
Sun Cluster 3.0 Data Services
Developers’ Guide

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto,, CA 94303-4900
U.S.A. 650-960-1300

Part Number 806-1422
November 2000, Revision A

Copyright Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.
This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered
trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd. For Netscape CommunicatorTM , the
following notice applies: (c) Copyright 1995 Netscape Communications Corporation. All rights reserved.
Sun, Sun Microsystems, the Sun logo, AnswerBook2, docs.sun.com, and Solaris are trademarks, registered trademarks, or service marks of
Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an
architecture developed by Sun Microsystems, Inc.
The OPEN LOOK and Sun

TM

Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s
licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and
FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.
Copyright 2000 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, Californie 94303 Etats-Unis. Tous droits réservés.
Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque
moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et
qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.
Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd. La notice suivante est applicable à
Netscape CommunicatorTM : (c) Copyright 1995 Netscape Communications Corporation. Tous droits réservés.
Sun, Sun Microsystems, le logo Sun, AnswerBook2, docs.sun.com, et Solaris sont des marques de fabrique ou des marques déposées, ou
marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence
et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits
portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
L’interface d’utilisation graphique OPEN LOOK et Sun

TM

a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre
se conforment aux licences écrites de Sun.
CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y
COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE
UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE
GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Please
Recycle

Contents

Preface 7

1. Resource Management API Overview 11

What Is Sun Cluster? 11

Resource Management Object Model 12

Resource Types 12

Resources 13

Resource Groups 13

Resource Group Manager 14

Resource Group Manager Administrative Interface 15

Callback Methods 15

Access Methods 16

2. Using the Resource Management API 17

Setting Resource and Resource Type Properties 17

Using Callback Methods 20

Accessing Resource and Resource Group Property Information 21

Idempotency for Methods 21

Controlling an Application 22

Starting and Stopping a Resource 22

Initializing and Terminating a Resource 23

3

Monitoring a Resource 23

Resource Group Failover and Restart Control 24

Resource Properties to Support Monitors 24

Resource Group Properties to Support Monitors 25

Resource Type Properties to Support Monitors 25

Adding Message Logging to a Resource 26

Providing Process Management 26

Providing Administrative Support for a Resource 26

Implementing a Failover Resource 27

Implementing a Scalable Resource 28

Validation Checks For Scalable Services 29

Writing and Testing Data Services 30

Setting Up the Development Environment for Writing a Data Service 30

Deciding on the STARTand STOPMethods to Use 32

Using Keep-Alives 33

Testing HA Data Services 34

Coordinating Dependencies Between Resources 34

3. Data Service Requirements 37

Client-Server Environment 37

Crash Tolerance 37

Multihosted Data 38

Host Names 38

Multihomed Hosts 39

Binding to INADDR_ANYVersus Binding to Specific IP Addresses 39

Client Retry 40

Using Symbolic Links for Multihosted Data Placement 41

4. Resource Management API Reference 43

RMAPI Access Methods 44

4 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

RMAPI Shell Commands 44

C Functions 45

RMAPI Callback Methods 49

Method Arguments 49

Exit Codes 50

Control and Initialization Callback Methods 50

Administrative Support Methods 51

Net-Relative Callback Methods 52

Monitor Control Callback Methods 52

5. Sample Application 55

Overview of the Sample Application 55

Defining the Resource Type Registration File 56

RTR File Overview 57

Resource Type Properties in the Sample RTR File 57

Resource Properties in the Sample RTR File 58

Providing Common Functionality to All Methods 62

Identifying the Command Interpreter and Exporting the Path 62

Declaring the PMF_TAGand SYSLOG_TAGVariables 63

Parsing the Function Arguments 64

Generating Error Messages 66

Obtaining Property Information 66

Controlling the Data Service 67

STARTMethod 67

STOPMethod 71

Defining a Fault Monitor 73

Probe Program 74

MONITOR_STARTMethod 80

MONITOR_STOPMethod 81

Contents 5

MONITOR_CHECKMethod 82

Handling Property Updates 83

VALIDATE Method 84

UPDATEMethod 89

A. Standard Properties 91

Resource Type Properties 91

Resource Properties 96

Resource Group Properties 106

Resource Property Attributes 111

B. Sample Data Service Code Listings 113

Resource Type Registration File Listing 113

STARTMethod Code Listing 116

STOPMethod Code Listing 119

gettime Utility Code Listing 122

PROBEProgram Code Listing 123

MONITOR_STARTMethod Code Listing 129

MONITOR_STOPMethod Code Listing 131

MONITOR_CHECKMethod Code Listing 133

VALIDATE Method Code Listing 136

UPDATEMethod Code Listing 139

C. Legal RGM Names and Values 143

RGM Legal Names 143

RGM Values 144

6 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

Preface

The Sun Cluster 3.0 Data Services Developers’ Guide contains information about
using the Resource Management API to develop Sun Cluster data services.

This document is intended for experienced developers with extensive knowledge of
Sun software and hardware. The information in this book assumes knowledge of the
SolarisTM operating environment.

Using UNIX Commands
This document may not contain information on basic UNIX® commands and
procedures such as shutting down the system, booting the system, and configuring
devices.

See one or more of the following for this information:

� AnswerBookTM online documentation for the Solaris software environment

� Other software documentation that you received with your system

� Solaris operating environment man pages

7

Typographic Conventions
Typeface or
Symbol

Meaning Examples

AaBbCc123 The names of commands, files, and
directories; on-screen computer
output

Edit your .login file.

Use ls -a to list all files.

% You have mail .

AaBbCc123 What you type, when contrasted
with on-screen computer output

%su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized

Read Chapter 6 in the User’s Guide.

These are called class options.

You must be superuser to do this.

AaBbCc123 Command-line variable; replace
with a real name or value

To delete a file, type rm filename.

Shell Prompts
Shell Prompt

C shell machine_name%

C shell superuser machine_name#

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #

8 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

Related Documentation
Application Title Part Number

Release Notes Sun Cluster 3.0 Release Notes 806-1428

Hardware Sun Cluster 3.0 Hardware Guide 806-1420

Installation Sun Cluster 3.0 Installation Guide 806-1419

Administration Sun Cluster 3.0 System
Administration Guide

806-1423

Data Services Registration and
Configuration

Sun Cluster 3.0 Data Services
Installation and Configuration Guide

806-1421

Accessing Sun Documentation Online
The docs.sun.com SM web site enables you to access Sun technical documentation
on the Web. You can browse the docs.sun.com archive or search for a specific book
title or subject at:

http://docs.sun.com

Getting Help
If you have problems installing or using Sun Cluster, contact your service provider
and provide the following information:

� Your name and email address (if available)

� Your company name, address, and phone number

� The model and serial numbers of your systems

� The release number of the operating environment (for example, Solaris 7)

� The release number of Sun Cluster (for example, Sun Cluster 3.0)

Preface 9

Use the following commands to gather information about each node on your system
for your service provider:

Command Function

prtconf -v Displays the size of the system memory and reports information about
peripheral devices

psrinfo -v Displays information about processors

showrev --p Reports which patches are installed

prtdiag -v Displays system diagnostic information

scinstall
-pv

Displays Sun Cluster release and package version information

scrgadm -pvv Displays a detailed listing of the static properties of all existing resource
types, resource groups, and resources.

scstat -g Displays dynamic state information for all resources and resource groups.

Also have available the contents of the /var/adm/messages file.

10 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

CHAPTER 1

Resource Management API Overview

This book provides guidelines for creating a highly available (HA) data service for a
software application such as Oracle, iPlanetTM Web Server, DNS, and so on, using the
Resource Management API (RMAPI). As such, this book is targeted at data service
developers. This book uses the second person pronoun, “you”, throughout to
address data service developers .

This chapter provides an overview of the concepts you need to understand in order
to use the API.

The following information is in this chapter.

� “What Is Sun Cluster?” on page 11

� “Resource Management Object Model” on page 12

� “ Resource Group Manager” on page 14

� “Resource Group Manager Administrative Interface” on page 15

� “Callback Methods” on page 15

� “Access Methods” on page 16

What Is Sun Cluster?
The Sun Cluster 3.0 system enables applications to be run and administered as highly
available and scalable resources (data services). The cluster facility known as the
Resource Group Manager, or RGM, provides the mechanism for high availability. The
elements that form the programming interface to this facility include the following.

� A set of callback methods the RGM uses to control an application on the cluster

11

� API commands and functions that callback methods can use to access information
about the elements in the cluster

� Process management facilities for monitoring and restarting processes on the
cluster

The RGM runs as a daemon on each cluster node and automatically starts and stops
resources on selected nodes according to pre-configured policies. The RGM makes a
resource highly available in the event of a node failure or reboot by stopping the
resource on the affected node and starting it on another. The RGM also automatically
starts and stops resource-specific monitors that can detect resource failures and
relocate failing resources onto another node or can monitor other aspects of resource
performance.

The RGM supports both failover resources, which can be online on at most one node
at a time, and scalable resources, which can be online on multiple nodes
simultaneously.

Resource Management Object Model
This section and its subsections introduce some fundamental terminology and
explain how the different elements of the API are put together to create a highly
available application.

The RGM and its associated API handle three major kinds of interrelated objects:
resource types, resources, and resource groups. One way to introduce these objects is
by means of an example, such as the following.

A developer could implement a resource type, ha-oracle, which makes an existing
Oracle DBMS application highly available. An end user might define separate
databases for marketing, engineering, and finance, each of which would be a
resource of type ha-oracle. The cluster administrator could place these resources in
separate resource groups so they could run on different nodes and fail over
independently. Likewise, a developer could create a second resource type,
ha-calendar, to implement a highly available calendar server that requires an Oracle
database. The cluster administrator could place the resource for the finance calendar
into the same resource group as the finance database resource so that both resources
would run on the same node and fail over together.

Resource Types
A resource type consists of a software application to be run on the cluster, control
programs used as callback methods by the RGM to manage the application as a

12 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

cluster resource, and a set of properties that form part of the static configuration of a
cluster. The RGM uses resource type properties to manage resources of a particular
type.

In addition to a software application, a resource type can represent other system
resources such as network addresses.

The resource type developer specifies the properties for the resource type and sets
their values in a resource type registration (RTR) file. The resource type registration
file follows a well-defined format described in “Setting Resource and Resource Type
Properties” on page 17 and in the rt_reg(4) man page. See also “Defining the
Resource Type Registration File” on page 56 for a description of a sample resource
type registration file.

Table A–1 provides a list of the resource type properties.

The cluster administrator installs the resource type implementation and underlying
application on a cluster and registers it using administrative commands. The
registration procedure enters into the cluster configuration the information from the
resource type registration file. The Sun Cluster 3.0 Data Services Installation and
Configuration Guide describes the procedure for registering a data service.

Resources
A resource inherits the properties and values of its resource type. In addition, a
developer can declare resource properties in the resource type registration file. See
Table A–2 for a list of resource properties.

The cluster administrator can change the values of certain properties depending on
how they were specified in the resource type registration (RTR) file. For example,
property definitions can specify a range of allowable values and specify when the
property is tunable, for example, at creation, anytime, or never. Within these
specifications, the cluster administrator can make changes to properties using
administration commands.

The cluster administrator can create many resources of the same type, each resource
having its own name and set of property values, so that more than one instance of
the underlying application can run on the cluster. Each instantiation requires a
unique name within the cluster.

Resource Groups
Each resource must be configured in a resource group. The RGM brings all resources
in a group online and offline together on the same node. When the RGM brings a
resource group online or offline, it invokes callback methods on the individual
resources in the group.

Resource Management API Overview 13

The nodes on which a resource group is currently online are called its primaries or
primary nodes. A resource group is mastered by each of its primaries. Each resource
group has an associated Nodelist property, set by the cluster administrator, which
identifies all potential primaries or masters of the resource group.

A resource group also has a set of properties. These properties include configuration
properties that can be set by the cluster administrator and dynamic properties, set by
the RGM, that reflect the active state of the resource group.

The RGM defines two types of resource groups, failover and scalable. A failover
resource group can be online on one node only at any time while a scalable resource
group can be online on multiple nodes simultaneously. The RGM provides a set of
properties to support the creation of each type of resource group. See “Implementing
a Failover Resource” on page 27 and “Implementing a Scalable Resource” on page 28
for details on these properties.

See Table A–3 for a list of resource group properties.

Resource Group Manager
The Resource Group Manager (RGM) is implemented as a daemon, rgmd , that runs
on each member node of the cluster. All of the rgmd processes communicate with
each other and act together as a single cluster-wide facility.

The RGM supports the following functions:

� Whenever a node boots or crashes, the RGM attempts to maintain availability of
all managed resource groups by automatically bringing them online on
appropriate masters.

� If a particular resource fails, its monitor program can request that the resource
group be restarted on the same master or switched to a new master.

� The cluster administrator can issue an administrative command to request one of
the following actions:

� Change mastery of a resource group
� Enable or disable a particular resource within a resource group
� Create, delete, or modify a resource, a resource group, or a resource type

Whenever the RGM activates configuration changes, it coordinates its actions across
all member nodes of the cluster. This kind of activity is known as a reconfiguration.
To effect a state change on an individual resource, the RGM invokes a resource-type
specific callback method on that resource. Callback methods are described in
“Callback Methods” on page 15.

14 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

Resource Group Manager
Administrative Interface
The Sun Cluster 3.0 commands for administering RGM objects are scrgadm(1M) ,
scswitch(1M) , and scstat(1M) -g .

The scrgadm(1M) command allows viewing, creating, configuring and deleting the
resource type, resource group, and resource objects used by the RGM. The command
is part of the administrative interface for the cluster, and is not to be used in the
same programming context as the application interface described in the rest of this
chapter. However, scrgadm(1M) is the tool for constructing the cluster configuration
in which the API operates. Understanding the administrative interface sets the
context for understanding the application interface. Refer to the scrgadm(1M) man
page for details on the administrative tasks that can be performed by the command.

The scswitch(1M) command switches resource groups online and offline on
specified nodes and enables or disables a resource or its monitor. See the
scswitch(1M) man page for details on the administrative tasks that the command
can perform.

The scstat(1M) -g command shows the current dynamic state of all resource
groups and resources.

Callback Methods
You use the Resource Management API (RMAPI) to implement a resource type. The
key elements of a resource type are the callback methods, programs invoked by the
RGM to control resources on the cluster. The API defines the arguments and return
value of the callback methods.

The only required callback methods for a resource type are a start method, STARTor
PRENET_START, and a stop method, STOPor POSTNET_STOP.

The RMAPI provides callback methods in the following categories:

� Control and initialization methods

� STARTand STOPstart and stop resources in a group that is being brought
online or offline.

� INIT , FINI , BOOTexecute initialization and termination code on resources.

� Administrative support methods

Resource Management API Overview 15

� VALIDATE verifies properties set by administrative action.
� UPDATEupdates the property settings of an online resource.

� Net-relative methods

� PRENET_STARTand POSTNET_STOPdo special startup or shutdown actions
before network addresses in the same resource group are configured up or after
they are configured down.

� Monitor control methods

� MONITOR_STARTand MONITOR_STOPstart or stop the monitor for a resource.
� MONITOR_CHECKassesses the reliability of a node before a resource group is

moved to the node.

See Chapter 4 and the rt_callbacks(1HA) man page for more information on the
callback methods. Also see Chapter 5 for examples of how the callback methods are
used.

Access Methods
To support implementation of callback methods, the API provides an interface to the
RGM in the form of methods to access resource properties and other cluster
information. The access methods are provided both in the form of shell commands
and in the form of C functions.

The API provides commands and functions to do the following:

� Access information about resources, resource types, resource groups, and clusters

� Set the Status and Status_msg properties of a resource

� Request the restart or relocation of a resource group

See Chapter 4 for more information on the access methods. Also see Chapter 5 for
examples of how the access methods are used.

16 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

CHAPTER 2

Using the Resource Management API

This chapter provides detailed information about using the Resource Management
API to implement a resource type.

The following information is in this chapter.

� “Setting Resource and Resource Type Properties” on page 17

� “Using Callback Methods” on page 20

� “Controlling an Application” on page 22

� “Monitoring a Resource” on page 23

� “Adding Message Logging to a Resource” on page 26

� “Providing Process Management” on page 26

� “Providing Administrative Support for a Resource” on page 26

� “Implementing a Failover Resource” on page 27

� “Implementing a Scalable Resource” on page 28

� “Writing and Testing Data Services” on page 30

Setting Resource and Resource Type
Properties
Sun Cluster provides resource type properties that you can use to define the static
configuration of a data service. Resource type properties can specify the type of the
resource, its version, the version of the API, and so on, as well as specify paths to
each of the callback methods. Table A–1 lists all the resource type properties.

17

You declare the resource type properties in the resource type registration (RTR) file.
The RTR file defines the initial configuration of the data service at the time the
cluster administrator registers the data service with Sun Cluster. With the exception
of Installed_nodes , the cluster administrator cannot configure resource type
properties.

Note - Table A–1, which describes the resource type properties, specifies whether
each property is optional, required, or conditional. You do not have to declare
optional properties in the RTR file because the system supplies a default value if you
omit them. This table also lists the default value for each optional property. If you do
not declare a required property in the RTR file, registration of the data service fails.If
you do not declare a conditional property in the RTR file, the RGM does not create
the property and it is not available to the cluster administrator.

The following example shows resource type property entries in an RTR file.

Registration information for example resource type
Resource_type = example_RT;
Vendor_id = SUNW;
Pkglist = SUNWxxx;
RT_Basedir = /opt/SUNWxxx;
START = bin/service_start;
STOP = bin/service_stop;

Tip - You must declare the Resource_type property as the first entry in the RTR
file. Otherwise, registration of the resource type will fail.

Sun Cluster also provides resource properties, such as Failover_mode ,
Thorough_probe_interval , and method timeouts, that define the static
configuration of the resource. Dynamic resource properties such as
Resource_state and Status reflect the active state of a managed resource. In
addition to the resource properties, a resource inherits the properties of its resource
type. Table A–2 describes the resource properties.

As with resource type properties, you declare resource properties in the RTR file. For
resource properties provided by Sun Cluster, so-called system-defined properties, you
can change specific attributes in the RTR file. For example, Sun Cluster provides
method timeout properties for each of the callback methods, and specifies default
values. In the RTR file, you can specify different default values.

You can also define new resource properties in the RTR file—so-called extension
properties—using a set of property attributes provided by Sun Cluster. Table A–4
lists the attributes for changing and defining resource properties.

By convention, resource property declarations follow the resource type declarations
in the RTR file. Entries begin with an open curly bracket and end with a closed curly
bracket. The following example shows resource declarations in a sample RTR file.

18 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

...

Resource property declarations appear as a list of bracketed

entries after the resource-type declarations. The property

name declaration must be the first attribute after the open

curly bracket of a resource property entry.

#

Set minimum and default for method timeouts.

{

Property = Start_timeout;

MIN=60;

DEFAULT=300;

}

{

Property = Stop_timeout;

MIN=60;

DEFAULT=300;

}

An extension property that can be set at resource creation

{

Property = Log_level;

Extension;

enum {OFF, TERSE, VERBOSE};

DEFAULT = TERSE;

TUNABLE = AT_CREATION;

Using the Resource Management API 19

DESCRIPTION = “Controls the detail of message logging”;

}

Start_timeout and Stop_timeout are system-defined resource properties. Sun
Cluster provides a minimum value (1 second) and a default value (3600 seconds) for
all timeouts. This sample RTR file changes these values to 60 seconds minimum and
300 seconds default. The cluster administrator can accept the default value or change
the value of the timeout to 60 seconds or greater.

Note - You must declare conditional system-defined resource properties in the
resource type registration file for them to be available for resources of that type. That
is, properties that are not declared cannot be set or queried.

The final point about resource properties is that the cluster administrator can
configure them under certain conditions. The following table shows the TUNABLE
attribute that determines when and if an administrator can configure a resource
property.

NONEor FALSE Never

TRUEor
ANYTIME

Anytime

AT_CREATION When the data service is added to a cluster

WHEN_DISABLEDWhen the data service is disabled

You can use other attributes to put limits on the configurability of a property. For
example, the Min and Max attributes allow you to set ranges for integer properties.
See Table A–4 for a complete list of resource property attributes.

Using Callback Methods
This section provides some information that pertains to using the callback methods
in general.

20 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

Accessing Resource and Resource Group Property
Information
The callback methods that enable the RGM to control activation of cluster resources
might require access to the properties of that resource. The API provides both shell
commands and C functions that you can use in callback methods to access the
system-defined and extension properties of resources.

You cannot use the property mechanism to store dynamic state information for a
data service because no API functions are available for setting resource properties
(other than the function for setting Status and Status_msg). Rather, you should
store dynamic state information in global files.

Note - The cluster administrator can set certain resource properties using the
scrgadm(1M) command or through an available graphical administrative interface.

The C function for resource property access has a variable argument interface. The
API defines string-valued tags that indicate an operation and determine the
interpretation of the variable argument list. The “get” access function works in
conjunction with “open” and “close” functions that do initialization, finalization, and
memory management.

You use three functions together for resource property access:

� scha_resource_open(3HA) initializes access to a resource and returns a handle
for scha_resource_get .

� scha_resource_get(3HA) accesses the resource information.

� scha_resource_close(3HA) invalidates the handle and frees memory
allocated for scha_resource_get return values.

A single man page describes these three functions. You can access this man page
through any of the individual functions, scha_resource_open(3HA) ,
scha_resource_get(3HA) , or scha_resource_close(3HA) .

A command version of scha_resource_get is provided for use in shell scripts.
The command takes as flagged arguments an operation tag, the resource name, and
its group name. Additional unflagged arguments might be available for some
operation tags. The scha_resource_get(1HA) man page provides details on this
access command.

Idempotency for Methods
In general, the RGM does not call a method more than once in succession on the
same resource with the same arguments. However, if a STARTmethod fails, the
RGM could call a STOPmethod on a resource even though the resource was never
started. Likewise, a resource daemon could die of its own accord and the RGM

Using the Resource Management API 21

might still invoke its STOPmethod on it. The same scenarios apply to the
MONITOR_STARTand MONITOR_STOPmethods.

For these reasons, you must build idempotency into your STOPand MONITOR_STOP
methods, which means that repeated calls of STOPor MONITOR_STOPon the same
resource with the same parameters achieve the same results as a single call.

One implication of idempotency is that STOPand MONITOR_STOPshould return 0
(success) even if the resource or monitor is already stopped and no work is to done.

Note - The INIT , FINI , BOOT, and UPDATEmethods must also be idempotent. A
STARTmethod need not be idempotent.

Controlling an Application
Callback methods enable the RGM to take control of the underlying resource
(application) whenever nodes are in the process of joining or leaving the cluster.

Starting and Stopping a Resource
A resource type implementation requires, at a minimum, a STARTmethod and a
STOPmethod. The RGM calls a resource type’s method functions or programs at
appropriate times and on the appropriate nodes for bringing resource groups offline
and online. For example, after the crash of a cluster node, the RGM moves any
resource groups mastered by that node onto a new node. You must implement a
STARTmethod to provide the RGM with a way of restarting each resource on the
surviving host node.

A STARTmethod must not return until the resource has been started and is available
on the local node. Be certain that resource types requiring a long initialization period
have sufficiently long timeouts set on their STARTmethods (set default and minimum
values for the Start_timeout property in the resource type registration file).

You must implement a STOPmethod for situations in which the RGM takes a
resource group offline. For example, suppose a resource group is taken offline on
Node1 and back online on Node2. While taking the resource group offline, the RGM
calls the STOPmethod on resources in the group to stop all activity on Node1. After
the STOPmethods for all resources have completed on Node1, the RGM brings the
resource group back online on Node2.

A STOPmethod must not return until the resource has completely stopped all its
activity on the local node and has completely shut down. The safest implementation
of a STOPmethod would terminate all processes on the local node related to the
resource. Resource types requiring a long time to shut down should have sufficiently

22 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

long timeouts set on their STOPmethods. Set the Stop_timeout property in the
resource type registration file.

Failure or timeout of a STOPmethod causes the resource group to enter an error state
that requires operator intervention. To avoid this state, the STOPand MONITOR_STOP
method implementations should attempt to recover from all possible error
conditions. Ideally, these methods should exit with 0 (success) error status, having
successfully stopped all activity of the resource and its monitor on the local node.

Initializing and Terminating a Resource
Three optional methods, INIT , FINI , and BOOT, allow the RGM to execute
initialization and termination code on a resource. The RGM invokes the INIT method
to perform a one-time initialization of the resource when the resource becomes
managed—either when the resource group it is in is switched from an unmanaged to
a managed state, or when it is created in a resource group that is already managed.

The RGM invokes the FINI method to clean up after the resource when the resource
becomes unmanaged—either when the resource group it is in is switched to an
unmanaged state or when it is deleted from a managed resource group. The clean up
must be idempotent, that is, if the clean up has already been done, FINI exits 0
(success).

The RGM invokes the BOOTmethod on nodes that have newly joined the cluster, that
is, have been booted or rebooted.

The BOOTmethod normally performs the same initialization as INIT . This
initialization must be idempotent, that is, if the resource has already been initialized
on the local node, BOOTand INIT exit 0 (success).

Monitoring a Resource
The RGM provides for automatically starting monitors for resources. Typically, you
implement monitors to run periodic fault probes on resources to detect whether the
probed resources are functioning correctly. If a fault probe fails, the monitor can
attempt to restart locally or request failover of the affected resource group by
invoking the scha_control API function.

You can also monitor the performance of a resource and tune or report performance.
Writing a resource type-specific fault monitor is completely optional. Even if you
choose not to write such a fault monitor, the resource type benefits from the basic
monitoring of the cluster that Sun Cluster itself does. Sun Cluster detects failures of
the host hardware, gross failures of the host’s operating system, and failures of a
host to be able to communicate on its public networks.

Using the Resource Management API 23

When bringing a resource offline, the RGM invokes the MONITOR_STOPmethod to
stop the resource’s monitor on the local nodes before stopping the resource itself.
When bringing a resource online, the RGM invokes the MONITOR_STARTmethod
after the resource itself has been started.

See the Sun Cluster 3.0 Data Services Installation and Configuration Guide for
information on fault monitors built into Sun supplied data services.

Resource Group Failover and Restart Control
The scha_control API function allows resource monitors to request the failover of
a resource group to a different node. As one of its sanity checks, scha_control
calls MONITOR_CHECK(if defined), which determines if the node on which it is run is
reliable enough to master the resource group containing the resource. If
MONITOR_CHECKreports back that the node is not reliable, or the method times out,
the RGM looks for a different node to honor the scha_control request. If
MONITOR_CHECKfails on all nodes, the failover is canceled.

Resource Properties to Support Monitors
Resource monitors, like the callback methods, need general access to resource
properties. Certain system-defined resource properties are specifically for use by
monitors, although the resource type implementation determines whether they are
used. The monitor-related resource properties are:

� Cheap_probe_interval

� Thorough_probe_interval

� Retry_count

� Retry_interval

� Status

� Status_msg
These properties can be read with the scha_resource_get(1HA)(3HA) access
command and function.

Setting Status and Status_msg

The Status and Status_msg properties are to be set by the resource monitor to
reflect the monitor’s view of the resource state. The API provides a function,
scha_resource_setstatus , that sets these properties. See the
scha_resource_setstatus(3HA) and scha_resource_setstatus(1HA) man
pages for details.

24 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

Note - Although scha_resource_setstatus is of particular use to a resource
monitor, any program can call it.

Resource Group Properties to Support Monitors
Some resource group properties that a monitor might use are: Nodelist ,
Maximum_primaries , Desired_primaries , RG_state , Resource_list , and
Global_resources_used .

Resource group properties can be read with a set of access functions. An open
function (scha_resourcegroup_open(3HA)) initializes resource group access, a
close function (scha_resourcegroup_close(3HA)) frees memory allocated by the
access function, and operation tag values drive a variable argument function
(scha_resourcegroup_get(3HA)) that returns property values in client variables
that are passed as reference arguments. See Table A–3 for a list of resource group
properties.

A single man page describes these three functions. You can access this man page
through any of the individual functions, scha_resourcegroup_open(3HA) ,
scha_resourcegroup_get(3HA) , or scha_resourcegroup_close(3HA) .

The sciptable version of this functionality is implemented with a single command,
scha_resourcegroup_get(1HA).

No interface can directly change resource group properties, although control requests
made using scha_control might cause the RGM to change the properties of a
resource group. Resource group properties are changed by the RGM or by
administrative action.

Resource Type Properties to Support Monitors
Some resource type properties, like RT_basedir and Installed_nodes , might be
of use to a monitor, for example, to specify the location of the program that
implements the monitor.

Resource type properties inherited by a particular resource of that type are accessible
through the scha_resource_get function. An interface is also provided to access
the properties of any resource type. All resource type properties are accessible.

The access interface for resource types follows the pattern of the access interface for
resources and resource groups. Open and close functions provide initialization and
memory management, and a variable argument function provides tag-determined
access to properties.A single man page describes these three functions. You can
access this man page through any of the individual functions,
scha_resourcetype_open(3HA) , scha_resourcetype_get(3HA) , or

Using the Resource Management API 25

scha_resourcetype_close(3HA) . The sciptable version of this functionality is
implemented with a single command, scha_resourcetype_get(1HA .

Adding Message Logging to a Resource
If you want to record status messages in the same log file as other cluster messages,
use the convenience function scha_cluster_getlogfacility to retrieve the
facility number being used to log cluster messages.

Use this facility number with the regular Solaris syslog function to write messages
to the cluster log. You can also access the cluster log facility information through the
generic scha_cluster_get(1HA)(3HA) interface.

Providing Process Management
Process management facilities are provided with the Resource Management API to
implement resource monitors and resource control callbacks. See the man pages for
details on each of these commands and programs.

� Process Monitor Facility: pmfadm(1M) and rpc.pmfd(1M) — The Process
Monitor Facility (PMF), provides a means of monitoring processes and their
descendants, and restarting them if they die. The facility consists of the
pmfadm(1M) command for starting and controlling monitored processes, and the
rpc.pmfd(1M) daemon.

� halockrun(1M) — A program for running a child program while holding a file
lock. This command is convenient for use in shell scripts.

� hatimerun(1M) — A program for running a child program under time-out
control. This is a convenience command for use in shell scripts.

Providing Administrative Support for a
Resource
Administrative actions on resources include setting and changing resource
properties. The API defines the VALIDATE and UPDATEcallback methods so you can
hook into these administrative actions.

26 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

The RGM calls the optional VALIDATE method when a resource is created and when
administrative action updates the properties of the resource or its containing group.
The RGM passes the property values for the resource and its resource group to the
VALIDATE method. The RGM calls VALIDATE on the set of cluster nodes indicated
by the Init_nodes property of the resource’s type. The RGM calls VALIDATE
before the creation or update is applied, and a failure exit code from the method on
any node causes the creation or update to be canceled.

The RGM calls VALIDATE only when resource or group properties are changed
through administrative action, not when the RGM sets properties, or when a monitor
sets the resource properties Status and Status_msg .

The RGM calls the optional UPDATEmethod to notify a running resource that
properties have been changed. The RGM invokes UPDATEafter an administrative
action succeeds in setting properties of a resource or its group. The RGM calls this
method on nodes where the resource is online. This method can use the API access
functions to read property values that might affect an active resource and adjust the
running resource accordingly.

Implementing a Failover Resource
A failover resource group contains network addresses such as the built in resource
types logical hostname and shared address, and failover resources such as the data
service application resources for a failover data service. The network address
resources, along with their dependent data service resources move between cluster
nodes when data services fail over or are switched over. The RGM provides a
number of properties that support implementation of a failover resource.

The boolean resource type property, Failover , if set to TRUE, restricts the resource
from being configured in a resource group that can be online on more than one node
at a time. This property defaults to FALSE, so you must declare it as TRUEin the
RTR file for a failover resource.

The RG_moderesource group property allows the cluster administrator to identify a
resource group as failover or scalable. If RG_modeis FAILOVER, the RGM sets the
Maximum_primaries property of the group to 1 and restricts the resource group to
being mastered by a single node. The RGM does not allow a resource whose
Failover property is TRUEto be instantiated in a resource group whose RG_mode
is SCALABLE.

The Implicit_network_dependencies resource group property specifies that the
RGM should enforce implicit strong dependencies of non-network-address resources
on all network-address resources within the group. This means that the non-network
address (data service) resources in the group will not have their STARTmethods
called until the network addresses in the group are configured up. Network-address

Using the Resource Management API 27

resources include the logical hostname and shared address resource types. This
property defaults to TRUE.

Implementing a Scalable Resource
A scalable resource is a resource that can be online on more than one node
simultaneously. Scalable resources include data services such as Sun Cluster HA for
iPlanet Web Server and HA-Apache.

The RGM provides a number of properties that support implementation of a scalable
resource.

The boolean resource property Scalable identifies a resource as scalable (TRUE) or
not (FALSE). A resource whose Scalable property is TRUEis said to be in in scalable
mode. A resource whose Scalable property is FALSE is said to be in failover mode.

If you declare the Scalable property in the RTR file for a resource, the RGM
automatically creates the following set of scalable properties for the resource:

� Network_resources_used – identifies the shared address resources used by
this resource. This property defaults to the empty string so the cluster
administrator must provide the actual list of shared addresses the scalable service
uses when creating the resource.

� Load_balancing_policy – specifies the load balancing policy for the resource.
You can explicitly set the policy in the RTR file (or allow the default,
LB_WEIGHTED). In either case, the cluster administrator can change the value
when creating the resource (unless you set tunability for Load_balancing_policy to
NONEor FALSE in the RTR file). Legal values are:

� LB_WEIGHTED – the load is distributed among various nodes according to the
weights set in the Load_balancing_weights property.

� LB_STICKY – a given client (identified by the client IP address) of the scalable
service, is always sent to the same node of the cluster.

� LB_STICKY_WILD – a given client (identified by the client’s IP address), that
connects to an IP address of a wildcard stick service, is always sent to the same
cluster node regardless of the port number it is coming to.

In case of scalable services, for those with Load_balancing_policy
LB_STICKY or LB_STICKY_WILD, changing Load_balancing_weights while
the service is online can cause existing client affinities to be reset. In that case, a
different node might service a subsequent client request even if the client had been
previously serviced by another node in the cluster.

Similarly, starting a new instance of the service on a cluster, might reset existing
client affinities.

28 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

� Load_balancing_weights – specifies the load to be sent to each node. The
format is weight@node,weight@node, where weight is an integer reflecting the relative
portion of load distributed to the specified node. The fraction of load distributed to
a node is the weight for this node divided by the sum of all weights of active
instances. For example, 1@1,3@2specifies that node 1 receives 1/4 of the load and
node 2 receives 3/4.

� Port_list – identifies the ports on which the server is listening. This property
defaults to the empty string. You can provide a list of ports in the RTR file.
Otherwise, the cluster administrator must provide the actual list of ports when
creating the resource.

You can create a data service that can run in both scalable and failover mode. To do
so, declare the Scalable resource property in the data service’s RTR file. You can
declare it without a value (the default value is FALSE), or explicitly set its value to
FALSE. By default, this resource runs in failover mode. However, the cluster
administrator can make the resource run in scalable mode by changing the value of
Scalable to TRUEwith an administrative utility.

The cluster administrator creates a scalable resource group to contain scalable service
resources. Scalable resources make use of shared address resources, which allow the
multiple instances of a scalable service to appear as a single service to the client. The
shared address resources upon which a scalable resource depends must reside in a
separate failover resource group.

The cluster administrator uses the RG_dependencies resource group property to
specify the order in which resource groups are brought online and offline on a node.
This ordering is important for a scalable service because the scalable resources and
the shared address resources upon which they depend are in different resource
groups. A scalable data service requires that its network address (shared address)
resources be configured up before it is started. Therefore, the administrator must set
the RG_dependencies property to include the resource group containing the shared
address resources.

The RG_modeproperty allows the cluster administrator to identify a resource group
as failover or scalable. If RG_modeis SCALABLE, the RGM allows
Maximum_primaries to have a value greater than 1, meaning the group can be
mastered by multiple nodes simultaneously. The RGM does not allow a resource
whose Failover property is TRUEto be instantiated in a resource group whose
RG_modeis SCALABLE.

See Sun Cluster 3.0 Concepts for additional information regarding scalable resources.

Validation Checks For Scalable Services
Whenever a scalable resource is created or updated, the RGM validates various
resource properties. If the properites are not configured correctly, the RGM rejects the
attempted update or creation. The RGM performs the following checks:

Using the Resource Management API 29

� The Network_resources_used property must be non-empty and contain the
names of existing shared address resources. Every node in the Nodelist of the
resource group containing the scalable resource must appear in either the
NetIfList property or AuxNodeList property of each of the named shared
address resources.

� The RG_dependencies property of the resource group that contains the scalable
resource must include the resource groups of all shared address resources listed in
the scalable resource’s Network_resources_used property.

� The Port_list property must be non-empty and contain a list of port-protocol pairs
such that protocol is either tcp or udp. For example, .

Port_list=80/tcp,40/udp

Writing and Testing Data Services
This section provides some information about writing and testing data services.

Setting Up the Development Environment for
Writing a Data Service
Before beginning data service development, you must have installed the Sun Cluster
development package (SUNWscdev) to have access to the Sun Cluster header and
library files. Although this package is already installed on all cluster nodes, typically,
you do development on a separate, non-cluster development machine, not on a
cluster node. In this typical case, you must use pkgadd (1M) to install the
SUNWscdevpackage on your development machine.

When compiling and linking your code, you must set particular options to identify
the header and library files. When you have finished development (on a non-cluster
node) you can transfer the completed data service to a cluster for running and
testing.

Note - Be certain you are using a development version of Solaris.

Use the procedures in this section to:

� Install the Sun Cluster development package (SUNWscdev) and set the appropriate
compiler and linker options

� Transfer the data service to a cluster

30 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

How to Set Up the Development Environment
This procedure describes how to install the SUNWscdevpackage and set the
compiler and linker options for data service development.

1. Change directory to the appropriate CD-ROM directory.

cd appropriate_CD-ROM_directory

2. Install the SUNWscdev package in the current directory.

pkgadd −d . SUNWscdev

3. In the makefile, specify compiler and linker options to identify the include and
library files for your data service code.

Specify the −I option to identify the Sun Cluster header files, the −L option to
identify the static library files, and the −R option to identify the dynamic library
files.

Makefile for sample data service
...

−I /usr/cluster/include

−L /usr/cluster/lib

−R /usr/cluster/lib
...

How to Transfer a Data Service to a Cluster
When you have completed development of a data service on a development
machine, you must transfer it to a cluster for testing. To reduce the chance of error,
the best way to accomplish this transfer is to package together the data service code
and the RTR file and then install the package on all nodes of the cluster.

Note - Whether you use pkgadd or some other way to install the data service, you
must put it on all cluster nodes.

Using the Resource Management API 31

Deciding on the STARTand STOPMethods to Use
This section provides some tips about when to use the STARTand STOPmethods
versus using the PRENET_STARTand POSTNET_STOPmethods. You must have
in-depth knowledge of both the client and the data service’s client-server networking
protocol to decide which methods are appropriate.

Services that use network address resources might require that start or stop steps be
done in a certain order relative to the Logical_hostname address configuration. The
optional callback methods PRENET_STARTand POSTNET_STOPallow a resource type
implementation to do special start-up and shutdown actions before and after network
addresses in the same resource group are configured up or configured down.

The RGM calls methods that plumb (but do not configure up) the network addresses
before calling the data service’s PRENET_STARTmethod. The RGM calls methods
that unplumb the network addresses after calling the data service’s POSTNET_STOP
methods. The sequence is as follows when the RGM takes a resource group online.

1. Plumb network addresses.

2. Call data service’s PRENET_STARTmethods (if any).

3. Configure network addresses up.

4. Call data service’s STARTmethods (if any).

The reverse happens when the RGM takes a resource group offline:

1. Call data service’s STOPmethods (if any).

2. Configure network addresses down.

3. Call data service’s POSTNET_STOPmethods (if any).

4. Unplumb network addresses.

When deciding whether to use the START, STOP, PRENET_START, or
POSTNET_STOPmethods, first consider the server side. When bringing online a
resource group containing both data service application resources and network
address resources, the RGM calls methods to configure up the network addresses
before it calls the data service resource STARTmethods. Therefore, if a data service
requires network addresses to be configured up at the time it starts, use the START
method to start the data service.

Likewise, when bringing offline a resource group that contains both data service
resources and network address resources, the RGM calls methods to configure down
the network addresses after it calls the data service resource STOPmethods.
Therefore, if a data service requires network addresses to be configured up at the
time it stops, use the STOPmethod to stop the data service.

For example, to start or stop a data service, you might have to invoke the data
service’s administrative utilities or libraries. Sometimes, the data service has
administrative utilities or libraries that use a client-server networking interface to
perform the administration. That is, an administrative utility makes a call to the

32 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

server daemon, so the network address might need to be up to use the
administrative utility or library. Use the STARTand STOPmethods in this scenario.

If the data service requires that the network addresses be configured down at the
time it starts and stops, use the PRENET_STARTand POSTNET_STOPmethods to
start and stop the data service. Consider whether your client software will respond
differently depending on whether the network address or the data service comes
online first after a cluster reconfiguration, scha_control giveover, or scswitch
switchover. For example, the client implementation might do minimal retries, giving
up soon after determining that the data service port is not available.

If the data service does not require the network address to be configured up when it
starts, start it before the network interface is configured up. This ensures that the
data service is able to respond immediately to client requests as soon as the network
address has been configured up, and clients are less likely to stop retrying. In this
scenario, use the PRENET_STARTmethod rather than the STARTmethod to start the
data service.

If you use the POSTNET_STOPmethod, the data service resource is still up at the
point the network address is configured to be down. Only after the network address
is configured down is the POSTNET_STOPmethod invoked. As a result, the data
service’s TCP or UDP service port, or its RPC program number, always appears to be
available to clients on the network, except when the network address also is not
responding.

The decision to use the STARTand STOPmethods versus the PRENET_STARTand
POSTNET_STOPmethods, or to use both, must take the requirements and behavior of
both the server and client into account.

Using Keep-Alives
On the server side, using TCP keep-alives protects the server from wasting system
resources for a down (or network-partitioned) client. If those resources are not
cleaned up (in a server that stays up long enough), eventually the wasted resources
grow without bound as clients crash and reboot.

If the client-server communication uses a TCP stream, then both the client and the
server should enable the TCP keep-alive mechanism. This provision applies even in
the non-HA, single-server case.

Other connection-oriented protocols might also have a keep-alive mechanism.

On the client side, using TCP keep-alives enables the client to be notified when a
network address resource has failed over or switched over from one physical host to
another. That transfer of the network address resource breaks the TCP connection.
However, unless the client has enabled the keep-alive, it would not necessarily learn
of the connection break if the connection happens to be quiescent at the time.

Using the Resource Management API 33

For example, consider the case in which the client is waiting for a response from the
server to a long-running request. In this scenario, the client’s request message has
already arrived at the server and has been acknowledged at the TCP layer, so the
client’s TCP module has no need to keep retransmitting it. The client application is
now blocked, waiting for a response to the request.

Where possible, in addition to using the TCP keep-alive mechanism, the client
application also must perform its own periodic keep-alive at its level, because the
TCP keep-alive mechanism is not perfect in all possible boundary cases. Using an
application-level keep-alive typically requires that the client-server protocol supports
a null operation or at least an efficient read-only operation such as a status operation.

Testing HA Data Services
This section provides suggestions about how to test a data service implementation in
the HA environment. The test cases are suggestions and are not exhaustive. You need
access to a test-bed Sun Cluster configuration so the testing work does not impact
production machines.

Test that your HA data service behaves properly in all cases where a resource group
is moved between physical hosts. These cases include system crashes and the use of
the scswitch(1M) command. Test that client machines continue to get service after
these events.

Test the idempotency of the methods. For example, replace each method temporarily
with a short shell script that calls the original method two or more times.

Coordinating Dependencies Between Resources
Sometimes one client-server data service makes requests on another client-server data
service while fulfilling a request for a client. Informally, a data service A depends on
a data service B if, for A to provide its service, B must provide its service. Sun
Cluster provides for this requirement by permitting resource dependencies to be
configured within a resource group. The dependencies affect the order in which Sun
Cluster starts and stops data services. See the scrgadm(1M) man page for details.

If resources of your resource type depend on resources of another type, you need to
instruct the user to configure the resources and resource groups appropriately, or
provide scripts or tools to correctly configure them. If the dependent resource must
run on the same node as the depended-on resource, then both resources must be
configured in the same resource group.

Decide whether to use explicit resource dependencies, or to omit them and poll for
the availability of the other data service(s) in your HA data service’s own code. In
the case that the dependent and depended-on resource can run on different nodes,

34 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

configure them into separate resource groups. In this case, polling is required
because it is not possible to configure resource dependencies across groups.

Some data services store no data directly themselves, but instead depend on another
back-end data service to store all their data. Such a data service translates all read
and update requests into calls on the back-end data service. For example, consider a
hypothetical client-server appointment calendar service that keeps all of its data in
an SQL database such as Oracle. The appointment calendar service has its own
client-server network protocol. For example, it might have defined its protocol using
an RPC specification language, such as ONC

TM

RPC.

In the Sun Cluster environment, you can use HA-ORACLE to make the back-end
Oracle database highly available. Then you can write simple methods for starting
and stopping the appointment calendar daemon. Your end user registers the
appointment calendar resource type with Sun Cluster.

If the appointment calendar application must run on the same node as the Oracle
database, then the end user configures the appointment calendar resource in the
same resource group as the HA-ORACLE resource, and makes the appointment
calendar resource dependent on the HA-ORACLE resource. This dependency is
specified using the Resource_dependencies property tag in scrgadm (1M).

If the HA-ORACLE resource is able to run on a different node than the appointment
calendar resource, the end user configures them into two separate resource groups.
The end user might configure a resource group dependency of the calendar resource
group on the Oracle resource group. However resource group dependencies are only
effective when both resource groups are being started or stopped on the same node
at the same time. Therefore, the calendar data service daemon, after it has been
started, might poll waiting for the Oracle database to become available. The calendar
resource type’s STARTmethod usually would just return success in this case, because
if the STARTmethod blocked indefinitely it would put its resource group into a busy
state, which would prevent any further state changes (such as edits, failovers, or
switchovers) on the group. However, if the calendar resource’s STARTmethod
timed-out or exited non-zero, it might cause the resource group to ping-pong
between two or more nodes while the Oracle database remained unavailable.

Using the Resource Management API 35

36 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

CHAPTER 3

Data Service Requirements

An ordinary, non-cluster-aware application must meet the requirements set out in
this chapter to be a candidate for high availability (HA).

A data service is made highly available by configuring its resources into resource
groups. The data service’s data is placed on a highly available global file system,
making the data accessible by a surviving server in the event that one server fails.
See information regarding cluster file systems in Sun Cluster 3.0 Concepts.

For network access by clients on the network, a logical network IP address is
configured in logical host name resources that are contained in the same resource
group as the data service resource. The data service resource and the network
address resources fail over together, causing network clients of the data service to
access the data service resource on its new host.

Client-Server Environment
Sun Cluster is designed for client-server networking environments. Sun Cluster
cannot provide enhanced availability in time-sharing environments in which
applications are run on a server that is accessed through telnet or rlogin . Such
models typically have no inherent ability to recover from a server crash.

Crash Tolerance
The data service must be crash tolerant. That is, it must crash-recover disk data (if
necessary) when it is started as the result of a cluster reconfiguration,

37

scha_control giveover, or scswitch switchover. Crash tolerance is a prerequisite
for making a data service highly available because crash recovery (the ability to
crash-recover the disk and restart the data service) is a data integrity issue.

Note - The data service is not required to be able to recover connections.

Multihosted Data
The highly available global file systems’ disksets are multihosted so that when a
physical host crashes, one of the surviving hosts can access the disk. For a data
service to be highly available, its data must be highly available, and thus its data
must reside in the global HA file systems.

The global file system is mounted on disk groups, which are created as independent
entities. The user can choose to use some disk groups as mounted global file systems
and others as raw devices for use with a data service, such as HA Oracle.

A data service might have command-line switches or configuration files pointing to
the location of the data files. If the data service uses hard-wired path names, you
might change the path name to a symbolic link that points to a file in a global file
system, without changing the data service code. See “Using Symbolic Links for
Multihosted Data Placement” on page 41 for a more detailed discussion about using
symbolic links.

In the worst case, the data service’s source code must be modified to provide some
mechanism for pointing to the actual data location. You might do this by
implementing additional command-line switches.

Sun Cluster supports the use of UNIX UFS file systems and HA raw devices
configured in a volume manager. When the system administrator installs and
configures Sun Cluster, he or she must specify which disk resources to use for UFS
file systems and which for raw devices. Typically, raw devices are used only by
database servers and multimedia servers.

Host Names
You must determine whether the data service ever needs to know the host name of
the server on which it is running. If so, the data service might need to be modified to
use a logical host name (that is, a host name configured into a logical host name
resource that resides in the same resource group as the application resource), rather
than that of the physical host.

38 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

Occasionally, in the client-server protocol for a data service, the server returns its
own host name to the client as part of the contents of a message to the client. For
such protocols, the client could be depending on this returned host name as the host
name to use when contacting the server. For the returned host name to be usable
after a takeover or switchover, the host name should be a logical host name of the
resource group, not the name of the physical host. In this case, you must modify the
data service code to return the logical host name to the client.

Multihomed Hosts
The term multihomed host describes a host that is on more than one public network.
Such a host has multiple host names and IP addresses. It has one host name-IP
address pair for each network. Sun Cluster is designed to permit a host to appear on
any number of networks, including just one (the non-multihomed case). Just as the
physical host name has multiple host name-IP address pairs, each resource group can
have multiple host name-IP address pairs, one for each public network. When Sun
Cluster moves a resource group from one physical host to another, the complete set
of host name-IP address pairs for that resource group is moved.

The set of host name-IP address pairs for a resource group is configured as logical
host name resources contained in the resource group. These network address
resources are specified by the system administrator when the resource group is
created and configured. The Sun Cluster Data Service API contains facilities for
querying these host name-IP address pairs.

Most off-the-shelf data service daemons that have been written for the Solaris
environment already handle multihomed hosts properly. Many data services do all
their network communication by binding to the Solaris wildcard address
INADDR_ANY. This binding automatically causes the data services to handle all the IP
addresses for all the network interfaces. INADDR_ANYeffectively binds to all IP
addresses currently configured on the machine. A data service daemon that uses
INADDR_ANYgenerally does not have to be changed to handle the Sun Cluster
logical network addresses.

Binding to INADDR_ANYVersus Binding
to Specific IP Addresses
Even in the non-multihomed case, the Sun Cluster logical network address concept
enables the machine to have more than one IP address. The machine has one IP
address for its own physical host and additional IP addresses for each network

Data Service Requirements 39

address (logical host name) resource that it currently masters. When a machine
becomes the master of a network address resource, it dynamically acquires
additional IP addresses. When it gives up mastery of a network address resource, it
dynamically relinquishes IP addresses.

Some data services cannot work properly in a Sun Cluster environment if they bind
to INADDR_ANY. These data services must dynamically change the set of IP
addresses to which they are bound as the resource group is mastered or unmastered.
One strategy for accomplishing the rebinding is to have the starting and stopping
methods for these data services kill and restart the data service’s daemons.

The Network_resources_used resource property permits the end user to configure
a specific set of network address resources to which the application resource should
bind. For resource types that require this feature, the Network_resources_used
property must be declared in the RTR file for the resource type.

When the RGM brings the resource group online or offline, it follows a specific order
for plumbing, unplumbing and configuring network address up or down in relation
to when it calls call data service resource methods. See “Deciding on the STARTand
STOPMethods to Use” on page 32.

By the time the data service’s STOPmethod returns, the data service must have
stopped using the resource group’s network addresses. Similarly, by the time the
STARTmethod returns, the data service must have started to use the network
addresses.

If the data service binds to INADDR_ANYrather than to individual IP addresses, the
order in which data service resource methods are called and network address
methods are called is not irrelevant.

If the data service’s stopping and starting methods accomplish their work by killing
and restarting data service’s daemons, then the data service stops and starts using
the network addresses at the appropriate times.

Client Retry
To a network client, a takeover or switchover appears to be a crash of the logical host
followed by a fast reboot. Ideally, the client application and the client-server protocol
are structured to do some amount of retrying. If the application and protocol already
handle the case of a single server crashing and rebooting, then they also will handle
the case of the resource group being taken over or switched over. Some applications
might elect to retry endlessly. More sophisticated applications notify the user that a
long retry is in progress and enable the user to choose whether to continue.

40 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

Using Symbolic Links for Multihosted
Data Placement
This section describes how to use symbolic links to avoid having to modify data
service code. Occasionally an existing data service has the path names of its data files
hard-wired, with no mechanism for overriding the hard-wired path names. To avoid
modifying the data service’s code, you can sometimes use symbolic links.

For example, suppose the data service names its data file with the hard-wired path
name /etc/mydatafile . You can change that path from a file to a symbolic link
that has its value pointing to a file in one of the logical host’s file systems. For
example, you can make it a symbolic link to /global/phys-schost-2/
mydatafile .

A potential problem can occur with this use of symbolic links. That is, sometimes the
data service, or one of its administrative procedures, modifies the data file name as
well as its contents. For example, suppose that the data service performs an update
by first creating a new temporary file, /etc/mydatafile.new . Then it renames the
temporary file to have the real file name by using the rename(2) system call (or the
mv(1) program). By creating the temporary file and then renaming it to the real file,
the data service is attempting to ensure that its data file contents are always well
formed.

rename("/etc/mydatafile.new", "/etc/mydatafile");

Unfortunately, the rename(2) action destroys the symbolic link. The name /etc/
mydatafile is now a regular file, and is in the same file system as the /etc
directory, not in the cluster’s global file system. Because the /etc file system is
private to each host, the data is not available after a takeover or switchover.

The underlying problem in this situation is that the existing data service is not aware
of the symbolic link and was not written with symbolic links considered. To use
symbolic links to redirect data access into the logical host’s file systems, the data
service implementation must behave in a way that does not obliterate the symbolic
links. So, symbolic links are not a complete remedy for the problem of placing data
on the cluster’s global file systems.

Data Service Requirements 41

42 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

CHAPTER 4

Resource Management API Reference

This chapter provides a reference to the access functions and callback methods that
make up the Resource Management API (RMAPI). It lists and briefly describes each
function and method. However, the definitive reference for these functions and
methods is the Resource Management API man pages.

The information in this chapter includes:

� “RMAPI Access Methods” on page 44 – in the form of shell script commands
(1HA) and C functions (3HA)

� scha_resource_get(1HA) (scha_resource_open_get_close(3HA))
� scha_resource_setstatus(1HA)(3HA)

� scha_resourcetype_get(1HA)
scha_resourcetype__open_get_close(3HA)

� scha_resource_resourcegroup_get(1HA)(3HA)
scha_resource_resourcegroup_open_get_close(3HA)

� scha_control(1HA)(3HA)

� scha_cluster_get(1HA) scha_resource_cluster_open_get_close(3HA)
� scha_cluster_getlogfacility(3HA)
� scha_cluster_getnodename(3HA)
� scha_strerror(3HA)

� “RMAPI Callback Methods” on page 49 – described in the rt_callbacks(1HA)
man page.

� START

� STOP

� INIT

� FINI

� BOOT

43

� PRENET_START

� PRENET_STOP

� MONITOR_START

� MONITOR_STOP

� MONITOR_CHECK

� UPDATE

� VALIDATES

RMAPI Access Methods
The API provides functions to access resource, resource type, and resource group
properties, and other cluster information. These functions are provided both in the
form of shell commands and C functions, enabling resource type providers to
implement control programs as shell scripts or as C programs.

RMAPI Shell Commands
Shell commands are to be used in shell script implementations of the callback
methods for resource types representing services controlled by the cluster’s RGM.
You can use these commands to:

� Access information about resources, resource types, resource groups, and clusters

� Use with a monitor to set the Status and Status_msg properties of a resource

� Request the restart or relocation of a resource group

Note - Although this section provides brief descriptions of the shell commands, the
individual (1HA) man pages provide the definitive reference for the shell commands.
Each command has a man page of the same name unless otherwise noted.

RMAPI Resource Commands
You can access information about a resource or set the Status and Status_msg
properties of a resource with these commands.

� scha_resource_get(1HA) – Accesses information about a resource or resource
type under the control of the RGM. It provides the same information as the
scha_resource_get(3HA) function.

44 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

� scha_resource_setstatus(1HA) – Sets the Status and Status_msg
properties of a resource under the control of the RGM. It is used by the resource’s
monitor to indicate the resource’s state as perceived by the monitor. It provides the
same functionality as the scha_resource_setstatus(3HA) C function.

Note - Although scha_resource_setstatus is of particular use to a resource
monitor, any program can call it.

Resource Type Command
This command accesses information about a resource type registered with the RGM.

� scha_resourcetype_get(1HA) – This command provides the same
functionality as the scha_resourcetype_get(3HA) C function.

Resource Group Commands
You can access information about or restart a resource group with these commands.

� scha_resourcegroup_get(1HA) – Accesses information about a resource
group under the control of the RGM. This command provides the same
functionality as the scha_resourcetype_get(1HA) C function.

� scha_control(1HA) – Requests the restart of a resource group under the control
of the RGM or its relocation to a different node. This command provides the same
functionality as the scha_control(3HA) C function.

Cluster Command
This command accesses information about a cluster, such as node names, IDs, and
states, the cluster name, resource groups, and so on.

� scha_cluster_get(1HA) – This command provides the same information as
the scha_cluster_get(3HA) C function.

C Functions
C functions are to be used in C program implementations of the callback methods
for resource types representing services controlled by the cluster’s RGM. You can use
these functions to do the following:

� Access information about resources, resource types, resource groups, and clusters

� Use with a monitor to set the Status and Status_msg properties of a resource

� Request the restart or relocation of a resource group

Resource Management API Reference 45

� Convert an error code to an appropriate error message

Note - Although this section provides brief descriptions of the C functions, the
individual (3HA) man pages provide the definitive reference for the C functions.
Each function has a man page of the same name unless otherwise noted. See the
scha_calls(3HA) man page for information on the output arguments and return
codes of the C functions.

Resource Functions
These functions access information about a resource managed by the RGM or
indicate the state of the resource as perceived by the monitor.

� scha_resource_open(3HA) , scha_resource_get(3HA) , and
scha_resource_close(3HA) – Together these functions access information on
a resource managed by the RGM. The scha_resource_open function initializes
access to a resource and returns a handle for scha_resource_get , which
accesses the resource information. The scha_resource_close function
invalidates the handle and frees memory allocated for scha_resource_get
return values.

A resource can change—through cluster reconfiguration or administrative
action—after scha_resource_open returns the resource’s handle, in which case
the information scha_resource_get obtains through the handle could be
inaccurate. In cases of cluster reconfiguration or administrative action on a
resource, the RGM returns the scha_err_seqid error code to
scha_resource_get to indicate information about the resource might have
changed. This is a non-fatal error message—the function returns successfully. You
can choose to ignore the message and accept the returned information, or you can
close the current handle and open a new handle to access information about the
resource.

A single man page describes these three functions. You can access this man page
through any of the individual functions, scha_resource_open(3HA)
scha_resource_get(3HA) , or scha_resource_close(3HA) .

� scha_resource_setstatus(3HA) – Sets the Status and Status_msg
properties of a resource under the control of the RGM. The resource’s monitor
uses this function to indicate the resource’s state.

Note - Although scha_resource_setstatus is of particular use to a resource
monitor, any program can call it.

46 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

Resource Type Functions
Together these functions access information about a resource type registered with the
RGM.

� scha_resourcetype_open(3HA) , scha_resourcetype_get(3HA) ,
scha_resourcetype_close(3HA) – The scha_resourcetype_open function
initializes access to a resource and returns a handle for
scha_resourcetype_get , which accesses the resource type information. The
scha_resourcetype_close function invalidates the handle and frees memory
allocated for scha_resourcetype_get return values.

A resource type can change—through cluster reconfiguration or administrative
action—after scha_resourcetype_open returns the resource type’s handle, in
which case the information scha_resourcetype_get obtains through the
handle could be inaccurate. In cases of cluster reconfiguration or administrative
action on a resource type, the RGM returns the scha_err_seqid error code to
scha_resourcetype_get to indicate information about the resource type might
have changed. This is a non-fatal error message—the function returns successfully.
You can choose to ignore the message and accept the returned information, or you
can close the current handle and open a new handle to access information about
the resource type.

A single man page describes these three functions. You can access this man page
through any of the individual functions, scha_resourcetype_open(3HA)
scha_resourcetype_get(3HA) , or scha_resourcetype_close(3HA) .

Resource Group Functions
You can access information about or restart a resource group with these functions.

� scha_resourcegroup_open(3HA) , scha_resourcegroup_get(3HA) , and
scha_resourcegroup_close(3HA) –Together these functions access
information on a resource group managed by the RGM. The
scha_resourcegroup_open function initializes access to a resource group and
returns a handle for scha_resourcegroup_get , which accesses the resource
group information. The scha_resourcegroup_close function invalidates the
handle and frees memory allocated for scha_resourcegroup_get return
values.

A resource group can change—through cluster reconfiguration or administrative
action—after scha_resourcegroup_open returns the resource group’s handle,
in which case the information scha_resourcegroup_get obtains through the
handle could be inaccurate. In cases of cluster reconfiguration or administrative
action on a resource group, the RGM returns the scha_err_seqid error code to
scha_resourcegroup_get to indicate information about the resource group
might have changed. This is a non-fatal error message—the function returns
successfully. You can choose to ignore the message and accept the returned
information, or you can close the current handle and open a new handle to access
information about the resource group.

Resource Management API Reference 47

A single man page describes these three functions. You can access this man page
through any of the individual functions, scha_resourcegroup_open(3HA)
scha_resourcegroup_get(3HA) , or scha_resourcegrooup_close(3HA)

� scha_control(3HA) – Requests the restart of a resource group under the control
of the RGM or its relocation to a different node.

Cluster Functions
These functions access or return information about a cluster.

� scha_cluster_open(3HA) , scha_cluster_get(3HA) , and
scha_cluster_close(3HA) – Together these functions access information
about a cluster, such as node names, IDs, and states, cluster name, resource
groups, and so on.

A single man page describes these three functions. You can access this man page
through any of the individual functions, scha_cluster_open(3HA)
scha_cluster_get(3HA) , or scha_cluster_close(3HA)

A cluster can change—through reconfiguration or administrative action—after
scha_cluster_open returns the cluster’s handle, in which case the information
scha_cluster_get obtains through the handle could be inaccurate. In cases of
reconfiguration or administrative action on a cluster, the RGM returns the
scha_err_seqid error code to scha_cluster_get to indicate information
about the cluster might have changed. This is a non-fatal error message—the
function returns successfully. You can choose to ignore the message and accept the
returned information, or you can close the current handle and open a new handle
to access information about the cluster.

� scha_cluster_getlogfacility(3HA) – Returns the number of the system
log facility being used as the cluster log. Uses the returned value with the Solaris
syslog(3) function to record events and status messages to the cluster log.

� scha_cluster_getnodename(3HA) – Returns the name of the cluster node on
which the function is called.

Utility Function
This function converts an error code to an error message.

� scha_strerror(3HA) – Translates an error code—returned by one of the scha_
functions—to the appropriate error message. Use this function with logger(1) to
log messages to the system log (syslog(3)).

48 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

RMAPI Callback Methods
Callback methods are the key elements provided by the API for implementing a
resource type. Callback methods enable the RGM to control resources in the cluster
in the event of a change in cluster membership, such as a node boot or crash.

Note - The callback methods are executed by the RGM with root permissions because
the client programs control HA services on the cluster system. Install and administer
these methods with restrictive file ownership and permissions. Specifically, give them
a privileged owner, such as bin or root , and do not make them writable.

This section describes callback method arguments and exit codes and lists and
describes callback methods in the following categories:

� Control and initialization methods

� Administrative support methods

� Net-relative methods

� Monitor control methods

Note - Although this section provides brief descriptions of the callback methods,
including the point at which the method is invoked and the expected effect on the
resource, the rt_callbacks(1HA) man page is the definitive reference for the
callback methods.

Method Arguments
The RGM invokes callback methods as follows:

method -R resource-name -T type-name -G group-name

The method is the path name of the program that is registered as the START, STOP,
or other callback. The callback methods of a resource type are declared in its
registration file.

All callback method arguments are passed as flagged values, with -R indicating the
name of the resource instance, -T indicating the type of the resource, and -G
indicating the group into which the resource is configured. Use the arguments with
access functions to retrieve information about the resource.

Resource Management API Reference 49

The VALIDATE method is called with additional arguments (the property values of
the resource and resource group on which it is called).

See rt_callbacks(1HA) for more information.

Exit Codes
All callback methods have the same exit codes defined to specify the effect of the
method invocation on the resource state. The scha_calls(3HA) man page
describes all these exit codes. The exit codes are:

� 0 – Method succeeded

� Any nonzero value – Method failed

The RGM also handles abnormal failures of callback method execution, such as time
outs and core dumps.

Method implementations must output failure information using syslog(3) on each
node. Output written to stdout or stderr is not guaranteed to be delivered to the
user (though it currently is displayed on the console of the local node).

Control and Initialization Callback Methods
The primary control and initialization callback methods start and stop a resource.
Other methods execute initialization and termination code on a resource.

� START– This required method is invoked on a cluster node when the resource
group containing the resource is brought online on that node. This method
activates the resource on that node.

A STARTmethod should not exit until the resource it activates has been started
and is available on the local node. Therefore, before exiting, the STARTmethod
should poll the resource to determine that it has started. In addition, you should
set a sufficiently long time-out value for this method. For example, certain
resources, such as database daemons, take more time to start, and thus require
that the method have a longer timeout value.

The way in which the RGM responds to failure of the STARTmethod depends on
the setting of the Failover_mode property (see Table A–2).

The START_TIMEOUTproperty in the resource type registration file sets the
time-out value for a resource’s STARTmethod.

� STOP– This required method is invoked on a cluster node when the resource
group containing the resource is brought offline on that node. This method
deactivates the resource if it is active.

50 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

A STOPmethod should not exit until the resource it controls has completely
stopped all its activity on the local node and has closed all file descriptors.
Otherwise, because the RGM assumes the resource has stopped, when in fact it is
still active, data corruption can result. The safest way to avoid data corruption is
to terminate all processes on the local node related to the resource.

Before exiting, the STOPmethod should poll the resource to determine that it has
stopped. In addition, you should set a sufficiently long time-out value for this
method. For example, certain resources, such as database daemons, take more time
to stop, and thus require that the method have a longer time-out value.

The way in which the RGM responds to failure of the STOPmethod depends on
the setting of the Failover_mode property (see Table A–2).

The STOP_TIMEOUTproperty in the resource type registration file sets the
time-out value for a resource’s STOPmethod.

� INIT – This optional method is invoked to perform a one-time initialization of the
resource when the resource becomes managed—either when the resource group it
is in is switched from an unmanaged to a managed state, or when the resource is
created in a resource group that is already managed. The method is called on
nodes determined by the Init_nodes resource property.

� FINI – This optional method is invoked to clean up after the resource when the
resource becomes unmanaged—either when the resource group it is in is switched
to an unmanaged state or when the resource is deleted from a managed resource
group. The method is called on nodes determined by the Init_nodes resource
property.

� BOOT– This optional method, similar to INIT, is invoked to initialize the resource
on nodes that join the cluster after the resource group containing the resource has
already been put under the management of the RGM. The method is invoked on
nodes determined by the Init_nodes resource property. The BOOTmethod is
called when the node joins or rejoins the cluster as the result of being booted or
rebooted.

Note - Failure of the INIT , FINI , or BOOTmethods causes the syslog(3) function
to generate an error message but does not otherwise affect RGM management of the
resource.

Administrative Support Methods
Administrative actions on resources include setting and changing resource
properties. The VALIDATE and UPDATEcallback methods enable a resource type
implementation to hook into these administrative actions.

Resource Management API Reference 51

� VALIDATE – This optional method is called when a resource is created and when
administrative action updates the properties of the resource or its containing
resource group. This method is called on the set of cluster nodes indicated by the
Init_nodes property of the resource’s type. VALIDATE is called before the creation
or update is applied, and a failure exit code from the method on any node causes
the creation or update to be canceled.

VALIDATE is called only when resource or resource group properties are changed
through administrative action, not when the RGM sets properties, or when a
monitor sets the resource properties Status and Status_msg .

� UPDATE– This optional method is called to notify a running resource that
properties have been changed. UPDATEis invoked after an administration action
succeeds in setting properties of a resource or its group. This method is called on
nodes where the resource is online. The method uses the API access functions to
read property values that might affect an active resource and adjust the running
resource accordingly.

Failure of the UPDATEmethod causes the syslog(3) function to generate an
error message but does not otherwise affect RGM management of the resource.

Net-Relative Callback Methods
Services that use network address resources might require that start or stop steps be
done in a certain order relative to the network address configuration. The following
optional callback methods, PRENET_STARTand POSTNET_STOP, enable a resource
type implementation to do special startup and shutdown actions before and after a
related network address is configured or unconfigured.

� PRENET_START– This optional method is called to do special startup actions
before network addresses in the same resource group are configured.

� POSTNET_STOP– This optional method is called to do special shutdown actions
after network addresses in the same resource group are configured down.

Monitor Control Callback Methods
A resource type implementation optionally can include a program to monitor the
performance of a resource, report on its status, or take action on resource failure. The
MONITOR_START, MONITOR_STOP, and MONITOR_CHECKmethods support the
implementation of a resource monitor in a resource type implementation.

� MONITOR_START– This optional method is called to start a monitor for the
resource after the resource is started.

52 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

� MONITOR_STOP– This optional method is called to stop a resource’s monitor
before the resource is stopped.

� MONITOR_CHECK– This optional method is called to assess the reliability of a
node before a resource group is relocated to the node.

Resource Management API Reference 53

54 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

CHAPTER 5

Sample Application

This chapter describes a Sun Cluster Data Services sample application, in.named .
The in.named daemon is the Solaris implementation of the Domain Name Service
(DNS). The sample application demonstrates how to make a data service application
highly available, using the Resource Management API.

The Resource Management API supports a shell script interface and a C program
interface. The sample application in this chapter is written using the shell script
interface.

The information in this chapter includes:

� “Overview of the Sample Application” on page 55

� “Defining the Resource Type Registration File” on page 56

� “Providing Common Functionality to All Methods” on page 62

� “Controlling the Data Service” on page 67

� “Defining a Fault Monitor” on page 73

� “Handling Property Updates” on page 83

Overview of the Sample Application
The sample data service starts, stops, restarts and switches the DNS application
among the nodes of the cluster in response to cluster events such as administrative
action, application failure, or node failure.

Application restart is managed by the SC 3.0 Process Monitor Facility (PMF). If
application deaths exceed the failure count within the failure time window, the

55

resource group containing the application resource is automatically failed over to
another node.

The sample data service provides fault monitoring in the form of a PROBEmethod.
that uses the nslookup command to ensure that the data service is healthy. If the
probe detects a hung DNS data service, it tries to correct the situation by restarting
the DNS application locally. If this does not improve the situation and the probe
repeatedly detects problems with the data service, then the probe attempts to fail
over the data service to another node in the cluster.

Specifically, the sample application includes:

� A resource type registration file that defines the static properties of the data
service.

� A STARTcallback method invoked by the RGM to start the in.named daemon
when the resource group containing the HA-DNS data service is brought online or
when the HA-DNS resource is enabled.

� A STOPcallback method invoked by the RGM to stop the in.named daemon
when the resource group containing HA-DNS goes offline or the resource is
disabled.

� A fault monitor to check the reliability of the data service by verifying that the
DNS server is running. The fault monitor is implemented by a user-defined PROBE
method and started and stopped by MONITOR_STARTand MONITOR_STOP
callback methods.

� A VALIDATE callback method invoked by the RGM to validate that the
configuration directory for the data service is accessible.

� An UPDATEcallback method invoked by the RGM to restart the fault monitor
when the system administrator changes the value of a resource property.

Defining the Resource Type Registration
File
The resource type registration (RTR) file in this example defines the static
configuration of the DNS resource type. Resources of this type inherit the properties
defined in the RTR file.

The information in the RTR file is read by the RGM when the cluster administrator
registers the HA-DNS data service.

56 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

RTR File Overview
The RTR file follows a well-defined format. It begins with resource type properties,
followed by system-defined resource properties, and lastly with extension properties.
See the rt_reg(4) man page and “Setting Resource and Resource Type Properties”
on page 17 for more information.

This section describes the specific properties in the sample RTR file. It provides
listings of different parts of the file. For a complete listing of the contents of the
sample RTR file, see “Resource Type Registration File Listing” on page 113.

Resource Type Properties in the Sample RTR File
The sample RTR file begins with comments followed by resource type properties that
define the HA-DNS configuration, as shown in the following listing.

#
Copyright (c) 1998-2000 by Sun Microsystems, Inc.
All rights reserved.
#
Registration information for Domain Name Service (DNS)
#

#pragma ident ‘‘@(#)SUNW.sample 1.1 00/05/24 SMI’’

RESOURCE_TYPE = ‘‘sample’’;
VENDOR_ID = SUNW;
RT_DESCRIPTION = ‘‘Domain Name Service on Sun Cluster’’;

RT_VERSION =’’1.0’’;
API_VERSION = 2;
FAILOVER = TRUE;

RT_BASEDIR=/opt/SUNWsample/bin;
PKGLIST = SUNWsample;

START = dns_svc_start;
STOP = dns_svc_stop;

VALIDATE = dns_validate;
UPDATE = dns_update;

MONITOR_START = dns_monitor_start;
MONITOR_STOP = dns_monitor_stop;
MONITOR_CHECK = dns_monitor_check;

Tip - You must declare the Resource_type property as the first entry in the RTR
file. Otherwise, registration of the resource type will fail.

Sample Application 57

Note - The RGM treats property names as case insensitive. The convention for
properties in Sun-supplied RTR files, with the exception of method names, is
uppercase for the first letter of the name and lowercase for the rest of the name.
Method names—as well as property attributes—contain all uppercase letters.

Some information about these properties follows.

� The resource type name can be specified by the Resource_type property alone
(sample) or using the Vendor_id as a prefix with a “.” separating it from the
resource type (SUNW.sample).

If you use Vendor_id , make it the stock symbol for the company defining the
resource type. The resource type name must be unique in the cluster.

� The Rt_version property identifies the version of the sample data service. For
example, API_version = 2 , indicates that the data service runs under Sun
Cluster version 3.0.

� Failover = TRUE indicates that the data service cannot run in a resource group
that can be online on multiple nodes at once.

� RT_basedir points to /opt/SUNWsample/bin as the directory path to complete
relative paths, such as callback method paths.

� START, STOP, VALIDATE, and so on provide the paths to the respective callback
method programs invoked by the RGM. These paths are relative to the directory
specified by RT_basedir .

� Pkglist identifies SUNWsampleas the package that contains the sample data
service installation.

Resource type properties not specified in this RTR file, such as Single_instance ,
Init_nodes , and Installed_nodes , get their default value. See Table A–1 for a
complete list of the resource type properties, including their default values.

The cluster administrator cannot change the values specified for resource type
properties in the RTR file.

Resource Properties in the Sample RTR File
By convention, you declare resource properties following the resource type
properties in the RTR file. Resource properties include system-defined properties
provided by Sun Cluster and extension properties you define. For either type you
can specify a number of property attributes supplied by Sun Cluster, such as
minimum, maximum, and default values.

58 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

System-Defined Properties in the RTR File

The following listing shows the system-defined properties in the sample RTR file.

A list of bracketed resource property declarations follows the
resource-type declarations. The property-name declaration must
be
the first attribute after the open curly bracket of each entry.
#

The <method>_timeout properties set the value in seconds
after which
the RGM concludes invocation of the method has failed.

The MIN value for all method timeouts is set to 60 seconds. This
prevents administrators from setting shorter timeouts, which do
not
improve switchover/failover performance, and can lead to undesired
RGM actions (false failovers, node reboot, or moving the resource
group
to ERROR_STOP_FAILED state, requiring operator intervention).
Setting
too-short method timeouts leads to a *decrease* in overall availability
of the data service.
{

PROPERTY = Start_timeout;
MIN=60;
DEFAULT=300;

}

{
PROPERTY = Stop_timeout;
MIN=60;
DEFAULT=300;

}
{

PROPERTY = Validate_timeout;
MIN=60;
DEFAULT=300;

}
{

PROPERTY = Update_timeout;
MIN=60;
DEFAULT=300;

}
{

PROPERTY = Monitor_Start_timeout;
MIN=60;
DEFAULT=300;

}
{

PROPERTY = Monitor_Stop_timeout;
MIN=60;
DEFAULT=300;

}
{

PROPERTY = Thorough_Probe_Interval;
MIN=1;
MAX=3600;
DEFAULT=60;

Sample Application 59

TUNABLE = ANYTIME;
}

The number of retries to be done within a certain period before
concluding
that the application cannot be successfully started on this node.
{

PROPERTY = Retry_Count;
MIN=0;
MAX=10;
DEFAULT=2;
TUNABLE = ANYTIME;

}

Set Retry_Interval as a multiple of 60 since it is converted from
seconds
to minutes, rounding up. For example, a value of 50 (seconds)
is converted to 1 minute. Use this property to time the number
of
retries (Retry_Count).
{

PROPERTY = Retry_Interval;
MIN=60;
MAX=3600;
DEFAULT=300;
TUNABLE = ANYTIME;

}

{
PROPERTY = Network_resources_used;
TUNABLE = AT_CREATION;
DEFAULT = ‘‘‘‘;

}

Although Sun Cluster provides the system-defined properties, you can set different
default values using resource property attributes. See “Resource Property Attributes”
on page 111 for a complete list of attributes available for applying to resource
properties.

Note the following about the system-defined resource properties in the sample RTR
file:

� Sun Cluster provides a minimum value (1 second) and a default value (3600
seconds) for all timeouts. The sample RTR file leaves the minimum of 1 (except for
the Stop_timeout , which is 10) and changes the default to 300 seconds. A cluster
administrator can accept this default value or change the value of the timeout to
something else, (1 or greater and 10 or greater for the Stop_timeout . Sun Cluster
has no maximum allowable value.

� The properties Thorough_Probe_Interval , Retry_count , and
Retry_interval , have the TUNABLEattribute set to ANYTIME. This settings
means the cluster administrator can change the value of these properties, even
when the data service is running. These properties are used by the fault monitor
implemented by the sample data service. The sample data service implements an
UPDATEmethod to stop and restart the fault monitor when these or other resource

60 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

properties are changed by administrative action. See “UPDATEMethod” on page
89.

� Resource properties are classified as

� required—the cluster administrator must specify a value when creating a
resource;

� optional—if the administrator does not specify a value, the system supplies a
default value.

� conditional—the RGM creates the property only if it is declared in the RTR file.

The fault monitor of the sample data service makes use of the
Thorough_probe_interval , Retry_count , Retry_interval , and
Network_resources_used conditional properties, so the developer needed to
declare them in the RTR file.

Extension Properties in the RTR File
At the end of the sample RTR file are extension properties, as shown in the following
listing

Extension Properties
#

The cluster administrator must set the value of this property
to point to the
directory that contains the configuration files used by the application.
For this application, DNS, specify the path of the DNS configuration
file on
PXFS (typically named.conf).
{

PROPERTY = Confdir;
EXTENSION;
STRING;
TUNABLE = AT_CREATION;
DESCRIPTION = ‘‘The Configuration Directory Path’’;

}

Time out value in seconds before declaring the probe as failed.
{

PROPERTY = Probe_timeout;
EXTENSION;
INT;
DEFAULT = 30;
TUNABLE = ANYTIME;
DESCRIPTION = ‘‘Time out value for the probe (seconds)’’;

}

The sample RTR file defines two extension properties, Confdir and
Probe_timeout . Confdir specifies the path to the DNS configuration directory.
This directory contains the in.named file, which DNS requires to operate

Sample Application 61

successfully. The sample data service’s STARTand VALIDATE methods use this
property to verify that the configuration directory and the in.named file are
accessible before starting DNS.

The sample data services’s PROBEmethod is not a Sun Cluster callback method but a
user-defined method. Therefore Sun Cluster doesn’t provide a Probe_timeout
property for it. The developer has defined an extension property in the RTR file to
allow a cluster administrator to configure a Probe_timeout value.

When the data service is configured, the VALIDATE method verifies that the new
directory is accessible.

Providing Common Functionality to All
Methods
This section describes the following functionality that is used in all methods of the
sample data service:

� “Identifying the Command Interpreter and Exporting the Path” on page 62.

� “Declaring the PMF_TAGand SYSLOG_TAGVariables” on page 63.

� “Parsing the Function Arguments” on page 64.

� “Generating Error Messages” on page 66.

� “Obtaining Property Information” on page 66.

Identifying the Command Interpreter and
Exporting the Path
The first line of a shell script must identify the command interpreter. Each of the
method scripts in the sample data service identifies the command interpreter as
follows:

#!/bin/ksh

All method scripts in the sample application export the path to the Sun Cluster
binaries and libraries rather than rely on the user’s PATHsettings.

###
MAIN

62 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

(Continuation)

##

export PATH=/bin:/usr/bin:/usr/cluster/bin:/usr/sbin:/usr/proc/bin:$PATH

Declaring the PMF_TAGand SYSLOG_TAG
Variables
All the method scripts (with the exception of VALIDATE) use pmfadm(1M) to launch
either the data service or the monitor, passing the name of the resource. Each script
defines a variable, PMF_TAGthat can be passed to pmfadm to identify either the data
service or the monitor.

Likewise each method script uses the logger(1) command to log messages with
the system log. Each script defines a variable, SYSLOG_TAGthat can be passed to
logger with the −t option to identify the resource type, resource group, and
resource name of the resource for which the message is being logged.

All methods define SYSLOG_TAGin the same way, as shown in the following sample.
The dns_probe , dns_svc_start , dns_svc_stop , and dns_monitor_check
methods define PMF_TAGas follows (the use of pmfadm and logger is from the
dns_svc_stop method):

##
MAIN
##

PMF_TAG=$RESOURCE_NAME.named
PMF_TAG=$RESOURCE_NAME.named
SYSLOG_TAG=$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME

Send a SIGTERM signal to the data service and wait for 80% of the
total timeout value.
pmfadm -s $PMF_TAG.named -w $SMOOTH_TIMEOUT TERM
if [$? -ne 0]; then

logger -p ${SYSLOG_FACILITY}.info \
-t [$SYSLOG_TAG] \
‘‘${ARGV0} Failed to stop HA-DNS with SIGTERM; Retry with \

SIGKILL’’

The dns_monitor_stop , dns_monitor_stop , and dns_update , methods define
PMF_TAGas follows (the use of pmfadm is from the dns_monitor_stop method):

Sample Application 63

##
MAIN
##

PMF_TAG=$RESOURCE_NAME.monitor
SYSLOG_TAG=$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME
...

See if the monitor is running, and if so, kill it.
if pmfadm -q $PMF_TAG.monitor; then

pmfadm -s $PMF_TAG.monitor KILL

Parsing the Function Arguments
The RGM invokes all of the callback methods—with the exception of VALIDATE—as
follows.

method_name -R resource_name -T resource_type_name -G resource_group_name

The method name is the path name of the program that implements the callback
method. A data service specifies the path name for each method in the RTR file.
These path names are relative to the directory specified by the Rt_basedir
property, also in the RTR file. For example, in the sample data service’s RTR file, the
base directory and method names are specified as follows.

RT_BASEDIR=/opt/SUNWsample/bin;

START = dns_svc_start;
STOP = dns_svc_stop;
...

All callback method arguments are passed as flagged values, with -R indicating the
name of the resource instance, -T indicating the type of the resource,
and -G indicating the group into which the resource is configured. See the
rt_callbacks(1HA) man page for more information on callback methods.

Note - The VALIDATE method is called with additional arguments (the property
values of the resource and resource group on which it is called). See “Handling
Property Updates” on page 83 for more information.

64 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

Each method needs a function to parse the arguments it is passed. Because the
callbacks are all passed the same arguments, the data service provides a single parse
function that is used in all the callbacks in the application.

The following shows the parse_args function used for the methods in the sample
application.

##
Parse program arguments.
#
function parse_args # [args ...]
{

typeset opt

while getopts ’R:G:T:’ opt
do

case "$opt" in
R)

Name of the DNS resource.
RESOURCE_NAME=$OPTARG
;;

G)
Name of the resource group in which the resource is
configured.
RESOURCEGROUP_NAME=$OPTARG
;;

T)
Name of the resource type.
RESOURCETYPE_NAME=$OPTARG
;;

*)
logger -p ${SYSLOG_FACILITY}.err \
-t [$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME] \
"ERROR: Option $OPTARG unknown"
exit 1
;;

esac
done

}

Note - Although the PROBEmethod in the sample application is user defined (not a
Sun Cluster callback method), it is called with the same arguments as the callback
methods. Therefore, this method contains a parse function identical to the one used
by the other methods.

The parse function is called in MAIN as:

parse_args ‘‘$@’’

Sample Application 65

Generating Error Messages
It is recommended that methods use the syslog facility to output error messages to
end users. All methods in the sample data service use the scha_cluster_get
command to retrieve the number of the syslog facility used for the cluster log, as
follows:

SYSLOG_FACILITY=‘scha_cluster_get -O SYSLOG_FACILITY‘

The value is stored in a shell variable, SYSLOG_FACILITY and can be used as the
facility of the logger(1) command to log messages in the cluster log. For example,
the STARTmethod in the sample data service retrieves the syslog facility and logs a
message that the data service has been started, as follows:

SYSLOG_FACILITY=‘scha_cluster_get -O SYSLOG_FACILITY‘
...

if [$? -eq 0]; then
logger -p ${SYSLOG_FACILITY}.err \

-t [$SYSLOG_TAG] \
"${ARGV0} HA-DNS successfully started"

fi

See the scha_cluster_get(1HA) man page for more information.

Obtaining Property Information
Most methods need to obtain information about resource and resource type
properties of the data service. The API provides the scha_resource_get
command for this purpose.

Two kinds of resource properties, system-defined properties and extension
properties, are available. System-defined properties are predefined whereas you
define extension properties in the RTR file.

When you use scha_resource_get to obtain the value of a system-defined
property, you specify the name of the property with the -O parameter. The command
returns only the value of the property. For example, in the sample data service, the
MONITOR_STARTmethod needs to locate the probe program so it can launch it. The
probe program resides in the base directory for the data service, which is pointed to
by the RT_BASEDIRproperty, so the MONITOR_STARTmethod retrieves the value of
RT_BASEDIR, and places it in the RT_BASEDIRvariable, as follows.

66 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

RT_BASEDIR=‘scha_resource_get -O RT_BASEDIR -R $RESOURCE_NAME -G \
$RESOURCEGROUP_NAME‘

For extension properties, you must specify with the -O parameter that it is an
extension property and supply the name of the property as the last parameter. For
extension properties, the command returns both the type and value of the property.
For example, in the sample data service, the probe program retrieves the type and
value of the probe_timeout extension property, and then uses awk(1) to put the
value only in the PROBE_TIMEOUTshell variable, as follows.

probe_timeout_info=‘scha_resource_get -O Extension -R $RESOURCE_NAME \
-G $RESOURCEGROUP_NAME Probe_timeout‘ \
PROBE_TIMEOUT=‘echo $probe_timeout_info | awk ’{print $2}’‘

Controlling the Data Service
A data service must provide a STARTor PRENET_STARTmethod to activate the
application daemon on the cluster, and a STOPor PRENET_STOPmethod to stop the
application daemon on the cluster. The sample data service implements a STARTand
a STOPmethod. See “Deciding on the STARTand STOPMethods to Use” on page 32
for information about when you might want to use PRENET_STARTand
PRENET_STOPinstead.

STARTMethod
The RGM invokes the STARTmethod on a cluster node when the resource group
containing the data service resource is brought online on that node or when the
resource is enabled. In the sample application, the STARTmethod activates the
in.named (DNS) daemon on that node.

This section describes the major pieces of the STARTmethod for the sample
application. It does not describe functionality common to all methods, such as the
parse_args function and obtaining the syslog facility, which are described in
“Providing Common Functionality to All Methods” on page 62.

For the complete listing of the STARTmethod, see “STARTMethod Code Listing” on
page 116.

Sample Application 67

STARTOverview
Before attempting to launch DNS, the STARTmethod in the sample data service
verifies the configuration directory and configuration file (named.conf) are
accessible and available. Information in named.conf is essential to successful
operation of DNS.

This method uses the process monitor facility (pmfadm) to start the DNS daemon
(in.named). If DNS crashes or fails to start, the method attempts to start it a
prescribed number of times during a specified interval. The number of retries and
the interval are specified by properties in the data service’s RTR file.

This STARTmethod is guaranteed to be idempotent. Although the RGM should not
call a STARTmethod twice without first stopping the data service with a call to its
STOPmethod, this STARTmethod exits with success even if DNS is already running.

Verifying the Configuration
In order to operate, DNS requires information from the named.conf file in the
configuration directory. Therefore, the STARTmethod performs some sanity checks to
verify that the directory and file are accessible before attempting to launch DNS.

The Confdir extension property provides the path to the configuration directory.
The property itself is defined in the RTR file. However, the cluster administrator
specifies the actual location when configuring the data service.

In the sample data service, the STARTmethod retrieves the location of the
configuration directory using the scha_resource_get(1HA) command.

Note - Because Confdir is an extension property, scha_resource_get returns
both the type and value. The awk(1) command retrieves just the value and places it
in a shell variable, CONFIG_DIR.

find the value of Confdir set by the cluster administrator at the time of
adding the resource.
config_info=‘scha_resource_get -O Extension -R $RESOURCE_NAME \
-G $RESOURCEGROUP_NAME Confdir‘

scha_resource_get returns the "type" as well as the "value" for the extension
properties. Get only the value of the extension property
CONFIG_DIR=‘echo $config_info | awk ’{print $2}’‘

The STARTmethod then uses the value of CONFIG_DIR to verify that the directory is
accessible. If it is not accessible, STARTlogs an error message and exits with error
status. See “STARTExit Status” on page 70.

68 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

Check if $CONFIG_DIR is accessible.
if [! -d $CONFIG_DIR]; then

logger -p ${SYSLOG_FACILITY}.err \
-t [$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME] \
"${ARGV0} Directory $CONFIG_DIR is missing or not mounted"

exit 1
fi

Before starting the application daemon, this method performs a final check to verify
that the named.conf file is present. If it is not present, STARTlogs an error message
and exits with error status.

Change to the $CONFIG_DIR directory in case there are relative
pathnames in the data files.
cd $CONFIG_DIR

Check that the named.conf file is present in the $CONFIG_DIR directory
if [! -s named.conf]; then

logger -p ${SYSLOG_FACILITY}.err \
-t [$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME] \
"${ARGV0} File $CONFIG_DIR/named.conf is missing or empty"

exit 1
fi

Starting the Application
This method uses the process manager facility (pmfadm) to launch the application.
The pmfadm command allows you to set the number of times to restart the
application during a specified time frame, if it crashes during startup. The RTR file
contains two properties, Retry_count , which specifies the number of times to
attempt restarting an application, and Retry_interval , which specifies the time
period over which to do so.

The STARTmethod retrieves the values of Retry_count and Retry_interval
using the scha_resource_get command and stores their values in shell variables.
It then passes these values to pmfadm using the −n and −t options.

Get the value for retry count from the RTR file.
RETRY_CNT=‘scha_resource_get -O Retry_Count -R $RESOURCE_NAME \
-G $RESOURCEGROUP_NAME‘
Get the value for retry interval from the RTR file. This value is in seconds
and must be converted to minutes for passing to pmfadm. Note that the
conversion rounds up; for example, 50 seconds rounds up to 1 minute.
((RETRY_INTRVAL=‘scha_resource_get -O Retry_Interval -R $RESOURCE_NAME \
-G $RESOURCEGROUP_NAME‘ / 60))

Sample Application 69

(Continuation)

Start the in.named daemon under the control of PMF. Let it crash and restart
up to $RETRY_COUNT times in a period of RETRY_INTERVAL; if it crashes
more often than that, PMF will cease trying to restart it.
If there is a process already registered under the tag
<$RESOURCE_NAME.named>, then, PMF sends out an alert message that the
process is already running.
pmfadm -c $RESOURCE_NAME.named -n $RETRY_CNT -t $RETRY_INTRVAL \

/usr/sbin/in.named -c named.conf

Log a message indicating that HA-DNS has been started.
if [$? -eq 0]; then

logger -p ${SYSLOG_FACILITY}.err \
-t [$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME] \
"${ARGV0} HA-DNS successfully started"

fi
exit 0

STARTExit Status
A STARTmethod should not exit with success until the underlying application is
actually running and available, particularly if other data services are dependent on it.
One way to verify success is to probe the application to verify it is running before
exiting the STARTmethod. For a complex application, such as a database, be certain
to set the value for the Start_timeout property in the RTR file sufficiently high to
allow time for the application to initialize and perform crash recovery.

Note - Because the application resource, DNS, in the sample data service launches
quickly, the sample data service does not poll to verify it is running before exiting
with success.

If this method fails to start DNS and exits with failure status, the RGM checks the
Failover_mode property, which determines how to react. The sample data service
does not explicitly set the Failover_mode property, so this property has the default
value NONE(unless the cluster administrator has overridden the default and specified
a different value). In this case, the RGM takes no action other than to set the state of
the data service. User intervention is required to restart on the same node or fail over
to a different node.

70 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

STOPMethod
The STOPmethod is invoked on a cluster node when the resource group containing
the HA-DNS resource is brought offline on that node or the resource is disabled. This
method stops the in.named (DNS) daemon on that node.

This section describes the major pieces of the STOPmethod for the sample
application. It does not describe functionality common to all methods, such as the
parse_args function and obtaining the syslog facility, which are described in
“Providing Common Functionality to All Methods” on page 62.

For the complete listing of the STOPmethod, see “STOPMethod Code Listing” on
page 119.

STOPOverview
There are two primary considerations when attempting to stop the data service. The
first is to provide an orderly shutdown. Sending a SIGTERMsignal through pmfadm
is the best way to accomplish this.

The second consideration is to ensure that the data service is actually stopped to
avoid putting it in Stop_failed state. The best way to accomplish this is to send a
SIGKILL signal through pmfadm.

The STOPmethod in the sample data service takes both these considerations into
account. It first sends a SIGTERMsignal. If this signal fails to stop the data service,
the method sends a SIGKILL signal.

Before attempting to stop DNS, this STOPmethod verifies that the process is actually
running. If the process is running, STOPuses the process monitor facility (pmfadm)
to stop it.

This STOPmethod is guaranteed to be idempotent. Although the RGM should not
call a STOPmethod twice without first starting the data service with a call to its
STARTmethod, the RGM could call a STOPmethod on a resource even though the
resource was never started or it died of its own accord. Therefore, this STOPmethod
exits with success even if DNS is not running.

Stopping the Application
The STOPmethod provides a two-tiered approach to stopping the data service: an
orderly or smooth approach using a SIGTERMsignal through pmfadm and an abrupt
or hard approach using a SIGKILL signal. The STOPmethod obtains the
Stop_timeout value (the amount of time in which the STOPmethod must return).
STOPthen allocates 80% of this time to stopping smoothly and 15% to stopping
abruptly (5% is reserved), as shown in the following sample.

STOP_TIMEOUT=` scha_resource_get -O STOP_TIMEOUT -R $RESOURCE_NAME

-G $RESOURCEGROUP_NAMÈ

Sample Application 71

((SMOOTH_TIMEOUT=$STOP_TIMEOUT * 80/100))

((HARD_TIMEOUT=$STOP_TIMEOUT * 15/100))

The STOPmethod uses pmfadm -q to verify that the DNS daemon is running. If it
is, STOPfirst uses pmfadm -s to send a TERMsignal to terminate the DNS process.
If this signal fails to terminate the process after 80% of the timeout value has expired
STOPsends a SIGKILL signal. If this signal also fails to terminate the process within
15% of the timeout value, the method logs an error message and exits with error
status.

If pmfadm terminates the process, the method logs a message that the process has
stopped and exits with success.

If the DNS process is not running, the method logs a message that it is not running
and exits with success anyway. The following code sample shows how STOPuses
pmfadm to stop the DNS process.

See if in.named is running, and if so, kill it.
if pmfadm -q $RESOURCE_NAME.named; then

Send a SIGTERM signal to the data service and wait for 80% of
the

total timeout value.
pmfadm -s $RESOURCE_NAME.named -w $SMOOTH_TIMEOUT TERM
if [$? -ne 0]; then

logger -p ${SYSLOG_FACILITY}.err \
-t [$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME]

\
‘‘${ARGV0} Failed to stop HA-DNS with SIGTERM; Retry

with \
SIGKILL’’

Since the data service did not stop with a SIGTERM signal, use
SIGKILL now and wait for another 15% of the total timeout value.
pmfadm -s $RESOURCE_NAME.named -w $HARD_TIMEOUT KILL
if [$? -ne 0]; then

logger -p ${SYSLOG_FACILITY}.err \
-t [$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME]
‘‘${ARGV0} Failed to stop HA-DNS; Exiting UNSUCCESFUL’’

exit 1
fi

fi
else

The data service is not running as of now. Log a message and
exit success.
logger -p ${SYSLOG_FACILITY}.err \

-t [$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME]
\

‘‘HA-DNS is not started’’

Even if HA-DNS is not running, exit success to avoid putting

(continued)

72 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

(Continuation)

the data service resource in STOP_FAILED State.

exit 0

fi

Could successfully stop DNS. Log a message and exit success.
logger -p ${SYSLOG_FACILITY}.err \

-t [$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME]
\

‘‘HA-DNS successfully stopped’’
exit 0

STOPExit Status
A STOPmethod should not exit with success until the underlying application is
actually stopped, particularly if other data services have dependencies on it. Failure
to do so can result in data corruption.

For a complex application, such as a database, be certain to set the value for the
Stop_timeout property in the RTR file sufficiently high to allow time for the
application to clean up while stopping.

If this method fails to stop DNS and exits with failure status, the RGM checks the
Failover_mode property, which determines how to react. The sample data service
does not explicitly set the Failover_mode property, so it has the default value
NONE(unless the cluster administrator has overridden the default and specified a
different value). In this case, the RGM takes no action other than to set the state of
the data service to Stop_failed . User intervention is required to stop the
application forcibly and clear the Stop_failed state.

Defining a Fault Monitor
The sample application implements a basic fault monitor to monitor the reliability of
the DNS resource (in.named). The fault monitor consists of:

� dns_probe , a user-defined program that uses nslookup(1M) to verify that the
DNS resource controlled by the sample data service is running. If DNS is not
running, this method attempts to restart it locally, or depending on the number of
restart attempts, requests that the RGM relocate the data service to a different
node.

Sample Application 73

� dns_monitor_start , a callback method that launches dns_probe . The RGM
automatically calls dns_monitor_start after the sample data service is brought
online if monitoring is enabled.

� dns_monitor_stop , a callback method that stops dns_probe . The RGM
automatically calls dns_monitor_stop before bringing the sample data service
offline.

� dns_monitor_check , a callback method that calls the VALIDATE method to
verify that the configuration directory is available when the PROBEprogram fails
the data service over to a new node.

Probe Program
The dns_probe program implements a continuously running process that verifies
the DNS resource controlled by the sample data service is running. The dns_probe
is launched by the dns_monitor_start method, which is automatically invoked
by the RGM after the sample data service is brought online. The data service is
stopped by the dns_monitor_stop method, which the RGM invokes before
bringing the sample data service offline.

This section describes the major pieces of the PROBEmethod for the sample
application. It does not describe functionality common to all methods, such as the
parse_args function and obtaining the syslog facility, which are described in
“Providing Common Functionality to All Methods” on page 62.

For the complete listing of the PROBEmethod, see “PROBEProgram Code Listing”
on page 123.

Probe Overview
The probe runs in an infinite loop. It uses nslookup(1M) to verify that the proper
DNS resource is running. If DNS is running, the probe sleeps for a prescribed
interval (set by the Thorough_probe_interval system-defined property) and then
checks again. If DNS is not running, this program attempts to restart it locally, or
depending on the number of restart attempts, requests that the RGM relocate the
data service to a different node.

Obtaining Property Values
This program needs the values of the following properties:

� Thorough_probe_interval – To set the period during which the probe sleeps

� Probe_timeout – to enforce the time-out value of the probe on the nslookup
command that does the probing

74 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

� Network_resources_used – To obtain the server on which DNS is running

� Retry_count and Retry_interval – To determine the number of restart
attempts and the period over which to count them

� Rt_basedir – To obtain the directory containing the PROBEprogram and the
gettime.c utility

The scha_resource_get command obtains the values of these properties and
stores them in shell variables, as follows.

PROBE_INTERVAL=‘scha_resource_get -O THOROUGH_PROBE_INTERVAL \
-R $RESOURCE_NAME -G $RESOURCEGROUP_NAME‘

probe_timeout_info=‘scha_resource_get -O Extension -R $RESOURCE_NAME
\
-G $RESOURCEGROUP_NAME Probe_timeout‘ \
PROBE_TIMEOUT=‘echo $probe_timeout_info | awk ’{print $2}’‘

DNS_HOST=‘scha_resource_get -O NETWORK_RESOURCES_USED -R $RESOURCE_NAME
\
-G $RESOURCEGROUP_NAME‘

RETRY_COUNT=‘scha_resource_get -O RETRY_COUNT -R $RESOURCE_NAME
-G\

$RESOURCEGROUP_NAME‘

RETRY_INTERVAL=‘scha_resource_get -O RETRY_INTERVAL -R $RESOURCE_NAME
-G\

$RESOURCEGROUP_NAME‘

RT_BASEDIR=‘scha_resource_get -O RT_BASEDIR -R $RESOURCE_NAME -G\
$RESOURCEGROUP_NAME‘

Note - For system-defined properties, such as Thorough_probe_interval ,
scha_resource_get returns the value only. For extension properties, such as
Probe_timeout , scha_resource_get returns the type and value. Use the
awk(1) command to obtain the value only.

Checking the Reliability of the Service
The probe itself is an infinite while loop of nslookup(1M) commands. Before the
while loop, a temporary file is set up to hold the nslookup replies. The probefail and
retries variables are initialized to 0.

Set up a temporary file for the nslookup replies.
DNSPROBEFILE=/tmp/.$RESOURCE_NAME.probe

(continued)

Sample Application 75

(Continuation)

probefail=0
retries=0

The while loop itself:

� Sets the sleep interval for the probe

� Uses hatimerun(1M) to launch nslookup passing the Probe_timeout value
and identifying the target host

� Sets the probefail variable based on the success or failure of the nslookup return
code

� If probefail is set to 1 (failure), verifies that the reply to nslookup came from the
sample data service and not some other DNS server

Here is the while loop code.

while :
do

The interval at which the probe needs to run is specified in the
property THOROUGH_PROBE_INTERVAL. Therefore, set the probe to sleep for a
duration of THOROUGH_PROBE_INTERVAL.
sleep $PROBE_INTERVAL

Run an nslookup command of the IP address on which DNS is serving.
hatimerun -t $PROBE_TIMEOUT /usr/sbin/nslookup $DNS_HOST $DNS_HOST \

> $DNSPROBEFILE 2>&1

retcode=$?
if [$retcode -ne 0]; then

probefail=1
fi

Make sure that the reply to nslookup comes from the HA-DNS
server and not from another nameserver mentioned in the
/etc/resolv.conf file.
if [$probefail -eq 0]; then

Get the name of the server that replied to the nslookup query.
SERVER=‘ awk ’ $1=="Server:" { print $2 }’ \

$DNSPROBEFILE | awk -F. ’ { print $1 } ’ ‘
if [-z "$SERVER"]; then

probefail=1
else

if [$SERVER != $DNS_HOST]; then
probefail=1

(continued)

76 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

(Continuation)

fi
fi

fi

Evaluating Restart Versus Failover
If the probefail variable is something other than 0 (success), it means the nslookup
command timed out or that the reply came from a server other than the sample
service’s DNS. In either case, the DNS server is not functioning as expected and the
fault monitor calls the decide_restart_or_failover function to determine
whether to restart the data service locally or request that the RGM relocate the data
service to a different node. If the probefail variable is 0, then a message is generated
that the probe was successful.

if [$probefail -ne 0]; then
decide_restart_or_failover

else
logger -p ${SYSLOG_FACILITY}.err\
-t [$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME]\
"${ARGV0} Probe for resource HA-DNS successful"

fi

The decide_restart_or_failover uses a time window (Retry_interval) and
a failure count (Retry_count) to determine whether to restart DNS locally or
request that the RGM relocate the data service to a different node. It implements the
following conditional code.

� If this is the first failure, restart the data service. Log an error message and bump
the counter in the retries variable.

� If this is not the first failure, but the window has been exceeded, restart the data
service. Log an error message, reset the counter, and slide the window.

� If the time is still within the window and the retry counter has been exceeded,
then fail over to another node. If the fail over does not succeed, log an error and
exit the probe program with status 1 (failure).

� If time is still within the window but the retry counter has not been exceeded,
restart the data service. Log an error message and bump the counter in the
retries variable.

Sample Application 77

If the number of restarts reaches the limit during the time interval, the function
requests that the RGM relocate the data service to a different node. If the number of
restarts is under the limit, or the interval has been exceeded so the count begins
again, the function attempts to restart DNS on the same node. Note the following
about this function:

� The gettime utility is used to track the time between restarts. This is a C
program residing in the (Rt_basedir) directory.

� The Retry_count and Retry_interval system-defined resource properties
determine the number of restart attempts and the interval over which to count.
These properties default to 2 attempts in a period of 5 minutes (300 seconds) in the
RTR file, though the cluster administrator could change them.

� The restart_service function is called to attempt to restart the data service on
the same node. See the next section, “Restarting the Data Service” on page 78, for
information about this function.

� The scha_control API command, with the GIVEOVERoption, brings the
resource group containing the sample data service offline and back online on a
different node.

Restarting the Data Service
The restart_service function is called by decide_restart_or_failover to
attempt to restart the data service on the same node. This function does the following.

� It determines if the data service is still registered under PMF. If the service is still
registered, the function:

� Obtains the STOPmethod name and the Stop_timeout value for the data
service.

� Uses hatimerun to launch the STOPmethod for the data service, passing the
Stop_timeout value.

� (If the data service is successfully stopped) obtains the STARTmethod name
and the Start_timeout value for the data service.

� Uses hatimerun to launch the STARTmethod for the data service, passing the
Start_timeout value.

� If the data service is no longer registered under PMF, the implication is that the
data service has exceeded the maximum number of allowable retries under PMF,
so the scha_control function is called with the GIVEOVERoption to fail the
data service over to a different node.

function restart_service
{

(continued)

78 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

(Continuation)

To restart the data service, first, verify that the
data service itself is still registered under PMF.
pmfadm -q $PMF_TAG
if [[$? -eq 0]]; then

Since the TAG for the data service is still registered under
PMF, first stop the data service and start it back up again.

Obtain the STOP method name and the STOP_TIMEOUT value for
this resource.
STOP_TIMEOUT=` scha_resource_get -O STOP_TIMEOUT \

-R $RESOURCE_NAME -G $RESOURCEGROUP_NAMÈ
STOP_METHOD=` scha_resource_get -O STOP \

-R $RESOURCE_NAME -G $RESOURCEGROUP_NAMÈ
hatimerun -t $STOP_TIMEOUT $RT_BASEDIR/$STOP_METHOD \

-R $RESOURCE_NAME -G $RESOURCEGROUP_NAME \
-T $RESOURCETYPE_NAME

if [[$? -ne 0]]; then
logger-p ${SYSLOG_FACILITY}.err -t [$SYSLOG_TAG] \

‘‘${ARGV0} Stop method failed.’’
return 1

fi

Obtain the START method name and the START_TIMEOUT value for
this resource.
START_TIMEOUT=` scha_resource_get -O START_TIMEOUT \

-R $RESOURCE_NAME -G $RESOURCEGROUP_NAMÈ
START_METHOD=` scha_resource_get -O START \

-R $RESOURCE_NAME -G $RESOURCEGROUP_NAMÈ
hatimerun -t $START_TIMEOUT $RT_BASEDIR/$START_METHOD \

-R $RESOURCE_NAME -G $RESOURCEGROUP_NAME \
-T $RESOURCETYPE_NAME

if [[$? -ne 0]]; then
logger-p ${SYSLOG_FACILITY}.err -t [$SYSLOG_TAG] \

‘‘${ARGV0} Start method failed.’’
return 1

fi

else
The absence of the TAG for the dataservice
implies that the data service has already
exceeded the maximum retries allowed under PMF.
Therefore, do not attempt to restart the
data service again, but try to failover
to another node in the cluster.
scha_control -O GIVEOVER -G $RESOURCEGROUP_NAME \

-R $RESOURCE_NAME
fi

return 0

(continued)

Sample Application 79

(Continuation)

}

Probe Exit Status
The sample data service’s PROBEprogram exits with failure if attempts to restart
locally have failed and the attempt to fail over to a different node has failed as well.
It logs the message, “Failover attempt failed”.

MONITOR_STARTMethod
The RGM calls the MONITOR_STARTmethod to launch the dns_probe method after
the sample data service is brought online.

This section describes the major pieces of the MONITOR_STARTmethod for the
sample application. This section does not describe functionality common to all
methods, such as the parse_args function and obtaining the syslog facility, which
are described in “Providing Common Functionality to All Methods” on page 62.

For the complete listing of the MONITOR_STARTmethod, see “MONITOR_START
Method Code Listing” on page 129.

MONITOR_STARTOverview
This method uses the process monitor facility (pmfadm) to launch the probe.

Starting the Probe
The MONITOR_STARTmethod obtains the value of the Rt_basedir property to
construct the full path name for the PROBEprogram. This method launches the probe
using the infinite retries option of pmfadm (-n -1, -t -1), which means if the probe
fails to start, MONITOR_STARTtries to start it an infinite number of times over an
infinite period of time.

80 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

Find where the probe program resides by obtaining the value of the
RT_BASEDIR property of the resource.

RT_BASEDIR=‘scha_resource_get -O RT_BASEDIR -R $RESOURCE_NAME -G \
$RESOURCEGROUP_NAME‘

Start the probe for the data service under PMF. Use the infinite retries
option to start the probe. Pass the resource name, type, and group to the
probe program.
pmfadm -c $RESOURCE_NAME.monitor -n -1 -t -1 \

$RT_BASEDIR/dns_probe -R $RESOURCE_NAME -G $RESOURCEGROUP_NAME \
-T $RESOURCETYPE_NAME

MONITOR_STOPMethod
The RGM calls MONITOR_STOPmethod to stop execution of dns_probe when the
sample data service is brought offline.

This section describes the major pieces of the MONITOR_STOPmethod for the sample
application. This section does not describe functionality common to all methods,
such as the parse_args function and obtaining the syslog facility, which are
described in “Providing Common Functionality to All Methods” on page 62.

For the complete listing of the MONITOR_STOPmethod, see “MONITOR_STOP
Method Code Listing” on page 131.

MONITOR_STOPOverview
This method uses the process monitor facility (pmfadm) to see if the probe is
running, and if so, to stop it.

Stopping the Monitor
The MONITOR_STOPmethod uses pmfadm -q to see if the probe is running, and if
so, uses pmfadm -s to stop it. If the probe is already stopped, the method exits
successfully anyway, which guarantees the idempotency of the method.

See if the monitor is running, and if so, kill it.
if pmfadm -q $RESOURCE_NAME.monitor; then

pmfadm -s $RESOURCE_NAME.monitor KILL
if [$? -ne 0]; then

logger -p ${SYSLOG_FACILITY}.err \
-t [$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME] \

(continued)

Sample Application 81

(Continuation)

"${ARGV0} Could not stop monitor for resource " \
$RESOURCE_NAME

exit 1
else

could successfully stop the monitor. Log a message.
logger -p ${SYSLOG_FACILITY}.err \

-t [$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME] \
"${ARGV0} Monitor for resource " $RESOURCE_NAME \
" successfully stopped"

fi
fi
exit 0

Caution - Be certain to use the KILL signal with pmfadm to stop the probe and not
a maskable signal such as TERM. Otherwise the MONITOR_STOPmethod can hang
indefinitely and eventually time out. The reason for this problem is that the PROBE
method calls scha_control when it is necessary to restart or fail over the data
service. When scha_control calls MONITOR_STOPas part of the process of
bringing the data service offline, if MONITOR_STOPuses a maskable signal, it hangs
waiting for scha_control to complete and scha_control hangs waiting for
MONITOR_STOPto complete.

MONITOR_STOPExit Status
The MONITOR_STOPmethod logs an error message if it cannot stop the PROBE
method. The RGM puts the sample data service into MONITOR_FAILEDstate on the
primary node, which can panic the node.

MONITOR_STOPshould not exit before the probe has been stopped.

MONITOR_CHECKMethod
The RGM calls the MONITOR_CHECKmethod whenever the PROBEmethod attempts
to fail the resource group containing the data service over to a new node.

This section describes the major pieces of the MONITOR_CHECKmethod for the
sample application. This section does not describe functionality common to all
methods, such as the parse_args function and obtaining the syslog facility, which
are described in “Providing Common Functionality to All Methods” on page 62.

82 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

For the complete listing of the MONITOR_CHECKmethod, see “MONITOR_CHECK
Method Code Listing” on page 133.

The MONITOR_CHECKmethod calls the VALIDATE method to verify that the DNS
configuration directory is available on the new node. The Confdir extension
property points to the DNS configuration directory. Therefore MONITOR_CHECK
obtains the path and name for the VALIDATE method and the value of Confdir . It
passes this value to VALIDATE, as shown in the following listing.

Obtain the full path for the VALIDATE method from
the RT_BASEDIR property of the resource type.
RT_BASEDIR=` scha_resource_get -O RT_BASEDIR -R $RESOURCE_NAME \

-G $RESOURCEGROUP_NAMÈ

Obtain the name of the VALIDATE method for this resource.
VALIDATE_METHOD=` scha_resource_get -O VALIDATE \

-R $RESOURCE_NAME -G $RESOURCEGROUP_NAMÈ

Obtain the value of the Confdir property in order to start the
data service. Use the resource name and the resource group entered to
obtain the Confdir value set at the time of adding the resource.
config_info= ` scha_resource_get -O Extension -R $RESOURCE_NAME -
G $RESOURCEGROUP_NAME Confdir`

scha_resource_get returns the type as well as the value for extension
properties. Use awk to get only the value of the extension property.
CONFIG_DIR=̀echo $config_info | awk ‘{print $2}’ `

Call the validate method so that the dataservice can be failed over
successfully to the new node.
$RT_BASEDIR/$VALIDATE_METHOD -R $RESOURCE_NAME -G $RESOURCEGROUP_NAME \

-T $RESOURCETYPE_NAME -x Confdir=$CONFIG_DIR

See the “VALIDATE Method” on page 84 to see how the sample application verifies
the suitability of a node for hosting the data service.

Handling Property Updates
The sample data service implements VALIDATE and UPDATEmethods to handle
updating of properties by a cluster administrator.

Sample Application 83

VALIDATE Method
The RGM calls the VALIDATE method when a resource is created and when
administrative action updates the properties of the resource or its containing group.
The RGM calls VALIDATE before the creation or update is applied, and a failure exit
code from the method on any node causes the creation or update to be canceled.

The RGM calls VALIDATE only when resource or group properties are changed
through administrative action, not when the RGM sets properties, or when a monitor
sets the resource properties Status and Status_msg .

Note - The MONITOR_CHECKmethod also explicitly calls the VALIDATE method
whenever the PROBEmethod attempts to fail the data service over to a new node.

VALIDATE Overview
The RGM calls VALIDATE with additional arguments to those passed to other
methods, including the properties and values being updated Therefore this method
in the sample data service must implement a parse_args function to handle the
additional arguments.

The VALIDATE method in the sample data service verifies a single property, the
Confdir extension property. This property points to the DNS configuration
directory, which is critical to successful operation of DNS.

Note - Because the configuration directory cannot be changed while DNS is running,
the Confdir property is declared in the RTR file as TUNABLE = AT CREATION.
Therefore, the VALIDATE method is never called to verify the Confdir property as
the result of an update, but only when the data service resource is being created.

If Confdir is one of the properties the RGM passes to VALIDATE, the parse_args
function retrieves and saves its value. VALIDATE then verifies that the directory
pointed to by the new value of Confdir is accessible and that the named.conf file
exists in that directory and contains some data.

If the parse_args function cannot retrieve the value of Confdir from the
command-line arguments passed by the RGM, VALIDATE still attempts to validate
the Confdir property. VALIDATE uses scha_resource_get to obtain the value of
Confdir from the static configuration. Then it performs the same checks to verify
that the configuration directory is accessible and contains a non-empty named.conf
file.

If VALIDATE exits with failure, the update or creation of all properties, not just
Confdir , fails.

84 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

VALIDATE Method Parsing Function

The RGM passes the VALIDATE method a different set of parameters than the other
callback methods so VALIDATE requires a different function for parsing arguments
than the other methods. See the rt_callbacks(1HA) man page for more
information on the parameters passed to VALIDATE and the other callback methods.
The following shows the VALIDATE parse_args function.

##
Parse Validate arguments.
#
function parse_args # [arg..]
{

typeset opt
while getopts ’cur:x:g:R:T:G:’ opt
do

case "$opt" in
R)

Name of the DNS resource.
RESOURCE_NAME=$OPTARG
;;

G)
Name of the resource group in which the resource is
configured.
RESOURCEGROUP_NAME=$OPTARG
;;

T)
Name of the resource type.
RESOURCETYPE_NAME=$OPTARG
;;

r)
The method is not accessing any system defined
properties so this is a no-op
;;

g)
The method is not accessing any resource group
properties, so this is a no-op
;;

c)
Indicates the Validate method is being called while
creating the resource, so this flag is a no-op.
;;

u)
Indicates the updating of a property when the
resource already exists. If the update is to the
Confdir property then Confdir should appear in the
command-line arguments. If it does not, the method must
look for it specifically using scha_resource_get.
UPDATE_PROPERTY=1
;;

x)
Extension property list. Separate the property and
value pairs using "=" as the separator.

(continued)

Sample Application 85

(Continuation)

PROPERTY=‘echo $OPTARG | awk -F= ’{print $1}’‘
VAL=‘echo $OPTARG | awk -F= ’{print $2}’‘

If the Confdir extension property is found on the
command line, note its value.
if [$PROPERTY == "Confdir"]; then

CONFDIR=$VAL
CONFDIR_FOUND=1

fi
;;

*)
logger -p ${SYSLOG_FACILITY}.err \
-t [$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME] \
"ERROR: Option $OPTARG unknown"
exit 1
;;

esac
done

}

As with the parse_args function for other methods, this function provides a flag
(R) to capture the resource name, (G) to capture the resource group name, and (T) to
capture the resource type passed by the RGM.

The r flag (indicating a system-defined property), g flag (indicating a resource group
property), and the c flag (indicating that the validation is occurring during creation
of the resource) are ignored, because this method is being called to validate an
extension property when the resource is being updated.

The u flag sets the value of the UPDATE_PROPERTYshell variable to 1 (TRUE). The x
flag captures the names and values of the properties being updated. If Confdir is
one of the properties being updated, its value is placed in the CONFDIR shell
variable and the variable CONFDIR_FOUND is set to 1 (TRUE).

Validating Confdir

In its MAIN function, VALIDATE first sets the CONFDIR variable to the empty string
and UPDATE_PROPERTY and CONFDIR_FOUND to 0.

86 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

CONFDIR=""
UPDATE_PROPERTY=0
CONFDIR_FOUND=0

VALIDATE then calls parse_args to parse the arguments passed by the RGM.

parse_args ‘‘$@’’

VALIDATE then checks if VALIDATE is being called as the result of an update of
properties and if the Confdir extension property was on the command line.
VALIDATE then verifies that the Confdir property has a value, and if not, exits with
failure status and an error message.

if ((($UPDATE_PROPERTY == 1)) && ((CONFDIR_FOUND == 0))); then
config_info=‘scha_resource_get -O Extension -R $RESOURCE_NAME \

-G $RESOURCEGROUP_NAME Confdir‘
CONFDIR=‘echo $config_info | awk ’{print $2}’‘

fi

Verify that the Confdir property has a value. If not there is a failure
and exit with status 1
if [[-z $CONFDIR]]; then

logger -p ${SYSLOG_FACILITY}.err \
"${ARGV0} Validate method for resource "$RESOURCE_NAME " failed"

exit 1
fi

Note - Specifically, the preceding code checks if VALIDATE is being called as the
result of an update ($UPDATE_PROPERTY == 1) and if the property was not found
on the command line (CONFDIR_FOUND == 0), in which case it retrieves the
existing value of Confdir using scha_resource_get . If Confdir was found on
the command line (CONFDIR_FOUND == 1), the value of CONFDIR comes from the
parse_args function, not from scha_resource_get .

The VALIDATE method then uses the value of CONFDIR to verify that the directory
is accessible. If it is not accessible, VALIDATE logs an error message and exits with
error status.

Sample Application 87

Check if $CONFDIR is accessible.
if [! -d $CONFDIR]; then

logger -p ${SYSLOG_FACILITY}.err \
-t [$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME] \
"${ARGV0} Directory $CONFDIR missing or not mounted"

exit 1
fi

Before validating the update of the Confdir property, VALIDATE performs a final
check to verify that the named.conf file is present. If it is not, the method logs an
error message and exits with error status.

Check that the named.conf file is present in the Confdir directory
if [! -s $CONFDIR/named.conf]; then

logger -p ${SYSLOG_FACILITY}.err \
-t [$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME] \
"${ARGV0} File $CONFDIR/named.conf is missing or empty"

exit 1
fi

If the final check is passed, VALIDATE logs a message indicating success and exits
with success status.

Log a message indicating that the Validate method was successful.
logger -p ${SYSLOG_FACILITY}.err \

-t [$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME] \
"${ARGV0} Validate method for resource "$RESOURCE_NAME \
" completed successfully"

exit 0

VALIDATE Exit Status
If VALIDATE exits with success (0) Confdir is created with the new value. If
VALIDATE exits with failure (1), Confdir and any other properties are not created
and a message indicating why is sent to the cluster administrator.

88 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

UPDATEMethod
The RGM calls the UPDATEmethod to notify a running resource that its properties
have been changed. The RGM invokes UPDATEafter an administrative action
succeeds in setting properties of a resource or its group. This method is called on
nodes where the resource is online.

UPDATEOverview
The UPDATEmethod doesn’t update properties—that is done by the RGM. Rather, it
notifies running processes that an update has occurred. The only process in the
sample data service affected by a property update is the fault monitor, so it is this
process the UPDATEmethod stops and restarts.

The UPDATEmethod must verify the fault monitor is running and then kill it using
pmfadm. The method obtains the location of the probe program that implements the
fault monitor, then restarts it using pmfadm again.

Stopping the Monitor With UPDATE

The UPDATEmethod then uses pmfadm -q to verify that the monitor is running,
and if so kills it with pmfadm -s TERM. If the monitor is successfully terminated, a
message to that effect is sent to the administrative user. If the monitor cannot be
stopped, UPDATEexits with failure status and sends an error message to the
administrative user.

if pmfadm -q $RESOURCE_NAME.monitor; then

Kill the monitor that is running already
pmfadm -s $RESOURCE_NAME.monitor TERM
if [$? -ne 0]; then

logger -p ${SYSLOG_FACILITY}.err \
-t [$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME] \
"${ARGV0} Could not stop the monitor"

exit 1
else

could successfully stop DNS. Log a message.
logger -p ${SYSLOG_FACILITY}.err \

-t [$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME] \
"Monitor for HA-DNS successfully stopped"

fi

Sample Application 89

Restarting the Monitor
To restart the monitor, the UPDATEmethod must locate the script that implements
the probe program. The probe program resides in the base directory for the data
service, which is pointed to by the Rt_basedir property. UPDATEretrieves the
value of Rt_basedir and stores it in the RT_BASEDIR variable, as follows.

RT_BASEDIR=‘scha_resource_get -O RT_BASEDIR -R $RESOURCE_NAME -G \
$RESOURCEGROUP_NAME‘

UPDATEthen uses the value of RT_BASEDIR with pmfadm to restart the dns_probe
program. If successful, UPDATEexits with success and sends a message to that effect
to the administrative user. If pmfadm cannot launch the probe program, UPDATE
exits with failure status and logs an error message.

UPDATEExit Status
UPDATEmethod failure causes the resource to be put into an “update failed” state.
This state has no effect on RGM management of the resource, but indicates the
failure of the update action to administration tools through the syslog facility.

90 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

APPENDIX A

Standard Properties

This appendix describe the standard resource type, resource group, and resource
properties. It also describes the resource property attributes available for changing
system-defined properties and creating extension properties.

The following is a list of the information in this appendix:

� “Resource Type Properties” on page 91

� “Resource Properties” on page 96

� “Resource Group Properties” on page 106

� “Resource Property Attributes” on page 111

Note - The property values, such as True and False , are not case sensitive.

Resource Type Properties
Table A–1 describes the resource type properties defined by Sun Cluster. The
property values are categorized as follows (in the Category column):

� Required — The property requires an explicit value in the Resource Type
Registration (RTR) file or the object to which it belongs cannot be created. A blank
or the empty string is not allowed as a value.

� Conditional — To exist, the property must be declared in the RTR file; otherwise,
the RGM does not create it and it is not available to administrative utilities. A
blank or the empty string is allowed. If the property is declared in the RTR file but
no value is specified, the RGM supplies a default value.

91

� Conditional/Explicit — To exist, the property must be declared in the RTR file
with an explicit value; otherwise, the RGM does not create it and it is not available
to administrative utilities. A blank or the empty string is not allowed.

� Optional — The property can be declared in the RTR file,; if it isn’t, the RGM
creates it and supplies a default value. If the property is declared in the RTR file
but no value is specified, the RGM supplies the same default value as if the
property were not declared in the RTR file.

Resource type properties are not updatable by administrative utilities with the
exception of Installed_nodes , which cannot be declared in the RTR file and must
be set by the administrator.

TABLE A–1 Resource Type Properties

Property Name Description Updatable Category

API_version
(integer)

The version of the resource
management API used by this
resource type implementation.

The default for SC 3.0 is 2.

N Optional

BOOT(string) An optional callback method: the
path to the program that the RGM
invokes on a node, which joins or
rejoins the cluster when a resource
of this type is already managed.
This method is expected to do
initialization actions for resources
of this type similar to the INIT
method.

N Conditional/
Explicit

Failover
(Boolean)

True indicates that resources of
this type cannot be configured in
any group that can be online on
multiple nodes at once. The default
is False .

N Optional

FINI (string) An optional callback method: the
path to the program that the RGM
invokes when a resource of this
type is removed from RGM
management.

N Conditional/
Explicit

92 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

TABLE A–1 Resource Type Properties (continued)

Property Name Description Updatable Category

INIT (string) An optional callback method: the
path to the program that the RGM
invokes when a resource of this
type becomes managed by the
RGM.

N Conditional/
Explicit

Init_nodes
(enum)

The values can be RG_primaries
(just the nodes that can master the
resource) or
RT_installed_nodes (all nodes
on which the resource type is
installed). Indicates the nodes on
which the RGM is to call the INIT ,
FINI , BOOTand VALIDATE
methods.

The default value is
RG_primaries .

N Optional

Installed_nodes
(string array)

A list of the cluster node names on
which the resource type is allowed
to be run. The RGM automatically
creates this property. The cluster
administrator can set the value.
You cannot declare this property in
the RTR file.

The default is all cluster nodes.

Y Configurable by
cluster
administrator

Monitor_check
(string)

An optional callback method: the
path to the program that the RGM
invokes before doing a
monitor-requested failover of a
resource of this type.

N Conditional/
Explicit

Monitor_start
(string)

An optional callback method: the
path to the program that the RGM
invokes to start a fault monitor for
a resource of this type.

N Conditional/
Explicit

Monitor_stop
(string)

A callback method that is required
if Monitor_start is set: the path
to the program that the RGM
invokes to stop a fault monitor for
a resource of this type.

N Conditional/
Explicit

Standard Properties 93

TABLE A–1 Resource Type Properties (continued)

Property Name Description Updatable Category

Pkglist (string
array)

An optional list of packages that
are included in the resource type
installation.

N Conditional/
Explicit

Postnet_stop
(string)

An optional callback method: the
path to the program that the RGM
invokes after calling the STOP
method of any network-address
resources
(Network_resources_used) that
a resource of this type is dependent
on. This method is expected to do
STOPactions that must be done
after the network interfaces are
configured down.

N Conditional/
Explicit

Prenet_start
(string)

An optional callback method: the
path to the program that the RGM
invokes before calling the START
method of any network-address
resources
(Network_resources_used) that
a resource of this type is dependent
on. This method is expected to do
STARTactions that must be done
before network interfaces are
configured up.

N Conditional/
Explicit

RT_basedir
(string)

The directory path that is used to
complete relative paths for callback
methods. This path is expected to
be set to the installation location for
the resource type packages. It must
be a complete path, that is, it must
start with a forward slash (/). This
property is not required if all the
method path names are absolute.

N Required
(unless all
method path
names are
absolute)

RT_description
(string)

A brief description of the resource
type.

The default is the empty string.

N Conditional

94 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

TABLE A–1 Resource Type Properties (continued)

Property Name Description Updatable Category

Resource_type
(string)

The name of the resource type.
Must be unique in the cluster
installation. You must declare this
property as the first entry in the
RTR file; otherwise, registration of
the resource type fails.

In addition, you can specify
Vendor_id to identify the
resource type. Vendor_id serves
as a prefix that is separated from a
resource type name by a “.”, for
example, SUNW.http . You can
completely identify the resource
type with Resource_type and
Vendor_id or omit Vendor_id . For
example, both SUNW.http and
http are valid. If you specify the
Vendor_id , use the stock symbol
for the company that defines the
resource type. If two resource-types
in the cluster differ only in the
Vendor_id prefix, the use of the
abbreviated name fails.

The default is the empty string.

N Required

RT_version
(string)

An optional version string of this
resource type implementation.

N Conditional/
Explicit

Single_instance
(Boolean)

If True , indicates that only one
resource of this type can exist in
the cluster. Hence, the RGM allows
only one resource of this type to
run cluster-wide at one time.

The default value is False .

N Optional

START(string) A callback method: the path to the
program that the RGM invokes to
start a resource of this type.

N Required
(unless the RTR
file declares a
PRENET_START
method)

Standard Properties 95

TABLE A–1 Resource Type Properties (continued)

Property Name Description Updatable Category

STOP(string) A callback method: the path to the
program that the RGM invokes to
stop a resource of this type.

N Required
(unless the RTR
file declares a
POSTNET_STOP
method)

UPDATE(string) An optional callback method: the
path to the program that the RGM
invokes when properties of a
running resource of this type are
changed.

N Conditional/
Explicit

VALIDATE
(string)

An optional callback method: the
path to the program that will be
invoked to check values for
properties of resources of this type.

N Conditional/
Explicit

Vendor_ID
(string)

See the Resource_type property. N Conditional

Resource Properties
Table A–2 describes the resource properties defined by Sun Cluster. The property
values are categorized as follows (in the Category column):

� Required — The administrator must specify a value when creating a resource
with an administrative utility.

� Optional — If the administrator does not specify a value when creating a resource
group, the system supplies a default value.

� Conditional — The RGM creates the property only if the property is declared in
the RTR file. Otherwise, the property does not exist and is not available to system
administrators. A conditional property declared in the RTR file is optional or
required, depending on whether a default value is specified in the RTR file. For
details, see the description of each conditional property.

� Query-only — Cannot be set directly by an administrative tool.

Table A–2 also lists whether and when resource properties are updatable (in the
Updatable column), as follows

96 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

None or False Never.

True or
Anytime

Any time.

At_creation When the resource is added to a cluster.

When_disabled When the resource is disabled.

TABLE A–2 Resource Properties

Property Name Description Updatable Category

Cheap_probe_interval
(integer)

The number of seconds between
invocations of a quick fault probe
of the resource. This property is
only created by the RGM and
available to the administrator if it
is declared in the RTR file.

This property is optional if a
default value is specified in the
RTR file. If the Tunable attribute
is not specified in the resource type
file, the Tunable value for the
property is When_disabled .

This property is required if the
Default attribute is not specified
in the property declaration in the
RTR file.

When disabled Conditional

Extension
properties

Extension properties as declared in
the RTR file of the resource’s type.
The implementation of the resource
type defines these properties. For
information on the individual
attributes you can set for extension
properties. see Table A–4.

Depends on the
specific
property

Conditional

Standard Properties 97

TABLE A–2 Resource Properties (continued)

Property Name Description Updatable Category

Failover_mode
(enum)

Controls whether the RGM
relocates a resource group or aborts
a node in response to a failure of a
STARTor STOPmethod call on the
resource. None indicates that the
RGM should just set the resource
state on method failure and wait
for operator intervention. Soft
indicates that failure of a START
method should cause the RGM to
relocate the resource’s group to a
different node while failure of a
STOPmethod should cause the
RGM to set the resource state and
wait for operator intervention.
Hard indicates that failure of a
STARTmethod should cause the
relocation of the group and failure
of a STOPmethod should cause the
forcible stop of the resource by
aborting the cluster node.

The default is None.

Any time Optional

98 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

TABLE A–2 Resource Properties (continued)

Property Name Description Updatable Category

Load_balancing_policy
(string)

A string that defines the
load-balancing policy in use. This
property is used only for scalable
services. The RGM automatically
creates this property if the
Scalable property is declared in
the RTR file.

Load_balancing_policy can take the
following values:

Lb_weighted (the default). The
load is distributed among various
nodes according to the weights set
in the Load_balancing_weights
property.

Lb_sticky . A given client
(identified by the client IP address)
of the scalable service is always
sent to the same node of the cluster.

Lb_sticky_wild . A given client
(identified by the client’s IP
address), that connects to an IP
address of a wildcard sticky
service, is always sent to the same
cluster node regardless of the port
number it is coming to.

The default value is Lb_weighted .

At creation Conditional
Optional

Standard Properties 99

TABLE A–2 Resource Properties (continued)

Property Name Description Updatable Category

Load_balancing_weights
(string array)

For scalable resources only. The
RGM automatically creates this
property if the Scalable property
is declared in the RTR file. The
format is weight@node,weight@node,
where weight is an integer that
reflects the relative portion of load
distributed to the specified node.
The fraction of load distributed to
a node is the weight for this node
divided by the sum of all weights.
For example, 1@1,3@2specifies
that node 1 receives 1/4 of the load
and node 2 receives 3/4. The
empty string (""), the default, sets a
uniform distribution. Any node
that is not assigned an explicit
weight, receives a default weight of
1.

If the Tunable attribute is not
specified in the resource type file,
the Tunable value for the property
is Anytime . Changing this
property revises the distribution
for new connections only.

The default value is the empty
string ("").

Any time Conditional
Optional

method_timeout
for each callback
method in the
Type. (integer)

A time lapse, in seconds, after
which the RGM concludes that an
invocation of the method has failed.

The default is 3,600 (one hour) if
the method itself is declared in the
RTR file.

Any time Conditional

Optional

100 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

TABLE A–2 Resource Properties (continued)

Property Name Description Updatable Category

Monitored_switch
(enum)

Set to Enabled or Disabled by
the RGM if the cluster
administrator enables or disables
the monitor with an administrative
utility. If Disabled , the monitor
does not have its STARTmethod
called until it is enabled again. If
the resource does not have a
monitor callback method, this
property does not exist.

The default is Enabled .

Never Query-only

Network_resources_used
(string array)

A list of logical host name or
shared address network resources
used by the resource. For scalable
services, this property must refer to
shared address resources that exist
in a separate resource group. For
failover services, this property
refers to logical host name or
shared address resources that exist
in the same resource group. The
RGM automatically creates this
property if the Scalable property
is declared in the RTR file. If
Scalable is not declared in the
RTR file,
Network_resources_used is
unavailable unless it is explicitly
declared in the RTR file.

If the Tunable attribute is not
specified in the resource type file,
the Tunable value for the
property is At_creation .

At creation Conditional
Required

On_off_switch
(enum)

Set to Enabled or Disabled by
the RGM if the cluster
administrator enables or disables
the resource with an administrative
utility. If disabled, a resource has
no callbacks invoked until it is
enabled again.

The default is Disabled .

Never Query-only

Standard Properties 101

TABLE A–2 Resource Properties (continued)

Property Name Description Updatable Category

Port_list
(string array)

A comma-separated list of port
numbers on which the server is
listening. Appended to each port
number is the protocol being used
by that port, for example,
Port_list=80/tcp . If the
Scalable property is declared in
the RTR file, the RGM
automatically creates Port_list ;
otherwise, this property is
unavailable unless it is explicitly
declared in the RTR file.

For specifics on setting up this
property for Apache, see the
Apache chapter in the Sun Cluster
3.0 Data Services Installation and
Configuration Guide.

At creation Conditional

Required

R_description
(string)

A brief description of the resource.

The default is the empty string.

Any time Optional

Resource_dependencies
(string array)

A list of resources in the same
group that must be online in order
for this resource to be online. This
resource cannot be started if the
start of any resource in the list fails.
When bringing the group offline,
this resource is stopped before
those in the list. Resources in the
list are not allowed to be disabled
unless this resource is disabled first.

The default is the empty list.

Any time Optional

102 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

TABLE A–2 Resource Properties (continued)

Property Name Description Updatable Category

Resource_dependencies_
weak (string
array)

A list of resources in the same
group that determines the order of
method calls within the group. The
RGM calls the STARTmethods of
the resources in this list before the
STARTmethod of this resource and
the STOPmethods of this resource
before the STOPmethods of those
in the list. The resource can still be
online if those in the list fail to
start or are disabled.

The default is the empty list.

Any time Optional

Resource_name
(string)

The name of the resource instance.
Must be unique within the cluster
configuration and cannot be
changed after a resource has been
created.

Never Required

Resource_state :
on each cluster
node (enum)

The RGM-determined state of the
resource on each cluster node.
Possible states are: Online ,
Offline , Stop_failed ,
Start_failed ,
Monitor_failed , and
Online_not_monitored .

This property is not user
configurable.

Never Query-only

Retry_count
(integer)

The number of times a monitor
attempts to restart a resource if it
fails. This property is created by
the RGM only and available to the
administrator if it is declared in the
RTR file. It is optional if a default
value is specified in the RTR file.

If the Tunable attribute is not
specified in the resource type file,
the Tunable value for the
property is When_disabled .

This property is required if the
Default attribute is not specified
in the property declaration in the
RTR file.

When disabled Conditional

Standard Properties 103

TABLE A–2 Resource Properties (continued)

Property Name Description Updatable Category

Retry_interval
(integer)

The number of seconds over which
to count attempts to restart a failed
resource. The resource monitor
uses this property in conjunction
with Retry_count . This property
is created by the RGM only and
available to the administrator if it
is declared in the RTR file. It is
optional if a default value is
specified in the RTR file.

If the Tunable attribute is not
specified in the resource type file,
the Tunable value for the
property is When_disabled .

This property is required if the
Default attribute is not specified
in the property declaration in the
RTR file.

When disabled Conditional

104 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

TABLE A–2 Resource Properties (continued)

Property Name Description Updatable Category

Scalable
(Boolean)

Indicates whether the resource is
scalable. If this property is declared
in the RTR file, the RGM
automatically creates the following
scalable service properties for
resources of that type:
Network_resources_used ,
Port_list ,
Load_balancing_policy , and
Load_balancing_weights .
These properties have their default
values unless they are explicitly
declared in the RTR file. The
default for Scalable —when it is
declared in the RTR file—is True .

When this property is declared in
RTR file, the Tunable attribute
must be set to At_creation or
resource creation fails.

If this property is not declared in
the RTR file, the resource is not
scalable, the cluster administrator
cannot tune this property and no
scalable service properties are set
by the RGM. However, you can
explicitly declare the
Network_resources_used and
Port_list properties in the RTR
file, if desired, because they can be
useful in a non-scalable service as
well as in a scalable service.

At creation Optional

Status : on
each cluster
node (enum)

Set by the resource monitor.
Possible values are: OK, degraded ,
faulted , unknown , and offline .
The RGM sets the value to
unknown when the resource is
brought online and to Offline
when it is brought offline.

Never Query-only

Status_msg :
on each cluster
node (string)

Set by the resource monitor at the
same time as the Status property.
This property is settable per
resource per node. The RGM sets it
to the empty string when the
resource is brought offline.

Never Query-only

Standard Properties 105

TABLE A–2 Resource Properties (continued)

Property Name Description Updatable Category

Thorough_probe_interval
(integer)

The number of seconds between
invocations of a high-overhead
fault probe of the resource. This
property is created by the RGM
only and available to the
administrator if it is declared in the
RTR file. It is optional if a default
value is specified in the RTR file.

If the Tunable attribute is not
specified in the resource type file,
the Tunable value for the
property is When_disabled .

This property is required if the
Default attribute is not specified
in the property declaration in the
RTR file.

When disabled Conditional

Type (string) The resource type of which this
resource is an instance.

Never Required

Resource Group Properties
Table A–3 describes the resource group properties defined by Sun Cluster. The
property values are categorized as follows (in the Category column):

� Required — The administrator must specify a value when creating a resource
group with an administrative utility.

� Optional — If the administrator does not specify a value when creating a resource
group, the system supplies a default value.

� Query-only — Cannot be set directly by an administrative tool.

The Updatable column shows whether the property is updatable (Y) or not (N) after
it is initially set.

106 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

TABLE A–3 Resource Group Properties

Property
Name

Description Updatable Category

Desired_primaries
(integer)

The number of nodes where the group is
desired to be online at once.

The default is 1. If the RG_modeproperty is
Failover , the value of this property must
be no greater than 1. If the RG_mode
property is Scalable , a value greater than
1 is allowed.

Y Optional

Failback
(Boolean)

A Boolean value that indicates whether to
recalculate the set of nodes where the group
is online when the cluster membership
changes. A recalculation can cause the RGM
to bring the group offline on less preferred
nodes and online on more preferred nodes.

The default is False .

Y Optional

Global_resources_used
(string array)

Indicates whether cluster file systems are
used by any resource in this resource group.
Legal values that the administrator can
specify are an asterisk (*) to indicate all
global resources, and the empty string ("")
to indicate no global resources.

The default is all global resources.

Y Optional

Implicit_network_
dependencies
(Boolean)

A Boolean value that indicates, when True ,
that the RGM should enforce implicit strong
dependencies of non-network-address
resources on network-address resources
within the group. Network-address
resources include the logical host name and
shared address resource types.

In a scalable resource group, this property
has no effect because a scalable resource
group does not contain any network-address
resources.

The default is True .

Y Optional

Standard Properties 107

TABLE A–3 Resource Group Properties (continued)

Property
Name

Description Updatable Category

Maximum_primaries
(integer)

The maximum number of nodes where the
group might be online at once.

The default is 1. If the RG_modeproperty is
Failover , the value of this property must
be no greater than 1. If the RG_mode
property is Scalable , a value greater than
1 is allowed.

Y Optional

Nodelist
(string array)

A list of cluster nodes where the group can
be brought online in order of preference.
These nodes are known as the potential
primaries or masters of the resource group.

The default is the list of all cluster nodes.

Y Optional

Pathprefix
(string)

A directory in the cluster file system in
which resources in the group can write can
write essential administrative files. Some
resources might require this property. Make
Pathprefix unique for each resource
group.

The default is the empty string.

Y Optional

108 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

TABLE A–3 Resource Group Properties (continued)

Property
Name

Description Updatable Category

Pingpong_interval
(integer)

A non-negative integer value (in seconds)
used by the RGM to determine where to
bring the resource group online in the event
of a reconfiguration or as the result of an
scha_control giveover command or
function being executed.

In the event of a reconfiguration, if the
resource group fails to come online more
than once within the past
Pingpong_interval seconds on a
particular node (because the resource’s
STARTor PRENET_STARTmethod exited
non-zero or timed out), that node is
considered ineligible to host the resource
group and the RGM looks for another master.

If a call to a resource’s
scha_control (1ha)(3ha) command or
function causes the resource group to be
brought offline on a particular node within
the past Pingpong_interval seconds, that
node is ineligible to host the resource group
as the result of a subsequent call to
scha_control originating from another
node.

The default value is 3,600 (one hour).

Y Optional

Resource_list
(string array)

The list of resources that are contained in the
group. The administrator does not set this
property directly. Rather, the RGM updates
this property as the administrator adds or
removes resources from the resource group.

The default is the empty list.

N Query-only

RG_dependencies
(string array)

Optional list of resource groups indicating a
preferred ordering for bringing other groups
online or offline on the same node. Has no
effect if the groups are brought online on
different nodes.

The default is the empty list.

Y Optional

Standard Properties 109

TABLE A–3 Resource Group Properties (continued)

Property
Name

Description Updatable Category

RG_description
(string)

A brief description of the resource group.

The default is the empty string.

Y Optional

RG_mode
(enum)

Indicates whether the resource group is a
failover or scalable group. If the value is
Failover , the RGM sets the
Maximum_primaries property of the group
to 1 and restricts the resource group to being
mastered by a single node.

If the value of this property is Scalable ,
the RGM allows the Maximum_primaries
property to have a value greater than 1,
meaning the group can be mastered by
multiple nodes simultaneously. The RGM
does not allow a resource whose Failover
property is True to be added to a resource
group whose RG_modeis Scalable .

The default is Failover if
Maximum_primaries is 1 and Scalable if
Maximum_primaries is greater than 1.

N Optional

RG_name
(string)

The name of the resource group. Must be
unique within the cluster.

N Required

RG_state :
on each
cluster node
(enum)

Set by the RGM to Online , Offline ,
Pending_online , Pending_offline or
Error_stop_failed to describe the state
of the group on each cluster node. A group
can also exist in an unmanaged state when it
is not under the control of the RGM.

This property is not user configurable.

The default is Offline .

N Query-only

110 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

Resource Property Attributes
Table A–4 describes the resource property attributes that can be used to change
system-defined properties or create extension properties.

Caution - You cannot specify NULL or the empty string ("") as the default value for
boolean , enum, or int types.

TABLE A–4 Resource Property Attributes

Property Description

Property The name of the resource property.

Extension If used, indicates that the RTR file entry declares an extension property
defined by the resource type implementation. Otherwise, the entry is a
system-defined property.

Description A string annotation intended to be a brief description of the property. The
description attribute cannot be set in the RTR file for system-defined
properties.

Type of the
property

Allowable types are: string , boolean , int , enum, and stringarray .
you cannot set the type attribute in an rtr file entry for system-defined
properties. The type determines acceptable property values and the
type-specific attributes that are allowed in the rtr file entry. an enum type
is a set of string values.

Default Indicates a default value for the property.

Tunable Indicates when the cluster administrator can set the value of this property
in a resource. Can be set to None or False to prevent the administrator
from setting the property. Values that allow administrator tuning are:
True or Anytime (at any time), At_creation (only when the resource
is created), or When_disabled (when the resource is offline).

The default is True (Anytime).

Enumlist For an enum type, a set of string values permitted for the property.

Min For an int type, the minimal value permitted for the property.

Max For an int type, the maximum value permitted for the property.

Standard Properties 111

TABLE A–4 Resource Property Attributes (continued)

Property Description

Minlength For string and stringarray types, the minimum string length
permitted.

Maxlength For string and stringarray types, the maximum string length
permitted.

Array_minsize For stringarray type, the minimum number of array elements
permitted.

Array_maxsize For stringarray type, the maximum number of array elements
permitted.

112 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

APPENDIX B

Sample Data Service Code Listings

This appendix provides the complete code for each method in the sample data
service. It also lists the contents of the resource type registration file.

This appendix includes the following code listings.

� “Resource Type Registration File Listing” on page 113

� “STARTMethod Code Listing” on page 116

� “STOPMethod Code Listing” on page 119

� “gettime Utility Code Listing” on page 122

� “PROBEProgram Code Listing” on page 123

� “MONITOR_STARTMethod Code Listing” on page 129

� “MONITOR_STOPMethod Code Listing” on page 131

� “MONITOR_CHECKMethod Code Listing” on page 133

� “VALIDATE Method Code Listing” on page 136

� “UPDATEMethod Code Listing” on page 139

Resource Type Registration File Listing
The resource type registration (RTR) file contains resource and resource type
property declarations that define the initial configuration of the data service at the
time the cluster administrator registers the data service with Sun Cluster.

113

CODE EXAMPLE B–1 SUNW.Sample RTR File

#
Copyright (c) 1998-2000 by Sun Microsystems, Inc.
All rights reserved.
#
Registration information for Domain Name Service (DNS)
#

#pragma ident ‘‘@(#)SUNW.sample 1.1 00/05/24 SMI’’

RESOURCE_TYPE = ‘‘sample’’;
VENDOR_ID = SUNW;
RT_DESCRIPTION = ‘‘Domain Name Service on Sun Cluster’’;

RT_VERSION =’’1.0’’;
API_VERSION = 2;
FAILOVER = TRUE;

RT_BASEDIR=/opt/SUNWsample/bin;
PKGLIST = SUNWsample;

START = dns_svc_start;
STOP = dns_svc_stop;

VALIDATE = dns_validate;
UPDATE = dns_update;

MONITOR_START = dns_monitor_start;
MONITOR_STOP = dns_monitor_stop;
MONITOR_CHECK = dns_monitor_check;

A list of bracketed resource property declarations follows the
resource-type declarations. The property-name declaration must
be
the first attribute after the open curly bracket of each entry.
#

The <method>_timeout properties set the value in seconds
after which
the RGM concludes invocation of the method has failed.

The MIN value for all method timeouts is set to 60 seconds. This
prevents administrators from setting shorter timeouts, which do
not
improve switchover/failover performance, and can lead to undesired
RGM actions (false failovers, node reboot, or moving the resource
group
to ERROR_STOP_FAILED state, requiring operator intervention).
Setting
too-short method timeouts leads to a *decrease* in overall availability
of the data service.
{

PROPERTY = Start_timeout;
MIN=60;
DEFAULT=300;

(continued)

114 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

(Continuation)

}

{
PROPERTY = Stop_timeout;

MIN=60;
DEFAULT=300;

}
{

PROPERTY = Validate_timeout;
MIN=60;
DEFAULT=300;

}
{

PROPERTY = Update_timeout;
MIN=60;
DEFAULT=300;

}
{

PROPERTY = Monitor_Start_timeout;
MIN=60;
DEFAULT=300;

}
{

PROPERTY = Monitor_Stop_timeout;
MIN=60;
DEFAULT=300;

}
{

PROPERTY = Thorough_Probe_Interval;
MIN=1;
MAX=3600;
DEFAULT=60;
TUNABLE = ANYTIME;

}

The number of retries to be done within a certain period before
concluding
that the application cannot be successfully started on this node.
{

PROPERTY = Retry_Count;
MIN=0;
MAX=10;
DEFAULT=2;
TUNABLE = ANYTIME;

}

Set Retry_Interval as a multiple of 60 since it is converted from
seconds
to minutes, rounding up. For example, a value of 50 (seconds)
is converted to 1 minute. Use this property to time the number
of
retries (Retry_Count).
{

PROPERTY = Retry_Interval;

(continued)

Sample Data Service Code Listings 115

(Continuation)

MIN=60;
MAX=3600;
DEFAULT=300;
TUNABLE = ANYTIME;

}

{
PROPERTY = Network_resources_used;
TUNABLE = AT_CREATION;
DEFAULT = ‘‘‘‘;

}

#
Extension Properties
#

The cluster administrator must set the value of this property
to point to the
directory that contains the configuration files used by the application.
For this application, DNS, specify the path of the DNS configuration
file on
PXFS (typically named.conf).
{

PROPERTY = Confdir;
EXTENSION;
STRING;
TUNABLE = AT_CREATION;
DESCRIPTION = ‘‘The Configuration Directory Path’’;

}

Time out value in seconds before declaring the probe as failed.
{

PROPERTY = Probe_timeout;
EXTENSION;
INT;
DEFAULT = 30;
TUNABLE = ANYTIME;
DESCRIPTION = ‘‘Time out value for the probe (seconds)’’;

}

STARTMethod Code Listing
The RGM invokes the STARTmethod on a cluster node when the resource group
containing the data service resource is brought online on that node or when the

116 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

resource is enabled. In the sample application, the STARTmethod activates the
in.named (DNS) daemon on that node.

CODE EXAMPLE B–2 dns_svc_start Method

#!/bin/ksh
#
Start Method for HA-DNS.
#
This method starts the data service under the control of PMF.
Before starting
the in.named process for DNS, it performs some sanity checks.
The PMF tag for
the data service is $RESOURCE_NAME.named. PMF tries to start the
service a
specified number of times (Retry_count) and if the number of attempts
exceeds
this value within a specified interval (Retry_interval) PMF reports
a failure
to start the service. Retry_count and Retry_interval are both
properties of the
resource set in the RTR file.

#pragma ident ‘‘@(#)dns_svc_start 1.1 00/05/24 SMI’’

###
Parse program arguments.
#
function parse_args # [args ...]
{

typeset opt

while getopts ‘R:G:T:’ opt
do

case ‘‘$opt’’ in
R)

Name of the DNS resource.
RESOURCE_NAME=$OPTARG
;;

G)
Name of the resource group in which the

resource is
configured.
RESOURCEGROUP_NAME=$OPTARG
;;

T)
Name of the resource type.
RESOURCETYPE_NAME=$OPTARG
;;

*)
logger -p ${SYSLOG_FACILITY}.err \
-t [$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME]

\
‘‘ERROR: Option $OPTARG unknown’’

(continued)

Sample Data Service Code Listings 117

(Continuation)

exit 1
;;

esac
done

}

###
MAIN
#
##

export PATH=/bin:/usr/bin:/usr/cluster/bin:/usr/sbin:/usr/proc/bin:$PATH

Obtain the syslog facility to use to log messages.
SYSLOG_FACILITY=̀scha_cluster_get -O SYSLOG_FACILITY `

Parse the arguments that have been passed to this method
parse_args ‘‘$@’’

PMF_TAG=$RESOURCE_NAME.named

Get the value of the Confdir property of the resource in order
to start
DNS. Using the resource name and the resource group entered, find
the value of
Confdir value set by the cluster administrator at the time of
adding the resource.
config_info= ` scha_resource_get -O Extension -R $RESOURCE_NAME
-G $RESOURCEGROUP_NAME Confdir`
scha_resource_get returns the ‘‘type’’ as well
as the ‘‘value’’ for the extension
properties. Get only the value of the extension property.
CONFIG_DIR=̀echo $config_info | awk ‘{print $2}’ `

Check if $CONFIG_DIR is accessible.
if [! -d $CONFIG_DIR]; then

logger -p ${SYSLOG_FACILITY}.err -t [$SYSLOG_TAG] \
‘‘${ARGV0} Directory $CONFIG_DIR missing or not mounted’’

exit 1
fi

Change to the $CONFIG_DIR directory in case there are relative
path names in the data files.
cd $CONFIG_DIR

Check that the named.conf file is present in the $CONFIG_DIR directory.
if [! -s named.conf]; then

logger -p ${SYSLOG_FACILITY}.err -t [$SYSLOG_TAG] \
‘‘${ARGV0} File $CONFIG_DIR/named.conf is missing or

(continued)

118 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

(Continuation)

empty’’
exit 1

fi

Get the value for Retry_count from the RTR file.
RETRY_CNT=` scha_resource_get -O Retry_Count -R $RESOURCE_NAME
-G $RESOURCEGROUP_NAMÈ

Get the value for Retry_interval from the RTR file. Convert this
value, which is in
seconds, to minutes for passing to pmfadm. Note that this is necessarily
a conversion with round-down, that is 59 seconds or less converts
to zero minutes.
((RETRY_INTRVAL = s` cha_resource_get -O Retry_Interval
-R $RESOURCE_NAME -G $RESOURCEGROUP_NAMÈ / 60))

Start the in.named daemon under the control of PMF. Let it crash
and restart
up to $RETRY_COUNT times in a period of $RETRY_INTERVAL; if it
crashes
more often than that, PMF will cease trying to restart it. If
there is a
process already registered under the tag <$RESOURCE_NAME.named>,
then,
PMF sends out an alert message that the process is already running.
echo ‘‘Retry interval is ‘‘$RETRY_INTRVAL
pmfadm -c $PMF_TAG.named -n $RETRY_CNT -t $RETRY_INTRVAL \

/usr/sbin/in.named -c named.conf

Log a message indicating that HA-DNS has been started.
if [$? -eq 0]; then

logger -p ${SYSLOG_FACILITY}.info -t [$SYSLOG_TAG]\
‘‘${ARGV0} HA-DNS successfully started’’

fi
exit 0

STOPMethod Code Listing
The STOPmethod is invoked on a cluster node when the resource group containing
the HA-DNS resource is brought offline on that node or the resource is disabled. This
method stops the in.named (DNS) daemon on that node.

Sample Data Service Code Listings 119

CODE EXAMPLE B–3 dns_svc_stop Method

#!/bin/ksh
#
Stop method for HA-DNS
#
Stop the data service using PMF. If the service is not running
the
method exits with status 0 as returning any other value puts the
resource
in STOP_FAILED state.

#pragma ident ‘‘@(#)dns_svc_stop 1.1 00/05/24 SMI’’

###
Parse program arguments.
#
function parse_args # [args ...]
{

typeset opt

while getopts ‘R:G:T:’ opt
do

case ‘‘$opt’’ in
R)

Name of the DNS resource.
RESOURCE_NAME=$OPTARG
;;

G)
Name of the resource group in which the

resource is
configured.
RESOURCEGROUP_NAME=$OPTARG
;;

T)
Name of the resource type.
RESOURCETYPE_NAME=$OPTARG
;;

*)
logger -p ${SYSLOG_FACILITY}.err \
-t [$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME]

\
‘‘ERROR: Option $OPTARG unknown’’

exit 1
;;

esac
done

}

###
MAIN
#

(continued)

120 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

(Continuation)

##

export PATH=/bin:/usr/bin:/usr/cluster/bin:/usr/sbin:/usr/proc/bin:$PATH

Obtain the syslog facility to use to log messages.
SYSLOG_FACILITY=̀scha_cluster_get -O SYSLOG_FACILITY `

Parse the arguments that have been passed to this method
parse_args ‘‘$@’’

PMF_TAG=$RESOURCE_NAME.named

Obtain the Stop_timeout value from the RTR file.
STOP_TIMEOUT=` scha_resource_get -O STOP_TIMEOUT -R $RESOURCE_NAME
-G $RESOURCEGROUP_NAMÈ

Attempt to stop the data service in an orderly manner using a
SIGTERM
signal through PMF. Wait for up to 80% of the Stop_timeout value
to
see if SIGTERM is successful in stopping the data service. If
not, send SIGKILL
to stop the data service. Use up to 15% of the Stop_timeout value
to see
if SIGKILL is successful. If not, there is a failure and the method
exits with
non-zero status. The remaining 5% of the Stop_timeout is for other
uses.
((SMOOTH_TIMEOUT=$STOP_TIMEOUT * 80/100))

((HARD_TIMEOUT=$STOP_TIMEOUT * 15/100))

See if in.named is running, and if so, kill it.
if pmfadm -q $PMF_TAG.named; then

Send a SIGTERM signal to the data service and wait for 80% of
the

total timeout value.
pmfadm -s $PMF_TAG.named -w $SMOOTH_TIMEOUT TERM
if [$? -ne 0]; then

logger -p ${SYSLOG_FACILITY}.info -t [SYSLOG_TAG] \
‘‘${ARGV0} Failed to stop HA-DNS with SIGTERM; Retry

with \
SIGKILL’’

Since the data service did not stop with a SIGTERM signal, use
SIGKILL now and wait for another 15% of the total timeout value.
pmfadm -s $PMF_TAG.named -w $HARD_TIMEOUT KILL
if [$? -ne 0]; then

logger -p ${SYSLOG_FACILITY}.err -t [SYSLOG_TAG] \
‘‘${ARGV0} Failed to stop HA-DNS; Exiting UNSUCCESFUL’’

exit 1
fi

fi

(continued)

Sample Data Service Code Listings 121

(Continuation)

else
The data service is not running as of now. Log a message and
exit success.
logger -p ${SYSLOG_FACILITY}.info -t [SYSLOG_TAG] \

‘‘HA-DNS is not started’’

Even if HA-DNS is not running, exit success to avoid putting
the data service in STOP_FAILED State.

exit 0

fi

Successfully stopped DNS. Log a message and exit success.
logger -p ${SYSLOG_FACILITY}.info -t [SYSLOG_TAG] \

‘‘HA-DNS successfully stopped’’
exit 0

gettime Utility Code Listing
The gettime utility is a C program used by the PROBEprogram to track the elapsed
time between restarts of the probe. You must compile this program and place it in
the same directory as the callback methods, that is, the directory pointed to by the
RT_basedir property.

CODE EXAMPLE B–4 gettime.c utility program

#
This utility program, used by the probe method of the data service,
tracks
the elapsed time in seconds from a known reference point (epoch
point). It
must be compiled and placed in the same directory as the data
service callback
methods (RT_basedir).

#pragma ident ‘‘@(#)gettime.c 1.1 00/05/24 SMI’’

(continued)

122 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

(Continuation)

#include <stdio.h>
#include <sys/types.h>
#include <time.h>

main()
{

printf(‘‘%d\n’’, time(0));
exit(0);

}

PROBEProgram Code Listing
The PROBE program checks the availability of the data service using nslookup(1M)
commands. The MONITOR_STARTcallback method launches this program and the
MONITOR_STARTcallback method stops it.

CODE EXAMPLE B–5 dns_probe Program

#!/bin/ksh
#pragma ident ‘‘@(#)dns_probe 1.1 00/04/19 SMI’’
#
Probe method for HA-DNS.
#
This program checks the availability of the data service using
nslookup, which
queries the DNS server to look for the DNS server itself. If the
server
does not respond or if the query is replied to by some other server,
other server, then the probe concludes that there is some problem
with the
the probe concludes that there is a problem with the data service
and either
another node in the cluster. Probing is done at a specific interval

set by the THOROUGH_PROBE_INTERVAL property in the RTR file.

#pragma ident ‘‘@(#)dns_probe 1.1 00/05/24 SMI’’

###

(continued)

Sample Data Service Code Listings 123

(Continuation)

Parse program arguments.
#
function parse_args # [args ...]
{

typeset opt

while getopts ‘R:G:T:’ opt
do

case ‘‘$opt’’ in
R)

Name of the DNS resource.
RESOURCE_NAME=$OPTARG
;;

G)
Name of the resource group in which the

resource is
configured.
RESOURCEGROUP_NAME=$OPTARG
;;

T)
Name of the resource type.
RESOURCETYPE_NAME=$OPTARG
;;

*)
logger -p ${SYSLOG_FACILITY}.err \
-t [$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME]

\
‘‘ERROR: Option $OPTARG unknown’’

exit 1
;;

esac
done

}

###
restart_service ()
#
This function tries to restart the dataservice by calling the
STOP method
followed by the START method of the dataservice. If the dataservice
has
already died and no tag is registered for the dataservice under
PMF,
then this function fails the service over to another node in the
cluster.
#
function restart_service
{

To restart the dataservice, first, verify that the

(continued)

124 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

(Continuation)

dataservice itself is still registered under PMF.
pmfadm -q $PMF_TAG
if [[$? -eq 0]]; then

Since the TAG for the dataservice is still registered
under

PMF, first stop the dataservice and start it back
up again.

Obtain the STOP method name and the STOP_TIMEOUT
value for

this resource.
STOP_TIMEOUT=` scha_resource_get -O STOP_TIMEOUT

\
-R $RESOURCE_NAME -G $RESOURCEGROUP_NAMÈ

STOP_METHOD=` scha_resource_get -O STOP
\

-R $RESOURCE_NAME -G $RESOURCEGROUP_NAMÈ
hatimerun -t $STOP_TIMEOUT $RT_BASEDIR/$STOP_METHOD

\
-R $RESOURCE_NAME -G $RESOURCEGROUP_NAME

\
-T $RESOURCETYPE_NAME

if [[$? -ne 0]]; then
logger-p ${SYSLOG_FACILITY}.err -t [$SYSLOG_TAG]

\
‘‘${ARGV0} Stop method failed.’’

return 1
fi

Obtain the START method name and the START_TIMEOUT
value for

this resource.
START_TIMEOUT=` scha_resource_get -O START_TIMEOUT

\
-R $RESOURCE_NAME -G $RESOURCEGROUP_NAMÈ

START_METHOD=` scha_resource_get -O START
\

-R $RESOURCE_NAME -G $RESOURCEGROUP_NAMÈ
hatimerun -t $START_TIMEOUT $RT_BASEDIR/$START_METHOD

\
-R $RESOURCE_NAME -G $RESOURCEGROUP_NAME

\
-T $RESOURCETYPE_NAME

if [[$? -ne 0]]; then
logger-p ${SYSLOG_FACILITY}.err -t [$SYSLOG_TAG]

\
‘‘${ARGV0} Start method

failed.’’
return 1

fi

(continued)

Sample Data Service Code Listings 125

(Continuation)

else
The absence of the TAG for the dataservice
implies that the dataservice has already
exceeded the maximum retries allowed under PMF.
Therefore, do not attempt to restart the
dataservice again, but try to failover
to another node in the cluster.
scha_control -O GIVEOVER -G $RESOURCEGROUP_NAME

\
-R $RESOURCE_NAME

fi

return 0
}

###
decide_restart_or_failover ()
#
This function decides the action to be taken upon the failure
of a probe:
restart the data service locally or fail over to another node
in the cluster.
#
function decide_restart_or_failover
{

Check if this is the first restart attempt.
if [$retries -eq 0]; then

This is the first failure. Note the time of
this first attempt.
start_time= ` $RT_BASEDIR/gettimè
retries= ` expr $retries + 1 `

Because this is the first failure, attempt to restart
the data service.
restart_service

if [$? -ne 0]; then
logger -p ${SYSLOG_FACILITY}.err -t [$SYSLOG_TAG] \

‘‘${ARGV0} Failed to restart data service.’’
exit 1

fi
else

This is not the first failure
current_time= ` $RT_BASEDIR/gettimè
time_diff= ` expr $current_time - $start_timè
if [$time_diff -ge $RETRY_INTERVAL]; then

This failure happened after the time window
elapsed, so reset the retries counter,
slide the window, and do a retry.
retries=1

start_time=$current_time
Because the previous failure occurred more than

(continued)

126 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

(Continuation)

Retry_interval ago, attempt to restart the data service.
restart_service
if [$? -ne 0]; then

logger -p ${SYSLOG_FACILITY}.err \
-t [$SYSLOG_TAG
‘‘${ARGV0} Failed to restart HA-DNS.’’

exit 1
fi

elif [$retries -ge $RETRY_COUNT]; then
Still within the time window,
and the retry counter expired, so fail over.
retries=0
scha_control -O GIVEOVER -G $RESOURCEGROUP_NAME \

-R $RESOURCE_NAME
if [$? -ne 0]; then

logger -p ${SYSLOG_FACILITY}.err -t [$SYSLOG_TAG] \
‘‘${ARGV0} Failover attempt failed.’’

exit 1
fi

else
Still within the time window,
and the retry counter has not expired,
so do another retry.
retries= ` expr $retries + 1 `

restart_servicè
if [$? -ne 0]; then

logger -p ${SYSLOG_FACILITY}.err -t [$SYSLOG_TAG] \
‘‘${ARGV0} Failed to restart HA-DNS.’’

exit 1
fi

fi
fi

}

###
MAIN
###

export PATH=/bin:/usr/bin:/usr/cluster/bin:/usr/sbin:/usr/proc/bin:$PATH

Obtain the syslog facility to use to log messages.
SYSLOG_FACILITY=̀scha_cluster_get -O SYSLOG_FACILITY `

Parse the arguments that have been passed to this method
parse_args ‘‘$@’’

PMF_TAG=$RESOURCE_NAME.named

The interval at which probing is to be done is set in the system
defined
property THOROUGH_PROBE_INTERVAL. Obtain the value of this property
with
scha_resource_get

(continued)

Sample Data Service Code Listings 127

(Continuation)

PROBE_INTERVAL=` scha_resource_get -O THOROUGH_PROBE_INTERVAL
-R $RESOURCE_NAME -G $RESOURCEGROUP_NAMÈ

Obtain the timeout value allowed for the probe, which is set in
the
PROBE_TIMEOUT extension property in the RTR file. The default
timeout for
nslookup is 1.5 minutes.
probe_timeout_info= ` scha_resource_get -O Extension -R $RESOURCE_NAME
-G $RESOURCEGROUP_NAME Probe_timeout`
PROBE_TIMEOUT=` echo $probe_timeout_info | awk ‘{print $2}’ `

Identify the server on which DNS is serving by obtaining the value
of the NETWORK_RESOURCES_USED property of the resource.
DNS_HOST=` scha_resource_get -O NETWORK_RESOURCES_USED -R
$RESOURCE_NAME -G $RESOURCEGROUP_NAMÈ

Get the retry count value from the system defined property Retry_count
RETRY_COUNT=` scha_resource_get -O RETRY_COUNT -R $RESOURCE_NAME
-G $RESOURCEGROUP_NAMÈ

Get the retry interval value from the system defined property
Retry_interval
RETRY_INTERVAL=` scha_resource_get -O RETRY_INTERVAL -R
$RESOURCE_NAME -G $RESOURCEGROUP_NAMÈ

Obtain the full path for the gettime utility from the
RT_basedir property of the resource type.
RT_BASEDIR=` scha_resource_get -O RT_BASEDIR -R $RESOURCE_NAME
-G $RESOURCEGROUP_NAMÈ

The probe runs in an infinite loop, trying nslookup commands.
Set up a temporary file for the nslookup replies.
DNSPROBEFILE=/tmp/.$RESOURCE_NAME.probe
probefail=0
retries=0

while :
do

The interval at which the probe needs to run is specified in
the

property THOROUGH_PROBE_INTERVAL. Therefore, set the probe to
sleep for a

duration of <THOROUGH_PROBE_INTERVAL>
sleep $PROBE_INTERVAL

Run the probe, which queries the IP address on
which DNS is serving.
hatimerun -t $PROBE_TIMEOUT /usr/sbin/nslookup $DNS_HOST $DNS_HOST

\
> $DNSPROBEFILE 2>&1

retcode=$?
if [retcode -ne 0]; then

(continued)

128 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

(Continuation)

probefail=1
fi

Make sure that the reply to nslookup command comes from the HA-DNS
server and not from another name server listed in the
/etc/resolv.conf file.
if [$probefail -eq 0]; then

Get the name of the server that replied to the nslookup query.
SERVER=` awk ‘ $1==’’Server:’’ {

print $2 }’ \
$DNSPROBEFILE | awk -F. ‘ { print $1 } ‘

i
`

f [-z ‘‘$SERVER’’];
then

probefail=1
else

if [$SERVER != $DNS_HOST]; then
probefail=1

fi
fi

fi

If the probefail variable is not set to 0, either the nslookup
command

timed out or the reply to the query was came from another server
(specified in the /etc/resolv.conf file). In either case, the

DNS server is
not responding and the method calls the decide_restart_or_failover function,
which evaluates whether to restart the data service or to fail

it over
to another node.

if [$probefail -ne 0]; then
decide_restart_or_failover

else
logger -p ${SYSLOG_FACILITY}.info -t [$SYSLOG_TAG]\

‘‘${ARGV0} Probe for resource HA-DNS successful’’
fi

done

MONITOR_STARTMethod Code Listing
This method starts the PROBEprogram for the data service.

Sample Data Service Code Listings 129

CODE EXAMPLE B–6 dns_monitor_start Method

#!/bin/ksh
#
Monitor start Method for HA-DNS.
#
This method starts the monitor (probe) for the data service under
the
control of PMF. The monitor is a process that probes the data
service
at periodic intervals and if there is a problem restarts it on
the same node
or fails it over to another node in the cluster. The PMF tag for
the
monitor is $RESOURCE_NAME.monitor.

#pragma ident ‘‘@(#)dns_monitor_start 1.1 00/05/24 SMI’’

###
Parse program arguments.
#
function parse_args # [args ...]
{

typeset opt

while getopts ‘R:G:T:’ opt
do

case ‘‘$opt’’ in
R)

Name of the DNS resource.
RESOURCE_NAME=$OPTARG
;;

G)
Name of the resource group in which the

resource is
configured.
RESOURCEGROUP_NAME=$OPTARG
;;

T)
Name of the resource type.
RESOURCETYPE_NAME=$OPTARG
;;

*)
logger -p ${SYSLOG_FACILITY}.err \

-t [$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME]
\

‘‘ERROR: Option $OPTARG unknown’’
exit 1
;;

esac
done

}

(continued)

130 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

(Continuation)

###
MAIN
#
##

export PATH=/bin:/usr/bin:/usr/cluster/bin:/usr/sbin:/usr/proc/bin:$PATH

Obtain the syslog facility to use to log messages.
SYSLOG_FACILITY=̀scha_cluster_get -O SYSLOG_FACILITY `

Parse the arguments that have been passed to this method
parse_args ‘‘$@’’

PMF_TAG=$RESOURCE_NAME.monitor

Find where the probe method resides by obtaining the value of
the
RT_BASEDIR property of the data service.
RT_BASEDIR=` scha_resource_get -O RT_BASEDIR -R $RESOURCE_NAME
-G $RESOURCEGROUP_NAMÈ

Start the probe for the data service under PMF. Use the infinite
retries
option to start the probe. Pass the resource name, group, and
type to the
probe method.
pmfadm -c $PMF_TAG.monitor -n -1 -t -1 \

$RT_BASEDIR/dns_probe -R $RESOURCE_NAME -G $RESOURCEGROUP_NAME
\

-T $RESOURCETYPE_NAME

Log a message indicating that the monitor for HA-DNS has been
started.
if [$? -eq 0]; then

logger -p ${SYSLOG_FACILITY}.info -t [$SYSLOG_TAG] \
‘‘${ARGV0} Monitor for HA-DNS successfully started’’

fi
exit 0

MONITOR_STOPMethod Code Listing
This method stops the PROBEprogram for the data service.

Sample Data Service Code Listings 131

CODE EXAMPLE B–7 dns_monitor_stop Method

#!/bin/ksh
#
Monitor stop method for HA-DNS
#
Stops the monitor that is running using PMF.

#pragma ident ‘‘@(#)dns_monitor_stop 1.1 00/05/24 SMI’’

###
Parse program arguments.
#
function parse_args # [args ...]
{

typeset opt

while getopts ‘R:G:T:’ opt
do

case ‘‘$opt’’ in
R)

Name of the DNS resource.
RESOURCE_NAME=$OPTARG
;;

G)
Name of the resource group in which the

resource is
configured.
RESOURCEGROUP_NAME=$OPTARG
;;

T)
Name of the resource type.
RESOURCETYPE_NAME=$OPTARG
;;

*)
logger -p ${SYSLOG_FACILITY}.err \
-t [$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME]

\
‘‘ERROR: Option $OPTARG unknown’’

exit 1
;;

esac
done

}

###
MAIN
#
##

export PATH=/bin:/usr/bin:/usr/cluster/bin:/usr/sbin:/usr/proc/bin:$PATH

(continued)

132 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

(Continuation)

Obtain the syslog facility to use to log messages.
SYSLOG_FACILITY=̀scha_cluster_get -O SYSLOG_FACILITY `

Parse the arguments that have been passed to this method
parse_args ‘‘$@’’

PMF_TAG=$RESOURCE_NAME.monitor

See if the monitor is running, and if so, kill it.
if pmfadm -q $PMF_TAG.monitor; then

pmfadm -s $PMF_TAG.monitor KILL
if [$? -ne 0]; then

logger -p ${SYSLOG_FACILITY}.err -t [$SYSLOG_TAG] \
‘‘${ARGV0} Could not stop monitor for resource ‘‘ \
$RESOURCE_NAME

exit 1
else

Could successfully stop the monitor. Log a message.
logger -p ${SYSLOG_FACILITY}.info -t [$SYSLOG_TAG]\

‘‘${ARGV0} Monitor for resource ‘‘ $RESOURCE_NAME
\

‘‘ successfully stopped’’
fi

fi

exit 0

MONITOR_CHECKMethod Code Listing
This method verifies the existence of the directory pointed to by the Confdir
property. The RGM calls MONITOR_CHECKwhenever the PROBEmethod fails the
data service over to a new node.

CODE EXAMPLE B–8 dns_monitor_check Method

#!/bin/ksh
#
Monitor check Method for DNS.
#
The RGM calls this method whenever the fault monitor fails the
data service
over to a new node. Monitor_check calls the VALIDATE method to

Sample Data Service Code Listings 133

(Continuation)

verifiy
that the configuration directory and files are available on the
new node.

#pragma ident ‘‘%Z%%M% %I% %E% SMI’’

###
Parse program arguments.
#
function parse_args # [args ...]
{

typeset opt

while getopts ‘R:G:T:’ opt
do

case ‘‘$opt’’ in

R)
Name of the DNS resource.
RESOURCE_NAME=$OPTARG
;;

G)
Name of the resource group in which the resource is
configured.
RESOURCEGROUP_NAME=$OPTARG
;;

T)
Name of the resource type.
RESOURCETYPE_NAME=$OPTARG
;;

*)
logger -p ${SYSLOG_FACILITY}.err \
-t [$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME]

\
‘‘ERROR: Option $OPTARG unknown’’
exit 1
;;

esac
done

}

###
MAIN
##

export PATH=/bin:/usr/bin:/usr/cluster/bin:/usr/sbin:/usr/proc/bin:$PATH

Obtain the syslog facility to use to log messages.

(continued)

134 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

(Continuation)

SYSLOG_FACILITY=̀scha_cluster_get -O SYSLOG_FACILITY `

Parse the arguments that have been passed to this method.
parse_args ‘‘$@’’

PMF_TAG=$RESOURCE_NAME.named
SYSLOG_TAG=$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME

Obtain the full path for the VALIDATE method from
the RT_BASEDIR property of the resource type.
RT_BASEDIR=` scha_resource_get -O RT_BASEDIR -R $RESOURCE_NAME
\

-G $RESOURCEGROUP_NAMÈ

Obtain the name of the VALIDATE method for this resource.
VALIDATE_METHOD=` scha_resource_get -O VALIDATE \

-R $RESOURCE_NAME -G $RESOURCEGROUP_NAMÈ

Obtain the value of the Confdir property in order to start the
data service. Use the resource name and the resource group entered
to
obtain the Confdir value set at the time of adding the resource.
config_info= ` scha_resource_get -O Extension -R $RESOURCE_NAME
-G $RESOURCEGROUP_NAME Confdir`

scha_resource_get returns the type as well as the value for extension
properties. Use awk to get only the value of the extension property.
CONFIG_DIR=̀echo $config_info | awk ‘{print $2}’ `

Call the validate method so that the dataservice can be failed
over
successfully to the new node.
$RT_BASEDIR/$VALIDATE_METHOD -R $RESOURCE_NAME -G $RESOURCEGROUP_NAME
\

-T $RESOURCETYPE_NAME -x Confdir=$CONFIG_DIR

Log a message indicating that monitor check was successful.
if [$? -eq 0]; then

logger -p ${SYSLOG_FACILITY}.info -t [$SYSLOG_TAG] \
‘‘${ARGV0} Monitor check for DNS successful.’’

exit 0
else

logger -p ${SYSLOG_FACILITY}.err -t [$SYSLOG_TAG] \
‘‘${ARGV0} Monitor check for DNS not successful.’’

exit 1
fi

Sample Data Service Code Listings 135

VALIDATE Method Code Listing
This method verifies the existence of the directory pointed to by the Confdir
property. The RGM calls this method when the data service is created and when data
service properties are updated by the cluster administrator. The MONITOR_CHECK
method calls this method whenever the fault monitor fails the data service over to a
new node.

CODE EXAMPLE B–9 dns_validate Method

#!/bin/ksh
#
Validate method for HA-DNS.
This method validates the Confdir property of the resource. The
Validate
method gets called in two scenarios. When the resource is being
created and
when a resource property is getting updated. When the resource
is being
created, this method gets called with the -c flag and all the
system-defined
and extension properties are passed as command-line arguments.
When a resource
property is being updated, the Validate method gets called with
the -u flag,
and only the property/value pair of the property being updated
is passed as a
command-line argument.
#
ex: When the resource is being created command args will be
#
dns_validate -c -R <..> -G <...> -T <..>
-r <sysdef-prop=value>...
-x <extension-prop=value>.... -g <resourcegroup-prop=value>....
#
when the resource property is being updated
#
dns_validate -u -R <..> -G <...> -T <..>
-r <sys-prop_being_updated=value>
OR
dns_validate -u -R <..> -G <...> -T <..>
-x <extn-prop_being_updated=value>
#

#pragma ident ‘‘@(#)dns_validate 1.1 00/05/24 SMI’’

###
Parse program arguments.
#
function parse_args # [args ...]

(continued)

136 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

(Continuation)

{
typeset opt

while getopts ‘cur:x:g:R:T:G:’ opt
do

case ‘‘$opt’’ in
R)

Name of the DNS resource.
RESOURCE_NAME=$OPTARG
;;

G)
Name of the resource group in which the

resource is
configured.
RESOURCEGROUP_NAME=$OPTARG
;;

T)
Name of the resource type.
RESOURCETYPE_NAME=$OPTARG
;;

r)
The method is not accessing any system defined
properties, so this is a no-op.

;;

g)
The method is not accessing any resource group
properties, so this is a no-op.

;;

c)
Indicates the Validate method is being called while
creating the resource, so this flag is a no-op.

;;

u)
Indicates the updating of a property when the
resource already exists. If the update is to the
Confdir property then Confdir should appear in the
command-line arguments. If it does not, the method must
look for it specifically using scha_resource_get.
UPDATE_PROPERTY=1

;;

x)
Extension property list. Separate the property and
value pairs using ‘‘=’’ as the separator.
PROPERTY=` echo $OPTARG | awk -F= ‘{print $1}’ `
VAL=̀echo $OPTARG | awk -F= ‘{print $2}’ `

If the Confdir extension property is found on the
command line, note its value.
if [$PROPERTY == ‘‘Confdir’’]; then

(continued)

Sample Data Service Code Listings 137

(Continuation)

CONFDIR=$VAL
CONFDIR_FOUND=1

fi
;;

*)
logger -p ${SYSLOG_FACILITY}.err \
-t [$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME]

\
‘‘ERROR: Option $OPTARG unknown’’

exit 1
;;

esac
done

}

###
MAIN
#
##

export PATH=/bin:/usr/bin:/usr/cluster/bin:/usr/sbin:/usr/proc/bin:$PATH

Obtain the syslog facility to use to log messages.
SYSLOG_FACILITY=̀scha_cluster_get -O SYSLOG_FACILITY `

Set the Value of CONFDIR to null. Later, this method retrieves
the value
of the Confdir property from the command line or using scha_resource_get.
CONFDIR=’’’’
UPDATE_PROPERTY=0
CONFDIR_FOUND=0

Parse the arguments that have been passed to this method.
parse_args ‘‘$@’’

If the validate method is being called due to the updating of
properties
try to retrieve the value of the Confdir extension property from
the command
line. Otherwise, obtain the value of Confdir using scha_resource_get.
if ((($UPDATE_PROPERTY == 1)) && ((CONFDIR_FOUND
== 0))); then

config_info= ` scha_resource_get -O Extension -R $RESOURCE_NAME
\

-G $RESOURCEGROUP_NAME Confdir`
CONFDIR=` echo $config_info | awk ‘{print $2}’ `

fi

Verify that the Confdir property has a value. If not there is
a failure
and exit with status 1.
if [[-z $CONFDIR]]; then

(continued)

138 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

(Continuation)

logger -p ${SYSLOG_FACILITY}.err \
‘‘${ARGV0} Validate method for resource ‘‘$RESOURCE_NAME ‘‘ failed’’

exit 1
fi

Now validate the actual Confdir property value.

Check if $CONFDIR is accessible.
if [! -d $CONFDIR]; then

logger -p ${SYSLOG_FACILITY}.err -t [$SYSLOG_TAG]\
‘‘${ARGV0} Directory $CONFDIR missing or not

mounted’’
exit 1

fi

Check that the named.conf file is present in the Confdir directory.
if [! -s $CONFDIR/named.conf]; then

logger -p ${SYSLOG_FACILITY}.err -t [$SYSLOG_TAG] \
‘‘${ARGV0} File $CONFDIR/named.conf is missing

or empty’’
exit 1

fi

Log a message indicating that the Validate method was successful.
logger -p ${SYSLOG_FACILITY}.info -t [$SYSLOG_TAG] \

‘‘${ARGV0} Validate method for resource ‘‘$RESOURCE_NAME
\

‘‘ completed successfully’’

exit 0

UPDATEMethod Code Listing
The RGM calls the UPDATEmethod to notify a running resource that its properties
have been changed.

Sample Data Service Code Listings 139

CODE EXAMPLE B–10 dns_update Method

#!/bin/ksh
#
Update method for HA-DNS.

#
The actual updates to properties are done by the RGM. Updates
affect only

the fault monitor so this method must restart the fault monitor.

#pragma ident ‘‘@(#)dns_update 1.1 00/05/24 SMI’’

###
Parse program arguments.
#
function parse_args # [args ...]
{

typeset opt

while getopts ‘R:G:T:’ opt
do

case ‘‘$opt’’ in
R)

Name of the DNS resource.
RESOURCE_NAME=$OPTARG
;;

G)
Name of the resource group in which the

resource is
configured.
RESOURCEGROUP_NAME=$OPTARG
;;

T)
Name of the resource type.
RESOURCETYPE_NAME=$OPTARG
;;

*)
logger -p ${SYSLOG_FACILITY}.err \
-t [$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME]

\
‘‘ERROR: Option $OPTARG unknown’’

exit 1
;;

esac
done

}

###
MAIN

(continued)

140 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

(Continuation)

#
##

export PATH=/bin:/usr/bin:/usr/cluster/bin:/usr/sbin:/usr/proc/bin:$PATH

Obtain the syslog facility to use to log messages.
SYSLOG_FACILITY=̀scha_cluster_get -O SYSLOG_FACILITY `

Parse the arguments that have been passed to this method
parse_args ‘‘$@’’

PMF_TAG=$RESOURCE_NAME.monitor

Find where the probe method resides by obtaining the value of
the
RT_BASEDIR property of the resource.
RT_BASEDIR=` scha_resource_get -O RT_BASEDIR -R $RESOURCE_NAME
-G $RESOURCEGROUP_NAMÈ

When the Update method is called, the RGM updates the value of
the property
being updated. This method must check if the fault monitor (probe)
is running, and if so, kill it and then restart it.
if pmfadm -q $PMF_TAG.monitor; then

Kill the monitor that is running already
pmfadm -s $PMF_TAG.monitor TERM
if [$? -ne 0]; then

logger -p ${SYSLOG_FACILITY}.err -t [$SYSLOG_TAG] \
‘‘${ARGV0} Could not stop the monitor’’

exit 1
else

Could successfully stop DNS. Log a message.
logger -p ${SYSLOG_FACILITY}.info -t [$SYSLOG_TAG] \

‘‘Monitor for HA-DNS successfully stopped’’
fi

Restart the monitor.
pmfadm -c $PMF_TAG.monitor -n -1 -t -1 $RT_BASEDIR/dns_probe \

-R $RESOURCE_NAME -G $RESOURCEGROUP_NAME -T $RESOURCETYPE_NAME
if [$? -ne 0]; then

logger -p ${SYSLOG_FACILITY}.err -t [$SYSLOG_TAG]\
‘‘${ARGV0} Could not restart monitor for HA-DNS ‘‘

exit 1
else

logger -p ${SYSLOG_FACILITY}.info -t [$SYSLOG_TAG]\
‘‘Monitor for HA-DNS successfully restarted’’

fi
fi
exit 0

(continued)

Sample Data Service Code Listings 141

(Continuation)

142 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

APPENDIX C

Legal RGM Names and Values

This appendix lists the requirements for legal characters for RGM names and values.

RGM Legal Names
RGM names fall into five categories:

� Resource group names

� Resource type names

� Resource names

� Property names

� Enumeration literal names

Except for resource type names, all names must comply with the following rules:

� Must be in ASCII.

� Must start with a letter.

� Can contain upper and lowercase letters, digits, dashes (-), and underscores (_).

� Must not exceed 255 characters.

A resource type name can be a simple name (specified by the Resource_type
property in the RTR file) or a complete name (specified by the Vendor_id and
Resource_type properties in the RTR file). When you specify both these properties,
the RGM inserts a period between the Vendor_id and Resource_type to form the
complete name. For example, if Vendor_id=SUNW and Resource_type=sample ,
the complete name is SUNW.sample. This is the only case where a period is a legal
character in an RGM name.

143

RGM Values
RGM values fall into two categories: property values and description values, both of
which share the same rules, as follows:

� Values must be in ASCII.

� The maximum length of a value is 4 megabytes minus 1, that is, 4,194,303 bytes.

� Values cannot contain any of the following characters: null, newline, comma, or
semicolon.

144 Sun Cluster 3.0 Data Services Developers’ Guide ♦ November 2000, Revision A

