note that the
K_FILLZERO option is interpreted differently here; the range of bytes comprised
between rgndesc->startAddr+end+1 and rgndesc->startAddr+size-1 will be
zero-filled.

The start argument specifies which offset of the segment will be mapped to the

first location of the newly created region. Its value must be aligned on a virtual

page boundary. The end argument specifies the offset of the last byte of the data
segment to be mapped to the created region.

The current implementation is only applicable to trusted supervisor actors.

If successful K_OK is returned, otherwise a negative error code is returned.

[K_EFAULT] Some of the arguments provided are outside the
caller’s address space.

[K_EINVAL] An inconsistent actor capability was provided.

[K_ESIZE] The end argument and the size field of the

rgndesc argument are inconsistent.

[K_ENOMEM] The system is out of resources, or some or all of
the memory identified by the operation could
not be locked when K_ NODEMAND and
K_NOWAITFORMEMORY have both been
specified.

[K_EOFFSET] Attempted to map a segment outside its valid
offset range.

Last modified December 1999 Chorus0S 4.0 93

rgninitFromDtCache(2SEG)

94

ATTRIBUTES

SEE ALSO

[K_EOVERLAP]

[K_EROUND]

[K_ESPACE]

Virtual Memory Segment Services

The K_ ANYWHERE option was specified and
there is insufficient room in the address space to
allocate the region. The K_RETSRICTIVE option
was specified and there is insufficient room in
the target address range. The region specified
overlaps an existing region. The K_RESTRICTIVE
option was specified and the right boundary is
less than the left one.

The start argument is not a multiple of the page
size as returned by vmPageSize(2K).

Attempted to allocate a region outside the
valid range for the address space of an actor as
returned by vmStat(2K)

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Evolving

rgninitFromDtCache (2SEG), rgnAllocate (2K), rgnFree (2K)

ChorusOS 4.0

Last modified December 1999

Virtual Memory Segment Services rgnMap(2SEG)

NAME
SYNOPSIS

FEATURES
DESCRIPTION

RETURN VALUE
ERRORS

rgnMap — create a region in an actor address space and map a segment

#include <mem/chMem.h>
int rgnMap (KnCap *actorcap, KnRgnDesc *rgndesc, KnObjDesc *segdesc);

MEM_VM

Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The rgnMap call creates a region in the address space of the target actor and
maps a segment to the region.

The target actor is specified by actorcap - a pointer to the target actor capability. If
actorcap is K_MYACTOR, the address space of the current actor is used. If
actorcap is K_SVACTOR, the region is allocated in the supervisor address space
and isn’t attached to any particular supervisor actor; it cannot therefore be
implicitly deallocated using an actorDelete(2K) of a supervisor actor.

The rgndesc pointer points to a KnRgnDesc structure containing the specification
of the region to be created as described in rgnAllocate (2K).

The segdesc pointer points to a KnObjDesc structure containing the specification
of the segment range to be mapped to the created region described in rgninit
(2SEG). Note that the size field will be ignored because the size of the range
mapped is equal to the size of the region created.

The caller can specify any of the rgndesc->options as described in rgnAllocate
(2K) except that the K_FILLZERO flag is ignored, and theK_RESERVED flag is
prohibited. Also, the caller can specify K_NOSYNC flag.

If the K_NOSYNC flag is specified, the kernel writes back dirty pages of the
segment as late as possible. Otherwise, any modification of a segment is written
back within a period of time specified using a system configuration parameter..

If successful K_OK is returned, otherwise a negative error code is returned.

[K_EFAULT] Some of the arguments provided are outside the
caller’s address space.
[K_EINVAL] An inconsistent actor capability was provided.
[K_EUNKNOWN] actorcap does not specify a reachable actor.
[K_EROUND] rgndesc->startAddr is not page-aligned.
[K_EROUND] segdesc->startOffset is not page-aligned.
[K_ESPACE] Tried to create a region outside the valid range
for the address space of an actor as returned
by vmStat(2K).

Last modified December 1999 Chorus0S 4.0 95

rgnMap(2SEG)

RESTRICTIONS

96

ATTRIBUTES

SEE ALSO

[K_ESPACE]
[K_EOFFSET]

[K_EOVERLAP]

[K_EOVERLAP]

[K_EOVERLAP]
[K_ENOMEM]
[K_EMAPPER]

Virtual Memory Segment Services

rgndesc->size is zero.

Attempted to map a segment outside its valid
offset range as returned by vmStat(2K).

The K_ANYWHERE option was specified and
there is insufficient room available in the address
space to create the region.

The K_RESTRICTIVE option was specified and
there is insufficient room in the target address
range.

The region created overlaps an existing region.
The system is out of resources.

The segment mapper doesn’t respect the
kernel/mapper protocol.

The target actor and the current actor must be located on the same site.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Evolving

rgnAllocate (2K), rgninit
MpGetAccess (2SEG)

Chorus0S 4.0

(2SEG), rgnStat (2K), MpPullin (2SEG),

Last modified December 1999

Virtual Memory Segment Services rgnMapFromDtCache(2SEG)

NAME

SYNOPSIS

FEATURES
DESCRIPTION

RESTRICTIONS
RETURN VALUE
ERRORS

rgnMapFromDtCache — Create a region in an actor address space and map
a segment

#include <mem/chMem.h>
int rgnMapFromDtCache (KnCap *actorcap, KnRgnDesc *rgndesc, KnLcld Icid, VmOffset
start);

PXM_EXT

Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The rgnMapFromDtCache call creates a region in the actor address space specified
by actorcap, and maps the segment associated with the data cache specified by
Icid to it. If actorcap is set to K_MYACTORthe current actor is used. If actorcap is
set to K_SVACTOR the region is allocated in the supervisor address space and
is not attached to any particular supervisor actor.

The rgnDesc pointer points to a KnRgnDesc structure containing the specification
for the region to be created as described in rgnAllocate(2K). Note that the
K_FILLZERO option will be ignored and that the K_RESERVEMag is prohibited.

The start argument specifies which offset of the segment will be mapped to the
first location of the newly created region. Its value must be aligned on a virtual
page boundary.

The current implementation is only applicable to trusted supervisor actors.
If successful K_OK is returned, otherwise a negative error code is returned.

[K_EFAULT] Some of the arguments provided are outside the
caller’s address space. This error will only be
returned if the invoker is a user actor.

[K_EINVAL] An inconsistent actor capability was given.

[K_ENOMEM] The system is out of resources or some or all of
the memory identified by the operation could
not be locked when K_NODEMAND and
K_NOWAITFORMEMORY were both specified.

[K_EOFFSET] Attempted to map a segment outside its valid
offset range.
[K_EOVERLAP] The K_ANYWHERE option was specified and

there is insufficient room in the address space to
allocate the region. The K_RESTRICTIVE option
was specified and there is insufficient room in
the target address range. The specified region
overlaps an existing region. The K_RESTRICTIVE

Last modified December 1999 ChorusOS 4.0 97

rgnMapFromDtCache(2SEG)

98

ATTRIBUTES

SEE ALSO

[K_EROUND]

[K_ESPACE]

Virtual Memory Segment Services

option was specified and the right boundary is
less than the left one.

The start argument is not a multiple of the page
size as returned by vmPageSize(2K).

Attempted to allocate a region outside the
valid range for the address space of an actor as
returned by vmStat(2K)

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Evolving

rgninitFromDtCache (2SEG), rgnAllocate (2K), rgnFree (2K)

ChorusOS 4.0

Last modified December 1999

Virtual Memory Segment Services sgFlush(2SEG)

NAME

SYNOPSIS

FEATURES
DESCRIPTION

IcFlush, IcSetRights, sgFlush, sgSyncAll, vmFlush — flush local cache(s)

#include <mem/chMem.h>
int IcFlush (KnObjDesc * Icdesc, VmFlags flags, unsigned long ordernb);

int IcSetRights (KnObjDesc * Icdesc, VmFlags flags, unsigned long ordernb);
int sgFlush (KnObjDesc * segdesc, VmFlags flags);

int sgSyncAll (void);

int vmFlush (KnCap * actorcap, VmAddr address, VmSize size, VmFlags flags);

MEM_VM
Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The IcFlush call performs a flush operation on a range of a local cache. The lcdesc
argument points to a KnObjDesc structure whose members are the following:

KnCap dataObject ;
VmOffset startOffset ;
VmSize size ;

where the dataObject field is the local cache capability, the startOffset field is the
range start offset in the local cache, and the size field is the range size. Both
startOffset and size must be fragment-aligned. The size of the fragment is
implementation—-dependent and is usually equal to the virtual page size divided
by 8 (number of bits in one byte).

For IcFlush, the target local cache is directly specified by its capability; the flush
operation is applied even if the cache is managed by a remote site.

The sgFlush call takes the same arguments, except the dataObject field specifies
the capability of the cached segment. For sgFlush, the target local cache is
indirectly specified by the capability of the corresponding segment; the flush
operation implicitly applies to the segment’s cache(s) located on the caller’s site.

The vmFlush call performs a flush operation on the ranges of the local caches
mapped to an address range of an actor address space. The address range
must be page-aligned.

The target actor is specified by actorcap - a pointer to the actor capability. If
actorcap is K_MYACTOR, the address space of the current actor is used. If
actorcap is K_SVACTOR, the supervisor address space is used.

The flags argument specifies the mode of the flush and the upper access rights for
the target parts after the flush operation.

Last modified December 1999 Chorus0S 4.0 99

sgFlush(2SEG)

RETURN VALUE

100

ERRORS

Virtual Memory Segment Services

If the K_COPYBACK flag is set, xxFlush writes back any (even clean) cached data
of the target parts and keeps the parts access rights unchanged.

If the K_WRITABLE flag is set, xxFlush writes back all modified data of the target
parts and keeps the parts access rights unchanged.

If the K_READABLE flag is set, xxFlush writes back all modified data of the
target parts and then sets the parts to read access only.

If the K_FREEZE flag is set, xxFlush writes back all modified data of the target
parts and then sets the parts as non-accessible.

If the K_NOACCESS flag is set, xxFlush writes back all modified data of the
target parts and invalidates them.

If the K_DESTROY flag is set, xxFlush invalidates the target parts without
writing back.

If the K_ASYNC flag is set, the vm performs the write operations required by
the xxFlush asynchronously.

If K_PAGEFAULT flag is set, xxFlush is a result of a page fault. This type of
IcFlush operation could break the atomicity of a sgRead/sgWrite operation
running concurrently on the same local cache parts.

The K_ORDERED flag can only be used with an IcFlush or an IcSetRights request.
If the flags is set, the orderNb argument specifies the IcFlush message order
number. It allows the kernel to detect the situation when two mesages sent by a
mapper in one order are received by the kernel in another. For instance, if the
mapper grants certain access rights in a MpGetAccess reply first, then, processing
another request, calls an IcFlush to recall the access rights, considering the order
numbers, the kernel is aware that the access returned by the MpGetAccess reply
was already recalled by the mapper, and performs another MpGetAccess request.

The IcSetRights operation is similar to the IcFlush operation, except that it
only changes data protections without invalidation and/or writing back: the
K_WRITABLE flag is ignored, the K_READABLE flag sets the target parts
read—only, whereas the K_FREEZE and K_NOACCESS flags set the target
parts to non-accessible. The K_COPYBACK, K_ASYNC and K_DESTROY
flags are prohibited.

The sgSyncAll operation writes back asynchronously all dirty parts of all local
caches on the site, except the local caches mapped at least once to a region with
the K_NOSYNC attribute (see rgnMap(2SEG)).

If successful K_OK is returned, otherwise a negative error code is returned.

[K_EFAULT] Some of the arguments provided are outside the
caller’s address space.

Chorus0S 4.0 Last modified December 1999

Virtual Memory Segment Services

[K_EINVAL]
[K_EUNKNOWN]
[K_EROUND]
[K_EROUND]

[K_EROUND]

[K_EADDR]

[K_EOFFSET]

[K_EINVAL]

[K_EBUSY]

[K_EFAIL]

[K_EMAPPER]

sgFlush(2SEG)

An inconsistent actor capability was provided.
actorcap does not specify a reachable actor.
address or size isn’t page-aligned.

Icdesc->startOffset or Icdesc->size isn’t
fragment-aligned.

segdesc->startOffset or segdesc->size isn’t
fragment-aligned.

Some or all the addresses from the target address
range are invalid.

Tried to flush a segment outside the valid offset
range in a segment, as returned by vmStat.

The flags argument contains invalid flag values.

Tried to invalidate or destroy a no—-demand
(mapped to a region with K_NODEMAND
attribute) physical memory.

An ipcCall transaction failed during the remote
IcFlush or IcSetRights.

The mapper doesn’t respect the vm/mapper
protocol.

RESTRICTIONS The target actor and the current actor must be located on the same site (vmFlush

only).

The sgFlush and sgSyncAll calls remain in the interface for backward
compatibility. They will be removed in a future release.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Evolving

SEE ALSO MpGetAccess (2SEG) , MpPullin (2SEG) , MpPushOut (2SEG) , rgnMap (2SEG) ,

IcOpen (2SEG), IcFillZero

Last modified December 1999

(2SEG) , IcTrunc (2SEG)

ChorusOS 4.0 101

sgRead(2SEG)

NAME

SYNOPSIS

FEATURES
DESCRIPTION

K M
fron
will

K_M
a pa
mayj
fron
the
bou

Virtual Memory Segment Services

sgRead, sgWrite — Read data from a segment into an actor address space; Write
data from an actor address space into a segment

#include <mem/chMem.h>
int sgRead (KnObjDesc * srcsegdesc, KnCap * dstactorcap, VmAddr dstaddress, VmFlags
flags);

int sgWrite (KnObjDesc * dstsegdesc, KnCap * srcactorcap, VmAddr srcaddress, VmFlags
flags);

MEM_VM

Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The sgRead function reads data from a segment into an actor address space.
The source data is specified by the srcsegdesc argument, which points to a
KnObjDesc structure described in rgnInit(2SEG) . The destination is specified by
dstactorcap - the destination actor capability, and dstaddress - the start address in
the destination actor address space.

The sgWrite function writes data from an actor address space into a segment. The
source data is specified by srcactorcap - the source actor capability, and srcaddress -
the data start address in the source actor address space. The destination is
specified by the dstsegdesc argument which points to a KnObjDesc structure
described in rgninit(2SEG) .

If srcactorcap and/or dstactorcap is K_MYACTOR, the current actor is used.
If srcactorcap and/or dstactorcap is K_SUPERVISOR, the supervisor address
space is used.

The flags argument is a combination of the following options:

OVE This option indicates that after the operation the contents of the source,
the start to the end of the target data, may be undefined. In this case, the system
try to remap the physical pages containing the data rather than copying them.

OVEAL This option indicates that even if the target data size is not aligned on
ge boundary (see vmPageSize(2K)), the last page partially covered by the data
be remapped. This means that after the operation the contents of the source,
the start to the next page boundary following the end of the target data, and
ontents of the destination, from the end of the target data to the next page
ndary, may be undefined.

If any error occurs during an sgRead or sgWrite operation, the number of bytes
read or written before the error is returned in the size field of the corresponding
KnObjDesc structure.

102

Chorus0S 4.0 Last modified December 1999

Virtual Memory Segment Services sgRead(2SEG)

RETURN VALUE If successful K_OK is returned, otherwise a negative error code is returned.
ERRORS [K_EADDR] The address is out of any allocated region.
[K_EFAULT] Some of the arguments provided are outside the
caller’s address space.
[K_EINVAL] An inconsistent actor capability was given.
[K_ESIZE] The startOffset and size fields of the KnObjDesc
structure are inconsistent.
[K_EOFFSET] Attempted to map a segment outside its valid
offset range returned by vmStat.
[K_EPROT] Attempted to write to a read only region.
[K_EUNKNOWN] srcactorcap or dstactorcap does not specify a
reachable actor.
RESTRICTIONS The target actor, the source actor and the current actor must be located on the
same site.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO rgninit (2SEG)

Last modified December 1999 ChorusOS 4.0 103

sgStat(2SEG)

NAME
SYNOPSIS

FEATURES
DESCRIPTION

RETURN VALUE
ERRORS

ATTRIBUTES

104

Virtual Memory Segment Services

IcStat, sgStat — get the statistics of a local cache

#include <mem/chMem.h>
#include <mem/chMapper.h>
intlcStat (KnCap * Iccap, KnLcStat * stat);

int sgStat (KnCap * segcap, KnLcStat * stat);
MEM_VM

Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The IcStat and sgStat functions get the statistics of the local cache specified either
by Iccap - a local cache capability, or by segcap - a segment capability. In the latter
case, the statistics of the cache of the segment on the current site are returned.

The KnLcStat structure describes the statistics associated with a local cache,
as follows:

VmSize physMem ;

VmSize lockMem ;

KnCap segcap ;
KnCap Iccap ;

The physMem field specifies the physical memory size currently allocated for
the local cache.

The lockMem field specifies the physical memory size currently fixed for the
local cache.

The segcap field specifies the capability of the corresponding segment. It is
returned by the IcStat call only when the caller is a system actor or when the
current thread executes in privileged mode.

The Iccap field specifies the capability of the segment’s local cache on the current
site. It is returned by the sgStat call only when the caller is a system actor or
when the current thread executes in privileged mode.

If successful K_OK is returned, otherwise a negative error code is returned.

[K_EFAULT] Some of the arguments provided are outside the
caller’s address space.
[K_EUNDEF] The segment specified is not cached on the site.
See attributes (5) for descriptions of the following attributes:
ATTRIBUTE TYPE ATTRIBUTE VALUE
Interface Stability Evolving
ChorusOS 4.0 Last modified December 1999

Virtual Memory Segment Services sgStat(2SEG)

SEE ALSO | IcFlush (2SEG)

Last modified December 1999 Chorus0S 4.0 105

sgSyncAll(2SEG)

NAME

SYNOPSIS

FEATURES
DESCRIPTION

106

Virtual Memory Segment Services

IcFlush, IcSetRights, sgFlush, sgSyncAll, vmFlush — flush local cache(s)

#include <mem/chMem.h>
int IcFlush (KnObjDesc * Icdesc, VmFlags flags, unsigned long ordernb);

int IcSetRights (KnObjDesc * Icdesc, VmFlags flags, unsigned long ordernb);
int sgFlush (KnObjDesc * segdesc, VmFlags flags);

int sgSyncAll (void);

int vmFlush (KnCap * actorcap, VmAddr address, VmSize size, VmFlags flags);

MEM_VM
Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The IcFlush call performs a flush operation on a range of a local cache. The Icdesc
argument points to a KnObjDesc structure whose members are the following:

KnCap dataObject ;
VmOffset startOffset ;
VmSize size ;

where the dataObject field is the local cache capability, the startOffset field is the
range start offset in the local cache, and the size field is the range size. Both
startOffset and size must be fragment-aligned. The size of the fragment is
implementation—dependent and is usually equal to the virtual page size divided
by 8 (number of bits in one byte).

For IcFlush, the target local cache is directly specified by its capability; the flush
operation is applied even if the cache is managed by a remote site.

The sgFlush call takes the same arguments, except the dataObject field specifies
the capability of the cached segment. For sgFlush, the target local cache is
indirectly specified by the capability of the corresponding segment; the flush
operation implicitly applies to the segment’s cache(s) located on the caller’s site.

The vmFlush call performs a flush operation on the ranges of the local caches
mapped to an address range of an actor address space. The address range
must be page-aligned.

The target actor is specified by actorcap - a pointer to the actor capability. If
actorcap is K_MYACTOR, the address space of the current actor is used. If
actorcap is K_SVACTOR, the supervisor address space is used.

The flags argument specifies the mode of the flush and the upper access rights for
the target parts after the flush operation.

Chorus0S 4.0 Last modified December 1999

Virtual Memory Segment Services sgSyncAll(2SEG)

RETURN VALUE
ERRORS

If the K_COPYBACK flag is set, xxFlush writes back any (even clean) cached data
of the target parts and keeps the parts access rights unchanged.

If the K_WRITABLE flag is set, xxFlush writes back all modified data of the target
parts and keeps the parts access rights unchanged.

If the K_READABLE flag is set, xxFlush writes back all modified data of the
target parts and then sets the parts to read access only.

If the K_FREEZE flag is set, xxFlush writes back all modified data of the target
parts and then sets the parts as non-accessible.

If the K_NOACCESS flag is set, xxFlush writes back all modified data of the
target parts and invalidates them.

If the K_DESTROY flag is set, xxFlush invalidates the target parts without
writing back.

If the K_ASYNC flag is set, the vm performs the write operations required by
the xxFlush asynchronously.

If K_PAGEFAULT flag is set, xxFlush is a result of a page fault. This type of
IcFlush operation could break the atomicity of a sgRead/sgWrite operation
running concurrently on the same local cache parts.

The K_ORDERED flag can only be used with an IcFlush or an IcSetRights request.
If the flags is set, the orderNb argument specifies the IcFlush message order
number. It allows the kernel to detect the situation when two mesages sent by a
mapper in one order are received by the kernel in another. For instance, if the
mapper grants certain access rights in a MpGetAccess reply first, then, processing
another request, calls an IcFlush to recall the access rights, considering the order
numbers, the kernel is aware that the access returned by the MpGetAccess reply
was already recalled by the mapper, and performs another MpGetAccess request.

The IcSetRights operation is similar to the IcFlush operation, except that it
only changes data protections without invalidation and/or writing back: the
K_WRITABLE flag is ignored, the K_READABLE flag sets the target parts
read—only, whereas the K_FREEZE and K_NOACCESS flags set the target
parts to non-accessible. The K_COPYBACK, K_ASYNC and K_DESTROY
flags are prohibited.

The sgSyncAll operation writes back asynchronously all dirty parts of all local
caches on the site, except the local caches mapped at least once to a region with
the K_NOSYNC attribute (see rgnMap(2SEG)).

If successful K_OK is returned, otherwise a negative error code is returned.

[K_EFAULT] Some of the arguments provided are outside the
caller’s address space.

Last modified December 1999 ChorusQOS 4.0 107

sgSyncAll(2SEG)

[K_EINVAL]
[K_EUNKNOWN]
[K_EROUND]
[K_EROUND]

[K_EROUND]

[K_EADDR]

[K_EOFFSET]

[K_EINVAL]

[K_EBUSY]

[K_EFAIL]

[K_EMAPPER]

RESTRICTIONS
only).

ATTRIBUTES See attributes

Virtual Memory Segment Services

An inconsistent actor capability was provided.
actorcap does not specify a reachable actor.
address or size isn’t page-aligned.

lcdesc->startOffset or lcdesc->size isn’t
fragment-aligned.

segdesc->startOffset or segdesc->size isn’t
fragment-aligned.

Some or all the addresses from the target address
range are invalid.

Tried to flush a segment outside the valid offset
range in a segment, as returned by vmStat.

The flags argument contains invalid flag values.

Tried to invalidate or destroy a no—-demand
(mapped to a region with K_ NODEMAND
attribute) physical memory.

An ipcCall transaction failed during the remote
IcFlush or IcSetRights.

The mapper doesn’t respect the vm/mapper
protocol.

The target actor and the current actor must be located on the same site (vmFlush

The sgFlush and sgSyncAll calls remain in the interface for backward
compatibility. They will be removed in a future release.

(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Evolving

SEE ALSO
IcOpen (2SEG) , IcFillZero

108 Chorus0S 4.0

MpGetAccess (2SEG) , MpPullin (2SEG) , MpPushOut (2SEG) , rgnMap (2SEG) ,

(2SEG) , IcTrunc (2SEG)

Last modified December 1999

Virtual Memory Segment Services sgWrite(2SEG)

NAME

SYNOPSIS

FEATURES
DESCRIPTION

K M
fron
will

K_M
a pa
mayj
fron
the
bou

sgRead, sgWrite — Read data from a segment into an actor address space; Write
data from an actor address space into a segment

#include <mem/chMem.h>
int sgRead (KnObjDesc * srcsegdesc, KnCap * dstactorcap, VmAddr dstaddress, VmFlags
flags);

int sgWrite (KnObjDesc * dstsegdesc, KnCap * srcactorcap, VmAddr srcaddress, VmFlags
flags);

MEM_VM

Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The sgRead function reads data from a segment into an actor address space.
The source data is specified by the srcsegdesc argument, which points to a
KnObjDesc structure described in rgnInit(2SEG) . The destination is specified by
dstactorcap - the destination actor capability, and dstaddress - the start address in
the destination actor address space.

The sgWrite function writes data from an actor address space into a segment. The
source data is specified by srcactorcap - the source actor capability, and srcaddress -
the data start address in the source actor address space. The destination is
specified by the dstsegdesc argument which points to a KnObjDesc structure
described in rgninit(2SEG) .

If srcactorcap and/or dstactorcap is K_MYACTOR, the current actor is used.
If srcactorcap and/or dstactorcap is K_SUPERVISOR, the supervisor address
space is used.

The flags argument is a combination of the following options:
OVE This option indicates that after the operation the contents of the source,

the start to the end of the target data, may be undefined. In this case, the system
try to remap the physical pages containing the data rather than copying them.

OVEAL This option indicates that even if the target data size is not aligned on

ge boundary (see vmPageSize(2K)), the last page partially covered by the data

be remapped. This means that after the operation the contents of the source,
the start to the next page boundary following the end of the target data, and
ontents of the destination, from the end of the target data to the next page

ndary, may be undefined.

If any error occurs during an sgRead or sgWrite operation, the number of bytes
read or written before the error is returned in the size field of the corresponding
KnObjDesc structure.

Last modified December 1999 Chorus0S 4.0 109

sgWrite(2SEG) Virtual Memory Segment Services

RETURN VALUE If successful K_OK is returned, otherwise a negative error code is returned.
ERRORS [K_EADDR] The address is out of any allocated region.
[K_EFAULT] Some of the arguments provided are outside the
caller’s address space.
[K_EINVAL] An inconsistent actor capability was given.
[K_ESIZE] The startOffset and size fields of the KnObjDesc
structure are inconsistent.
[K_EOFFSET] Attempted to map a segment outside its valid
offset range returned by vmStat.
[K_EPROT] Attempted to write to a read only region.
[K_EUNKNOWN] srcactorcap or dstactorcap does not specify a
reachable actor.
RESTRICTIONS The target actor, the source actor and the current actor must be located on the
same site.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO rgninit (2SEG)

110 Chorus0S 4.0 Last modified December 1999

Virtual Memory Segment Services vmFlush(2SEG)

NAME

SYNOPSIS

FEATURES
DESCRIPTION

IcFlush, IcSetRights, sgFlush, sgSyncAll, vmFlush — flush local cache(s)

#include <mem/chMem.h>
int IcFlush (KnObjDesc * Icdesc, VmFlags flags, unsigned long ordernb);

int IcSetRights (KnObjDesc * Icdesc, VmFlags flags, unsigned long ordernb);
int sgFlush (KnObjDesc * segdesc, VmFlags flags);

int sgSyncAll (void);

int vmFlush (KnCap * actorcap, VmAddr address, VmSize size, VmFlags flags);

MEM_VM
Caution - This system call is strictly reserved for internal use only. It MUST
NOT be used by any application.

The IcFlush call performs a flush operation on a range of a local cache. The lcdesc
argument points to a KnObjDesc structure whose members are the following:

KnCap dataObject ;
VmOffset startOffset ;
VmSize size ;

where the dataObject field is the local cache capability, the startOffset field is the
range start offset in the local cache, and the size field is the range size. Both
startOffset and size must be fragment-aligned. The size of the fragment is
implementation—-dependent and is usually equal to the virtual page size divided
by 8 (number of bits in one byte).

For IcFlush, the target local cache is directly specified by its capability; the flush
operation is applied even if the cache is managed by a remote site.

The sgFlush call takes the same arguments, except the dataObject field specifies
the capability of the cached segment. For sgFlush, the target local cache is
indirectly specified by the capability of the corresponding segment; the flush
operation implicitly applies to the segment’s cache(s) located on the caller’s site.

The vmFlush call performs a flush operation on the ranges of the local caches
mapped to an address range of an actor address space. The address range
must be page-aligned.

The target actor is specified by actorcap - a pointer to the actor capability. If
actorcap is K_MYACTOR, the address space of the current actor is used. If
actorcap is K_SVACTOR, the supervisor address space is used.

The flags argument specifies the mode of the flush and the upper access rights for
the target parts after the flush operation.

Last modified December 1999 ChorusOS 4.0 111

vmFlush(2SEG)

RETURN VALUE

112

ERRORS

Virtual Memory Segment Services

If the K_COPYBACK flag is set, xxFlush writes back any (even clean) cached data
of the target parts and keeps the parts access rights unchanged.

If the K_WRITABLE flag is set, xxFlush writes back all modified data of the target
parts and keeps the parts access rights unchanged.

If the K_READABLE flag is set, xxFlush writes back all modified data of the
target parts and then sets the parts to read access only.

If the K_FREEZE flag is set, xxFlush writes back all modified data of the target
parts and then sets the parts as non-accessible.

If the K_NOACCESS flag is set, xxFlush writes back all modified data of the
target parts and invalidates them.

If the K_DESTROY flag is set, xxFlush invalidates the target parts without
writing back.

If the K_ASYNC flag is set, the vm performs the write operations required by
the xxFlush asynchronously.

If K_PAGEFAULT flag is set, xxFlush is a result of a page fault. This type of
IcFlush operation could break the atomicity of a sgRead/sgWrite operation
running concurrently on the same local cache parts.

The K_ORDERED flag can only be used with an IcFlush or an IcSetRights request.
If the flags is set, the orderNb argument specifies the IcFlush message order
number. It allows the kernel to detect the situation when two mesages sent by a
mapper in one order are received by the kernel in another. For instance, if the
mapper grants certain access rights in a MpGetAccess reply first, then, processing
another request, calls an IcFlush to recall the access rights, considering the order
numbers, the kernel is aware that the access returned by the MpGetAccess reply
was already recalled by the mapper, and performs another MpGetAccess request.

The IcSetRights operation is similar to the IcFlush operation, except that it
only changes data protections without invalidation and/or writing back: the
K_WRITABLE flag is ignored, the K_READABLE flag sets the target parts
read—only, whereas the K_FREEZE and K_NOACCESS flags set the target
parts to non-accessible. The K_COPYBACK, K_ASYNC and K_DESTROY
flags are prohibited.

The sgSyncAll operation writes back asynchronously all dirty parts of all local
caches on the site, except the local caches mapped at least once to a region with
the K_NOSYNC attribute (see rgnMap(2SEG)).

If successful K_OK is returned, otherwise a negative error code is returned.

[K_EFAULT] Some of the arguments provided are outside the
caller’s address space.

Chorus0S 4.0 Last modified December 1999

Virtual Memory Segment Services

[K_EINVAL]
[K_EUNKNOWN]
[K_EROUND]
[K_EROUND]

[K_EROUND]

[K_EADDR]

[K_EOFFSET]

[K_EINVAL]

[K_EBUSY]

[K_EFAIL]

[K_EMAPPER]

vmFlush(2SEG)

An inconsistent actor capability was provided.
actorcap does not specify a reachable actor.
address or size isn’t page-aligned.

Icdesc->startOffset or Icdesc->size isn’t
fragment-aligned.

segdesc->startOffset or segdesc->size isn’t
fragment-aligned.

Some or all the addresses from the target address
range are invalid.

Tried to flush a segment outside the valid offset
range in a segment, as returned by vmStat.

The flags argument contains invalid flag values.

Tried to invalidate or destroy a no—-demand
(mapped to a region with K_NODEMAND
attribute) physical memory.

An ipcCall transaction failed during the remote
IcFlush or IcSetRights.

The mapper doesn’t respect the vm/mapper
protocol.

RESTRICTIONS The target actor and the current actor must be located on the same site (vmFlush

only).

The sgFlush and sgSyncAll calls remain in the interface for backward
compatibility. They will be removed in a future release.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Evolving

SEE ALSO MpGetAccess (2SEG) , MpPullin (2SEG) , MpPushOut (2SEG) , rgnMap (2SEG) ,

IcOpen (2SEG), IcFillZero

Last modified December 1999

(2SEG) , IcTrunc (2SEG)

ChorusOS 4.0 113

vmFlush(2SEG) Virtual Memory Segment Services

114 Chorus0S 4.0 Last modified December 1999

Index

D

dcAlloc — Allocate a data cache for a segment;
Free a previously allocated
data cache 13,20

dcCluster — Set the input and output cluster
sizes of a data cache 15

dcFillZero — Fill a data segment with zero 16

dcFlush — Sync a data cache object; Flush a
data cache object 17, 29

dcFree — Allocate a data cache for a segment;
Free a previously allocated
data cache 13, 20

dcGetPages — Get a list of pages for read-ahead
purpose 22

dclsDirty — Test and reset data cache dirty
bit 24

dcPgNumber — Get the number of pages for a
data cache object 25

dcPxmDeclare — Initialize an external
proxy-mapper descriptor 26

dcRead — Read data from a data cache; Write
data to a data cache 27, 33

dcSync — Sync a data cache object; Flush a data
cache object 17,29

dcTrunc — Truncate a data segment 32

dcWrite — Read data from a data cache; Write
data to a data cache 27, 33

L

IcCap — Find or create a local cache object for a
segment; Release a local cache

object; Return the cabability of
alocal cache 35-36, 42

IcClose — Find or create a local cache object for a
segment; Release a local cache
object; Return the cabability of
a local cache 35-36, 42

IcFillZero — zero a range of a local cache 37

IcFlush — flush local cache(s) 39, 47, 99, 106,
111

IcOpen — Find or create a local cache object for a
segment; Release a local cache
object; Return the cabability of
a local cache 35-36, 42

IcPushData — push data from a source
local cache to a target local
cache 43

IcRead — Read data through a local cache into
an actor address space; Write
data from an actor address
space through a local cache

45, 54

IcSetRights — flush local cache(s) 39, 47, 99,
106, 111

IcStat — get the statistics of a local cache 50,
104

IcTrunc — shape the end of a local cache 52

IcWrite — Read data through a local cache into
an actor address space; Write
data from an actor address
space through a local cache
45, 54

Index-115

M

MpCreate — create a temporary segment at the
default mapper 56
MpGetAccess — get access to data through a
local cache 57
MpPullin — read data into a local cache 61
MpPushOut — write data back to mapper 64
MpRelease — release a temporary segment
or notify a local cache
destruction 66

P

pageloDone — Inform nucleus 170 is complete
on a page list 67
pageMap — Map a list of pages in the current
actor address space; Unmap a
list of pages 68, 73
pagePhysAddr — Get the physical address of a
page 70
pageSetDirty — Mark a page as dirty 71
pageSgld — Get the segment identifier
associated with a page 72
pageUnmap — Map a list of pages in the current
actor address space; Unmap a
list of pages 68, 73
PxmClose — Open a Data Segment; Close a
Data Segment 75, 80
PxmGetAcc — Get access rights and data on a
part of a data segment 77
PxmOpen — Open a Data Segment; Close a
Data Segment 75, 80
PxmPullln — Read data from a data
segment 82
PxmPushOutAsyn — Write asynchronously to
a data segment 83
PxmRelAccLock — Release an access lock 85
PxmStat — Get information about a data
segment 86

PxmSwapOut — Customize next swap out 87

R

rgnFlush — Flush a region 89

rgninit — allocate a region in an actor address
space and initialize it from a
segment 91

rgninitFromDtCache — Create a region
in an actor address space
and initialize it from a
segment 93

rgnMap — create a region in an actor address
space and map a segment 95

rgnMapFromDtCache — Create a region in an
actor address space and map a
segment 97

S

sgFlush — flush local cache(s) 39, 47, 99, 106,
111

sgRead — Read data from a segment into an
actor address space; Write data
from an actor address space
into a segment 102, 109

sgStat — get the statistics of a local cache 50,
104

sgSyncAll — flush local cache(s) 39, 47, 99,
106, 111

sgWrite — Read data from a segment into an
actor address space; Write data
from an actor address space
into a segment 102, 109

\Y

vmFlush — flush local cache(s) 39, 47, 99, 106,
111

ChorusOS man pages section 2SEG: Virtual Memory Segment Services ¢ December 10, 1999

