
ChorusOS 4.0 Hot Restart
Programmer’s Guide

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303-4900
U.S.A.

Part Number 806-3722-10
December 1999

Copyright 1999 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.
This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered
trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, ChorusOS, Sun Embedded WorkShop, and Solaris are
trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products
bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.
The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s
licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227–14(g)(2)(6/87) and
FAR 52.227–19(6/87), or DFAR 252.227–7015(b)(6/95) and DFAR 227.7202–3(a).
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

Copyright 1999 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, Californie 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque
moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et
qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.
Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.
Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, ChorusOS, Sun Embedded WorkShop, et Solaris sont des
marques de fabrique ou des marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.
Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International,
Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.
L’interface d’utilisation graphique OPEN LOOK et SunTM a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre
se conforment aux licences écrites de Sun.
CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y
COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE
UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE
GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Please
Recycle

Contents

Preface 9

1. Introduction 15

1.1 What Is Hot Restart? 15

1.1.1 Feature Services 16

1.2 Basic Concepts 16

1.2.1 Persistent Memory 17

1.2.2 Restartable Actors 17

1.2.3 Restart Groups 18

1.2.4 Site Restart 20

1.3 Architecture Components 21

2. Getting Started With Hot Restart 23

2.1 System Configuration 23

2.1.1 Features 24

2.1.2 Memory Requirements and Design Considerations 24

2.1.3 Tunable Parameters 25

2.1.4 Building the System Image 26

2.2 Running the Hot Restart Demonstration Program 26

3. Programming With Persistent Memory 29

3.1 Introduction to Persistent Memory Programming 30

3

3.2 A Simple Application 30

3.3 Allocating and Retrieving a Persistent Memory Block 33

3.4 Freeing a Persistent Memory Block 34

3.4.1 Responsibility 34

3.4.2 Freeing a Persistent Memory Block Explicitly 35

4. Programming With Restartable Actors 37

4.1 Introduction 37

4.1.1 Types of Restartable Actor 38

4.1.2 Restartable Actor Credentials 38

4.1.3 Restartable Actors and Persistent Memory 39

4.2 The Restartable Actor Lifecycle 39

4.2.1 Initial Load 40

4.2.2 Group Restart 41

4.2.3 Freeing Persistent Memory 42

4.2.4 Clean Termination 42

4.3 Killing Restartable Actors 46

4.4 Site Restart 46

4.5 Putting It All Together: the restartSpawn Example Program 47

A. Hot Restart Programming Environment 49

A.1 Hot Restart Header Files and Directories 49

A.2 Make Environment 49

B. Example Application Code 51

B.1 Compiling and Running the Examples 51

B.2 The “hello world” Restartable Actor 52

B.2.1 helloRestart.c 52

B.2.2 Imakefile for helloRestart.c 54

B.3 The restartSpawn Example 54

B.3.1 HR_parent.c 54

4 ChorusOS 4.0 Hot Restart Programmer’s Guide ♦ December 1999

B.3.2 HR_child.c 61

B.3.3 Imakefile for HR_parent.c and HR_child.c 65

Index 67

Contents 5

6 ChorusOS 4.0 Hot Restart Programmer’s Guide ♦ December 1999

Figures

Figure 1–1 Typical restartable actor 18

Figure 1–2 Restart Groups in a ChorusOS System 19

Figure 1–3 Group restart 20

Figure 1–4 Hot Restart Architecture 22

Figure 4–1 Restart of Cleanly Terminated Actors 43

Figure 4–2 Conditional Spawning of a Restartable Actor 45

7

8 ChorusOS 4.0 Hot Restart Programmer’s Guide ♦ December 1999

Preface

The ChorusOS 4.0 Hot Restart Programmer’s Guide provides information for
developers of high-availability applications that use the ChorusOS

TM

4.0 hot restart
feature and associated API. Hot restart provides a means of reducing the time it
takes to restart an application or entire system when a serious failure occurs, based
on the use of persistent memory. This guide provides a high-level overview of the
hot restart architecture, and then looks in detail at how the hot restart API is used.

Who Should Use This Book
Use this book if you need to develop ChorusOS 4.0 actors that can be rapidly
restarted in the event of failure, or if you need to use persistent memory in your
applications. You will also find the first chapter useful if you are simply interested in
learning what hot restart is and what it can do.

Before You Read This Book
If you are simply interested in learning what hot restart is, you will need to be
familiar with C programming, and with the high-level architecture of the ChorusOS
system before reading this guide. If you will be developing applications with hot
restart, you are also expected to be familiar with programming ChorusOS actors, and
the Sun Embedded WorkShop

TM

development tools. All of the ChorusOS prerequisite
topics are covered in the ChorusOS 4.0 Introduction.

9

You will need access to a working ChorusOS host machine and target platform if you
want to run the hot restart demonstration and example programs.

How This Book Is Organized
This book is divided into four chapters and two appendixes that present different
aspects of the hot restart feature.

� Chapter 1 provides a general introduction to what hot restart is and does, and
how it is incorporated in the ChorusOS 4.0 system architecture.

� Chapter 2 is a step-by-step guide to getting up and running with hot restart, from
configuring the system to running the hot restart demonstration application.

� Chapter 3 takes an in-depth look at how the persistent memory API provided by
hot restart can be used. The persistent memory API can be used by any ChorusOS
actor.

� Chapter 4 describes the API used for developing restartable actors, and explains
how the hot restart mechanism works from a programming point of view.

� Appendix A provides information of use to developers for compiling actors that
use the hot restart API.

� Appendix B lists the code of the examples used in the body of this guide.

Related Books
The following documents contain information that is related to the material covered
in this guide:

� The ChorusOS 4.0 Introduction comprises a basic overview and getting started
guide for new users of the ChorusOS 4.0 system. Familiarity with the information
in the ChorusOS 4.0 Introduction is a prerequisite for users of this Programmer’s
Guide.

� The ChorusOS 4.0 Installation Guide, ChorusOS Target Family Guides and related
documents cover installation and configuration of the ChorusOS 4.0 system and
the Sun Embedded Workshop development tools.

� For a complete reference to the APIs available in the ChorusOS 4.0 system, see the
man pages in the ChorusOS 4.0 Reference Manual Collection. The 2RESTART
section in this collection covers the API exported by the hot restart feature. Other
related man pages are also referenced in the body of this Programmer’s Guide.

10 ChorusOS 4.0 Hot Restart Programmer’s Guide ♦ December 1999

Ordering Sun Documents
Fatbrain.com, an Internet professional bookstore, stocks selected product
documentation from Sun Microsystems, Inc.

For a list of documents and how to order them, visit the Sun Documentation Center
on Fatbrain.com at http://www1.fatbrain.com/documentation/sun .

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com .

Typographic Conventions
The following table describes the typographic changes used in this book.

TABLE P–1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; on-screen computer output

Edit your .login file.

Use ls −a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

machine_name% su

Password:

Preface 11

TABLE P–1 Typographic Conventions (continued)

Typeface or
Symbol Meaning Example

AaBbCc123 Command-line placeholder: replace
with a real name or value

To delete a file, type rm
filename.

AaBbCc123 Book titles, new words, or terms, or
words to be emphasized.

Read Chapter 6 in User’s
Guide.

These are called class options.

You must be root to do this.

Shell Prompts
The following table shows the default system prompt and superuser prompt for the
C shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser
prompt

#

Directory Conventions
The following table describes several of the directory conventions used in this book.

12 ChorusOS 4.0 Hot Restart Programmer’s Guide ♦ December 1999

TABLE P–3 Directory Conventions

Name Meaning Example

install_dir Directory into which you
install the ChorusOS 4.0
product.

/opt/SUNWconn/SEW

build_dir Directory in which you build
your ChorusOS system
image from the installed
product.

/home/user/ChorusOS

Preface 13

14 ChorusOS 4.0 Hot Restart Programmer’s Guide ♦ December 1999

CHAPTER 1

Introduction

The purpose of this chapter is to provide an introduction to hot restart.

� Section 1.1 “What Is Hot Restart?” on page 15 is a brief introduction to the
motivation behind the development of hot restart, and what hot restart actually is.

� Section 1.2 “Basic Concepts” on page 16 presents the four concepts central to the
hot restart feature: persistent memory, actor restart, restart groups and site restart.

� Section 1.3 “Architecture Components” on page 21 summarizes the high-level
architecture of hot restart, and how it relates to some of the principal ChorusOS

TM

actors.

By the end of this chapter, you should have sufficient knowledge of hot restart to
understand the information provided in the rest of this book.

1.1 What Is Hot Restart?
The ChorusOS

TM

4.0 system’s hot restart feature has been designed and implemented
to address the high-availability requirements of ChorusOS system builders. Hot
restart provides an advanced mechanism for restarting ChorusOS applications or the
entire system when a serious error or failure occurs. Traditionally, system recovery
from such errors or failures involves terminating applications and reloading them
from stable storage, or rebooting the system. This causes system downtime, and can
mean that important application data is lost. Such behavior is unacceptable for
system builders seeking ’7 by 24’ or ’five nines’ system availability.

The ChorusOS 4.0 hot restart feature solves the problem of downtime and data loss
by using persistent memory, that is, memory which can persist beyond the lifetime of
a particular run-time instance of an actor. When an actor which uses the hot restart
feature fails, or terminates abnormally, the system uses the actor data stored in

15

persistent memory to reconstruct the actor without accessing stable storage. This
reconstruction of an actor from persistent memory instead of from stable storage is
known as hot restarting (or simply restarting) the actor.

Hot restarting one or more actors is significantly faster than conventional failure
recovery techniques (application reload or cold system reboot) because it protects
critical information that allows the failed portions of a system to be reconstructed
quickly, with minimal interruption in service.

1.1.1 Feature Services
ChorusOS hot restart comprises an API and run-time architecture which offer the
following services:

� persistent memory allocation

The hot restart API allows actors to allocate and free portions of persistent
memory while they are executing. This service is available to all ChorusOS actors
once hot restart is configured.

� actor restart

With hot restart, the system is capable of detecting the abnormal termination of
one or more actors and restarting them automatically from persistent memory. In
addition, actors are organized into restart groups, enabling the simultaneous restart
of all actors in a predefined group when a single actor in the group fails.

� site restart

With hot restart, in addition to restarting one or more actors, the system is capable
of restarting all restartable actors, plus the kernel and boot actors, for a given
ChorusOS site.

The combination of these services provides a powerful framework for
highly-available systems and applications, dramatically reducing the time it takes for
a failed system or component to return to service.

1.2 Basic Concepts
This section introduces the basic concepts central to the hot restart feature and
services. These concepts are: persistent memory, restartable actor, restart group, and
site restart.

16 ChorusOS 4.0 Hot Restart Programmer’s Guide ♦ December 1999

1.2.1 Persistent Memory
The foundation of the hot restart mechanism is the use of persistent memory to store
data which can persist across an actor or site restart. Persistent memory is used
internally by the system, to store the actor image (text and data) from which a
restartable actor can be reconstructed. Any actor can also allocate persistent memory
to store data. This data could, for example, be used to checkpoint application
execution.

At the lowest level, persistent memory is a bank of memory loaded by the ChorusOS
kernel at cold boot. The content of this bank of memory is preserved across an actor
or site restart. In the current implementation, the only supported medium for the
persistent memory bank is RAM: in other words, persistent memory is simply a
reserved area of physical memory. For this reason, persistent memory will resist a
hot restart, but not a board reset. The size of the area of RAM reserved for persistent
memory is governed by a tunable parameter.

The allocation and de-allocation (freeing) of persistent memory are managed by a
ChorusOS actor known as the Persistent Memory Manager (PMM). The Persistent
Memory Manager exports an API for this purpose. This API is distinct from the API
used for allocating and de-allocating traditional ChorusOS memory regions
(rgnAllocate(2K) , rgnFree(2K) , svPagesAllocate(2K) , and
svPagesFree(2K)).

The Persistent Memory Manager API is described in more detail in Chapter 3 and in
the pmmAllocate(2RESTART) , pmmFree(2RESTART) and
pmmFreeAll(2RESTART) man pages.

1.2.2 Restartable Actors
A restartable actor is any actor which can be rapidly restarted without accessing stable
storage, when it abnormally terminates. A restartable actor is restarted from an
actor image which comprises the actor’s text and initialized data regions. The actor
image is stored in persistent memory (unless the actor is executed in place, in which
case the actor image is the actor’s executable file, stored in non-persistent, physical
memory). Restartable actors can use additional blocks of persistent memory to store
their own data.

Figure 1–1 shows the state of a typical restartable actor at its initialization, during
execution, and after having been hot restarted as a result of an error. The actor uses
persistent memory to store some state data. After hot restart, the actor is
reconstructed from its actor image, also in persistent memory. It is then re-executed
from its initial entry point, and can retrieve the persistent state data which has been
stored.

Introduction 17

main()
T

D

main()
T

main()
T

Execution Failure and hot restart

Initial load During execution After hot restart

T

D

Text

Data

Allocated persistent memory

Retrieved persistent memory

Figure 1–1 Typical restartable actor

In the hot restart architecture, management of restartable actors is assured by a
ChorusOS supervisor actor known as the Hot Restart Controller. Restartable actors are
monitored by the Hot Restart Controller, in that the Hot Restart Controller will detect
a restartable actor’s abnormal termination and automatically take the appropriate
restart action if an abnormal termination occurs. In the context of hot restart,
abnormal termination cases include unrecoverable errors such as division by zero, a
segmentation fault, unresolved page fault, or invalid op code, and so on.

Restartable actors, like traditional ChorusOS actors, can be run in either user or
supervisor mode. In addition, they can be run from the sysadm.ini file or C_INIT
console, or spawned dynamically during system execution. Indeed, the restartable
nature of restartable actors remains transparent to system actors such as the AM
actor, responsible for loading and starting restartable actors. This is because
restartable actors do not declare themselves restartable, but are run as restartable actors.
More specifically, the way a restartable actor is initially run determines how it will be
restarted when a restart occurs:

� Restartable actors which are run from the sysadm.ini file, or which are run
directly from the C_INIT console, are restarted directly by the system when a
restart occurs. These actors are known as direct restartable actors.

� Restartable actors which are spawned dynamically during system execution will
be restarted by the actor which initially spawned them. These actors are known as
indirect restartable actors.

The distinction between direct and indirect restartable actors provides a useful
framework for the construction of restartable groups of actors, as described in the
next section.

C_INIT and the Hot Restart Controller provide an interface specifically for running
and spawning restartable actors. This interface is described in detail in Chapter 4.

1.2.3 Restart Groups
Many applications are made up of not one but several actors, which cooperate to
provide a service. As these actors cooperate closely, any failure in one of them can

18 ChorusOS 4.0 Hot Restart Programmer’s Guide ♦ December 1999

have repercussions in the others. For instance, assume that actors A and B cooperate
closely (using CHORUS/IPC for instance), and that A fails. Simply terminating,
reloading or hot-restarting A will probably not be sufficient, and will most certainly
cause B either to fail itself, or to go through some special recovery action. This
recovery action may in turn affect other actors which cooperate with actor B.
Building cooperating applications which can cope with the large number of potential
fault scenarios is a very complex task, as the complexity grows exponentially with
the number of actors.

In response to this problem, the hot restart feature uses the concept of restart group. A
restart group in its most common sense is a group of cooperating restartable actors
which can be restarted in the event of the failure or abnormal termination of one or
more actors within the group. In other words, when one actor in the group fails, all
actors in the group will be stopped and then restarted (either directly, by the system,
or indirectly, through spawning). In this way, closely cooperating actors are
guaranteed a consistent, combined operating state.

Every restartable actor in a ChorusOS 4.0 system is a member of a restart group.
Restart groups of actors are mutually exclusive: a running actor can only be a
member of one actor group (declared when the actor is run), and group containment
is not permitted. A restart group is created dynamically when a direct actor is
declared to be a member of the group: thus, each group contains at least one direct
actor. An indirect actor is always a member of the same group as the actor which
spawned it. A restart group is therefore populated through spawning from one or
more direct restartable actors.

Figure 1–2 illustrates the possible organization of restartable actors in groups within
a system.

IA

DA

IA

IA
DA

DA

IA

IA
DA

IA
IA

IA

Restart group 1

DA
DA

Restart group 2

Restart group 3

Restart group 4

DA

IA Indirect restartable actor

Direct restartable actor

Figure 1–2 Restart Groups in a ChorusOS System

When a group is restarted, it is restarted from the point at which it initially started.
Figure 1–3 shows the state of a group of restartable actors when it is initially created,
during execution, and when it is restarted following the failure of one of its member
actors. The group contains two direct actors and one indirect (spawned) actor. The

Introduction 19

failure of the indirect actor causes a group restart: the two direct actors automatically
re-execute their code from their initial entry point. Time runs vertically down the
page.

main()

main()main()

Crash

main()main()

Spawn actor

main()

Initial state
(group created)

Actor crash

Group restarted

direct actor direct actor

Spawn actor

T
IM

E

indirect actor

Figure 1–3 Group restart

Of course, simply restarting a group of actors may still not bring the system to the
error-free state desired. Such a situation is possible when the failure which provokes
an actor group restart is in fact the consequence of an error or failure elsewhere in
the system. For this reason, the hot restart feature supports the concept of site restart,
as described in the next section.

1.2.4 Site Restart
A site restart is the reinitialization of an entire ChorusOS site (system) following the
repeated failure of a group of restartable actors. It is the most severe action which

20 ChorusOS 4.0 Hot Restart Programmer’s Guide ♦ December 1999

can be automatically provoked by the Hot Restart Controller. A site restart involves
the following:

� The kernel and boot actors are re-initialized from the system image. This step is
sometimes termed a ’hot reboot’ of the system (as opposed to a cold reboot, which
involves a board reset and initial system loading steps, as described in the
ChorusOS 4.0 Porting Guide).

� All restartable actor groups are restarted.

The precise frequency of group restarts which provokes a site restart is determined
by the system’s restart policy. The basic policy implemented by the hot restart feature
is based on a set of system tunable parameters described in Chapter 2. You can
extend this basic restart policy within your own applications, for example by
choosing to provoke a group or site restart when particular application-specific
exceptions are raised, or particular events occur.

1.3 Architecture Components
As described in the previous sections, the hot restart feature uses the following two
restart-specific actors to implement hot restart services:

� A supervisor actor called the Persistent Memory Manager (PMM), which offers
services for allocating and freeing persistent memory blocks.

� A supervisor actor called the Hot Restart Controller, (HR_CTRL). It offers the system
calls that create and kill restartable actors, monitors restartable actors for abnormal
termination, and takes the appropriate restart action when a failure occurs.

The Persistent Memory Manager and Hot Restart Controller principally use the
services of the following:

� The C_INIT actor, for the interpretation of hot restart-specific commands entered
on the target or host console.

� The system actor AM, solicited by the Hot Restart Controller for loading and
running restartable actors.

� The ChorusOS microkernel, for the low-level allocation of persistent memory, and
for support for site restart.

The resulting architecture is summarized in the following diagram. Hot
restart-specific components appear in gray, together with the API calls they provide.
Other components appear in white. Arrows from A to B say that A calls functions
which are implemented in B.

Introduction 21

C_INIT

HR_CTRL

PMM

Microkernel

arun -g
akill -g
aps

shutdown

hrKillGroup(2RESTART)

hrfexec(2RESTART)

hrGetActorGroup(2RESTART)

pmmAllocate(2RESTART)

pmmFree(2RESTART)

pmmFreeAll(2RESTART)

sysShutdown(2K)

AM

Figure 1–4 Hot Restart Architecture

Further information about the hot restart API is provided in the rest of this guide,
and in the corresponding man pages.

22 ChorusOS 4.0 Hot Restart Programmer’s Guide ♦ December 1999

CHAPTER 2

Getting Started With Hot Restart

This chapter describes how to set up your ChorusOS 4.0 system to use the hot restart
feature. It covers the following:

� Configuring your ChorusOS 4.0 system for hot restart: see Section 2.1 “System
Configuration” on page 23.

� Running the graphical hot restart demonstration program provided with Sun
Embedded Workshop: see Section 2.2 “Running the Hot Restart Demonstration
Program” on page 26.

Note - This chapter assumes that you have already correctly installed Sun Embedded
Workshop on a host machine, and that you have a target machine which can be
booted from a network boot server. You should also be familiar with configuring
your ChorusOS 4.0 system and building a system image. For more information on
these topics, see the related documents cited in the Preface of this guide.

This chapter does not cover hints for linking and building your own hot restartable
applications. For information on this topic, see Appendix A.

2.1 System Configuration
Before beginning to program and run actors which use the hot restart feature, you
will need to update and configure your system for hot restart. System configuration
for hot restart involves the following steps:

� including the necessary ChorusOS optional features in your system

� ensuring that the settings for the tunable parameters used by the hot restart
feature are suitable for your system

23

These steps are described in the sections which follow.

2.1.1 Features
To incorporate hot restart in your ChorusOS 4.0 system, use the ews graphical tool or
the configurator(1CC) command line utility to include the following optional
features in your system profile:

� HOT_RESTART. This feature exports the hot restart API and restart mechanism.

� ACTOR_EXTENDED_MNGT, LAPSAFE, LAPBIND and ADMIN_SHUTDOWN.
These features provide necessary support for the HOT_RESTART feature.

2.1.2 Memory Requirements and Design Considerations
As stated in Chapter 1, the hot restart feature implements persistent memory as a
portion of physical memory (RAM) on the target device. Although the persistent
memory bank does not itself use virtual memory or swapping, hot restart is
compatible with all three of the main memory models: flat, protected, and virtual.

The size of the persistent memory bank is defined in bytes by a system tunable
parameter, pmm.rambankSize . The value of this parameter is static: its value cannot
be modified while the system is running. In addition, because the RAM persistent
memory bank does not use virtual memory or swapping, objects in persistent
memory are locked in memory until they are freed. For these two reasons, it is
important to make sure that pmm.rambankSize is set to a value realistic for the
amount of data likely to be stored in persistent memory at any one time.

A portion of space reserved for an object in the persistent memory bank is termed a
persistent memory block. A block is a contiguous set of memory pages, which means
that the size of a block is always a multiple of the page size. Use vmPageSize(2K)
to find out the page size for your platform.

For each running restartable actor, the system stores the following data in persistent
memory:

� The text and initialized data which were loaded into memory from stable storage.
This is known as the actor image. The actor image occupies a single block of
persistent memory.

� The executed text, initialized data and BSS (data initialized to zero), from which
the actor is running. This is known as the actor’s executing image. The executing
image occupies two blocks of persistent memory: one block for the text and one
block for the data. The heap and stack for the executing actor are stored in
non-persistent memory.

The persistent memory blocks used to store the actor image and executing image will
only be freed when the actor’s group terminates cleanly (note that this may be some

24 ChorusOS 4.0 Hot Restart Programmer’s Guide ♦ December 1999

time after the actor itself has terminated). The actor can also allocate its own blocks
of persistent memory to store run-time data while it is executing.

Although it can be difficult to predict the likely required value of pmm.rambankSize
early in the development cycle, the following rule of thumb, derived from the
statements above, may be of use to developers at the system design stage:

� Restartable actors occupy an absolute minimum of twice their size in persistent
memory. This minimum will accommodate the actor’s actor image and executing
image (although it does not allow for rounding up of memory block sizes to the
nearest page). The actor may also allocate additional portions of memory.
pmm.rambankSize should therefore be greater than twice the combined size of
the restartable actors expected to run simultaneously on a system.

Note - Sharing persistent memory blocks between user actors, or between user and
supervisor actors is not supported. Persistent memory blocks can only be shared
between supervisor actors.

The default value of the pmm.rambankSize tunable parameter is 1024*1024 bytes,
that is, one megabyte.

2.1.3 Tunable Parameters
The HOT_RESTART feature uses a number of system tunable parameters. Each
parameter has a default value which can serve as a guideline and is generally
suitable for getting started with hot restart programming. All tunable parameters are
static: they cannot be modified while the system is running.

Two parameters define limits for persistent memory occupation in the system’s
persistent memory bank:

� pmm.rambankSize is the maximum amount of persistent memory available in
the system, in bytes. The default value is one megabyte (0x100000). See the
previous section for guidelines on setting this parameter to suit your system. If
you want to run the hot restart demonstration program, you will need to increase
the value of this parameter to four megabytes (0x400000).

� pmm.maxBlocks is the maximum number of recorded persistent memory blocks
which can be allocated in the persistent memory bank. A block is a variable-sized
number of contiguous pages of RAM. Each time an actor (supervisor or user)
issues a request to store a piece of data in persistent memory, a block of the
appropriate size, rounded up to the nearest whole page, is allocated. The default
value is 30.

Two parameters control the maximum number of restartable actors and restart
groups permitted in the system:

� hrCtrl.maxActors is the maximum number of hot restartable actors which can
be registered in the system. An actor is registered in the system when it is first

Getting Started With Hot Restart 25

run, and remains registered until all the actors in its group have terminated
normally. The default value is 32. If hrCtrl.maxActors is greater than 65536,
65536 is used instead.

� hrCtrl.maxGroups is the maximum number of restart groups which can be
present in the system at the same time. Its default value is 32.

Two parameters define the system’s restart policy (see Section 1.2.4 “Site Restart” on
page 20). These parameters are quite sensitive: different values can produce very
different behavior in the system. The system manages a restart counter for each restart
group. Each time a group is restarted, the system increases its restart counter by one.

� hrCtrl.interval is the frequency with which a group’s restart counter is
decreased, in seconds. Every hrCtrl.interval seconds, the system will decrease
the group’s restart counter by one (until the counter reaches zero). The default
value for hrCtrl.interval is 3 seconds.

� hrCtrl.maxBadness is the maximum value a group’s restart counter can reach
before it triggers a site restart. In other words, when a group’s restart counter
reaches this value, a site restart is automatically performed. The default value is
25. If set to zero, the system never triggers a site restart.

2.1.4 Building the System Image
Once you have updated your system’s features for hot restart and the tunable
parameter settings are appropriate for your needs, you are ready to build the system
image.

If you want to run the hot restart demonstration and examples, ensure that you
include the examples directory and X11 library in your system build paths if they are
not already included. For information on building a system image for your particular
target platform, see the corresponding document in the ChorusOS 4.0 Target Family
Guide collection.

After the system image has been correctly built, copy it to your boot server and
reboot your target machine. You are now ready to begin programming and running
applications which use the hot restart feature.

2.2 Running the Hot Restart Demonstration
Program
Sun Embedded Workshop includes a graphical demonstration of the hot restart
feature. The demonstration is based on the well-known program Xmaze, which has
been slightly modified to make it hot restartable. Some of the program’s data is

26 ChorusOS 4.0 Hot Restart Programmer’s Guide ♦ December 1999

stored in persistent memory, which means that when the program is restarted, it
starts at a point close to the point it had reached prior to the restart. The resulting
application is a ChorusOS actor called xdemo_s .

To run the hot restart demonstration program, do the following:

1. Ensure that your system features are correctly set for hot restart: see Section 2.1.1
“Features” on page 24.

2. Adjust the following system tunable parameters to suit the memory requirements
of the Xmaze demonstration program, using ews or the configurator(1CC)
command line utility:

Tunable parameter Description Required value

pmm.rambankSize Size of persistent memory
bank, in bytes

0x400000

kern.exec.dflSysStackSize Default system stack size, in
bytes

0x8000

3. Configure your system image build to include the X11 library and ChorusOS
examples directory, if this is not already the case.

4. If you have made changes to the system image since the previous build, rebuild
the system, copy the system image to the appropriate location (for example, the
boot directory if you are using tftp-based boot) , and reboot the target machine.

5. Ensure that a copy of the xdemo_s actor is present in a directory which is
mounted on the target machine. If you use the make root command, a copy of
the actor is already stored in build_dir/root/bin/examples . If this directory is
not mounted, or you prefer to use a different mounted directory:

$ cp build_dir/BUILD_EXAMPLES/restartDemo/xdemo_s example_directory

6. Set the target machine’s DISPLAY environment variable to the host machine
which you are currently working on:

$ rsh target setenv DISPLAY host_IP_address:0.0

7. Run the restartable actor:

$ rsh target arun -g 0 example_directory/xdemo_s

The actor will be run as a member of the restart group with group ID 0.

The Xmaze demonstration appears on the screen. As the demonstration runs, it
periodically stores its state as data in persistent memory. Let the demonstration
advance a little, then restart the actor by typing the following on the host console:

$ rsh akill aid

Getting Started With Hot Restart 27

aid is the actor identifier which is printed on the host console when the actor starts.
The actor is restarted, and the Xmaze demonstration continues from a point close to
the point it had reached before the restart.

The akill command provoked the restart because it was not passed with the
restart-specific option −g. To kill the Xmaze demonstration actor without restarting it,
type:

$ rsh target akill -g 0

As the xdemo_s actor is run from the command line, it is a direct actor, and will be
started automatically by the system when the site is restarted. To check this, rerun
the actor, and then provoke a site restart by typing the following:

$ rsh target restart

When the system has been re-initialized, the demonstration will be restarted.

Of course, this is a very simple illustration of the use of hot restart. The site restart is
provoked manually from the command line. As an alternative, try restarting the
actor (using akill −g) sufficiently frequently to trigger an automatic site restart. To
do this, you will first need to set the system’s restart policy to be more sensitive to
actor failure. The following configuration will cause a site restart if the actor is
restarted twice in the space of four seconds:

Tunable parameter Value

hrCtrl.interval 4

hrCtrl.maxBadness 2

28 ChorusOS 4.0 Hot Restart Programmer’s Guide ♦ December 1999

CHAPTER 3

Programming With Persistent Memory

This chapter provides a detailed description of the API exported by the Persistent
Memory Manager. In particular, it covers the following topics:

� How persistent memory is managed in the system: see Section 3.1 “Introduction to
Persistent Memory Programming” on page 30.

� Allocating and retrieving blocks of persistent memory with the Persistent Memory
Manager API: see Section 3.3 “Allocating and Retrieving a Persistent Memory
Block” on page 33.

� Freeing blocks of persistent memory with the Persistent Memory Manager API:
see Section 3.4 “Freeing a Persistent Memory Block” on page 34.

In this chapter, an example “hello world” program is used to illustrate different
aspects of the Persistent Memory Manager interface. The code for this example is
given in Section 3.2 “A Simple Application” on page 30.

To run the example, you will need to compile it and then copy it to a directory
which is mounted by the target machine. See Section B.1 “Compiling and Running
the Examples” on page 51 for information about compiling and running the hot
restart examples.

Note - Before reading this chapter, make sure that you are familiar with the basic
persistent memory architecture described in Section 2.1.2 “Memory Requirements
and Design Considerations” on page 24.

29

3.1 Introduction to Persistent Memory
Programming
Within a running ChorusOS system, access to persistent memory is provided by a
ChorusOS actor known as the Persistent Memory Manager. The Persistent Memory
Manager exports a specific API for allocating and freeing blocks of memory in the
persistent memory bank. This API is distinct from the API used for allocating and
de-allocating traditional ChorusOS memory regions (rgnAllocate(2K) ,
rgnFree(2K) , svPagesAllocate(2K) , and svPagesFree(2K) , for the following
reasons:

� Persistent memory blocks, by definition, persist across an actor or site restart. The
API provided for manipulating traditional ChorusOS memory regions is not
sufficiently rich to allow memory to be recovered after a restart.

� Persistent memory blocks, unlike traditional memory regions, are named. This
name is used to retrieve a block of memory which is allocated in the persistent
memory bank.

� Persistent memory blocks, unlike traditional memory regions, can be grouped, for
the purposes of simultaneous de-allocation. In other words, a single API call can
free multiple blocks of persistent memory, which may have been allocated by
different actors in the ChorusOS system.

The Persistent Memory Manager API is available to all ChorusOS 4.0 actors (not just
restartable actors). The aim of this chapter is to describe in detail the use of this API.

3.2 A Simple Application
Before proceeding with a description of the different functions in the Persistent
Memory Manager API, consider the following simple restartable application, an
implementation of the familiar “hello world” example. When the actor is run for the
first time, it displays the following message on the host console:

Hello world!

When the actor is restarted, it displays the following message on the target console:

Hello again! I have been restarted.

The basic flow of execution is as follows:

� The restartable actor begins at the start of its main() program, initializing its
program data.

30 ChorusOS 4.0 Hot Restart Programmer’s Guide ♦ December 1999

� The actor uses the pmmAllocate(2RESTART) function to allocate a block of
persistent memory. This block is used to store a status counter, which the actor
sets to zero.

� The first message is displayed, and the counter is increased by one.

� The actor attempts to access an invalid pointer value, causing a crash so that the
actor is restarted. Note that the ChorusOS VIRTUAL_ADDRESS_SPACE optional
feature should be set to true for this crash to work.

� The restartable actor recommences execution at the start of its main() program,
and calls pmmAllocate() a second time to retrieve the value of the status
counter.

� As the counter is no longer zero, the actor displays the second message.

� The actor calls pmmFree() to free the persistent memory block used to store the
counter, and then exits cleanly.

CODE EXAMPLE 3–1 The “Hello world” Restartable Actor

#include <stdio.h>
#include <pmm/chPmm.h>
#include <hr/hr.h>

#define HR_GROUP "HELLO_GROUP"

int
main()
{

int res;
int any = 1;
int* counter_p; /* It will be stored in persistent memory */
long *p;
PmmName name;
KnRgnDesc rgn;

/*
* Initialize the name and medium fields
* to identify the persistent memory block in the system.
*/

bzero(&name, sizeof(name));
strcpy(name.medium,"RAM");
strcpy(name.name,"PM1");

/*
* Initialize the block fields
*/

bzero(&rgn, sizeof(rgn));
rgn.options = K_ANYWHERE | K_RESERVED;
rgn.size = vmPageSize();
res = rgnAllocate(K_MYACTOR, &rgn);
if (res != K_OK) {

printf("rgnAllocate() failed res=%d\n", res);
HR_EXIT_HDL();
exit(-1);

}

Programming With Persistent Memory 31

p = (long*) rgn.startAddr;

/*
* From now on p is a bad pointer, since
* VIRTUAL_ADDRESS_SPACE is true.
*/

/*
* Allocate the persistent memory block that stores
* counter_p.
*/

res=pmmAllocate((VmAddr *)&counter_p,
&name,sizeof(int),
HR_GROUP,
sizeof(HR_GROUP));

if (res != K_OK) {
printf("Cannot allocate or map the persistent memory block called %s."

" Error = %d\n", name.name, res);
HR_EXIT_HDL();
exit(-1);

}

/*
* From the value of *counter_p the actor detects
* whether it has been hot restarted or not.
*/

if (*counter_p==0) {
/*

* This is the first time the actor is run.
*/

printf("Hello world!\n");

/*
* Increment the counter
*/

(*counter_p)++;

/*
* Normally the next instruction causes a core dump and
* a hot restart of the actor
*/

*p = 0xDeadBeef;

} else {
/*

* The actor has been restarted
* NOTE: this message will appear on the console!
*/

printf("The actor has been restarted.\n");

/*
* Free the persistent memory block before exiting
*/

res = pmmFree(&name);
if (res != K_OK) {

printf(" pmmFree failed, res=%d. Exit\n", res);
HR_EXIT_HDL();
exit(-1);

}

32 ChorusOS 4.0 Hot Restart Programmer’s Guide ♦ December 1999

/*
* Terminate cleanly.
*/

printf("Example finished. Exit.\n");
HR_EXIT_HDL();
exit(0);

}
/* Never reached */

}

The aspects of this program which are of interest for users of the Persistent Memory
Manager API are discussed in the rest of this chapter.

3.3 Allocating and Retrieving a Persistent
Memory Block
The “hello world” application uses a block of persistent memory to store a counter
indicating whether it has been restarted. The value of the counter controls the
program’s flow of execution. This is a very common use of persistent memory. A
counter or flag such as this is usually necessary as it is the only way an actor can
know whether it has been restarted.

A block of persistent memory is described in the system by a structure of the
following type:

#include <chPmm.h>
typedef struct { PmmMedium medium = "RAM";

PmmMemName name; }
PmmName;

Within the structure, medium is a character string which identifies the memory bank
to be used. In the current implementation, it must always be set to RAM. name is a
user-defined, null-terminated character string which uniquely identifies the block of
memory in the memory bank. The lifetime of a block name is the same as the
lifetime of the block itself in persistent memory. A system tunable parameter,
pmm.maxBlocks , defines the number of distinct persistent memory blocks (and
therefore names) which can be allocated at any one time. The default value is 30.

Caution - Sharing persistent memory blocks between user actors, or between user
and supervisor actors is not supported. Persistent memory blocks can only be shared
between supervisor actors.

To allocate a block of persistent memory, or retrieve a block of memory which has
already been allocated, use the pmmAllocate() function call, defined as follows:

Programming With Persistent Memory 33

#include <chPmm.h>
KnError pmmAllocate(VmAddr *addr,

PmmName *name,
size_t size,
PmmDelKey delKey,
size_t delKeySize);

If no memory block corresponding to the specified PmmNamestructure is present in
persistent memory, pmmAllocate() allocates a block of size size in persistent
memory, fills it with nulls, and returns the pointer *addr to the address of the block.
The address is determined by the system and cannot be specified or changed.

If a block identified with the specified PmmNamealready exists in persistent memory,
pmmAllocate() simply returns a pointer to the existing memory block as an
address (*addr), and the size parameter is ignored. Persistent memory blocks are
always mapped at the same address. In other words, the address returned by the
first and subsequent calls to pmmAllocate() is always the same for a given block.

As a result of this dual functionality of the pmmAllocate() call, the difference
between initially allocating and subsequently retrieving a persistent memory block is
transparent at the programming level. The first time the code of the “hello world”
example is executed, the call to pmmAllocate() allocates an integer-sized block of
persistent memory which contains the initialized value of counter (0).

res=pmmAllocate((VmAddr *)&counter_p,
&name,sizeof(int),
HR_GROUP,
sizeof(HR_GROUP));

The second time the code is executed, the same function call returns a pointer to the
value of counter in persistent memory.

The delKey and delKeySize parameters passed to pmmAllocate() are used to define
the deletion key associated with the memory block. A deletion key is a user-defined
binary array, used to mark a set of persistent memory blocks which can be freed
simultaneously, using the pmmFreeAll() function, described in Section 3.4.2
“Freeing a Persistent Memory Block Explicitly” on page 35.

3.4 Freeing a Persistent Memory Block
This section describes the API calls used for freeing persistent memory blocks.

3.4.1 Responsibility
A persistent memory block can remain in memory beyond the lifetime of a run-time
instance of the actor which allocates the block. This immediately raises the question

34 ChorusOS 4.0 Hot Restart Programmer’s Guide ♦ December 1999

of responsibility for freeing blocks of persistent memory. When a traditional
ChorusOS 4.0 user actor terminates, any memory regions it allocated (using
rgnAllocate(2K)) are automatically freed. Clearly, this simple rule makes little
sense in the case of persistent memory blocks, which can survive beyond such a
termination.

The hot restart feature provides two solutions to this problem:

� Actors can explicitly free blocks of persistent memory using the API function
pmmFree() or pmmFreeAll() . This is the only solution available for
non-restartable actors which use persistent memory: for these actors, freeing
persistent memory is entirely the programmer’s responsibility.

If persistent memory needs to survive beyond the persistent lifetime of the
allocating actor (that is, even after the actor has cleanly terminated), implementing
this solution will require either careful application design or the presence of a
garbage collection actor.

Explicit freeing of persistent memory blocks is described in the next section.

� Hot restartable actors can benefit from an automatic clean-up mechanism provided
by the Hot Restart Controller. This is described in more detail in Section 4.2.3
“Freeing Persistent Memory” on page 42.

In both cases, freeing a persistent memory block has the same effect: the block is
immediately and permanently freed (cannot be retrieved), and the name which
identified it can be re-used to identify a different memory block.

3.4.2 Freeing a Persistent Memory Block Explicitly
Use the pmmFree() or pmmFreeAll() function to explicitly free a persistent
memory block. The explicit freeing of a given memory block can be performed by
any actor, not necessarily the actor which originally allocated the block. It is the
programmer’s responsibility to ensure that the persistent memory block which will
be freed is no longer in use.

Use pmmFree() to free a single memory block identified by a PmmName:

#include <chPmm.h>
int pmmFree(PmmName *name)

Use pmmFreeAll() to free a group of persistent memory blocks which were
allocated with the same deletion key. The deletion key for a persistent memory block
is specified when the block is allocated with pmmAllocate() .

#include <chPmm.h>
int pmmFreeAll(PmmDelKey delkey,

size_t delKeySize);

A typical use of a deletion key is to mark all persistent memory blocks used by an
actor or a group of actors with the same key, and then have a separate, independent

Programming With Persistent Memory 35

actor that frees all the blocks when a particular job is completed or a particular event
occurs. For example, the “hello world” example uses pmmFree() to free the single
memory block it allocates before it terminates. If the “hello world” actor did not free
its own persistent memory block, the following call to pmmFreeAll() from another
actor would free the block, along with any other blocks marked with the deletion
key HR_GROUP.

pmmFreeAll(HR_GROUP, sizeof(HR_GROUP));

36 ChorusOS 4.0 Hot Restart Programmer’s Guide ♦ December 1999

CHAPTER 4

Programming With Restartable Actors

This chapter covers programming and running restartable actors on a ChorusOS 4.0
system. In particular, it provides the following:

� An overview of how restartable actors are represented and managed in the
system: see Section 4.1 “Introduction” on page 37.

� A description of the API and C_INIT commands used for loading, restarting, and
terminating restartable actors: see Section 4.2 “The Restartable Actor Lifecycle” on
page 39 and Section 4.3 “Killing Restartable Actors” on page 46.

� A description of the API and C_INIT commands used to restart the site: see
Section 4.4 “Site Restart” on page 46.

� An introduction to the restartSpawn example program, used to illustrate the use
of the Hot Restart Controller and Persistent Memory Manager APIs: see Section
4.5 “Putting It All Together: the restartSpawn Example Program” on page 47.

4.1 Introduction
As described in Chapter 1, a restartable actor is an actor which can be rapidly
reconstructed from an actor image (text and data) , without accessing stable storage.
The management of restartable actors is handled by a ChorusOS supervisor actor
known as the Hot Restart Controller. The Hot Restart Controller is responsible for:

� Loading and running restartable actors, and controlling their storage in persistent
memory.

� Monitoring restartable actors for abnormal termination, and restarting their restart
group if such an abnormal termination occurs.

� Triggering a site restart if a group is restarted too frequently (based on the
system’s restart policy, as described in Chapter 2).

37

This chapter looks at the API provided by the Hot Restart Controller, and the
corresponding restart-related commands provided by the C_INIT actor. Before
proceeding to a description of the API, however, it is important to understand how
restartable actors are managed within the system.

4.1.1 Types of Restartable Actor
As explained in Chapter 1, it is important to understand that actors do not explicitly
declare themselves restartable, that is, there is no function call to declare an actor
restartable at the start of its main () program. Instead, an actor can be run as a
restartable actor. More precisely, an actor can be run as either a direct or indirect
restartable actor:

� Direct restartable actors are loaded and run using the C_INIT command
arun(1M) with the −g option.

� Indirect restartable actors are spawned from restartable actors using the
hrfexec(2RESTART) family of API calls. hrfexec() calls function similarly to
afexec(2K) calls, but provide an additional PmmNameparameter used to identify
them for the purposes of actor restart:

#include <hr/hr.h>
int hrfexecve(PmmName * baseName,

const char * path,
KnCap * cactorcap,
const AcParam * param,
char const * argv,
char const * envp);

(...)

This distinction between direct and indirect actors is important for understanding the
automatic restart mechanism provided by the Hot Restart Controller. When an error
occurs, the Hot Restart Controller will first stop all actors in the group, and then only
restart the concerned direct restartable actors. These actors, re-executed from their
initial entry point, are responsible for restarting any indirect actors they may have
spawned. An illustration of this is provided in Figure 1–3.

4.1.2 Restartable Actor Credentials
Restartable actors, just like traditional ChorusOS actors, are identified in the system
by a unique capability and identifier (actor ID). Restartable actors also run in a user
group (with a user ID), like traditional ChorusOS actors. The lifetime of each of these
credentials is the same as the lifetime of a particular run-time instance of the actor:
when a restartable actor is restarted, it is given a new capability, actor ID and user ID.

Hot restartable actors also have two additional credentials, which persist across an
actor restart, and serve to characterize them in the Hot Restart Controller:

38 ChorusOS 4.0 Hot Restart Programmer’s Guide ♦ December 1999

� Each restartable actor has a unique name. The maximum number of restartable
actors (unique names) which can be registered in the Hot Restart Controller is
fixed by the system tunable parameter hrCtrl.maxActors .

Note - It is the programmer’s responsibility to ensure that each actor running in the
system uses a unique name, as this is not checked by the system. Attempting to
run two actors which use the same name will give unpredictable results.

� Each restartable actor is a member of a restart group. A restart group is uniquely
identified in the system by an integer, known as the group’s ID. The maximum
number of group IDs allowed in the system is fixed by a system tunable
parameter, hrCtrl.maxGroups .

4.1.3 Restartable Actors and Persistent Memory
As explained in Section 2.1.2 “Memory Requirements and Design Considerations” on
page 24, the system uses persistent memory to store the following data for each
executing restartable actor:

� The actor’s actor image: a copy of the actor’s text and initialized data segments
from which the actor will be loaded after a restart.

� The actor’s executing image: a copy of the actor’s text and data from which the
actor is executed.

This data is stored in three persistent memory blocks: one memory block for the
actor image, one memory block for the executed text and one memory block for the
actor data. These blocks are allocated and freed by requests from the Hot Restart
Controller to the Persistent Memory Manager. Other actors cannot access or free
these persistent memory blocks, although restartable actors can place additional
blocks which they allocate under the control of the Hot Restart Controller. This is
described in Section 4.2.3 “Freeing Persistent Memory” on page 42.

4.2 The Restartable Actor Lifecycle
One approach to understanding how the API provided by the Hot Restart Controller
is used, is to consider it in the context of the run-time life-cycle of a restartable actor.
Indeed, a restartable actor’s code is not simply executed once, from the start of the
main() program to its final return, but could be re-executed many times if there are
many restarts. Data which is initialized and actors which are initially loaded during
the first execution will only need to be retrieved or restarted on subsequent
executions. This is why it is important to view the restart API in the context of this
first execution, and then subsequent executions.

Programming With Restartable Actors 39

For this reason, this section looks at the way the Hot Restart Controller API is used
in the context of the life-cycle of a typical restartable actor.

4.2.1 Initial Load
Use the C_INIT command arun with the −g option, or the function call hrfexec()
to load a restartable actor from stable storage into persistent memory. Both arun and
hrfexec() provide support for specifying the persistent credentials of a restartable
actor when the actor is initially loaded.

� For a direct actor (run with arun), the actor name is system generated, and the
group ID is passed using the −g option. If the group ID is not already in use, a
new group is created which contains the direct actor. If the group ID already
exists, the direct actor is simply added to the corresponding restart group. If no ID
is passed after −g, the actor is started in the restart group with ID 0.

A restart group can contain any number of direct actors.

� For an indirect actor (run with hrfexec()), the actor name is specified using a
PmmNamestructure (see the description of this structure in Section 3.3 “Allocating
and Retrieving a Persistent Memory Block” on page 33) . An indirect actor is
automatically a member of the same actor group as the actor which spawned it.

Actors created directly using actorCreate(2K) or acreate(2K) are not hot
restartable and cannot use the Hot Restart Controller API.

When an actor is run as a restartable actor, the Hot Restart Controller checks whether
an actor identified with the specified name is already registered. If this is not the case
(as is the case for an initial load), the Hot Restart Controller first solicits the
Persistent Memory Manager to allocate the persistent memory blocks which will
store the actor’s actor image and executing image. If successful, it registers the name
of the new actor as a restartable actor, running in the specified group.

The subsequent load and start of the persistent actor is the same as for an actor run
using a member of the afexec(2K) function family (see the man page for a
description of this process). The difference is that the actor is loaded from its actor
image (in persistent memory) and not from stable storage.

Note - A restartable actor’s name remains registered in the Hot Restart Controller for
the lifetime of its actor group. The lifetime of the group may extend beyond the
lifetime of the actor. It is the programmer’s responsibility to ensure that no two
restartable actors will attempt to register with the same name in the Hot Restart
Controller.

Once a restartable actor has been registered and loaded, it runs under the control of
the Hot Restart Controller. If the actor fails, the failure will provoke the restart of all
the direct members of its restart group. These direct actors are then responsible for

40 ChorusOS 4.0 Hot Restart Programmer’s Guide ♦ December 1999

restarting any indirect actors registered in the group. To query an actor’s restart
group, use hrGetActorGroup(2RESTART) :

#include < hr/hr.h >
hrGetActorGroup(int aid)

4.2.2 Group Restart
In the context of hot restart, an actor is considered to have abnormally terminated
(and will therefore provoke the restart of its group) if any of the following occur:

� unrecoverable error (division by zero, unresolved page fault, invalid op code, and
so on)

� premature exit signal, that is, an exit signal prior to the expected completion of the
actor’s task

� the actor is killed without using the restart-specific command (akill(1M) with
the −g option) or function call (hrKillGroup(2RESTART)) provided for this
purpose

There is no single API call which can explicitly force a group of actors to restart. For
cases in which it may be desirable to provoke a restart (for example, for testing
purposes), the easiest way to do so is to deliberately provoke one of the above cases.
In the “hello world” example introduced in the previous chapter, this was done by
causing a segmentation fault.

When an actor fails, all actors in the failed actor’s restart group stop executing and
the Hot Restart Controller restarts all direct actors in the group from their initial
entry point. The direct actors are responsible for restarting any indirect actors, using
hrfexec() . When hrfexec() is called with a name which is already registered in
the Hot Restart Controller, the Controller recognizes the actor name and simply
restarts the actor from the actor’s actor image, instead of loading it from stable
storage.

A restartable actor is always restarted at the same address. Its capacity, actor ID and
user ID are not guaranteed to be the same after restart. All system resources obtained
before the restart are lost: in particular, open files, including those that had been
inherited at the time of initial creation are lost. This may include the standard I/O
connected to an rsh connection.

A restarted actor uses the same arguments and environment parameters that were
specified when the actor was initially started. For direct restartable actors, a new set
of pre-open stdin /stdout /stderr is provided, which are connected to /dev/
console . For indirect members, a new set of pre-open stdin /stdout /stderr is
provided by the invoker of hrfexec() , just as for afexec(2K) .

Programming With Restartable Actors 41

4.2.3 Freeing Persistent Memory
Just like any actor, a restartable actor can free persistent memory blocks using
pmmFree() or pmmFreeAll() . This is described in Section 3.4.2 “Freeing a
Persistent Memory Block Explicitly” on page 35.

Restartable actors which allocate memory with pmmAllocate() can also use a
simple, automatic de-allocation mechanism provided by the Hot Restart Controller.
This saves the actor from having to free its persistent memory explicitly. Instead, the
persistent memory will remain allocated for the lifetime of the actor’s group, and
then be freed automatically by the Hot Restart Controller when the last member of
the actor’s restart group terminates cleanly. The disadvantage of this system is that
the lifetime of the restart group may extend well beyond the point at which the
memory block is no longer needed. In this case the memory block will take up space
in persistent memory unnecessarily.

To mark a persistent memory block for automatic de-allocation by the Hot Restart
Controller, pass the macros HR_GROUP_KEYand HR_GROUP_KEYSIZEas the delKey
and delKeySize arguments respectively in the call to pmmAllocate() . These macros
tie the lifetime of the persistent memory block to the lifetime of the calling actor’s
restart group.

A block marked for automatic de-allocation by the Hot Restart Controller can still be
freed explicitly by calling pmmFree() with the block’s PmmName. However,
attempting to call pmmFreeAll() by passing the HR_GROUP_KEYand
HR_GROUP_KEYSIZEmacros will result in an error, as this is not permitted.

4.2.4 Clean Termination
As described in Section 4.2.2 “Group Restart” on page 41, any actor that exits before
the expected completion of its task is considered to have aborted abnormally and
will cause the restart of its actor group. This is useful for cases in which the actor
does indeed exit prematurely as a result of an error. This mechanism is also useful
for provoking an actor restart where this is explicitly desired, for example, when an
execution problem is detected.

To allow a restartable actor to terminate cleanly without causing a restart, use the
HR_EXIT_HDL() macro prior to the call to exit(3STDC) :

#include <hr/hr.h>
HR_EXIT_HDL();

The purpose of this macro is to add an additional hot restart exit handler to the
actor’s atexit(3STDC) function. The hot restart exit handler effectively removes
the concerned actor from the Hot Restart Controller’s responsibility: once an actor
has called HR_EXIT_HDL() , the Hot Restart Controller will no longer monitor it for
abnormal termination. As a result, when the actor exits, it will terminate cleanly and
no longer trigger a restart.

42 ChorusOS 4.0 Hot Restart Programmer’s Guide ♦ December 1999

Call the HR_EXIT_HDL() macro shortly before the actor exits. Calling the macro
earlier in the actor code will mean that any unexpected exit between the macro call
and the final exit will not be detected by the Hot Restart Controller. As a result, the
actor will not be restarted if it exits abnormally.

Cleanly terminating an actor does not deregister the actor in the Hot Restart
Controller, or remove the actor’s actor image and executing image from persistent
memory. This is because a cleanly terminated actor will still be restarted if its group
is restarted, since a group is always restarted in its initial state. In other words, when
a group is restarted, all direct restartable actors will recommence execution at their
initial entry point, regardless of whether or not they had already exited before the
restart occurred. This is shown in the following diagram. Both direct actor 1 (DA1)
and indirect actor 2 (A2) terminate cleanly, but are restarted when direct actor 2
(DA2) crashes.

main()main()

Crash

main()main()

main()

Initial state
(group created)

Group restarted

TIM
E

by system

main()

DA1 DA2

IA 1

terminates
cleanly

DA1

terminates
cleanly

IA 1

crashesDA2

IA indirect actor

DA direct actor

Figure 4–1 Restart of Cleanly Terminated Actors

Because of this behavior, it can be useful to record the clean termination of restartable
actors which will never need to be re-executed completely during a group’s lifetime
by setting a flag in persistent memory. A restarted actor can check the state of this
flag at the start of its execution, and thus detect whether it should re-execute or not.

Programming With Restartable Actors 43

4.2.4.1 Group Termination
For each group of restartable actors present in a ChorusOS system, the Hot Restart
Controller stores a list of the actors in the group in a persistent memory block. An
actor is added to the list when it is first started. When an actor cleanly terminates,
the Hot Restart Controller notes this in the list. When all actors in the list have
terminated cleanly, the Hot Restart Controller does the following:

� De-allocates the persistent memory blocks used to store the images of the
terminated actors, as well as blocks which were allocated using the
HR_GROUP_KEYand HR_GROUP_KEYSIZEdeletion key macros (see Section 4.2.3
“Freeing Persistent Memory” on page 42). The actor names used by the actors can
then be reused by other restartable actors, which will be loaded into memory as
new actors.

� Adds the group’s ID to the list of available IDs for new actor groups.

A group of actors can only terminate if all of its member actors terminate cleanly.
This is important to remember in situations where not all indirect actors are restarted
after a group restart. This is a matter of execution flow: if certain conditions in a
direct actor change the actor’s flow from one execution to the next, the direct actor
may not restart an indirect actor which was running prior to the restart. As a result,
the indirect actor will never terminate cleanly and so the group will not be able to
terminate.

For example, consider the situation in the following figure. The direct actor spawns
the indirect actor only if a certain condition is fulfilled. This condition is fulfilled the
first time the direct actor runs. After the direct actor restarts, the condition is no
longer fulfilled, so the indirect actor is no longer spawned.

44 ChorusOS 4.0 Hot Restart Programmer’s Guide ♦ December 1999

main()

Crash

main()

Initial state
(group created)

Group restarted

TIM
E

by system

DA1

main()

IA 1

DA1
crashes

condition = TRUE

condition = FALSE

IA spawned

IA not spawned

1

1

IA indirect actor

DA direct actor

Figure 4–2 Conditional Spawning of a Restartable Actor

In the situation illustrated above, the actor group will not be able to terminate until
the indirect actor has been rerun using hrfexec() , and has terminated cleanly.

When a restart group cannot terminate because of one or more direct actors in this
situation, the Hot Restart Controller detects the fact and prints the following message
on the target console:

HR_CTRL: group gid blocked, some members have not terminated: list_of_actors

gid is the ID of the group concerned, and list_of_actors provides the name of each
actor which prevents the group from terminating. When this message appears, a basic
solution is to kill the actor group using the akill command with the −g option, as
described in Section 4.3 “Killing Restartable Actors” on page 46. This solution is only
useful if none of the indirect actors need to be run to complete the group’s task.

A better solution is to use careful application design. If the situation is likely to
occur, flags can be stored in persistent memory to indicate indirect actors which have
not terminated cleanly. An actor can then be made responsible for cleaning up the
group, that is, restarting each indirect actor which is flagged. This clean-up actor can
be run using the arun −g command when the Hot Restart Controller notification
appears on the target console. Alternatively, the group could be designed so that the

Programming With Restartable Actors 45

clean-up actor is always run just before the group is expected to terminate, in which
case the problem is solved without the need for access to the C_INIT console.

4.3 Killing Restartable Actors
At times it may be desirable to circumvent the automatic restart mechanism provided
by the Hot Restart Controller and explicitly terminate (kill) a restartable actor. Actors
which are killed will not be restarted. Killing an actor automatically kills all actors
within the actor’s restart group. This is because a restart group must remain
consistent, and may not be able to function properly if an actor is no longer present.

Restartable actors can be explicitly killed using either of the following:

� the C_INIT command akill(1M) with the −g option,

� the API call hrKillGroup(2RESTART) with the actor’s group ID:

#include <hr/hr.h>
int hrKillGroup (int groupId);

The group ID can be queried using the hrGetActorGroup(2RESTART) call:

#include <hr/hr.h>
int hrGetActorGroup(int aid);

Either method has the same result: all actors in the associated restart group are
killed, and the Hot Restart Controller terminates the group as though all actors had
exited cleanly (see Section 4.2.4.1 “Group Termination” on page 44).

4.4 Site Restart
A site restart is a hot restart of the whole system. All data of boot actors are reset to
their original values from the previously loaded archive, and the system enters its
start-up phase again. As C_INIT restarts, sysadm.ini is executed again. Any calls
to start restartable actors in the sysadm.ini file are ignored for a site restart, as all
direct restartable actors are restarted automatically by the system once sysadm.ini
has been read.

Note - When the system is restarted, previously mounted disks are not automatically
remounted. To solve this problem, ensure that they are mounted in the sysadm.ini
file, or create a hot restartable actor that will mount the disks.

46 ChorusOS 4.0 Hot Restart Programmer’s Guide ♦ December 1999

A site restart can be provoked automatically, by the Hot Restart Controller, according
to the tunable parameters defining the system’s restart policy. This is described in
Section 2.1.3 “Tunable Parameters” on page 25.

To provoke a site restart programmatically, use the sysShutdown(2K) function call
with the −i 1 arguments:

int sysShutdown (int argv, char** argc)

To provoke a site restart from the C_INIT command-line console, use the command
shutdown −i 1 or restart(1M) .

4.5 Putting It All Together: the restartSpawn
Example Program
A programming example, restartSpawn , illustrates many of the function calls
covered in this chapter and previous chapters. The example is provided as a
framework illustration of the restart mechanism and the use of persistent memory.
Parts of the example could be used as the basis of a more complex user application
that incorporates hot restart.

The restartSpawn example uses two restartable actors, a parent actor,
HR_parent.r and a child, HR_child.r which is spawned by the parent. Both
actors should be compiled as supervisor actors. The source code for the two actors is
provided in Appendix B. The example can be summarized as follows:

� The parent actor uses a set of control structures stored in persistent memory. It
spawns the child actor using hrfexec () , then explicitly crashes, causing itself to
be restarted by the system. It indirectly restarts the child actor each time it runs,
through the call to hrfexec ().

� The child actor also uses a set of control structures stored in persistent memory. It
executes a four-step loop which causes the following to be printed:

=========== Message ===========
STEP 1 STEP 2 STEP 3 STEP 4

======== End of message========

The message is printed independently of the number of times the parent actor
crashes or the site is restarted.

Programming With Restartable Actors 47

48 ChorusOS 4.0 Hot Restart Programmer’s Guide ♦ December 1999

APPENDIX A

Hot Restart Programming Environment

This appendix describes the environment used for programming and compiling
applications which use the API exported by the hot restart feature. For more general
information about compiling and linking ChorusOS actors, see the ChorusOS 4.0
Introduction.

A.1 Hot Restart Header Files and Directories
The hot restart programming interface is declared in the following files:

For the Persistent Memory Manager API:

install_dir/chorus- family/kernel/include/chorus/pmm/chPmm.h

For the Hot Restart Controller API:

install_dir/chorus- family/os/include/chorus/hr/hr.h
install_dir/chorus- family/os/include/chorus/hr/hrCtrl.h

Detailed descriptions of each function call are available in the ChorusOS man page
collection.

A.2 Make Environment
A restartable actor can be compiled using any of the following standard Imakefile
macros

� UserActorTarget

49

� SupActorTarget

� CXXUserActorTarget

� CXXSupActorTarget

Actors using dynamic libraries (compiled with Imake macros of the type
Dynamic...Target) cannot be hot restartable.

Use hints in the following table to link actors that use the API exported by the hot
restart feature. Note that all ChorusOS actors are automatically linked with the
libcx.a library.

API Function Library

hrfexec()
HR_EXIT_HDL()
hrKillGroup()
hrGetActorGroup()

libcx.a

pmmAllocate()
pmmFree()
pmmFreeAll()

pmmlib.a

The following is an example Imakefile for a restartable actor which uses the
Persistent Memory Manager API:

SRCS = HR_actor.c

UserActorTarget(HR_actor_s, HR_actor.o, $(NUCLEUS_DIR)/lib/pmm/pmmlib.a)
Depend($(SRCS))

50 ChorusOS 4.0 Hot Restart Programmer’s Guide ♦ December 1999

APPENDIX B

Example Application Code

This appendix provides the following:

� instructions for compiling and running the “hello world” and actor spawn
examples described in this guide.

� source code and makefiles for these examples.

The source code for the example applications is also provided in
install_dir/chorus- family/src/opt/examples once the examples package has
been installed on your system.

B.1 Compiling and Running the Examples
Two examples which are designed to illustrate the use of the hot restart API are
provided with the Sun Embedded WorkShop

TM

product. These examples are as
follows:

� helloRestart : a very simple illustration of persistent memory programming
using a ’hello world’ actor. This example is discussed in Chapter 3.
helloRestart can be compiled as either a supervisor or a user actor.

� restartSpawn : an example which illustrates how a hot-restartable actor can be
spawned from an actor. This example is introduced in Chapter 4. Both of the
actors in the restartSpawn example are supervisor actors.

To compile the examples, make sure that the examples directory is included in your
system image build configuration. Binaries for all of the examples are provided in
build_dir/build-EXAMPLES once the examples directory has been built.

To run the examples, first copy them to a directory which is mounted on the target,
or use the make root command to build a root directory to mount.

51

Use the C_INIT command arun with the −g option to run a restartable actor from
the command line. For example, to run the ’hello world’ restart example:

$ rsh target arun -g 0 example_directory/HR_hello_u

where target is the target name, and example_directory is the directory mounted on the
target machine where the restartable hello world actor binary is stored. The −g 0
option runs the hello world restartable actor as a member of a restart group with ID 0.

B.2 The “hello world” Restartable Actor
The restartable “hello world” actor is a simple illustration of the use of persistent
memory.

See Chapter 3 for a discussion of this actor.

B.2.1 helloRestart.c
#include <stdio.h>
#include <pmm/chPmm.h>
#include <hr/hr.h>

#define HR_GROUP "HELLO_GROUP"

int
main()
{

int res;
int any = 1;
int* counter_p; /* It will be stored in persistent memory */
long *p;
PmmName name;
KnRgnDesc rgn;

/*
* Initialize the name and medium fields
* to identify the persistent memory block in the system.
*/

bzero(&name, sizeof(name));
strcpy(name.medium,"RAM");
strcpy(name.name,"PM1");

/*
* Initialize the block fields
*/

bzero(&rgn, sizeof(rgn));
rgn.options = K_ANYWHERE | K_RESERVED;
rgn.size = vmPageSize();

52 ChorusOS 4.0 Hot Restart Programmer’s Guide ♦ December 1999

res = rgnAllocate(K_MYACTOR, &rgn);
if (res != K_OK) {

printf("rgnAllocate() failed res=%d\n", res);
HR_EXIT_HDL();
exit(-1);

}

p = (long*) rgn.startAddr;

/*
* From now on p is a bad pointer, since
* VIRTUAL_ADDRESS_SPACE is true.
*/

/*
* Allocate the persistent memory block that stores
* counter_p.
*/

res=pmmAllocate((VmAddr *)&counter_p,
&name,sizeof(int),
HR_GROUP,
sizeof(HR_GROUP));

if (res != K_OK) {
printf("Cannot allocate or map the persistent memory block called %s."

" Error = %d\n", name.name, res);
HR_EXIT_HDL();
exit(-1);

}

/*
* From the value of *counter_p the actor detects
* whether it has been hot restarted or not.
*/

if (*counter_p==0) {
/*

* This is the first time the actor is run.
*/

printf("Hello world!\n");

/*
* Increment the counter
*/

(*counter_p)++;

/*
* Normally the next instruction causes a core dump and
* a hot restart of the actor
*/

*p = 0xDeadBeef;

} else {
/*

* The actor has been restarted
* NOTE: this message will appear on the console!
*/

printf("The actor has been restarted.\n");

/*
* Free the persistent memory block before exiting

Example Application Code 53

*/
res = pmmFree(&name);
if (res != K_OK) {

printf(" pmmFree failed, res=%d. Exit\n", res);
HR_EXIT_HDL();
exit(-1);

}
/*

* Terminate cleanly.
*/

printf("Example finished. Exit.\n");
HR_EXIT_HDL();
exit(0);

}
/* Never reached */

}

B.2.2 Imakefile for helloRestart.c
SRCS = helloRestart.c

SupActorTarget(helloRestart.r, helloRestart.o, $(NUCLEUS_DIR)/lib/pmm/pmmlib.a)
UserActorTarget(helloRestart_u, helloRestart.o, $(NUCLEUS_DIR)/lib/pmm/pmmlib.a)

Depend($(SRCS))

B.3 The restartSpawn Example
The restartSpawn example comprises two actors: HR_parent.r and HR_child.r .
Both actors must be compiled as supervisor actors. See Section 4.5 “Putting It All
Together: the restartSpawn Example Program” on page 47 for an overview of the
restartSpawn example.

B.3.1 HR_parent.c
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include <am/afexec.h>
#include <pmm/chPmm.h>
#include <exec/chModules.h>
#include <hr/hr.h>
#include <err.h>
#include <errno.h>

54 ChorusOS 4.0 Hot Restart Programmer’s Guide ♦ December 1999

#define PM_MEDIUM "RAM"
#define PM_NAME "PARENT_PM"
#define MAX_LOOPS 8

/*
* Some static variables
*/

char baseName[PATH_MAX];
char last_global_data;

/*
* Declaration of objects that will be stored in persistent memory.
* restarted: number of times the actor has been restarted.
* counter: number of times the actor’s main loop is run.
*/

typedef struct _HR_Status {
int restarted;
int counter;

} HR_Status;

/*
* Wait "sec" seconds.
*/

void
waitSec(int sec)
{

KnTimeVal delay;
delay.tmSec = sec;
delay.tmNSec = 0;

threadDelay(&delay);
}

/*
* Create a child hot restartable actor.
* Start the child actor only if the parent has
* not been hot restarted.
*/

void
childCreate()
{

KnCap childCap;
KnActorPrivilege curActPriv;
PmmName childName;
int res;
int childAid = -1;
char path[PATH_MAX];
char* argv[3];

res = actorPrivilege(K_MYACTOR, &curActPriv, NULL);
if (res != K_OK) {

printf("actorPrivilege failed, res=%d\n", res);
HR_EXIT_HDL();
exit(-1);

}

if (curActPriv != K_SUPACTOR) {
argv[0] = "HR_child";

} else {

Example Application Code 55

argv[0] = "HR_child_u";
}

argv[1] = NULL;
argv[2] = NULL;

strcpy(childName.medium, "RAM");
strcpy(childName.name, "CHILD");

strcpy(path, baseName);
if (curActPriv == K_SUPACTOR) {

strcat(path, "HR_child");
} else {

strcat(path, "HR_child_u");
}

childAid = hrfexecv(&childName, path, &childCap, NULL, argv);

if (childAid == -1) {
printf("Cannot hrfexecv(%s), error=%d\n", path, errno);
HR_EXIT_HDL();
exit(-1);

}
}

/*
* Cause a hot restart by exiting without
* first calling HR_EXIT_HDL().
*/

void
crash_exit()
{

printf("\nPARENT hot-restarts (exits with no HR_EXIT_HDL)!\n");
exit(1);

}

/*
* Cause a segmentation fault.
*/

void
crash_seg()
{

KnRgnDesc rgn;
unsigned long* badSupPtr;
int res;

rgn.options = K_ANYWHERE | K_RESERVED;
rgn.size = vmPageSize();
rgn.opaque1 = NULL;
rgn.opaque2 = 0;
res = rgnAllocate(K_MYACTOR, &rgn);
if (res != K_OK) {

printf("unable to allocate a page res=%d\n", res);
return;

}

badSupPtr = (unsigned long*) rgn.startAddr;

printf("\nPARENT crashes (segmentation fault)!\n");

56 ChorusOS 4.0 Hot Restart Programmer’s Guide ♦ December 1999

/*
* Generate an unrecoverable page fault, since
* VIRTUAL_ADDRESS_SPACE is true
*/

*badSupPtr = (unsigned long) 0xffffffff;

/*
* it should never return with
*/

printf("Can’t generate a crash\n");
return;

}

/*
* Cause a failure due to division by 0.
* Note: This does not crash on some platforms.
*/

int
crash_div()
{

int i;
int z;
int x = 1;

printf("\nPARENT tries to crash with division by 0!\n");
for (i = 10; i > -1; i--) {

z = x/i;
}
return z;

}

/*
* Perform a site restart.
*/

void
site_restart()
{

char* argv[3];
int res;

argv[0] = "shutdown";
argv[1] = "-i";
argv[2] = "1";

res = sysShutdown (3, argv);

if (res) {
printf("parent error=%d\n", res);

} else {

waitSec(5);
printf("Timeout ! \n");

}
}

/*
* Kill the group actors and free persistent memory
* blocks allocated by the parent actor.
*/

Example Application Code 57

void
clean_up(PmmName *np)
{

int res;
int group = 1;
int actId;

actId = agetId();

res=pmmFree(np);
if (res != K_OK) {

printf("\nCannot free the persistent memory block called %s."
" Error = %d\n", np->name, res);

HR_EXIT_HDL();
exit(-1);

}
printf("\nPersistent memory has been freed.\n");

group=hrGetActorGroup(actId);
if (group < 0) {

printf("Cannot get actor group. Error = %s\n", errno);
HR_EXIT_HDL();
exit(-1);

}

printf("Example finished. Exit.\n");

res=hrKillGroup(group);
if (res != K_OK) {

printf("Cannot kill actor group %d. Error = %d\n", group, res);
HR_EXIT_HDL();
exit(-1);

}
}

/*
* main
*/

int
main(int argc, char** argv, char**envp)
{

int res;
int counter;
int ref;
int* mem_version;
static PmmName name;
HR_Status* st;
char* endPath;
KnActorPrivilege curActPriv;

/*
* Check that argc != 0. Otherwise exit.
*/

if(argc==0) {
printf("Cannot start this test. argc == %d. Exit.\n", argc);
HR_EXIT_HDL();
exit(-1);

}

58 ChorusOS 4.0 Hot Restart Programmer’s Guide ♦ December 1999

res = actorPrivilege(K_MYACTOR, &curActPriv, NULL);
if (res != K_OK) {

printf("actorPrivilege failed, res=%d\n", res);
HR_EXIT_HDL();
exit(-1);

}

if (curActPriv != K_SUPACTOR) {
printf("This example can only be run in supervisor mode. Exit.\n");
HR_EXIT_HDL();
exit(-1);

}

/*
* If the example runs in flat memory mode, it will not work.
* Some of the failures will not always cause a hot-restart.
* Print an error message and exit.
*/

res = sysGetConf(K_MODULE_MEM_NAME, K_GETCONF_VERSION, mem_version);
if (res != K_OK) {

printf("Cannot get memory configuration."
" res=%d\n", res);

HR_EXIT_HDL();
exit(-1);

}

if (*mem_version==K_MEM_VERSION_FLM) {
printf("Sorry. The example cannot be run in flat memory"

" configuration. Exit.\n");
HR_EXIT_HDL();
exit(-1);

}

/*
* Get the directory of the current actor.
*/

strcpy(baseName, argv[0]);
endPath = strrchr(baseName, ’/’);
*(endPath+1) = ’\0’;

/*
* Initialize the name and medium fields to identify
* the HR_Status structure.
*/

bzero(&name, sizeof(name));
strcpy(name.medium,PM_MEDIUM);
strcpy(name.name,PM_NAME);

/*
* Allocate or map the data in st in persistent memory.
*/

res=pmmAllocate((VmAddr *)&st,
&name,
sizeof(HR_Status),
HR_GROUP_KEY,
HR_GROUP_KEYSIZE);

if (res != K_OK) {
printf("Cannot allocate or map the persistent memory block called %s."

" Error = %d, errno=%d\n", name.name, res, errno);

Example Application Code 59

HR_EXIT_HDL();
exit(-1);

}

/*
* If the actor has been restarted, print out a message.
*/

if (st->restarted>0) {
printf("PARENT RESTARTS (%d-th time)\n", st->restarted);

}

/*
* Increase the "restarted" counter.
*/

st->restarted++;

/*
* Create a child hot-restartable actor.
*/

childCreate();

/*
* main loop
* provokes different faults in the parent actor.
* This causes the parent AND the child to hot restart.
*/

while (st->counter<MAX_LOOPS) {
waitSec(2 + rand() % 2);
st->counter++;
ref = (st->counter%5);
switch (ref) {

case 1:
crash_seg();
break;

case 2:
res = crash_div();

/*
* If you get here, it means that division by 0 does not
* crash your system!
*/

printf("The parent actor does not crash"
" with division by 0. Continue.\n");

break;
case 3:

crash_exit();
break;

case 4:
site_restart();
break;

default:
break;

}
}

/*
* Example complete. Free persistent memory blocks and exit.
*/

clean_up(&name);

60 ChorusOS 4.0 Hot Restart Programmer’s Guide ♦ December 1999

}

B.3.2 HR_child.c
#include <stdio.h>
#include <strings.h>
#include <pmm/chPmm.h>
#include <hr/hr.h>
#include <exec/chExec.h>
#include <pd/chPd.h>
#include <errno.h>

#define PM_MEDIUM "RAM"
#define PM_NAME "CHILD_PM"
#define MESSAGE_NAME "CHILD_MESSAGE"
#define MESSAGE_SIZE 100

typedef struct _HR_Status {
int restarted;
int checkpoint;

} HR_Status;

/*
* Static variables
*/

static HR_Status *st;

/*
* Wait "sec" seconds.
*/

void
waitSec(int sec)
{

KnTimeVal delay;
delay.tmSec = sec;
delay.tmNSec = 0;

(void) threadDelay(&delay);
}

/*
* General operations in all steps.
*/

void
gen_step (char** message, char* m_out)
{

strcat(*message, m_out);
printf("%s", m_out);
fflush(NULL);

/*
* st is stored in persistent memory.
* If the actor does not reach the end of the next instruction
* before a hot restart, the current step will be repeated.
*/

st->checkpoint=++(st->checkpoint) % 4;
}

/*

Example Application Code 61

* step1
*/

void
step1 (char** message)
{

gen_step(message, " STEP 1 ");
}

/*
* step2
*/

void
step2 (char** message)
{

gen_step(message, " STEP 2 ");
}

/*
* step3
*/

void
step3 (char** message)
{

gen_step(message, " STEP 3 ");
}

/*
* step4
*/

void
step4 (char** message)
{

gen_step(message, " STEP 4 ");

/*
* Print out the entire message at the end of the cycle.
* The entire message is printed even if the child actor is

* restarted during a cycle.
*

* =========== Message ===========
* STEP 1 STEP 2 STEP 3 STEP 4
* ======== End of message========
*
* Note that output from the parent actor may garble

* this output.
*/

printf("\n\n=========== Message ===========\n");
printf("%s", *message);
printf("\n======== End of message========\n\n");

/*
* Reset the message.
*/

bzero(*message, MESSAGE_SIZE);
}

/*
* Function to be executed before the actor exits for any reason.
*/

void

62 ChorusOS 4.0 Hot Restart Programmer’s Guide ♦ December 1999

before_exit()
{

printf("CHILD EXITS!\n");
}

/*
* main
*/

int
main(int argc, char** argv, char**envp)
{

int res;
int counter;
static PmmName name;
static PmmName m_name;
size_t size;
PdKey key;
char message[MESSAGE_SIZE];
KnActorPrivilege curActPriv;

res = actorPrivilege(K_MYACTOR, &curActPriv, NULL);
if (res != K_OK) {

printf("actorPrivilege failed, res=%d\n", res);
HR_EXIT_HDL();
exit(-1);

}
if (curActPriv == K_SUPACTOR) {

/*
* Create a private actor data key with a destructor associated

* with it.
*/

res = padKeyCreate(&key, (KnPdHdl)before_exit);
if(res != 0) {

printf("Couldn’t create PD key. Exit with errno %d\n", errno);
HR_EXIT_HDL();

exit(-1);
}

res = padSet(K_MYACTOR, key, "M");
if (res != K_OK) {

printf("Cannot set the PD key, error %d\n", res);
HR_EXIT_HDL();
exit(-1);

}
} else {

res=atexit(&before_exit);

/*
* atexit() accepts up to 32 functions so this cannot fail.
*/

}

/*
* Initialize the name and medium fields for the HR_Status structure.
*/

bzero(&name, sizeof(name));
strcpy(name.medium,PM_MEDIUM);
strcpy(name.name,PM_NAME);

Example Application Code 63

/*
* Allocate or map the data in st in persistent memory.
*/

res=pmmAllocate((VmAddr *)&st,
&name,
sizeof(HR_Status),
HR_GROUP_KEY,
HR_GROUP_KEYSIZE);

if (res != K_OK) {
printf("Cannot allocate or map the persistent memory block called %s."

" Error = %d\n", name.name, res);
HR_EXIT_HDL();
exit(-1);

}

/*
* Initialize the name and medium fields for the message char buffer.
*/

bzero(&m_name, sizeof(m_name));
strcpy(m_name.medium,PM_MEDIUM);
strcpy(m_name.name,MESSAGE_NAME);

/*
* Allocate or map the message data in persistent memory.
*/

res=pmmAllocate((VmAddr *)&message,
&m_name,
MESSAGE_SIZE,
HR_GROUP_KEY,
HR_GROUP_KEYSIZE);

if (res != K_OK) {
printf("Cannot allocate or map the persistent memory block called %s."

" Error = %d\n", name.name, res);
HR_EXIT_HDL();
exit(-1);

}

/*
* If the actor has been restarted, print out a message.
*/

if (st->restarted>0) {
printf("CHILD RESTARTS (%d-th time)\n", st->restarted);

}

/*
* Increase the "restarted" counter.
*/

st->restarted++;

/*
* Loop forever.
* Each time the parent actor crashes, the child actor will be
* stopped with it since they belong
* to the same group.
*/

while (1) {

64 ChorusOS 4.0 Hot Restart Programmer’s Guide ♦ December 1999

waitSec(1);
switch (st->checkpoint) {

case 0:
step1(&message);
break;

case 1:
step2(&message);
break;

case 2:
step3(&message);
break;

case 3:
step4(&message);
break;

default:
break;

}
}
return 0;

}

B.3.3 Imakefile for HR_parent.c and HR_child.c
SRCS = HR_child.c HR_parent.c

SupActorTarget(HR_child.r,HR_child.o,$(NUCLEUS_DIR)/lib/pmm/pmmlib.a)
SupActorTarget(HR_parent.r,HR_parent.o,$(NUCLEUS_DIR)/lib/pmm/pmmlib.a)

Depend($(SRCS))

Example Application Code 65

66 ChorusOS 4.0 Hot Restart Programmer’s Guide ♦ December 1999

Index

A
actor image 24, 39
actor restart 16, 17

see also restartable actor
direct restartable actor 18, 19
indirect restartable actor 18, 19

arun(1M) 38, 40

C
configuration 23

see also tunable parameters

D
deletion key 34, 35

E
example programs

compiling and running 51
helloRestart 30, 52
restartDemo demonstration 26
restartSpawn 47

executing image 24, 39

G
group restart 4, 41, 42

see also restartable actor group

H
Hot Restart Controller 18, 21, 35, 37, 39, 40,

42
HOT_RESTART feature 24
hrfexec(2RESTART) 38, 40, 41
hrGetActorGroup(2RESTART) 41, 46
hrKillGroup(2RESTART) 46
HR_EXIT_HDL() macro 42
HR_GROUP_KEY macro 42, 44
HR_GROUP_KEYSIZE macro 42, 44

O
online documentation 11

P
persistent memory 15, 17, 30

allocating 16, 33
block 33
freeing 33, 34, 42
tunable parameters 25

Persistent Memory Manager 17, 21, 30, 40
persistent memory mapping 25, 33
pmmAllocate(2RESTART) 33
pmmFree(2RESTART) 35
pmmFreeAll(2RESTART) 35
PmmName structure 33

67

R
restart policy 21, 26, 28
restart(1M) 47
restartable actor 17

abnormal termination 18, 41, 42
and persistent memory 39, 42
clean termination 42
direct restartable actor 38, 40
in sysadm.ini file 46
indirect restartable actor 38, 40
killing 46
tunable parameters 25

restartable actor group
blocked actors 44
clean termination 44

S
site restart 16, 20, 46

tunable parameters 26, 28

T
tunable parameters 25

hrCtrl.interval 26
hrCtrl.maxActors 25, 39
hrCtrl.maxBadness 26
hrCtrl.maxGroups 26
pmm.maxBlocks 25
pmm.rambankSize 25

68 ChorusOS 4.0 Hot Restart Programmer’s Guide ♦ December 1999

