SUBROUTINE SBSCSM( TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA, * VAL, BINDX, BPNTRB, BPNTRE, LB, * B, LDB, BETA, C, LDC, WORK, LWORK ) INTEGER*4 TRANSA, MB, N, UNITD, DESCRA(5), LB, * LDB, LDC, LWORK INTEGER*4 BINDX(BNNZ), BPNTRB(KB), BPNTRE(KB) REAL*4 ALPHA, BETA REAL*4 DV(NDV), VAL(LB*LB*BNNZ), B(LDB,*), C(LDC,*), WORK(LWORK) SUBROUTINE DBSCSM( TRANSA, MB, N, UNITD, DV, ALPHA, DESCRA, * VAL, BINDX, BPNTRB, BPNTRE, LB, * B, LDB, BETA, C, LDC, WORK, LWORK) INTEGER*4 TRANSA, MB, N, UNITD, DESCRA(5), LB, * LDB, LDC, LWORK INTEGER*4 BINDX(BNNZ), BPNTRB(KB), BPNTRE(KB) REAL*8 ALPHA, BETA REAL*8 DV(NDV), VAL(LB*LB*BNNZ), B(LDB,*), C(LDC,*), WORK(LWORK) where: BNNZ = BPNTRE(KB)- BPNTRB(1)
C <- alpha D inv(A) B + beta C C <- alpha D inv(A') B + beta C
C <- alpha inv(A) D B + beta C C <- alpha inv(A') D B + beta C
( ' indicates matrix transpose)
TRANSA Indicates how to operate with the sparse matrix
0 : operate with matrix
1 : operate with transpose matrix
MB Number of block rows in matrix A
N Number of columns in matrix C
UNITD Type of scaling:
1 : Identity matrix (argument DV[] is ignored)
2 : Scale on left (row scaling)
3 : Scale on right (column scaling)
DV() Array containing the diagonal entries of the (block)
diagonal matrix D.
ALPHA Scalar parameter
DESCRA() Descriptor argument. Five element integer array
DESCRA(1) matrix structure
0 : general
1 : symmetric
2 : Hermitian
3 : Triangular
4 : Skew(Anti-Symmetric
5 : Diagonal
DESCRA(2) upper/lower triangular indicator
1 : lower
2 : upper
DESCRA(3) main diagonal type
0 : non-unit
1 : unit
DESCRA(4) Array base (NOT IMPLEMENTED)
0 : C/C++ compatible
1 : Fortran compatible
DESCRA(5) repeated indices? (NOT IMPLEMENTED)
0 : unknown
1 : no repeated indices
VAL() scalar array of length NNZ containing matrix entries
stored column-major within each dense block.
BINDX() integer array of length BNNZ consisting of the
block row indices of the block entries of A.
BPNTRB() integer array of length KB such that
BPNTRB(J)-BPNTRB(1)+1 points to location in BINDX
of the first block entry of the J-th block column of A.
BPNTRE() integer array of length KB such that
BPNTRE(J)-BPNTRE(1)+1 points to location in BINDX
of the last block entry of the J-th block column of A.
LB dimension of dense blocks composing A.
B() rectangular array with first dimension LDB.
LDB leading dimension of B
BETA Scalar parameter
C() rectangular array with first dimension LDC.
LDC leading dimension of C
WORK() scratch array of length LWORK. LWORK should be at least
MAX(MB*LB*LB,N).
LWORK length of WORK array
http://math.nist.gov/mcsd/Staff/KRemington/fspblas/