
ChorusOS 4.0 Introduction

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303-4900
U.S.A.

Part Number 806-0610–10

December 1999



Copyright 1999 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.
This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered
trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, ChorusOS, Sun Embedded WorkShop, and Solaris are
trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products
bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.
The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s
licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227–14(g)(2)(6/87) and
FAR 52.227–19(6/87), or DFAR 252.227–7015(b)(6/95) and DFAR 227.7202–3(a).
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.
Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque
moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et
qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.
Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.
Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, ChorusOS, Sun Embedded WorkShop, et Solaris sont des
marques de fabrique ou des marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.
Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International,
Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.
L’interface d’utilisation graphique OPEN LOOK et SunTM a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre
se conforment aux licences écrites de Sun.
CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y
COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE
UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE
GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Please
Recycle



Contents

Preface 17

Part I Technical Overview

1. Technical Overview 25

Introduction to Sun Embedded Workshop 25

Sun Embedded Workshop Components 26

Supported Processor Families 26

Features and Benefits 26

Multi-platform Development Environment 27

Portable Binary System 27

Super-Configurability 27

High Availability 29

Support for Legacy APIs 30

Support for Java
TM

Applications 30

Transparent Inter-Process Communication (IPC) 31

Operating System Components 31

The Core Executive 34

Optional Operating System Services 35

Configuring ChorusOS 51

The Extended Profile 51

3



The Basic Profile 51

Development Environment Components 51

Debugging Architecture 53

Management Utilities 53

Development Lifecycle 54

Installing Sun Embedded Workshop 54

Developing an Application 55

Developing a System 56

Part II Using ChorusOS

2. Using ChorusOS 59

The ChorusOS System Image 59

Downloading the System Image 59

Basic Environment 60

Building an Application Actor 60

Embedding your Actor in the System Image 61

Running your Actor in the Basic Environment 62

Extended Environment 62

Communicating with the Target Using rsh 63

Mounting the Host File System 63

Security 64

Running the “Hello World” Example 65

Input/Output Management 66

System Administration in the Extended Environment 67

C_INIT Actor 67

System Start-up 68

Initialization Examples 68

3. Configuring and Tuning 71

Configuration Options 71

4 ChorusOS 4.0 Introduction ♦ December 1999



Feature Options 72

Configuration Profiles 72

Tunable Parameters 74

System Image Components 75

Configuration Files 75

Configuration Tools 76

Graphical Configuration Tool 76

Command-line Configuration Tool 86

Part III Programming Overview

4. Programming Overview 95

ChorusOS Applications 96

Programming Conventions 96

General Principles 96

Application Programming Interfaces 98

Naming Conventions 98

Basic Environment APIs 98

Extended Environment API 99

Other APIs 100

Multithreading 101

Header Files 101

Developing ChorusOS Applications 103

make Environment 103

imake Environment 104

Examples 107

Using Dynamic Libraries 109

Static and Dynamic Linking 110

Building a Dynamic Library 111

Building a Dynamic Program 112

Contents 5



Dynamic Programming 112

Runtime Linker 113

Examples 115

5. Using Actors 121

Actor Definition 121

Naming Actors 123

User and Supervisor Actors 123

Loading Actors 126

Boot Actors 126

Loading Actors Dynamically 126

Execution Environment of Actors 127

Actor Context 127

Standard Input/Output (I/O) 128

Allocating Memory 130

Terminating an Actor 130

Spawning an Actor 130

6. Multithreaded Programming with the ChorusOS Operating System 133

Basic Multi-Thread Programming 133

Thread Handling 135

Getting a Thread Identifier 135

Creating a Thread 135

Deleting a Thread 139

Synchronizing Threads 142

Semaphores 143

Mutexes 147

Basic Scheduling Control 150

Managing Per-Thread Data 154

Threads and Libraries 158

6 ChorusOS 4.0 Introduction ♦ December 1999



7. Memory Management 161

Memory Region Descriptors 161

Allocating and Freeing Memory Regions 163

Sharing Memory Between Two Actors 167

8. Inter-actor Communication 173

Introduction 173

Message Queues 174

Local Access Points 184

IPC 187

9. Time Management 191

Time Management Services 191

Current Time 192

Timers 193

Part IV Debugging and Performance Profiling

10. System and Application Debugging 203

Preparing the System for Symbolic Debugging 203

Compiling for Debugging 203

Enabling Debugging for Components Built with imake 204

Enabling Debugging for Components Built with mkmk 206

Configuring the Debug Agent 206

Application Debugging Architecture 207

Architecture Overview 208

Setting up a Debugging Session 208

RDBC Configuration and Usage 209

System Debugging Architecture 210

Architecture Overview 210

Setting up a Debugging Session 211

Starting and Configuring the ChorusOS DebugServer 212

Contents 7



RDBS Configuration and Usage 217

Concurrent System and Application Debugging 218

Example XRAY/RDBS debug session 219

Troubleshooting 222

Sample XRAY Start-up Script 223

11. Performance Profiling 225

Introduction to Performance Profiling 225

Preparing to Create a Performance Profile 227

Configuring the System 227

Compiling the Application 227

Launching the Performance Profiled Application 227

Running a Performance Profiling Session 228

Starting the Performance Profiling Session 228

Stopping the Performance Profiling Session 228

Generating Performance Profiling Reports 229

Analyzing Performance Profiling Reports 229

Performance Profiler Description 231

The Performance Profiling Library 232

The Performance Profiler Server 232

The Performance Profiling Clock 232

Notes About Accuracy 232

A. Configuring IPC 235

Generic IPC Configuration 235

IPC Feature Configuration 235

Site Number Administration 236

Specific IPC Configuration 237

Remote IPC over Ethernet Data-link 237

Remote IPC over VME Bus 239

8 ChorusOS 4.0 Introduction ♦ December 1999



Glossary 241

Index 247

Contents 9



10 ChorusOS 4.0 Introduction ♦ December 1999



Tables

TABLE P–1 Typographic Conventions 20

TABLE P–2 Shell Prompts 21

TABLE 1–1 Operating System Optional Components 32

TABLE 3–1 Feature settings in the extended and basic configuration profiles 72

TABLE 4–1 Compilation Options 103

TABLE 4–2 Imake build rules 104

TABLE 4–3 Imake packaging rules 106

TABLE 9–1 Time Management Service Availability 192

TABLE A–1 VME memory dedicated to IPC 239

11



12 ChorusOS 4.0 Introduction ♦ December 1999



Figures

Figure 1–1 Component-based Operating System Architecture 28

Figure 3–1 EWS User Interface 78

Figure 3–2 Kernel Configuration Displayed in HTML 86

Figure 5–1 User and Supervisor Address Spaces 124

Figure 6–1 A Multi-Threaded Actor 134

Figure 6–2 Two Threads Synchronizing with a Semaphore 144

Figure 7–1 Memory Region Allocation and Deallocation 163

Figure 7–2 Actors Sharing Memory 168

Figure 8–1 Creating a Message Space 176

Figure 8–2 Opening a Message Space 176

Figure 8–3 Allocating Messages from Pools 177

Figure 8–4 Posting Messages to Queues 178

Figure 8–5 Getting Messages from Queues 179

Figure 10–1 Application Debugging Architecture 208

Figure 10–2 System Debugging Architecture 211

Figure A–1 Device sub-tree representing the VME bus 240

13



14 ChorusOS 4.0 Introduction ♦ December 1999



Code Examples

CODE EXAMPLE 5–1 Getting Actor Privilege 125

CODE EXAMPLE 5–2 Using the C Library from an Actor 128

CODE EXAMPLE 5–3 Spawning an Actor 131

CODE EXAMPLE 6–1 Creating a Thread 136

CODE EXAMPLE 6–2 Deleting a Thread 140

CODE EXAMPLE 6–3 Synchronizing Using Semaphores 144

CODE EXAMPLE 6–4 Protecting Shared Data Using Mutexes 148

CODE EXAMPLE 6–5 Changing Scheduling Attributes 152

CODE EXAMPLE 6–6 Managing Per-Thread Data 155

CODE EXAMPLE 7–1 Allocating a Memory Region 164

CODE EXAMPLE 7–2 Sharing a Memory Region 169

CODE EXAMPLE 8–1 Communicating Using Message Spaces 179

CODE EXAMPLE 8–2 Creating and Invoking LAPs 184

CODE EXAMPLE 8–3 Communicating Using IPC 188

CODE EXAMPLE 9–1 Using Timers 195

15



16 ChorusOS 4.0 Introduction ♦ December 1999



Preface

This book introduces the features and components of Sun Embedded WorkshopTM

and the ChorusOSTM operating system. It explains how to use Sun Embedded
Workshop and how to create an application that runs on the ChorusOS operating
system.

Who Should Use This Book
Use this book if you are using Sun Embedded Workshop to develop an application
that runs on a ChorusOS operating system. This book is also useful if you are
evaluating Sun Embedded Workshop and the ChorusOS operating system.

Before You Read This Book
This book assumes that you have:

� A general understanding of embedded operating systems

� Knowledge of the C programming language (for Part III)

17



How This Book is Organized
Part I introduces the product and its components, and explains how the product can
be used.

� Chapter 1 contains an overview of the product.

Part II explains how to use the ChorusOS operating system.

� Chapter 2 explains the use of the ChorusOS operating system.

� Chapter 3 explains how to configure and tune a ChorusOS operating system.

Part III describes how to develop an application that runs on the ChorusOS
operating system.

� Chapter 4 is an overview of the tasks involved in developing an application.

� Chapter 5 explains how actors are used in an application.

� Chapter 6 explains to how use the multithreading services provided in the
ChorusOS operating system.

� Chapter 7 explains how to use the memory management services provided in the
ChorusOS operating system.

� Chapter 8 explains how to use the inter-actor communication services provided in
the ChorusOS operating system.

� Chapter 9 explains how to use the time management services provided in the
ChorusOS operating system.

Part IV describes debugging and performance profiling on the ChorusOS operating
system.

� Chapter 10 explains how to debug the ChorusOS operating system and
applications.

� Chapter 11 explains how to analyze the performance of the ChorusOS operating
system and its applications by generating a performance profile report.

The Glossary is a list of words and phrases found in this book and their definitions.

18 ChorusOS 4.0 Introduction ♦ December 1999



Related Books
ChorusOS 4.0 Installation Guide explains how to download and install Sun
Embedded Workshop. ChorusOS Release Notes contains information about new
features and restrictions in this release of the product.

See the appropriate document in the ChorusOS 4.0 Target Family Documentation
Collection for instructions explaining how to build and run the ChorusOS operating
system on supported hardware.

The following books describe how to use Sun Embedded Workshop components:

� ChorusOS 4.0 File System Administration Guide explains how to use the file
systems provided with the ChorusOS operating system. It includes information
about using the NFS server.

� ChorusOS 4.0 Network Administration Guide explains how to use the networking
capabilities of the ChorusOS operating system.

The Mentor Graphics Corporation XRAY Debugger for ChorusOS includes
documentation explaining how to debug a ChorusOS application. XRAY is the
reference debugger for use with the ChorusOS operating system.

The following books contain information about advanced programming with Sun
Embedded Workshop:

� ChorusOS 4.0 Porting Guide explains how to port the ChorusOS operating system
to another target board.

� ChorusOS 4.0 Device Driver Framework Guide describes the device driver
architecture of the ChorusOS operating system and explains how to add a new
driver.

� The ChorusOS 4.0 Hot Restart Programmer’s Guide describes how to develop
applications to use the hot restart functionality of the ChorusOS operating system.

� ChorusOS 4.0 Flash Guide describes the support for flash memory provided in the
ChorusOS operating system and explains how to use it.

� ChorusOS 4.0 Production Guide describes the organization of the source code and
explains how to use it.

Preface 19



Ordering Sun Documents
Fatbrain.com , an Internet professional bookstore, stocks selected product
documentation from Sun Microsystems, Inc.

For a list of documents and how to order them, visit the Sun Documentation Center
on Fatbrain.com at http://www1.fatbrain.com/documentation/sun .

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title
or subject. The URL is http://docs.sun.com .

Typographic Conventions
The following table describes the typographic changes used in this book.

TABLE P–1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; on-screen computer output

Edit your .login file.

Use ls −a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

machine_name% su

Password:

20 ChorusOS 4.0 Introduction ♦ December 1999



TABLE P–1 Typographic Conventions (continued)

Typeface or
Symbol Meaning Example

AaBbCc123 Command-line placeholder: replace
with a real name or value

To delete a file, type rm
filename.

AaBbCc123 Book titles, new words, or terms, or
words to be emphasized.

Read Chapter 6 in User’s
Guide.

These are called class options.

You must be root to do this.

Shell Prompts
The following table shows the default system prompt and superuser prompt for the
C shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser
prompt

#

Preface 21



22 ChorusOS 4.0 Introduction ♦ December 1999



PART I Technical Overview





CHAPTER 1

Technical Overview

This chapter contains an overview of Sun Embedded WorkshopTM .

� “Introduction to Sun Embedded Workshop” on page 25 provides a high-level
overview of Sun Embedded Workshop.

� “Features and Benefits” on page 26 describes the key features of the product and
why they are useful to you.

� “Operating System Components” on page 31 provides an overview of the
operating system and its configurable components.

� “Development Environment Components” on page 51 contains a summary of the
tools provided to help you develop an application or system using Sun Embedded
Workshop.

Introduction to Sun Embedded
Workshop
Sun Embedded Workshop provides the ChorusOSTM operating system and a complete
development environment for creating an application that runs on the ChorusOS
operating system or an embedded system based on the ChorusOS operating system.

High-performance and high-availability, combined with a simple, flexible
configuration mechanism make Sun Embedded Workshop particularly well-adapted
for developing and deploying a wide range of telecommunications, data
communications, and consumer applications.

25



Sun Embedded Workshop Components
Sun Embedded Workshop contains the following components:

� The ChorusOS operating system. See “Operating System Components” on page 31
for information about the operating system components.

� A complete development environment for creating applications or systems that
use this operating system. See “Development Environment Components” on page
51 for information about the development environment components.

Supported Processor Families
This release of Sun Embedded Workshop is available for the following development
platforms:

� Solaris operating environments, supporting the following targets:

� x86, Pentium
� Motorola PowerPC 60x and 750 processor family (ppc60x)
� Motorola PowerQUICC I (mpc8xx) and PowerQUICC II (mpc8260)

microcontrollers
� UltraSPARC IIi

� Windows NT platforms, supporting the following targets:

� Motorola PowerPC 60x and 750 processor family (ppc60x)

See the ChorusOS Release Notes for the latest information about supported target
platforms.

Features and Benefits
This section contains a summary of the key features and benefits of Sun Embedded
Workshop.

26 ChorusOS 4.0 Introduction ♦ December 1999



Multi-platform Development Environment
Sun Embedded Workshop provides complete support, tools, and libraries for
developing C and C++ applications on a range of supported platforms. Development
takes place on one system (the host), even though the software will eventually run
on a very different device (the target), or on a variety of targets.

Sun Embedded Workshop also provides several utilities for managing the operating
system and applications running on the target. These utilities include components
that can be added to the operating system configuration.

Portable Binary System
For each supported processor family, Sun Embedded Workshop 4.0 comes with the
implementation of at least one target platform and provides a complete set of well
defined interfaces allowing you to port the ChorusOS operating system to other
target boards. The Boot Kernel Interface (BKI) and Device Driver Interface (DDI)
available in the binary release of ChorusOS allows you to customize the boot method
and to add new drivers.

Super-Configurability
Sun Embedded Workshop 4.0 uses a flexible, component-based architecture that
allows different services to be configured into the runtime instance of the ChorusOS
operating system.

Essential services required to support real-time applications running on the target
system are provided by the core executive, and each optional feature of the operating
system is implemented as a separate runtime component that can be added to or
removed from the operating system, as required. This means that the operating
system can be very accurately configured to meet the exact needs of a given
application or environment, saving on memory and improving performance.

The core executive can support multiple, independent applications running in both
user and supervisor memory space.

This flexible architecture is shown in Figure 1–1. Detailed descriptions of the optional
features for the ChorusOS operating system are provided in “Operating System
Components” on page 31.

Technical Overview 27



Communications Synchronization Memory Management

Interrupt Management Time Management Processor Scheduling

Event Flags

Mutexes

Semaphores

Time Utilities

Time of Day

Timers

Hot Restart

Executive

Core Executive

Mailboxes

Shared Memory

Message Queues

Distributed IPC
Local IPC Virtual

On-demand Paging

Flat

User defined

Round-robin

FIFO

Microkernel APIs

POSIX APIs

User-defined Environment Support for Java applications

Java APIs

Dynamic 
Process 
Management

Environment

Monitoring

Logging

Host-Target 
Debugger

Utilities

Figure 1–1 Component-based Operating System Architecture

By taking advantage of the component-based architecture, the application designer
can choose between an extremely small operating system that offers simple
scheduling and memory options, or a fully-featured, multi-API software platform.

As well as making it possible to produce multiple versions of the operating system,
each of which is optimized for its own environment, the component-based
architecture provides the following additional benefits:

� Applications developed to run on a minimal configuration can also run
unchanged on a more complex configuration, thus providing an evolutionary path
for right-sizing devices and systems.

� The programming interfaces for the operating system components are available
publicly, providing an open environment for combining third-party system
software and development tools.

28 ChorusOS 4.0 Introduction ♦ December 1999



High Availability
Building large, highly-available systems is a complex and challenging undertaking
that has required significant advances in design, implementation, and testing
methodologies. For example, the telecommunications industry faces severe reliability
and availability constraints imposed by international standards and market pressure.
Yet, until recently, very few commercially available operating systems could provide
the appropriate level of support to be able to offer true 7 by 24 operation.

The ChorusOS operating system incorporates several features that successfully
address the needs of this demanding market, including:

� Memory Protection

� Hot Restart

� Dynamic Reconfiguration

Memory Protection
Different applications can run in different memory address spaces protected from
one another. If one application fails, it can corrupt only its own data but cannot
corrupt the data of other applications, or of the system itself. This mechanism
confines errors and prevents their propagation.

Hot Restart
An important benefit of the ChorusOS operating system is its hot restart capability,
which provides one of the fastest mechanisms available in the industry today for
restarting applications or entire systems if a serious error or failure occurs.

The conventional technique, cold restart, involves rebooting or reloading an
application from scratch. This causes unacceptable downtime in most systems, and
there is no way to return the application to the state in which it was executing when
the error occurred.

The ChorusOS hot restart feature allows execution to recommence without reloading
code or data from the network or from disk. When a hot-restartable process fails,
persistent memory is preserved, its text and data segments are reinitialized to their
original content without accessing stable storage, and the process resumes at its entry
point. Hot restart is significantly faster than the conventional cold restart technique
and retains the critical information that allows an application to be reconstructed
quickly with little or no interruption of service. Furthermore, the hot restart
technique has been applied to the entire ChorusOS operating system and not only to
the applications it runs, thus ensuring a very high quality of service availability.

For detailed information about the hot restart feature, refer to the ChorusOS 4.0 Hot
Restart Programmer’s Guide.

Technical Overview 29



Dynamic Reconfiguration
The dynamic process management feature of the ChorusOS operating system allows
processes to be loaded dynamically, from either disk or the network, without first
halting the system. This provides the basis for a dynamic reconfiguration capability
that minimizes service downtime, and keeps existing services available while the
system is modified or upgraded. Dynamic reconfiguration also relies on the
inter-process communication (IPC) facilities of the ChorusOS operating system to
transfer inbound communication to the new processes transparently.

For example, with the ChorusOS operating system running in a Private Branch
Exchange (PBX), new features such as call forwarding (or follow me) can be added
without interrupting the basic telephone service and without reconfiguring the entire
telephone network.

Support for Legacy APIs
One of the challenges facing software developers working in the telecommunications
and data communications industries is the need to select the most appropriate of the
proliferation of public standards and proprietary solutions available to them. By
investing in a given solution, application vendors and service providers can quickly
find themselves locked into a legacy API that once seemed to offer state-of-the-art
functionality. In some cases, finding that they can no longer keep pace with emerging
technology, they are forced to either fall behind or to abandon their original
investment.

The ChorusOS operating system offers software developers a way to protect their
existing investments, while providing a smooth migration path to new platforms
running the ChorusOS operating system. It does this by:

� Providing a way for applications to handle traps, which allows software
developers to create proprietary subsystems to emulate any API.

� Providing, via its modular structure, a way to create a basic system that provides
common services, plus several subsystems built on this base and sharing the base,
each providing support for a given API.

� Supporting multiple APIs running on the same system concurrently, in such a way
that diverse applications can communicate transparently.

Support for Java
TM

Applications
The ChorusOS operating system provides an execution environment that, when
combined with a Java

TM

Runtime Environment (JRE), supports real-time applications
and Java applications running on the same machine, each in the appropriate
environment.

30 ChorusOS 4.0 Introduction ♦ December 1999



Transparent Inter-Process Communication (IPC)
Based on industry standards, the Transparent Inter-Process Communication (IPC)
facility of the ChorusOS operating system allows applications to be distributed
across multiple machines, and to run in a heterogeneous environment that comprises
hardware and software with stark operational and programming incompatibilities.

At a lower level, one of the components of the ChorusOS operating system provides
transparent IPC that recognizes whether a given process is available locally, or is
installed on a remote system that is also running the ChorusOS operating system.
When a process is accessed, the IPC identifies the shortest path and quickest
execution time that can be used to reach it, and communicates in a manner that
makes the location entirely transparent to the application.

Operating System Components
Optional features are implemented as components that can be added to, or removed
from, an instance of the ChorusOS operating system. In this way, the operating
system can be very finely tuned to meet the requirements of a given application or
environment. The core executive component is always present in an instance of the
ChorusOS operating system. Optional components in the operating system provide
the following services:

� Actor management

� Scheduling

� Memory management

� Hot restart and persistent memory

� Inter-thread communication

� Time management

� Inter-process communication

� Local Access Point (LAP)

� Tools support

� C_INIT

� File system options

� I/O management

� Networking

� Administration

Technical Overview 31



Each API function in the ChorusOS operating system is contained in one or more of
the configurable components. As long as at least one of these components is
configured into a given instance of the operating system, the function is available to
be called. Some library functions are independent of any specific component and are
always available.

The following sections provide detailed descriptions of the various optional
components of the operating system. Each component is identified by a name which
is used by the configuration tools and within applications.

Table 1–1 shows the component groups.

TABLE 1–1 Operating System Optional Components

Component Name

Actor management

Dynamic actor loading management ACTOR_EXTENDED _MNGT

User-mode extension support USER_MODE

Dynamic libraries DYNAMIC_LIB

Compressed file management GZ_FILE

Scheduling

POSIX round-robin scheduling class ROUND_ROBIN

Memory management

Virtual (user and supervisor) address space VIRTUAL_ADDRESS_

SPACE

On-demand paging ON_DEMAND_PAGING

Hot restart and persistent memory

Hot restart HOT_RESTART

Inter-thread communication

Semaphores SEM

Event flag sets EVENT

Mutual exclusion locks supporting thread priority
inversion avoidance

RTMUTEX

Time management

Periodic timers TIMER

Thread and actor virtual timer VTIMER

Date and time of day DATE

Real-time clock RTC

32 ChorusOS 4.0 Introduction ♦ December 1999



TABLE 1–1 Operating System Optional Components (continued)

Component Name

Inter-process communication

Location-transparent inter-process communication IPC

Remote (inter-site) IPC support IPC_REMOTE

Remote IPC communications medium IPC_REMOTE_COMM

Mailbox-based communications mechanism MIPC

POSIX 1-compliant message queues POSIX_MQ

POSIX 1-compliant shared memory objects POSIX_SHM

LAP

Local name server for LAP binding LAPBIND

LAP validity-check option LAPSAFE

Tools support

Message logging LOG

Profiling and benchmark support PERF

System monitoring MON

System debugging DEBUG_SYSTEM

C_INIT

Basic command interpreter on target LOCAL_CONSOLE

Remote shell RSH

File system options

Named pipes FIFOFS

NFS client NFS_CLIENT

NFS server NFS_SERVER

MS-DOS file system MSDOSFS

UFS file system UFS

I/O management

Network packet filter BPF

Swap support FS_MAPPER

Driver for IDE disk IDE_DISK

/dev/mem , /dev/kmem , /dev/null , /dev/zero DEV_MEM

Support for RAM disk RAM_DISK

Technical Overview 33



TABLE 1–1 Operating System Optional Components (continued)

Component Name

Support for FLASH media FLASH

Virtual TTY VTTY

Driver for SCSI disk SCSI_DISK

Support for IPC IOM_IPC

Support for OSI IOM_OSI

Networking

Serial link IP SLIP

POSIX 1003.1g-compliant sockets POSIX_SOCKETS

Point-to-point protocols PPP

Local sockets and pipes AF_LOCAL

Administration

ChorusOS statistics ADMIN_CHORUSSTAT

ifconfig administration command ADMIN_IFCONFIG

mount administration command ADMIN_MOUNT

rarp administration command ADMIN_RARP

route administration command ADMIN_ROUTE

shutdown administration command ADMIN_SHUTDOWN

netstat administration command ADMIN_NETSTAT

Not all these components are supported on all platforms. See the appropriate book in
the ChorusOS 4.0 Target Family Documentation Collection for details of which
components are available for your platform.

Some options are dependent on others. These dependencies are managed
automatically by the configuration tools and it is not necessary to include prerequisite
options explicitly. Some options are mutually exclusive, and the configuration tools
will not permit you to include more than one option from a mutually exclusive set.

The Core Executive
The essential services required to support real-time applications are provided by the
executive. The core executive can support multiple, multi-threaded applications
running in both user and supervisor memory space. It provides the following kernel
functionality:

34 ChorusOS 4.0 Introduction ♦ December 1999



� Support for multiple independent applications

� Support for user and system applications

� Support for applications in user and supervisor address space

� Dynamic memory management

See CORE(5FEA) for further details.

Optional Operating System Services

Actor Management

ACTOR_EXTENDED_MNGT

The ACTOR_EXTENDED_MNGTfeature provides extended management functions for
actors, including dynamic loading and control of actors. This feature also provides
the underlying support for more advanced features such as support of dynamically
loadable libraries (DYNAMIC_LIB) and uncompression of actors or libraries at load
time (GZ_FILE ).

For more details, see ACTOR_EXTENDED_MNGT(5FEA).

USER_MODE

This feature provides support for unprivileged actors, running in separate virtual
user address spaces (when available).

USER_MODEis used in all memory models. For more details, see USER_MODE(5FEA).

DYNAMIC_LIB

The DYNAMIC_LIB feature provides support for dynamic libraries within Sun
Embedded Workshop. It requires the ACTOR_EXTENDED_MNGTfeature, so that actors
can be linked with dynamic libraries. These libraries are loaded and mapped within
the actor address space at execution time. Symbol resolution is performed at library
load time. This feature also enables a running actor to ask for a library to be loaded
and installed within its address space, and then to resolve symbols within this
library. The feature handles dependencies between libraries.

For more details, see DYNAMIC_LIB(5FEA).

Technical Overview 35



GZ_FILE

The GZ_FILE feature enables dynamically loaded actors and dynamic libraries to be
uncompressed at load time, prior to execution. This minimizes the space required to
store these compressed files, and the download time. The GZ_FILE feature requires
the ACTOR_EXTENDED_MNGTfeature.

For more details, see GZ_FILE (5FEA).

Scheduling
A scheduler is a feature which provides scheduling policies. A scheduling policy is a
set of rules, procedures, or criteria used in making processor scheduling decisions.
Each scheduler feature implements one or more scheduling policies, interacting with
the core executive according to a defined kernel internal interface. A scheduler is
mandatory in all kernel instances. The core executive includes the default FIFO
scheduler.

The default scheduler present in the core executive implements a CLASS_FIFO
scheduling class, which provides simple pre-emptive scheduling based on thread
priorities.

More detailed information about these scheduling classes is found in
threadScheduler (2K).

For more details on scheduling, see SCHED(5FEA).

ROUND_ROBIN

The optional ROUND_ROBINscheduler feature enables the additional CLASS_RR
scheduling class, which is similar to CLASS_FIFO but adds round-robin time slicing
based on a configurable time quantum.

For more details, see ROUND_ROBIN(5FEA).

Memory Management
There are three memory management models, MEM_FLAT, MEM_PROTECTED, and
MEM_VIRTUAL. The model used is determined by the settings of the
VIRTUAL_ADDRESS_SPACEand ON_DEMAND_PAGINGfeatures. See MEM(5FEA) for
more details.

� MEM_FLAT

This memory management model provides simple memory allocation services.
The kernel and all applications run in one unique unprotected address space.

� MEM_PROTECTED

36 ChorusOS 4.0 Introduction ♦ December 1999



This memory management model is targeted at real-time applications able to
benefit from the flexibility and protection offered by memory management units,
address translation and separate address spaces. No swap or demand paging is
provided. No mapper interface is provided. Accesses to programs and data stored
on secondary devices must be done by application-specific file servers.

� MEM_VIRTUAL

This memory management model supports full virtual memory with swapping in
and out on secondary devices. It has been specifically designed to implement
distributed UNIX subsystems on top of the kernel.

VIRTUAL_ADDRESS_SPACE
The VIRTUAL_ADDRESS_SPACEfeature enables separate virtual address space
support using the MEM_PROTECTEDmemory management model. If this feature is
disabled all the actors and the operating system share one single, flat, address space.
When this feature is enabled a separate virtual address space is created for each user
actor.

ON_DEMAND_PAGING
The ON_DEMAND_PAGINGfeature enables on demand memory allocation and paging
using the MEM_VIRTUALmodel. ON_DEMAND_PAGINGis only available when the
VIRTUAL_ADDRESS_SPACEfeature is enabled.

Normally when a demand is made for memory, the same amount of physical and
virtual memory is allocated by the operating system. When the ON_DEMAND_PAGING
feature is enabled, virtual memory allocation of the user address space does not
necessary mean that physical memory will be allocated. Instead, the operating system
may allocate the corresponding amount of memory on a large swap disk partition.
When this occurs, physical memory will be used as a cache for the swap partition.

Hot Restart and Persistent Memory Management
The HOT_RESTARTfeature provides support for rapidly reloading and reinitializing
failed ChorusOS operating system actors, without accessing stable storage. Actors
which benefit from this support are known as restartable actors. HOT_RESTARTalso
provides all actors (not just restartable actors) with a means of storing persistent
data, data which can persist beyond the lifetime of a run-time instance of an actor.

The main services exported by the HOT_RESTARTfeature are:

� An actor restart mechanism which detects crashes in restartable actors, and
automatically restarts them from an actor image in persistent memory.

� Persistent memory allocation. Actors can allocate blocks of persistent memory to
store data which will persist beyond the actor’s lifetime.

Technical Overview 37



� A site restart mechanism to restart the kernel, boot actors and all restartable actors
on a system without accessing stable storage.

For more details, see HOT_RESTART(5FEA)

Inter-thread communication
The ChorusOS operating system provides the following services to support
multithreaded programming:

SEM
The SEMfeature provides semaphore synchronization objects. A semaphore is an
integer counter and an associated thread wait queue. When initialized, the
semaphore counter receives a user-defined positive or null value.

Two main atomic operations are available on semaphores: P (or pass) and V (or free).

� The counter is decremented when a thread performs a P on a semaphore. If the
counter reaches a negative value, the thread is blocked and put in the semaphore’s
queue, otherwise, the thread continues its execution normally.

� The counter is incremented when a thread performs a V on a semaphore. If the
counter is still lower than or equal to zero, one of the threads queued in the
semaphore queue is picked up and awakened.

Semaphores are data structures allocated in the actors’ address spaces. No kernel
data structure is allocated for these objects. They are simply designated by the
address of the structures. The number of these types of objects that threads may use
is therefore unlimited.

For more details, see SEM(5FEA).

EVENT
The EVENTfeature provides the management of event flag sets.

An event flag set is a set of bits in memory that is associated with a thread wait
queue. Each bit is associated with one event. Event flag sets are data structures
allocated in the actors’ address spaces. No kernel data structure is allocated for these
objects. They are simply designated by the address of the structures. The number of
these types of objects that threads may use is therefore unlimited.

When a flag is set, it is said to be posted, and the associated event is considered to
have occurred. Otherwise the associated event has not yet occurred. Both threads
and interrupt handlers can use event flag sets for signaling purposes.

38 ChorusOS 4.0 Introduction ♦ December 1999



A thread can wait on a conjunctive (and) or disjunctive (or) subset of the events in
one event flags set. Several threads may be pending on the same event. In that case,
each of the threads will be made eligible to run when the event occurs.

For more details, see EVENT(5FEA).

RTMUTEX
The RTMUTEXfeature provides mutual exclusion locks, using a priority inheritance
protocol, in order to avoid thread priority inversion problems.

For more details, see RTMUTEX(5FEA).

Time Management
The ChorusOS operating system provides the following time management features:

� Interrupt-level timing

� General interval timing

� Time of day (universal time)

� System time

� Thread execution timing

� Benchmark timing

The interrupt-level timing feature is always available and provides a traditional,
one-shot time-out service. Time-outs and the time-out granularity are based on a
system-wide clock tick.

When the timer expires, a caller provided handler is executed directly at the
interrupt level. This is generally on the interrupt stack, if one exists, and with thread
scheduling disabled; therefore, the execution environment is restricted accordingly.

TIMER
The TIMER feature implements a high-level interval timing service for both user and
supervisor actors. It includes one-shot and periodic timers. The time-out notification
is achieved through user-provided handler threads which are woken up in the
application actor. Handler threads may invoke any kernel or subsystem system call.

For more details, see TIMER(5FEA).

Technical Overview 39



VTIMER
The virtual time option provides a number of functions that are typically used by
higher-level operating systems for controlling and accounting thread-execution.

Virtual time-outs can be set on:

� Individual threads, to support subsystem-level timers.

� Entire actors (that is, multiple threads), to support process CPU limits.

A virtual time-out handler is entered as soon as one or more designated threads have
consumed the specified amount of execution time.

Execution accounting may be limited to execution within the home actor of the
thread (internal execution time) or may be extended to include cross-actor
invocations, such as system calls (total execution time).

For more details, see VTIMER(5FEA).

DATE
The DATEfeature maintains the time of day expressed in Universal Time, which is
defined as the interval since 1st January 1970. Since the concept of local time is not
supported directly by the operating system, time-zones and local seasonal
adjustments must be handled by libraries outside the kernel.

For more details, see DATE(5FEA).

RTC
The RTCfeature indicates whether a real-time clock (RTC) device is present on the
target machine. When this feature is set, and an RTC is present on the target, the
DATEfeature will retrieve time information from the RTC. If the RTCfeature is not
set, indicating an RTC is not present on the target, the DATEfeature will emulate the
RTC in software.

For more information, see RTC(5FEA).

Inter-process communication
The ChorusOS operating system provides Inter Process Communication (IPC),
allowing threads to communicate and synchronize, even when they do not share the
same memory space.

Communication is achieved by the exchange of messages through ports, and IPC
supports port migration, whereby the messages sent to a given port can be
transferred to a new process in a way that is transparent to the application.

40 ChorusOS 4.0 Introduction ♦ December 1999



The ChorusOS operating system also includes a mailbox (MIPC) mechanism that
provides a shared communication environment for actors within an application.

IPC
The IPC feature provides powerful asynchronous and synchronous communication
services.

The IPC feature exports the following basic communication abstractions:

� The unit of communication (message )

� Point-to-point communication endpoints (port )

� Multi-cast communication endpoints (groups )

The IPC feature allows threads to communicate and synchronize when they do not
share memory, for example when they do not run on the same node.

For more details, see IPC (5FEA).

For information on how to configure IPC for local, Ethernet, and VME use, see
Appendix A.

IPC_REMOTE
When the IPC_REMOTEfeature is set, IPC services are provided in a distributed,
location-transparent way, allowing applications distributed across the different nodes,
or sites, of a network to communicate as if they were co-located on the same node.

For information on how to configure IPC for local, Ethernet, and VME use, see
Appendix A.

IPC_REMOTE_COMM
If you set IPC_REMOTE, you can specify the communication method by setting the
IPC_REMOTE_COMMfeature. By default, this is set to EXT for external networking
protocols. You can also set it to VME, and have the communication managed by the
kernel directly.

For information on how to configure IPC for local, Ethernet, and VME use, see
Appendix A.

MIPC
The optional MIPC feature is designed to allow an application composed of one or
multiple actors to create a shared communication environment (or message space)

Technical Overview 41



within which these actors can exchange messages in a very efficient way. In
particular, supervisor and user actors of a same application can exchange messages
with the MIPC service. Furthermore, these messages can be initially allocated and
sent by interrupt handlers in order to be processed later in the context of threads.

See Chapter 8 for more information about using message spaces.

For more details of the MIPC feature, see MIPC(5FEA).

POSIX_MQ
The POSIX_MQfeature is a compatible implementation of the POSIX 1 real-time
message queue API. For general information on this feature, see intro (2POSIX),
and the POSIX standard (IEEE Std 1003.1b-1993).

For more details, see POSIX_MQ(5FEA).

POSIX_SHM
The POSIX_SHMfeature is a compatible implementation of the POSIX 1 real-time
shared memory objects API. For general information on this feature, see
intro (2POSIX), and the POSIX standard (IEEE Std 1003.1b-1993).

For more details, see POSIX_SHM(5FEA).

LAP
Low overhead, same-site invocation of functions and APIs exported by supervisor
actors may be done through use of Local Access Points (LAPs). A LAP is designated
and invoked via its LAP descriptor. This may be directly transmitted by a server to
one or more specific client actors, via shared memory, or as an argument in another
invocation. In addition, optional extensions provide safe on-the-fly shutdown of local
service routines and a local name binding service (see the LAPSAFEand LAPBIND
features).

See CORE(5FEA) for further details.

LAPBIND
The LAPBIND feature provides a nameserver from which a LAP descriptor may be
requested and obtained indirectly, using a static symbolic name which may be an
arbitrary character string. Using the nameserver, a LAP may be exported to any
potential client that knows the symbolic name of the LAP (or of the service exported
via the LAP).

For more details, see LAPBIND(5FEA).

42 ChorusOS 4.0 Introduction ♦ December 1999



LAPSAFE
The LAPSAFEfeature does not export an API directly. It modifies the function and
semantics of local access point creation and invocation. In particular, it enables the
K_LAP_SAFEoption (see svLapCreate (2K)), which causes validity checking to be
turned on for an individual LAP. If a LAP is invalid or has been deleted,
lapInvoke() will fail cleanly with an error return. Furthermore, the
svLapDelete() call will block until all pending invocations have returned. This
option allows a LAP to be safely withdrawn even when client actors continue to
exist. It is useful for clean shutdown and reconfiguration of servers.

The LAPSAFEfeature is a prerequisite for HOT_RESTART.

For more details, see LAPSAFE(5FEA).

Tools support
The ChorusOS operating system provides the following support for debugging.

LOG
The LOGfeature provides support for logging console activity on a target system.

For more details, see sysLog (2K).

PERF
The PERFfeature provides an API to share the system timer (clock) in two modes:

� A free-running mode, which causes the timer to overflow after reaching its
maximum value and continue to count up from its minimum value. This mode can
be used for fine grained execution measurement. This deactivates the system clock.

� A periodic mode, where the system timer is shared between the application and
the system tick. The timer will generate an interrupt at a set interval. The
application handler will be invoked at the required period. This mode can be used
by applications such as profilers.

The PERFAPI closely follows the timer (9DDI) device driver interface.

For more details see PERF(5FEA).

MON
The MONfeature provides a means to monitor the activity of kernel objects such as
threads, actors, and ports. Handlers can be connected to the events related to these
objects so that, for example, information related to thread-sleep/wake events can be
known. Handlers can also monitor global events, affecting the entire system.

Technical Overview 43



For more details see MON(5FEA).

DEBUG_SYSTEM
The DEBUG_SYSTEMfeature enables remote debugging of the ChorusOS operating
system with the XRAY Debugger for ChorusOS. XRAY communicates with the
ChorusOS debug server (see chserver (1CC)) through the RDBS protocol adapter
(see rdbs (1CC)), both running on the host. The debug server in turn communicates
with the debug agent running on the target. The debug server exports an open
Debug API, which is documented and available for use by third party tools.

For more details see DEBUG_SYSTEM(5FEA).

C_INIT Options

LOCAL_CONSOLE
This feature gives access to C_INIT commands through the local console of the
target. When this feature is set, the C_INIT console command starts the command
interpreter on the local console. console is usually run at the end of the
sysadm.ini file. It can also be run through rsh if it is available.

See C_INIT (1M) for a detailed description of console and other C_INIT
commands.

RSH

This feature gives access to C_INIT commands through the rsh service. When this
feature is set, the C_INIT command rshd starts the rsh demon. rshd is usually run
from the end of the sysadm.ini file. It can also be run from the local console if it is
available.

See C_INIT (1M) for a detailed description of rshd and other C_INIT commands.

File System Options
The ChorusOS operating system supports the following types of file system:

� Network file system, NFS (client and server)

� MS-DOS file system

� UNIX file system, UFS

44 ChorusOS 4.0 Introduction ♦ December 1999



FIFOFS
The FIFOFS feature provides support for named pipes. It requires either
NFS_CLIENT or UFS to be configured as well as POSIX_SOCKETSand AF_LOCAL.

For more details, see FIFOFS(5FEA).

NFS_CLIENT
The NFS_CLIENT feature provides POSIX-compatible file I/O system calls on top of
the NFS file system. It provides only the client side implementation of the protocol
and thus requires a host system to provide the server side implementation of the
NFS protocol. The NFS_CLIENT feature can be configured to run on top of either
Ethernet, PPP or SLIP. The NFS_CLIENT requires the POSIX_SOCKETSfeature to be
configured.

For more details, see NFS_CLIENT(5FEA).

NFS_SERVER
The NFS_SERVERfeature provides the services to provide an NFS server on top of a
local UFS file system. It provides only the server side implementation of the protocol,
the client side being provided by the NFS_CLIENT feature. The NFS_SERVER
requires POSIX_SOCKETSand UFS.

For more details, see NFS_SERVER(5FEA).

MSDOSFS
The MSDOSFSfeature provides POSIX-compatible file I/O system calls on top of the
MSDOSFSfile system on a local disk. It requires a local disk to be configured and
accessible on the target system.

At least one of RAM_DISK, IDE_DISK or SCSI_DISK must be configured. It is
usually embedded in any configuration which uses a file system as part of the boot
image of the system. MSDOSFSis frequently used with Flash memory.

For more details, see MSDOSFS(5FEA).

UFS
The UNIX file system option provides support for a disk-based file system, that is,
the file system resides on physical media such as hard disks.

The UNIX file system option supports drivers for the following types of physical
media:

� SCSI disks

Technical Overview 45



� IDE disks

� RAM disks

For more details, see UFS(5FEA).

I/O Management
The ChorusOS operating system provides the following I/O management services:

BPF

The BPF feature provides a raw interface to data link layers in a protocol
independent fashion. All packets on the network, even those destined for other
hosts, are accessible through this mechanism. It must be configured when using the
ADMIN_RARPfeature, or Dynamic Host Configuration Protocol client (
dhclient (1M)).

For more details, see BPF(5FEA).

FS_MAPPER

The FS_MAPPERfeature provides support for swap in the IOM. It requires either the
IDE_DISK or SCSI_DISK to be configured, as well as VIRTUAL_ADDRESS_SPACE
and ON_DEMAND_PAGING.

For more details, see FS_MAPPER(5FEA).

IDE_DISK

The IDE_DISK feature provides an interface to access IDE disks. These disks may
then be initialized and used as regular file systems. The IDE_DISK feature relies on
the IDE bus support provided by the BSP to get access to disks connected on that bus.

For more details, see IDE_DISK (5FEA).

DEV_MEM

The DEV_MEMfeature provides a raw interface to memory devices such as
/dev/zero , /dev/null , /dev/kmem and /dev/mem .

For more details, see DEV_MEM(5FEA) .

46 ChorusOS 4.0 Introduction ♦ December 1999



RAM_DISK
The RAM_DISKfeature provides an interface to chunks of memory which can be seen
and handled as disks. These disks may then be initialized and used as regular file
systems, although their contents will be lost at system shutdown time. This feature is
also required to get access to the MS-DOS file system which is usually embedded as
part of the system boot image.

For more details, see RAM_DISK(5FEA).

FLASH
The FLASH feature provides an interface to access a memory device. The flash
memory may then be formatted, labelled and used to support regular file systems.
The FLASH feature relies on the flash support based on the Flite 1.2 BSP, and is not
supported for all target family architectures. See the appropriate book in the
ChorusOS 4.0 Target Family Documentation Collection for details of which target
family architecture supports the Flite 1.2 BSP.

For more details, see FLASH(5FEA).

VTTY
The VTTY feature provides support for serial lines on top of the BSP driver for
higher levels of protocols. It is used by the SLIP and PPP features.

For more details, see VTTY(5FEA).

SCSI_DISK
The SCSI_DISK feature provides an interface to access SCSI disks. The SCSI_DISK
feature relies on the SCSI bus support provided by the BSP to access disks connected
on that bus.

For more details, see SCSI_DISK (5FEA).

IOM_IPC
The IOM_IPC feature provides support for the ethIpcStackAttach (2K) system
call and the corresponding built-in C_INIT (1M) command, ethIpcStackAttach .
If the feature is not configured, the ethIpcStackAttach (2K) system call of the
built-in C_INIT command will display an error message.

If the IOM_IPC feature is set to true , an IPC stack is included in the IOM system
actor. The IPC stack may be attached to an Ethernet interface.

For more details, see IOM_IPC(5FEA).

Technical Overview 47



IOM_OSI
The IOM_OSI feature provides support for the ethOSIStackAttach (2K) system
call.

If the IOM_OSI feature is set to true , an OSI stack is included in the IOM system
actor. The OSI stack may be attached to an Ethernet interface.

For more details, see IOM_OSI(5FEA).

Networking
The following features provide various methods of networking on the target:

SLIP
The SLIP feature allows serial lines to be used as network interfaces. This feature
needs to be configured in order to fully support the ADMIN_SLIP feature as well as
the various slip related commands provides by the Sun Embedded Workshop system.

For more details, see SLIP (5FEA).

POSIX_SOCKETS
The POSIX_SOCKETSfeature provides a TCP/IP stack through POSIX-compatible
socket system calls. For general information on this feature, see intro (2POSIX) and
the POSIX draft standard P1003.1g. However, POSIX_SOCKETSonly provides
support of the AF_INET domain. The AF_LOCALdomain support is provided by the
AF_LOCALfeature.

For more details, see POSIX_SOCKETS(5FEA).

PPP
The PPP feature allows serial lines to be used as network interfaces using the
Point-to-Point Protocol. This feature needs to be configured in order to fully support
the ADMIN_PPPfeature as well as the various PPP related commands provided by
the Sun Embedded Workshop system.

For more details, see PPP(5FEA).

AF_LOCAL
The AF_LOCALfeature provides support for the AF_LOCALdomain for sockets. It
requires and complements the POSIX_SOCKETSfeature which provides the
AF_INET domain independently.

48 ChorusOS 4.0 Introduction ♦ December 1999



For more details, see AF_LOCAL(5FEA).

Administration
The ChorusOS operating system provides the following optional administration
features:

ADMIN_CHORUSSTAT
The ADMIN_CHORUSSTATfeature provides support for the built-in chorusStat
command of C_INIT (1M). If the feature is not configured, the built-in C_INIT
command will display an error message. This feature affects the content of the
ADMINsystem actor. For more information on the chorusStat service, refer to
chorusStat (1CC). Note that even if the ADMIN_CHORUSSTATfeature is not
configured, you can get the ChorusOS operating system statistical information by
running the chorusStat command, which is a stand-alone version of the built-in
C_INIT command.

For more details, see ADMIN_CHORUSSTAT(5FEA).

ADMIN_IFCONFIG
The ADMIN_IFCONFIG feature provides support for the built-in ifconfig
command of C_INIT (1M). If the feature is not configured, the built-in C_INIT
command will display an error message. This feature affects the content of the
ADMINsystem actor. For more information on the ifconfig service, refer to
ifconfig (1M). Note that even if the ADMIN_IFCONFIG feature is not configured,
you can configure network interface parameters by running the ifconfig command
which is a stand-alone version of the built-in C_INIT command. However, in order
to be able to set up the network interface of the target system appropriately at
initialization time, the ADMIN_IFCONFIG feature is usually set.

For more details, see ADMIN_IFCONFIG(5FEA).

ADMIN_MOUNT
The ADMIN_MOUNTfeature provides support for the built-in mount and umount
commands of C_INIT (1M). If the feature is not configured, the built-in C_INIT
command will display an error message. This feature affects the content of the
ADMINsystem actor. For more information on the mount service, refer to
mount (1M). This feature provides support to mount and unmount UFS, MS-DOS
and NFS file systems. If this feature is not set, there will be no way to run a
command to mount a file system within the target system. In this type of
configuration, file systems will have to be mounted by user provided applications
embedded within the boot image using the mount (2POSIX) system call.

Technical Overview 49



For more details, see ADMIN_MOUNT(5FEA).

ADMIN_RARP
The ADMIN_RARPfeature provides support for the built-in rarp command of
C_INIT (1M). If the feature is not configured, the built-in C_INIT command will
display an error message. This feature affects the content of the ADMINsystem actor.
For more accurate information on the rarp service, refer to C_INIT (1M). The
ADMIN_RARPfeature enables the system to retrieve its local IP address using the
RARP protocol, and to configure a network interface accordingly. This feature
requires the ADMIN_IFCONFIG feature.

For more details, see ADMIN_RARP(5FEA).

ADMIN_ROUTE
The ADMIN_ROUTEfeature provides support for the built-in route command of
C_INIT (1M). If the feature is not configured, the built-in C_INIT command will
display an error message. This feature affects the content of the ADMINsystem actor.
For more information on the route service, refer to route (1M). Note that even if
the ADMIN_ROUTEfeature is not configured, you can still manage the routing tables
of the Sun Embedded Workshop system by running the route command, which is a
stand-alone version of the built-in C_INIT command. However, in order to be able
to set up the routing tables of the target system appropriately at initialization time,
the ADMIN_ROUTEfeature is usually set.

For more details, see ADMIN_ROUTE(5FEA).

ADMIN_SHUTDOWN
The ADMIN_SHUTDOWNfeature provides support for the built-in shutdown and
reboot commands of C_INIT (1M). If the feature is not configured, the built-in
C_INIT commands will display an error message. This feature affects the content of
the ADMINsystem actor. For more information on the shutdown service, refer to
shutdown (1M) . This feature permits the stopping of all or part of the system, and
possibly to reboot the system. Note that even if the ADMIN_SHUTDOWNfeature is not
configured, it may still be possible to stop the system by running the shutdown
command, which is a stand-alone version of the built-in C_INIT command.

For more details, see ADMIN_SHUTDOWN(5FEA).

ADMIN_NETSTAT
The ADMIN_NETSTATfeature provides support for the built-in netstat command
of C_INIT (1M). If the feature is not configured, the built-in C_INIT command will

50 ChorusOS 4.0 Introduction ♦ December 1999



display an error message. This feature affects the content of the ADMINsystem actor.
For more information on the netstat service, refer to netstat (1CC). Note that
even if the ADMIN_NETSTATfeature is not configured it may still be possible to get
the network status by running the netstat command, which is a stand-alone
version of the built-in C_INIT command.

For more details, see ADMIN_NETSTAT(5FEA).

Configuring ChorusOS
The ChorusOS operating system provides two standard configuration profiles. These
are useful starting points for defining your own configuration.

The Extended Profile
The extended profile is an example of a development system and should be viewed
as a reference configuration for telecommunications systems. It includes support for
networking using remote IPC over Ethernet and an NFS client, using the protected
memory model. It allows the development and loading of multi-actor applications.
These actors may use any ChorusOS API, provided that the corresponding feature is
part of the system configuration.

The Basic Profile
The basic profile is an example of a small deployment system and defines a realistic
configuration while keeping the footprint as small as possible. When using the basic
profile, all applications are usually embedded in the system image and launched
either at boot time as boot applications, or subsequently from the file system.

Development Environment Components
The development environment provided in Sun Embedded Workshop has the
following major components:

� A C and C++ Development Toolchain, including the GNU gcc and g++
cross-compilers, which are widely-recognized as amongst the best C and C++
compilers available on the market in terms of robustness, efficiency, and speed.

Technical Overview 51



� A new debugging framework and a C and C++ reference debugger, Mentor
Graphics Corporation XRAY Debugger for ChorusOS, which offers the following
features:

� Easy-to-use graphical user interface
� Support for debugging several applications running on multiple targets with

different processor architectures
� Multithreaded user and supervisor applications, including relocatable ones, can

be debugged
� Flexible thread handling: one window per thread, breakpoint per thread or per

application
� The ChorusOS operating system abstractions related to debugged applications

or global to the system can be visualized
� Application debug over Ethernet or serial line, and system debug over a serial

line.

� Configuration Tools: The ChorusOS operating system is configured simply by
providing a list of the components that are required. Sun Embedded Workshop 4.0
includes a graphical tool, called ews, for configuring the system. This tool
provides a user-friendly interface for configuring the ChorusOS operating system,
and shows the dependencies between components. A command-line interface for
configuration is also available. In addition to the ability to select only the
components required for the operating system, Sun Embedded Workshop 4.0
supports three other levels of system configuration:

� Resources. For the list of selected components, it is possible to fix the amount
of resources to be managed, and to set the value of certain tunable parameters.
For example, the amount of memory reserved for network buffers.

� Boot Actors. It is possible to include additional actors in the memory image
that are loaded at boot time.

� Environment. System-wide configuration parameters can be fixed by setting
environment strings, similar to environment variables used in UNIX systems,
which the operating system and actors retrieve when they are initialized.

� A set of libraries:

� Thread-safe C++
� ANSI-C (POSIX 1003.1 compliant)
� POSIX 1003.1–compliant timers, message queues, shared memory, semaphores,

and pthreads
� POSIX 1003.1–compliant I/O
� POSIX 1003.1g-compliant sockets
� Thread-safe mathematical ANSI-C
� C++ iostream
� C++ exceptions

52 ChorusOS 4.0 Introduction ♦ December 1999



� STL 3.1 (Standard Template Library)

� Management of per-thread private data

� X11, Xaw, Xext , Xmu, and Xt libraries

� Sun RPC

Debugging Architecture
This release of the ChorusOS operating system introduces an open, debugging
architecture, as specified by the ChorusOS Debug Architecture and API Specifications
document. The debug architecture relies on a host-resident server which abstracts the
target platform to host tools, in particular debuggers. This API specification
document is intended to be used by third parties who wish to implement their own
debuggers for ChorusOS systems.

The debug server is intended to connect to various forms of target systems, through
various forms of connections such as target through serial line, target through
Ethernet, core file, target through BDM, or ICE.

This debug architecture provides support for two debugging modes:

� application debug

� system debug

In the application debugging mode, debuggers connect to multi-threaded processes
or actors. Debugging an actor is non intrusive for the system and other actors, except
for actors expecting services from the actor.

In system debugging mode, debuggers connect to the operating system seen as a
virtual single multi-threaded process. Debugging the system is highly intrusive, since
a breakpoint will stop all system operations. System debugging is designed to allow
debugging of all the various parts of the operating system, for example: the boot
sequence, the kernel, the BSP and the system protocol stacks.

For more details, see Chapter 10.

Management Utilities
Sun Embedded Workshop 4.0 also provides several utilities for managing the
operating system and applications running on the target. These utilities include
components that can be added to the operating system configuration.

Technical Overview 53



� Bootmonitor is used to boot the ChorusOS operating system remotely, by using
tftp , when the target does not provide an embedded boot facility. This facility is
not available on all targets.

� Default Console is used to direct all console I/O to a remote host over a serial line.

� Remote Shell is used to execute commands remotely on the target from the host. In
particular, this feature allows applications to be loaded dynamically.

� Resource Status is used to list the current status of all operating system resources,
for example, actors, threads, and memory.

� Logging (LOG) is used to log operating system events as they occur on the target.

� Monitoring (MON) is used to monitor operating system objects, so that user-defined
routines are called when certain operations are performed, or certain events occur,
on specified objects.

� Profiling is used to run profiling sessions on system applications.

� Benchmarking (PERF) is used to benchmark the operating system.

Development Lifecycle
This section provides an overview of the stages in using Sun Embedded Workshop
to develop an application or system. It provides a high-level summary of the tasks
described later in this book and elsewhere in the documentation set.

Installing Sun Embedded Workshop

Installing the Development Environment
The ChorusOS 4.0 Installation Guide explains how to download and install Sun
Embedded Workshop.

When the installation is complete, you have all the binary components required to
build an instance of the ChorusOS operating system. To create a system image,
follow the instructions in the appropriate ChorusOS 4.0 Target Family Documentation
Collection.

Installing a Boot Server
A boot server is a system that provides an instance of the ChorusOS operating
system for downloading to target systems. A boot server is useful if you download

54 ChorusOS 4.0 Introduction ♦ December 1999



the same image to many targets. To install an instance of the ChorusOS operating
system on a boot server, follow the instructions in the ChorusOS 4.0 Installation
Guide. Note that the system where you installed the development environment can
be used as a boot server.

Installing on a Target System
When you have created the instance of the ChorusOS operating system you require,
and built a system image, you need to install it on the target system. There are
several ways to do this, including:

� Download the image at boot time from a boot server

� Load the image from media located on the target system

Developing an Application

Configuring the System
When you develop an application, you must make sure that the instance of the
ChorusOS operating system that the application will run on contains the optional
components your application requires. For example, if your application uses
semaphores, you must include the SEM option. See “Optional Operating System
Services” on page 35 for information about optional components of the ChorusOS
operating system. See Chapter 3 for information about configuring the ChorusOS
operating system to include the components you require.

Writing an Application
Chapter 4 gives a summary of how to use Sun Embedded Workshop to create an
application, including the following information:

� General principles of developing an application that runs on the ChorusOS
operating system

� The APIs available

� How to build the application

� Different ways of running the application

Chapter 10 explains how to debug your application.

Technical Overview 55



Tuning
When your application is written, you can create a performance profile for it, to
check for possible performance improvements. Creating a performance profile will
help you to optimize the application’s use of the ChorusOS operating system. See
Chapter 11 for more information.

Developing a System
Information about advanced programming topics is not provided in this book.

� For information about porting the ChorusOS operating system software to another
target, see the ChorusOS 4.0 Porting Guide.

� For information about adding a device driver, see the ChorusOS 4.0 Device Driver
Framework Guide.

� For information about developing applications to use the hot restart functionality
of the ChorusOS operating system, see the ChorusOS 4.0 Hot Restart
Programmer’s Guide.

� For information about using the flash memory feature, see the ChorusOS 4.0 Flash
Guide.

� For information about the organization of the source code and how to use it, see
the ChorusOS 4.0 Production Guide.

56 ChorusOS 4.0 Introduction ♦ December 1999



PART II Using ChorusOS





CHAPTER 2

Using ChorusOS

This chapter introduces the basic principles of using the ChorusOS operating system.

The ChorusOS System Image
The ChorusOS operating system is supplied with two standard images:

� kernonly , which contains the kernel only and provides a minimal base for
porting

� chorus , which contains a full system image allowing configuration of the whole
feature set

Refer to the appropriate book in the ChorusOS 4.0 Target Family Documentation
Collection for information about building the kernonly and chorus system images
from the distribution.

Downloading the System Image
Follow the boot instructions specific to your target, as described in ChorusOS 4.0
Installation Guide. Messages similar to the following are displayed:

ChorusOS r4.0.0 for Intel x86 - Intel x86 PC/AT
Copyright (c) 1999 Sun Microsystems, Inc. All rights reserved.

59



(Continuation)

Kernel modules : CORE SCHED_FIFO SEM MIPC IPC_L MEM_PRM KDB TICK MON ENV \
ETIMER LOG LAPSAFE MUTEX EVENT UI DATE PERF TIMEOUT LAPBIND DKI
MEM: memory device ’sys_bank’ vaddr 0x7bc43000 size 0x189000

[messages from IOM]

Copyright (c) 1992-1998 FreeBSD Inc.
Copyright (c) 1982, 1986, 1989, 1991, 1993

The Regents of the University of California. All rights reserved.

max disk buffer space = 0x10000
/rd: sun:ram--disk driver started
C_INIT: started

[ messages from C_INIT and other boot actors ]

Basic Environment
In the basic environment, application actors are loaded at boot time as part of the
system image. These actors are also known as boot actors.

When the system boots, actors included in the system image are loaded. For each
actor, a thread is created and starts running at the actor’s program entry point.

Building an Application Actor
This section assumes that you have built a chorus or kernonly system image in
the build_dir directory. This example will create a simple Hello World actor.

1. Create a working directory where the actor will reside.

2. In this working directory, create a file named Imakefile containing the
following lines:

Depend(hello.c)
EmbeddedSupActorTarget(hello_s.r,hello.o,)

3. Create a file named hello.c containing your Hello World program, written in C.
For example:

60 ChorusOS 4.0 Introduction ♦ December 1999



#include <stdio.h>

int main()
{

printf("Hello World!\n");
return(0);

}

4. Generate a Makefile to build the actor, by typing the following command:

% ChorusOSMkMf build_dir/Paths

See ChorusOSMkMf(1CC) for more information about creating a Makefile .

5. Build the dependencies:

% make depend

6. Build the application:

% make

Your directory will now contain a supervisor actor, hello_s.r .

Embedding your Actor in the System Image
The easiest way to add the actor to the system image is to use the graphical
configuration tool, ews. See “Adding an Actor to the ChorusOS System Image” on
page 81 for a step-by-step guide on how to do this.

Alternatively, you can modify conf/mkimage/applications.xml so that it
contains the list of applications that will be included in your archive. For example, to
include your supervisor actor, hello , the content should be as follows:

<folder name=’Applications’ visible=’yes’>
<description>Placeholder for customer applications</description>

<definition name=’ hello ’ configurable=’yes’>
<description>simple hello actor, in supervisor mode</description>
<type name=’File’ />
<value field=’path’>

<vstring> absolute_path_to_my_actor/ hello_s.r </vstring>
</value>
<value field=’bank’><ref name=’sys_bank’ /></value>
<value field=’binary’><ref name=’supervisor_actor_model’ /></value>

</definition>

<definition name=’application_files’ configurable=’yes’>
<description>application system image files</description>
<condition>

<or>
<equal><var name=’SYSTEM’ /><const>chorus</const></equal>

Using ChorusOS 61



<equal><var name=’SYSTEM’ /><const>kernonly</const></equal>
</or>

</condition>
<type name=’FileList’/>

<value index=’size’><ref name=’hello’ /> </value>
</definition>

</folder>

Rebuild the system image using one of the following commands:

� If you want to build a kernel-only system, type:

% make kernonly

� If you want to build a complete chorus system, type:

% make chorus

� If you want to rebuild the system that you have previously built, type:

% make build

Running your Actor in the Basic Environment
Boot the system you have created on the target system. For detailed instructions, see
the appropriate book in the ChorusOS 4.0 Target Family Documentation Collection.

After the system boots, the following message is displayed on the console:

‘Hello World!’‘ ’

Extended Environment
The extended environment is provided in the ChorusOS 4.0 release and comes with a
special actor called C_INIT which is dedicated to administrative commands.

62 ChorusOS 4.0 Introduction ♦ December 1999



Within the extended environment, application actors can either be loaded at boot
time, as described in the previous section, or dynamically using the C_INIT loading
facility. Dynamic loading of actors is described in “Running the “Hello World”
Example” on page 65.

The conf/sysadm.ini file is used to specify system initialization commands. Each
entry of this file is a command to be executed by C_INIT during the kernel boot.
Typical operations in sysadm.ini are network configuration, device initialization,
file system mount. See “System Administration in the Extended Environment” on
page 67 for details.

The sysadm.ini file is not accessed remotely at boot time but is included in the
system image.

Communicating with the Target Using rsh
When the ChorusOS operating system image including the RSHfeature is booted on
the target machine, the C_INIT daemon interprets the commands sent from the host
through rsh (see the rshd manpage on your host). For example, to list the options
available, type:

% rsh target help

The following information is displayed by the C_INIT actor:

For details of these commands, see C_INIT (1M).

Mounting the Host File System
The NFS root file system to be mounted on the target is generated in the ChorusOS
operating system build directory by the command:

% make root

This command populates the build directory with the root directory that contains
binary and configuration files to be accessed by the target system.

At start-up, the C_INIT daemon reads the sysadm.ini configuration file and
executes all the commands. See sysadm.ini (4CC) for more information. This
configuration file may contain instructions to mount the root file system. For example:

Using ChorusOS 63



% mount hostaddr: chorus_root_directory /

If there are no root file system mount instructions in your sysadm.ini file, you
must mount the root file system explicitly from the shell:

% rsh target mount hostaddr: chorus_root_directory /

where target is the name of the target, or its IP address, hostaddr is the IP address of
the NFS host in decimal form (for example 192.82.231.1 ), and
chorus_root_directory is the path of the target root directory on the NFS host (for
example /home/chorus/root ).

When the mount of the root file system is successful, the C_INIT daemon displays,
for example, the following message:

C_INIT: 192.82.231.1:/home/chorus/root mounted as root file
system

The next message from C_INIT depends on whether the /etc/security file exists
in the target root directory /home/chorus/root . If /etc/security exists,
C_INIT displays:

C_INIT: system in secured mode

If /etc/security does not exist, C_INIT displays:

C_INIT: notice - system not in secured mode

You can check that the root file system is mounted using:

% rsh target mount

Make sure that the file system containing the /home/chorus/root directory can be
accessed by NFS from the remote ChorusOS target.

Security
The C_INIT daemon authenticates users issuing commands from the host.

The ChorusOS operating system can be configured in secure mode, where remote
host access is checked through the /etc/security administration file, located on
the target root file system (see security (4CC)). In addition, users’ credentials may
be specified in this file, overriding default C_INIT configuration values.

64 ChorusOS 4.0 Introduction ♦ December 1999



If an /etc/security file exists, it must have read permissions for everybody to
allow C_INIT to read it with the default credentials (user identifier 0 and group
identifier 0). Secure mode will then be activated. In this mode, C_INIT authenticates
every command it receives from the host. Authentication will fail for two reasons:

� The user name of the remote user which issued the rsh command is not found in
the security file.

� The remote host from which the rsh command came is not in the remote host’s
list of users.

In this case, a permission denied message is sent back to the host and the command
is aborted.

If the authentication procedure succeeds, the user’s privilege credentials (user
identifier or uid, group identifier or gid and additional groups) are read from the
security file. Trusted users have access to the full set of C_INIT commands.

In non-secured mode, every user is treated as a trusted user and inherits the C_INIT
default credentials (uid 0 and gid 0). In this case, if the host machine has exported
the file system to be mounted with the default mapping of root to nobody , it is
necessary that read and execute permissions for the target executable files be given
to everybody. Otherwise C_INIT will not have the right to execute the application
binaries.

Another way to circumvent this problem is by inhibiting that mapping of root to
nobody on the host. Please consult your system administrator about this.

Running the “Hello World” Example
� Copy your executable application files into the chorus_root_directory/bin directory.

% cp hello_s.r chorus_root_directory/bin

This step is important as the applications must be in a directory on the host that is
exported to the target system.

� To start the hello supervisor actor:

% rsh target arun /bin/hello_s.r

The arun command returns the actor identifier (aid) of the new actor:

Using ChorusOS 65



Started aid = 13
Hello World!

� To list the actors running on the target:

% rsh target aps

� To kill the actor, the id of which is aid:

% rsh target akill aid

� To display information about current memory usage:

% rsh target memstat

The ChorusOS operating system actors are loaded and locked in memory when they
start. This means that physical memory for the actor’s text, data and stack must be
available at load time. The memstat command of C_INIT (1M) can be used to check
whether enough physical memory is available on the target system.

Input/Output Management
When actors use the ChorusOS Console Input/Output API, all I/O operations (such
as printf() and scanf() ) will be directed to the system console of the target.
Note that in the basic environment this API is the only one available.

If an actor uses the ChorusOS POSIX Input/Output API and is spawned from the
host with rsh , the standard input and output of the application will be inherited
from the rsh program and sent to the terminal emulator on the host on which the
rsh command was issued.

In fact, the API is the same in both cases, but the POSIX API uses a different file
descriptor.

Any extended actor has access to two special files /dev/console and /dev/null .
/dev/console always refers to the system console of the target.

Note that select (2POSIX), stat (2POSIX), and fstat (2POSIX) are not supported
on the /dev/console and /dev/null devices, and there is no tty line discipline
management for these devices.

66 ChorusOS 4.0 Introduction ♦ December 1999



System Administration in the Extended
Environment
C_INIT Actor
In the extended environment, a special actor called C_INIT provides administrative
commands for the following:

� network configuration, such as defining IP addresses and initializing network
interfaces

� file system management, such as partitioning a disk and mounting a file system

� device management, such as binding a high level service (file system, networking,
tty management) to an actual device driver

Here are the most frequently used C_INIT commands:

� mknod: defines special device files

� mkdev: binds high level services to an instance of a device driver

� mount , umount : mounts and unmounts file systems

� arun : launches executables

� ifconfig : defines IP addresses

� route , rarp , netstat , ppp , ping : miscellaneous networking commands

� memstat , chorusStat : prints system statistics

� setenv , unsetenv , echo , help , sleep , reboot , shutdown : miscellaneous
system commands

� rshd , console , source : specifies the device from which commands can be
accepted:

� rshd : from a host through rsh

� console : from system console
� source : from a file

See C_INIT (1M) for a complete description.

These commands are invoked at system start-up, described in the following section,
and later during the life of the system. During the life of the system, the C_INIT actor
executes commands from the system console, or from a remote host through rsh .

Using ChorusOS 67



System Start-up
At system start-up, the C_INIT actor executes the following steps:

1. sets up an initial virtual file system

2. executes commands from the configuration file sysadm.ini

3. executes commands from /etc/rc.chorus when a root file system is mounted
(see C_INIT (1M))

Note - If the target has a valid IP address, the file /etc/rc.chorus.< ip_address> (if
it exists) will be selected instead of /etc/rc.chorus . <ip_address> must be
written in the usual dot notation, for example: 192.82.231.1 .

The initial virtual file system in step 1 contains only two directories, /dev and
/image/sys_bank . The /dev directory, initially empty, is used for the definition of
special devices, like /dev/tty01 . The /image/sys_bank directory contains all the
components in the boot image:

� system actors such as am, iom , C_INIT and drivers

� system configuration files (sysadm.ini )

� user defined configuration files and executables

All of these components can be accessed like the files in an ordinary file system,
using their path, for example: /image/sys_bank/sysadm.ini .

Note - To access /dev and /image directories on the virtual file system, dev and
image directories must be present on your root file system, and this root file system
must be mounted.

In step 2, the C_INIT actor executes commands from a configuration file called
sysadm.ini . This file contains all the commands needed for the initial
administration of the system, including networking, file system management and
device management.

The sysadm.ini file can be customized. On the host, it is located in the conf
subdirectory of the ChorusOS build directory. This file is automatically embedded in
the boot image, in the /image/sys_bank/sysadm.ini file of the initial file
system. This allows you to configure embedded targets which do not have access to
a local or remote file system.

Initialization Examples
Below are typical commands of the sysadm.ini file.

68 ChorusOS 4.0 Introduction ♦ December 1999



� Associate ifnet interface 0 to a specific Ethernet driver:

% mkdev ifeth 0 /pci/epic/epic100

The pathname is optional. For more information, refer to mkdev(1M).

Note - In the ChorusOS operating system, hardware devices are identified by a path
in a device tree; the mkdev command connects to the driver instance servicing the
indicated hardware device.

� Associate ifnet interface 0 to the first Ethernet driver found:

% mkdev ifeth 0

� Define the IP address of ifnet interface 0 :

% ifconfig ifeth0 ip-address netmask ip-mask broadcast broadcast-addr

� Define the IP address using the rarp protocol on ifnet interface 0 :

% rarp ifeth 0

� Associate a special device to a serial line driver:

% mknod /dev/tty01 c 0 0
% mkdev tty 0 /pci/pci-isa/ns16550-2

The third argument to mknod, 0, is the major device number identifying the serial
line driver. The fourth argument to mknod, 0, is the minor device number
identifying the hardware device at the POSIX level.

� Mount a local file system by defining required devices, then mount the disk:

% mknod /dev/sd0a b 10 0
% mknod /dev/rsd0a c 9 0
% mount /dev/sd0a /

See also “Automated File System Initialization” in the ChorusOS 4.0 File System
Administration Guide.

� Mount a remote file system:

Using ChorusOS 69



% mount host-ip-addr: host-path /

70 ChorusOS 4.0 Introduction ♦ December 1999



CHAPTER 3

Configuring and Tuning

This chapter explains how to configure and tune a ChorusOS operating system.

� “Configuration Options” on page 71 explains what items can be configured and
how they are defined.

� “Configuration Tools” on page 76 explains how to configure your system.

The ChorusOS operating system offers a high degree of flexibility, allowing you to
tailor the system configuration to the requirements of your application. Depending
on the system configuration, applications are offered a range of Application
Programming Interfaces (APIs), and a range of development environment tools. Two
standard configuration profiles are included in this ChorusOS operating system
delivery: a standard configuration profile and an extended configuration profile. You
can use one of these configuration profiles as the starting point for configuring your
ChorusOS operating system.

Configuration Options
Configuring a ChorusOS operating system means defining all the components, and
their characteristics, which are assembled to form a system image. There are several
types of configuration options:

� Feature options: the ChorusOS operating system features

� Static tunable parameters

� Dynamic tunable parameters (the environment)

� System image components: system and application actors which are loaded at
system boot time

71



Configuration settings, including the configuration profile definitions are stored in
the configuration directory, conf , in your system image build area. The
configuration directory is read and updated by both the command-line and graphical
configuration tools.

Feature Options
A ChorusOS feature is a boolean variable, whose value determines whether or not a
particular component is included in the system image. Setting a feature to true
results in code being added to the kernel, providing additional services such as file
system handlers, or networking protocols.

Feature options within the ChorusOS operating system are listed in “Operating
System Components” on page 31.

Configuration Profiles
The ChorusOS operating system provides profiles which are used to set up an initial
configuration. These profiles include or remove certain features in the system.

Two pre-defined configuration profiles, the basic profile and the extended profile,
are provided to help you select an initial configuration for the ChorusOS operating
system. The extended profile is the default profile, and does not need to be explicitly
specified.

The extended configuration profile corresponds to a reference configuration for
telecommunications systems. It includes support for networking using remote IPC
over Ethernet and an NFS client. This uses the protected memory model.

The basic configuration profile corresponds to a realistic configuration, keeping the
footprint small. With this configuration, applications are usually embedded in the
system image and launched either at boot time or subsequently from the image file
system or the boot file system. This configuration uses the flat memory model, to
minimize the footprint. System administration is local, with C_INIT access through
the console.

Table 3–1 shows the settings of all the features in the extended and basic
configuration profiles.

TABLE 3–1 Feature settings in the extended and basic configuration profiles

Name extended profile
value

basic profile
value

Kernel features

USER_MODE true true

72 ChorusOS 4.0 Introduction ♦ December 1999



TABLE 3–1 Feature settings in the extended and basic configuration profiles (continued)

Name extended profile
value

basic profile
value

VIRTUAL_ADDRESS_SPACE true false

SEM true true

EVENT true true

MONITOR false false

TIMER true true

DATE true true

RTC true true

PERF true true

IPC true true

LOG true true

MON true false

MIPC true true

LAPBIND true true

LAPSAFE true true

C_INIT features

LOCAL_CONSOLE false false

RSH true false

IOM features

AF_LOCAL true true

BPF true false

DEV_MEM true false

MSDOSFS true true

NFS_CLIENT true false

POSIX_SOCKETS true true

RAM_DISK true true

AM features

ACTOR_EXTENDED_MNGT true true

ADMIN features

ADMIN_IFCONFIG true true

Configuring and Tuning 73



TABLE 3–1 Feature settings in the extended and basic configuration profiles (continued)

Name extended profile
value

basic profile
value

ADMIN_MOUNT true true

ADMIN_RARP true false

ADMIN_ROUTE true true

ADMIN_SHUTDOWN true true

Note - The MONITORfeature is an internal feature which is only used by the Java
Virtual Machine.

Both configuration profiles include support for system debugging.

You can use one of these configuration profiles as the initial configuration for your
system, and add or remove specific feature options using the configurator utility
(see “Command-line Configuration Tool” on page 86). Once you have created your
initial configuration, you can also use the graphical configuration tool ews (see
“Graphical Configuration Tool” on page 76) to manage the configuration.

Tunable Parameters
Tunable parameters are system parameters which affect system behavior and
capabilities. They are used to configure the kernel and the included features, to
change their behavior, and adapt them to your needs. Typical examples of tunables
are: maximum number of kernel objects, scheduler type and attributes for threads, or
system clock frequency. Each system component or feature defines a number of these
tunable parameters.

Static Parameters
Static parameters are tunable parameters whose values are permanently set within a
system image. Changing these values requires rebuilding the system image.

The procedure for assigning new values to tunable parameters is detailed in
“Changing Tunable Parameter Values” on page 89.

Dynamic Parameters
For some tunable parameters, an additional flexibility is offered: the ability to assign
values to these parameters at various stages of system production and execution.

74 ChorusOS 4.0 Introduction ♦ December 1999



These types of parameters are called dynamic parameters. These dynamic parameters
define the system environment.

Dynamic parameters form a system-wide environment. A basic set of services allows
this environment to be constructed and consulted within a system image, at boot
time and runtime.

Compared to static parameters, dynamic parameters require additional target data
memory in order to store their names and values.

The procedure for modifying dynamic parameters is detailed in “Modifying the
System Environment” on page 90.

System Image Components
The system image contains a configured version of the ChorusOS operating system,
and possibly some user-defined applications (actors).

Depending on its configuration options, the ChorusOS operating system is itself built
from a kernel and a collection of actors. These actors, which contribute to the
implementation of some ChorusOS operating system features, are called ChorusOS
operating system actors.

Configuration options concerning the system image components deal mainly with
the inclusion of system and application actors within system images.

Configuration Files
The ChorusOS operating system configuration is expressed in ECML, an XML based
language. There are several levels of configuration files, all located in the conf
directory used to build the system image.

� ChorusOS.xml is the top level configuration file. The entire ChorusOS operating
system configuration is accessible through this file, which contains references to all
other configuration files.

� mkconfig is the directory containing the configuration information for each
system component. Most of the information it contains relates to feature options
and tunable parameters. For example:

� mkconfig/kern.xml contains the kernel feature definitions and
dependencies, and contains the tunables for the kernel. This file also contains
default values for the standard configuration.

� mkconfig/kern_action.xml contains specific configuration actions,
including the production rules used internally for the configuration.

Configuring and Tuning 75



� mkconfig/kern_f.xml and mkconfig/kern_action_f.xml are
additional configuration files identified by _f.xml that can be used to manage
family-specific configuration options.

� mkimage is the directory containing all the information related to the system
image build:

� mkimage/mkimage.xml contains two configurable declarations:

� BOOT_MODEis set to ram to build an image for RAM, or rom to build an
image for ROM.

� SYSTEMis set to chorus to build a default system image, or kernonly to
build a kernel-only system image. Other system images are also available.

� mkimage/family.xml contains the family dependent definitions.
� mkimage/model.xml contains the binary models for the executable files.
� mkimage/target.xml contains all configuration options related to the BSP,

and also the list of drivers.
� mkimage/system.xml contains all system binaries and the configuration of

the system image.
� mkimage/applications.xml describes the applications to be included in

the chorus or kernonly system image.

� basic and extended are the two configuration profiles.

Configuration Tools
The configuration tools allow the configuration of the ChorusOS operating system.
They are designed to be flexible enough to be extended to allow the configuration of
any other system component (OS or drivers) or even application actors that may be
part of the ChorusOS operating system image.

You can use either a graphical interface or a command-line interface to view and
modify the characteristics of a ChorusOS operating system image.

Graphical Configuration Tool
The graphical configuration tool, ews, requires Sun Java JDK 1.2 (JAVA 2) to be
installed and the location of the Java virtual machine to be in your path.

To start ews and open an existing configuration file, type:

76 ChorusOS 4.0 Introduction ♦ December 1999



$ ews -c config-file

The optional config-file specifies the path of the ChorusOS operating system
configuration file conf/ChorusOS.xml to open at start-up.

To start ews without opening a file, type:

$ ews

User Interface Overview
When started, ews opens a main window, containing a menu bar and toolbar at the
top, a navigation tree pane on the left, and an output view pane at the bottom. The
rest of the window is occupied by a Multiple Document Interface (MDI) area, which
is used to display other windows, like the Properties Inspector , or the Find
View (both are described later). These other windows can be resized, moved, or
closed just like any other window, but are constrained within the MDI area, and
cannot be moved outside.

A screenshot of ews is shown in Figure 3–1.

Configuring and Tuning 77



Figure 3–1 EWS User Interface

Navigation Pane

The navigation pane contains two tabbed windows: a Projects tab, which displays
any opened configurations as a hierarchical tree, and a Help tab, which displays the
online help table of contents.

Within the Project window, every element in the project view tree is represented
by a small icon with a name. Right-clicking on an element brings up a floating
context menu, which can be used to perform actions such as changing the element’s
value. Double-clicking on an element opens the main Properties Inspector
window in the MDI area.

Within the Help window, selecting an entry in the table of contents will display the
appropriate help page in the MDI area.

Other Windows

The Properties Inspector displays the properties of an element, such as its
value and description. Some of these properties may be changed.

78 ChorusOS 4.0 Introduction ♦ December 1999



The Show Children View window displays the sub-element, or first-level child, of
a selected element.

The Find window is used to locate an element in the project view tree. Any element
can be searched for by specifying a substring of its name or its type. The search can
take place from the root, on the entire tree hierarchy, or from the selected element.

Configuring a ChorusOS Operating System Image

Open a Configuration File
The first operation is to open a ChorusOS configuration file (unless the −c option
was used on the command line). For this, select the Open option in the File menu.
A file selection dialog appears to select the configuration file to open. The
configuration to open is the conf/ChorusOS.xml file located in the configuration
directory. Once opened, a new configuration item is added to the navigation tree.

Note - More than one configuration may be opened in ews at the same time.

Browse the Configuration Tree
It is possible to browse the configuration by opening the elements in the navigation
tree. There are two general kinds of elements in the tree: folders and variables.
Folders are used to organize the configuration variables into hierarchical groups. A
folder contains child elements that can be variables or folders. Variables are values
used to configure the ChorusOS operating system image.

Disabled Elements
Some of the elements in the configuration tree may be grayed-out and cannot be
edited. It is still possible to browse them, however. For example, some variables may
depend on the presence of a specific feature: if this feature is not selected, and its
current value is set to false , the corresponding tunables will be disabled.

Disabling of elements in the configuration is controlled by a condition. This is an
optional property attached to some elements, and if the condition is evaluated to
false, the element is disabled (elements without a condition property are always
enabled). If a folder is disabled, all its child elements (folders and variables) are also
disabled.

Configuring and Tuning 79



Invalid Elements

A configuration is invalid if there are one or more invalid elements in the
configuration tree.

Configuring the Features and Tunables
The features of the ChorusOS operating system image are located in the various
Features and Tunables folders. Features are expressed as boolean variables, and
tunables are expressed as either integers or enumerated variables. The following
properties for a tunable are visible in the Properties Inspector :

� Name

� Type

� Default value

� Current value

To change the value of a tunable parameter, edit the Current value property.

Setting a ChorusOS operating system Environment Variable
The values of the ChorusOS operating system environment variables are contained in
the env variable located in the Environment folder. The env variable is a list,
where each element represents an environment variable. This list may be empty for a
new configuration. It is possible to add, remove or modify environment variables
stored in this list.

Adding an Environment Variable

Select the env variable, right-click to display its context menu, and select New
Element . The newly created variable is appended to the list (you might need to
expand the list to see the new variable). Set the value of the new variable by editing
its value field.

Modifying the Value of an Environment Variable

An environment variable is a structured variable containing two fields: a name and a
value. The name field stores the name of the environment variable, and the value
field stores the value of this environment variable. Edit the value field to change the
value of the environment variable.

80 ChorusOS 4.0 Introduction ♦ December 1999



Deleting an Environment Variable
From the context menu of the environment variable, choose Delete .

Adding an Actor to the ChorusOS System Image
There are two stages to adding an actor to the system image:

1. Specify the new actor characteristics.

Open the Applications folder in the ChorusOS System Image
Configuration folder. A newly-created System Image Configuration
folder contains two templates for defining actors, one for user actors
(user_actor ) and one for supervisor actors (supervisor_actor ). To create
your actor definition, either modify or duplicate one of these templates, or choose
New Actor from the context menu of the Applications folder:

A new actor called my_actor is created. Click on the handle icon to the left of
the actor, or double-click on my_actor itself, to reveal a list of fields, or children:

Configuring and Tuning 81



Invalid elements are indicated by an exclamation mark (! ) over the icon. Your
new actor is invalid because its field values are empty. Double-click on the path
field to open the Properties Inspector window within the MDI:

Enter the absolute pathname of your actor by double-clicking in the Value field
of the Current Value property. For example:

82 ChorusOS 4.0 Introduction ♦ December 1999



Now double-click on the bank property to open up its Properties Inspector
window, then double-click in the Value field of the Reference property. An
ellipsis (... ) will appear at the right hand side of the field:

Click on the ellipsis to open the reference selecting window, Select a
reference window:

Click on the required reference, sys_bank , then click on Ok.

Now double-click on the binary property and perform similar actions to those
you performed for the bank property.

2. Add the actor to the list of application files present in the system image.

The application_files list in the ChorusOS System Image
Configuration folder contains references to the actors that will be present in
the ChorusOS operating system image. If an actor is defined but not referenced in
this list, it will not be added to the image. Add your actor to this list choosing
New element from its context menu:

Configuring and Tuning 83



An empty element will appear:

Update the element by opening it in the Properties Inspector and changing
the Value field of the Reference property. Scroll down and select your newly
defined actor, my_actor in this example, from the opened Select a reference
window:

84 ChorusOS 4.0 Introduction ♦ December 1999



Click on Ok to complete the operation.

Note - Drivers, defined in the BSP folder of the ChorusOS System Image
Configuration folder, may be added to the system image in exactly the same way.

Saving the Modified Configuration
After a configuration has been edited, it can be saved. For this, select the ChorusOS
configuration item in the navigation tree (this is the root element of a
configuration), and use its context menu. It is also possible to save it using the Save
option in the File menu on the main menu bar, or the Save button on the toolbar.

Note - A modified configuration is displayed in red, as a visual warning that the file
has changed.

Build the system image, as described in the next section.

Rebuilding the System Image
To rebuild the system image, select the ChorusOS configuration item in the
navigation tree, and use the build item in its context menu (or the corresponding
toolbar button). If the configuration file has not been saved since it was last
modified, the tool will propose saving it, as the configuration needs to be saved in
order to be built. If the configuration is invalid, it is not possible to build the
corresponding ChorusOS operating system image.

During the build of the system image, various messages generated by the make tools
are displayed in the output window.

It is possible to interrupt the build using the stop button on the toolbar. In this case,
the system image is not built.

Configuring and Tuning 85



Command-line Configuration Tool
The following sections explain how to use the command-line configuration tool,
configurator , for some common tasks.

Displaying the Configuration
The configurator utility provides an option to display the ChorusOS operating
system configuration in HTML format. Within your build directory, type the
following command:

$ configurator -display /tmp/ChorusOS.html

You can then use your browser to navigate through the ChorusOS.html file
generated by this command.

Figure 3–2 Kernel Configuration Displayed in HTML

Selecting a Configuration Profile
Two predefined profiles are provided, as described in “Feature Options” on page 72.
To select the basic profile, type:

% configurator -p conf/basic

86 ChorusOS 4.0 Introduction ♦ December 1999



To re-select the extended (default) profile, type:

% configurator -p conf/extended

Adding, Removing, or Listing a Feature
You can use the configurator utility to add, remove, or list a feature.

Adding a Feature
To add a feature, type:

% configurator -set feature_name=true

The status of the feature_name is set to true.

For example, to add the EVENTfeature to the default configuration:

% configurator -set EVENT=true

The configurator utility does not handle feature dependencies automatically. If
you define a set that is not complete, an error message is displayed.

Removing a Feature
To remove a feature, type:

% configurator -set feature_name=false

The status of the feature_name feature is set to false .

For example, to remove the EVENTfeature:

% configurator -set EVENT=false

You can reset the value of a feature to the default as follows:

Configuring and Tuning 87



% configurator -reset EVENT

Note - The reset command resets the value to the extended profile default.

Listing a Feature
You can check the value of a feature as follows:

% configurator -list feature feature_name

The output lists the feature and its status. If you omit feature_name, all features are
displayed:

% configurator -list feature

SEM bool ’true’
EVENT bool ’true’
RTMUTEX bool ’false’
TIMER bool ’true’
VTIMER bool ’false’
DATE bool ’true’

You can list a feature in greater detail with the −info option:

% configurator -info feature feature_name

The output lists the feature, its status, possible values and its description. For
example:

% configurator -info feature NFS_SERVER

NFS_SERVER:bool=’false’
Possible values: true|false
Description: NFS server access from target machine

88 ChorusOS 4.0 Introduction ♦ December 1999



Changing Tunable Parameter Values
Tunable parameters are defined by symbolic names within the ChorusOS operating
system components. Symbolic names include dots (. ), to maintain compatibility with
previous releases of the ChorusOS operating system.

The definition of a tunable parameter includes the definition of a default value for
this parameter. Integer values of tunable parameters are expressed either as integers
or as hexadecimal numbers.

To change the value of a tunable parameter, use:

% configurator -set tunable_name=value

For example, to re-configure the kernel to allow the creation of 300 threads:

% configurator -set kern.exec.maxThreadNumber=300

You can check the value of a tunable parameter as follows:

% configurator -list tunable tunable_name

You can list the values of all the kernel executive tunables as follows:

% configurator -list tunable kern.exec.*

The output lists the kernel executive tunables and their values:

kern.exec.maxCpuNumber int ’1’
kern.exec.maxActorNumber int ’64’
kern.exec.maxThreadNumber int ’300’
kern.exec.bgStackSize int ’0x1000’
kern.exec.dflSysStackSize int ’0x3000’
kern.exec.dflUsrStackSize int ’0x4000’
kern.exec.dblFltStackSize int ’0x800’
kern.exec.intrStackSize int ’0x3000’

You can list a tunable parameter in greater detail with the −info option:

Configuring and Tuning 89



% configurator -info tunable tunable_name

The tunable, its value and its description are displayed:

% configurator -info tunable kern.lap.*

kern.lap.maxLapBindNumber:int=’256’
Description: Maximum number of bind LAPs

kern.lap.maxLapSafeNumber:int=’128’
Description: Maximum number of safe LAPs

Modifying the System Environment
The system environment is defined by the set of dynamic parameters. The system
environment is a set of name-value pairs, where name and value are character
strings. Values for system environment variables can be obtained by the system and
applications at runtime using the sysGetEnv (2K) system call.

To display all the system environment variables, type:

% configurator -list env

To set a new environment variable, or change its value:

% configurator -setenv envar=value

Here is an example:

% configurator -setenv MESSAGE=’HelloWorld’

To unset a variable, so that it is removed from the environment, type:

% configurator -resetenv envar

90 ChorusOS 4.0 Introduction ♦ December 1999



Rebuilding the System Image

After you have finished modifying the configuration, rebuild the system image by
typing:

% make build

Configuring and Tuning 91



92 ChorusOS 4.0 Introduction ♦ December 1999



PART III Programming Overview





CHAPTER 4

Programming Overview

This chapter introduces the steps involved in developing applications, also called
actors, that run on the ChorusOS operating system. It includes the following sections:

� “ChorusOS Applications” on page 96 is a summary of the general principles of
developing an application that runs on the ChorusOS operating system.

� “Application Programming Interfaces” on page 98 contains a summary of the APIs
available.

� “Developing ChorusOS Applications” on page 103 explains how to build a
component to be included in the ChorusOS system image.

� “Using Dynamic Libraries” on page 109 presents the two types of library in the
ChorusOS operating system, and how to use them.

System development and advanced programming topics are not covered.

� For information about porting ChorusOS software to another target, see the
ChorusOS 4.0 Porting Guide.

� For information about adding a device driver, see the ChorusOS 4.0 Device Driver
Framework Guide.

� For information about the tools used to build ChorusOS, see the ChorusOS 4.0
Production Guide.

Note - The source code for many of the examples shown in this book is provided in
the examples directory. By default this directory is
/opt/SUNWconn/SEW/4.0/chorus-< target>/src/opt/examples .

95



ChorusOS Applications
The ChorusOS operating system provides an environment for applications running
on a network of target machines, controlled by a remote host.

� The target system runs the ChorusOS operating system and provides the execution
environment.

� The host machine provides the development and debugging environment. The
user can develop the applications on the host and, from the host, start and debug
these applications on the targets.

Programming Conventions
Services provided by the ChorusOS operating system are accessed as C routines. C
header files provide the required constants, types and prototypes definitions. As the
ChorusOS operating system is highly modular, header files reflect this modularity.
However, in the following examples a global header file, named chorus.h , which
collects most of the required header files, has been used for simplicity. Please refer to
the man pages to get the actual minimum header file required for each service.

Most ChorusOS operating system constants start with K_. ChorusOS operating
system error codes start with K_E. Constants and error codes are all written in
uppercase.

Most specific data types are prefixed by Kn. When type names are composed of
several lexems, the first letter of each lexem is written in uppercase while other
letters are in lowercase, as in KnRgnDesc (region descriptor).

General Principles
In order to compile and link an application, the following information is needed:

� The header files and compilation flags

� The program entry point

� The libraries to be linked with the program according to the services used by the
application, the environment present on the target system, and the actor type (user
or supervisor)

96 ChorusOS 4.0 Introduction ♦ December 1999



Program Entry Point
In order to initialize the libraries correctly before starting the execution of the
application code, the program entry point must be set to _start . After the
initialization of libraries is completed, _start calls the _main routine which
initializes variables in C++ programs. The main() routine is then called.

The _main routine manages any double calling at program initialization; some C++
compilers force a call to _main at the beginning of main() .

Depending on the development system, it may be necessary to use specific linker
directives to force the linker to extract the _start and _main routines from the
libraries.

Libraries
In order to choose which ChorusOS operating system libraries to use, the following
points need to be considered:

� Which APIs are used by the application program. For example, a program using
the mathematical API has to be linked with the libm.a library.

� What type of system is running on the target. For example, the librpc.a library
cannot be used if you are using the basic environment and no additional features.

� The address space in which the program will execute. For example a program
loaded as a user extended actor must be linked with the libcx.a library.

Supervisor Actor Binaries
As supervisor actors share the same supervisor address space, they are built as
relocatable binaries, leaving the choice of the final link addresses to either the system
configuration utility building the system image (for the basic environment) or the
Actor Manager (for the extended environment).

Care must be taken when programming supervisor actors: no memory protection is
provided between supervisor actors. A badly written supervisor actor accessing
addresses outside its own address space can corrupt any supervisor region and cause
unexpected behavior such as a system crash or reboot.

User Actor Binaries
User actors are also built as relocatable binaries, even though they use private address
spaces. The link address of the user actors and the size of the user address space are
board dependent. For a given board, all user actors are linked at the same address.

Programming Overview 97



The final link is done by the Actor Manager when actors are loaded dynamically on
the target.

Application Programming Interfaces
This section provides an overview of all programming interfaces available for
applications developed for the ChorusOS operating system. The programming
interface may differ from one program to another depending on:

� Its execution environment: basic or extended environment.

� Its execution mode: running in user or supervisor space.

� Its execution structure: containing one or more ChorusOS operating system
threads.

Naming Conventions
Library names in the ChorusOS operating system use the following conventions with
regard to their suffixes:

.u.a These libraries can only be used to build actors that will be loaded in a user
address space.

.s.a These libraries can only be used to build actors that will be loaded in the
supervisor address space.

.a These libraries can be used to build any type of actor.

Note - When a library has both a user and supervisor version, it will be referred to
using the .a suffix only.

All header file and library pathnames listed in the next subsections are related to the
installation path of your ChorusOS delivery, typically
/opt/SUNWconn/SEW/4.0/chorus-< target>.

Basic Environment APIs
The programming environment of basic actors consists of the following interfaces:

98 ChorusOS 4.0 Introduction ♦ December 1999



� The Microkernel API

� The Private Data API

� The Standard-C API

� The Console Input/Output API

All routines implementing these APIs have been grouped into two libraries:

kernel/lib/embedded/libebd.u.a for user actors

kernel/lib/embedded/libebd.s.a for supervisor actors

ChorusOS actors using the Basic Environment API are called embedded actors.

Extended Environment API
The programming environment of extended actors consists of the following
interfaces:

� The Microkernel API

� The Private Data API

� The Standard-C API

� The POSIX Input/Output API

� The POSIX Network API

� The Actor Management API

All routines implementing these APIs have been grouped into one library:

os/lib/classix/libcx.a for user and supervisor actors

Note - An extended supervisor actor should not use the svExcHandler() call as
an extended actor inherits the Actor Manager exception handler.

Programming Overview 99



Other APIs
Other APIs are provided with the ChorusOS operating system. Depending on their
nature, they may be available to both basic and extended environments or restricted
to a single environment. The following subsections give a description of the libraries
implementing these APIs.

POSIX Micro Real-time Profile API
Routines implementing the MRTP (Micro Real-time Profile) API are included within
the libcx and libebd libraries. They are available to both basic and extended
actors.

Mathematical API
Routines implementing the Mathematical API are packaged in an independent
library kernel/lib/libm/libm.a . This library is available to both basic and
extended actors.

Sun RPC API
Routines implementing the Sun RPC API are packaged in an independent library
os/lib/classix/librpc.a which is not thread-safe. This API is restricted to
extended actors.

GNU 2.7.1 C++ API
The C++ library os/lib/CC/libC.a provides support for C++ applications with a
complete and thread-safe library package. Every service offered by libC.a ensures
that shared data is only accessed after signaling the relevant synchronization objects.

To allow atomic manipulation of any stream class (iostream or fstream for
example), the API of libC.a has been extended with the following two services:

ios::lock()

ios::unlock()

The ios::lock( ) service is used to lock any stream class object. The
ios::unlock() service is used to unlock any stream class object. All services
called upon a given stream object StrObj which are preceded by StrObj.lock()
and followed by StrObj.unlock() are executed in an atomic way. It is guaranteed
that no other thread can access StrObj as long as the lock is on.

100 ChorusOS 4.0 Introduction ♦ December 1999



An I/O stream object can be locked in two ways. For example, if cout is an I/O
stream object:

cout.lock();
cout << "atomic " << "output";
... (any other operation on cout)
cout.unlock();

In this case the member function ios::lock() is called.

The following syntax could also be used:

cout << lock << "atomic " << "output" << unlock;

Embedded C++ actors can be linked with os/lib/CC/libC.a if they do not make
use of the iostream and fstream packages.

Multithreading
The libebd.a , libcx.a , libm.a and libC.a libraries have been made thread-safe
in order to support multithreaded actors. This is managed by the library in the
following way:

� by protecting shared variables with mutexes and using threadOnce() to
initialize these mutexes

� by using the Private Data library to maintain private variables per thread (for
errno management, see the next section)

Defining errno as one global variable for the actor is not suitable for multithreaded
actors as situations can arise where a thread, examining errno on return from a
failed system call, concludes that the call failed for the wrong reason because the
global errno was changed by another system call in another thread in the meantime.
Some programs also test errno rather than system call return values to detect errors.

To avoid this, the header file errno.h , exported by the extended environment,
should be included in any source file using errno . This will result in a separate
value for errno for each thread.

Header Files
The ChorusOS operating system header files are packaged in five different directories:

Programming Overview 101



� kernel/include/chorus . Header files in this directory export the following
APIs:

� The Microkernel API
� The Private Data API
� The Actor Management API

� kernel/include/stdc . Header files in this directory export the following APIs:

� The Standard-C API
� The Mathematical API
� The Console Input/Output API
� Some BSD specific APIs

� include/posix . Header files in this directory export the following APIs:

� The Standard-C API
� The Mathematical API
� The POSIX Input/Output API
� The POSIX MRTP API
� The POSIX Network API
� The Sun RPC API
� Some BSD specific APIs

� include/CC . Header files in this directory export the GNU 2.7.1 C++ API.

� include/X11 . Header files in this directory export the following libraries:
libX11.a , libXaw.a , libXext.a , libXmu.a , libXt.a .

Typical ChorusOS operating system applications use header files of the
include/chorus and include/posix directories (and also include/CC for
applications using the GNU 2.7.1 C++ API).

Developing personality servers (such as servers implementing a UNIX personality)
on a ChorusOS operating system needs extra care in order to avoid conflicts between
data types declared by ChorusOS operating system header files, and data types
declared by the server’s header files. These servers should be restricted to header
files of the include/chorus and include/stdc directories and use the
_CHO_POSIX_TYPES_NOTDEFcompile option.

102 ChorusOS 4.0 Introduction ♦ December 1999



Developing ChorusOS Applications
This section explains how to build a component to be included in a ChorusOS
operating system. The component could be an application, a device driver, or a BSP.
To build a ChorusOS component, you use the make and imake tools. All
development tools are provided in the tools directory of your delivery.

make Environment
The make environment is defined by a file containing variable definitions and rules.
Rules for compiling C, C++, and assembly language are provided. The rules are
specific to the compiler you use, and the name of the file indicates the compiler. For
example, if you are using the gcc compiler, the make environment file is called
tgt-make/gcc-devsys.mk . The file contains the variables and rules required for
building the component. The following variables are defined:

� CFLAGSand CXXFLAGSspecify the compilation options for C and C++ files,
respectively. The compilation options are shown in Table 4–1.

TABLE 4–1 Compilation Options

Option Possible Settings Default Setting

WARN WARN_ON, WARN_OFF WARN_ON

DEBUG DEBUG_ON, DEBUG_OFF DEBUG_OFF

PROF PROF_ON, PROF_OFF PROF_OFF

OPT OPT_ON, OPT_OFF OPT_ON

� INCLUDESand DEPENDSspecify include and depend values. These variables can
be overloaded at the application level. They are grouped into the CPPFLAGSflag,
which is used in compilation and to compute dependencies. Both INCLUDESand
DEPENDScan be initialized at the application level.

� LD_UCRT0, LD_SCRT0, LD_LCRT0, LD_CRTI, LD_CRTN, and LD_CRTXTare used
to manage different types of crt object files.

� LD_U_ACTORand LD_S_ACTORspecify link information for user and supervisor
actors.

� CLX_U_LIBS, CLX_S_LIBS , EBD_U_LIBS, EBD_S_LIBS, and CXX_LIBS are
provided to manage libraries.

Programming Overview 103



The make environment includes the following commands: cc , ld , as , and mkactors .

imake Environment
The ChorusOS imake environment extends the make environment by providing
template rules for common ChorusOS build operations through generic names.
When using those predefined imake rules, you do not need to know which libraries,
crt files, or entry points you should use to build an application, as they are
automatically selected for you.

Instead of creating Makefiles you must create Imakefiles, as imake will generate
Makefiles from them.

The imake environment is defined by four files containing sets of variables and
rules, located in the tools/imake directory. The rules are independent of the
compiler you use.

� Imake.tmpl contains definitions of variables.

� Imake.rules contains build rules. See “imake Build Rules” on page 104.

� Package.rules contains the rules used to build a binary distribution.

imake Variable Definitions
The file Imake.tmpl contains the following definitions:

� FAMILY, indicating the target family (x86 , usparc , ppc60x , mpc860, mpc8260).

� COMPILER, indicating the compiler to be used (gcc , for example).

� REL_DIR, indicating the path of the current directory. This variable is
automatically set in subdirectories by imake .

� HOSTOS, indicating the host operating system (solaris , win32 ).

� DEVTOOLS_DIR, indicating the path of the ChorusOS tools.

imake Build Rules
The file Imake.rules contains macros known as Imake build rules. Their name and
function are described in Table 4–2.

104 ChorusOS 4.0 Introduction ♦ December 1999



TABLE 4–2 Imake build rules

Macro name Function

MakeDir(dir) Creates the directory named dir .

LibraryTarget(lib, objs) Adds the objects indicated by objs into the
library lib .

Depend(srcs) Computes the dependencies of srcs and
adds them to the dependency list in the
Makefile (using makedepend ).

ActorTarget(prog, objs, options,

crt0, libs)
Uses objs to create a C actor called prog , and
passes options , crt0 and libs to the linker.

UserActorTarget(prog, objs, libs) Creates a user C actor.

SupActorTarget(prog, objs, libs) Creates a supervisor C actor.

EmbeddedUserActorTarget(prog,

objs, libs)
Creates an embedded user C actor.

EmbeddedSupActorTarget(prog,

objs, libs)
Creates an embedded supervisor C actor.

BuiltinDriver(prog, objs, libs) Creates a ChorusOS operating system driver.

BspProgtarget(prog, entry, objs,

libs)
Creates a BSP program.

CXXActorTarget(prog, objs,

options, crt0, libs)
Uses objs to create a C++ actor called prog ,
and passes options , crt0 and libs to the
linker.

CXXUserActorTarget(prog, objs,

libs)
Creates a user C++ actor.

CXXSupActorTarget(prog, objs,

libs)
Creates a supervisor C++ actor.

CXXEmbeddedUserActorTarget(prog,

objs, libs)
Creates an embedded user C++ actor.

CXXEmbeddedSupActorTarget(prog,

objs, libs)
Creates an embedded supervisor C++ actor.

DynamicUserTarget(prog, objs,

libs, dynamicLibs, dlDeps,

options)

Creates a dynamic user C actor.

DynamicSupTarget(prog, objs,

libs, dynamicLibs, dlDeps,

options)

Creates a dynamic user C actor.

Programming Overview 105



TABLE 4–2 Imake build rules (continued)

Macro name Function

DynamicCXXUserTarget(prog, objs,

libs, dynamicLibs, dlDeps,

options)

Creates a dynamic user C actor.

DynamicCXXSupTarget(prog, objs,

libs, dynamicLibs, dlDeps,

options)

Creates a dynamic user C actor.

DynamicLibraryTarget(dlib, objs,

staticLibs, dynamicLibs, dlDeps,

options)

Creates a dynamic library.

Rules used to build actors use the following common arguments:

� obj is the list of binary objects included in the actor.

� prog is the name of the actor.

� libs is the list of additional libraries used to build the actor. The actor is linked
by default with the library to provide either the basic or extended environment.

The rules used to build dynamic actors are described in more detail in “Building a
Dynamic Program” on page 112.

imake Packaging Rules
The file Package.rules contains macros known as Imake packaging rules for
building a binary distribution. Their name and function are described in Table 4–3.

TABLE 4–3 Imake packaging rules

Macro name Function

DistLibrary(lib, dir) Creates the directory dir and copies the
library lib into it.

DistActor(actor, dir) Creates the directory dir and copies the actor
actor into it.

DistFile(file, dir) Creates the directory dir and copies the file
file into it.

DistRenFile(file, nFile, dir) Creates the directory dir , copies file into it,
changing the name of file to nFile .

DistProgram(program, dir) Creates the directory dir and copies
program into it.

106 ChorusOS 4.0 Introduction ♦ December 1999



TABLE 4–3 Imake packaging rules (continued)

Examples

Simple imake Example
The application in this example is composed of a single C source file, for example
myprog.c in the directory myprog . Writing an Imakefile is quite straightforward.
First, you must set the SRCSvariable to the list of source files (in this case only one).

SRCS = myprog.c

Then, you must specify how to build the executable. The macro you use depends on
the type of binary you want. If you want to build a user-mode binary (for example
myprog_u ), use the UserActorTarget() macro, as illustrated below. The first
argument is the name of the executable. The second argument lists the object files.
The third argument allows you to specify which libraries your program depends on.
In this example there is no library, hence the empty argument (you could also pass
NullParameter ).

UserActorTarget(myprog_u,myprog.o,)

If you want to build a supervisor-mode binary (for example, myprog_s.r ), use the
SupActorTarget() as shown below. The arguments are the same as for
UserActorTarget() .

SupActorTarget(myprog_s.r,myprog.o,)

Finally, use the Depend() macro to generate the Makefile dependencies.

Depend($(SRCS))

The Imakefile is complete. It looks like this:

SRCS = myprog.c
UserActorTarget(myprog_u,myprog.o,)
SupActorTarget(myprog_s.r,myprog.o,)
Depend($(SRCS))

Programming Overview 107



Next, generate the Makefile with the ChorusOSMkMf tool (see the
ChorusOSMkMf(1CC) manpage for details). In the myprog directory, type:

% ChorusOSMkMf build_dir

Where build_dir is the directory where you have built a ChorusOS system image on
which your application will run.

Next, generate the make dependencies by typing the following command:

% make depend

Finally, compile and link the program by typing:

% make

The program is now ready to be executed, and can be run on your target by
following the steps in “Running the “Hello World” Example” on page 65.

imake with Multiple Source Files
If an application used source files located in several subdirectories, you need to
create a root Imakefile in the root directory, containing only the following:

#define IHaveSubdirs
SUBDIRS = subdir1 subdir2 ...

where subdir1, subdir2, ... are the subdirectories containing the source files (or other
intermediate root Imakefile files). Next, create an Imakefile in each subdirectory
containing source files. To generate the first Makefile , go to the root directory and
type:

% ChorusOSMkMf build_dir

Next, populate the tree with Makefile files, generate dependencies and finally
compile the programs by typing the make Makefiles , make depend , and then
make commands.

108 ChorusOS 4.0 Introduction ♦ December 1999



% make Makefiles
% make depend
% make

The program is now ready to be executed.

Note - Examples of Imakefiles which you can modify and use to build your own
applications are provided in
/opt/SUNWconn/SEW/4.0/chorus-< target>/src/opt/examples .

Using Dynamic Libraries
There are two types of library in the ChorusOS operating system:

� Static

Static library names are suffixed by .a . A static library is a collection of binary
object files (.o ). The linker concatenates all needed binary objects of the static
libraries into the executable program file.

� Dynamic

Dynamic library names are suffixed by .so . They can be linked with a program at
runtime. Dynamic linking is supported by a ChorusOS operating system
component called the runtime linker. It occurs in two cases:

� At actor start-up: in order to build the executable, the runtime linker loads and
links a list of libraries. These libraries are called the dependencies of the
executable.

� During actor execution: with the dynamic linking API, an actor can explicitly
load and link dynamic libraries, using the dlopen() function. This allows
dynamic programming.

Dynamic libraries are loaded at runtime and are not included in the executable.
This reduces the size of executable files. Dynamic libraries use relocatable code
format. This code is turned into absolute code by the runtime linker.

In the ChorusOS operating system, both user and supervisor actors (but not boot
actors) can use dynamic libraries.

Relocatable code can be contained in two types of executable:

Programming Overview 109



� Relocatable executable: at actor start-up, the runtime linker loads the executable and
performs the necessary relocations.

� Dynamic executable: at actor start-up, the runtime linker loads the executable and
performs the necessary relocations. It also loads and links the executable
dependencies, that is, the dynamic libraries used by the executable.

An actor that uses dynamic libraries is called a dynamic actor. A relocatable actor uses
only static libraries.

Static and Dynamic Linking
The following table summarizes the actions performed by the static linker, which
runs on the development host, and by the runtime linker, which runs on the target.

Link Relocatable Executable Dynamic executable

Static Linker .a Static linker adds
necessary objects (.o ) of a
static library (.a ) to the
executable.

.a Static linker adds necessary
objects (.o ) of a static library (.a )
to the executable.
.so Static linker adds the library
to the list of libraries to load at
actor start-up (afexec ).

Runtime Linker (afexec ) - .so At actor start-up, libraries are
loaded and linked by the runtime
linker. Libraries to load are
defined either at static link, or in
the LD_PRELOAD environment
variable. The runtime linker uses
a library search path to find
dynamic and shared libraries.

Runtime Linker (dlopen ) - .so Application explicitly asks
the runtime linker to dynamically
load and link a dynamic library,
using the dlopen() function of
the dynamic linking API.

Dynamic linking of libraries applies recursively to library dependencies: when a
library is loaded, all the libraries it uses are also loaded.

110 ChorusOS 4.0 Introduction ♦ December 1999



Building a Dynamic Library
This section describes how to build dynamic and shared programs using the imake
tool. See “Developing ChorusOS Applications” on page 103 for more general
information about using imake .

The following imake macro builds dynamic libraries:

DynamicLibraryTarget(dlib, objs, staticLibs, dynamicLibs, dlDeps, options)

� dlib : name of resulting dynamic library (must be suffixed by .so ).

� objs : library components: list of binary object files (suffixed by .o ).

� staticLibs : list of static libraries (.a ) that will be statically linked.

� dynamicLibs : list of dependencies: dynamic libraries that must be loaded
together with the resulting library. Each library can be defined in one of two ways:

1. -L path -l name : on the host, the linker will look for library path/
lib name.so . On the target, the runtime linker will look for lib name.so in the
library search path.

2. path: this is an absolute or relative library path used on the host by the linker,
and on the target by the runtime linker. A relative path containing a / is
interpreted as relative to the current directory by the runtime linker. A path
without / is searched in the library search path by the runtime linker.

� dlDeps : list of dynamic libraries the library depends upon. If these libraries are
changed, the resulting library dlib will be rebuilt. Each library must be defined as
a path on the host. Generally dlDeps duplicates the libraries described in
dynamicLibs . This allows, when the -L path -l name syntax is used, to express
the dependency without embedding a path in the executable.

� options : any linker options, preceded by −Xlinker . This must be used to
supply system-specific linker options which GNU C does not know how to
recognize. If you want to pass an option that takes an argument, you must use
−Xlinker twice, once for the option and once for the argument.

The following example builds a dynamic library named libfoo.so from the binary
objects files a.o and b.o . When this library is loaded dynamically, the runtime linker
will also load the dynamic library libdyn.so , which must be in its search path.

DynamicLibraryTarget(
libfoo.so,
a.o b.o, ,
libdyn.so, , )

Programming Overview 111



Building a Dynamic Program
The following imake macros build dynamic executables:

DynamicUserTarget(prog, objs, staticLibs,
dynamicLibs, dlDeps, options)

DynamicSupTarget(prog, objs, staticLibs,
dynamicLibs, dlDeps, options)

DynamicCXXUserTarget(prog, objs, staticLibs,
dynamicLibs, dlDeps, options)

DynamicCXXSupTarget(prog, objs, staticLibs,
dynamicLibs, dlDeps, options)

DynamicLibraryTarget(prog, objs, staticLibs,
dynamicLibs, dlDeps, options)

The prog argument is the name of the resulting program. Other arguments are the
same as the DynamicLibraryTarget() macro. For the options argument, the
following options are particularly useful:

� −Xlinker −soname=<name> within a DynamicLibraryTarget() rule sets the
internal so-name of the library. If a library used as a dependency in a rule that
builds a dynamic executable has a so-name defined, the executable records the
so-name instead of the dynamicLibs argument.

� −Xlinker −rpath −Xlinker < dir>: defines the runpath directory that is added
to the library search path (see “Runtime Linker” on page 113).

The following example builds a dynamic program named prog from the binary
object files a.o and b.o . The program is statically linked with the static ChorusOS
operating system library. When this program is started, the runtime linker will load
the dynamic library libdyn.so . In the target file system, this library can be located
in the /libraries directory, as this directory is added to the search path of the
runtime linker.

DynamicUserTarget(
prog,
a.o b.o, ,
libdyn.so, ,
-Xlinker -rpath -Xlinker /libraries)

Dynamic Programming
The previous sections described how to use dynamic objects (dynamic and shared
libraries) that are loaded by the runtime linker at actor start-up. In addition to this
mechanism, an actor can also bind a dynamic or shared library explicitly during its
execution. This on-demand object binding has several advantages:

112 ChorusOS 4.0 Introduction ♦ December 1999



� By processing a dynamic object when it is required rather than during the
initialization of an application, start-up time can be greatly reduced. In fact, the
object might not be required if its services are not needed during a particular run
of the application.

� The application can choose between several different dynamic objects depending
on the exact services required. For example, if different libraries implement the
same driver interface, the application can choose one driver implementation and
load it dynamically.

� Any dynamic object added to the actor address space during execution can be
freed after use, thus reducing the overall memory consumption.

Typically, an application performs the following sequence to access an additional
dynamic object, using the dynamic library API:

� A dynamic object is located and added to the address space of a running
application using dlopen() . Any dependencies this dynamic object has are
located and added at this time.

� The added dynamic object and its dependencies are relocated, and any
initialization sections within these objects are called.

� The application locates symbols within the added objects using dlsym() . The
application can then reference the data or call the functions defined by these new
symbols.

� After the application has finished with the objects, the address space can be freed
using dlclose() . Any termination section within the objects being freed will be
called at this time.

� Any error conditions that occur as a result of using these runtime linker interface
routines can be displayed using dlerror() .

Runtime Linker
This section describes the functions performed by the runtime linker, as well as the
features it supports for dynamic applications.

Dynamic applications consist of one or more dynamic objects. They are typically a
dynamic executable and its dynamic object dependencies. As part of the initialization
of a dynamic application, the runtime linker completes the binding of the application
to its dynamic object dependencies.

In addition to initializing an application, the runtime linker provides services that
allow the application to extend its address space by mapping additional dynamic
objects and binding to symbols within them.

The runtime linker performs the following functions:

Programming Overview 113



� It analyzes the executable’s dynamic information section and determines which
dynamic libraries are required.

� It locates and loads these dynamic libraries, and then it analyzes their dynamic
information sections to determine whether any additional dynamic library
dependencies are required.

� Once all dynamic libraries are located and loaded, the runtime linker performs
any necessary relocations to bind these dynamic libraries in preparation for actor
execution.

� It calls any initialization functions provided by the dynamic libraries. These are
called in the reverse order of the topologically sorted dependencies. Should
cyclical dependencies exist, the initialization functions are called using the sorted
order with the cycle removed.

� It passes control to the application.

� It calls any finalization functions on deletion of dynamic objects from the actor.
These are called in the order of the topologically sorted dependencies.

� The application can also call upon the runtime linker’s services to acquire
additional dynamic objects with dlopen() and bind to symbols within these
objects with dlsym() .

The runtime linker uses a prescribed search path for locating the dynamic
dependencies of an object. The default search paths are the runpath recorded in the
object, followed by /usr/lib . The runpath is specified when the dynamic object is
constructed using the −rpath option of the linker. The environment variable
LD_LIBRARY_PATH can be used to indicate directories to be searched before the
default directories.

Note - The runtime linker needs a file system to load dynamic objects. This file
system can be on a host and accessed through NFS from the target. In embedded
systems without a network connection, a bank of the system image can be used. For
example: /image/sys_bank .

Environment Variables
The following environment variables are used by the runtime linker:

� LD_LIBRARY_PATH specifies a colon (:) separated list of directories that are to be
searched before the default directories defined above. This is used to enhance the
search path that the runtime linker uses to find dynamic and shared libraries.

� LD_PRELOAD provides a dynamic object name that is linked after the program is
loaded but before any other dynamic objects that the program references.

� LD_DEBUG is a column-separated list of tokens for debugging the runtime
linking of an application. Each token is associated with a set of traces which are

114 ChorusOS 4.0 Introduction ♦ December 1999



displayed on the system console during runtime linking. The supported tokens
are: file-ops , reloc , symbol-resolution , malloc , segment-alloc ,
dependancy , misc , linking , dynamic-map-op , group , and error . Wildcard
substitutions are also allowed, so that s* , for example, matches both
symbol-resolution and segment-alloc , and * matches all traces.

Supported Features
� Immediate binding:

The runtime linker performs both data reference and function reference relocations
during process initialization, before transferring control to the application. This
behavior is equivalent to the LD_BIND_NOW behavior in the Solaris operating
environment (lazy binding is not supported).

� No version checking:

The runtime linker performs no version dependency checking. When looking for a
library, the runtime linker looks for a file name matching the library name exactly.
This behavior is equivalent to the LD_NOVERSION behavior in the Solaris
operating environment.

� Weak symbols and aliases:

During symbol resolution, weak symbols will be silently overridden by any global
definition with the same name. Weak symbols can be defined alone or as aliases to
global symbols. Weak symbols are defined with pragma definitions.

Examples
This section contains two examples of dynamic programs. In all these examples, it is
assumed that a standard development environment has been set up: system build
tree, search path, boot and initialization of target machine. It also assumes that the
chorus_root_directory is the path of the target root directory on the NFS host (for
example /home/chorus/root ), the name of the target is jericho , and the
environment variable WORK refers to the directory used for building these examples

Dynamic Link at Actor Start-up
The following dynamic program uses a custom dynamic library which will be loaded
and linked at actor start-up. It uses a function foo() which is defined in the
dynamic library. This function calls a function bar() defined in the main program.

This is the dynamic program progdyn.c :

#include <chorus.h>

extern void foo();

Programming Overview 115



main() {
foo(); /* calling foo defined in the library */

}

void bar() {
printf ("bar called\n");

}

This is the dynamic library libdyn.c :

#include <chorus.h>

extern void bar();

void foo() {
printf ("Calling bar\n");
bar(); /* calling bar defined in the main program */

}

Building the Dynamic Library
Create a directory libdyndir in $WORK, containing libdyn.c and the following
Imakefile :

SRCS = libdyn.c
DynamicLibraryTarget (libdyn.so, libdyn.o, , , ,-Xlinker -soname=libdyn.so )
Depend(libdyn.c)

In the libdyndir directory, build the dynamic library libdyn.so using the
ChorusOSMkMf , make depend , and make commands.

Building the Dynamic Program

Create a directory progdyndir in $WORK, containing progdyn.c and the following
Imakefile :

SRCS = progdyn.c
DynamicUserTarget (progdyn, progdyn.o, ,

$(WORK)/libdyndir/libdyn.so,
$(WORK)/libdyndir/libdyn.so, )

Depend()

In the progdyndir directory, build the dynamic program progdyn using the
ChorusOSMkMf , make depend and make commands.

116 ChorusOS 4.0 Introduction ♦ December 1999



% ChorusOSMkMf $WORK
% make depend
% make

Running the Dynamic Program
Copy the dynamic program into the /bin subdirectory of the chorus_root_directory
directory:

% cp $WORK/progdyndir/progdyn chorus_root_directory/bin

Copy the dynamic library into the /lib subdirectory of the chorus_root_directory
directory:

% cp $WORK/libdyndir/libdyn.so chorus_root_directory/lib

Then, the following command will tell the runtime linker where to find the
libdyn.so dynamic library:

% rsh jericho setenv LD_LIBRARY_PATH /lib

Alternatively, set the runpath to /lib in the ldopts argument of the program
macro (−rpath /lib) .

Finally, the following command will start the program and dynamically load the
libdyn.so library:

% rsh jericho arun /bin/progdyn

Explicit Link Using dlopen
The following program explicitly loads a dynamic library at runtime, using the
function dlopen() . It searches for the address of the dynfunc() function defined
in the library and calls this function.

This is the dynamic program progdyn2.c :

Programming Overview 117



#include <chorus.h>
#include <cx/dlfcn.h>

int main()
{

void (*funcptr)(); /* pointer to function to search */
void *handle; /* handle to the dynamic library */

/* finding the library */
handle = dlopen ("libdyn2.so", RTLD_NOW);
if !(handle) { printf ("Cannot find library libdyn2.so\n"); exit(1); }

/* finding the function in the library */
funcptr = (void (*)()) dlsym (handle, "dynfunc");
if !(funcptr) { printf ("Cannot find function dynfunc\n"); exit(1); }

/* calling library function */
(*funcptr)();

}

This is the dynamic library libdyn2.c :

#include <chorus.h>

void dynfunc() {
printf ("Calling dynfunc\n");

}

Building the Program and the Library

The program and library above are built in the same way as in the previous example,
using two Imakefiles:

Create a directory libdyn2dir in $WORK, containing libdyn2.c and the following
Imakefile :

SRCS = libdyn2.c
DynamicLibraryTarget (libdyn2.so, libdyn2.o, , , , )
DependTarget(libdyn2.c)

Create a directory progdyn2dir in $WORK, containing progdyn2.c and the
following Imakefile :

SRCS = progdyn2.c
DynamicUserTarget (progdyn2, progdyn2.o, , , , )
Depend(progdyn2.c)

118 ChorusOS 4.0 Introduction ♦ December 1999



Running the Dynamic Program

Copy the dynamic program into the /bin subdirectory of the chorus_root_directory
directory:

% cp $WORK/progdyn2dir/progdyn2 chorus_root_directory/bin

Copy the dynamic library into the /lib subdirectory of the chorus_root_directory
directory:

% cp $WORK/libdyn2dir/libdyn2.so chorus_root_directory/lib

Then, the following command will tell the runtime linker where to find the
libdyn2.so dynamic library:

% rsh jericho setenv LD_LIBRARY_PATH /lib

Finally, the following command will start the program:

% rsh jericho arun /bin/progdyn2

At program start-up, the runtime linker will only load the executable progdyn2 . The
libdyn2.so library will be loaded when the dlopen() function is called.

Programming Overview 119



120 ChorusOS 4.0 Introduction ♦ December 1999



CHAPTER 5

Using Actors

This chapter explains the role of actors in a ChorusOS operating system application.
It contains the following sections:

� “Actor Definition” on page 121 defines the term actor, and explains how an actor
is named and used.

� “Loading Actors” on page 126 explains how to load an actor.

� “Execution Environment of Actors” on page 127 explains how the execution
environment of an actor is defined.

� “Spawning an Actor” on page 130 explain the ways in which an actor can be run.

Actor Definition
An actor is the unit of loading for an application. It serves also as the encapsulation
unit to associate all system resources used by the application and the threads running
within the actor. Threads, memory regions and communication end-points are some
examples of these resources. They will be covered in more detail throughout this
chapter. All system resources used by an actor are freed upon actor termination.

Some resources, known as anonymous resources, are not bound to a given actor.
They must be freed explicitly when they are no longer required. Examples of
anonymous resources are physical memory, reserved ranges of virtual memory, and
interrupt vectors.

The ChorusOS operating system is dedicated to the development and execution of
applications in a host-target environment where applications are developed,
compiled, linked and stored on a host system and then executed on a target machine
where the ChorusOS operating system is running. When properly configured, the

121



ChorusOS operating system offers convenient support for writing and running
distributed applications.

Within the ChorusOS operating system environment, an application is a program or
a set of programs usually written in C or C++. In order to run, an application must
be loaded on the ChorusOS runtime system. The normal unit of loading is called an
actor and is loaded from a binary file located on the host machine. As with any
program written in C or C++, an actor has a standard entry point:

int main()
{

/* A rather familiar starting point, isn’t it? */
}

The code of this type of application will be executed by a main thread which is
automatically created at load time by the system. The ChorusOS operating system
provides means to dynamically create and run more than one thread in an actor. It
also offers services which enable these actors, whether single-threaded or
multithreaded, to cooperate, synchronize, exchange data either locally or remotely, or
get control of hardware events, for example. These topics will be covered step by
step throughout this chapter.

An actor may be of two types: it may be either a supervisor actor or a user actor.
This information defines the nature of the actor address space. User actors have
separate and protected address spaces so that they cannot overwrite each other’s
address spaces. Supervisor actors use a common but partitioned address space.
Depending on the underlying hardware, a supervisor actor can execute privileged
hardware instructions (such as initiating an I/O), while a user actor cannot.

Note - In flat memory, supervisor and user actors share the same address space and
there is no address protection mechanism.

Binary files from which actors are loaded may also be of two kinds: either absolute
or relocatable. An absolute binary is a binary where all addresses have been resolved
and computed from a well-known and fixed basis which may not be changed. A
relocatable file is a binary which may be loaded or relocated at any address.

Both user and supervisor actors can be loaded either from absolute or relocatable
binary files. However, common practice is to load them from relocatable files to
avoid a static partitioning of the common supervisor address space, and to allow the
loading of user actors into this space in the flat memory model. This is covered in
more detail in “User and Supervisor Actors” on page 123.

122 ChorusOS 4.0 Introduction ♦ December 1999



Naming Actors
Every actor, whether it is a boot actor or a dynamically loaded actor, is uniquely
identified by an actor capability. When several ChorusOS operating systems are
cooperating together over a network in a distributed system, these capabilities are
always unique through space and time. An actor may identify itself with a
predefined capability:

K_MYACTOR.

In addition, an actor created from the POSIX personality is identified by a local actor
identifier. This actor identifier is displayed on the console as the result of the arun
command. It may be used from the console as a parameter of the akill command.

% rsh target arun hello
Started aid = 13

%

In this example, target is the name of your target.

User and Supervisor Actors
There are two main kinds of actors which may be run within the ChorusOS
operating system environment: user actors and supervisor actors. A user actor runs
in its own private address space so that if it attempts to reference a memory address
which is not valid in its address space, it will encounter a fault and, by default, will
be automatically deleted by the ChorusOS operating system.

Supervisor actors do not have their own fully contained private address space.
Instead, they share a common supervisor address space, which means that an
ill-behaved supervisor actor can access, and potentially corrupt, memory belonging
to another supervisor actor. The common supervisor address space is partitioned
between the ChorusOS operating system components and all supervisor actors.

As supervisor actors reside in the same address space, there is no memory context
switch to perform when execution switches from one supervisor actor to another.
Thus, supervisor actors provide a trade-off between protection and performance.
Moreover, they allow execution of privileged hardware instructions and so enable
device drivers, for example, to be loaded and run as supervisor actors.

On most platforms, the address space is split into two ranges: one reserved for user
actors and one for supervisor actors (see Figure 5–1). As user actor address spaces are
independent and overlap each other, the address where these actors run is usually
the same, even if the actors are loaded from relocatable binaries. On the other hand,
available address ranges in supervisor address space may vary depending on how

Using Actors 123



many and which supervisor actors are currently running. Since the ChorusOS
operating system is able to find a slot dynamically within the supervisor address
space to load the actor, the user does not need to be aware of the partitioning of the
supervisor address space: using relocatable binary files will suffice.

User Actor C

User Actor B

User Actor A

Supervisor Actor 1

Supervisor Actor 2

ChorusOS

S
up

er
vi

so
r

A
dd

re
ss

 S
pa

ce
U

se
r

A
dd

re
ss

 S
pa

ce

Figure 5–1 User and Supervisor Address Spaces

The ChorusOS operating system offers a way to determine dynamically whether a
program is currently running as a user or a supervisor actor:

#include <chorus.h>

int actorPrivilege(KnCap* actorCap,
KnActorPrivilege* old,
KnActorPrivilege* new);

If actorCap is set to the name of an actor, you can use this API to obtain the
privilege of the named actor. If actorCap is set to the predefined value K_MYACTOR,
you can obtain the privilege of the current actor. This call may also be used to
dynamically change the privilege of an actor from user to supervisor or vice versa.

124 ChorusOS 4.0 Introduction ♦ December 1999



The following example illustrates a usage of the actorPrivilege() service. It is a
small program that retrieves its privilege, without trying to modify it. It prints one
message if the actor is running as a user actor, and another if it is running as a
supervisor actor.

CODE EXAMPLE 5–1 Getting Actor Privilege

#include <stdio.h>
#include <chorus.h>

int main(int argc, char** argv, char** envp)
{

KnActorPrivilege actorP;
int res;

/* Get actor’s privilege */
res = actorPrivilege(K_MYACTOR, &actorP, NULL);
if (res != K_OK) {

printf("Cannot get the privilege of the actor, error %d\n", res);
exit(1);

}

if (actorP == K_SUPACTOR) {
printf("This actor is running as a supervisor actor\n");

} else {
printf("This actor is running as a user actor\n");

}

exit(0);
}

KnActorPrivilege is the type defined by the ChorusOS operating system to
handle the type of an actor. The defined values for the actor type are:

� K_SUPACTOR: a supervisor actor running in the supervisor address space which
can access all privileged kernel calls.

� K_SYSTEMACTOR: a trusted user actor, launched at boot time by the kernel and
running in its own user space address, which can access certain privileged kernel
calls.

� K_USERACTOR: a user actor running in its user space. It has fewer privileges than
K_SYSTEMACTOR.

Using Actors 125



Loading Actors
Actors may be loaded in two different ways: either at system boot time or
dynamically.

The ChorusOS operating system is started from a bootable file, called the system
image, which is loaded in memory either by a hardware boot or a primary boot,
depending on the hardware. This bootable file contains the image of the system to be
run on the target machine.

Boot Actors
The ChorusOS operating system environment provides tools to configure this system
image with user provided actors, which may be user or supervisor actors. Once the
system has performed its own initialization, it starts these actors automatically,
creating a main thread in each of them. These actors are often referred to as boot
actors.

Loading Actors Dynamically
In order to be able to dynamically load an application on a ChorusOS operating
system, the system must have been configured with the ACTOR_EXTENDED_MNGT
feature. In this type of configuration, the ChorusOS operating system is able to
dynamically load binary files from the host system acting as an NFS server, from a
local disk, or from the system image (/image/sys_bank ). This host-target
environment enables the user to load supervisor and user actors using a simple
remote shell mechanism. To execute an application called hello on the target host
moon, use the arun command, as follows:

% rsh moon arun hello

The ChorusOS operating system uses the .r suffix to denote relocatable binary files.

A relocatable actor is executed as follows:

% rsh moon arun mySupAppl.r

In this example, the .r suffix could be omitted, because the ChorusOS operating
system looks first for the name as specified, mySupAppl , and then, if it does not find

126 ChorusOS 4.0 Introduction ♦ December 1999



a file of that name, automatically looks for a file of that name with the suffix .r ,
mySupAppl.r .

Execution Environment of Actors
The execution environment of actors varies slightly depending on whether the actors
have been loaded dynamically or at boot time.

An actor loaded at boot time does not have any arguments or environment. If it is
linked with the embedded library, it may perform very simple input or output
operations such as printing traces on the system console using the printf() C
library routine. It may also read characters typed in from the keyboard of the system
console through the scanf() C library routine. If it is linked with the libcx.a
library, it must first open /dev/console three times in order to activate stdin ,
stdout , or stderr and allow printf() or scanf() operations on the system
console. The main thread of an actor loaded at boot time will belong to the
SCHED_FIFOscheduling policy, with an arbitrary priority depending on the rank of
the actor within the system image. The size of the stack provided to the main thread
of this type of actor is defined by a system-wide tunable parameter.

A dynamically loaded actor is started as a regular C program with arguments and
environments:

int main(int argc, char** argv, char** envp)
{

/* Main routine of a dynamically loaded actor */
/* regardless of whether the actor is a user */
/* or supervisor actor. */

}

The standard input, output and error files of an extended actor may be redirected so
that the I/O operations performed by this actor occur either on the system console,
on a regular file (accessed through NFS) or on a terminal window of the host system.
The main thread of a dynamically loaded actor has its scheduling policy, priority and
stack size set according to system-wide tunable parameters.

Actor Context
The precise context of an actor depends on how the system is configured. An
extended actor has a file context similar to the file context of a UNIX process: it has a
root directory as well as a current directory. It may also create, open, close, read and
write files or sockets.

Using Actors 127



An extended actor runs on behalf of a user who is identified by means of a
credentials structure. The actor credentials include: the identifier of the user, the
identifier of the group of the user as well as a possibly empty list of identifiers of
supplementary groups. Readers familiar with the concept of credentials in UNIX
should note that the ChorusOS operating system concept of credentials is simpler
than the UNIX one. ChorusOS 4.0 does not differentiate between real or effective
user/group identification as it is not supported.

These actor credentials are used for file access. They are also used when the
ChorusOS operating system runs in secured mode to check the validity of an
operation. For example, in secured mode only the superuser, whose user identifier is
0, may load supervisor actors.

Standard Input/Output (I/O)
An extended actor may take advantage of the entire C library for dealing with I/O.
In addition to the I/O interface provided by the C library, an extended actor may
also use POSIX I/O services such as open , read , or write , as well as POSIX socket
services such as socket , bind , and connect .

The following program may be run as an actor, and illustrates the way in which the
C library might be used from an actor.

CODE EXAMPLE 5–2 Using the C Library from an Actor

#include <stdio.h
#include <stdlib.h>
#include <chorus/stat.h>

#define BUF_SIZE 80

struct stat st;

int main(int argc, char** argv, char** envp)
{

FILE* file;
FILE* filew;
char* buf;
int res;

if (argc != 2 && argc != 3) {
fprintf(stderr, "Usage: %s filename\n", argv[0]);
exit(1);

}

file = fopen(argv[1], "r");

if (file == NULL) {
fprintf(stderr, "Cannot open file %s\n", argv[1]);
exit(1);

}

res = stat(argv[1], &st);

128 ChorusOS 4.0 Introduction ♦ December 1999



if (res < 0) {
fprintf(stderr, "Cannot stat file\n");
exit(1);

}

printf("File size is %d mode 0x%x\n", st.st_size, st.st_mode);

buf = (char*) malloc(BUF_SIZE);
if (buf == NULL) {

fprintf(stderr, "Cannot allocate buffer\n");
exit(1);

}

bzero(buf, BUF_SIZE);
res = read(fileno(file), buf, 80);
if (res == -1) {

fprintf(stderr, "Cannot read file\n");
exit(1);

}

printf("%s\n", buf);

if (argv[2] != NULL) {
filew = fopen(argv[2], "w");

if (filew == NULL) {
fprintf(stderr, "Cannot open file %s\n", argv[2]);
exit(1);

}

printf("Type any input you like: \n");

do {
scanf("%80s", buf);
printf("buf=%s\n", buf);
fprintf(filew, "%s", buf);
printf("buf=%s\n", buf);

} while (buf[0] != ’Q’);
}
exit(0);

}

Note - This example assumes that argv[0] is valid, and the actor is linked with the
~lib/classix/libcx.a library, since the library is common to both user and
supervisor actors. Referencing argv[0] without checking if argc is greater than
zero can cause the actor to make an exception and be deleted.

Using Actors 129



Allocating Memory
In any C program, memory can be dynamically allocated by means of the malloc()
C library routine within actors, whether loaded at boot time or dynamically, and
whether running as user or supervisor actors.

Code Example 5–2 shows a usage of the malloc() routine.

Terminating an Actor
As shown in the previous example, an actor may terminate by invoking the exit( )
routine, as with any typical C program. Invoking exit( ) ensures that all resources
used by the actor are freed: I/O buffers will be flushed, all open files are closed, and
all other system resources provided by features configured within the system are
released automatically.

Spawning an Actor
So far, two ways of loading and running actors have been described: either the
inclusion of the actor as part of the system image, or the usage of the arun
mechanism. The ChorusOS operating system also enables an actor to dynamically
spawn another actor from a binary file. This spawned actor may be either a
supervisor or a user actor. This service is similar to the exec() UNIX system call:

#include <am/afexec.h>

int afexecve (const char* path,
KnCap* actorCap,
const AcParam* param,
char* const* argv,
char* const* envp);

This service creates a new actor whose capability is returned by the system at the
location pointed to by the actorCap argument. The actor created will execute the
binary file stored in the file named path . The main thread of this actor will run the
main routine of the program. This thread will have the same scheduling attributes
and stack size as an actor loaded using the arun mechanism.

argv and envp are pointers to the array of arguments and environments that will be
received by the newly created actor.

The afexec() service comes in several variants, similar to the UNIX exec() call
variants. When successful, all afexec() routines return the actor identifier of the

130 ChorusOS 4.0 Introduction ♦ December 1999



newly created actor. Otherwise, they return -1, and the error code is returned in the
errno variable.

Most of the time, application writers will not need to use the afexec() service.
They will use either the arun facility or include the actor as part of the system image.
However, for convenience, some examples within this document do use this service.

Below is an example of use of the afexecve() service call.

� A user actor loaded by arun spawns another user actor, running the same
executable file.

� They both print a trace and terminate.

� The first actor is distinguished from the one it spawns by the number of
arguments: the first actor has no argument, but spawns the second actor passing it
a string as its first argument. This string is printed by the spawned actor.

� The first actor prints the actor identifier of the spawned actor.

CODE EXAMPLE 5–3 Spawning an Actor

#include <stdio.h>
#include <errno.h>
#include <am/afexec.h>

AcParam param;
char* spawnedArgs[3];
char* tagPtr = "Welcome newly created actor!";

main(int argc, char** argv, char**envp)
{

KnCap spawnedCap;
int res;

if (argc == 1) {
/*

* This is the first actor (or spawning actor):
* Binary file used to load this actor is passed
* by "arun" as argv[0],
*
* Set an argument in order to enable the second
* actor to know it is the second one.
*/

param.acFlags = AFX_USER_SPACE;

spawnedArgs[0] = argv[0];
spawnedArgs[1] = tagPtr;
spawnedArgs[2] = NULL;

/*
* Other fields are implicitly set to NULL, as
* param is allocated within the bss segment of
* the program.
*/

res = afexecve(argv[0], &spawnedCap, &param , spawnedArgs, envp);

if (res == -1) {

Using Actors 131



printf("Cannot spawn second actor, error %d\n", errno);
exit(1);

}
printf("I succeeded creating actor whose aid is %d\n", res);

} else {
/*

* This is the spawned actor:
* Check the number of args,
* Print args,
* Exit
*/

if ((argc == 2) && (strcmp(tagPtr, argv[1]) == 0)) {
/*

* This is really the spawned actor.
*/

printf("My spawning actor passed me this argument: %s\n",
argv[1]);

} else {
printf("You ran %s with an argument, you should not!\n", argv[0]);
exit(1);

}
}
exit(0);

}

Note - This example assumes that argv[0] is valid, and the actor is linked with the
~lib/classix/libcx.a library, since the library is common to both user and
supervisor actors. Referencing argv[0] without checking if argc is greater than
zero can cause the actor to make an exception and be deleted.

� A null AcParam argument instructs the system to use default values for
afexec() calls.

� The acFlags field indicates, among other possibilities, whether the actor should
be created as a user actor (when the flag is set to AFX_USER_SPACE), or as a
supervisor actor (when the flag is set to AFX_SUPERVISOR_SPACE). These values
are mutually exclusive: one and only one of the two values may be set. In addition,
the user must make sure that the value of the flag is consistent with the binary file
used to load the actor. Trying to create a supervisor actor with a binary file
prepared for a user actor, by linking with the user libraries, will result in an error.

The AFX_ANY_SPACEoption can be passed to instruct the operating system to
retrieve the privilege of the binary file and create an actor with the same privilege.

� Unused fields of the AcParam argument must be set to 0.

132 ChorusOS 4.0 Introduction ♦ December 1999



CHAPTER 6

Multithreaded Programming with the
ChorusOS Operating System

This chapter describes how to use ChorusOS operating system services to create a
multithreaded actor. It contains the following sections:

� “Basic Multi-Thread Programming” on page 133 is an overview of the
multithreading model of the ChorusOS operating system.

� “Thread Handling” on page 135 explains how to identify, create, and delete a
thread.

� “Synchronizing Threads” on page 142 explains the available methods for
synchronizing threads.

� “Basic Scheduling Control” on page 150 explains how to schedule threads.

� “Managing Per-Thread Data” on page 154 explains how to maintain and use
per-thread and shared data.

� “Threads and Libraries” on page 158 explains how to use libraries within a
multithreaded actor.

Basic Multi-Thread Programming
Within an actor, whether user or supervisor, one or more threads may execute
concurrently. A thread is the unit of execution in a ChorusOS operating system and
represents a single flow of sequential execution of a program. A thread is
characterized by a context corresponding to the state of the processor (registers,
program counter, stack pointer or privilege level, for example). See Figure 6–1.

Threads may be created and deleted dynamically. A thread may be created in
another actor than the one to which the creator thread belongs, provided they are

133



both running on the same machine. The actor in which the thread was created is
named the home actor or the owning actor. The home actor of a thread is constant
during the life of the thread.

The system assigns decreasing priorities to boot actor threads, so that boot actor
main threads are started in the order in which they were loaded into the system
image. If a boot actor’s main thread sleeps or is blocked, the next boot actor threads
will be scheduled for running.

Although there are no relationships maintained by the ChorusOS operating system
between the creator thread and the created thread, the creator thread is commonly
called the parent thread, and the created thread is commonly called the child thread.

A thread is named by a local identifier referred to as a thread identifier. The scope of
this type of identifier is the home actor. In order to name a thread of another actor,
you must provide the actor capability and the thread identifier. It is possible for a
thread to refer to itself by using the predefined constant: K_MYSELF.

All threads belonging to the same home actor share all the resources of that actor. In
particular, they may access its memory regions, such as the code and data regions,
freely. In order to facilitate this access, the ChorusOS operating system provides
synchronization tools which are covered in a later section of this document.

Threads are scheduled by the kernel as independent entities; the scheduling policy
used depends on the scheduling module configured within the system. In a first
approach, assume that a thread may be either active or waiting. A waiting thread is
blocked until the arrival of an event. An active thread may be running or ready to
run.

Code

Stack
Pointer

Main thread

main()

thLi: 13

Stack
Pointer

Stack
Pointer

Data

Dynamically
created threads

thLi: 14 thLi: 15

Communication
End Points

Figure 6–1 A Multi-Threaded Actor

134 ChorusOS 4.0 Introduction ♦ December 1999



Thread Handling
Getting a Thread Identifier
A thread may obtain its local identifier by means of the following ChorusOS
operating system service:

#include <chorus.h>

int threadSelf();

An example of how this call can be used is provided in Code Example 6–1.

Creating a Thread
A thread may be created dynamically by means of the following ChorusOS operating
system service:

#include <chorus.h>

int threadCreate(KnCap* actorCap,
KnThreadLid* thLi,
KnThreadStatus status,
void* schedParam,
void* startInfo);

The actorCap parameter identifies the actor in which the new thread will be created.
You can create the new thread in the current actor by passing K_MYACTORas the
actor capability. This is the usual case. Should this be successful, the local identifier of
the newly created thread is returned at the location defined by the thLi parameter.

The schedParam parameter is used to define the scheduling properties of the thread
to be created. If this parameter is set to 0, the created thread inherits the scheduling
attributes of the creator thread.

The startInfo parameter is used to define the initial state of the thread, such as
the initial program counter of the thread (the thread entry point), as well as the
initial value of the stack pointer to be used by the created thread. You can also define
whether the thread will run as a user thread or as a supervisor thread.

A thread needs a stack to run, in order to have room to store its local variables.
When the thread is a user thread, the user must explicitly provide a stack to the
thread. However, stacks for supervisor threads are implicitly allocated by the system.
In fact, a system stack is allocated for all threads, even those running in user mode.

Multithreaded Programming with the ChorusOS Operating System 135



Note - As the operating system does not prevent the user stack from overflowing,
checks must be made every time a thread is created.

System stacks are not allowed to overflow as memory will become corrupted,
resulting in unpredictable operating system behavior.

Code Example 6–1 is a simple program illustrating the creation of a thread by the
main thread of an actor. The actor is loaded by the arun command. Its main thread
is implicitly created by the system. The goal of the example is to:

� create a thread, which prints a message, including its thread identifier

� simultaneously, the main thread prints another message with both thread
identifiers

� the main thread then terminates the actor

This example will work without modification whether it is run as a user or as a
supervisor actor. In the first case, a user thread must be created, while in the second
case a supervisor thread must be created. Using the actorPrivilege() service call
might be helpful for this purpose.

This example requires some kind of synchronization between the main thread and
the created one. Execution of a thread can be suspended for a given delay:

#include <chorus.h>

int threadDelay(KnTimeVal* waitLimit);

This call suspends the execution of the invoking thread for a period specified by the
KnTimeVal structure (see “Current Time ” on page 192 for more detail). There are
two predefined values:

� K_NOTIMEOUTspecifies an infinite delay.

� K_NOBLOCK, which specifies no delay. This is an explicit request for the processor
to yield and reschedule another thread of the same priority.

These values may be used instead of the pointer to the KnTimeVal data structure.
There is also a predefined macro which sets such a structure from a delay expressed
in milliseconds: K_MILLI_TO_TIMEVAL(KnTimeVal* waitLimit, int delay) .
For more information, see the threadCreate (2K), threadDelay (2K), and
threadSelf (2K) man pages.

CODE EXAMPLE 6–1 Creating a Thread

(file: progov/thCreate.c)

#include <stdio.h>
#include <stdlib.h>

136 ChorusOS 4.0 Introduction ♦ December 1999



#include <chorus.h>

#define USER_STACK_SIZE (1024 * sizeof(long))

int
childCreate(KnPc entry)
{

KnActorPrivilege actorP;
KnDefaultStartInfo_f startInfo;
char* userStack;
int childLid = -1;
int res;

/* Set defaults startInfo fields */
startInfo.dsType = K_DEFAULT_START_INFO;
startInfo.dsSystemStackSize = K_DEFAULT_STACK_SIZE;

/* Get actor’s privilege */
res = actorPrivilege(K_MYACTOR, &actorP, NULL);
if (res != K_OK) {

printf("Cannot get the privilege of the actor, error %d\n", res);
exit(1);

}

/* Set thread privilege */
if (actorP == K_SUPACTOR) {

startInfo.dsPrivilege = K_SUPTHREAD;
} else {

startInfo.dsPrivilege = K_USERTHREAD;
}

/* Allocate a stack for user threads */
if (actorP != K_SUPACTOR) {

userStack = malloc(USER_STACK_SIZE);
if (userStack == NULL) {

printf("Cannot allocate user stack\n");
exit(1);

}

startInfo.dsUserStackPointer = userStack + USER_STACK_SIZE;
}

/* Set entry point for the new thread */
startInfo.dsEntry = entry;

/* Create the thread in the active state */
res = threadCreate(K_MYACTOR, &childLid, K_ACTIVE, 0, &startInfo);
if (res != K_OK) {

printf("Cannot create the thread, error %d\n", res);
exit(1);

}

return childLid;
}

void
sampleThread()
{

int myThreadLi;

Multithreaded Programming with the ChorusOS Operating System 137



myThreadLi = threadSelf();

printf("I am the new thread. My thread identifier is: %d\n", myThreadLi);

/* Block itself for ever */
threadDelay(K_NOTIMEOUT);

}

int main(int argc, char** argv, char**envp)
{

int myThreadLi;
int newThreadLi;
int res;
KnTimeVal wait;

newThreadLi = childCreate((KnPc)sampleThread);

myThreadLi = threadSelf();

/* Initialize KnTimeVal structure */
K_MILLI_TO_TIMEVAL(&wait, 10);

/*
* Suspend myself for 10 milliseconds to give the newly
* created thread the opportunity to run before
* the actor terminates.
*/

res = threadDelay(&wait);

printf("Parent thread identifier = %d, Child thread identifier = %d\n",
myThreadLi, newThreadLi);

return 0;
}

� The schedParam parameter is set to 0. As a result, the created thread will inherit
the scheduling attributes of the creator thread.

� Note the usage of the actorPrivilege() service which enables the program to
determine whether it must allocate a user stack area for the created thread or not,
as well as to indicate the type of thread to be created.

� If the actor is a supervisor actor, the following line:
startInfo.dsSystemStackSize = K_DEFAULT_STACK_SIZE only gives an
indication to the system of the expected usage of the system stack. The maximum
system stack length is defined by a global tunable value.

� On some platforms the stack pointer value passed in dsUserStackPointer is
automatically decremented by the kernel before being used for the thread. This is
done either to enforce the platform-required alignment, on 8 or 16 byte boundaries
for example, or to reserve a space which will be accessed by a typical C language

138 ChorusOS 4.0 Introduction ♦ December 1999



routine because of the platform-specific calling conventions, such as saving the
return address to the caller.

� The status parameter is used to create the thread in the active state, so that the
thread is ready to execute as soon as it is created.

� Be aware that, although this program explicitly creates only one thread, there are
in fact two threads running in this actor: the main thread created implicitly by the
system when the actor is loaded, and the thread explicitly created by the program.

� The above example uses a service named threadDelay() , which allows a thread
to suspend its execution for a certain period. The parent thread suspends itself for
ten milliseconds, so that the child thread is able to run before exit is called.
Without this suspension period in the parent thread, the actor could terminate
before the created thread has run.

As explained earlier, the termination of an actor implies that all its resources are
freed. Threads are not an exception to that rule. Thus, the exit() call at the end
of the main routine will lead to the destruction of both threads. Use of the period
within the parent thread is not a guarantee. Depending on the load of the system,
ten milliseconds might not be sufficient to ensure that the child thread has
completed its task. The threadDelay() has only been used in this example for
the sake of simplicity, and is not recommended in practice for synchronizing
threads. A more reliable synchronization scheme should be used to be sure that
the actor does not terminate before the second thread has completed all jobs.
These synchronization mechanisms are explained in “Synchronizing Threads” on
page 142.

� The child thread uses the K_NOTIMEOUTspecial value to suspend itself for ever.
This is a simple way to avoid undesirable behavior of the child thread until the
actor terminates. Assume this call to threadDelay() does not exist. The child
thread, after having executed the printf() statement, would reach the end of
the sampleThread() routine, which being written in C terminates with a return
instruction. However, the child thread has nowhere to return. As a result it would
return to an unspecified location, probably resulting in a memory fault.

The system does not preset the stack of a thread to ensure that the thread is
deleted upon return from its starting routine. You, the ChorusOS operating system
programmer, must ensure that threads are properly cleaned up after they finish
running. Mechanisms for coping with these types of situations are described in
Chapter 7.

Deleting a Thread
A thread may be dynamically deleted by itself or by another one using the following
service:

Multithreaded Programming with the ChorusOS Operating System 139



#include <chorus.h>

int threadDelete(KnCap* actorCap,
KnThreadLid thLi);

This call enables a thread to delete another one inside the same actor, when
actorCap is set to K_MYACTOR, by knowing the thread identifier of the thread to be
deleted. It also enables a thread to delete another one inside another actor (provided
they are both running on the same machine), as long as it provides both the actor
capability and the target thread identifier. The predefined thread identifier K_MYSELF
enables a thread to name itself without knowing its actual thread identifier.

Code Example 6–2 is a slightly different version of the previous program. The
subroutine childCreate() is unchanged, but now the created thread kills itself,
instead of going idle forever.

Note - This does not solve the synchronization problem occurring in the previous
example: the main thread still does not know exactly when to terminate the actor.

Refer to the threadDelete (2K) man page.

CODE EXAMPLE 6–2 Deleting a Thread

(file: progov/thDelete.c)

#include <stdio.h>
#include <stdlib.h>

#include <chorus.h>

#define USER_STACK_SIZE (1024 * sizeof(long))

int
childCreate(KnPc entry)
{

KnActorPrivilege actorP;
KnDefaultStartInfo_f startInfo;
char* userStack;
int childLid = -1;
int res;

startInfo.dsType = K_DEFAULT_START_INFO;
startInfo.dsSystemStackSize = K_DEFAULT_STACK_SIZE;

res = actorPrivilege(K_MYACTOR, &actorP, NULL);
if (res != K_OK) {

printf("Cannot get the privilege of the actor, error %d\n", res);
exit(1);

}

if (actorP == K_SUPACTOR) {
startInfo.dsPrivilege = K_SUPTHREAD;

} else {

140 ChorusOS 4.0 Introduction ♦ December 1999



startInfo.dsPrivilege = K_USERTHREAD;
}

if (actorP != K_SUPACTOR) {
userStack = malloc(USER_STACK_SIZE);
if (userStack == NULL) {

printf("Cannot allocate user stack\n");
exit(1);

}
startInfo.dsUserStackPointer = userStack + USER_STACK_SIZE;

}

startInfo.dsEntry = entry;

res = threadCreate(K_MYACTOR, &childLid, K_ACTIVE, 0, &startInfo);
if (res != K_OK) {

printf("Cannot create the thread, error %d\n", res);
exit(1);

}

return childLid;
}

void
sampleThread()
{

int myThreadLi;

myThreadLi = threadSelf();

printf("I am the new thread. My thread identifier is: %d\n", myThreadLi);

/* Suicide */
threadDelete(K_MYACTOR, K_MYSELF);

/* Should never reach this point! */
}

int main(int argc, char** argv, char**envp)
{

int myThreadLi;
int newThreadLi;
int res;
KnTimeVal wait;

newThreadLi = childCreate((KnPc)sampleThread);

myThreadLi = threadSelf();

/* Initialize KnTimeVal structure */
K_MILLI_TO_TIMEVAL(&wait, 10);

/*
* Suspend myself for 10 milliseconds to give the newly
* created thread the opportunity to run before
* the actor terminates.
*/

res = threadDelay(&wait);

printf("Parent thread identifier = %d, Child thread identifier = %d\n",

Multithreaded Programming with the ChorusOS Operating System 141



myThreadLi, newThreadLi);

return 0;
}

� The exit( ) function is used instead of the threadDelete( ) function in the
main thread. Using threadDelete() would leave the actor in a passive
situation, with no thread running within it. This implies that resources used by an
actor are not freed when the last thread is deleted.

� In the case of a user thread, deleting a thread does not imply that the stack of the
thread will be freed. If the user stack was allocated through a call to malloc( ) , it
must be freed through a call to free() . This cannot be done by the thread itself,
it must be done by another thread. In the above example, the actor is going to
terminate, so there is no real need to do this because all resources used by the
actor will be returned to the system. In the case of a supervisor thread, the
ChorusOS operating system frees the system stack it had allocated at
threadCreate() time.

Synchronizing Threads
The previous section explained the need for threads to be synchronized accurately,
avoiding using delays which are difficult to tune and which depend on the load of
the system. The ChorusOS operating system offers various tools for synchronizing
threads:

� Semaphores, which are common counting semaphores that support the P and V
operations. See “Semaphores” on page 143.

� Mutexes, which provide a convenient and efficient way to implement mutual
exclusion between multiple threads, in order to prevent a critical section from
being executed in parallel by different threads. See “Mutexes” on page 147.

� Thread semaphores, which may be used to block a single thread awaiting the arrival
of an event.

� Event flags, which may be useful when a thread has to handle multiple events,
providing the kind of multiplexing which is offered by the select system call, but
at a much lower level.

142 ChorusOS 4.0 Introduction ♦ December 1999



Semaphores
A semaphore is an integer counter associated with a queue, possibly empty, of
waiting threads. At initialization, the semaphore counter receives a user-defined
positive or null value. Initialization is performed by invoking the following
ChorusOS operating system service:

#include <chorus.h>

int semInit(KnSem* semaphore,
unsigned int count);

The semaphore parameter is the location of the semaphore and count is the
semaphore counter. The semaphore must have been previously allocated by the user:
allocation is not performed by the ChorusOS operating system. This implies that
semaphores may be freely allocated by the user where convenient for his
applications. As data structures representing semaphores are allocated by the
applications, the ChorusOS operating system does not impose any limit on the
maximum number of semaphores which may be used within the system.

Two atomic operations, named P and V, are provided on these semaphores.

#include <chorus.h>

int semP(KnSem* semaphore,
KnTimeVal* waitLimit);

semP() decrements the counter by one. If the counter reaches a negative value, the
invoking thread is blocked and queued within the semaphore queue. Otherwise the
thread continues its execution normally. The waitLimit parameter may be used to
control how long the thread will stay queued. If waitLimit is set to K_NOTIMEOUT,
the thread will stay blocked until the necessary V operation is performed. In the case
of the thread being awakened due to the expiration of the period, a specific error
code is returned as the result of the semP() invocation. In this case, the counter is
incremented to compensate for the effect of the semP() operation.

#include <chorus.h>

int semV(KnSem* semaphore);

semV() increments the counter by one. If the counter is still lower than or equal to
zero, one of the waiting threads is picked up from the queue and awakened. If the
counter is strictly greater than zero, there should be no thread waiting in the queue.

Figure 6–2 shows an example of two threads synchronizing by means of a
semaphore.

Multithreaded Programming with the ChorusOS Operating System 143



threadCreate()

semP()

thread 1

semInit() 0

-1

thread 2

semV()0

thread 1
is blocked

thread 1
becomes
ready

thread 2 is ready
to run, waiting to
be elected

thread 2 delays
itself, terminates,
or is pre-empted

Figure 6–2 Two Threads Synchronizing with a Semaphore

The following example is based on the previous one, but the two threads explicitly
synchronize by means of a semaphore, so that the actor will eventually be destroyed
when the created thread has done its job and as soon as it has done so. Refer to the
semInit (2K) man page.

CODE EXAMPLE 6–3 Synchronizing Using Semaphores

(file: progov/semaphore.c)

#include <stdio.h>
#include <stdlib.h>
#include <chorus.h>

#define USER_STACK_SIZE (1024 * sizeof(long))

KnSem sampleSem; /* Semaphore allocated as global variable */

int
childCreate(KnPc entry)
{

KnActorPrivilege actorP;
KnDefaultStartInfo_f startInfo;

144 ChorusOS 4.0 Introduction ♦ December 1999



char* userStack;
int childLid = -1;
int res;

startInfo.dsType = K_DEFAULT_START_INFO;
startInfo.dsSystemStackSize = K_DEFAULT_STACK_SIZE;

res = actorPrivilege(K_MYACTOR, &actorP, NULL);
if (res != K_OK) {

printf("Cannot get the privilege of the actor, error %d\n", res);
exit(1);

}

if (actorP == K_SUPACTOR) {
startInfo.dsPrivilege = K_SUPTHREAD;

} else {
startInfo.dsPrivilege = K_USERTHREAD;

}

if (actorP != K_SUPACTOR) {
userStack = malloc(USER_STACK_SIZE);
if (userStack == NULL) {

printf("Cannot allocate user stack\n");
exit(1);

}
startInfo.dsUserStackPointer = userStack + USER_STACK_SIZE;

}

startInfo.dsEntry = entry;

res = threadCreate(K_MYACTOR, &childLid, K_ACTIVE, 0, &startInfo);
if (res != K_OK) {

printf("Cannot create the thread, error %d\n", res);
exit(1);

}

return childLid;
}

void
sampleThread()
{

int myThreadLi;
int res;

myThreadLi = threadSelf();

printf("I am the new thread. My thread identifier is: %d\n", myThreadLi);

res = semV(&sampleSem);
if (res != K_OK){

printf("Cannot perform the semV operation, error %d\n", res);
exit(1);

}
/* Suicide */

res = threadDelete(K_MYACTOR, K_MYSELF);
if (res != K_OK){

printf("Cannot suicide, error %d\n", res);
exit(1);

}

Multithreaded Programming with the ChorusOS Operating System 145



/* Should never reach this point! */
}

int main(int argc, char** argv, char**envp)
{

int myThreadLi;
int newThreadLi;
int res;

/*
* Initialize the semaphore to 0 so that
* the first semP() operation blocks.
*/

res = semInit(&sampleSem, 0);
if (res != K_OK) {

printf("Cannot initialize the semaphore, error %d\n", res);
exit(1);

}

newThreadLi = childCreate((KnPc)sampleThread);

myThreadLi = threadSelf();

printf("Parent thread identifier = %d, Child thread identifier = %d\n",
myThreadLi, newThreadLi);

/*
* Since semaphore has been initialized to 0
* this semP will block until a semV is performed
* by the created thread, letting the main thread know
* that created thread’s job is done.
*/

res = semP(&sampleSem, K_NOTIMEOUT);
if (res != K_OK) {

printf("Cannot perform the semP operation, error %d\n", res);
exit(1);

}
/*

* Created thread has run and done all of its job.
* It is time to safely exit.
*/

return 0;
}

� The semaphore sampleSem is allocated as global data of the actor. As the address
space of the actor is shared by all threads running within the actor, both threads
can freely access the semaphore in order to synchronize.

� Avoid performing the semaphore initialization after having created the child
thread. Depending on the scheduling, the second thread may start its execution as
soon as it is created, and could reach the semV() operation before the semaphore
has been initialized. Although the semV() could appear to work, semP() will
never return due the fact that semInit( ) would reset the counter to 0.

146 ChorusOS 4.0 Introduction ♦ December 1999



� The synchronization will work whatever the order in which the semP() and
semV() operations are done. If semP() is done first, the counter will be set to -1
and the main thread will be blocked. The semV() will awake the main thread. If
scheduling is reversed, the semV() will set the counter to 1, so that when the
semP() operation occurs, the counter will be decremented to 0, but the thread
will not block.

Mutexes
Assume that the two threads need to access one or more global variables in a
consistent fashion. A simple example could be that each of the threads needs to add
two numbers to a unique global counter. Whatever the scheduling may be, the
unique global counter should always reflect the accurate sum of all numbers added
by both threads.

This could be done using semaphores. However, the ChorusOS operating system
provides mutexes which have been specifically designed and tuned for these types of
needs.

A mutex is a binary flag associated with a queue, possibly empty, of waiting threads.
The mutex can be locked or free. At initialization, the mutex is set to the free state.

#include <chorus.h>

int mutexInit(KnMutex* mutex);

As for semaphores, the mutex must have been previously allocated by the user. This
implies that mutexes may be allocated where convenient for the application, and that
there is no limit imposed by the system on the maximum number of mutexes.

Three operations are provided on these mutexes.

� mutexGet() acquires the mutex: if the mutex is free, it is atomically locked and
the thread continues its execution.

#include <chorus.h>

int mutexGet(KnMutex* mutex);

If the mutex is locked when the mutexGet() operation is invoked, the thread is
blocked and queued in the list of threads, waiting for the mutex to become free.
Note that there is no way to limit the time during which a thread waits to acquire
a mutex.

� mutexRel() releases the mutex, returning it to its free state. If threads are
blocked while waiting for the mutex, one of them is picked up from the list and
activated with the mutex locked.

Multithreaded Programming with the ChorusOS Operating System 147



#include <chorus.h>

int mutexRel(KnMutex* mutex);

� The last operation is similar to mutexGet() , but does not block if the mutex is
already locked.

#include <chorus.h>

int mutexTry(KnMutex* mutex);

By checking the return value of mutexTry() , you can determine whether the
mutex was free and has been acquired by the current thread, or whether the
mutex was already locked, in which case the operation has failed.

The following example shows a small and simple library routine named
sampleAdd() which receives two integer arguments and adds them to a global
variable one after the other. The code of the previous semaphore example has been
modified so that both the main thread and the created thread perform a number of
calls to that library. When the job is done, the main thread prints the result and
terminates the actor. Refer to the mutexInit (2K) man page.

CODE EXAMPLE 6–4 Protecting Shared Data Using Mutexes

(file: progov/mutex.c)

#include <stdio.h>
#include <stdlib.h>
#include <chorus.h>

#define USER_STACK_SIZE (1024 * sizeof(long))

KnSem sampleSem;
KnMutex sampleMutex;
long grandTotal;

int
childCreate(KnPc entry)
{

KnActorPrivilege actorP;
KnDefaultStartInfo_f startInfo;
char* userStack;
int childLid = -1;
int res;

startInfo.dsType = K_DEFAULT_START_INFO;
startInfo.dsSystemStackSize = K_DEFAULT_STACK_SIZE;

res = actorPrivilege(K_MYACTOR, &actorP, NULL);
if (res != K_OK) {

printf("Cannot get the privilege of the actor, error %d\n", res);
exit(1);

}

148 ChorusOS 4.0 Introduction ♦ December 1999



if (actorP == K_SUPACTOR) {
startInfo.dsPrivilege = K_SUPTHREAD;

} else {
startInfo.dsPrivilege = K_USERTHREAD;

}

if (actorP != K_SUPACTOR) {
userStack = malloc(USER_STACK_SIZE);
if (userStack == NULL) {

printf("Cannot allocate user stack\n");
exit(1);

}
startInfo.dsUserStackPointer = userStack + USER_STACK_SIZE;

}

startInfo.dsEntry = entry;

res = threadCreate(K_MYACTOR, &childLid, K_ACTIVE, 0, &startInfo);
if (res != K_OK) {

printf("Cannot create the thread, error %d\n", res);
exit(1);

}

return childLid;
}

void
sampleAdd(int a, int b)
{

int res;

res = mutexGet(&sampleMutex);

grandTotal += a;
grandTotal += b;

res = mutexRel(&sampleMutex);
}

void
sampleThread()
{

int res;
int i;

for(i = 0; i < 10; i++) {
sampleAdd(threadSelf(), i); /* Why not ??? */

}

res = semV(&sampleSem);
if (res != K_OK){

printf("Cannot perform the semV operation, error %d\n", res);
exit(1);

}
/* Suicide */

threadDelete(K_MYACTOR, K_MYSELF);
}

int main(int argc, char** argv, char**envp)
{

Multithreaded Programming with the ChorusOS Operating System 149



int i;
int newThreadLi;
int res;

res = semInit(&sampleSem, 0);
if (res != K_OK) {

printf("Cannot initialize the semaphore, error %d\n", res);
exit(1);

}

res = mutexInit(&sampleMutex);

newThreadLi = childCreate((KnPc)sampleThread);

for(i = 0; i < 20; i++){
sampleAdd(threadSelf(), i); /* Why not ??? */

}

res = semP(&sampleSem, K_NOTIMEOUT);
if (res != K_OK) {

printf("Cannot perform the semP operation, error %d\n", res);
exit(1);

}

printf("grandTotal is %d\n", grandTotal);

return 0;
}

� The mutex is allocated within the global data of the actor and is initialized before
it is ever used.

� The sampleAdd() routine uses the mutex to protect access to the grandTotal
variable and make it atomic. Note that the mutexGet() and mutexRel()
operations perform the bulk of the work. Mutex operations should always be used
in pairs, as in this example.

� A mutex is not recursive, a thread which has locked a mutex will deadlock if it
tries to perform a second mutexGet() operation on the same mutex.

Basic Scheduling Control
The ChorusOS operating system provides two alternative ways of scheduling
threads. These two features are mutually exclusive:

� either the ChorusOS operating system is configured with the default scheduler,

� or it is configured with the ROUND_ROBINfeature.

150 ChorusOS 4.0 Introduction ♦ December 1999



The default FIFO scheduler defines a pure priority-based, preemptive, FIFO (first-in
first-out) policy. Priority of threads may vary from K_FIFO_PRIOMAX(0 and highest
priority) to K_FIFO_PRIOMIN (255 and lowest priority). Within this policy, a thread
which becomes ready to run after being blocked is always inserted at the end of its
priority ready queue. A running thread is preempted only if a thread of a strictly
higher priority becomes ready to run. A preempted thread is placed at the head of its
priority queue, so that it will be selected when no other ready thread has a greater
priority.

The ROUND_ROBINfeature is a general framework supporting simultaneous multiple
scheduling policies or classes. The main classes dealt with here are the CLASS_FIFO
and the CLASS_RRpolicies.

The CLASS_FIFO reproduces the behavior of the default scheduler policy precisely.

The CLASS_RRimplements a priority-based preemptive policy with round-robin
time slicing. Priority of threads may vary from K_RR_PRIOMAXto K_RR_PRIOMIN. It
is similar to the default scheduler policy, except that an elected thread is given a
fixed time quantum. If the thread is still running at quantum expiration, it is
de-scheduled and placed at the end of its priority queue, thus yielding the processor
to other threads of equal priority (if any).

It is possible to set scheduling attributes of threads at thread creation time (using the
void* schedParams parameter of threadCreate() ). It is also possible to get and
modify scheduling attributes of a thread dynamically through the following call.

#include <chorus.h>
#include <sched/chFifo.h>
#include <sched/chRr.h>
#include <sched/chRt.h>
#include <sched/chTs.h>

int threadScheduler(KnCap* actorCap,
KnThreadLid thLi,
void* oldParam,
void* newParam);

This service enables you to get or set scheduling parameters of any thread of any
actor, as long as both the actor capability and the thread identifier are known.
threadScheduler() returns the current scheduling attributes of the target thread
at the location defined by oldParam , if non-null. It will also set the attributes of the
target thread according to the description provided at the location defined by
newParam if non-null.

As the size, layout and semantics of scheduling parameters may vary depending on
the scheduler configured in the system, or on the class of the ROUND_ROBIN
framework, parameters are untyped in the generic interface definition. However, all
scheduling parameter descriptions are similar, at least for the initial fields:

Multithreaded Programming with the ChorusOS Operating System 151



struct KnFifoThParms {
KnSchedClass fifoClass; /* Always set to K_SCHED_FIFO */
KnFifoPriority fifoPriority;

} KnFifoThParms;

struct KnRrThParms {
KnSchedClass rrClass; /* Always set to K_SCHED_RR */
KnRrPriority rrPriority;

} KnRrThParms;

The first field defines the scheduling policy applied or to be applied to the thread.
The second field defines the priority of the thread within the scheduling policy.

Code Example 6–5 is based on the semaphore example, with a modification to the
childCreate() routine so that it can receive scheduling attributes of the thread to
be created. The main thread invokes this modified routine, so that the created thread
will start as soon as it is created, rather than waiting for the main thread to yield the
processor. Thus, the created thread must be given a higher priority than the main
thread.

Refer to the threadScheduler (2K) and threadCreate (2K) man pages.

CODE EXAMPLE 6–5 Changing Scheduling Attributes

(file: progov/thSched.c)

#include <stdio.h>
#include <stdlib.h>
#include <chorus.h>

#define USER_STACK_SIZE (1024 * sizeof(long))

KnSem sampleSem;

int
childSchedCreate(KnPc entry, void* schedParams)
{

KnActorPrivilege actorP;
KnDefaultStartInfo_f startInfo;
char* userStack;
int childLid = -1;
int res;

/* Set defaults startInfo fields */
startInfo.dsType = K_DEFAULT_START_INFO;
startInfo.dsSystemStackSize = K_DEFAULT_STACK_SIZE;

/* Get actor’s privilege */
res = actorPrivilege(K_MYACTOR, &actorP, NULL);
if (res != K_OK) {

printf("Cannot get the privilege of the actor, error %d\n", res);
exit(1);

}

/* Set thread privilege */

152 ChorusOS 4.0 Introduction ♦ December 1999



if (actorP == K_SUPACTOR) {
startInfo.dsPrivilege = K_SUPTHREAD;

} else {
startInfo.dsPrivilege = K_USERTHREAD;

}

/* Allocate a stack for user threads */
if (actorP != K_SUPACTOR) {

userStack = malloc(USER_STACK_SIZE);
if (userStack == NULL) {

printf("Cannot allocate user stack\n");
exit(1);

}

startInfo.dsUserStackPointer = userStack + USER_STACK_SIZE;
}

/* Set entry point for the new thread */
startInfo.dsEntry = entry;

/* Create the thread in the active state */
res = threadCreate(K_MYACTOR, &childLid, K_ACTIVE, schedParams, &startInfo);
if (res != K_OK) {

printf("Cannot create the thread, error %d\n", res);
exit(1);

}

return childLid;
}

void
sampleThread()
{

int myThreadLi;
int res;

myThreadLi = threadSelf();

printf("I am the new thread. My thread identifier is: %d\n", myThreadLi);

res = semV(&sampleSem);
if (res != K_OK){

printf("Cannot perform the semV operation, error %d\n", res);
exit(1);

}
threadDelete(K_MYACTOR, K_MYSELF);

}

int main(int argc, char** argv, char**envp)
{

int myThreadLi;
int newThreadLi;
int res;
KnThreadDefaultSched schedParams;

res = semInit(&sampleSem, 0);
if (res != K_OK) {

printf("Cannot initialize the semaphore, error %d\n", res);
exit(1);

Multithreaded Programming with the ChorusOS Operating System 153



}

/* acquire my own scheduling attributes */
res = threadScheduler(K_MYACTOR, K_MYSELF, &schedParams, NULL);

/* Increase priority of thread to be created */
schedParams.tdPriority -= 1;

newThreadLi = childSchedCreate((KnPc)sampleThread, &schedParams);

myThreadLi = threadSelf();

printf("Parent thread identifier = %d, Child thread identifier = %d\n",
myThreadLi, newThreadLi);

res = semP(&sampleSem, K_NOTIMEOUT);
if (res != K_OK) {

printf("Cannot perform the semP operation, error %d\n", res);
exit(1);

}

return 0;
}

� First, the main thread needs to get its own scheduling attributes. As these are not
known, a KnThreadDefaultSched structure is used as the output argument of
the call to threadScheduler() . The last argument of threadScheduler() is
set to null as the current scheduling attributes of the main thread wish to be
preserved.

� In order to give a higher priority to the created thread, decrease the numerical
value of the priority. Increasing the priority value has the reverse effect.

Managing Per-Thread Data
One of the most common issues in a multithreaded environment is how to manage
per-thread data structures. This may become an important question for libraries. In a
single-threaded process, managing these data as global variables is fine. In a
multithreaded environment, it will no longer work.

The ChorusOS operating system provides a convenient way for threads to manage
per-thread data. A piece of data which needs to be instantiated on a per-thread basis
must be associated with a unique key. The key may be obtained from the system
through a call to ptdKeyCreate() . This data may accessed using specific calls
named ptdSet() and ptdGet() .

154 ChorusOS 4.0 Introduction ♦ December 1999



#include <pd/chPd.h>

int ptdKeyCreate(PdKey* key,
KnPdHdl destructor);

ptdKeyCreate() generates a unique key, which is opaque to the user. This key is
stored at the location defined by the key argument. The user may, optionally, specify
a routine as the destructor argument. This routine will be invoked at thread deletion
time and will be passed the value associated with key . Upon return from
ptdKeyCreate() , the value associated with key is 0. This type of key is visible to
all threads of the actor, but each thread using a given key will have its own private
copy of the data.

#include <pd/chPd.h>

int ptdSet(PdKey key,
void* value);

ptdSet() enables a thread to associate the value value with the key key which has
been generated previously by a call to ptdKeyCreate() .

#include <pd/chPd.h>

int ptdGet(PdKey key);

ptdGet() returns the last value associated with the key by this same thread.

Code Example 6–6 includes a small library that returns a pointer to the next word of
a string. This is a simplified version of the strtok() C library routine. For
simplicity, it is assumed that words are always separated by spaces in the string.

This library is callable simultaneously from different threads, each thread working on
its own string. The routine that returns the pointer to the next word does not take
any parameters.

These routines are called snw routines (where snw stands for String Next Word).
There is a snwSet(char *str) routine which defines the string that will be looked
up by the invoking thread, and a char* snwGet() returning a pointer to the next
word.

The library is invoked from the main thread and the created thread on two different
strings in order to count the number of words in each string. The results are printed
and the threads are synchronized before terminating the actor.

Refer to the ptdKeyCreate (2K), ptdSet (2K), and ptdGet (2K) man pages.

Multithreaded Programming with the ChorusOS Operating System 155



CODE EXAMPLE 6–6 Managing Per-Thread Data

(file: progov/perThreadData.c)

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <chorus.h>
#include <pd/chPd.h>

#define USER_STACK_SIZE (1024 * sizeof(long))

KnSem sampleSem;
PdKey snwKey;

int
childCreate(KnPc entry)
{

KnActorPrivilege actorP;
KnDefaultStartInfo_f startInfo;
char* userStack;
int childLid = -1;
int res;

startInfo.dsType = K_DEFAULT_START_INFO;
startInfo.dsSystemStackSize = K_DEFAULT_STACK_SIZE;

res = actorPrivilege(K_MYACTOR, &actorP, NULL);
if (res != K_OK) {

printf("Cannot get the privilege of the actor, error %d\n", res);
exit(1);

}

if (actorP == K_SUPACTOR) {
startInfo.dsPrivilege = K_SUPTHREAD;

} else {
startInfo.dsPrivilege = K_USERTHREAD;

}

if (actorP != K_SUPACTOR) {
userStack = malloc(USER_STACK_SIZE);
if (userStack == NULL) {

printf("Cannot allocate user stack\n");
exit(1);

}
startInfo.dsUserStackPointer = userStack + USER_STACK_SIZE;

}

startInfo.dsEntry = entry;

res = threadCreate(K_MYACTOR, &childLid, K_ACTIVE, 0, &startInfo);
if (res != K_OK) {

printf("Cannot create the thread, error %d\n", res);
exit(1);

}

return childLid;
}

void

156 ChorusOS 4.0 Introduction ♦ December 1999



snwInit()
{

int res;
/* Just allocate a key for our "snw" library */

res = ptdKeyCreate(&snwKey, NULL);
if (res != K_OK) {

printf("Cannot create a ptd key, error %d\n", res);
exit(1);

}
}

void
snwSet(char* str)
{

int res;

res = ptdSet(snwKey, str);
if (res != K_OK) {

printf("Cannot set the ptd key, error %d\n", res);
exit(1);

}
}

char*
snwGet()
{

int res;
char* p;
char* s;

p = (char*)ptdGet(snwKey);
if (p == NULL) return NULL;

s = strchr(p, ’ ’);

if (s != NULL) {
s++;

} else if (*p != ’\0’) {
/* Last word might not have a following space */

s = p + strlen(p);
}

res = ptdSet(snwKey, s);
return s;

}

void
sampleThread()
{

char* ptr;
int words = 0;
int res;

snwSet("This is the child thread!");

for (ptr= snwGet(); ptr != NULL; ptr = snwGet()) {
words++;

}

printf("Child thread found %d words.\n", words);

Multithreaded Programming with the ChorusOS Operating System 157



res = semV(&sampleSem);
if (res != K_OK){

printf("Cannot perform the semV operation, error %d\n", res);
exit(1);

}
threadDelete(K_MYACTOR, K_MYSELF);

}

int main(int argc, char** argv, char**envp)
{

char* ptr;
int words = 0;
int res;
int newThreadLi;

res = semInit(&sampleSem, 0);
if (res != K_OK) {

printf("Cannot initialize the semaphore, error %d\n", res);
exit(1);

}

snwInit();

newThreadLi = childCreate((KnPc)sampleThread);

snwSet("I am the main thread and counting words in this string!");

for (ptr= snwGet(); ptr != NULL; ptr = snwGet()) {
words++;

}

printf("Main thread found %d words.\n", words);

res = semP(&sampleSem, K_NOTIMEOUT);
if (res != K_OK) {

printf("Cannot perform the semP operation, error %d\n", res);
exit(1);

}

return 0;
}

Threads and Libraries
As illustrated in the previous example, it is often the case that C and C++ libraries
have been designed for UNIX processes which were initially mono-threaded entities.
In order to allow C programmers to continue using the usual libraries within
multithreaded actors, the ChorusOS operating environment provides a set of adapted

158 ChorusOS 4.0 Introduction ♦ December 1999



C libraries which may be used from different threads of a given actor without
encountering problems.

In the previous examples, some of these adapted libraries, such as printf( ) ,
fprintf( ) , fopen() , and malloc() , were already used. All of these C libraries
have been adapted to work efficiently even within a multithreaded actor.
Modifications are not visible to the programmer. They rely mainly on
synchronization such as mutexes for protecting critical sections and on the per-thread
data mechanism to store per-thread global data.

Some libraries did not require any modification and can work in a straightforward
fashion within a multithreaded actor. These libraries, such as strtol() (string to
lower case), work exclusively on local variables and do not access or generate any
global states.

Multithreaded Programming with the ChorusOS Operating System 159



160 ChorusOS 4.0 Introduction ♦ December 1999



CHAPTER 7

Memory Management

Actors within the ChorusOS operating system environment may extend their address
space using the malloc() library call as illustrated earlier in this document.
However, this is a rather inflexible way of allocating memory, as there is no way to
control the attributes of the allocated memory; that is, whether it is a read only or a
read/write memory area. The malloc() routine uses the ChorusOS operating
system services described in this section. These services may also be used to share a
region of memory between two or more actors.

This chapter explains the recommended way of allocating memory for an actor. It
contains the following sections:

� “Memory Region Descriptors” on page 161 explains how a memory region is
identified and described.

� “Allocating and Freeing Memory Regions” on page 163 explains how to allocate
and free memory.

� “Sharing Memory Between Two Actors” on page 167 explains how to share
memory between actors.

The ChorusOS hot restart feature provides support for using persistent memory;
memory which can extend beyond the lifetime of the runtime instance of an actor.
Hot restart is not covered in this chapter. For information about using hot restart and
the persistent memory services it provides, see the ChorusOS 4.0 Hot Restart
Programmer’s Guide.

Memory Region Descriptors
The ChorusOS operating system offers various services which enable an actor to
extend its address space dynamically by allocating memory regions. An actor may

161



also shrink its address space by freeing memory regions. An area of memory to be
allocated or freed is described to the system through a region descriptor of the
following type:

typedef struct {
VmAddr startAddr;
VmSize size;
VmFlags options;
VmAddr endAddr;
void* opaque1;
VmFlags opaque2;

} KnRgnDesc;

The startAddr field defines the starting address of the memory region. The size
field defines its length expressed in bytes. The options field enables a low level
control on the attributes of the memory region to be allocated. The opaque1 and
opaque2 fields should be set to NULL if they are not being used by the application.

The options field is a combination of flags, of which the following are the most
important:

� K_WRITABLEtells the system that the memory region to be created must be
writable, otherwise, the memory region will be read only.

� K_FILLZERO tells the system that the content of the memory region to be created
must be filled with zeroes upon creation. If this flag is not set, the content of the
memory region at creation time is unspecified.

� K_ANYWHEREtells the system that the actual address used to allocate the region is
not critical to the application. An appropriate address will be selected by the
system and returned to the application. This avoids the need for the application to
find out which addresses are already in use within the actor address space. It also
permits memory to be allocated within a library without any possible conflict with
an existing address space.

� K_SUPERVISORtells the system that the memory to be allocated will be part of
the supervisor address space rather than of the user address space. This flag is
usually set by actors running in supervisor mode.

On a ChorusOS operating system configured with the Virtual Memory feature,
further options are available. The most important one allows control of the swapping
policy to be applied to the pages of the created region:

� K_NODEMANDtells the system that no page fault should ever occur on such a
memory region. Physical pages are allocated to the region at creation time and
they will never be swapped out. Thus the region is locked in memory.

162 ChorusOS 4.0 Introduction ♦ December 1999



Allocating and Freeing Memory Regions
A memory region is allocated through the following call:

#include <chorus.h>

int rgnAllocate(KnCap* actorCap,
KnRgnDesc* rgnDesc);

This call creates a memory region as described by the rgnDesc parameter within the
address space of the actor defined by the actorCap parameter. Most applications set
actorCap to K_MYACTORto manage their own address space.

An unused part of an address space may be freed by the following call:

#include <chorus.h>

int rgnFree(KnCap* actorCap,
KnRgnDesc* rgnDesc);

This call frees a memory region as described by the rgnDesc parameter within the
address space of the actor defined by the actorCap parameter.

Data

Code

Data

Code

Data

Code

Initial address space Address space
after rgnAllocate()

Address space
after rgnFree()

Figure 7–1 Memory Region Allocation and Deallocation

Code Example 7–1 does the following:

� Allocates a memory region with the K_ANYWHEREoption.

� Retrieves the address of the allocated region and prints it.

� Copies a string to the beginning of the region.

Memory Management 163



� Creates a second region immediately preceding the first.

� Copies the string from the beginning of the first region to the beginning of the
second region.

� Frees an area of memory spanning the junction between the two regions.

� Copies the string from the beginning of the second region to the lowest memory
address still accessible outside the freed memory area.

� Ensures that the program is able to run in a user or supervisor actor.

The main steps of the example are illustrated in Figure 7–1. Refer to the
rgnAllocate (2K) and rgnFree (2K) man pages.

CODE EXAMPLE 7–1 Allocating a Memory Region

(file: progov/rgnAlloc.c)

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <chorus.h>

#define RGN_SIZE_1 (6 * vmPageSize())
#define RGN_SIZE_2 (3 * vmPageSize())
#define FREE_START (2 * vmPageSize())
#define FREE_SIZE (4 * vmPageSize())
#define STILL_ALLOC_START (FREE_SIZE - (RGN_SIZE_2 - FREE_START))

int main(int argc, char** argv, char**envp)
{

KnRgnDesc rgnDesc;
KnActorPrivilege actorP;
int res;
VmFlags rgnOpt = 0;
char* ptr1 = NULL; /* Avoids "uninited" warning */
char* ptr2 = NULL; /* Avoids "uninited" warning */

printf("Starting rgnAllocate example\n");

res = actorPrivilege(K_MYACTOR, &actorP, NULL);
if (res != K_OK) {

printf("Cannot get actor privilege, error %d\n", res);
exit(1);

}

if (actorP == K_SUPACTOR) {
rgnOpt = K_SUPERVISOR;

}

rgnDesc.size = RGN_SIZE_1;
rgnDesc.options = rgnOpt | K_WRITABLE | K_FILLZERO | K_ANYWHERE;
rgnDesc.opaque1 = NULL;
rgnDesc.opaque2 = NULL;

/*
* No need to set rgnDesc.startAddr

164 ChorusOS 4.0 Introduction ♦ December 1999



* since we set the K_ANYWHERE flag
*/

res = rgnAllocate(K_MYACTOR, &rgnDesc);

if (res == K_OK) {
printf("Successfully allocated memory starting at 0x%x\n",
rgnDesc.startAddr);

ptr1 = (char*) rgnDesc.startAddr;
} else {

printf("First rgnAllocate failed with error %d\n", res);
exit(1);

}

strcpy(ptr1, "Fill the allocated memory with this string\n");

/*
* Second allocate has a fixed address, such that
* both memory areas will be contiguous. Hence
* we do not want the K_ANYWHERE flag any more.
*/

rgnDesc.size = RGN_SIZE_2;
rgnDesc.options &= ~K_ANYWHERE;
rgnDesc.startAddr -= RGN_SIZE_2;

res = rgnAllocate(K_MYACTOR, &rgnDesc);

if (res == K_OK) {
printf("Successfully allocated memory starting at 0x%x)\n",
rgnDesc.startAddr);
ptr2 = (char*) rgnDesc.startAddr;

} else {
printf("Second rgnAllocate failed with error %d\n", res);
exit(1);

}

/* Copy from first allocated area to second one */
strcpy(ptr2, ptr1);

/*
* Free a memory area spanning both areas
* previously created
*/

rgnDesc.options = NULL;
rgnDesc.startAddr = (VmAddr) (ptr2 + FREE_START);
rgnDesc.size = FREE_SIZE;

res = rgnFree(K_MYACTOR, &rgnDesc);

if (res != K_OK) {
printf("Cannot free memory, error %d\n", res);
exit(1);

}

/*
* Access to ptr2: beginning of secondly allocated area
* is still valid.
* Access to ptr1 is now invalid: memory has been freed.
*/

printf("%s", ptr2);

Memory Management 165



/*
* Access to "end" of first allocated area
* is still valid
*/

ptr1 += STILL_ALLOC_START;
strcpy(ptr1, ptr2);

/*
* Remaining memory areas not yet freed will
* effectively be freed at actor termination time.
*/

return 0;
}

� Region descriptors are uniquely used to describe a creation or deletion operation
on the system. They are not kept by the system in the way they are given to the
rgnAllocate() call. As an example, allocation of two contiguous areas with the
same attributes (writable, fill zero) and the same opaque fields will result in the
system recognizing a single region, the size of which is the sum of the sizes passed
as part of the two region descriptors.

� You cannot allocate a region on a range of addresses which are not free. No
implicit deallocation of the address space is undertaken by the system, instead an
error code K_EOVERLAPis returned to the caller.

� A call to rgnFree() does not need to reuse a region descriptor that was used to
allocate a memory area. A free operation may freely span over several regions
which were allocated by separate operations. Similarly, a free operation may only
free a chunk of memory in the middle of a large memory area which was allocated
in a single operation. See Figure 7–1.

� Only the precise region described in the region descriptor will be freed. The free
operation is not extended to match the address range which was allocated at
rgnAllocate() time.

� The options field of the region descriptor must be set to 0 for a free operation.
Otherwise, you may set it to K_FREEALL, in which case all memory regions of the
actor will be freed: the code, the data, the stacks. The K_FREEALLoption should
therefore be used with care.

� All memory areas which have been dynamically allocated are freed when the actor
terminates.

166 ChorusOS 4.0 Introduction ♦ December 1999



Sharing Memory Between Two Actors
The ChorusOS operating system offers the possibility of sharing an area of memory
between two or more actors, regardless of whether these actors are user or
supervisor actors. The memory area does not need to be located at the same address
within the address space of each actor.

This mechanism is based on the following service:

#include <chorus.h>

int rgnMapFromActor(KnCap* targetActor,
KnRgnDesc*targetRgnDesc,
KnCap* sourceActor,
KnRgnDesc*sourceRgnDesc);

This call allows mapping of a memory area as defined by sourceActor and
sourceRgnDesc in the address space of the actor defined by the targetActor
parameter. The source memory area is explicitly defined by the startAddr and
size fields of the sourceRgnDesc parameter. The region created within the
address space of the target actor is defined by the targetRgnDesc parameter: the
address may be fixed or undefined if the K_ANYWHEREflag is set. After the mapping
has been established, both actors may freely use the shared memory area.

Figure 7–2 shows two actors before they share memory and after sharing has been
established. Usually some synchronization mechanism is required in order to get a
consistent view of the memory: semaphores may be used in shared memory areas to
synchronize threads from the various actors.

Memory Management 167



Data

Code

Target actor

Data

Code

Source actor

Source
region

Source and target actors before sharing has been established

Data

Code

Data

Code

Source
region

Source and target actors after sharing has been established

Target region

Figure 7–2 Actors Sharing Memory

Code Example 7–2 does the following:

� The actor started by an arun command allocates a memory region, then spawns
an actor running the same executable file using the afexecve() call.

� The spawned actor uses the parameters set up by the spawning actor to establish a
sharing of memory.

� Some data is passed through the shared memory from the spawning to the
spawned actor. A semaphore allocated in the shared memory area, and initialized
by the spawning actor, is used to synchronize both actors. Thus, the first actor will
know when the spawned actor has changed the contents of the shared area.

� Both actors then terminate.

� The spawned actor should retrieve the information needed to establish the
mapping from its arguments.

168 ChorusOS 4.0 Introduction ♦ December 1999



This example uses a call which enables an actor to get its own capability in order to
pass it to another actor.

#include <chorus.h>

int actorSelf(KnCap* myCap);

Refer to the rgnMapFromActor (2K) man page.

CODE EXAMPLE 7–2 Sharing a Memory Region

(file: progov/rgnMapFromActor.c)

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <chorus.h>
#include <am/afexec.h>

AcParam param;

#define RGN_SIZE (3 * vmPageSize())
#define SHARED_RGN_SIZE (1 * vmPageSize())

typedef struct sampleSharedArea {
KnSem sem;
char data[1];

} sharea_t;

char capString[80];
char sharedAddr[20];

int main(int argc, char** argv, char**envp)
{

KnRgnDesc rgnDesc;
sharea_t* ptr;
KnCap spawningCap;
KnCap spawnedCap;
int res;
VmFlags rgnOpt = 0;
KnActorPrivilege actorP;

res = actorPrivilege(K_MYACTOR, &actorP, NULL);
if (res != K_OK) {

printf("Cannot get privilege, error %d\n", res);
exit(1);

}

if (actorP == K_SUPACTOR) {
rgnOpt = K_SUPERVISOR;

}

if (argc == 1) {
/*

* This is the first actor (or spawning actor):
* Allocate a memory region

Memory Management 169



* Initialize a semaphore within the region
* Spawn the second actor
* Wait on the semaphore
* Get data written in shared mem by spawned actor
* Terminate
*/

rgnDesc.size = RGN_SIZE;
rgnDesc.options = rgnOpt | K_ANYWHERE | K_WRITABLE | K_FILLZERO;
rgnDesc.opaque1 = NULL;
rgnDesc.opaque2 = NULL;

res = rgnAllocate(K_MYACTOR, &rgnDesc);
if (res != K_OK) {

printf("Cannot allocate memory, error %d\n", res);
exit(1);

}

ptr = (sharea_t*) rgnDesc.startAddr;

strcpy(&ptr->data[0], "First actor initializing the shared mem\n");

res = semInit(&ptr->sem, 0);

/*
* Get my own capability and pass it as a string argument
* to spawned actor, so that it may use it to share memory
*/

actorSelf(&spawningCap);
sprintf(capString, "0x%x 0x%x 0x%x 0x%x", spawningCap.ui.uiHead,
spawningCap.ui.uiTail, spawningCap.key.keyHead,
spawningCap.key.keyTail);

/*
* Pass address of memory to be shared as a string argument
* to spawned actor.
*/

sprintf(sharedAddr, "0x%x", ptr);

param.acFlags = (actorP == K_SUPACTOR)? AFX_SUPERVISOR_SPACE :
AFX_USER_SPACE;

res = afexeclp(argv[0], &spawnedCap, &param , argv[0], capString,
sharedAddr, NULL);

if (res == -1) {
printf("cannot spawn second actor, error %d\n", errno);
exit(1);

}

semP(&ptr->sem, K_NOTIMEOUT);

printf("%s", &ptr->data[0]);

} else {

KnRgnDesc srcRgn;
KnRgnDesc tgtRgn;
unsigned long uHead, uTail, kHead, kTail;

/*
* This is the spawned actor:
* Get arguments
* Set up the memory sharing

170 ChorusOS 4.0 Introduction ♦ December 1999



* Write some string in shared memory
* Wake up spawning actor
* Terminate
*/

sscanf(argv[1], "0x%x 0x%x 0x%x 0x%x", &uHead, &uTail, &kHead, &kTail);
spawningCap.ui.uiHead = uHead;
spawningCap.ui.uiTail = uTail;
spawningCap.key.keyHead = kHead;
spawningCap.key.keyTail = kTail;

sscanf(argv[2], "0x%x", &srcRgn.startAddr);

if (actorP != K_SUPACTOR) {

srcRgn.size = SHARED_RGN_SIZE;
tgtRgn.startAddr = srcRgn.startAddr;
tgtRgn.size = SHARED_RGN_SIZE;
tgtRgn.options = rgnOpt | K_WRITABLE;
tgtRgn.opaque1 = NULL;
tgtRgn.opaque2 = NULL;

res = rgnMapFromActor(K_MYACTOR, &tgtRgn, &spawningCap, &srcRgn);

if (res != K_OK) {
printf("Cannot share memory, error %d\n", res);
exit(1);

}
ptr = (sharea_t*) tgtRgn.startAddr;

} else {
/*

* Both actors are running in supervisor space,
* There is no need to perform the rgnMapFromActor.
* One may use the received shared address.
*/

ptr = (sharea_t*) srcRgn.startAddr;
}

/* Get data from spawning actor */
printf("Spawning actor sent: %s", &ptr->data[0]);

/* Modify contents of shared memory */
sprintf(&ptr->data[0], "Spawned actor mapped shared memory at 0x%x\n",

ptr);

res = semV(&ptr->sem);
if (res != K_OK) {

printf("Spawned actor failed on semV, error %d\n", res);
exit(1);

}
}
return 0;

}

� Semaphores have been tuned to be highly optimized. There are thus some
constraints on their use: they may be used freely in a region of shared memory

Memory Management 171



between two user actors, even though the shared area is not mapped at the same
address in each actor. In supervisor space, a semaphore cannot be accessed using
two different addresses. As supervisor address space is partitioned common space,
there is no real need to invoke the rgnMapFromActor() service. Finally, it is not
possible to use a semaphore in a memory region shared between a user actor and
a supervisor actor.

� The above example would work in a similar fashion if the spawned actor did not
impose the address of the created region, but used the K_ANYWHEREflag instead.

� The spawned actor maps only one page from the region created by the spawning
actor, although this region is three pages long. Access to an address beyond the
shared page would result in access to private data for the spawning actor, and in a
memory fault for the spawned actor.

� The above example does not invoke the rgnFree() call. The region in the
spawned actor will be freed at exit time. This does not mean that the physical
memory will be freed as soon as the target actor disappears. Physical memory will
be effectively freed when both actors have exited, regardless of the order in which
they terminate.

172 ChorusOS 4.0 Introduction ♦ December 1999



CHAPTER 8

Inter-actor Communication

This chapter explains how actors can communicate. It contains the following sections:

� “Introduction” on page 173 contains a summary of the communication methods
available.

� “Message Queues” on page 174 explains how to use message spaces to
communicate between actors.

� “Local Access Points” on page 184 explains how to use a local access point.

� “IPC” on page 187 explains how to use Inter-Process Communication (IPC).

Introduction
The ChorusOS operating system offers a set of services for communicating between
actors. Sharing memory between two actors to enable them to communicate was
described in “Sharing Memory Between Two Actors” on page 167. Other
communication mechanisms can be split into two categories:

� Mechanisms which are said to be local: they do not enable actors running on
different machines to communicate. The shared memory mechanism is one of
these. You can use the system features in order to implement distributed shared
memory. Message queues and local access points are other local communication
mechanisms.

� Mechanisms which may be transparently used in a distributed way. The IPC
service enables actors to exchange messages in a transparent fashion whether they
are running on the same machine or not.

173



Message Queues
This feature is designed to allow an application composed of one or multiple actors
to create a shared communication environment, often referred to as message space,
within which these actors can exchange messages efficiently. In particular, supervisor
and user actors of the same application can use this feature to exchange messages.
Furthermore, messages may be initially allocated and sent by interrupt handlers in
order to be processed later by threads.

The feature is designed around the concept of message space which encapsulates
within a single entity:

� a set of message pools shared by all actors of the application

� a set of message queues through which these actors exchange messages allocated
from the shared message pools

A message space is a temporary resource which must be explicitly created by one
actor within the application. Once created, a message space may be opened by other
actors within the application. Actors which have opened the same message space are
said to share this message space. A message space is automatically deleted when its
creating actor and all actors which opened it have exited.

A message pool is defined by two parameters (message size and number of
messages) provided by the application when it creates the message space. The
configuration of the set of message pools defined within a message space depends
upon the needs of the application.

A message is an array of bytes which can be structured and used at application level
through any appropriate convention. Messages are presented to actors as pointers
within their address space.

Messages are posted to message queues belonging to the same message space. All
actors sharing a message space can allocate messages from the message pools. In the
same way, all actors sharing a message space have send and receive rights on each
queue of the message space.

Even though most applications only need to create a single message space, the
feature is designed to allow an application to create or open multiple message
spaces. However, messages allocated from one message space cannot be sent to a
queue of a different message space. A typical use of message spaces is as follows:

1. The first actor, aware of the overall requirements of the application, creates the
message space.

2. Other actors of the application open the shared message space.

3. An actor allocates a message from a message pool, and fills it with the data to be
sent.

174 ChorusOS 4.0 Introduction ♦ December 1999



4. The actor which allocated the message can then post it to the appropriate queue,
and can assign a priority to the message.

5. The destination actor can get the message from the queue. At this point, the
message is removed from the queue.

6. Once the destination actor has processed the message, it may free the message so
that the application may allocate it again. Alternatively, the destination actor
could, for example, modify the message and post it again to another queue.

In order to make the service as efficient as possible, physical memory is allocated for
all messages and data structures of the message space at message space creation. At
message space open time, this memory is transparently mapped by the system into
the actor address space. Further operations such as posting and receiving a message
are done without any copy involved.

Creating a message space is performed as follows:

#include <mipc/chMipc.h>

int msgSpaceCreate (KnMsgSpaceId spaceGid,
unsigned int msgQueueNb,
unsigned int msgPoolNb,
const KnMsgPool* msgPools);

The spaceGid parameter is a unique global identifier assigned by the application to
the message space being created. This identifier is also used by other actors of the
application to open the message space. Thus, this identifier serves to bind actors
participating in the application to the same message space. The K_PRIVATEID
predefined global identifier indicates that the message space created will be private
to the invoking actor: its queues and message pools will only be accessible to threads
executing within this actor. No other actor will be able to open that message space.
The message space is described by the last three parameters:

� msqgQueueNb indicates how many queues must be created within the message
space. Each queue of the message space is then designated by its index within the
set of queues. This may vary from 0 to msgQueueNb - 1 .

� msgPoolNb is the number of message pools to be created in the message space.

� msgPools is a pointer to an array of msgPoolNb pool descriptions. Each pool is
described by a KnMsgPool data structure which includes the following
information:

� msgSize , which defines the size of each message belonging to the pool

� msgNumber, which defines how many messages of msgSize bytes must be
created in this pool

Inter-actor Communication 175



Figure 8–1 shows an example of a message space recently created by an actor.

my_space

Msg pool 1

Msg pool 2

Q1

Q2

Q3

Msg queues

Actor after
message space 

creation (my_space)

Message space created 
with 2 message pools 
and 3 message queues

1 pool of 4 large messages 
1 pool of 13 small messages

Figure 8–1 Creating a Message Space

The created message space is assigned a local identifier which is returned to the
invoking actor as the return value of the msgSpaceCreate() call. The scope of this
local identifier is the invoking actor.

A message space may be opened by other actors through the following call:

#include <mipc/chmipc.h>

int msgSpaceOpen(KnMsgSpaceId spaceGid);

The message space assigned with the spaceGid unique global identifier must have
been previously created by a call to msgSpaceCreate() . A local identifier is
returned to the invoking actor. This message space local identifier can then be used
to manipulate messages and queues within the message space. Figure 8–2 shows an
example of a message space recently opened by a second actor.

my_space

Msg pool 1

Msg pool 2

Q1

Q2

Q3

Msg queues

Second actor after
message space open 

(my_space)

Figure 8–2 Opening a Message Space

A message may be allocated by the following call:

#include <mipc/chmipc.h>

int msgAllocate(int spaceLid,
unsigned int poolIndex,
unsigned int msgSize,
KnTimeVal* waitLimit,

176 ChorusOS 4.0 Introduction ♦ December 1999



char** msgAddr);

msgAllocate() attempts to allocate a message from the appropriate pool of the
message space identified by the spaceLid return value of a previous call to
msgSpaceOpen() or msgSpaceCreate() . If poolIndex is not set to
K_ANY_MSGPOOL, the allocated message will be the first free (not yet allocated)
message of the pool defined by poolIndex , regardless of the value specified by the
msgSize parameter. Otherwise, if poolIndex is set to K_ANY_MSGPOOL, the
message will be allocated from the first pool for which the message size fits the
requested msgSize . In this context, first pool means the one with the lowest index in
the set of pools defined at message space creation time. If the pool is empty, no
attempt will be made to allocate a message from another pool.

If the message pool is empty (all messages have been allocated and none has been
freed yet), msgAllocate() will block, waiting for a message in the pool to be freed.
The invoking thread is blocked until the wait condition defined by waitLimit
expires.

If successful, the address of the allocated message is stored at the location defined by
msgAddr . The returned address is the address of the message within the address
space of the actor. Remember that a message space is mapped within the address
space of the actors sharing it. However, message spaces and, as a consequence,
messages themselves, may be mapped at different addresses in different actors. This
is specially true for message spaces shared between supervisor and user actors.

Figure 8–3 illustrates two actors allocating two messages from two different pools of
the same message space.

my_space

Msg pool 1

Msg pool 2

Q1

Q2

Q3

Msg queues

Allocates and
modifies:

Allocates and
modifies:

Figure 8–3 Allocating Messages from Pools

Once it has been allocated and initialized by the application, a message may be
posted to a message queue with:

#include <mipc/chmipc.h>

int msgPut(int spaceLid,
unsigned int queueIndex,
char* msg,
unsigned int prio);

Inter-actor Communication 177



msgPut() posts the message, the address of which is msg, to the message queue
queueIndex within the message space, the local identifier of which is spaceLid .
The message must have been previously allocated by a call to msgAllocate() . The
message will be inserted into the queue according to its priority, prio . Messages
with a high priority will be taken first from the queue.

Posting a message to a queue is done without any message copy, and may be done
within an interrupt handler, or with preemption disabled.

Figure 8–4 illustrates the previous actors posting their messages to different queues.

my_space

Msg pool 1

Msg pool 2

Q1

Q2

Q3

Msg queues

Posts       to Q2 Posts               to Q3

Figure 8–4 Posting Messages to Queues

Getting a message from a queue, if any, is achieved using:

#include <mipc/chmipc.h>

int msgGet(int spaceLid,
unsigned int queueIndex,
KnTimeVal* waitLimit,
char** msgAddr,
KnUniqueId* srcActor);

msgGet() enables the invoking thread to get the first message with the highest
priority pending behind the message queue queueIndex , within the message space
whose local identifier is spaceLid . Messages with equal priority are posted and
delivered in a first-in first-out order.

The address of the message delivered to the invoking thread is returned at the
location defined by the msgAddr parameter. If no message is pending, the invoking
thread is blocked until a message is sent to the message queue, or until the time-out,
if any, defined by the waitLimit parameter expires.

The srcActor , if non-null, points to a location where the unique identifier of the
actor (referred to as the source actor) which posted the message is to be stored.

No data copy is performed to deliver the message to the invoking thread. Multiple
threads can be blocked, waiting in the same message queue. At present it is not
possible for one thread to wait for message arrival on multiple message queues. This

178 ChorusOS 4.0 Introduction ♦ December 1999



type of multiplexing mechanism could be implemented at the application level using
the ChorusOS event flags facility.

Figure 8–5 illustrates previous actors receiving messages from queues.

my_space

Msg pool 1

Msg pool 2

Q1

Q2

Q3

Msg queues

Gets        from Q2Gets               from Q3

Figure 8–5 Getting Messages from Queues

A message which is of no further use to the application may be returned to its pool
of messages available for further allocation with the following call:

#include <mipc/chMipc.h>

int msgFree(int spaceLid,
char* msg);

Code Example 8–1 illustrates a very simple use of the message queue facility.

Refer to the msgSpaceCreate (2K), msgSpaceOpen(2K), msgAllocate (2K),
msgPut (2K), msgGet(2K), and msgFree (2K) man pages.

CODE EXAMPLE 8–1 Communicating Using Message Spaces

(file: progov/msgSpace.c)

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <chorus.h>
#include <mipc/chMipc.h>
#include <am/afexec.h>

AcParam param;

#define NB_MSG_POOLS 2
#define NB_MSG_QUEUES 3
#define SMALL_MSG_SZ 32
#define LARGE_MSG_SZ 256
#define NB_SMALL_MSG 13
#define NB_LARGE_MSG 4
#define SAMPLE_SPACE 1111
#define LARGE_POOL 0
#define SMALL_POOL 1

Inter-actor Communication 179



#define Q1 0
#define Q2 1
#define Q3 2

KnMsgPool samplePools[NB_MSG_POOLS];
char* tagPtr = "Spawned";

int main(int argc, char** argv, char**envp)
{

int res;
int msgSpaceLi;
char* smallMsg;
char* smallReply;
char* largeMsg;
KnCap spawnedCap;
KnActorPrivilege actorP;

res = actorPrivilege(K_MYACTOR, &actorP, NULL);
if (res != K_OK) {

printf("Cannot get actor privilege, error %d\n", res);
exit(1);

}

if (argc == 1) {
/*

* This is the first actor (or spawning actor):
* Create a message space,
* Spawn another actor,
* Allocate, modify and post a small message on Q2
* Get a large Message from Q3, print its contents, free it
* Get reply of small message on Q1, print its contents, free it.
*/

samplePools[LARGE_POOL].msgSize = LARGE_MSG_SZ;
samplePools[LARGE_POOL].msgNumber = NB_LARGE_MSG;

samplePools[SMALL_POOL].msgSize = SMALL_MSG_SZ;
samplePools[SMALL_POOL].msgNumber = NB_SMALL_MSG;

msgSpaceLi = msgSpaceCreate(SAMPLE_SPACE, NB_MSG_QUEUES,
NB_MSG_POOLS, samplePools);
if (msgSpaceLi < 0) {

printf("Cannot create the message space error %d\n",
msgSpaceLi);

exit(1);
}

/*
* Message Space has been created, spawn the other actor,
* argv[1] set to "Spawned" to differentiate the 2 actors.
*/

param.acFlags = (actorP == K_SUPACTOR)? AFX_SUPERVISOR_SPACE :
AFX_USER_SPACE;

res = afexeclp(argv[0], &spawnedCap, &param , argv[0], tagPtr,
NULL);

if (res == -1) {
printf("Cannot spawn second actor, error %d\n", errno);
exit(1);

}

180 ChorusOS 4.0 Introduction ♦ December 1999



/*
* Allocate a small message
*/

res = msgAllocate(msgSpaceLi, SMALL_POOL, SMALL_MSG_SZ,
K_NOTIMEOUT, &smallMsg);

if (res != K_OK) {
printf("Cannot allocate a small message, error %d\n", res);
exit(1);

}

/*
* Initialize the allocated message
*/

strncpy(smallMsg, "Sending a small message\n", SMALL_MSG_SZ);

/*
* Post the allocated small message to Q2 with priority 2
*/

res = msgPut(msgSpaceLi, Q2, smallMsg, 2);
if (res != K_OK) {

printf("Cannot post the small message to Q2, error %d\n", res);
exit(1);

}

/*
* Get a large message from Q3 and print its contents
*/

res = msgGet(msgSpaceLi, Q3, K_NOTIMEOUT, &largeMsg, NULL);
if (res != K_OK) {

printf("Cannot get the large message from Q3, error %d\n",
res);
exit(1);

}

printf("Received large message contains:\n%s\n", largeMsg);

/*
* Free the received large message
*/

res = msgFree(msgSpaceLi, largeMsg);
if (res != K_OK) {

printf("Cannot free the large message, error %d\n", res);
exit(1);

}

/*
* Get the reply to small message from Q1 and print its contents
*/

res = msgGet(msgSpaceLi, Q1, K_NOTIMEOUT, &smallReply, NULL);
if (res != K_OK) {

printf("Cannot get the small message reply from Q1, "
"error %d\n", res);

exit(1);
}

printf("Received small reply contains:\n%s\n", smallReply);

/*
* Free the received small reply
*/

Inter-actor Communication 181



res = msgFree(msgSpaceLi, smallReply);
if (res != K_OK) {

printf("Cannot free the small reply message, error %d\n", res);
exit(1);

}

} else {

/*
* This is the spawned actor:
* Check we have effectively been spawned
* Open the message space
* Allocate, initialize and post a large message to Q3
* Get a small message from Q2, print its contents
* Modify it and repost it to Q1
*/

int l;

if ((argc != 2) || (strcmp(argv[1], tagPtr) != 0)) {
printf("%s does not take any argument!\n", argv[0]);
exit(1);

}
/*

* Open the message space, using the same global identifier
*/

msgSpaceLi = msgSpaceOpen(SAMPLE_SPACE);
if (msgSpaceLi < 0) {

printf("Cannot open the message space error %d\n",
msgSpaceLi);
exit(1);

}

/*
* Allocate the large message
*/

res = msgAllocate(msgSpaceLi, K_ANY_MSGPOOL, LARGE_MSG_SZ,
K_NOTIMEOUT, &largeMsg);

if (res != K_OK) {
printf("Cannot allocate a large message, error %d\n", res);
exit(1);

}

strcpy(largeMsg, "Sending a very large large large large large message\n");

/*
* Post the large message to Q3 with priority 0
*/

res = msgPut(msgSpaceLi, Q3, largeMsg, 0);
if (res != K_OK) {

printf("Cannot post the large message to Q3, error %d\n", res);
exit(1);

}

/*
* Get the small message from Q2
*/

res = msgGet(msgSpaceLi, Q2, K_NOTIMEOUT, &smallMsg, NULL);
if (res != K_OK) {

182 ChorusOS 4.0 Introduction ♦ December 1999



printf("Cannot get the small message from Q2, error %d\n", res);
exit(1);

}

printf("Spawned actor received small message containing:\n%s\n", smallMsg);

for (l = 0; l < strlen(smallMsg); l++) {
if ((smallMsg[l]>= ’a’) && (smallMsg[l] <= ’z’)) {

smallMsg[l] = smallMsg[l] - ’a’ + ’A’;
}

}

/*
* Post the small message back to Q1, with priority 4
*/

res = msgPut(msgSpaceLi, Q1, smallMsg, 4);
if (res != K_OK) {

printf("Cannot post the small message reply to Q1, error %d\n",
res);
exit(1);

}
}
return 0;

}

� Two actors are used, one spawned by the other. The first actor:

� creates a message space with two pools of messages and three message queues
as shown in the previous figure

� allocates a small message, initializes it and posts it to a queue
� waits for a large message on a second queue, prints its contents and deallocates

it
� waits for the small message to come back on a third queue, prints its contents,

deallocates it, and terminates

� Meanwhile, the second actor:

� opens the message space, allocates a large message to be initialized and sends
it to the first actor

� receives the small message, converts all lower case characters to upper case,
and posts it back to the third queue before terminating

Inter-actor Communication 183



Local Access Points
Local Access Points (LAPs) are a low overhead mechanism for calling service
routines in supervisor actors on the local site by both user and supervisor actor calls.

The following is an example of the use of local access points. Refer to the
lapInvoke (2K), svLapBind (2K), svLapCreate (2K), and svLapDelete (2K) man
pages.

CODE EXAMPLE 8–2 Creating and Invoking LAPs

(file: progov/lap.c)

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <chorus.h>
#include <lap/chLap.h>
#include <am/afexec.h>
#include <exec/chExec.h>

AcParam param;

KnCap actorCap;
KnLapDesc lapDesc;
char* lapArgument;
KnTimeVal timeval;

void
lapHandler(char* message, char* cookie)
{

int res;

res = actorSelf(&actorCap);
if (res != K_OK) {

printf("actorSelf failed, returns %d\n",res);
exit(1);

}

printf("LAP handler is running \n");
printf(" thread LI = %d, actor UI = 0x%x 0x%x\n",

threadSelf(), actorCap.ui.uiHead, actorCap.ui.uiTail);
printf(" Argument = %s, cookie = %s\n",message, cookie);

}

int main(int argc, char** argv, char** envp)
{

int res;
KnCap clientCap;
KnActorPrivilege actorP;
char* cookie = "Chorus";

res = actorPrivilege(K_MYACTOR, &actorP, NULL);
if (res != K_OK) {

184 ChorusOS 4.0 Introduction ♦ December 1999



printf("Cannot get actor privilege, error %d\n", res);
exit(1);

}

if (actorP != K_SUPACTOR) {
printf("This program must be run in supervisor mode\n");
exit(1);

}

if (argc == 1) {
printf("Must be run with one argument: LAP name\n");
exit(1);

}

if (argc == 2) {
/*

* This is the Server actor.
* connect a LAP handler,
* bind a symbolic name to this LAP (name given as argv[1])
* spawn a client actor (give the LAP symbolic name in argument)
* wait one minute for Lap invocation
*/

/*
* Spawn the client actor
*/

param.acFlags = AFX_SUPERVISOR_SPACE;
res = afexeclp(argv[0], &clientCap, &param , argv[0], argv[1],

"ARGH", NULL);
if (res == -1) {

printf("Cannot spawn client actor, error %d\n", errno);
exit(1);

}

/*
* Create the LAP
*/

res = svLapCreate(K_MYACTOR, (KnLapHdl) lapHandler,
cookie, K_LAP_SETJMP, &lapDesc);

if (res != K_OK) {
printf("svLapCreate failed, returns %d\n",res);
exit(1);

}

/*
* Bind a symbolic name
*/

res = svLapBind(&lapDesc, argv[1], 0);
if (res != K_OK) {

printf("svLapBind failed, returns %d\n",res);
exit(1);

}

/*
* Wait one minute
* Other client actors can be run from the console:
* rsh target arun lap.r lap-name lap-argument
*
*/

timeval.tmSec = 60;

Inter-actor Communication 185



timeval.tmNSec = 0;
threadDelay(&timeval);

/*
* Unbind the LAP name and Delete the LAP
*/

res = svLapUnbind(argv[1]);
if (res != K_OK) {

printf("svLapUnBind failed, returns %d\n",res);
exit(1);

}

res = svLapDelete(&lapDesc);
if (res != K_OK) {

printf("svLapDelete failed, returns %d\n",res);
exit(1);

}
printf("Server actor is leaving ...\n");

} else {

/*
* This is the Client Actor:
* argv[1] is the LAP name, argv[2] is the LAP argument.
* get the LAP descriptor and invoke the LAP handler.
*/

res = actorSelf(&actorCap);
if (res != K_OK) {

printf("actorSelf failed ! Return code = %d\n",res);
exit(1);

}

printf("Client actor is running, thread li = %d, "
"actor UI = 0x%x 0x%x\n",
threadSelf(), actorCap.ui.uiHead, actorCap.ui.uiTail);

/*
* Get the LAP descriptor knowing its name
*/

res = lapResolve(&lapDesc, argv[1], 0);
if (res != K_OK) {

printf("lapResolve failed, returns %d\n", res);
exit(1);

}

/*
* Invoke the LAP handler
*/

res = lapInvoke(&lapDesc, argv[2]);
if (res != K_OK) {

printf("lapInvoke failed, returns %d\n", res);
exit(1);

}

printf("Client actor is leaving ...\n");
}
return 0;

}

186 ChorusOS 4.0 Introduction ♦ December 1999



� The main thread:

� checks if it is running as a supervisor actor
� spawns another copy of itself using afexec()

� creates a Local Access Point and connects a LAP handler which prints the
unique identifier of the current thread (Actor UI + thread LI), the LAP
argument and the LAP cookie on the console

� binds a symbolic name received as the first argument
� waits for one minute for LAP invocations
� frees the LAP and its name, then terminates the program

� The spawned actor:

� receives two arguments: the symbolic LAP name and the argument to be
passed to the LAP handler

� retrieves the LAP descriptor
� invokes the LAP handler, then terminates

IPC
IPC is a set of programming interfaces that allow you to create and manage
individual program processes that can run concurrently in an operating system. This
allows a program to handle many user requests at the same time. Since a single user
request may result in multiple processes running in the operating system on the
user’s behalf, the processes need to communicate with other users. The IPC interfaces
make this possible. Each IPC method has its own advantages and limitations so it is
not unusual for a single program to use all of the IPC methods. IPC methods include:

� Pipes and named pipes

� Message queueing

� Semaphores

� Shared memory

� Sockets

The following is an example of the use of the IPC mechanisms provided in the
ChorusOS operating system.

Inter-actor Communication 187



Refer to the grpAllocate (2K), grpPortInsert (2K), ipcReceive (2K),
ipcSend (2K), ipcTarget (2K), portCreate (2K), and portDelete (2K) man
pages.

CODE EXAMPLE 8–3 Communicating Using IPC

(file: progov/ipcSend.c)

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <chorus.h>
#include <am/afexec.h>
#include "ipc/chIpc.h"

#define ABORT_DELAY 1000 /* Delay for ipcReceive */

static KnUniqueId thePortUi; /* Our port unique identifier */
static int thePortLi; /* ....... local identifier */
static KnCap groupCap; /* Our group capability */
static KnCap clientCap; /* Capability of the spawned */

/* actor */

/* The outgoing annex and body */
static char sndAnnex[] = "Hello world from Chorus ...\n";
static char sndBody[] = "The sea is calm, the tide is full ...\n";

/* The received annex and body */
static char rcvAnnex[K_CMSGANNEXSIZE];
static char rcvBody[1000];

/* Parameter for actor spawning */
AcParam param;

/* Port group stamp */
char* stamp;
#define MYSTAMP 100
#define STAMPSIZE 10

int main(int argc, char** argv, char** envp)
{

int rslt; /* Work */
KnMsgDesc smsg; /* Descriptor for message being sent */
KnMsgDesc rmsg; /* Descriptor for message being received */
KnIpcDest ipcDest; /* IPC address */

if (argc == 1) {
/*

* Server actor
* Create the destination port
*/

thePortLi = portCreate(K_MYACTOR, &thePortUi);
if (thePortLi < 0) {

printf("portCreate failed, returns %d\n", thePortLi);
exit(1);

}
/*

* Allocate a port group and insert the port into it

188 ChorusOS 4.0 Introduction ♦ December 1999



*/
rslt = grpAllocate(K_STATUSER, &groupCap, MYSTAMP);
if (rslt < 0) {

printf("grpAllocate failed, returns %d\n", rslt);
exit(1);

}

rslt = grpPortInsert(&groupCap, &thePortUi);
if (rslt < 0) {

printf("grpPortInsert failed, returns %d\n", rslt);
exit(1);

}
/*

* Spawn the client actor
* The group stamp is given in argument
*/

stamp = malloc(STAMPSIZE);
sprintf(stamp, "%d", MYSTAMP);

rslt = afexeclp(argv[0], &clientCap, NULL , argv[0], stamp, NULL);
if (rslt == -1) {

printf("Cannot spawn client actor, error %d\n", errno);
exit(1);

}
/*

* Receive the message
*/

rmsg.flags = 0;
rmsg.bodySize = sizeof(rcvBody);
rmsg.bodyAddr = (VmAddr)rcvBody;
rmsg.annexAddr = (VmAddr)rcvAnnex;

rslt = ipcReceive(&rmsg, &thePortLi, ABORT_DELAY);
if (rslt < 0) {

printf("ipcReceive failed, returns %d\n", rslt);
exit(1);

}

printf ("%s\n%s\n", rcvAnnex, rcvBody);

rslt = portDelete(K_MYACTOR, thePortLi);
if (rslt < 0) {

printf("portDelete failed, returns %d\n", rslt);
exit(1);

}
} else {

/*
* Get the port group capability giving the stamp.
* Stamp has been received in argv[1]
*/

rslt = grpAllocate(K_STATUSER, &groupCap, (int) atoi(argv[1]));
if (rslt < 0) {

printf("grpAllocate failed, returns %d\n", rslt);
exit(1);

}
/*

* Prepare the message descriptor for the message to send
*/

smsg.flags = 0;
smsg.bodySize = sizeof(sndBody);

Inter-actor Communication 189



smsg.bodyAddr = (VmAddr)sndBody;
smsg.annexAddr = (VmAddr)sndAnnex;

/*
* Prepare the IPC address for the message destination.
* Send the message in broadcast mode.
*/

ipcDest.target = groupCap.ui;
rslt = ipcTarget(&ipcDest.target, K_BROADMODE);
if (rslt < 0) {

printf("ipcTarget failed, returns %d\n", rslt);
exit(1);

}

/* Send from our DEFAULT port */
rslt = ipcSend(&smsg, K_DEFAULTPORT, &ipcDest);
if (rslt < 0) {

printf("ipcSend failed, returns %d\n", rslt);
exit(1);

}
}

return 0;
}

� The main thread:

� creates a port
� creates a port group and inserts the port into it
� spawns another copy of itself, using afexec() , and passes the port group

stamp as an argument
� waits for a message on the created port
� prints the contents of the body and the annex
� frees any used resources and terminates

� The spawned actor:

� retrieves the port group capability passing the stamp received as an argument
� prepares and sends a message to this group in broadcast mode (annex and

body of the message are initialized with strings)
� terminates

190 ChorusOS 4.0 Introduction ♦ December 1999



CHAPTER 9

Time Management

The ChorusOS operating system offers five time management services:

� Tick service

� Date service

� Time-out service

� Timer service

� Virtual time and virtual time-out service

The configuration of your ChorusOS operating system determines which services are
available.

Time Management Services
The following time management services are available:

� The tick service enables the system to manage the clock, counting ticks since the
boot of the system. Thus the only time available is the time elapsed since the last
reboot.

� The date service enables the ChorusOS operating system to maintain a current
date, usually expressed in seconds since the 01/01/1970. Calls to set and get the
time of day are available, through standard C libraries ctime and localtime ,
and are not detailed in this document.

� The time-out service enables supervisor actors to set up time-outs. A time-out
may be roughly described as a callback which will be performed when a given
delay has expired. Callbacks are performed using a special invocation mechanism
(called Local Access Point or LAP) reserved for supervisor actors.

191



� The timer service is an extension of the time-out mechanism, enabling user and
supervisor actors to set up call backs in a more flexible fashion.

� The virtual time and time-out service allows you to measure the CPU time used
by threads, and to define handlers which will be called if a per-thread or per-actor
CPU quota is reached.

Table 9–1 shows which services are available for a given configuration:

TABLE 9–1 Time Management Service Availability

Service Availability

tick always available

date configured with DATE

time-out always available

timer configured with TIMER

virtual time configured with VTIMER

Current Time
An actor, whether user or supervisor, may get the time elapsed since the last reboot
through the following system call:

#include <exec/chTime.h>

int sysTime(KnTimeVal* time);

This will fill in the time data structure which is built from two fields:

� tmSec which indicates the number of whole seconds elapsed since the last reboot

� tmNSec which indicates the number of nanoseconds

The resolution of the value depends on the platform on which the system is running,
and may be obtained by a call to:

#include <chorus.h>

int sysTimeGetRes(KnTimeVal* resolution);

192 ChorusOS 4.0 Introduction ♦ December 1999



The time value returned at the location defined by the resolution parameter
represents the smallest possible difference between two distinct values of the system
time.

Timers
This feature provides timer services for both user and supervisor actors. One-shot as
well as periodic timers are provided. Time-out notification is achieved through
user-provided handler threads which are woken up in the application actor.

The timer facility uses the concept of a timer object within the actor. These timer
objects may be created, deleted and set dynamically. Once created, they are
addressed by local identifiers within the context of the actor and are deleted
automatically when the actor terminates.

The application is expected to create one or more threads dedicated to timer
notification handling, by declaring themselves ready to handle these types of events.
The relationship between a timer object and a thread (or a set of threads) is
established through a threadPool object which is used to block threads waiting for
the expiration of a timer.

Thus, the basic mechanism for dealing with timers is:

1. Allocate and initialize a threadPool object.

2. Create one thread which will block on the threadPool object.

3. Create a timer associated with the above threadPool object.

4. Set the timer (effectively arm it).

The second and third steps may take place in any order. When timer expiration
occurs, the dedicated thread will be unblocked so that it may now perform any
operation which should be done due to timer expiration. For example, it may print a
warning message, re-arm the timer (unless it was a periodic timer), and block itself
again. As usual with the ChorusOS operating system data structures, these
threadPool objects must be pre-allocated by the application.

A threadPool object is initialized as follows:

#include <etimer/chEtimer.h>

int timerThreadPoolInit(KnThreadPool* threadPool);

A timer may then be created as follows:

Time Management 193



#include <etimer/chEtimer.h>

int timerCreate(KnCap* actorCap,
int clockType,
KnThreadPool* threadPool,
void* cookie,
int* timerLi);

This creates a timer object in the actor defined by the actorCap parameter.
Applications will usually use K_MYACTOR. When the timer is armed and reaches
expiration, one of the threads blocked on the threadPool object will be selected
and awakened. This thread will be passed the cookie parameter of the
timerCreate() call. When successful, timerCreate() returns the local identifier
of the created timer at the location defined by the timerLi parameter. The only
clock type currently supported is K_CLOCK_REALTIME, and corresponds to the time
returned by sysTime() .

A thread may block itself on a threadPool object through the following call:

#include <etimer/chEtimer.h>

int timerThreadPoolWait(KnThreadPool* threadPool,
void** cookie,
int* overrun,
KnTimeVal* waitLimit);

The threadPool object must have been previously initialized.
timerThreadPoolWait() blocks the invoking thread until a timer associated with
threadPool expires or until the waitLimit condition is reached. Upon timer
expiration, the thread will return from this call, and the cookie field will have been
updated with the value associated with the timer.

The overrun counter is used to indicate to the thread that either the time-out
notification has been delayed (in this case the overrun value is 1) or that a number
of time-out notifications have been lost (in this case the overrun value is strictly
greater than 1).

A timer may be armed with:

#include <etimer/chEtimer.h>

int timerSet(KnCap* actorCap,
int timerLi,
int flag,
KnITimer* new,
KnITimer* old);

This call arms the timer defined by the first two parameters where timerLi is the
timer identifier as returned by timerCreate() . timerSet() allows the

194 ChorusOS 4.0 Introduction ♦ December 1999



specification of the time-out using either a relative or an absolute time using the
flag parameter. The time-out is specified using the new parameter which is a
structure containing the following fields:

� KnTimeVal ITmValue . This field specifies at what time the time-out will occur
for the first (and maybe only) time.

� If the flag is set to K_TIMER_ABSOLUTE, the time value is an absolute time (in
terms of time as managed by the sysTime service).

� If the flag is set to K_TIMER_INTERVAL, the time value is a delay relative to
the current time.

� KnTimeVal ITmReload . This field contains the subsequent interval for a periodic
timer. If its value is 0, the timer will be a one-shot timer.

If the old parameter is non-null, the time remaining before timer expiration is
returned at the location defined by old . If new is non-null and the timer has already
been set, the current setting is cancelled and replaced with the new one. If the new
time specified is 0, the current setting will simply be cancelled. If new is set to null,
the current setting specification is left unchanged.

Refer to the timerThreadPoolInit (2K), timerCreate (2K), timerSet (2K),
timerThreadPoolWait (2K), and sysTime (2K) man pages.

The following example illustrates the use of timer services for both user and
supervisor actors.

CODE EXAMPLE 9–1 Using Timers

(file: progov/timers.c)

#include <stdio.h>
#include <stdlib.h>
#include <chorus.h>
#include <etimer/chEtimer.h>

KnThreadPool samplePool;
int periodic;
int oneShot;
int periodicLid;
int oneShotLid;

#define USER_STACK_SIZE (1024 * sizeof(long))

KnSem sampleSem; /* Semaphore allocated as global variable */

int
childCreate(KnPc entry)
{

KnActorPrivilege actorP;
KnDefaultStartInfo_f startInfo;
char* userStack;
int childLid = -1;

Time Management 195



int res;

startInfo.dsType = K_DEFAULT_START_INFO;
startInfo.dsSystemStackSize = K_DEFAULT_STACK_SIZE;

res = actorPrivilege(K_MYACTOR, &actorP, NULL);
if (res != K_OK) {

printf("Cannot get the privilege of the actor, error %d\n", res);
exit(1);

}

if (actorP == K_SUPACTOR) {
startInfo.dsPrivilege = K_SUPTHREAD;

} else {
startInfo.dsPrivilege = K_USERTHREAD;

}

if (actorP != K_SUPACTOR) {
userStack = malloc(USER_STACK_SIZE);
if (userStack == NULL) {

printf("Cannot allocate user stack\n");
exit(1);

}
startInfo.dsUserStackPointer = userStack + USER_STACK_SIZE;

}

startInfo.dsEntry = entry;

res = threadCreate(K_MYACTOR, &childLid, K_ACTIVE, 0, &startInfo);
if (res != K_OK) {

printf("Cannot create the thread, error %d\n", res);
exit(1);

}

return childLid;
}

void
timerWait(int myThLi)
{

/* do nothing */
}

void
sampleThread()
{

int myThLi;
int res;
void* cookie;
int overrun;
KnITimer periodicTimer;
KnTimeVal tv;

myThLi = threadSelf();
printf("Thread %d started\n", myThLi);

for(;;) {
res = timerThreadPoolWait(&samplePool, &cookie, &overrun, K_NOTIMEOUT);
if (res != K_OK) {

printf("Cannot wait on thread pool, error %d\n", res);

196 ChorusOS 4.0 Introduction ♦ December 1999



exit(1);
}
if (overrun != 0) {

printf("Thread %d. We were late! overrun set to : %d\n",
myThLi, overrun);

}
if (cookie == &periodic) {

printf("Thread %d. Time is flying away!\n", myThLi);
} else if (cookie == &oneShot) {

printf("Thread %d. Isn’t it time to go home?\n", myThLi);
periodicTimer.ITmValue.tmSec = 0; /* seconds */
periodicTimer.ITmValue.tmNSec = 0; /* nanoseconds */
periodicTimer.ITmReload.tmSec = 0; /* seconds */
periodicTimer.ITmReload.tmNSec = 0; /* nanoseconds */
res = timerSet(K_MYACTOR, periodicLid, NULL, &periodicTimer, NULL);
if (res != K_OK) {

printf("Cannot cancel periodic timer, error %d\n", res);
exit(1);

}
/*

* Periodic timer is cancelled
* Get current time,
* Wait for a short while (3 seconds) and quit
*/

res = sysTime(&tv);
if (res != K_OK) {

printf("Cannot get system time, error %d\n", res);
exit(1);

}
printf("Current system time is %d seconds\n", tv.tmSec);
printf("No more periodic messages should be printed now!\n");
K_MILLI_TO_TIMEVAL(&tv, 3000);
threadDelay(&tv);
/* We are all done ! */
exit(0);

} else {
printf("Spurious timer!\n");

}
} /* for() */

}

int main(int argc, char** argv, char** envp)
{

int res;
KnTimeVal tv;
int thLi1;
int thLi2;
KnITimer periodicTimer;
KnITimer oneShotTimer;

res = timerThreadPoolInit(&samplePool);
if (res != K_OK) {

printf("Cannot initialize thread pool, error %d\n", res);
exit(1);

}

res = timerCreate(K_MYACTOR, K_CLOCK_REALTIME, &samplePool,
&periodic, &periodicLid);

if (res != K_OK) {
printf("Cannot create periodic timer, error %d\n", res);

Time Management 197



exit(1);
}

res = timerCreate(K_MYACTOR, K_CLOCK_REALTIME, &samplePool,
&oneShot, &oneShotLid);

if (res != K_OK) {
printf("Cannot create one shot timer, error %d\n", res);
exit(1);

}

thLi1 = childCreate((KnPc)sampleThread);
thLi2 = childCreate((KnPc)sampleThread);

res = sysTime(&tv);
if (res != K_OK) {

printf("Cannot get system time, error %d\n", res);
exit(1);

}
printf("Current system time is %d seconds\n", tv.tmSec);

periodicTimer.ITmValue.tmSec = 1; /* seconds */
periodicTimer.ITmValue.tmNSec = 0; /* nanoseconds */
periodicTimer.ITmReload.tmSec = 1; /* seconds */
periodicTimer.ITmReload.tmNSec = 0; /* nanoseconds */
res = timerSet(K_MYACTOR, periodicLid, NULL, &periodicTimer, NULL);
if (res != K_OK) {

printf("Cannot arm periodic timer, error %d\n", res);
exit(1);

}

oneShotTimer.ITmValue.tmSec = tv.tmSec + 30; /* seconds */
oneShotTimer.ITmValue.tmNSec = 0; /* nanoseconds */
oneShotTimer.ITmReload.tmSec = 0; /* seconds */
oneShotTimer.ITmReload.tmNSec = 0; /* nanoseconds */

res = timerSet(K_MYACTOR, oneShotLid, K_TIMER_ABSOLUTE,
&oneShotTimer, NULL);

if (res != K_OK) {
printf("Cannot arm one shot timer, error %d\n", res);
exit(1);

}

res = threadDelete(K_MYACTOR, K_MYSELF);
if (res != K_OK) {

printf("Cannot suicide myself, error %d\n", res);
exit(1);

}

return 0;
}

� The main thread sets up everything that is needed, so that two created threads will
respond to a single periodic timer of one second for a duration of thirty seconds.

� The thirty-second period is bounded by a one-shot timer handled by the same
pool of two threads.

198 ChorusOS 4.0 Introduction ♦ December 1999



� Before starting, the current system time is printed.

� When the thirty second timer has elapsed, the periodic timer is cancelled and the
current system time is printed again.

� A small delay has been added before the actor terminates to check that the
periodic timer has been cancelled correctly.

Time Management 199



200 ChorusOS 4.0 Introduction ♦ December 1999



PART IV Debugging and Performance Profiling





CHAPTER 10

System and Application Debugging

This chapter presents the source-level debugging architecture in the ChorusOS 4.0
operating system. It explains how to configure the different servers and tools, and
how to use them.

� “Preparing the System for Symbolic Debugging” on page 203 describes how to
prepare your system for symbolic debugging.

� “Application Debugging Architecture” on page 207 gives an overview of the
application debugging architecture and lists the steps involved in setting up a
system debugging session.

� “System Debugging Architecture” on page 210 gives an overview of the system
debugging architecture and lists the steps involved in setting up an application
debugging session.

� “Sample XRAY Start-up Script” on page 223 presents a script which can be used to
start the XRAY Debugger for the ChorusOS operating system.

Preparing the System for Symbolic
Debugging
Compiling for Debugging
In order to use all the debugging features in the XRAY Debugger, you need to
generate symbolic debugging information when you compile components. This
information is stored in the object files and describes the data type of each variable
or function and the correspondence between source line numbers and addresses in
the executable code.

203



How you enable debugging in components will depend on which release of
ChorusOS 4.0 you have. The binary release of ChorusOS 4.0 includes the source code
for the BSP, driver and example components. These you will compile in what is
known as an imake build environment because the imake tool is used to create the
Makefiles for these components.

The source release of ChorusOS 4.0 includes everything in the binary release plus
source code for system components, such as the kernel and the operating system.
These components are built in an mkmk build environment where the tool mkmkis
used to build Makefiles. For more details see ChorusOS 4.0 Production Guide.

Enabling Debugging for Components Built with
imake
To build all your components with symbolic debugging information turned on:

� Edit the Paths file located in the root of your build directory, created after you
run the configure command, and add the following line to the end:

FREMOTEDEB=ON

Other ways can be used to selectively build your components with symbolic
debugging information. These are presented below.

To enable symbolic debugging throughout the component directory and its
sub-directories:

1. Edit the Project.tmpl file located in the root of the component source directory,
and add the following line to the end:

DEBUG=$(DEBUG_ON)

2. Change directory to the root of your build directory and remove all the object files
and executables:

% make clean

3. Rebuild the local Makefile:

% make Makefile

4. Rebuild the sub-directory Makefiles:

% make Makefiles

5. Finally, rebuild the component:

% make

204 ChorusOS 4.0 Introduction ♦ December 1999



To enable symbolic debugging in selected component directories:

1. Edit the Imakefile within each desired component source directory, and add the
following line to the end:

DEBUG=$(DEBUG_ON)

2. Change directory to the root of your build directory and remove all the object files
and executables:

% make clean

3. Rebuild the local Makefile:

% make Makefile

4. Finally, rebuild the component:

% make

If you prefer not to modify the Imakefile or Project.tmpl files, there is an
alternative way of enabling debugging. You can pass the debug option within the
make command itself:

� Change to your build directory and remove all the object files and executables:

% make clean

Rebuild the component with symbolic debugging enabled:

% make MAKE="make DEBUG=-gdwarf-2"

� You can also create a DEBUG environment variable. If you use the C shell:

% setenv DEBUG -gdwarf-2

If you use the Bourne shell:

$ DEBUG=-gdwarf-2
$ export DEBUG

Now call make with the −e option to import environment variables:

% make -e

System and Application Debugging 205



Once a component has been compiled in debug mode, rebuild and reboot the system
image.

Enabling Debugging for Components Built with
mkmk
To enable symbolic debugging for system components:

1. Change to your build directory and remove all the object files and executables:

% make clean

2. Create a mkmkbuild definition file:

% echo ’FREMOTEDEB=ON’ > filename.df

filename can be a name of your choice.

3. Rebuild the system component:

% make makemk

Configuring the Debug Agent
The DebugAgent is activated by enabling the DEBUG_SYSTEMfeature with the
configurator (1CC) command:

% configurator -set DEBUG_SYSTEM=true

Note - The DEBUG_SYSTEMfeature is set to true by default.

When the DebugAgent is activated, communications on the serial line are performed
in binary mode.

The DebugAgent has eight tunable options that you can configure with ews or
configurator . The following three tunables control the behavior of the
DebugAgent when it is enabled (DEBUG_SYSTEM=true ):

� dbg.agent.startup specifies the behavior of the DebugAgent when the
DebugServer attempts to connect to the target. Possible values are stop or
resume . In stop mode the system will wait indefinitely until the DebugServer
connects to the DebugAgent. In resume mode the system will wait for no more
than one second. In both cases, the DebugAgent will issue the prompt
DebugAgent: trying to sync with DebugServer... over the serial line and

206 ChorusOS 4.0 Introduction ♦ December 1999



sound a beep. If the DebugServer does not connect, the system will continue
booting and console operations will be performed raw, without any processing by
the DebugAgent, on the serial line.

� dbg.agent.exceptmode specifies the behavior of the DebugAgent when an
exception is raised before the DebugServer has connected. Possible values are
catch or forward . In catch mode the DebugAgent catches all exceptions and
blocks the target until a DebugServer has connected and resumed the execution of
the target. In forward mode the DebugAgent forwards all exceptions directly to
the kernel-installed handlers.

� dbg.agent.consolemode specifies the operating mode of the system console.
Possible values are sync or async . In sync mode the target is blocked until each
message has been transmitted to the host for output and acknowledged. In async
mode, console output is buffered and transmitted to the host periodically, either
when the buffer is full or on each timer interrupt, whichever occurs first.

The following five tunables control the serial line used by the DebugAgent.

� dbg.agent.device specifies the serial device used by the DebugAgent. Possible
values are COM1, COM2, COM3, or COM4. COM1refers to communication port 1
(COM 1) on a PC, or the first serial line on other boards. COM2refers to
communication port 2 (COM 2) on a PC, or the second serial line on other boards,
and so on.

� dbg.agent.baud specifies the baud rate of the serial line. Possible values are:
115200, 57600, 38400, 19200, 9600, 4800, 2400, or 1200.

� dbg.agent.parity specifies the parity of the serial line. Possible values are
none , even , or odd .

� dbg.agent.databits specifies the number of data bits. The only possible value
is 8.

� dbg.agent.stopbits specifies the number of stop bits. Possible values are 1 or
2.

Note - When the DebugAgent is not active (DEBUG_SYSTEM=false ), the serial line
is used by the system debugging console, and the five tunables control the serial
device and speed.

Application Debugging Architecture
This section describes the components within the application debugging architecture.

System and Application Debugging 207



Architecture Overview
The application debugging architecture has two components:

� XRAY Debugger for ChorusOS

� Remote debug server (RDBC) rdbc (1CC)

The XRAY Debugger for ChorusOS runs on the host. The remote debug server runs
on the target and communicates with XRAY over the Ethernet. This is illustrated in
Figure 10–1.

XRAY Debugger
for ChorusOS

Remote
debug server

(RDBC)

Ethernet
UDP/IP

Host Target

Applications
(actors)

Figure 10–1 Application Debugging Architecture

Application debugging is intended to be used for debugging user applications,
dynamically loaded actors, as well as certain supervisor actors. It is not possible to
debug the Actor Management (AM) or I/O Management components (IOM), the
kernel, or the system drivers. Application debugging relies on the RDBC supervisor
actor which uses the services of the AM, the IOM, the kernel, and system drivers
such as the Ethernet driver. When an application is debugged, only that application
is affected. Other applications in the operating system, as well as the operating
system itself, will keep running.

Setting up a Debugging Session
To begin an application debugging session, follow these steps:

1. Ensure that your target is connected to your network.

2. Prepare the system for symbolic debugging. See “Preparing the System for
Symbolic Debugging” on page 203 for information on how to do this.

3. Configure and start rdbc , the ChorusOS remote debug server. See “RDBC
Configuration and Usage” on page 209 and rdbc (1CC).

4. Configure and start the XRAY Debugger for ChorusOS. See “Sample XRAY
Start-up Script” on page 223.

208 ChorusOS 4.0 Introduction ♦ December 1999



RDBC Configuration and Usage
The RDBC server can be started automatically or manually:

� For RDBC to be started automatically, the conf/sysadm.ini file, read during
system initialization by C_INIT , must contain a command which mounts the NFS
root. If this mount command is present, edit the conf/sysadm.ini file and add
the following line after it:

rdbc

Note - It is extremely important that RDBC is started after the NFS root is mounted
on the target.

� RDBC can be started manually, as a normal application, as follows:

% rsh -n name arun rdbc

Note - Running RDBC manually gives you freedom to choose when you want to
carry out application debugging, freeing up valuable resources.

To stop RDBC, use the akill command. First identify the actor process ID (aid):

% rsh name aps

Then kill the RDBC process:

% rsh name akill aid

Note - Your XRAY application debug session will be lost if you stop RDBC.

Information about what targets are available to XRAY is held in the file
chorusos.brd . There are four columns: the machine names where RDBC executes
are specified in the first column, slot numbers are specified in the second column,
and the last two columns are for comments. XRAY interprets integer values between
0 and 25 in the second column as slot numbers and larger values as TCP/IP port
numbers, and will adapt its connection to the server accordingly. The default TCP/IP
port number of RDBC is 2072.

Here is an example chorusos.brd file:

target-i386 2072 "i386" "Application debug of target-i386"
target-ppc 2072 "ppc" "Application debug of target-ppc"

System and Application Debugging 209



The entries specify the application debug of actors running on target-i386 and
target-ppc respectively, and require that RDBC be running on both machines.

Two or more RDBC servers can be run on the same target to provide you with a
separate console for each program being debugged.

See rdbc (1CC) for more information.

Note - The name and port number specified in chorusos.brd have different
meanings:

� For application debug, the chorusos.brd file specifies the target name, and the
port number corresponds to a UDP/IP port number, 2072 by default.

� For system debug, the chorusos.brd file specifies the host name where the
RDBS server is running. The port number corresponds to the RDBS slot number in
the range 0..25.

System Debugging Architecture
This section describes the components within the system debugging architecture.

Architecture Overview
The system debugging architecture has the following components:

� XRAY Debugger for ChorusOS

� Remote debug server (RDBS) rdbs (1CC)

� ChorusOS debug server (DebugServer) chserver (1CC)

� Debug agent (DebugAgent)

The first three components run on the host. The fourth, the debug agent, runs on the
target and communicates with the ChorusOS debug server through a serial
connection. This is illustrated in Figure 10–2.

210 ChorusOS 4.0 Introduction ♦ December 1999



XRAY Debugger
for ChorusOS

ChorusOS
debug server

(DebugServer)

Ethernet TCP/IP

Remote Host Host

Operating 
system

Remote
debug server

(RDBS)

Debug agent 
(DebugAgent)

Target

serial link

Remote Host and Host can be 
the same machine

Figure 10–2 System Debugging Architecture

A more detailed description of the debugging architecture can be found in Chapter 2
and 3 of the ChorusOS Debug Architecture and API Specifications document
(/opt/SUNWconn/SEW/4.0/chorus-doc/pdf/DebugApi.pdf ).

System debugging is intended to be used for debugging different parts of the
ChorusOS operating system. This includes the kernel, the system drivers, the BSP,
and those supervisor actors that cannot be debugged with application debugging
such as the AM, and the IOM. System debugging also allows you to debug interrupt
and exception handlers. During system debugging, the whole operating system is
affected.

Setting up a Debugging Session
To begin your first system debugging session, follow these steps:

1. Connect a serial cable between the host and target.

2. Prepare the system for symbolic debugging. See “Preparing the System for
Symbolic Debugging” on page 203 for information on how to do this.

3. Start and configure the ChorusOS DebugServer chserver . See “Setting up a
Debugging Session” on page 211 and chserver (1CC).

4. Register the target with chadmin , the ChorusOS DebugServer administration
tool. See “Registering a Target” on page 214.

System and Application Debugging 211



5. Configure and start rdbs , the ChorusOS debug server for the XRAY Debugger.
See “DebugServer Configuration File” on page 213 and rdbs (1CC).

6. Start the ChorusOS debug console chconsole . See the chconsole (1CC) man
page for further details.

7. Configure and start the XRAY Debugger for ChorusOS. See “Sample XRAY
Start-up Script” on page 223.

Note - If you do not start chserver you will not be able to use chconsole .
However, you can still view the system console using the tip or cu commands. See
tip (1) and cu (1C) for more details.

For subsequent debugging sessions, you need only perform the following steps:

1. Start the ChorusOS DebugServer chserver , if it is not already running.

2. Start rdbs , the ChorusOS debug server for the XRAY debugger, if it is not already
running.

3. Start the ChorusOS debug console chconsole .

4. Start the XRAY Debugger for ChorusOS.

Starting and Configuring the ChorusOS
DebugServer

Identifying the Serial Device
The ChorusOS DebugServer chserver communicates with the target through a
serial cable connection and must be run on the host to which the target is connected.

To identify the serial device, look in the /etc/remote file. This file contains
references to remote systems that you can access through your local serial line. For
more details, see remote (4). The device is usually named /dev/ttya or
/dev/ttyb and will be the same device used by the tip or cu tools. The device
must be readable and writable by all users.

DebugServer Slot Numbers
The DebugServer is a Sun RPC server that is registered with the rpcbind server.
When you require more than one debug server to run on the same host, assign a
unique slot number (in the range 0..65535) to each of them so that individual debug

212 ChorusOS 4.0 Introduction ♦ December 1999



servers can be identified. If only one debug server is started on a given host, it is not
necessary to allocate a slot number as 0 will be used by default.

If you decide to assign a slot number to your DebugServer, use the DebugServer
environment variable CHSERVER_HOST.

DebugServer Environment Variable
The DebugServer, as well as all the other tools based on the Debug Library, uses the
optional environment variable CHSERVER_HOST. This environment variable
indicates:

� the host name where your DebugServer is running

� optionally, the slot number for the DebugServer RPC service

The format of the environment string is host[:slot-id] . For example:

% setenv CHSERVER_HOST jeriko
% setenv CHSERVER_HOST concerto:3

DebugServer Configuration File
Configuration information about targets is held in a special file which the
DebugServer reads every time you run it. For each target, the configuration file
contains:

� The name of the target

� The serial device used to communicate with the target

� Configuration parameters for the serial device (baud rate, parity)

� The architecture type of the target (i386, PPC, SPARC)

� The absolute path of the layout.xml image layout file generated by mkimage

When a new target is registered, see “Registering a Target” on page 214 for details of
how to do this, the configuration file is modified.

Starting the DebugServer
On the host to which your target or targets are connected, type the following
command:

% chserver

System and Application Debugging 213



This will start the DebugServer as a background process. An empty configuration file
called dbg_config.xml is copied into your home directory the first time you run
the DebugServer.

If you have defined a slot number n and not set the environment variable, you can
start the DebugServer as follows:

% chserver -slot n

A complete description of the DebugServer is given in the chserver (1CC) man
page.

Note - If chserver is run on a different host to the one the system image was built
on, particularly on a shared file system with a different view of the build directory,
the tool will not be able to access the necessary source files during system
debugging. This problem is NFS related, the symbolic link created on one host may
not be valid for another, and is due to there being relative file references in the
layout.xml file. There are two solutions to the problem:

� Break the symbolic link with the file
/build-NUCLEUS/conf/mkimage/layout_typedef.xml accessed by
chserver .

� Copy the conf and image directories to the host where chserver will run, then
use chadmin to set the path of the layout.xml file.

Stopping the DebugServer
Stop the DebugServer by using the chadmin tool.

% chadmin -shutdown

Registering a Target
Before registering a target you need to know:

� The name of the target

� The name of the serial device

� The path of the layout.xml file generated by mkimage (the path of this file is
printed by mkimage when a system image is built)

214 ChorusOS 4.0 Introduction ♦ December 1999



Now you can register the target by typing:

% chadmin -add-serial-target name/
-device device/
-layout-file layout_file

name is the name of your target, device is the serial device that you have identified,
and layout_file is the absolute path of the layout.xml file.

You only need to register a target once as configuration information is saved in your
dbg_config.xml file.

Updating Target Information
Use chadmin to update the information that you gave during the registration of
your target.

The following example sets the baud rate to 38400, the parity to none, and uses the
device /dev/ttya for the target name:

% chadmin -baud 38400 -parity none -device /dev/ttya name

If you wish to specify a new layout.xml file because the path has changed (see
note), use the following command to inform the DebugServer of the new path:

% chadmin -layout-file path/layout.xml name

System and Application Debugging 215



Note - When you change the mode of system image booting (using the BOOT_MODE
global variable) or select a different system image configuration (using the SYSTEM
global variable), the path to the layout.xml file will change.

For example, if you type:

% configurator -set SYSTEM=kts

The path will change to build_dir/image/RAM/kts/layout.xml .

If you then type:

% configurator -set SYSTEM=chorus

The path will change to build_dir/image/RAM/chorus/layout.xml .

Similarly, if you change the mode of system image booting:

% configurator -set BOOT_MODE=ROM

The path will change to build_dir/image/ROM/chorus/layout.xml .

Deactivating a Target
A target can be deactivated to disconnect the DebugServer from the DebugAgent
and release the serial device used by the DebugServer. When a target is deactivated,
the DebugAgent switches to a stand-alone mode. The chconsole must no longer be
used as the DebugServer does not read the serial line any more. Instead, you must
start the tip (1) or cu (1C) tools to gain access to the system debugging console.

A target may be temporarily removed (deactivated) with the following command:

% chadmin -deactivate name

216 ChorusOS 4.0 Introduction ♦ December 1999



name is the name of your target.

When a target is deactivated, it is not removed from the DebugServer configuration
file so that it is possible to reactivate it later.

Reactivating a Target
Before the target can be reactivated, you must stop any tip or cu tools which may
be using the serial line.

The target is reactivated with this command:

% chadmin -activate name

name is the name of your target.

The DebugServer will synchronize with the DebugAgent and the DebugAgent will
switch to a binary protocol mode. At this stage, you must use the chconsole to
gain access to the system debugging console.

Removing a Target
A target may be permanently removed by first deactivating it (see “Deactivating a
Target” on page 216) then unregistering it with this command:

% chadmin -remove-target name

name is the name of your target.

Providing you have deactivated the target first, the target’s configuration information
will be deleted from the configuration file.

RDBS Configuration and Usage
If RDBS is started without any parameters it will connect, by default, to the first
target available on the DebugServer. However, you can specify a target name on the
command–line provided the name you use is registered with the DebugServer.

System and Application Debugging 217



Note - This name is unrelated to the name under which the target might be known
on the TCP/IP network (through another connection). It only identifies the serial line
connecting the target with the DebugServer.

A complete set of command-line parameters are documented in rdbs (1CC).

Several RDBS servers may be run on one machine to debug several targets, provided
you define a different slot for each server.

Information about what targets are available to XRAY is held in the file
chorusos.brd . There are four columns: the machine names where RDBS executes
are specified in the first column, slot numbers are specified in the second column,
and the last two columns are for comments. XRAY interprets integer values between
0 and 25 in the second column as slot numbers and larger values as TCP/IP port
numbers, and will adapt its connection to the server accordingly.

Here is an example chorusos.brd file:

rdbshost 0 "i386" "System debug of target-i386"
rdbshost 1 "ppc" "System debug of target-ppc"

The entries specify that two copies of RDBS will run on the rdbshost machine (a
Solaris workstation): one on slot 0, configured to debug the target-i386 target,
and another on slot 1, configured to debug the target-ppc target.

Note - The name and port number specified in chorusos.brd have different
meanings:

� For application debug, the chorusos.brd file specifies the target name, and the
port number corresponds to a UDP/IP port number, 2072 by default.

� For system debug, the chorusos.brd file specifies the host name where the
RDBS server is running. The port number corresponds to the RDBS slot number in
the range 0..25.

Concurrent System and Application Debugging
Combine the example chorusos.brd files given in “RDBC Configuration and
Usage” on page 209 and “RDBS Configuration and Usage” on page 217:

rdbshost 0 "i386" "System debug of target-i386"
rdbshost 1 "ppc" "System debug of target-ppc"
target-i386 2072 "i386" "Application debug of target-i386"
target-ppc 2072 "ppc" "Application debug of target-ppc"

218 ChorusOS 4.0 Introduction ♦ December 1999



The first two entries specify that two copies of RDBS will run on the rdbshost
machine (a Solaris workstation): one on slot 0, configured to debug the target-i386
target, and another on slot 1, configured to debug the target-ppc target.

The last two entries specify the application debug of actors running on target-i386
and target-ppc respectively, and require that RDBC be running on both machines.

By attaching to the first and third targets, you can carry out application and system
debugging on the same target concurrently. However, while the system is stopped it
is not possible to carry out application debug because halting the system halts
RDBC, as well as the application itself.

Example XRAY/RDBS debug session
In this session the target is named target-i386 , the workstation is named
workstation1 and all host tools are available. Several actors and drivers have been
added to the system, and they have been compiled for system debugging.

Make sure you have enabled the system debugging during system generation (see
“Compiling for Debugging” on page 203), then run DebugServer (see “Starting the
DebugServer” on page 213) and connect a console to target-i386 . Run RDBS in
the following manner:

% rdbs target-i386

Run XRAY (by using the “Sample XRAY Start-up Script” on page 223, for example),
then go to the Managers window and select the Connect tab.

Select the Boards->Add or Copy board entry to register your target for system
debug. XRAY opens the Add/Copy Board Entry pop-up dialog:

Enter the host name where RDBS is running in the Name of Board field. Enter the
slot number used by RDBS (0 by default) in the Port as String field. Leave the
other fields blank.

System and Application Debugging 219



Note - On Windows NT, XRAY uses native Windows pathnames and it not aware of
the Cygwin UNIX emulation layer used by the ChorusOS host tools. As a result,
pathname translations must be specified so that XRAY can translate the Unix-like
pathnames returned by the DebugServer, or embedded in object modules, into native
Windows NT pathnames. Typical pathname translations are /c/=C:\ and /d/=D:\ .
They must reflect the results of the Cygwin mount command.

After the dialog box is validated, the new board appears in the window. Connect to
the RDBS server by double-clicking on it with the left mouse button.

This will connect you to RDBS, and through it to the DebugServer and the target.
You can now view the system as it runs.

Enter the following in the command-line area of the Code window to see a list of
actors running on the target:

Conn> stat actors

Select the Process tab in the Managers window. The Available Processes list
will show a single entry representing the system as process number 1.
Double-clicking on it will stop the system and initiate a debugging session.

XRAY will present you with the list of actors for which symbols should be loaded.
By default, all actors are selected and you can press the OKbutton. XRAY will find
the executable files automatically. For some of them, it may not have the path and it
will prompt for the pathname of the missing executable file. If the actor’s binary file
is statically linked, you must indicate the path where it is located. If the actor’s
binary file is relocatable, then your only option is to select Cancel , because system
debugging does not support the debugging of actors loaded from relocatable binaries.

After all selected actors have been loaded, XRAY will show where the system has
been stopped in the Code window. The name of the thread which was executing last,
also known as the current thread, will be displayed in the title bar. Thread execution
can now be controlled.

220 ChorusOS 4.0 Introduction ♦ December 1999



Think of a function you want to debug, myFunc() for example, and perform this
command:

% scope myFunc

XRAY displays the source code of the function in the Code window. You can place a
breakpoint in it for the current thread by double-clicking with the left button on the
selected line number. This will set a per-thread breakpoint, for the current thread.

If you do not know whether the current thread will execute this function, place a
global breakpoint by opening a local menu with the right mouse button and selecting
Set Break All Threads . Press the Go button to resume running the function.

Once the breakpoint has been reached, examine the values of variables by
double-clicking on them with the right mouse button.

If the breakpoint is not reached, and the system continues to run, you can stop it
asynchronously using the Stop button. The Code window will show the stop
location.

Note - Due to the way in which the stop operation has been implemented, this will
always be the same location inside the clock interrupt handler, except if the system
was blocked in a console input, or performing console output.

You can find the interrupted location by examining the stack with the Up button.

System and Application Debugging 221



The chls tool
The chls tool is available from the XRAY command window with the dchls
command. You can use this command to display values which are not directly visible
in the XRAY windows. For example, to look at the processor specific registers, type
the following command:

Stop> dchls -special-regs

Troubleshooting
If the DebugServer process is terminated, RDBS will attempt to reconnect to a new
DebugServer process automatically. If there was a debugging session open at the
time, the single process representing the ChorusOS operating system will be killed,
and the debugging context lost. You will need to re-grab the process after RDBS has
reconnected to the new DebugServer. If this does not work, then kill and restart
RDBS.

222 ChorusOS 4.0 Introduction ♦ December 1999



If the target is rebooted, the single process representing the ChorusOS operating
system will appear in the XRAY output window first as killed, and shortly after as
restarted. XRAY will then attempt to reinsert all previously set breakpoints and
promote them from thread-specific to global. Any breakpoints that cannot be
reinserted will be deleted.

If you stop the system while it is waiting for console input, it will not resume until
you provide some keyboard input.

Currently, the DebugServer does not offer access to the target’s ChorusOS IPC ports.
RDBS will report this by printing a warning message on start-up.

If a given symbols is present in several actors, or in several modules in a single actor
(a static symbol, for example), then you can use the ps /f symbol_name command
to display all of the occurrences of the symbol, complete with a full pathname. The
full pathname is of the @binary_file\\ module\ symbol_name form. Use this full
pathname to reference symbols which not in the current scope.

Because XRAY asks for a thread list each time a debugged process stops, and
generating the list takes a long time during system debugging, the thread list shown
in the Threads Manager is simplified. It does not include fields names, such as
actor names, and is only updated when the current thread changes. The full thread
list is available from the Resource Viewer or through the dallthreads
command. Per-actor threads can be displayed with the command dthreads=aid .
You can force the full thread list to be displayed, both in the Resource Viewer and
in the Threads Manager , by permanently leaving the Resource Viewer window
open on the thread list.

Sample XRAY Start-up Script
A sample script for setting up and starting XRAY is provided below.

Create a sub-directory within your system image directory to hold the script. For
example, if your system image is called chorus.RAM , the directory would be
image/RAM/chorus/bin .

Remember to modify the line which initializes the XRAY_INSTALL_DIR
environment variable to point to the directory where XRAY is installed. This
directory also contains the bin , docs , docschxx , license , master , xraycore
and xrayrdb sub-directories. The script assumes you have put the license.dat
file into this directory.

This shell script works if you use either a time-limited licence for XRAY, or a license
locked to your machine. Please refer to the XRAY documentation for details of the
other options available.

#!/bin/sh
set +x

System and Application Debugging 223



XRAY_INSTALL_DIR=<xray_install_dir>

# Clean up possible crash
/bin/rm -f core /tmp/.MasterMsg/.MasterSock.$DISPLAY*

# Prepare environment variables
XRAYMASTER=$XRAY_INSTALL_DIR/master
export XRAYMASTER

USR_MRI=$XRAY_INSTALL_DIR
export USR_MRI

LD_LIBRARY_PATH=$XRAYMASTER/lib
export LD_LIBRARY_PATH

# LM_LICENSE_FILE=$XRAY_INSTALL_DIR/license.dat
LM_LICENSE_FILE=/Work/build/mir/mri/mri/license.dat
export LM_LICENSE_FILE

# If you use a license server, the following line starts it
# ./mri/bin/lmgrd
# Then we change the LM_LICENSE_FILE variable to point to the server
# LM_LICENSE_FILE=port_number@machine_name

# Run XRAY itself
$XRAY_INSTALL_DIR/master/bin/xray -VABS=rdb $*
# ./mri/master/bin/xray $*

224 ChorusOS 4.0 Introduction ♦ December 1999



CHAPTER 11

Performance Profiling

This chapter explains how to analyze the performance of a ChorusOS operating
system and its applications by generating a performance profile report.

� “Introduction to Performance Profiling” on page 225 explains why a performance
profile is useful and how it can be used.

� “Preparing to Create a Performance Profile” on page 227 explains how to
configure your system so that you can generate a performance profile.

� “Running a Performance Profiling Session” on page 228 explains how to create a
performance profile.

� “Analyzing Performance Profiling Reports” on page 229 explains how to analyze
the performance profile.

� “Performance Profiler Description” on page 231 gives more information on how
the performance profiler works.

Introduction to Performance Profiling
The ChorusOS operating system performance profiling system contains a set of tools
that facilitate the analysis and optimization of the performance of the ChorusOS
operating system and applications. These tools concern only system components
sharing the system address space, that is, the ChorusOS operating system components
and supervisor application actors. This set of tools is composed of a profiling server,
libraries for building profiled actors, a target controller and a host utility.

Software performance profiling consists of collecting data about the dynamic behavior
of the software, to gain knowledge of the time distribution within the software. For

225



example, the performance profiling system is able to report the time spent within
each procedure, as well as providing a dynamically constructed call graph.

The typical steps of an optimization project are:

1. To bench a set of typical applications, using the ChorusOS operating system and
applications at peak performance. The selection of these applications is critical, as
the system will eventually be tuned for this type of application.

2. To evaluate and record the output of the benchmarks.

3. To use the performance profiling system to collect raw data about the dynamic
behavior of the applications.

4. To generate, evaluate and record the performance profiling reports.

5. To plan and implement optimizations such as rewriting certain time-critical
routines in assembly language, using in-line functions or tuning algorithms.

The performance profiling tools provide two different classes of service, depending
on the way in which the software being measured has been prepared:

� The performance profiling system is applied to software generated in the standard
way, (the same version as used for benchmarking). In this case, the performance
profiling reports only minimal information, which consists mainly of the
percentage of time spent in each routine of the software. The corresponding
performance profiling report is called simple form.

� The performance profiling system is applied to software regenerated exclusively
for performance profiling; software is completely recompiled, using the
performance profiling C compiler option (usually the −p option). This allows the
performance profiling system to report much more information by dynamically
counting routine invocations and building a complete call graph. The
corresponding performance profiling report is called full form.

Note - The standard (binary) version of the ChorusOS operating system is not
compiled with the performance profiling option: profiling the system will only
generate a simple form. Non-profiled components (or components for which a
simple report form is sufficient) do not need to be compiled with the performance
profiling option.

In order to obtain a full form for ChorusOS operating system components, a source
product distribution is needed. In this case, it is necessary to regenerate the system
components with the performance profiling option set.

226 ChorusOS 4.0 Introduction ♦ December 1999



Preparing to Create a Performance
Profile
Configuring the System
In order to perform system performance profiling using the ChorusOS Profiler, a
ChorusOS target system must include the ACTOR_EXTENDED_MNGTand
NFS_CLIENT feature options.

Launch the performance profiling server (the PROFactor) dynamically, using:

% rsh -n target arun PROF &

Compiling the Application
If you require full report forms, the profiled components must be compiled using the
performance profiling compiler options (usually, the −p option).

If you are using the imake environment provided with the ChorusOS operating
system, you can set the profiling option in the Project.tmpl file if you want to
profile the whole project hierarchy, or in each Imakefile of the directories that you
want to profile if you want to profile only a subset of your project hierarchy. In either
case, add the following line:

PROF=$(PROF_ON)

You can also add the performance profiling option dynamically by calling make with
the compiler profiling option:

% make PROF=-p

in the directory of the program that is to be performance profiled.

Launching the Performance Profiled Application
In this section, it is assumed that the application consists of a single supervisor actor,
the_actor , it is also assumed that the target system is named trumpet, and that the
target tree is mounted under the $CHORUS_ROOThost directory.

Performance Profiling 227



In order to be performance profiled, an application may be either:

� launched at system boot time, as part of the system image, or

� dynamically launched using the arun service, using the −k option, with the
following command:

% rsh trumpet arun -k "the_actor"

Running a Performance Profiling Session
Starting the Performance Profiling Session
Performance profiling is initiated by running the profctl utility on the target
system, using the −start option. This utility (see “Security” on page 64 for more
details) considers the components to be profiled as arguments.

If the_actor was part of the system image:

% rsh trumpet arun profctl -start -b the_actor

Otherwise, if the_actor was loaded dynamically:

% rsh trumpet arun profctl -start -a the_actor aid

where aid is the numeric identifier of the actor (as returned by the arun or aps
commands).

Note - Several components may be specified to the profctl utility. See “Security”
on page 64 for more details.

Run the application.

Stopping the Performance Profiling Session
Performance profiling is stopped by running the profctl utility again, using the
−stop option:

228 ChorusOS 4.0 Introduction ♦ December 1999



% rsh trumpet arun profctl -stop

When performance profiling is stopped, a raw data file is generated for each profiled
component within the /tmp directory of the target file system. The name of the file
consists of the component name, to which the suffix .prof is added. For example, if
only the_actor was profiled, the file $CHORUSUS_ROOT/tmp/the_actor.prof
would be created.

Generating Performance Profiling Reports
Performance profiling reports are generated by the profrpg host utility (see
“Security” on page 64 for details on reporting options).

Use the report generator to produce a report for each profiled component; as follows:

% cd $CHORUSUS_ROOT/tmp

% profrpg the_actor > the_actor.rpg

In order to track the benefits of optimization, the reports should be archived.

Analyzing Performance Profiling
Reports
Performance profiling is applied to a user-selected set of components (ChorusOS
operating system kernel, supervisor actors). The result of the performance profiling
consists of a set of reports, one per profiled component.

A performance profiling report consists of two parts:

� A global report that provides general information about the profiling session,
including clock attributes, CPU attributes, and the distribution of CPU time
between idle threads, user actors, non-profiled supervisor components, and each
of the profiled supervisor components.

� A component-based function table that indicates the distribution of CPU time
inside the profiled component.

Performance Profiling 229



For each function, the performance profile report displays the following information:

� Function header.

� Function number. This field indicates the function number in the current report.
It is provided in order to facilitate study of the report using a text editor.

� Function name. This field indicates the name of the function.
� Size. This field indicates the size of the function in bytes.
� Time spent in function. This field indicates the flat time spent in the body of

the function (the number of profiling ticks that occurred while an instruction
was executed within the function). This value is followed by the percentage of
the total component time it represents. This is the most valuable information
and the report can be sorted by this key if desired.

� Total time spent in function. This field indicates the aggregated-time spent
within the function and called functions. The value is given as a percentage of
total actor time. By default, the report generator sorts the table by this key. This
field is computed by the report generator, and assumes that each call to a given
routine lasts the same amount of time. This information is only provided in the
full profiling form. In the simple form, this information is the same as the
flat-time information.

� Recursion indicator. This field indicates that the procedure was found in a
recursive loop. As the profiling system is not fully set up for multithreading,
this indicator might be erroneously set. This information is only provided in
the full profiling form.

� Call graph description.

� List of callers. This field details a list of the functions calling the profiled
function. For each caller, the report provides:

� the caller’s function number
� the number of calls
� the caller’s name and the offset of the call in the caller’s body. When a

function calls another function from several locations, several entries are
made in the list of callers

� List of called functions. For each called function, the report provides:

� the callee’s function number
� the number of calls
� the percentage of the total function time that is charged to the callee
� the name of the function

Shown below is an example of a profiling report.

230 ChorusOS 4.0 Introduction ♦ December 1999



overhead=2.468
memcpy 4 K=18.834
memcpy 16 K=51.936
memcpy 64 K=185.579
memcpy 256 K=801.300
sysTime=2.576
threadSelf=2.210
thread switch=5.777
threadCreate (active)=8.062
threadCreate (active, preempt)=10.071
threadPriority (self)=3.789
threadPriority (self, high)=3.195
threadResume (preempt)=6.999
threadResume (awake)=4.014

...
ipcCall (null, timeout)=35.732
ipcSend (null, funcmode)=7.723
ipcCall (null, funcmode)=31.762
ipcSend (null, funcumode)=7.924
ipcCall (null, funcumode)=31.864
ipcSend (annex)=8.294
ipcReceive (annex)=7.086
ipcCall (annex)=33.708
ipcSend (body 4b)=8.020
ipcReceive (body 4b)=6.822
ipcCall (body 4b)=32.558
ipcSend (annex, body 4b)=8.684
ipcReceive (annex, body 4b)=7.495
ipcCall (annex, body 4b)=34.849

Performance Profiler Description
This section provides information about the performance profiling system’s design,
to help you understand the sequence of events that occurs before the generation of a
performance profiling report.

The performance profiling tool set consists of:

� The profiler server, PROF, a supervisor actor. This actor first interprets
performance profiling requests issued by the PROFutility, and then executes the
performance profiling function at a selected profiling clock rate on the target. See
PROF(1CC) for more details.

� The profctl target utility (see profctl (1CC)). This utility sends performance
profiling requests to the profiler server, PROF, on the target.

� The profrpg (see profrpg (1CC)) host utility. This command interprets profiling
data and produces coherent profiling reports on the development host.

Performance Profiling 231



The Performance Profiling Library
When the performance profiling compiler option (generally −p) is used, the compiler
provides each function entry point with a call to a routine, normally called mcount .
For each function, the compiler also sets up a static counter, and passes the address
of this counter to mcount . The counter is initialized at zero.

What is done by mcount is defined by the application. Low-end performance
profilers simply count the number of times the routine is called. ChorusOS Profiler
provides a sophisticated mcount routine within the profiled library that constructs
the runtime call graph. Note that you can supply your own mcount routine, for
example to assert predicates when debugging a component.

The Performance Profiler Server
The profiler server, PROF, is a supervisor actor that can locate and modify static data
within the memory context of the profiled actors, using the embedded symbol tables.
The profiler server also dynamically creates and deletes the memory regions that are
used to construct the call graph and count the profiling ticks (see below).

The Performance Profiling Clock
While the performance profiler is active, the system is regularly interrupted by the
profiling clock, which by default is the system clock. At each clock tick, the
instruction pointer is sampled, the active procedure is located and a counter
associated with the interrupted procedure is incremented. A high rate performance
profiling clock could use a significant amount of system time, which could lead to
the system appearing to run more slowly. A rapid sampling clock could jeopardize
the system’s real-time requirements.

Notes About Accuracy
Significant disruptions in the real-time capabilities of the profiled programs must be
expected, because performance profiling is performed by software (rather than by
hardware with an external bus analyzer or equivalent device). Performance profiling
using software slows down the processor, and the profiled applications may behave
differently when being profiled compared to when running at full processor speed.

232 ChorusOS 4.0 Introduction ♦ December 1999



When profiling, the processor can spend more than fifty percent of the processing
time profiling clock interrupts. Similarly, the time spent recording the call graph is
significant, and tends to bias the profiling results in a non-linear manner.

The accuracy of the reported percentage of time spent is about five percent when the
number of profiling ticks is in the order of magnitude of ten times the number of
bytes in the profiled programs. In other words, in order to profile a program of 1
million bytes with any degree of accuracy, at least 10 millions ticks should be used.
This level of accuracy is usually sufficient to plan code optimizations, which is the
primary goal of the profiler, but the operator should beware of using all the
fractional digits of the reported figures.

If more accuracy is needed, the operator can experiment with different combinations
of the rate of the profiling clock, the type of profiling clock and the time spent
profiling.

Performance Profiling 233



234 ChorusOS 4.0 Introduction ♦ December 1999



APPENDIX A

Configuring IPC

This appendix describes how to configure the IPC feature within the ChorusOS
operating system to provide either local IPC communication, remote IPC
communication over Ethernet, or remote IPC communication over the VME bus.

� “Generic IPC Configuration” on page 235 introduces the three different IPC
configurations, and how to add them to the ChorusOS operating system.

� “Specific IPC Configuration” on page 237 describes remote IPC configuration in
more detail.

Generic IPC Configuration
IPC Feature Configuration
The ChorusOS IPC feature is an optional component of the ChorusOS kernel which
can be added in three different configurations:

1. local IPC. This configuration provides only local IPC communications.

2. local IPC + remote IPC. This configuration enables local and remote IPC
communications to take place over a network data-link such as Ethernet or ATM
(Asynchronous Transfer Method). This data-link is also called an external
data-link, which means that the data-link driver is implemented within an
independent driver outside of the kernel. It is also unreliable.

3. local IPC + remote IPC over the VME bus. This configuration allows local and
remote IPC communications to take place over the VME bus.

The comand-line configuration tool configurator (1CC) is used to set up each
configuration.

To configure the local IPC feature:

235



% configurator -set IPC=true

To configure the local IPC + remote IPC feature:

% configurator -set IPC_REMOTE=true
% configurator -set IPC_REMOTE_COMM=EXT

To configure the local IPC + remote IPC feature over the VME bus:

% configurator -set IPC_REMOTE=true
% configurator -set IPC_REMOTE_COMM=VME

Site Number Administration
The IPC feature has the concept of a site number, a 32–bit unsigned integer which
uniquely identifies a target board. Applications exchange messages through IPC
ports, which are designated by a global identifier which includes the site number of
the target board where the port is located.

The site number of a target is sent to the kernel at boot time in one of two ways:

1. dynamically, by the boot program, which sets the siteNumber field of the
bootConf structure before invoking the kernel start entry

2. statically, by setting the chorusSiteId kernel tunable in the ChorusOS system
image built on the host:

% configurator -set chorusSiteId= n

n is the site number assigned to the target board. This number can be specified in
hexadecimal, by prefixing the number with 0x , or decimal.

When the site number is set dynamically, it is the responsibility of the boot program
to determine the site number of the target. The method by which the site number is
found by the boot program is fully boot dependent, and specific to the target board.
It may, for example, be stored in NVRAM, dynamically generated from a unique
board identifier. When the target is booted with the standard ChorusOS network
boot monitor, the whole IP address used by the boot monitor is provided as the site
number of the target.

236 ChorusOS 4.0 Introduction ♦ December 1999



When the site number is set statically, the site number is fixed within the system
image. This approach is less flexible than the dynamic method because the same
system image cannot be booted on similar target boards. A system image with a
unique site number must be built for each target. For this reason, it should only be
used when there is no way for the boot program to determine the site number of the
target board.

Note - The value of the site number set with the chorusSiteId tunable takes
precedence over the value of the site number provided by the boot program.

The site number is set to zero by default. If the IPC_REMOTEfeature has been
enabled, and the site number remains at zero, the following message is displayed on
the system console:

WARNING - LOCAL SITE ID. NOT SET => REMOTE IPC disabled

Only local IPC communications are enabled if the site number has not been set.

Specific IPC Configuration
Remote IPC over Ethernet Data-link
To configure the remote IPC over Ethernet feature, set the IPC_REMOTEfeature to
true and the IPC_REMOTE_COMMfeature to EXT (mentioned in “IPC Feature
Configuration” on page 235). In addition, switch on the IOM_IPC feature:

% configurator -set IOM_IPC=true

This adds the Ethernet-specific module into the IOM component which acts as the
IPC Ethernet data-link driver.

Once you have built and booted the ChorusOS system image on the target board
tgtbd1 , the IPC Ethernet data-link can be dynamically started. Use the built-in
ethIpcStackAttach command of C_INIT (running on the target board tgtbd1 ) :

% rsh tgtbd1 ethIpcStackAttach ethernet-device-name

The ethernet-device-name argument is the name of your Ethernet device with which
your remote IPC stack will communicate. This name is the full pathname of the
Ethernet device in the target device tree, displayed on the target system console by
the system at boot time. For example, a genesis2 board with a dec21140 Ethernet

Configuring IPC 237



controller connected through a raven PCI bridge, has the pathname
/raven/pci1011,9@e,0 . This argument is only needed when the target board has
more than one Ethernet controller.

See the ethIpcStackAttach (1M) man page for more details.

The following example describes how to build a ChorusOS system image for two
similar PowerPC-based target boards, tgtbd1 and tgtbd2 , each with an Ethernet
controller. Site numbers must be unique and statically configured in each ChorusOS
system image.

1. Configure Remote IPC over Ethernet, if not already configured:

% configurator -set IPC=true
% configurator -set IPC_REMOTE=true
% configurator -set IPC_REMOTE_COMM=EXT
% configurator -set IOM_IPC=true

2. Assign a site number to tgtbd1 , then build and uniquely identify the ChorusOS
system image:

% configurator -set chorusSiteId=1
% make chorus
% mv chorus.RAM chorus.RAM.tgtbd1

Assign a site number to tgtbd2 , then build and uniquely identify the ChorusOS
system image:

% configurator -set chorusSiteId=2
% make chorus
% mv chorus.RAM chorus.RAM.tgtbd2

3. Once you have booted the chorus.RAM.tgtbd1 system image on tgtbd1 and
the chorus.RAM.tgtbd2 system image on tgtbd2 , run the
ethIpcStackAttach command:

238 ChorusOS 4.0 Introduction ♦ December 1999



% rsh tgtbd1 ethIpcStackAttach
% rsh tgtbd2 ethIpcStackAttach

Applications which need to communicate through remote IPC can now be launched
on the tgtbd1 and tgtbd2 targets.

Remote IPC over VME Bus
In current implementation of IPC over VME bus the following constraints must be
satisfied:

� The kernel must be configured for remote IPC feature over the VME bus (see “IPC
Feature Configuration” on page 235).

� Each ChorusOS system image for every VME bus board must have the same
logical and uniform view of all the devices present on the VME bus, through their
respective device trees. As the device tree of each VME board will be different, a
different ChorusOS archive should be built and booted on each target board.
Typically, on genesis2 targets, the file
src/bsp/powerpc/genesis2/ src/boot/deviceTree.c must be modified
and recompiled for each different CPU board involved in the IPC protocol.

� IPC memory allocated to each CPU board must be in contiguous blocks of 64
Kilobytes on the VME bus.

� The ChorusOS system image must be booted first on the VME bus system
controller, and then on other (non-system controller) boards, in any order.

The following example describes what the device sub-tree representing the VME bus
on each board should be. It assumes that your target consists of three VME boards in
cage slots 0,1, and 2, your VME bus system controller is located in slot 0, 64Kb of
memory is used on each board for IPC, and VME memory dedicated to IPC is
allocated as follows:

TABLE A–1 VME memory dedicated to IPC

bridge I/O registers IPC memory

board 0: 0x20000000-0x2000ffff 0x20030000-0x2003ffff

board 1: 0x20010000-0x2001ffff 0x20040000-0x2004ffff

board 2: 0x20020000-0x2002ffff 0x20050000-0x2005ffff

The device sub-tree representing the VME bus on each board is illustrated in Figure
A–1.

Configuring IPC 239



node for VME controller

properties needed by associated VME bus driver 
(depends on VME bridge device on each board)

node for cpu-0

BUSCOM_PROP_ID = 0
BUSCOM_PROP_MONARCH
BUSCOM_PROP_REMOTE (except for slot 0)
VME_PROP_IO_REGS (0x20000000, 0x10000)
VME_PROP_MEM_RGN (0x20030000, 0x10000)

BUSCOM_PROP_ID = 1
BUSCOM_PROP_REMOTE (except for slot 1)
VME_PROP_IO_REGS (0x20010000, 0x10000)
VME_PROP_MEM_RGN (0x20040000, 0x10000)

node for cpu-1

BUSCOM_PROP_ID = 2
BUSCOM_PROP_REMOTE (except for slot 2)
VME_PROP_IO_REGS (0x20020000, 0x10000)
VME_PROP_MEM_RGN (0x20050000, 0x10000)

node for cpu-2

Figure A–1 Device sub-tree representing the VME bus

The main differences between ChorusOS system images for each board are:

� the properties associated with each VME bus controller device node

� the presence of the BUSCOM_PROP_REMOTEproperty in each child node. This
property selects which local or remote instance of the bus communication
(BUSCOM) VME device driver will be started on each node.

Building and booting ChorusOS system images on a VME target system is similar to
the one described in the previous example. Embedding only the genesis2 targets in
a system image is achieved as follows:

� Edit the file src/bsp/powerpc/genesis2/src/boot/deviceTree.c .

Change VME_MAX_BOARDto 3:

#define VME_MAX_BOARD 3

� For each board:

� Change LOCAL_CPUto 0 for board 0, 2 for board 2, or 3 for board 3, for
example:

#define LOCAL_CPU 0

� Compile the BSP, and build a ChorusOS system image using make chorus .
� Rename the ChorusOS system image to a file suffixed by the board number, for

example chorus.RAM.0 .

� Boot the system controller target first, using the system image suffixed with .0 .

� Boot your other targets in any order, using the appropriate archive.

240 ChorusOS 4.0 Introduction ♦ December 1999



Glossary

actor An actor is the unit of modularity for both applications and
subsystems. The actor is also the unit of resource encapsulation used
by the various ChorusOS operating system features. For example, at
the Core Executive level, threads are resources attached to actors.
Memory management features attach address spaces to actors.

actor capability An actor capability is an unique handle, the possession of which
grants the possessor the right to perform operations on the actor,
such as modifying its address space, creating and deleting threads,
removing it, and so forth. It is the concatenation of a Unique
Identifier which is 64 bits long, and of a key which is also 64 bits
long.

actor identifier An actor identifier is a short 32–bit identifier used to identify
dynamically loaded actors. Used as an argument to the akill and
await commands. Only trusted actors may convert an actor
identifier into an actor capability through the acap() service call.

aid See actor identifier

application An application is a program that enables you to do something
useful with the ChorusOS operating system.

board A board is another name for a simple target system.

boot actor A boot actor is an actor which is loaded at boot time as part of the
system image with the ChorusOS operating system.

boot server A boot server is a system that stores the system image and makes it
available for downloading by one or more target systems.

241



BSD Berkeley Software Distribution is a version of the Unix operating
system, developed at the University of California at Berkeley.

BSP A Board Support Package is a set of target-specific files that contain
information needed by the operating system to operate a particular
board architecture.

core executive The core executive is the central part of the ChorusOS operating
system, with the ability to support multiple, independent
applications running in both user and supervisor address space.

credentials structure A credentials structure is a set of identifiers defining the privileges
of a user.

debug server A debug server is a program that is dedicated to providing
information to a debugging tool in response to external requests.

device driver A device driver is a software component that represents, to the
operating system, a hardware component. The operating system
interacts with the device driver to use the hardware component.
This means that the operating system does not interact directly with
the hardware of your system. For example, if your system
communicates over Ethernet, your operating system must include
an Ethernet device driver.

ELF files Executable and Linking Format files are the dominant object, or
executable, formats for UNIX.

ESDI The Enhanced System Device Interface is an obsolete interface
standard for hard disk drives.

event flags set An event flags set is a set of bits in memory associated with a
thread wait queue. Each bit, or event flag, is associated with an
event. When the bit is set, the event is said to be posted, and the
event is considered to have occurred. Otherwise the event has not
yet occurred. A thread may wait on a conjunctive or disjunctive
subset of the events in one event flags set.

FAT A File Allocation Table is a hidden table in the MS-DOS file system
of every cluster on a floppy or hard disk. The FAT records how files
are stored in distinct, not necessarily contiguous, clusters (the basic
unit of logical storage).

file system In a computer, a file system is the way in which files are named and
where they are placed logically for storage and retrieval. The

242 ChorusOS 4.0 Introduction ♦ December 1999



UNIX-based operating system has a file system in which files are
placed somewhere in a hierarchical (tree) structure. A file is placed
in a directory or subdirectory at the desired place in the tree
structure.

FFS The Fast File System was developed by the University of California
at Berkeley to address performance problems with the existing file
system.

flat memory Flat memory is an implementation of memory management suited
for platforms without an MMU. A single address space is managed,
and virtual addresses match physical addresses. In this
implementation, the memory management interface set is limited.

home actor The home actor of a thread is the actor in which the thread was
created, which may be different from the actor which created the
thread.

host A host is the system which provides services to the target, and
where the development of the ChorusOS operating system and
applications takes place.

IDE Integrated Drive Electronics is a hard disk interface standard that
offers high performance at low cost.

kernel A kernel is the central module of an operating system. It is the part
of the operating system that loads first, and remains in main
memory. Because it stays in memory, it is important for the kernel to
be as small as possible while still providing all the essential services
required by other parts of the operating system and applications.

main thread A main thread is the first thread running in an actor, created
implicitly by the system in every boot actor, as well as in every
dynamically loaded actor.

memory region A memory region is a contiguous range of virtual addresses within
an actor, treated as a unit by the memory system.

MMU A Memory Management Unit is the part of a microprocessor
responsible for mapping logical address space (as seen by
programs) on to physical address space.

MS-DOS Microsoft Disk Operating System is the standard, single-user
operating system of IBM and IBM-compatible computers,
introduced in 1981.

243



mutex A mutex is a mutual exclusion lock. When this type of lock has
been acquired and not released by a thread, another thread will be
blocked and sleep if it tries to acquire the same lock. The thread will
be awakened when the first thread releases the mutex.

NFS The Network File System is a network file-access utility, developed
by Sun Microsystems and subsequently released to the public as an
open standard, that enables users of UNIX and Microsoft Windows
NT workstations to access files and directories on other computers
as if they were physically present on the user’s workstation.

operating system An operating system controls a computer system. It provides the
common services used by every application running on the system,
such as time keeping, or inter-process communication. In an
embedded system, it is important to keep the operating system as
small as possible while still providing all the services required. The
ChorusOS operating system is configurable, so you do not need to
include the components that are not necessary for your application
or system.

owning actor See home actor

PCI The Peripheral Component Interconnect is a 32–bit expansion bus
specification which supports Plug and Play.

PPP The Point-to-Point Protocol is one of the two standards (the other is
SLIP) for directly connecting computers to the Internet via dialup
telephone connections. Unlike the older SLIP protocol, PPP
incorporates superior data negotiation, compression, and error
correction. PPP can also route non-IP traffic, for example IPX for
Novell networks.

region descriptor A region descriptor is a data structure used by actors to describe
memory areas on which they want to perform a given operation. A
region descriptor is only meaningful as part of a ChorusOS
operating system invocation.

RTOS A Real-Time Operating System is a system that responds to input
immediately, rather than taking a few seconds, or minutes, to react.
It offers response times which are predictable, or deterministic.

SCSI The Small Computer Systems Interface is an interface in which you
can plug devices such as hard disk drives, CD-ROM drives,
scanners and laser printers.

244 ChorusOS 4.0 Introduction ♦ December 1999



secured mode A secured mode is a mode of execution of the system, where checks
are performed on credentials structures to determine the validity of
an operation. In this mode, only the super user may load supervisor
actors.

semaphore A semaphore is an integer counter associated with a thread wait
queue. Two atomic operations are available on semaphores: P (or
pass) and V (or free). The P operation decrements the counter, and
blocks the thread if the counter has reached a negative value. The V
operation increments the counter and wakes up a thread, if any, in
the semaphore wait queue.

SLIP The Serial Line Internet Protocol is the earliest of two Internet
standards (the other standard is PPP) specifying how a workstation
or personal computer can link to the Internet by means of a serial
line.

subsystem A subsystem is a set of operating system components running
above the micro-kernel which defines a self-contained, high-level
API (or personality) for programs. The OS subsystem in ChorusOS,
comprising the AM, IOM, ADMINand C_INIT actors and associated
libraries, defines the POSIX personality.

supervisor actor A supervisor actor is a process, the threads of which are always
supervisor threads. Supervisor actors only contain regions within
the shared system address space.

super user A super user is a privileged user whose identifier in the credentials
structure is set to 0. When the system is running in secured mode,
only the super user may load supervisor actors.

system actor A system actor is a privileged process run by the ChorusOS
operating system. A privileged user actor running in its own
address space can also issue privileged requests.

system image A system image is the binary or executable image that will be
loaded on the target system. It includes the operating system and,
optionally, application actors.

target A target is the system where the ChorusOS operating system will
run.

TCP On the Internet, the Transmission Control Protocol is the protocol
standard that permits two Internet-connected computers to establish
a reliable connection.

245



thread A thread is the flow of control within an actor. Each thread is
associated with an actor and defines a unique execution state. An
actor may contain multiple threads; the threads share the resources
of that actor, such as memory regions or message spaces, and are
scheduled independently.

thread identifier A thread–identifier is a 32-bit context-dependent identifier, used to
identify a thread within a given actor.

UDP The User Datagram Protocol is one of the fundamental Internet
protocols. UDP operates at the same level as the Transmission
Control Protocol (TCP), but has a much lower overhead and is
much less reliable. Unlike TCP, it does not attempt to establish a
connection with the remote computer, but simply hands the data
down to the connectionless IP protocol.

UFS The UNIX File System, or UFS, designates the superior BSD-UNIX
file system, as apposed to the System V file system.

user actor A user actor is a process without any special privileges, run by the
user. User actors have private user address spaces.

XIP Execution In Place is the name given to object code that does not
have to be relocated before being executed.

XRAY The ChorusOS operating system debugger from Mentor Graphics
Corporation.

246 ChorusOS 4.0 Introduction ♦ December 1999



Index

A
ACTOR_EXTENDED_MNGT

description of 35
actors

adding them to the system image using
ews 81

boot
definition of 126

building 60
communicating between 173
context of 127
definition of 121
determining privilege of 125
dynamic linking example 115
dynamically loading 126
embedding 61
execution environment of 127
loading 126
multi-threaded 134
multithreaded 101
naming 123
spawning 130
supervisor 97, 123
terminating 130
types of 122
user 97, 123

address spaces
user and supervisor 123

ADMIN_CHORUSSTAT
description of 49

ADMIN_IFCONFIG
description of 49

ADMIN_MOUNT

description of 49
ADMIN_NETSTAT

description of 50
ADMIN_RARP

description of 50
ADMIN_ROUTE

description of 50
ADMIN_SHUTDOWN

description of 50
AF_LOCAL

description of 48
afexecve

example use of 131
allocating memory 161
allocating memory regions 163
API 100, 101

basic environment 98
Console Input/Output 66
extended environment 99
GNU 2.7.1 C++ 100
Mathematical 100
POSIX Input/Output 66
POSIX Micro Real-time Profile 100
Sun RPC 100

API, see application programming interfaces
application debugging

architecture 208
steps involved in 208
system debugging with 218

application programming interfaces
overview of 98

applications.xml 61

247



B
basic configuration profile

feature settings 72
basic environment

APIs in 98
description of 60

basic profile
description of 51

basic scheduling control 150
Benchmarking

description of 54
Bootmonitor

description of 54
BPF

description of 46
build environment

imake 204
mkmk 204

C
C_INIT 63, 64

commands 67
description of 67
ethIpcStackAttach 237
steps executed at system start-up by 68

C_INIT authentication
reasons for failing 65

C_INIT options
LOCAL_CONSOLE 44
RSH 44

chadmin 211
chconsole 212
chls command 222
chorusos.brd

description of 210, 218
chorusos.brd file

description of 209, 218
chserver 211

starting and configuring 212
command-line configuration tool

see also graphical configuration tool
compilation options

make environment 103
compiling and linking

information for 96
configuration files 75
configuration options

types of 71
configuration profiles

basic 72
extended 72
selecting 86

configuration tools 76
configurator 235
core executive

description of 34
creating threads 135

D
DATE

description of 40
dchls command, see chls command
DEBUG_SYSTEM

description of 44
DebugAgent

activating 206
tunable options in 206

debugging
enabling for imake components 204
enabling for mkmk components 206
preparing for 203
symbolic 203
troubleshooting 222

debugging architecture
debugging modes within 53

debugging modes
application 53
system 53

DebugServer 211
configuration file 213, 214
environment variable 213
slot numbers 212
starting 213
starting and configuring 212
stopping 214

Default Console
description of 54

default scheduler
CLASS_FIFO 36

deleting threads 139
descriptors

memory region 161
/dev

248 ChorusOS 4.0 Introduction ♦ December 1999



description of 68
DEV_MEM

description of 46
developing an application 55
development environment

components of 51
development lifecycle 54
dlopen

example using 117
dynamic applications

support for 113
dynamic libraries

building 111
using 109

dynamic parameters 74
dynamic process management

see also IPC
dynamic programming 112
dynamic programs

building 112
DYNAMIC_LIB

see also ACTOR_EXTENDED_MNGT

E
environment

imake 104
make 103

environment variables
adding using ews 80
changing using ews 80
deleting using ews 81
modifying using ews 80
runtime linker 114

/etc/security 65
EVENT

description of 38
event flags 142
ews

using 76
executables

dynamic 110
relocatable 110

extended configuration profile
feature settings 72

extended environment
APIs in 99
description of 62

running “Hello World” example in 65
extended profile

description of 51

F
feature

definition of 72
feature options 72
feature options, see configuration options
feature settings

basic configuration profile 72
extended configuration profile 72

features
ACTOR_EXTENDED_MNGT 35
ADMIN_CHORUSSTAT 49
ADMIN_IFCONFIG 49
ADMIN_MOUNT 49
ADMIN_NETSTAT 50
ADMIN_RARP 50
ADMIN_ROUTE 50
ADMIN_SHUTDOWN 50
AF_LOCAL 48
BPF 46
configuring using ews 80
DATE 40
DEBUG_SYSTEM 44
DEV_MEM 46
DYNAMIC_LIB 35
EVENT 38
FIFOFS 45
FLASH 47
FS_MAPPER 46
GZ_FILE 36
HOT_RESTART 37
IDE_DISK 46
IOM_IPC 47
IOM_OSI 48
IPC 41
IPC configuration 235
IPC_REMOTE 41
IPC_REMOTE_COMM 41
LAPBIND 42
LAPSAFE 43
LOCAL_CONSOLE 44
LOG 43
MIPC 41

249



MON 43
MSDOSFS 45
NFS_CLIENT 45
NFS_SERVER 45
ON_DEMAND_PAGING 37
PERF 43
POSIX_MQ 42
POSIX_SHM 42
POSIX_SOCKETS 48
PPP 48
RAM_DISK 47
ROUND_ROBIN 36, 151
RSH 44
RTC 40
RTMUTEX 39
SCSI_DISK 47
SEM 38
SLIP 48
TIMER 39
UFS 45
USER_MODE 35
using configurator to add 87
using configurator to list 88
using configurator to remove 87
using configurator to view descriptions

of 88
VIRTUAL_ADDRESS_SPACE 37
VTIMER 40
VTTY 47

FIFO scheduler 151
FIFOFS

description of 45
FLASH

description of 47
freeing memory regions 163
FS_MAPPER

description of 46
function

dlopen 117

G
glossary 241
graphical configuration tool

see also command-line configuration
tool

GZ_FILE
see also ACTOR_EXTENDED_MNGT

H
header files 101
host file system, see root file system

mounting
hot restart

description of 29
HOT_RESTART

description of 37

I
IDE_DISK

description of 46
/image/sys_bank

description of 68
imake

build rules 104
building dynamic executables with 112
building dynamic libraries with 111
example using 107
packaging rules 106
using multiple source files with 108
variable definitions 104

imake environment 104
inter-process communication 40
IOM_IPC 237, 238

description of 47
IOM_OSI

description of 48
IPC 40, 236, 238

configurations of 235
description of 31, 41, 187

IPC_REMOTE 236 to 238
description of 41

IPC_REMOTE_COMM 236, 238
description of 41

L
LAP

description of 42
LAP, see local access points
LAPBIND

description of 42
LAPSAFE

description of 43
libraries 158

250 ChorusOS 4.0 Introduction ♦ December 1999



choosing 97
dynamic 109
naming conventions of 98
static 109

linking
static and dynamic 110

local access points
definition of 184

Local Access Points, see LAP
local IPC 235

configuring 236
local IPC + remote IPC 235

configuring 236
local IPC + remote IPC over VME 235

configuring 236
LOCAL_CONSOLE

description of 44
LOG

description of 43
Logging

description of 54

M
_main routine 97
make environment 103
management utilities 53

Benchmarking 54
Bootmonitor 54
Default Console 54
Logging 54
Monitoring 54
Profiling 54
Remote Shell 54
Resource Status 54

MEM_FLAT
description of 36

MEM_PROTECTED
description of 37

MEM_VIRTUAL
description of 37

memory
sharing 167

memory management models
MEM_FLAT 36
MEM_PROTECTED 36
MEM_VIRTUAL 36

memory protection

description of 29
memory region descriptors 161
memory regions

allocating 163
freeing 163

message pools
allocating messages from 177
definition of 174

message queues 174
getting messages from 179
posting messages to 178
use of 179

message spaces 174
creating 176
opening 176

messages
definition of 174

MIPC 41
description of 41

MON
description of 43

Monitoring
description of 54

mounting
root file system 64

mounting, see root file system
host file system

MSDOSFS
description of 45

multi-threaded actors 134
mutexes 142, 147

N
naming actors 123
networking

see also AF_LOCAL
see also POSIX_SOCKETS
see also PPP
see also SLIP

NFS_CLIENT
description of 45

NFS_SERVER
description of 45

non-secured mode
description of 65

251



O
ON_DEMAND_PAGING

description of 37
operating system

how constants are defined 96
how data types are defined 96
how error codes are defined 96

operating system components
description of 31

P
parameters

dynamic 74
static 74
tunable 74

PERF
description of 43

performance profiling
analyzing reports 229
clock 232
compiler options 227
description of 225, 231
feature options needed for 227
full form 226
generating reports 229
library 232
server 232
simple form 226
starting a session 228
stopping a session 228
tool set 231

policies
CLASS_FIFO 151
CLASS_RR 151

port numbers 209
POSIX_MQ

description of 42
POSIX_SHM

description of 42
POSIX_SOCKETS

description of 48
PPP

description of 48
profiles

basic 51
extended 51

Profiling

description of 54
program entry points 97

R
RAM_DISK

description of 47
RDBC 208

configuring and using 209
rdbc, see RDBC
RDBS 210
rdbs 212
RDBS

configuring and using 217
rdbs, see RDBS
remote IPC over Ethernet

configuring 237
remote IPC over VME

configuring 239
Remote Shell

description of 54
Resource Status

description of 54
root file system

mounting 64
ROUND_ROBIN

description of 36
RSH

description of 44
rsh command

available options of 63
communicating with the target using 63

RTC
description of 40

RTMUTEX
description of 39

runtime linker
environment variables 114
functions performed by 113
supported features 115

S
scheduler

description of 36
scheduling

threads 138

252 ChorusOS 4.0 Introduction ♦ December 1999



scheduling policy
description of 36

scheduling threads 150
SCSI_DISK

description of 47
secure mode

configuring the operating system in 64
SEM

description of 38
semaphore synchronization objects 38
semaphores 142

atomic operations available on 38
description of 38, 143

serial device
identifying 212

sharing memory 167
site number

description of 236
SLIP

description of 48
slot numbers 209, 218
_start routine 97
static parameters 74
Sun Embedded Workshop

architecture diagram 28
components in 26
supported processor families 26

supervisor actors 123
synchronizing threads 142
sysadm.ini

description of 63
example commands of 68

system debugging
application debugging with 218
architecture 210
steps involved in 211

system environment
using configurator to modify 90

system image
adding actors to 81
configuring using ews 79
embedding actors into 61
rebuilding 62
rebuilding using ews 85

system images
chorus 59
kernonly 59

T
targets

deactivating 216
permanently removing 217
reactivating 217
registering 214
updating information 215

thread scheduling 138
thread semaphores 142
threads 133, 158

creating 135
deleting 139
obtaining local identifier 135
per-thread data 154
scheduling 150
synchronizing 144
tools for synchronizing 142

time management
options 39

time management services
list of 191

TIMER
description of 39

timer services 193
timers

arming 194
using 195

Tools support 43
tunable parameters 74
tunables

configuring using ews 80
using configurator to change 89
using configurator to list 89
using configurator to view descriptions

of 89

U
UFS

description of 45
user actors 123
USER_MODE

description of 35

V
VIRTUAL_ADDRESS_SPACE

253



description of 37
VTIMER

description of 40
VTTY

description of 47

W
waiting threads 143

X
XRAY 203, 208, 212, 218

example session with RDBS 219
start-up script 223

254 ChorusOS 4.0 Introduction ♦ December 1999


