SUBROUTINE SDIASM( TRANSA, M, N, UNITD, DV, ALPHA, DESCRA, * VAL, LDA, IDIAG, NDIAG, * B, LDB, BETA, C, LDC, WORK, LWORK ) INTEGER*4 TRANSA, M, N, UNITD, DESCRA(5), LDA, NDIAG, * LDB, LDC, LWORK INTEGER*4 IDIAG(NDIAG) REAL*4 ALPHA, BETA REAL*4 DV(NDV), VAL(LDA,NDIAG), B(LDB,*), C(LDC,*), WORK(LWORK) SUBROUTINE DDIASM( TRANSA, M, N, UNITD, DV, ALPHA, DESCRA, * VAL, LDA, IDIAG, NDIAG, * B, LDB, BETA, C, LDC, WORK, LWORK) INTEGER*4 TRANSA, M, N, UNITD, DESCRA(5), LDA, NDIAG, * LDB, LDC, LWORK INTEGER*4 IDIAG(NDIAG) REAL*8 ALPHA, BETA REAL*8 DV(NDV), VAL(LDA,NDIAG), B(LDB,*), C(LDC,*), WORK(LWORK)
C <- alpha D inv(A) B + beta C C <- alpha D inv(A') B + beta C
C <- alpha inv(A) D B + beta C C <- alpha inv(A') D B + beta C
( ' indicates matrix transpose)
TRANSA Indicates how to operate with the sparse matrix
0 : operate with matrix
1 : operate with transpose matrix
M Number of rows in matrix A
N Number of columns in matrix C
UNITD Type of scaling:
1 : Identity matrix (argument DV[] is ignored)
2 : Scale on left (row scaling)
3 : Scale on right (column scaling)
DV() Array containing the diagonal entries of the (block)
diagonal matrix D.
ALPHA Scalar parameter
DESCRA() Descriptor argument. Five element integer array
DESCRA(1) matrix structure
0 : general
1 : symmetric
2 : Hermitian
3 : Triangular
4 : Skew(Anti-Symmetric
5 : Diagonal
DESCRA(2) upper/lower triangular indicator
1 : lower
2 : upper
DESCRA(3) main diagonal type
0 : non-unit
1 : unit
DESCRA(4) Array base (NOT IMPLEMENTED)
0 : C/C++ compatible
1 : Fortran compatible
DESCRA(5) repeated indices? (NOT IMPLEMENTED)
0 : unknown
1 : no repeated indices
VAL() two-dimensional LDA-by-NDIAG array such that VAL(:,I)
consists of non-zero elements on diagonal IDIAG(I)
of A. Diagonals in the lower triangular part of A
are padded from the top, and those in the upper
triangular part are padded from the bottom.
LDA leading dimension of VAL, must be .GE. MIN(M,K)
IDIAG() integer array of length NDIAG consisting of the
corresponding diagonal offsets of the non-zero
diagonals of A in VAL. Lower triangular diagonals
have negative offsets, the main diagonal has offset
0, and upper triangular diagonals have positive offset.
NDIAG number of non-zero diagonals in A.
B() rectangular array with first dimension LDB.
LDB leading dimension of B
BETA Scalar parameter
C() rectangular array with first dimension LDC.
LDC leading dimension of C
WORK() scratch array of length LWORK. LWORK should be at least
MAX(M,N).
LWORK length of WORK array
http://math.nist.gov/mcsd/Staff/KRemington/fspblas/