»
2 Sun

microsystems

ChorusOS 4.0 Introduction

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303-4900
U.S.A.

Part Number 806-0610-10
December 1999

Copyright 1999 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered
trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, ChorusOS, Sun Embedded WorkShop, and Solaris are
trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products
bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s
licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and
FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent I'utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut étre reproduite sous aucune forme, par quelque
moyen que ce soit, sans I'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et
qui comprend la technologie relative aux polices de caracteres, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront étre dérivées du systéeme Berkeley BSD licenciés par I’'Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, ChorusOS, Sun Embedded WorkShop, et Solaris sont des
marques de fabrique ou des marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.
Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International,
Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

L'interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnait les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour I'industrie de I'informatique. Sun détient une licence non exclusive de Xerox sur I'interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place I'interface d’utilisation graphique OPEN LOOK et qui en outre
se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’'ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N'EST ACCORDEE, Y
COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE
UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE
GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

8 &
Adobe PostScript Please

Recycle

Contents

Preface 17

Part I Technical Overview
Technical Overview 25
Introduction to Sun Embedded Workshop 25
Sun Embedded Workshop Components 26
Supported Processor Families 26
Features and Benefits 26
Multi-platform Development Environment 27
Portable Binary System 27
Super-Configurability 27
High Availability 29
Support for Legacy APIs 30
Support for Java Applications 30
Transparent Inter-Process Communication (IPC) 31
Operating System Components 31
The Core Executive 34
Optional Operating System Services 35
Configuring ChorusOS 51

The Extended Profile 51

The Basic Profile 51

Development Environment Components 51
Debugging Architecture 53
Management Utilities 53

Development Lifecycle 54
Installing Sun Embedded Workshop 54
Developing an Application 55
Developing a System 56

Part Il Using ChorusOS

2. Using ChorusOS 59

The ChorusOS System Image 59

Downloading the System Image 59

Basic Environment 60
Building an Application Actor 60
Embedding your Actor in the System Image 61
Running your Actor in the Basic Environment 62

Extended Environment 62
Communicating with the Target Using rsh 63
Mounting the Host File System 63
Security 64

Running the “Hello World” Example 65

Input/Output Management 66

System Administration in the Extended Environment 67
C_INIT Actor 67
System Start-up 68
Initialization Examples 68

3. Configuring and Tuning 71

Configuration Options 71

ChorusOS 4.0 Introduction ¢ December 1999

Feature Options 72
Configuration Profiles 72
Tunable Parameters 74
System Image Components 75
Configuration Files 75
Configuration Tools 76
Graphical Configuration Tool 76
Command-line Configuration Tool 86
Part 11l Programming Overview
Programming Overview 95
ChorusOS Applications 96
Programming Conventions 96
General Principles 96
Application Programming Interfaces 98
Naming Conventions 98
Basic Environment APIs 98
Extended Environment APl 99
Other APIs 100
Multithreading 101
Header Files 101
Developing ChorusOS Applications 103
make Environment 103
imake Environment 104
Examples 107
Using Dynamic Libraries 109
Static and Dynamic Linking 110
Building a Dynamic Library 111

Building a Dynamic Program 112

Contents 5

Dynamic Programming 112
Runtime Linker 113
Examples 115
5. Using Actors 121
Actor Definition 121
Naming Actors 123
User and Supervisor Actors 123
Loading Actors 126
Boot Actors 126
Loading Actors Dynamically 126
Execution Environment of Actors 127
Actor Context 127
Standard Input/Output (1/0) 128
Allocating Memory 130
Terminating an Actor 130
Spawning an Actor 130
6. Multithreaded Programming with the ChorusOS Operating System 133
Basic Multi-Thread Programming 133
Thread Handling 135
Getting a Thread Identifier 135
Creating a Thread 135
Deleting a Thread 139
Synchronizing Threads 142
Semaphores 143
Mutexes 147
Basic Scheduling Control 150
Managing Per-Thread Data 154

Threads and Libraries 158

ChorusOS 4.0 Introduction ¢ December 1999

10.

Memory Management 161
Memory Region Descriptors 161
Allocating and Freeing Memory Regions 163
Sharing Memory Between Two Actors 167
Inter-actor Communication 173
Introduction 173
Message Queues 174
Local Access Points 184
IPC 187
Time Management 191
Time Management Services 191
Current Time 192
Timers 193
Part IV Debugging and Performance Profiling
System and Application Debugging 203
Preparing the System for Symbolic Debugging 203
Compiling for Debugging 203
Enabling Debugging for Components Built with imake
Enabling Debugging for Components Built with mkmk
Configuring the Debug Agent 206
Application Debugging Architecture 207
Architecture Overview 208
Setting up a Debugging Session 208
RDBC Configuration and Usage 209
System Debugging Architecture 210
Architecture Overview 210
Setting up a Debugging Session 211
Starting and Configuring the ChorusOS DebugServer

204
206

212

Contents 7

RDBS Configuration and Usage 217
Concurrent System and Application Debugging 218
Example XRAY/RDBS debug session 219
Troubleshooting 222
Sample XRAY Start-up Script 223
11. Performance Profiling 225
Introduction to Performance Profiling 225
Preparing to Create a Performance Profile 227
Configuring the System 227
Compiling the Application 227
Launching the Performance Profiled Application 227
Running a Performance Profiling Session 228
Starting the Performance Profiling Session 228
Stopping the Performance Profiling Session 228
Generating Performance Profiling Reports 229
Analyzing Performance Profiling Reports 229
Performance Profiler Description 231
The Performance Profiling Library 232
The Performance Profiler Server 232
The Performance Profiling Clock 232
Notes About Accuracy 232
A. Configuring IPC 235
Generic IPC Configuration 235
IPC Feature Configuration 235
Site Number Administration 236
Specific IPC Configuration 237
Remote IPC over Ethernet Data-link 237

Remote IPC over VME Bus 239

ChorusOS 4.0 Introduction ¢ December 1999

Glossary 241

Index 247

Contents 9

10 ChorusOS 4.0 Introduction ¢ December 1999

Tables

TABLE P-1

TABLE P-2

TABLE 1-1

TABLE 3-1

TABLE 4-1

TABLE 4-2

TABLE 4-3

TABLE 9-1

TABLE A-1

Typographic Conventions 20

Shell Prompts 21

Operating System Optional Components 32

Feature settings in the extended and basic configuration profiles
Compilation Options 103

Imake build rules 104

Imake packaging rules 106

Time Management Service Availability 192

VME memory dedicated to IPC 239

72

11

12 ChorusOS 4.0 Introduction ¢ December 1999

Figures

Figure 1-1
Figure 3-1
Figure 3-2
Figure 5-1
Figure 6-1
Figure 6-2
Figure 7-1
Figure 7-2
Figure 8-1
Figure 8-2
Figure 8-3
Figure 8-4
Figure 8-5
Figure 10-1
Figure 10-2

Figure A-1

Component-based Operating System Architecture 28
EWS User Interface 78

Kernel Configuration Displayed in HTML 86

User and Supervisor Address Spaces 124

A Multi-Threaded Actor 134

Two Threads Synchronizing with a Semaphore 144
Memory Region Allocation and Deallocation 163
Actors Sharing Memory 168

Creating a Message Space 176

Opening a Message Space 176

Allocating Messages from Pools 177
Posting Messages to Queues 178
Getting Messages from Queues 179

Application Debugging Architecture 208
System Debugging Architecture 211

Device sub-tree representing the VME bus 240

13

14 ChorusOS 4.0 Introduction ¢ December 1999

Code Examples

CODE EXAMPLE 5-1

CODE EXAMPLE 5-2

CODE EXAMPLE 5-3

CODE EXAMPLE 6-1

CODE EXAMPLE 6-2

CODE EXAMPLE 6-3

CODE EXAMPLE 6-4

CODE EXAMPLE 6-5

CODE EXAMPLE 6-6

CODE EXAMPLE 7-1

CODE EXAMPLE 7-2

CODE EXAMPLE 8-1

CODE EXAMPLE 8-2

CODE EXAMPLE 8-3

CODE EXAMPLE 9-1

Getting Actor Privilege 125
Using the C Library from an Actor
Spawning an Actor 131
Creating a Thread 136
Deleting a Thread 140
Synchronizing Using Semaphores

Protecting Shared Data Using Mutexes

128

144

148

Changing Scheduling Attributes 152

Managing Per-Thread Data 155
Allocating a Memory Region 164
Sharing a Memory Region 169
Communicating Using Message Spaces
Creating and Invoking LAPs 184
Communicating Using IPC 188

Using Timers 195

179

15

16 ChorusOS 4.0 Introduction ¢ December 1999

Preface

This book introduces the features and components of Sun Embedded Workshop™
and the ChorusOS™ operating system. It explains how to use Sun Embedded
Workshop and how to create an application that runs on the ChorusOS operating

system.

Who Should Use This Book

Use this book if you are using Sun Embedded Workshop to develop an application
that runs on a ChorusOS operating system. This book is also useful if you are
evaluating Sun Embedded Workshop and the ChorusOS operating system.

Before You Read This Book

This book assumes that you have:
m A general understanding of embedded operating systems

m Knowledge of the C programming language (for Part I1I)

17

18

How This Book iIs Organized

Part I introduces the product and its components, and explains how the product can
be used.

m Chapter 1 contains an overview of the product.

Part Il explains how to use the ChorusOS operating system.
m Chapter 2 explains the use of the ChorusOS operating system.
m Chapter 3 explains how to configure and tune a ChorusOS operating system.

Part 111 describes how to develop an application that runs on the ChorusOS
operating system.

m Chapter 4 is an overview of the tasks involved in developing an application.
m Chapter 5 explains how actors are used in an application.

m Chapter 6 explains to how use the multithreading services provided in the
ChorusOS operating system.

m Chapter 7 explains how to use the memory management services provided in the
ChorusQOS operating system.

m Chapter 8 explains how to use the inter-actor communication services provided in
the ChorusOS operating system.

m Chapter 9 explains how to use the time management services provided in the
ChorusOS operating system.

Part IV describes debugging and performance profiling on the ChorusOS operating
system.

m Chapter 10 explains how to debug the ChorusOS operating system and
applications.

m Chapter 11 explains how to analyze the performance of the ChorusOS operating
system and its applications by generating a performance profile report.

The Glossary is a list of words and phrases found in this book and their definitions.

ChorusOS 4.0 Introduction ¢ December 1999

Related Books

ChorusOS 4.0 Installation Guide explains how to download and install Sun
Embedded Workshop. ChorusOS Release Notes contains information about new
features and restrictions in this release of the product.

See the appropriate document in the ChorusOS 4.0 Target Family Documentation
Collection for instructions explaining how to build and run the ChorusOS operating
system on supported hardware.

The following books describe how to use Sun Embedded Workshop components:

m ChorusOS 4.0 File System Administration Guide explains how to use the file
systems provided with the ChorusOS operating system. It includes information
about using the NFS server.

m ChorusOS 4.0 Network Administration Guide explains how to use the networking
capabilities of the ChorusOS operating system.

The Mentor Graphics Corporation XRAY Debugger for ChorusOS includes
documentation explaining how to debug a ChorusOS application. XRAY is the
reference debugger for use with the ChorusOS operating system.

The following books contain information about advanced programming with Sun
Embedded Workshop:

m ChorusOS 4.0 Porting Guide explains how to port the ChorusOS operating system
to another target board.

m ChorusOS 4.0 Device Driver Framework Guide describes the device driver
architecture of the ChorusOS operating system and explains how to add a new
driver.

m The ChorusOS 4.0 Hot Restart Programmer’s Guide describes how to develop
applications to use the hot restart functionality of the ChorusOS operating system.

m ChorusOS 4.0 Flash Guide describes the support for flash memory provided in the
ChorusOS operating system and explains how to use it.

m ChorusOS 4.0 Production Guide describes the organization of the source code and
explains how to use it.

Preface 19

Ordering Sun Documents

Fatbrain.com , an Internet professional bookstore, stocks selected product
documentation from Sun Microsystems, Inc.

For a list of documents and how to order them, visit the Sun Documentation Center
on Fatbrain.com at http://www1.fatbrain.com/documentation/sun

Accessing Sun Documentation Online

The docs.sun.coms" Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title
or subject. The URL is http://docs.sun.com

20

Typographic Conventions

The following table describes the typographic changes used in this book.

TABLE P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files, and Edit your .login file.

directories; on-screen computer output Use ls -a to list all files.

machine_name% you have

mail.
AaBbCc123 What you type, contrasted with machine_name% su
on-screen computer output Password:

ChorusOS 4.0 Introduction ¢ December 1999

TABLE P-1 Typographic Conventions (continued)

Typeface or

Symbol Meaning Example

AaBbCc123 Command-line placeholder: replace To delete a file, type rm
with a real name or value filename.

AaBbCc123 Book titles, new words, or terms, or Read Chapter 6 in User’s

words to be emphasized.

Guide.
These are called class options.

You must be root to do this.

Shell Prompts

The following table shows the default system prompt and superuser prompt for the
C shell, Bourne shell, and Korn shell.

TABLE P-2 Shell Prompts

Shell

Prompt

C shell prompt

machine_name%

C shell superuser prompt

machine_name#

Bourne shell and Korn shell prompt $
Bourne shell and Korn shell superuser #
prompt

Preface 21

22 ChorusOS 4.0 Introduction ¢ December 1999

parr | Technical Overview

CHAPTER 1

Technical Overview

This chapter contains an overview of Sun Embedded Workshop™.

m “Introduction to Sun Embedded Workshop” on page 25 provides a high-level
overview of Sun Embedded Workshop.

m “Features and Benefits” on page 26 describes the key features of the product and
why they are useful to you.

m “Operating System Components” on page 31 provides an overview of the
operating system and its configurable components.

= “Development Environment Components” on page 51 contains a summary of the
tools provided to help you develop an application or system using Sun Embedded
Workshop.

Introduction to Sun Embedded
Workshop

Sun Embedded Workshop provides the ChorusOS™ operating system and a complete
development environment for creating an application that runs on the ChorusOS
operating system or an embedded system based on the ChorusOS operating system.

High-performance and high-availability, combined with a simple, flexible
configuration mechanism make Sun Embedded Workshop particularly well-adapted
for developing and deploying a wide range of telecommunications, data
communications, and consumer applications.

25

Sun Embedded Workshop Components
Sun Embedded Workshop contains the following components:

m The ChorusOS operating system. See “Operating System Components” on page 31
for information about the operating system components.

m A complete development environment for creating applications or systems that
use this operating system. See “Development Environment Components” on page
51 for information about the development environment components.

Supported Processor Families

This release of Sun Embedded Workshop is available for the following development
platforms:

m Solaris operating environments, supporting the following targets:

= Xx86, Pentium
= Motorola PowerPC 60x and 750 processor family (ppc60x)

= Motorola PowerQUICC | (mpc8xx) and PowerQUICC Il (mpc8260)
microcontrollers

= UltraSPARC lli

m Windows NT platforms, supporting the following targets:

= Motorola PowerPC 60x and 750 processor family (ppc60x)

See the ChorusOS Release Notes for the latest information about supported target
platforms.

Features and Benefits

This section contains a summary of the key features and benefits of Sun Embedded
Workshop.

26 ChorusOS 4.0 Introduction ¢ December 1999

Multi-platform Development Environment

Sun Embedded Workshop provides complete support, tools, and libraries for
developing C and C++ applications on a range of supported platforms. Development
takes place on one system (the host), even though the software will eventually run
on a very different device (the target), or on a variety of targets.

Sun Embedded Workshop also provides several utilities for managing the operating
system and applications running on the target. These utilities include components
that can be added to the operating system configuration.

Portable Binary System

For each supported processor family, Sun Embedded Workshop 4.0 comes with the
implementation of at least one target platform and provides a complete set of well
defined interfaces allowing you to port the ChorusOS operating system to other
target boards. The Boot Kernel Interface (BKI) and Device Driver Interface (DDI)
available in the binary release of ChorusOS allows you to customize the boot method
and to add new drivers.

Super-Configurability

Sun Embedded Workshop 4.0 uses a flexible, component-based architecture that
allows different services to be configured into the runtime instance of the ChorusOS
operating system.

Essential services required to support real-time applications running on the target
system are provided by the core executive, and each optional feature of the operating
system is implemented as a separate runtime component that can be added to or
removed from the operating system, as required. This means that the operating
system can be very accurately configured to meet the exact needs of a given
application or environment, saving on memory and improving performance.

The core executive can support multiple, independent applications running in both
user and supervisor memory space.

This flexible architecture is shown in Figure 1-1. Detailed descriptions of the optional
features for the ChorusOS operating system are provided in “Operating System
Components” on page 31.

Technical Overview 27

28

<

Java APls >

User-defined Environment

Support for Java applications

Utilities
Dynamic

Process
Management

C

POSIX APIs

)

C

Microkernel APIs

)

Environment

Communications
Distributed IPC

Local IPC

Shared Memory

Message Queues

Synchronization

i Mutexes

Semaphores

Memory Management

Virtual

On-demand Paging

Flat

Monitoring

Interrupt Management

Hot Restart

Time Management

iTime of Day

Timers

Processor Scheduling

User defined
Round-robin

FIFO

Executive

Core Executive

Logging

Host-Target
Debugger

Figure 1-1

By taking advantage of the component-based architecture, the application designer

Component-based Operating System Architecture

can choose between an extremely small operating system that offers simple

scheduling and memory options, or a fully-featured, multi-API software platform.

As well as making it possible to produce multiple versions of the operating system,

each of which is optimized for its own environment, the component-based
architecture provides the following additional benefits:

m Applications developed to run on a minimal configuration can also run

unchanged on a more complex configuration, thus providing an evolutionary path
for right-sizing devices and systems.

m The programming interfaces for the operating system components are available
publicly, providing an open environment for combining third-party system

software and development tools.

ChorusOS 4.0 Introduction ¢ December 1999

High Availability

Building large, highly-available systems is a complex and challenging undertaking
that has required significant advances in design, implementation, and testing
methodologies. For example, the telecommunications industry faces severe reliability
and availability constraints imposed by international standards and market pressure.
Yet, until recently, very few commercially available operating systems could provide
the appropriate level of support to be able to offer true 7 by 24 operation.

The ChorusOS operating system incorporates several features that successfully
address the needs of this demanding market, including:

= Memory Protection
m Hot Restart

m Dynamic Reconfiguration

Memory Protection

Different applications can run in different memory address spaces protected from
one another. If one application fails, it can corrupt only its own data but cannot
corrupt the data of other applications, or of the system itself. This mechanism
confines errors and prevents their propagation.

Hot Restart

An important benefit of the ChorusOS operating system is its hot restart capability,
which provides one of the fastest mechanisms available in the industry today for
restarting applications or entire systems if a serious error or failure occurs.

The conventional technique, cold restart, involves rebooting or reloading an
application from scratch. This causes unacceptable downtime in most systems, and
there is no way to return the application to the state in which it was executing when
the error occurred.

The ChorusOS hot restart feature allows execution to recommence without reloading
code or data from the network or from disk. When a hot-restartable process fails,
persistent memory is preserved, its text and data segments are reinitialized to their
original content without accessing stable storage, and the process resumes at its entry
point. Hot restart is significantly faster than the conventional cold restart technique
and retains the critical information that allows an application to be reconstructed
quickly with little or no interruption of service. Furthermore, the hot restart
technique has been applied to the entire ChorusOS operating system and not only to
the applications it runs, thus ensuring a very high quality of service availability.

For detailed information about the hot restart feature, refer to the ChorusOS 4.0 Hot
Restart Programmer’s Guide.

Technical Overview 29

30

Dynamic Reconfiguration

The dynamic process management feature of the ChorusOS operating system allows
processes to be loaded dynamically, from either disk or the network, without first
halting the system. This provides the basis for a dynamic reconfiguration capability
that minimizes service downtime, and keeps existing services available while the
system is modified or upgraded. Dynamic reconfiguration also relies on the
inter-process communication (IPC) facilities of the ChorusOS operating system to
transfer inbound communication to the new processes transparently.

For example, with the ChorusOS operating system running in a Private Branch
Exchange (PBX), new features such as call forwarding (or follow me) can be added
without interrupting the basic telephone service and without reconfiguring the entire
telephone network.

Support for Legacy APIs

One of the challenges facing software developers working in the telecommunications
and data communications industries is the need to select the most appropriate of the
proliferation of public standards and proprietary solutions available to them. By
investing in a given solution, application vendors and service providers can quickly
find themselves locked into a legacy API that once seemed to offer state-of-the-art
functionality. In some cases, finding that they can no longer keep pace with emerging
technology, they are forced to either fall behind or to abandon their original
investment.

The ChorusOS operating system offers software developers a way to protect their
existing investments, while providing a smooth migration path to new platforms
running the ChorusOS operating system. It does this by:

m Providing a way for applications to handle traps, which allows software
developers to create proprietary subsystems to emulate any API.

m Providing, via its modular structure, a way to create a basic system that provides
common services, plus several subsystems built on this base and sharing the base,
each providing support for a given API.

m Supporting multiple APIs running on the same system concurrently, in such a way
that diverse applications can communicate transparently.

Support for Java Applications

The ChorusOS operating system provides an execution environment that, when
combined with a Java Runtime Environment (JRE), supports real-time applications
and Java applications running on the same machine, each in the appropriate
environment.

ChorusOS 4.0 Introduction ¢ December 1999

Transparent Inter-Process Communication (IPC)

Based on industry standards, the Transparent Inter-Process Communication (IPC)
facility of the ChorusOS operating system allows applications to be distributed
across multiple machines, and to run in a heterogeneous environment that comprises
hardware and software with stark operational and programming incompatibilities.

At a lower level, one of the components of the ChorusOS operating system provides
transparent IPC that recognizes whether a given process is available locally, or is
installed on a remote system that is also running the ChorusOS operating system.
When a process is accessed, the IPC identifies the shortest path and quickest
execution time that can be used to reach it, and communicates in a manner that
makes the location entirely transparent to the application.

Operating System Components

Optional features are implemented as components that can be added to, or removed
from, an instance of the ChorusOS operating system. In this way, the operating
system can be very finely tuned to meet the requirements of a given application or
environment. The core executive component is always present in an instance of the
ChorusOS operating system. Optional components in the operating system provide
the following services:

m Actor management

m Scheduling

= Memory management

m Hot restart and persistent memory
m Inter-thread communication
m Time management

m Inter-process communication
m Local Access Point (LAP)

m Tools support

m C_INIT

m File system options

m 1/0 management

m Networking

m Administration

Technical Overview 31

32

Each API function in the ChorusOS operating system is contained in one or more of
the configurable components. As long as at least one of these components is
configured into a given instance of the operating system, the function is available to
be called. Some library functions are independent of any specific component and are
always available.

The following sections provide detailed descriptions of the various optional
components of the operating system. Each component is identified by a name which
is used by the configuration tools and within applications.

Table 1-1 shows the component groups.

TABLE 1-1 Operating System Optional Components

Component Name

Actor management

Dynamic actor loading management ACTOR_EXTENDED _MNGT|
User-mode extension support USER_MODE
Dynamic libraries DYNAMIC_LIB
Compressed file management GZ_FILE
Scheduling
POSIX round-robin scheduling class ROUND_ROBIN
Memory management
Virtual (user and supervisor) address space VIRTUAL_ADDRESS_
SPACE
On-demand paging ON_DEMAND_PAGING

Hot restart and persistent memory

Hot restart HOT_RESTART

Inter-thread communication

Semaphores SEM

Event flag sets EVENT

Mutual exclusion locks supporting thread priority RTMUTEX
inversion avoidance

Time management

Periodic timers TIMER
Thread and actor virtual timer VTIMER
Date and time of day DATE
Real-time clock RTC

ChorusOS 4.0 Introduction ¢ December 1999

TABLE 1-1 Operating System Optional Components (continued)

Component Name
Inter-process communication

Location-transparent inter-process communication IPC

Remote (inter-site) IPC support IPC_REMOTE

Remote IPC communications medium

IPC_REMOTE_COMM

Mailbox-based communications mechanism MIPC

POSIX 1-compliant message queues POSIX_MQ

POSIX 1-compliant shared memory objects POSIX_SHM
LAP

Local name server for LAP binding LAPBIND

LAP validity-check option LAPSAFE
Tools support

Message logging LOG

Profiling and benchmark support PERF

System monitoring MON

System debugging

DEBUG_SYSTEM

C_INIT

Basic command interpreter on target

LOCAL_CONSOLE

Remote shell RSH

File system options
Named pipes FIFOFS
NFS client NFS_CLIENT
NFS server NFS_SERVER
MS-DOS file system MSDOSFS
UFS file system UFS

1/0 management
Network packet filter BPF
Swap support FS_MAPPER
Driver for IDE disk IDE_DISK
/dev/imem , /dev/kmem , /dev/null , /dev/zero DEV_MEM
Support for RAM disk RAM_DISK

Technical Overview 33

TABLE 1-1 Operating System Optional Components (continued)

Component Name
Support for FLASH media FLASH
Virtual TTY VTTY
Driver for SCSI disk SCSI_DISK
Support for IPC IOM_IPC
Support for OSI IOM_OSI
Networking
Serial link IP SLIP
POSIX 1003.1g-compliant sockets POSIX_SOCKETS
Point-to-point protocols PPP
Local sockets and pipes AF_LOCAL

Administration

ChorusOS statistics ADMIN_CHORUSSTAT
ifconfig administration command ADMIN_IFCONFIG
mount administration command ADMIN_MOUNT

rarp administration command ADMIN_RARP

route administration command ADMIN_ROUTE
shutdown administration command ADMIN_SHUTDOWN
netstat administration command ADMIN_NETSTAT

Not all these components are supported on all platforms. See the appropriate book in
the ChorusOS 4.0 Target Family Documentation Collection for details of which
components are available for your platform.

Some options are dependent on others. These dependencies are managed
automatically by the configuration tools and it is not necessary to include prerequisite
options explicitly. Some options are mutually exclusive, and the configuration tools
will not permit you to include more than one option from a mutually exclusive set.

The Core Executive

The essential services required to support real-time applications are provided by the
executive. The core executive can support multiple, multi-threaded applications
running in both user and supervisor memory space. It provides the following kernel
functionality:

34 ChorusOS 4.0 Introduction ¢ December 1999

Support for multiple independent applications

Support for user and system applications

Support for applications in user and supervisor address space

m Dynamic memory management

See CORESFEA) for further details.

Optional Operating System Services
Actor Management

ACTOR_EXTENDED_MNGT

The ACTOR_EXTENDED_MN@®ature provides extended management functions for
actors, including dynamic loading and control of actors. This feature also provides
the underlying support for more advanced features such as support of dynamically
loadable libraries (DYNAMIC_LIB) and uncompression of actors or libraries at load
time (GZ_FILE).

For more details, see ACTOR_EXTENDED_MNGHEA).

USER_MODE

This feature provides support for unprivileged actors, running in separate virtual
user address spaces (when available).

USER_MODIS used in all memory models. For more details, see USER_MODERFEA).

DYNAMIC_LIB

The DYNAMIC_LIB feature provides support for dynamic libraries within Sun
Embedded Workshop. It requires the ACTOR_EXTENDED_MN@&&ture, so that actors
can be linked with dynamic libraries. These libraries are loaded and mapped within
the actor address space at execution time. Symbol resolution is performed at library
load time. This feature also enables a running actor to ask for a library to be loaded
and installed within its address space, and then to resolve symbols within this
library. The feature handles dependencies between libraries.

For more details, see DYNAMIC_LIB(5FEA).

Technical Overview 35

36

GZ_FILE

The GZ_FILE feature enables dynamically loaded actors and dynamic libraries to be
uncompressed at load time, prior to execution. This minimizes the space required to
store these compressed files, and the download time. The GZ_FILE feature requires
the ACTOR_EXTENDED_MN@&ture.

For more details, see GZ_FILE (5FEA).

Scheduling

A scheduler is a feature which provides scheduling policies. A scheduling policy is a
set of rules, procedures, or criteria used in making processor scheduling decisions.
Each scheduler feature implements one or more scheduling policies, interacting with
the core executive according to a defined kernel internal interface. A scheduler is
mandatory in all kernel instances. The core executive includes the default FIFO
scheduler.

The default scheduler present in the core executive implements a CLASS_FIFO
scheduling class, which provides simple pre-emptive scheduling based on thread
priorities.

More detailed information about these scheduling classes is found in
threadScheduler (2K).

For more details on scheduling, see SCHEIGFEA).

ROUND_ROBIN

The optional ROUND_ROBINcheduler feature enables the additional CLASS_RR
scheduling class, which is similar to CLASS_FIFO but adds round-robin time slicing
based on a configurable time quantum.

For more details, see ROUND_ROBI(SFEA).

Memory Management

There are three memory management models, MEM_FLATMEM_PROTECTEBNnd
MEM_VIRTUALThe model used is determined by the settings of the
VIRTUAL_ADDRESS_SPACEnd ON_DEMAND_PAGINf8atures. See MENBFEA) for
more details.

s MEM_FLAT

This memory management model provides simple memory allocation services.
The kernel and all applications run in one unique unprotected address space.

s MEM_PROTECTED

ChorusOS 4.0 Introduction ¢ December 1999

This memory management model is targeted at real-time applications able to
benefit from the flexibility and protection offered by memory management units,
address translation and separate address spaces. No swap or demand paging is
provided. No mapper interface is provided. Accesses to programs and data stored
on secondary devices must be done by application-specific file servers.

s MEM_VIRTUAL

This memory management model supports full virtual memory with swapping in
and out on secondary devices. It has been specifically designed to implement
distributed UNIX subsystems on top of the kernel.

VIRTUAL_ADDRESS_SPACE

The VIRTUAL_ADDRESS_SPACEeature enables separate virtual address space
support using the MEM_PROTECTEDemory management model. If this feature is
disabled all the actors and the operating system share one single, flat, address space.
When this feature is enabled a separate virtual address space is created for each user
actor.

ON_DEMAND_PAGING

The ON_DEMAND_PAGINf8ature enables on demand memory allocation and paging
using the MEM_VIRTUALModel. ON_DEMAND_PAGING only available when the
VIRTUAL_ADDRESS_SPACEHEeature is enabled.

Normally when a demand is made for memory, the same amount of physical and
virtual memory is allocated by the operating system. When the ON_DEMAND_PAGING
feature is enabled, virtual memory allocation of the user address space does not
necessary mean that physical memory will be allocated. Instead, the operating system
may allocate the corresponding amount of memory on a large swap disk partition.
When this occurs, physical memory will be used as a cache for the swap partition.

Hot Restart and Persistent Memory Management

The HOT_RESTARTeature provides support for rapidly reloading and reinitializing
failed ChorusOS operating system actors, without accessing stable storage. Actors
which benefit from this support are known as restartable actors. HOT_RESTAR®Iso
provides all actors (not just restartable actors) with a means of storing persistent
data, data which can persist beyond the lifetime of a run-time instance of an actor.

The main services exported by the HOT_RESTARTeature are:

m An actor restart mechanism which detects crashes in restartable actors, and
automatically restarts them from an actor image in persistent memory.

m Persistent memory allocation. Actors can allocate blocks of persistent memory to
store data which will persist beyond the actor’s lifetime.

Technical Overview 37

38

m A site restart mechanism to restart the kernel, boot actors and all restartable actors
on a system without accessing stable storage.

For more details, see HOT_RESTAR(EFEA)

Inter-thread communication

The ChorusOS operating system provides the following services to support
multithreaded programming:

SEM

The SEMfeature provides semaphore synchronization objects. A semaphore is an
integer counter and an associated thread wait queue. When initialized, the
semaphore counter receives a user-defined positive or null value.

Two main atomic operations are available on semaphores: P (or pass) and V (or free).

m The counter is decremented when a thread performs a P on a semaphore. If the
counter reaches a negative value, the thread is blocked and put in the semaphore’s
gueue, otherwise, the thread continues its execution normally.

m The counter is incremented when a thread performs a V on a semaphore. If the
counter is still lower than or equal to zero, one of the threads queued in the
semaphore queue is picked up and awakened.

Semaphores are data structures allocated in the actors’ address spaces. No kernel
data structure is allocated for these objects. They are simply designated by the
address of the structures. The number of these types of objects that threads may use
is therefore unlimited.

For more details, see SEM5FEA).

EVENT
The EVENTfeature provides the management of event flag sets.

An event flag set is a set of bits in memory that is associated with a thread wait
gueue. Each bit is associated with one event. Event flag sets are data structures
allocated in the actors’ address spaces. No kernel data structure is allocated for these
objects. They are simply designated by the address of the structures. The number of
these types of objects that threads may use is therefore unlimited.

When a flag is set, it is said to be posted, and the associated event is considered to
have occurred. Otherwise the associated event has not yet occurred. Both threads
and interrupt handlers can use event flag sets for signaling purposes.

ChorusOS 4.0 Introduction ¢ December 1999

A thread can wait on a conjunctive (and) or disjunctive (or) subset of the events in
one event flags set. Several threads may be pending on the same event. In that case,
each of the threads will be made eligible to run when the event occurs.

For more details, see EVENT5FEA).

RTMUTEX

The RTMUTEXeature provides mutual exclusion locks, using a priority inheritance
protocol, in order to avoid thread priority inversion problems.

For more details, see RTMUTEFGFEA).

Time Management

The ChorusOS operating system provides the following time management features:
m Interrupt-level timing

m General interval timing

m Time of day (universal time)

m System time

m Thread execution timing

m Benchmark timing

The interrupt-level timing feature is always available and provides a traditional,
one-shot time-out service. Time-outs and the time-out granularity are based on a
system-wide clock tick.

When the timer expires, a caller provided handler is executed directly at the
interrupt level. This is generally on the interrupt stack, if one exists, and with thread
scheduling disabled; therefore, the execution environment is restricted accordingly.

TIMER

The TIMER feature implements a high-level interval timing service for both user and
supervisor actors. It includes one-shot and periodic timers. The time-out notification
is achieved through user-provided handler threads which are woken up in the

application actor. Handler threads may invoke any kernel or subsystem system call.

For more details, see TIMER(5FEA).

Technical Overview 39

40

VTIMER

The virtual time option provides a number of functions that are typically used by
higher-level operating systems for controlling and accounting thread-execution.

Virtual time-outs can be set on:
m Individual threads, to support subsystem-level timers.
m Entire actors (that is, multiple threads), to support process CPU limits.

A virtual time-out handler is entered as soon as one or more designated threads have
consumed the specified amount of execution time.

Execution accounting may be limited to execution within the home actor of the
thread (internal execution time) or may be extended to include cross-actor
invocations, such as system calls (total execution time).

For more details, see VTIMER5FEA).

DATE

The DATEfeature maintains the time of day expressed in Universal Time, which is
defined as the interval since 1st January 1970. Since the concept of local time is not
supported directly by the operating system, time-zones and local seasonal
adjustments must be handled by libraries outside the kernel.

For more details, see DATHSFEA).

RTC

The RTCfeature indicates whether a real-time clock (RTC) device is present on the
target machine. When this feature is set, and an RTC is present on the target, the
DATEfeature will retrieve time information from the RTC. If the RTCfeature is not
set, indicating an RTC is not present on the target, the DATEfeature will emulate the
RTC in software.

For more information, see RTQ5FEA).

Inter-process communication

The ChorusOS operating system provides Inter Process Communication (IPC),
allowing threads to communicate and synchronize, even when they do not share the
same memory space.

Communication is achieved by the exchange of messages through ports, and IPC
supports port migration, whereby the messages sent to a given port can be
transferred to a new process in a way that is transparent to the application.

ChorusOS 4.0 Introduction ¢ December 1999

The ChorusOS operating system also includes a mailbox (MIPC) mechanism that
provides a shared communication environment for actors within an application.

IPC

The IPC feature provides powerful asynchronous and synchronous communication
services.

The IPC feature exports the following basic communication abstractions:
m The unit of communication (message)
m Point-to-point communication endpoints (port)

m Multi-cast communication endpoints (groups)

The IPC feature allows threads to communicate and synchronize when they do not
share memory, for example when they do not run on the same node.

For more details, see IPC (5FEA).

For information on how to configure IPC for local, Ethernet, and VME use, see
Appendix A.

IPC_REMOTE

When the IPC_REMOTHEeature is set, IPC services are provided in a distributed,
location-transparent way, allowing applications distributed across the different nodes,
or sites, of a network to communicate as if they were co-located on the same node.

For information on how to configure IPC for local, Ethernet, and VME use, see
Appendix A.

IPC_REMOTE_COMM

If you set IPC_REMOTEYyou can specify the communication method by setting the
IPC_REMOTE_COMfdature. By default, this is set to EXT for external networking
protocols. You can also set it to VME and have the communication managed by the
kernel directly.

For information on how to configure IPC for local, Ethernet, and VME use, see
Appendix A.

MIPC

The optional MIPC feature is designed to allow an application composed of one or
multiple actors to create a shared communication environment (or message space)

Technical Overview 41

42

within which these actors can exchange messages in a very efficient way. In
particular, supervisor and user actors of a same application can exchange messages
with the MIPC service. Furthermore, these messages can be initially allocated and
sent by interrupt handlers in order to be processed later in the context of threads.

See Chapter 8 for more information about using message spaces.

For more details of the MIPC feature, see MIPC(5FEA).

POSIX_MQ

The POSIX_MQfeature is a compatible implementation of the POSIX 1 real-time
message queue API. For general information on this feature, see intro (2POSIX),
and the POSIX standard (IEEE Std 1003.1b-1993).

For more details, see POSIX_MQ@5FEA).

POSIX_SHM

The POSIX_SHMfeature is a compatible implementation of the POSIX 1 real-time
shared memory objects API. For general information on this feature, see
intro (2POSIX), and the POSIX standard (IEEE Std 1003.1b-1993).

For more details, see POSIX_SHMSFEA).

LAP

Low overhead, same-site invocation of functions and APIs exported by supervisor
actors may be done through use of Local Access Points (LAPs). A LAP is designated
and invoked via its LAP descriptor. This may be directly transmitted by a server to
one or more specific client actors, via shared memory, or as an argument in another
invocation. In addition, optional extensions provide safe on-the-fly shutdown of local
service routines and a local name binding service (see the LAPSAFEand LAPBIND
features).

See CORHKSFEA) for further details.

LAPBIND

The LAPBIND feature provides a nameserver from which a LAP descriptor may be
requested and obtained indirectly, using a static symbolic name which may be an
arbitrary character string. Using the nameserver, a LAP may be exported to any
potential client that knows the symbolic name of the LAP (or of the service exported
via the LAP).

For more details, see LAPBIND(5FEA).

ChorusOS 4.0 Introduction ¢ December 1999

LAPSAFE

The LAPSAFEfeature does not export an API directly. It modifies the function and
semantics of local access point creation and invocation. In particular, it enables the
K_LAP_SAFEoption (see svLapCreate (2K)), which causes validity checking to be
turned on for an individual LAP. If a LAP is invalid or has been deleted,
lapinvoke() will fail cleanly with an error return. Furthermore, the
svLapDelete() call will block until all pending invocations have returned. This
option allows a LAP to be safely withdrawn even when client actors continue to
exist. It is useful for clean shutdown and reconfiguration of servers.

The LAPSAFEfeature is a prerequisite for HOT_RESTART
For more details, see LAPSAFESFEA).

Tools support
The ChorusOS operating system provides the following support for debugging.

LOG

The LOGfeature provides support for logging console activity on a target system.

For more details, see sysLog (2K).

PERF

The PERFfeature provides an API to share the system timer (clock) in two modes:

m A free-running mode, which causes the timer to overflow after reaching its
maximum value and continue to count up from its minimum value. This mode can
be used for fine grained execution measurement. This deactivates the system clock.

m A periodic mode, where the system timer is shared between the application and
the system tick. The timer will generate an interrupt at a set interval. The
application handler will be invoked at the required period. This mode can be used
by applications such as profilers.

The PERFAPI closely follows the timer (9DDI) device driver interface.
For more details see PERKS5FEA).

MON

The MONfeature provides a means to monitor the activity of kernel objects such as
threads, actors, and ports. Handlers can be connected to the events related to these
objects so that, for example, information related to thread-sleep/wake events can be
known. Handlers can also monitor global events, affecting the entire system.

Technical Overview 43

44

For more details see MONBFEA).

DEBUG_SYSTEM

The DEBUG_SYSTEI&ature enables remote debugging of the ChorusOS operating
system with the XRAY Debugger for ChorusOS. XRAY communicates with the
ChorusOS debug server (see chserver (1CC)) through the RDBS protocol adapter
(see rdbs (1CC)), both running on the host. The debug server in turn communicates
with the debug agent running on the target. The debug server exports an open
Debug API, which is documented and available for use by third party tools.

For more details see DEBUG_SYSTHEBFEA).

C_INIT Options

LOCAL_CONSOLE

This feature gives access to C_INIT commands through the local console of the
target. When this feature is set, the C_INIT console = command starts the command
interpreter on the local console. console is usually run at the end of the
sysadm.ini ~ file. It can also be run through rsh if it is available.

See C_INIT (1M) for a detailed description of console and other C_INIT
commands.

RSH

This feature gives access to C_INIT commands through the rsh service. When this
feature is set, the C_INIT command rshd starts the rsh demon. rshd is usually run
from the end of the sysadm.ini file. It can also be run from the local console if it is
available.

See C_INIT (1M) for a detailed description of rshd and other C_INIT commands.

File System Options

The ChorusOS operating system supports the following types of file system:
m Network file system, NFS (client and server)

m MS-DOS file system

m UNIX file system, UFS

ChorusOS 4.0 Introduction ¢ December 1999

FIFOFS

The FIFOFS feature provides support for named pipes. It requires either
NFS_CLIENT or UFSto be configured as well as POSIX_SOCKETSnd AF_LOCAL

For more details, see FIFOFS(5FEA).

NFS_CLIENT

The NFS_CLIENT feature provides POSIX-compatible file /0 system calls on top of
the NFS file system. It provides only the client side implementation of the protocol
and thus requires a host system to provide the server side implementation of the
NFS protocol. The NFS_CLIENT feature can be configured to run on top of either
Ethernet, PPP or SLIP. The NFS_CLIENT requires the POSIX_SOCKETSeature to be
configured.

For more details, see NFS_CLIENT(5FEA).

NFS_SERVER

The NFS_SERVEReature provides the services to provide an NFS server on top of a
local UFS file system. It provides only the server side implementation of the protocol,
the client side being provided by the NFS_CLIENT feature. The NFS_SERVER
requires POSIX_SOCKETSnd UFS

For more details, see NFS_SERVEBFEA).

MSDOSFS

The MSDOSFSeature provides POSIX-compatible file 1/0 system calls on top of the
MSDOSFSile system on a local disk. It requires a local disk to be configured and
accessible on the target system.

At least one of RAM_DISK IDE_DISK or SCSI_DISK must be configured. It is
usually embedded in any configuration which uses a file system as part of the boot
image of the system. MSDOSF$s frequently used with Flash memory.

For more details, see MSDOSFSGFEA).

UFS

The UNIX file system option provides support for a disk-based file system, that is,
the file system resides on physical media such as hard disks.

The UNIX file system option supports drivers for the following types of physical
media:

m SCSI disks

Technical Overview 45

46

m IDE disks
m RAM disks

For more details, see UFS5FEA).

/0 Management

The ChorusOS operating system provides the following 1/0 management services:

BPF

The BPF feature provides a raw interface to data link layers in a protocol
independent fashion. All packets on the network, even those destined for other
hosts, are accessible through this mechanism. It must be configured when using the
ADMIN_RARPHMeature, or Dynamic Host Configuration Protocol client (

dhclient (1M)).

For more details, see BPH5FEA).

FS_MAPPER

The FS_MAPPEReature provides support for swap in the IOM. It requires either the
IDE_DISK or SCSI_DISK to be configured, as well as VIRTUAL_ADDRESS_SPACE
and ON_DEMAND_PAGING

For more details, see FS_MAPPEIGFEA).

IDE_DISK

The IDE_DISK feature provides an interface to access IDE disks. These disks may
then be initialized and used as regular file systems. The IDE_DISK feature relies on
the IDE bus support provided by the BSP to get access to disks connected on that bus.

For more details, see IDE_DISK (5FEA).

DEV_MEM
The DEV_MEMeature provides a raw interface to memory devices such as
/dev/zero , /dev/null , /devikmem and /dev/imem .

For more details, see DEV_MEKBFEA) .

ChorusOS 4.0 Introduction ¢ December 1999

RAM_DISK

The RAM_DISKfeature provides an interface to chunks of memory which can be seen
and handled as disks. These disks may then be initialized and used as regular file
systems, although their contents will be lost at system shutdown time. This feature is
also required to get access to the MS-DOS file system which is usually embedded as
part of the system boot image.

For more details, see RAM_DISK5FEA).

FLASH

The FLASH feature provides an interface to access a memory device. The flash
memory may then be formatted, labelled and used to support regular file systems.
The FLASHfeature relies on the flash support based on the Flite 1.2 BSP, and is not
supported for all target family architectures. See the appropriate book in the
ChorusOS 4.0 Target Family Documentation Collection for details of which target
family architecture supports the Flite 1.2 BSP.

For more details, see FLASH5FEA).

VTTY

The VTTY feature provides support for serial lines on top of the BSP driver for
higher levels of protocols. It is used by the SLIP and PPP features.

For more details, see VTTY(5FEA).

SCSI_DISK

The SCSI_DISK feature provides an interface to access SCSI disks. The SCSI_DISK
feature relies on the SCSI bus support provided by the BSP to access disks connected
on that bus.

For more details, see SCSI_DISK (5FEA).

IOM_IPC

The IOM_IPC feature provides support for the ethlpcStackAttach (2K) system
call and the corresponding built-in C_INIT (1M) command, ethlpcStackAttach

If the feature is not configured, the ethlpcStackAttach (2K) system call of the
built-in C_INIT command will display an error message.

If the IOM_IPC feature is set to true , an IPC stack is included in the IOM system
actor. The IPC stack may be attached to an Ethernet interface.

For more details, see IOM_IPC(5FEA).

Technical Overview 47

48

IOM_OSlI

The IOM_OSI feature provides support for the ethOSIStackAttach (2K) system
call.

If the IOM_OSI feature is set to true , an OSI stack is included in the IOM system
actor. The OSI stack may be attached to an Ethernet interface.

For more details, see IOM_OSI(5FEA).

Networking

The following features provide various methods of networking on the target:

SLIP

The SLIP feature allows serial lines to be used as network interfaces. This feature
needs to be configured in order to fully support the ADMIN_SLIP feature as well as
the various slip related commands provides by the Sun Embedded Workshop system.

For more details, see SLIP (5FEA).

POSIX_SOCKETS

The POSIX_SOCKETSeature provides a TCP/IP stack through POSIX-compatible
socket system calls. For general information on this feature, see intro (2POSIX) and
the POSIX draft standard P1003.1g. However, POSIX_SOCKETSnly provides
support of the AF_INET domain. The AF_LOCALdomain support is provided by the
AF_LOCAL feature.

For more details, see POSIX_SOCKET&FEA).

PPP

The PPP feature allows serial lines to be used as network interfaces using the
Point-to-Point Protocol. This feature needs to be configured in order to fully support
the ADMIN_PPPfeature as well as the various PPP related commands provided by
the Sun Embedded Workshop system.

For more details, see PPR5FEA).

AF_LOCAL

The AF_LOCALfeature provides support for the AF_LOCALdomain for sockets. It
requires and complements the POSIX_SOCKETSeature which provides the
AF_INET domain independently.

ChorusOS 4.0 Introduction ¢ December 1999

For more details, see AF_LOCALSFEA).

Administration

The ChorusOS operating system provides the following optional administration
features:

ADMIN_CHORUSSTAT

The ADMIN_CHORUSSTAfEature provides support for the built-in chorusStat
command of C_INIT (1M). If the feature is not configured, the built-in C_INIT
command will display an error message. This feature affects the content of the
ADMIN ssystem actor. For more information on the chorusStat service, refer to
chorusStat (1CC). Note that even if the ADMIN_CHORUSSTAfEature is not
configured, you can get the ChorusOS operating system statistical information by
running the chorusStat command, which is a stand-alone version of the built-in
C_INIT command.

For more details, see ADMIN_CHORUSSTAGFEA).

ADMIN_IFCONFIG

The ADMIN_IFCONFIG feature provides support for the built-in ifconfig

command of C_INIT (1M). If the feature is not configured, the built-in C_INIT
command will display an error message. This feature affects the content of the
ADMIN system actor. For more information on the ifconfig service, refer to

ifconfig ~ (1M). Note that even if the ADMIN_IFCONFIG feature is not configured,
you can configure network interface parameters by running the ifconfig command
which is a stand-alone version of the built-in C_INIT command. However, in order
to be able to set up the network interface of the target system appropriately at
initialization time, the ADMIN_IFCONFIG feature is usually set.

For more details, see ADMIN_IFCONFIG(5FEA).

ADMIN_MOUNT

The ADMIN_MOUNTeature provides support for the built-in mount and umount
commands of C_INIT (1M). If the feature is not configured, the built-in C_INIT
command will display an error message. This feature affects the content of the
ADMIN system actor. For more information on the mount service, refer to

mount (1M). This feature provides support to mount and unmount UFS, MS-DOS
and NFS file systems. If this feature is not set, there will be no way to run a
command to mount a file system within the target system. In this type of
configuration, file systems will have to be mounted by user provided applications
embedded within the boot image using the mount (2POSIX) system call.

Technical Overview 49

50

For more details, see ADMIN_MOUNZSFEA).

ADMIN_RARP

The ADMIN_RARHFeature provides support for the built-in rarp command of
C_INIT (1M). If the feature is not configured, the built-in C_INIT command will
display an error message. This feature affects the content of the ADMIN system actor.
For more accurate information on the rarp service, refer to C_INIT (1M). The
ADMIN_RARHeature enables the system to retrieve its local IP address using the
RARP protocol, and to configure a network interface accordingly. This feature
requires the ADMIN_IFCONFIG feature.

For more details, see ADMIN_RARISFEA).

ADMIN_ROUTE

The ADMIN_ROUTHeature provides support for the built-in route command of
C_INIT (1M). If the feature is not configured, the built-in C_INIT command will
display an error message. This feature affects the content of the ADMIN system actor.
For more information on the route service, refer to route (1M). Note that even if
the ADMIN_ROUTHeature is not configured, you can still manage the routing tables
of the Sun Embedded Workshop system by running the route command, which is a
stand-alone version of the built-in C_INIT command. However, in order to be able
to set up the routing tables of the target system appropriately at initialization time,
the ADMIN_ROUTHeature is usually set.

For more details, see ADMIN_ROUTEFEA).

ADMIN_SHUTDOWN

The ADMIN_SHUTDOWature provides support for the built-in shutdown and
reboot commands of C_INIT (1M). If the feature is not configured, the built-in
C_INIT commands will display an error message. This feature affects the content of
the ADMINsystem actor. For more information on the shutdown service, refer to
shutdown (1M) . This feature permits the stopping of all or part of the system, and
possibly to reboot the system. Note that even if the ADMIN_SHUTDOWMature is not
configured, it may still be possible to stop the system by running the shutdown
command, which is a stand-alone version of the built-in C_INIT command.

For more details, see ADMIN_SHUTDOWA¥EA).

ADMIN_NETSTAT

The ADMIN_NETSTATfeature provides support for the built-in netstat command
of C_INIT (1M). If the feature is not configured, the built-in C_INIT command will

ChorusOS 4.0 Introduction ¢ December 1999

display an error message. This feature affects the content of the ADMIN system actor.
For more information on the netstat service, refer to netstat (1CC). Note that
even if the ADMIN_NETSTATreature is not configured it may still be possible to get
the network status by running the netstat command, which is a stand-alone
version of the built-in C_INIT command.

For more details, see ADMIN_NETSTATGFEA).

Configuring ChorusOS

The ChorusOS operating system provides two standard configuration profiles. These
are useful starting points for defining your own configuration.

The Extended Profile

The extended profile is an example of a development system and should be viewed
as a reference configuration for telecommunications systems. It includes support for
networking using remote IPC over Ethernet and an NFS client, using the protected
memory model. It allows the development and loading of multi-actor applications.
These actors may use any ChorusOS API, provided that the corresponding feature is
part of the system configuration.

The Basic Profile

The basic profile is an example of a small deployment system and defines a realistic
configuration while keeping the footprint as small as possible. When using the basic
profile, all applications are usually embedded in the system image and launched
either at boot time as boot applications, or subsequently from the file system.

Development Environment Components

The development environment provided in Sun Embedded Workshop has the
following major components:

m A C and C++ Development Toolchain, including the GNU gcc and g++
cross-compilers, which are widely-recognized as amongst the best C and C++
compilers available on the market in terms of robustness, efficiency, and speed.

Technical Overview 51

52

m A new debugging framework and a C and C++ reference debugger, Mentor

Graphics Corporation XRAY Debugger for ChorusOS, which offers the following
features:

» Easy-to-use graphical user interface

= Support for debugging several applications running on multiple targets with
different processor architectures

= Multithreaded user and supervisor applications, including relocatable ones, can
be debugged

= Flexible thread handling: one window per thread, breakpoint per thread or per
application

= The ChorusOS operating system abstractions related to debugged applications
or global to the system can be visualized

= Application debug over Ethernet or serial line, and system debug over a serial
line.

Configuration Tools: The ChorusOS operating system is configured simply by
providing a list of the components that are required. Sun Embedded Workshop 4.0
includes a graphical tool, called ews, for configuring the system. This tool
provides a user-friendly interface for configuring the ChorusOS operating system,
and shows the dependencies between components. A command-line interface for
configuration is also available. In addition to the ability to select only the
components required for the operating system, Sun Embedded Workshop 4.0
supports three other levels of system configuration:

» Resources. For the list of selected components, it is possible to fix the amount
of resources to be managed, and to set the value of certain tunable parameters.
For example, the amount of memory reserved for network buffers.

= Boot Actors. It is possible to include additional actors in the memory image
that are loaded at boot time.

= Environment. System-wide configuration parameters can be fixed by setting
environment strings, similar to environment variables used in UNIX systems,
which the operating system and actors retrieve when they are initialized.

A set of libraries:

s Thread-safe C++
= ANSI-C (POSIX 1003.1 compliant)

s POSIX 1003.1-compliant timers, message queues, shared memory, semaphores,
and pthreads

s POSIX 1003.1-compliant I/0

s POSIX 1003.1g-compliant sockets
s Thread-safe mathematical ANSI-C
m C++ iostream

m C++ exceptions

ChorusOS 4.0 Introduction ¢ December 1999

= STL 3.1 (Standard Template Library)

= Management of per-thread private data
s X11, Xaw, Xext , Xmy and Xt libraries
= Sun RPC

Debugging Architecture

This release of the ChorusOS operating system introduces an open, debugging
architecture, as specified by the ChorusOS Debug Architecture and API Specifications
document. The debug architecture relies on a host-resident server which abstracts the
target platform to host tools, in particular debuggers. This API specification
document is intended to be used by third parties who wish to implement their own
debuggers for ChorusOS systems.

The debug server is intended to connect to various forms of target systems, through
various forms of connections such as target through serial line, target through
Ethernet, core file, target through BDM, or ICE.

This debug architecture provides support for two debugging modes:
m application debug

m system debug

In the application debugging mode, debuggers connect to multi-threaded processes
or actors. Debugging an actor is non intrusive for the system and other actors, except
for actors expecting services from the actor.

In system debugging mode, debuggers connect to the operating system seen as a
virtual single multi-threaded process. Debugging the system is highly intrusive, since
a breakpoint will stop all system operations. System debugging is designed to allow
debugging of all the various parts of the operating system, for example: the boot
sequence, the kernel, the BSP and the system protocol stacks.

For more details, see Chapter 10.

Management Utilities

Sun Embedded Workshop 4.0 also provides several utilities for managing the
operating system and applications running on the target. These utilities include
components that can be added to the operating system configuration.

Technical Overview 53

54

m Bootmonitor is used to boot the ChorusOS operating system remotely, by using
tftp , when the target does not provide an embedded boot facility. This facility is
not available on all targets.

m Default Console is used to direct all console 170 to a remote host over a serial line.

m Remote Shell is used to execute commands remotely on the target from the host. In
particular, this feature allows applications to be loaded dynamically.

m Resource Status is used to list the current status of all operating system resources,
for example, actors, threads, and memory.

m Logging (LOQ is used to log operating system events as they occur on the target.

m Monitoring (MONis used to monitor operating system objects, so that user-defined
routines are called when certain operations are performed, or certain events occur,
on specified objects.

m Profiling is used to run profiling sessions on system applications.

m Benchmarking (PERB is used to benchmark the operating system.

Development Lifecycle

This section provides an overview of the stages in using Sun Embedded Workshop
to develop an application or system. It provides a high-level summary of the tasks
described later in this book and elsewhere in the documentation set.

Installing Sun Embedded Workshop

Installing the Development Environment

The ChorusOS 4.0 Installation Guide explains how to download and install Sun
Embedded Workshop.

When the installation is complete, you have all the binary components required to
build an instance of the ChorusOS operating system. To create a system image,
follow the instructions in the appropriate ChorusOS 4.0 Target Family Documentation
Collection.

Installing a Boot Server

A boot server is a system that provides an instance of the ChorusOS operating
system for downloading to target systems. A boot server is useful if you download

ChorusOS 4.0 Introduction ¢ December 1999

the same image to many targets. To install an instance of the ChorusOS operating
system on a boot server, follow the instructions in the ChorusOS 4.0 Installation
Guide. Note that the system where you installed the development environment can
be used as a boot server.

Installing on a Target System

When you have created the instance of the ChorusOS operating system you require,
and built a system image, you need to install it on the target system. There are
several ways to do this, including:

m Download the image at boot time from a boot server

m Load the image from media located on the target system

Developing an Application

Configuring the System

When you develop an application, you must make sure that the instance of the
ChorusOS operating system that the application will run on contains the optional
components your application requires. For example, if your application uses
semaphores, you must include the SEM option. See “Optional Operating System
Services” on page 35 for information about optional components of the ChorusOS
operating system. See Chapter 3 for information about configuring the ChorusOS
operating system to include the components you require.

Writing an Application

Chapter 4 gives a summary of how to use Sun Embedded Workshop to create an
application, including the following information:

m General principles of developing an application that runs on the ChorusOS
operating system

m The APIs available
m How to build the application

m Different ways of running the application

Chapter 10 explains how to debug your application.

Technical Overview 55

56

Tuning

When your application is written, you can create a performance profile for it, to
check for possible performance improvements. Creating a performance profile will
help you to optimize the application’s use of the ChorusOS operating system. See
Chapter 11 for more information.

Developing a System

Information about advanced programming topics is not provided in this book.

For information about porting the ChorusOS operating system software to another
target, see the ChorusOS 4.0 Porting Guide.

For information about adding a device driver, see the ChorusOS 4.0 Device Driver
Framework Guide.

For information about developing applications to use the hot restart functionality
of the ChorusOS operating system, see the ChorusOS 4.0 Hot Restart
Programmer’s Guide.

For information about using the flash memory feature, see the ChorusOS 4.0 Flash
Guide.

For information about the organization of the source code and how to use it, see
the ChorusOS 4.0 Production Guide.

ChorusOS 4.0 Introduction ¢ December 1999

earr || Using ChorusOS

CHAPTER 2

Using ChorusOS

This chapter introduces the basic principles of using the ChorusOS operating system.

The ChorusOS System Image

The ChorusOS operating system is supplied with two standard images:

m Kkernonly , which contains the kernel only and provides a minimal base for
porting

m chorus , which contains a full system image allowing configuration of the whole
feature set

Refer to the appropriate book in the ChorusOS 4.0 Target Family Documentation
Collection for information about building the kernonly and chorus system images
from the distribution.

Downloading the System Image

Follow the boot instructions specific to your target, as described in ChorusOS 4.0
Installation Guide. Messages similar to the following are displayed:

ChorusOS r4.0.0 for Intel x86 - Intel x86 PC/AT
Copyright (c) 1999 Sun Microsystems, Inc. All rights reserved.

59

(Continuation)

Kernel modules : CORE SCHED_FIFO SEM MIPC IPC_L MEM_PRM KDB TICK MON ENV \
ETIMER LOG LAPSAFE MUTEX EVENT Ul DATE PERF TIMEOUT LAPBIND DKI
MEM: memory device 'sys_bank’ vaddr 0x7bc43000 size 0x189000

[messages from IOM]

Copyright (c) 1992-1998 FreeBSD Inc.
Copyright (c) 1982, 1986, 1989, 1991, 1993
The Regents of the University of California. All rights reserved.

max disk buffer space = 0x10000
/rd: sun:ram--disk driver started
C_INIT: started

[messages from C_INIT and other boot actors]

Basic Environment

In the basic environment, application actors are loaded at boot time as part of the
system image. These actors are also known as boot actors.

When the system boots, actors included in the system image are loaded. For each
actor, a thread is created and starts running at the actor’s program entry point.

Building an Application Actor

This section assumes that you have built a chorus or kernonly system image in
the build_dir directory. This example will create a simple Hello World actor.

1. Create a working directory where the actor will reside.

2. In this working directory, create a file named Imakefile containing the
following lines:

Depend(hello.c)
EmbeddedSupActorTarget(hello_s.r,hello.o,)

3. Create a file named hello.c containing your Hello World program, written in C.
For example:

60 ChorusOS 4.0 Introduction ¢ December 1999

#include <stdio.h>
int main()

printf("Hello World\n");
return(0);

4. Generate a Makefile to build the actor, by typing the following command:

| % ChorusOSMKMf build_dir/Paths |

See ChorusOSMkMf(1CC) for more information about creating a Makefile
5. Build the dependencies:

| % make depend |

6. Build the application:

| % make |

Your directory will now contain a supervisor actor, hello_s.r

Embedding your Actor in the System Image

The easiest way to add the actor to the system image is to use the graphical
configuration tool, ews. See “Adding an Actor to the ChorusOS System Image” on
page 81 for a step-by-step guide on how to do this.

Alternatively, you can modify conf/mkimage/applications.xml so that it
contains the list of applications that will be included in your archive. For example, to
include your supervisor actor, hello , the content should be as follows:

<folder name="Applications’ visible="yes'>
<description>Placeholder for customer applications</description>

<definition name=' hello ' configurable="yes>
<description>simple hello actor, in supervisor mode</description>
<type name='File’ />
<value field="path’>
<vstring> absolute_path_to_my_actor/ hello_s.r </vstring>
</value>
<value field="bank’><ref name='sys_bank’ /></value>
<value field="binary’><ref name="supervisor_actor_model' /></value>
</definition>

<definition name=application_files’ configurable="yes>
<description>application system image files</description>
<condition>
<or>
<equal><var name='SYSTEM’ /><const>chorus</const></equal>

Using ChorusOS 61

<equal><var name='SYSTEM' /><const>kernonly</const></equal>
</or>
</condition>
<type name='FileList'/>
<value index='size’><ref name='hello’ /> </value>
</definition>

</folder>

Rebuild the system image using one of the following commands:

m If you want to build a kernel-only system, type:

| % make kernonly |

m If you want to build a complete chorus system, type:

| % make chorus |

m If you want to rebuild the system that you have previously built, type:

| % make build |

Running your Actor in the Basic Environment

Boot the system you have created on the target system. For detailed instructions, see
the appropriate book in the ChorusOS 4.0 Target Family Documentation Collection.

After the system boots, the following message is displayed on the console:

’ ‘Hello World! ’

Extended Environment

The extended environment is provided in the ChorusOS 4.0 release and comes with a
special actor called C_INIT which is dedicated to administrative commands.

62 ChorusOS 4.0 Introduction ¢ December 1999

Within the extended environment, application actors can either be loaded at boot
time, as described in the previous section, or dynamically using the C_INIT loading
facility. Dynamic loading of actors is described in “Running the “Hello World”
Example” on page 65.

The conf/sysadm.ini file is used to specify system initialization commands. Each
entry of this file is a command to be executed by C_INIT during the kernel boot.
Typical operations in sysadm.ini are network configuration, device initialization,
file system mount. See “System Administration in the Extended Environment” on
page 67 for details.

The sysadm.ini file is not accessed remotely at boot time but is included in the
system image.

Communicating with the Target Using rsh

When the ChorusOS operating system image including the RSHfeature is booted on
the target machine, the C_INIT daemon interprets the commands sent from the host
through rsh (see the rshd manpage on your host). For example, to list the options
available, type:

% rsh target help

The following information is displayed by the C_INIT actor:

For details of these commands, see C_INIT (1M).

Mounting the Host File System

The NFS root file system to be mounted on the target is generated in the ChorusOS
operating system build directory by the command:

| % make root

This command populates the build directory with the root directory that contains
binary and configuration files to be accessed by the target system.

At start-up, the C_INIT daemon reads the sysadm.ini configuration file and
executes all the commands. See sysadm.ini (4CC) for more information. This
configuration file may contain instructions to mount the root file system. For example;

Using ChorusOS 63

64

% mount hostaddr: chorus_root_directory /

If there are no root file system mount instructions in your sysadm.ini file, you
must mount the root file system explicitly from the shell:

% rsh target mount hostaddr: chorus_root_directory /

where target is the name of the target, or its IP address, hostaddr is the IP address of
the NFS host in decimal form (for example 192.82.231.1), and
chorus_root_directory is the path of the target root directory on the NFS host (for
example /home/chorus/root).

When the mount of the root file system is successful, the C_INIT daemon displays,
for example, the following message:

C_INIT: 192.82.231.1:/home/chorus/root mounted as root file

system
The next message from C_INIT depends on whether the /etc/security file exists
in the target root directory /home/chorus/root . If /etc/security exists,

C_INIT displays:

C_INIT: system in secured mode

If /etc/security does not exist, C_INIT displays:
C_INIT: notice - system not in secured mode

You can check that the root file system is mounted using:

% rsh target mount

Make sure that the file system containing the /home/chorus/root directory can be
accessed by NFS from the remote ChorusOS target.

Security
The C_INIT daemon authenticates users issuing commands from the host.

The ChorusOS operating system can be configured in secure mode, where remote
host access is checked through the /etc/security administration file, located on
the target root file system (see security (4CC)). In addition, users’ credentials may
be specified in this file, overriding default C_INIT configuration values.

ChorusOS 4.0 Introduction ¢ December 1999

If an /etc/security file exists, it must have read permissions for everybody to
allow C_INIT to read it with the default credentials (user identifier 0 and group
identifier 0). Secure mode will then be activated. In this mode, C_INIT authenticates
every command it receives from the host. Authentication will fail for two reasons:

m The user name of the remote user which issued the rsh command is not found in
the security file.

m The remote host from which the rsh command came is not in the remote host’s
list of users.

In this case, a permission denied message is sent back to the host and the command
is aborted.

If the authentication procedure succeeds, the user’s privilege credentials (user
identifier or uid, group identifier or gid and additional groups) are read from the
security file. Trusted users have access to the full set of C_INIT commands.

In non-secured mode, every user is treated as a trusted user and inherits the C_INIT
default credentials (uid 0 and gid 0). In this case, if the host machine has exported
the file system to be mounted with the default mapping of root to nobody , it is
necessary that read and execute permissions for the target executable files be given
to everybody. Otherwise C_INIT will not have the right to execute the application
binaries.

Another way to circumvent this problem is by inhibiting that mapping of root to
nobody on the host. Please consult your system administrator about this.

Running the “Hello World” Example

m Copy your executable application files into the chorus_root_directory/bin directory.

% cp hello_s.r chorus_root_directory/bin

This step is important as the applications must be in a directory on the host that is
exported to the target system.

m To start the hello supervisor actor:

% rsh target arun /bin/hello_s.r

The arun command returns the actor identifier (aid) of the new actor:

Using ChorusOS 65

66

Started aid = 13
Hello World!

m To list the actors running on the target:

% rsh target aps

m To Kill the actor, the id of which is aid:

% rsh target akill aid

m To display information about current memory usage:

% rsh target memstat

The ChorusOS operating system actors are loaded and locked in memory when they
start. This means that physical memory for the actor’s text, data and stack must be
available at load time. The memstat command of C_INIT (1M) can be used to check
whether enough physical memory is available on the target system.

Input/Output Management

When actors use the ChorusOS Console Input/Output API, all 1/0 operations (such
as printf() and scanf()) will be directed to the system console of the target.
Note that in the basic environment this API is the only one available.

If an actor uses the ChorusOS POSIX Input/Output API and is spawned from the
host with rsh , the standard input and output of the application will be inherited
from the rsh program and sent to the terminal emulator on the host on which the
rsh command was issued.

In fact, the API is the same in both cases, but the POSIX API uses a different file
descriptor.

Any extended actor has access to two special files /dev/console and /dev/null
/dev/console always refers to the system console of the target.

Note that select (2POSIX), stat (2POSIX), and fstat (2POSIX) are not supported
on the /dev/console and /dev/null devices, and there is no tty line discipline
management for these devices.

ChorusOS 4.0 Introduction ¢ December 1999

System Administration in the Extended
Environment

C_INIT Actor

In the extended environment, a special actor called C_INIT provides administrative
commands for the following:

m network configuration, such as defining IP addresses and initializing network
interfaces

m file system management, such as partitioning a disk and mounting a file system

m device management, such as binding a high level service (file system, networking,
tty management) to an actual device driver

Here are the most frequently used C_INIT commands:

m mknod: defines special device files

m mkdev: binds high level services to an instance of a device driver

= mount, umount : mounts and unmounts file systems

m arun : launches executables

m ifconfig : defines IP addresses

m route ,rarp , netstat , ppp, ping : miscellaneous networking commands
m memstat , chorusStat : prints system statistics

m setenv , unsetenv , echo, help , sleep , reboot , shutdown : miscellaneous
system commands

m rshd , console , source : specifies the device from which commands can be
accepted:

s rshd : from a host through rsh
= console : from system console
= source : from a file

See C_INIT (1M) for a complete description.

These commands are invoked at system start-up, described in the following section,
and later during the life of the system. During the life of the system, the C_INIT actor
executes commands from the system console, or from a remote host through rsh .

Using ChorusOS 67

68

System Start-up

At system start-up, the C_INIT actor executes the following steps:
1. sets up an initial virtual file system

2. executes commands from the configuration file sysadm.ini

3. executes commands from /etc/rc.chorus when a root file system is mounted
(see C_INIT (1M))

Note - If the target has a valid IP address, the file /etc/rc.chorus.< ip_address> (if
it exists) will be selected instead of /etc/rc.chorus . <ip_address> must be
written in the usual dot notation, for example: 192.82.231.1

The initial virtual file system in step 1 contains only two directories, /dev and
/image/sys_bank . The /dev directory, initially empty, is used for the definition of
special devices, like /dev/tty01 . The /image/sys_bank directory contains all the
components in the boot image:

m system actors such as am iom, C_INIT and drivers
m system configuration files (sysadm.ini)
m user defined configuration files and executables

All of these components can be accessed like the files in an ordinary file system,
using their path, for example: /image/sys_bank/sysadm.ini

Note - To access /dev and /image directories on the virtual file system, dev and
image directories must be present on your root file system, and this root file system
must be mounted.

In step 2, the C_INIT actor executes commands from a configuration file called
sysadm.ini . This file contains all the commands needed for the initial
administration of the system, including networking, file system management and
device management.

The sysadm.ini file can be customized. On the host, it is located in the conf
subdirectory of the ChorusOS build directory. This file is automatically embedded in
the boot image, in the /image/sys_bank/sysadm.ini file of the initial file
system. This allows you to configure embedded targets which do not have access to
a local or remote file system.

Initialization Examples

Below are typical commands of the sysadm.ini file.

ChorusOS 4.0 Introduction ¢ December 1999

m Associate ifnet interface 0 to a specific Ethernet driver:

% mkdev ifeth 0 /pcilepic/epic100

The pathname is optional. For more information, refer to mkdev(1M).

Note - In the ChorusOS operating system, hardware devices are identified by a path
in a device tree; the mkdev command connects to the driver instance servicing the
indicated hardware device.

m Associate ifnet interface 0 to the first Ethernet driver found:

% mkdev ifeth 0

m Define the IP address of ifnet interface 0

% ifconfig ifethO ip-address netmask ip-mask broadcast broadcast-addr

m Define the IP address using the rarp protocol on ifnet interface 0

% rarp ifeth 0

m Associate a special device to a serial line driver:

% mknod /dev/tty0l ¢ 0 O
% mkdev tty 0 /pci/pci-isa/ns16550-2

The third argument to mknod, 0, is the major device number identifying the serial
line driver. The fourth argument to mknod, 0, is the minor device number
identifying the hardware device at the POSIX level.

m Mount a local file system by defining required devices, then mount the disk:

% mknod /dev/sdOa b 10 ©
% mknod /devirsdda ¢ 9 0
% mount /dev/sdOa /

See also “Automated File System Initialization” in the ChorusOS 4.0 File System
Administration Guide.

= Mount a remote file system:

Using ChorusOS 69

% mount host-ip-addr: host-path /

70 ChorusOS 4.0 Introduction ¢ December 1999

CHAPTER 3

Configuring and Tuning

This chapter explains how to configure and tune a ChorusOS operating system.

m “Configuration Options” on page 71 explains what items can be configured and
how they are defined.

m “Configuration Tools” on page 76 explains how to configure your system.

The ChorusOS operating system offers a high degree of flexibility, allowing you to
tailor the system configuration to the requirements of your application. Depending
on the system configuration, applications are offered a range of Application
Programming Interfaces (APIs), and a range of development environment tools. Two
standard configuration profiles are included in this ChorusOS operating system
delivery: a standard configuration profile and an extended configuration profile. You
can use one of these configuration profiles as the starting point for configuring your
ChorusOS operating system.

Configuration Options

Configuring a ChorusOS operating system means defining all the components, and
their characteristics, which are assembled to form a system image. There are several
types of configuration options:

m Feature options: the ChorusOS operating system features
m Static tunable parameters
m Dynamic tunable parameters (the environment)

m System image components: system and application actors which are loaded at
system boot time

71

72

Configuration settings, including the configuration profile definitions are stored in
the configuration directory, conf , in your system image build area. The
configuration directory is read and updated by both the command-line and graphical
configuration tools.

Feature Options

A ChorusOS feature is a boolean variable, whose value determines whether or not a
particular component is included in the system image. Setting a feature to true
results in code being added to the kernel, providing additional services such as file
system handlers, or networking protocols.

Feature options within the ChorusOS operating system are listed in “Operating
System Components” on page 31.

Configuration Profiles

The ChorusOS operating system provides profiles which are used to set up an initial
configuration. These profiles include or remove certain features in the system.

Two pre-defined configuration profiles, the basic profile and the extended profile,
are provided to help you select an initial configuration for the ChorusOS operating
system. The extended profile is the default profile, and does not need to be explicitly
specified.

The extended configuration profile corresponds to a reference configuration for
telecommunications systems. It includes support for networking using remote IPC
over Ethernet and an NFS client. This uses the protected memory model.

The basic configuration profile corresponds to a realistic configuration, keeping the
footprint small. With this configuration, applications are usually embedded in the
system image and launched either at boot time or subsequently from the image file
system or the boot file system. This configuration uses the flat memory model, to
minimize the footprint. System administration is local, with C_INIT access through
the console.

Table 3-1 shows the settings of all the features in the extended and basic
configuration profiles.

TABLE 3-1 Feature settings in the extended and basic configuration profiles

Name extended profile | basic profile
value value

Kernel features

USER_MODE true true

ChorusOS 4.0 Introduction ¢ December 1999

TABLE 3-1 Feature settings in the extended and basic configuration profiles (continued)

Name extended profile | basic profile
value value
VIRTUAL_ADDRESS_SPACE true false
SEM true true
EVENT true true
MONITOR false false
TIMER true true
DATE true true
RTC true true
PERF true true
IPC true true
LOG true true
MON true false
MIPC true true
LAPBIND true true
LAPSAFE true true
C_INIT features
LOCAL_CONSOLE false false
RSH true false
I0OM features
AF_LOCAL true true
BPF true false
DEV_MEM true false
MSDOSFS true true
NFS_CLIENT true false
POSIX_SOCKETS true true
RAM_DISK true true
AM features
ACTOR_EXTENDED MNGT | true | true
ADMIN features
ADMIN_IFCONFIG | true | true

Configuring and Tuning 73

74

TABLE 3-1 Feature settings in the extended and basic configuration profiles (continued)

Name extended profile | basic profile
value value
ADMIN_MOUNT true true
ADMIN_RARP true false
ADMIN_ROUTE true true
ADMIN_SHUTDOWN true true

Note - The MONITORfeature is an internal feature which is only used by the Java
Virtual Machine.

Both configuration profiles include support for system debugging.

You can use one of these configuration profiles as the initial configuration for your
system, and add or remove specific feature options using the configurator utility
(see “Command-line Configuration Tool” on page 86). Once you have created your
initial configuration, you can also use the graphical configuration tool ews (see
“Graphical Configuration Tool” on page 76) to manage the configuration.

Tunable Parameters

Tunable parameters are system parameters which affect system behavior and
capabilities. They are used to configure the kernel and the included features, to
change their behavior, and adapt them to your needs. Typical examples of tunables
are: maximum number of kernel objects, scheduler type and attributes for threads, or
system clock frequency. Each system component or feature defines a number of these
tunable parameters.

Static Parameters

Static parameters are tunable parameters whose values are permanently set within a
system image. Changing these values requires rebuilding the system image.

The procedure for assigning new values to tunable parameters is detailed in
“Changing Tunable Parameter Values” on page 89.

Dynamic Parameters

For some tunable parameters, an additional flexibility is offered: the ability to assign
values to these parameters at various stages of system production and execution.

ChorusOS 4.0 Introduction ¢ December 1999

These types of parameters are called dynamic parameters. These dynamic parameters
define the system environment.

Dynamic parameters form a system-wide environment. A basic set of services allows
this environment to be constructed and consulted within a system image, at boot
time and runtime.

Compared to static parameters, dynamic parameters require additional target data
memory in order to store their names and values.

The procedure for modifying dynamic parameters is detailed in “Modifying the
System Environment” on page 90.

System Image Components

The system image contains a configured version of the ChorusOS operating system,
and possibly some user-defined applications (actors).

Depending on its configuration options, the ChorusOS operating system is itself built
from a kernel and a collection of actors. These actors, which contribute to the
implementation of some ChorusOS operating system features, are called ChorusOS
operating system actors.

Configuration options concerning the system image components deal mainly with
the inclusion of system and application actors within system images.

Configuration Files

The ChorusOS operating system configuration is expressed in ECML, an XML based
language. There are several levels of configuration files, all located in the conf
directory used to build the system image.

m ChorusOS.xml is the top level configuration file. The entire ChorusOS operating
system configuration is accessible through this file, which contains references to all
other configuration files.

m mkconfig is the directory containing the configuration information for each
system component. Most of the information it contains relates to feature options
and tunable parameters. For example:

= mkconfig/kern.xml contains the kernel feature definitions and
dependencies, and contains the tunables for the kernel. This file also contains
default values for the standard configuration.

= mkconfig/kern_action.xml contains specific configuration actions,
including the production rules used internally for the configuration.

Configuring and Tuning 75

76

= mkconfig/kern_f.xml and mkconfig/kern_action_f.xml are
additional configuration files identified by _f.xml that can be used to manage
family-specific configuration options.

m mkimage is the directory containing all the information related to the system
image build:

= mkimage/mkimage.xml contains two configurable declarations:

s BOOT_MODE set to ram to build an image for RAM, or rom to build an
image for ROM.

s SYSTEMs set to chorus to build a default system image, or kernonly to
build a kernel-only system image. Other system images are also available.

= mkimage/family.xml contains the family dependent definitions.
= mkimage/model.xml contains the binary models for the executable files.
= mkimage/target.xml contains all configuration options related to the BSP,

and also the list of drivers.

= mkimage/system.xml contains all system binaries and the configuration of
the system image.

= mkimage/applications.xml describes the applications to be included in
the chorus or kernonly system image.

m basic and extended are the two configuration profiles.

Configuration Tools

The configuration tools allow the configuration of the ChorusOS operating system.
They are designed to be flexible enough to be extended to allow the configuration of
any other system component (OS or drivers) or even application actors that may be
part of the ChorusOS operating system image.

You can use either a graphical interface or a command-line interface to view and
modify the characteristics of a ChorusOS operating system image.

Graphical Configuration Tool

The graphical configuration tool, ews, requires Sun Java JDK 1.2 (JAVA 2) to be
installed and the location of the Java virtual machine to be in your path.

To start ews and open an existing configuration file, type:

ChorusOS 4.0 Introduction ¢ December 1999

$ ews -c¢ config-file

The optional config-file specifies the path of the ChorusOS operating system
configuration file conf/ChorusOS.xml to open at start-up.

To start ews without opening a file, type:

$ ews

User Interface Overview

When started, ews opens a main window, containing a menu bar and toolbar at the
top, a navigation tree pane on the left, and an output view pane at the bottom. The
rest of the window is occupied by a Multiple Document Interface (MDI) area, which
is used to display other windows, like the Properties Inspector , or the Find
View (both are described later). These other windows can be resized, moved, or
closed just like any other window, but are constrained within the MDI area, and
cannot be moved outside.

A screenshot of ews is shown in Figure 3-1.

Configuring and Tuning 77

0 B e By
ERFemEE X ani7ce+ss
= e e

F Ry b wrn] o

|~
[T T——
i P vl Ty e | Y R R AL - Th
[TPy N —— P i e L e T
| o Prmaiim hamFirrel)
T o rre——
W= Tl Wy e ol el -
o) T | ; .
| L B
- P
-

LI s

T

& 1L e
o LSl

A 0|
o i P T
I b L
B el il R i

s s
L =
B[P il W rnery Wi e el
A L Rl el Tl
A ohhd o e
o AN R
S AlToE_ Nl e
o Dl Lill
E T
o [i Tarmodsn
TP
Rl I TR
FRo s ol
A il [prphpniy
B | cmrmars d g

Figure 3-1 EWS User Interface

Navigation Pane

The navigation pane contains two tabbed windows: a Projects tab, which displays
any opened configurations as a hierarchical tree, and a Help tab, which displays the
online help table of contents.

Within the Project window, every element in the project view tree is represented
by a small icon with a name. Right-clicking on an element brings up a floating
context menu, which can be used to perform actions such as changing the element’s
value. Double-clicking on an element opens the main Properties Inspector

window in the MDI area.

Within the Help window, selecting an entry in the table of contents will display the
appropriate help page in the MDI area.

Other Windows

The Properties Inspector displays the properties of an element, such as its
value and description. Some of these properties may be changed.

78 ChorusOS 4.0 Introduction ¢ December 1999

The Show Children View window displays the sub-element, or first-level child, of
a selected element.

The Find window is used to locate an element in the project view tree. Any element
can be searched for by specifying a substring of its name or its type. The search can
take place from the root, on the entire tree hierarchy, or from the selected element.

Configuring a ChorusOS Operating System Image

Open a Configuration File

The first operation is to open a ChorusOS configuration file (unless the —c option
was used on the command line). For this, select the Open option in the File menu.
A file selection dialog appears to select the configuration file to open. The
configuration to open is the conf/ChorusOS.xml file located in the configuration
directory. Once opened, a new configuration item is added to the navigation tree.

Note - More than one configuration may be opened in ews at the same time.

Browse the Configuration Tree

It is possible to browse the configuration by opening the elements in the navigation
tree. There are two general kinds of elements in the tree: folders and variables.
Folders are used to organize the configuration variables into hierarchical groups. A
folder contains child elements that can be variables or folders. Variables are values
used to configure the ChorusOS operating system image.

Disabled Elements

Some of the elements in the configuration tree may be grayed-out and cannot be
edited. It is still possible to browse them, however. For example, some variables may
depend on the presence of a specific feature: if this feature is not selected, and its
current value is set to false , the corresponding tunables will be disabled.

Disabling of elements in the configuration is controlled by a condition. This is an
optional property attached to some elements, and if the condition is evaluated to
false, the element is disabled (elements without a condition property are always
enabled). If a folder is disabled, all its child elements (folders and variables) are also
disabled.

Configuring and Tuning 79

80

Invalid Elements

A configuration is invalid if there are one or more invalid elements in the
configuration tree.

Configuring the Features and Tunables

The features of the ChorusOS operating system image are located in the various
Features and Tunables folders. Features are expressed as boolean variables, and
tunables are expressed as either integers or enumerated variables. The following
properties for a tunable are visible in the Properties Inspector

m Name
m Type
m Default value

m Current value

To change the value of a tunable parameter, edit the Current value property.

Setting a ChorusOS operating system Environment Variable

The values of the ChorusOS operating system environment variables are contained in
the env variable located in the Environment folder. The env variable is a list,
where each element represents an environment variable. This list may be empty for a
new configuration. It is possible to add, remove or modify environment variables
stored in this list.

Adding an Environment Variable

Select the env variable, right-click to display its context menu, and select New
Element . The newly created variable is appended to the list (you might need to
expand the list to see the new variable). Set the value of the new variable by editing
its value field.

Modifying the Value of an Environment Variable

An environment variable is a structured variable containing two fields: a name and a
value. The name field stores the name of the environment variable, and the value
field stores the value of this environment variable. Edit the value field to change the
value of the environment variable.

ChorusOS 4.0 Introduction ¢ December 1999

Deleting an Environment Variable

From the context menu of the environment variable, choose Delete .

Adding an Actor to the ChorusOS System Image
There are two stages to adding an actor to the system image:
1. Specify the new actor characteristics.

Open the Applications folder in the ChorusOS System Image
Configuration folder. A newly-created System Image Configuration
folder contains two templates for defining actors, one for user actors
(user_actor) and one for supervisor actors (supervisor_actor). To create
your actor definition, either modify or duplicate one of these templates, or choose
New Actor from the context menu of the Applications folder:
@ | ChorusS Systern mage Configuration
@ | Globalvariables
@ | PC-ATBESF
@ | Choruso3S
&= | Benchrmarks
@ | | Test suites
¥ ﬁ ﬁé;pﬁ;:?_ﬂar Hew Actor
@ 53 supervisor_actor
@ H application_files

A new actor called my_actor is created. Click on the handle icon to the left of
the actor, or double-click on my_actor itself, to reveal a list of fields, or children:

Configuring and Tuning 81

82

@ L Chorus0Os System Irmage Configuration

@ | Global variables
@ | PC-AT ESP
© | Chorus0s
@ | Benchmarks
© || Test suites
@ L[Applications
§ &% rmy_actor
ab] path
H7 bank
g4 kinary
@ b user_actor
@ £33 supenvisor_actor
B application_files

Invalid elements are indicated by an exclamation mark (!) over the icon. Your
new actor is invalid because its field values are empty. Double-click on the path

field to open the Properties Inspector

window within the MDI:

T T Wl
L]

o L) [T
HE AN

Tree mry
i yuime

e i e

s Mg plimssrn

o =
ey

of the Current Value

Enter the absolute pathname of your actor by double-clicking in the Value field
property. For example:

oMy paltnrs

e T D S P
] pall
T Hin Wil
M ann
TR mry
o vnime o e el e n e e e e
L

A 1)
fEw

ChorusOS 4.0 Introduction ¢ December 1999

Now double-click on the bank property to open up its Properties Inspector
window, then double-click in the Value field of the Reference property. An

ellipsis (...) will appear at the right hand side of the field:

S T W

ﬁl [

__ Progers Hame 15 L
e LW
e B

Fba g

e TR P

By rrgreny r

reference window:

3. Select a reference |
Fea_pearie I o

Cancal

Lol L Nnjlein
oty wf e mirmegs meEmany Ak

Click on the ellipsis to open the reference selecting window, Select a

Click on the required reference, sys_bank , then click on Ok

Now double-click on the binary property and perform similar actions to those

you performed for the bank property.

. Add the actor to the list of application files present in the system image.

The application_files list in the ChorusOS System Image

Configuration folder contains references to the actors that will be present in
the ChorusOS operating system image. If an actor is defined but not referenced in
this list, it will not be added to the image. Add your actor to this list choosing

New element from its context menu:

Configuring and Tuning 83

@ 1 Chorysas Systermn lmage Configuration
@ | Globalvariables
@ | | PC-ATEBSFP
& | ChorusQs
&= | Benchmarks
&= | Testsuites
@ | |Applications
@ 23 rny_actor
ab] path
Fyp bank
Hy binary
@ 53 Lser_actor
@ 53 supervisor_actor
B application_files
New element

An empty element will appear:

@ L Applications
@ &35 rmy_actor
ab] path
fy bank
gy binary
® £33 yger_actor
® £33 supendisor_actor
© B application_files
%‘E =ermpty=

Update the element by opening it in the Properties Inspector and changing
the Value field of the Reference property. Scroll down and select your newly
defined actor, my_actor in this example, from the opened Select a reference
window:

ChorusOS 4.0 Introduction ¢ December 1999

T et B o H
i) 0

ey e L= Ll
ira BTy

Plyimaw -

[TEST B

Click on Ok to complete the operation.

Note - Drivers, defined in the BSP folder of the ChorusOS System Image
Configuration folder, may be added to the system image in exactly the same way.

Saving the Modified Configuration

After a configuration has been edited, it can be saved. For this, select the ChorusOS
configuration item in the navigation tree (this is the root element of a

configuration), and use its context menu. It is also possible to save it using the Save
option in the File menu on the main menu bar, or the Save button on the toolbar.

Note - A modified configuration is displayed in red, as a visual warning that the file
has changed.

Build the system image, as described in the next section.

Rebuilding the System Image

To rebuild the system image, select the ChorusOS configuration item in the
navigation tree, and use the build item in its context menu (or the corresponding
toolbar button). If the configuration file has not been saved since it was last
modified, the tool will propose saving it, as the configuration needs to be saved in
order to be built. If the configuration is invalid, it is not possible to build the
corresponding ChorusOS operating system image.

During the build of the system image, various messages generated by the make tools
are displayed in the output window.

It is possible to interrupt the build using the stop button on the toolbar. In this case,
the system image is not built.

Configuring and Tuning 85

86

Command-line Configuration Tool

The following sections explain how to use the command-line configuration tool,
configurator , for some common tasks.

Displaying the Configuration

The configurator utility provides an option to display the ChorusOS operating
system configuration in HTML format. Within your build directory, type the
following command:

| $ configurator -display /tmp/ChorusOS.html

You can then use your browser to navigate through the ChorusOS.html file
generated by this command.

o foldar Kemel Condiguration
& ol FeS—

o folder Com Executine

& fextnoe HOT RESTARAT
o dacriprics Hol resian support
& type Boal
ovalog fake

& fextnoe USER WODE
o acriprica Us=r mode exeoudion suppar
@ typa hoal
ovaloa o=

& fastnoe ROUND ROEIN
o deacriprics POSEH round-sobin scheduling dess
o typs bhoal
ovalog ake

o faldsr Kemel oone iunables
g tonable charusSield

o deemerdpt Jon Limigue Chones: Sie deniider Needs only
to b gel F rol autossatecally provided 1o The kernel by
e Engeay -sgen s DODT. WARMING: when sel, misst B
gal with diflerent walues within evary boo mage
decdicated to dillerant tarngel boards

& type Nl

o wvalos 0

Figure 3-2 Kernel Configuration Displayed in HTML

Selecting a Configuration Profile

Two predefined profiles are provided, as described in “Feature Options” on page 72.
To select the basic profile, type:

| % configurator -p conf/basic

ChorusOS 4.0 Introduction ¢ December 1999

To re-select the extended (default) profile, type:

% configurator -p conf/extended

Adding, Removing, or Listing a Feature

You can use the configurator utility to add, remove, or list a feature.

Adding a Feature
To add a feature, type:

% configurator -set feature_name=true

The status of the feature_name is set to true.

For example, to add the EVENTfeature to the default configuration:

% configurator -set EVENT=true

The configurator utility does not handle feature dependencies automatically. If
you define a set that is not complete, an error message is displayed.

Removing a Feature

To remove a feature, type:

% configurator -set feature_name=false

The status of the feature_name feature is set to false

For example, to remove the EVENTfeature:

% configurator -set EVENT=false

You can reset the value of a feature to the default as follows:

Configuring and Tuning 87

88

% configurator -reset EVENT

Note - The reset command resets the value to the extended profile default.

Listing a Feature

You can check the value of a feature as follows:

% configurator -list feature feature_name

The output lists the feature and its status. If you omit feature_name, all features are
displayed:

% configurator -list feature

SEM bool ‘true’
EVENT bool 'true’
RTMUTEX bool ’false’
TIMER bool ’true’
VTIMER bool ‘false’
DATE bool 'true’

You can list a feature in greater detail with the —info option:

% configurator -info feature feature_name

The output lists the feature, its status, possible values and its description. For
example:

% configurator -info feature NFS_SERVER

NFS_SERVER:bool="false’
Possible values: truelfalse
Description: NFS server access from target machine

ChorusOS 4.0 Introduction ¢ December 1999

Changing Tunable Parameter Values

Tunable parameters are defined by symbolic names within the ChorusOS operating
system components. Symbolic names include dots (.), to maintain compatibility with
previous releases of the ChorusOS operating system.

The definition of a tunable parameter includes the definition of a default value for
this parameter. Integer values of tunable parameters are expressed either as integers
or as hexadecimal numbers.

To change the value of a tunable parameter, use:

% configurator -set tunable_name=value

For example, to re-configure the kernel to allow the creation of 300 threads:

| % configurator -set kern.exec.maxThreadNumber=300 |

You can check the value of a tunable parameter as follows:

| % configurator -list tunable tunable_name |

You can list the values of all the kernel executive tunables as follows:

% configurator -list tunable kern.exec.*

The output lists the kernel executive tunables and their values:

kern.exec.maxCpuNumber int '1’
kern.exec.maxActorNumber int '64’
kern.exec.maxThreadNumber int 300’
kern.exec.bgStackSize int '0x1000’
kern.exec.dflSysStackSize int '0x3000’
kern.exec.dflUsrStackSize int '0x4000’
kern.exec.dblFltStackSize int '0x800’
kern.exec.intrStackSize int '0x3000’

You can list a tunable parameter in greater detail with the —info option:

Configuring and Tuning 89

90

% configurator -info tunable tunable_name

The tunable, its value and its description are displayed:

% configurator -info tunable kern.lap.*

kern.lap.maxLapBindNumber:int="256’
Description: Maximum number of bind LAPs

kern.lap.maxLapSafeNumber:int="128’
Description: Maximum number of safe LAPs

Modifying the System Environment

The system environment is defined by the set of dynamic parameters. The system
environment is a set of name-value pairs, where name and value are character
strings. Values for system environment variables can be obtained by the system and
applications at runtime using the sysGetEnv (2K) system call.

To display all the system environment variables, type:

% configurator -list env

To set a new environment variable, or change its value:

% configurator -setenv envar=value

Here is an example:

| % configurator -setenv. MESSAGE="HelloWorld’

To unset a variable, so that it is removed from the environment, type:

| % configurator -resetenv envar

ChorusOS 4.0 Introduction ¢ December 1999

Rebuilding the System Image

After you have finished modifying the configuration, rebuild the system image by
typing:

| % make build

Configuring and Tuning 91

92 ChorusOS 4.0 Introduction ¢ December 1999

et Il Programming Overview

CHAPTER 4

Programming Overview

This chapter introduces the steps involved in developing applications, also called
actors, that run on the ChorusOS operating system. It includes the following sections:

“ChorusOS Applications” on page 96 is a summary of the general principles of
developing an application that runs on the ChorusOS operating system.

“Application Programming Interfaces” on page 98 contains a summary of the APIs
available.

“Developing ChorusOS Applications” on page 103 explains how to build a
component to be included in the ChorusOS system image.

“Using Dynamic Libraries” on page 109 presents the two types of library in the
ChorusOS operating system, and how to use them.

System development and advanced programming topics are not covered.

For information about porting ChorusOS software to another target, see the
ChorusOS 4.0 Porting Guide.

For information about adding a device driver, see the ChorusOS 4.0 Device Driver
Framework Guide.

For information about the tools used to build ChorusOS, see the ChorusOS 4.0
Production Guide.

Note - The source code for many of the examples shown in this book is provided in
the examples directory. By default this directory is
/opt/SUNWconn/SEW/4.0/chorus-< target>/src/opt/examples

95

96

ChorusOS Applications

The ChorusOS operating system provides an environment for applications running
on a network of target machines, controlled by a remote host.

m The target system runs the ChorusOS operating system and provides the execution
environment.

m The host machine provides the development and debugging environment. The
user can develop the applications on the host and, from the host, start and debug
these applications on the targets.

Programming Conventions

Services provided by the ChorusOS operating system are accessed as C routines. C
header files provide the required constants, types and prototypes definitions. As the
ChorusOS operating system is highly modular, header files reflect this modularity.
However, in the following examples a global header file, named chorus.h , which
collects most of the required header files, has been used for simplicity. Please refer to
the man pages to get the actual minimum header file required for each service.

Most ChorusOS operating system constants start with K_. ChorusOS operating
system error codes start with K_E. Constants and error codes are all written in
uppercase.

Most specific data types are prefixed by Kn. When type names are composed of
several lexems, the first letter of each lexem is written in uppercase while other
letters are in lowercase, as in KnRgnDesc (region descriptor).

General Principles

In order to compile and link an application, the following information is needed:
m The header files and compilation flags

m The program entry point

m The libraries to be linked with the program according to the services used by the
application, the environment present on the target system, and the actor type (user
or supervisor)

ChorusOS 4.0 Introduction ¢ December 1999

Program Entry Point

In order to initialize the libraries correctly before starting the execution of the
application code, the program entry point must be set to _start . After the
initialization of libraries is completed, _start calls the _main routine which
initializes variables in C++ programs. The main() routine is then called.

The _main routine manages any double calling at program initialization; some C++
compilers force a call to _main at the beginning of main() .

Depending on the development system, it may be necessary to use specific linker
directives to force the linker to extract the start and _main routines from the
libraries.

Libraries

In order to choose which ChorusOS operating system libraries to use, the following
points need to be considered:

m Which APIs are used by the application program. For example, a program using
the mathematical API has to be linked with the libm.a library.

m What type of system is running on the target. For example, the librpc.a library
cannot be used if you are using the basic environment and no additional features.

m The address space in which the program will execute. For example a program
loaded as a user extended actor must be linked with the libcx.a library.

Supervisor Actor Binaries

As supervisor actors share the same supervisor address space, they are built as
relocatable binaries, leaving the choice of the final link addresses to either the system
configuration utility building the system image (for the basic environment) or the
Actor Manager (for the extended environment).

Care must be taken when programming supervisor actors: no memory protection is
provided between supervisor actors. A badly written supervisor actor accessing
addresses outside its own address space can corrupt any supervisor region and cause
unexpected behavior such as a system crash or reboot.

User Actor Binaries

User actors are also built as relocatable binaries, even though they use private address
spaces. The link address of the user actors and the size of the user address space are
board dependent. For a given board, all user actors are linked at the same address.

Programming Overview 97

The final link is done by the Actor Manager when actors are loaded dynamically on
the target.

98

Application Programming Interfaces

This section provides an overview of all programming interfaces available for
applications developed for the ChorusOS operating system. The programming
interface may differ from one program to another depending on:

m Its execution environment: basic or extended environment.
m Its execution mode: running in user or supervisor space.

m Its execution structure: containing one or more ChorusOS operating system
threads.

Naming Conventions

Library names in the ChorusOS operating system use the following conventions with
regard to their suffixes:

.u.a These libraries can only be used to build actors that will be loaded in a user
address space.

.s.a These libraries can only be used to build actors that will be loaded in the
supervisor address space.

.a These libraries can be used to build any type of actor.

Note - When a library has both a user and supervisor version, it will be referred to
using the .a suffix only.

All header file and library pathnames listed in the next subsections are related to the
installation path of your ChorusOS delivery, typically
/opt/SUNWconn/SEW/4.0/chorus-< target>.

Basic Environment APIs

The programming environment of basic actors consists of the following interfaces:

ChorusOS 4.0 Introduction ¢ December 1999

The Microkernel API

m The Private Data API

m The Standard-C API

m The Console Input/Output API

All routines implementing these APIs have been grouped into two libraries:

kernel/lib/embedded/libebd.u.a

for user actors

kernel/lib/embedded/libebd.s.a

for supervisor actors

ChorusOS actors using the Basic Environment API are called embedded actors.

Extended Environment API

The programming environment of extended actors consists of the following

interfaces:

m The Microkernel API

m The Private Data API

m The Standard-C API

m The POSIX Input/Output API
m The POSIX Network API

m The Actor Management API

All routines implementing these APIs have been grouped into one library:

osl/lib/classix/libcx.a

for user and supervisor actors

Note - An extended supervisor actor should not use the svExcHandler() call as
an extended actor inherits the Actor Manager exception handler.

Programming Overview 99

100

Other APIs

Other APIs are provided with the ChorusOS operating system. Depending on their
nature, they may be available to both basic and extended environments or restricted
to a single environment. The following subsections give a description of the libraries
implementing these APIs.

POSIX Micro Real-time Profile API

Routines implementing the MRTP (Micro Real-time Profile) API are included within
the libcx and libebd libraries. They are available to both basic and extended
actors.

Mathematical API

Routines implementing the Mathematical API are packaged in an independent
library kernel/lib/libm/libm.a . This library is available to both basic and
extended actors.

Sun RPC API
Routines implementing the Sun RPC API are packaged in an independent library
os/lib/classix/librpc.a which is not thread-safe. This API is restricted to

extended actors.

GNU 2.7.1 C++ API

The C++ library os/lib/CC/libC.a provides support for C++ applications with a
complete and thread-safe library package. Every service offered by libC.a ensures
that shared data is only accessed after signaling the relevant synchronization objects.

To allow atomic manipulation of any stream class (iostream or fstream for
example), the API of [i