cgeqp3


NAME

cgeqp3 - compute a QR factorization with column pivoting of a matrix A


SYNOPSIS

  SUBROUTINE CGEQP3( M, N, A, LDA, JPVT, TAU, WORK, LWORK, RWORK, 
 *      INFO)
  COMPLEX A(LDA,*), TAU(*), WORK(*)
  INTEGER M, N, LDA, LWORK, INFO
  INTEGER JPVT(*)
  REAL RWORK(*)
 
  SUBROUTINE CGEQP3_64( M, N, A, LDA, JPVT, TAU, WORK, LWORK, RWORK, 
 *      INFO)
  COMPLEX A(LDA,*), TAU(*), WORK(*)
  INTEGER*8 M, N, LDA, LWORK, INFO
  INTEGER*8 JPVT(*)
  REAL RWORK(*)
 

F95 INTERFACE

  SUBROUTINE GEQP3( [M], [N], A, [LDA], JPVT, TAU, [WORK], [LWORK], 
 *       [RWORK], [INFO])
  COMPLEX, DIMENSION(:) :: TAU, WORK
  COMPLEX, DIMENSION(:,:) :: A
  INTEGER :: M, N, LDA, LWORK, INFO
  INTEGER, DIMENSION(:) :: JPVT
  REAL, DIMENSION(:) :: RWORK
 
  SUBROUTINE GEQP3_64( [M], [N], A, [LDA], JPVT, TAU, [WORK], [LWORK], 
 *       [RWORK], [INFO])
  COMPLEX, DIMENSION(:) :: TAU, WORK
  COMPLEX, DIMENSION(:,:) :: A
  INTEGER(8) :: M, N, LDA, LWORK, INFO
  INTEGER(8), DIMENSION(:) :: JPVT
  REAL, DIMENSION(:) :: RWORK
 

C INTERFACE

#include <sunperf.h>

void cgeqp3(int m, int n, complex *a, int lda, int *jpvt, complex *tau, int *info);

void cgeqp3_64(long m, long n, complex *a, long lda, long *jpvt, complex *tau, long *info);


PURPOSE

cgeqp3 computes a QR factorization with column pivoting of a matrix A: A*P = Q*R using Level 3 BLAS.


ARGUMENTS

* M (input)
The number of rows of the matrix A. M >= 0.

* N (input)
The number of columns of the matrix A. N >= 0.

* A (input/output)
On entry, the M-by-N matrix A. On exit, the upper triangle of the array contains the min(M,N)-by-N upper trapezoidal matrix R; the elements below the diagonal, together with the array TAU, represent the unitary matrix Q as a product of min(M,N) elementary reflectors.

* LDA (input)
The leading dimension of the array A. LDA >= max(1,M).

* JPVT (input/output)
On entry, if JPVT(J).ne.0, the J-th column of A is permuted to the front of A*P (a leading column); if JPVT(J)=0, the J-th column of A is a free column. On exit, if JPVT(J)=K, then the J-th column of A*P was the the K-th column of A.

* TAU (output)
The scalar factors of the elementary reflectors.

* WORK (workspace)
On exit, if INFO=0, WORK(1) returns the optimal LWORK.

* LWORK (input)
The dimension of the array WORK. LWORK >= N+1. For optimal performance LWORK >= ( N+1 )*NB, where NB is the optimal blocksize.

If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.

* RWORK (workspace)
dimension(2*N)

* INFO (output)