Contents


NAME

     zvbrmm - variable block sparse row format matrix-matrix
     multiply

SYNOPSIS

       SUBROUTINE ZVBRMM( TRANSA, MB, N, KB, ALPHA, DESCRA,
      *           VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE,
      *           B, LDB, BETA, C, LDC, WORK, LWORK)
       INTEGER    TRANSA, MB, N, KB, DESCRA(5), LDB, LDC, LWORK
       INTEGER    INDX(*), BINDX(*), RPNTR(MB+1), CPNTR(KB+1),
      *           BPNTRB(MB), BPNTRE(MB)
       DOUBLE COMPLEX ALPHA, BETA
       DOUBLE COMPLEX VAL(*), B(LDB,*), C(LDC,*), WORK(LWORK)

       SUBROUTINE ZVBRMM_64( TRANSA, MB, N, KB, ALPHA, DESCRA,
      *           VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE,
      *           B, LDB, BETA, C, LDC, WORK, LWORK)
       INTEGER*8  TRANSA, MB, N, KB, DESCRA(5), LDB, LDC, LWORK
       INTEGER*8  INDX(*), BINDX(*), RPNTR(MB+1), CPNTR(KB+1),
      *           BPNTRB(MB), BPNTRE(MB)
       DOUBLE COMPLEX ALPHA, BETA
       DOUBLE COMPLEX VAL(*), B(LDB,*), C(LDC,*), WORK(LWORK)

     F95 INTERFACE

       SUBROUTINE VBRMM(TRANSA, MB, [N], KB, ALPHA, DESCRA,
      *           VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE,
      *           B, [LDB], BETA, C,[LDC], [WORK], [LWORK])
       INTEGER    TRANSA, MB, KB
       INTEGER, DIMENSION(:) ::  DESCRA, INDX, BINDX
       INTEGER, DIMENSION(:) ::  RPNTR, CPNTR, BPNTRB, BPNTRE
       DOUBLE COMPLEX    ALPHA, BETA
       DOUBLE COMPLEX, DIMENSION(:) :: VAL
       DOUBLE COMPLEX, DIMENSION(:, :) ::  B, C

       SUBROUTINE VBRMM_64(TRANSA, MB, [N], KB, ALPHA, DESCRA,
      *           VAL, INDX, BINDX, RPNTR, CPNTR, BPNTRB, BPNTRE,
      *           B, [LDB], BETA, C,[LDC], [WORK], [LWORK])
       INTEGER*8    TRANSA, MB, KB
       INTEGER*8, DIMENSION(:) ::  DESCRA, INDX, BINDX
       INTEGER*8, DIMENSION(:) ::  RPNTR, CPNTR, BPNTRB, BPNTRE
       DOUBLE COMPLEX    ALPHA, BETA
       DOUBLE COMPLEX, DIMENSION(:) :: VAL
       DOUBLE COMPLEX, DIMENSION(:, :) ::  B, C

DESCRIPTION

               C <- alpha op(A) B + beta C
      where ALPHA and BETA are scalar, C and B are  matrices,
      A is a matrix represented in variable block sparse row  format
      and op( A )  is one  of

      op( A ) = A   or   op( A ) = A'   or   op( A ) = conjg( A' ).
                                         ( ' indicates matrix transpose)

ARGUMENTS

      TRANSA        Indicates how to operate with the sparse matrix
                      0 : operate with matrix
                      1 : operate with transpose matrix
                      2 : operate with the conjugate transpose of matrix.
                          2 is equivalent to 1 if the matrix is real.

      MB            Number of block rows in matrix A

      N             Number of columns in matrix C

      KB            Number of block columns in matrix A

      ALPHA         Scalar parameter

      DESCRA()      Descriptor argument.  Five element integer array
                    DESCRA(1) matrix structure
                      0 : general
                      1 : symmetric (A=A')
                      2 : Hermitian (A= CONJG(A'))
                      3 : Triangular
                      4 : Skew(Anti)-Symmetric (A=-A')
                      5 : Diagonal
                      6 : Skew-Hermitian (A= -CONJG(A'))
                    DESCRA(2) upper/lower triangular indicator
                      1 : lower
                      2 : upper
                    DESCRA(3) main diagonal type
                      0 : non-unit
                      1 : unit
                    DESCRA(4) Array base  (NOT IMPLEMENTED)
                      0 : C/C++ compatible
                      1 : Fortran compatible
                    DESCRA(5) repeated indices? (NOT IMPLEMENTED)
                      0 : unknown
                      1 : no repeated indices

      VAL()         scalar array of length NNZ consisting of the block entries
                    of A where each block entry is a dense rectangular matrix
                    stored column by column.
                    NNZ is the total number of point entries in all nonzero
                    block  entries of a matrix A.
      INDX()        integer array of length BNNZ+1 where BNNZ is the number of
                    block entries of a matrix A such that the I-th element of
                    INDX[] points to the location in VAL of the (1,1) element
                    of the I-th block entry.

      BINDX()       integer array of length BNNZ consisting of the block
                    column indices of the block entries of A where BNNZ is
                    the number block entries of a matrix A.

      RPNTR()       integer array of length MB+1 such that RPNTR(I)-RPNTR(1)+1
                    is the row index of the first point row in the I-th block
                    row.
                    RPNTR(MB+1) is set to M+RPNTR(1) where M is the number of
                    rows in matrix A.
                    Thus, the number of point rows in the I-th block row is
                    RPNTR(I+1)-RPNTR(I).

      CPNTR()       integer array of length KB+1 such that CPNTR(J)-CPNTR(1)+1
                    is the column index of the first point column in the J-th
                    block column. CPNTR(KB+1) is set to K+CPNTR(1) where K is
                    the number of columns in matrix A.
                    Thus, the number of point columns in the J-th block column
                    is CPNTR(J+1)-CPNTR(J).

      BPNTRB()      integer array of length MB such that BPNTRB(I)-BPNTRB(1)+1
                    points to location in BINDX of the first block entry of
                    the I-th block row of A.

      BPNTRE()      integer array of length MB such that BPNTRE(I)-BPNTRB(1)
                    points to location in BINDX of the last block entry of
                    the I-th block row of A.

      B()           rectangular array with first dimension LDB.

      LDB           leading dimension of B

      BETA          Scalar parameter

      C()           rectangular array with first dimension LDC.

      LDC           leading dimension of C

      WORK()        scratch array of length LWORK. WORK is not
                    referenced in the current version.

      LWORK         length of WORK array. LWORK is not referenced
                    in the current version.

SEE ALSO

     NIST FORTRAN Sparse Blas User's Guide available at:
     http://math.nist.gov/mcsd/Staff/KRemington/fspblas/

     "Document for the Basic Linear Algebra Subprograms (BLAS)
     Standard", University of Tennessee, Knoxville, Tennessee,
     1996:

     http://www.netlib.org/utk/papers/sparse.ps

NOTES/BUGS
     1. For a general matrix (DESCRA(1)=0), array CPNTR can be
     different from RPNTR.  For all other matrix types,  RPNTR
     must equal CPNTR and a single array can be passed for both
     arguments.

     2.It is known that there exists another representation of
     the variable block sparse row format (see for example
     Y.Saad, "Iterative Methods for Sparse Linear Systems", WPS,
     1996). Its data structure consists of six array instead of
     the seven used in the current implementation.  The main
     difference is that only one array, IA, containing the
     pointers to the beginning of each block row in the array
     BINDX is used instead of two arrays BPNTRB and BPNTRE. To
     use the routine with this kind of variable block sparse row
     format the following calling sequence should be used

       SUBROUTINE ZVBRMM( TRANSA, MB, N, KB, ALPHA, DESCRA,
      *           VAL, INDX, BINDX, RPNTR, CPNTR, IA, IA(2),
      *           B, LDB, BETA, C, LDC, WORK, LWORK )