
ChorusOS man pages section 3M:
Mathematical Libraries

Sun Microsystems, Inc.
901 San Antonio Road

Palo Alto, CA 94303-4900
U.S.A.

Part No: 806-3332
December 10, 1999

Copyright 1999 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.
This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun
and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, ChorusOS, and Solaris are trademarks, registered
trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are
based upon an architecture developed by Sun Microsystems, Inc.
The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer
industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who
implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.
RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227–14(g)(2)(6/87) and
FAR 52.227–19(6/87), or DFAR 252.227–7015(b)(6/95) and DFAR 227.7202–3(a).
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 1999 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, Californie 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et
la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie
relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.
Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.
Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, ChorusOS, et Solaris sont des marques de fabrique ou des
marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont
utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres
pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se
conforment aux licences écrites de Sun.
CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS
DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Please
Recycle

Contents

PREFACE 9

acos(3M) 15

acosh(3M) 16

asin(3M) 17

asinh(3M) 18

atan2(3M) 19

atan(3M) 20

atanh(3M) 21

hypot(3M) 22

cabs(3M) 22

sqrt(3M) 23

cbrt(3M) 23

ceil(3M) 24

ieee(3M) 25

copysign(3M) 25

drem(3M) 25

finite(3M) 25

logb(3M) 25

scalb(3M) 25

Contents 3

cos(3M) 26

cosh(3M) 27

ieee(3M) 28

copysign(3M) 28

drem(3M) 28

finite(3M) 28

logb(3M) 28

scalb(3M) 28

erf(3M) 29

erfc(3M) 29

erf(3M) 30

erfc(3M) 30

exp(3M) 31

expm1(3M) 31

log(3M) 31

log10(3M) 31

log1p(3M) 31

pow(3M) 31

exp(3M) 33

expm1(3M) 33

log(3M) 33

log10(3M) 33

log1p(3M) 33

pow(3M) 33

ieee(3M) 35

copysign(3M) 35

drem(3M) 35

finite(3M) 35

4 ChorusOS man pages section 3M: Mathematical Libraries ♦ December 10, 1999

logb(3M) 35

scalb(3M) 35

floor(3M) 36

fmod(3M) 37

lgamma(3M) 38

gamma(3M) 38

hypot(3M) 40

cabs(3M) 40

ieee(3M) 41

copysign(3M) 41

drem(3M) 41

finite(3M) 41

logb(3M) 41

scalb(3M) 41

infnan(3M) 42

j0(3M) 43

j1(3M) 43

jn(3M) 43

y0(3M) 43

y1(3M) 43

yn(3M) 43

j0(3M) 44

j1(3M) 44

jn(3M) 44

y0(3M) 44

y1(3M) 44

yn(3M) 44

j0(3M) 45

Contents 5

j1(3M) 45

jn(3M) 45

y0(3M) 45

y1(3M) 45

yn(3M) 45

lgamma(3M) 46

gamma(3M) 46

exp(3M) 48

expm1(3M) 48

log(3M) 48

log10(3M) 48

log1p(3M) 48

pow(3M) 48

exp(3M) 50

expm1(3M) 50

log(3M) 50

log10(3M) 50

log1p(3M) 50

pow(3M) 50

exp(3M) 52

expm1(3M) 52

log(3M) 52

log10(3M) 52

log1p(3M) 52

pow(3M) 52

ieee(3M) 54

copysign(3M) 54

drem(3M) 54

6 ChorusOS man pages section 3M: Mathematical Libraries ♦ December 10, 1999

finite(3M) 54

logb(3M) 54

scalb(3M) 54

math(3M) 55

exp(3M) 60

expm1(3M) 60

log(3M) 60

log10(3M) 60

log1p(3M) 60

pow(3M) 60

rint(3M) 62

ieee(3M) 63

copysign(3M) 63

drem(3M) 63

finite(3M) 63

logb(3M) 63

scalb(3M) 63

sin(3M) 64

sinh(3M) 65

sqrt(3M) 66

cbrt(3M) 66

tan(3M) 67

tanh(3M) 68

j0(3M) 69

j1(3M) 69

jn(3M) 69

y0(3M) 69

y1(3M) 69

Contents 7

yn(3M) 69

j0(3M) 70

j1(3M) 70

jn(3M) 70

y0(3M) 70

y1(3M) 70

yn(3M) 70

j0(3M) 71

j1(3M) 71

jn(3M) 71

y0(3M) 71

y1(3M) 71

yn(3M) 71

Index 71

8 ChorusOS man pages section 3M: Mathematical Libraries ♦ December 10, 1999

PREFACE

Overview
A man page is provided for both the naive user, and sophisticated user who is familiar
with the ChorusOS™ operating system and is in need of on-line information. A man
page is intended to answer concisely the question “What does it do?” The man pages in
general comprise a reference manual. They are not intended to be a tutorial.

The following is a list of sections in the ChorusOS man pages and the information
it references:

Section 1CC: User Utilities; Host and Target Utilities

Section 1M: System Management Utilities

Section 2DL: System Calls; Data Link Services

Section 2K: System Calls; Kernel Services

Section 2MON: System Calls; Monitoring Services

Section 2POSIX: System Calls; POSIX System Calls

Section 2RESTART: System Calls; Hot Restart and Persistent Memory

Section 2SEG: System Calls; Virtual Memory Segment Services

Section 3FTPD: Libraries; FTP Daemon

Section 3M: Libraries; Mathematical Libraries

Section 3POSIX: Libraries; POSIX Library Functions

Section 3RPC: Libraries; RPC Services

Section 3STDC: Libraries; Standard C Library Functions

Section 3TELD: Libraries; Telnet Services

Section 4CC: Files

PREFACE 9

Section 5FEA: ChorusOS Features and APIs

Section 7P: Protocols

Section 7S: Services

Section 9DDI: Device Driver Interfaces

Section 9DKI: Driver to Kernel Interface

Section 9DRV: Driver Implementations

ChorusOS man pages are grouped in Reference Manuals, with one reference manual
per section.

Below is a generic format for man pages. The man pages of each manual section
generally follow this order, but include only needed headings. For example, if there are
no bugs to report, there is no BUGS section. See the intro pages for more information
and detail about each section, and man(1) for more information about man pages in
general.

NAME This section gives the names of the commands
or functions documented, followed by a brief
description of what they do.

SYNOPSIS This section shows the syntax of commands or
functions. When a command or file does not
exist in the standard path, its full pathname is
shown. Options and arguments are alphabetized,
with single letter arguments first, and options
with arguments next, unless a different argument
order is required.

The following special characters are used in
this section:

[] The option or argument enclosed in these
brackets is optional. If the brackets are
omitted, the argument must be specified.

. . . Ellipses. Several values may be
provided for the previous argument,
or the previous argument can be
specified multiple times, for example, ‘
"filename . . ." .

| Separator. Only one of the arguments
separated by this character can be
specified at time.

{ } Braces. The options and/or
arguments enclosed within braces are

10 ChorusOS man pages section 3M: Mathematical Libraries ♦ December 10, 1999

interdependent, such that everything
enclosed must be treated as a unit.

FEATURES This section provides the list of features which
offer an interface. An API may be associated with
one or more system features. The interface will
be available if one of the associated features
has been configured.

DESCRIPTION This section defines the functionality and
behavior of the service. Thus it describes
concisely what the command does. It does not
discuss OPTIONS or cite EXAMPLES.. Interactive
commands, subcommands, requests, macros,
functions and such, are described under USAGE.

OPTIONS This lists the command options with a concise
summary of what each option does. The options
are listed literally and in the order they appear
in the SYNOPSIS section. Possible arguments
to options are discussed under the option, and
where appropriate, default values are supplied.

OPERANDS This section lists the command operands and
describes how they affect the actions of the
command.

OUTPUT This section describes the output - standard
output, standard error, or output files - generated
by the command.

RETURN VALUES If the man page documents functions that
return values, this section lists these values and
describes the conditions under which they are
returned. If a function can return only constant
values, such as 0 or –1, these values are listed
in tagged paragraphs. Otherwise, a single
paragraph describes the return values of each
function. Functions declared void do not return
values, so they are not discussed in RETURN
VALUES.

ERRORS On failure, most functions place an error code in
the global variable errno indicating why they
failed. This section lists alphabetically all error
codes a function can generate and describes the
conditions that cause each error. When more than
one condition can cause the same error, each
condition is described in a separate paragraph
under the error code.

11

USAGE This section is provided as a guidance on use.
This section lists special rules, features and
commands that require in-depth explanations.
The subsections listed below are used to explain
built-in functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

EXAMPLES This section provides examples of usage or of
how to use a command or function. Wherever
possible a complete example including command
line entry and machine response is shown.
Whenever an example is given, the prompt is
shown as example% or if the user must be
superuser, example# . Examples are followed
by explanations, variable substitution rules,
or returned values. Most examples illustrate
concepts from the SYNOPSIS, DESCRIPTION,
OPTIONS and USAGE sections.

ENVIRONMENT VARIABLES This section lists any environment variables that
the command or function affects, followed by a
brief description of the effect.

EXIT STATUS This section lists the values the command returns
to the calling program or shell and the conditions
that cause these values to be returned. Usually,
zero is returned for successful completion
and values other than zero for various error
conditions.

FILES This section lists all filenames referred to by the
man page, files of interest, and files created or
required by commands. Each is followed by a
descriptive summary or explanation.

SEE ALSO This section lists references to other man
pages, in-house documentation and outside
publications.

DIAGNOSTICS This section lists diagnostic messages with a brief
explanation of the condition causing the error.

WARNINGS This section lists warnings about special
conditions which could seriously affect your
working conditions. This is not a list of
diagnostics.

NOTES This section lists additional information that
does not belong anywhere else on the page. It
takes the form of an aside to the user, covering
points of special interest. Critical information is
never covered here.

12 ChorusOS man pages section 3M: Mathematical Libraries ♦ December 10, 1999

BUGS This section describes known bugs and wherever
possible, suggests workarounds.

13

CHAPTER

Mathematical Library

14

Mathematical Library acos(3M)

NAME acos – arc cosine function

SYNOPSIS #include <math.h>
double acos (double x);

DESCRIPTION The acos function computes the principal value of the arc cosine of x. A domain
error occurs for arguments not in the range [-1, +1]. For a discussion of errors
due to rounding off, see math(3M).

RETURN VALUES The acos function returns the arc cosine in the range [0, Pi] radians. If | x | > 1,
errno is set to EDOM and a system-dependent notification is performed.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO sin (3M), cos (3M), tan (3M), asin (3M), atan (3M), atan2 (3M), sinh (3M),
cosh (3M), tanh (3M), math (3M)

STANDARDS The acos function conforms to ANSI-C.

Last modified December 1999 ChorusOS 4.0 15

acosh(3M) Mathematical Library

NAME acosh – inverse hyperbolic cosine function

SYNOPSIS #include <math.h>
double acosh (double x);

DESCRIPTION The acosh function computes the inverse hyperbolic cosine of the real argument
x. For a discussion of errors due to rounding off, see math(3M).

RETURN VALUES The acosh function returns the inverse hyperbolic cosine of x. If the argument is
less than one, acosh sets errno to EDOM and a system-dependent notification is
performed.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO asinh (3M), atanh (3M), exp (3M), infnan (3M), math (3M)

16 ChorusOS 4.0 Last modified December 1999

Mathematical Library asin(3M)

NAME asin – arc sine function

SYNOPSIS #include <math.h>
double asin (double x);

DESCRIPTION The asin function computes the principal value of the arc sine of x. A domain
error occurs for arguments not in the range [-1, +1]. For a discussion of errors
due to rounding off, see math(3M).

RETURN VALUES The asin function returns the arc sine in the range [-Pi/2, +Pi/2] radians. If | x |
> 1, errno is set to EDOM and a system-dependent notification is performed.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO acos (3M), atan (3M), atan2 (3M), cos (3M), cosh (3M), sin (3M), sinh (3M),
tan (3M), tanh (3M), math (3M)

STANDARDS The asin function conforms to ANSI-C.

Last modified December 1999 ChorusOS 4.0 17

asinh(3M) Mathematical Library

NAME asinh – inverse hyperbolic sine function

SYNOPSIS #include <math.h>
double asinh (double x);

DESCRIPTION The asinh function computes the inverse hyperbolic sine of the real argument x.
For a discussion of errors due to rounding off, see math(3M).

RETURN VALUES The asinh function returns the inverse hyperbolic sine of x.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO acosh (3M), atanh (3M), exp (3M), infnan (3M), math (3M)

18 ChorusOS 4.0 Last modified December 1999

Mathematical Library atan2(3M)

NAME atan2 – arc tangent function of two variables

SYNOPSIS #include <math.h>
double atan2 (double y, double x);

DESCRIPTION The atan2 function computes the principal value of the arc tangent of y/x, using
the signs of both arguments to determine the quadrant of the return value.

RETURN VALUES The atan2 function, if successful, returns the arc tangent of y/x in radians. If both
x and y are zero, errno is set to EDOM and a system-dependent notification is
performed.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO acos (3M), asin (3M), atan (3M), cos (3M), cosh (3M), sin (3M), sinh (3M),
tan (3M), tanh (3M), math (3M)

STANDARDS The atan2 function conforms to ANSI-C.

Last modified December 1999 ChorusOS 4.0 19

atan(3M) Mathematical Library

NAME atan – arc tangent function of one variable

SYNOPSIS #include <math.h>
double atan (double x);

DESCRIPTION The atan function computes the principal value of the arc tangent of x. For a
discussion of errors due to rounding off, see math(3M).

RETURN VALUES The atan function returns the arc tangent in radians.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO acos (3M), asin (3M), atan2 (3M), cos (3M), cosh (3M), sin (3M), sinh (3M),
tan (3M), tanh (3M), math (3M)

STANDARDS The atan function conforms to ANSI-C.

20 ChorusOS 4.0 Last modified December 1999

Mathematical Library atanh(3M)

NAME atanh – inverse hyperbolic tangent function

SYNOPSIS #include <math.h>
double atanh (double x);

DESCRIPTION The atanh function computes the inverse hyperbolic tangent of the real argument
x. For a discussion of errors due to rounding off, see math(3M).

RETURN VALUES The atanh function returns the inverse hyperbolic tangent of x, if successful. If
the argument has an absolute value greater than or equal to 1, atanh sets errno to
EDOM and a system-dependent notification is performed.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO acosh (3M), asinh (3M), exp (3M), infnan (3M), math (3M)

Last modified December 1999 ChorusOS 4.0 21

cabs(3M) Mathematical Library

NAME hypot, cabs – euclidean distance and complex absolute value functions

SYNOPSIS #include <math.h>
double hypot (double x, double y);

double cabs (struct {double x ; double y ;} z ;);

DESCRIPTION The hypot and cabs functions compute the square root of (x*x+y*y) in such a
way that underflow will not occur, and overflow occurs only if the final result
justifies it.

hypot (∞ , v) = hypot (v, ∞) = +Infinity

for all values of v , including NaN .

ERRORS (due to
Roundoff)

Less than 0.97 ulp s. Consequently, hypot(5.0, 12.0) = 13.0 exactly; in general,
hypot and cabs return an integer whenever an integer is expected.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO math (3M) , sqrt (3M)

22 ChorusOS 4.0 Last modified December 1999

Mathematical Library cbrt(3M)

NAME sqrt, cbrt – cube root and square root functions

SYNOPSIS #include <math.h>
double cbrt (double x);

double sqrt (double x);

DESCRIPTION The cbrt function computes the cube root of x .

The sqrt function computes the non-negative square root of x.

RETURN VALUES The cbrt function returns the requested cube root. The sqrt function returns the
requested square root unless an error occurs. An attempt to take the sqrt of a
negative value of x causes an error; in this event, errno is set to EDOM and a
system-dependent notification is performed.

ERRORS (due to
Roundoff)

The cbrt function is accurate to within 0.7 ulps .

On a machine that conforms to IEEE 754 sqrt is correctly rounded in accordance
with the rounding mode in force; the error is less than half a ulp in the default
mode (round–to–nearest). A ulp is one Unit in the Last Place carried.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO math (3M) , infnan (3M)

STANDARDS The sqrt function conforms to ANSI-C.

Last modified December 1999 ChorusOS 4.0 23

ceil(3M) Mathematical Library

NAME ceil – smallest integral value not less than x

SYNOPSIS #include <math.h>
double ceil (double x);

DESCRIPTION The ceil function computes the smallest integral value not less than x.

RETURN VALUES The ceil function returns the smallest integral value expressed as a double.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO floor (3M), rint (3M), ieee (3M), math (3M) abs (3STDC) fabs (3STDC)

STANDARDS The ceil function conforms to ANSI-C.

24 ChorusOS 4.0 Last modified December 1999

Mathematical Library copysign(3M)

NAME ieee, copysign, drem, finite, logb, scalb – IEEE 754 floating point support

SYNOPSIS #include <math.h>
double copysign (double x, double y);

double drem (double x, double y);

int finite (double x);

double logb (double x);

double scalb (double x, int n);

DESCRIPTION These functions are required for the IEEE 754 standard for floating–point
arithmetic.

The copysign () function returns x with its sign changed to that of y .

The drem () function returns the remainder r := x – n*y where n is the integer
closest to the exact value of x/y . If | n - x/y | = 1/2, n is even. Consequently,
the remainder is computed exactly and | r | <= | y | / 2. Note that drem (x, 0)
is exceptional.

The finite () function returns true (1) if the argument x is neither inifinity nor NaN
value. Otherwise it returns false (0).

The logb () function computes the exponent of x, which is the integral part of log2
|x|, as a signed floating point value for non-zero x.

The scalb () function returns x * (2**n) computed, for integer n, without first
computing 2**n.

RETURN VALUES The IEEE 754 standard defines drem(x, 0) and drem(infinity , y) to be invalid
operations that produce a NaN .

IEEE 754 defines logb (± infinity) = + infinity, and logb (0) = -HUGE_VAL, and
requires the latter to signal Division–by–Zero. Upon successful completion,
logb() returns the exponent of x.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO floor (3M) , math (3M) , infnan (3M)

Last modified December 1999 ChorusOS 4.0 25

cos(3M) Mathematical Library

NAME cos – cosine function

SYNOPSIS #include <math.h>
double cos (double x);

DESCRIPTION The cos function computes the cosine of x (measured in radians). A large
magnitude argument may yield a result with little or no significance. For a
discussion of errors due to rounding off, see math(3M).

RETURN VALUES The cos function returns the cosine value.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO sin (3M), tan (3M), asin (3M), acos (3M), atan (3M), atan2 (3M), sinh (3M),
cosh (3M), tanh (3M), math (3M)

STANDARDS The cos function conforms to ANSI-C.

26 ChorusOS 4.0 Last modified December 1999

Mathematical Library cosh(3M)

NAME cosh – hyperbolic cosine function

SYNOPSIS #include <math.h>
double cosh (double x);

DESCRIPTION The cosh function computes the hyperbolic cosine of x.

RETURN VALUES The cosh function returns the hyperbolic cosine, unless the magnitude of x
is too large; in this event, errno is set to ERANGE and a system-dependent
notification is performed.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO acos (3M), asin (3M), atan (3M), atan2 (3M), cos (3M), sin (3M), sinh (3M),
tan (3M), tanh (3M), math (3M)

STANDARDS The cosh function conforms to ANSI-C.

Last modified December 1999 ChorusOS 4.0 27

drem(3M) Mathematical Library

NAME ieee, copysign, drem, finite, logb, scalb – IEEE 754 floating point support

SYNOPSIS #include <math.h>
double copysign (double x, double y);

double drem (double x, double y);

int finite (double x);

double logb (double x);

double scalb (double x, int n);

DESCRIPTION These functions are required for the IEEE 754 standard for floating–point
arithmetic.

The copysign () function returns x with its sign changed to that of y .

The drem () function returns the remainder r := x – n*y where n is the integer
closest to the exact value of x/y . If | n - x/y | = 1/2, n is even. Consequently,
the remainder is computed exactly and | r | <= | y | / 2. Note that drem (x, 0)
is exceptional.

The finite () function returns true (1) if the argument x is neither inifinity nor NaN
value. Otherwise it returns false (0).

The logb () function computes the exponent of x, which is the integral part of log2
|x|, as a signed floating point value for non-zero x.

The scalb () function returns x * (2**n) computed, for integer n, without first
computing 2**n.

RETURN VALUES The IEEE 754 standard defines drem(x, 0) and drem(infinity , y) to be invalid
operations that produce a NaN .

IEEE 754 defines logb (± infinity) = + infinity, and logb (0) = -HUGE_VAL, and
requires the latter to signal Division–by–Zero. Upon successful completion,
logb() returns the exponent of x.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO floor (3M) , math (3M) , infnan (3M)

28 ChorusOS 4.0 Last modified December 1999

Mathematical Library erf(3M)

NAME erf, erfc – error function operators

SYNOPSIS #include <math.h>
double erf (double x);

double erfc (double x);

DESCRIPTION These functions calculate the error function of x .

The erf function calculates the error function of x; where

erf(x) = 2/sqrt(pi)*integral from 0 to x of exp(-t*t) dt.

The erfc function calculates the complementary error function of x ; that is, erfc
subtracts the result of the error function erf(x) from 1.0. This is useful when x is a
large value, as decimal places can be lost.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO math (3M)

Last modified December 1999 ChorusOS 4.0 29

erfc(3M) Mathematical Library

NAME erf, erfc – error function operators

SYNOPSIS #include <math.h>
double erf (double x);

double erfc (double x);

DESCRIPTION These functions calculate the error function of x .

The erf function calculates the error function of x; where

erf(x) = 2/sqrt(pi)*integral from 0 to x of exp(-t*t) dt.

The erfc function calculates the complementary error function of x ; that is, erfc
subtracts the result of the error function erf(x) from 1.0. This is useful when x is a
large value, as decimal places can be lost.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO math (3M)

30 ChorusOS 4.0 Last modified December 1999

Mathematical Library exp(3M)

NAME exp, expm1, log, log10, log1p, pow – exponential, logarithm, power functions

SYNOPSIS #include <math.h>
double exp (double x);

double expm1(double x);

double log (double x);

double log10 (double x);

double log1p (double x);

double pow(double x, double y);

DESCRIPTION The exp function computes the exponential value of the given argument x .

The expm1 function computes the value exp(x)–1 accurately even for extremely
small values of x .

The log function computes the natural logarithm of the argument x.

The log10 function computes the logarithm of argument x to base 10.

The log1p function computes the value of log(1+x) accurately even for extremely
small values of x .

The pow computes the value of to the exponent

ERRORS (due to
Roundoff)

The exp(x), log(x), expm1(x) and log1p(x) functions are accurate to within a ulp ,
and log10(x) to within approximately 2 ulp s. A ulp is one Unit in the Last
Place . The error in pow(x, y) is below about 2 ulp s when its magnitude is
moderate, but increases as pow(x, y) approaches the over/underflow thresholds.
Almost as many bits as are occupied by the floating–point format’s exponent
field could be lost; that is 11 bits for IEEE 754 Double. The worst errors observed
during testing have been under 300 ulp s for IEEE 754 Double. Moderate
values of pow are sufficiently accurate that pow(integer, integer) is precise until it
is greater than 2**53 for IEEE 754.

RETURN VALUES These functions will return the appropriate computation unless an error occurs
or an argument is out of range. The functions exp , expm1 and pow detect if the
computed value will overflow, set errno to ERANGE and a system-dependent
notification is performed. The pow(x, y) function checks whether x < 0 and y
is not an integer; if this is true, errno is set to EDOM and a system-dependent
notification is performed. errno is set to EDOM and a system-dependent
notification is performed by log, unless x > 0, by log1p unless x > –1.

NOTES The function pow(x, 0) returns x**0 = 1 for all x including x = 0, , and NaN .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

Last modified December 1999 ChorusOS 4.0 31

exp(3M) Mathematical Library

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO math (3M) , infnan (3M)

32 ChorusOS 4.0 Last modified December 1999

Mathematical Library expm1(3M)

NAME exp, expm1, log, log10, log1p, pow – exponential, logarithm, power functions

SYNOPSIS #include <math.h>
double exp (double x);

double expm1(double x);

double log (double x);

double log10 (double x);

double log1p (double x);

double pow(double x, double y);

DESCRIPTION The exp function computes the exponential value of the given argument x .

The expm1 function computes the value exp(x)–1 accurately even for extremely
small values of x .

The log function computes the natural logarithm of the argument x.

The log10 function computes the logarithm of argument x to base 10.

The log1p function computes the value of log(1+x) accurately even for extremely
small values of x .

The pow computes the value of to the exponent

ERRORS (due to
Roundoff)

The exp(x), log(x), expm1(x) and log1p(x) functions are accurate to within a ulp ,
and log10(x) to within approximately 2 ulp s. A ulp is one Unit in the Last
Place . The error in pow(x, y) is below about 2 ulp s when its magnitude is
moderate, but increases as pow(x, y) approaches the over/underflow thresholds.
Almost as many bits as are occupied by the floating–point format’s exponent
field could be lost; that is 11 bits for IEEE 754 Double. The worst errors observed
during testing have been under 300 ulp s for IEEE 754 Double. Moderate
values of pow are sufficiently accurate that pow(integer, integer) is precise until it
is greater than 2**53 for IEEE 754.

RETURN VALUES These functions will return the appropriate computation unless an error occurs
or an argument is out of range. The functions exp , expm1 and pow detect if the
computed value will overflow, set errno to ERANGE and a system-dependent
notification is performed. The pow(x, y) function checks whether x < 0 and y
is not an integer; if this is true, errno is set to EDOM and a system-dependent
notification is performed. errno is set to EDOM and a system-dependent
notification is performed by log, unless x > 0, by log1p unless x > –1.

NOTES The function pow(x, 0) returns x**0 = 1 for all x including x = 0, , and NaN .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

Last modified December 1999 ChorusOS 4.0 33

expm1(3M) Mathematical Library

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO math (3M) , infnan (3M)

34 ChorusOS 4.0 Last modified December 1999

Mathematical Library finite(3M)

NAME ieee, copysign, drem, finite, logb, scalb – IEEE 754 floating point support

SYNOPSIS #include <math.h>
double copysign (double x, double y);

double drem (double x, double y);

int finite (double x);

double logb (double x);

double scalb (double x, int n);

DESCRIPTION These functions are required for the IEEE 754 standard for floating–point
arithmetic.

The copysign () function returns x with its sign changed to that of y .

The drem () function returns the remainder r := x – n*y where n is the integer
closest to the exact value of x/y . If | n - x/y | = 1/2, n is even. Consequently,
the remainder is computed exactly and | r | <= | y | / 2. Note that drem (x, 0)
is exceptional.

The finite () function returns true (1) if the argument x is neither inifinity nor NaN
value. Otherwise it returns false (0).

The logb () function computes the exponent of x, which is the integral part of log2
|x|, as a signed floating point value for non-zero x.

The scalb () function returns x * (2**n) computed, for integer n, without first
computing 2**n.

RETURN VALUES The IEEE 754 standard defines drem(x, 0) and drem(infinity , y) to be invalid
operations that produce a NaN .

IEEE 754 defines logb (± infinity) = + infinity, and logb (0) = -HUGE_VAL, and
requires the latter to signal Division–by–Zero. Upon successful completion,
logb() returns the exponent of x.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO floor (3M) , math (3M) , infnan (3M)

Last modified December 1999 ChorusOS 4.0 35

floor(3M) Mathematical Library

NAME floor – largest integral value not greater than x

SYNOPSIS #include <math.h>
double floor (double x);

DESCRIPTION The floor function computes the largest integral value not greater than x.

RETURN VALUES The floor function returns the largest integral value expressed as a double.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO , ieee (3M), rint (3M), math (3M), abs (3STDC), fabs (3STDC)

STANDARDS The floor function conforms to ANSI-C.

36 ChorusOS 4.0 Last modified December 1999

Mathematical Library fmod(3M)

NAME fmod – floating-point remainder function

SYNOPSIS #include <math.h>
double fmod (double x, double y);

DESCRIPTION The fmod function computes the floating-point remainder of x/y.

RETURN VALUES The fmod function returns the value x- i * y, for the integer i . If y is non-zero, the
result has the same sign as x and a magnitude less than the magnitude of y. If y is
zero, errno is set to EDOM and a system-dependent notification is performed.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO math (3M)

STANDARDS The fmod function conforms to ANSI-C.

Last modified December 1999 ChorusOS 4.0 37

gamma(3M) Mathematical Library

NAME lgamma, gamma – log gamma function, gamma function

SYNOPSIS #include <math.h>; extern int signgam
double lgamma(double x);

double gamma(double x);

DESCRIPTION lgamma(x) returns:

ln ||~(x)|

where

|~(x) = integral from 0 to +∞ of pow(t, x-1)*exp(-t) dt for x > 0

and

|~(x) = Pi/(|~(1-x)sin(pi*x)) for x < 0

The external integer signgam returns the sign of |~(x).

gamma(x) returns |~(x) , with no effect on signgam .

IDIOSYNCRASIES Do not use the expression

signgam*exp(lgamma(x)) to compute g := |~(x).

Instead, use a program like this (in C):

lg = lgamma(x); g = signgam*exp(lg);

signgam will only be correct after lgamma has returned.

For arguments within its range, gamma is preferable , as for positive arguments it
is accurate to within one unit in the last place. Exponentiation of lgamma will
lose up to 10 significant bits.

Note - The lgamma function is not thread safe.

RETURN VALUES The gamma and lgamma functions return appropriate values unless an argument
is out of range. Overflow will occur for sufficiently large positive values, and
non-positive integers. In this case, infinity is returned, errno is set to ERANGE
, and a system-dependent notification is performed. For large non-integer
negative values, gamma will underflow.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO math (3M) , infnan (3M)

38 ChorusOS 4.0 Last modified December 1999

Mathematical Library gamma(3M)

NOTES Due to signgam being a global variable, this routine is not reentrant.

Last modified December 1999 ChorusOS 4.0 39

hypot(3M) Mathematical Library

NAME hypot, cabs – euclidean distance and complex absolute value functions

SYNOPSIS #include <math.h>
double hypot (double x, double y);

double cabs (struct {double x ; double y ;} z ;);

DESCRIPTION The hypot and cabs functions compute the square root of (x*x+y*y) in such a
way that underflow will not occur, and overflow occurs only if the final result
justifies it.

hypot (∞ , v) = hypot (v, ∞) = +Infinity

for all values of v , including NaN .

ERRORS (due to
Roundoff)

Less than 0.97 ulp s. Consequently, hypot(5.0, 12.0) = 13.0 exactly; in general,
hypot and cabs return an integer whenever an integer is expected.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO math (3M) , sqrt (3M)

40 ChorusOS 4.0 Last modified December 1999

Mathematical Library ieee(3M)

NAME ieee, copysign, drem, finite, logb, scalb – IEEE 754 floating point support

SYNOPSIS #include <math.h>
double copysign (double x, double y);

double drem (double x, double y);

int finite (double x);

double logb (double x);

double scalb (double x, int n);

DESCRIPTION These functions are required for the IEEE 754 standard for floating–point
arithmetic.

The copysign () function returns x with its sign changed to that of y .

The drem () function returns the remainder r := x – n*y where n is the integer
closest to the exact value of x/y . If | n - x/y | = 1/2, n is even. Consequently,
the remainder is computed exactly and | r | <= | y | / 2. Note that drem (x, 0)
is exceptional.

The finite () function returns true (1) if the argument x is neither inifinity nor NaN
value. Otherwise it returns false (0).

The logb () function computes the exponent of x, which is the integral part of log2
|x|, as a signed floating point value for non-zero x.

The scalb () function returns x * (2**n) computed, for integer n, without first
computing 2**n.

RETURN VALUES The IEEE 754 standard defines drem(x, 0) and drem(infinity , y) to be invalid
operations that produce a NaN .

IEEE 754 defines logb (± infinity) = + infinity, and logb (0) = -HUGE_VAL, and
requires the latter to signal Division–by–Zero. Upon successful completion,
logb() returns the exponent of x.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO floor (3M) , math (3M) , infnan (3M)

Last modified December 1999 ChorusOS 4.0 41

infnan(3M) Mathematical Library

NAME infnan – signals invalid floating point operations

SYNOPSIS #include <math.h>
double infnan (int iarg);

DESCRIPTION Invalid, Overflow and Divide–by–Zero events are notified to the application by
calls to infnan in appropriate places in libm. As exception–handling depends
upon the operating system, infnan does not necessarily alter the current flow of
control. Users of libm can design their own infnan.

Whenever an elementary function code in libm runs into an exceptional
situation, or has to return an invalid result, it calls infnan(iarg) with an
appropriate value of iarg (ERANGE or EDOM). The infnan function assigns
the corresponding value to errno and triggers whatever exception mechanism
is available. If given back control, it returns a non-finite value, which allows
computation to resume, and prompts the user to consult the errno file.

ERANGE and EDOM are defined in errno.h .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO math (3M)

42 ChorusOS 4.0 Last modified December 1999

Mathematical Library j0(3M)

NAME j0, j1, jn, y0, y1, yn – Bessel functions of the first and second kind

SYNOPSIS #include <math.h>
double j0 (double x);

double j1 (double x);

double jn (int n, double x);

double y0 (double x);

double y1 (double x);

double yn (int n, double x);

DESCRIPTION The j0 and j1 functions compute the Bessel function of the first type of the order
0 and the order 1, respectively, for the real value x . The jn function computes the
Bessel function of the first type of the integer order n for the real value x .

RETURN VALUES If these functions are successful, the computed value is returned. Upon
successful completion, j0() , j1() and jn() return the relevant Bessel value of x
of the first type.

Upon successful completion, y0() , y1() and yn() return the relevant Bessel value
of x of the second type. If the x argument of y0() , y1() or yn() is negative,
-HUGE_VALis returned and errno is set errno is set to EDOM. If x is 0.0,
-HUGE_VALis returned and errno is set to ERANGE. If the correct result
would cause overflow, -HUGE_VALor HUGE_VALis returned and errno is
set to ERANGE

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO math (3M) , infnan (3M)

Last modified December 1999 ChorusOS 4.0 43

j1(3M) Mathematical Library

NAME j0, j1, jn, y0, y1, yn – Bessel functions of the first and second kind

SYNOPSIS #include <math.h>
double j0 (double x);

double j1 (double x);

double jn (int n, double x);

double y0 (double x);

double y1 (double x);

double yn (int n, double x);

DESCRIPTION The j0 and j1 functions compute the Bessel function of the first type of the order
0 and the order 1, respectively, for the real value x . The jn function computes the
Bessel function of the first type of the integer order n for the real value x .

RETURN VALUES If these functions are successful, the computed value is returned. Upon
successful completion, j0() , j1() and jn() return the relevant Bessel value of x
of the first type.

Upon successful completion, y0() , y1() and yn() return the relevant Bessel value
of x of the second type. If the x argument of y0() , y1() or yn() is negative,
-HUGE_VALis returned and errno is set errno is set to EDOM. If x is 0.0,
-HUGE_VALis returned and errno is set to ERANGE. If the correct result
would cause overflow, -HUGE_VALor HUGE_VALis returned and errno is
set to ERANGE

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO math (3M) , infnan (3M)

44 ChorusOS 4.0 Last modified December 1999

Mathematical Library jn(3M)

NAME j0, j1, jn, y0, y1, yn – Bessel functions of the first and second kind

SYNOPSIS #include <math.h>
double j0 (double x);

double j1 (double x);

double jn (int n, double x);

double y0 (double x);

double y1 (double x);

double yn (int n, double x);

DESCRIPTION The j0 and j1 functions compute the Bessel function of the first type of the order
0 and the order 1, respectively, for the real value x . The jn function computes the
Bessel function of the first type of the integer order n for the real value x .

RETURN VALUES If these functions are successful, the computed value is returned. Upon
successful completion, j0() , j1() and jn() return the relevant Bessel value of x
of the first type.

Upon successful completion, y0() , y1() and yn() return the relevant Bessel value
of x of the second type. If the x argument of y0() , y1() or yn() is negative,
-HUGE_VALis returned and errno is set errno is set to EDOM. If x is 0.0,
-HUGE_VALis returned and errno is set to ERANGE. If the correct result
would cause overflow, -HUGE_VALor HUGE_VALis returned and errno is
set to ERANGE

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO math (3M) , infnan (3M)

Last modified December 1999 ChorusOS 4.0 45

lgamma(3M) Mathematical Library

NAME lgamma, gamma – log gamma function, gamma function

SYNOPSIS #include <math.h>; extern int signgam
double lgamma(double x);

double gamma(double x);

DESCRIPTION lgamma(x) returns:

ln ||~(x)|

where

|~(x) = integral from 0 to +∞ of pow(t, x-1)*exp(-t) dt for x > 0

and

|~(x) = Pi/(|~(1-x)sin(pi*x)) for x < 0

The external integer signgam returns the sign of |~(x).

gamma(x) returns |~(x) , with no effect on signgam .

IDIOSYNCRASIES Do not use the expression

signgam*exp(lgamma(x)) to compute g := |~(x).

Instead, use a program like this (in C):

lg = lgamma(x); g = signgam*exp(lg);

signgam will only be correct after lgamma has returned.

For arguments within its range, gamma is preferable , as for positive arguments it
is accurate to within one unit in the last place. Exponentiation of lgamma will
lose up to 10 significant bits.

Note - The lgamma function is not thread safe.

RETURN VALUES The gamma and lgamma functions return appropriate values unless an argument
is out of range. Overflow will occur for sufficiently large positive values, and
non-positive integers. In this case, infinity is returned, errno is set to ERANGE
, and a system-dependent notification is performed. For large non-integer
negative values, gamma will underflow.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO math (3M) , infnan (3M)

46 ChorusOS 4.0 Last modified December 1999

Mathematical Library lgamma(3M)

NOTES Due to signgam being a global variable, this routine is not reentrant.

Last modified December 1999 ChorusOS 4.0 47

log10(3M) Mathematical Library

NAME exp, expm1, log, log10, log1p, pow – exponential, logarithm, power functions

SYNOPSIS #include <math.h>
double exp (double x);

double expm1(double x);

double log (double x);

double log10 (double x);

double log1p (double x);

double pow(double x, double y);

DESCRIPTION The exp function computes the exponential value of the given argument x .

The expm1 function computes the value exp(x)–1 accurately even for extremely
small values of x .

The log function computes the natural logarithm of the argument x.

The log10 function computes the logarithm of argument x to base 10.

The log1p function computes the value of log(1+x) accurately even for extremely
small values of x .

The pow computes the value of to the exponent

ERRORS (due to
Roundoff)

The exp(x), log(x), expm1(x) and log1p(x) functions are accurate to within a ulp ,
and log10(x) to within approximately 2 ulp s. A ulp is one Unit in the Last
Place . The error in pow(x, y) is below about 2 ulp s when its magnitude is
moderate, but increases as pow(x, y) approaches the over/underflow thresholds.
Almost as many bits as are occupied by the floating–point format’s exponent
field could be lost; that is 11 bits for IEEE 754 Double. The worst errors observed
during testing have been under 300 ulp s for IEEE 754 Double. Moderate
values of pow are sufficiently accurate that pow(integer, integer) is precise until it
is greater than 2**53 for IEEE 754.

RETURN VALUES These functions will return the appropriate computation unless an error occurs
or an argument is out of range. The functions exp , expm1 and pow detect if the
computed value will overflow, set errno to ERANGE and a system-dependent
notification is performed. The pow(x, y) function checks whether x < 0 and y
is not an integer; if this is true, errno is set to EDOM and a system-dependent
notification is performed. errno is set to EDOM and a system-dependent
notification is performed by log, unless x > 0, by log1p unless x > –1.

NOTES The function pow(x, 0) returns x**0 = 1 for all x including x = 0, , and NaN .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

48 ChorusOS 4.0 Last modified December 1999

Mathematical Library log10(3M)

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO math (3M) , infnan (3M)

Last modified December 1999 ChorusOS 4.0 49

log1p(3M) Mathematical Library

NAME exp, expm1, log, log10, log1p, pow – exponential, logarithm, power functions

SYNOPSIS #include <math.h>
double exp (double x);

double expm1(double x);

double log (double x);

double log10 (double x);

double log1p (double x);

double pow(double x, double y);

DESCRIPTION The exp function computes the exponential value of the given argument x .

The expm1 function computes the value exp(x)–1 accurately even for extremely
small values of x .

The log function computes the natural logarithm of the argument x.

The log10 function computes the logarithm of argument x to base 10.

The log1p function computes the value of log(1+x) accurately even for extremely
small values of x .

The pow computes the value of to the exponent

ERRORS (due to
Roundoff)

The exp(x), log(x), expm1(x) and log1p(x) functions are accurate to within a ulp ,
and log10(x) to within approximately 2 ulp s. A ulp is one Unit in the Last
Place . The error in pow(x, y) is below about 2 ulp s when its magnitude is
moderate, but increases as pow(x, y) approaches the over/underflow thresholds.
Almost as many bits as are occupied by the floating–point format’s exponent
field could be lost; that is 11 bits for IEEE 754 Double. The worst errors observed
during testing have been under 300 ulp s for IEEE 754 Double. Moderate
values of pow are sufficiently accurate that pow(integer, integer) is precise until it
is greater than 2**53 for IEEE 754.

RETURN VALUES These functions will return the appropriate computation unless an error occurs
or an argument is out of range. The functions exp , expm1 and pow detect if the
computed value will overflow, set errno to ERANGE and a system-dependent
notification is performed. The pow(x, y) function checks whether x < 0 and y
is not an integer; if this is true, errno is set to EDOM and a system-dependent
notification is performed. errno is set to EDOM and a system-dependent
notification is performed by log, unless x > 0, by log1p unless x > –1.

NOTES The function pow(x, 0) returns x**0 = 1 for all x including x = 0, , and NaN .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

50 ChorusOS 4.0 Last modified December 1999

Mathematical Library log1p(3M)

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO math (3M) , infnan (3M)

Last modified December 1999 ChorusOS 4.0 51

log(3M) Mathematical Library

NAME exp, expm1, log, log10, log1p, pow – exponential, logarithm, power functions

SYNOPSIS #include <math.h>
double exp (double x);

double expm1(double x);

double log (double x);

double log10 (double x);

double log1p (double x);

double pow(double x, double y);

DESCRIPTION The exp function computes the exponential value of the given argument x .

The expm1 function computes the value exp(x)–1 accurately even for extremely
small values of x .

The log function computes the natural logarithm of the argument x.

The log10 function computes the logarithm of argument x to base 10.

The log1p function computes the value of log(1+x) accurately even for extremely
small values of x .

The pow computes the value of to the exponent

ERRORS (due to
Roundoff)

The exp(x), log(x), expm1(x) and log1p(x) functions are accurate to within a ulp ,
and log10(x) to within approximately 2 ulp s. A ulp is one Unit in the Last
Place . The error in pow(x, y) is below about 2 ulp s when its magnitude is
moderate, but increases as pow(x, y) approaches the over/underflow thresholds.
Almost as many bits as are occupied by the floating–point format’s exponent
field could be lost; that is 11 bits for IEEE 754 Double. The worst errors observed
during testing have been under 300 ulp s for IEEE 754 Double. Moderate
values of pow are sufficiently accurate that pow(integer, integer) is precise until it
is greater than 2**53 for IEEE 754.

RETURN VALUES These functions will return the appropriate computation unless an error occurs
or an argument is out of range. The functions exp , expm1 and pow detect if the
computed value will overflow, set errno to ERANGE and a system-dependent
notification is performed. The pow(x, y) function checks whether x < 0 and y
is not an integer; if this is true, errno is set to EDOM and a system-dependent
notification is performed. errno is set to EDOM and a system-dependent
notification is performed by log, unless x > 0, by log1p unless x > –1.

NOTES The function pow(x, 0) returns x**0 = 1 for all x including x = 0, , and NaN .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

52 ChorusOS 4.0 Last modified December 1999

Mathematical Library log(3M)

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO math (3M) , infnan (3M)

Last modified December 1999 ChorusOS 4.0 53

logb(3M) Mathematical Library

NAME ieee, copysign, drem, finite, logb, scalb – IEEE 754 floating point support

SYNOPSIS #include <math.h>
double copysign (double x, double y);

double drem (double x, double y);

int finite (double x);

double logb (double x);

double scalb (double x, int n);

DESCRIPTION These functions are required for the IEEE 754 standard for floating–point
arithmetic.

The copysign () function returns x with its sign changed to that of y .

The drem () function returns the remainder r := x – n*y where n is the integer
closest to the exact value of x/y . If | n - x/y | = 1/2, n is even. Consequently,
the remainder is computed exactly and | r | <= | y | / 2. Note that drem (x, 0)
is exceptional.

The finite () function returns true (1) if the argument x is neither inifinity nor NaN
value. Otherwise it returns false (0).

The logb () function computes the exponent of x, which is the integral part of log2
|x|, as a signed floating point value for non-zero x.

The scalb () function returns x * (2**n) computed, for integer n, without first
computing 2**n.

RETURN VALUES The IEEE 754 standard defines drem(x, 0) and drem(infinity , y) to be invalid
operations that produce a NaN .

IEEE 754 defines logb (± infinity) = + infinity, and logb (0) = -HUGE_VAL, and
requires the latter to signal Division–by–Zero. Upon successful completion,
logb() returns the exponent of x.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO floor (3M) , math (3M) , infnan (3M)

54 ChorusOS 4.0 Last modified December 1999

Mathematical Library math(3M)

NAME math – introduction to mathematical library functions

DESCRIPTION These functions constitute the C math library, libm. The link editor searches this
library under the –lm option. Declarations for these functions may be obtained
from the include file <math.h >. References of the form name(3M) refer to
pages in this section of this document.

LIST OF
FUNCTIONS

Name Appears on Page Description Error Bound (ULPs)

acos acos.3 inverse trigonometric function 3
acosh acosh.3 inverse hyperbolic function 3
asin asin.3 inverse trigonometric function 3
asinh asinh.3 inverse hyperbolic function 3
atan sin.3 inverse trigonometric function 1
atanh atanh.3 inverse hyperbolic function 3
atan2 atan2.3 inverse trigonometric function 2
cabs hypot.3 complex absolute value 1
cbrt sqrt.3 cube root 1
ceil ceil.3 integer no less than 0
copysign ieee.3 copy sign bit 0
cos cos.3 trigonometric function 1
cosh cosh.3 hyperbolic function 3
drem ieee.3 remainder 0
erf erf.3 error function ???
erfc erf.3 complementary error function ???
exp exp.3 exponential 1
expm1 exp.3 exp(x)--1 1
finite ieee.3 Is the value a valid finite number?
floor floor.3 integer no greater than 0
fmod fmod.3 floating-point remainder ???
gamma lgamma.3 gamma function 4
hypot hypot.3 Euclidean distance 1
infnan infnan.3 signals exceptions
j0 j0.3 bessel function ???
j1 j0.3 bessel function ???
jn j0.3 bessel function ???
lgamma lgamma.3 log gamma function 2 for positive arguments
log exp.3 natural logarithm 1
logb ieee.3 exponent extraction 0
log10 exp.3 logarithm to base 10 3
log1p exp.3 log(1+x) 1
pow exp.3 exponential x**y 60–500
rint rint.3 round to nearest integer 0
scalb ieee.3 exponent adjustment 0
sin sin.3 trigonometric function 1
sinh sinh.3 hyperbolic function 3
sqrt sqrt.3 square root 1
tan tan.3 trigonometric function 3
tanh tanh.3 hyperbolic function 3
y0 j0.3 bessel function ???
y1 j0.3 bessel function ???
yn j0.3 bessel function ???

Last modified December 1999 ChorusOS 4.0 55

math(3M) Mathematical Library

An ulp is one Unit in the Last Place.

NOTES The foregoing functions assume double–precision arithmetic conforming to the
IEEE Standard 754 for Binary Floating–Point Arithmetic.

Properties of IEEE 754
Double–Precision

Wordsize:

64 bits, 8 bytes

Radix:
Binary

Precision:
53 significant bits, approximate to 16 significant decimals

If x and x’ are consecutive positive Double–Precision numbers (they differ
by 1 ulp), then 1.1e–16 < 0.5**53 < (x’–x)/x ≤ 0.5**52 < 2.3e–16.

Range:
Overflow threshold = 2.0**102 = 1.8e308

Underflow threshold = 0.5**1022 ≈ 2.2e–308

Overflow goes by default to a signed ∞

Underflow is Gradual, rounding to the nearest integer multiple of

0.5**1074 ≈ 4.9e–324.

Zero is represented ambiguously as +0 or –0:
Its sign transforms correctly through multiplication or division, and is
preserved by addition of zeros with like signs; but x–x yields +0 for every
finite x. The only operations that reveal zero’s sign are division by zero and
copysign(x,±0). In particular, comparison (x > y, x ≥ y) cannot be affected by
the sign of zero; but if finite x = y then ∞ = 1/(x–y) ≠ –1/(y–x) = –∞

∞ is signed:
It persists when added to itself or to any finite number. Its sign transforms
correctly through multiplication and division, (finite)/±∞ = ±0 (nonzero)/0
=±∞. But ∞–∞, ∞*0 and ∞/∞ are, like 0/0 and sqrt(–3), invalid operations
that produce NaN.

Reserved operands:
There are 2**53–2 of them, all called NaN (Not a Number). Some, called
Signaling NaNs, trap any floating–point operation performed upon them;
they are used to mark missing or uninitialized values, or nonexistent
elements of arrays. The rest are Quiet NaNs; they are the default results
of Invalid Operations, and propagate through subsequent arithmetic
operations. If x ≠ x then x is NaN; every other predicate (x > y, x = y, x < y,
...) is FALSE if NaN is involved.

56 ChorusOS 4.0 Last modified December 1999

Mathematical Library math(3M)

NOTE: Trichotomy is violated by NaN. Besides being FALSE, predicates that
entail ordered comparison, rather than mere (in)equality, signal Invalid
Operation when NaN is involved.

Rounding:
Every algebraic operation (+, –, *, /, sqrt) is rounded by default to within
half a ulp, and when the rounding error is exactly half a ulp, the rounded
value’s least significant bit is zero. This kind of rounding is usually the
best kind, sometimes provably so; for instance, for every x = 1.0, 2.0, 3.0,
4.0, ..., 2.0**52, both (x/3.0)*3.0 == x and (x/10.0)*10.0 == x and ... despite
both the quotients and the products having been rounded. No single
kind of rounding can be proved best for every circumstance, IEEE 754
therefore provides rounding towards zero, or towards +∞, or towards –∞,
at the programmer’s option. The same kinds of rounding are specified for
Binary–Decimal Conversions, at least for magnitudes between roughly
1.0e–10 and 1.0e37.

Exceptions:
IEEE 754 recognizes five kinds of floating–point exceptions, listed below
in declining order of importance.

Exception Default Result

Invalid Operation NaN, or FALSE
Overflow ± ∞
Divide by Zero ± ∞
Underflow Gradual Underflow
Inexact Rounded value

NOTE: An Exception is not an Error unless badly handled. What makes
a class of exceptions exceptional is that no single default response can be
satisfactory in every instance. On the other hand, if a default response will
serve most instances satisfactorily, the unsatisfactory instances cannot justify
aborting computation every time the exception occurs.

For each kind of floating–point exception, IEEE 754 provides a Flag that is raised
each time its exception is signaled, and stays raised until the program resets
it. Programs may also test, save and restore a flag. Thus, IEEE 754 provides
three ways by which programs may cope with exceptions for which the default
result might be unsatisfactory:

1. Test for a condition that might cause an exception later, and branch to avoid
the exception.

2. Test a flag to see whether an exception has occurred since the program
last reset its flag.

Last modified December 1999 ChorusOS 4.0 57

math(3M) Mathematical Library

3. Test a result to see whether it is a value that only an exception could have
produced.

CAUTION: The only reliable ways to discover whether Underflow has
occurred are to test whether products or quotients lie closer to zero than the
underflow threshold, or to test the Underflow flag. (Sums and differences
cannot underflow in IEEE 754; if x ≠ y then x–y is correct to full precision
and certainly nonzero regardless of how tiny it may be.) Products and
quotients that underflow gradually can lose accuracy gradually without
vanishing, comparing them with zero will not reveal the loss. If a gradually
underflowed value is destined to be added to something bigger than the
underflow threshold (as is almost always the case) digits lost to gradual
underflow will not be missed because they would have been rounded off
anyway. So gradual underflows are usually therefore provably ignorable. The
same cannot be said of underflows flushed to 0.

At the option of an implementor conforming to IEEE 754, other ways to
cope with exceptions may be provided:

4. ABORT. This mechanism classifies an exception in advance as an incident
to be handled by means traditionally associated with error–handling
statements like "ON ERROR GO TO ...". Different languages offer different
forms of this statement, but most share the following characteristics:

– No means is provided to substitute a value for the offending operation’s
result and resume computation from what may be the middle of an
expression. An exceptional result is abandoned.

– In a subprogram that lacks an error–handling statement, an exception causes
the subprogram to abort within whatever program called it, and so on back
up the chain of calling subprograms until an error–handling statement is
encountered or the whole task is aborted and memory is dumped.

5. STOP. This mechanism, requiring an interactive debugging environment,
is more for the programmer than the program. It classifies an exception in
advance as a symptom of a programmer’s error; the exception suspends
execution as near as it can to the offending operation, so that the
programmer can check to see how it happened. Quite often the first several
exceptions turn out to be quite unexceptionable, so the programmer ought
ideally to be able to resume execution after each one as if execution had
not been stopped.

6. Other ways lie beyond the scope of this document.

RESTRICTIONS This library implements very little of the above-mentionned IEEE 754 signaling
requirements. As it does not rely upon the floating-point unit/operating system
cooperation to signal errors asynchronously, it catches most errors explicitly.
However, some NaN or results may be issued by the floating-point unit and be
returned as such to the application without any warning better than the value of

58 ChorusOS 4.0 Last modified December 1999

Mathematical Library math(3M)

the result. Detected errors are reported by setting errno to either ERANGE or
EDOM, performing a system-dependant notification, and returning either + , - or
NaN, whichever best suits the nature of the error. The above system-dependent
notification is non-operational in ChorusOS products for which this library is
currently distributed.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 59

pow(3M) Mathematical Library

NAME exp, expm1, log, log10, log1p, pow – exponential, logarithm, power functions

SYNOPSIS #include <math.h>
double exp (double x);

double expm1(double x);

double log (double x);

double log10 (double x);

double log1p (double x);

double pow(double x, double y);

DESCRIPTION The exp function computes the exponential value of the given argument x .

The expm1 function computes the value exp(x)–1 accurately even for extremely
small values of x .

The log function computes the natural logarithm of the argument x.

The log10 function computes the logarithm of argument x to base 10.

The log1p function computes the value of log(1+x) accurately even for extremely
small values of x .

The pow computes the value of to the exponent

ERRORS (due to
Roundoff)

The exp(x), log(x), expm1(x) and log1p(x) functions are accurate to within a ulp ,
and log10(x) to within approximately 2 ulp s. A ulp is one Unit in the Last
Place . The error in pow(x, y) is below about 2 ulp s when its magnitude is
moderate, but increases as pow(x, y) approaches the over/underflow thresholds.
Almost as many bits as are occupied by the floating–point format’s exponent
field could be lost; that is 11 bits for IEEE 754 Double. The worst errors observed
during testing have been under 300 ulp s for IEEE 754 Double. Moderate
values of pow are sufficiently accurate that pow(integer, integer) is precise until it
is greater than 2**53 for IEEE 754.

RETURN VALUES These functions will return the appropriate computation unless an error occurs
or an argument is out of range. The functions exp , expm1 and pow detect if the
computed value will overflow, set errno to ERANGE and a system-dependent
notification is performed. The pow(x, y) function checks whether x < 0 and y
is not an integer; if this is true, errno is set to EDOM and a system-dependent
notification is performed. errno is set to EDOM and a system-dependent
notification is performed by log, unless x > 0, by log1p unless x > –1.

NOTES The function pow(x, 0) returns x**0 = 1 for all x including x = 0, , and NaN .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

60 ChorusOS 4.0 Last modified December 1999

Mathematical Library pow(3M)

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO math (3M) , infnan (3M)

Last modified December 1999 ChorusOS 4.0 61

rint(3M) Mathematical Library

NAME rint – round to closest integer functions

SYNOPSIS #include <math.h>
double rint (double x);

DESCRIPTION The rint function finds the integer (represented as a double precision number)
nearest to x in the direction of the prevailing rounding mode.

NOTES In the default rounding mode on a machine that conforms to IEEE 754, rint(x) is
the integer closest to x, with the additional stipulation that if |rint(x)–x|=1/2,
then rint(x) will be even. Other rounding modes can make rint perform like
floor, or like ceil, or round up to zero.

Another way to obtain an integer near x is to declare (in C): double x; int k;k=x;

Most C compilers round x up to 0 to get the integer k, but not all. Use floor,
ceil, or rint first, depending on the result required. Note that if x is larger than
k can accommodate, the value of k and the presence or absence of an integer
overflow are unpredictable.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO ceil (3M), floor (3M), ieee (3M), math (3M) abs (3STDC) fabs (3STDC)

62 ChorusOS 4.0 Last modified December 1999

Mathematical Library scalb(3M)

NAME ieee, copysign, drem, finite, logb, scalb – IEEE 754 floating point support

SYNOPSIS #include <math.h>
double copysign (double x, double y);

double drem (double x, double y);

int finite (double x);

double logb (double x);

double scalb (double x, int n);

DESCRIPTION These functions are required for the IEEE 754 standard for floating–point
arithmetic.

The copysign () function returns x with its sign changed to that of y .

The drem () function returns the remainder r := x – n*y where n is the integer
closest to the exact value of x/y . If | n - x/y | = 1/2, n is even. Consequently,
the remainder is computed exactly and | r | <= | y | / 2. Note that drem (x, 0)
is exceptional.

The finite () function returns true (1) if the argument x is neither inifinity nor NaN
value. Otherwise it returns false (0).

The logb () function computes the exponent of x, which is the integral part of log2
|x|, as a signed floating point value for non-zero x.

The scalb () function returns x * (2**n) computed, for integer n, without first
computing 2**n.

RETURN VALUES The IEEE 754 standard defines drem(x, 0) and drem(infinity , y) to be invalid
operations that produce a NaN .

IEEE 754 defines logb (± infinity) = + infinity, and logb (0) = -HUGE_VAL, and
requires the latter to signal Division–by–Zero. Upon successful completion,
logb() returns the exponent of x.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO floor (3M) , math (3M) , infnan (3M)

Last modified December 1999 ChorusOS 4.0 63

sin(3M) Mathematical Library

NAME sin – sine function

SYNOPSIS #include <math.h>
double sin (double x);

DESCRIPTION The sin function computes the sine of x (measured in radians). A large magnitude
argument may yield a result with little or no significance.

RETURN VALUES The sin function returns the sine value.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO acos (3M), asin (3M), atan (3M), atan2 (3M), cos (3M), cosh (3M), sinh (3M),
tan (3M), tanh (3M), math (3M)

STANDARDS The sin function conforms to ANSI-C.

64 ChorusOS 4.0 Last modified December 1999

Mathematical Library sinh(3M)

NAME sinh – hyperbolic sine function

SYNOPSIS #include <math.h>
double sinh (double x);

DESCRIPTION The sinh function computes the hyperbolic sine of x.

RETURN VALUES The sinh function returns the hyperbolic sine value unless the magnitude of x
is too large. In this event, errno is set to ERANGE and a system-dependent
notification is performed.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO acos (3M), asin (3M), atan (3M), atan2 (3M), cos (3M), cosh (3M), sin (3M),
tan (3M), tanh (3M), math (3M)

STANDARDS The sinh function conforms to ANSI-C.

Last modified December 1999 ChorusOS 4.0 65

sqrt(3M) Mathematical Library

NAME sqrt, cbrt – cube root and square root functions

SYNOPSIS #include <math.h>
double cbrt (double x);

double sqrt (double x);

DESCRIPTION The cbrt function computes the cube root of x .

The sqrt function computes the non-negative square root of x.

RETURN VALUES The cbrt function returns the requested cube root. The sqrt function returns the
requested square root unless an error occurs. An attempt to take the sqrt of a
negative value of x causes an error; in this event, errno is set to EDOM and a
system-dependent notification is performed.

ERRORS (due to
Roundoff)

The cbrt function is accurate to within 0.7 ulps .

On a machine that conforms to IEEE 754 sqrt is correctly rounded in accordance
with the rounding mode in force; the error is less than half a ulp in the default
mode (round–to–nearest). A ulp is one Unit in the Last Place carried.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO math (3M) , infnan (3M)

STANDARDS The sqrt function conforms to ANSI-C.

66 ChorusOS 4.0 Last modified December 1999

Mathematical Library tan(3M)

NAME tan – tangent function

SYNOPSIS #include <math.h>
double tan (double x);

DESCRIPTION The tan function computes the tangent of x (measured in radians). An argument
of high magnitude may yield a result with little or no significance. For a
discussion of errors due to rounding up, see math(3).

RETURN VALUES The tan function returns the tangent value.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO acos (3M), asin (3M), atan (3M), atan2 (3M), cos (3M), cosh (3M), sin (3M),
sinh (3M), tanh (3M), math (3M)

STANDARDS The tan function conforms to ANSI-C.

Last modified December 1999 ChorusOS 4.0 67

tanh(3M) Mathematical Library

NAME tanh – hyperbolic tangent function

SYNOPSIS #include <math.h>
double tanh (double x);

DESCRIPTION The tanh function computes the hyperbolic tangent of x. For a discussion of
errors due to rounding up, see math(3).

RETURN VALUES The tanh function returns the hyperbolic tangent value.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO acos (3M), asin (3M), atan (3M), atan2 (3M), cos (3M), cosh (3M), sin (3M),
sinh (3M), tan (3M), math (3M)

STANDARDS The tanh function conforms to ANSI-C.

68 ChorusOS 4.0 Last modified December 1999

Mathematical Library y0(3M)

NAME j0, j1, jn, y0, y1, yn – Bessel functions of the first and second kind

SYNOPSIS #include <math.h>
double j0 (double x);

double j1 (double x);

double jn (int n, double x);

double y0 (double x);

double y1 (double x);

double yn (int n, double x);

DESCRIPTION The j0 and j1 functions compute the Bessel function of the first type of the order
0 and the order 1, respectively, for the real value x . The jn function computes the
Bessel function of the first type of the integer order n for the real value x .

RETURN VALUES If these functions are successful, the computed value is returned. Upon
successful completion, j0() , j1() and jn() return the relevant Bessel value of x
of the first type.

Upon successful completion, y0() , y1() and yn() return the relevant Bessel value
of x of the second type. If the x argument of y0() , y1() or yn() is negative,
-HUGE_VALis returned and errno is set errno is set to EDOM. If x is 0.0,
-HUGE_VALis returned and errno is set to ERANGE. If the correct result
would cause overflow, -HUGE_VALor HUGE_VALis returned and errno is
set to ERANGE

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO math (3M) , infnan (3M)

Last modified December 1999 ChorusOS 4.0 69

y1(3M) Mathematical Library

NAME j0, j1, jn, y0, y1, yn – Bessel functions of the first and second kind

SYNOPSIS #include <math.h>
double j0 (double x);

double j1 (double x);

double jn (int n, double x);

double y0 (double x);

double y1 (double x);

double yn (int n, double x);

DESCRIPTION The j0 and j1 functions compute the Bessel function of the first type of the order
0 and the order 1, respectively, for the real value x . The jn function computes the
Bessel function of the first type of the integer order n for the real value x .

RETURN VALUES If these functions are successful, the computed value is returned. Upon
successful completion, j0() , j1() and jn() return the relevant Bessel value of x
of the first type.

Upon successful completion, y0() , y1() and yn() return the relevant Bessel value
of x of the second type. If the x argument of y0() , y1() or yn() is negative,
-HUGE_VALis returned and errno is set errno is set to EDOM. If x is 0.0,
-HUGE_VALis returned and errno is set to ERANGE. If the correct result
would cause overflow, -HUGE_VALor HUGE_VALis returned and errno is
set to ERANGE

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO math (3M) , infnan (3M)

70 ChorusOS 4.0 Last modified December 1999

Mathematical Library yn(3M)

NAME j0, j1, jn, y0, y1, yn – Bessel functions of the first and second kind

SYNOPSIS #include <math.h>
double j0 (double x);

double j1 (double x);

double jn (int n, double x);

double y0 (double x);

double y1 (double x);

double yn (int n, double x);

DESCRIPTION The j0 and j1 functions compute the Bessel function of the first type of the order
0 and the order 1, respectively, for the real value x . The jn function computes the
Bessel function of the first type of the integer order n for the real value x .

RETURN VALUES If these functions are successful, the computed value is returned. Upon
successful completion, j0() , j1() and jn() return the relevant Bessel value of x
of the first type.

Upon successful completion, y0() , y1() and yn() return the relevant Bessel value
of x of the second type. If the x argument of y0() , y1() or yn() is negative,
-HUGE_VALis returned and errno is set errno is set to EDOM. If x is 0.0,
-HUGE_VALis returned and errno is set to ERANGE. If the correct result
would cause overflow, -HUGE_VALor HUGE_VALis returned and errno is
set to ERANGE

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO math (3M) , infnan (3M)

Last modified December 1999 ChorusOS 4.0 71

yn(3M) Mathematical Library

72 ChorusOS 4.0 Last modified December 1999

Index

A
acos — arc cosine function 15
acosh — inverse hyperbolic cosine function 16
asin — arc sine function 17
asinh — inverse hyperbolic sine function 18
atan — arc tangent function of one variable 20
atan2 — arc tangent function of two

variables 19
atanh — inverse hyperbolic tangent

function 21

C
cabs — euclidean distance and complex

absolute value functions 22,
40

cbrt — cube root and square root functions 23,
66

ceil — smallest integral value not less than
x 24

copysign — IEEE 754 floating point
support 25, 28, 35, 41, 54, 63

cos — cosine function 26
cosh — hyperbolic cosine function 27

D
drem — IEEE 754 floating point support 25,

28, 35, 41, 54, 63

E
erf — error function operators 29–30

erfc — error function operators 29–30
exp — exponential, logarithm, power

functions 31, 33, 48, 50, 52, 60
expm1 — exponential, logarithm, power

functions 31, 33, 48, 50, 52, 60

F
finite — IEEE 754 floating point support 25,

28, 35, 41, 54, 63
floor — largest integral value not greater than

x 36
fmod — floating-point remainder function 37

G
gamma — log gamma function, gamma

function 38, 46

H
hypot — euclidean distance and complex

absolute value functions 22,
40

I
infnan — signals invalid floating point

operations 42

J
j0 — Bessel functions of the first and second

types 43–45, 69–71

Index-73

j1 — Bessel functions of the first and second
types 43–45, 69–71

jn — Bessel functions of the first and second
types 43–45, 69–71

L
lgamma — log gamma function, gamma

function 38, 46
log — exponential, logarithm, power

functions 31, 33, 48, 50, 52, 60
log10 — exponential, logarithm, power

functions 31, 33, 48, 50, 52, 60
log1p — exponential, logarithm, power

functions 31, 33, 48, 50, 52, 60
logb — IEEE 754 floating point support 25, 28,

35, 41, 54, 63

M
math — introduction to mathematical library

functions 55

P
pow — exponential, logarithm, power

functions 31, 33, 48, 50, 52, 60

R
rint — round to closest integer functions 62

S
scalb — IEEE 754 floating point support 25,

28, 35, 41, 54, 63
sin — sine function 64
sinh — hyperbolic sine function 65
sqrt — cube root and square root functions 23,

66

T
tan — tangent function 67
tanh — hyperbolic tangent function 68

Y
y0 — Bessel functions of the first and second

types 43–45, 69–71
y1 — Bessel functions of the first and second

types 43–45, 69–71
yn — Bessel functions of the first and second

types 43–45, 69–71

ChorusOS man pages section 3M: Mathematical Libraries ♦ December 10, 1999

