cunmlq


NAME

cunmlq - overwrite the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'


SYNOPSIS

  SUBROUTINE CUNMLQ( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, 
 *      LWORK, INFO)
  CHARACTER * 1 SIDE, TRANS
  COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
  INTEGER M, N, K, LDA, LDC, LWORK, INFO
 
  SUBROUTINE CUNMLQ_64( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, 
 *      WORK, LWORK, INFO)
  CHARACTER * 1 SIDE, TRANS
  COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
  INTEGER*8 M, N, K, LDA, LDC, LWORK, INFO
 

F95 INTERFACE

  SUBROUTINE UNMLQ( SIDE, [TRANS], [M], [N], [K], A, [LDA], TAU, C, 
 *       [LDC], [WORK], [LWORK], [INFO])
  CHARACTER(LEN=1) :: SIDE, TRANS
  COMPLEX, DIMENSION(:) :: TAU, WORK
  COMPLEX, DIMENSION(:,:) :: A, C
  INTEGER :: M, N, K, LDA, LDC, LWORK, INFO
 
  SUBROUTINE UNMLQ_64( SIDE, [TRANS], [M], [N], [K], A, [LDA], TAU, C, 
 *       [LDC], [WORK], [LWORK], [INFO])
  CHARACTER(LEN=1) :: SIDE, TRANS
  COMPLEX, DIMENSION(:) :: TAU, WORK
  COMPLEX, DIMENSION(:,:) :: A, C
  INTEGER(8) :: M, N, K, LDA, LDC, LWORK, INFO
 

C INTERFACE

#include <sunperf.h>

void cunmlq(char side, char trans, int m, int n, int k, complex *a, int lda, complex *tau, complex *c, int ldc, int *info);

void cunmlq_64(char side, char trans, long m, long n, long k, complex *a, long lda, complex *tau, complex *c, long ldc, long *info);


PURPOSE

cunmlq overwrites the general complex M-by-N matrix C with TRANS = 'C': Q**H * C C * Q**H

where Q is a complex unitary matrix defined as the product of k elementary reflectors

      Q = H(k)' . . . H(2)' H(1)'

as returned by CGELQF. Q is of order M if SIDE = 'L' and of order N if SIDE = 'R'.


ARGUMENTS

* SIDE (input)
* TRANS (input)

* M (input)
The number of rows of the matrix C. M >= 0.

* N (input)
The number of columns of the matrix C. N >= 0.

* K (input)
The number of elementary reflectors whose product defines the matrix Q. If SIDE = 'L', M >= K >= 0; if SIDE = 'R', N >= K >= 0.

* A (input)
(LDA,M) if SIDE = 'L', (LDA,N) if SIDE = 'R' The i-th row must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by CGELQF in the first k rows of its array argument A. A is modified by the routine but restored on exit.

* LDA (input)
The leading dimension of the array A. LDA >= max(1,K).

* TAU (input)
TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by CGELQF.

* C (input/output)
On entry, the M-by-N matrix C. On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.

* LDC (input)
The leading dimension of the array C. LDC >= max(1,M).

* WORK (workspace)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

* LWORK (input)
The dimension of the array WORK. If SIDE = 'L', LWORK >= max(1,N); if SIDE = 'R', LWORK >= max(1,M). For optimum performance LWORK >= N*NB if SIDE 'L', and LWORK >= M*NB if SIDE = 'R', where NB is the optimal blocksize.

If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.

* INFO (output)