
ChorusOS man pages section
3STDC: Standard C Library
Functions

Sun Microsystems, Inc.
901 San Antonio Road

Palo Alto, CA 94303-4900
U.S.A.

Part No: 806-3335
December 10, 1999

Copyright 1999 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.
This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun
and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, ChorusOS, and Solaris are trademarks, registered
trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are
based upon an architecture developed by Sun Microsystems, Inc.
The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer
industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who
implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.
RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227–14(g)(2)(6/87) and
FAR 52.227–19(6/87), or DFAR 252.227–7015(b)(6/95) and DFAR 227.7202–3(a).
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 1999 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, Californie 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et
la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie
relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.
Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.
Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, ChorusOS, et Solaris sont des marques de fabrique ou des
marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont
utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres
pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se
conforment aux licences écrites de Sun.
CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS
DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Please
Recycle

Contents

PREFACE 43

Intro(3STDC) 49

intro(3STDC) 49

abort(3STDC) 57

abs(3STDC) 58

scandir(3STDC) 59

alphasort(3STDC) 59

ctime(3STDC) 60

asctime(3STDC) 60

difftime(3STDC) 60

gmtime(3STDC) 60

localtime(3STDC) 60

mktime(3STDC) 60

ctime_r(3STDC) 62

asctime_r(3STDC) 62

gmtime_r(3STDC) 62

localtime_r(3STDC) 62

assert(3STDC) 63

_assert(3STDC) 63

Contents 3

_stdc_assert(3STDC) 63

assert(3STDC) 64

_assert(3STDC) 64

_stdc_assert(3STDC) 64

atexit(3STDC) 65

strtod(3STDC) 66

atof(3STDC) 66

strtol(3STDC) 67

atol(3STDC) 67

atoi(3STDC) 67

strtol(3STDC) 69

atol(3STDC) 69

atoi(3STDC) 69

bstring(3STDC) 71

bcopy(3STDC) 71

bcmp(3STDC) 71

bzero(3STDC) 71

ffs(3STDC) 71

bstring(3STDC) 72

bcopy(3STDC) 72

bcmp(3STDC) 72

bzero(3STDC) 72

ffs(3STDC) 72

bsearch(3STDC) 73

bstring(3STDC) 75

bcopy(3STDC) 75

bcmp(3STDC) 75

bzero(3STDC) 75

4 ChorusOS man pages section 3STDC: Standard C Library Functions ♦ December 10, 1999

ffs(3STDC) 75

byteorder(3STDC) 76

htonl(3STDC) 76

htons(3STDC) 76

ntohl(3STDC) 76

ntohs(3STDC) 76

bstring(3STDC) 77

bcopy(3STDC) 77

bcmp(3STDC) 77

bzero(3STDC) 77

ffs(3STDC) 77

malloc(3STDC) 78

free(3STDC) 78

realloc(3STDC) 78

calloc(3STDC) 78

ferror(3STDC) 81

feof(3STDC) 81

fileno(3STDC) 81

clearerr(3STDC) 81

ctime(3STDC) 82

asctime(3STDC) 82

difftime(3STDC) 82

gmtime(3STDC) 82

localtime(3STDC) 82

mktime(3STDC) 82

ctime_r(3STDC) 84

asctime_r(3STDC) 84

gmtime_r(3STDC) 84

Contents 5

localtime_r(3STDC) 84

ctype(3STDC) 85

isalpha(3STDC) 85

isupper(3STDC) 85

islower(3STDC) 85

isdigit(3STDC) 85

isxdigit(3STDC) 85

isalnum(3STDC) 85

isspace(3STDC) 85

ispunct(3STDC) 85

isprint(3STDC) 85

isgraph(3STDC) 85

iscntrl(3STDC) 85

tolower(3STDC) 85

toupper(3STDC) 85

ctime(3STDC) 87

asctime(3STDC) 87

difftime(3STDC) 87

gmtime(3STDC) 87

localtime(3STDC) 87

mktime(3STDC) 87

div(3STDC) 89

perror(3STDC) 90

errno(3STDC) 90

sys_errlist(3STDC) 90

sys_nerr(3STDC) 90

exit(3STDC) 91

fabs(3STDC) 92

6 ChorusOS man pages section 3STDC: Standard C Library Functions ♦ December 10, 1999

fclose(3STDC) 93

fflush(3STDC) 93

fopen(3STDC) 94

freopen(3STDC) 94

fdopen(3STDC) 94

ferror(3STDC) 96

feof(3STDC) 96

fileno(3STDC) 96

clearerr(3STDC) 96

ferror(3STDC) 97

feof(3STDC) 97

fileno(3STDC) 97

clearerr(3STDC) 97

fclose(3STDC) 98

fflush(3STDC) 98

bstring(3STDC) 99

bcopy(3STDC) 99

bcmp(3STDC) 99

bzero(3STDC) 99

ffs(3STDC) 99

getc(3STDC) 100

fgetc(3STDC) 100

getw(3STDC) 100

fseek(3STDC) 101

rewind(3STDC) 101

ftell(3STDC) 101

fgetpos(3STDC) 101

fsetpos(3STDC) 101

Contents 7

gets(3STDC) 103

fgets(3STDC) 103

ferror(3STDC) 104

feof(3STDC) 104

fileno(3STDC) 104

clearerr(3STDC) 104

flockfile(3STDC) 105

ftrylockfile(3STDC) 105

funlockfile(3STDC) 105

fopen(3STDC) 106

freopen(3STDC) 106

fdopen(3STDC) 106

fprintf(3STDC) 108

putc(3STDC) 109

fputc(3STDC) 109

putw(3STDC) 109

puts(3STDC) 110

fputs(3STDC) 110

fread(3STDC) 111

fwrite(3STDC) 111

malloc(3STDC) 112

free(3STDC) 112

realloc(3STDC) 112

calloc(3STDC) 112

fopen(3STDC) 115

freopen(3STDC) 115

fdopen(3STDC) 115

fscanf(3STDC) 117

8 ChorusOS man pages section 3STDC: Standard C Library Functions ♦ December 10, 1999

fseek(3STDC) 118

rewind(3STDC) 118

ftell(3STDC) 118

fgetpos(3STDC) 118

fsetpos(3STDC) 118

fseek(3STDC) 120

rewind(3STDC) 120

ftell(3STDC) 120

fgetpos(3STDC) 120

fsetpos(3STDC) 120

fseek(3STDC) 122

rewind(3STDC) 122

ftell(3STDC) 122

fgetpos(3STDC) 122

fsetpos(3STDC) 122

flockfile(3STDC) 124

ftrylockfile(3STDC) 124

funlockfile(3STDC) 124

flockfile(3STDC) 125

ftrylockfile(3STDC) 125

funlockfile(3STDC) 125

fread(3STDC) 126

fwrite(3STDC) 126

getc(3STDC) 127

fgetc(3STDC) 127

getw(3STDC) 127

getchar(3STDC) 128

unlocked(3STDC) 129

Contents 9

getc_unlocked(3STDC) 129

getchar_unlocked(3STDC) 129

putc_unlocked(3STDC) 129

putchar_unlocked(3STDC) 129

unlocked(3STDC) 130

getc_unlocked(3STDC) 130

getchar_unlocked(3STDC) 130

putc_unlocked(3STDC) 130

putchar_unlocked(3STDC) 130

getenv(3STDC) 131

putenv(3STDC) 131

setenv(3STDC) 131

unsetenv(3STDC) 131

gethostbyaddr(3STDC) 132

gethostbyname(3STDC) 132

gethostbyaddr(3STDC) 134

gethostbyname(3STDC) 134

getopt(3STDC) 136

gets(3STDC) 138

fgets(3STDC) 138

getsitebyname(3STDC) 139

getsitebyaddr(3STDC) 139

getsitebyname(3STDC) 140

getsitebyaddr(3STDC) 140

getsubopt(3STDC) 141

getc(3STDC) 143

fgetc(3STDC) 143

getw(3STDC) 143

10 ChorusOS man pages section 3STDC: Standard C Library Functions ♦ December 10, 1999

ctime(3STDC) 144

asctime(3STDC) 144

difftime(3STDC) 144

gmtime(3STDC) 144

localtime(3STDC) 144

mktime(3STDC) 144

ctime_r(3STDC) 146

asctime_r(3STDC) 146

gmtime_r(3STDC) 146

localtime_r(3STDC) 146

byteorder(3STDC) 147

htonl(3STDC) 147

htons(3STDC) 147

ntohl(3STDC) 147

ntohs(3STDC) 147

byteorder(3STDC) 148

htonl(3STDC) 148

htons(3STDC) 148

ntohl(3STDC) 148

ntohs(3STDC) 148

index(3STDC) 149

rindex(3STDC) 149

inet(3STDC) 150

inet_aton(3STDC) 150

inet_addr(3STDC) 150

inet_network(3STDC) 150

inet_ntoa(3STDC) 150

inet_makeaddr(3STDC) 150

Contents 11

inet_lnaof(3STDC) 150

inet_netof(3STDC) 150

inet(3STDC) 152

inet_aton(3STDC) 152

inet_addr(3STDC) 152

inet_network(3STDC) 152

inet_ntoa(3STDC) 152

inet_makeaddr(3STDC) 152

inet_lnaof(3STDC) 152

inet_netof(3STDC) 152

inet(3STDC) 154

inet_aton(3STDC) 154

inet_addr(3STDC) 154

inet_network(3STDC) 154

inet_ntoa(3STDC) 154

inet_makeaddr(3STDC) 154

inet_lnaof(3STDC) 154

inet_netof(3STDC) 154

inet(3STDC) 156

inet_aton(3STDC) 156

inet_addr(3STDC) 156

inet_network(3STDC) 156

inet_ntoa(3STDC) 156

inet_makeaddr(3STDC) 156

inet_lnaof(3STDC) 156

inet_netof(3STDC) 156

inet(3STDC) 158

inet_aton(3STDC) 158

12 ChorusOS man pages section 3STDC: Standard C Library Functions ♦ December 10, 1999

inet_addr(3STDC) 158

inet_network(3STDC) 158

inet_ntoa(3STDC) 158

inet_makeaddr(3STDC) 158

inet_lnaof(3STDC) 158

inet_netof(3STDC) 158

inet(3STDC) 160

inet_aton(3STDC) 160

inet_addr(3STDC) 160

inet_network(3STDC) 160

inet_ntoa(3STDC) 160

inet_makeaddr(3STDC) 160

inet_lnaof(3STDC) 160

inet_netof(3STDC) 160

inet(3STDC) 162

inet_aton(3STDC) 162

inet_addr(3STDC) 162

inet_network(3STDC) 162

inet_ntoa(3STDC) 162

inet_makeaddr(3STDC) 162

inet_lnaof(3STDC) 162

inet_netof(3STDC) 162

inet(3STDC) 164

inet_aton(3STDC) 164

inet_addr(3STDC) 164

inet_network(3STDC) 164

inet_ntoa(3STDC) 164

inet_makeaddr(3STDC) 164

Contents 13

inet_lnaof(3STDC) 164

inet_netof(3STDC) 164

random(3STDC) 166

srandom(3STDC) 166

initstate(3STDC) 166

setstate(3STDC) 166

ctype(3STDC) 168

isalpha(3STDC) 168

isupper(3STDC) 168

islower(3STDC) 168

isdigit(3STDC) 168

isxdigit(3STDC) 168

isalnum(3STDC) 168

isspace(3STDC) 168

ispunct(3STDC) 168

isprint(3STDC) 168

isgraph(3STDC) 168

iscntrl(3STDC) 168

tolower(3STDC) 168

toupper(3STDC) 168

ctype(3STDC) 170

isalpha(3STDC) 170

isupper(3STDC) 170

islower(3STDC) 170

isdigit(3STDC) 170

isxdigit(3STDC) 170

isalnum(3STDC) 170

isspace(3STDC) 170

14 ChorusOS man pages section 3STDC: Standard C Library Functions ♦ December 10, 1999

ispunct(3STDC) 170

isprint(3STDC) 170

isgraph(3STDC) 170

iscntrl(3STDC) 170

tolower(3STDC) 170

toupper(3STDC) 170

isascii(3STDC) 172

isatty(3STDC) 173

ctype(3STDC) 174

isalpha(3STDC) 174

isupper(3STDC) 174

islower(3STDC) 174

isdigit(3STDC) 174

isxdigit(3STDC) 174

isalnum(3STDC) 174

isspace(3STDC) 174

ispunct(3STDC) 174

isprint(3STDC) 174

isgraph(3STDC) 174

iscntrl(3STDC) 174

tolower(3STDC) 174

toupper(3STDC) 174

ctype(3STDC) 176

isalpha(3STDC) 176

isupper(3STDC) 176

islower(3STDC) 176

isdigit(3STDC) 176

isxdigit(3STDC) 176

Contents 15

isalnum(3STDC) 176

isspace(3STDC) 176

ispunct(3STDC) 176

isprint(3STDC) 176

isgraph(3STDC) 176

iscntrl(3STDC) 176

tolower(3STDC) 176

toupper(3STDC) 176

ctype(3STDC) 178

isalpha(3STDC) 178

isupper(3STDC) 178

islower(3STDC) 178

isdigit(3STDC) 178

isxdigit(3STDC) 178

isalnum(3STDC) 178

isspace(3STDC) 178

ispunct(3STDC) 178

isprint(3STDC) 178

isgraph(3STDC) 178

iscntrl(3STDC) 178

tolower(3STDC) 178

toupper(3STDC) 178

isinf(3STDC) 180

isnan(3STDC) 180

ctype(3STDC) 181

isalpha(3STDC) 181

isupper(3STDC) 181

islower(3STDC) 181

16 ChorusOS man pages section 3STDC: Standard C Library Functions ♦ December 10, 1999

isdigit(3STDC) 181

isxdigit(3STDC) 181

isalnum(3STDC) 181

isspace(3STDC) 181

ispunct(3STDC) 181

isprint(3STDC) 181

isgraph(3STDC) 181

iscntrl(3STDC) 181

tolower(3STDC) 181

toupper(3STDC) 181

isinf(3STDC) 183

isnan(3STDC) 183

ctype(3STDC) 184

isalpha(3STDC) 184

isupper(3STDC) 184

islower(3STDC) 184

isdigit(3STDC) 184

isxdigit(3STDC) 184

isalnum(3STDC) 184

isspace(3STDC) 184

ispunct(3STDC) 184

isprint(3STDC) 184

isgraph(3STDC) 184

iscntrl(3STDC) 184

tolower(3STDC) 184

toupper(3STDC) 184

ctype(3STDC) 186

isalpha(3STDC) 186

Contents 17

isupper(3STDC) 186

islower(3STDC) 186

isdigit(3STDC) 186

isxdigit(3STDC) 186

isalnum(3STDC) 186

isspace(3STDC) 186

ispunct(3STDC) 186

isprint(3STDC) 186

isgraph(3STDC) 186

iscntrl(3STDC) 186

tolower(3STDC) 186

toupper(3STDC) 186

ctype(3STDC) 188

isalpha(3STDC) 188

isupper(3STDC) 188

islower(3STDC) 188

isdigit(3STDC) 188

isxdigit(3STDC) 188

isalnum(3STDC) 188

isspace(3STDC) 188

ispunct(3STDC) 188

isprint(3STDC) 188

isgraph(3STDC) 188

iscntrl(3STDC) 188

tolower(3STDC) 188

toupper(3STDC) 188

ctype(3STDC) 190

isalpha(3STDC) 190

18 ChorusOS man pages section 3STDC: Standard C Library Functions ♦ December 10, 1999

isupper(3STDC) 190

islower(3STDC) 190

isdigit(3STDC) 190

isxdigit(3STDC) 190

isalnum(3STDC) 190

isspace(3STDC) 190

ispunct(3STDC) 190

isprint(3STDC) 190

isgraph(3STDC) 190

iscntrl(3STDC) 190

tolower(3STDC) 190

toupper(3STDC) 190

ctype(3STDC) 192

isalpha(3STDC) 192

isupper(3STDC) 192

islower(3STDC) 192

isdigit(3STDC) 192

isxdigit(3STDC) 192

isalnum(3STDC) 192

isspace(3STDC) 192

ispunct(3STDC) 192

isprint(3STDC) 192

isgraph(3STDC) 192

iscntrl(3STDC) 192

tolower(3STDC) 192

toupper(3STDC) 192

labs(3STDC) 194

ldexp(3STDC) 195

Contents 19

_ldexp(3STDC) 195

ldexp(3STDC) 196

_ldexp(3STDC) 196

ldiv(3STDC) 197

ctime(3STDC) 198

asctime(3STDC) 198

difftime(3STDC) 198

gmtime(3STDC) 198

localtime(3STDC) 198

mktime(3STDC) 198

ctime_r(3STDC) 200

asctime_r(3STDC) 200

gmtime_r(3STDC) 200

localtime_r(3STDC) 200

setjmp(3STDC) 201

longjmp(3STDC) 201

malloc(3STDC) 202

free(3STDC) 202

realloc(3STDC) 202

calloc(3STDC) 202

memory(3STDC) 205

memccpy(3STDC) 205

memchr(3STDC) 205

memcmp(3STDC) 205

memcpy(3STDC) 205

memmove(3STDC) 205

memset(3STDC) 205

memory(3STDC) 206

20 ChorusOS man pages section 3STDC: Standard C Library Functions ♦ December 10, 1999

memccpy(3STDC) 206

memchr(3STDC) 206

memcmp(3STDC) 206

memcpy(3STDC) 206

memmove(3STDC) 206

memset(3STDC) 206

memory(3STDC) 207

memccpy(3STDC) 207

memchr(3STDC) 207

memcmp(3STDC) 207

memcpy(3STDC) 207

memmove(3STDC) 207

memset(3STDC) 207

memory(3STDC) 208

memccpy(3STDC) 208

memchr(3STDC) 208

memcmp(3STDC) 208

memcpy(3STDC) 208

memmove(3STDC) 208

memset(3STDC) 208

memory(3STDC) 209

memccpy(3STDC) 209

memchr(3STDC) 209

memcmp(3STDC) 209

memcpy(3STDC) 209

memmove(3STDC) 209

memset(3STDC) 209

memory(3STDC) 210

Contents 21

memccpy(3STDC) 210

memchr(3STDC) 210

memcmp(3STDC) 210

memcpy(3STDC) 210

memmove(3STDC) 210

memset(3STDC) 210

memory(3STDC) 211

memccpy(3STDC) 211

memchr(3STDC) 211

memcmp(3STDC) 211

memcpy(3STDC) 211

memmove(3STDC) 211

memset(3STDC) 211

mktemp(3STDC) 212

mkstemp(3STDC) 212

mktemp(3STDC) 213

mkstemp(3STDC) 213

ctime(3STDC) 214

asctime(3STDC) 214

difftime(3STDC) 214

gmtime(3STDC) 214

localtime(3STDC) 214

mktime(3STDC) 214

modf(3STDC) 216

byteorder(3STDC) 217

htonl(3STDC) 217

htons(3STDC) 217

ntohl(3STDC) 217

22 ChorusOS man pages section 3STDC: Standard C Library Functions ♦ December 10, 1999

ntohs(3STDC) 217

byteorder(3STDC) 218

htonl(3STDC) 218

htons(3STDC) 218

ntohl(3STDC) 218

ntohs(3STDC) 218

perror(3STDC) 219

errno(3STDC) 219

sys_errlist(3STDC) 219

sys_nerr(3STDC) 219

printf(3STDC) 220

sprintf(3STDC) 220

snprintf(3STDC) 220

printerr(3STDC) 220

printf(3STDC) 224

sprintf(3STDC) 224

snprintf(3STDC) 224

printerr(3STDC) 224

putc(3STDC) 228

fputc(3STDC) 228

putw(3STDC) 228

putchar(3STDC) 229

unlocked(3STDC) 230

getc_unlocked(3STDC) 230

getchar_unlocked(3STDC) 230

putc_unlocked(3STDC) 230

putchar_unlocked(3STDC) 230

unlocked(3STDC) 231

Contents 23

getc_unlocked(3STDC) 231

getchar_unlocked(3STDC) 231

putc_unlocked(3STDC) 231

putchar_unlocked(3STDC) 231

getenv(3STDC) 232

putenv(3STDC) 232

setenv(3STDC) 232

unsetenv(3STDC) 232

puts(3STDC) 233

fputs(3STDC) 233

putc(3STDC) 234

fputc(3STDC) 234

putw(3STDC) 234

qsort(3STDC) 235

rand(3STDC) 236

srand(3STDC) 236

random(3STDC) 237

srandom(3STDC) 237

initstate(3STDC) 237

setstate(3STDC) 237

rand_r(3STDC) 239

malloc(3STDC) 240

free(3STDC) 240

realloc(3STDC) 240

calloc(3STDC) 240

regex(3STDC) 243

regcomp(3STDC) 243

regexec(3STDC) 243

24 ChorusOS man pages section 3STDC: Standard C Library Functions ♦ December 10, 1999

regerror(3STDC) 243

regfree(3STDC) 243

regex(3STDC) 250

regcomp(3STDC) 250

regexec(3STDC) 250

regerror(3STDC) 250

regfree(3STDC) 250

regex(3STDC) 257

regcomp(3STDC) 257

regexec(3STDC) 257

regerror(3STDC) 257

regfree(3STDC) 257

regex(3STDC) 264

regcomp(3STDC) 264

regexec(3STDC) 264

regerror(3STDC) 264

regfree(3STDC) 264

regex(3STDC) 271

regcomp(3STDC) 271

regexec(3STDC) 271

regerror(3STDC) 271

regfree(3STDC) 271

remove(3STDC) 278

fseek(3STDC) 279

rewind(3STDC) 279

ftell(3STDC) 279

fgetpos(3STDC) 279

fsetpos(3STDC) 279

Contents 25

index(3STDC) 281

rindex(3STDC) 281

scandir(3STDC) 282

alphasort(3STDC) 282

scanf(3STDC) 283

sscanf(3STDC) 283

setbuf(3STDC) 287

setvbuf(3STDC) 287

getenv(3STDC) 289

putenv(3STDC) 289

setenv(3STDC) 289

unsetenv(3STDC) 289

setjmp(3STDC) 290

longjmp(3STDC) 290

random(3STDC) 291

srandom(3STDC) 291

initstate(3STDC) 291

setstate(3STDC) 291

setbuf(3STDC) 293

setvbuf(3STDC) 293

printf(3STDC) 295

sprintf(3STDC) 295

snprintf(3STDC) 295

printerr(3STDC) 295

printf(3STDC) 299

sprintf(3STDC) 299

snprintf(3STDC) 299

printerr(3STDC) 299

26 ChorusOS man pages section 3STDC: Standard C Library Functions ♦ December 10, 1999

rand(3STDC) 303

srand(3STDC) 303

random(3STDC) 304

srandom(3STDC) 304

initstate(3STDC) 304

setstate(3STDC) 304

scanf(3STDC) 306

sscanf(3STDC) 306

stdarg(3STDC) 310

assert(3STDC) 312

_assert(3STDC) 312

_stdc_assert(3STDC) 312

string(3STDC) 313

strcasecmp(3STDC) 313

strncasecmp(3STDC) 313

strcat(3STDC) 313

strncat(3STDC) 313

strcmp(3STDC) 313

strncmp(3STDC) 313

strcoll(3STDC) 313

strcpy(3STDC) 313

strdup(3STDC) 313

strncpy(3STDC) 313

strlen(3STDC) 313

strchr(3STDC) 313

strrchr(3STDC) 313

strpbrk(3STDC) 313

strspn(3STDC) 313

Contents 27

strstr(3STDC) 313

strcspn(3STDC) 313

string(3STDC) 315

strcasecmp(3STDC) 315

strncasecmp(3STDC) 315

strcat(3STDC) 315

strncat(3STDC) 315

strcmp(3STDC) 315

strncmp(3STDC) 315

strcoll(3STDC) 315

strcpy(3STDC) 315

strdup(3STDC) 315

strncpy(3STDC) 315

strlen(3STDC) 315

strchr(3STDC) 315

strrchr(3STDC) 315

strpbrk(3STDC) 315

strspn(3STDC) 315

strstr(3STDC) 315

strcspn(3STDC) 315

string(3STDC) 317

strcasecmp(3STDC) 317

strncasecmp(3STDC) 317

strcat(3STDC) 317

strncat(3STDC) 317

strcmp(3STDC) 317

strncmp(3STDC) 317

strcoll(3STDC) 317

28 ChorusOS man pages section 3STDC: Standard C Library Functions ♦ December 10, 1999

strcpy(3STDC) 317

strdup(3STDC) 317

strncpy(3STDC) 317

strlen(3STDC) 317

strchr(3STDC) 317

strrchr(3STDC) 317

strpbrk(3STDC) 317

strspn(3STDC) 317

strstr(3STDC) 317

strcspn(3STDC) 317

string(3STDC) 319

strcasecmp(3STDC) 319

strncasecmp(3STDC) 319

strcat(3STDC) 319

strncat(3STDC) 319

strcmp(3STDC) 319

strncmp(3STDC) 319

strcoll(3STDC) 319

strcpy(3STDC) 319

strdup(3STDC) 319

strncpy(3STDC) 319

strlen(3STDC) 319

strchr(3STDC) 319

strrchr(3STDC) 319

strpbrk(3STDC) 319

strspn(3STDC) 319

strstr(3STDC) 319

strcspn(3STDC) 319

Contents 29

string(3STDC) 321

strcasecmp(3STDC) 321

strncasecmp(3STDC) 321

strcat(3STDC) 321

strncat(3STDC) 321

strcmp(3STDC) 321

strncmp(3STDC) 321

strcoll(3STDC) 321

strcpy(3STDC) 321

strdup(3STDC) 321

strncpy(3STDC) 321

strlen(3STDC) 321

strchr(3STDC) 321

strrchr(3STDC) 321

strpbrk(3STDC) 321

strspn(3STDC) 321

strstr(3STDC) 321

strcspn(3STDC) 321

string(3STDC) 323

strcasecmp(3STDC) 323

strncasecmp(3STDC) 323

strcat(3STDC) 323

strncat(3STDC) 323

strcmp(3STDC) 323

strncmp(3STDC) 323

strcoll(3STDC) 323

strcpy(3STDC) 323

strdup(3STDC) 323

30 ChorusOS man pages section 3STDC: Standard C Library Functions ♦ December 10, 1999

strncpy(3STDC) 323

strlen(3STDC) 323

strchr(3STDC) 323

strrchr(3STDC) 323

strpbrk(3STDC) 323

strspn(3STDC) 323

strstr(3STDC) 323

strcspn(3STDC) 323

string(3STDC) 325

strcasecmp(3STDC) 325

strncasecmp(3STDC) 325

strcat(3STDC) 325

strncat(3STDC) 325

strcmp(3STDC) 325

strncmp(3STDC) 325

strcoll(3STDC) 325

strcpy(3STDC) 325

strdup(3STDC) 325

strncpy(3STDC) 325

strlen(3STDC) 325

strchr(3STDC) 325

strrchr(3STDC) 325

strpbrk(3STDC) 325

strspn(3STDC) 325

strstr(3STDC) 325

strcspn(3STDC) 325

string(3STDC) 327

strcasecmp(3STDC) 327

Contents 31

strncasecmp(3STDC) 327

strcat(3STDC) 327

strncat(3STDC) 327

strcmp(3STDC) 327

strncmp(3STDC) 327

strcoll(3STDC) 327

strcpy(3STDC) 327

strdup(3STDC) 327

strncpy(3STDC) 327

strlen(3STDC) 327

strchr(3STDC) 327

strrchr(3STDC) 327

strpbrk(3STDC) 327

strspn(3STDC) 327

strstr(3STDC) 327

strcspn(3STDC) 327

strerror(3STDC) 329

strftime(3STDC) 330

string(3STDC) 333

strcasecmp(3STDC) 333

strncasecmp(3STDC) 333

strcat(3STDC) 333

strncat(3STDC) 333

strcmp(3STDC) 333

strncmp(3STDC) 333

strcoll(3STDC) 333

strcpy(3STDC) 333

strdup(3STDC) 333

32 ChorusOS man pages section 3STDC: Standard C Library Functions ♦ December 10, 1999

strncpy(3STDC) 333

strlen(3STDC) 333

strchr(3STDC) 333

strrchr(3STDC) 333

strpbrk(3STDC) 333

strspn(3STDC) 333

strstr(3STDC) 333

strcspn(3STDC) 333

string(3STDC) 335

strcasecmp(3STDC) 335

strncasecmp(3STDC) 335

strcat(3STDC) 335

strncat(3STDC) 335

strcmp(3STDC) 335

strncmp(3STDC) 335

strcoll(3STDC) 335

strcpy(3STDC) 335

strdup(3STDC) 335

strncpy(3STDC) 335

strlen(3STDC) 335

strchr(3STDC) 335

strrchr(3STDC) 335

strpbrk(3STDC) 335

strspn(3STDC) 335

strstr(3STDC) 335

strcspn(3STDC) 335

string(3STDC) 337

strcasecmp(3STDC) 337

Contents 33

strncasecmp(3STDC) 337

strcat(3STDC) 337

strncat(3STDC) 337

strcmp(3STDC) 337

strncmp(3STDC) 337

strcoll(3STDC) 337

strcpy(3STDC) 337

strdup(3STDC) 337

strncpy(3STDC) 337

strlen(3STDC) 337

strchr(3STDC) 337

strrchr(3STDC) 337

strpbrk(3STDC) 337

strspn(3STDC) 337

strstr(3STDC) 337

strcspn(3STDC) 337

string(3STDC) 339

strcasecmp(3STDC) 339

strncasecmp(3STDC) 339

strcat(3STDC) 339

strncat(3STDC) 339

strcmp(3STDC) 339

strncmp(3STDC) 339

strcoll(3STDC) 339

strcpy(3STDC) 339

strdup(3STDC) 339

strncpy(3STDC) 339

strlen(3STDC) 339

34 ChorusOS man pages section 3STDC: Standard C Library Functions ♦ December 10, 1999

strchr(3STDC) 339

strrchr(3STDC) 339

strpbrk(3STDC) 339

strspn(3STDC) 339

strstr(3STDC) 339

strcspn(3STDC) 339

string(3STDC) 341

strcasecmp(3STDC) 341

strncasecmp(3STDC) 341

strcat(3STDC) 341

strncat(3STDC) 341

strcmp(3STDC) 341

strncmp(3STDC) 341

strcoll(3STDC) 341

strcpy(3STDC) 341

strdup(3STDC) 341

strncpy(3STDC) 341

strlen(3STDC) 341

strchr(3STDC) 341

strrchr(3STDC) 341

strpbrk(3STDC) 341

strspn(3STDC) 341

strstr(3STDC) 341

strcspn(3STDC) 341

string(3STDC) 343

strcasecmp(3STDC) 343

strncasecmp(3STDC) 343

strcat(3STDC) 343

Contents 35

strncat(3STDC) 343

strcmp(3STDC) 343

strncmp(3STDC) 343

strcoll(3STDC) 343

strcpy(3STDC) 343

strdup(3STDC) 343

strncpy(3STDC) 343

strlen(3STDC) 343

strchr(3STDC) 343

strrchr(3STDC) 343

strpbrk(3STDC) 343

strspn(3STDC) 343

strstr(3STDC) 343

strcspn(3STDC) 343

string(3STDC) 345

strcasecmp(3STDC) 345

strncasecmp(3STDC) 345

strcat(3STDC) 345

strncat(3STDC) 345

strcmp(3STDC) 345

strncmp(3STDC) 345

strcoll(3STDC) 345

strcpy(3STDC) 345

strdup(3STDC) 345

strncpy(3STDC) 345

strlen(3STDC) 345

strchr(3STDC) 345

strrchr(3STDC) 345

36 ChorusOS man pages section 3STDC: Standard C Library Functions ♦ December 10, 1999

strpbrk(3STDC) 345

strspn(3STDC) 345

strstr(3STDC) 345

strcspn(3STDC) 345

string(3STDC) 347

strcasecmp(3STDC) 347

strncasecmp(3STDC) 347

strcat(3STDC) 347

strncat(3STDC) 347

strcmp(3STDC) 347

strncmp(3STDC) 347

strcoll(3STDC) 347

strcpy(3STDC) 347

strdup(3STDC) 347

strncpy(3STDC) 347

strlen(3STDC) 347

strchr(3STDC) 347

strrchr(3STDC) 347

strpbrk(3STDC) 347

strspn(3STDC) 347

strstr(3STDC) 347

strcspn(3STDC) 347

strsep(3STDC) 349

string(3STDC) 350

strcasecmp(3STDC) 350

strncasecmp(3STDC) 350

strcat(3STDC) 350

strncat(3STDC) 350

Contents 37

strcmp(3STDC) 350

strncmp(3STDC) 350

strcoll(3STDC) 350

strcpy(3STDC) 350

strdup(3STDC) 350

strncpy(3STDC) 350

strlen(3STDC) 350

strchr(3STDC) 350

strrchr(3STDC) 350

strpbrk(3STDC) 350

strspn(3STDC) 350

strstr(3STDC) 350

strcspn(3STDC) 350

string(3STDC) 352

strcasecmp(3STDC) 352

strncasecmp(3STDC) 352

strcat(3STDC) 352

strncat(3STDC) 352

strcmp(3STDC) 352

strncmp(3STDC) 352

strcoll(3STDC) 352

strcpy(3STDC) 352

strdup(3STDC) 352

strncpy(3STDC) 352

strlen(3STDC) 352

strchr(3STDC) 352

strrchr(3STDC) 352

strpbrk(3STDC) 352

38 ChorusOS man pages section 3STDC: Standard C Library Functions ♦ December 10, 1999

strspn(3STDC) 352

strstr(3STDC) 352

strcspn(3STDC) 352

strtod(3STDC) 354

atof(3STDC) 354

strtok(3STDC) 355

strtok_r(3STDC) 356

strtol(3STDC) 357

atol(3STDC) 357

atoi(3STDC) 357

strtoul(3STDC) 359

strxfrm(3STDC) 360

swab(3STDC) 361

perror(3STDC) 362

errno(3STDC) 362

sys_errlist(3STDC) 362

sys_nerr(3STDC) 362

perror(3STDC) 363

errno(3STDC) 363

sys_errlist(3STDC) 363

sys_nerr(3STDC) 363

tmpnam(3STDC) 364

tempnam(3STDC) 364

thread_once(3STDC) 366

time(3STDC) 367

tmpfile(3STDC) 368

tmpnam(3STDC) 369

tempnam(3STDC) 369

Contents 39

toascii(3STDC) 371

ctype(3STDC) 372

isalpha(3STDC) 372

isupper(3STDC) 372

islower(3STDC) 372

isdigit(3STDC) 372

isxdigit(3STDC) 372

isalnum(3STDC) 372

isspace(3STDC) 372

ispunct(3STDC) 372

isprint(3STDC) 372

isgraph(3STDC) 372

iscntrl(3STDC) 372

tolower(3STDC) 372

toupper(3STDC) 372

ctype(3STDC) 374

isalpha(3STDC) 374

isupper(3STDC) 374

islower(3STDC) 374

isdigit(3STDC) 374

isxdigit(3STDC) 374

isalnum(3STDC) 374

isspace(3STDC) 374

ispunct(3STDC) 374

isprint(3STDC) 374

isgraph(3STDC) 374

iscntrl(3STDC) 374

tolower(3STDC) 374

40 ChorusOS man pages section 3STDC: Standard C Library Functions ♦ December 10, 1999

toupper(3STDC) 374

tzset(3STDC) 376

ungetc(3STDC) 378

unlocked(3STDC) 379

getc_unlocked(3STDC) 379

getchar_unlocked(3STDC) 379

putc_unlocked(3STDC) 379

putchar_unlocked(3STDC) 379

getenv(3STDC) 380

putenv(3STDC) 380

setenv(3STDC) 380

unsetenv(3STDC) 380

vfprintf(3STDC) 381

vprintf(3STDC) 382

vsprintf(3STDC) 382

vsnprintf(3STDC) 382

vprintf(3STDC) 383

vsprintf(3STDC) 383

vsnprintf(3STDC) 383

vprintf(3STDC) 384

vsprintf(3STDC) 384

vsnprintf(3STDC) 384

Index 384

Contents 41

42 ChorusOS man pages section 3STDC: Standard C Library Functions ♦ December 10, 1999

PREFACE

Overview
A man page is provided for both the naive user, and sophisticated user who is familiar
with the ChorusOS™ operating system and is in need of on-line information. A man
page is intended to answer concisely the question “What does it do?” The man pages in
general comprise a reference manual. They are not intended to be a tutorial.

The following is a list of sections in the ChorusOS man pages and the information
it references:

Section 1CC: User Utilities; Host and Target Utilities

Section 1M: System Management Utilities

Section 2DL: System Calls; Data Link Services

Section 2K: System Calls; Kernel Services

Section 2MON: System Calls; Monitoring Services

Section 2POSIX: System Calls; POSIX System Calls

Section 2RESTART: System Calls; Hot Restart and Persistent Memory

Section 2SEG: System Calls; Virtual Memory Segment Services

Section 3FTPD: Libraries; FTP Daemon

Section 3M: Libraries; Mathematical Libraries

Section 3POSIX: Libraries; POSIX Library Functions

Section 3RPC: Libraries; RPC Services

Section 3STDC: Libraries; Standard C Library Functions

Section 3TELD: Libraries; Telnet Services

Section 4CC: Files

PREFACE 43

Section 5FEA: ChorusOS Features and APIs

Section 7P: Protocols

Section 7S: Services

Section 9DDI: Device Driver Interfaces

Section 9DKI: Driver to Kernel Interface

Section 9DRV: Driver Implementations

ChorusOS man pages are grouped in Reference Manuals, with one reference manual
per section.

Below is a generic format for man pages. The man pages of each manual section
generally follow this order, but include only needed headings. For example, if there are
no bugs to report, there is no BUGS section. See the intro pages for more information
and detail about each section, and man(1) for more information about man pages in
general.

NAME This section gives the names of the commands
or functions documented, followed by a brief
description of what they do.

SYNOPSIS This section shows the syntax of commands or
functions. When a command or file does not
exist in the standard path, its full pathname is
shown. Options and arguments are alphabetized,
with single letter arguments first, and options
with arguments next, unless a different argument
order is required.

The following special characters are used in
this section:

[] The option or argument enclosed in these
brackets is optional. If the brackets are
omitted, the argument must be specified.

. . . Ellipses. Several values may be
provided for the previous argument,
or the previous argument can be
specified multiple times, for example, ‘
"filename . . ." .

| Separator. Only one of the arguments
separated by this character can be
specified at time.

{ } Braces. The options and/or
arguments enclosed within braces are

44 ChorusOS man pages section 3STDC: Standard C Library Functions ♦ December 10, 1999

interdependent, such that everything
enclosed must be treated as a unit.

FEATURES This section provides the list of features which
offer an interface. An API may be associated with
one or more system features. The interface will
be available if one of the associated features
has been configured.

DESCRIPTION This section defines the functionality and
behavior of the service. Thus it describes
concisely what the command does. It does not
discuss OPTIONS or cite EXAMPLES.. Interactive
commands, subcommands, requests, macros,
functions and such, are described under USAGE.

OPTIONS This lists the command options with a concise
summary of what each option does. The options
are listed literally and in the order they appear
in the SYNOPSIS section. Possible arguments
to options are discussed under the option, and
where appropriate, default values are supplied.

OPERANDS This section lists the command operands and
describes how they affect the actions of the
command.

OUTPUT This section describes the output - standard
output, standard error, or output files - generated
by the command.

RETURN VALUES If the man page documents functions that
return values, this section lists these values and
describes the conditions under which they are
returned. If a function can return only constant
values, such as 0 or –1, these values are listed
in tagged paragraphs. Otherwise, a single
paragraph describes the return values of each
function. Functions declared void do not return
values, so they are not discussed in RETURN
VALUES.

ERRORS On failure, most functions place an error code in
the global variable errno indicating why they
failed. This section lists alphabetically all error
codes a function can generate and describes the
conditions that cause each error. When more than
one condition can cause the same error, each
condition is described in a separate paragraph
under the error code.

45

USAGE This section is provided as a guidance on use.
This section lists special rules, features and
commands that require in-depth explanations.
The subsections listed below are used to explain
built-in functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

EXAMPLES This section provides examples of usage or of
how to use a command or function. Wherever
possible a complete example including command
line entry and machine response is shown.
Whenever an example is given, the prompt is
shown as example% or if the user must be
superuser, example# . Examples are followed
by explanations, variable substitution rules,
or returned values. Most examples illustrate
concepts from the SYNOPSIS, DESCRIPTION,
OPTIONS and USAGE sections.

ENVIRONMENT VARIABLES This section lists any environment variables that
the command or function affects, followed by a
brief description of the effect.

EXIT STATUS This section lists the values the command returns
to the calling program or shell and the conditions
that cause these values to be returned. Usually,
zero is returned for successful completion
and values other than zero for various error
conditions.

FILES This section lists all filenames referred to by the
man page, files of interest, and files created or
required by commands. Each is followed by a
descriptive summary or explanation.

SEE ALSO This section lists references to other man
pages, in-house documentation and outside
publications.

DIAGNOSTICS This section lists diagnostic messages with a brief
explanation of the condition causing the error.

WARNINGS This section lists warnings about special
conditions which could seriously affect your
working conditions. This is not a list of
diagnostics.

NOTES This section lists additional information that
does not belong anywhere else on the page. It
takes the form of an aside to the user, covering
points of special interest. Critical information is
never covered here.

46 ChorusOS man pages section 3STDC: Standard C Library Functions ♦ December 10, 1999

BUGS This section describes known bugs and wherever
possible, suggests workarounds.

47

CHAPTER

Standard C Library Functions

48

Standard C Library Functions Intro(3STDC)

NAME Intro, intro – introduction to functions and libraries

DESCRIPTION This section describes threadsafe C library functions. Function prototypes can be
obtained from the #include files indicated on each page.

References of the form name (2K), name (2POSIX), name (3POSIX) and name
(3STDC) refer to pages in this section of this document.

DEFINITIONS A character is any bit pattern able to fit into a byte on the machine. The null
character is a character with value 0, conventionally represented in the C
language as \0. A character array is a sequence of characters. A null-terminated
character array (a string) is a sequence of characters, the last of which is the null
character. The null string is a character array containing only the terminating
null character. A NULL pointer is the value that is obtained by casting 0 into
a pointer. C guarantees that this value will not match any legitimate pointer,
so many functions that return pointers return NULL to indicate an error. The
macro NULL is defined in stdio.h .

NOTES Routines from (2POSIX), (3POSIX), (3STDC) are suitable for being linked and
invoked in any actor, whether it is an embedded user or supervisor actor, or a
c_actor. Routines from (3STDC) provide the traditional UNIX level 3 IO service.
These routines assume the existence of a subset of the UNIX IO level 2 interface.

STANDARDS All (2POSIX), (3POSIX) and (3STDC) routines that have a definition in
POSIX.1c, POSIX.1b, or ANSI-C, conform to that definition, in this
decreasing order of priority. In particular, almost all routines are reentrant.
Those routines that are not reentrent are signaled in the corresponding manual
page, and the POSIX.1c reentrent replacement is provided.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Name Description

_assert (3STDC) See assert (3STDC)

_ldexp (3STDC) See ldexp (3STDC)

_stdc_assert (3STDC) See assert (3STDC)

abort (3STDC) cause abnormal program termination

abs (3STDC) integer absolute value function

alphasort (3STDC) See scandir (3STDC)

asctime (3STDC) See ctime (3STDC)

Last modified December 1999 ChorusOS 4.0 49

Intro(3STDC) Standard C Library Functions

asctime_r (3STDC) See ctime_r (3STDC)

assert (3STDC) expression verification macro

atexit (3STDC) add program termination routines

atof (3STDC) See strtod (3STDC)

atoi (3STDC) See strtol (3STDC)

atol (3STDC) See strtol (3STDC)

bcmp(3STDC) See bstring (3STDC)

bcopy (3STDC) See bstring (3STDC)

bsearch (3STDC) perform a binary search on a sorted table

bstring (3STDC) bit and byte string operations

byteorder (3STDC) convert values between host and network byte
order

bzero (3STDC) See bstring (3STDC)

calloc (3STDC) See malloc (3STDC)

clearerr (3STDC) See ferror (3STDC)

ctime (3STDC) transform binary date and time value to ASCII

ctime_r (3STDC) Transform binary date and time value to ASCII;
Reentrent version

ctype (3STDC) classify characters

difftime (3STDC) See ctime (3STDC)

div (3STDC) return quotient and remainder from division

errno (3STDC) See perror (3STDC)

exit (3STDC) terminate an actor

fabs (3STDC) floating-point absolute value function

fclose (3STDC) close or flush a stream

fdopen (3STDC) See fopen (3STDC)

feof (3STDC) See ferror (3STDC)

ferror (3STDC) stream status inquiries

fflush (3STDC) See fclose (3STDC)

50 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions Intro(3STDC)

ffs (3STDC) See bstring (3STDC)

fgetc (3STDC) See getc (3STDC)

fgetpos (3STDC) See fseek (3STDC)

fgets (3STDC) See gets (3STDC)

fileno (3STDC) See ferror (3STDC)

flockfile (3STDC) stream lock management

fopen (3STDC) open a stream

fprintf (3STDC) print formatted output

fputc (3STDC) See putc (3STDC)

fputs (3STDC) See puts (3STDC)

fread (3STDC) binary input/output

free (3STDC) See malloc (3STDC)

freopen (3STDC) See fopen (3STDC)

fscanf (3STDC) convert formatted input

fseek (3STDC) reposition a file pointer in a stream

fsetpos (3STDC) See fseek (3STDC)

ftell (3STDC) See fseek (3STDC)

ftrylockfile (3STDC) See flockfile (3STDC)

funlockfile (3STDC) See flockfile (3STDC)

fwrite (3STDC) See fread (3STDC)

getc (3STDC) get character from a stream

getc_unlocked (3STDC) See unlocked (3STDC)

getchar (3STDC) get character from the standard input channel

getchar_unlocked (3STDC)
See unlocked (3STDC)

getenv (3STDC) fetch and set environment variables

gethostbyaddr (3STDC) get network host entry

gethostbyname (3STDC) See gethostbyaddr (3STDC)

Last modified December 1999 ChorusOS 4.0 51

Intro(3STDC) Standard C Library Functions

getopt (3STDC) get an option letter from command line argument
list

gets (3STDC) get a string from a stream

getsitebyaddr (3STDC) See getsitebyname (3STDC)

getsitebyname (3STDC) get ChorusOS site information

getsubopt (3STDC) get sub options from an argument

getw (3STDC) See getc (3STDC)

gmtime (3STDC) See ctime (3STDC)

gmtime_r (3STDC) See ctime_r (3STDC)

htonl (3STDC) See byteorder (3STDC)

htons (3STDC) See byteorder (3STDC)

index (3STDC) locate character in string

inet (3STDC) Internet address manipulation routines

inet_addr (3STDC) See inet (3STDC)

inet_aton (3STDC) See inet (3STDC)

inet_lnaof (3STDC) See inet (3STDC)

inet_makeaddr (3STDC) See inet (3STDC)

inet_netof (3STDC) See inet (3STDC)

inet_network (3STDC) See inet (3STDC)

inet_ntoa (3STDC) See inet (3STDC)

initstate (3STDC) See random (3STDC)

isalnum (3STDC) See ctype (3STDC)

isalpha (3STDC) See ctype (3STDC)

isascii (3STDC) test for ASCII character

isatty (3STDC) check if a file descriptor is associated with a
terminal

iscntrl (3STDC) See ctype (3STDC)

isdigit (3STDC) See ctype (3STDC)

isgraph (3STDC) See ctype (3STDC)

52 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions Intro(3STDC)

isinf (3STDC) test for infinity or not-a-number

islower (3STDC) See ctype (3STDC)

isnan (3STDC) See isinf (3STDC)

isprint (3STDC) See ctype (3STDC)

ispunct (3STDC) See ctype (3STDC)

isspace (3STDC) See ctype (3STDC)

isupper (3STDC) See ctype (3STDC)

isxdigit (3STDC) See ctype (3STDC)

labs (3STDC) return the absolute value of a long integer

ldexp (3STDC) multiply floating-point number by integral
power of 2

ldiv (3STDC) return quotient and remainder from division

localtime (3STDC) See ctime (3STDC)

localtime_r (3STDC) See ctime_r (3STDC)

longjmp (3STDC) See setjmp (3STDC)

malloc (3STDC) main memory allocator

memccpy(3STDC) See memory(3STDC)

memchr(3STDC) See memory(3STDC)

memcmp(3STDC) See memory(3STDC)

memcpy(3STDC) See memory(3STDC)

memmove(3STDC) See memory(3STDC)

memory(3STDC) memory operations

memset(3STDC) See memory(3STDC)

mkstemp (3STDC) See mktemp(3STDC)

mktemp(3STDC) make temporary file name (unique)

mktime (3STDC) See ctime (3STDC)

modf (3STDC) extract signed integral and fractional values from
floating-point number

ntohl (3STDC) See byteorder (3STDC)

Last modified December 1999 ChorusOS 4.0 53

Intro(3STDC) Standard C Library Functions

ntohs (3STDC) See byteorder (3STDC)

perror (3STDC) system error messages

printerr (3STDC) See printf (3STDC)

printf (3STDC) print formatted output

putc (3STDC) put character or word on a stream

putc_unlocked (3STDC) See unlocked (3STDC)

putchar (3STDC) put a character or word on the standard output
channel

putchar_unlocked (3STDC)
See unlocked (3STDC)

putenv (3STDC) See getenv (3STDC)

puts (3STDC) put a string on a stream

putw (3STDC) See putc (3STDC)

qsort (3STDC) quicker sort

rand (3STDC) pseudo random number generator

rand_r (3STDC) thread-wise random number generator

random (3STDC) better random number generator

realloc (3STDC) See malloc (3STDC)

regcomp (3STDC) See regex (3STDC)

regerror (3STDC) See regex (3STDC)

regex (3STDC) regular-expression library

regexec (3STDC) See regex (3STDC)

regfree (3STDC) See regex (3STDC)

remove (3STDC) remove directory entry

rewind (3STDC) See fseek (3STDC)

rindex (3STDC) See index (3STDC)

scandir (3STDC) scan a directory

scanf (3STDC) convert formatted input

setbuf (3STDC) assign buffering to a stream

54 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions Intro(3STDC)

setenv (3STDC) See getenv (3STDC)

setjmp (3STDC) non-local goto

setstate (3STDC) See random (3STDC)

setvbuf (3STDC) See setbuf (3STDC)

snprintf (3STDC) See printf (3STDC)

sprintf (3STDC) See printf (3STDC)

srand (3STDC) See rand (3STDC)

srandom (3STDC) See random (3STDC)

sscanf (3STDC) See scanf (3STDC)

stdarg (3STDC) variable argument lists

strcasecmp (3STDC) See string (3STDC)

strcat (3STDC) See string (3STDC)

strchr (3STDC) See string (3STDC)

strcmp (3STDC) See string (3STDC)

strcoll (3STDC) See string (3STDC)

strcpy (3STDC) See string (3STDC)

strcspn (3STDC) See string (3STDC)

strdup (3STDC) See string (3STDC)

strerror (3STDC) system error messages

strftime (3STDC) format date and time

string (3STDC) string operations

strlen (3STDC) See string (3STDC)

strncasecmp (3STDC) See string (3STDC)

strncat (3STDC) See string (3STDC)

strncmp (3STDC) See string (3STDC)

strncpy (3STDC) See string (3STDC)

strpbrk (3STDC) See string (3STDC)

strrchr (3STDC) See string (3STDC)

strsep (3STDC) separate strings

Last modified December 1999 ChorusOS 4.0 55

Intro(3STDC) Standard C Library Functions

strspn (3STDC) See string (3STDC)

strstr (3STDC) See string (3STDC)

strtod (3STDC) convert an ASCII string to a floating-point
number

strtok (3STDC) string tokens

strtok_r (3STDC) string tokens reentrant

strtol (3STDC) convert string to integer

strtoul (3STDC) convert a string to an unsigned long or uquad_t
integer

strxfrm (3STDC) transform a string under locale

swab(3STDC) swap adjacent bytes

sys_errlist (3STDC) See perror (3STDC)

sys_nerr (3STDC) See perror (3STDC)

tempnam(3STDC) See tmpnam(3STDC)

thread_once (3STDC) execute an init routine once

time (3STDC) get time

tmpfile (3STDC) create a temporary file

tmpnam(3STDC) create a name for a temporary file

toascii (3STDC) convert a byte to 7-bit ASCII

tolower (3STDC) See ctype (3STDC)

toupper (3STDC) See ctype (3STDC)

tzset (3STDC) set time conversion information

ungetc (3STDC) push character back into input stream

unlocked (3STDC) explicit locking functions

unsetenv (3STDC) See getenv (3STDC)

vfprintf (3STDC) print formatted output

vprintf (3STDC) print formatted output

vsnprintf (3STDC) See vprintf (3STDC)

vsprintf (3STDC) See vprintf (3STDC)

56 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions abort(3STDC)

NAME abort – cause abnormal program termination

SYNOPSIS #include <stdlib.h>
void abort (void);

DESCRIPTION The abort function causes abnormal program termination to occur.

No open streams are closed or flushed.

In environments where signals are supported, the signal SIGABRT is first
produced. The above processing takes place if and when the signal handler
returns, or if the signal is ignored (default setting of this signal).

RETURN VALUES The abort function never returns.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO exit (3STDC)

NOTES Nothing prevents concurrent invocations of abort. It is up to the application to
deal with the possible consequences of this type of situation.

STANDARDS The abort function conforms to ANSI-C .

Last modified December 1999 ChorusOS 4.0 57

abs(3STDC) Standard C Library Functions

NAME abs – integer absolute value function

SYNOPSIS #include <stdlib.h>
int abs (int j);

DESCRIPTION The abs function computes the absolute value of the integer j.

RETURN VALUES The abs function returns the absolute value.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO labs (3STDC)

STANDARDS The abs function conforms to ANSI-C .

RESTRICTIONS The absolute value of the highest negative integer remains negative.

58 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions alphasort(3STDC)

NAME scandir, alphasort – scan a directory

SYNOPSIS #include <sys/types.h>
#include <dirent.h>
int scandir (const char * dirname, struct dirent *** namelist, int (* select)(struct dirent *),
int (* compare)(const void *, const void *));

int alphasort (const void * d1, const char * d2);

DESCRIPTION The scandir function reads the directory dirname and builds an array of pointers
to directory entries using malloc (3STDC). It returns the number of entries in
the array. A pointer to the array of directory entries is stored in the location
referenced by namelist .

The select parameter is a pointer to a user supplied subroutine which is called
by scandir to select which entries are to be included in the array. The select
routine is passed a pointer to a directory entry and should return a non-zero
value if the directory entry is to be included in the array. If select is null, then all
the directory entries will be included.

The compare parameter is a pointer to a user supplied subroutine which is
passed to qsort (3STDC) to sort the completed array. If this pointer is null, the
array is not sorted.

The alphasort function is a routine which can be used for the compare parameter to
sort the array alphabetically.

The memory allocated for the array can be deallocated with free (3STDC), by
freeing each pointer in the array and then the array itself.

DIAGNOSTICS Returns -1 if the directory cannot be opened for reading or if malloc (3STDC)
cannot allocate enough memory to hold all the data structures.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO directory (3POSIX) , malloc (3STDC) , qsort (3STDC)

HISTORY The scandir and alphasort functions appeared in 4.2BSD.

Last modified December 1999 ChorusOS 4.0 59

asctime(3STDC) Standard C Library Functions

NAME ctime, asctime, difftime, gmtime, localtime, mktime – transform binary date and
time value to ASCII

SYNOPSIS #include <time.h>
struct tm * localtime (const time_t * clock);

struct tm * gmtime (const time_t * clock);

char *ctime (const time_t * clock);

char *asctime (const struct tm * tm);

time_t mktime (struct tm * tm);

double difftime (time_t time1, time_t time0);

DESCRIPTION The ctime , gmtime and localtime functions take as an argument a time value
representing the time in seconds since the Epoch (00:00:00 UTC, January 1, 1970).

The localtime function converts the time value pointed to by clock , and returns
a pointer to a struct tm (described below) which contains the broken-out time
information for the value, after adjusting for the current time zone (and any other
factors such as Daylight Saving Time). Time zone adjustments are performed
as specified by the TZ environment variable (see tzset (3STDC). The function
localtime uses tzset (3STDC) to initialize time conversion information if tzset
(3STDC) has not already been called by the process.

The gmtime function also converts the time value, but without any time zone
adjustment, and returns a pointer to a tm structure (described below).

The ctime function adjusts the time value for the current time zone in the same
manner as localtime , and returns a pointer to a 26-character string of the form:
Thu Nov 24 18:22:48 1986.

The asctime function converts the broken—down time in the structure tm pointed
to by *tm to the form shown in the example above.

The mktime function converts the broken-down time, expressed as local time,
in the structure pointed to by tm into a time value with the same encoding as
that of the values returned by the time (3STDC) function; that is, seconds
from the Epoch, UTC.

The original values of the tm_wday and tm_yday components of the structure
are ignored, and the original values of the other components are not restricted
to their normal ranges. (A positive or zero value for tm_isdst causes mktime to
presume initially that summer time (for example, Daylight Saving Time) is or is
not in effect for the time specified, respectively. A negative value for tm_isdst
causes the mktime function to attempt to define whether summer time is in
effect for the time specified.)

60 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions asctime(3STDC)

On successful completion, the values of the tm_wday and tm_yday components of
the structure are set appropriately, and the other components are set to represent
the calendar time specified, but with their values forced to their normal ranges;
the final value of tm_mday is not set until tm_mon and tm_year are determined.
The mktime function returns the calendar time specified; if the calendar time
cannot be represented, it returns –1;

The difftime function returns the difference between two calendar times, (time1 –
time0), expressed in seconds.

External declarations as well as the tm structure definition are in the time.h
include file. The tm structure includes at least the following fields:

int tm_sec; /* seconds (0 - 60) */
int tm_min; /* minutes (0 - 59) */
int tm_hour; /* hours (0 - 23) */
int tm_mday; /* day of month (1 - 31) */
int tm_mon; /* month of year (0 - 11) */
int tm_year; /* year – 1900 */
int tm_wday; /* day of week (Sunday = 0) */
int tm_yday; /* day of year (0 - 365) */
int tm_isdst; /* is summer time in effect? */
char *tm_zone; /* abbreviation of timezone name */
long tm_gmtoff; /* offset from UTC in seconds */

The field tm_isdst is non-zero if summer time is in effect.

The field tm_gmtoff is the offset (in seconds) of the time represented from UTC,
with positive values indicating east of the Prime Meridian.

NOTES asctime(3STDC) , ctime(3STDC) , localtime(3STDC) and gmtime(3STDC) return
their result in a global variable which make them difficult to use in a
multithreaded program. asctime_r(3STDC) , ctime_r(3STDC) , localtime_r(3STDC)
and gmtime_r(3STDC) should be used instead.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO asctime_r (3STDC) , ctime_r (3STDC) , getenv (3STDC) , gmtime_r (3STDC)
, localtime_r (3STDC) , time (3STDC) , tzset (3STDC)

Last modified December 1999 ChorusOS 4.0 61

asctime_r(3STDC) Standard C Library Functions

NAME ctime_r, asctime_r, gmtime_r, localtime_r – Transform binary date and time value
to ASCII; Reentrent version

SYNOPSIS #include <time.h>
char * ctime_r (const time_t * clock, char * result);

char * asctime_r (const struct tm * tm, char * result);

struct tm * localtime_r (const time_t * clock, struct tm * result);

struct tm * gmtime_r (const time_t * clock, struct tm * result);

DESCRIPTION The ctime_r, gmtime_r, asctime_r, and localtime_r functions do the same thing as
ctime (3STDC), gmtime (3STDC), asctime (3STDC), and localtime (3STDC), with
the difference that they do not store their result in a static buffer. Instead, the
necessary storage must be allocated by the caller and a pointer to it passed as
the result argument.

For asctime_r, result must point to a 26 byte character array. For the others, result
must point to a memory area large enough to hold a struct tm.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO asctime (3STDC) , ctime (3STDC) , localtime (3STDC) , gmtime (3STDC) ,
tzset (3STDC)

STANDARDS These routines conform to POSIX.1c.

62 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions _assert(3STDC)

NAME assert, _assert, _stdc_assert – expression verification macro

SYNOPSIS #include <assert.h>
assert expression

_assert expression
void _stdc_assert (const char * file, int line, const char * expression);

DESCRIPTION The _assert(x) macro is defined as assert(x) . The assert macro
tests the given expression and if it is false, calls _stdc_assert() . The
_stdc_assert() function writes a diagnostic message to the error channel,
and calls abort (3STDC) .

If the expression is true, the assert macro does nothing.

The assert macro may be rendered non-operational at compile time using
the NDEBUGoption.

DIAGNOSTICS The following diagnostic message is written to the error channel if expression is
false:

("assertion %s failed: file %s, line %d\
", expression, __FILE__, __LINE__)

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO abort (3STDC)

Last modified December 1999 ChorusOS 4.0 63

assert(3STDC) Standard C Library Functions

NAME assert, _assert, _stdc_assert – expression verification macro

SYNOPSIS #include <assert.h>
assert expression

_assert expression
void _stdc_assert (const char * file, int line, const char * expression);

DESCRIPTION The _assert(x) macro is defined as assert(x) . The assert macro
tests the given expression and if it is false, calls _stdc_assert() . The
_stdc_assert() function writes a diagnostic message to the error channel,
and calls abort (3STDC) .

If the expression is true, the assert macro does nothing.

The assert macro may be rendered non-operational at compile time using
the NDEBUGoption.

DIAGNOSTICS The following diagnostic message is written to the error channel if expression is
false:

("assertion %s failed: file %s, line %d\
", expression, __FILE__, __LINE__)

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO abort (3STDC)

64 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions atexit(3STDC)

NAME atexit – add program termination routines

SYNOPSIS #include <stdlib.h>
int atexit (void (*func)(void));

DESCRIPTION Calling atexit adds the func function to a list of functions to be called, without
argument, on normal termination of the program. Normal termination occurs
either by a call to exit (3STDC) or by a return from main.

RETURN VALUES The atexit function returns 0 if the registration succeeded, non-zero if it failed.

NOTES atexit is reentrant. The related exit (3STDC) processing requires special attention
with regard to concurrent execution.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO exit (3STDC), _exit (2K)

Last modified December 1999 ChorusOS 4.0 65

atof(3STDC) Standard C Library Functions

NAME strtod, atof – convert an ASCII string to a floating-point number

SYNOPSIS #include <stdlib.h>
double strtod (const char * str, char ** ptr);

double atof (const char * str);

DESCRIPTION The strtod function returns as a double-precision floating-point number the value
represented by the character string pointed to by str . The string is scanned up
to the first unrecognized character.

The strtod function recognizes an optional string of white-space characters, then
an optional sign, then a string of digits optionally containing a decimal point,
then an optional e or E followed by an optional sign or space, followed by
an integer.

If the value of ptr is not (char **)NULL, a pointer to the character terminating the
scan is returned in the location pointed to by ptr . If a number cannot be formed,
*ptr is set to str , and zero is returned.

The atof(str) call is equivalent to strtod(str, (char **)NULL) .

DIAGNOSTICS If the correct value would cause overflow, HUGE is returned (according to
whether the value is positive or negative), and, in if supported, errno is set to
ERANGE If the correct value would cause underflow, zero is returned and, if
supported, errno is set to ERANGE.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO scanf (3STDC)

66 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions atoi(3STDC)

NAME strtol, atol, atoi – convert string to integer

SYNOPSIS #include <stdlib.h>
long strtol (const char * str, char ** ptr, int base);

long atol (const char * str);

int atoi (const char * str);

DESCRIPTION The strtol function returns the value represented by the character string pointed
to by str as a long integer. The string is scanned up to the first character
inconsistent with the base. Leading “white-space” characters (as defined by
isspace in ctype (3STDC)) are ignored.

The input string is divided into three parts: an initial, possibly empty, sequence
of white-space characters (as defined by isspace in ctype (3STDC)); a subject
sequence interpreted as an integer represented in some radix determined by
the value of base; and a final string of one or more unrecognized characters,
including the terminating null byte of the input string. The strtol function
attempts to convert the subject sequence to an integer and return the result.

A pointer to the final string is stored in the object pointed to by ptr, provided it
is not a null pointer.

If base is positive, it is used as the base for conversion. After an optional leading
sign, leading zeros are ignored, and “0x” or “0X” is ignored if base is 16.

If base is zero, the string itself determines the base as follows: After an optional
leading sign, a leading zero indicates octal conversion, and a leading “0x” or
“0X” hexadecimal conversion. Otherwise, decimal conversion is used.

Truncation from long to int can be done upon assignment, or by using an
explicit cast.

atol(str) is equivalent to strtol(str, (char **)NULL, 10) .

atoi(str) is equivalent to (int) strtol(str, (char **)NULL, 10) .

RETURN VALUES Upon successful completion strtol returns the converted value, if any. If no
conversion could be performed, 0 is returned.

If the correct value is outside the range of representable values, LONG_MAX
or LONG_MIN is returned (according to the sign of the value), and errno is
set to ERANGE.

USAGE Because LONG_MIN and LONG_MAX are returned on error and are also
valid returns on success, in order to check for error situations, an application
should set errno to 0, then call strtol , then check errno; if it is non-zero, you can
assume that an error has occurred.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

Last modified December 1999 ChorusOS 4.0 67

atoi(3STDC) Standard C Library Functions

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO ctype (3STDC) , scanf (3STDC) , strtod (3STDC)

68 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions atol(3STDC)

NAME strtol, atol, atoi – convert string to integer

SYNOPSIS #include <stdlib.h>
long strtol (const char * str, char ** ptr, int base);

long atol (const char * str);

int atoi (const char * str);

DESCRIPTION The strtol function returns the value represented by the character string pointed
to by str as a long integer. The string is scanned up to the first character
inconsistent with the base. Leading “white-space” characters (as defined by
isspace in ctype (3STDC)) are ignored.

The input string is divided into three parts: an initial, possibly empty, sequence
of white-space characters (as defined by isspace in ctype (3STDC)); a subject
sequence interpreted as an integer represented in some radix determined by
the value of base; and a final string of one or more unrecognized characters,
including the terminating null byte of the input string. The strtol function
attempts to convert the subject sequence to an integer and return the result.

A pointer to the final string is stored in the object pointed to by ptr, provided it
is not a null pointer.

If base is positive, it is used as the base for conversion. After an optional leading
sign, leading zeros are ignored, and “0x” or “0X” is ignored if base is 16.

If base is zero, the string itself determines the base as follows: After an optional
leading sign, a leading zero indicates octal conversion, and a leading “0x” or
“0X” hexadecimal conversion. Otherwise, decimal conversion is used.

Truncation from long to int can be done upon assignment, or by using an
explicit cast.

atol(str) is equivalent to strtol(str, (char **)NULL, 10) .

atoi(str) is equivalent to (int) strtol(str, (char **)NULL, 10) .

RETURN VALUES Upon successful completion strtol returns the converted value, if any. If no
conversion could be performed, 0 is returned.

If the correct value is outside the range of representable values, LONG_MAX
or LONG_MIN is returned (according to the sign of the value), and errno is
set to ERANGE.

USAGE Because LONG_MIN and LONG_MAX are returned on error and are also
valid returns on success, in order to check for error situations, an application
should set errno to 0, then call strtol , then check errno; if it is non-zero, you can
assume that an error has occurred.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

Last modified December 1999 ChorusOS 4.0 69

atol(3STDC) Standard C Library Functions

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO ctype (3STDC) , scanf (3STDC) , strtod (3STDC)

70 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions bcmp(3STDC)

NAME bstring, bcopy, bcmp, bzero, ffs – bit and byte string operations

SYNOPSIS #include <string.h>
void bcopy (const void * b1, void * b2, size_t length);

int bcmp(const void * b1, const void * b2, size_t length);

void bzero (void * b, size_t length);

int ffs (int value);

DESCRIPTION The bcopy , bcmp , and bzero functions operate on variable length strings of bytes.
They do not check for null bytes as the routines in string(3STDC) do.

The bcopy function copies length bytes from string b1 to the string b2 .
Overlapping strings are handled correctly.

The bcmp function compares byte string b1 to byte string b2 , returning 0 if they
are identical, non-zero otherwise. Both strings are assumed to be length bytes
long. A bcmp zero bytes long always returns 0.

The bzero function places a length of 0 bytes in the string b .

The ffs function finds the first bit set in value and returns the index of that bit.
Bits are numbered starting at 1 from the right. A return of zero indicates that the
value passed is zero.

NOTES The bcmp and bcopy routines take parameters backwards from strcmp and strcpy .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO string (3STDC)

Last modified December 1999 ChorusOS 4.0 71

bcopy(3STDC) Standard C Library Functions

NAME bstring, bcopy, bcmp, bzero, ffs – bit and byte string operations

SYNOPSIS #include <string.h>
void bcopy (const void * b1, void * b2, size_t length);

int bcmp(const void * b1, const void * b2, size_t length);

void bzero (void * b, size_t length);

int ffs (int value);

DESCRIPTION The bcopy , bcmp , and bzero functions operate on variable length strings of bytes.
They do not check for null bytes as the routines in string(3STDC) do.

The bcopy function copies length bytes from string b1 to the string b2 .
Overlapping strings are handled correctly.

The bcmp function compares byte string b1 to byte string b2 , returning 0 if they
are identical, non-zero otherwise. Both strings are assumed to be length bytes
long. A bcmp zero bytes long always returns 0.

The bzero function places a length of 0 bytes in the string b .

The ffs function finds the first bit set in value and returns the index of that bit.
Bits are numbered starting at 1 from the right. A return of zero indicates that the
value passed is zero.

NOTES The bcmp and bcopy routines take parameters backwards from strcmp and strcpy .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO string (3STDC)

72 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions bsearch(3STDC)

NAME bsearch – perform a binary search on a sorted table

SYNOPSIS #include <stdlib.h>
void *bsearch (const void *key, const void *base, size_t nel, size_t size, int (*compar)(const
void *, const void *));

DESCRIPTION The bsearch function is a binary search routine generalized from Knuth (6.2.1)
Algorithm B. It returns a pointer into a table indicating where an item of data
may be found, or a null pointer if the item of data cannot be found. The table
must be previously sorted in ascending order according to the comparison
function indicated by compar. The key value points to the item of data to search
for. The base pointer indicates the element at the base of the table, nel is the
number of elements in the table, and size is the number of bytes in each
element. The function pointed to by compar is called with two arguments that
point to the elements being compared. The function must return an integer less
than, equal to, or greater than zero, depending on whether the first argument is
to be considered less than, equal to, or greater than the second.

EXAMPLES The example below searches a table containing pointers to nodes consisting of
a string and its length. The table is ordered alphabetically on the string in
the node pointed to by each entry.

This code fragment reads in strings and either finds the corresponding node and
prints out the string and its length, or prints an error message.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define TABSIZE 1000

struct node { /* these are stored in the table */
char *string;
int length;

};
struct node table[TABSIZE]; /* table to be searched */

.

.

.
{

struct node *node_ptr, node;
/* routine to compare 2 nodes */
int node_compare(const void*, const void*);
char str_space[20]; /* space to read string into */
.
.
.
node.string = str_space;
while (scanf("%s", node.string) != EOF) {

node_ptr = (struct node *)bsearch(&node,
table, TABSIZE,
sizeof(struct node), node_compare);

Last modified December 1999 ChorusOS 4.0 73

bsearch(3STDC) Standard C Library Functions

if (node_ptr != NULL) {
(void)printf("string = %20s, length = %d\n",

node_ptr −>string, node_ptr −>length);
} else {

(void)printf("not found: %s\n", node.string);
}

}
}
/*

This routine compares two nodes based on an
alphabetical ordering of the string field.

*/
int
node_compare(const void* node1, const void* node2)
{

return strcmp(
((const struct node *)node1) −>string,
((const struct note *)node2) −>string);

}

NOTES The pointers to the key and the element at the base of the table should be of the
type pointer-to-element. The comparison function need not compare every byte,
so arbitrary data may be contained in the elements in addition to the values
being compared. If the number of elements in the table is less than the size
reserved for the table, nel should be the lower number.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO qsort (3STDC)

DIAGNOSTICS A NULL pointer is returned if the key cannot be found in the table.

74 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions bstring(3STDC)

NAME bstring, bcopy, bcmp, bzero, ffs – bit and byte string operations

SYNOPSIS #include <string.h>
void bcopy (const void * b1, void * b2, size_t length);

int bcmp(const void * b1, const void * b2, size_t length);

void bzero (void * b, size_t length);

int ffs (int value);

DESCRIPTION The bcopy , bcmp , and bzero functions operate on variable length strings of bytes.
They do not check for null bytes as the routines in string(3STDC) do.

The bcopy function copies length bytes from string b1 to the string b2 .
Overlapping strings are handled correctly.

The bcmp function compares byte string b1 to byte string b2 , returning 0 if they
are identical, non-zero otherwise. Both strings are assumed to be length bytes
long. A bcmp zero bytes long always returns 0.

The bzero function places a length of 0 bytes in the string b .

The ffs function finds the first bit set in value and returns the index of that bit.
Bits are numbered starting at 1 from the right. A return of zero indicates that the
value passed is zero.

NOTES The bcmp and bcopy routines take parameters backwards from strcmp and strcpy .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO string (3STDC)

Last modified December 1999 ChorusOS 4.0 75

byteorder(3STDC) Standard C Library Functions

NAME byteorder, htonl, htons, ntohl, ntohs – convert values between host and network
byte order

SYNOPSIS #include <sys/param.h>
unsigned long htonl (unsigned long hostlong);

unsigned short htons (unsigned short hostshort);

unsigned long ntohl (unsigned long netlong);

unsigned short ntohs (unsigned short netshort);

DESCRIPTION These routines convert 16– and 32–bit quantities between network byte order
and host byte order. On architectures where the host byte order and network
byte order are the same, these routines are defined as no-op macros.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

76 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions bzero(3STDC)

NAME bstring, bcopy, bcmp, bzero, ffs – bit and byte string operations

SYNOPSIS #include <string.h>
void bcopy (const void * b1, void * b2, size_t length);

int bcmp(const void * b1, const void * b2, size_t length);

void bzero (void * b, size_t length);

int ffs (int value);

DESCRIPTION The bcopy , bcmp , and bzero functions operate on variable length strings of bytes.
They do not check for null bytes as the routines in string(3STDC) do.

The bcopy function copies length bytes from string b1 to the string b2 .
Overlapping strings are handled correctly.

The bcmp function compares byte string b1 to byte string b2 , returning 0 if they
are identical, non-zero otherwise. Both strings are assumed to be length bytes
long. A bcmp zero bytes long always returns 0.

The bzero function places a length of 0 bytes in the string b .

The ffs function finds the first bit set in value and returns the index of that bit.
Bits are numbered starting at 1 from the right. A return of zero indicates that the
value passed is zero.

NOTES The bcmp and bcopy routines take parameters backwards from strcmp and strcpy .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO string (3STDC)

Last modified December 1999 ChorusOS 4.0 77

calloc(3STDC) Standard C Library Functions

NAME malloc, free, realloc, calloc – main memory allocator

SYNOPSIS #include <stdlib.h>
void * malloc (size_t size);

void free (void * ptr);

void * realloc (void * ptr, size_t size);

void *calloc (size_t nelem, size_t elsize);

DESCRIPTION The malloc() and free() functions provide a simple general-purpose
memory allocation package. The malloc() function returns a pointer to a block
of at least size bytes suitably aligned for any use. ChorusOS 4.0 offers three
malloc() libraries. See EXTENDED DESCRIPTION below for details.

The argument passed to free() is a pointer to a block previously allocated by
malloc() ; after free() is performed this space is made available for further
allocation, but its contents are left undisturbed.

The free() function may be called with a NULLpointer as parameter.

If the space assigned by malloc() is overrun or if a random number is passed
to free() , the result is undefined.

The malloc() function searches for free space from the last block allocated or
freed, grouping together any adjacent free blocks. It allocates the first contiguous
area of free space that is at least size() bytes.

The realloc() function changes the size of the block pointed to by ptr to size
bytes and returns a pointer to the (possibly moved) block. The contents will be
unchanged up to the smaller of the new and old sizes. If no free block of size
bytes is available in the storage area, realloc() will ask malloc() to enlarge
the area by size bytes and will then move the data to the new space. If the space
cannot be allocated, the object pointed to by ptr is unchanged. If size is zero and
ptr is not a null pointer, the object it points to is freed. If ptr is a null pointer, the
realloc() function behaves like the malloc() function for the specified size.

The realloc() function also works if ptr points to a block freed since the last
call to malloc() , realloc() , or calloc() ; thus sequences of free()
, malloc() and realloc() can be used to exploit the search strategy of
malloc() in order to do storage compacting.

The calloc() function allocates space for an array of nelem elements of size
elsize . The space is initialized to zeros.

Each of the allocation routines returns a pointer to space suitably aligned (after
possible pointer coercion) for storage of any type of object.

78 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions calloc(3STDC)

RETURN VALUES The malloc() , realloc() and calloc() functions return a NULLpointer if
there is no memory available, or if the area has been detectably corrupted by
storing outside the bounds of a block. When this happens, the block indicated
by ptr is neither damaged nor freed.

EXTENDED
DESCRIPTION

ChorusOS 4.0 offers three malloc() libraries. The following list describes
each library:
lib/classix/libcx.a

The standard malloc() for ChorusOS 4.0, based on the standard Solaris™
libc implementation, which has been extended to release freed memory
to the system for use by the kernel and by other actors. However, calling
free() does not automatically return memory to the system. malloc()
takes memory chunks from page-aligned regions. Regions are only
returned to the system once all the chunks in the region have been freed.
Furthermore, free() buffers memory chunks so that they can be reused
immediately by malloc() if possible. Therefore, memory may not be
returned to the system until malloc() is called again. malloc_trim()
can be used to release empty regions to the system explicitly.

alloca() , calloc() , memalign() and valloc() are not available in
lib/classix/libcx.a .

lib/classix/libleamalloc.a
Doug Lea’s malloc() , also known as the libg++ malloc()
implementation, adapted for ChorusOS 4.0 to allow the heap to be sparsed
in several regions. This implementation is especially useful in supervisor
mode, because supervisor space is shared by several actors. Freed memory
may be returned to the system using malloc_trim() . free() may also
call malloc_trim() if enough memory is free at the top of the heap.

lib/classix/libomalloc.a
The BSD malloc() is provided for backwards compatibility with previous
releases. This implementation corresponds to bsdmalloc (3X) in 2.6. See
Solaris man Pages(3): Library Routines in the Solaris 2.6 Reference Manual
AnswerBook for details.

NOTES Performance and efficiency depend upon the way the library is used. Search time
increases when many objects have been allocated; that is, if a program allocates
but never frees, each successive allocation takes longer. Tests on the running
program should be performed in order to determine the best balance between
performance and efficient use of space to achieve optimum performance.

If the program is multi-threaded, and if the free() and then realloc()
feature is used, it is up to the programmer to set up the mutual exclusion
schemes needed to prevent a malloc() taking place between free() and
realloc() calls.

Last modified December 1999 ChorusOS 4.0 79

calloc(3STDC) Standard C Library Functions

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

80 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions clearerr(3STDC)

NAME ferror, feof, fileno, clearerr – stream status inquiries

SYNOPSIS #include <stdio.h>
int ferror (FILE * stream);

int feof (FILE * stream);

int fileno (FILE * stream);

void clearerr (FILE * stream);

DESCRIPTION When an I/O error has occurred when reading from or writing to the named
stream , the ferror function returns a non-zero value. If no error has occurred, it
returns 0.

When EOF has been detected when reading the named input stream , the feof
function returns a non-zero value. If EOF was not detected, it returns 0.

The clearerr function resets the error and EOF indicators to zero on the named
stream . Once set, the error and EOF indicators remain set until reset by clearerr,
or the stream is closed.

The fileno function returns the integer file descriptor associated with the named
stream .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO fopen (3STDC)

Last modified December 1999 ChorusOS 4.0 81

ctime(3STDC) Standard C Library Functions

NAME ctime, asctime, difftime, gmtime, localtime, mktime – transform binary date and
time value to ASCII

SYNOPSIS #include <time.h>
struct tm * localtime (const time_t * clock);

struct tm * gmtime (const time_t * clock);

char *ctime (const time_t * clock);

char *asctime (const struct tm * tm);

time_t mktime (struct tm * tm);

double difftime (time_t time1, time_t time0);

DESCRIPTION The ctime , gmtime and localtime functions take as an argument a time value
representing the time in seconds since the Epoch (00:00:00 UTC, January 1, 1970).

The localtime function converts the time value pointed to by clock , and returns
a pointer to a struct tm (described below) which contains the broken-out time
information for the value, after adjusting for the current time zone (and any other
factors such as Daylight Saving Time). Time zone adjustments are performed
as specified by the TZ environment variable (see tzset (3STDC). The function
localtime uses tzset (3STDC) to initialize time conversion information if tzset
(3STDC) has not already been called by the process.

The gmtime function also converts the time value, but without any time zone
adjustment, and returns a pointer to a tm structure (described below).

The ctime function adjusts the time value for the current time zone in the same
manner as localtime , and returns a pointer to a 26-character string of the form:
Thu Nov 24 18:22:48 1986.

The asctime function converts the broken—down time in the structure tm pointed
to by *tm to the form shown in the example above.

The mktime function converts the broken-down time, expressed as local time,
in the structure pointed to by tm into a time value with the same encoding as
that of the values returned by the time (3STDC) function; that is, seconds
from the Epoch, UTC.

The original values of the tm_wday and tm_yday components of the structure
are ignored, and the original values of the other components are not restricted
to their normal ranges. (A positive or zero value for tm_isdst causes mktime to
presume initially that summer time (for example, Daylight Saving Time) is or is
not in effect for the time specified, respectively. A negative value for tm_isdst
causes the mktime function to attempt to define whether summer time is in
effect for the time specified.)

82 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions ctime(3STDC)

On successful completion, the values of the tm_wday and tm_yday components of
the structure are set appropriately, and the other components are set to represent
the calendar time specified, but with their values forced to their normal ranges;
the final value of tm_mday is not set until tm_mon and tm_year are determined.
The mktime function returns the calendar time specified; if the calendar time
cannot be represented, it returns –1;

The difftime function returns the difference between two calendar times, (time1 –
time0), expressed in seconds.

External declarations as well as the tm structure definition are in the time.h
include file. The tm structure includes at least the following fields:

int tm_sec; /* seconds (0 - 60) */
int tm_min; /* minutes (0 - 59) */
int tm_hour; /* hours (0 - 23) */
int tm_mday; /* day of month (1 - 31) */
int tm_mon; /* month of year (0 - 11) */
int tm_year; /* year – 1900 */
int tm_wday; /* day of week (Sunday = 0) */
int tm_yday; /* day of year (0 - 365) */
int tm_isdst; /* is summer time in effect? */
char *tm_zone; /* abbreviation of timezone name */
long tm_gmtoff; /* offset from UTC in seconds */

The field tm_isdst is non-zero if summer time is in effect.

The field tm_gmtoff is the offset (in seconds) of the time represented from UTC,
with positive values indicating east of the Prime Meridian.

NOTES asctime(3STDC) , ctime(3STDC) , localtime(3STDC) and gmtime(3STDC) return
their result in a global variable which make them difficult to use in a
multithreaded program. asctime_r(3STDC) , ctime_r(3STDC) , localtime_r(3STDC)
and gmtime_r(3STDC) should be used instead.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO asctime_r (3STDC) , ctime_r (3STDC) , getenv (3STDC) , gmtime_r (3STDC)
, localtime_r (3STDC) , time (3STDC) , tzset (3STDC)

Last modified December 1999 ChorusOS 4.0 83

ctime_r(3STDC) Standard C Library Functions

NAME ctime_r, asctime_r, gmtime_r, localtime_r – Transform binary date and time value
to ASCII; Reentrent version

SYNOPSIS #include <time.h>
char * ctime_r (const time_t * clock, char * result);

char * asctime_r (const struct tm * tm, char * result);

struct tm * localtime_r (const time_t * clock, struct tm * result);

struct tm * gmtime_r (const time_t * clock, struct tm * result);

DESCRIPTION The ctime_r, gmtime_r, asctime_r, and localtime_r functions do the same thing as
ctime (3STDC), gmtime (3STDC), asctime (3STDC), and localtime (3STDC), with
the difference that they do not store their result in a static buffer. Instead, the
necessary storage must be allocated by the caller and a pointer to it passed as
the result argument.

For asctime_r, result must point to a 26 byte character array. For the others, result
must point to a memory area large enough to hold a struct tm.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO asctime (3STDC) , ctime (3STDC) , localtime (3STDC) , gmtime (3STDC) ,
tzset (3STDC)

STANDARDS These routines conform to POSIX.1c.

84 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions ctype(3STDC)

NAME ctype, isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct,
isprint, isgraph, iscntrl, tolower, toupper – classify characters

SYNOPSIS All functions described in this page have the same syntax.

#include <ctype.h>
int isalpha (int c);

DESCRIPTION These macros classify character-coded integer values by looking them up in a
table. Each is a predicate returning nonzero for true, or zero for false.
isalpha c is a letter.

isupper c is an upper-case letter.

islower c is a lower-case letter.

isdigit c is a digit [0-9].

isxdigit c is a hexadecimal digit [0-9], [A-F] or [a-f].

isalnum c is an alphanumeric (letter or digit).

isspace c is a space, tab, carriage return, new-line, vertical
tab, or form-feed.

ispunct c is a punctuation character (neither control nor
alphanumeric).

isprint c is a printing character, code 040 (space) to 0176
(tilde).

isgraph c is a printing character, like isprint except for
space.

iscntrl c is a delete character (0177) or an ordinary
control character (less than 040).

The conversion functions and macros translate a character from lowercase
(uppercase) to uppercase (lowercase).
tolower If c is a character for which isupper is true and

there is a corresponding lowercase character,
tolower returns the corresponding lowercase
character. Otherwise, the character is returned
unchanged.

Last modified December 1999 ChorusOS 4.0 85

ctype(3STDC) Standard C Library Functions

toupper If c is a character for which islower is true and
there is a corresponding uppercase character,
toupper returns the corresponding uppercase
character. Otherwise, the character is returned
unchanged.

DIAGNOSTICS If the argument to any of these macros is not in the domain of the function, the
result is undefined.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

86 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions difftime(3STDC)

NAME ctime, asctime, difftime, gmtime, localtime, mktime – transform binary date and
time value to ASCII

SYNOPSIS #include <time.h>
struct tm * localtime (const time_t * clock);

struct tm * gmtime (const time_t * clock);

char *ctime (const time_t * clock);

char *asctime (const struct tm * tm);

time_t mktime (struct tm * tm);

double difftime (time_t time1, time_t time0);

DESCRIPTION The ctime , gmtime and localtime functions take as an argument a time value
representing the time in seconds since the Epoch (00:00:00 UTC, January 1, 1970).

The localtime function converts the time value pointed to by clock , and returns
a pointer to a struct tm (described below) which contains the broken-out time
information for the value, after adjusting for the current time zone (and any other
factors such as Daylight Saving Time). Time zone adjustments are performed
as specified by the TZ environment variable (see tzset (3STDC). The function
localtime uses tzset (3STDC) to initialize time conversion information if tzset
(3STDC) has not already been called by the process.

The gmtime function also converts the time value, but without any time zone
adjustment, and returns a pointer to a tm structure (described below).

The ctime function adjusts the time value for the current time zone in the same
manner as localtime , and returns a pointer to a 26-character string of the form:
Thu Nov 24 18:22:48 1986.

The asctime function converts the broken—down time in the structure tm pointed
to by *tm to the form shown in the example above.

The mktime function converts the broken-down time, expressed as local time,
in the structure pointed to by tm into a time value with the same encoding as
that of the values returned by the time (3STDC) function; that is, seconds
from the Epoch, UTC.

The original values of the tm_wday and tm_yday components of the structure
are ignored, and the original values of the other components are not restricted
to their normal ranges. (A positive or zero value for tm_isdst causes mktime to
presume initially that summer time (for example, Daylight Saving Time) is or is
not in effect for the time specified, respectively. A negative value for tm_isdst
causes the mktime function to attempt to define whether summer time is in
effect for the time specified.)

Last modified December 1999 ChorusOS 4.0 87

difftime(3STDC) Standard C Library Functions

On successful completion, the values of the tm_wday and tm_yday components of
the structure are set appropriately, and the other components are set to represent
the calendar time specified, but with their values forced to their normal ranges;
the final value of tm_mday is not set until tm_mon and tm_year are determined.
The mktime function returns the calendar time specified; if the calendar time
cannot be represented, it returns –1;

The difftime function returns the difference between two calendar times, (time1 –
time0), expressed in seconds.

External declarations as well as the tm structure definition are in the time.h
include file. The tm structure includes at least the following fields:

int tm_sec; /* seconds (0 - 60) */
int tm_min; /* minutes (0 - 59) */
int tm_hour; /* hours (0 - 23) */
int tm_mday; /* day of month (1 - 31) */
int tm_mon; /* month of year (0 - 11) */
int tm_year; /* year – 1900 */
int tm_wday; /* day of week (Sunday = 0) */
int tm_yday; /* day of year (0 - 365) */
int tm_isdst; /* is summer time in effect? */
char *tm_zone; /* abbreviation of timezone name */
long tm_gmtoff; /* offset from UTC in seconds */

The field tm_isdst is non-zero if summer time is in effect.

The field tm_gmtoff is the offset (in seconds) of the time represented from UTC,
with positive values indicating east of the Prime Meridian.

NOTES asctime(3STDC) , ctime(3STDC) , localtime(3STDC) and gmtime(3STDC) return
their result in a global variable which make them difficult to use in a
multithreaded program. asctime_r(3STDC) , ctime_r(3STDC) , localtime_r(3STDC)
and gmtime_r(3STDC) should be used instead.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO asctime_r (3STDC) , ctime_r (3STDC) , getenv (3STDC) , gmtime_r (3STDC)
, localtime_r (3STDC) , time (3STDC) , tzset (3STDC)

88 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions div(3STDC)

NAME div – return quotient and remainder from division

SYNOPSIS #include <stdlib.h>
div_t div (int num, int denom);

DESCRIPTION The div function computes the value num/denom and returns the quotient and
remainder in a structure named div_t that contains two int members named
quot and rem.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO ldiv (3STDC)

STANDARDS The div function conforms to ANSI-C .

Last modified December 1999 ChorusOS 4.0 89

errno(3STDC) Standard C Library Functions

NAME perror, errno, sys_errlist, sys_nerr – system error messages

SYNOPSIS #include <stdio.h>
void perror (const char * s);

#include <errno.h>

extern char *sys_errlist[];

extern int sys_nerr;

DESCRIPTION The perror function produces a message on the error channel, the implementation
of which is system-dependent. The message describes the last error encountered
during a call to a system or library function. The argument string s is printed first,
then a colon and a blank, then the message and a newline character. To be of most
use, the argument string should include the name of the program that incurred
the error. The error number is taken from the per thread variable errno, or from a
global variable errno, whichever is provided by the library. This variable is set
when errors occur but not cleared when non-erroneous calls are made.

To simplify variant formatting of messages, the array of message strings
sys_errlist is provided; errno can be used as an index in this table to get the
message string without the new line. The sys_nerr parameter defines the largest
message number provided for in the table; it should be checked because new
error codes may be added to the system before they are added to the table.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

90 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions exit(3STDC)

NAME exit – terminate an actor

SYNOPSIS #include <stdlib.h>
void exit (int status);

DESCRIPTION The exit function terminates the calling actor with the following consequences:

Any functions registered using the atexit(3STDC) function are called in the
reverse order of their registration.

Cleanup actions are performed.

The actor is terminated by calling _exit(2K).

To circumvent these actions, call _exit(2K) directly.

NOTES The processing of atexit(3STDC) functions is protected against concurrent
execution. As a result, if several threads are performing exit at the same time,
all but one will be blocked before the atexit(3STDC) processing is performed.
The fact that one particular thread is performing exit does not prevent other
threads from running. It is up to the application programmer to manage any
conflicts resulting from this.

The exit function never returns. However, if the thread performing an
atexit(3STDC) processing longjmps back into the application, further calls to
exit will block the caller for ever; in such a case, the only valid way to terminate
the application is to call _exit(2K).

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO atexit (3STDC), _exit (2K), intro (3STDC)

Last modified December 1999 ChorusOS 4.0 91

fabs(3STDC) Standard C Library Functions

NAME fabs – floating-point absolute value function

SYNOPSIS #include <math.h>
double fabs (double x);

DESCRIPTION The fabs function computes the absolute value of a floating-point number x.

RETURN VALUES The fabs function returns the absolute value of x.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO abs (3STDC),

STANDARDS The fabs function conforms to ANSI-C .

92 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions fclose(3STDC)

NAME fclose, fflush – close or flush a stream

SYNOPSIS #include <stdio.h>
int fclose (FILE * stream);

int fflush (FILE * stream);

DESCRIPTION The fclose function causes any buffered data for the named stream to be written
out, and the stream to be closed.

When exit (3STDC) is called, fclose is called automatically for all open files.

The fflush function causes any buffered data for the named stream to be written to
file. The stream remains open. If stream is NULL fflush flushes all open streams .

RETURN VALUES These functions return 0 for success, and EOF if an error is detected (for example,
when trying to write to a file that is not open for writing).

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO fopen (3STDC) , setbuf (3STDC)

Last modified December 1999 ChorusOS 4.0 93

fdopen(3STDC) Standard C Library Functions

NAME fopen, freopen, fdopen – open a stream

SYNOPSIS #include <stdio.h>
FILE * fopen (const char * filename, const char * type);

FILE * freopen (const char * filename, const char * type, FILE * stream);

FILE * fdopen (int fildes, const char * type);

DESCRIPTION The fopen function opens the file named by filename and associates a stream with
it. It returns a pointer to the FILE structure associated with the stream .

The filename pointer indicates a character string that contains the name of the
file to be opened.

The type is a character string with one of the following values:
r open for reading

w truncate or create for writing

a append; open for writing at end of file, or create for writing

r+ open for update (reading and writing)

w+ truncate or create for update

a+ append; open or create for update at end-of-file

The freopen function opens the file whose pathname is the string pointed to by
filename , and associates the stream pointed to by stream with it.

The original stream is closed regardless of whether the subsequent open
succeeds. The freopen function returns a pointer to the FILE structure associated
with stream.

The freopen function is typically used to attach open streams associated with
stdin , stdout , and stderr to other files.

When a file is opened for update, both input and output may be performed on the
resulting stream . However, output may not be directly followed by input without
an intervening fseek (3STDC), rewind (3STDC), or fflush (3STDC), and input may
not be directly followed by output without an intervening fseek (3STDC), rewind
(3STDC), fflush (3STDC), or an input operation which encounters end-of-file.

When a file is opened for append (that is, when type is a or a+), it is impossible
to overwrite information already in the file. The fseek (3STDC) function may be
used to reposition the file pointer to any position in the file, but when output
is written to the file, the current file pointer is ignored. All output is written
at the end of the file and causes the file pointer to be repositioned at the end
of the output. If two separate actors open the same file for append, each actor

94 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions fdopen(3STDC)

may write freely to the file without fear of destroying output being written by
the other. The output from the two actors will be inserted into the file in the
order in which it is written.

The fdopen function associates a stream with the existing file descriptor, fildes.
The mode of the stream must be compatible with the mode of the file descriptor.

RETURN VALUES In case of failure, these functions return a NULL pointer and set errno to indicate
the error condition.

NOTES The number of streams that a process can have open at one time is OPEN_MAX.

ERRORS The errno value is set to EINVAL if the mode provided to fopen , fdopen , or
freopen was invalid.

The fopen , fdopen and freopen functions may also fail and set errno to any of the
errors specified for the routine malloc (3STDC).

The fopen function may also fail and set errno to any of the errors specified for
the routine open (2POSIX).

The fdopen function may also fail and set errno to any of the errors specified for
the routine fcntl (2POSIX).

The freopen function may also fail and set errno for any of the errors specified for
the routines open (2POSIX), fclose (3STDC), and fflush (3STDC).

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO fclose (3STDC) , fflush (3STDC) , fseek (3STDC) , fsetpos (3STDC) ,
fgetpos (3STDC) , rewind (3STDC)

Last modified December 1999 ChorusOS 4.0 95

feof(3STDC) Standard C Library Functions

NAME ferror, feof, fileno, clearerr – stream status inquiries

SYNOPSIS #include <stdio.h>
int ferror (FILE * stream);

int feof (FILE * stream);

int fileno (FILE * stream);

void clearerr (FILE * stream);

DESCRIPTION When an I/O error has occurred when reading from or writing to the named
stream , the ferror function returns a non-zero value. If no error has occurred, it
returns 0.

When EOF has been detected when reading the named input stream , the feof
function returns a non-zero value. If EOF was not detected, it returns 0.

The clearerr function resets the error and EOF indicators to zero on the named
stream . Once set, the error and EOF indicators remain set until reset by clearerr,
or the stream is closed.

The fileno function returns the integer file descriptor associated with the named
stream .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO fopen (3STDC)

96 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions ferror(3STDC)

NAME ferror, feof, fileno, clearerr – stream status inquiries

SYNOPSIS #include <stdio.h>
int ferror (FILE * stream);

int feof (FILE * stream);

int fileno (FILE * stream);

void clearerr (FILE * stream);

DESCRIPTION When an I/O error has occurred when reading from or writing to the named
stream , the ferror function returns a non-zero value. If no error has occurred, it
returns 0.

When EOF has been detected when reading the named input stream , the feof
function returns a non-zero value. If EOF was not detected, it returns 0.

The clearerr function resets the error and EOF indicators to zero on the named
stream . Once set, the error and EOF indicators remain set until reset by clearerr,
or the stream is closed.

The fileno function returns the integer file descriptor associated with the named
stream .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO fopen (3STDC)

Last modified December 1999 ChorusOS 4.0 97

fflush(3STDC) Standard C Library Functions

NAME fclose, fflush – close or flush a stream

SYNOPSIS #include <stdio.h>
int fclose (FILE * stream);

int fflush (FILE * stream);

DESCRIPTION The fclose function causes any buffered data for the named stream to be written
out, and the stream to be closed.

When exit (3STDC) is called, fclose is called automatically for all open files.

The fflush function causes any buffered data for the named stream to be written to
file. The stream remains open. If stream is NULL fflush flushes all open streams .

RETURN VALUES These functions return 0 for success, and EOF if an error is detected (for example,
when trying to write to a file that is not open for writing).

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO fopen (3STDC) , setbuf (3STDC)

98 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions ffs(3STDC)

NAME bstring, bcopy, bcmp, bzero, ffs – bit and byte string operations

SYNOPSIS #include <string.h>
void bcopy (const void * b1, void * b2, size_t length);

int bcmp(const void * b1, const void * b2, size_t length);

void bzero (void * b, size_t length);

int ffs (int value);

DESCRIPTION The bcopy , bcmp , and bzero functions operate on variable length strings of bytes.
They do not check for null bytes as the routines in string(3STDC) do.

The bcopy function copies length bytes from string b1 to the string b2 .
Overlapping strings are handled correctly.

The bcmp function compares byte string b1 to byte string b2 , returning 0 if they
are identical, non-zero otherwise. Both strings are assumed to be length bytes
long. A bcmp zero bytes long always returns 0.

The bzero function places a length of 0 bytes in the string b .

The ffs function finds the first bit set in value and returns the index of that bit.
Bits are numbered starting at 1 from the right. A return of zero indicates that the
value passed is zero.

NOTES The bcmp and bcopy routines take parameters backwards from strcmp and strcpy .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO string (3STDC)

Last modified December 1999 ChorusOS 4.0 99

fgetc(3STDC) Standard C Library Functions

NAME getc, fgetc, getw – get character from a stream

SYNOPSIS #include <stdio.h>
int getc (FILE * stream);

int fgetc (FILE * stream);

int getw (FILE * stream);

DESCRIPTION The getc and fgetc functions return the next character (byte) from the input stream
specified, as an integer. The getw function obtains the next int (if present) from
the stream pointed to by stream. These functions move the file pointer, if one is
defined, ahead one character in stream .

The fgetc function obtains the next byte (if present) as an unsigned char
converted to an int , from the input stream pointed to by stream, and advances
the associated file position indicator for the stream (if defined).

The getc routine is functionally identical to fgetc , except that it is implemented as
a macro. It runs faster than fgetc , but it takes up more space per invocation and
its name cannot be passed as an argument to a function call.

The getw function reads the next word from the stream. The size of a word is
the size of an int and may vary from environment to environment. The getw
function presumes no special alignment in the file.

RETURN VALUES These functions return the constant EOF at end-of-file or upon detecting an error.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO fclose (3STDC) , ferror (3STDC) , fopen (3STDC) , fread (3STDC) ,
getchar (3STDC) , puts (3STDC) , scanf (3STDC) , setbuf (3STDC)

100 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions fgetpos(3STDC)

NAME fseek, rewind, ftell, fgetpos, fsetpos – reposition a file pointer in a stream

SYNOPSIS #include <stdio.h>
int fseek (FILE * stream, long offset, int ptrname);

void rewind (FILE * stream);

long ftell (const FILE * stream);

int fgetpos (const FILE * stream, fpos_t * pos);

int fsetpos (FILE * stream, const fpos_t * pos);

DESCRIPTION The fseek function sets the position of the next input or output operation on the
stream . The new position, measured in bytes from the beginning of the file, is
obtained by adding offset to the position specified by ptrname , whose values
are defined in <stdio.h> as follows:

SEEK_SET Set position equal to offset bytes

SEEK_CUR Set position to current location plus offset

SEEK_END Set position to EOF plus offset

The rewind (stream) function is equivalent to fseek (stream , 0L, 0), except that
no value is returned.

The fseek and rewind functions undo any effects of ungetc (3STDC).

After performing fseek or rewind , the next operation on a file opened for update
may be either input or output.

The ftell function returns the offset of the current byte relative to the beginning of
the file associated with the stream specified.

The fgetpos and fsetpos functions are alternate interfaces equivalent to ftell and
fseek (with ptrname set to SEEK_SET), setting and storing the current value of
the file offset into or from the object referenced by pos . On some systems an
fpos_t object may be a complex object, and these routines may be the only way to
reposition a text stream portably. This is not the case on UNIX systems.

RETURN VALUES The fseek function returns 0 on success; otherwise (for example, an fseek done
on a file that was not opened using fopen (3STDC)), it returns -1 and sets errno
to indicate the error.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 101

fgetpos(3STDC) Standard C Library Functions

SEE ALSO fopen (3STDC) , ungetc (3STDC)

102 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions fgets(3STDC)

NAME gets, fgets – get a string from a stream

SYNOPSIS #include <stdio.h>
char * gets (char * s);

char *fgets (char * s, int n, FILE * stream);

DESCRIPTION The gets function reads characters from the standard input stream, stdin, into
the array pointed to by s , until a new-line character is read or an end-of-file
condition is encountered. The new-line character is discarded and the string
is terminated with a null character.

The fgets function reads characters from stream into the array pointed to by s ,
until n –1 characters are read, or a new-line character is read and transferred
to s , or an end-of-file condition is encountered. The string is then terminated
with a null character.

RETURN VALUES If end-of-file is reached and no characters have been read, no characters are
transferred to s and a NULL pointer is returned. If a read error occurs (for
eample, if you are using these functions on a file that has not been opened for
reading) , a NULL pointer is returned. Otherwise s is returned.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO ferror (3STDC) , fopen (3STDC) , fread (3STDC) , getc (3STDC) ,
scanf (3STDC)

Last modified December 1999 ChorusOS 4.0 103

fileno(3STDC) Standard C Library Functions

NAME ferror, feof, fileno, clearerr – stream status inquiries

SYNOPSIS #include <stdio.h>
int ferror (FILE * stream);

int feof (FILE * stream);

int fileno (FILE * stream);

void clearerr (FILE * stream);

DESCRIPTION When an I/O error has occurred when reading from or writing to the named
stream , the ferror function returns a non-zero value. If no error has occurred, it
returns 0.

When EOF has been detected when reading the named input stream , the feof
function returns a non-zero value. If EOF was not detected, it returns 0.

The clearerr function resets the error and EOF indicators to zero on the named
stream . Once set, the error and EOF indicators remain set until reset by clearerr,
or the stream is closed.

The fileno function returns the integer file descriptor associated with the named
stream .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO fopen (3STDC)

104 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions flockfile(3STDC)

NAME flockfile, ftrylockfile, funlockfile – stream lock management

SYNOPSIS #include <stdio.h>
void flockfile (FILE * file);

int ftrylockfile (FILE * file);

void funlockfile (FILE * file);

DESCRIPTION The flockfile , ftrylockfile and funlockfile functions provide for explicit
application-level locking of stdio (FILE *) objects.

The flockfile function is used to acquire ownership of a (FILE *) object.

The ftrylockfile function is used to acquire ownership of a (FILE *) object if the
object is available; ftrylockfile is a non-blocking version of flockfile .

The funlockfile function is used to relinquish the ownership of a (FILE *) object.

RETURN VALUES The ftrylockfile function returns 0 on success or 1 to indicate that the lock cannot
be acquired.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO getc_unlocked (3STDC)

STANDARDS These routines conform to the POSIX.1c standards.

Last modified December 1999 ChorusOS 4.0 105

fopen(3STDC) Standard C Library Functions

NAME fopen, freopen, fdopen – open a stream

SYNOPSIS #include <stdio.h>
FILE * fopen (const char * filename, const char * type);

FILE * freopen (const char * filename, const char * type, FILE * stream);

FILE * fdopen (int fildes, const char * type);

DESCRIPTION The fopen function opens the file named by filename and associates a stream with
it. It returns a pointer to the FILE structure associated with the stream .

The filename pointer indicates a character string that contains the name of the
file to be opened.

The type is a character string with one of the following values:
r open for reading

w truncate or create for writing

a append; open for writing at end of file, or create for writing

r+ open for update (reading and writing)

w+ truncate or create for update

a+ append; open or create for update at end-of-file

The freopen function opens the file whose pathname is the string pointed to by
filename , and associates the stream pointed to by stream with it.

The original stream is closed regardless of whether the subsequent open
succeeds. The freopen function returns a pointer to the FILE structure associated
with stream.

The freopen function is typically used to attach open streams associated with
stdin , stdout , and stderr to other files.

When a file is opened for update, both input and output may be performed on the
resulting stream . However, output may not be directly followed by input without
an intervening fseek (3STDC), rewind (3STDC), or fflush (3STDC), and input may
not be directly followed by output without an intervening fseek (3STDC), rewind
(3STDC), fflush (3STDC), or an input operation which encounters end-of-file.

When a file is opened for append (that is, when type is a or a+), it is impossible
to overwrite information already in the file. The fseek (3STDC) function may be
used to reposition the file pointer to any position in the file, but when output
is written to the file, the current file pointer is ignored. All output is written
at the end of the file and causes the file pointer to be repositioned at the end
of the output. If two separate actors open the same file for append, each actor

106 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions fopen(3STDC)

may write freely to the file without fear of destroying output being written by
the other. The output from the two actors will be inserted into the file in the
order in which it is written.

The fdopen function associates a stream with the existing file descriptor, fildes.
The mode of the stream must be compatible with the mode of the file descriptor.

RETURN VALUES In case of failure, these functions return a NULL pointer and set errno to indicate
the error condition.

NOTES The number of streams that a process can have open at one time is OPEN_MAX.

ERRORS The errno value is set to EINVAL if the mode provided to fopen , fdopen , or
freopen was invalid.

The fopen , fdopen and freopen functions may also fail and set errno to any of the
errors specified for the routine malloc (3STDC).

The fopen function may also fail and set errno to any of the errors specified for
the routine open (2POSIX).

The fdopen function may also fail and set errno to any of the errors specified for
the routine fcntl (2POSIX).

The freopen function may also fail and set errno for any of the errors specified for
the routines open (2POSIX), fclose (3STDC), and fflush (3STDC).

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO fclose (3STDC) , fflush (3STDC) , fseek (3STDC) , fsetpos (3STDC) ,
fgetpos (3STDC) , rewind (3STDC)

Last modified December 1999 ChorusOS 4.0 107

fprintf(3STDC) Standard C Library Functions

NAME fprintf – print formatted output

SYNOPSIS #include <stdio.h>
int fprintf (FILE *stream, const char *format, ... /* args */);

DESCRIPTION The fprintf function places output on the output stream specified. The function
returns the number of characters transmitted or a negative value if an output
error was encountered.

This functions converts, formats, and prints its args in the same way as the
printf (3STDC) function does. Characters generated by fprintf are printed
as if putc(3STDC) had been called.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO putc (3STDC), scanf (3STDC)

108 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions fputc(3STDC)

NAME putc, fputc, putw – put character or word on a stream

SYNOPSIS #include <stdio.h>
int putc (int c, FILE * stream);

int fputc (int c, FILE * stream);

int putw (int w, FILE * stream);

DESCRIPTION The putc and fputc functions writes the byte specified by c (converted to an
unsigned char) to the output stream (at the position where the file pointer, if
defined, is pointing).

The putw function writes the specified int to the defined output stream.

The putc routine behaves like fputc , except that it is implemented as a macro. It
runs faster than fputc , but it takes up more space per invocation and its name
cannot be passed as an argument to a function call.

Output streams, with the exception of the standard error stream stderr , are by
default buffered if the output refers to a file and line-buffered if the output refers
to a terminal. The standard error output stream stderr is by default unbuffered,
but use of freopen (see fopen (3STDC)) will change it to become buffered or
line-buffered. When an output stream is unbuffered, information is queued for
writing on the destination file or terminal as soon as it is written. When it
is buffered, a number characters are saved and written as a block. When it
is line-buffered, each line of output is queued for writing on the destination
terminal as soon as the line is completed (that is, as soon as a new-line character
is written or terminal input is requested). The setbuf (3STDC) or setvbuf (3STDC)
function may be used to change the stream’s buffering strategy.

RETURN VALUES Upon successful completion, these functions each return the value they have
written. If unsuccessful, they return the constant EOF. This will occur if the file
stream is not open for writing or if the output file cannot be extended.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO fclose (3STDC) , ferror (3STDC) , fopen (3STDC) , fread (3STDC) ,
printf (3STDC) , putchar (3STDC) , puts (3STDC) , setbuf (3STDC)

Last modified December 1999 ChorusOS 4.0 109

fputs(3STDC) Standard C Library Functions

NAME puts, fputs – put a string on a stream

SYNOPSIS #include <stdio.h>
int puts (const char * s);

int fputs (const char * s, FILE * stream);

DESCRIPTION The puts function writes the null-terminated string pointed to by s , followed by
a new-line character, to the standard output stream stdout.

The fputs function writes the null-terminated string pointed to by s to the named
output stream .

Neither function writes the terminating null character.

RETURN VALUES Both routines return EOF on error. This will happen if the routines try to write to
a file that has not been opened for writing.

NOTES The puts appends a new-line character while fputs does not.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO ferror (3STDC) , fopen (3STDC) , fread (3STDC) , printf (3STDC) ,
putc (3STDC)

110 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions fread(3STDC)

NAME fread, fwrite – binary input/output

SYNOPSIS #include <stdio.h>
int fread (void * ptr, size_t size, size_t nitems, FILE * stream);

int fwrite (const void * ptr, size_t size, size_t nitems, FILE * stream);

DESCRIPTION The fread function copies, into an array pointed to by ptr , nitems items of data
from the named input stream , where an item of data is a sequence of bytes (not
necessarily terminated by a null byte) of the length size . The fread function
stops appending bytes if an end-of-file or error condition is encountered while
reading stream, or when nitems items have been read. The fread function leaves
the file pointer in stream , if defined, pointing to the byte following the last byte
read. It does not change the contents of stream .

The fwrite function appends at most nitems items of data from the array pointed
to by ptr to the named output stream . The fwrite function stops appending when
it has appended nitems items of data or if an error condition is encountered on
stream . It does not change the contents of the array pointed to by ptr .

The size argument is typically sizeof(*ptr) where the pseudo-function sizeof
specifies the length of an item pointed to by ptr .

RETURN VALUES The fread and fwrite functions return the number of items read or written. If
nitems is negative, no characters are read or written and 0 is returned by both
fread and fwrite .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO fopen (3STDC) , getc (3STDC) , gets (3STDC) , putc (3STDC) , puts (3STDC)

Last modified December 1999 ChorusOS 4.0 111

free(3STDC) Standard C Library Functions

NAME malloc, free, realloc, calloc – main memory allocator

SYNOPSIS #include <stdlib.h>
void * malloc (size_t size);

void free (void * ptr);

void * realloc (void * ptr, size_t size);

void *calloc (size_t nelem, size_t elsize);

DESCRIPTION The malloc() and free() functions provide a simple general-purpose
memory allocation package. The malloc() function returns a pointer to a block
of at least size bytes suitably aligned for any use. ChorusOS 4.0 offers three
malloc() libraries. See EXTENDED DESCRIPTION below for details.

The argument passed to free() is a pointer to a block previously allocated by
malloc() ; after free() is performed this space is made available for further
allocation, but its contents are left undisturbed.

The free() function may be called with a NULLpointer as parameter.

If the space assigned by malloc() is overrun or if a random number is passed
to free() , the result is undefined.

The malloc() function searches for free space from the last block allocated or
freed, grouping together any adjacent free blocks. It allocates the first contiguous
area of free space that is at least size() bytes.

The realloc() function changes the size of the block pointed to by ptr to size
bytes and returns a pointer to the (possibly moved) block. The contents will be
unchanged up to the smaller of the new and old sizes. If no free block of size
bytes is available in the storage area, realloc() will ask malloc() to enlarge
the area by size bytes and will then move the data to the new space. If the space
cannot be allocated, the object pointed to by ptr is unchanged. If size is zero and
ptr is not a null pointer, the object it points to is freed. If ptr is a null pointer, the
realloc() function behaves like the malloc() function for the specified size.

The realloc() function also works if ptr points to a block freed since the last
call to malloc() , realloc() , or calloc() ; thus sequences of free()
, malloc() and realloc() can be used to exploit the search strategy of
malloc() in order to do storage compacting.

The calloc() function allocates space for an array of nelem elements of size
elsize . The space is initialized to zeros.

Each of the allocation routines returns a pointer to space suitably aligned (after
possible pointer coercion) for storage of any type of object.

112 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions free(3STDC)

RETURN VALUES The malloc() , realloc() and calloc() functions return a NULLpointer if
there is no memory available, or if the area has been detectably corrupted by
storing outside the bounds of a block. When this happens, the block indicated
by ptr is neither damaged nor freed.

EXTENDED
DESCRIPTION

ChorusOS 4.0 offers three malloc() libraries. The following list describes
each library:
lib/classix/libcx.a

The standard malloc() for ChorusOS 4.0, based on the standard Solaris™
libc implementation, which has been extended to release freed memory
to the system for use by the kernel and by other actors. However, calling
free() does not automatically return memory to the system. malloc()
takes memory chunks from page-aligned regions. Regions are only
returned to the system once all the chunks in the region have been freed.
Furthermore, free() buffers memory chunks so that they can be reused
immediately by malloc() if possible. Therefore, memory may not be
returned to the system until malloc() is called again. malloc_trim()
can be used to release empty regions to the system explicitly.

alloca() , calloc() , memalign() and valloc() are not available in
lib/classix/libcx.a .

lib/classix/libleamalloc.a
Doug Lea’s malloc() , also known as the libg++ malloc()
implementation, adapted for ChorusOS 4.0 to allow the heap to be sparsed
in several regions. This implementation is especially useful in supervisor
mode, because supervisor space is shared by several actors. Freed memory
may be returned to the system using malloc_trim() . free() may also
call malloc_trim() if enough memory is free at the top of the heap.

lib/classix/libomalloc.a
The BSD malloc() is provided for backwards compatibility with previous
releases. This implementation corresponds to bsdmalloc (3X) in 2.6. See
Solaris man Pages(3): Library Routines in the Solaris 2.6 Reference Manual
AnswerBook for details.

NOTES Performance and efficiency depend upon the way the library is used. Search time
increases when many objects have been allocated; that is, if a program allocates
but never frees, each successive allocation takes longer. Tests on the running
program should be performed in order to determine the best balance between
performance and efficient use of space to achieve optimum performance.

If the program is multi-threaded, and if the free() and then realloc()
feature is used, it is up to the programmer to set up the mutual exclusion
schemes needed to prevent a malloc() taking place between free() and
realloc() calls.

Last modified December 1999 ChorusOS 4.0 113

free(3STDC) Standard C Library Functions

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

114 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions freopen(3STDC)

NAME fopen, freopen, fdopen – open a stream

SYNOPSIS #include <stdio.h>
FILE * fopen (const char * filename, const char * type);

FILE * freopen (const char * filename, const char * type, FILE * stream);

FILE * fdopen (int fildes, const char * type);

DESCRIPTION The fopen function opens the file named by filename and associates a stream with
it. It returns a pointer to the FILE structure associated with the stream .

The filename pointer indicates a character string that contains the name of the
file to be opened.

The type is a character string with one of the following values:
r open for reading

w truncate or create for writing

a append; open for writing at end of file, or create for writing

r+ open for update (reading and writing)

w+ truncate or create for update

a+ append; open or create for update at end-of-file

The freopen function opens the file whose pathname is the string pointed to by
filename , and associates the stream pointed to by stream with it.

The original stream is closed regardless of whether the subsequent open
succeeds. The freopen function returns a pointer to the FILE structure associated
with stream.

The freopen function is typically used to attach open streams associated with
stdin , stdout , and stderr to other files.

When a file is opened for update, both input and output may be performed on the
resulting stream . However, output may not be directly followed by input without
an intervening fseek (3STDC), rewind (3STDC), or fflush (3STDC), and input may
not be directly followed by output without an intervening fseek (3STDC), rewind
(3STDC), fflush (3STDC), or an input operation which encounters end-of-file.

When a file is opened for append (that is, when type is a or a+), it is impossible
to overwrite information already in the file. The fseek (3STDC) function may be
used to reposition the file pointer to any position in the file, but when output
is written to the file, the current file pointer is ignored. All output is written
at the end of the file and causes the file pointer to be repositioned at the end
of the output. If two separate actors open the same file for append, each actor

Last modified December 1999 ChorusOS 4.0 115

freopen(3STDC) Standard C Library Functions

may write freely to the file without fear of destroying output being written by
the other. The output from the two actors will be inserted into the file in the
order in which it is written.

The fdopen function associates a stream with the existing file descriptor, fildes.
The mode of the stream must be compatible with the mode of the file descriptor.

RETURN VALUES In case of failure, these functions return a NULL pointer and set errno to indicate
the error condition.

NOTES The number of streams that a process can have open at one time is OPEN_MAX.

ERRORS The errno value is set to EINVAL if the mode provided to fopen , fdopen , or
freopen was invalid.

The fopen , fdopen and freopen functions may also fail and set errno to any of the
errors specified for the routine malloc (3STDC).

The fopen function may also fail and set errno to any of the errors specified for
the routine open (2POSIX).

The fdopen function may also fail and set errno to any of the errors specified for
the routine fcntl (2POSIX).

The freopen function may also fail and set errno for any of the errors specified for
the routines open (2POSIX), fclose (3STDC), and fflush (3STDC).

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO fclose (3STDC) , fflush (3STDC) , fseek (3STDC) , fsetpos (3STDC) ,
fgetpos (3STDC) , rewind (3STDC)

116 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions fscanf(3STDC)

NAME fscanf – convert formatted input

SYNOPSIS #include <stdio.h>
int fscanf (FILE *stream, const char *format, ...);

DESCRIPTION The fscanf function reads from the input stream specified. This function reads
characters and interprets them in the same way that scanf(3STDC) does.

NOTE Trailing white space (including a new-line) is left unread unless matched in the
control string.

RETURN VALUES This function returns EOF on end of input and a short count for missing or
illegal data items.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO scanf (3STDC)

Last modified December 1999 ChorusOS 4.0 117

fseek(3STDC) Standard C Library Functions

NAME fseek, rewind, ftell, fgetpos, fsetpos – reposition a file pointer in a stream

SYNOPSIS #include <stdio.h>
int fseek (FILE * stream, long offset, int ptrname);

void rewind (FILE * stream);

long ftell (const FILE * stream);

int fgetpos (const FILE * stream, fpos_t * pos);

int fsetpos (FILE * stream, const fpos_t * pos);

DESCRIPTION The fseek function sets the position of the next input or output operation on the
stream . The new position, measured in bytes from the beginning of the file, is
obtained by adding offset to the position specified by ptrname , whose values
are defined in <stdio.h> as follows:

SEEK_SET Set position equal to offset bytes

SEEK_CUR Set position to current location plus offset

SEEK_END Set position to EOF plus offset

The rewind (stream) function is equivalent to fseek (stream , 0L, 0), except that
no value is returned.

The fseek and rewind functions undo any effects of ungetc (3STDC).

After performing fseek or rewind , the next operation on a file opened for update
may be either input or output.

The ftell function returns the offset of the current byte relative to the beginning of
the file associated with the stream specified.

The fgetpos and fsetpos functions are alternate interfaces equivalent to ftell and
fseek (with ptrname set to SEEK_SET), setting and storing the current value of
the file offset into or from the object referenced by pos . On some systems an
fpos_t object may be a complex object, and these routines may be the only way to
reposition a text stream portably. This is not the case on UNIX systems.

RETURN VALUES The fseek function returns 0 on success; otherwise (for example, an fseek done
on a file that was not opened using fopen (3STDC)), it returns -1 and sets errno
to indicate the error.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

118 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions fseek(3STDC)

SEE ALSO fopen (3STDC) , ungetc (3STDC)

Last modified December 1999 ChorusOS 4.0 119

fsetpos(3STDC) Standard C Library Functions

NAME fseek, rewind, ftell, fgetpos, fsetpos – reposition a file pointer in a stream

SYNOPSIS #include <stdio.h>
int fseek (FILE * stream, long offset, int ptrname);

void rewind (FILE * stream);

long ftell (const FILE * stream);

int fgetpos (const FILE * stream, fpos_t * pos);

int fsetpos (FILE * stream, const fpos_t * pos);

DESCRIPTION The fseek function sets the position of the next input or output operation on the
stream . The new position, measured in bytes from the beginning of the file, is
obtained by adding offset to the position specified by ptrname , whose values
are defined in <stdio.h> as follows:

SEEK_SET Set position equal to offset bytes

SEEK_CUR Set position to current location plus offset

SEEK_END Set position to EOF plus offset

The rewind (stream) function is equivalent to fseek (stream , 0L, 0), except that
no value is returned.

The fseek and rewind functions undo any effects of ungetc (3STDC).

After performing fseek or rewind , the next operation on a file opened for update
may be either input or output.

The ftell function returns the offset of the current byte relative to the beginning of
the file associated with the stream specified.

The fgetpos and fsetpos functions are alternate interfaces equivalent to ftell and
fseek (with ptrname set to SEEK_SET), setting and storing the current value of
the file offset into or from the object referenced by pos . On some systems an
fpos_t object may be a complex object, and these routines may be the only way to
reposition a text stream portably. This is not the case on UNIX systems.

RETURN VALUES The fseek function returns 0 on success; otherwise (for example, an fseek done
on a file that was not opened using fopen (3STDC)), it returns -1 and sets errno
to indicate the error.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

120 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions fsetpos(3STDC)

SEE ALSO fopen (3STDC) , ungetc (3STDC)

Last modified December 1999 ChorusOS 4.0 121

ftell(3STDC) Standard C Library Functions

NAME fseek, rewind, ftell, fgetpos, fsetpos – reposition a file pointer in a stream

SYNOPSIS #include <stdio.h>
int fseek (FILE * stream, long offset, int ptrname);

void rewind (FILE * stream);

long ftell (const FILE * stream);

int fgetpos (const FILE * stream, fpos_t * pos);

int fsetpos (FILE * stream, const fpos_t * pos);

DESCRIPTION The fseek function sets the position of the next input or output operation on the
stream . The new position, measured in bytes from the beginning of the file, is
obtained by adding offset to the position specified by ptrname , whose values
are defined in <stdio.h> as follows:

SEEK_SET Set position equal to offset bytes

SEEK_CUR Set position to current location plus offset

SEEK_END Set position to EOF plus offset

The rewind (stream) function is equivalent to fseek (stream , 0L, 0), except that
no value is returned.

The fseek and rewind functions undo any effects of ungetc (3STDC).

After performing fseek or rewind , the next operation on a file opened for update
may be either input or output.

The ftell function returns the offset of the current byte relative to the beginning of
the file associated with the stream specified.

The fgetpos and fsetpos functions are alternate interfaces equivalent to ftell and
fseek (with ptrname set to SEEK_SET), setting and storing the current value of
the file offset into or from the object referenced by pos . On some systems an
fpos_t object may be a complex object, and these routines may be the only way to
reposition a text stream portably. This is not the case on UNIX systems.

RETURN VALUES The fseek function returns 0 on success; otherwise (for example, an fseek done
on a file that was not opened using fopen (3STDC)), it returns -1 and sets errno
to indicate the error.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

122 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions ftell(3STDC)

SEE ALSO fopen (3STDC) , ungetc (3STDC)

Last modified December 1999 ChorusOS 4.0 123

ftrylockfile(3STDC) Standard C Library Functions

NAME flockfile, ftrylockfile, funlockfile – stream lock management

SYNOPSIS #include <stdio.h>
void flockfile (FILE * file);

int ftrylockfile (FILE * file);

void funlockfile (FILE * file);

DESCRIPTION The flockfile , ftrylockfile and funlockfile functions provide for explicit
application-level locking of stdio (FILE *) objects.

The flockfile function is used to acquire ownership of a (FILE *) object.

The ftrylockfile function is used to acquire ownership of a (FILE *) object if the
object is available; ftrylockfile is a non-blocking version of flockfile .

The funlockfile function is used to relinquish the ownership of a (FILE *) object.

RETURN VALUES The ftrylockfile function returns 0 on success or 1 to indicate that the lock cannot
be acquired.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO getc_unlocked (3STDC)

STANDARDS These routines conform to the POSIX.1c standards.

124 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions funlockfile(3STDC)

NAME flockfile, ftrylockfile, funlockfile – stream lock management

SYNOPSIS #include <stdio.h>
void flockfile (FILE * file);

int ftrylockfile (FILE * file);

void funlockfile (FILE * file);

DESCRIPTION The flockfile , ftrylockfile and funlockfile functions provide for explicit
application-level locking of stdio (FILE *) objects.

The flockfile function is used to acquire ownership of a (FILE *) object.

The ftrylockfile function is used to acquire ownership of a (FILE *) object if the
object is available; ftrylockfile is a non-blocking version of flockfile .

The funlockfile function is used to relinquish the ownership of a (FILE *) object.

RETURN VALUES The ftrylockfile function returns 0 on success or 1 to indicate that the lock cannot
be acquired.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO getc_unlocked (3STDC)

STANDARDS These routines conform to the POSIX.1c standards.

Last modified December 1999 ChorusOS 4.0 125

fwrite(3STDC) Standard C Library Functions

NAME fread, fwrite – binary input/output

SYNOPSIS #include <stdio.h>
int fread (void * ptr, size_t size, size_t nitems, FILE * stream);

int fwrite (const void * ptr, size_t size, size_t nitems, FILE * stream);

DESCRIPTION The fread function copies, into an array pointed to by ptr , nitems items of data
from the named input stream , where an item of data is a sequence of bytes (not
necessarily terminated by a null byte) of the length size . The fread function
stops appending bytes if an end-of-file or error condition is encountered while
reading stream, or when nitems items have been read. The fread function leaves
the file pointer in stream , if defined, pointing to the byte following the last byte
read. It does not change the contents of stream .

The fwrite function appends at most nitems items of data from the array pointed
to by ptr to the named output stream . The fwrite function stops appending when
it has appended nitems items of data or if an error condition is encountered on
stream . It does not change the contents of the array pointed to by ptr .

The size argument is typically sizeof(*ptr) where the pseudo-function sizeof
specifies the length of an item pointed to by ptr .

RETURN VALUES The fread and fwrite functions return the number of items read or written. If
nitems is negative, no characters are read or written and 0 is returned by both
fread and fwrite .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO fopen (3STDC) , getc (3STDC) , gets (3STDC) , putc (3STDC) , puts (3STDC)

126 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions getc(3STDC)

NAME getc, fgetc, getw – get character from a stream

SYNOPSIS #include <stdio.h>
int getc (FILE * stream);

int fgetc (FILE * stream);

int getw (FILE * stream);

DESCRIPTION The getc and fgetc functions return the next character (byte) from the input stream
specified, as an integer. The getw function obtains the next int (if present) from
the stream pointed to by stream. These functions move the file pointer, if one is
defined, ahead one character in stream .

The fgetc function obtains the next byte (if present) as an unsigned char
converted to an int , from the input stream pointed to by stream, and advances
the associated file position indicator for the stream (if defined).

The getc routine is functionally identical to fgetc , except that it is implemented as
a macro. It runs faster than fgetc , but it takes up more space per invocation and
its name cannot be passed as an argument to a function call.

The getw function reads the next word from the stream. The size of a word is
the size of an int and may vary from environment to environment. The getw
function presumes no special alignment in the file.

RETURN VALUES These functions return the constant EOF at end-of-file or upon detecting an error.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO fclose (3STDC) , ferror (3STDC) , fopen (3STDC) , fread (3STDC) ,
getchar (3STDC) , puts (3STDC) , scanf (3STDC) , setbuf (3STDC)

Last modified December 1999 ChorusOS 4.0 127

getchar(3STDC) Standard C Library Functions

NAME getchar – get character from the standard input channel

SYNOPSIS #include <stdio.h>
int getchar (void);

DESCRIPTION The getchar function returns the next character (byte) from the standard input
channel, which is operating-system dependent. On systems where stdin, has
a meaning, getc (3STDC) is part of the library, and getchar is a macro defined
as getc(stdin).

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO getc (3STDC)

RETURN VALUES This function returns the constant EOF at end-of-input (if the system supports
this abstraction) or upon detecting an error.

128 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions getchar_unlocked(3STDC)

NAME unlocked, getc_unlocked, getchar_unlocked, putc_unlocked, putchar_unlocked
– explicit locking functions

SYNOPSIS #include <stdio.h>
int getc_unlocked (FILE * stream);

int getchar_unlocked (void);

int putc_unlocked (int c, FILE * stream);

int putchar_unlocked (int c);

DESCRIPTION The getc_unlocked , getchar_unlocked , putc_unlocked and putchar_unlocked are
functionally identical to getc , getchar , putc and putchar functions with the
exception that they are not re-entrant.

getc_unlocked , getchar_unlocked , and putchar_unlocked routines are implemented
as macros.

They may only safely be used within a scope protected by flockfile (or ftrylockfile)
and funlockedfile .

STANDARDS These routines conform to the POSIX.1c standards.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO getc (3STDC) , getchar (3STDC) , putc (3STDC) , putchar (3STDC) ,
flockfile (3STDC)

Last modified December 1999 ChorusOS 4.0 129

getc_unlocked(3STDC) Standard C Library Functions

NAME unlocked, getc_unlocked, getchar_unlocked, putc_unlocked, putchar_unlocked
– explicit locking functions

SYNOPSIS #include <stdio.h>
int getc_unlocked (FILE * stream);

int getchar_unlocked (void);

int putc_unlocked (int c, FILE * stream);

int putchar_unlocked (int c);

DESCRIPTION The getc_unlocked , getchar_unlocked , putc_unlocked and putchar_unlocked are
functionally identical to getc , getchar , putc and putchar functions with the
exception that they are not re-entrant.

getc_unlocked , getchar_unlocked , and putchar_unlocked routines are implemented
as macros.

They may only safely be used within a scope protected by flockfile (or ftrylockfile)
and funlockedfile .

STANDARDS These routines conform to the POSIX.1c standards.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO getc (3STDC) , getchar (3STDC) , putc (3STDC) , putchar (3STDC) ,
flockfile (3STDC)

130 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions getenv(3STDC)

NAME getenv, putenv, setenv, unsetenv – fetch and set environment variables

SYNOPSIS #include <stdlib.h>
char * getenv (const char * name);

int setenv (const char * name, const char * value, int overwrite);

int putenv (const char * string);

void unsetenv (const char * name);

DESCRIPTION These functions set, unset and fetch environment variables from the host
environment list. For compatibility with differing environment conventions,
the name and value arguments given may be appended and prepended,
respectively, with an equal sign. The getenv function obtains the current value
of the environment variable, name. If the variable name is not in the current
environment, a null pointer is returned.

The setenv function inserts or resets the environment variable name in the
current environment list. If the variable name does not exist in the list, it is
inserted with the given value. If the variable does exist, the overwrite argument
is tested; if overwrite is zero, the variable is not reset, otherwise it is reset to
the given value.

The putenv function takes an argument of the form name=value and is
equivalent to: setenv(name, value, 1) .

The unsetenv function deletes all instances of the variable name pointed to
by name from the list.

RETURN VALUES The setenv and putenv functions return zero if successful; otherwise –1 is
returned. The setenv or putenv functions fail if they were unable to allocate
memory for the environment.

STANDARDS The getenv function conforms to ANSI–C .

NOTE These functions are reentrant, but the environment is global to the actor.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 131

gethostbyaddr(3STDC) Standard C Library Functions

NAME gethostbyaddr, gethostbyname – get network host entry

SYNOPSIS #include <netdb.h>
struct hostent * gethostbyname (const char * name);

structhostent *gethostbyaddr (const char * addr, int len, int type);

DESCRIPTION The gethostbyname() and gethostbyaddr() functions each return a pointer to an
object containing the broken-out fields of a line in the network host data base.
The object has the following structure:

struct hostent {
char* h_name; /* official name of host */
char** h_aliases; /* alias list */
int h_addrtype; /* address type */
int h_length; /* length of address */
char** h_addr_list; /* list of addresses from name server */

#define h_addr h_addr_list[0] /* address, for backward compatiblity */
};

The members of this structure are:
h_name Official name of the host.

h_aliases A zero terminated array of alternate names for
the host.

h_addrtype The type of address being returned; currently
always AF_INET.

h_length The length, in bytes, of the address.

h_addr_list A pointer to a list of network addresses for the
named host. Host addresses are returned in
network byte order.

In the case of gethostbyaddr() , addr is a pointer to the binary format address
(supplied in network order) of length len (not a character string) and type
is the type of the address.

To obtain this information, an Internet Name Server daemon must be running.

RETURN VALUES A NULL pointer is returned on error.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

132 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions gethostbyaddr(3STDC)

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO inetNS (1M)

RESTRICTIONS All information is contained in a static area so it must be copied if it is to be
saved. Only the Internet address format is currently understood.

Last modified December 1999 ChorusOS 4.0 133

gethostbyname(3STDC) Standard C Library Functions

NAME gethostbyaddr, gethostbyname – get network host entry

SYNOPSIS #include <netdb.h>
struct hostent * gethostbyname (const char * name);

structhostent *gethostbyaddr (const char * addr, int len, int type);

DESCRIPTION The gethostbyname() and gethostbyaddr() functions each return a pointer to an
object containing the broken-out fields of a line in the network host data base.
The object has the following structure:

struct hostent {
char* h_name; /* official name of host */
char** h_aliases; /* alias list */
int h_addrtype; /* address type */
int h_length; /* length of address */
char** h_addr_list; /* list of addresses from name server */

#define h_addr h_addr_list[0] /* address, for backward compatiblity */
};

The members of this structure are:
h_name Official name of the host.

h_aliases A zero terminated array of alternate names for
the host.

h_addrtype The type of address being returned; currently
always AF_INET.

h_length The length, in bytes, of the address.

h_addr_list A pointer to a list of network addresses for the
named host. Host addresses are returned in
network byte order.

In the case of gethostbyaddr() , addr is a pointer to the binary format address
(supplied in network order) of length len (not a character string) and type
is the type of the address.

To obtain this information, an Internet Name Server daemon must be running.

RETURN VALUES A NULL pointer is returned on error.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

134 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions gethostbyname(3STDC)

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO inetNS (1M)

RESTRICTIONS All information is contained in a static area so it must be copied if it is to be
saved. Only the Internet address format is currently understood.

Last modified December 1999 ChorusOS 4.0 135

getopt(3STDC) Standard C Library Functions

NAME getopt – get an option letter from command line argument list

SYNOPSIS #include <stdlib.h>
int getopt (int argc, char *const *argv, const char *optstring);

extern char *optarg;

extern int optind;

extern int optopt;

extern int opterr;

extern int optreset;

DESCRIPTION The getopt function incrementally parses the command line argument list argv
and returns the next known option letter. An option letter is known if it has been
specified in the string of accepted option letters, optstring.

The option string optstring can contain individual characters and characters
followed by a colon indicating that an option argument follows. For example, an
option string x indicates an option -x, and an option string x: indicates an option
that has an argument, -x argument. It does not matter whether an argument
has leading white space., that is —xarg and —x arg are interpreted as being
the same.

On return from getopt , optarg points to an option argument, if one is expected,
and the variable optind contains the index to the next argv argument for a
subsequent call to getopt . The variable optopt saves the last known option
letter returned by getopt .

The variables opterr and optind are both initialized to 1. The optind variable may
be set to another value before a set of calls to getopt in order to access any given
argv entry. In other words, you do not have to process the argv entries in order.

In order to use getopt to evaluate multiple sets of arguments, or to evaluate a
single set of arguments several times, the variable optreset must be set to 1
before the second and each additional set of calls to getopt , and the variable
optind must be reinitialized.

The getopt function returns an EOF when the argument list is exhausted,
or a non-recognized option is encountered. The interpretation of options
in the argument list may be cancelled by the option "–" (double dash) which
causes getopt to signal the end of argument processing and return an EOF.
When all options have been processed (up to the first non-option argument),
getopt returns EOF.

RETURN VALUES If the getopt function encounters a character not found in the string optstring or
detects a missing option argument, it prints an error message and returns "?" to
stderr. Setting opterr to a zero will disable these error messages. If optstring has a

136 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions getopt(3STDC)

leading ":" then a missing option argument causes a ":" to be returned in addition
to suppressing any error messages.

Option arguments are allowed to begin with "-", which reduces the amount
of error checking possible.

EXAMPLES #include <stdlib.h>
#include <stdio.h>
main (int argc, char **argv)
{

int bflag= 0;
char* fname;
int ch, fd;

while ((ch = getopt(argc, argv, "bf:")) != EOF) {
switch(ch) {

case ’b’:
bflag = 1;
break;

case ’f’:
fname = optarg;
break;

case ’?’:
default:

fprintf(stderr, "usage: cmd [-b] [-f <arg>] \n");
exit(1);

}
}

}
argc -= optind;
argv += optind;

RESTRICTIONS The getopt function is not thread safe.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO getsubopt (3STDC)

Last modified December 1999 ChorusOS 4.0 137

gets(3STDC) Standard C Library Functions

NAME gets, fgets – get a string from a stream

SYNOPSIS #include <stdio.h>
char * gets (char * s);

char *fgets (char * s, int n, FILE * stream);

DESCRIPTION The gets function reads characters from the standard input stream, stdin, into
the array pointed to by s , until a new-line character is read or an end-of-file
condition is encountered. The new-line character is discarded and the string
is terminated with a null character.

The fgets function reads characters from stream into the array pointed to by s ,
until n –1 characters are read, or a new-line character is read and transferred
to s , or an end-of-file condition is encountered. The string is then terminated
with a null character.

RETURN VALUES If end-of-file is reached and no characters have been read, no characters are
transferred to s and a NULL pointer is returned. If a read error occurs (for
eample, if you are using these functions on a file that has not been opened for
reading) , a NULL pointer is returned. Otherwise s is returned.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO ferror (3STDC) , fopen (3STDC) , fread (3STDC) , getc (3STDC) ,
scanf (3STDC)

138 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions getsitebyaddr(3STDC)

NAME getsitebyname, getsitebyaddr – get ChorusOS site information

SYNOPSIS #include <chorusdb.h>
int getsitebyname (const char * name, int * site);

int getsitebyaddr (const int site, char * name, int * length);

DESCRIPTION The getsitebyname function returns, in the object pointed to by site , the ChorusOS
site number of the ChorusOS site whose symbolic name is name .

The getsitebyaddr function returns, in the character array name , the symbolic
name of the ChorusOS site whose site number is site . If the real length of the
symbolic name is greater than length , it is truncated to length bytes.

TIn order to obtain this information, a ChorusOS Name Server daemon must
be running.

RETURN VALUES The getsitebyname and getsitebyaddr functions return 0 in case of success.
Otherwise they return -1 and set errno to indicate the error condition. The
getsitebyaddr function returns the real name string length in length (including
the NULL character).

ERRORS Error code:
[ENOENT] No such ChorusOS site is known.

[ETIMEDOUT] The ChorusOS Name Server cannot be reached.

[EINVAL] Invalid length (must be >= 0).

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO chorusNS (1M)

Last modified December 1999 ChorusOS 4.0 139

getsitebyname(3STDC) Standard C Library Functions

NAME getsitebyname, getsitebyaddr – get ChorusOS site information

SYNOPSIS #include <chorusdb.h>
int getsitebyname (const char * name, int * site);

int getsitebyaddr (const int site, char * name, int * length);

DESCRIPTION The getsitebyname function returns, in the object pointed to by site , the ChorusOS
site number of the ChorusOS site whose symbolic name is name .

The getsitebyaddr function returns, in the character array name , the symbolic
name of the ChorusOS site whose site number is site . If the real length of the
symbolic name is greater than length , it is truncated to length bytes.

TIn order to obtain this information, a ChorusOS Name Server daemon must
be running.

RETURN VALUES The getsitebyname and getsitebyaddr functions return 0 in case of success.
Otherwise they return -1 and set errno to indicate the error condition. The
getsitebyaddr function returns the real name string length in length (including
the NULL character).

ERRORS Error code:
[ENOENT] No such ChorusOS site is known.

[ETIMEDOUT] The ChorusOS Name Server cannot be reached.

[EINVAL] Invalid length (must be >= 0).

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO chorusNS (1M)

140 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions getsubopt(3STDC)

NAME getsubopt – get sub options from an argument

SYNOPSIS #include <stdlib.h>
int getsubopt (char **optionp, char *const *tokens, char **valuep);

extern char *suboptarg;

DESCRIPTION The getsubopt function parses a string containing tokens delimited by one or
more tab, space or comma (",") characters. It is intended for use in parsing
groups of option arguments provided as part of a utility command line.

The optionp argument is a pointer to a pointer to the string. The tokens argument
is a pointer to a NULL-terminated array of pointers to strings.

The getsubopt function returns the zero-based offset of the pointer in the tokens
array, referencing a string which matches the first token in the string, or –1
if there is no match.

If the token is of the form "name=value", the location referenced by valuep will be
set to point to the start of the "value" portion of the token.

On return from getsubopt, optionp will be set to point to the start of the next token
in the string, or the NULL at the end of the string if no more tokens are present.
The external variable suboptarg will be set to point to the start of the current token,
or NULL if no tokens were present. The argument valuep will be set to point to
the "value" portion of the token, or NULL if no "value" portion was present.

EXAMPLES char *tokens[] = {
#define ONE 0

"one",
#define TWO 1

"two",
NULL

};

...

char *options, *value;

while ((ch = getopt(argc, argv, "ab:")) != –1) {
switch(ch) {
case ’a’:

/* process "a" option */
break;

case ’b’:
options = optarg;
while (*options) {

switch(getsubopt(&options, tokens, &value)) {
case ONE:

/* process "one" sub option */
break;

case TWO:
/* process "two" sub option */

Last modified December 1999 ChorusOS 4.0 141

getsubopt(3STDC) Standard C Library Functions

if (!value) {
printerr("no value for two");

}
else {
i = atoi(value);
}
break;

case –1:
if (suboptarg) {

printerr("illegal sub option %s", suboptarg);
} else {

printerr("missing sub option");
}
break;

}
break;

}

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO getopt (3STDC)

RESTRICTIONS The getsubopt function is not thread—safe.

142 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions getw(3STDC)

NAME getc, fgetc, getw – get character from a stream

SYNOPSIS #include <stdio.h>
int getc (FILE * stream);

int fgetc (FILE * stream);

int getw (FILE * stream);

DESCRIPTION The getc and fgetc functions return the next character (byte) from the input stream
specified, as an integer. The getw function obtains the next int (if present) from
the stream pointed to by stream. These functions move the file pointer, if one is
defined, ahead one character in stream .

The fgetc function obtains the next byte (if present) as an unsigned char
converted to an int , from the input stream pointed to by stream, and advances
the associated file position indicator for the stream (if defined).

The getc routine is functionally identical to fgetc , except that it is implemented as
a macro. It runs faster than fgetc , but it takes up more space per invocation and
its name cannot be passed as an argument to a function call.

The getw function reads the next word from the stream. The size of a word is
the size of an int and may vary from environment to environment. The getw
function presumes no special alignment in the file.

RETURN VALUES These functions return the constant EOF at end-of-file or upon detecting an error.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO fclose (3STDC) , ferror (3STDC) , fopen (3STDC) , fread (3STDC) ,
getchar (3STDC) , puts (3STDC) , scanf (3STDC) , setbuf (3STDC)

Last modified December 1999 ChorusOS 4.0 143

gmtime(3STDC) Standard C Library Functions

NAME ctime, asctime, difftime, gmtime, localtime, mktime – transform binary date and
time value to ASCII

SYNOPSIS #include <time.h>
struct tm * localtime (const time_t * clock);

struct tm * gmtime (const time_t * clock);

char *ctime (const time_t * clock);

char *asctime (const struct tm * tm);

time_t mktime (struct tm * tm);

double difftime (time_t time1, time_t time0);

DESCRIPTION The ctime , gmtime and localtime functions take as an argument a time value
representing the time in seconds since the Epoch (00:00:00 UTC, January 1, 1970).

The localtime function converts the time value pointed to by clock , and returns
a pointer to a struct tm (described below) which contains the broken-out time
information for the value, after adjusting for the current time zone (and any other
factors such as Daylight Saving Time). Time zone adjustments are performed
as specified by the TZ environment variable (see tzset (3STDC). The function
localtime uses tzset (3STDC) to initialize time conversion information if tzset
(3STDC) has not already been called by the process.

The gmtime function also converts the time value, but without any time zone
adjustment, and returns a pointer to a tm structure (described below).

The ctime function adjusts the time value for the current time zone in the same
manner as localtime , and returns a pointer to a 26-character string of the form:
Thu Nov 24 18:22:48 1986.

The asctime function converts the broken—down time in the structure tm pointed
to by *tm to the form shown in the example above.

The mktime function converts the broken-down time, expressed as local time,
in the structure pointed to by tm into a time value with the same encoding as
that of the values returned by the time (3STDC) function; that is, seconds
from the Epoch, UTC.

The original values of the tm_wday and tm_yday components of the structure
are ignored, and the original values of the other components are not restricted
to their normal ranges. (A positive or zero value for tm_isdst causes mktime to
presume initially that summer time (for example, Daylight Saving Time) is or is
not in effect for the time specified, respectively. A negative value for tm_isdst
causes the mktime function to attempt to define whether summer time is in
effect for the time specified.)

144 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions gmtime(3STDC)

On successful completion, the values of the tm_wday and tm_yday components of
the structure are set appropriately, and the other components are set to represent
the calendar time specified, but with their values forced to their normal ranges;
the final value of tm_mday is not set until tm_mon and tm_year are determined.
The mktime function returns the calendar time specified; if the calendar time
cannot be represented, it returns –1;

The difftime function returns the difference between two calendar times, (time1 –
time0), expressed in seconds.

External declarations as well as the tm structure definition are in the time.h
include file. The tm structure includes at least the following fields:

int tm_sec; /* seconds (0 - 60) */
int tm_min; /* minutes (0 - 59) */
int tm_hour; /* hours (0 - 23) */
int tm_mday; /* day of month (1 - 31) */
int tm_mon; /* month of year (0 - 11) */
int tm_year; /* year – 1900 */
int tm_wday; /* day of week (Sunday = 0) */
int tm_yday; /* day of year (0 - 365) */
int tm_isdst; /* is summer time in effect? */
char *tm_zone; /* abbreviation of timezone name */
long tm_gmtoff; /* offset from UTC in seconds */

The field tm_isdst is non-zero if summer time is in effect.

The field tm_gmtoff is the offset (in seconds) of the time represented from UTC,
with positive values indicating east of the Prime Meridian.

NOTES asctime(3STDC) , ctime(3STDC) , localtime(3STDC) and gmtime(3STDC) return
their result in a global variable which make them difficult to use in a
multithreaded program. asctime_r(3STDC) , ctime_r(3STDC) , localtime_r(3STDC)
and gmtime_r(3STDC) should be used instead.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO asctime_r (3STDC) , ctime_r (3STDC) , getenv (3STDC) , gmtime_r (3STDC)
, localtime_r (3STDC) , time (3STDC) , tzset (3STDC)

Last modified December 1999 ChorusOS 4.0 145

gmtime_r(3STDC) Standard C Library Functions

NAME ctime_r, asctime_r, gmtime_r, localtime_r – Transform binary date and time value
to ASCII; Reentrent version

SYNOPSIS #include <time.h>
char * ctime_r (const time_t * clock, char * result);

char * asctime_r (const struct tm * tm, char * result);

struct tm * localtime_r (const time_t * clock, struct tm * result);

struct tm * gmtime_r (const time_t * clock, struct tm * result);

DESCRIPTION The ctime_r, gmtime_r, asctime_r, and localtime_r functions do the same thing as
ctime (3STDC), gmtime (3STDC), asctime (3STDC), and localtime (3STDC), with
the difference that they do not store their result in a static buffer. Instead, the
necessary storage must be allocated by the caller and a pointer to it passed as
the result argument.

For asctime_r, result must point to a 26 byte character array. For the others, result
must point to a memory area large enough to hold a struct tm.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO asctime (3STDC) , ctime (3STDC) , localtime (3STDC) , gmtime (3STDC) ,
tzset (3STDC)

STANDARDS These routines conform to POSIX.1c.

146 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions htonl(3STDC)

NAME byteorder, htonl, htons, ntohl, ntohs – convert values between host and network
byte order

SYNOPSIS #include <sys/param.h>
unsigned long htonl (unsigned long hostlong);

unsigned short htons (unsigned short hostshort);

unsigned long ntohl (unsigned long netlong);

unsigned short ntohs (unsigned short netshort);

DESCRIPTION These routines convert 16– and 32–bit quantities between network byte order
and host byte order. On architectures where the host byte order and network
byte order are the same, these routines are defined as no-op macros.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 147

htons(3STDC) Standard C Library Functions

NAME byteorder, htonl, htons, ntohl, ntohs – convert values between host and network
byte order

SYNOPSIS #include <sys/param.h>
unsigned long htonl (unsigned long hostlong);

unsigned short htons (unsigned short hostshort);

unsigned long ntohl (unsigned long netlong);

unsigned short ntohs (unsigned short netshort);

DESCRIPTION These routines convert 16– and 32–bit quantities between network byte order
and host byte order. On architectures where the host byte order and network
byte order are the same, these routines are defined as no-op macros.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

148 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions index(3STDC)

NAME index, rindex – locate character in string

SYNOPSIS #include <string.h>
char * index (const char * s, int c);

char *rindex (const char * s, int c);

DESCRIPTION The index function locates the first character matching c (converted to a char) in
the null-terminated string s .

The rindex function locates the last character matching c (converted to a char) in
the null-terminated string s .

RETURN VALUES A pointer to the character is returned if found; otherwise NULL is returned.
If c is 0 , rindex or index locates the terminating 0.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO memchr(3STDC) , string (3STDC) , strsep (3STDC) , strtok (3STDC)

Last modified December 1999 ChorusOS 4.0 149

inet(3STDC) Standard C Library Functions

NAME inet, inet_aton, inet_addr, inet_network, inet_ntoa, inet_makeaddr, inet_lnaof,
inet_netof – Internet address manipulation routines

SYNOPSIS #include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
int inet_aton (const char * cp, struct in_addr * pin);

unsigned longinet_addr (const char * cp);

unsigned longinet_network (const char * cp);

char *inet_ntoa (struct in_addr in);

struct in_addrinet_makeaddr (u_long net, u_long lna);

unsigned longinet_lnaof (struct in_addr in);

unsigned longinet_netof (struct in_addr in);

DESCRIPTION The inet_aton , inet_addr and inet_network routines interpret character strings
representing numbers expressed in the Internet standard notation. The inet_aton
routine interprets the specified character string as an Internet address, placing
the address in the structure provided. It returns 1 if the string was successfully
interpreted, or 0 if the string is invalid. The inet_addr and inet_network functions
return numbers suitable for use as Internet addresses and Internet network
numbers, respectively. The inet_ntoa routine takes an Internet address and
returns an ASCII string representing the address in Internet notation. The
inet_makeaddr routine takes an Internet network number and a local network
address and constructs an Internet address from it. The inet_netof and inet_lnaof
routines break apart Internet host addresses, returning the network number and
local network address part, respectively.

All Internet addresses are returned in network order (bytes ordered from left to
right). All network numbers and local address parts are returned as machine
format integer values.

INTERNET
ADDRESSES

Values specified using the Internet notation take one of the following forms:

a.b.c.d
a.b.c
a.b
a

When four parts are specified, each is interpreted as a byte of data and assigned,
from left to right, to the four bytes of an Internet address.

When a three part address is specified, the last part is interpreted as a 16-bit
quantity and placed in the right-most two bytes of the network address. This

150 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions inet(3STDC)

makes the three part address format convenient for specifying Class B network
addresses such as: 128.net.host .

When a two part address is supplied, the last part is interpreted as a 24-bit
quantity and placed in the right—most three bytes of the network address. This
makes the two part address format convenient for specifying Class A network
addresses such as: net.host .

When only one part is given, the value is stored directly in the network address
without any byte rearrangement.

All numbers supplied as parts in Internet notation may be decimal, octal,
or hexadecimal, as specified in the C language (a leading 0x or 0X implies
hexadecimal; a leading 0 implies octal; otherwise, the number is interpreted
as decimal).

DIAGNOSTICS The constant INADDR_NONE is returned by inet_addr and inet_network for
malformed requests.

RESTRICTIONS The value INADDR_NONE (0xffffffff) is a valid broadcast address, but inet_addr
cannot return that value without indicating failure. The newer inet_aton function
does not share this problem. The problem of host byte ordering versus network
byte ordering is confusing. The string returned by inet_ntoa resides in a static
memory area, which means that this routine is not reentrant.

inet_addr should return a struct in_addr.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 151

inet_addr(3STDC) Standard C Library Functions

NAME inet, inet_aton, inet_addr, inet_network, inet_ntoa, inet_makeaddr, inet_lnaof,
inet_netof – Internet address manipulation routines

SYNOPSIS #include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
int inet_aton (const char * cp, struct in_addr * pin);

unsigned longinet_addr (const char * cp);

unsigned longinet_network (const char * cp);

char *inet_ntoa (struct in_addr in);

struct in_addrinet_makeaddr (u_long net, u_long lna);

unsigned longinet_lnaof (struct in_addr in);

unsigned longinet_netof (struct in_addr in);

DESCRIPTION The inet_aton , inet_addr and inet_network routines interpret character strings
representing numbers expressed in the Internet standard notation. The inet_aton
routine interprets the specified character string as an Internet address, placing
the address in the structure provided. It returns 1 if the string was successfully
interpreted, or 0 if the string is invalid. The inet_addr and inet_network functions
return numbers suitable for use as Internet addresses and Internet network
numbers, respectively. The inet_ntoa routine takes an Internet address and
returns an ASCII string representing the address in Internet notation. The
inet_makeaddr routine takes an Internet network number and a local network
address and constructs an Internet address from it. The inet_netof and inet_lnaof
routines break apart Internet host addresses, returning the network number and
local network address part, respectively.

All Internet addresses are returned in network order (bytes ordered from left to
right). All network numbers and local address parts are returned as machine
format integer values.

INTERNET
ADDRESSES

Values specified using the Internet notation take one of the following forms:

a.b.c.d
a.b.c
a.b
a

When four parts are specified, each is interpreted as a byte of data and assigned,
from left to right, to the four bytes of an Internet address.

When a three part address is specified, the last part is interpreted as a 16-bit
quantity and placed in the right-most two bytes of the network address. This

152 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions inet_addr(3STDC)

makes the three part address format convenient for specifying Class B network
addresses such as: 128.net.host .

When a two part address is supplied, the last part is interpreted as a 24-bit
quantity and placed in the right—most three bytes of the network address. This
makes the two part address format convenient for specifying Class A network
addresses such as: net.host .

When only one part is given, the value is stored directly in the network address
without any byte rearrangement.

All numbers supplied as parts in Internet notation may be decimal, octal,
or hexadecimal, as specified in the C language (a leading 0x or 0X implies
hexadecimal; a leading 0 implies octal; otherwise, the number is interpreted
as decimal).

DIAGNOSTICS The constant INADDR_NONE is returned by inet_addr and inet_network for
malformed requests.

RESTRICTIONS The value INADDR_NONE (0xffffffff) is a valid broadcast address, but inet_addr
cannot return that value without indicating failure. The newer inet_aton function
does not share this problem. The problem of host byte ordering versus network
byte ordering is confusing. The string returned by inet_ntoa resides in a static
memory area, which means that this routine is not reentrant.

inet_addr should return a struct in_addr.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 153

inet_aton(3STDC) Standard C Library Functions

NAME inet, inet_aton, inet_addr, inet_network, inet_ntoa, inet_makeaddr, inet_lnaof,
inet_netof – Internet address manipulation routines

SYNOPSIS #include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
int inet_aton (const char * cp, struct in_addr * pin);

unsigned longinet_addr (const char * cp);

unsigned longinet_network (const char * cp);

char *inet_ntoa (struct in_addr in);

struct in_addrinet_makeaddr (u_long net, u_long lna);

unsigned longinet_lnaof (struct in_addr in);

unsigned longinet_netof (struct in_addr in);

DESCRIPTION The inet_aton , inet_addr and inet_network routines interpret character strings
representing numbers expressed in the Internet standard notation. The inet_aton
routine interprets the specified character string as an Internet address, placing
the address in the structure provided. It returns 1 if the string was successfully
interpreted, or 0 if the string is invalid. The inet_addr and inet_network functions
return numbers suitable for use as Internet addresses and Internet network
numbers, respectively. The inet_ntoa routine takes an Internet address and
returns an ASCII string representing the address in Internet notation. The
inet_makeaddr routine takes an Internet network number and a local network
address and constructs an Internet address from it. The inet_netof and inet_lnaof
routines break apart Internet host addresses, returning the network number and
local network address part, respectively.

All Internet addresses are returned in network order (bytes ordered from left to
right). All network numbers and local address parts are returned as machine
format integer values.

INTERNET
ADDRESSES

Values specified using the Internet notation take one of the following forms:

a.b.c.d
a.b.c
a.b
a

When four parts are specified, each is interpreted as a byte of data and assigned,
from left to right, to the four bytes of an Internet address.

When a three part address is specified, the last part is interpreted as a 16-bit
quantity and placed in the right-most two bytes of the network address. This

154 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions inet_aton(3STDC)

makes the three part address format convenient for specifying Class B network
addresses such as: 128.net.host .

When a two part address is supplied, the last part is interpreted as a 24-bit
quantity and placed in the right—most three bytes of the network address. This
makes the two part address format convenient for specifying Class A network
addresses such as: net.host .

When only one part is given, the value is stored directly in the network address
without any byte rearrangement.

All numbers supplied as parts in Internet notation may be decimal, octal,
or hexadecimal, as specified in the C language (a leading 0x or 0X implies
hexadecimal; a leading 0 implies octal; otherwise, the number is interpreted
as decimal).

DIAGNOSTICS The constant INADDR_NONE is returned by inet_addr and inet_network for
malformed requests.

RESTRICTIONS The value INADDR_NONE (0xffffffff) is a valid broadcast address, but inet_addr
cannot return that value without indicating failure. The newer inet_aton function
does not share this problem. The problem of host byte ordering versus network
byte ordering is confusing. The string returned by inet_ntoa resides in a static
memory area, which means that this routine is not reentrant.

inet_addr should return a struct in_addr.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 155

inet_lnaof(3STDC) Standard C Library Functions

NAME inet, inet_aton, inet_addr, inet_network, inet_ntoa, inet_makeaddr, inet_lnaof,
inet_netof – Internet address manipulation routines

SYNOPSIS #include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
int inet_aton (const char * cp, struct in_addr * pin);

unsigned longinet_addr (const char * cp);

unsigned longinet_network (const char * cp);

char *inet_ntoa (struct in_addr in);

struct in_addrinet_makeaddr (u_long net, u_long lna);

unsigned longinet_lnaof (struct in_addr in);

unsigned longinet_netof (struct in_addr in);

DESCRIPTION The inet_aton , inet_addr and inet_network routines interpret character strings
representing numbers expressed in the Internet standard notation. The inet_aton
routine interprets the specified character string as an Internet address, placing
the address in the structure provided. It returns 1 if the string was successfully
interpreted, or 0 if the string is invalid. The inet_addr and inet_network functions
return numbers suitable for use as Internet addresses and Internet network
numbers, respectively. The inet_ntoa routine takes an Internet address and
returns an ASCII string representing the address in Internet notation. The
inet_makeaddr routine takes an Internet network number and a local network
address and constructs an Internet address from it. The inet_netof and inet_lnaof
routines break apart Internet host addresses, returning the network number and
local network address part, respectively.

All Internet addresses are returned in network order (bytes ordered from left to
right). All network numbers and local address parts are returned as machine
format integer values.

INTERNET
ADDRESSES

Values specified using the Internet notation take one of the following forms:

a.b.c.d
a.b.c
a.b
a

When four parts are specified, each is interpreted as a byte of data and assigned,
from left to right, to the four bytes of an Internet address.

When a three part address is specified, the last part is interpreted as a 16-bit
quantity and placed in the right-most two bytes of the network address. This

156 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions inet_lnaof(3STDC)

makes the three part address format convenient for specifying Class B network
addresses such as: 128.net.host .

When a two part address is supplied, the last part is interpreted as a 24-bit
quantity and placed in the right—most three bytes of the network address. This
makes the two part address format convenient for specifying Class A network
addresses such as: net.host .

When only one part is given, the value is stored directly in the network address
without any byte rearrangement.

All numbers supplied as parts in Internet notation may be decimal, octal,
or hexadecimal, as specified in the C language (a leading 0x or 0X implies
hexadecimal; a leading 0 implies octal; otherwise, the number is interpreted
as decimal).

DIAGNOSTICS The constant INADDR_NONE is returned by inet_addr and inet_network for
malformed requests.

RESTRICTIONS The value INADDR_NONE (0xffffffff) is a valid broadcast address, but inet_addr
cannot return that value without indicating failure. The newer inet_aton function
does not share this problem. The problem of host byte ordering versus network
byte ordering is confusing. The string returned by inet_ntoa resides in a static
memory area, which means that this routine is not reentrant.

inet_addr should return a struct in_addr.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 157

inet_makeaddr(3STDC) Standard C Library Functions

NAME inet, inet_aton, inet_addr, inet_network, inet_ntoa, inet_makeaddr, inet_lnaof,
inet_netof – Internet address manipulation routines

SYNOPSIS #include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
int inet_aton (const char * cp, struct in_addr * pin);

unsigned longinet_addr (const char * cp);

unsigned longinet_network (const char * cp);

char *inet_ntoa (struct in_addr in);

struct in_addrinet_makeaddr (u_long net, u_long lna);

unsigned longinet_lnaof (struct in_addr in);

unsigned longinet_netof (struct in_addr in);

DESCRIPTION The inet_aton , inet_addr and inet_network routines interpret character strings
representing numbers expressed in the Internet standard notation. The inet_aton
routine interprets the specified character string as an Internet address, placing
the address in the structure provided. It returns 1 if the string was successfully
interpreted, or 0 if the string is invalid. The inet_addr and inet_network functions
return numbers suitable for use as Internet addresses and Internet network
numbers, respectively. The inet_ntoa routine takes an Internet address and
returns an ASCII string representing the address in Internet notation. The
inet_makeaddr routine takes an Internet network number and a local network
address and constructs an Internet address from it. The inet_netof and inet_lnaof
routines break apart Internet host addresses, returning the network number and
local network address part, respectively.

All Internet addresses are returned in network order (bytes ordered from left to
right). All network numbers and local address parts are returned as machine
format integer values.

INTERNET
ADDRESSES

Values specified using the Internet notation take one of the following forms:

a.b.c.d
a.b.c
a.b
a

When four parts are specified, each is interpreted as a byte of data and assigned,
from left to right, to the four bytes of an Internet address.

When a three part address is specified, the last part is interpreted as a 16-bit
quantity and placed in the right-most two bytes of the network address. This

158 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions inet_makeaddr(3STDC)

makes the three part address format convenient for specifying Class B network
addresses such as: 128.net.host .

When a two part address is supplied, the last part is interpreted as a 24-bit
quantity and placed in the right—most three bytes of the network address. This
makes the two part address format convenient for specifying Class A network
addresses such as: net.host .

When only one part is given, the value is stored directly in the network address
without any byte rearrangement.

All numbers supplied as parts in Internet notation may be decimal, octal,
or hexadecimal, as specified in the C language (a leading 0x or 0X implies
hexadecimal; a leading 0 implies octal; otherwise, the number is interpreted
as decimal).

DIAGNOSTICS The constant INADDR_NONE is returned by inet_addr and inet_network for
malformed requests.

RESTRICTIONS The value INADDR_NONE (0xffffffff) is a valid broadcast address, but inet_addr
cannot return that value without indicating failure. The newer inet_aton function
does not share this problem. The problem of host byte ordering versus network
byte ordering is confusing. The string returned by inet_ntoa resides in a static
memory area, which means that this routine is not reentrant.

inet_addr should return a struct in_addr.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 159

inet_netof(3STDC) Standard C Library Functions

NAME inet, inet_aton, inet_addr, inet_network, inet_ntoa, inet_makeaddr, inet_lnaof,
inet_netof – Internet address manipulation routines

SYNOPSIS #include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
int inet_aton (const char * cp, struct in_addr * pin);

unsigned longinet_addr (const char * cp);

unsigned longinet_network (const char * cp);

char *inet_ntoa (struct in_addr in);

struct in_addrinet_makeaddr (u_long net, u_long lna);

unsigned longinet_lnaof (struct in_addr in);

unsigned longinet_netof (struct in_addr in);

DESCRIPTION The inet_aton , inet_addr and inet_network routines interpret character strings
representing numbers expressed in the Internet standard notation. The inet_aton
routine interprets the specified character string as an Internet address, placing
the address in the structure provided. It returns 1 if the string was successfully
interpreted, or 0 if the string is invalid. The inet_addr and inet_network functions
return numbers suitable for use as Internet addresses and Internet network
numbers, respectively. The inet_ntoa routine takes an Internet address and
returns an ASCII string representing the address in Internet notation. The
inet_makeaddr routine takes an Internet network number and a local network
address and constructs an Internet address from it. The inet_netof and inet_lnaof
routines break apart Internet host addresses, returning the network number and
local network address part, respectively.

All Internet addresses are returned in network order (bytes ordered from left to
right). All network numbers and local address parts are returned as machine
format integer values.

INTERNET
ADDRESSES

Values specified using the Internet notation take one of the following forms:

a.b.c.d
a.b.c
a.b
a

When four parts are specified, each is interpreted as a byte of data and assigned,
from left to right, to the four bytes of an Internet address.

When a three part address is specified, the last part is interpreted as a 16-bit
quantity and placed in the right-most two bytes of the network address. This

160 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions inet_netof(3STDC)

makes the three part address format convenient for specifying Class B network
addresses such as: 128.net.host .

When a two part address is supplied, the last part is interpreted as a 24-bit
quantity and placed in the right—most three bytes of the network address. This
makes the two part address format convenient for specifying Class A network
addresses such as: net.host .

When only one part is given, the value is stored directly in the network address
without any byte rearrangement.

All numbers supplied as parts in Internet notation may be decimal, octal,
or hexadecimal, as specified in the C language (a leading 0x or 0X implies
hexadecimal; a leading 0 implies octal; otherwise, the number is interpreted
as decimal).

DIAGNOSTICS The constant INADDR_NONE is returned by inet_addr and inet_network for
malformed requests.

RESTRICTIONS The value INADDR_NONE (0xffffffff) is a valid broadcast address, but inet_addr
cannot return that value without indicating failure. The newer inet_aton function
does not share this problem. The problem of host byte ordering versus network
byte ordering is confusing. The string returned by inet_ntoa resides in a static
memory area, which means that this routine is not reentrant.

inet_addr should return a struct in_addr.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 161

inet_network(3STDC) Standard C Library Functions

NAME inet, inet_aton, inet_addr, inet_network, inet_ntoa, inet_makeaddr, inet_lnaof,
inet_netof – Internet address manipulation routines

SYNOPSIS #include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
int inet_aton (const char * cp, struct in_addr * pin);

unsigned longinet_addr (const char * cp);

unsigned longinet_network (const char * cp);

char *inet_ntoa (struct in_addr in);

struct in_addrinet_makeaddr (u_long net, u_long lna);

unsigned longinet_lnaof (struct in_addr in);

unsigned longinet_netof (struct in_addr in);

DESCRIPTION The inet_aton , inet_addr and inet_network routines interpret character strings
representing numbers expressed in the Internet standard notation. The inet_aton
routine interprets the specified character string as an Internet address, placing
the address in the structure provided. It returns 1 if the string was successfully
interpreted, or 0 if the string is invalid. The inet_addr and inet_network functions
return numbers suitable for use as Internet addresses and Internet network
numbers, respectively. The inet_ntoa routine takes an Internet address and
returns an ASCII string representing the address in Internet notation. The
inet_makeaddr routine takes an Internet network number and a local network
address and constructs an Internet address from it. The inet_netof and inet_lnaof
routines break apart Internet host addresses, returning the network number and
local network address part, respectively.

All Internet addresses are returned in network order (bytes ordered from left to
right). All network numbers and local address parts are returned as machine
format integer values.

INTERNET
ADDRESSES

Values specified using the Internet notation take one of the following forms:

a.b.c.d
a.b.c
a.b
a

When four parts are specified, each is interpreted as a byte of data and assigned,
from left to right, to the four bytes of an Internet address.

When a three part address is specified, the last part is interpreted as a 16-bit
quantity and placed in the right-most two bytes of the network address. This

162 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions inet_network(3STDC)

makes the three part address format convenient for specifying Class B network
addresses such as: 128.net.host .

When a two part address is supplied, the last part is interpreted as a 24-bit
quantity and placed in the right—most three bytes of the network address. This
makes the two part address format convenient for specifying Class A network
addresses such as: net.host .

When only one part is given, the value is stored directly in the network address
without any byte rearrangement.

All numbers supplied as parts in Internet notation may be decimal, octal,
or hexadecimal, as specified in the C language (a leading 0x or 0X implies
hexadecimal; a leading 0 implies octal; otherwise, the number is interpreted
as decimal).

DIAGNOSTICS The constant INADDR_NONE is returned by inet_addr and inet_network for
malformed requests.

RESTRICTIONS The value INADDR_NONE (0xffffffff) is a valid broadcast address, but inet_addr
cannot return that value without indicating failure. The newer inet_aton function
does not share this problem. The problem of host byte ordering versus network
byte ordering is confusing. The string returned by inet_ntoa resides in a static
memory area, which means that this routine is not reentrant.

inet_addr should return a struct in_addr.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 163

inet_ntoa(3STDC) Standard C Library Functions

NAME inet, inet_aton, inet_addr, inet_network, inet_ntoa, inet_makeaddr, inet_lnaof,
inet_netof – Internet address manipulation routines

SYNOPSIS #include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
int inet_aton (const char * cp, struct in_addr * pin);

unsigned longinet_addr (const char * cp);

unsigned longinet_network (const char * cp);

char *inet_ntoa (struct in_addr in);

struct in_addrinet_makeaddr (u_long net, u_long lna);

unsigned longinet_lnaof (struct in_addr in);

unsigned longinet_netof (struct in_addr in);

DESCRIPTION The inet_aton , inet_addr and inet_network routines interpret character strings
representing numbers expressed in the Internet standard notation. The inet_aton
routine interprets the specified character string as an Internet address, placing
the address in the structure provided. It returns 1 if the string was successfully
interpreted, or 0 if the string is invalid. The inet_addr and inet_network functions
return numbers suitable for use as Internet addresses and Internet network
numbers, respectively. The inet_ntoa routine takes an Internet address and
returns an ASCII string representing the address in Internet notation. The
inet_makeaddr routine takes an Internet network number and a local network
address and constructs an Internet address from it. The inet_netof and inet_lnaof
routines break apart Internet host addresses, returning the network number and
local network address part, respectively.

All Internet addresses are returned in network order (bytes ordered from left to
right). All network numbers and local address parts are returned as machine
format integer values.

INTERNET
ADDRESSES

Values specified using the Internet notation take one of the following forms:

a.b.c.d
a.b.c
a.b
a

When four parts are specified, each is interpreted as a byte of data and assigned,
from left to right, to the four bytes of an Internet address.

When a three part address is specified, the last part is interpreted as a 16-bit
quantity and placed in the right-most two bytes of the network address. This

164 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions inet_ntoa(3STDC)

makes the three part address format convenient for specifying Class B network
addresses such as: 128.net.host .

When a two part address is supplied, the last part is interpreted as a 24-bit
quantity and placed in the right—most three bytes of the network address. This
makes the two part address format convenient for specifying Class A network
addresses such as: net.host .

When only one part is given, the value is stored directly in the network address
without any byte rearrangement.

All numbers supplied as parts in Internet notation may be decimal, octal,
or hexadecimal, as specified in the C language (a leading 0x or 0X implies
hexadecimal; a leading 0 implies octal; otherwise, the number is interpreted
as decimal).

DIAGNOSTICS The constant INADDR_NONE is returned by inet_addr and inet_network for
malformed requests.

RESTRICTIONS The value INADDR_NONE (0xffffffff) is a valid broadcast address, but inet_addr
cannot return that value without indicating failure. The newer inet_aton function
does not share this problem. The problem of host byte ordering versus network
byte ordering is confusing. The string returned by inet_ntoa resides in a static
memory area, which means that this routine is not reentrant.

inet_addr should return a struct in_addr.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 165

initstate(3STDC) Standard C Library Functions

NAME random, srandom, initstate, setstate – better random number generator

SYNOPSIS #include <stdlib.h>
long random (void);

void srandom (unsigned seed);

char *initstate (unsigned seed, char * state, int n);

char *setstate (char * state);

DESCRIPTION The random function uses a non-linear additive feedback random number
generator employing a default table of size 31 long integers to return successive
pseudo-random numbers in the range from 0 to 2 31 −1 . The period of this
random number generator is very large, approximately 16×(2 31 −1) .

The random/srandom functions have (almost) the same calling sequence and
initialization properties as rand/srand (3STDC) The difference is that rand
produces a much less random sequence — in fact, the low dozen bits generated
by rand go through a cyclic pattern. All the bits generated by random are usable.
For example, random &01 will produce a random binary value.

Unlike srand , srandom does not return the old seed; the reason being that
the amount of state information used is much more than a single word (two
other routines are provided to deal with restarting/changing random number
generators). Like rand , however, random will by default produce a sequence of
numbers that can be duplicated by calling srandom with 1 as the seed.

The initstate routine allows a state array, passed as an argument, to be initialized
for future use. The size of the state array (in bytes) is used by initstate to decide
how sophisticated a random number generator it should use — the bigger the
state, the better the random numbers will be. (Current "optimal" values for the
amount of state information are 8, 32, 64, 128, and 256 bytes; other amounts will
be rounded down to the nearest known amount. Using less than 8 bytes will
cause an error.) The seed for the initialization (which specifies a starting point for
the random number sequence, and provides for restarting at the same point)
is also an argument. The initstate function returns a pointer to the previous
state information array.

Once a state has been initialized, the setstate routine provides for rapid switching
between states. The setstate function returns a pointer to the previous state array;
its argument state array is used for further random number generation until
the next call to initstate or setstate .

Once a state array has been initialized, it may be restarted at a different point
either by calling initstate (with the desired seed, the state array, and its size) or by
calling both setstate (with the state array) and srandom (with the desired seed).

166 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions initstate(3STDC)

The advantage of calling both setstate and srandom is that the size of the state
array does not have to be remembered after it is initialized.

With 256 bytes of state information, the period of the random number generator
is greater than 2 690 , which should be sufficient for most purposes.

If initstate has not been called, then random behaves as though initstate had been
called with seed=1 and size=128 .

If initstate is called with size<8 , it returns NULLand random uses a simple linear
congruential random number generator.

DIAGNOSTICS If initstate is called with less than 8 bytes of state information, or if setstate detects
that the state information has been garbled, error messages are printed to the
standard error output.

NOTE Though these functions are reentrant, the state information is global to the actor.
Therefore, repeatability of a given suite of number will not be experienced
by several threads in parallel. For a reentrent repeatability of suites, see
rand_r(3STDC) .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO rand (3STDC) , rand_r (3STDC)

RESTRICTIONS random operates at about 2/3 the speed of rand (3STDC).

Last modified December 1999 ChorusOS 4.0 167

isalnum(3STDC) Standard C Library Functions

NAME ctype, isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct,
isprint, isgraph, iscntrl, tolower, toupper – classify characters

SYNOPSIS All functions described in this page have the same syntax.

#include <ctype.h>
int isalpha (int c);

DESCRIPTION These macros classify character-coded integer values by looking them up in a
table. Each is a predicate returning nonzero for true, or zero for false.
isalpha c is a letter.

isupper c is an upper-case letter.

islower c is a lower-case letter.

isdigit c is a digit [0-9].

isxdigit c is a hexadecimal digit [0-9], [A-F] or [a-f].

isalnum c is an alphanumeric (letter or digit).

isspace c is a space, tab, carriage return, new-line, vertical
tab, or form-feed.

ispunct c is a punctuation character (neither control nor
alphanumeric).

isprint c is a printing character, code 040 (space) to 0176
(tilde).

isgraph c is a printing character, like isprint except for
space.

iscntrl c is a delete character (0177) or an ordinary
control character (less than 040).

The conversion functions and macros translate a character from lowercase
(uppercase) to uppercase (lowercase).
tolower If c is a character for which isupper is true and

there is a corresponding lowercase character,
tolower returns the corresponding lowercase
character. Otherwise, the character is returned
unchanged.

168 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions isalnum(3STDC)

toupper If c is a character for which islower is true and
there is a corresponding uppercase character,
toupper returns the corresponding uppercase
character. Otherwise, the character is returned
unchanged.

DIAGNOSTICS If the argument to any of these macros is not in the domain of the function, the
result is undefined.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 169

isalpha(3STDC) Standard C Library Functions

NAME ctype, isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct,
isprint, isgraph, iscntrl, tolower, toupper – classify characters

SYNOPSIS All functions described in this page have the same syntax.

#include <ctype.h>
int isalpha (int c);

DESCRIPTION These macros classify character-coded integer values by looking them up in a
table. Each is a predicate returning nonzero for true, or zero for false.
isalpha c is a letter.

isupper c is an upper-case letter.

islower c is a lower-case letter.

isdigit c is a digit [0-9].

isxdigit c is a hexadecimal digit [0-9], [A-F] or [a-f].

isalnum c is an alphanumeric (letter or digit).

isspace c is a space, tab, carriage return, new-line, vertical
tab, or form-feed.

ispunct c is a punctuation character (neither control nor
alphanumeric).

isprint c is a printing character, code 040 (space) to 0176
(tilde).

isgraph c is a printing character, like isprint except for
space.

iscntrl c is a delete character (0177) or an ordinary
control character (less than 040).

The conversion functions and macros translate a character from lowercase
(uppercase) to uppercase (lowercase).
tolower If c is a character for which isupper is true and

there is a corresponding lowercase character,
tolower returns the corresponding lowercase
character. Otherwise, the character is returned
unchanged.

170 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions isalpha(3STDC)

toupper If c is a character for which islower is true and
there is a corresponding uppercase character,
toupper returns the corresponding uppercase
character. Otherwise, the character is returned
unchanged.

DIAGNOSTICS If the argument to any of these macros is not in the domain of the function, the
result is undefined.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 171

isascii(3STDC) Standard C Library Functions

NAME isascii – test for ASCII character

SYNOPSIS #include <ctype.h>
int isascii (int c);

DESCRIPTION Theisascii function tests for an ASCII character, which is any character with a
value less than or equal to 0177.

The isascii function returns 1 if number is ASCII, otherwise 0.

The validity of the test is limited to the defaut locale. If another locale is
currently in effect, the semantical correctness of the result is unspecified.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO ctype (3STDC)

STANDARDS Due to its dubious validity when used in conjunction with setlocale, this function
is no longer part of ANSI-C .

172 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions isatty(3STDC)

NAME isatty – check if a file descriptor is associated with a terminal

SYNOPSIS #include <unistd.h>
int isatty (int fd);

DESCRIPTION The isatty function checks whether or not the file descriptor soecified by fd is
associated with a terminal device.

RETURN VALUES The isattyfunction returns 1 if the file descriptor is associated with a terminal
device. It returns 0 otherwise.

NOTE In ChorusOS, isatty always returns 1 on a socket file descriptor.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO ioctl (2POSIX)

Last modified December 1999 ChorusOS 4.0 173

iscntrl(3STDC) Standard C Library Functions

NAME ctype, isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct,
isprint, isgraph, iscntrl, tolower, toupper – classify characters

SYNOPSIS All functions described in this page have the same syntax.

#include <ctype.h>
int isalpha (int c);

DESCRIPTION These macros classify character-coded integer values by looking them up in a
table. Each is a predicate returning nonzero for true, or zero for false.
isalpha c is a letter.

isupper c is an upper-case letter.

islower c is a lower-case letter.

isdigit c is a digit [0-9].

isxdigit c is a hexadecimal digit [0-9], [A-F] or [a-f].

isalnum c is an alphanumeric (letter or digit).

isspace c is a space, tab, carriage return, new-line, vertical
tab, or form-feed.

ispunct c is a punctuation character (neither control nor
alphanumeric).

isprint c is a printing character, code 040 (space) to 0176
(tilde).

isgraph c is a printing character, like isprint except for
space.

iscntrl c is a delete character (0177) or an ordinary
control character (less than 040).

The conversion functions and macros translate a character from lowercase
(uppercase) to uppercase (lowercase).
tolower If c is a character for which isupper is true and

there is a corresponding lowercase character,
tolower returns the corresponding lowercase
character. Otherwise, the character is returned
unchanged.

174 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions iscntrl(3STDC)

toupper If c is a character for which islower is true and
there is a corresponding uppercase character,
toupper returns the corresponding uppercase
character. Otherwise, the character is returned
unchanged.

DIAGNOSTICS If the argument to any of these macros is not in the domain of the function, the
result is undefined.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 175

isdigit(3STDC) Standard C Library Functions

NAME ctype, isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct,
isprint, isgraph, iscntrl, tolower, toupper – classify characters

SYNOPSIS All functions described in this page have the same syntax.

#include <ctype.h>
int isalpha (int c);

DESCRIPTION These macros classify character-coded integer values by looking them up in a
table. Each is a predicate returning nonzero for true, or zero for false.
isalpha c is a letter.

isupper c is an upper-case letter.

islower c is a lower-case letter.

isdigit c is a digit [0-9].

isxdigit c is a hexadecimal digit [0-9], [A-F] or [a-f].

isalnum c is an alphanumeric (letter or digit).

isspace c is a space, tab, carriage return, new-line, vertical
tab, or form-feed.

ispunct c is a punctuation character (neither control nor
alphanumeric).

isprint c is a printing character, code 040 (space) to 0176
(tilde).

isgraph c is a printing character, like isprint except for
space.

iscntrl c is a delete character (0177) or an ordinary
control character (less than 040).

The conversion functions and macros translate a character from lowercase
(uppercase) to uppercase (lowercase).
tolower If c is a character for which isupper is true and

there is a corresponding lowercase character,
tolower returns the corresponding lowercase
character. Otherwise, the character is returned
unchanged.

176 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions isdigit(3STDC)

toupper If c is a character for which islower is true and
there is a corresponding uppercase character,
toupper returns the corresponding uppercase
character. Otherwise, the character is returned
unchanged.

DIAGNOSTICS If the argument to any of these macros is not in the domain of the function, the
result is undefined.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 177

isgraph(3STDC) Standard C Library Functions

NAME ctype, isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct,
isprint, isgraph, iscntrl, tolower, toupper – classify characters

SYNOPSIS All functions described in this page have the same syntax.

#include <ctype.h>
int isalpha (int c);

DESCRIPTION These macros classify character-coded integer values by looking them up in a
table. Each is a predicate returning nonzero for true, or zero for false.
isalpha c is a letter.

isupper c is an upper-case letter.

islower c is a lower-case letter.

isdigit c is a digit [0-9].

isxdigit c is a hexadecimal digit [0-9], [A-F] or [a-f].

isalnum c is an alphanumeric (letter or digit).

isspace c is a space, tab, carriage return, new-line, vertical
tab, or form-feed.

ispunct c is a punctuation character (neither control nor
alphanumeric).

isprint c is a printing character, code 040 (space) to 0176
(tilde).

isgraph c is a printing character, like isprint except for
space.

iscntrl c is a delete character (0177) or an ordinary
control character (less than 040).

The conversion functions and macros translate a character from lowercase
(uppercase) to uppercase (lowercase).
tolower If c is a character for which isupper is true and

there is a corresponding lowercase character,
tolower returns the corresponding lowercase
character. Otherwise, the character is returned
unchanged.

178 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions isgraph(3STDC)

toupper If c is a character for which islower is true and
there is a corresponding uppercase character,
toupper returns the corresponding uppercase
character. Otherwise, the character is returned
unchanged.

DIAGNOSTICS If the argument to any of these macros is not in the domain of the function, the
result is undefined.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 179

isinf(3STDC) Standard C Library Functions

NAME isinf, isnan – test for infinity or not-a-number

SYNOPSIS #include <math.h>
int isinf (double number);

int isnan (double number);

DESCRIPTION The isinf function returns 1 if number is “infinite”, otherwise 0.

The isnan function returns 1 if number is “not-a-number”, otherwise 0.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

180 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions islower(3STDC)

NAME ctype, isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct,
isprint, isgraph, iscntrl, tolower, toupper – classify characters

SYNOPSIS All functions described in this page have the same syntax.

#include <ctype.h>
int isalpha (int c);

DESCRIPTION These macros classify character-coded integer values by looking them up in a
table. Each is a predicate returning nonzero for true, or zero for false.
isalpha c is a letter.

isupper c is an upper-case letter.

islower c is a lower-case letter.

isdigit c is a digit [0-9].

isxdigit c is a hexadecimal digit [0-9], [A-F] or [a-f].

isalnum c is an alphanumeric (letter or digit).

isspace c is a space, tab, carriage return, new-line, vertical
tab, or form-feed.

ispunct c is a punctuation character (neither control nor
alphanumeric).

isprint c is a printing character, code 040 (space) to 0176
(tilde).

isgraph c is a printing character, like isprint except for
space.

iscntrl c is a delete character (0177) or an ordinary
control character (less than 040).

The conversion functions and macros translate a character from lowercase
(uppercase) to uppercase (lowercase).
tolower If c is a character for which isupper is true and

there is a corresponding lowercase character,
tolower returns the corresponding lowercase
character. Otherwise, the character is returned
unchanged.

Last modified December 1999 ChorusOS 4.0 181

islower(3STDC) Standard C Library Functions

toupper If c is a character for which islower is true and
there is a corresponding uppercase character,
toupper returns the corresponding uppercase
character. Otherwise, the character is returned
unchanged.

DIAGNOSTICS If the argument to any of these macros is not in the domain of the function, the
result is undefined.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

182 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions isnan(3STDC)

NAME isinf, isnan – test for infinity or not-a-number

SYNOPSIS #include <math.h>
int isinf (double number);

int isnan (double number);

DESCRIPTION The isinf function returns 1 if number is “infinite”, otherwise 0.

The isnan function returns 1 if number is “not-a-number”, otherwise 0.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 183

isprint(3STDC) Standard C Library Functions

NAME ctype, isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct,
isprint, isgraph, iscntrl, tolower, toupper – classify characters

SYNOPSIS All functions described in this page have the same syntax.

#include <ctype.h>
int isalpha (int c);

DESCRIPTION These macros classify character-coded integer values by looking them up in a
table. Each is a predicate returning nonzero for true, or zero for false.
isalpha c is a letter.

isupper c is an upper-case letter.

islower c is a lower-case letter.

isdigit c is a digit [0-9].

isxdigit c is a hexadecimal digit [0-9], [A-F] or [a-f].

isalnum c is an alphanumeric (letter or digit).

isspace c is a space, tab, carriage return, new-line, vertical
tab, or form-feed.

ispunct c is a punctuation character (neither control nor
alphanumeric).

isprint c is a printing character, code 040 (space) to 0176
(tilde).

isgraph c is a printing character, like isprint except for
space.

iscntrl c is a delete character (0177) or an ordinary
control character (less than 040).

The conversion functions and macros translate a character from lowercase
(uppercase) to uppercase (lowercase).
tolower If c is a character for which isupper is true and

there is a corresponding lowercase character,
tolower returns the corresponding lowercase
character. Otherwise, the character is returned
unchanged.

184 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions isprint(3STDC)

toupper If c is a character for which islower is true and
there is a corresponding uppercase character,
toupper returns the corresponding uppercase
character. Otherwise, the character is returned
unchanged.

DIAGNOSTICS If the argument to any of these macros is not in the domain of the function, the
result is undefined.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 185

ispunct(3STDC) Standard C Library Functions

NAME ctype, isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct,
isprint, isgraph, iscntrl, tolower, toupper – classify characters

SYNOPSIS All functions described in this page have the same syntax.

#include <ctype.h>
int isalpha (int c);

DESCRIPTION These macros classify character-coded integer values by looking them up in a
table. Each is a predicate returning nonzero for true, or zero for false.
isalpha c is a letter.

isupper c is an upper-case letter.

islower c is a lower-case letter.

isdigit c is a digit [0-9].

isxdigit c is a hexadecimal digit [0-9], [A-F] or [a-f].

isalnum c is an alphanumeric (letter or digit).

isspace c is a space, tab, carriage return, new-line, vertical
tab, or form-feed.

ispunct c is a punctuation character (neither control nor
alphanumeric).

isprint c is a printing character, code 040 (space) to 0176
(tilde).

isgraph c is a printing character, like isprint except for
space.

iscntrl c is a delete character (0177) or an ordinary
control character (less than 040).

The conversion functions and macros translate a character from lowercase
(uppercase) to uppercase (lowercase).
tolower If c is a character for which isupper is true and

there is a corresponding lowercase character,
tolower returns the corresponding lowercase
character. Otherwise, the character is returned
unchanged.

186 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions ispunct(3STDC)

toupper If c is a character for which islower is true and
there is a corresponding uppercase character,
toupper returns the corresponding uppercase
character. Otherwise, the character is returned
unchanged.

DIAGNOSTICS If the argument to any of these macros is not in the domain of the function, the
result is undefined.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 187

isspace(3STDC) Standard C Library Functions

NAME ctype, isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct,
isprint, isgraph, iscntrl, tolower, toupper – classify characters

SYNOPSIS All functions described in this page have the same syntax.

#include <ctype.h>
int isalpha (int c);

DESCRIPTION These macros classify character-coded integer values by looking them up in a
table. Each is a predicate returning nonzero for true, or zero for false.
isalpha c is a letter.

isupper c is an upper-case letter.

islower c is a lower-case letter.

isdigit c is a digit [0-9].

isxdigit c is a hexadecimal digit [0-9], [A-F] or [a-f].

isalnum c is an alphanumeric (letter or digit).

isspace c is a space, tab, carriage return, new-line, vertical
tab, or form-feed.

ispunct c is a punctuation character (neither control nor
alphanumeric).

isprint c is a printing character, code 040 (space) to 0176
(tilde).

isgraph c is a printing character, like isprint except for
space.

iscntrl c is a delete character (0177) or an ordinary
control character (less than 040).

The conversion functions and macros translate a character from lowercase
(uppercase) to uppercase (lowercase).
tolower If c is a character for which isupper is true and

there is a corresponding lowercase character,
tolower returns the corresponding lowercase
character. Otherwise, the character is returned
unchanged.

188 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions isspace(3STDC)

toupper If c is a character for which islower is true and
there is a corresponding uppercase character,
toupper returns the corresponding uppercase
character. Otherwise, the character is returned
unchanged.

DIAGNOSTICS If the argument to any of these macros is not in the domain of the function, the
result is undefined.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 189

isupper(3STDC) Standard C Library Functions

NAME ctype, isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct,
isprint, isgraph, iscntrl, tolower, toupper – classify characters

SYNOPSIS All functions described in this page have the same syntax.

#include <ctype.h>
int isalpha (int c);

DESCRIPTION These macros classify character-coded integer values by looking them up in a
table. Each is a predicate returning nonzero for true, or zero for false.
isalpha c is a letter.

isupper c is an upper-case letter.

islower c is a lower-case letter.

isdigit c is a digit [0-9].

isxdigit c is a hexadecimal digit [0-9], [A-F] or [a-f].

isalnum c is an alphanumeric (letter or digit).

isspace c is a space, tab, carriage return, new-line, vertical
tab, or form-feed.

ispunct c is a punctuation character (neither control nor
alphanumeric).

isprint c is a printing character, code 040 (space) to 0176
(tilde).

isgraph c is a printing character, like isprint except for
space.

iscntrl c is a delete character (0177) or an ordinary
control character (less than 040).

The conversion functions and macros translate a character from lowercase
(uppercase) to uppercase (lowercase).
tolower If c is a character for which isupper is true and

there is a corresponding lowercase character,
tolower returns the corresponding lowercase
character. Otherwise, the character is returned
unchanged.

190 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions isupper(3STDC)

toupper If c is a character for which islower is true and
there is a corresponding uppercase character,
toupper returns the corresponding uppercase
character. Otherwise, the character is returned
unchanged.

DIAGNOSTICS If the argument to any of these macros is not in the domain of the function, the
result is undefined.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 191

isxdigit(3STDC) Standard C Library Functions

NAME ctype, isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct,
isprint, isgraph, iscntrl, tolower, toupper – classify characters

SYNOPSIS All functions described in this page have the same syntax.

#include <ctype.h>
int isalpha (int c);

DESCRIPTION These macros classify character-coded integer values by looking them up in a
table. Each is a predicate returning nonzero for true, or zero for false.
isalpha c is a letter.

isupper c is an upper-case letter.

islower c is a lower-case letter.

isdigit c is a digit [0-9].

isxdigit c is a hexadecimal digit [0-9], [A-F] or [a-f].

isalnum c is an alphanumeric (letter or digit).

isspace c is a space, tab, carriage return, new-line, vertical
tab, or form-feed.

ispunct c is a punctuation character (neither control nor
alphanumeric).

isprint c is a printing character, code 040 (space) to 0176
(tilde).

isgraph c is a printing character, like isprint except for
space.

iscntrl c is a delete character (0177) or an ordinary
control character (less than 040).

The conversion functions and macros translate a character from lowercase
(uppercase) to uppercase (lowercase).
tolower If c is a character for which isupper is true and

there is a corresponding lowercase character,
tolower returns the corresponding lowercase
character. Otherwise, the character is returned
unchanged.

192 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions isxdigit(3STDC)

toupper If c is a character for which islower is true and
there is a corresponding uppercase character,
toupper returns the corresponding uppercase
character. Otherwise, the character is returned
unchanged.

DIAGNOSTICS If the argument to any of these macros is not in the domain of the function, the
result is undefined.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 193

labs(3STDC) Standard C Library Functions

NAME labs – return the absolute value of a long integer

SYNOPSIS #include <stdlib.h>
long labs (long j);

DESCRIPTION The labs function returns the absolute value of the long integer j.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO abs (3STDC)

STANDARDS The labs function conforms to ANSI-C .

RESTRICTIONS The absolute value of the highest negative integer remains negative.

194 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions _ldexp(3STDC)

NAME ldexp, _ldexp – multiply floating-point number by integral power of 2

SYNOPSIS #include <math.h>
double ldexp (double x, int exp);

double _ldexp (double x, int exp);

DESCRIPTION The ldexp function multiplies a floating-point number by an integral power of
2. The _ldexp function implements the real floating-point calculation; ldexp
performs the range checking and calls _ldexp. It is therefore faster to call _ldexp if
the arguments are known to be within the function’s domain.

RETURN VALUES The ldexp function returns the value of x times 2 raised to the power exp :

x * 2 exp

If the resultant value would cause an overflow, the global variable errno is set to
ERANGE and the value HUGE is returned.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO modf (3STDC)

STANDARDS The ldexp function conforms to ANSI-C .

Last modified December 1999 ChorusOS 4.0 195

ldexp(3STDC) Standard C Library Functions

NAME ldexp, _ldexp – multiply floating-point number by integral power of 2

SYNOPSIS #include <math.h>
double ldexp (double x, int exp);

double _ldexp (double x, int exp);

DESCRIPTION The ldexp function multiplies a floating-point number by an integral power of
2. The _ldexp function implements the real floating-point calculation; ldexp
performs the range checking and calls _ldexp. It is therefore faster to call _ldexp if
the arguments are known to be within the function’s domain.

RETURN VALUES The ldexp function returns the value of x times 2 raised to the power exp :

x * 2 exp

If the resultant value would cause an overflow, the global variable errno is set to
ERANGE and the value HUGE is returned.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO modf (3STDC)

STANDARDS The ldexp function conforms to ANSI-C .

196 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions ldiv(3STDC)

NAME ldiv – return quotient and remainder from division

SYNOPSIS #include <stdlib.h>
ldiv_t ldiv (long num, long denom);

DESCRIPTION The ldiv function computes the value num/denom and returns the quotient and
remainder in a structure named ldiv_t which contains two long integer members
named quot and rem.

When an input of zero is applied to the denom parameter, the behavior of the
function is undefined.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO div (3STDC)

STANDARDS The ldiv function conforms to ANSI-C .

Last modified December 1999 ChorusOS 4.0 197

localtime(3STDC) Standard C Library Functions

NAME ctime, asctime, difftime, gmtime, localtime, mktime – transform binary date and
time value to ASCII

SYNOPSIS #include <time.h>
struct tm * localtime (const time_t * clock);

struct tm * gmtime (const time_t * clock);

char *ctime (const time_t * clock);

char *asctime (const struct tm * tm);

time_t mktime (struct tm * tm);

double difftime (time_t time1, time_t time0);

DESCRIPTION The ctime , gmtime and localtime functions take as an argument a time value
representing the time in seconds since the Epoch (00:00:00 UTC, January 1, 1970).

The localtime function converts the time value pointed to by clock , and returns
a pointer to a struct tm (described below) which contains the broken-out time
information for the value, after adjusting for the current time zone (and any other
factors such as Daylight Saving Time). Time zone adjustments are performed
as specified by the TZ environment variable (see tzset (3STDC). The function
localtime uses tzset (3STDC) to initialize time conversion information if tzset
(3STDC) has not already been called by the process.

The gmtime function also converts the time value, but without any time zone
adjustment, and returns a pointer to a tm structure (described below).

The ctime function adjusts the time value for the current time zone in the same
manner as localtime , and returns a pointer to a 26-character string of the form:
Thu Nov 24 18:22:48 1986.

The asctime function converts the broken—down time in the structure tm pointed
to by *tm to the form shown in the example above.

The mktime function converts the broken-down time, expressed as local time,
in the structure pointed to by tm into a time value with the same encoding as
that of the values returned by the time (3STDC) function; that is, seconds
from the Epoch, UTC.

The original values of the tm_wday and tm_yday components of the structure
are ignored, and the original values of the other components are not restricted
to their normal ranges. (A positive or zero value for tm_isdst causes mktime to
presume initially that summer time (for example, Daylight Saving Time) is or is
not in effect for the time specified, respectively. A negative value for tm_isdst
causes the mktime function to attempt to define whether summer time is in
effect for the time specified.)

198 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions localtime(3STDC)

On successful completion, the values of the tm_wday and tm_yday components of
the structure are set appropriately, and the other components are set to represent
the calendar time specified, but with their values forced to their normal ranges;
the final value of tm_mday is not set until tm_mon and tm_year are determined.
The mktime function returns the calendar time specified; if the calendar time
cannot be represented, it returns –1;

The difftime function returns the difference between two calendar times, (time1 –
time0), expressed in seconds.

External declarations as well as the tm structure definition are in the time.h
include file. The tm structure includes at least the following fields:

int tm_sec; /* seconds (0 - 60) */
int tm_min; /* minutes (0 - 59) */
int tm_hour; /* hours (0 - 23) */
int tm_mday; /* day of month (1 - 31) */
int tm_mon; /* month of year (0 - 11) */
int tm_year; /* year – 1900 */
int tm_wday; /* day of week (Sunday = 0) */
int tm_yday; /* day of year (0 - 365) */
int tm_isdst; /* is summer time in effect? */
char *tm_zone; /* abbreviation of timezone name */
long tm_gmtoff; /* offset from UTC in seconds */

The field tm_isdst is non-zero if summer time is in effect.

The field tm_gmtoff is the offset (in seconds) of the time represented from UTC,
with positive values indicating east of the Prime Meridian.

NOTES asctime(3STDC) , ctime(3STDC) , localtime(3STDC) and gmtime(3STDC) return
their result in a global variable which make them difficult to use in a
multithreaded program. asctime_r(3STDC) , ctime_r(3STDC) , localtime_r(3STDC)
and gmtime_r(3STDC) should be used instead.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO asctime_r (3STDC) , ctime_r (3STDC) , getenv (3STDC) , gmtime_r (3STDC)
, localtime_r (3STDC) , time (3STDC) , tzset (3STDC)

Last modified December 1999 ChorusOS 4.0 199

localtime_r(3STDC) Standard C Library Functions

NAME ctime_r, asctime_r, gmtime_r, localtime_r – Transform binary date and time value
to ASCII; Reentrent version

SYNOPSIS #include <time.h>
char * ctime_r (const time_t * clock, char * result);

char * asctime_r (const struct tm * tm, char * result);

struct tm * localtime_r (const time_t * clock, struct tm * result);

struct tm * gmtime_r (const time_t * clock, struct tm * result);

DESCRIPTION The ctime_r, gmtime_r, asctime_r, and localtime_r functions do the same thing as
ctime (3STDC), gmtime (3STDC), asctime (3STDC), and localtime (3STDC), with
the difference that they do not store their result in a static buffer. Instead, the
necessary storage must be allocated by the caller and a pointer to it passed as
the result argument.

For asctime_r, result must point to a 26 byte character array. For the others, result
must point to a memory area large enough to hold a struct tm.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO asctime (3STDC) , ctime (3STDC) , localtime (3STDC) , gmtime (3STDC) ,
tzset (3STDC)

STANDARDS These routines conform to POSIX.1c.

200 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions longjmp(3STDC)

NAME setjmp, longjmp – non-local goto

SYNOPSIS #include <setjmp.h>
int setjmp (jmp_buf env);

void longjmp (jmp_buf env, int val);

DESCRIPTION These functions are useful for dealing with errors and interrupts encountered in
low-level subroutines of a program.

The setjmp function saves its stack environment in env (whose type, jmp_buf ,
is defined in the <setjmp.h> header file) for later use by longjmp . It returns
the value 0.

The longjmp function restores the environment saved by the last call of setjmp
with the corresponding env argument. After longjmp has completed, program
execution continues as if the corresponding call of setjmp had just returned the
value val . The caller of setjmp must not have returned in the interim. The
longjmp function cannot cause setjmp to return the value 0. If longjmp is invoked
with a second argument of 0, setjmp will return 1. All accessible data will have
the values stored at the time longjmp was called.

WARNING If longjmp is called without first priming env using a calll to setjmp , or if the
last such call was performed by another thread, or if the last such call was in a
function that has since returned, this will cause severe disruption to the system.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 201

malloc(3STDC) Standard C Library Functions

NAME malloc, free, realloc, calloc – main memory allocator

SYNOPSIS #include <stdlib.h>
void * malloc (size_t size);

void free (void * ptr);

void * realloc (void * ptr, size_t size);

void *calloc (size_t nelem, size_t elsize);

DESCRIPTION The malloc() and free() functions provide a simple general-purpose
memory allocation package. The malloc() function returns a pointer to a block
of at least size bytes suitably aligned for any use. ChorusOS 4.0 offers three
malloc() libraries. See EXTENDED DESCRIPTION below for details.

The argument passed to free() is a pointer to a block previously allocated by
malloc() ; after free() is performed this space is made available for further
allocation, but its contents are left undisturbed.

The free() function may be called with a NULLpointer as parameter.

If the space assigned by malloc() is overrun or if a random number is passed
to free() , the result is undefined.

The malloc() function searches for free space from the last block allocated or
freed, grouping together any adjacent free blocks. It allocates the first contiguous
area of free space that is at least size() bytes.

The realloc() function changes the size of the block pointed to by ptr to size
bytes and returns a pointer to the (possibly moved) block. The contents will be
unchanged up to the smaller of the new and old sizes. If no free block of size
bytes is available in the storage area, realloc() will ask malloc() to enlarge
the area by size bytes and will then move the data to the new space. If the space
cannot be allocated, the object pointed to by ptr is unchanged. If size is zero and
ptr is not a null pointer, the object it points to is freed. If ptr is a null pointer, the
realloc() function behaves like the malloc() function for the specified size.

The realloc() function also works if ptr points to a block freed since the last
call to malloc() , realloc() , or calloc() ; thus sequences of free()
, malloc() and realloc() can be used to exploit the search strategy of
malloc() in order to do storage compacting.

The calloc() function allocates space for an array of nelem elements of size
elsize . The space is initialized to zeros.

Each of the allocation routines returns a pointer to space suitably aligned (after
possible pointer coercion) for storage of any type of object.

202 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions malloc(3STDC)

RETURN VALUES The malloc() , realloc() and calloc() functions return a NULLpointer if
there is no memory available, or if the area has been detectably corrupted by
storing outside the bounds of a block. When this happens, the block indicated
by ptr is neither damaged nor freed.

EXTENDED
DESCRIPTION

ChorusOS 4.0 offers three malloc() libraries. The following list describes
each library:
lib/classix/libcx.a

The standard malloc() for ChorusOS 4.0, based on the standard Solaris™
libc implementation, which has been extended to release freed memory
to the system for use by the kernel and by other actors. However, calling
free() does not automatically return memory to the system. malloc()
takes memory chunks from page-aligned regions. Regions are only
returned to the system once all the chunks in the region have been freed.
Furthermore, free() buffers memory chunks so that they can be reused
immediately by malloc() if possible. Therefore, memory may not be
returned to the system until malloc() is called again. malloc_trim()
can be used to release empty regions to the system explicitly.

alloca() , calloc() , memalign() and valloc() are not available in
lib/classix/libcx.a .

lib/classix/libleamalloc.a
Doug Lea’s malloc() , also known as the libg++ malloc()
implementation, adapted for ChorusOS 4.0 to allow the heap to be sparsed
in several regions. This implementation is especially useful in supervisor
mode, because supervisor space is shared by several actors. Freed memory
may be returned to the system using malloc_trim() . free() may also
call malloc_trim() if enough memory is free at the top of the heap.

lib/classix/libomalloc.a
The BSD malloc() is provided for backwards compatibility with previous
releases. This implementation corresponds to bsdmalloc (3X) in 2.6. See
Solaris man Pages(3): Library Routines in the Solaris 2.6 Reference Manual
AnswerBook for details.

NOTES Performance and efficiency depend upon the way the library is used. Search time
increases when many objects have been allocated; that is, if a program allocates
but never frees, each successive allocation takes longer. Tests on the running
program should be performed in order to determine the best balance between
performance and efficient use of space to achieve optimum performance.

If the program is multi-threaded, and if the free() and then realloc()
feature is used, it is up to the programmer to set up the mutual exclusion
schemes needed to prevent a malloc() taking place between free() and
realloc() calls.

Last modified December 1999 ChorusOS 4.0 203

malloc(3STDC) Standard C Library Functions

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

204 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions memccpy(3STDC)

NAME memory, memccpy, memchr, memcmp, memcpy, memmove, memset – memory
operations

SYNOPSIS #include <string.h>
void * memccpy(void * s1, const void * s2, int c, size_t n);

void *memchr (const void * s, int c, size_t n);

int memcmp(const void * s1, const void * s2, size_t n);

void *memcpy(void * s1, const void * s2, size_t n);

void *memmove(void * s1, const void * s2, size_t n);

void *memset (void * s, int c, size_t n);

DESCRIPTION These functions operate as efficiently as possible on memory areas (arrays of
characters bounded by a count, not terminated by a null character). They do not
check for the overflow of any receiving memory area.

The memccpy function copies bytes from memory area s2 into s1, stopping after
the first occurrence of c (converted to an unsigned char) has been copied, or
after n bytes have been copied, whichever comes first. It returns a pointer to
the byte after the copy of c in s1, or a null pointer if c was not found in the
first n bytes of s2.

The memchr function returns a pointer to the first occurrence of c (converted to
an unsigned char) in the first n bytes (each interpreted as an unsigned char) of
memory area s , or a null pointer if c is not found.

The memcmp function compares its arguments, looking at the first n bytes (each
interpreted as an unsigned only, and returns an integer less than, equal to, or
greater than 0, depending on whether s1 is lexicographically less than, equal to,
or greater than s2 when taken to be unsigned characters.

The memcpy function copies n bytes from memory area s2 to s1 . It returns s1

The memmove function copies n bytes from memory area s2 to s1 . Copying
between objects that overlap will take place correctly. It returns s1 .

The memset function sets the first n characters in memory area s to the value
of character c. It returns s.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 205

memchr(3STDC) Standard C Library Functions

NAME memory, memccpy, memchr, memcmp, memcpy, memmove, memset – memory
operations

SYNOPSIS #include <string.h>
void * memccpy(void * s1, const void * s2, int c, size_t n);

void *memchr (const void * s, int c, size_t n);

int memcmp(const void * s1, const void * s2, size_t n);

void *memcpy(void * s1, const void * s2, size_t n);

void *memmove(void * s1, const void * s2, size_t n);

void *memset (void * s, int c, size_t n);

DESCRIPTION These functions operate as efficiently as possible on memory areas (arrays of
characters bounded by a count, not terminated by a null character). They do not
check for the overflow of any receiving memory area.

The memccpy function copies bytes from memory area s2 into s1, stopping after
the first occurrence of c (converted to an unsigned char) has been copied, or
after n bytes have been copied, whichever comes first. It returns a pointer to
the byte after the copy of c in s1, or a null pointer if c was not found in the
first n bytes of s2.

The memchr function returns a pointer to the first occurrence of c (converted to
an unsigned char) in the first n bytes (each interpreted as an unsigned char) of
memory area s , or a null pointer if c is not found.

The memcmp function compares its arguments, looking at the first n bytes (each
interpreted as an unsigned only, and returns an integer less than, equal to, or
greater than 0, depending on whether s1 is lexicographically less than, equal to,
or greater than s2 when taken to be unsigned characters.

The memcpy function copies n bytes from memory area s2 to s1 . It returns s1

The memmove function copies n bytes from memory area s2 to s1 . Copying
between objects that overlap will take place correctly. It returns s1 .

The memset function sets the first n characters in memory area s to the value
of character c. It returns s.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

206 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions memcmp(3STDC)

NAME memory, memccpy, memchr, memcmp, memcpy, memmove, memset – memory
operations

SYNOPSIS #include <string.h>
void * memccpy(void * s1, const void * s2, int c, size_t n);

void *memchr (const void * s, int c, size_t n);

int memcmp(const void * s1, const void * s2, size_t n);

void *memcpy(void * s1, const void * s2, size_t n);

void *memmove(void * s1, const void * s2, size_t n);

void *memset (void * s, int c, size_t n);

DESCRIPTION These functions operate as efficiently as possible on memory areas (arrays of
characters bounded by a count, not terminated by a null character). They do not
check for the overflow of any receiving memory area.

The memccpy function copies bytes from memory area s2 into s1, stopping after
the first occurrence of c (converted to an unsigned char) has been copied, or
after n bytes have been copied, whichever comes first. It returns a pointer to
the byte after the copy of c in s1, or a null pointer if c was not found in the
first n bytes of s2.

The memchr function returns a pointer to the first occurrence of c (converted to
an unsigned char) in the first n bytes (each interpreted as an unsigned char) of
memory area s , or a null pointer if c is not found.

The memcmp function compares its arguments, looking at the first n bytes (each
interpreted as an unsigned only, and returns an integer less than, equal to, or
greater than 0, depending on whether s1 is lexicographically less than, equal to,
or greater than s2 when taken to be unsigned characters.

The memcpy function copies n bytes from memory area s2 to s1 . It returns s1

The memmove function copies n bytes from memory area s2 to s1 . Copying
between objects that overlap will take place correctly. It returns s1 .

The memset function sets the first n characters in memory area s to the value
of character c. It returns s.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 207

memcpy(3STDC) Standard C Library Functions

NAME memory, memccpy, memchr, memcmp, memcpy, memmove, memset – memory
operations

SYNOPSIS #include <string.h>
void * memccpy(void * s1, const void * s2, int c, size_t n);

void *memchr (const void * s, int c, size_t n);

int memcmp(const void * s1, const void * s2, size_t n);

void *memcpy(void * s1, const void * s2, size_t n);

void *memmove(void * s1, const void * s2, size_t n);

void *memset (void * s, int c, size_t n);

DESCRIPTION These functions operate as efficiently as possible on memory areas (arrays of
characters bounded by a count, not terminated by a null character). They do not
check for the overflow of any receiving memory area.

The memccpy function copies bytes from memory area s2 into s1, stopping after
the first occurrence of c (converted to an unsigned char) has been copied, or
after n bytes have been copied, whichever comes first. It returns a pointer to
the byte after the copy of c in s1, or a null pointer if c was not found in the
first n bytes of s2.

The memchr function returns a pointer to the first occurrence of c (converted to
an unsigned char) in the first n bytes (each interpreted as an unsigned char) of
memory area s , or a null pointer if c is not found.

The memcmp function compares its arguments, looking at the first n bytes (each
interpreted as an unsigned only, and returns an integer less than, equal to, or
greater than 0, depending on whether s1 is lexicographically less than, equal to,
or greater than s2 when taken to be unsigned characters.

The memcpy function copies n bytes from memory area s2 to s1 . It returns s1

The memmove function copies n bytes from memory area s2 to s1 . Copying
between objects that overlap will take place correctly. It returns s1 .

The memset function sets the first n characters in memory area s to the value
of character c. It returns s.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

208 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions memmove(3STDC)

NAME memory, memccpy, memchr, memcmp, memcpy, memmove, memset – memory
operations

SYNOPSIS #include <string.h>
void * memccpy(void * s1, const void * s2, int c, size_t n);

void *memchr (const void * s, int c, size_t n);

int memcmp(const void * s1, const void * s2, size_t n);

void *memcpy(void * s1, const void * s2, size_t n);

void *memmove(void * s1, const void * s2, size_t n);

void *memset (void * s, int c, size_t n);

DESCRIPTION These functions operate as efficiently as possible on memory areas (arrays of
characters bounded by a count, not terminated by a null character). They do not
check for the overflow of any receiving memory area.

The memccpy function copies bytes from memory area s2 into s1, stopping after
the first occurrence of c (converted to an unsigned char) has been copied, or
after n bytes have been copied, whichever comes first. It returns a pointer to
the byte after the copy of c in s1, or a null pointer if c was not found in the
first n bytes of s2.

The memchr function returns a pointer to the first occurrence of c (converted to
an unsigned char) in the first n bytes (each interpreted as an unsigned char) of
memory area s , or a null pointer if c is not found.

The memcmp function compares its arguments, looking at the first n bytes (each
interpreted as an unsigned only, and returns an integer less than, equal to, or
greater than 0, depending on whether s1 is lexicographically less than, equal to,
or greater than s2 when taken to be unsigned characters.

The memcpy function copies n bytes from memory area s2 to s1 . It returns s1

The memmove function copies n bytes from memory area s2 to s1 . Copying
between objects that overlap will take place correctly. It returns s1 .

The memset function sets the first n characters in memory area s to the value
of character c. It returns s.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 209

memory(3STDC) Standard C Library Functions

NAME memory, memccpy, memchr, memcmp, memcpy, memmove, memset – memory
operations

SYNOPSIS #include <string.h>
void * memccpy(void * s1, const void * s2, int c, size_t n);

void *memchr (const void * s, int c, size_t n);

int memcmp(const void * s1, const void * s2, size_t n);

void *memcpy(void * s1, const void * s2, size_t n);

void *memmove(void * s1, const void * s2, size_t n);

void *memset (void * s, int c, size_t n);

DESCRIPTION These functions operate as efficiently as possible on memory areas (arrays of
characters bounded by a count, not terminated by a null character). They do not
check for the overflow of any receiving memory area.

The memccpy function copies bytes from memory area s2 into s1, stopping after
the first occurrence of c (converted to an unsigned char) has been copied, or
after n bytes have been copied, whichever comes first. It returns a pointer to
the byte after the copy of c in s1, or a null pointer if c was not found in the
first n bytes of s2.

The memchr function returns a pointer to the first occurrence of c (converted to
an unsigned char) in the first n bytes (each interpreted as an unsigned char) of
memory area s , or a null pointer if c is not found.

The memcmp function compares its arguments, looking at the first n bytes (each
interpreted as an unsigned only, and returns an integer less than, equal to, or
greater than 0, depending on whether s1 is lexicographically less than, equal to,
or greater than s2 when taken to be unsigned characters.

The memcpy function copies n bytes from memory area s2 to s1 . It returns s1

The memmove function copies n bytes from memory area s2 to s1 . Copying
between objects that overlap will take place correctly. It returns s1 .

The memset function sets the first n characters in memory area s to the value
of character c. It returns s.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

210 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions memset(3STDC)

NAME memory, memccpy, memchr, memcmp, memcpy, memmove, memset – memory
operations

SYNOPSIS #include <string.h>
void * memccpy(void * s1, const void * s2, int c, size_t n);

void *memchr (const void * s, int c, size_t n);

int memcmp(const void * s1, const void * s2, size_t n);

void *memcpy(void * s1, const void * s2, size_t n);

void *memmove(void * s1, const void * s2, size_t n);

void *memset (void * s, int c, size_t n);

DESCRIPTION These functions operate as efficiently as possible on memory areas (arrays of
characters bounded by a count, not terminated by a null character). They do not
check for the overflow of any receiving memory area.

The memccpy function copies bytes from memory area s2 into s1, stopping after
the first occurrence of c (converted to an unsigned char) has been copied, or
after n bytes have been copied, whichever comes first. It returns a pointer to
the byte after the copy of c in s1, or a null pointer if c was not found in the
first n bytes of s2.

The memchr function returns a pointer to the first occurrence of c (converted to
an unsigned char) in the first n bytes (each interpreted as an unsigned char) of
memory area s , or a null pointer if c is not found.

The memcmp function compares its arguments, looking at the first n bytes (each
interpreted as an unsigned only, and returns an integer less than, equal to, or
greater than 0, depending on whether s1 is lexicographically less than, equal to,
or greater than s2 when taken to be unsigned characters.

The memcpy function copies n bytes from memory area s2 to s1 . It returns s1

The memmove function copies n bytes from memory area s2 to s1 . Copying
between objects that overlap will take place correctly. It returns s1 .

The memset function sets the first n characters in memory area s to the value
of character c. It returns s.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 211

mkstemp(3STDC) Standard C Library Functions

NAME mktemp, mkstemp – make temporary file name (unique)

SYNOPSIS #include <stdlib.h>
char * mktemp(char * template);

int mkstemp (char * template);

DESCRIPTION The mktemp function takes the given file name template and overwrites a portion
of it to create a file name. This file name is unique and suitable for use by the
application. The template may be any file name with a number of X ’s appended
to it, for example: /tmp/temp.XXXX The trailing X ’s are replaced with the
current process number and/or a unique letter combination. The number of
unique file names mktemp can return depends on the number of X ’s provided;
six X ’s will result in mktemp testing roughly 26 ** 6 combinations.

The mkstemp function makes the same replacement to the template and creates
the template file, mode 0600, returning a file descriptor opened for reading and
writing. This avoids conflict between testing for a file’s existence and opening
it for use.

RETURN VALUES The mktemp function returns a pointer to the template on success and NULL on
failure. The mkstemp function returns –1 if no suitable file could be created. If
either call fails, the global variable errno is set to indicate one of the following
error condiitons.

ERRORS The mktemp and mkstemp functions will set errno to ENOTDIR if the pathname
portion of the template is not an existing directory.

The mktemp and mkstemp functions can also set errno to any value specified by
the stat (2POSIX) function.

The mkstemp function can also set errno to any value specified by the open
(2POSIX) function.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO chmod(2POSIX) , agetId (2K) , open (2POSIX) , stat (2POSIX)

212 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions mktemp(3STDC)

NAME mktemp, mkstemp – make temporary file name (unique)

SYNOPSIS #include <stdlib.h>
char * mktemp(char * template);

int mkstemp (char * template);

DESCRIPTION The mktemp function takes the given file name template and overwrites a portion
of it to create a file name. This file name is unique and suitable for use by the
application. The template may be any file name with a number of X ’s appended
to it, for example: /tmp/temp.XXXX The trailing X ’s are replaced with the
current process number and/or a unique letter combination. The number of
unique file names mktemp can return depends on the number of X ’s provided;
six X ’s will result in mktemp testing roughly 26 ** 6 combinations.

The mkstemp function makes the same replacement to the template and creates
the template file, mode 0600, returning a file descriptor opened for reading and
writing. This avoids conflict between testing for a file’s existence and opening
it for use.

RETURN VALUES The mktemp function returns a pointer to the template on success and NULL on
failure. The mkstemp function returns –1 if no suitable file could be created. If
either call fails, the global variable errno is set to indicate one of the following
error condiitons.

ERRORS The mktemp and mkstemp functions will set errno to ENOTDIR if the pathname
portion of the template is not an existing directory.

The mktemp and mkstemp functions can also set errno to any value specified by
the stat (2POSIX) function.

The mkstemp function can also set errno to any value specified by the open
(2POSIX) function.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO chmod(2POSIX) , agetId (2K) , open (2POSIX) , stat (2POSIX)

Last modified December 1999 ChorusOS 4.0 213

mktime(3STDC) Standard C Library Functions

NAME ctime, asctime, difftime, gmtime, localtime, mktime – transform binary date and
time value to ASCII

SYNOPSIS #include <time.h>
struct tm * localtime (const time_t * clock);

struct tm * gmtime (const time_t * clock);

char *ctime (const time_t * clock);

char *asctime (const struct tm * tm);

time_t mktime (struct tm * tm);

double difftime (time_t time1, time_t time0);

DESCRIPTION The ctime , gmtime and localtime functions take as an argument a time value
representing the time in seconds since the Epoch (00:00:00 UTC, January 1, 1970).

The localtime function converts the time value pointed to by clock , and returns
a pointer to a struct tm (described below) which contains the broken-out time
information for the value, after adjusting for the current time zone (and any other
factors such as Daylight Saving Time). Time zone adjustments are performed
as specified by the TZ environment variable (see tzset (3STDC). The function
localtime uses tzset (3STDC) to initialize time conversion information if tzset
(3STDC) has not already been called by the process.

The gmtime function also converts the time value, but without any time zone
adjustment, and returns a pointer to a tm structure (described below).

The ctime function adjusts the time value for the current time zone in the same
manner as localtime , and returns a pointer to a 26-character string of the form:
Thu Nov 24 18:22:48 1986.

The asctime function converts the broken—down time in the structure tm pointed
to by *tm to the form shown in the example above.

The mktime function converts the broken-down time, expressed as local time,
in the structure pointed to by tm into a time value with the same encoding as
that of the values returned by the time (3STDC) function; that is, seconds
from the Epoch, UTC.

The original values of the tm_wday and tm_yday components of the structure
are ignored, and the original values of the other components are not restricted
to their normal ranges. (A positive or zero value for tm_isdst causes mktime to
presume initially that summer time (for example, Daylight Saving Time) is or is
not in effect for the time specified, respectively. A negative value for tm_isdst
causes the mktime function to attempt to define whether summer time is in
effect for the time specified.)

214 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions mktime(3STDC)

On successful completion, the values of the tm_wday and tm_yday components of
the structure are set appropriately, and the other components are set to represent
the calendar time specified, but with their values forced to their normal ranges;
the final value of tm_mday is not set until tm_mon and tm_year are determined.
The mktime function returns the calendar time specified; if the calendar time
cannot be represented, it returns –1;

The difftime function returns the difference between two calendar times, (time1 –
time0), expressed in seconds.

External declarations as well as the tm structure definition are in the time.h
include file. The tm structure includes at least the following fields:

int tm_sec; /* seconds (0 - 60) */
int tm_min; /* minutes (0 - 59) */
int tm_hour; /* hours (0 - 23) */
int tm_mday; /* day of month (1 - 31) */
int tm_mon; /* month of year (0 - 11) */
int tm_year; /* year – 1900 */
int tm_wday; /* day of week (Sunday = 0) */
int tm_yday; /* day of year (0 - 365) */
int tm_isdst; /* is summer time in effect? */
char *tm_zone; /* abbreviation of timezone name */
long tm_gmtoff; /* offset from UTC in seconds */

The field tm_isdst is non-zero if summer time is in effect.

The field tm_gmtoff is the offset (in seconds) of the time represented from UTC,
with positive values indicating east of the Prime Meridian.

NOTES asctime(3STDC) , ctime(3STDC) , localtime(3STDC) and gmtime(3STDC) return
their result in a global variable which make them difficult to use in a
multithreaded program. asctime_r(3STDC) , ctime_r(3STDC) , localtime_r(3STDC)
and gmtime_r(3STDC) should be used instead.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO asctime_r (3STDC) , ctime_r (3STDC) , getenv (3STDC) , gmtime_r (3STDC)
, localtime_r (3STDC) , time (3STDC) , tzset (3STDC)

Last modified December 1999 ChorusOS 4.0 215

modf(3STDC) Standard C Library Functions

NAME modf – extract signed integral and fractional values from floating-point number

SYNOPSIS #include <math.h>
double modf (double value, double *iptr);

DESCRIPTION The modf function breaks the argument value into integral and fractional parts,
each of which has the same sign as the argument. It stores the integral part as a
double in the object pointed to by iptr.

RETURN VALUES The modf function returns the signed fractional part of value.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO ldexp (3STDC)

STANDARDS The modf function conforms to ANSI-C .

216 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions ntohl(3STDC)

NAME byteorder, htonl, htons, ntohl, ntohs – convert values between host and network
byte order

SYNOPSIS #include <sys/param.h>
unsigned long htonl (unsigned long hostlong);

unsigned short htons (unsigned short hostshort);

unsigned long ntohl (unsigned long netlong);

unsigned short ntohs (unsigned short netshort);

DESCRIPTION These routines convert 16– and 32–bit quantities between network byte order
and host byte order. On architectures where the host byte order and network
byte order are the same, these routines are defined as no-op macros.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 217

ntohs(3STDC) Standard C Library Functions

NAME byteorder, htonl, htons, ntohl, ntohs – convert values between host and network
byte order

SYNOPSIS #include <sys/param.h>
unsigned long htonl (unsigned long hostlong);

unsigned short htons (unsigned short hostshort);

unsigned long ntohl (unsigned long netlong);

unsigned short ntohs (unsigned short netshort);

DESCRIPTION These routines convert 16– and 32–bit quantities between network byte order
and host byte order. On architectures where the host byte order and network
byte order are the same, these routines are defined as no-op macros.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

218 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions perror(3STDC)

NAME perror, errno, sys_errlist, sys_nerr – system error messages

SYNOPSIS #include <stdio.h>
void perror (const char * s);

#include <errno.h>

extern char *sys_errlist[];

extern int sys_nerr;

DESCRIPTION The perror function produces a message on the error channel, the implementation
of which is system-dependent. The message describes the last error encountered
during a call to a system or library function. The argument string s is printed first,
then a colon and a blank, then the message and a newline character. To be of most
use, the argument string should include the name of the program that incurred
the error. The error number is taken from the per thread variable errno, or from a
global variable errno, whichever is provided by the library. This variable is set
when errors occur but not cleared when non-erroneous calls are made.

To simplify variant formatting of messages, the array of message strings
sys_errlist is provided; errno can be used as an index in this table to get the
message string without the new line. The sys_nerr parameter defines the largest
message number provided for in the table; it should be checked because new
error codes may be added to the system before they are added to the table.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 219

printerr(3STDC) Standard C Library Functions

NAME printf, sprintf, snprintf, printerr – print formatted output

SYNOPSIS #include <stdio.h>
int printf (const char * format, ... /* args */);

int sprintf (char * s, const char * format, ... /* args */);

int snprintf (char * s, size_t size, const char * format, ... /* args */);

int printerr (const char * format, ... /* args */);

DESCRIPTION The printf function sends output to the standard output channel, which is
system defined. The printerr() function sends output to on the standard
error channel, which is system defined. The sprintf() function sends output,
followed by the null character (\0), in consecutive bytes starting at * s ; it is the
user’s responsibility to ensure that enough storage is available. Each function
returns the number of characters transmitted (not including the \0 in the case of
sprintf), or a negative value if an output error was encountered.

The snprintf() function writes at most size-1 of the characters printed to the
output string (the size character then gets the terminating zero). If the return
value is greater than or equal to the size argument, the string was too short
and some of the printed characters were discarded.

Each of these functions converts, formats, and prints its arg s under control
of the format . The format is a character string that contains two types of
objects: plain characters, which are simply copied to the output channel, and
conversion specifications, each of which results in obtaining zero or more arg
s. The results are undefined if there are insufficient arg s for the format. If the
format is exhausted while arg s remain, the excess arg s are simply ignored.

Each conversion specification is introduced by the character %. After the %,
the following appear in sequence:

Zero or more flags , which modify the meaning of the conversion specification.

An optional decimal digit string specifying a minimum field width . If the
converted value has fewer characters than the field width, it will be padded on
the left (or right, if the left-adjustment flag ‘–’, described below, has been set)
to the field width. If the field width for an s conversion is preceded by a 0, the
string is right adjusted with zero-padding on the left.

A precision that gives the minimum number of digits to appear for the d , o , u , x
, or X conversions, the number of digits to appear after the decimal point for
the e and f conversions, the maximum number of significant digits for the g
conversion, or the maximum number of characters to be printed from a string
in an s conversion. The precision takes the form of a dot (.) followed by a
decimal digit string; a null digit string is treated as zero.

220 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions printerr(3STDC)

An optional l (ell) specifying that a following d , o , u , x , or X conversion
character applies to a long integer arg . A l before any other conversion
character is ignored.

A character that indicates the type of conversion to be applied.

A field width or precision may be indicated by an asterisk (*) instead of a digit
string. In this case, an integer arg supplies the field width or precision. The arg
that is actually converted is not fetched until the conversion letter is seen, so
the arg s specifying field width or precision must appear before the arg (if any)
to be converted.

The flag characters and their meanings are:
– The result of the conversion will be left-justified within

the field.

+ The result of a signed conversion will always begin with a
sign (+ or –).

blank If the first character of a signed conversion is not a sign, a
blank will be prefixed to the result. This implies that if the
blank and + flags both appear, the blank flag will be ignored.

This flag specifies that the value is to be converted to an
“alternate form.” For c , d , s , and u conversions, the flag
has no effect. For o conversion, it increases the precision to
force the first digit of the result to be a zero. For x or X
conversion, a non-zero result will have 0x or 0X prefixed
to it. For e , E , f , g , and G conversions, the result will
always contain a decimal point, even if no digits follow
the point (normally, a decimal point appears in the result
of these conversions only if a digit follows it). For g and G
conversions, trailing zeroes will not be removed from the
result (which they normally are).

The conversion characters and their meanings are:

Last modified December 1999 ChorusOS 4.0 221

printerr(3STDC) Standard C Library Functions

d
,
i
,
o
,
u
,
x
,
X

The integer arg is converted to signed decimal (d or i),
unsigned octal (o), decimal (u), or hexadecimal notation (
x and X), respectively. The letters abcdef are used for
x conversion and the letters ABCDEFfor X conversion.
The precision specifies the minimum number of digits to
appear; if the value being converted can be represented in
fewer digits, it will be expanded with leading zeroes. (For
compatibility with older versions, padding with leading
zeroes may alternatively be specified by prepending a zero
to the field width. This does not imply an octal value for
the field width.) The default precision is 1. The result of
converting a zero value with a precision of zero is a null
string.

f The float or double arg is converted to decimal notation in
the style “[–]ddd . ddd,” where the number of digits after
the decimal point is equal to the precision specification. If
the precision is not specified, six digits are output; if the
precision is explicitly 0, no decimal point appears.

e
,
E

The float or double arg is converted in the style “[–]d .
ddd e± dd,” where there is one digit before the decimal
point and the number of digits after it is equal to the
precision. If the precision is not specified, six digits are
produced; if the precision is explicitly 0, no decimal point
appears. The E format code will produce a number with E
instead of e introducing the exponent. The exponent always
contains at least two digits.

g
,
G

The float or double arg is printed in style f or e (or in style E
in the case of a G format code), with the precision specifying
the number of significant digits. The style used depends on
the value converted: style e will be used only if the exponent
resulting from the conversion is less than –4 or greater than
the precision. Trailing zeroes are removed from the result; a
decimal point appears only if it is followed by a digit.

c The character arg is printed.

s The arg is taken to be a string (character pointer) and
characters from the string are printed until a null character
(\0) is encountered, or until the number of characters
indicated by the precision specification is reached. If the
precision is not specified, it is assumed to be infinite and all

222 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions printerr(3STDC)

characters up to the first null character are printed. A NULL
value for arg will yield undefined results.

% Print a %; no argument is converted.

A non-existent or small field width will never cause truncation of a field; if the
result of a conversion is wider than the field width, the field is simply expanded
to contain the conversion result. Characters generated by printf are printed in
the same way as if putchar (3STDC) had been called.

EXAMPLES To print a date and time in the form “Sunday, July 3, 10:02,” where weekday and
month are pointers to null-terminated strings:

printf("%s, %s %d, %d:%.2d", weekday, month, day, hour, min);

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO putchar (3STDC) , scanf (3STDC)

Last modified December 1999 ChorusOS 4.0 223

printf(3STDC) Standard C Library Functions

NAME printf, sprintf, snprintf, printerr – print formatted output

SYNOPSIS #include <stdio.h>
int printf (const char * format, ... /* args */);

int sprintf (char * s, const char * format, ... /* args */);

int snprintf (char * s, size_t size, const char * format, ... /* args */);

int printerr (const char * format, ... /* args */);

DESCRIPTION The printf function sends output to the standard output channel, which is
system defined. The printerr() function sends output to on the standard
error channel, which is system defined. The sprintf() function sends output,
followed by the null character (\0), in consecutive bytes starting at * s ; it is the
user’s responsibility to ensure that enough storage is available. Each function
returns the number of characters transmitted (not including the \0 in the case of
sprintf), or a negative value if an output error was encountered.

The snprintf() function writes at most size-1 of the characters printed to the
output string (the size character then gets the terminating zero). If the return
value is greater than or equal to the size argument, the string was too short
and some of the printed characters were discarded.

Each of these functions converts, formats, and prints its arg s under control
of the format . The format is a character string that contains two types of
objects: plain characters, which are simply copied to the output channel, and
conversion specifications, each of which results in obtaining zero or more arg
s. The results are undefined if there are insufficient arg s for the format. If the
format is exhausted while arg s remain, the excess arg s are simply ignored.

Each conversion specification is introduced by the character %. After the %,
the following appear in sequence:

Zero or more flags , which modify the meaning of the conversion specification.

An optional decimal digit string specifying a minimum field width . If the
converted value has fewer characters than the field width, it will be padded on
the left (or right, if the left-adjustment flag ‘–’, described below, has been set)
to the field width. If the field width for an s conversion is preceded by a 0, the
string is right adjusted with zero-padding on the left.

A precision that gives the minimum number of digits to appear for the d , o , u , x
, or X conversions, the number of digits to appear after the decimal point for
the e and f conversions, the maximum number of significant digits for the g
conversion, or the maximum number of characters to be printed from a string
in an s conversion. The precision takes the form of a dot (.) followed by a
decimal digit string; a null digit string is treated as zero.

224 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions printf(3STDC)

An optional l (ell) specifying that a following d , o , u , x , or X conversion
character applies to a long integer arg . A l before any other conversion
character is ignored.

A character that indicates the type of conversion to be applied.

A field width or precision may be indicated by an asterisk (*) instead of a digit
string. In this case, an integer arg supplies the field width or precision. The arg
that is actually converted is not fetched until the conversion letter is seen, so
the arg s specifying field width or precision must appear before the arg (if any)
to be converted.

The flag characters and their meanings are:
– The result of the conversion will be left-justified within

the field.

+ The result of a signed conversion will always begin with a
sign (+ or –).

blank If the first character of a signed conversion is not a sign, a
blank will be prefixed to the result. This implies that if the
blank and + flags both appear, the blank flag will be ignored.

This flag specifies that the value is to be converted to an
“alternate form.” For c , d , s , and u conversions, the flag
has no effect. For o conversion, it increases the precision to
force the first digit of the result to be a zero. For x or X
conversion, a non-zero result will have 0x or 0X prefixed
to it. For e , E , f , g , and G conversions, the result will
always contain a decimal point, even if no digits follow
the point (normally, a decimal point appears in the result
of these conversions only if a digit follows it). For g and G
conversions, trailing zeroes will not be removed from the
result (which they normally are).

The conversion characters and their meanings are:

Last modified December 1999 ChorusOS 4.0 225

printf(3STDC) Standard C Library Functions

d
,
i
,
o
,
u
,
x
,
X

The integer arg is converted to signed decimal (d or i),
unsigned octal (o), decimal (u), or hexadecimal notation (
x and X), respectively. The letters abcdef are used for
x conversion and the letters ABCDEFfor X conversion.
The precision specifies the minimum number of digits to
appear; if the value being converted can be represented in
fewer digits, it will be expanded with leading zeroes. (For
compatibility with older versions, padding with leading
zeroes may alternatively be specified by prepending a zero
to the field width. This does not imply an octal value for
the field width.) The default precision is 1. The result of
converting a zero value with a precision of zero is a null
string.

f The float or double arg is converted to decimal notation in
the style “[–]ddd . ddd,” where the number of digits after
the decimal point is equal to the precision specification. If
the precision is not specified, six digits are output; if the
precision is explicitly 0, no decimal point appears.

e
,
E

The float or double arg is converted in the style “[–]d .
ddd e± dd,” where there is one digit before the decimal
point and the number of digits after it is equal to the
precision. If the precision is not specified, six digits are
produced; if the precision is explicitly 0, no decimal point
appears. The E format code will produce a number with E
instead of e introducing the exponent. The exponent always
contains at least two digits.

g
,
G

The float or double arg is printed in style f or e (or in style E
in the case of a G format code), with the precision specifying
the number of significant digits. The style used depends on
the value converted: style e will be used only if the exponent
resulting from the conversion is less than –4 or greater than
the precision. Trailing zeroes are removed from the result; a
decimal point appears only if it is followed by a digit.

c The character arg is printed.

s The arg is taken to be a string (character pointer) and
characters from the string are printed until a null character
(\0) is encountered, or until the number of characters
indicated by the precision specification is reached. If the
precision is not specified, it is assumed to be infinite and all

226 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions printf(3STDC)

characters up to the first null character are printed. A NULL
value for arg will yield undefined results.

% Print a %; no argument is converted.

A non-existent or small field width will never cause truncation of a field; if the
result of a conversion is wider than the field width, the field is simply expanded
to contain the conversion result. Characters generated by printf are printed in
the same way as if putchar (3STDC) had been called.

EXAMPLES To print a date and time in the form “Sunday, July 3, 10:02,” where weekday and
month are pointers to null-terminated strings:

printf("%s, %s %d, %d:%.2d", weekday, month, day, hour, min);

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO putchar (3STDC) , scanf (3STDC)

Last modified December 1999 ChorusOS 4.0 227

putc(3STDC) Standard C Library Functions

NAME putc, fputc, putw – put character or word on a stream

SYNOPSIS #include <stdio.h>
int putc (int c, FILE * stream);

int fputc (int c, FILE * stream);

int putw (int w, FILE * stream);

DESCRIPTION The putc and fputc functions writes the byte specified by c (converted to an
unsigned char) to the output stream (at the position where the file pointer, if
defined, is pointing).

The putw function writes the specified int to the defined output stream.

The putc routine behaves like fputc , except that it is implemented as a macro. It
runs faster than fputc , but it takes up more space per invocation and its name
cannot be passed as an argument to a function call.

Output streams, with the exception of the standard error stream stderr , are by
default buffered if the output refers to a file and line-buffered if the output refers
to a terminal. The standard error output stream stderr is by default unbuffered,
but use of freopen (see fopen (3STDC)) will change it to become buffered or
line-buffered. When an output stream is unbuffered, information is queued for
writing on the destination file or terminal as soon as it is written. When it
is buffered, a number characters are saved and written as a block. When it
is line-buffered, each line of output is queued for writing on the destination
terminal as soon as the line is completed (that is, as soon as a new-line character
is written or terminal input is requested). The setbuf (3STDC) or setvbuf (3STDC)
function may be used to change the stream’s buffering strategy.

RETURN VALUES Upon successful completion, these functions each return the value they have
written. If unsuccessful, they return the constant EOF. This will occur if the file
stream is not open for writing or if the output file cannot be extended.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO fclose (3STDC) , ferror (3STDC) , fopen (3STDC) , fread (3STDC) ,
printf (3STDC) , putchar (3STDC) , puts (3STDC) , setbuf (3STDC)

228 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions putchar(3STDC)

NAME putchar – put a character or word on the standard output channel

SYNOPSIS #include <stdio.h>
int putchar (int c);

DESCRIPTION The putchar(c) function writes the character c to the standard output channel,
which is operating-system dependent. The effect of this operation outside of the
program is operating-system defined. On systems where stdout has a meaning,
putc(3STDC) is part of the C library, and putchar(c) is defined as putc(c, stdout).

DIAGNOSTICS Upon successful completion, this function returns the value it has written. If
unsuccessful, it returns the constant EOF. This will occur if the output channel
can no longer be written to; possible reasons for this are operating-system
dependent.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO putc (3STDC)

Last modified December 1999 ChorusOS 4.0 229

putchar_unlocked(3STDC) Standard C Library Functions

NAME unlocked, getc_unlocked, getchar_unlocked, putc_unlocked, putchar_unlocked
– explicit locking functions

SYNOPSIS #include <stdio.h>
int getc_unlocked (FILE * stream);

int getchar_unlocked (void);

int putc_unlocked (int c, FILE * stream);

int putchar_unlocked (int c);

DESCRIPTION The getc_unlocked , getchar_unlocked , putc_unlocked and putchar_unlocked are
functionally identical to getc , getchar , putc and putchar functions with the
exception that they are not re-entrant.

getc_unlocked , getchar_unlocked , and putchar_unlocked routines are implemented
as macros.

They may only safely be used within a scope protected by flockfile (or ftrylockfile)
and funlockedfile .

STANDARDS These routines conform to the POSIX.1c standards.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO getc (3STDC) , getchar (3STDC) , putc (3STDC) , putchar (3STDC) ,
flockfile (3STDC)

230 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions putc_unlocked(3STDC)

NAME unlocked, getc_unlocked, getchar_unlocked, putc_unlocked, putchar_unlocked
– explicit locking functions

SYNOPSIS #include <stdio.h>
int getc_unlocked (FILE * stream);

int getchar_unlocked (void);

int putc_unlocked (int c, FILE * stream);

int putchar_unlocked (int c);

DESCRIPTION The getc_unlocked , getchar_unlocked , putc_unlocked and putchar_unlocked are
functionally identical to getc , getchar , putc and putchar functions with the
exception that they are not re-entrant.

getc_unlocked , getchar_unlocked , and putchar_unlocked routines are implemented
as macros.

They may only safely be used within a scope protected by flockfile (or ftrylockfile)
and funlockedfile .

STANDARDS These routines conform to the POSIX.1c standards.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO getc (3STDC) , getchar (3STDC) , putc (3STDC) , putchar (3STDC) ,
flockfile (3STDC)

Last modified December 1999 ChorusOS 4.0 231

putenv(3STDC) Standard C Library Functions

NAME getenv, putenv, setenv, unsetenv – fetch and set environment variables

SYNOPSIS #include <stdlib.h>
char * getenv (const char * name);

int setenv (const char * name, const char * value, int overwrite);

int putenv (const char * string);

void unsetenv (const char * name);

DESCRIPTION These functions set, unset and fetch environment variables from the host
environment list. For compatibility with differing environment conventions,
the name and value arguments given may be appended and prepended,
respectively, with an equal sign. The getenv function obtains the current value
of the environment variable, name. If the variable name is not in the current
environment, a null pointer is returned.

The setenv function inserts or resets the environment variable name in the
current environment list. If the variable name does not exist in the list, it is
inserted with the given value. If the variable does exist, the overwrite argument
is tested; if overwrite is zero, the variable is not reset, otherwise it is reset to
the given value.

The putenv function takes an argument of the form name=value and is
equivalent to: setenv(name, value, 1) .

The unsetenv function deletes all instances of the variable name pointed to
by name from the list.

RETURN VALUES The setenv and putenv functions return zero if successful; otherwise –1 is
returned. The setenv or putenv functions fail if they were unable to allocate
memory for the environment.

STANDARDS The getenv function conforms to ANSI–C .

NOTE These functions are reentrant, but the environment is global to the actor.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

232 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions puts(3STDC)

NAME puts, fputs – put a string on a stream

SYNOPSIS #include <stdio.h>
int puts (const char * s);

int fputs (const char * s, FILE * stream);

DESCRIPTION The puts function writes the null-terminated string pointed to by s , followed by
a new-line character, to the standard output stream stdout.

The fputs function writes the null-terminated string pointed to by s to the named
output stream .

Neither function writes the terminating null character.

RETURN VALUES Both routines return EOF on error. This will happen if the routines try to write to
a file that has not been opened for writing.

NOTES The puts appends a new-line character while fputs does not.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO ferror (3STDC) , fopen (3STDC) , fread (3STDC) , printf (3STDC) ,
putc (3STDC)

Last modified December 1999 ChorusOS 4.0 233

putw(3STDC) Standard C Library Functions

NAME putc, fputc, putw – put character or word on a stream

SYNOPSIS #include <stdio.h>
int putc (int c, FILE * stream);

int fputc (int c, FILE * stream);

int putw (int w, FILE * stream);

DESCRIPTION The putc and fputc functions writes the byte specified by c (converted to an
unsigned char) to the output stream (at the position where the file pointer, if
defined, is pointing).

The putw function writes the specified int to the defined output stream.

The putc routine behaves like fputc , except that it is implemented as a macro. It
runs faster than fputc , but it takes up more space per invocation and its name
cannot be passed as an argument to a function call.

Output streams, with the exception of the standard error stream stderr , are by
default buffered if the output refers to a file and line-buffered if the output refers
to a terminal. The standard error output stream stderr is by default unbuffered,
but use of freopen (see fopen (3STDC)) will change it to become buffered or
line-buffered. When an output stream is unbuffered, information is queued for
writing on the destination file or terminal as soon as it is written. When it
is buffered, a number characters are saved and written as a block. When it
is line-buffered, each line of output is queued for writing on the destination
terminal as soon as the line is completed (that is, as soon as a new-line character
is written or terminal input is requested). The setbuf (3STDC) or setvbuf (3STDC)
function may be used to change the stream’s buffering strategy.

RETURN VALUES Upon successful completion, these functions each return the value they have
written. If unsuccessful, they return the constant EOF. This will occur if the file
stream is not open for writing or if the output file cannot be extended.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO fclose (3STDC) , ferror (3STDC) , fopen (3STDC) , fread (3STDC) ,
printf (3STDC) , putchar (3STDC) , puts (3STDC) , setbuf (3STDC)

234 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions qsort(3STDC)

NAME qsort – quicker sort

SYNOPSIS #include <stdlib.h>
void qsort (void *base, size_t nel, size_t width, int (*compar)(const void *, const void *));

DESCRIPTION The qsort function is an implementation of the quicker-sort algorithm; it sorts a
table of data. The contents of the table are sorted in ascending order according to
a user-supplied comparison function.

The base pointer indicates the element at the base of the table. nel is the number
of elements in the table., and width specifies the size of each element in bytes.
The name of the comparison function, compar, is called with two arguments that
point to the elements being compared. The function must return an integer less
than, equal to, or greater than zero to indicate if the first argument is to be
considered less than, equal to, or greater than the second argument.

NOTES The comparison function need not compare every byte. Arbitrary data may be
contained in the elements in addition to the values being compared. If two items
compare as equal, the order of output is unpredictable.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO bsearch (3STDC), string (3STDC)

Last modified December 1999 ChorusOS 4.0 235

rand(3STDC) Standard C Library Functions

NAME rand, srand – pseudo random number generator

SYNOPSIS #include <stdlib.h>
void srand (unsigned seed);

int rand (void);

DESCRIPTION The rand function computes a sequence of pseudo-random integers in the range
of 0 to RAND_MAX (as defined by the header file stdlib.h).

The srand function sets its argument as the seed for a new sequence of
pseudo-random numbers to be returned by rand . These sequences are repeatable
by calling srand with the same seed value.

If no seed value is provided, the functions are automatically seeded with a
value of 1.

NOTE Though these functions are reentrant, the state information is global to the actor.
Therefore, repeatability of a given suite of numbers will not be experienced
by several threads in parallel. For a reentrant repeatability of suites, see
rand_r(3STDC) .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO random (3STDC) , rand_r (3STDC)

STANDARDS The rand and srand functions conform to ANSI-C.

236 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions random(3STDC)

NAME random, srandom, initstate, setstate – better random number generator

SYNOPSIS #include <stdlib.h>
long random (void);

void srandom (unsigned seed);

char *initstate (unsigned seed, char * state, int n);

char *setstate (char * state);

DESCRIPTION The random function uses a non-linear additive feedback random number
generator employing a default table of size 31 long integers to return successive
pseudo-random numbers in the range from 0 to 2 31 −1 . The period of this
random number generator is very large, approximately 16×(2 31 −1) .

The random/srandom functions have (almost) the same calling sequence and
initialization properties as rand/srand (3STDC) The difference is that rand
produces a much less random sequence — in fact, the low dozen bits generated
by rand go through a cyclic pattern. All the bits generated by random are usable.
For example, random &01 will produce a random binary value.

Unlike srand , srandom does not return the old seed; the reason being that
the amount of state information used is much more than a single word (two
other routines are provided to deal with restarting/changing random number
generators). Like rand , however, random will by default produce a sequence of
numbers that can be duplicated by calling srandom with 1 as the seed.

The initstate routine allows a state array, passed as an argument, to be initialized
for future use. The size of the state array (in bytes) is used by initstate to decide
how sophisticated a random number generator it should use — the bigger the
state, the better the random numbers will be. (Current "optimal" values for the
amount of state information are 8, 32, 64, 128, and 256 bytes; other amounts will
be rounded down to the nearest known amount. Using less than 8 bytes will
cause an error.) The seed for the initialization (which specifies a starting point for
the random number sequence, and provides for restarting at the same point)
is also an argument. The initstate function returns a pointer to the previous
state information array.

Once a state has been initialized, the setstate routine provides for rapid switching
between states. The setstate function returns a pointer to the previous state array;
its argument state array is used for further random number generation until
the next call to initstate or setstate .

Once a state array has been initialized, it may be restarted at a different point
either by calling initstate (with the desired seed, the state array, and its size) or by
calling both setstate (with the state array) and srandom (with the desired seed).

Last modified December 1999 ChorusOS 4.0 237

random(3STDC) Standard C Library Functions

The advantage of calling both setstate and srandom is that the size of the state
array does not have to be remembered after it is initialized.

With 256 bytes of state information, the period of the random number generator
is greater than 2 690 , which should be sufficient for most purposes.

If initstate has not been called, then random behaves as though initstate had been
called with seed=1 and size=128 .

If initstate is called with size<8 , it returns NULLand random uses a simple linear
congruential random number generator.

DIAGNOSTICS If initstate is called with less than 8 bytes of state information, or if setstate detects
that the state information has been garbled, error messages are printed to the
standard error output.

NOTE Though these functions are reentrant, the state information is global to the actor.
Therefore, repeatability of a given suite of number will not be experienced
by several threads in parallel. For a reentrent repeatability of suites, see
rand_r(3STDC) .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO rand (3STDC) , rand_r (3STDC)

RESTRICTIONS random operates at about 2/3 the speed of rand (3STDC).

238 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions rand_r(3STDC)

NAME rand_r – thread-wise random number generator

SYNOPSIS #include <stdlib.h>
int rand_r (unsigned int *seed);

DESCRIPTION The rand_r function computes a sequence of pseudo-random integers in the
range of 0 to RAND_MAX (as defined by the header file stdlib.h) .

The status is stored in the application space, and its address is given to rand_r via
the seed parameter. It is not mandatory to initialize *seed but it can be reset to an
arbitrary value at any time. Each particular value will lead to a particular suite of
rand_r results. This suite is the same as that produced by calling srand(3STDC)
once with the initial *seed value, and then calling rand(3STDC) repeatedly. By
allocating *seed in its stack, each thread can have its own repeatable suite of
numbers.

STANDARDS The rand_r function conforms to POSIX.1c standards.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO random (3STDC), rand (3STDC)

Last modified December 1999 ChorusOS 4.0 239

realloc(3STDC) Standard C Library Functions

NAME malloc, free, realloc, calloc – main memory allocator

SYNOPSIS #include <stdlib.h>
void * malloc (size_t size);

void free (void * ptr);

void * realloc (void * ptr, size_t size);

void *calloc (size_t nelem, size_t elsize);

DESCRIPTION The malloc() and free() functions provide a simple general-purpose
memory allocation package. The malloc() function returns a pointer to a block
of at least size bytes suitably aligned for any use. ChorusOS 4.0 offers three
malloc() libraries. See EXTENDED DESCRIPTION below for details.

The argument passed to free() is a pointer to a block previously allocated by
malloc() ; after free() is performed this space is made available for further
allocation, but its contents are left undisturbed.

The free() function may be called with a NULLpointer as parameter.

If the space assigned by malloc() is overrun or if a random number is passed
to free() , the result is undefined.

The malloc() function searches for free space from the last block allocated or
freed, grouping together any adjacent free blocks. It allocates the first contiguous
area of free space that is at least size() bytes.

The realloc() function changes the size of the block pointed to by ptr to size
bytes and returns a pointer to the (possibly moved) block. The contents will be
unchanged up to the smaller of the new and old sizes. If no free block of size
bytes is available in the storage area, realloc() will ask malloc() to enlarge
the area by size bytes and will then move the data to the new space. If the space
cannot be allocated, the object pointed to by ptr is unchanged. If size is zero and
ptr is not a null pointer, the object it points to is freed. If ptr is a null pointer, the
realloc() function behaves like the malloc() function for the specified size.

The realloc() function also works if ptr points to a block freed since the last
call to malloc() , realloc() , or calloc() ; thus sequences of free()
, malloc() and realloc() can be used to exploit the search strategy of
malloc() in order to do storage compacting.

The calloc() function allocates space for an array of nelem elements of size
elsize . The space is initialized to zeros.

Each of the allocation routines returns a pointer to space suitably aligned (after
possible pointer coercion) for storage of any type of object.

240 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions realloc(3STDC)

RETURN VALUES The malloc() , realloc() and calloc() functions return a NULLpointer if
there is no memory available, or if the area has been detectably corrupted by
storing outside the bounds of a block. When this happens, the block indicated
by ptr is neither damaged nor freed.

EXTENDED
DESCRIPTION

ChorusOS 4.0 offers three malloc() libraries. The following list describes
each library:
lib/classix/libcx.a

The standard malloc() for ChorusOS 4.0, based on the standard Solaris™
libc implementation, which has been extended to release freed memory
to the system for use by the kernel and by other actors. However, calling
free() does not automatically return memory to the system. malloc()
takes memory chunks from page-aligned regions. Regions are only
returned to the system once all the chunks in the region have been freed.
Furthermore, free() buffers memory chunks so that they can be reused
immediately by malloc() if possible. Therefore, memory may not be
returned to the system until malloc() is called again. malloc_trim()
can be used to release empty regions to the system explicitly.

alloca() , calloc() , memalign() and valloc() are not available in
lib/classix/libcx.a .

lib/classix/libleamalloc.a
Doug Lea’s malloc() , also known as the libg++ malloc()
implementation, adapted for ChorusOS 4.0 to allow the heap to be sparsed
in several regions. This implementation is especially useful in supervisor
mode, because supervisor space is shared by several actors. Freed memory
may be returned to the system using malloc_trim() . free() may also
call malloc_trim() if enough memory is free at the top of the heap.

lib/classix/libomalloc.a
The BSD malloc() is provided for backwards compatibility with previous
releases. This implementation corresponds to bsdmalloc (3X) in 2.6. See
Solaris man Pages(3): Library Routines in the Solaris 2.6 Reference Manual
AnswerBook for details.

NOTES Performance and efficiency depend upon the way the library is used. Search time
increases when many objects have been allocated; that is, if a program allocates
but never frees, each successive allocation takes longer. Tests on the running
program should be performed in order to determine the best balance between
performance and efficient use of space to achieve optimum performance.

If the program is multi-threaded, and if the free() and then realloc()
feature is used, it is up to the programmer to set up the mutual exclusion
schemes needed to prevent a malloc() taking place between free() and
realloc() calls.

Last modified December 1999 ChorusOS 4.0 241

realloc(3STDC) Standard C Library Functions

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

242 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions regcomp(3STDC)

NAME regex, regcomp, regexec, regerror, regfree – regular-expression library

SYNOPSIS #include <sys/types.h>
#include <regex.h>
int regcomp (regex_t * preg, const char * pattern, int cflags);

int regexec (constregex_t * preg, constchar * string, size_t nmatch, regmatch_tp match
[], int eflags);

size_t regerror (int errcode, constregex_t * preg, char * errbuf, size_t errbuf_size);

void regfree (regex_t * preg);

FEATURES STDC

DESCRIPTION These routines implement POSIX 1003.2 regular expressions (“RE”s); see the SEE
ALSO section below. The regcomp function compiles an RE written as a string
into an internal form, regexec matches that internal form against a string and
reports results, regerror transforms error codes from either into human-readable
messages, and regfree frees any dynamically-allocated storage used by the
internal form of an RE.

The header <regex.h> declares two structure types, regex_t and regmatch_t ,
the former for compiled internal forms and the latter for match reporting. It
also declares the four functions, a type regoff_t , and a number of constants
with names starting with “REG_”.

The regcomp function compiles the regular expression contained in the pattern
string, subject to the flags in cflags , and places the results in the regex_t structure
pointed to by preg . The cflags parameter is the bitwise OR of zero or one or
more of the following flags:
REG_EXTENDED Compile modern (“extended”) REs, rather than

the obsolete (“basic”) REs that are the default.

REG_BASIC This is a synonym for 0, provided as a
counterpart to REG_EXTENDED to improve
readability.

REG_NOSPEC Compile with recognition of all special characters
turned off. All characters are thus considered
ordinary, so the “RE” is a literal string. This is an
extension, compatible with but not specified by
POSIX 1003.2, and should be used with caution in
software intended to be portable to other systems.
REG_EXTENDED and REG_NOSPEC may not be
used in the same call to regcomp .

Last modified December 1999 ChorusOS 4.0 243

regcomp(3STDC) Standard C Library Functions

REG_ICASE Compile for matching that ignores upper/lower
case distinctions. See the citation in the SEE
ALSO section below

REG_NOSUB Compile for matching that need only report
success or failure, not what was matched.

REG_NEWLINE Compile for newline-sensitive matching. By
default, newline is a completely ordinary
character with no special meaning in either REs
or strings. With this flag, ‘[^’ bracket expressions
and ‘.’ never match newline, a ‘^’ anchor matches
the null string after any newline in the string in
addition to its normal function, and the ‘$’ anchor
matches the null string before any newline in the
string in addition to its normal function.

REG_PEND The regular expression ends, not at the first
NULL, but just before the character pointed to
by the re_endp member of the structure pointed
to by preg . The re_endp member is of the type
const char * . This flag permits inclusion of
NULs in the RE; they are considered ordinary
characters. This is an extension, compatible with,
but not specified by POSIX 1003.2, and should
be used with caution in software intended to be
portable to other systems.

When successful, regcomp returns 0 and fills in the structure pointed to by preg
. One member of that structure (other than re_endp) is published: re_nsub , of
type size_t , contains the number of parenthesized subexpressions within the RE
(except that the value of this member is undefined if the REG_NOSUB flag was
used). If regcomp fails, it returns a non-zero error code; see DIAGNOSTICS.

The regexec function matches the compiled RE pointed to by preg against the
string , subject to the flags in eflags , and reports results using nmatch , pmatch , and
the returned value. The RE must have been compiled using a previous invocation
of regcomp . The compiled form is not altered during execution of regexec , a
single compiled RE can therefore be used simultaneously by multiple threads.

By default, the NUL-terminated string pointed to by string is considered to be
the text of an entire line, minus any terminating newline. The eflags argument is
the bitwise OR of zero or one or more of the following flags:
REG_NOTBOL The first character of the string is not the

beginning of a line, so the ‘^’ anchor should not

244 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions regcomp(3STDC)

match before it. This does not affect the behavior
of newlines under REG_NEWLINE.

REG_NOTEOL The NUL terminating the string does not end a
line, so the ‘$’ anchor should not match before
it. This does not affect the behavior of newlines
under REG_NEWLINE.

REG_STARTEND The string is considered to start at string +
pmatch [0]. rm_so and to have a terminating NUL
located at string + pmatch [0]. rm_eo (there
need not actually be a NUL at that location),
regardless of the value of nmatch . See below for
the definition of pmatch and nmatch . This is an
extension, compatible with, but not specified by,
POSIX 1003.2, and should be used with caution in
software intended to be portable to other systems.
Note that a non-zero rm_so does not imply
REG_NOTBOL; REG_STARTEND affects only the
location of the string, not how it is matched.

See the citation in the SEE ALSO SECTION for an explanation of what is
matched in situations where an RE or a portion thereof could match any of
several substrings of string .

Normally, regexec returns 0 for success and the non-zero code REG_NOMATCH
for failure. Other non-zero error codes may be returned in exceptional situations;
see DIAGNOSTICS.

If REG_NOSUB was specified in the compilation of the RE, or if nmatch
is 0, regexec ignores the pmatch argument (see below for the case where
REG_STARTEND is specified). Otherwise, pmatch points to an array of nmatch
structures of the type regmatch_t . This a structure has at least the members rm_so
and rm_eo , both of type regoff_t (a signed arithmetic type at least as large as an
off_t and a ssize_t), containing respectively the offset of the first character of a
substring and the offset of the first character after the end of the substring.
Offsets are measured from the beginning of the string argument given to regexec .
An empty substring is denoted by equal offsets, both indicating the character
following the empty substring.

The 0th member of the pmatch array is filled in to indicate what substring of
string was matched by the entire RE. Remaining members report what substring
was matched by parenthesized subexpressions within the RE; member i reports
subexpression i , with subexpressions counted (starting at 1) by the order
of their opening parentheses in the RE, left to right. Unused entries in the
array—corresponding either to subexpressions that did not participate in the
match at all, or to subexpressions that do not exist in the RE (that is, i > preg –>

Last modified December 1999 ChorusOS 4.0 245

regcomp(3STDC) Standard C Library Functions

re_nsub)—have both rm_so and rm_eo set to –1. If a subexpression participated
in the match several times, the substring reported is the last one it matched.
(Note that, when the RE ‘(b*)+’ matches ‘bbb’, the parenthesized subexpression
matches each of the three ‘b’s and then an infinite number of empty strings
following the last ‘b’, the substring reported is therefore empty.)

If REG_STARTEND is specified, pmatch must point to at least one regmatch_t
(even if nmatch is 0 or REG_NOSUB was specified), to hold the input offsets
for REG_STARTEND. Use for output is still entirely controlled by nmatch ; if
nmatch is 0 or REG_NOSUB was specified, the value of pmatch [0] will not
be changed by a successful regexec .

The regerror function maps a non-zero errcode from either regcomp or regexec to a
human-readable, printable message. If preg is non-NULL, the error code should
have arisen from use of the regex_t pointed to by preg , and if the error code came
from regcomp , it should have been the result of the most recent regcomp using
that regex_t . (Regerror may be able to supply a more detailed message using
information from the regex_t .) The regerror function places the NUL-terminated
message into the buffer pointed to by errbuf , limiting the length (including the
NUL) to at most errbuf_size bytes. If the whole message won’t fit, as much of it as
will fit before the terminating NUL is supplied. The value returned is the size of
buffer needed to hold the whole message (including the terminating NULL). If
errbuf_size is 0, errbuf is ignored but the return value is still correct.

If the errcode given to regerror is first ORed with REG_ITOA, the “message” that
results is the printable name of the error code, for example, “REG_NOMATCH”,
rather than an explanation of it If errcode is REG_ATOI, preg will be non-NULL
and the re_endp member of the structure it points to must point to the printable
name of an error code; in this case, the result in errbuf is the decimal digits of the
numeric value of the error code (0 if the name is not recognized). The REG_ITOA
and REG_ATOI functions are intended primarily as debugging facilities; they
are extensions, compatible with, but not specified by, POSIX 1003.2, and should
be used with caution in software intended to be portable to other systems. Be
warned also that they are considered experimental and changes are possible.

The regfree function frees any dynamically-allocated storage associated with the
compiled RE pointed to by preg . The remaining regex_t is no longer a valid
compiled RE and the effect of supplying it to regexec or regerror is undefined.

None of these functions references global variables except for tables of constants;
all are safe for use by multiple threads if the arguments are safe.

IMPLEMENTATION
CHOICES

There are a number of decisions that 1003.2 leaves up to the implementor, either
by explicitly saying “undefined” or by virtue of them being forbidden by the RE
grammar. This implementation treats them as follows.

246 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions regcomp(3STDC)

See the citation in the SEE ALSO section for an explanation of the definition of
case-independent matching.

There is no particular limit to the length of REs, apart from memory limitations.
Memory usage is approximately linear in RE size, and largely insensitive to RE
complexity, except for bounded repetitions. See BUGS for one short RE using
them that will run almost any system out of memory.

A backslashed character other than one specifically given a magic meaning by
1003.2 (such magic meanings occur only in obsolete [“basic”] REs) is taken as an
ordinary character.

Any unmatched [is a REG_EBRACK error.

Equivalence classes cannot begin or end bracket-expression ranges. The
endpoint of one range cannot begin another.

The RE_DUP_MAX option defines the limit on repetition counts in bounded
repetitions, the maximum is 255.

A repetition operator (?, *, +, or bounds) cannot follow another repetition
operator. A repetition operator cannot begin an expression or subexpression
or follow ‘^’ or ‘|’.

The pipe symbol. (‘|’) cannot appear first or last in a (sub)expression or after
another ‘|’, in other words, an operand of ‘|’ cannot be an empty subexpression.
An empty parenthesized subexpression, ‘()’, is legal and matches an empty
(sub)string. An empty string is not a legal RE.

A brace (“{”) followed by a digit is considered the beginning of bounds for a
bounded repetition, which must then follow the syntax for bounds. A ‘{’ not
followed by a digit is considered an ordinary character.

A circumflex (’”‘^”) and dollar sign (“$”) beginning and ending subexpressions
in obsolete (“basic”) REs are anchors, not ordinary characters.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO grep(1UNIX), re_format(7UNIX)

POSIX 1003.2, sections 2.8 (Regular Expression Notation) and B.5 (C Binding
for Regular Expression Matching).

DIAGNOSTICS Non-zero error codes from regcomp and regexec include the following:

REG_NOMATCH regexec() failed to match
REG_BADPAT invalid regular expression

Last modified December 1999 ChorusOS 4.0 247

regcomp(3STDC) Standard C Library Functions

REG_ECOLLATE invalid collating element
REG_ECTYPE invalid character class
REG_EESCAPE \ applied to unescapable character
REG_ESUBREG invalid backreference number
REG_EBRACK brackets [] not balanced
REG_EPAREN parentheses () not balanced
REG_EBRACE braces { } not balanced
REG_BADBR invalid repetition count(s) in { }
REG_ERANGE invalid character range in []
REG_ESPACE ran out of memory
REG_BADRPT ?, *, or + operand invalid
REG_EMPTY empty (sub)expression
REG_ASSERT ‘‘can’t happen’’—you found a bug
REG_INVARG invalid argument, for example, negative-length string

HISTORY Originally written by Henry Spencer. Altered for inclusion in the 4.4BSD
distribution.

BUGS This is an alpha release with known defects. Please report problems.

There is one known functionality bug. The implementation of
internationalization is incomplete: the locale is always assumed to be the default
one of 1003.2, therefore, only information pertaining to that locale is available.

The back-reference code is subtle and there are doubts about its correctness in
complex cases.

The regexec function’s performance is poor. This will improve with later releases.
An nmatch exceeding 0 is expensive; nmatch exceeding 1 is worse. The regexec
function is largely insensitive to RE complexity except that back references are
extremely expensive. RE length does matter; in particular, there is an apprecialbe
speed bonus for keeping RE length under approximately 30 characters, most
special characters are worth roughly double.

The regcomp function implements bounded repetitions using expansion, which is
costly in time and space if counts are large or bounded repetitions are nested. An
RE like the following, ((((a{1,100}){1,100}){1,100}’ will (eventually) run almost any
existing machine out of swap space.

There are suspected problems with responses to obscure error conditions.
Notably, certain kinds of internal overflow, produced only by extremely large
REs or by multiply—nested bounded repetitions, are probably not handled well.

Due to a mistake in 1003.2, things like ‘a)b’ are legal REs because ‘)’ is a special
character only in the presence of a previous unmatched ‘(’. This can’t be fixed
until the spec is fixed.

The standard’s definition of back references is vague. For example, does
‘a\(\(b\)*\2\)*d’ match ‘abbbd’? Until the standard is clarified, behavior in
such cases should not be relied on.

248 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions regcomp(3STDC)

The implementation of word-boundary matching is imprecise, and bugs may
lurk in combinations of word-boundary matching and anchoring.

RESTRICTIONS As part of the BSD library, this function is not thread-safe .

Last modified December 1999 ChorusOS 4.0 249

regerror(3STDC) Standard C Library Functions

NAME regex, regcomp, regexec, regerror, regfree – regular-expression library

SYNOPSIS #include <sys/types.h>
#include <regex.h>
int regcomp (regex_t * preg, const char * pattern, int cflags);

int regexec (constregex_t * preg, constchar * string, size_t nmatch, regmatch_tp match
[], int eflags);

size_t regerror (int errcode, constregex_t * preg, char * errbuf, size_t errbuf_size);

void regfree (regex_t * preg);

FEATURES STDC

DESCRIPTION These routines implement POSIX 1003.2 regular expressions (“RE”s); see the SEE
ALSO section below. The regcomp function compiles an RE written as a string
into an internal form, regexec matches that internal form against a string and
reports results, regerror transforms error codes from either into human-readable
messages, and regfree frees any dynamically-allocated storage used by the
internal form of an RE.

The header <regex.h> declares two structure types, regex_t and regmatch_t ,
the former for compiled internal forms and the latter for match reporting. It
also declares the four functions, a type regoff_t , and a number of constants
with names starting with “REG_”.

The regcomp function compiles the regular expression contained in the pattern
string, subject to the flags in cflags , and places the results in the regex_t structure
pointed to by preg . The cflags parameter is the bitwise OR of zero or one or
more of the following flags:
REG_EXTENDED Compile modern (“extended”) REs, rather than

the obsolete (“basic”) REs that are the default.

REG_BASIC This is a synonym for 0, provided as a
counterpart to REG_EXTENDED to improve
readability.

REG_NOSPEC Compile with recognition of all special characters
turned off. All characters are thus considered
ordinary, so the “RE” is a literal string. This is an
extension, compatible with but not specified by
POSIX 1003.2, and should be used with caution in
software intended to be portable to other systems.
REG_EXTENDED and REG_NOSPEC may not be
used in the same call to regcomp .

250 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions regerror(3STDC)

REG_ICASE Compile for matching that ignores upper/lower
case distinctions. See the citation in the SEE
ALSO section below

REG_NOSUB Compile for matching that need only report
success or failure, not what was matched.

REG_NEWLINE Compile for newline-sensitive matching. By
default, newline is a completely ordinary
character with no special meaning in either REs
or strings. With this flag, ‘[^’ bracket expressions
and ‘.’ never match newline, a ‘^’ anchor matches
the null string after any newline in the string in
addition to its normal function, and the ‘$’ anchor
matches the null string before any newline in the
string in addition to its normal function.

REG_PEND The regular expression ends, not at the first
NULL, but just before the character pointed to
by the re_endp member of the structure pointed
to by preg . The re_endp member is of the type
const char * . This flag permits inclusion of
NULs in the RE; they are considered ordinary
characters. This is an extension, compatible with,
but not specified by POSIX 1003.2, and should
be used with caution in software intended to be
portable to other systems.

When successful, regcomp returns 0 and fills in the structure pointed to by preg
. One member of that structure (other than re_endp) is published: re_nsub , of
type size_t , contains the number of parenthesized subexpressions within the RE
(except that the value of this member is undefined if the REG_NOSUB flag was
used). If regcomp fails, it returns a non-zero error code; see DIAGNOSTICS.

The regexec function matches the compiled RE pointed to by preg against the
string , subject to the flags in eflags , and reports results using nmatch , pmatch , and
the returned value. The RE must have been compiled using a previous invocation
of regcomp . The compiled form is not altered during execution of regexec , a
single compiled RE can therefore be used simultaneously by multiple threads.

By default, the NUL-terminated string pointed to by string is considered to be
the text of an entire line, minus any terminating newline. The eflags argument is
the bitwise OR of zero or one or more of the following flags:
REG_NOTBOL The first character of the string is not the

beginning of a line, so the ‘^’ anchor should not

Last modified December 1999 ChorusOS 4.0 251

regerror(3STDC) Standard C Library Functions

match before it. This does not affect the behavior
of newlines under REG_NEWLINE.

REG_NOTEOL The NUL terminating the string does not end a
line, so the ‘$’ anchor should not match before
it. This does not affect the behavior of newlines
under REG_NEWLINE.

REG_STARTEND The string is considered to start at string +
pmatch [0]. rm_so and to have a terminating NUL
located at string + pmatch [0]. rm_eo (there
need not actually be a NUL at that location),
regardless of the value of nmatch . See below for
the definition of pmatch and nmatch . This is an
extension, compatible with, but not specified by,
POSIX 1003.2, and should be used with caution in
software intended to be portable to other systems.
Note that a non-zero rm_so does not imply
REG_NOTBOL; REG_STARTEND affects only the
location of the string, not how it is matched.

See the citation in the SEE ALSO SECTION for an explanation of what is
matched in situations where an RE or a portion thereof could match any of
several substrings of string .

Normally, regexec returns 0 for success and the non-zero code REG_NOMATCH
for failure. Other non-zero error codes may be returned in exceptional situations;
see DIAGNOSTICS.

If REG_NOSUB was specified in the compilation of the RE, or if nmatch
is 0, regexec ignores the pmatch argument (see below for the case where
REG_STARTEND is specified). Otherwise, pmatch points to an array of nmatch
structures of the type regmatch_t . This a structure has at least the members rm_so
and rm_eo , both of type regoff_t (a signed arithmetic type at least as large as an
off_t and a ssize_t), containing respectively the offset of the first character of a
substring and the offset of the first character after the end of the substring.
Offsets are measured from the beginning of the string argument given to regexec .
An empty substring is denoted by equal offsets, both indicating the character
following the empty substring.

The 0th member of the pmatch array is filled in to indicate what substring of
string was matched by the entire RE. Remaining members report what substring
was matched by parenthesized subexpressions within the RE; member i reports
subexpression i , with subexpressions counted (starting at 1) by the order
of their opening parentheses in the RE, left to right. Unused entries in the
array—corresponding either to subexpressions that did not participate in the
match at all, or to subexpressions that do not exist in the RE (that is, i > preg –>

252 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions regerror(3STDC)

re_nsub)—have both rm_so and rm_eo set to –1. If a subexpression participated
in the match several times, the substring reported is the last one it matched.
(Note that, when the RE ‘(b*)+’ matches ‘bbb’, the parenthesized subexpression
matches each of the three ‘b’s and then an infinite number of empty strings
following the last ‘b’, the substring reported is therefore empty.)

If REG_STARTEND is specified, pmatch must point to at least one regmatch_t
(even if nmatch is 0 or REG_NOSUB was specified), to hold the input offsets
for REG_STARTEND. Use for output is still entirely controlled by nmatch ; if
nmatch is 0 or REG_NOSUB was specified, the value of pmatch [0] will not
be changed by a successful regexec .

The regerror function maps a non-zero errcode from either regcomp or regexec to a
human-readable, printable message. If preg is non-NULL, the error code should
have arisen from use of the regex_t pointed to by preg , and if the error code came
from regcomp , it should have been the result of the most recent regcomp using
that regex_t . (Regerror may be able to supply a more detailed message using
information from the regex_t .) The regerror function places the NUL-terminated
message into the buffer pointed to by errbuf , limiting the length (including the
NUL) to at most errbuf_size bytes. If the whole message won’t fit, as much of it as
will fit before the terminating NUL is supplied. The value returned is the size of
buffer needed to hold the whole message (including the terminating NULL). If
errbuf_size is 0, errbuf is ignored but the return value is still correct.

If the errcode given to regerror is first ORed with REG_ITOA, the “message” that
results is the printable name of the error code, for example, “REG_NOMATCH”,
rather than an explanation of it If errcode is REG_ATOI, preg will be non-NULL
and the re_endp member of the structure it points to must point to the printable
name of an error code; in this case, the result in errbuf is the decimal digits of the
numeric value of the error code (0 if the name is not recognized). The REG_ITOA
and REG_ATOI functions are intended primarily as debugging facilities; they
are extensions, compatible with, but not specified by, POSIX 1003.2, and should
be used with caution in software intended to be portable to other systems. Be
warned also that they are considered experimental and changes are possible.

The regfree function frees any dynamically-allocated storage associated with the
compiled RE pointed to by preg . The remaining regex_t is no longer a valid
compiled RE and the effect of supplying it to regexec or regerror is undefined.

None of these functions references global variables except for tables of constants;
all are safe for use by multiple threads if the arguments are safe.

IMPLEMENTATION
CHOICES

There are a number of decisions that 1003.2 leaves up to the implementor, either
by explicitly saying “undefined” or by virtue of them being forbidden by the RE
grammar. This implementation treats them as follows.

Last modified December 1999 ChorusOS 4.0 253

regerror(3STDC) Standard C Library Functions

See the citation in the SEE ALSO section for an explanation of the definition of
case-independent matching.

There is no particular limit to the length of REs, apart from memory limitations.
Memory usage is approximately linear in RE size, and largely insensitive to RE
complexity, except for bounded repetitions. See BUGS for one short RE using
them that will run almost any system out of memory.

A backslashed character other than one specifically given a magic meaning by
1003.2 (such magic meanings occur only in obsolete [“basic”] REs) is taken as an
ordinary character.

Any unmatched [is a REG_EBRACK error.

Equivalence classes cannot begin or end bracket-expression ranges. The
endpoint of one range cannot begin another.

The RE_DUP_MAX option defines the limit on repetition counts in bounded
repetitions, the maximum is 255.

A repetition operator (?, *, +, or bounds) cannot follow another repetition
operator. A repetition operator cannot begin an expression or subexpression
or follow ‘^’ or ‘|’.

The pipe symbol. (‘|’) cannot appear first or last in a (sub)expression or after
another ‘|’, in other words, an operand of ‘|’ cannot be an empty subexpression.
An empty parenthesized subexpression, ‘()’, is legal and matches an empty
(sub)string. An empty string is not a legal RE.

A brace (“{”) followed by a digit is considered the beginning of bounds for a
bounded repetition, which must then follow the syntax for bounds. A ‘{’ not
followed by a digit is considered an ordinary character.

A circumflex (’”‘^”) and dollar sign (“$”) beginning and ending subexpressions
in obsolete (“basic”) REs are anchors, not ordinary characters.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO grep(1UNIX), re_format(7UNIX)

POSIX 1003.2, sections 2.8 (Regular Expression Notation) and B.5 (C Binding
for Regular Expression Matching).

DIAGNOSTICS Non-zero error codes from regcomp and regexec include the following:

REG_NOMATCH regexec() failed to match
REG_BADPAT invalid regular expression

254 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions regerror(3STDC)

REG_ECOLLATE invalid collating element
REG_ECTYPE invalid character class
REG_EESCAPE \ applied to unescapable character
REG_ESUBREG invalid backreference number
REG_EBRACK brackets [] not balanced
REG_EPAREN parentheses () not balanced
REG_EBRACE braces { } not balanced
REG_BADBR invalid repetition count(s) in { }
REG_ERANGE invalid character range in []
REG_ESPACE ran out of memory
REG_BADRPT ?, *, or + operand invalid
REG_EMPTY empty (sub)expression
REG_ASSERT ‘‘can’t happen’’—you found a bug
REG_INVARG invalid argument, for example, negative-length string

HISTORY Originally written by Henry Spencer. Altered for inclusion in the 4.4BSD
distribution.

BUGS This is an alpha release with known defects. Please report problems.

There is one known functionality bug. The implementation of
internationalization is incomplete: the locale is always assumed to be the default
one of 1003.2, therefore, only information pertaining to that locale is available.

The back-reference code is subtle and there are doubts about its correctness in
complex cases.

The regexec function’s performance is poor. This will improve with later releases.
An nmatch exceeding 0 is expensive; nmatch exceeding 1 is worse. The regexec
function is largely insensitive to RE complexity except that back references are
extremely expensive. RE length does matter; in particular, there is an apprecialbe
speed bonus for keeping RE length under approximately 30 characters, most
special characters are worth roughly double.

The regcomp function implements bounded repetitions using expansion, which is
costly in time and space if counts are large or bounded repetitions are nested. An
RE like the following, ((((a{1,100}){1,100}){1,100}’ will (eventually) run almost any
existing machine out of swap space.

There are suspected problems with responses to obscure error conditions.
Notably, certain kinds of internal overflow, produced only by extremely large
REs or by multiply—nested bounded repetitions, are probably not handled well.

Due to a mistake in 1003.2, things like ‘a)b’ are legal REs because ‘)’ is a special
character only in the presence of a previous unmatched ‘(’. This can’t be fixed
until the spec is fixed.

The standard’s definition of back references is vague. For example, does
‘a\(\(b\)*\2\)*d’ match ‘abbbd’? Until the standard is clarified, behavior in
such cases should not be relied on.

Last modified December 1999 ChorusOS 4.0 255

regerror(3STDC) Standard C Library Functions

The implementation of word-boundary matching is imprecise, and bugs may
lurk in combinations of word-boundary matching and anchoring.

RESTRICTIONS As part of the BSD library, this function is not thread-safe .

256 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions regex(3STDC)

NAME regex, regcomp, regexec, regerror, regfree – regular-expression library

SYNOPSIS #include <sys/types.h>
#include <regex.h>
int regcomp (regex_t * preg, const char * pattern, int cflags);

int regexec (constregex_t * preg, constchar * string, size_t nmatch, regmatch_tp match
[], int eflags);

size_t regerror (int errcode, constregex_t * preg, char * errbuf, size_t errbuf_size);

void regfree (regex_t * preg);

FEATURES STDC

DESCRIPTION These routines implement POSIX 1003.2 regular expressions (“RE”s); see the SEE
ALSO section below. The regcomp function compiles an RE written as a string
into an internal form, regexec matches that internal form against a string and
reports results, regerror transforms error codes from either into human-readable
messages, and regfree frees any dynamically-allocated storage used by the
internal form of an RE.

The header <regex.h> declares two structure types, regex_t and regmatch_t ,
the former for compiled internal forms and the latter for match reporting. It
also declares the four functions, a type regoff_t , and a number of constants
with names starting with “REG_”.

The regcomp function compiles the regular expression contained in the pattern
string, subject to the flags in cflags , and places the results in the regex_t structure
pointed to by preg . The cflags parameter is the bitwise OR of zero or one or
more of the following flags:
REG_EXTENDED Compile modern (“extended”) REs, rather than

the obsolete (“basic”) REs that are the default.

REG_BASIC This is a synonym for 0, provided as a
counterpart to REG_EXTENDED to improve
readability.

REG_NOSPEC Compile with recognition of all special characters
turned off. All characters are thus considered
ordinary, so the “RE” is a literal string. This is an
extension, compatible with but not specified by
POSIX 1003.2, and should be used with caution in
software intended to be portable to other systems.
REG_EXTENDED and REG_NOSPEC may not be
used in the same call to regcomp .

Last modified December 1999 ChorusOS 4.0 257

regex(3STDC) Standard C Library Functions

REG_ICASE Compile for matching that ignores upper/lower
case distinctions. See the citation in the SEE
ALSO section below

REG_NOSUB Compile for matching that need only report
success or failure, not what was matched.

REG_NEWLINE Compile for newline-sensitive matching. By
default, newline is a completely ordinary
character with no special meaning in either REs
or strings. With this flag, ‘[^’ bracket expressions
and ‘.’ never match newline, a ‘^’ anchor matches
the null string after any newline in the string in
addition to its normal function, and the ‘$’ anchor
matches the null string before any newline in the
string in addition to its normal function.

REG_PEND The regular expression ends, not at the first
NULL, but just before the character pointed to
by the re_endp member of the structure pointed
to by preg . The re_endp member is of the type
const char * . This flag permits inclusion of
NULs in the RE; they are considered ordinary
characters. This is an extension, compatible with,
but not specified by POSIX 1003.2, and should
be used with caution in software intended to be
portable to other systems.

When successful, regcomp returns 0 and fills in the structure pointed to by preg
. One member of that structure (other than re_endp) is published: re_nsub , of
type size_t , contains the number of parenthesized subexpressions within the RE
(except that the value of this member is undefined if the REG_NOSUB flag was
used). If regcomp fails, it returns a non-zero error code; see DIAGNOSTICS.

The regexec function matches the compiled RE pointed to by preg against the
string , subject to the flags in eflags , and reports results using nmatch , pmatch , and
the returned value. The RE must have been compiled using a previous invocation
of regcomp . The compiled form is not altered during execution of regexec , a
single compiled RE can therefore be used simultaneously by multiple threads.

By default, the NUL-terminated string pointed to by string is considered to be
the text of an entire line, minus any terminating newline. The eflags argument is
the bitwise OR of zero or one or more of the following flags:
REG_NOTBOL The first character of the string is not the

beginning of a line, so the ‘^’ anchor should not

258 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions regex(3STDC)

match before it. This does not affect the behavior
of newlines under REG_NEWLINE.

REG_NOTEOL The NUL terminating the string does not end a
line, so the ‘$’ anchor should not match before
it. This does not affect the behavior of newlines
under REG_NEWLINE.

REG_STARTEND The string is considered to start at string +
pmatch [0]. rm_so and to have a terminating NUL
located at string + pmatch [0]. rm_eo (there
need not actually be a NUL at that location),
regardless of the value of nmatch . See below for
the definition of pmatch and nmatch . This is an
extension, compatible with, but not specified by,
POSIX 1003.2, and should be used with caution in
software intended to be portable to other systems.
Note that a non-zero rm_so does not imply
REG_NOTBOL; REG_STARTEND affects only the
location of the string, not how it is matched.

See the citation in the SEE ALSO SECTION for an explanation of what is
matched in situations where an RE or a portion thereof could match any of
several substrings of string .

Normally, regexec returns 0 for success and the non-zero code REG_NOMATCH
for failure. Other non-zero error codes may be returned in exceptional situations;
see DIAGNOSTICS.

If REG_NOSUB was specified in the compilation of the RE, or if nmatch
is 0, regexec ignores the pmatch argument (see below for the case where
REG_STARTEND is specified). Otherwise, pmatch points to an array of nmatch
structures of the type regmatch_t . This a structure has at least the members rm_so
and rm_eo , both of type regoff_t (a signed arithmetic type at least as large as an
off_t and a ssize_t), containing respectively the offset of the first character of a
substring and the offset of the first character after the end of the substring.
Offsets are measured from the beginning of the string argument given to regexec .
An empty substring is denoted by equal offsets, both indicating the character
following the empty substring.

The 0th member of the pmatch array is filled in to indicate what substring of
string was matched by the entire RE. Remaining members report what substring
was matched by parenthesized subexpressions within the RE; member i reports
subexpression i , with subexpressions counted (starting at 1) by the order
of their opening parentheses in the RE, left to right. Unused entries in the
array—corresponding either to subexpressions that did not participate in the
match at all, or to subexpressions that do not exist in the RE (that is, i > preg –>

Last modified December 1999 ChorusOS 4.0 259

regex(3STDC) Standard C Library Functions

re_nsub)—have both rm_so and rm_eo set to –1. If a subexpression participated
in the match several times, the substring reported is the last one it matched.
(Note that, when the RE ‘(b*)+’ matches ‘bbb’, the parenthesized subexpression
matches each of the three ‘b’s and then an infinite number of empty strings
following the last ‘b’, the substring reported is therefore empty.)

If REG_STARTEND is specified, pmatch must point to at least one regmatch_t
(even if nmatch is 0 or REG_NOSUB was specified), to hold the input offsets
for REG_STARTEND. Use for output is still entirely controlled by nmatch ; if
nmatch is 0 or REG_NOSUB was specified, the value of pmatch [0] will not
be changed by a successful regexec .

The regerror function maps a non-zero errcode from either regcomp or regexec to a
human-readable, printable message. If preg is non-NULL, the error code should
have arisen from use of the regex_t pointed to by preg , and if the error code came
from regcomp , it should have been the result of the most recent regcomp using
that regex_t . (Regerror may be able to supply a more detailed message using
information from the regex_t .) The regerror function places the NUL-terminated
message into the buffer pointed to by errbuf , limiting the length (including the
NUL) to at most errbuf_size bytes. If the whole message won’t fit, as much of it as
will fit before the terminating NUL is supplied. The value returned is the size of
buffer needed to hold the whole message (including the terminating NULL). If
errbuf_size is 0, errbuf is ignored but the return value is still correct.

If the errcode given to regerror is first ORed with REG_ITOA, the “message” that
results is the printable name of the error code, for example, “REG_NOMATCH”,
rather than an explanation of it If errcode is REG_ATOI, preg will be non-NULL
and the re_endp member of the structure it points to must point to the printable
name of an error code; in this case, the result in errbuf is the decimal digits of the
numeric value of the error code (0 if the name is not recognized). The REG_ITOA
and REG_ATOI functions are intended primarily as debugging facilities; they
are extensions, compatible with, but not specified by, POSIX 1003.2, and should
be used with caution in software intended to be portable to other systems. Be
warned also that they are considered experimental and changes are possible.

The regfree function frees any dynamically-allocated storage associated with the
compiled RE pointed to by preg . The remaining regex_t is no longer a valid
compiled RE and the effect of supplying it to regexec or regerror is undefined.

None of these functions references global variables except for tables of constants;
all are safe for use by multiple threads if the arguments are safe.

IMPLEMENTATION
CHOICES

There are a number of decisions that 1003.2 leaves up to the implementor, either
by explicitly saying “undefined” or by virtue of them being forbidden by the RE
grammar. This implementation treats them as follows.

260 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions regex(3STDC)

See the citation in the SEE ALSO section for an explanation of the definition of
case-independent matching.

There is no particular limit to the length of REs, apart from memory limitations.
Memory usage is approximately linear in RE size, and largely insensitive to RE
complexity, except for bounded repetitions. See BUGS for one short RE using
them that will run almost any system out of memory.

A backslashed character other than one specifically given a magic meaning by
1003.2 (such magic meanings occur only in obsolete [“basic”] REs) is taken as an
ordinary character.

Any unmatched [is a REG_EBRACK error.

Equivalence classes cannot begin or end bracket-expression ranges. The
endpoint of one range cannot begin another.

The RE_DUP_MAX option defines the limit on repetition counts in bounded
repetitions, the maximum is 255.

A repetition operator (?, *, +, or bounds) cannot follow another repetition
operator. A repetition operator cannot begin an expression or subexpression
or follow ‘^’ or ‘|’.

The pipe symbol. (‘|’) cannot appear first or last in a (sub)expression or after
another ‘|’, in other words, an operand of ‘|’ cannot be an empty subexpression.
An empty parenthesized subexpression, ‘()’, is legal and matches an empty
(sub)string. An empty string is not a legal RE.

A brace (“{”) followed by a digit is considered the beginning of bounds for a
bounded repetition, which must then follow the syntax for bounds. A ‘{’ not
followed by a digit is considered an ordinary character.

A circumflex (’”‘^”) and dollar sign (“$”) beginning and ending subexpressions
in obsolete (“basic”) REs are anchors, not ordinary characters.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO grep(1UNIX), re_format(7UNIX)

POSIX 1003.2, sections 2.8 (Regular Expression Notation) and B.5 (C Binding
for Regular Expression Matching).

DIAGNOSTICS Non-zero error codes from regcomp and regexec include the following:

REG_NOMATCH regexec() failed to match
REG_BADPAT invalid regular expression

Last modified December 1999 ChorusOS 4.0 261

regex(3STDC) Standard C Library Functions

REG_ECOLLATE invalid collating element
REG_ECTYPE invalid character class
REG_EESCAPE \ applied to unescapable character
REG_ESUBREG invalid backreference number
REG_EBRACK brackets [] not balanced
REG_EPAREN parentheses () not balanced
REG_EBRACE braces { } not balanced
REG_BADBR invalid repetition count(s) in { }
REG_ERANGE invalid character range in []
REG_ESPACE ran out of memory
REG_BADRPT ?, *, or + operand invalid
REG_EMPTY empty (sub)expression
REG_ASSERT ‘‘can’t happen’’—you found a bug
REG_INVARG invalid argument, for example, negative-length string

HISTORY Originally written by Henry Spencer. Altered for inclusion in the 4.4BSD
distribution.

BUGS This is an alpha release with known defects. Please report problems.

There is one known functionality bug. The implementation of
internationalization is incomplete: the locale is always assumed to be the default
one of 1003.2, therefore, only information pertaining to that locale is available.

The back-reference code is subtle and there are doubts about its correctness in
complex cases.

The regexec function’s performance is poor. This will improve with later releases.
An nmatch exceeding 0 is expensive; nmatch exceeding 1 is worse. The regexec
function is largely insensitive to RE complexity except that back references are
extremely expensive. RE length does matter; in particular, there is an apprecialbe
speed bonus for keeping RE length under approximately 30 characters, most
special characters are worth roughly double.

The regcomp function implements bounded repetitions using expansion, which is
costly in time and space if counts are large or bounded repetitions are nested. An
RE like the following, ((((a{1,100}){1,100}){1,100}’ will (eventually) run almost any
existing machine out of swap space.

There are suspected problems with responses to obscure error conditions.
Notably, certain kinds of internal overflow, produced only by extremely large
REs or by multiply—nested bounded repetitions, are probably not handled well.

Due to a mistake in 1003.2, things like ‘a)b’ are legal REs because ‘)’ is a special
character only in the presence of a previous unmatched ‘(’. This can’t be fixed
until the spec is fixed.

The standard’s definition of back references is vague. For example, does
‘a\(\(b\)*\2\)*d’ match ‘abbbd’? Until the standard is clarified, behavior in
such cases should not be relied on.

262 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions regex(3STDC)

The implementation of word-boundary matching is imprecise, and bugs may
lurk in combinations of word-boundary matching and anchoring.

RESTRICTIONS As part of the BSD library, this function is not thread-safe .

Last modified December 1999 ChorusOS 4.0 263

regexec(3STDC) Standard C Library Functions

NAME regex, regcomp, regexec, regerror, regfree – regular-expression library

SYNOPSIS #include <sys/types.h>
#include <regex.h>
int regcomp (regex_t * preg, const char * pattern, int cflags);

int regexec (constregex_t * preg, constchar * string, size_t nmatch, regmatch_tp match
[], int eflags);

size_t regerror (int errcode, constregex_t * preg, char * errbuf, size_t errbuf_size);

void regfree (regex_t * preg);

FEATURES STDC

DESCRIPTION These routines implement POSIX 1003.2 regular expressions (“RE”s); see the SEE
ALSO section below. The regcomp function compiles an RE written as a string
into an internal form, regexec matches that internal form against a string and
reports results, regerror transforms error codes from either into human-readable
messages, and regfree frees any dynamically-allocated storage used by the
internal form of an RE.

The header <regex.h> declares two structure types, regex_t and regmatch_t ,
the former for compiled internal forms and the latter for match reporting. It
also declares the four functions, a type regoff_t , and a number of constants
with names starting with “REG_”.

The regcomp function compiles the regular expression contained in the pattern
string, subject to the flags in cflags , and places the results in the regex_t structure
pointed to by preg . The cflags parameter is the bitwise OR of zero or one or
more of the following flags:
REG_EXTENDED Compile modern (“extended”) REs, rather than

the obsolete (“basic”) REs that are the default.

REG_BASIC This is a synonym for 0, provided as a
counterpart to REG_EXTENDED to improve
readability.

REG_NOSPEC Compile with recognition of all special characters
turned off. All characters are thus considered
ordinary, so the “RE” is a literal string. This is an
extension, compatible with but not specified by
POSIX 1003.2, and should be used with caution in
software intended to be portable to other systems.
REG_EXTENDED and REG_NOSPEC may not be
used in the same call to regcomp .

264 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions regexec(3STDC)

REG_ICASE Compile for matching that ignores upper/lower
case distinctions. See the citation in the SEE
ALSO section below

REG_NOSUB Compile for matching that need only report
success or failure, not what was matched.

REG_NEWLINE Compile for newline-sensitive matching. By
default, newline is a completely ordinary
character with no special meaning in either REs
or strings. With this flag, ‘[^’ bracket expressions
and ‘.’ never match newline, a ‘^’ anchor matches
the null string after any newline in the string in
addition to its normal function, and the ‘$’ anchor
matches the null string before any newline in the
string in addition to its normal function.

REG_PEND The regular expression ends, not at the first
NULL, but just before the character pointed to
by the re_endp member of the structure pointed
to by preg . The re_endp member is of the type
const char * . This flag permits inclusion of
NULs in the RE; they are considered ordinary
characters. This is an extension, compatible with,
but not specified by POSIX 1003.2, and should
be used with caution in software intended to be
portable to other systems.

When successful, regcomp returns 0 and fills in the structure pointed to by preg
. One member of that structure (other than re_endp) is published: re_nsub , of
type size_t , contains the number of parenthesized subexpressions within the RE
(except that the value of this member is undefined if the REG_NOSUB flag was
used). If regcomp fails, it returns a non-zero error code; see DIAGNOSTICS.

The regexec function matches the compiled RE pointed to by preg against the
string , subject to the flags in eflags , and reports results using nmatch , pmatch , and
the returned value. The RE must have been compiled using a previous invocation
of regcomp . The compiled form is not altered during execution of regexec , a
single compiled RE can therefore be used simultaneously by multiple threads.

By default, the NUL-terminated string pointed to by string is considered to be
the text of an entire line, minus any terminating newline. The eflags argument is
the bitwise OR of zero or one or more of the following flags:
REG_NOTBOL The first character of the string is not the

beginning of a line, so the ‘^’ anchor should not

Last modified December 1999 ChorusOS 4.0 265

regexec(3STDC) Standard C Library Functions

match before it. This does not affect the behavior
of newlines under REG_NEWLINE.

REG_NOTEOL The NUL terminating the string does not end a
line, so the ‘$’ anchor should not match before
it. This does not affect the behavior of newlines
under REG_NEWLINE.

REG_STARTEND The string is considered to start at string +
pmatch [0]. rm_so and to have a terminating NUL
located at string + pmatch [0]. rm_eo (there
need not actually be a NUL at that location),
regardless of the value of nmatch . See below for
the definition of pmatch and nmatch . This is an
extension, compatible with, but not specified by,
POSIX 1003.2, and should be used with caution in
software intended to be portable to other systems.
Note that a non-zero rm_so does not imply
REG_NOTBOL; REG_STARTEND affects only the
location of the string, not how it is matched.

See the citation in the SEE ALSO SECTION for an explanation of what is
matched in situations where an RE or a portion thereof could match any of
several substrings of string .

Normally, regexec returns 0 for success and the non-zero code REG_NOMATCH
for failure. Other non-zero error codes may be returned in exceptional situations;
see DIAGNOSTICS.

If REG_NOSUB was specified in the compilation of the RE, or if nmatch
is 0, regexec ignores the pmatch argument (see below for the case where
REG_STARTEND is specified). Otherwise, pmatch points to an array of nmatch
structures of the type regmatch_t . This a structure has at least the members rm_so
and rm_eo , both of type regoff_t (a signed arithmetic type at least as large as an
off_t and a ssize_t), containing respectively the offset of the first character of a
substring and the offset of the first character after the end of the substring.
Offsets are measured from the beginning of the string argument given to regexec .
An empty substring is denoted by equal offsets, both indicating the character
following the empty substring.

The 0th member of the pmatch array is filled in to indicate what substring of
string was matched by the entire RE. Remaining members report what substring
was matched by parenthesized subexpressions within the RE; member i reports
subexpression i , with subexpressions counted (starting at 1) by the order
of their opening parentheses in the RE, left to right. Unused entries in the
array—corresponding either to subexpressions that did not participate in the
match at all, or to subexpressions that do not exist in the RE (that is, i > preg –>

266 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions regexec(3STDC)

re_nsub)—have both rm_so and rm_eo set to –1. If a subexpression participated
in the match several times, the substring reported is the last one it matched.
(Note that, when the RE ‘(b*)+’ matches ‘bbb’, the parenthesized subexpression
matches each of the three ‘b’s and then an infinite number of empty strings
following the last ‘b’, the substring reported is therefore empty.)

If REG_STARTEND is specified, pmatch must point to at least one regmatch_t
(even if nmatch is 0 or REG_NOSUB was specified), to hold the input offsets
for REG_STARTEND. Use for output is still entirely controlled by nmatch ; if
nmatch is 0 or REG_NOSUB was specified, the value of pmatch [0] will not
be changed by a successful regexec .

The regerror function maps a non-zero errcode from either regcomp or regexec to a
human-readable, printable message. If preg is non-NULL, the error code should
have arisen from use of the regex_t pointed to by preg , and if the error code came
from regcomp , it should have been the result of the most recent regcomp using
that regex_t . (Regerror may be able to supply a more detailed message using
information from the regex_t .) The regerror function places the NUL-terminated
message into the buffer pointed to by errbuf , limiting the length (including the
NUL) to at most errbuf_size bytes. If the whole message won’t fit, as much of it as
will fit before the terminating NUL is supplied. The value returned is the size of
buffer needed to hold the whole message (including the terminating NULL). If
errbuf_size is 0, errbuf is ignored but the return value is still correct.

If the errcode given to regerror is first ORed with REG_ITOA, the “message” that
results is the printable name of the error code, for example, “REG_NOMATCH”,
rather than an explanation of it If errcode is REG_ATOI, preg will be non-NULL
and the re_endp member of the structure it points to must point to the printable
name of an error code; in this case, the result in errbuf is the decimal digits of the
numeric value of the error code (0 if the name is not recognized). The REG_ITOA
and REG_ATOI functions are intended primarily as debugging facilities; they
are extensions, compatible with, but not specified by, POSIX 1003.2, and should
be used with caution in software intended to be portable to other systems. Be
warned also that they are considered experimental and changes are possible.

The regfree function frees any dynamically-allocated storage associated with the
compiled RE pointed to by preg . The remaining regex_t is no longer a valid
compiled RE and the effect of supplying it to regexec or regerror is undefined.

None of these functions references global variables except for tables of constants;
all are safe for use by multiple threads if the arguments are safe.

IMPLEMENTATION
CHOICES

There are a number of decisions that 1003.2 leaves up to the implementor, either
by explicitly saying “undefined” or by virtue of them being forbidden by the RE
grammar. This implementation treats them as follows.

Last modified December 1999 ChorusOS 4.0 267

regexec(3STDC) Standard C Library Functions

See the citation in the SEE ALSO section for an explanation of the definition of
case-independent matching.

There is no particular limit to the length of REs, apart from memory limitations.
Memory usage is approximately linear in RE size, and largely insensitive to RE
complexity, except for bounded repetitions. See BUGS for one short RE using
them that will run almost any system out of memory.

A backslashed character other than one specifically given a magic meaning by
1003.2 (such magic meanings occur only in obsolete [“basic”] REs) is taken as an
ordinary character.

Any unmatched [is a REG_EBRACK error.

Equivalence classes cannot begin or end bracket-expression ranges. The
endpoint of one range cannot begin another.

The RE_DUP_MAX option defines the limit on repetition counts in bounded
repetitions, the maximum is 255.

A repetition operator (?, *, +, or bounds) cannot follow another repetition
operator. A repetition operator cannot begin an expression or subexpression
or follow ‘^’ or ‘|’.

The pipe symbol. (‘|’) cannot appear first or last in a (sub)expression or after
another ‘|’, in other words, an operand of ‘|’ cannot be an empty subexpression.
An empty parenthesized subexpression, ‘()’, is legal and matches an empty
(sub)string. An empty string is not a legal RE.

A brace (“{”) followed by a digit is considered the beginning of bounds for a
bounded repetition, which must then follow the syntax for bounds. A ‘{’ not
followed by a digit is considered an ordinary character.

A circumflex (’”‘^”) and dollar sign (“$”) beginning and ending subexpressions
in obsolete (“basic”) REs are anchors, not ordinary characters.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO grep(1UNIX), re_format(7UNIX)

POSIX 1003.2, sections 2.8 (Regular Expression Notation) and B.5 (C Binding
for Regular Expression Matching).

DIAGNOSTICS Non-zero error codes from regcomp and regexec include the following:

REG_NOMATCH regexec() failed to match
REG_BADPAT invalid regular expression

268 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions regexec(3STDC)

REG_ECOLLATE invalid collating element
REG_ECTYPE invalid character class
REG_EESCAPE \ applied to unescapable character
REG_ESUBREG invalid backreference number
REG_EBRACK brackets [] not balanced
REG_EPAREN parentheses () not balanced
REG_EBRACE braces { } not balanced
REG_BADBR invalid repetition count(s) in { }
REG_ERANGE invalid character range in []
REG_ESPACE ran out of memory
REG_BADRPT ?, *, or + operand invalid
REG_EMPTY empty (sub)expression
REG_ASSERT ‘‘can’t happen’’—you found a bug
REG_INVARG invalid argument, for example, negative-length string

HISTORY Originally written by Henry Spencer. Altered for inclusion in the 4.4BSD
distribution.

BUGS This is an alpha release with known defects. Please report problems.

There is one known functionality bug. The implementation of
internationalization is incomplete: the locale is always assumed to be the default
one of 1003.2, therefore, only information pertaining to that locale is available.

The back-reference code is subtle and there are doubts about its correctness in
complex cases.

The regexec function’s performance is poor. This will improve with later releases.
An nmatch exceeding 0 is expensive; nmatch exceeding 1 is worse. The regexec
function is largely insensitive to RE complexity except that back references are
extremely expensive. RE length does matter; in particular, there is an apprecialbe
speed bonus for keeping RE length under approximately 30 characters, most
special characters are worth roughly double.

The regcomp function implements bounded repetitions using expansion, which is
costly in time and space if counts are large or bounded repetitions are nested. An
RE like the following, ((((a{1,100}){1,100}){1,100}’ will (eventually) run almost any
existing machine out of swap space.

There are suspected problems with responses to obscure error conditions.
Notably, certain kinds of internal overflow, produced only by extremely large
REs or by multiply—nested bounded repetitions, are probably not handled well.

Due to a mistake in 1003.2, things like ‘a)b’ are legal REs because ‘)’ is a special
character only in the presence of a previous unmatched ‘(’. This can’t be fixed
until the spec is fixed.

The standard’s definition of back references is vague. For example, does
‘a\(\(b\)*\2\)*d’ match ‘abbbd’? Until the standard is clarified, behavior in
such cases should not be relied on.

Last modified December 1999 ChorusOS 4.0 269

regexec(3STDC) Standard C Library Functions

The implementation of word-boundary matching is imprecise, and bugs may
lurk in combinations of word-boundary matching and anchoring.

RESTRICTIONS As part of the BSD library, this function is not thread-safe .

270 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions regfree(3STDC)

NAME regex, regcomp, regexec, regerror, regfree – regular-expression library

SYNOPSIS #include <sys/types.h>
#include <regex.h>
int regcomp (regex_t * preg, const char * pattern, int cflags);

int regexec (constregex_t * preg, constchar * string, size_t nmatch, regmatch_tp match
[], int eflags);

size_t regerror (int errcode, constregex_t * preg, char * errbuf, size_t errbuf_size);

void regfree (regex_t * preg);

FEATURES STDC

DESCRIPTION These routines implement POSIX 1003.2 regular expressions (“RE”s); see the SEE
ALSO section below. The regcomp function compiles an RE written as a string
into an internal form, regexec matches that internal form against a string and
reports results, regerror transforms error codes from either into human-readable
messages, and regfree frees any dynamically-allocated storage used by the
internal form of an RE.

The header <regex.h> declares two structure types, regex_t and regmatch_t ,
the former for compiled internal forms and the latter for match reporting. It
also declares the four functions, a type regoff_t , and a number of constants
with names starting with “REG_”.

The regcomp function compiles the regular expression contained in the pattern
string, subject to the flags in cflags , and places the results in the regex_t structure
pointed to by preg . The cflags parameter is the bitwise OR of zero or one or
more of the following flags:
REG_EXTENDED Compile modern (“extended”) REs, rather than

the obsolete (“basic”) REs that are the default.

REG_BASIC This is a synonym for 0, provided as a
counterpart to REG_EXTENDED to improve
readability.

REG_NOSPEC Compile with recognition of all special characters
turned off. All characters are thus considered
ordinary, so the “RE” is a literal string. This is an
extension, compatible with but not specified by
POSIX 1003.2, and should be used with caution in
software intended to be portable to other systems.
REG_EXTENDED and REG_NOSPEC may not be
used in the same call to regcomp .

Last modified December 1999 ChorusOS 4.0 271

regfree(3STDC) Standard C Library Functions

REG_ICASE Compile for matching that ignores upper/lower
case distinctions. See the citation in the SEE
ALSO section below

REG_NOSUB Compile for matching that need only report
success or failure, not what was matched.

REG_NEWLINE Compile for newline-sensitive matching. By
default, newline is a completely ordinary
character with no special meaning in either REs
or strings. With this flag, ‘[^’ bracket expressions
and ‘.’ never match newline, a ‘^’ anchor matches
the null string after any newline in the string in
addition to its normal function, and the ‘$’ anchor
matches the null string before any newline in the
string in addition to its normal function.

REG_PEND The regular expression ends, not at the first
NULL, but just before the character pointed to
by the re_endp member of the structure pointed
to by preg . The re_endp member is of the type
const char * . This flag permits inclusion of
NULs in the RE; they are considered ordinary
characters. This is an extension, compatible with,
but not specified by POSIX 1003.2, and should
be used with caution in software intended to be
portable to other systems.

When successful, regcomp returns 0 and fills in the structure pointed to by preg
. One member of that structure (other than re_endp) is published: re_nsub , of
type size_t , contains the number of parenthesized subexpressions within the RE
(except that the value of this member is undefined if the REG_NOSUB flag was
used). If regcomp fails, it returns a non-zero error code; see DIAGNOSTICS.

The regexec function matches the compiled RE pointed to by preg against the
string , subject to the flags in eflags , and reports results using nmatch , pmatch , and
the returned value. The RE must have been compiled using a previous invocation
of regcomp . The compiled form is not altered during execution of regexec , a
single compiled RE can therefore be used simultaneously by multiple threads.

By default, the NUL-terminated string pointed to by string is considered to be
the text of an entire line, minus any terminating newline. The eflags argument is
the bitwise OR of zero or one or more of the following flags:
REG_NOTBOL The first character of the string is not the

beginning of a line, so the ‘^’ anchor should not

272 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions regfree(3STDC)

match before it. This does not affect the behavior
of newlines under REG_NEWLINE.

REG_NOTEOL The NUL terminating the string does not end a
line, so the ‘$’ anchor should not match before
it. This does not affect the behavior of newlines
under REG_NEWLINE.

REG_STARTEND The string is considered to start at string +
pmatch [0]. rm_so and to have a terminating NUL
located at string + pmatch [0]. rm_eo (there
need not actually be a NUL at that location),
regardless of the value of nmatch . See below for
the definition of pmatch and nmatch . This is an
extension, compatible with, but not specified by,
POSIX 1003.2, and should be used with caution in
software intended to be portable to other systems.
Note that a non-zero rm_so does not imply
REG_NOTBOL; REG_STARTEND affects only the
location of the string, not how it is matched.

See the citation in the SEE ALSO SECTION for an explanation of what is
matched in situations where an RE or a portion thereof could match any of
several substrings of string .

Normally, regexec returns 0 for success and the non-zero code REG_NOMATCH
for failure. Other non-zero error codes may be returned in exceptional situations;
see DIAGNOSTICS.

If REG_NOSUB was specified in the compilation of the RE, or if nmatch
is 0, regexec ignores the pmatch argument (see below for the case where
REG_STARTEND is specified). Otherwise, pmatch points to an array of nmatch
structures of the type regmatch_t . This a structure has at least the members rm_so
and rm_eo , both of type regoff_t (a signed arithmetic type at least as large as an
off_t and a ssize_t), containing respectively the offset of the first character of a
substring and the offset of the first character after the end of the substring.
Offsets are measured from the beginning of the string argument given to regexec .
An empty substring is denoted by equal offsets, both indicating the character
following the empty substring.

The 0th member of the pmatch array is filled in to indicate what substring of
string was matched by the entire RE. Remaining members report what substring
was matched by parenthesized subexpressions within the RE; member i reports
subexpression i , with subexpressions counted (starting at 1) by the order
of their opening parentheses in the RE, left to right. Unused entries in the
array—corresponding either to subexpressions that did not participate in the
match at all, or to subexpressions that do not exist in the RE (that is, i > preg –>

Last modified December 1999 ChorusOS 4.0 273

regfree(3STDC) Standard C Library Functions

re_nsub)—have both rm_so and rm_eo set to –1. If a subexpression participated
in the match several times, the substring reported is the last one it matched.
(Note that, when the RE ‘(b*)+’ matches ‘bbb’, the parenthesized subexpression
matches each of the three ‘b’s and then an infinite number of empty strings
following the last ‘b’, the substring reported is therefore empty.)

If REG_STARTEND is specified, pmatch must point to at least one regmatch_t
(even if nmatch is 0 or REG_NOSUB was specified), to hold the input offsets
for REG_STARTEND. Use for output is still entirely controlled by nmatch ; if
nmatch is 0 or REG_NOSUB was specified, the value of pmatch [0] will not
be changed by a successful regexec .

The regerror function maps a non-zero errcode from either regcomp or regexec to a
human-readable, printable message. If preg is non-NULL, the error code should
have arisen from use of the regex_t pointed to by preg , and if the error code came
from regcomp , it should have been the result of the most recent regcomp using
that regex_t . (Regerror may be able to supply a more detailed message using
information from the regex_t .) The regerror function places the NUL-terminated
message into the buffer pointed to by errbuf , limiting the length (including the
NUL) to at most errbuf_size bytes. If the whole message won’t fit, as much of it as
will fit before the terminating NUL is supplied. The value returned is the size of
buffer needed to hold the whole message (including the terminating NULL). If
errbuf_size is 0, errbuf is ignored but the return value is still correct.

If the errcode given to regerror is first ORed with REG_ITOA, the “message” that
results is the printable name of the error code, for example, “REG_NOMATCH”,
rather than an explanation of it If errcode is REG_ATOI, preg will be non-NULL
and the re_endp member of the structure it points to must point to the printable
name of an error code; in this case, the result in errbuf is the decimal digits of the
numeric value of the error code (0 if the name is not recognized). The REG_ITOA
and REG_ATOI functions are intended primarily as debugging facilities; they
are extensions, compatible with, but not specified by, POSIX 1003.2, and should
be used with caution in software intended to be portable to other systems. Be
warned also that they are considered experimental and changes are possible.

The regfree function frees any dynamically-allocated storage associated with the
compiled RE pointed to by preg . The remaining regex_t is no longer a valid
compiled RE and the effect of supplying it to regexec or regerror is undefined.

None of these functions references global variables except for tables of constants;
all are safe for use by multiple threads if the arguments are safe.

IMPLEMENTATION
CHOICES

There are a number of decisions that 1003.2 leaves up to the implementor, either
by explicitly saying “undefined” or by virtue of them being forbidden by the RE
grammar. This implementation treats them as follows.

274 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions regfree(3STDC)

See the citation in the SEE ALSO section for an explanation of the definition of
case-independent matching.

There is no particular limit to the length of REs, apart from memory limitations.
Memory usage is approximately linear in RE size, and largely insensitive to RE
complexity, except for bounded repetitions. See BUGS for one short RE using
them that will run almost any system out of memory.

A backslashed character other than one specifically given a magic meaning by
1003.2 (such magic meanings occur only in obsolete [“basic”] REs) is taken as an
ordinary character.

Any unmatched [is a REG_EBRACK error.

Equivalence classes cannot begin or end bracket-expression ranges. The
endpoint of one range cannot begin another.

The RE_DUP_MAX option defines the limit on repetition counts in bounded
repetitions, the maximum is 255.

A repetition operator (?, *, +, or bounds) cannot follow another repetition
operator. A repetition operator cannot begin an expression or subexpression
or follow ‘^’ or ‘|’.

The pipe symbol. (‘|’) cannot appear first or last in a (sub)expression or after
another ‘|’, in other words, an operand of ‘|’ cannot be an empty subexpression.
An empty parenthesized subexpression, ‘()’, is legal and matches an empty
(sub)string. An empty string is not a legal RE.

A brace (“{”) followed by a digit is considered the beginning of bounds for a
bounded repetition, which must then follow the syntax for bounds. A ‘{’ not
followed by a digit is considered an ordinary character.

A circumflex (’”‘^”) and dollar sign (“$”) beginning and ending subexpressions
in obsolete (“basic”) REs are anchors, not ordinary characters.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO grep(1UNIX), re_format(7UNIX)

POSIX 1003.2, sections 2.8 (Regular Expression Notation) and B.5 (C Binding
for Regular Expression Matching).

DIAGNOSTICS Non-zero error codes from regcomp and regexec include the following:

REG_NOMATCH regexec() failed to match
REG_BADPAT invalid regular expression

Last modified December 1999 ChorusOS 4.0 275

regfree(3STDC) Standard C Library Functions

REG_ECOLLATE invalid collating element
REG_ECTYPE invalid character class
REG_EESCAPE \ applied to unescapable character
REG_ESUBREG invalid backreference number
REG_EBRACK brackets [] not balanced
REG_EPAREN parentheses () not balanced
REG_EBRACE braces { } not balanced
REG_BADBR invalid repetition count(s) in { }
REG_ERANGE invalid character range in []
REG_ESPACE ran out of memory
REG_BADRPT ?, *, or + operand invalid
REG_EMPTY empty (sub)expression
REG_ASSERT ‘‘can’t happen’’—you found a bug
REG_INVARG invalid argument, for example, negative-length string

HISTORY Originally written by Henry Spencer. Altered for inclusion in the 4.4BSD
distribution.

BUGS This is an alpha release with known defects. Please report problems.

There is one known functionality bug. The implementation of
internationalization is incomplete: the locale is always assumed to be the default
one of 1003.2, therefore, only information pertaining to that locale is available.

The back-reference code is subtle and there are doubts about its correctness in
complex cases.

The regexec function’s performance is poor. This will improve with later releases.
An nmatch exceeding 0 is expensive; nmatch exceeding 1 is worse. The regexec
function is largely insensitive to RE complexity except that back references are
extremely expensive. RE length does matter; in particular, there is an apprecialbe
speed bonus for keeping RE length under approximately 30 characters, most
special characters are worth roughly double.

The regcomp function implements bounded repetitions using expansion, which is
costly in time and space if counts are large or bounded repetitions are nested. An
RE like the following, ((((a{1,100}){1,100}){1,100}’ will (eventually) run almost any
existing machine out of swap space.

There are suspected problems with responses to obscure error conditions.
Notably, certain kinds of internal overflow, produced only by extremely large
REs or by multiply—nested bounded repetitions, are probably not handled well.

Due to a mistake in 1003.2, things like ‘a)b’ are legal REs because ‘)’ is a special
character only in the presence of a previous unmatched ‘(’. This can’t be fixed
until the spec is fixed.

The standard’s definition of back references is vague. For example, does
‘a\(\(b\)*\2\)*d’ match ‘abbbd’? Until the standard is clarified, behavior in
such cases should not be relied on.

276 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions regfree(3STDC)

The implementation of word-boundary matching is imprecise, and bugs may
lurk in combinations of word-boundary matching and anchoring.

RESTRICTIONS As part of the BSD library, this function is not thread-safe .

Last modified December 1999 ChorusOS 4.0 277

remove(3STDC) Standard C Library Functions

NAME remove – remove directory entry

SYNOPSIS #include <stdio.h>
int remove (const char *path);

DESCRIPTION The remove function is an alias for the unlink (2POSIX) system call. It deletes
the file referenced by path.

RETURN VALUES Upon successful completion, remove returns 0. Otherwise, –1 is returned and
the global variable errno is set to indicate the error.

ERRORS The remove function may fail and set errno for any of the errors specified for
the routine unlink(2POSIX).

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO unlink (2POSIX)

STANDARDS The remove function conforms to ANSI-C .

278 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions rewind(3STDC)

NAME fseek, rewind, ftell, fgetpos, fsetpos – reposition a file pointer in a stream

SYNOPSIS #include <stdio.h>
int fseek (FILE * stream, long offset, int ptrname);

void rewind (FILE * stream);

long ftell (const FILE * stream);

int fgetpos (const FILE * stream, fpos_t * pos);

int fsetpos (FILE * stream, const fpos_t * pos);

DESCRIPTION The fseek function sets the position of the next input or output operation on the
stream . The new position, measured in bytes from the beginning of the file, is
obtained by adding offset to the position specified by ptrname , whose values
are defined in <stdio.h> as follows:

SEEK_SET Set position equal to offset bytes

SEEK_CUR Set position to current location plus offset

SEEK_END Set position to EOF plus offset

The rewind (stream) function is equivalent to fseek (stream , 0L, 0), except that
no value is returned.

The fseek and rewind functions undo any effects of ungetc (3STDC).

After performing fseek or rewind , the next operation on a file opened for update
may be either input or output.

The ftell function returns the offset of the current byte relative to the beginning of
the file associated with the stream specified.

The fgetpos and fsetpos functions are alternate interfaces equivalent to ftell and
fseek (with ptrname set to SEEK_SET), setting and storing the current value of
the file offset into or from the object referenced by pos . On some systems an
fpos_t object may be a complex object, and these routines may be the only way to
reposition a text stream portably. This is not the case on UNIX systems.

RETURN VALUES The fseek function returns 0 on success; otherwise (for example, an fseek done
on a file that was not opened using fopen (3STDC)), it returns -1 and sets errno
to indicate the error.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 279

rewind(3STDC) Standard C Library Functions

SEE ALSO fopen (3STDC) , ungetc (3STDC)

280 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions rindex(3STDC)

NAME index, rindex – locate character in string

SYNOPSIS #include <string.h>
char * index (const char * s, int c);

char *rindex (const char * s, int c);

DESCRIPTION The index function locates the first character matching c (converted to a char) in
the null-terminated string s .

The rindex function locates the last character matching c (converted to a char) in
the null-terminated string s .

RETURN VALUES A pointer to the character is returned if found; otherwise NULL is returned.
If c is 0 , rindex or index locates the terminating 0.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO memchr(3STDC) , string (3STDC) , strsep (3STDC) , strtok (3STDC)

Last modified December 1999 ChorusOS 4.0 281

scandir(3STDC) Standard C Library Functions

NAME scandir, alphasort – scan a directory

SYNOPSIS #include <sys/types.h>
#include <dirent.h>
int scandir (const char * dirname, struct dirent *** namelist, int (* select)(struct dirent *),
int (* compare)(const void *, const void *));

int alphasort (const void * d1, const char * d2);

DESCRIPTION The scandir function reads the directory dirname and builds an array of pointers
to directory entries using malloc (3STDC). It returns the number of entries in
the array. A pointer to the array of directory entries is stored in the location
referenced by namelist .

The select parameter is a pointer to a user supplied subroutine which is called
by scandir to select which entries are to be included in the array. The select
routine is passed a pointer to a directory entry and should return a non-zero
value if the directory entry is to be included in the array. If select is null, then all
the directory entries will be included.

The compare parameter is a pointer to a user supplied subroutine which is
passed to qsort (3STDC) to sort the completed array. If this pointer is null, the
array is not sorted.

The alphasort function is a routine which can be used for the compare parameter to
sort the array alphabetically.

The memory allocated for the array can be deallocated with free (3STDC), by
freeing each pointer in the array and then the array itself.

DIAGNOSTICS Returns -1 if the directory cannot be opened for reading or if malloc (3STDC)
cannot allocate enough memory to hold all the data structures.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO directory (3POSIX) , malloc (3STDC) , qsort (3STDC)

HISTORY The scandir and alphasort functions appeared in 4.2BSD.

282 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions scanf(3STDC)

NAME scanf, sscanf – convert formatted input

SYNOPSIS #include <stdio.h>
int scanf (const char * format, ...);

int sscanf (const char * s, const char * format, ...);

DESCRIPTION The scanf() function reads from the standard input channel, which is
operating system dependent. The sscanf() function reads from the character
string s . Each function reads characters, interprets them according to a format,
and stores the results in its arguments. Each expects, as arguments, a control
string format described below, and a set of pointer arguments indicating where
the converted input should be stored.

The control string usually contains conversion specifications, which are used to
direct interpretation of input sequences. The control string may contain:

1. White-space characters (blanks, tabs, new-lines, or form-feeds) which,
except in two cases described below, cause input to be read up to the next
non-white-space character.

2. An ordinary character (not %), which must match the next character of
the input channel.

3. Conversion specifications, consisting of the character %, an optional
assignment suppressing character * , an optional numerical maximum field
width, an optional l (ell) or h indicating the size of the receiving variable,
and a conversion code.

A conversion specification directs the conversion of the next input field; the
result is placed in the variable pointed to by the corresponding argument, unless
assignment suppression was indicated using * . The suppression of assignment
allows you to define an input filed to be ignlored. An input field is defined as a
string of non-space characters; it extends to the next inappropriate character or
until the field width, if specified, is exhausted. For all descriptors except “[” and
“c”, white space leading an input field is ignored.

The conversion code indicates the interpretation of the input field; the
corresponding pointer argument must be of a restricted type. For a suppressed
field, no pointer argument is given. The following conversion codes are legal:
% a single %is expected in the input at this point; no assignment is done.

d a decimal integer is expected; the corresponding argument should be
an integer pointer.

u an unsigned decimal integer is expected; the corresponding argument
should be an unsigned integer pointer.

Last modified December 1999 ChorusOS 4.0 283

scanf(3STDC) Standard C Library Functions

o an octal integer is expected; the corresponding argument should be
an integer pointer.

x a hexadecimal integer is expected; the corresponding argument should
be an integer pointer.

i an integer is expected; the corresponding argument should be
an integer pointer. It will store the value of the next input item
interpreted according to C conventions: a leading "0" implies octal; a
leading "0x" implies hexadecimal; otherwise, decimal.

n stores in an integer argument the total number of characters (including
white space) that have been scanned so far since the function call.
No input is consumed.

e
,
f
,
g

a floating point number is expected; the next field is converted
accordingly and stored through the corresponding argument, which
should be a pointer to a float . The input format for floating point
numbers is an optionally signed string of digits, possibly containing a
decimal point, followed by an optional exponent field consisting of
an E or an e , followed by an optional +, –, or space, followed by an
integer.

s a character string is expected; the corresponding argument should be a
character pointer pointing to an array of characters large enough
to accept the string and a terminating \0 , which will be added
automatically. The input field is terminated by a white-space character.

c a character is expected; the corresponding argument should be a
character pointer. The normal skip over white space is suppressed in
this case; to read the next non-space character, use %1s . If a field
width is given, the corresponding argument should refer to a character
array; the number of characters indicated is read.

[indicates string data and the normal skip over leading white space is
suppressed. The left bracket is followed by a set of characters, called
the scanset, and a right bracket; the input field is the maximaum
sequence of input characters consisting entirely of characters in the
scanset. The circumflex (^), when it appears as the first character
in the scanset, serves as a complement operator and redefines the
scanset as the set of all characters not contained in the remainder of the
scanset string. There are some conventions used in the construction
of the scanset. A range of characters may be represented by the
construct first–last , thus [0123456789] may be expressed [0–9]. Using
this convention, first must be lexically less than or equal to last ,
otherwise the dash will stand for itself. The dash will also stand for
itself whenever it is the first or the last character in the scanset. To

284 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions scanf(3STDC)

include the right square bracket as an element of the scanset, it must
appear as the first character (possibly preceded by a circumflex) of the
scanset, and in this case it will not be syntactically interpreted as the
closing bracket. The corresponding argument must point to a character
array large enough to hold the data field and the terminating \0 ,
which will be added automatically. At least one character must match
for this conversion to be considered successful.

The conversion characters d , u , o , and x may be preceded by l or h to indicate
that a pointer to long or to short rather than to int is in the argument list.
Similarly, the conversion characters e , f , and g may be preceded by l to indicate
that a pointer to double rather than to float is in the argument list. The l or h
modifier is ignored for other conversion characters.

The scanf() conversion terminates at EOF, at the end of the control string, or
when an input character conflicts with the control string. In the latter case, the
offending character is left unread in the input channel.

The scanf() function returns the number of successfully matched and assigned
input items; this number can be zero in the event of an early conflict between
an input character and the control string. If the input ends before the first
conflict or conversion, EOF is returned.

EXAMPLES The call:

int i, n; float x; char name[50];
n = scanf("%d%f%s", &i, &x, name);

with the input line:

25 54.32E −1 thompson

will assign to n the value 3 , to i the value 25 , to x the value 5.432 , and name
will contain thompson\0 .

Or:

int i; float x; char name[50];
(void) scanf("%2d%f%*d %[0–9]", &i, &x, name);

with input:

56789 0123 56a72

will assign 56 to i , 789.0 to x , skip 0123 , and place the string 56\0 in name .
The next call to getchar (3STDC) will return a .

Last modified December 1999 ChorusOS 4.0 285

scanf(3STDC) Standard C Library Functions

NOTE Trailing white space (including a new-line) is left unread unless matched in the
control string.

DIAGNOSTICS These functions return EOF on end of input and a short count for missing
or illegal data items.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO getchar (3STDC) , printf (3STDC) , strtod (3STDC) , strtol (3STDC)

286 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions setbuf(3STDC)

NAME setbuf, setvbuf – assign buffering to a stream

SYNOPSIS #include <stdio.h>
void setbuf (FILE * stream, char * buf);

int setvbuf (FILE * stream, char * buf, int type, int size);

DESCRIPTION The setbuf function can be used after a stream has been opened but before it is
read from or written to. It causes the array pointed to by buf to be used instead of
an automatically allocated buffer. If buf is a NULL pointer, input and output will
be completely unbuffered.

A constant BUFSIZ , defined in the <stdio.h> header file, defines how big
an array is needed:

char buf[BUFSIZ];

The setvbuf function can be used after a stream has been opened but before it
is read from or written to. The type parameter determines how stream will be
buffered. Legal values for type (defined in stdio.h) are:
_IOFBF Causes input and output to be fully buffered.

_IOLBF Causes output to be line buffered; the buffer will be flushed
when a newline is written, the buffer is full, or input is
requested.

_IONBF Causes input and output to be completely unbuffered.

If buf is not a NULL pointer, the array it points to will be used for buffering,
instead of an automatically allocated buffer. The size parameter specifies the size
of the buffer to be used. The BUFSIZ constant in <stdio.h> is a recommended
buffer size. If input and output are unbuffered, buf and size are ignored.

Output streams directed to terminals are always line-buffered (unless they
are unbuffered).

NOTE A common source of error is allocating buffer space as an “automatic” variable
in a code block, and then failing to close the stream in the same block.

RETURN VALUES If an illegal value for type is provided, setvbuf returns a non-zero value.
Otherwise, it returns 0.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 287

setbuf(3STDC) Standard C Library Functions

SEE ALSO fopen (3STDC) , getc (3STDC) , malloc (3STDC) , putc (3STDC)

288 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions setenv(3STDC)

NAME getenv, putenv, setenv, unsetenv – fetch and set environment variables

SYNOPSIS #include <stdlib.h>
char * getenv (const char * name);

int setenv (const char * name, const char * value, int overwrite);

int putenv (const char * string);

void unsetenv (const char * name);

DESCRIPTION These functions set, unset and fetch environment variables from the host
environment list. For compatibility with differing environment conventions,
the name and value arguments given may be appended and prepended,
respectively, with an equal sign. The getenv function obtains the current value
of the environment variable, name. If the variable name is not in the current
environment, a null pointer is returned.

The setenv function inserts or resets the environment variable name in the
current environment list. If the variable name does not exist in the list, it is
inserted with the given value. If the variable does exist, the overwrite argument
is tested; if overwrite is zero, the variable is not reset, otherwise it is reset to
the given value.

The putenv function takes an argument of the form name=value and is
equivalent to: setenv(name, value, 1) .

The unsetenv function deletes all instances of the variable name pointed to
by name from the list.

RETURN VALUES The setenv and putenv functions return zero if successful; otherwise –1 is
returned. The setenv or putenv functions fail if they were unable to allocate
memory for the environment.

STANDARDS The getenv function conforms to ANSI–C .

NOTE These functions are reentrant, but the environment is global to the actor.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 289

setjmp(3STDC) Standard C Library Functions

NAME setjmp, longjmp – non-local goto

SYNOPSIS #include <setjmp.h>
int setjmp (jmp_buf env);

void longjmp (jmp_buf env, int val);

DESCRIPTION These functions are useful for dealing with errors and interrupts encountered in
low-level subroutines of a program.

The setjmp function saves its stack environment in env (whose type, jmp_buf ,
is defined in the <setjmp.h> header file) for later use by longjmp . It returns
the value 0.

The longjmp function restores the environment saved by the last call of setjmp
with the corresponding env argument. After longjmp has completed, program
execution continues as if the corresponding call of setjmp had just returned the
value val . The caller of setjmp must not have returned in the interim. The
longjmp function cannot cause setjmp to return the value 0. If longjmp is invoked
with a second argument of 0, setjmp will return 1. All accessible data will have
the values stored at the time longjmp was called.

WARNING If longjmp is called without first priming env using a calll to setjmp , or if the
last such call was performed by another thread, or if the last such call was in a
function that has since returned, this will cause severe disruption to the system.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

290 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions setstate(3STDC)

NAME random, srandom, initstate, setstate – better random number generator

SYNOPSIS #include <stdlib.h>
long random (void);

void srandom (unsigned seed);

char *initstate (unsigned seed, char * state, int n);

char *setstate (char * state);

DESCRIPTION The random function uses a non-linear additive feedback random number
generator employing a default table of size 31 long integers to return successive
pseudo-random numbers in the range from 0 to 2 31 −1 . The period of this
random number generator is very large, approximately 16×(2 31 −1) .

The random/srandom functions have (almost) the same calling sequence and
initialization properties as rand/srand (3STDC) The difference is that rand
produces a much less random sequence — in fact, the low dozen bits generated
by rand go through a cyclic pattern. All the bits generated by random are usable.
For example, random &01 will produce a random binary value.

Unlike srand , srandom does not return the old seed; the reason being that
the amount of state information used is much more than a single word (two
other routines are provided to deal with restarting/changing random number
generators). Like rand , however, random will by default produce a sequence of
numbers that can be duplicated by calling srandom with 1 as the seed.

The initstate routine allows a state array, passed as an argument, to be initialized
for future use. The size of the state array (in bytes) is used by initstate to decide
how sophisticated a random number generator it should use — the bigger the
state, the better the random numbers will be. (Current "optimal" values for the
amount of state information are 8, 32, 64, 128, and 256 bytes; other amounts will
be rounded down to the nearest known amount. Using less than 8 bytes will
cause an error.) The seed for the initialization (which specifies a starting point for
the random number sequence, and provides for restarting at the same point)
is also an argument. The initstate function returns a pointer to the previous
state information array.

Once a state has been initialized, the setstate routine provides for rapid switching
between states. The setstate function returns a pointer to the previous state array;
its argument state array is used for further random number generation until
the next call to initstate or setstate .

Once a state array has been initialized, it may be restarted at a different point
either by calling initstate (with the desired seed, the state array, and its size) or by
calling both setstate (with the state array) and srandom (with the desired seed).

Last modified December 1999 ChorusOS 4.0 291

setstate(3STDC) Standard C Library Functions

The advantage of calling both setstate and srandom is that the size of the state
array does not have to be remembered after it is initialized.

With 256 bytes of state information, the period of the random number generator
is greater than 2 690 , which should be sufficient for most purposes.

If initstate has not been called, then random behaves as though initstate had been
called with seed=1 and size=128 .

If initstate is called with size<8 , it returns NULLand random uses a simple linear
congruential random number generator.

DIAGNOSTICS If initstate is called with less than 8 bytes of state information, or if setstate detects
that the state information has been garbled, error messages are printed to the
standard error output.

NOTE Though these functions are reentrant, the state information is global to the actor.
Therefore, repeatability of a given suite of number will not be experienced
by several threads in parallel. For a reentrent repeatability of suites, see
rand_r(3STDC) .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO rand (3STDC) , rand_r (3STDC)

RESTRICTIONS random operates at about 2/3 the speed of rand (3STDC).

292 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions setvbuf(3STDC)

NAME setbuf, setvbuf – assign buffering to a stream

SYNOPSIS #include <stdio.h>
void setbuf (FILE * stream, char * buf);

int setvbuf (FILE * stream, char * buf, int type, int size);

DESCRIPTION The setbuf function can be used after a stream has been opened but before it is
read from or written to. It causes the array pointed to by buf to be used instead of
an automatically allocated buffer. If buf is a NULL pointer, input and output will
be completely unbuffered.

A constant BUFSIZ , defined in the <stdio.h> header file, defines how big
an array is needed:

char buf[BUFSIZ];

The setvbuf function can be used after a stream has been opened but before it
is read from or written to. The type parameter determines how stream will be
buffered. Legal values for type (defined in stdio.h) are:
_IOFBF Causes input and output to be fully buffered.

_IOLBF Causes output to be line buffered; the buffer will be flushed
when a newline is written, the buffer is full, or input is
requested.

_IONBF Causes input and output to be completely unbuffered.

If buf is not a NULL pointer, the array it points to will be used for buffering,
instead of an automatically allocated buffer. The size parameter specifies the size
of the buffer to be used. The BUFSIZ constant in <stdio.h> is a recommended
buffer size. If input and output are unbuffered, buf and size are ignored.

Output streams directed to terminals are always line-buffered (unless they
are unbuffered).

NOTE A common source of error is allocating buffer space as an “automatic” variable
in a code block, and then failing to close the stream in the same block.

RETURN VALUES If an illegal value for type is provided, setvbuf returns a non-zero value.
Otherwise, it returns 0.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 293

setvbuf(3STDC) Standard C Library Functions

SEE ALSO fopen (3STDC) , getc (3STDC) , malloc (3STDC) , putc (3STDC)

294 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions snprintf(3STDC)

NAME printf, sprintf, snprintf, printerr – print formatted output

SYNOPSIS #include <stdio.h>
int printf (const char * format, ... /* args */);

int sprintf (char * s, const char * format, ... /* args */);

int snprintf (char * s, size_t size, const char * format, ... /* args */);

int printerr (const char * format, ... /* args */);

DESCRIPTION The printf function sends output to the standard output channel, which is
system defined. The printerr() function sends output to on the standard
error channel, which is system defined. The sprintf() function sends output,
followed by the null character (\0), in consecutive bytes starting at * s ; it is the
user’s responsibility to ensure that enough storage is available. Each function
returns the number of characters transmitted (not including the \0 in the case of
sprintf), or a negative value if an output error was encountered.

The snprintf() function writes at most size-1 of the characters printed to the
output string (the size character then gets the terminating zero). If the return
value is greater than or equal to the size argument, the string was too short
and some of the printed characters were discarded.

Each of these functions converts, formats, and prints its arg s under control
of the format . The format is a character string that contains two types of
objects: plain characters, which are simply copied to the output channel, and
conversion specifications, each of which results in obtaining zero or more arg
s. The results are undefined if there are insufficient arg s for the format. If the
format is exhausted while arg s remain, the excess arg s are simply ignored.

Each conversion specification is introduced by the character %. After the %,
the following appear in sequence:

Zero or more flags , which modify the meaning of the conversion specification.

An optional decimal digit string specifying a minimum field width . If the
converted value has fewer characters than the field width, it will be padded on
the left (or right, if the left-adjustment flag ‘–’, described below, has been set)
to the field width. If the field width for an s conversion is preceded by a 0, the
string is right adjusted with zero-padding on the left.

A precision that gives the minimum number of digits to appear for the d , o , u , x
, or X conversions, the number of digits to appear after the decimal point for
the e and f conversions, the maximum number of significant digits for the g
conversion, or the maximum number of characters to be printed from a string
in an s conversion. The precision takes the form of a dot (.) followed by a
decimal digit string; a null digit string is treated as zero.

Last modified December 1999 ChorusOS 4.0 295

snprintf(3STDC) Standard C Library Functions

An optional l (ell) specifying that a following d , o , u , x , or X conversion
character applies to a long integer arg . A l before any other conversion
character is ignored.

A character that indicates the type of conversion to be applied.

A field width or precision may be indicated by an asterisk (*) instead of a digit
string. In this case, an integer arg supplies the field width or precision. The arg
that is actually converted is not fetched until the conversion letter is seen, so
the arg s specifying field width or precision must appear before the arg (if any)
to be converted.

The flag characters and their meanings are:
– The result of the conversion will be left-justified within

the field.

+ The result of a signed conversion will always begin with a
sign (+ or –).

blank If the first character of a signed conversion is not a sign, a
blank will be prefixed to the result. This implies that if the
blank and + flags both appear, the blank flag will be ignored.

This flag specifies that the value is to be converted to an
“alternate form.” For c , d , s , and u conversions, the flag
has no effect. For o conversion, it increases the precision to
force the first digit of the result to be a zero. For x or X
conversion, a non-zero result will have 0x or 0X prefixed
to it. For e , E , f , g , and G conversions, the result will
always contain a decimal point, even if no digits follow
the point (normally, a decimal point appears in the result
of these conversions only if a digit follows it). For g and G
conversions, trailing zeroes will not be removed from the
result (which they normally are).

The conversion characters and their meanings are:

296 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions snprintf(3STDC)

d
,
i
,
o
,
u
,
x
,
X

The integer arg is converted to signed decimal (d or i),
unsigned octal (o), decimal (u), or hexadecimal notation (
x and X), respectively. The letters abcdef are used for
x conversion and the letters ABCDEFfor X conversion.
The precision specifies the minimum number of digits to
appear; if the value being converted can be represented in
fewer digits, it will be expanded with leading zeroes. (For
compatibility with older versions, padding with leading
zeroes may alternatively be specified by prepending a zero
to the field width. This does not imply an octal value for
the field width.) The default precision is 1. The result of
converting a zero value with a precision of zero is a null
string.

f The float or double arg is converted to decimal notation in
the style “[–]ddd . ddd,” where the number of digits after
the decimal point is equal to the precision specification. If
the precision is not specified, six digits are output; if the
precision is explicitly 0, no decimal point appears.

e
,
E

The float or double arg is converted in the style “[–]d .
ddd e± dd,” where there is one digit before the decimal
point and the number of digits after it is equal to the
precision. If the precision is not specified, six digits are
produced; if the precision is explicitly 0, no decimal point
appears. The E format code will produce a number with E
instead of e introducing the exponent. The exponent always
contains at least two digits.

g
,
G

The float or double arg is printed in style f or e (or in style E
in the case of a G format code), with the precision specifying
the number of significant digits. The style used depends on
the value converted: style e will be used only if the exponent
resulting from the conversion is less than –4 or greater than
the precision. Trailing zeroes are removed from the result; a
decimal point appears only if it is followed by a digit.

c The character arg is printed.

s The arg is taken to be a string (character pointer) and
characters from the string are printed until a null character
(\0) is encountered, or until the number of characters
indicated by the precision specification is reached. If the
precision is not specified, it is assumed to be infinite and all

Last modified December 1999 ChorusOS 4.0 297

snprintf(3STDC) Standard C Library Functions

characters up to the first null character are printed. A NULL
value for arg will yield undefined results.

% Print a %; no argument is converted.

A non-existent or small field width will never cause truncation of a field; if the
result of a conversion is wider than the field width, the field is simply expanded
to contain the conversion result. Characters generated by printf are printed in
the same way as if putchar (3STDC) had been called.

EXAMPLES To print a date and time in the form “Sunday, July 3, 10:02,” where weekday and
month are pointers to null-terminated strings:

printf("%s, %s %d, %d:%.2d", weekday, month, day, hour, min);

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO putchar (3STDC) , scanf (3STDC)

298 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions sprintf(3STDC)

NAME printf, sprintf, snprintf, printerr – print formatted output

SYNOPSIS #include <stdio.h>
int printf (const char * format, ... /* args */);

int sprintf (char * s, const char * format, ... /* args */);

int snprintf (char * s, size_t size, const char * format, ... /* args */);

int printerr (const char * format, ... /* args */);

DESCRIPTION The printf function sends output to the standard output channel, which is
system defined. The printerr() function sends output to on the standard
error channel, which is system defined. The sprintf() function sends output,
followed by the null character (\0), in consecutive bytes starting at * s ; it is the
user’s responsibility to ensure that enough storage is available. Each function
returns the number of characters transmitted (not including the \0 in the case of
sprintf), or a negative value if an output error was encountered.

The snprintf() function writes at most size-1 of the characters printed to the
output string (the size character then gets the terminating zero). If the return
value is greater than or equal to the size argument, the string was too short
and some of the printed characters were discarded.

Each of these functions converts, formats, and prints its arg s under control
of the format . The format is a character string that contains two types of
objects: plain characters, which are simply copied to the output channel, and
conversion specifications, each of which results in obtaining zero or more arg
s. The results are undefined if there are insufficient arg s for the format. If the
format is exhausted while arg s remain, the excess arg s are simply ignored.

Each conversion specification is introduced by the character %. After the %,
the following appear in sequence:

Zero or more flags , which modify the meaning of the conversion specification.

An optional decimal digit string specifying a minimum field width . If the
converted value has fewer characters than the field width, it will be padded on
the left (or right, if the left-adjustment flag ‘–’, described below, has been set)
to the field width. If the field width for an s conversion is preceded by a 0, the
string is right adjusted with zero-padding on the left.

A precision that gives the minimum number of digits to appear for the d , o , u , x
, or X conversions, the number of digits to appear after the decimal point for
the e and f conversions, the maximum number of significant digits for the g
conversion, or the maximum number of characters to be printed from a string
in an s conversion. The precision takes the form of a dot (.) followed by a
decimal digit string; a null digit string is treated as zero.

Last modified December 1999 ChorusOS 4.0 299

sprintf(3STDC) Standard C Library Functions

An optional l (ell) specifying that a following d , o , u , x , or X conversion
character applies to a long integer arg . A l before any other conversion
character is ignored.

A character that indicates the type of conversion to be applied.

A field width or precision may be indicated by an asterisk (*) instead of a digit
string. In this case, an integer arg supplies the field width or precision. The arg
that is actually converted is not fetched until the conversion letter is seen, so
the arg s specifying field width or precision must appear before the arg (if any)
to be converted.

The flag characters and their meanings are:
– The result of the conversion will be left-justified within

the field.

+ The result of a signed conversion will always begin with a
sign (+ or –).

blank If the first character of a signed conversion is not a sign, a
blank will be prefixed to the result. This implies that if the
blank and + flags both appear, the blank flag will be ignored.

This flag specifies that the value is to be converted to an
“alternate form.” For c , d , s , and u conversions, the flag
has no effect. For o conversion, it increases the precision to
force the first digit of the result to be a zero. For x or X
conversion, a non-zero result will have 0x or 0X prefixed
to it. For e , E , f , g , and G conversions, the result will
always contain a decimal point, even if no digits follow
the point (normally, a decimal point appears in the result
of these conversions only if a digit follows it). For g and G
conversions, trailing zeroes will not be removed from the
result (which they normally are).

The conversion characters and their meanings are:

300 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions sprintf(3STDC)

d
,
i
,
o
,
u
,
x
,
X

The integer arg is converted to signed decimal (d or i),
unsigned octal (o), decimal (u), or hexadecimal notation (
x and X), respectively. The letters abcdef are used for
x conversion and the letters ABCDEFfor X conversion.
The precision specifies the minimum number of digits to
appear; if the value being converted can be represented in
fewer digits, it will be expanded with leading zeroes. (For
compatibility with older versions, padding with leading
zeroes may alternatively be specified by prepending a zero
to the field width. This does not imply an octal value for
the field width.) The default precision is 1. The result of
converting a zero value with a precision of zero is a null
string.

f The float or double arg is converted to decimal notation in
the style “[–]ddd . ddd,” where the number of digits after
the decimal point is equal to the precision specification. If
the precision is not specified, six digits are output; if the
precision is explicitly 0, no decimal point appears.

e
,
E

The float or double arg is converted in the style “[–]d .
ddd e± dd,” where there is one digit before the decimal
point and the number of digits after it is equal to the
precision. If the precision is not specified, six digits are
produced; if the precision is explicitly 0, no decimal point
appears. The E format code will produce a number with E
instead of e introducing the exponent. The exponent always
contains at least two digits.

g
,
G

The float or double arg is printed in style f or e (or in style E
in the case of a G format code), with the precision specifying
the number of significant digits. The style used depends on
the value converted: style e will be used only if the exponent
resulting from the conversion is less than –4 or greater than
the precision. Trailing zeroes are removed from the result; a
decimal point appears only if it is followed by a digit.

c The character arg is printed.

s The arg is taken to be a string (character pointer) and
characters from the string are printed until a null character
(\0) is encountered, or until the number of characters
indicated by the precision specification is reached. If the
precision is not specified, it is assumed to be infinite and all

Last modified December 1999 ChorusOS 4.0 301

sprintf(3STDC) Standard C Library Functions

characters up to the first null character are printed. A NULL
value for arg will yield undefined results.

% Print a %; no argument is converted.

A non-existent or small field width will never cause truncation of a field; if the
result of a conversion is wider than the field width, the field is simply expanded
to contain the conversion result. Characters generated by printf are printed in
the same way as if putchar (3STDC) had been called.

EXAMPLES To print a date and time in the form “Sunday, July 3, 10:02,” where weekday and
month are pointers to null-terminated strings:

printf("%s, %s %d, %d:%.2d", weekday, month, day, hour, min);

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO putchar (3STDC) , scanf (3STDC)

302 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions srand(3STDC)

NAME rand, srand – pseudo random number generator

SYNOPSIS #include <stdlib.h>
void srand (unsigned seed);

int rand (void);

DESCRIPTION The rand function computes a sequence of pseudo-random integers in the range
of 0 to RAND_MAX (as defined by the header file stdlib.h).

The srand function sets its argument as the seed for a new sequence of
pseudo-random numbers to be returned by rand . These sequences are repeatable
by calling srand with the same seed value.

If no seed value is provided, the functions are automatically seeded with a
value of 1.

NOTE Though these functions are reentrant, the state information is global to the actor.
Therefore, repeatability of a given suite of numbers will not be experienced
by several threads in parallel. For a reentrant repeatability of suites, see
rand_r(3STDC) .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO random (3STDC) , rand_r (3STDC)

STANDARDS The rand and srand functions conform to ANSI-C.

Last modified December 1999 ChorusOS 4.0 303

srandom(3STDC) Standard C Library Functions

NAME random, srandom, initstate, setstate – better random number generator

SYNOPSIS #include <stdlib.h>
long random (void);

void srandom (unsigned seed);

char *initstate (unsigned seed, char * state, int n);

char *setstate (char * state);

DESCRIPTION The random function uses a non-linear additive feedback random number
generator employing a default table of size 31 long integers to return successive
pseudo-random numbers in the range from 0 to 2 31 −1 . The period of this
random number generator is very large, approximately 16×(2 31 −1) .

The random/srandom functions have (almost) the same calling sequence and
initialization properties as rand/srand (3STDC) The difference is that rand
produces a much less random sequence — in fact, the low dozen bits generated
by rand go through a cyclic pattern. All the bits generated by random are usable.
For example, random &01 will produce a random binary value.

Unlike srand , srandom does not return the old seed; the reason being that
the amount of state information used is much more than a single word (two
other routines are provided to deal with restarting/changing random number
generators). Like rand , however, random will by default produce a sequence of
numbers that can be duplicated by calling srandom with 1 as the seed.

The initstate routine allows a state array, passed as an argument, to be initialized
for future use. The size of the state array (in bytes) is used by initstate to decide
how sophisticated a random number generator it should use — the bigger the
state, the better the random numbers will be. (Current "optimal" values for the
amount of state information are 8, 32, 64, 128, and 256 bytes; other amounts will
be rounded down to the nearest known amount. Using less than 8 bytes will
cause an error.) The seed for the initialization (which specifies a starting point for
the random number sequence, and provides for restarting at the same point)
is also an argument. The initstate function returns a pointer to the previous
state information array.

Once a state has been initialized, the setstate routine provides for rapid switching
between states. The setstate function returns a pointer to the previous state array;
its argument state array is used for further random number generation until
the next call to initstate or setstate .

Once a state array has been initialized, it may be restarted at a different point
either by calling initstate (with the desired seed, the state array, and its size) or by
calling both setstate (with the state array) and srandom (with the desired seed).

304 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions srandom(3STDC)

The advantage of calling both setstate and srandom is that the size of the state
array does not have to be remembered after it is initialized.

With 256 bytes of state information, the period of the random number generator
is greater than 2 690 , which should be sufficient for most purposes.

If initstate has not been called, then random behaves as though initstate had been
called with seed=1 and size=128 .

If initstate is called with size<8 , it returns NULLand random uses a simple linear
congruential random number generator.

DIAGNOSTICS If initstate is called with less than 8 bytes of state information, or if setstate detects
that the state information has been garbled, error messages are printed to the
standard error output.

NOTE Though these functions are reentrant, the state information is global to the actor.
Therefore, repeatability of a given suite of number will not be experienced
by several threads in parallel. For a reentrent repeatability of suites, see
rand_r(3STDC) .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO rand (3STDC) , rand_r (3STDC)

RESTRICTIONS random operates at about 2/3 the speed of rand (3STDC).

Last modified December 1999 ChorusOS 4.0 305

sscanf(3STDC) Standard C Library Functions

NAME scanf, sscanf – convert formatted input

SYNOPSIS #include <stdio.h>
int scanf (const char * format, ...);

int sscanf (const char * s, const char * format, ...);

DESCRIPTION The scanf() function reads from the standard input channel, which is
operating system dependent. The sscanf() function reads from the character
string s . Each function reads characters, interprets them according to a format,
and stores the results in its arguments. Each expects, as arguments, a control
string format described below, and a set of pointer arguments indicating where
the converted input should be stored.

The control string usually contains conversion specifications, which are used to
direct interpretation of input sequences. The control string may contain:

1. White-space characters (blanks, tabs, new-lines, or form-feeds) which,
except in two cases described below, cause input to be read up to the next
non-white-space character.

2. An ordinary character (not %), which must match the next character of
the input channel.

3. Conversion specifications, consisting of the character %, an optional
assignment suppressing character * , an optional numerical maximum field
width, an optional l (ell) or h indicating the size of the receiving variable,
and a conversion code.

A conversion specification directs the conversion of the next input field; the
result is placed in the variable pointed to by the corresponding argument, unless
assignment suppression was indicated using * . The suppression of assignment
allows you to define an input filed to be ignlored. An input field is defined as a
string of non-space characters; it extends to the next inappropriate character or
until the field width, if specified, is exhausted. For all descriptors except “[” and
“c”, white space leading an input field is ignored.

The conversion code indicates the interpretation of the input field; the
corresponding pointer argument must be of a restricted type. For a suppressed
field, no pointer argument is given. The following conversion codes are legal:
% a single %is expected in the input at this point; no assignment is done.

d a decimal integer is expected; the corresponding argument should be
an integer pointer.

u an unsigned decimal integer is expected; the corresponding argument
should be an unsigned integer pointer.

306 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions sscanf(3STDC)

o an octal integer is expected; the corresponding argument should be
an integer pointer.

x a hexadecimal integer is expected; the corresponding argument should
be an integer pointer.

i an integer is expected; the corresponding argument should be
an integer pointer. It will store the value of the next input item
interpreted according to C conventions: a leading "0" implies octal; a
leading "0x" implies hexadecimal; otherwise, decimal.

n stores in an integer argument the total number of characters (including
white space) that have been scanned so far since the function call.
No input is consumed.

e
,
f
,
g

a floating point number is expected; the next field is converted
accordingly and stored through the corresponding argument, which
should be a pointer to a float . The input format for floating point
numbers is an optionally signed string of digits, possibly containing a
decimal point, followed by an optional exponent field consisting of
an E or an e , followed by an optional +, –, or space, followed by an
integer.

s a character string is expected; the corresponding argument should be a
character pointer pointing to an array of characters large enough
to accept the string and a terminating \0 , which will be added
automatically. The input field is terminated by a white-space character.

c a character is expected; the corresponding argument should be a
character pointer. The normal skip over white space is suppressed in
this case; to read the next non-space character, use %1s . If a field
width is given, the corresponding argument should refer to a character
array; the number of characters indicated is read.

[indicates string data and the normal skip over leading white space is
suppressed. The left bracket is followed by a set of characters, called
the scanset, and a right bracket; the input field is the maximaum
sequence of input characters consisting entirely of characters in the
scanset. The circumflex (^), when it appears as the first character
in the scanset, serves as a complement operator and redefines the
scanset as the set of all characters not contained in the remainder of the
scanset string. There are some conventions used in the construction
of the scanset. A range of characters may be represented by the
construct first–last , thus [0123456789] may be expressed [0–9]. Using
this convention, first must be lexically less than or equal to last ,
otherwise the dash will stand for itself. The dash will also stand for
itself whenever it is the first or the last character in the scanset. To

Last modified December 1999 ChorusOS 4.0 307

sscanf(3STDC) Standard C Library Functions

include the right square bracket as an element of the scanset, it must
appear as the first character (possibly preceded by a circumflex) of the
scanset, and in this case it will not be syntactically interpreted as the
closing bracket. The corresponding argument must point to a character
array large enough to hold the data field and the terminating \0 ,
which will be added automatically. At least one character must match
for this conversion to be considered successful.

The conversion characters d , u , o , and x may be preceded by l or h to indicate
that a pointer to long or to short rather than to int is in the argument list.
Similarly, the conversion characters e , f , and g may be preceded by l to indicate
that a pointer to double rather than to float is in the argument list. The l or h
modifier is ignored for other conversion characters.

The scanf() conversion terminates at EOF, at the end of the control string, or
when an input character conflicts with the control string. In the latter case, the
offending character is left unread in the input channel.

The scanf() function returns the number of successfully matched and assigned
input items; this number can be zero in the event of an early conflict between
an input character and the control string. If the input ends before the first
conflict or conversion, EOF is returned.

EXAMPLES The call:

int i, n; float x; char name[50];
n = scanf("%d%f%s", &i, &x, name);

with the input line:

25 54.32E −1 thompson

will assign to n the value 3 , to i the value 25 , to x the value 5.432 , and name
will contain thompson\0 .

Or:

int i; float x; char name[50];
(void) scanf("%2d%f%*d %[0–9]", &i, &x, name);

with input:

56789 0123 56a72

will assign 56 to i , 789.0 to x , skip 0123 , and place the string 56\0 in name .
The next call to getchar (3STDC) will return a .

308 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions sscanf(3STDC)

NOTE Trailing white space (including a new-line) is left unread unless matched in the
control string.

DIAGNOSTICS These functions return EOF on end of input and a short count for missing
or illegal data items.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO getchar (3STDC) , printf (3STDC) , strtod (3STDC) , strtol (3STDC)

Last modified December 1999 ChorusOS 4.0 309

stdarg(3STDC) Standard C Library Functions

NAME stdarg – variable argument lists

SYNOPSIS #include <stdarg.h>
void va_start (va_list ap, last);

type va_arg (va_list ap, type);

void va_end (va_list ap);

DESCRIPTION A function may be called with a varying number of arguments of a number of
types. The include file declares a type va_list and defines three macros for
stepping through a list of arguments whose number and types are not known to
the called function.

The called function must declare an object of type va_list which is used by the
macros va_start, va_arg, and va_end.

The va_start macro initializes ap for subsequent use by va_arg and va_end, and
must be called first.

The parameter last is the name of the last parameter before the variable
argument list, in other words, the last parameter of which the calling function
knows the type.

Because the address of this parameter is used in the va_start macro, it should not
be declared as a register variable, or as a function or an array type.

The va_start macro does not return a value.

The va_arg macro expands to an expression that has the type and value of the
next argument in the call. The parameter ap is the va_list initialized by va_start.
Each call to va_arg modifies ap so that the next call returns the next argument.
The parameter type is a type—name specified to allow the type of pointer to an
object of the specified type can be obtained simply by adding a * to type.

If there is no next argument, or if type is not compatible with the actual type of
the next argument (as promoted according to the default argument promotions),
random errors will occur.

The first use of the va_arg macro after that of the va_start6 macro returns the
argument after last. Successive invocations return the values of the remaining
arguments.

The va_end macro handles a normal return from the function whose variable
argument list was initialized using va_start.

The va_end macro does not return a value.

EXAMPLES void foo(char *fmt, ...)
{

va_list ap;
int d;

310 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions stdarg(3STDC)

char c, *p, *s;
va_start(ap, fmt);
while (*fmt)

switch(*fmt++) {
case ’s’: /* string */

s = va_arg(ap, char *);
printf("string %s\n", s);
break;

case ’d’: /* int */
d = va_arg(ap, int);
printf("int %d\n", d);
break;

case ’c’: /* char */
c = va_arg(ap, char);
printf("char %c\n", c);
break;

}
va_end(ap);

}

STANDARDS The va_start, va_arg, and va_end macros conform to ANSI-C.

COMPATIBILITY These macros are not compatible with the macros they replace. A backward
compatible version can be found in the include file varargs.h.

RESTRICTIONS Unlike the varargs macros, the stdarg macros do not permit programmers to code
a function with no fixed arguments.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 311

_stdc_assert(3STDC) Standard C Library Functions

NAME assert, _assert, _stdc_assert – expression verification macro

SYNOPSIS #include <assert.h>
assert expression

_assert expression
void _stdc_assert (const char * file, int line, const char * expression);

DESCRIPTION The _assert(x) macro is defined as assert(x) . The assert macro
tests the given expression and if it is false, calls _stdc_assert() . The
_stdc_assert() function writes a diagnostic message to the error channel,
and calls abort (3STDC) .

If the expression is true, the assert macro does nothing.

The assert macro may be rendered non-operational at compile time using
the NDEBUGoption.

DIAGNOSTICS The following diagnostic message is written to the error channel if expression is
false:

("assertion %s failed: file %s, line %d\
", expression, __FILE__, __LINE__)

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO abort (3STDC)

312 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions strcasecmp(3STDC)

NAME string, strcasecmp, strncasecmp, strcat, strncat, strcmp, strncmp, strcoll, strcpy,
strdup, strncpy, strlen, strchr, strrchr, strpbrk, strspn, strstr, strcspn – string
operations

SYNOPSIS #include <string.h>
int * strcasecmp (const char * s1, const char * s2);

int * strncasecmp (const char * s1, const char * s2, size_t n);

char * strcat (char * s1, const char * s2);

char * strncat (char * s1, const char * s2, size_t n);

int strcmp (const char * s1, const char * s2);

int strcoll (const char * s1, const char * s2);

char *strdup (const char * s);

int strncmp (const char * s1, const char * s2, size_t n);

char *strcpy (char * s1, const char * s2);

char *strncpy (char * s1, const char * s2, size_t n);

size_t strlen (const char * s);

char *strchr (const char * s, int c);

char *strrchr (const char * s, int c);

char *strpbrk (const char * s1, const char * s2);

size_t strspn (const char * s1, const char * s2);

char *strstr (const char * s1, const char * s2);

size_t strcspn (const char * s1, const char * s2);

DESCRIPTION The s1 , s2 and s arguments point to strings (arrays of characters terminated by a
null character). The strcat , strncat , strcpy and strncpy functions all alter s1. These
functions do not check for overflow of the array pointed to by s1 .

The strcasecmp and strncasecmp functions compare the null-terminated strings
s1 and s2 and return an integer greater than, equal to, or less than 0, according
to whether s1 is lexicographically greater than, equal to, or less than s2
(after translation of each corresponding character to lower-case). The strings
themselves are not modified. The comparison is done using unsigned characters,
meaning that 200 is greater than 0 .

The strncasecmp compares a maximum of n characters.

Last modified December 1999 ChorusOS 4.0 313

strcasecmp(3STDC) Standard C Library Functions

The strcat and strncat functions append a copy of string s2 to the end of string
s1 . The strncat function copies only the first n bytes of s2 . Each returns a
pointer to the null-terminated result.

The strcmp function compares its arguments and returns an integer less than,
equal to, or greater than 0, according to whether s1 is lexicographically less
than, equal to, or greater than s2 .

If insufficient memory is available, NULL is returned. The strncmp function
makes the same comparison, but looks at a maximum of n characters.

The strcoll function lexicographically compares the null-terminated strings s1
and s2 according to the current locale collation and returns an integer greater
than, equal to, or less than 0, according to whether s1 is greater than, equal
to, or less than s2 .

The strdup function allocates sufficient memory for a copy of the string s , does
the copy, and returns a pointer to it. The pointer may subsequently be used as an
argument to the function free(3STDC).

The strcpy function copies string s2 to s1 , stopping after the null character has
been copied. strncpy copies exactly n characters, truncating s2 or adding null
characters to s1 if necessary. The result will not be null-terminated if the length
of s2 is n or more. Each function returns s1 .

The strlen function returns the number of characters in s , not including the
terminating null character.

The strchr and strrchr functions return a pointer to the first or last)cccurrence of
character c in string s , respectively,. If c does not occur in the string, a NULL
pointer is returned. The null character terminating a string is considered to
be part of the string.

The strpbrk function returns a pointer to the first occurrence in string s1 of any
character from string s2 , or a NULL pointer if no character from s2 exists in s1 .

The strspn and strcspn functions return the length of the initial segment of string
s1 which consists entirely of characters from or to string s2 , respectively.

The strstr function locates the first occurence of the null-terminated string s2 in
the null-terminated string s1 . If s2 is the empty string, strstr returns s1 ; if s2
occurs nowhere in s1 , strstr returns NULL , otherwise strstr returns a pointer
to the first character of the first occurrence of s2 .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

314 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions strcat(3STDC)

NAME string, strcasecmp, strncasecmp, strcat, strncat, strcmp, strncmp, strcoll, strcpy,
strdup, strncpy, strlen, strchr, strrchr, strpbrk, strspn, strstr, strcspn – string
operations

SYNOPSIS #include <string.h>
int * strcasecmp (const char * s1, const char * s2);

int * strncasecmp (const char * s1, const char * s2, size_t n);

char * strcat (char * s1, const char * s2);

char * strncat (char * s1, const char * s2, size_t n);

int strcmp (const char * s1, const char * s2);

int strcoll (const char * s1, const char * s2);

char *strdup (const char * s);

int strncmp (const char * s1, const char * s2, size_t n);

char *strcpy (char * s1, const char * s2);

char *strncpy (char * s1, const char * s2, size_t n);

size_t strlen (const char * s);

char *strchr (const char * s, int c);

char *strrchr (const char * s, int c);

char *strpbrk (const char * s1, const char * s2);

size_t strspn (const char * s1, const char * s2);

char *strstr (const char * s1, const char * s2);

size_t strcspn (const char * s1, const char * s2);

DESCRIPTION The s1 , s2 and s arguments point to strings (arrays of characters terminated by a
null character). The strcat , strncat , strcpy and strncpy functions all alter s1. These
functions do not check for overflow of the array pointed to by s1 .

The strcasecmp and strncasecmp functions compare the null-terminated strings
s1 and s2 and return an integer greater than, equal to, or less than 0, according
to whether s1 is lexicographically greater than, equal to, or less than s2
(after translation of each corresponding character to lower-case). The strings
themselves are not modified. The comparison is done using unsigned characters,
meaning that 200 is greater than 0 .

The strncasecmp compares a maximum of n characters.

Last modified December 1999 ChorusOS 4.0 315

strcat(3STDC) Standard C Library Functions

The strcat and strncat functions append a copy of string s2 to the end of string
s1 . The strncat function copies only the first n bytes of s2 . Each returns a
pointer to the null-terminated result.

The strcmp function compares its arguments and returns an integer less than,
equal to, or greater than 0, according to whether s1 is lexicographically less
than, equal to, or greater than s2 .

If insufficient memory is available, NULL is returned. The strncmp function
makes the same comparison, but looks at a maximum of n characters.

The strcoll function lexicographically compares the null-terminated strings s1
and s2 according to the current locale collation and returns an integer greater
than, equal to, or less than 0, according to whether s1 is greater than, equal
to, or less than s2 .

The strdup function allocates sufficient memory for a copy of the string s , does
the copy, and returns a pointer to it. The pointer may subsequently be used as an
argument to the function free(3STDC).

The strcpy function copies string s2 to s1 , stopping after the null character has
been copied. strncpy copies exactly n characters, truncating s2 or adding null
characters to s1 if necessary. The result will not be null-terminated if the length
of s2 is n or more. Each function returns s1 .

The strlen function returns the number of characters in s , not including the
terminating null character.

The strchr and strrchr functions return a pointer to the first or last)cccurrence of
character c in string s , respectively,. If c does not occur in the string, a NULL
pointer is returned. The null character terminating a string is considered to
be part of the string.

The strpbrk function returns a pointer to the first occurrence in string s1 of any
character from string s2 , or a NULL pointer if no character from s2 exists in s1 .

The strspn and strcspn functions return the length of the initial segment of string
s1 which consists entirely of characters from or to string s2 , respectively.

The strstr function locates the first occurence of the null-terminated string s2 in
the null-terminated string s1 . If s2 is the empty string, strstr returns s1 ; if s2
occurs nowhere in s1 , strstr returns NULL , otherwise strstr returns a pointer
to the first character of the first occurrence of s2 .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

316 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions strchr(3STDC)

NAME string, strcasecmp, strncasecmp, strcat, strncat, strcmp, strncmp, strcoll, strcpy,
strdup, strncpy, strlen, strchr, strrchr, strpbrk, strspn, strstr, strcspn – string
operations

SYNOPSIS #include <string.h>
int * strcasecmp (const char * s1, const char * s2);

int * strncasecmp (const char * s1, const char * s2, size_t n);

char * strcat (char * s1, const char * s2);

char * strncat (char * s1, const char * s2, size_t n);

int strcmp (const char * s1, const char * s2);

int strcoll (const char * s1, const char * s2);

char *strdup (const char * s);

int strncmp (const char * s1, const char * s2, size_t n);

char *strcpy (char * s1, const char * s2);

char *strncpy (char * s1, const char * s2, size_t n);

size_t strlen (const char * s);

char *strchr (const char * s, int c);

char *strrchr (const char * s, int c);

char *strpbrk (const char * s1, const char * s2);

size_t strspn (const char * s1, const char * s2);

char *strstr (const char * s1, const char * s2);

size_t strcspn (const char * s1, const char * s2);

DESCRIPTION The s1 , s2 and s arguments point to strings (arrays of characters terminated by a
null character). The strcat , strncat , strcpy and strncpy functions all alter s1. These
functions do not check for overflow of the array pointed to by s1 .

The strcasecmp and strncasecmp functions compare the null-terminated strings
s1 and s2 and return an integer greater than, equal to, or less than 0, according
to whether s1 is lexicographically greater than, equal to, or less than s2
(after translation of each corresponding character to lower-case). The strings
themselves are not modified. The comparison is done using unsigned characters,
meaning that 200 is greater than 0 .

The strncasecmp compares a maximum of n characters.

Last modified December 1999 ChorusOS 4.0 317

strchr(3STDC) Standard C Library Functions

The strcat and strncat functions append a copy of string s2 to the end of string
s1 . The strncat function copies only the first n bytes of s2 . Each returns a
pointer to the null-terminated result.

The strcmp function compares its arguments and returns an integer less than,
equal to, or greater than 0, according to whether s1 is lexicographically less
than, equal to, or greater than s2 .

If insufficient memory is available, NULL is returned. The strncmp function
makes the same comparison, but looks at a maximum of n characters.

The strcoll function lexicographically compares the null-terminated strings s1
and s2 according to the current locale collation and returns an integer greater
than, equal to, or less than 0, according to whether s1 is greater than, equal
to, or less than s2 .

The strdup function allocates sufficient memory for a copy of the string s , does
the copy, and returns a pointer to it. The pointer may subsequently be used as an
argument to the function free(3STDC).

The strcpy function copies string s2 to s1 , stopping after the null character has
been copied. strncpy copies exactly n characters, truncating s2 or adding null
characters to s1 if necessary. The result will not be null-terminated if the length
of s2 is n or more. Each function returns s1 .

The strlen function returns the number of characters in s , not including the
terminating null character.

The strchr and strrchr functions return a pointer to the first or last)cccurrence of
character c in string s , respectively,. If c does not occur in the string, a NULL
pointer is returned. The null character terminating a string is considered to
be part of the string.

The strpbrk function returns a pointer to the first occurrence in string s1 of any
character from string s2 , or a NULL pointer if no character from s2 exists in s1 .

The strspn and strcspn functions return the length of the initial segment of string
s1 which consists entirely of characters from or to string s2 , respectively.

The strstr function locates the first occurence of the null-terminated string s2 in
the null-terminated string s1 . If s2 is the empty string, strstr returns s1 ; if s2
occurs nowhere in s1 , strstr returns NULL , otherwise strstr returns a pointer
to the first character of the first occurrence of s2 .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

318 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions strcmp(3STDC)

NAME string, strcasecmp, strncasecmp, strcat, strncat, strcmp, strncmp, strcoll, strcpy,
strdup, strncpy, strlen, strchr, strrchr, strpbrk, strspn, strstr, strcspn – string
operations

SYNOPSIS #include <string.h>
int * strcasecmp (const char * s1, const char * s2);

int * strncasecmp (const char * s1, const char * s2, size_t n);

char * strcat (char * s1, const char * s2);

char * strncat (char * s1, const char * s2, size_t n);

int strcmp (const char * s1, const char * s2);

int strcoll (const char * s1, const char * s2);

char *strdup (const char * s);

int strncmp (const char * s1, const char * s2, size_t n);

char *strcpy (char * s1, const char * s2);

char *strncpy (char * s1, const char * s2, size_t n);

size_t strlen (const char * s);

char *strchr (const char * s, int c);

char *strrchr (const char * s, int c);

char *strpbrk (const char * s1, const char * s2);

size_t strspn (const char * s1, const char * s2);

char *strstr (const char * s1, const char * s2);

size_t strcspn (const char * s1, const char * s2);

DESCRIPTION The s1 , s2 and s arguments point to strings (arrays of characters terminated by a
null character). The strcat , strncat , strcpy and strncpy functions all alter s1. These
functions do not check for overflow of the array pointed to by s1 .

The strcasecmp and strncasecmp functions compare the null-terminated strings
s1 and s2 and return an integer greater than, equal to, or less than 0, according
to whether s1 is lexicographically greater than, equal to, or less than s2
(after translation of each corresponding character to lower-case). The strings
themselves are not modified. The comparison is done using unsigned characters,
meaning that 200 is greater than 0 .

The strncasecmp compares a maximum of n characters.

Last modified December 1999 ChorusOS 4.0 319

strcmp(3STDC) Standard C Library Functions

The strcat and strncat functions append a copy of string s2 to the end of string
s1 . The strncat function copies only the first n bytes of s2 . Each returns a
pointer to the null-terminated result.

The strcmp function compares its arguments and returns an integer less than,
equal to, or greater than 0, according to whether s1 is lexicographically less
than, equal to, or greater than s2 .

If insufficient memory is available, NULL is returned. The strncmp function
makes the same comparison, but looks at a maximum of n characters.

The strcoll function lexicographically compares the null-terminated strings s1
and s2 according to the current locale collation and returns an integer greater
than, equal to, or less than 0, according to whether s1 is greater than, equal
to, or less than s2 .

The strdup function allocates sufficient memory for a copy of the string s , does
the copy, and returns a pointer to it. The pointer may subsequently be used as an
argument to the function free(3STDC).

The strcpy function copies string s2 to s1 , stopping after the null character has
been copied. strncpy copies exactly n characters, truncating s2 or adding null
characters to s1 if necessary. The result will not be null-terminated if the length
of s2 is n or more. Each function returns s1 .

The strlen function returns the number of characters in s , not including the
terminating null character.

The strchr and strrchr functions return a pointer to the first or last)cccurrence of
character c in string s , respectively,. If c does not occur in the string, a NULL
pointer is returned. The null character terminating a string is considered to
be part of the string.

The strpbrk function returns a pointer to the first occurrence in string s1 of any
character from string s2 , or a NULL pointer if no character from s2 exists in s1 .

The strspn and strcspn functions return the length of the initial segment of string
s1 which consists entirely of characters from or to string s2 , respectively.

The strstr function locates the first occurence of the null-terminated string s2 in
the null-terminated string s1 . If s2 is the empty string, strstr returns s1 ; if s2
occurs nowhere in s1 , strstr returns NULL , otherwise strstr returns a pointer
to the first character of the first occurrence of s2 .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

320 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions strcoll(3STDC)

NAME string, strcasecmp, strncasecmp, strcat, strncat, strcmp, strncmp, strcoll, strcpy,
strdup, strncpy, strlen, strchr, strrchr, strpbrk, strspn, strstr, strcspn – string
operations

SYNOPSIS #include <string.h>
int * strcasecmp (const char * s1, const char * s2);

int * strncasecmp (const char * s1, const char * s2, size_t n);

char * strcat (char * s1, const char * s2);

char * strncat (char * s1, const char * s2, size_t n);

int strcmp (const char * s1, const char * s2);

int strcoll (const char * s1, const char * s2);

char *strdup (const char * s);

int strncmp (const char * s1, const char * s2, size_t n);

char *strcpy (char * s1, const char * s2);

char *strncpy (char * s1, const char * s2, size_t n);

size_t strlen (const char * s);

char *strchr (const char * s, int c);

char *strrchr (const char * s, int c);

char *strpbrk (const char * s1, const char * s2);

size_t strspn (const char * s1, const char * s2);

char *strstr (const char * s1, const char * s2);

size_t strcspn (const char * s1, const char * s2);

DESCRIPTION The s1 , s2 and s arguments point to strings (arrays of characters terminated by a
null character). The strcat , strncat , strcpy and strncpy functions all alter s1. These
functions do not check for overflow of the array pointed to by s1 .

The strcasecmp and strncasecmp functions compare the null-terminated strings
s1 and s2 and return an integer greater than, equal to, or less than 0, according
to whether s1 is lexicographically greater than, equal to, or less than s2
(after translation of each corresponding character to lower-case). The strings
themselves are not modified. The comparison is done using unsigned characters,
meaning that 200 is greater than 0 .

The strncasecmp compares a maximum of n characters.

Last modified December 1999 ChorusOS 4.0 321

strcoll(3STDC) Standard C Library Functions

The strcat and strncat functions append a copy of string s2 to the end of string
s1 . The strncat function copies only the first n bytes of s2 . Each returns a
pointer to the null-terminated result.

The strcmp function compares its arguments and returns an integer less than,
equal to, or greater than 0, according to whether s1 is lexicographically less
than, equal to, or greater than s2 .

If insufficient memory is available, NULL is returned. The strncmp function
makes the same comparison, but looks at a maximum of n characters.

The strcoll function lexicographically compares the null-terminated strings s1
and s2 according to the current locale collation and returns an integer greater
than, equal to, or less than 0, according to whether s1 is greater than, equal
to, or less than s2 .

The strdup function allocates sufficient memory for a copy of the string s , does
the copy, and returns a pointer to it. The pointer may subsequently be used as an
argument to the function free(3STDC).

The strcpy function copies string s2 to s1 , stopping after the null character has
been copied. strncpy copies exactly n characters, truncating s2 or adding null
characters to s1 if necessary. The result will not be null-terminated if the length
of s2 is n or more. Each function returns s1 .

The strlen function returns the number of characters in s , not including the
terminating null character.

The strchr and strrchr functions return a pointer to the first or last)cccurrence of
character c in string s , respectively,. If c does not occur in the string, a NULL
pointer is returned. The null character terminating a string is considered to
be part of the string.

The strpbrk function returns a pointer to the first occurrence in string s1 of any
character from string s2 , or a NULL pointer if no character from s2 exists in s1 .

The strspn and strcspn functions return the length of the initial segment of string
s1 which consists entirely of characters from or to string s2 , respectively.

The strstr function locates the first occurence of the null-terminated string s2 in
the null-terminated string s1 . If s2 is the empty string, strstr returns s1 ; if s2
occurs nowhere in s1 , strstr returns NULL , otherwise strstr returns a pointer
to the first character of the first occurrence of s2 .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

322 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions strcpy(3STDC)

NAME string, strcasecmp, strncasecmp, strcat, strncat, strcmp, strncmp, strcoll, strcpy,
strdup, strncpy, strlen, strchr, strrchr, strpbrk, strspn, strstr, strcspn – string
operations

SYNOPSIS #include <string.h>
int * strcasecmp (const char * s1, const char * s2);

int * strncasecmp (const char * s1, const char * s2, size_t n);

char * strcat (char * s1, const char * s2);

char * strncat (char * s1, const char * s2, size_t n);

int strcmp (const char * s1, const char * s2);

int strcoll (const char * s1, const char * s2);

char *strdup (const char * s);

int strncmp (const char * s1, const char * s2, size_t n);

char *strcpy (char * s1, const char * s2);

char *strncpy (char * s1, const char * s2, size_t n);

size_t strlen (const char * s);

char *strchr (const char * s, int c);

char *strrchr (const char * s, int c);

char *strpbrk (const char * s1, const char * s2);

size_t strspn (const char * s1, const char * s2);

char *strstr (const char * s1, const char * s2);

size_t strcspn (const char * s1, const char * s2);

DESCRIPTION The s1 , s2 and s arguments point to strings (arrays of characters terminated by a
null character). The strcat , strncat , strcpy and strncpy functions all alter s1. These
functions do not check for overflow of the array pointed to by s1 .

The strcasecmp and strncasecmp functions compare the null-terminated strings
s1 and s2 and return an integer greater than, equal to, or less than 0, according
to whether s1 is lexicographically greater than, equal to, or less than s2
(after translation of each corresponding character to lower-case). The strings
themselves are not modified. The comparison is done using unsigned characters,
meaning that 200 is greater than 0 .

The strncasecmp compares a maximum of n characters.

Last modified December 1999 ChorusOS 4.0 323

strcpy(3STDC) Standard C Library Functions

The strcat and strncat functions append a copy of string s2 to the end of string
s1 . The strncat function copies only the first n bytes of s2 . Each returns a
pointer to the null-terminated result.

The strcmp function compares its arguments and returns an integer less than,
equal to, or greater than 0, according to whether s1 is lexicographically less
than, equal to, or greater than s2 .

If insufficient memory is available, NULL is returned. The strncmp function
makes the same comparison, but looks at a maximum of n characters.

The strcoll function lexicographically compares the null-terminated strings s1
and s2 according to the current locale collation and returns an integer greater
than, equal to, or less than 0, according to whether s1 is greater than, equal
to, or less than s2 .

The strdup function allocates sufficient memory for a copy of the string s , does
the copy, and returns a pointer to it. The pointer may subsequently be used as an
argument to the function free(3STDC).

The strcpy function copies string s2 to s1 , stopping after the null character has
been copied. strncpy copies exactly n characters, truncating s2 or adding null
characters to s1 if necessary. The result will not be null-terminated if the length
of s2 is n or more. Each function returns s1 .

The strlen function returns the number of characters in s , not including the
terminating null character.

The strchr and strrchr functions return a pointer to the first or last)cccurrence of
character c in string s , respectively,. If c does not occur in the string, a NULL
pointer is returned. The null character terminating a string is considered to
be part of the string.

The strpbrk function returns a pointer to the first occurrence in string s1 of any
character from string s2 , or a NULL pointer if no character from s2 exists in s1 .

The strspn and strcspn functions return the length of the initial segment of string
s1 which consists entirely of characters from or to string s2 , respectively.

The strstr function locates the first occurence of the null-terminated string s2 in
the null-terminated string s1 . If s2 is the empty string, strstr returns s1 ; if s2
occurs nowhere in s1 , strstr returns NULL , otherwise strstr returns a pointer
to the first character of the first occurrence of s2 .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

324 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions strcspn(3STDC)

NAME string, strcasecmp, strncasecmp, strcat, strncat, strcmp, strncmp, strcoll, strcpy,
strdup, strncpy, strlen, strchr, strrchr, strpbrk, strspn, strstr, strcspn – string
operations

SYNOPSIS #include <string.h>
int * strcasecmp (const char * s1, const char * s2);

int * strncasecmp (const char * s1, const char * s2, size_t n);

char * strcat (char * s1, const char * s2);

char * strncat (char * s1, const char * s2, size_t n);

int strcmp (const char * s1, const char * s2);

int strcoll (const char * s1, const char * s2);

char *strdup (const char * s);

int strncmp (const char * s1, const char * s2, size_t n);

char *strcpy (char * s1, const char * s2);

char *strncpy (char * s1, const char * s2, size_t n);

size_t strlen (const char * s);

char *strchr (const char * s, int c);

char *strrchr (const char * s, int c);

char *strpbrk (const char * s1, const char * s2);

size_t strspn (const char * s1, const char * s2);

char *strstr (const char * s1, const char * s2);

size_t strcspn (const char * s1, const char * s2);

DESCRIPTION The s1 , s2 and s arguments point to strings (arrays of characters terminated by a
null character). The strcat , strncat , strcpy and strncpy functions all alter s1. These
functions do not check for overflow of the array pointed to by s1 .

The strcasecmp and strncasecmp functions compare the null-terminated strings
s1 and s2 and return an integer greater than, equal to, or less than 0, according
to whether s1 is lexicographically greater than, equal to, or less than s2
(after translation of each corresponding character to lower-case). The strings
themselves are not modified. The comparison is done using unsigned characters,
meaning that 200 is greater than 0 .

The strncasecmp compares a maximum of n characters.

Last modified December 1999 ChorusOS 4.0 325

strcspn(3STDC) Standard C Library Functions

The strcat and strncat functions append a copy of string s2 to the end of string
s1 . The strncat function copies only the first n bytes of s2 . Each returns a
pointer to the null-terminated result.

The strcmp function compares its arguments and returns an integer less than,
equal to, or greater than 0, according to whether s1 is lexicographically less
than, equal to, or greater than s2 .

If insufficient memory is available, NULL is returned. The strncmp function
makes the same comparison, but looks at a maximum of n characters.

The strcoll function lexicographically compares the null-terminated strings s1
and s2 according to the current locale collation and returns an integer greater
than, equal to, or less than 0, according to whether s1 is greater than, equal
to, or less than s2 .

The strdup function allocates sufficient memory for a copy of the string s , does
the copy, and returns a pointer to it. The pointer may subsequently be used as an
argument to the function free(3STDC).

The strcpy function copies string s2 to s1 , stopping after the null character has
been copied. strncpy copies exactly n characters, truncating s2 or adding null
characters to s1 if necessary. The result will not be null-terminated if the length
of s2 is n or more. Each function returns s1 .

The strlen function returns the number of characters in s , not including the
terminating null character.

The strchr and strrchr functions return a pointer to the first or last)cccurrence of
character c in string s , respectively,. If c does not occur in the string, a NULL
pointer is returned. The null character terminating a string is considered to
be part of the string.

The strpbrk function returns a pointer to the first occurrence in string s1 of any
character from string s2 , or a NULL pointer if no character from s2 exists in s1 .

The strspn and strcspn functions return the length of the initial segment of string
s1 which consists entirely of characters from or to string s2 , respectively.

The strstr function locates the first occurence of the null-terminated string s2 in
the null-terminated string s1 . If s2 is the empty string, strstr returns s1 ; if s2
occurs nowhere in s1 , strstr returns NULL , otherwise strstr returns a pointer
to the first character of the first occurrence of s2 .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

326 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions strdup(3STDC)

NAME string, strcasecmp, strncasecmp, strcat, strncat, strcmp, strncmp, strcoll, strcpy,
strdup, strncpy, strlen, strchr, strrchr, strpbrk, strspn, strstr, strcspn – string
operations

SYNOPSIS #include <string.h>
int * strcasecmp (const char * s1, const char * s2);

int * strncasecmp (const char * s1, const char * s2, size_t n);

char * strcat (char * s1, const char * s2);

char * strncat (char * s1, const char * s2, size_t n);

int strcmp (const char * s1, const char * s2);

int strcoll (const char * s1, const char * s2);

char *strdup (const char * s);

int strncmp (const char * s1, const char * s2, size_t n);

char *strcpy (char * s1, const char * s2);

char *strncpy (char * s1, const char * s2, size_t n);

size_t strlen (const char * s);

char *strchr (const char * s, int c);

char *strrchr (const char * s, int c);

char *strpbrk (const char * s1, const char * s2);

size_t strspn (const char * s1, const char * s2);

char *strstr (const char * s1, const char * s2);

size_t strcspn (const char * s1, const char * s2);

DESCRIPTION The s1 , s2 and s arguments point to strings (arrays of characters terminated by a
null character). The strcat , strncat , strcpy and strncpy functions all alter s1. These
functions do not check for overflow of the array pointed to by s1 .

The strcasecmp and strncasecmp functions compare the null-terminated strings
s1 and s2 and return an integer greater than, equal to, or less than 0, according
to whether s1 is lexicographically greater than, equal to, or less than s2
(after translation of each corresponding character to lower-case). The strings
themselves are not modified. The comparison is done using unsigned characters,
meaning that 200 is greater than 0 .

The strncasecmp compares a maximum of n characters.

Last modified December 1999 ChorusOS 4.0 327

strdup(3STDC) Standard C Library Functions

The strcat and strncat functions append a copy of string s2 to the end of string
s1 . The strncat function copies only the first n bytes of s2 . Each returns a
pointer to the null-terminated result.

The strcmp function compares its arguments and returns an integer less than,
equal to, or greater than 0, according to whether s1 is lexicographically less
than, equal to, or greater than s2 .

If insufficient memory is available, NULL is returned. The strncmp function
makes the same comparison, but looks at a maximum of n characters.

The strcoll function lexicographically compares the null-terminated strings s1
and s2 according to the current locale collation and returns an integer greater
than, equal to, or less than 0, according to whether s1 is greater than, equal
to, or less than s2 .

The strdup function allocates sufficient memory for a copy of the string s , does
the copy, and returns a pointer to it. The pointer may subsequently be used as an
argument to the function free(3STDC).

The strcpy function copies string s2 to s1 , stopping after the null character has
been copied. strncpy copies exactly n characters, truncating s2 or adding null
characters to s1 if necessary. The result will not be null-terminated if the length
of s2 is n or more. Each function returns s1 .

The strlen function returns the number of characters in s , not including the
terminating null character.

The strchr and strrchr functions return a pointer to the first or last)cccurrence of
character c in string s , respectively,. If c does not occur in the string, a NULL
pointer is returned. The null character terminating a string is considered to
be part of the string.

The strpbrk function returns a pointer to the first occurrence in string s1 of any
character from string s2 , or a NULL pointer if no character from s2 exists in s1 .

The strspn and strcspn functions return the length of the initial segment of string
s1 which consists entirely of characters from or to string s2 , respectively.

The strstr function locates the first occurence of the null-terminated string s2 in
the null-terminated string s1 . If s2 is the empty string, strstr returns s1 ; if s2
occurs nowhere in s1 , strstr returns NULL , otherwise strstr returns a pointer
to the first character of the first occurrence of s2 .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

328 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions strerror(3STDC)

NAME strerror – system error messages

SYNOPSIS #include <string.h>
char *strerror (int errnum);

DESCRIPTION The strerror function look up the error message string corresponding to an error
number. It accepts an error number argument errnum and returns a pointer to
the corresponding message string.

If errnum is not a recognized error number, the error message string will contain
"Unknown error:" followed by the error number in decimal notation.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO perror (3STDC)

RESTRICTIONS For unknown error numbers, strerror returns its result to a static buffer which
could be overwritten by subsequent or concurrent calls.

Last modified December 1999 ChorusOS 4.0 329

strftime(3STDC) Standard C Library Functions

NAME strftime – format date and time

SYNOPSIS #include <time.h>
size_t strftime (char *buf, size_t maxsize, const char *format, const struct tm *timeptr);

DESCRIPTION The strftime function formats the information from timeptr into the buffer buf
according to the string pointed to by format .

The format string consists of zero or more conversion specifications and
ordinary characters. All ordinary characters are copied directly into the buffer. A
conversion specification consists of a percent sign (“%”) and one other character.

No more than maxsize characters will be placed into the array. If the total number
of resulting characters, including the terminating null character, is not more than
maxsize, strftime returns the number of characters in the array, not counting the
terminating null. Otherwise, zero is returned.

Each conversion specification is replaced by the following characters which
are then copied to the buffer.
%A is replaced by the full weekday name.

%a is replaced by the abbreviated weekday name, where the
abbreviation is the first three characters.

%B is replaced by the full month name.

%b or %h is replaced by the abbreviated month name, where the
abbreviation is the first three characters.

%C is equivalent to "%a %b %e %H:%M:%S %Y" (the format
produced by asctime(3STDC).

%c is equivalent to "%m/%d/%y %H:%M:%S".

%D is replaced by the date in the format "mm/dd/yy".

%d is replaced by the day of the month as a decimal number
(01-31).

%e is replaced by the day of the month as a decimal number
(1-31); single digits are preceded by a blank.

%H is replaced by the hour (24-hour clock) as a decimal number
(00-23).

%I is replaced by the hour (12-hour clock) as a decimal number
(01-12).

%j is replaced by the day of the year as a decimal number
(001-366).

330 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions strftime(3STDC)

%k is replaced by the hour (24-hour clock) as a decimal number
(0-23); single digits are preceded by a blank.

%l is replaced by the hour (12-hour clock) as a decimal number
(1-12); single digits are preceded by a blank.

%M is replaced by the minute as a decimal number (00-59).

%m is replaced by the month as a decimal number (01-12).

%n is replaced by a newline.

%p is replaced by either "AM" or "PM", as appropriate.

%R is equivalent to "%H:%M".

%r is equivalent to "%I:%M:%S %p".

%t is replaced by a tab.

%S is replaced by the second as a decimal number (00-60).

%s is replaced by the number of seconds since the Epoch, UCT
(see mktime(3STDC)).

%T or %X is equivalent to "%H:%M:%S".

%U is replaced by the week number of the year (Sunday as the
first day of the week) as a decimal number (00-53).

%W is replaced by the week number of the year (Monday as the
first day of the week) as a decimal number (00-53).

%w is replaced by the weekday (Sunday as the first day of the
week) as a decimal number (0-6).

%x is equivalent to "%m/%d/%y".

%Y is replaced by the year with century as a decimal number.

%y is replaced by the year without century as a decimal number
(00-99).

%Z is replaced by the time zone name.

%% is replaced by ‘%’.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 331

strftime(3STDC) Standard C Library Functions

SEE ALSO ctime (3STDC), printf (3STDC)

STANDARDS The strftime function conforms to ANSI-C. The ‘%s’ conversion specification
is an extension.

RESTRICTIONS There is no conversion specification for the phase of the moon.

332 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions string(3STDC)

NAME string, strcasecmp, strncasecmp, strcat, strncat, strcmp, strncmp, strcoll, strcpy,
strdup, strncpy, strlen, strchr, strrchr, strpbrk, strspn, strstr, strcspn – string
operations

SYNOPSIS #include <string.h>
int * strcasecmp (const char * s1, const char * s2);

int * strncasecmp (const char * s1, const char * s2, size_t n);

char * strcat (char * s1, const char * s2);

char * strncat (char * s1, const char * s2, size_t n);

int strcmp (const char * s1, const char * s2);

int strcoll (const char * s1, const char * s2);

char *strdup (const char * s);

int strncmp (const char * s1, const char * s2, size_t n);

char *strcpy (char * s1, const char * s2);

char *strncpy (char * s1, const char * s2, size_t n);

size_t strlen (const char * s);

char *strchr (const char * s, int c);

char *strrchr (const char * s, int c);

char *strpbrk (const char * s1, const char * s2);

size_t strspn (const char * s1, const char * s2);

char *strstr (const char * s1, const char * s2);

size_t strcspn (const char * s1, const char * s2);

DESCRIPTION The s1 , s2 and s arguments point to strings (arrays of characters terminated by a
null character). The strcat , strncat , strcpy and strncpy functions all alter s1. These
functions do not check for overflow of the array pointed to by s1 .

The strcasecmp and strncasecmp functions compare the null-terminated strings
s1 and s2 and return an integer greater than, equal to, or less than 0, according
to whether s1 is lexicographically greater than, equal to, or less than s2
(after translation of each corresponding character to lower-case). The strings
themselves are not modified. The comparison is done using unsigned characters,
meaning that 200 is greater than 0 .

The strncasecmp compares a maximum of n characters.

Last modified December 1999 ChorusOS 4.0 333

string(3STDC) Standard C Library Functions

The strcat and strncat functions append a copy of string s2 to the end of string
s1 . The strncat function copies only the first n bytes of s2 . Each returns a
pointer to the null-terminated result.

The strcmp function compares its arguments and returns an integer less than,
equal to, or greater than 0, according to whether s1 is lexicographically less
than, equal to, or greater than s2 .

If insufficient memory is available, NULL is returned. The strncmp function
makes the same comparison, but looks at a maximum of n characters.

The strcoll function lexicographically compares the null-terminated strings s1
and s2 according to the current locale collation and returns an integer greater
than, equal to, or less than 0, according to whether s1 is greater than, equal
to, or less than s2 .

The strdup function allocates sufficient memory for a copy of the string s , does
the copy, and returns a pointer to it. The pointer may subsequently be used as an
argument to the function free(3STDC).

The strcpy function copies string s2 to s1 , stopping after the null character has
been copied. strncpy copies exactly n characters, truncating s2 or adding null
characters to s1 if necessary. The result will not be null-terminated if the length
of s2 is n or more. Each function returns s1 .

The strlen function returns the number of characters in s , not including the
terminating null character.

The strchr and strrchr functions return a pointer to the first or last)cccurrence of
character c in string s , respectively,. If c does not occur in the string, a NULL
pointer is returned. The null character terminating a string is considered to
be part of the string.

The strpbrk function returns a pointer to the first occurrence in string s1 of any
character from string s2 , or a NULL pointer if no character from s2 exists in s1 .

The strspn and strcspn functions return the length of the initial segment of string
s1 which consists entirely of characters from or to string s2 , respectively.

The strstr function locates the first occurence of the null-terminated string s2 in
the null-terminated string s1 . If s2 is the empty string, strstr returns s1 ; if s2
occurs nowhere in s1 , strstr returns NULL , otherwise strstr returns a pointer
to the first character of the first occurrence of s2 .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

334 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions strlen(3STDC)

NAME string, strcasecmp, strncasecmp, strcat, strncat, strcmp, strncmp, strcoll, strcpy,
strdup, strncpy, strlen, strchr, strrchr, strpbrk, strspn, strstr, strcspn – string
operations

SYNOPSIS #include <string.h>
int * strcasecmp (const char * s1, const char * s2);

int * strncasecmp (const char * s1, const char * s2, size_t n);

char * strcat (char * s1, const char * s2);

char * strncat (char * s1, const char * s2, size_t n);

int strcmp (const char * s1, const char * s2);

int strcoll (const char * s1, const char * s2);

char *strdup (const char * s);

int strncmp (const char * s1, const char * s2, size_t n);

char *strcpy (char * s1, const char * s2);

char *strncpy (char * s1, const char * s2, size_t n);

size_t strlen (const char * s);

char *strchr (const char * s, int c);

char *strrchr (const char * s, int c);

char *strpbrk (const char * s1, const char * s2);

size_t strspn (const char * s1, const char * s2);

char *strstr (const char * s1, const char * s2);

size_t strcspn (const char * s1, const char * s2);

DESCRIPTION The s1 , s2 and s arguments point to strings (arrays of characters terminated by a
null character). The strcat , strncat , strcpy and strncpy functions all alter s1. These
functions do not check for overflow of the array pointed to by s1 .

The strcasecmp and strncasecmp functions compare the null-terminated strings
s1 and s2 and return an integer greater than, equal to, or less than 0, according
to whether s1 is lexicographically greater than, equal to, or less than s2
(after translation of each corresponding character to lower-case). The strings
themselves are not modified. The comparison is done using unsigned characters,
meaning that 200 is greater than 0 .

The strncasecmp compares a maximum of n characters.

Last modified December 1999 ChorusOS 4.0 335

strlen(3STDC) Standard C Library Functions

The strcat and strncat functions append a copy of string s2 to the end of string
s1 . The strncat function copies only the first n bytes of s2 . Each returns a
pointer to the null-terminated result.

The strcmp function compares its arguments and returns an integer less than,
equal to, or greater than 0, according to whether s1 is lexicographically less
than, equal to, or greater than s2 .

If insufficient memory is available, NULL is returned. The strncmp function
makes the same comparison, but looks at a maximum of n characters.

The strcoll function lexicographically compares the null-terminated strings s1
and s2 according to the current locale collation and returns an integer greater
than, equal to, or less than 0, according to whether s1 is greater than, equal
to, or less than s2 .

The strdup function allocates sufficient memory for a copy of the string s , does
the copy, and returns a pointer to it. The pointer may subsequently be used as an
argument to the function free(3STDC).

The strcpy function copies string s2 to s1 , stopping after the null character has
been copied. strncpy copies exactly n characters, truncating s2 or adding null
characters to s1 if necessary. The result will not be null-terminated if the length
of s2 is n or more. Each function returns s1 .

The strlen function returns the number of characters in s , not including the
terminating null character.

The strchr and strrchr functions return a pointer to the first or last)cccurrence of
character c in string s , respectively,. If c does not occur in the string, a NULL
pointer is returned. The null character terminating a string is considered to
be part of the string.

The strpbrk function returns a pointer to the first occurrence in string s1 of any
character from string s2 , or a NULL pointer if no character from s2 exists in s1 .

The strspn and strcspn functions return the length of the initial segment of string
s1 which consists entirely of characters from or to string s2 , respectively.

The strstr function locates the first occurence of the null-terminated string s2 in
the null-terminated string s1 . If s2 is the empty string, strstr returns s1 ; if s2
occurs nowhere in s1 , strstr returns NULL , otherwise strstr returns a pointer
to the first character of the first occurrence of s2 .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

336 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions strncasecmp(3STDC)

NAME string, strcasecmp, strncasecmp, strcat, strncat, strcmp, strncmp, strcoll, strcpy,
strdup, strncpy, strlen, strchr, strrchr, strpbrk, strspn, strstr, strcspn – string
operations

SYNOPSIS #include <string.h>
int * strcasecmp (const char * s1, const char * s2);

int * strncasecmp (const char * s1, const char * s2, size_t n);

char * strcat (char * s1, const char * s2);

char * strncat (char * s1, const char * s2, size_t n);

int strcmp (const char * s1, const char * s2);

int strcoll (const char * s1, const char * s2);

char *strdup (const char * s);

int strncmp (const char * s1, const char * s2, size_t n);

char *strcpy (char * s1, const char * s2);

char *strncpy (char * s1, const char * s2, size_t n);

size_t strlen (const char * s);

char *strchr (const char * s, int c);

char *strrchr (const char * s, int c);

char *strpbrk (const char * s1, const char * s2);

size_t strspn (const char * s1, const char * s2);

char *strstr (const char * s1, const char * s2);

size_t strcspn (const char * s1, const char * s2);

DESCRIPTION The s1 , s2 and s arguments point to strings (arrays of characters terminated by a
null character). The strcat , strncat , strcpy and strncpy functions all alter s1. These
functions do not check for overflow of the array pointed to by s1 .

The strcasecmp and strncasecmp functions compare the null-terminated strings
s1 and s2 and return an integer greater than, equal to, or less than 0, according
to whether s1 is lexicographically greater than, equal to, or less than s2
(after translation of each corresponding character to lower-case). The strings
themselves are not modified. The comparison is done using unsigned characters,
meaning that 200 is greater than 0 .

The strncasecmp compares a maximum of n characters.

Last modified December 1999 ChorusOS 4.0 337

strncasecmp(3STDC) Standard C Library Functions

The strcat and strncat functions append a copy of string s2 to the end of string
s1 . The strncat function copies only the first n bytes of s2 . Each returns a
pointer to the null-terminated result.

The strcmp function compares its arguments and returns an integer less than,
equal to, or greater than 0, according to whether s1 is lexicographically less
than, equal to, or greater than s2 .

If insufficient memory is available, NULL is returned. The strncmp function
makes the same comparison, but looks at a maximum of n characters.

The strcoll function lexicographically compares the null-terminated strings s1
and s2 according to the current locale collation and returns an integer greater
than, equal to, or less than 0, according to whether s1 is greater than, equal
to, or less than s2 .

The strdup function allocates sufficient memory for a copy of the string s , does
the copy, and returns a pointer to it. The pointer may subsequently be used as an
argument to the function free(3STDC).

The strcpy function copies string s2 to s1 , stopping after the null character has
been copied. strncpy copies exactly n characters, truncating s2 or adding null
characters to s1 if necessary. The result will not be null-terminated if the length
of s2 is n or more. Each function returns s1 .

The strlen function returns the number of characters in s , not including the
terminating null character.

The strchr and strrchr functions return a pointer to the first or last)cccurrence of
character c in string s , respectively,. If c does not occur in the string, a NULL
pointer is returned. The null character terminating a string is considered to
be part of the string.

The strpbrk function returns a pointer to the first occurrence in string s1 of any
character from string s2 , or a NULL pointer if no character from s2 exists in s1 .

The strspn and strcspn functions return the length of the initial segment of string
s1 which consists entirely of characters from or to string s2 , respectively.

The strstr function locates the first occurence of the null-terminated string s2 in
the null-terminated string s1 . If s2 is the empty string, strstr returns s1 ; if s2
occurs nowhere in s1 , strstr returns NULL , otherwise strstr returns a pointer
to the first character of the first occurrence of s2 .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

338 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions strncat(3STDC)

NAME string, strcasecmp, strncasecmp, strcat, strncat, strcmp, strncmp, strcoll, strcpy,
strdup, strncpy, strlen, strchr, strrchr, strpbrk, strspn, strstr, strcspn – string
operations

SYNOPSIS #include <string.h>
int * strcasecmp (const char * s1, const char * s2);

int * strncasecmp (const char * s1, const char * s2, size_t n);

char * strcat (char * s1, const char * s2);

char * strncat (char * s1, const char * s2, size_t n);

int strcmp (const char * s1, const char * s2);

int strcoll (const char * s1, const char * s2);

char *strdup (const char * s);

int strncmp (const char * s1, const char * s2, size_t n);

char *strcpy (char * s1, const char * s2);

char *strncpy (char * s1, const char * s2, size_t n);

size_t strlen (const char * s);

char *strchr (const char * s, int c);

char *strrchr (const char * s, int c);

char *strpbrk (const char * s1, const char * s2);

size_t strspn (const char * s1, const char * s2);

char *strstr (const char * s1, const char * s2);

size_t strcspn (const char * s1, const char * s2);

DESCRIPTION The s1 , s2 and s arguments point to strings (arrays of characters terminated by a
null character). The strcat , strncat , strcpy and strncpy functions all alter s1. These
functions do not check for overflow of the array pointed to by s1 .

The strcasecmp and strncasecmp functions compare the null-terminated strings
s1 and s2 and return an integer greater than, equal to, or less than 0, according
to whether s1 is lexicographically greater than, equal to, or less than s2
(after translation of each corresponding character to lower-case). The strings
themselves are not modified. The comparison is done using unsigned characters,
meaning that 200 is greater than 0 .

The strncasecmp compares a maximum of n characters.

Last modified December 1999 ChorusOS 4.0 339

strncat(3STDC) Standard C Library Functions

The strcat and strncat functions append a copy of string s2 to the end of string
s1 . The strncat function copies only the first n bytes of s2 . Each returns a
pointer to the null-terminated result.

The strcmp function compares its arguments and returns an integer less than,
equal to, or greater than 0, according to whether s1 is lexicographically less
than, equal to, or greater than s2 .

If insufficient memory is available, NULL is returned. The strncmp function
makes the same comparison, but looks at a maximum of n characters.

The strcoll function lexicographically compares the null-terminated strings s1
and s2 according to the current locale collation and returns an integer greater
than, equal to, or less than 0, according to whether s1 is greater than, equal
to, or less than s2 .

The strdup function allocates sufficient memory for a copy of the string s , does
the copy, and returns a pointer to it. The pointer may subsequently be used as an
argument to the function free(3STDC).

The strcpy function copies string s2 to s1 , stopping after the null character has
been copied. strncpy copies exactly n characters, truncating s2 or adding null
characters to s1 if necessary. The result will not be null-terminated if the length
of s2 is n or more. Each function returns s1 .

The strlen function returns the number of characters in s , not including the
terminating null character.

The strchr and strrchr functions return a pointer to the first or last)cccurrence of
character c in string s , respectively,. If c does not occur in the string, a NULL
pointer is returned. The null character terminating a string is considered to
be part of the string.

The strpbrk function returns a pointer to the first occurrence in string s1 of any
character from string s2 , or a NULL pointer if no character from s2 exists in s1 .

The strspn and strcspn functions return the length of the initial segment of string
s1 which consists entirely of characters from or to string s2 , respectively.

The strstr function locates the first occurence of the null-terminated string s2 in
the null-terminated string s1 . If s2 is the empty string, strstr returns s1 ; if s2
occurs nowhere in s1 , strstr returns NULL , otherwise strstr returns a pointer
to the first character of the first occurrence of s2 .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

340 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions strncmp(3STDC)

NAME string, strcasecmp, strncasecmp, strcat, strncat, strcmp, strncmp, strcoll, strcpy,
strdup, strncpy, strlen, strchr, strrchr, strpbrk, strspn, strstr, strcspn – string
operations

SYNOPSIS #include <string.h>
int * strcasecmp (const char * s1, const char * s2);

int * strncasecmp (const char * s1, const char * s2, size_t n);

char * strcat (char * s1, const char * s2);

char * strncat (char * s1, const char * s2, size_t n);

int strcmp (const char * s1, const char * s2);

int strcoll (const char * s1, const char * s2);

char *strdup (const char * s);

int strncmp (const char * s1, const char * s2, size_t n);

char *strcpy (char * s1, const char * s2);

char *strncpy (char * s1, const char * s2, size_t n);

size_t strlen (const char * s);

char *strchr (const char * s, int c);

char *strrchr (const char * s, int c);

char *strpbrk (const char * s1, const char * s2);

size_t strspn (const char * s1, const char * s2);

char *strstr (const char * s1, const char * s2);

size_t strcspn (const char * s1, const char * s2);

DESCRIPTION The s1 , s2 and s arguments point to strings (arrays of characters terminated by a
null character). The strcat , strncat , strcpy and strncpy functions all alter s1. These
functions do not check for overflow of the array pointed to by s1 .

The strcasecmp and strncasecmp functions compare the null-terminated strings
s1 and s2 and return an integer greater than, equal to, or less than 0, according
to whether s1 is lexicographically greater than, equal to, or less than s2
(after translation of each corresponding character to lower-case). The strings
themselves are not modified. The comparison is done using unsigned characters,
meaning that 200 is greater than 0 .

The strncasecmp compares a maximum of n characters.

Last modified December 1999 ChorusOS 4.0 341

strncmp(3STDC) Standard C Library Functions

The strcat and strncat functions append a copy of string s2 to the end of string
s1 . The strncat function copies only the first n bytes of s2 . Each returns a
pointer to the null-terminated result.

The strcmp function compares its arguments and returns an integer less than,
equal to, or greater than 0, according to whether s1 is lexicographically less
than, equal to, or greater than s2 .

If insufficient memory is available, NULL is returned. The strncmp function
makes the same comparison, but looks at a maximum of n characters.

The strcoll function lexicographically compares the null-terminated strings s1
and s2 according to the current locale collation and returns an integer greater
than, equal to, or less than 0, according to whether s1 is greater than, equal
to, or less than s2 .

The strdup function allocates sufficient memory for a copy of the string s , does
the copy, and returns a pointer to it. The pointer may subsequently be used as an
argument to the function free(3STDC).

The strcpy function copies string s2 to s1 , stopping after the null character has
been copied. strncpy copies exactly n characters, truncating s2 or adding null
characters to s1 if necessary. The result will not be null-terminated if the length
of s2 is n or more. Each function returns s1 .

The strlen function returns the number of characters in s , not including the
terminating null character.

The strchr and strrchr functions return a pointer to the first or last)cccurrence of
character c in string s , respectively,. If c does not occur in the string, a NULL
pointer is returned. The null character terminating a string is considered to
be part of the string.

The strpbrk function returns a pointer to the first occurrence in string s1 of any
character from string s2 , or a NULL pointer if no character from s2 exists in s1 .

The strspn and strcspn functions return the length of the initial segment of string
s1 which consists entirely of characters from or to string s2 , respectively.

The strstr function locates the first occurence of the null-terminated string s2 in
the null-terminated string s1 . If s2 is the empty string, strstr returns s1 ; if s2
occurs nowhere in s1 , strstr returns NULL , otherwise strstr returns a pointer
to the first character of the first occurrence of s2 .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

342 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions strncpy(3STDC)

NAME string, strcasecmp, strncasecmp, strcat, strncat, strcmp, strncmp, strcoll, strcpy,
strdup, strncpy, strlen, strchr, strrchr, strpbrk, strspn, strstr, strcspn – string
operations

SYNOPSIS #include <string.h>
int * strcasecmp (const char * s1, const char * s2);

int * strncasecmp (const char * s1, const char * s2, size_t n);

char * strcat (char * s1, const char * s2);

char * strncat (char * s1, const char * s2, size_t n);

int strcmp (const char * s1, const char * s2);

int strcoll (const char * s1, const char * s2);

char *strdup (const char * s);

int strncmp (const char * s1, const char * s2, size_t n);

char *strcpy (char * s1, const char * s2);

char *strncpy (char * s1, const char * s2, size_t n);

size_t strlen (const char * s);

char *strchr (const char * s, int c);

char *strrchr (const char * s, int c);

char *strpbrk (const char * s1, const char * s2);

size_t strspn (const char * s1, const char * s2);

char *strstr (const char * s1, const char * s2);

size_t strcspn (const char * s1, const char * s2);

DESCRIPTION The s1 , s2 and s arguments point to strings (arrays of characters terminated by a
null character). The strcat , strncat , strcpy and strncpy functions all alter s1. These
functions do not check for overflow of the array pointed to by s1 .

The strcasecmp and strncasecmp functions compare the null-terminated strings
s1 and s2 and return an integer greater than, equal to, or less than 0, according
to whether s1 is lexicographically greater than, equal to, or less than s2
(after translation of each corresponding character to lower-case). The strings
themselves are not modified. The comparison is done using unsigned characters,
meaning that 200 is greater than 0 .

The strncasecmp compares a maximum of n characters.

Last modified December 1999 ChorusOS 4.0 343

strncpy(3STDC) Standard C Library Functions

The strcat and strncat functions append a copy of string s2 to the end of string
s1 . The strncat function copies only the first n bytes of s2 . Each returns a
pointer to the null-terminated result.

The strcmp function compares its arguments and returns an integer less than,
equal to, or greater than 0, according to whether s1 is lexicographically less
than, equal to, or greater than s2 .

If insufficient memory is available, NULL is returned. The strncmp function
makes the same comparison, but looks at a maximum of n characters.

The strcoll function lexicographically compares the null-terminated strings s1
and s2 according to the current locale collation and returns an integer greater
than, equal to, or less than 0, according to whether s1 is greater than, equal
to, or less than s2 .

The strdup function allocates sufficient memory for a copy of the string s , does
the copy, and returns a pointer to it. The pointer may subsequently be used as an
argument to the function free(3STDC).

The strcpy function copies string s2 to s1 , stopping after the null character has
been copied. strncpy copies exactly n characters, truncating s2 or adding null
characters to s1 if necessary. The result will not be null-terminated if the length
of s2 is n or more. Each function returns s1 .

The strlen function returns the number of characters in s , not including the
terminating null character.

The strchr and strrchr functions return a pointer to the first or last)cccurrence of
character c in string s , respectively,. If c does not occur in the string, a NULL
pointer is returned. The null character terminating a string is considered to
be part of the string.

The strpbrk function returns a pointer to the first occurrence in string s1 of any
character from string s2 , or a NULL pointer if no character from s2 exists in s1 .

The strspn and strcspn functions return the length of the initial segment of string
s1 which consists entirely of characters from or to string s2 , respectively.

The strstr function locates the first occurence of the null-terminated string s2 in
the null-terminated string s1 . If s2 is the empty string, strstr returns s1 ; if s2
occurs nowhere in s1 , strstr returns NULL , otherwise strstr returns a pointer
to the first character of the first occurrence of s2 .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

344 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions strpbrk(3STDC)

NAME string, strcasecmp, strncasecmp, strcat, strncat, strcmp, strncmp, strcoll, strcpy,
strdup, strncpy, strlen, strchr, strrchr, strpbrk, strspn, strstr, strcspn – string
operations

SYNOPSIS #include <string.h>
int * strcasecmp (const char * s1, const char * s2);

int * strncasecmp (const char * s1, const char * s2, size_t n);

char * strcat (char * s1, const char * s2);

char * strncat (char * s1, const char * s2, size_t n);

int strcmp (const char * s1, const char * s2);

int strcoll (const char * s1, const char * s2);

char *strdup (const char * s);

int strncmp (const char * s1, const char * s2, size_t n);

char *strcpy (char * s1, const char * s2);

char *strncpy (char * s1, const char * s2, size_t n);

size_t strlen (const char * s);

char *strchr (const char * s, int c);

char *strrchr (const char * s, int c);

char *strpbrk (const char * s1, const char * s2);

size_t strspn (const char * s1, const char * s2);

char *strstr (const char * s1, const char * s2);

size_t strcspn (const char * s1, const char * s2);

DESCRIPTION The s1 , s2 and s arguments point to strings (arrays of characters terminated by a
null character). The strcat , strncat , strcpy and strncpy functions all alter s1. These
functions do not check for overflow of the array pointed to by s1 .

The strcasecmp and strncasecmp functions compare the null-terminated strings
s1 and s2 and return an integer greater than, equal to, or less than 0, according
to whether s1 is lexicographically greater than, equal to, or less than s2
(after translation of each corresponding character to lower-case). The strings
themselves are not modified. The comparison is done using unsigned characters,
meaning that 200 is greater than 0 .

The strncasecmp compares a maximum of n characters.

Last modified December 1999 ChorusOS 4.0 345

strpbrk(3STDC) Standard C Library Functions

The strcat and strncat functions append a copy of string s2 to the end of string
s1 . The strncat function copies only the first n bytes of s2 . Each returns a
pointer to the null-terminated result.

The strcmp function compares its arguments and returns an integer less than,
equal to, or greater than 0, according to whether s1 is lexicographically less
than, equal to, or greater than s2 .

If insufficient memory is available, NULL is returned. The strncmp function
makes the same comparison, but looks at a maximum of n characters.

The strcoll function lexicographically compares the null-terminated strings s1
and s2 according to the current locale collation and returns an integer greater
than, equal to, or less than 0, according to whether s1 is greater than, equal
to, or less than s2 .

The strdup function allocates sufficient memory for a copy of the string s , does
the copy, and returns a pointer to it. The pointer may subsequently be used as an
argument to the function free(3STDC).

The strcpy function copies string s2 to s1 , stopping after the null character has
been copied. strncpy copies exactly n characters, truncating s2 or adding null
characters to s1 if necessary. The result will not be null-terminated if the length
of s2 is n or more. Each function returns s1 .

The strlen function returns the number of characters in s , not including the
terminating null character.

The strchr and strrchr functions return a pointer to the first or last)cccurrence of
character c in string s , respectively,. If c does not occur in the string, a NULL
pointer is returned. The null character terminating a string is considered to
be part of the string.

The strpbrk function returns a pointer to the first occurrence in string s1 of any
character from string s2 , or a NULL pointer if no character from s2 exists in s1 .

The strspn and strcspn functions return the length of the initial segment of string
s1 which consists entirely of characters from or to string s2 , respectively.

The strstr function locates the first occurence of the null-terminated string s2 in
the null-terminated string s1 . If s2 is the empty string, strstr returns s1 ; if s2
occurs nowhere in s1 , strstr returns NULL , otherwise strstr returns a pointer
to the first character of the first occurrence of s2 .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

346 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions strrchr(3STDC)

NAME string, strcasecmp, strncasecmp, strcat, strncat, strcmp, strncmp, strcoll, strcpy,
strdup, strncpy, strlen, strchr, strrchr, strpbrk, strspn, strstr, strcspn – string
operations

SYNOPSIS #include <string.h>
int * strcasecmp (const char * s1, const char * s2);

int * strncasecmp (const char * s1, const char * s2, size_t n);

char * strcat (char * s1, const char * s2);

char * strncat (char * s1, const char * s2, size_t n);

int strcmp (const char * s1, const char * s2);

int strcoll (const char * s1, const char * s2);

char *strdup (const char * s);

int strncmp (const char * s1, const char * s2, size_t n);

char *strcpy (char * s1, const char * s2);

char *strncpy (char * s1, const char * s2, size_t n);

size_t strlen (const char * s);

char *strchr (const char * s, int c);

char *strrchr (const char * s, int c);

char *strpbrk (const char * s1, const char * s2);

size_t strspn (const char * s1, const char * s2);

char *strstr (const char * s1, const char * s2);

size_t strcspn (const char * s1, const char * s2);

DESCRIPTION The s1 , s2 and s arguments point to strings (arrays of characters terminated by a
null character). The strcat , strncat , strcpy and strncpy functions all alter s1. These
functions do not check for overflow of the array pointed to by s1 .

The strcasecmp and strncasecmp functions compare the null-terminated strings
s1 and s2 and return an integer greater than, equal to, or less than 0, according
to whether s1 is lexicographically greater than, equal to, or less than s2
(after translation of each corresponding character to lower-case). The strings
themselves are not modified. The comparison is done using unsigned characters,
meaning that 200 is greater than 0 .

The strncasecmp compares a maximum of n characters.

Last modified December 1999 ChorusOS 4.0 347

strrchr(3STDC) Standard C Library Functions

The strcat and strncat functions append a copy of string s2 to the end of string
s1 . The strncat function copies only the first n bytes of s2 . Each returns a
pointer to the null-terminated result.

The strcmp function compares its arguments and returns an integer less than,
equal to, or greater than 0, according to whether s1 is lexicographically less
than, equal to, or greater than s2 .

If insufficient memory is available, NULL is returned. The strncmp function
makes the same comparison, but looks at a maximum of n characters.

The strcoll function lexicographically compares the null-terminated strings s1
and s2 according to the current locale collation and returns an integer greater
than, equal to, or less than 0, according to whether s1 is greater than, equal
to, or less than s2 .

The strdup function allocates sufficient memory for a copy of the string s , does
the copy, and returns a pointer to it. The pointer may subsequently be used as an
argument to the function free(3STDC).

The strcpy function copies string s2 to s1 , stopping after the null character has
been copied. strncpy copies exactly n characters, truncating s2 or adding null
characters to s1 if necessary. The result will not be null-terminated if the length
of s2 is n or more. Each function returns s1 .

The strlen function returns the number of characters in s , not including the
terminating null character.

The strchr and strrchr functions return a pointer to the first or last)cccurrence of
character c in string s , respectively,. If c does not occur in the string, a NULL
pointer is returned. The null character terminating a string is considered to
be part of the string.

The strpbrk function returns a pointer to the first occurrence in string s1 of any
character from string s2 , or a NULL pointer if no character from s2 exists in s1 .

The strspn and strcspn functions return the length of the initial segment of string
s1 which consists entirely of characters from or to string s2 , respectively.

The strstr function locates the first occurence of the null-terminated string s2 in
the null-terminated string s1 . If s2 is the empty string, strstr returns s1 ; if s2
occurs nowhere in s1 , strstr returns NULL , otherwise strstr returns a pointer
to the first character of the first occurrence of s2 .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

348 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions strsep(3STDC)

NAME strsep – separate strings

SYNOPSIS #include <string.h>
char *strsep (char **sp, const char *d);

DESCRIPTION The strsep function locates, in the string referenced by *sp , the first occurrence
of any character in the string d (or the terminating null character) and replaces
it with a 0 . The location of the next character after the delimiter character
(or NULL , if the end of the string was reached) is stored in *sp. The original
value of *sp is returned.

An “empty” field caused by two adjacent delimiter characters, can be detected
by comparing the location referenced by the pointer returned in *sp to 0 .

If *sp is initially NULL , strsep returns NULL.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 349

strspn(3STDC) Standard C Library Functions

NAME string, strcasecmp, strncasecmp, strcat, strncat, strcmp, strncmp, strcoll, strcpy,
strdup, strncpy, strlen, strchr, strrchr, strpbrk, strspn, strstr, strcspn – string
operations

SYNOPSIS #include <string.h>
int * strcasecmp (const char * s1, const char * s2);

int * strncasecmp (const char * s1, const char * s2, size_t n);

char * strcat (char * s1, const char * s2);

char * strncat (char * s1, const char * s2, size_t n);

int strcmp (const char * s1, const char * s2);

int strcoll (const char * s1, const char * s2);

char *strdup (const char * s);

int strncmp (const char * s1, const char * s2, size_t n);

char *strcpy (char * s1, const char * s2);

char *strncpy (char * s1, const char * s2, size_t n);

size_t strlen (const char * s);

char *strchr (const char * s, int c);

char *strrchr (const char * s, int c);

char *strpbrk (const char * s1, const char * s2);

size_t strspn (const char * s1, const char * s2);

char *strstr (const char * s1, const char * s2);

size_t strcspn (const char * s1, const char * s2);

DESCRIPTION The s1 , s2 and s arguments point to strings (arrays of characters terminated by a
null character). The strcat , strncat , strcpy and strncpy functions all alter s1. These
functions do not check for overflow of the array pointed to by s1 .

The strcasecmp and strncasecmp functions compare the null-terminated strings
s1 and s2 and return an integer greater than, equal to, or less than 0, according
to whether s1 is lexicographically greater than, equal to, or less than s2
(after translation of each corresponding character to lower-case). The strings
themselves are not modified. The comparison is done using unsigned characters,
meaning that 200 is greater than 0 .

The strncasecmp compares a maximum of n characters.

350 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions strspn(3STDC)

The strcat and strncat functions append a copy of string s2 to the end of string
s1 . The strncat function copies only the first n bytes of s2 . Each returns a
pointer to the null-terminated result.

The strcmp function compares its arguments and returns an integer less than,
equal to, or greater than 0, according to whether s1 is lexicographically less
than, equal to, or greater than s2 .

If insufficient memory is available, NULL is returned. The strncmp function
makes the same comparison, but looks at a maximum of n characters.

The strcoll function lexicographically compares the null-terminated strings s1
and s2 according to the current locale collation and returns an integer greater
than, equal to, or less than 0, according to whether s1 is greater than, equal
to, or less than s2 .

The strdup function allocates sufficient memory for a copy of the string s , does
the copy, and returns a pointer to it. The pointer may subsequently be used as an
argument to the function free(3STDC).

The strcpy function copies string s2 to s1 , stopping after the null character has
been copied. strncpy copies exactly n characters, truncating s2 or adding null
characters to s1 if necessary. The result will not be null-terminated if the length
of s2 is n or more. Each function returns s1 .

The strlen function returns the number of characters in s , not including the
terminating null character.

The strchr and strrchr functions return a pointer to the first or last)cccurrence of
character c in string s , respectively,. If c does not occur in the string, a NULL
pointer is returned. The null character terminating a string is considered to
be part of the string.

The strpbrk function returns a pointer to the first occurrence in string s1 of any
character from string s2 , or a NULL pointer if no character from s2 exists in s1 .

The strspn and strcspn functions return the length of the initial segment of string
s1 which consists entirely of characters from or to string s2 , respectively.

The strstr function locates the first occurence of the null-terminated string s2 in
the null-terminated string s1 . If s2 is the empty string, strstr returns s1 ; if s2
occurs nowhere in s1 , strstr returns NULL , otherwise strstr returns a pointer
to the first character of the first occurrence of s2 .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 351

strstr(3STDC) Standard C Library Functions

NAME string, strcasecmp, strncasecmp, strcat, strncat, strcmp, strncmp, strcoll, strcpy,
strdup, strncpy, strlen, strchr, strrchr, strpbrk, strspn, strstr, strcspn – string
operations

SYNOPSIS #include <string.h>
int * strcasecmp (const char * s1, const char * s2);

int * strncasecmp (const char * s1, const char * s2, size_t n);

char * strcat (char * s1, const char * s2);

char * strncat (char * s1, const char * s2, size_t n);

int strcmp (const char * s1, const char * s2);

int strcoll (const char * s1, const char * s2);

char *strdup (const char * s);

int strncmp (const char * s1, const char * s2, size_t n);

char *strcpy (char * s1, const char * s2);

char *strncpy (char * s1, const char * s2, size_t n);

size_t strlen (const char * s);

char *strchr (const char * s, int c);

char *strrchr (const char * s, int c);

char *strpbrk (const char * s1, const char * s2);

size_t strspn (const char * s1, const char * s2);

char *strstr (const char * s1, const char * s2);

size_t strcspn (const char * s1, const char * s2);

DESCRIPTION The s1 , s2 and s arguments point to strings (arrays of characters terminated by a
null character). The strcat , strncat , strcpy and strncpy functions all alter s1. These
functions do not check for overflow of the array pointed to by s1 .

The strcasecmp and strncasecmp functions compare the null-terminated strings
s1 and s2 and return an integer greater than, equal to, or less than 0, according
to whether s1 is lexicographically greater than, equal to, or less than s2
(after translation of each corresponding character to lower-case). The strings
themselves are not modified. The comparison is done using unsigned characters,
meaning that 200 is greater than 0 .

The strncasecmp compares a maximum of n characters.

352 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions strstr(3STDC)

The strcat and strncat functions append a copy of string s2 to the end of string
s1 . The strncat function copies only the first n bytes of s2 . Each returns a
pointer to the null-terminated result.

The strcmp function compares its arguments and returns an integer less than,
equal to, or greater than 0, according to whether s1 is lexicographically less
than, equal to, or greater than s2 .

If insufficient memory is available, NULL is returned. The strncmp function
makes the same comparison, but looks at a maximum of n characters.

The strcoll function lexicographically compares the null-terminated strings s1
and s2 according to the current locale collation and returns an integer greater
than, equal to, or less than 0, according to whether s1 is greater than, equal
to, or less than s2 .

The strdup function allocates sufficient memory for a copy of the string s , does
the copy, and returns a pointer to it. The pointer may subsequently be used as an
argument to the function free(3STDC).

The strcpy function copies string s2 to s1 , stopping after the null character has
been copied. strncpy copies exactly n characters, truncating s2 or adding null
characters to s1 if necessary. The result will not be null-terminated if the length
of s2 is n or more. Each function returns s1 .

The strlen function returns the number of characters in s , not including the
terminating null character.

The strchr and strrchr functions return a pointer to the first or last)cccurrence of
character c in string s , respectively,. If c does not occur in the string, a NULL
pointer is returned. The null character terminating a string is considered to
be part of the string.

The strpbrk function returns a pointer to the first occurrence in string s1 of any
character from string s2 , or a NULL pointer if no character from s2 exists in s1 .

The strspn and strcspn functions return the length of the initial segment of string
s1 which consists entirely of characters from or to string s2 , respectively.

The strstr function locates the first occurence of the null-terminated string s2 in
the null-terminated string s1 . If s2 is the empty string, strstr returns s1 ; if s2
occurs nowhere in s1 , strstr returns NULL , otherwise strstr returns a pointer
to the first character of the first occurrence of s2 .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 353

strtod(3STDC) Standard C Library Functions

NAME strtod, atof – convert an ASCII string to a floating-point number

SYNOPSIS #include <stdlib.h>
double strtod (const char * str, char ** ptr);

double atof (const char * str);

DESCRIPTION The strtod function returns as a double-precision floating-point number the value
represented by the character string pointed to by str . The string is scanned up
to the first unrecognized character.

The strtod function recognizes an optional string of white-space characters, then
an optional sign, then a string of digits optionally containing a decimal point,
then an optional e or E followed by an optional sign or space, followed by
an integer.

If the value of ptr is not (char **)NULL, a pointer to the character terminating the
scan is returned in the location pointed to by ptr . If a number cannot be formed,
*ptr is set to str , and zero is returned.

The atof(str) call is equivalent to strtod(str, (char **)NULL) .

DIAGNOSTICS If the correct value would cause overflow, HUGE is returned (according to
whether the value is positive or negative), and, in if supported, errno is set to
ERANGE If the correct value would cause underflow, zero is returned and, if
supported, errno is set to ERANGE.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO scanf (3STDC)

354 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions strtok(3STDC)

NAME strtok – string tokens

SYNOPSIS #include <string.h>
char *strtok (char *str, const char *sep);

DESCRIPTION The strtok function is used to isolate sequential tokens in a null-terminated string,
str. These tokens are separated in the string by at least one of the characters in
sep. The first time strtok is called, str should be specified; subsequent calls,
wishing to obtain further tokens from the same string, should pass the NULL
pointer instead. The separator string, sep, must be supplied each time, and
may change between calls.

The strtok function returns a pointer to the beginning of each subsequent token
in the string, after replacing the token itself with a null-character. When no more
tokens remain, the NULL pointer is returned.

NOTES The interface is inappropriate to a thread-safe implementation. Therefore this
function is not reentrant. For a reentrant equivalent, use strtok_r (3STDC),
which conforms to POSIX.1c .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO index (3STDC), memchr(3STDC), rindex (3STDC), string (3STDC),
strcspn (3STDC), strsep (3STDC), strtok_r (3STDC)

STANDARDS The strtok function conforms to ANSI-C .

RESTRICTIONS It is not possible to get tokens from multiple strings simultaneously.

The System V strtok, if handed a string containing only delimiter characters, will
not alter the next starting point, so that a call to strtok with a different (or empty)
delimiter string may return a non- NULL value. As this implementation always
alters the next starting point, this sequence of calls will always return NULL.

Last modified December 1999 ChorusOS 4.0 355

strtok_r(3STDC) Standard C Library Functions

NAME strtok_r – string tokens reentrant

SYNOPSIS #include <string.h>
char *strtok_r (char *str, const char *sep, char **last);

DESCRIPTION The strtok_r function is used to isolate sequential tokens in a null-terminated
string, str. These tokens are separated in the string by at least one of the
characters in sep. The strtok_r function performs the same task as strtok (3STDC)
, except the current position in the string is recorded in *last. This parameter
is used the following way; if str is null, *last is used as the starting point.
Otherwise, the value of *last is unimportant. This routine can therefore be used
exactly like strtok (3STDC) , except that the extra parameter last must point at
proper storage for a character pointer. It can be useful for setting str to NULL
and initialising *last the first time, thus making all invocations look the same.
It can also be useful to modify the information returned in *last or to use it to
compute the next value for the str parameter, or a combination of these methods.

When no more tokens remain, a null pointer is returned. and *last is set to NULL.

NOTE This function is fully reentrant. It is the application’s responsability to protect
last and str against concurrent manipulations, if necessary. The invoking
thread’s stack is the best place to store *last.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO index (3STDC), memchr(3STDC), rindex (3STDC), string (3STDC),
strsep (3STDC), strtok (3STDC)

STANDARDS The strtok_r function conforms to POSIX.1c.

RESTRICTIONS It is not always possible to get tokens from multiple strings simultaneously.

356 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions strtol(3STDC)

NAME strtol, atol, atoi – convert string to integer

SYNOPSIS #include <stdlib.h>
long strtol (const char * str, char ** ptr, int base);

long atol (const char * str);

int atoi (const char * str);

DESCRIPTION The strtol function returns the value represented by the character string pointed
to by str as a long integer. The string is scanned up to the first character
inconsistent with the base. Leading “white-space” characters (as defined by
isspace in ctype (3STDC)) are ignored.

The input string is divided into three parts: an initial, possibly empty, sequence
of white-space characters (as defined by isspace in ctype (3STDC)); a subject
sequence interpreted as an integer represented in some radix determined by
the value of base; and a final string of one or more unrecognized characters,
including the terminating null byte of the input string. The strtol function
attempts to convert the subject sequence to an integer and return the result.

A pointer to the final string is stored in the object pointed to by ptr, provided it
is not a null pointer.

If base is positive, it is used as the base for conversion. After an optional leading
sign, leading zeros are ignored, and “0x” or “0X” is ignored if base is 16.

If base is zero, the string itself determines the base as follows: After an optional
leading sign, a leading zero indicates octal conversion, and a leading “0x” or
“0X” hexadecimal conversion. Otherwise, decimal conversion is used.

Truncation from long to int can be done upon assignment, or by using an
explicit cast.

atol(str) is equivalent to strtol(str, (char **)NULL, 10) .

atoi(str) is equivalent to (int) strtol(str, (char **)NULL, 10) .

RETURN VALUES Upon successful completion strtol returns the converted value, if any. If no
conversion could be performed, 0 is returned.

If the correct value is outside the range of representable values, LONG_MAX
or LONG_MIN is returned (according to the sign of the value), and errno is
set to ERANGE.

USAGE Because LONG_MIN and LONG_MAX are returned on error and are also
valid returns on success, in order to check for error situations, an application
should set errno to 0, then call strtol , then check errno; if it is non-zero, you can
assume that an error has occurred.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

Last modified December 1999 ChorusOS 4.0 357

strtol(3STDC) Standard C Library Functions

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO ctype (3STDC) , scanf (3STDC) , strtod (3STDC)

358 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions strtoul(3STDC)

NAME strtoul – convert a string to an unsigned long or uquad_t integer

SYNOPSIS #include <stdlib.h>
#include <limits.h>
unsigned long strtoul (const char *nptr, char **endptr, int base);

DESCRIPTION The strtoul function converts the string in nptr to an unsigned long value. The
conversion is done according to the base given, which must be between 2 and 36
inclusive, or be the special value of 0.

The string may begin with an arbitrary amount of white space (as determined by
isspace (3STDC)) followed by a single optional + or – sign. If base is zero or 16,
the string may then include a 0x prefix, and the number will be read in base
16; otherwise, a zero base is taken as 10 (decimal) unless the next character is 0,
in which case it is taken as 8 (octal).

The remainder of the string is converted to an unsigned long value stopping at
the end of the string or at the first character that does not produce a valid digit
in the base given. (In bases above 10, the letter A in either upper or lowercase
represents 10, B represents 11, and so forth, with Z representing 35.)

If endptr is non nil, strtoul stores the address of the first invalid character in
*endptr. If there were no digits at all, however, strtoul stores the original value
of nptr in *endptr. (Thus, if *nptr is not 0 but **endptr is 0 on return, the entire
string will have been valid.)

RETURN VALUES The strtoul function returns either the result of the conversion or, if there was
a leading minus sign, the negation of the result of the conversion, unless the
original (non-negated) value would overflow. In that case, strtoul returns
ULONG_MAX and, in contexts where it is supported, sets the global variable
errno to ERANGE.

ERRORS The string given was out of range; the converted value has been clamped.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO strtol (3STDC)

STANDARDS The strtoul function conforms to ANSI-C.

Last modified December 1999 ChorusOS 4.0 359

strxfrm(3STDC) Standard C Library Functions

NAME strxfrm – transform a string under locale

SYNOPSIS #include <string.h>
size_t strxfrm (char *dst, const char *src, size_t n);

DESCRIPTION strxfrm does something horrible (see ANSI standard). In this implementation it
just copies.

STANDARDS The strxfrm function conforms to ANSI-C, given that the setlocale function is
not supported.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

360 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions swab(3STDC)

NAME swab – swap adjacent bytes

SYNOPSIS #include <string.h>
void swab(const void *src, void *dst, size_t len);

DESCRIPTION The swab function copies nbytes bytes, which are pointed to by src, to the object
pointed to by dst, exchanging adjacent bytes. The len argument should be even.
If len is odd, swab copies and exchanges len-1 bytes and the disposition of
the last byte is unspecified. Copying between objects that overlap can lead to
unpredictable results. If len is negative, swab does nothing.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO bzero (3STDC), memset(3STDC)

Last modified December 1999 ChorusOS 4.0 361

sys_errlist(3STDC) Standard C Library Functions

NAME perror, errno, sys_errlist, sys_nerr – system error messages

SYNOPSIS #include <stdio.h>
void perror (const char * s);

#include <errno.h>

extern char *sys_errlist[];

extern int sys_nerr;

DESCRIPTION The perror function produces a message on the error channel, the implementation
of which is system-dependent. The message describes the last error encountered
during a call to a system or library function. The argument string s is printed first,
then a colon and a blank, then the message and a newline character. To be of most
use, the argument string should include the name of the program that incurred
the error. The error number is taken from the per thread variable errno, or from a
global variable errno, whichever is provided by the library. This variable is set
when errors occur but not cleared when non-erroneous calls are made.

To simplify variant formatting of messages, the array of message strings
sys_errlist is provided; errno can be used as an index in this table to get the
message string without the new line. The sys_nerr parameter defines the largest
message number provided for in the table; it should be checked because new
error codes may be added to the system before they are added to the table.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

362 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions sys_nerr(3STDC)

NAME perror, errno, sys_errlist, sys_nerr – system error messages

SYNOPSIS #include <stdio.h>
void perror (const char * s);

#include <errno.h>

extern char *sys_errlist[];

extern int sys_nerr;

DESCRIPTION The perror function produces a message on the error channel, the implementation
of which is system-dependent. The message describes the last error encountered
during a call to a system or library function. The argument string s is printed first,
then a colon and a blank, then the message and a newline character. To be of most
use, the argument string should include the name of the program that incurred
the error. The error number is taken from the per thread variable errno, or from a
global variable errno, whichever is provided by the library. This variable is set
when errors occur but not cleared when non-erroneous calls are made.

To simplify variant formatting of messages, the array of message strings
sys_errlist is provided; errno can be used as an index in this table to get the
message string without the new line. The sys_nerr parameter defines the largest
message number provided for in the table; it should be checked because new
error codes may be added to the system before they are added to the table.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 363

tempnam(3STDC) Standard C Library Functions

NAME tmpnam, tempnam – create a name for a temporary file

SYNOPSIS #include <stdio.h>
char * tmpnam(char * s);

char *tempnam (const char * tmpdir, const char * prefix);

DESCRIPTION This function generates file names that can be used safely for a temporary file.

The tmpnam function always generates a file name using the path-prefix defined
as P_tmpdir in the <stdio.h> header file. If s is NULL, tmpnam leaves its result
in an internal per thread area and returns a pointer to that area. The next call to
tmpnam will destroy the contents of the area. If s is not NULL, it is assumed to be
the address of an array of at least L_tmpnam bytes, where L_tmpnam is a constant
defined in <stdio.h> ; tmpnam places its result in that array and returns s . The
tempnam function is similar to tmpnam , but provides the ability to specify the
directory which will contain the temporary file and the file name prefix.

The environment variable TMPDIR (if set), the argument tmpdir (if not NULL)
, the directory P_tmpdir , and the directory /tmp are tried, in the order listed,
as directories in which to store the temporary file.

The argument prefix, if not NULL , is used to specify a file name prefix, which
will be the first part of the created file name.

The tempnam function allocates memory in which to store the file name. The
pointer returned may be used as a subsequent argument to free(3STDC) .

NOTES This function generates a different file name each time it is called.

Files created using this function and fopen (3STDC) are temporary only in the
sense that they reside in a directory intended for temporary use, and that their
names are unique.

For e thread safety, tmpnam allocates a per-thread buffer. For this buffer to be
freed upon thread deletion, the ptdThreadDelete (2K) function must be called.

RESTRICTIONS If called more than 17,576 times in a single actor, this function will start recycling
previously used names. Between the time a file is created and it is opened, it is
possible for another actor to create a file with the same name. This can never
happen, however, if the other actor is using this function and file names are
chosen in order to render duplication by other means unlikely.

ERRORS The tmpnam function may fail and set errno for any of the errors specified for
the library function mktemp (3STDC).

The tempnam function may fail and set errno for any of the errors specfied for the
library functions malloc (3STDC) or mktemp (3STDC).

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

364 ChorusOS 4.0 Last modified December1999

Standard C Library Functions tempnam(3STDC)

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO fopen (3STDC) , malloc (3STDC) , tmpfile (3STDC)

Last modified December1999 ChorusOS 4.0 365

thread_once(3STDC) Standard C Library Functions

NAME thread_once – execute an init routine once

SYNOPSIS #include <stdlib.h>
int thread_once (thread_once_t *once_control, void (*init_routine)(void));

DESCRIPTION The first call to thread_once by any thread in an actor, with a given once_control,
will call the init_routine with no arguments. Subsequent calls to thread_once with
the same once_control will not call the init_routine. On return from thread_once, it
is guaranteed that init_routine has completed. The once_control parameter is used
to determine whether the associated initialization routine has been called.

The behaviour of thread_once is undefined if once_control has an automatic storage
duration or is not initialized by zero.

DIAGNOSTICS Upon completion, thread_once returns zero.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

366 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions time(3STDC)

NAME time – get time

SYNOPSIS #include <time.h>
time_t time (time_t *tloc);

DESCRIPTION The time function returns the value of time in seconds since Epoch (00:00:00
UTC, January 1, 1970).

The tloc argument points to an area where the return value is also stored. If tloc is
a NULL pointer, no value is stored.

The time function relies on the univTime(2K) call to retrieve the current time. If
the time was not properly set at system initialization (see univTimeSet(2K)), time
returns a value of -1, otherwise the value of time is returned.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO univTime (2K), univTimeSet (2K)

Last modified December 1999 ChorusOS 4.0 367

tmpfile(3STDC) Standard C Library Functions

NAME tmpfile – create a temporary file

SYNOPSIS #include <stdio.h>
FILE *tmpfile (void);

DESCRIPTION The tmpfile function creates a temporary file using a name generated by
tmpnam(3STDC), and returns a corresponding FILE pointer. If the file cannot be
opened, an error message is printed using perror(3STDC), and a NULL pointer
is returned. The file will automatically be deleted when the process using it
terminates. The file is opened for update ("w+").

RESTRICTIONS If a thread is deleted while performing tmpfile, it is possible that the temporary
file will not be deleted when the program terminates.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO fopen (3STDC), perror (3STDC), tmpnam(3STDC)

368 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions tmpnam(3STDC)

NAME tmpnam, tempnam – create a name for a temporary file

SYNOPSIS #include <stdio.h>
char * tmpnam(char * s);

char *tempnam (const char * tmpdir, const char * prefix);

DESCRIPTION This function generates file names that can be used safely for a temporary file.

The tmpnam function always generates a file name using the path-prefix defined
as P_tmpdir in the <stdio.h> header file. If s is NULL, tmpnam leaves its result
in an internal per thread area and returns a pointer to that area. The next call to
tmpnam will destroy the contents of the area. If s is not NULL, it is assumed to be
the address of an array of at least L_tmpnam bytes, where L_tmpnam is a constant
defined in <stdio.h> ; tmpnam places its result in that array and returns s . The
tempnam function is similar to tmpnam , but provides the ability to specify the
directory which will contain the temporary file and the file name prefix.

The environment variable TMPDIR (if set), the argument tmpdir (if not NULL)
, the directory P_tmpdir , and the directory /tmp are tried, in the order listed,
as directories in which to store the temporary file.

The argument prefix, if not NULL , is used to specify a file name prefix, which
will be the first part of the created file name.

The tempnam function allocates memory in which to store the file name. The
pointer returned may be used as a subsequent argument to free(3STDC) .

NOTES This function generates a different file name each time it is called.

Files created using this function and fopen (3STDC) are temporary only in the
sense that they reside in a directory intended for temporary use, and that their
names are unique.

For e thread safety, tmpnam allocates a per-thread buffer. For this buffer to be
freed upon thread deletion, the ptdThreadDelete (2K) function must be called.

RESTRICTIONS If called more than 17,576 times in a single actor, this function will start recycling
previously used names. Between the time a file is created and it is opened, it is
possible for another actor to create a file with the same name. This can never
happen, however, if the other actor is using this function and file names are
chosen in order to render duplication by other means unlikely.

ERRORS The tmpnam function may fail and set errno for any of the errors specified for
the library function mktemp (3STDC).

The tempnam function may fail and set errno for any of the errors specfied for the
library functions malloc (3STDC) or mktemp (3STDC).

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

Last modified December1999 ChorusOS 4.0 369

tmpnam(3STDC) Standard C Library Functions

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO fopen (3STDC) , malloc (3STDC) , tmpfile (3STDC)

370 ChorusOS 4.0 Last modified December1999

Standard C Library Functions toascii(3STDC)

NAME toascii – convert a byte to 7-bit ASCII

SYNOPSIS #include <ctype.h>
int toascii (int c);

DESCRIPTION The toascii function strips all but the low 7 bits from a letter, including parity
or other marker bits.

RETURN VALUES The toascii function returns a valid ASCII character. This character is ASCII
only according to the default locale. If another locale is currently in effect, the
semantical correctness of the result is unspecified.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO isascii (3STDC), ctype (3STDC), isalnum (3STDC), isalpha (3STDC),
iscntrl (3STDC), isdigit (3STDC), isgraph (3STDC), islower (3STDC),
isprint (3STDC), ispunct (3STDC), isspace (3STDC), isupper (3STDC),
isxdigit (3STDC), tolower (3STDC), toupper (3STDC)

NOTES This macro is only available in sources which have not used _POSIX_SOURCE
or _ANSI_SOURCE flags when being compiled.

STANDARDS Due to its dubious validity when used in conjunction with setlocale, this function
is no longer a part of ANSI-C.

Last modified December 1999 ChorusOS 4.0 371

tolower(3STDC) Standard C Library Functions

NAME ctype, isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct,
isprint, isgraph, iscntrl, tolower, toupper – classify characters

SYNOPSIS All functions described in this page have the same syntax.

#include <ctype.h>
int isalpha (int c);

DESCRIPTION These macros classify character-coded integer values by looking them up in a
table. Each is a predicate returning nonzero for true, or zero for false.
isalpha c is a letter.

isupper c is an upper-case letter.

islower c is a lower-case letter.

isdigit c is a digit [0-9].

isxdigit c is a hexadecimal digit [0-9], [A-F] or [a-f].

isalnum c is an alphanumeric (letter or digit).

isspace c is a space, tab, carriage return, new-line, vertical
tab, or form-feed.

ispunct c is a punctuation character (neither control nor
alphanumeric).

isprint c is a printing character, code 040 (space) to 0176
(tilde).

isgraph c is a printing character, like isprint except for
space.

iscntrl c is a delete character (0177) or an ordinary
control character (less than 040).

The conversion functions and macros translate a character from lowercase
(uppercase) to uppercase (lowercase).
tolower If c is a character for which isupper is true and

there is a corresponding lowercase character,
tolower returns the corresponding lowercase
character. Otherwise, the character is returned
unchanged.

372 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions tolower(3STDC)

toupper If c is a character for which islower is true and
there is a corresponding uppercase character,
toupper returns the corresponding uppercase
character. Otherwise, the character is returned
unchanged.

DIAGNOSTICS If the argument to any of these macros is not in the domain of the function, the
result is undefined.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 373

toupper(3STDC) Standard C Library Functions

NAME ctype, isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct,
isprint, isgraph, iscntrl, tolower, toupper – classify characters

SYNOPSIS All functions described in this page have the same syntax.

#include <ctype.h>
int isalpha (int c);

DESCRIPTION These macros classify character-coded integer values by looking them up in a
table. Each is a predicate returning nonzero for true, or zero for false.
isalpha c is a letter.

isupper c is an upper-case letter.

islower c is a lower-case letter.

isdigit c is a digit [0-9].

isxdigit c is a hexadecimal digit [0-9], [A-F] or [a-f].

isalnum c is an alphanumeric (letter or digit).

isspace c is a space, tab, carriage return, new-line, vertical
tab, or form-feed.

ispunct c is a punctuation character (neither control nor
alphanumeric).

isprint c is a printing character, code 040 (space) to 0176
(tilde).

isgraph c is a printing character, like isprint except for
space.

iscntrl c is a delete character (0177) or an ordinary
control character (less than 040).

The conversion functions and macros translate a character from lowercase
(uppercase) to uppercase (lowercase).
tolower If c is a character for which isupper is true and

there is a corresponding lowercase character,
tolower returns the corresponding lowercase
character. Otherwise, the character is returned
unchanged.

374 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions toupper(3STDC)

toupper If c is a character for which islower is true and
there is a corresponding uppercase character,
toupper returns the corresponding uppercase
character. Otherwise, the character is returned
unchanged.

DIAGNOSTICS If the argument to any of these macros is not in the domain of the function, the
result is undefined.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Last modified December 1999 ChorusOS 4.0 375

tzset(3STDC) Standard C Library Functions

NAME tzset – set time conversion information

SYNOPSIS #include <time.h>
void tzset (void);

extern char *tzname[2];

DESCRIPTION The tzset function uses the value of the environment variable TZ to set
time conversion information used by localtime(3STDC), ctime(3STDC),
strftime(3STDC), and mktime(3STDC).

When tzset is called, the time zone names contained in the external variable
tzname are set according to the contents of TZ.

The format of TZ is:
stdoffset[dst[offset][,start/[time],end[/time]]]

where:
std and dst Indicate no less than three and no more than

TZNAME_MAXbytes, which designate the standard
(std) and daylight saving time (dst) time zones.
Only std is required,; if dst is not specififed,
daylight saving time does not apply in this area.
Upper- and lowercase letters are allowed. Any
characters except a leading colon (:), digits,
a comma (,), a minus (-), a plus (+) or a null
character are allowed.

offset Indicates the value to be added to the local time
to arrive at Coordinated Universal Time. The
offset has the form: hh[:mm[:ss]]. The minutes
(mm) and seconds (ss) are optional. The hour (hh)
is required and may be a single digit. The offset
following std is required. If no offset follows dst ,
daylight saving time is assumed to be one hour
ahead of standard time. One or more digits may
be used; the value is always interpreted as a
decimal number. The hour must be between 0
and 24, and the minutes and seconds (if present)
between 0 and 59. Entering a value that is out
of range may produce unpredictable results. If
preceded by a "-", the time zone is east of the
Prime Meridian; otherwise it is west (which may
be indicated by an optional preceding "+" sign).

start/time,end/time Indicates when to change to and back from
daylight saving time, where start/time describes
when the change from standard time to daylight

376 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions tzset(3STDC)

saving time happens, and end/time describes
when the change back happens. Each time field
describes when, in current local time, the change
to the other time is made. The formats of start
and end are one of the following:

Jn The Julian day n (1 <= n <= 365). Leap
days are not counted. That is, in all
years, February 28 is day 59 and March
1 is day 60. It is impossible to refer
to February 29.

n The zero-based Julian day (0 <= n <=
365). Leap days are counted, and it is
possible to refer to February 29.

Mm.n.d The dth day, (0 <= d <= 6) of week n of
month m of the year (1 <= n <= 5, 1 <= m
<= 12), where week 5 means "the last
d-day in month m" which may occur in
either the fourth or the fifth week). Week
1 is the first week in which the dth day
occurs. Day zero is Sunday.

Implementation-specific defaults are used for start and end if these optional fields
are not given. The time has the same format as offset except that no leading sign
("-" or "+") is allowed. The default, if time is not given is 02:00:00.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO ctime (3STDC), getenv (3STDC), localtime (3STDC), mktime (3STDC),
setenv (3STDC), strftime (3STDC)

Last modified December 1999 ChorusOS 4.0 377

ungetc(3STDC) Standard C Library Functions

NAME ungetc – push character back into input stream

SYNOPSIS #include <stdio.h>
int ungetc (int c, FILE *stream);

DESCRIPTION The ungetc function inserts the character c into the buffer associated with an
input stream. The c character will be returned by the next getc (3STDC) call on
that stream. The ungetc function returns c, and leaves the stream file unchanged.

One character of pushback is guaranteed, provided something has already been
read from the stream and the stream is actually buffered.

If c equals EOF, ungetc does nothing to the buffer and returns EOF.

Using fseek(3STDC) erases all memory of inserted characters.

RETURN VALUES The ungetc function returns EOF if it cannot insert the character.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO fseek (3STDC), getc (3STDC), setbuf (3STDC)

378 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions unlocked(3STDC)

NAME unlocked, getc_unlocked, getchar_unlocked, putc_unlocked, putchar_unlocked
– explicit locking functions

SYNOPSIS #include <stdio.h>
int getc_unlocked (FILE * stream);

int getchar_unlocked (void);

int putc_unlocked (int c, FILE * stream);

int putchar_unlocked (int c);

DESCRIPTION The getc_unlocked , getchar_unlocked , putc_unlocked and putchar_unlocked are
functionally identical to getc , getchar , putc and putchar functions with the
exception that they are not re-entrant.

getc_unlocked , getchar_unlocked , and putchar_unlocked routines are implemented
as macros.

They may only safely be used within a scope protected by flockfile (or ftrylockfile)
and funlockedfile .

STANDARDS These routines conform to the POSIX.1c standards.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO getc (3STDC) , getchar (3STDC) , putc (3STDC) , putchar (3STDC) ,
flockfile (3STDC)

Last modified December 1999 ChorusOS 4.0 379

unsetenv(3STDC) Standard C Library Functions

NAME getenv, putenv, setenv, unsetenv – fetch and set environment variables

SYNOPSIS #include <stdlib.h>
char * getenv (const char * name);

int setenv (const char * name, const char * value, int overwrite);

int putenv (const char * string);

void unsetenv (const char * name);

DESCRIPTION These functions set, unset and fetch environment variables from the host
environment list. For compatibility with differing environment conventions,
the name and value arguments given may be appended and prepended,
respectively, with an equal sign. The getenv function obtains the current value
of the environment variable, name. If the variable name is not in the current
environment, a null pointer is returned.

The setenv function inserts or resets the environment variable name in the
current environment list. If the variable name does not exist in the list, it is
inserted with the given value. If the variable does exist, the overwrite argument
is tested; if overwrite is zero, the variable is not reset, otherwise it is reset to
the given value.

The putenv function takes an argument of the form name=value and is
equivalent to: setenv(name, value, 1) .

The unsetenv function deletes all instances of the variable name pointed to
by name from the list.

RETURN VALUES The setenv and putenv functions return zero if successful; otherwise –1 is
returned. The setenv or putenv functions fail if they were unable to allocate
memory for the environment.

STANDARDS The getenv function conforms to ANSI–C .

NOTE These functions are reentrant, but the environment is global to the actor.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

380 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions vfprintf(3STDC)

NAME vfprintf – print formatted output

SYNOPSIS #include <stdio.h>
#include <varargs.h>
int vfprintf (FILE *stream, const char *format, va_list ap);

DESCRIPTION The vfprintf function is the same as fprintf (3STDC) with the exception that it is
called with an argument list as defined by the <varargs.h> header file.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO fprintf (3STDC), stdarg (3STDC)

Last modified December 1999 ChorusOS 4.0 381

vprintf(3STDC) Standard C Library Functions

NAME vprintf, vsprintf, vsnprintf – print formatted output

SYNOPSIS #include <stdio.h>
#include <varargs.h>
int vprintf (const char * format, va_list ap);

int vsprintf (char * s, const char * format, va_list ap);

int vsnprintf (char * s, size_t size, const char * format, va_list ap);

DESCRIPTION The vprintf, vsprintf, and vsnprintf functions are the same as printf (3STDC), sprintf
(3STDC), and snprintf (3STDC) functions respectively, with the exception that
they are called with an argument list as defined by the <varargs.h> header file.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO printf (3STDC)

382 ChorusOS 4.0 Last modified December 1999

Standard C Library Functions vsnprintf(3STDC)

NAME vprintf, vsprintf, vsnprintf – print formatted output

SYNOPSIS #include <stdio.h>
#include <varargs.h>
int vprintf (const char * format, va_list ap);

int vsprintf (char * s, const char * format, va_list ap);

int vsnprintf (char * s, size_t size, const char * format, va_list ap);

DESCRIPTION The vprintf, vsprintf, and vsnprintf functions are the same as printf (3STDC), sprintf
(3STDC), and snprintf (3STDC) functions respectively, with the exception that
they are called with an argument list as defined by the <varargs.h> header file.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO printf (3STDC)

Last modified December 1999 ChorusOS 4.0 383

vsprintf(3STDC) Standard C Library Functions

NAME vprintf, vsprintf, vsnprintf – print formatted output

SYNOPSIS #include <stdio.h>
#include <varargs.h>
int vprintf (const char * format, va_list ap);

int vsprintf (char * s, const char * format, va_list ap);

int vsnprintf (char * s, size_t size, const char * format, va_list ap);

DESCRIPTION The vprintf, vsprintf, and vsnprintf functions are the same as printf (3STDC), sprintf
(3STDC), and snprintf (3STDC) functions respectively, with the exception that
they are called with an argument list as defined by the <varargs.h> header file.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO printf (3STDC)

384 ChorusOS 4.0 Last modified December 1999

Index

A
abort — cause abnormal program

termination 57
abs — integer absolute value function 58
alphasort — scan a directory 59, 282
asctime — transform binary date and time

value to ASCII 60, 82, 87,
144, 198, 214

asctime_r — Transform binary date and time
value to ASCII; Reentrant
version 62, 84, 146, 200

assert — expression verification macro 63–64,
312

_assert — expression verification macro 63–64,
312

atexit — add program termination routines 65
atof — convert an ASCII string to a

floating-point number 66,
354

atoi — convert string to integer 67, 69, 357
atol — convert string to integer 67, 69, 357

B
bcmp — bit and byte string operations 71–72,

75, 77, 99
bcopy — bit and byte string operations 71–72,

75, 77, 99
bsearch — perform a binary search on a sorted

table 73
bstring — bit and byte string operations 71–72,

75, 77, 99

byteorder — convert values between host
and network byte order 76,
147–148, 217–218

bzero — bit and byte string operations 71–72,
75, 77, 99

C
calloc — main memory allocator 78, 112, 202,

240
clearerr — stream status inquiries 81, 96–97,

104
ctime — transform binary date and time value

to ASCII 60, 82, 87, 144, 198,
214

ctime_r — Transform binary date and time
value to ASCII; Reentrant
version 62, 84, 146, 200

ctype — classify characters 85, 168, 170, 174,
176, 178, 181, 184, 186, 188,
190, 192, 372, 374

D
difftime — transform binary date and time

value to ASCII 60, 82, 87,
144, 198, 214

div — return quotient and remainder from
division 89

Index-385

E
errno — system error messages 90, 219,

362–363
exit — terminate an actor 91

F
fabs — floating-point absolute value

function 92
fclose — close or flush a stream 93, 98
fdopen — open a stream 94, 106, 115
feof — stream status inquiries 81, 96–97, 104
ferror — stream status inquiries 81, 96–97, 104
fflush — close or flush a stream 93, 98
ffs — bit and byte string operations 71–72, 75,

77, 99
fgetc — get character from a stream 100, 127,

143
fgetpos — reposition a file pointer in a

stream 101, 118, 120, 122, 279
fgets — get a string from a stream 103, 138
fileno — stream status inquiries 81, 96–97, 104
flockfile — stream lock management 105,

124–125
fopen — open a stream 94, 106, 115
fprintf — print formatted output 108
fputc — put character or word on a stream 109,

228, 234
fputs — put a string on a stream 110, 233
fread — binary input/output 111, 126
free — main memory allocator 78, 112, 202,

240
freopen — open a stream 94, 106, 115
fscanf — convert formatted input 117
fseek — reposition a file pointer in a

stream 101, 118, 120, 122, 279
fsetpos — reposition a file pointer in a

stream 101, 118, 120, 122, 279
ftell — reposition a file pointer in a stream 101,

118, 120, 122, 279
ftrylockfile — stream lock management 105,

124–125
funlockfile — stream lock management 105,

124–125
fwrite — binary input/output 111, 126

G
getc — get character from a stream 100, 127,

143
getc_unlocked — explicit locking

functions 129–130,
230–231, 379

getchar — get character from the standard input
channel 128

getchar_unlocked — explicit locking
functions 129–130, 230–231,
379

getenv — fetch and set environment
variables 131, 232, 289, 380

gethostbyaddr — get network host entry 132,
134

gethostbyname — get network host entry 132,
134

getopt — get an option letter from command
line argument list 136

gets — get a string from a stream 103, 138
getsitebyaddr — get ChorusOS site

information 139–140
getsitebyname — get ChorusOS site

information 139–140
getsubopt — get sub options from an

argument 141
getw — get character from a stream 100, 127,

143
gmtime — transform binary date and time

value to ASCII 60, 82, 87,
144, 198, 214

gmtime_r — Transform binary date and time
value to ASCII; Reentrent
version 62, 84, 146, 200

H
htonl — convert values between host and

network byte order 76,
147–148, 217–218

htons — convert values between host and
network byte order 76,
147–148, 217–218

I
index — locate character in string 149, 281

ChorusOS man pages section 3STDC: Standard C Library Functions ♦ December 10, 1999

inet — Internet address manipulation
routines 150, 152, 154, 156,
158, 160, 162, 164

inet_addr — Internet address manipulation
routines 150, 152, 154, 156,
158, 160, 162, 164

inet_aton — Internet address manipulation
routines 150, 152, 154, 156,
158, 160, 162, 164

inet_lnaof — Internet address manipulation
routines 150, 152, 154, 156,
158, 160, 162, 164

inet_makeaddr — Internet address
manipulation routines 150,
152, 154, 156, 158, 160, 162, 164

inet_netof — Internet address manipulation
routines 150, 152, 154, 156,
158, 160, 162, 164

inet_network — Internet address manipulation
routines 150, 152, 154, 156,
158, 160, 162, 164

inet_ntoa — Internet address manipulation
routines 150, 152, 154, 156,
158, 160, 162, 164

initstate — better random number
generator 166, 237,
291, 304

intro — introduction to functions and
libraries 49

isalnum — classify characters 85, 168, 170,
174, 176, 178, 181, 184, 186,
188, 190, 192, 372, 374

isalpha — classify characters 85, 168, 170, 174,
176, 178, 181, 184, 186, 188,
190, 192, 372, 374

isascii — test for ASCII character 172
isatty — check if a file descriptor is associated

with a terminal 173
iscntrl — classify characters 85, 168, 170, 174,

176, 178, 181, 184, 186, 188,
190, 192, 372, 374

isdigit — classify characters 85, 168, 170, 174,
176, 178, 181, 184, 186, 188,
190, 192, 372, 374

isgraph — classify characters 85, 168, 170, 174,
176, 178, 181, 184, 186, 188,
190, 192, 372, 374

isinf — test for infinity or not-a-number 180,
183

islower — classify characters 85, 168, 170, 174,
176, 178, 181, 184, 186, 188,
190, 192, 372, 374

isnan — test for infinity or not-a-number 180,
183

isprint — classify characters 85, 168, 170, 174,
176, 178, 181, 184, 186, 188,
190, 192, 372, 374

ispunct — classify characters 85, 168, 170, 174,
176, 178, 181, 184, 186, 188,
190, 192, 372, 374

isspace — classify characters 85, 168, 170, 174,
176, 178, 181, 184, 186, 188,
190, 192, 372, 374

isupper — classify characters 85, 168, 170, 174,
176, 178, 181, 184, 186, 188,
190, 192, 372, 374

isxdigit — classify characters 85, 168, 170, 174,
176, 178, 181, 184, 186, 188,
190, 192, 372, 374

L
labs — return the absolute value of a long

integer 194
ldexp — multiply floating-point number by

integral power of 2 195–196
_ldexp — multiply floating-point number by

integral power of 2 195–196
ldiv — return quotient and remainder from

division 197
localtime — transform binary date and time

value to ASCII 60, 82, 87,
144, 198, 214

localtime_r — Transform binary date and time
value to ASCII; Reentrent
version 62, 84, 146, 200

longjmp — non-local goto 201, 290

M
malloc — main memory allocator 78, 112, 202,

240
memccpy — memory operations 205–211
memchr — memory operations 205–211

Index-387

memcmp — memory operations 205–211
memcpy — memory operations 205–211
memmove — memory operations 205–211
memory — memory operations 205–211
memset — memory operations 205–211
mkstemp — make temporary file name

(unique) 212–213
mktemp — make temporary file name

(unique) 212–213
mktime — transform binary date and time

value to ASCII 60, 82, 87,
144, 198, 214

modf — extract signed integral and fractional
values from floating-point
number 216

N
ntohl — convert values between host and

network byte order 76,
147–148, 217–218

ntohs — convert values between host and
network byte order 76,
147–148, 217–218

P
perror — system error messages 90, 219,

362–363
printerr — print formatted output 220, 224,

295, 299
printf — print formatted output 220, 224, 295,

299
putc — put character or word on a stream 109,

228, 234
putc_unlocked — explicit locking

functions 129–130,
230–231, 379

putchar — put a character or word on the
standard output channel 229

putchar_unlocked — explicit locking
functions 129–130, 230–231,
379

putenv — fetch and set environment
variables 131, 232, 289, 380

puts — put a string on a stream 110, 233
putw — put character or word on a stream 109,

228, 234

Q
qsort — quicker sort 235

R
rand — pseudo random number

generator 236, 303
rand_r — thread-wise random number

generator 239
random — better random number

generator 166, 237,
291, 304

realloc — main memory allocator 78, 112, 202,
240

regcomp — regular-expression library 243,
250, 257, 264, 271

regerror — regular-expression library 243,
250, 257, 264, 271

regex — regular-expression library 243, 250,
257, 264, 271

regexec — regular-expression library 243, 250,
257, 264, 271

regfree — regular-expression library 243, 250,
257, 264, 271

remove — remove directory entry 278
rewind — reposition a file pointer in a

stream 101, 118, 120, 122, 279
rindex — locate character in string 149, 281

S
scandir — scan a directory 59, 282
scanf — convert formatted input 283, 306
setbuf — assign buffering to a stream 287, 293
setenv — fetch and set environment

variables 131, 232, 289, 380
setjmp — non-local goto 201, 290
setstate — better random number

generator 166, 237,
291, 304

setvbuf — assign buffering to a stream 287,
293

snprintf — print formatted output 220, 224,
295, 299

sprintf — print formatted output 220, 224,
295, 299

ChorusOS man pages section 3STDC: Standard C Library Functions ♦ December 10, 1999

srand — pseudo random number
generator 236, 303

srandom — better random number
generator 166, 237, 291, 304

sscanf — convert formatted input 283, 306
stdarg — variable argument lists 310
_stdc_assert — expression verification

macro 63–64, 312
strcasecmp — string operations 313, 315, 317,

319, 321, 323, 325, 327, 333,
335, 337, 339, 341, 343, 345,
347, 350, 352

strcat — string operations 313, 315, 317, 319,
321, 323, 325, 327, 333, 335, 337,
339, 341, 343, 345, 347, 350, 352

strchr — string operations 313, 315, 317, 319,
321, 323, 325, 327, 333, 335, 337,
339, 341, 343, 345, 347, 350, 352

strcmp — string operations 313, 315, 317, 319,
321, 323, 325, 327, 333, 335, 337,
339, 341, 343, 345, 347, 350, 352

strcoll — string operations 313, 315, 317, 319,
321, 323, 325, 327, 333, 335, 337,
339, 341, 343, 345, 347, 350, 352

strcpy — string operations 313, 315, 317, 319,
321, 323, 325, 327, 333, 335, 337,
339, 341, 343, 345, 347, 350, 352

strcspn — string operations 313, 315, 317, 319,
321, 323, 325, 327, 333, 335, 337,
339, 341, 343, 345, 347, 350, 352

strdup — string operations 313, 315, 317, 319,
321, 323, 325, 327, 333, 335, 337,
339, 341, 343, 345, 347, 350, 352

strerror — system error messages 329
strftime — format date and time 330
string — string operations 313, 315, 317, 319,

321, 323, 325, 327, 333, 335, 337,
339, 341, 343, 345, 347, 350, 352

strlen — string operations 313, 315, 317, 319,
321, 323, 325, 327, 333, 335, 337,
339, 341, 343, 345, 347, 350, 352

strncasecmp — string operations 313, 315, 317,
319, 321, 323, 325, 327, 333,
335, 337, 339, 341, 343, 345,
347, 350, 352

strncat — string operations 313, 315, 317, 319,
321, 323, 325, 327, 333, 335, 337,
339, 341, 343, 345, 347, 350, 352

strncmp — string operations 313, 315, 317,
319, 321, 323, 325, 327, 333,
335, 337, 339, 341, 343, 345,
347, 350, 352

strncpy — string operations 313, 315, 317, 319,
321, 323, 325, 327, 333, 335, 337,
339, 341, 343, 345, 347, 350, 352

strpbrk — string operations 313, 315, 317, 319,
321, 323, 325, 327, 333, 335, 337,
339, 341, 343, 345, 347, 350, 352

strrchr — string operations 313, 315, 317, 319,
321, 323, 325, 327, 333, 335, 337,
339, 341, 343, 345, 347, 350, 352

strsep — separate strings 349
strspn — string operations 313, 315, 317, 319,

321, 323, 325, 327, 333, 335, 337,
339, 341, 343, 345, 347, 350, 352

strstr — string operations 313, 315, 317, 319,
321, 323, 325, 327, 333, 335, 337,
339, 341, 343, 345, 347, 350, 352

strtod — convert an ASCII string to a
floating-point number 66,
354

strtok — string tokens 355
strtok_r — string tokens reentrant 356
strtol — convert string to integer 67, 69, 357
strtoul — convert a string to an unsigned long

or uquad_t integer 359
strxfrm — transform a string under locale 360
swab — swap adjacent bytes 361
sys_errlist — system error messages 90, 219,

362–363
sys_nerr — system error messages 90, 219,

362–363

T
tempnam — create a name for a temporary

file 364, 369
thread_once — execute an init routine

once 366
time — get time 367
tmpfile — create a temporary file 368

Index-389

tmpnam — create a name for a temporary
file 364, 369

toascii — convert a byte to 7-bit ASCII 371
tolower — classify characters 85, 168, 170, 174,

176, 178, 181, 184, 186, 188,
190, 192, 372, 374

toupper — classify characters 85, 168, 170,
174, 176, 178, 181, 184, 186,
188, 190, 192, 372, 374

tzset — set time conversion information 376

U
ungetc — push character back into input

stream 378

unlocked — explicit locking
functions 129–130,
230–231, 379

unsetenv — fetch and set environment
variables 131, 232, 289, 380

V
vfprintf — print formatted output 381
vprintf — print formatted output 382–384
vsnprintf — print formatted output 382–384
vsprintf — print formatted output 382–384

ChorusOS man pages section 3STDC: Standard C Library Functions ♦ December 10, 1999

