SUBROUTINE ZGGRQF( M, P, N, A, LDA, TAUA, B, LDB, TAUB, WORK, LWORK, * INFO) DOUBLE COMPLEX A(LDA,*), TAUA(*), B(LDB,*), TAUB(*), WORK(*) INTEGER M, P, N, LDA, LDB, LWORK, INFO SUBROUTINE ZGGRQF_64( M, P, N, A, LDA, TAUA, B, LDB, TAUB, WORK, * LWORK, INFO) DOUBLE COMPLEX A(LDA,*), TAUA(*), B(LDB,*), TAUB(*), WORK(*) INTEGER*8 M, P, N, LDA, LDB, LWORK, INFO
SUBROUTINE GGRQF( [M], [P], [N], A, [LDA], TAUA, B, [LDB], TAUB, * [WORK], [LWORK], [INFO]) COMPLEX(8), DIMENSION(:) :: TAUA, TAUB, WORK COMPLEX(8), DIMENSION(:,:) :: A, B INTEGER :: M, P, N, LDA, LDB, LWORK, INFO SUBROUTINE GGRQF_64( [M], [P], [N], A, [LDA], TAUA, B, [LDB], TAUB, * [WORK], [LWORK], [INFO]) COMPLEX(8), DIMENSION(:) :: TAUA, TAUB, WORK COMPLEX(8), DIMENSION(:,:) :: A, B INTEGER(8) :: M, P, N, LDA, LDB, LWORK, INFO
void zggrqf(int m, int p, int n, doublecomplex *a, int lda, doublecomplex *taua, doublecomplex *b, int ldb, doublecomplex *taub, int *info);
void zggrqf_64(long m, long p, long n, doublecomplex *a, long lda, doublecomplex *taua, doublecomplex *b, long ldb, doublecomplex *taub, long *info);
A = R*Q, B = Z*T*Q,
where Q is an N-by-N unitary matrix, Z is a P-by-P unitary matrix, and R and T assume one of the forms:
if M <= N, R = ( 0 R12 ) M, or if M > N, R = ( R11 ) M-N, N-M M ( R21 ) N N
where R12 or R21 is upper triangular, and
if P >= N, T = ( T11 ) N , or if P < N, T = ( T11 T12 ) P, ( 0 ) P-N P N-P N
where T11 is upper triangular.
In particular, if B is square and nonsingular, the GRQ factorization of A and B implicitly gives the RQ factorization of A*inv(B):
A*inv(B) = (R*inv(T))*Z'
where inv(B) denotes the inverse of the matrix B, and Z' denotes the conjugate transpose of the matrix Z.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.