Contents
     zcscmm - compressed sparse column format matrix-matrix
     multiply
       SUBROUTINE ZCSCMM( TRANSA, M, N, K, ALPHA, DESCRA,
      *           VAL, INDX, PNTRB, PNTRE,
      *           B, LDB, BETA, C, LDC, WORK, LWORK)
       INTEGER    TRANSA, M, N, K, DESCRA(5),
      *           LDB, LDC, LWORK
       INTEGER    INDX(NNZ), PNTRB(K), PNTRE(K)
       DOUBLE COMPLEX ALPHA, BETA
       DOUBLE COMPLEX VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)
       SUBROUTINE ZCSCMM_64( TRANSA, M, N, K, ALPHA, DESCRA,
      *           VAL, INDX, PNTRB, PNTRE,
      *           B, LDB, BETA, C, LDC, WORK, LWORK)
       INTEGER*8  TRANSA, M, N, K, DESCRA(5),
      *           LDB, LDC, LWORK
       INTEGER*8  INDX(NNZ), PNTRB(K), PNTRE(K)
       DOUBLE COMPLEX ALPHA, BETA
       DOUBLE COMPLEX VAL(NNZ), B(LDB,*), C(LDC,*), WORK(LWORK)
       where NNZ = PNTRE(K)-PNTRB(1)
     F95 INTERFACE
       SUBROUTINE CSCMM( TRANSA, M, [N], K, ALPHA, DESCRA, VAL, INDX,
      *   PNTRB, PNTRE, B, [LDB], BETA, C, [LDC], [WORK], [LWORK] )
       INTEGER TRANSA, M, K
       INTEGER, DIMENSION(:) ::   DESCRA, INDX, PNTRB, PNTRE
       DOUBLE COMPLEX    ALPHA, BETA
       DOUBLE COMPLEX, DIMENSION(:) :: VAL
       DOUBLE COMPLEX, DIMENSION(:, :) ::  B, C
       SUBROUTINE CSCMM_64( TRANSA, M, [N], K, ALPHA, DESCRA, VAL, INDX,
      *   PNTRB, PNTRE, B, [LDB], BETA, C, [LDC], [WORK], [LWORK] )
       INTEGER*8 TRANSA, M, K
       INTEGER*8, DIMENSION(:) ::   DESCRA, INDX, PNTRB, PNTRE
       DOUBLE COMPLEX    ALPHA, BETA
       DOUBLE COMPLEX, DIMENSION(:) :: VAL
       DOUBLE COMPLEX, DIMENSION(:, :) ::  B, C
               C <- alpha op(A) B + beta C
      where ALPHA and BETA are scalar, C and B are dense matrices,
      A is a matrix represented in compressed sparse column format and
      op( A )  is one  of
      op( A ) = A   or   op( A ) = A'   or   op( A ) = conjg( A' ).
                                         ( ' indicates matrix transpose)
      TRANSA        Indicates how to operate with the sparse matrix
                      0 : operate with matrix
                      1 : operate with transpose matrix
                      2 : operate with the conjugate transpose of matrix.
                          2 is equivalent to 1 if matrix is real.
      M             Number of rows in matrix A
      N             Number of columns in matrix C
      K             Number of columns in matrix A
      ALPHA         Scalar parameter
      DESCRA()      Descriptor argument.  Five element integer array
                    DESCRA(1) matrix structure
                      0 : general
                      1 : symmetric (A=A')
                      2 : Hermitian (A= CONJG(A'))
                      3 : Triangular
                      4 : Skew(Anti)-Symmetric (A=-A')
                      5 : Diagonal
                      6 : Skew-Hermitian (A= -CONJG(A'))
                    DESCRA(2) upper/lower triangular indicator
                      1 : lower
                      2 : upper
                    DESCRA(3) main diagonal type
                      0 : non-unit
                      1 : unit
                    DESCRA(4) Array base  (NOT IMPLEMENTED)
                      0 : C/C++ compatible
                      1 : Fortran compatible
                    DESCRA(5) repeated indices? (NOT IMPLEMENTED)
                      0 : unknown
                      1 : no repeated indices
      VAL()         scalar array of length NNZ consisting of nonzero
                    entries of A.
      INDX()        integer array of length NNZ consisting of the row
                    indices of nonzero entries of A.
      PNTRB()       integer array of length K such that PNTRB(J)-PNTRB(1)+1
                    points to location in VAL of the first nonzero element
                    in column J.
      PNTRE()       integer array of length K such that PNTRE(J)-PNTRB(1)
                    points to location in VAL of the last nonzero element
                    in column J.
      B()           rectangular array with first dimension LDB.
      LDB           leading dimension of B
      BETA          Scalar parameter
      C()           rectangular array with first dimension LDC.
      LDC           leading dimension of C
      WORK()        scratch array of length LWORK. WORK is not
                    referenced in the current version.
      LWORK         length of WORK array. LWORK is not referenced
                    in the current version.
     NIST FORTRAN Sparse Blas User's Guide available at:
     http://math.nist.gov/mcsd/Staff/KRemington/fspblas/
     "Document for the Basic Linear Algebra Subprograms (BLAS)
     Standard", University of Tennessee, Knoxville, Tennessee,
     1996:
     http://www.netlib.org/utk/papers/sparse.ps
NOTES/BUGS
     It is known that there exists another representation of the
     compressed sparse column format (see for example Y.Saad,
     "Iterative Methods for Sparse Linear Systems", WPS, 1996).
     Its data structure consists of three array instead of the
     four used in the current implementation.  The main
     difference is that only one array, IA, containing the
     pointers to the beginning of each column  in the arrays VAL
     and INDX is used instead of two arrays PNTRB and PNTRE. To
     use the routine with this kind of sparse column format the
     following calling sequence should be used
       SUBROUTINE SCSCMM( TRANSA, M, N, K, ALPHA, DESCRA,
      *           VAL, INDX, IA, IA(2), B, LDB, BETA,
      *           C, LDC, WORK, LWORK )