
ChorusOS man pages section
3FTPD: FTP Daemon Library

Sun Microsystems, Inc.
901 San Antonio Road

Palo Alto, CA 94303-4900
U.S.A.

Part No: 806-3331
December 10, 1999

Copyright 1999 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.
This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun
and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, ChorusOS, and Solaris are trademarks, registered
trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are
based upon an architecture developed by Sun Microsystems, Inc.
The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer
industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who
implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.
RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227–14(g)(2)(6/87) and
FAR 52.227–19(6/87), or DFAR 252.227–7015(b)(6/95) and DFAR 227.7202–3(a).
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 1999 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, Californie 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et
la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie
relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.
Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.
Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, ChorusOS, et Solaris sont des marques de fabrique ou des
marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont
utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres
pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se
conforment aux licences écrites de Sun.
CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS
DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Please
Recycle

Contents

PREFACE 7

Intro(3FTPD) 13

ftpdGetCnx(3FTPD) 20

ftpdHandleCnx(3FTPD) 21

ftpdOob(3FTPD) 22

ftpdStartSrv(3FTPD) 23

reply(3FTPD) 24

lreply(3FTPD) 24

perror_reply(3FTPD) 24

reply(3FTPD) 25

lreply(3FTPD) 25

perror_reply(3FTPD) 25

reply(3FTPD) 26

lreply(3FTPD) 26

perror_reply(3FTPD) 26

systemAsciiOff(3FTPD) 27

systemBeuser(3FTPD) 28

systemBesuper(3FTPD) 28

systemBeany(3FTPD) 28

Contents 3

systemBeuser(3FTPD) 30

systemBesuper(3FTPD) 30

systemBeany(3FTPD) 30

systemBeuser(3FTPD) 32

systemBesuper(3FTPD) 32

systemBeany(3FTPD) 32

systemChdir(3FTPD) 34

systemCommand(3FTPD) 35

systemDelete(3FTPD) 36

systemFileSize(3FTPD) 37

systemGunique(3FTPD) 38

systemLinesToOff(3FTPD) 39

systemListFiles(3FTPD) 40

systemLog(3FTPD) 41

systemVlog(3FTPD) 41

systemLogwtmp(3FTPD) 42

systemMkdir(3FTPD) 43

systemPass(3FTPD) 44

systemReceiveAscii(3FTPD) 45

systemReceiveBin(3FTPD) 45

systemReceiveAscii(3FTPD) 47

systemReceiveBin(3FTPD) 47

systemRename(3FTPD) 49

systemRmdir(3FTPD) 50

systemSendAscii(3FTPD) 51

systemSendBin(3FTPD) 51

systemSendAscii(3FTPD) 52

systemSendBin(3FTPD) 52

4 ChorusOS man pages section 3FTPD: FTP Daemon Library ♦ December 10, 1999

systemSetThreadTitle(3FTPD) 53

systemSleep(3FTPD) 54

systemUser(3FTPD) 55

systemLog(3FTPD) 56

systemVlog(3FTPD) 56

Index 56

Contents 5

6 ChorusOS man pages section 3FTPD: FTP Daemon Library ♦ December 10, 1999

PREFACE

Overview
A man page is provided for both the naive user, and sophisticated user who is familiar
with the ChorusOS™ operating system and is in need of on-line information. A man
page is intended to answer concisely the question “What does it do?” The man pages in
general comprise a reference manual. They are not intended to be a tutorial.

The following is a list of sections in the ChorusOS man pages and the information
it references:

Section 1CC: User Utilities; Host and Target Utilities

Section 1M: System Management Utilities

Section 2DL: System Calls; Data Link Services

Section 2K: System Calls; Kernel Services

Section 2MON: System Calls; Monitoring Services

Section 2POSIX: System Calls; POSIX System Calls

Section 2RESTART: System Calls; Hot Restart and Persistent Memory

Section 2SEG: System Calls; Virtual Memory Segment Services

Section 3FTPD: Libraries; FTP Daemon

Section 3M: Libraries; Mathematical Libraries

Section 3POSIX: Libraries; POSIX Library Functions

Section 3RPC: Libraries; RPC Services

Section 3STDC: Libraries; Standard C Library Functions

Section 3TELD: Libraries; Telnet Services

Section 4CC: Files

PREFACE 7

Section 5FEA: ChorusOS Features and APIs

Section 7P: Protocols

Section 7S: Services

Section 9DDI: Device Driver Interfaces

Section 9DKI: Driver to Kernel Interface

Section 9DRV: Driver Implementations

ChorusOS man pages are grouped in Reference Manuals, with one reference manual
per section.

Below is a generic format for man pages. The man pages of each manual section
generally follow this order, but include only needed headings. For example, if there are
no bugs to report, there is no BUGS section. See the intro pages for more information
and detail about each section, and man(1) for more information about man pages in
general.

NAME This section gives the names of the commands
or functions documented, followed by a brief
description of what they do.

SYNOPSIS This section shows the syntax of commands or
functions. When a command or file does not
exist in the standard path, its full pathname is
shown. Options and arguments are alphabetized,
with single letter arguments first, and options
with arguments next, unless a different argument
order is required.

The following special characters are used in
this section:

[] The option or argument enclosed in these
brackets is optional. If the brackets are
omitted, the argument must be specified.

. . . Ellipses. Several values may be
provided for the previous argument,
or the previous argument can be
specified multiple times, for example, ‘
"filename . . ." .

| Separator. Only one of the arguments
separated by this character can be
specified at time.

{ } Braces. The options and/or
arguments enclosed within braces are

8 ChorusOS man pages section 3FTPD: FTP Daemon Library ♦ December 10, 1999

interdependent, such that everything
enclosed must be treated as a unit.

FEATURES This section provides the list of features which
offer an interface. An API may be associated with
one or more system features. The interface will
be available if one of the associated features
has been configured.

DESCRIPTION This section defines the functionality and
behavior of the service. Thus it describes
concisely what the command does. It does not
discuss OPTIONS or cite EXAMPLES.. Interactive
commands, subcommands, requests, macros,
functions and such, are described under USAGE.

OPTIONS This lists the command options with a concise
summary of what each option does. The options
are listed literally and in the order they appear
in the SYNOPSIS section. Possible arguments
to options are discussed under the option, and
where appropriate, default values are supplied.

OPERANDS This section lists the command operands and
describes how they affect the actions of the
command.

OUTPUT This section describes the output - standard
output, standard error, or output files - generated
by the command.

RETURN VALUES If the man page documents functions that
return values, this section lists these values and
describes the conditions under which they are
returned. If a function can return only constant
values, such as 0 or –1, these values are listed
in tagged paragraphs. Otherwise, a single
paragraph describes the return values of each
function. Functions declared void do not return
values, so they are not discussed in RETURN
VALUES.

ERRORS On failure, most functions place an error code in
the global variable errno indicating why they
failed. This section lists alphabetically all error
codes a function can generate and describes the
conditions that cause each error. When more than
one condition can cause the same error, each
condition is described in a separate paragraph
under the error code.

9

USAGE This section is provided as a guidance on use.
This section lists special rules, features and
commands that require in-depth explanations.
The subsections listed below are used to explain
built-in functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

EXAMPLES This section provides examples of usage or of
how to use a command or function. Wherever
possible a complete example including command
line entry and machine response is shown.
Whenever an example is given, the prompt is
shown as example% or if the user must be
superuser, example# . Examples are followed
by explanations, variable substitution rules,
or returned values. Most examples illustrate
concepts from the SYNOPSIS, DESCRIPTION,
OPTIONS and USAGE sections.

ENVIRONMENT VARIABLES This section lists any environment variables that
the command or function affects, followed by a
brief description of the effect.

EXIT STATUS This section lists the values the command returns
to the calling program or shell and the conditions
that cause these values to be returned. Usually,
zero is returned for successful completion
and values other than zero for various error
conditions.

FILES This section lists all filenames referred to by the
man page, files of interest, and files created or
required by commands. Each is followed by a
descriptive summary or explanation.

SEE ALSO This section lists references to other man
pages, in-house documentation and outside
publications.

DIAGNOSTICS This section lists diagnostic messages with a brief
explanation of the condition causing the error.

WARNINGS This section lists warnings about special
conditions which could seriously affect your
working conditions. This is not a list of
diagnostics.

NOTES This section lists additional information that
does not belong anywhere else on the page. It
takes the form of an aside to the user, covering
points of special interest. Critical information is
never covered here.

10 ChorusOS man pages section 3FTPD: FTP Daemon Library ♦ December 10, 1999

BUGS This section describes known bugs and wherever
possible, suggests workarounds.

11

CHAPTER

FTPD Library Functions

12

FTPD Library Functions intro(3FTPD)

NAME Intro – introduction to the FTPD library

SYNOPSIS #include <arpa/ftpd/ftpd.h>

#include <arpa/ftpd/systemLog.h>

#include <arpa/ftpd/systemSleep.h>

#include <arpa/ftpd/systemAuth.h>

#include <arpa/ftpd/systemFilesys.h>

DESCRIPTION The FTPD library is a module to be linked with application code in order
to enable the server to implement the FTP protocol, but with authentication,
logging, and file system operations in a manner suitable to the particular
application. The FTPD library provides all the code that is deemed invariant
by the FTP protocol, that is, everything needed to meet the requirements of a
standard FTP client. The application should provide all the code that may
change according to the underlying operating system semantics, or according to
the objectives of a particular application.

An example of applying this flexible approach to the FTPD implementation is
the implementation of a file-systemless FTP server, which stores and retrieves
data to and from a medium managed entirely by the application code, without
involvement of the operating system’s file management features.

FTPD has been split into two main parts, reflecting how the FTPD library and
the application code interact:

One part, called "The FTPD Library", or "The Library Code", is implemented
by the FTPD library. It takes care of as much as was deemed possible of
what is invariant in an FTP server, for example: interpreting the commands,
opening and closing data connections with the client.

The other part is called "The Application Code" or "The Application Side"
and is provided by the application code linked with the FTPD library (see
routines below). This part is expected to supply the thread or threads
that run the whole code, to perform authentication and logging, and to
store/retrieve data to/from files.

int in; /* control connection (in file desc.) */
int out; /* control connection (out file desc.) */
char host_name[]; /* client host name */
struct sockaddr_in host_addr; /* client host address */
char name[]; /* user’s logging name */
char* passwd; /* password entered by user */
int guest; /* user is a guest */
char* fileName; /* actual file name */
char* dir; /* current directory */
char* shell; /* user’s shell */
off_t byte_count; /* bytes transferred so far */
CleanupFunc cleanup; /* called on ABORT */

Last modified December 1999 ChorusOS 4.0 13

intro(3FTPD) FTPD Library Functions

The application code could extend this structure with application-dependent
state information. For example, the application definition of a connection
could look like this:

typedef struct _ClxFtpConn {
FtpConn ftpconn;

/* cleanup state */
FILE* toFclose;
void* toFree;
int toClose;
glob_t* toGlobfree;
DIR* toClosedir;

} ClxFtpConn;

The main routine is part of the application and controls how the service is set up.
The generic code supplies three routines to help to set up the service:

int ftpdStartSrv(int portNumber, int argc, char* argv[], char** envp);

Interprets the command-line arguments, creates the main port and listens on
it. It then returns the newly created socket. All that needs to be provided
is the port number that should be listened on.

int ftpdGetCnx(FtpConn* conn, int socket);

Initializes the state data for one connection, accepts that one connection,
and returns. At this point the application side can create a new thread to
continue handling the connection. All that needs be provided is the space
to store the connection data and the socket from which to accept data (as
returned by the previous routine).

int ftpdHandleCnx(FtpConn* conn);

Manages the new connection. All that needs be provided is the connection
state as initialized by the previous routine. This routine only returns when
the session is finished. Until then, the treatment is driven by the generic
code, which calls back routines provided by the application.

In some implementations some of these steps are not needed; typically, in a
traditional UNIX implementation, the first two steps are taken care of by inetd .
In that case, the control connection is already open and accessible via stdin and
stdout . All that main has to do is to set up the connection so that the in and out
channels point at stdin and stdout , and call ftpdHandleCnx.

14 ChorusOS 4.0 Last modified December 1999

FTPD Library Functions intro(3FTPD)

The following is an example of a main routine:

int
main(int argc, char* argv[], char** envp)
{

FtpConn* conn;
int mainSock;
int error;

mainSock = ftpdStartSrv(2600, argc, argv, envp);
if (mainSock < 0) exit(1);

conn = (FtpConn*) malloc(sizeof(ClxFtpConn));
if (conn == NULL) exit(1);

while (1) {
bzero(conn, sizeof(ClxFtpConn));
if (ftpdGetCnx(conn, mainSock) < 0) exit(1);

if (ftpdHandleCnx(conn) != 0) {
printf("session aborted\\n");

} else {
printf("session terminated normaly\\n");

}
}

}

The reason for allocating the connection structure here is that the
system-dependent implementation will probably need to extend the structure
with extra state information. If this extra information needs to be initialized, this
is the right place to do it (hence the bzero in this example).

You may also prefer to spawn a new thread which would call ftpdHandleCnx()
and have the main thread go back to ftpdGetCnx() to accept a new session. This
example handles one session at a time.

The system routines provided by the application and invoked by the FTPD
library to perform FTP commands may have to output error messages, the cause
of an error being specific to the application. The FTPD library also provides
an interface for that:

void reply(FtpConn* conn, int number, const char* message, ...);

void perror_reply(FtpConn* conn, int number, const char* message, ...);

void lreply(FtpConn* conn, int number, const char* message, ...);

In all three cases, the message and the following arguments follow the same
rules as printf. The number is defined by the FTP protocol to reflect the reason
for the message being issued. For each routine only certain numbers are valid, as

Last modified December 1999 ChorusOS 4.0 15

intro(3FTPD) FTPD Library Functions

defined by RFC 959. Use the numbers listed in the manual page of the routine.
Note, however, that the lists are not exhaustive. The ones listed in the man
pages are those actually used by the BSD implementation. If you require other
reply types, check in RFC 959.

Both reply() and perror_reply() are final, and only one of either type should be
issued per invocation of any system module routine. The difference between
reply and perror_reply is that perror_reply automatically adds the standard string
implied by the current value of errno .

If a multiple line reply is needed, use lreply. Multiple lreply() calls can be used,
followed by one final reply(). Not all routines are expected to supply an error
reply, no routine may use reply when returning an OK result. The OK reply is
always performed by the library. Only systemUser() and systemPasswd() are
allowed to use lreply() when returning an OK status. In general, supply an error
or OK reply or lreply only if the manual page mentions one. The routines that the
application code must provide fall into the following four categories:
Authentication:

int systemUser(FtpConn* conn);
int systemPass(FtpConn* conn);
void systemBesuper(FtpConn* conn);
void systemBeuser(FtpConn* conn);
void systemBeany(FtpConn* conn);

Logging:

void systemLog(int level, const char* format);
void systemVlog(int level, const char* format, va_list ap);
void systemSetThreadTitle(const char *fmt, ...);
void systemLogwtmp(FtpConn* conn);

File System:

int systemChdir(FtpConn* conn, char* name);
int systemFileSize(FtpConn* conn, char* name, off_t* size);
int systemMkdir(FtpConn* conn, char* name);
int systemRmdir(FtpConn* conn, char* name);
int systemDelete(FtpConn* conn, char* name);
int systemRename(FtpConn* conn, char* old, char* new);
char * systemGunique(FtpConn* conn, char* local);
off_t systemAsciiOff(FtpConn* conn, char* name, int lines);
int systemReceiveBin(FtpConn* conn, FILE* instr, char* name, off_t offset);
int systemReceiveAscii(FtpConn* conn, FILE* instr, char* name, off_t offset);
int systemSendBin(FtpConn* conn, char* name, FILE* outstr, off_t offset);
int systemSendAscii(FtpConn* conn, char* name, FILE* outstr, off_t offset);
void systemCommand(FtpConn* conn, char* cmd, FILE* outstr);
int systemListFiles(FtpConn* conn, char* name, FILE* outstr, int isAscii);

Sleep:

void systemSleep(int t);

16 ChorusOS 4.0 Last modified December 1999

FTPD Library Functions intro(3FTPD)

The File System category needs to be fairly completely implemented, while
Logging may well do nothing at all and Authentication may mostly be
inaccurate. Providing Sleep is optional. The manual pages describe what they
are expected to do.

The FTP protocol allows the user to abort a file transfer at any time (usually by
pressing Ctrl-C). To avoid relying on an asynchronous signal delivery model,
the FTPD library supports synchronous checking of this event and handles its
occurrence automatically. It works in the following way:

The FTPD library provides a function called tpdOob that checks for the
occurrence of exceptional events on the control connection (such as the one
generated by an ABORTcommand from the client). It is the responsibility of
the application side to call that routine from time to time when performing
a lengthy file transfer. Typically, calling this routine between every block
read or write should be sufficient. The full prototype of this routine is:

void ftpdOob(FtpConn* conn);

If an abort command is issued to cancel the transfer, the flow of control will
longjmp out of the file transfer operation and call a cleanup routine to release the
resources associated with the transfer. This cleanup routine must be provided by
the application side, and the cleanup member of the connection structure must
point to this routine. If no cleanup is needed, conn–>cleanup may be left to NULL.

A typical file transfer routine is as follows (error checks have been removed
for clarity) :

int systemSendBin(FtpConn* conn, char* name, FILE* outstr, off_t offset)
{

int cnt;
ClxFtpConn* myConn = (ClxFtpConn*) conn;
int fdin = open(name, O_RDONLY);
int fdout = fileno(outstr);
char * buf = malloc(BLOCKSIZE);

myConn–>toFree = buf;
myConn–>toClose = fdout;

conn–>cleanup = (CleanupFunc) cleanup;

while ((cnt = read(fdin, buf, BLOCKSIZE)) > 0) {
write(fdout, buf, cnt);

/* chek urg */
ftpdOob(conn);

}

close(fdin);
free(buf);
return 0;

}

Last modified December 1999 ChorusOS 4.0 17

intro(3FTPD) FTPD Library Functions

In this case, the cleanup function would look as follows:

static void cleanup(ApplFtpConn* conn)
{

if (conn–>toFree != NULL) free(conn–>toFree);
if (conn–>toClose >= 0) close(conn–>toClose);
((FtpConn*) conn)–>cleanup = NULL;

}

The above example assumes that the application has extended the FtpConn
structure with two members; toClose and toFree. In the case of a single connection
application, you can use global variables instead of extending the connection
structure.

LIBRARY
ENTRY-POINTS

These are: reply, lreply, perror_reply, ftpdStartSrv, ftpdGetCnx, ftpdHandleCnx.

APPLICATION-SIDE
ROUTINES

These are: systemUser, systemPass, systemInituser, systemBeuser,
systemBesuper, systemBeany, systemLog, systemVlog, systemSetThreadTitle,
systemLogwtmp, systemChdir, systemFileSize, systemMkdir, systemRmdir,
systemDelete, systemRename, systemGunique, systemAsciiOff, systemReceiveBin,
systemReceiveAscii, systemSendBin, systemSendAscii, systemCommand,
systemListFiles, systemSleep.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Name Description

ftpdGetCnx (3FTPD) Accepts a new FTP connection

ftpdHandleCnx (3FTPD) Manages an FTP connection

ftpdOob (3FTPD) Check for out of band data on the
control connection

ftpdStartSrv (3FTPD) Initializes FTP service

lreply (3FTPD) See reply (3FTPD)

perror_reply (3FTPD) See reply (3FTPD)

reply (3FTPD) Reply to an FTP client

systemAsciiOff (3FTPD) Reports offset of text offset in file

18 ChorusOS 4.0 Last modified December 1999

FTPD Library Functions intro(3FTPD)

systemBeany (3FTPD) See systemBeuser (3FTPD)

systemBesuper (3FTPD) See systemBeuser (3FTPD)

systemBeuser (3FTPD) Switch and lock user id

systemChdir (3FTPD) Change the current directory for the
given connection

systemCommand(3FTPD) Performs the given command

systemDelete (3FTPD) Removes file specified

systemFileSize (3FTPD) Reports the presence and size of
the file specified

systemGunique (3FTPD) Creates a name for a new file

systemLinesToOff (3FTPD) Reports offset of line in text file

systemListFiles (3FTPD) Lists the files matching the pattern
specified

systemLog (3FTPD) Adds the text given to the log

systemLogwtmp (3FTPD) Record the given connection to wtmp

systemMkdir (3FTPD) Create a directory of the name
specified

systemPass (3FTPD) Checks the user password

systemReceiveAscii (3FTPD) Stores text or binary data in the file
specified

systemReceiveBin (3FTPD) See systemReceiveAscii (3FTPD)

systemRename (3FTPD) Moves a file

systemRmdir (3FTPD) Removes the directory specified

systemSendAscii (3FTPD) Retrieves text or binary data from
the file specified

systemSendBin (3FTPD) See systemSendAscii (3FTPD)

systemSetThreadTitle (3FTPD) Names the current thread with the
text given

systemSleep (3FTPD) Sleep for the given number of
seconds

systemUser (3FTPD) Checks the user login

systemVlog (3FTPD) See systemLog (3FTPD)

Last modified December 1999 ChorusOS 4.0 19

ftpdGetCnx(3FTPD) FTPD Library Functions

NAME ftpdGetCnx – Accepts a new FTP connection

SYNOPSIS #include <arpa/ftpd/ftpd.h>
int ftpdGetCnx (FtpConn *conn, int socket);

DESCRIPTION The ftpdGetCnx function initializes the connection structure pointed to by conn,
accepts one incoming connection from the socket socket, connects the new socket
to the connection’s in and out descriptors, and returns. After calling this routine,
conn–>in and conn–>out are the file descriptors to use for reading and writing the
control connection.

RETURN VALUE Returns 0 if one connection was successfully accepted, -1 otherwise.

NOTE When this routine returns, the application can create a new thread to continue
the next treatment, if required. In most cases, socket should be the value returned
by a previous call to ftpdStartSrv(3FTPD).

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

20 ChorusOS 4.0 Last modified December 1999

FTPD Library Functions ftpdHandleCnx(3FTPD)

NAME ftpdHandleCnx – Manages an FTP connection

SYNOPSIS #include <arpa/ftpd/ftpd.h>
int ftpdHandleCnx (FtpConn *conn);

DESCRIPTION The ftpdHandleCnx function manages a connection until the client disconnects.
The main flow of execution takes place in the FTPD library which interprets
the client’s commands, and translates them into actions to be performed. Some
of these actions will call back a number of routines to be provided by the
application. These routines are described in the introduction manual page. This
routine interprets conn–>in and conn–>out as the file descriptors corresponding
to the input and output of the control connection (they may be, and usually are,
identical). If conn was the first argument to a prior call to ftpdGetCnx(3FTPD),
conn–>in and conn–>out are initialized correctly.

RETURN VALUES The ftpdHandleCnx function returns the traditional ftpd status code: 0 if the
session ended normally; 1 otherwise.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 21

ftpdOob(3FTPD) FTPD Library Functions

NAME ftpdOob – Check for out of band data on the control connection

SYNOPSIS #include <arpa/ftpd/ftpd.h>
void ftpdOob (FtpConn *conn);

DESCRIPTION The ftpdOob function checks for the occurrence of exceptional conditions on the
control connection. An exceptional condition is either an ABORTrequest sent by
the client, or the closing of the control connection by the client. File transfer or
directory listing operations can only be aborted due to an exceptional condition
by calling ftpdOob. Application routines that perform lengthy operations
should call ftpdOob from time to time. Typically, a file transfer routine should
call it between each block read from or written to a file. Calling ftpdOob is
not mandatory. The consequence of not calling it is that ABORTcommands
are processed only when the ongoing transfer is finished. However, only
certain routines may call ftpdOob. These are the following: systemSendAscii,
systemSendBin, systemReceiveBin, systemReceiveAscii and systemListFiles.

NOTE As a result of calling this function, the flow of control may longjmp(3STDC) out
of the routine being executed. To perform a cleanup of the global state, which
may have been affected by the interrupted routine, the following function call
will be performed automatically PRIOR to effecting the longjmp:

*(conn–>cleanup)(conn)

The routine that calls ftpdOob must ensure that conn–>cleanup points to the
correct cleanup routine PRIOR to calling ftpdOob. If no cleanup routine is
needed, conn–>cleanup should be set to NULL. If the supplied cleanup routine
needs any information to perform its task, this information should be stored
in the connection structure. The ftpConn structure can be extended by the
application into a bigger, compatible one in which to store the information. As
ftpdOob is called explicitly by the application, the application need not keep
the connection ready for cleanup all the time. It should be ready for cleanup
only when ftpdOob is called.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

22 ChorusOS 4.0 Last modified December 1999

FTPD Library Functions ftpdStartSrv(3FTPD)

NAME ftpdStartSrv – Initializes FTP service

SYNOPSIS #include <arpa/ftpd/ftpd.h>
int ftpdStartSrv (int portNb, int argc, char *argv[], char **envp);

DESCRIPTION The ftpdStartSrv function interprets the command-line arguments passed, creates
a socket, binds it to portNb, and listens to it using listen(2POSIX). It is possible to
have the FTP server built using the FTPD library recognize the command-line
options that the BSD implementation of FTPD recognizes. The behaviors that
these command-line options affect are controlled entirely by the FTPD library.
However, as it is the application’s main routine that receives these options as its
arguments, the application must hand over these arguments to the FTPD library
for processing. This is achieved by setting argc, argv and envp to the values of the
application’s main routine parameters. This the simplest method, but it does
imply that the application accepts the exact set of arguments that a BSD FTP
server accepts. If this is not the case, the application must build an argument
vector and count that reflect the arguments that must be passed to the FTPD
library. During normal operation, no arguments are required. If argc is set to
0, argv and envp are ignored and ftpdStartSrv will behave as though argv[0]
pointed to the string "ftpd" and argc was 1. Otherwise, the meaning of the
arguments is the following:

OPTIONS −d Debugging information is logged to the application–defined
log mechanism.

−l Each FTP session is logged to the application–defined log
mechanism.

−t timeout Set the inactivity timeout period to timeout seconds. The
maximum is two hours, the default is 15 minutes.

RETURN VALUES The file descriptor of the socket created, or -1 if not successful.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 23

lreply(3FTPD) FTPD Library Functions

NAME reply, lreply, perror_reply – Reply to an FTP client

SYNOPSIS #include <arpa/ftpd/ftpd.h>
void reply (FtpConn * conn, int number, char * format, ...);

void lreply (FtpConn * conn, int number, char * format, ...);

void perror_reply (FtpConn * conn, int number, char * format, ...);

DESCRIPTION These three routines all issue a message to the client with an associated
condition code. These routines are used by the FTPD library as well as by the
application-side routines to report the result of an operation. The message and
the following arguments follow the same rules as printf(3STDC) . The number
argument is defined by the FTP protocol to reflect the reason for the message
being issued. For each routine, only certain numbers are valid, as defined by
RFC 959. Each application-side routine manual page lists a number of valid
replies along with the type of reason to issue each of them. The lists are not
exhaustive, the ones mentioned in the manual pages are those actually used by
the BSD implementation. If you require other reply types, check in RFC 959.
The reply and perror_reply functions are final, only one of either type should be
called per invocation of any application-side routine. The difference between
reply and perror_reply is that perror_reply automatically adds the standard string
implied by the current value of errno. The lreply function should be used if a
multiple–line reply is required. Multiple lreply() calls can be used, followed
by one final reply() .

NOTES Not all routines are expected to issue an error reply. Only systemUser (3FTPD),
and systemPass (3FTPD) can supply an OK reply, by using lreply . The final
lreply is supplied by the FTPD library. Supply an error or OK reply only if the
manual page mentions one.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

24 ChorusOS 4.0 Last modified December 1999

FTPD Library Functions perror_reply(3FTPD)

NAME reply, lreply, perror_reply – Reply to an FTP client

SYNOPSIS #include <arpa/ftpd/ftpd.h>
void reply (FtpConn * conn, int number, char * format, ...);

void lreply (FtpConn * conn, int number, char * format, ...);

void perror_reply (FtpConn * conn, int number, char * format, ...);

DESCRIPTION These three routines all issue a message to the client with an associated
condition code. These routines are used by the FTPD library as well as by the
application-side routines to report the result of an operation. The message and
the following arguments follow the same rules as printf(3STDC) . The number
argument is defined by the FTP protocol to reflect the reason for the message
being issued. For each routine, only certain numbers are valid, as defined by
RFC 959. Each application-side routine manual page lists a number of valid
replies along with the type of reason to issue each of them. The lists are not
exhaustive, the ones mentioned in the manual pages are those actually used by
the BSD implementation. If you require other reply types, check in RFC 959.
The reply and perror_reply functions are final, only one of either type should be
called per invocation of any application-side routine. The difference between
reply and perror_reply is that perror_reply automatically adds the standard string
implied by the current value of errno. The lreply function should be used if a
multiple–line reply is required. Multiple lreply() calls can be used, followed
by one final reply() .

NOTES Not all routines are expected to issue an error reply. Only systemUser (3FTPD),
and systemPass (3FTPD) can supply an OK reply, by using lreply . The final
lreply is supplied by the FTPD library. Supply an error or OK reply only if the
manual page mentions one.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 25

reply(3FTPD) FTPD Library Functions

NAME reply, lreply, perror_reply – Reply to an FTP client

SYNOPSIS #include <arpa/ftpd/ftpd.h>
void reply (FtpConn * conn, int number, char * format, ...);

void lreply (FtpConn * conn, int number, char * format, ...);

void perror_reply (FtpConn * conn, int number, char * format, ...);

DESCRIPTION These three routines all issue a message to the client with an associated
condition code. These routines are used by the FTPD library as well as by the
application-side routines to report the result of an operation. The message and
the following arguments follow the same rules as printf(3STDC) . The number
argument is defined by the FTP protocol to reflect the reason for the message
being issued. For each routine, only certain numbers are valid, as defined by
RFC 959. Each application-side routine manual page lists a number of valid
replies along with the type of reason to issue each of them. The lists are not
exhaustive, the ones mentioned in the manual pages are those actually used by
the BSD implementation. If you require other reply types, check in RFC 959.
The reply and perror_reply functions are final, only one of either type should be
called per invocation of any application-side routine. The difference between
reply and perror_reply is that perror_reply automatically adds the standard string
implied by the current value of errno. The lreply function should be used if a
multiple–line reply is required. Multiple lreply() calls can be used, followed
by one final reply() .

NOTES Not all routines are expected to issue an error reply. Only systemUser (3FTPD),
and systemPass (3FTPD) can supply an OK reply, by using lreply . The final
lreply is supplied by the FTPD library. Supply an error or OK reply only if the
manual page mentions one.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

26 ChorusOS 4.0 Last modified December 1999

FTPD Library Functions systemAsciiOff(3FTPD)

NAME systemAsciiOff – Reports offset of text offset in file

SYNOPSIS #include <arpa/ftpd/systemFilesys.h>
off_t systemAsciiOff (FtpConn *conn, char *name, int offset);

DESCRIPTION The systemAsciiOff function converts an offset expressed relatively to the
FTP-encoded version (that is, EOLis \r\n) of the text contained by the file given,
to the corresponding offset in the file itself. The routine behaves as though the
file had been read, converting it on the fly to the FTP text format. When the
resulting text is offset bytes long, the actual number of characters read is returned.

RETURN VALUES If succesful, the offset thus computed is returned, or -1 in case of failure.

ERROR
MESSAGES

perror_reply(conn, 451, "...") For a resource allocation problem

perror_reply(conn, 553, "(file name)") For a file name problem

perror_reply(conn, 550, "(file name)") For a file seek problem (including
an incorrect number of characters
in the file)

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 27

systemBeany(3FTPD) FTPD Library Functions

NAME systemBeuser, systemBesuper, systemBeany – Switch and lock user id

SYNOPSIS #include <arpa/ftpd/systemAuth.h>
void systemBeuser (FtpConn * conn);

void systemBesuper (FtpConn * conn);

void systemBeany (FtpConn * conn);

DESCRIPTION These routines deal with the credentials attached to a particular connection. As
identity is expected to be a global property of the server, there must be some
synchronization if several connections with differing credentials are handled
simultaneously. The model is the following: Normally, the server’s effective uid
does not matter. When one thread actually needs a particular uid for a particular
operation, a designated lock is taken and the euid is changed. When the
operation is completed, the lock is released. If the application is mono-threaded,
no lock is necessary. If credentials are irrelevant, these routines do nothing. The
systemBeuser function acquires the identity lock and sets the server’s identity
to that associated with the connection. The systemBesuser function acquires
the identity lock and sets the server’s identity to that of the superuser. The
systemBeany function releases the identity lock. The following is an example
of the routines that deal with multiple connections and real credentials. They
assume that conn–>user_uid and conn–>super_user are application-dependent
extensions of the FtpConn structure, initialized by systemPass (3FTPD). The
user’s name can also be used.

static KnMutex credMutex = K_KNMUTEX_INITIALIZER;

void
systemBeuser(ApplFtpConn* conn) {

mutexGet(&credMutex);
seteuid(conn–>user_uid);

}
void
systemBesuper(ApplFtpConn* conn) {

mutexGet(&credMutex);
seteuid(conn–>super_user);

}
void
systemBeany(ApplFtpConn* conn) {

mutexRel(&credMutex);
}

NOTES The FTP library only uses systemBesuper and systemBeany , but it is expected that
application side routines that open files will use systemBeuser before opening a
file, and use systemBeany once the file is open.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

28 ChorusOS 4.0 Last modified December 1999

FTPD Library Functions systemBeany(3FTPD)

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 29

systemBesuper(3FTPD) FTPD Library Functions

NAME systemBeuser, systemBesuper, systemBeany – Switch and lock user id

SYNOPSIS #include <arpa/ftpd/systemAuth.h>
void systemBeuser (FtpConn * conn);

void systemBesuper (FtpConn * conn);

void systemBeany (FtpConn * conn);

DESCRIPTION These routines deal with the credentials attached to a particular connection. As
identity is expected to be a global property of the server, there must be some
synchronization if several connections with differing credentials are handled
simultaneously. The model is the following: Normally, the server’s effective uid
does not matter. When one thread actually needs a particular uid for a particular
operation, a designated lock is taken and the euid is changed. When the
operation is completed, the lock is released. If the application is mono-threaded,
no lock is necessary. If credentials are irrelevant, these routines do nothing. The
systemBeuser function acquires the identity lock and sets the server’s identity
to that associated with the connection. The systemBesuser function acquires
the identity lock and sets the server’s identity to that of the superuser. The
systemBeany function releases the identity lock. The following is an example
of the routines that deal with multiple connections and real credentials. They
assume that conn–>user_uid and conn–>super_user are application-dependent
extensions of the FtpConn structure, initialized by systemPass (3FTPD). The
user’s name can also be used.

static KnMutex credMutex = K_KNMUTEX_INITIALIZER;

void
systemBeuser(ApplFtpConn* conn) {

mutexGet(&credMutex);
seteuid(conn–>user_uid);

}
void
systemBesuper(ApplFtpConn* conn) {

mutexGet(&credMutex);
seteuid(conn–>super_user);

}
void
systemBeany(ApplFtpConn* conn) {

mutexRel(&credMutex);
}

NOTES The FTP library only uses systemBesuper and systemBeany , but it is expected that
application side routines that open files will use systemBeuser before opening a
file, and use systemBeany once the file is open.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

30 ChorusOS 4.0 Last modified December 1999

FTPD Library Functions systemBesuper(3FTPD)

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 31

systemBeuser(3FTPD) FTPD Library Functions

NAME systemBeuser, systemBesuper, systemBeany – Switch and lock user id

SYNOPSIS #include <arpa/ftpd/systemAuth.h>
void systemBeuser (FtpConn * conn);

void systemBesuper (FtpConn * conn);

void systemBeany (FtpConn * conn);

DESCRIPTION These routines deal with the credentials attached to a particular connection. As
identity is expected to be a global property of the server, there must be some
synchronization if several connections with differing credentials are handled
simultaneously. The model is the following: Normally, the server’s effective uid
does not matter. When one thread actually needs a particular uid for a particular
operation, a designated lock is taken and the euid is changed. When the
operation is completed, the lock is released. If the application is mono-threaded,
no lock is necessary. If credentials are irrelevant, these routines do nothing. The
systemBeuser function acquires the identity lock and sets the server’s identity
to that associated with the connection. The systemBesuser function acquires
the identity lock and sets the server’s identity to that of the superuser. The
systemBeany function releases the identity lock. The following is an example
of the routines that deal with multiple connections and real credentials. They
assume that conn–>user_uid and conn–>super_user are application-dependent
extensions of the FtpConn structure, initialized by systemPass (3FTPD). The
user’s name can also be used.

static KnMutex credMutex = K_KNMUTEX_INITIALIZER;

void
systemBeuser(ApplFtpConn* conn) {

mutexGet(&credMutex);
seteuid(conn–>user_uid);

}
void
systemBesuper(ApplFtpConn* conn) {

mutexGet(&credMutex);
seteuid(conn–>super_user);

}
void
systemBeany(ApplFtpConn* conn) {

mutexRel(&credMutex);
}

NOTES The FTP library only uses systemBesuper and systemBeany , but it is expected that
application side routines that open files will use systemBeuser before opening a
file, and use systemBeany once the file is open.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

32 ChorusOS 4.0 Last modified December 1999

FTPD Library Functions systemBeuser(3FTPD)

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 33

systemChdir(3FTPD) FTPD Library Functions

NAME systemChdir – Change the current directory for the given connection

SYNOPSIS #include <arpa/ftpd/systemFilesys.h>
int systemChdir (FtpConn *conn, char *name);

DESCRIPTION Changes the current directory for that particular connection to name. The change
applies to that connection only. The effect depends on the implementation. If the
server is meant to service precisely one connection, this may be implemented
by actually changing the global current directory of the server. If the server is
supposed to serve simultaneous connections, the new current directory may
be associated with the connection either as a string (the conn–>dir member is
readily available for that purpose); or as more application-dependent data in the
application-dependent part of the connection structure (fd of the open directory,
for example). If the server does not support directories, nothing will be done,
and an error will be reported. Whatever is put into the string pointed to by
conn–>dir will be subsequently reported to the user as being the current directory.
Other than this, the FTPD library does not use the concept of current directory.

RETURN VALUES Returns 0 if the current directory was changed successfully, -1 otherwise.

NOTES All functions of the application side that accept a pathname parameter are
assumed to interpret it in the context of the connection’s current directory,
according to the application’s semantics. This is not emphasized in the other
manual pages; all pathname arguments are simply referred to as "the file name",
or "the directory name."

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

34 ChorusOS 4.0 Last modified December 1999

FTPD Library Functions systemCommand(3FTPD)

NAME systemCommand – Performs the given command

SYNOPSIS #include <arpa/ftpd/systemFilesys.h>
void systemCommand(FtpConn *conn, char *cmd, FILE *outstr);

DESCRIPTION The systemCommand function executes the command specified by cmd. The
validity and interpretation is entirely up to the implementer, and writes the
output of that command to outstr. Possible error messages related to the
command are directed to the outstr with a simple printf(3STDC).

ERROR
MESSAGES

perror_reply(conn, 421, "control connection") for problems
with outstr

OK MESSAGES reply(226, "Transfer complete.") to mark the end of the command
output

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 35

systemDelete(3FTPD) FTPD Library Functions

NAME systemDelete – Removes file specified

SYNOPSIS #include <arpa/ftpd/systemFilesys.h>
int systemDelete (FtpConn *conn, char *name);

DESCRIPTION Removes the file refernced by name. After successful completion, the file is no
longer shown by any list command, any attempt to retrieve that file fails, and it
is possible to create a new file of that name.

RETURN VALUES Returns 0 if the file was deleted, -1 otherwise.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

36 ChorusOS 4.0 Last modified December 1999

FTPD Library Functions systemFileSize(3FTPD)

NAME systemFileSize – Reports the presence and size of the file specified

SYNOPSIS #include <arpa/ftpd/systemFilesys.h>
int systemFileSize (FtpConn *conn, char *name, off_t *size, int isAscii);

DESCRIPTION Report the size of the file name to *size. If isAscii is non 0, the size reported is that
of the file if it contains FTP-encoded text (that is, with lines terminated by \r\n).

RETURN VALUES Returns 0 if a size was reported. Otherwise, returns -1 and does not change *size.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 37

systemGunique(3FTPD) FTPD Library Functions

NAME systemGunique – Creates a name for a new file

SYNOPSIS #include <arpa/ftpd/systemFilesys.h>
char *systemGunique (FtpConn *conn, char *local);

DESCRIPTION Creates a valid file name not already in use for an existing file, starting with
local. The pathname returned is such that it is possible to create a file of that
name. If applicable, the pathname returned is relative to the current directory,
rather than local.

RETURN VALUES Returns the new pathname if one could be elaborated. Otherwise, NULL
is returned.

ERROR
MESSAGES

perror_reply(conn, 451, "...") For a resource allocation problem

perror_reply(conn, 553, "(directory)") If local is not valid

reply(conn, 452, "...") If no unique name could be found

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

38 ChorusOS 4.0 Last modified December 1999

FTPD Library Functions systemLinesToOff(3FTPD)

NAME systemLinesToOff – Reports offset of line in text file

SYNOPSIS #include <arpa/ftpd/systemFilesys.h>
off_t systemLinesToOff (FtpConn *conn, char *name, int lines);

DESCRIPTION Read the file referenced by name, until just past the number of lines specified
by lines and return the current offset.

RETURN VALUES The offset of the specified line, or -1 in case of failure.

ERROR
MESSAGES

perror_reply(conn, 451, "...") For a resource allocation problem

perror_reply(conn, 553, "(file name)") For a file name problem

perror_reply(conn, 550, "(file name)") For a file seek problem (including
insufficient lines in the file)

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 39

systemListFiles(3FTPD) FTPD Library Functions

NAME systemListFiles – Lists the files matching the pattern specified

SYNOPSIS #include <arpa/ftpd/systemFilesys.h>
void systemListFiles (FtpConn *conn, char *name, FILE *outstr, int isAscii);

DESCRIPTION Output a simple listing of the file or files referred to by name. The interpretation
of the file name and the format of the list is implementation dependent. If isAscii
!= 0 the lines of output are formatted as text lines (that is, terminated by \r\n).

RETURN VALUES Returns 0 if the list could be created; -1 otherwise.

ERROR
MESSAGES

perror_reply(conn, 451, "...") For a resource allocation
problem

perror_reply(conn, 426, "Data connection") For a problem with outstr

reply(conn, 550, "not found") If name does not refer to
anything

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

40 ChorusOS 4.0 Last modified December 1999

FTPD Library Functions systemLog(3FTPD)

NAME systemLog, systemVlog – Adds the text given to the log

SYNOPSIS #include <arpa/ftpd/systemLog.h>
void systemLog (int level, const char * format, ...);

void systemVlog (int level, const char * format, va_list ap);

DESCRIPTION Records, in any way the implementer requires, the message represented by
format and the following arguments. The level argument indicates the type of
information as a small number. The possible types of information are defined
in systemLog.h as one of:

LOG_INFO LOG_WARNING LOG_DEBUG LOG_NOTICE LOG_PID LOG_ERR LOG_NDELAY LOG_FTP

The format obeys the same syntax as the format argument of printf . The
systemLog function accepts a variable number of arguments while systemVlog
accepts a vector.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 41

systemLogwtmp(3FTPD) FTPD Library Functions

NAME systemLogwtmp – Record the given connection to wtmp

SYNOPSIS #include <arpa/ftpd/systemLog.h>
void systemLogwtmp (FtpConn *conn);

DESCRIPTION Logs the connection in wtmp or the equivalent, if applicable.

NOTES The wtmp function may become inaccessible after performing a chroot(2POSIX).
It is the responsibility of the application to make sure that wtmp is opened
before using chroot(2POSIX).

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

42 ChorusOS 4.0 Last modified December 1999

FTPD Library Functions systemMkdir(3FTPD)

NAME systemMkdir – Create a directory of the name specified

SYNOPSIS #include <arpa/ftpd/systemFilesys.h>
int systemMkdir (FtpConn *conn, char *name);

DESCRIPTION Creates a new directory with the name name. After successful completion, a call
to systemChdir(3FTPD) with the same arguments should succeed.

RETURN VALUES Returns 0 if the directory was created, -1 otherwise.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 43

systemPass(3FTPD) FTPD Library Functions

NAME systemPass – Checks the user password

SYNOPSIS #include <arpa/ftpd/systemAuth.h>
int systemPass (FtpConn *conn);

DESCRIPTION Checks that the password given by the user is the correct password according to
implementation–defined criteria. The name of the user is conn–>name, and the
password entered by the user is conn–>passwd. If the password is accepted, the
connection is initialized to reflect the initial defaults associated with the user
according to implementation–defined data bases. This may include changing
the current directory to the home directory of the user (updating conn–>dir in
multi-threaded conditions), and changing the root directory (if supported by
the implementation). This may also include changing the shell (conn–>shell), if
spawning of shell commands is supported. The conn–>dir parameter is already
initialized to "/" and conn–>shell is already initialized to "". If the application
changes the value of conn–>dir or conn–>shell, it should first free the memory
pointed to by conn–>dir or conn–>shell using free(3STDC). When the session is
finished, the FTPD library calls free(3STDC) on conn–>dir or conn–>shell if their
value is not set to NULL. In a traditional UNIX implementation, if conn–>guest
is 1, the password is not checked.

RETURN VALUES Returns 0 if the password is correct, -1 otherwise.

OK REPLIES lreply(conn, 230, "(Comments)") Optional and only if access granted

ERROR
MESSAGES

reply(conn, 530, "...") For a bad password

reply(conn, 550, "...") For a problem with the data base file

NOTES The conn–>dir and conn–>shell parameters are for use by the application side;
the FTPD library does not interpret them. If credentials are important, the
necessary information should be initialized in the application-dependent part of
the connection, to allow the systemBeuser(3FTPD) and systemBesuper(3FTPD)
routines to perform correctly. (See these routines.)

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

44 ChorusOS 4.0 Last modified December 1999

FTPD Library Functions systemReceiveAscii(3FTPD)

NAME systemReceiveAscii, systemReceiveBin – Stores text or binary data in the file
specified

SYNOPSIS #include <arpa/ftpd/systemFilesys.h>
int systemReceiveAscii (FtpConn * conn, FILE * instr, char * name, off_t offset);

int systemReceiveBin (FtpConn * conn, FILE * instr, char * name, off_t offset);

DESCRIPTION Both routines read data from FILE instr until EOFis reached, and store it in
the file called name , starting from offset offset . If the file does not exist yet, it
is created. The effect of storing data in a file is implementation–dependent.
The systemReceiveAscii routine gets lines of text (in the format defined by FTP)
from the input stream and converts them to the file representation of text lines.
The systemReceiveBin routine stores the data exactly as it receives it from the
input stream. Both routines increment conn–>byte_count by the number of
bytes received. These routines periodically call ftpdOob (3FTPD) to check for
any urgent conditions on the control line. When calling ftpdOob (3FTPD),
conn–>byte_count is up-to-date. In a traditional UNIX implementation, after
successful completion of systemReceiveAscii , a call to systemSendAscii (3FTPD)
using the same arguments should send a sequence of lines that begins with the
same set of lines that were just received. In addition, if the file already contained
lines prior to systemReceiveAscii , the lines not contained between offset and offset
+ <number-of-bytes-received> should be unchanged. In a traditional
UNIX implementation, after successful completion of systemReceiveBin a call
to systemSendBin (3FTPD) using the same arguments should send a flow of
data that begins with the same stream of bytes that were just received. In
addition, if the file already contained data prior to systemReceiveBin , the data
not contained between offset and offset + <number-of-bytes-received>
should be unchanged.

RETURN VALUES Both routines return 0 if the transfer completed successfully, -1 otherwise.

ERROR
MESSAGES

perror_reply(conn, 426, "...") For a problem with instr

perror_reply(conn, 451, "...") For a resource allocation problem

perror_reply(conn, 452, "...") For a file write problem

perror_reply(conn, 550, "(file name)") For a file seek problem

perror_reply(conn, 553, "(file name)") For a file name problem

NOTES The ftpdOob (3FTPD) routine may longjmp (3STDC) to an older stack frame
instead of returning. See this routine for the necessary precautions.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

Last modified December 1999 ChorusOS 4.0 45

systemReceiveAscii(3FTPD) FTPD Library Functions

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

46 ChorusOS 4.0 Last modified December 1999

FTPD Library Functions systemReceiveBin(3FTPD)

NAME systemReceiveAscii, systemReceiveBin – Stores text or binary data in the file
specified

SYNOPSIS #include <arpa/ftpd/systemFilesys.h>
int systemReceiveAscii (FtpConn * conn, FILE * instr, char * name, off_t offset);

int systemReceiveBin (FtpConn * conn, FILE * instr, char * name, off_t offset);

DESCRIPTION Both routines read data from FILE instr until EOFis reached, and store it in
the file called name , starting from offset offset . If the file does not exist yet, it
is created. The effect of storing data in a file is implementation–dependent.
The systemReceiveAscii routine gets lines of text (in the format defined by FTP)
from the input stream and converts them to the file representation of text lines.
The systemReceiveBin routine stores the data exactly as it receives it from the
input stream. Both routines increment conn–>byte_count by the number of
bytes received. These routines periodically call ftpdOob (3FTPD) to check for
any urgent conditions on the control line. When calling ftpdOob (3FTPD),
conn–>byte_count is up-to-date. In a traditional UNIX implementation, after
successful completion of systemReceiveAscii , a call to systemSendAscii (3FTPD)
using the same arguments should send a sequence of lines that begins with the
same set of lines that were just received. In addition, if the file already contained
lines prior to systemReceiveAscii , the lines not contained between offset and offset
+ <number-of-bytes-received> should be unchanged. In a traditional
UNIX implementation, after successful completion of systemReceiveBin a call
to systemSendBin (3FTPD) using the same arguments should send a flow of
data that begins with the same stream of bytes that were just received. In
addition, if the file already contained data prior to systemReceiveBin , the data
not contained between offset and offset + <number-of-bytes-received>
should be unchanged.

RETURN VALUES Both routines return 0 if the transfer completed successfully, -1 otherwise.

ERROR
MESSAGES

perror_reply(conn, 426, "...") For a problem with instr

perror_reply(conn, 451, "...") For a resource allocation problem

perror_reply(conn, 452, "...") For a file write problem

perror_reply(conn, 550, "(file name)") For a file seek problem

perror_reply(conn, 553, "(file name)") For a file name problem

NOTES The ftpdOob (3FTPD) routine may longjmp (3STDC) to an older stack frame
instead of returning. See this routine for the necessary precautions.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

Last modified December 1999 ChorusOS 4.0 47

systemReceiveBin(3FTPD) FTPD Library Functions

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

48 ChorusOS 4.0 Last modified December 1999

FTPD Library Functions systemRename(3FTPD)

NAME systemRename – Moves a file

SYNOPSIS #include <arpa/ftpd/systemFilesys.h>
int systemRename (FtpConn *conn, char *old, char *new);

DESCRIPTION After successful completion, old is an invalid file name. This behaves in the same
way as a successful systemDelete(3FTPD). The new parameter is a valid file name.
The data formerly contained in old is now contained in new.

RETURN VALUES Returns 0 if successful, -1 otherwise.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 49

systemRmdir(3FTPD) FTPD Library Functions

NAME systemRmdir – Removes the directory specified

SYNOPSIS #include <arpa/ftpd/systemFilesys.h>
int systemRmdir (FtpConn *conn, char *name);

DESCRIPTION Removes the directory specified by name. After successful completion, a call to
systemChdir using the same arguments should fail, and a call to systemMkdir with
the same arguments should succeed.

RETURN VALUES Returns 0 if the directory was removed; -1 otherwise.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

50 ChorusOS 4.0 Last modified December 1999

FTPD Library Functions systemSendAscii(3FTPD)

NAME systemSendAscii, systemSendBin – Retrieves text or binary data from the file
specified

SYNOPSIS #include <arpa/ftpd/systemFilesys.h>
int systemSendAscii (FtpConn * conn, char * name, FILE * outstr, off_t offset);

int systemSendBin (FtpConn * conn, char * name, FILE * outstr, off_t offset);

DESCRIPTION Both routines read data from the file specified by name until end of file,
starting from the offset offset , and write it to the output stream outstr . The
systemSendAscii function outputs the data in the text format defined by FTP.
The data in the file are assumed to be organized as text lines which must be
output as strings of characters terminated by \\r\ , regardless of the text line
representation in the file. The systemSendBin function is expected to output the
data exactly as it was in the file. Both routines increment conn–>byte_count by
the number of bytes sent. These routines periodically call ftpdOob (3FTPD)
to check for any urgent condition on the control line. When calling ftpdOob
(3FTPD), conn–>byte_count is updated.

RETURN VALUES Returns 0 if the file was transferred successfully.Otherwise, returns -1.

ERROR
MESSAGES

perror_reply(conn, 426, "...") For a problem with outsrt

perror_reply(conn, 451, "...") For a resource allocation problem

perror_reply(conn, 452, "...") For a file read problem

perror_reply(conn, 550, "(file name)") For a file seek problem

perror_reply(conn, 553, "(file name)") For a file name problem

NOTES The ftpdOob (3FTPD) routine may longjmp (3STDC) to an older stack frame
instead of returning. See ftpdOob (3FTPD) for the necessary precautions.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 51

systemSendBin(3FTPD) FTPD Library Functions

NAME systemSendAscii, systemSendBin – Retrieves text or binary data from the file
specified

SYNOPSIS #include <arpa/ftpd/systemFilesys.h>
int systemSendAscii (FtpConn * conn, char * name, FILE * outstr, off_t offset);

int systemSendBin (FtpConn * conn, char * name, FILE * outstr, off_t offset);

DESCRIPTION Both routines read data from the file specified by name until end of file,
starting from the offset offset , and write it to the output stream outstr . The
systemSendAscii function outputs the data in the text format defined by FTP.
The data in the file are assumed to be organized as text lines which must be
output as strings of characters terminated by \\r\ , regardless of the text line
representation in the file. The systemSendBin function is expected to output the
data exactly as it was in the file. Both routines increment conn–>byte_count by
the number of bytes sent. These routines periodically call ftpdOob (3FTPD)
to check for any urgent condition on the control line. When calling ftpdOob
(3FTPD), conn–>byte_count is updated.

RETURN VALUES Returns 0 if the file was transferred successfully.Otherwise, returns -1.

ERROR
MESSAGES

perror_reply(conn, 426, "...") For a problem with outsrt

perror_reply(conn, 451, "...") For a resource allocation problem

perror_reply(conn, 452, "...") For a file read problem

perror_reply(conn, 550, "(file name)") For a file seek problem

perror_reply(conn, 553, "(file name)") For a file name problem

NOTES The ftpdOob (3FTPD) routine may longjmp (3STDC) to an older stack frame
instead of returning. See ftpdOob (3FTPD) for the necessary precautions.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

52 ChorusOS 4.0 Last modified December 1999

FTPD Library Functions systemSetThreadTitle(3FTPD)

NAME systemSetThreadTitle – Names the current thread with the text given

SYNOPSIS #include <arpa/ftpd/systemLog.h>
void systemSetThreadTitle (const char *fmt, ...);

DESCRIPTION Each time the generic code of the FTPD library receives a new FTP command, it
calls systemSetThreadTitle with a title that contains the client FTP host name, the
client FTP user name and the name of the command which is being processed.

systemSetThreadTitle may ignore this title or use it to set the current thread name
(this is useful when debugging multi-threaded FTPD servers).

Traditional UNIX implementations use this title to set the name of the FTPD
process so that it can be viewed using ps.

The arguments of systemSetThreadTitle obey the same rules as the printf
arguments.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 53

systemSleep(3FTPD) FTPD Library Functions

NAME systemSleep – Sleep for the given number of seconds

SYNOPSIS #include <arpa/ftpd/systemSleep.h>
void systemSleep (int t);

DESCRIPTION Suspends the execution of the current thread for t seconds. Providing this
function is optional; the FTPD library includes a default one.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

54 ChorusOS 4.0 Last modified December 1999

FTPD Library Functions systemUser(3FTPD)

NAME systemUser – Checks the user login

SYNOPSIS #include <arpa/ftpd/systemAuth.h>
int systemUser (FtpConn *conn);

DESCRIPTION Checks that the user can log in. The user’s name is in conn–>name. If the user is a
guest, conn–>guest is set to 1, otherwise it is set to 0.

RETURN VALUES Returns 0 if the user is granted access, -1 otherwise.

OK REPLIES lreply(conn, 331, "(Comments)") Optional and only if access is granted

ERROR
MESSAGES

reply(conn, 530, "(Grumble)") If access is denied

NOTES The conn–>guest parameter is interpreted by the generic code only insofar as the
password of guest users is logged, while the password of non-guest users is
not logged.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 55

systemVlog(3FTPD) FTPD Library Functions

NAME systemLog, systemVlog – Adds the text given to the log

SYNOPSIS #include <arpa/ftpd/systemLog.h>
void systemLog (int level, const char * format, ...);

void systemVlog (int level, const char * format, va_list ap);

DESCRIPTION Records, in any way the implementer requires, the message represented by
format and the following arguments. The level argument indicates the type of
information as a small number. The possible types of information are defined
in systemLog.h as one of:

LOG_INFO LOG_WARNING LOG_DEBUG LOG_NOTICE LOG_PID LOG_ERR LOG_NDELAY LOG_FTP

The format obeys the same syntax as the format argument of printf . The
systemLog function accepts a variable number of arguments while systemVlog
accepts a vector.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

56 ChorusOS 4.0 Last modified December 1999

Index

F
ftpdGetCnx — Accepts a new FTP

connection 20
ftpdHandleCnx — Manages an FTP

connection 21
ftpdOob — Check for out of band data on the

control connection 22
ftpdStartSrv — Initializes FTP service 23

I
intro — introduction to the FTPD library 13

L
lreply — Reply to an FTP client 24–26

P
perror_reply — Reply to an FTP client 24–26

R
reply — Reply to an FTP client 24–26

S
systemAsciiOff — Reports offset of text offset

in file 27
systemBeany — Switch and lock user id 28,

30, 32
systemBesuper — Switch and lock user id 28,

30, 32

systemBeuser — Switch and lock user id 28,
30, 32

systemChdir — Change the current directory
for the given connection 34

systemCommand — Performs the given
command 35

systemDelete — Removes file specified 36
systemFileSize — Reports the presence and size

of the file specified 37
systemGunique — Creates a name for a new

file 38
systemLinesToOff — Reports offset of line in

text file 39
systemListFiles — Lists the files matching the

pattern specified 40
systemLog — Adds the text given to the

log 41, 56
systemLogwtmp — Record the given

connection to wtmp 42
systemMkdir — Create a directory of the name

specified 43
systemPass — Checks the user password 44
systemReceiveAscii — Stores text or binary data

in the file specified 45, 47
systemReceiveBin — Stores text or binary data

in the file specified 45, 47
systemRename — Moves a file 49
systemRmdir — Removes the directory

specified 50
systemSendAscii — Retrieves text or binary data

from the file specified 51–52

Index-57

systemSendBin — Retrieves text or binary data
from the file specified 51–52

systemSetThreadTitle — Names the current
thread with the text given 53

systemSleep — Sleep for the given number of
seconds 54

systemUser — Checks the user login 55
systemVlog — Adds the text given to the

log 41, 56

ChorusOS man pages section 3FTPD: FTP Daemon Library ♦ December 10, 1999

