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Preface

This manual tells you how to use C++ 5.0 features to write more efficient programs.

Who Should Use This Book
This manual is intended for programmers with a working knowledge of C++ and
some understanding of the Solaris

TM

operating environment and UNIX® commands.

How This Book Is Organized
This book contains the following chapters:

Chapter 1, "Introduction," briefly describes the features of the compiler.

Chapter 2, "Program Organization," discusses header files, inline function definitions,
and template definitions.

Chapter 3, "Pragmas," provides information on using pragmas, or directives, to pass
specific information to the compiler.

Chapter 4, "Templates," discusses the definition and use of templates.

Chapter 5, "Exception Handling," discusses the Sun C++ 5.0 compiler’s
implementation of exception handling.

Chapter 6, "Runtime Type Identification," explains RTTI and introduces the RTTI
options supported by the compiler.
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Chapter 7, "Cast Operations," describes new cast operations.

Chapter 9, "Performance," explains how to improve the performance of C++
functions.

Multiplatform Release
Note - The name of the latest Solaris operating environment release is Solaris 7 but
code and path or package path names may use Solaris 2.7 or SunOS 5.7.

The Sun
TM

WorkShop
TM

documentation applies to Solaris 2.5.1, Solaris 2.6, and Solaris
7 operating environments on:

� The SPARC
TM

platform

� The x86 platform, where x86 refers to the Intel implementation of one of the
following: Intel 80386, Intel 80486, Pentium, or the equivalent

Note - The term “x86” refers to the Intel 8086 family of microprocessor chips,
including the Pentium, Pentium Pro, and Pentium II processors and compatible
microprocessor chips made by AMD and Cyrix. In this document, the term “x86”
refers to the overall platform architecture. Features described in this book that are
particular to a specific platform are differentiated by the terms “SPARC” and
“x86” in the text.

C++ Compiler Related Books
The following books are part of the C++ 5.0 documentation package.

� C++ User’s Guide instructs you in the use of the C++ 5.0 compiler and provides
detailed information on command-line options.

� C++ Library Reference describes the C++ libraries, including the C++ Standard
Library, the Tools.h++ Class Library, the Sun WorkShop Memory Monitor, and
the iostream and complex libraries.

� C++ Migration Guide explains what you need to know when moving from 4.0,
4.0.1, 4.1, or 4.2 versions of the C++ compiler to the C++ 5.0 version.

� Tools.h++ User’s Guide discusses use of the C++ classes for enhancing the
efficiency of your programs.

� Tools.h++ Class Library Reference provides details on the Tools.h++ class library.
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� C++ Standard Library 2.0 User’s Guide instructs you in the use of the C++
Standard Library, including locales and iostreams.

� C++ Standard Library Class Reference provides more detailed information on the
use of the C++ Standard Library.

� Sun WorkShop Memory Monitor User’s Guide describes how to use the Sun
WorkShop Memory Monitor garbage collection and memory management tools.

Other Sun WorkShop Books
The following books are part of the Sun Visual WorkShop C++ documentation
package:

� Sun WorkShop Quick Install provides installation instructions.

� Sun WorkShop Installation and Licensing Reference provides supporting
installation and licensing information.

� Sun Visual WorkShop C++ Overview gives a high-level outline of the C++
package suite.

� Using Sun WorkShop gives information on performing development operations
through Sun WorkShop.

� C User’s Guide tells how to use the C compiler.

� Numerical Computation Guide details floating-point computation numerical
accuracy issues.

� Debugging a Program With dbx provides information on using dbx commands
to debug a program.

� Analyzing Program Performance With Sun WorkShop describes the profiling tools;
the LoopTool, LoopReport, and LockLint utilities; and use of the Sampling
Analyzer to enhance program performance.

� Sun WorkShop TeamWare User’s Guide describes how to use the Sun WorkShop
TeamWare code management tools.

� Sun WorkShop Performance Library Reference Manual discusses the library of
subroutines and functions to perform useful operations in computational linear
algebra and Fourier transforms.

� Sun WorkShop Visual User’s Guide describes how to use Visual to create C++ and
Java

TM

graphical user interfaces.

Solaris Books
The following Solaris manuals and guides provide additional useful information:

� The Solaris Linker and Libraries Guide gives information on linking and libraries.
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� The Solaris Programming Utilities Guide provides information for developers about
the special built-in programming tools available in the SunOS

TM

system.

Commercially Available Books
The following is a partial list of available books on the C++ language.

Object-Oriented Analysis and Design with Applications, Second Edition, Grady Booch
(Addison-Wesley, 1994)

Thinking in C++, Bruce Eckel (Prentice Hall, 1995)

The Annotated C++ Reference Manual, Margaret A. Ellis and Bjarne Stroustrup
(Addison-Wesley, 1990)

Design Patterns: Elements of Reusable Object-Oriented Software, Erich Gamma,
Richard Helm, Ralph Johnson and John Vlissides, (Addison-Wesley, 1995)

C++ Primer, Third Edition, Stanley B. Lippman and Josee Lajoie (Addison-Wesley,
1998)

Effective C++-50 Ways to Improve Your Programs and Designs, Second Edition, Scott
Meyers (Addison-Wesley, 1998)

More Effective C++-35 Ways to Improve Your Programs and Designs, Scott Meyers
(Addison-Wesley, 1996)

STL Tutorial and Reference Guide-Programming with the Standard Template Library,
David R. Musser and Atul Saini (Addison-Wesley, 1996)

C++ for C Programmers, Ira Pohl (Benjamin/Cummings, 1989)

The C++ Programming Language, Third Edition, Bjarne Stroustrup (Addison-Wesley,
1997)

Ordering Sun Documents
The SunDocs

TM

program provides more than 250 manuals from Sun Microsystems,
Inc. If you live in the United States, Canada, Europe, or Japan, you can purchase
documentation sets or individual manuals using this program.

For a list of documents and how to order them, see the catalog section of the
SunExpress

TM

Internet site at http://www.sun.com/sunexpress .
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Accessing Sun Documents Online
Sun WorkShop documentation is available online from several sources:

� The docs.sun.com Web site

� AnswerBook2TM collections

� HTML documents

� Online help and release notes

Using the docs.sun.com Web site
The docs.sun.com Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title
or subject. The URL is http://docs.sun.com .

Accessing AnswerBook2 Collections
The Sun WorkShop documentation is also available using AnswerBook2 software. To
access the AnswerBook2 collections, your system administrator must have installed
the AnswerBook2 documents during the installation process (if the documents are
not installed, see your system administrator or Chapter 3 of Sun WorkShop Quick
Install for installation instructions). For information about accessing AnswerBook2
documents, see Chapter 6 of Sun WorkShop Quick Install, Solaris installation
documentation, or your system administrator.

Note - To access AnswerBook2 documents, Solaris 2.5.1 users must first download
AnswerBook2 documentation server software from a Sun Web page. For more
information, see Chapter 6 of Sun WorkShop Quick Install.

Accessing HTML Documents
The following Sun Workshop documents are available online only in HTML format:

� Tools.h++ Class Library Reference

� Tools.h++ User’s Guide

� Numerical Computation Guide
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� Standard C++ Library User’s Guide

� Standard C++ Class Library Reference

� Sun WorkShop Performance Library Reference Manual

� Sun WorkShop Visual User’s Guide

� Sun WorkShop Memory Monitor User’s Manual

To access these HTML documents:

1. Open the following file through your HTML browser:

install-directory/SUNWspro/DOC5.0/lib/locale/C/html/index.html

Replace install-directory with the name of the directory where your Sun WorkShop
software is installed (the default is /opt ).

The browser displays an index of the HTML documents for the Sun WorkShop
products that are installed.

2. Open a document in the index by clicking the document’s title.

Accessing Sun WorkShop Online Help and
Release Notes
This release of Sun WorkShop includes an online help system as well as online
manuals. To find out more see:

� Online Help. A help system containing extensive task-oriented, context-sensitive
help. To access the help, choose Help Help Contents. Help menus are available in
all Sun WorkShop windows.

� Release Notes. The Release Notes contain general information about Sun
WorkShop and specific information about software limitations and bugs. To access
the Release Notes, choose Help Release Notes.

Man Pages
Online man pages provide immediate documentation about a command or library
function. You can display a man page by running the command:

demo% man topic

Man pages are in:

opt-install-dir/SUNWspro/man

Table P–1 lists and describes the C++ man pages.
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Note - Before you use the man command, at the beginning of your search path,
insert the name of the directory in which you have chosen to install the C++
compiler. This enables you to use the man command. This is usually done in the
.cshrc file, in a line with setenv MANPATH at the start; or in the .profile file, in a
line with export MANPATH at the start.

TABLE P–1 C++ Man Pages

Title Description

CC Drives the C++ compilation system

cartpol Provides Cartesian/polar functions in the C++ complex number math
library

cplx.intro Introduces the C++ complex number math library

cplxerr Provides complex error-handling functions in the C++ complex number
math library

cplxops Provides arithmetic operator functions in the C++ complex number math
library

cplextrig Provides trigonometric operator functions in the C++ complex number
math library

demangle Decodes a C++ encoded symbol name

filebuf Buffer class for file I/O

fstream Provides stream class for file I/O

istream Supports formatted and unformatted input

ios Provides basic iostream formatting

ios.intro Introduces iostream man pages

manip Provides iostream manipulators

ostream Supports formatted and unformatted output

queue Provides list management for task library

sbufprot Provides protected interface of streambuffer base class

sbufpub Provides public interface of streambuffer base class
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TABLE P–1 C++ Man Pages (continued)

Title Description

sigfpe Allows signal handling for specific SIGFPE codes

ssbuf Provides buffer class for character arrays

stdarg Handles variable argument list

stdiobuf Provides buffer and stream classes for use with C stdio

stream_locker Provides class used for application level locking of iostream class object

stream_MT Base class that provides dynamic changing of iostream class object to and
from MT safely

strstream Provides stream class for I/O using character arrays

varargs Handles variable argument list

vector Provides generic vector and stack

Table P–2 lists man pages that contain information related to the C++ compiler.

TABLE P–2 Man Pages Related to C++

Title Description

c++filt Copies each file name in sequence and writes it in the standard output
after decoding symbols that look like C++ demangled names.

dem Demangles one or more C++ names that you specify

fbe Creates object files from assembly language source files.

fpversion Prints information about the system CPU and FPU

gprof Produces execution profile of a program

ild Links incrementally, allowing insertion of modified object code into a
previously built executable

inline Expands assembler inline procedure calls
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TABLE P–2 Man Pages Related to C++ (continued)

Title Description

lex Generates lexical analysis programs

rpcgen Generates C/C++ code to implement an RPC protocol

version Displays version identification of object file or binary

yacc Converts a context-free grammar into a set of tables for a simple
automaton that executes an LALR(1) parsing algorithm

READMEfile
The READMEfile highlights important information about the compiler, including:

� New and changed features

� Software incompatibilities

� Current software bugs

� Information discovered after the manuals were printed

README files are in:

opt-install-dir/SUNWspro/READMEs

To view the C++ compiler READMEfile, type:

%CC -readme

What Typographic Changes Mean
The following table describes the typographic changes used in this book.
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TABLE P–3 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; on-screen computer
output.

Edit your .login file.

Use ls -a to list all files.

machine_name% You have mail.

AaBbCc123 What you type, contrasted with
on-screen computer output.

machine_name% su

Password:

AaBbCc123 Command-line placeholder:

replace with a real name or value.

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or terms, or
words to be emphasized

Read Chapter 6 in User’s Guide.
These are called class options.

You must be root to do this.

Compiler options and commands use the following conventions:

[ ] Square brackets contain arguments
that are optional.

-xO[n]

( ) Parentheses contain a set of choices
for a required option.

-d(y|n)

| The “pipe” or “bar” symbol
separates arguments, only one of
which may be used at one time.

–d(y|n)

... The ellipsis indicates omission in a
series.

-xinline= f1[,...fn]

% The percent sign indicates the
word has a special meaning.

-ftrap=%all, no%division

<> In ASCII files, such as the README
file, angle brackets contain a
variable that must be replaced by
an appropriate value.

-xtemp=< dir>

xvi C++ Programming Guide ♦ Revision A, February 1999



Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the
C shell, Bourne shell, and Korn shell.

TABLE P–4 System Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

xvii
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CHAPTER 1

Introduction

The Sun C++ compiler, CC, described in this book (and the companion book, C++
User’s Guide) is available under the Solaris 2.5.1, 2.6, and Solaris 7 operating
environments on the hardware platforms in SPARC and x86. Sun C++ 5.0
implements the language and libraries described in the C++ International Standard.

The C++ Language
C++ was first described in The C++ Programming Language by Bjarne Stroustrup, and
later more formally described in The Annotated C++ Reference Manual, by Margaret
Ellis and Bjarne Stroustrup. An international standard for C++ is now available.

C++ is designed as a superset of the C programming language. While retaining
efficient low-level programming, C++ adds:

� Stronger type checking

� Extensive data abstraction features

� Support for object-oriented programming

� Synchronous exception handling

� A large standard library

The support for object-oriented programming allows good design of modular and
extensible interfaces among program modules. The standard library, including an
extensible set of data types and algorithms, speeds the development of common
applications.
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Data Abstraction
C++ directly supports the use of programmer-defined data types that function much
like the predefined data types already in the language. Such abstract data types can
be defined to model the problem being solved.

Object-Oriented Features
The class, the fundamental unit of data abstraction in C++, contains data and defines
operations on the data.

A class can build on one or more classes; this property is called inheritance, or
derivation. The inherited class (or parent class) is called a base class in C++. It is
known as a super class in other programming languages. The child class is called a
derived class in C++. It is called a subclass in other programming languages. A
derived class has all the data (and usually all the operations) of its base classes. It
might add new data or replace operations from the base classes

A class hierarchy can be designed to replace a base class with a derived class. For
example, a Window class could have, as a derived class, a ScrollingWindow class
that has all the properties of the Window class, but also allows scrolling of its
contents. The ScrollingWindow class can then be used wherever the Window class
is expected. This substitution property is known as polymorphism (meaning “many
forms”).

A program is said to be object-oriented when it is designed with abstract data types
that use inheritance and exhibit polymorphism.

Type Checking
A compiler, or interpreter, performs type checking when it ensures that operations are
applied to data of the correct type. C++ has stronger type checking than C, though
not as strong as that provided by Pascal, which always prohibits attempts to use data
of the wrong type. The C++ compiler produces errors in some cases, but in others, it
converts data to the correct type.

In addition to having the C++ compiler perform these automatic conversions, you
can explicitly convert between types using type casts.

A related area involves overloaded function names. In C++, you can give any
number of functions the same name. The compiler decides which function should be
called by checking the types of the parameters to the function call. If the correct
function is not clear at compile time, the compiler issues an “ambiguity” error.
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Classes and Data Abstraction
If you are a C programmer, think of a class as an extension of the struct type. A
struct contains predefined data types, for example, char or int , and might also
contain other struct types. C++ allows a struct type to have not only data types
to store data, but also operations to manipulate the data. The C++ keyword class is
analogous to struct in C. As a matter of style, many programmers use struct to
mean a C-compatible struct type, and class to mean a struct type that has C++
features not available in C.

C++ provides classes as a means for data abstraction. You decide what types (classes)
you want for your program data and then decide what operations each type needs.
In other words, a C++ class is a user-defined data type.

For example, if you define a class BigNum, which implements arithmetic for very
large integers, you can define the + operator so that it has a meaning when used
with objects in the class BigNum. If, in the following expression, n1 and n2 are
objects of the type BigNum, then the expression has a value determined by your
definition of + for BigNum.

n1 + n2

In the absence of an operator +() that you define, the + operation would not be
allowed on a class type. The + operator is predefined only for the built-in numeric
types such as int , long , or float . Operators with such extra definitions are called
overloaded operators.

The data storage elements in a C++ class are called data members. The operations in a
C++ class include both functions and overloaded, built-in operators (special kinds of
functions). A class’s functions can be member functions (declared as part of the
class), or nonmember functions (declared outside the class). Member functions exist
to operate on members of the class. Nonmember functions must be declared friend
functions if they need to access private or protected members of the class directly.

You can specify the level of access for a class member using the public , private ,
and protected member access specifiers. Public members are available to all functions
in the program. Private members are available only to member functions and friend
functions of the class. Protected members are available only to members and friends
of the base class and members and friends of derived classes. You can apply the
same access specifiers to base classes, limiting access to all members of the affected
base class.

Compatibility With C
C++ was designed to be highly compatible with C. C programmers can learn C++ at
their own pace and incorporate features of the new language when it seems
appropriate. C++ supplements what is good and useful about C. Most important,

Introduction 3



C++ retains C’s efficient interface to the hardware of the computer, including types
and operators that correspond directly to components of computing equipment.

C++ does have some important differences. An ordinary C program might not be
accepted by the C++ compiler without some modifications. See the C++ Migration
Guide for information about what you must know to move from programming in C
to programming in C++.

The differences between C and C++ are most evident in the way you can design
interfaces between program modules, but C++ retains all of C’s facilities for
designing such interfaces. You can, for example, link C++ modules to C modules, so
you can use C libraries with C++ programs.

C++ differs from C in a number of other details. In C++:

� Typed constants allow you to avoid the preprocessor and use named constants in
your program.

� Function prototypes are required.

� The free store operators new and delete create dynamic objects of a specified
type.

� References are automatically dereferenced pointers and act like alternate names for
a variable. You can use references as function parameters.

� Special built-in operator names for type coercion are provided.

� Programmer-defined automatic type conversion is allowed.

� Variable declarations are allowed anywhere a statement may appear. They may
also occur within the header of an if , switch , or loop statement, not just at the
beginning of the block.

� A new comment marker begins a comment that extends to the end of the line.

� The name of an enumeration or class is automatically a type name.

� Default values can be assigned to function parameters.

� Inline functions can replace a function call with the function body, improving
program efficiency without resorting to macros.
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CHAPTER 2

Program Organization

The file organization of a C++ program requires more care than is typical for a C
program. This chapter describes how to set up your header files, inline function
definitions, and template definitions.

Header Files
Creating an effective header file can be difficult. Often your header file must adapt to
different versions of both C and C++. To accommodate templates, make sure your
header file is tolerant of multiple inclusions (idempotent), and is self-contained.

Language-Adaptable Header Files
You might need to develop header files for inclusion in both C and C++ programs.
However, Kernighan and Ritchie C (K&R C), also known as “classic C,” ANSI C,
Annotated Reference Manual C++ (ARM C++), and ISO C++ sometimes require
different declarations or definitions for the same program element within a single
header file. (See the C++ Migration Guide for additional information on the variations
between languages and versions.) To make header files acceptable to all these
standards, you might need to use conditional compilation based on the existence or
value of the preprocessor macros _ _STDC_ _ and _ _cplusplus .

The macro _ _STDC_ _ is not defined in K&R C, but is defined in both ANSI C and
C++. Use this macro to separate K&R C code from ANSI C or C++ code. This macro
is most useful for separating prototyped from nonprototyped function definitions.

#ifdef
_ _STDC_ _
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int function(char*,...); // C++ & ANSI C declaration
#else
int function(); // K&R C
#endif

The macro _ _cplusplus is not defined in C, but is defined in C++.

Note - Early versions of C++ defined the macro c_plusplus instead of
_ _cplusplus . The macro c_plusplus is no longer defined.

Use the definition of the _ _cplusplus macro to separate C and C++. This macro is
most useful in guarding the specification of an extern "C" interface for function
declarations, as shown in the following example. To prevent inconsistent
specification of extern "C" , never place an #include directive within the scope of
an extern "C" linkage specification.

#include ‘‘header.h’’
... // ... other include files ...
#if defined(_ _cplusplus)
extern ‘‘C’’ {
#endif

int g1();
int g2();
int g3()

#if defined(_ _cplusplus)
}
#endif

In ARM C++, the _ _cplusplus macro has a value of 1. In ISO C++, the macro has
the value 199711L (the year and month of the standard expressed as a long
constant). Use the value of this macro to separate ARM C++ from ISO C++. The
macro value is most useful for guarding changes in template syntax.

// template function specialization
#if _ _cplusplus < 199711L
int power(int,int); // ARM C++
#else
template <> int power(int,int); // ISO C++
#endif

Idempotent Header Files
Your header files should be idempotent. That is, the effect of including a header file
many times should be exactly the same as including the header file only once. This
property is especially important for templates. You can best accomplish idempotency
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by setting preprocessor conditions that prevent the body of your header file from
appearing more than once.

#ifndef HEADER_H
#define HEADER_H
/* contents of header file */
#endif

Self-Contained Header Files
Your header files should include all the definitions that they need to be fully
compilable. Make your header file self-contained by including within it all header
files that contain needed definitions.

#include ‘‘another.h’’
/* definitions that depend on another.h */

In general, your header files should be both idempotent and self-contained.

#ifndef HEADER_H
#define HEADER_H
#include ‘‘another.h’’
/* definitions that depend on another.h */
#endif

Unnecessary Header File Inclusion
Programs written in C++ typically include many more declarations than do C
programs, resulting in longer compilation times. You can reduce the number of
declarations through judicious use of several techniques.

One technique is to conditionally include the header file itself, using the macro
defined to make it idempotent. This approach introduces an additional interfile
dependence.

#ifndef HEADER_H
#include ‘‘header.h’’
#endif
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Note - System header files often include guards of the form _Xxxx , where X is an
uppercase letter. These identifiers are reserved and should not be used as a model for
constructing macro guard identifiers.

Another way to reduce compilation time is to use incomplete class and structure
declarations rather than including a header file that contains the definitions. This
technique is applicable only if the complete definition is not needed, and if the
identifier is actually a class or structure, and not a typedef or template. (The standard
library has many typedefs that are actually templates and not classes.) For example,
rather than writing:

#include ‘‘class.h’’
a_class* a_ptr;

write:

class a_class;
a_class* a_ptr;

(If a_class is really a typedef, the technique does not work.)

One other technique is to use interface classes and factories, as described in the book
Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma,
Addison Wesley, 1994.

Inline Function Definitions
You can organize your inline function definitions in two ways: with definitions inline
and with definitions included. Each approach has advantages and disadvantages.

Definitions Inline
You can use the definitions-inline organization only with member functions. Place
the body of the function directly following the function declaration within the class
definition.

class Class
{

int method() { return 3; }
};
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This organization avoids repeating the prototype of the function, reduces the bulk of
source files and the chance for inconsistencies. However, this organization can
introduce implementation details into what would otherwise be read as an interface.
You would have to do significant editing if the function became non-inline.

Use this organization only when the body of the function is trivial (that is, empty
braces) or the function will always be inline.

Definitions Included
You can use the definitions-included organization for all inline functions. Place the
body of the function together with a repeat (if necessary) of the prototype. The
function definition may appear directly within the source file or be included with the
source file

class Class {
int method();

};
inline int Class::method() {

return 3;
}

.

This organization separates interface and implementation. You can move definitions
easily from header files to source files when the function is no longer implemented
inline. The disadvantage is that this organization repeats the prototype of the class,
which increases the bulk of source files and the chance for inconsistencies.

Template Definitions
You can organize your template definitions in two ways: with definitions included
and with definitions separated. The definitions-included organization allows greater
control over template compilation.

Definitions Included
When you put the declarations and definitions for a template within the file that uses
the template, the organization is definitions-included. For example:
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main.cc template <class Number> Number twice( Number original ); template
<class Number> Number twice( Number original ){ return original +
original; } int main( ){ return twice<int>( -3 ); }

When a file using a template includes a file that contains both the template’s
declaration and the template’s definition, the file that uses the template also has the
definitions-included organization. For example:

twice.h #ifndef TWICE_H #define TWICE_H template <class Number> Number
twice( Number original ); template <class Number> Number twice(
Number original ){ return original + original; } #endif

main.cc #include “twice.h” int main( ){ return twice( -3 ); }

Note - It is very important to make your template headers idempotent. (See
“Idempotent Header Files” on page 9.)

Definitions Separate
Another way to organize template definitions is to keep the definitions in template
definition files, as shown in the following example.

twice.h template <class Number> Number twice( Number original );

twice.cc template <class Number> Number twice( Number original ){ return
original + original; }

main.cc #include “twice.h” int main( ){ return twice<int>( -3 ); }

Template definition files must not include any non-idempotent header files and often
need not include any header files at all. (See “Idempotent Header Files” on page 9.)

Note - Although it is common to use source-file extensions for template definition
files (.c , .C , .cc , .cpp , .cxx ), template definition files are header files. The
compiler includes them automatically if necessary. Template definition files should
not be compiled independently.

If you place template declarations in one file and template definitions in another file,
you have to be very careful how you construct the definition file, what you name it,
and where you put it. You might also need to identify explicitly to the compiler the
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location of the definitions. Refer to C++ User’s Guide for information about the
template definition search rules.
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CHAPTER 3

Pragmas

This chapter describes pragmas. A pragma is a compiler directive that allows the you
to provide additional information to the compiler. This information can change
compilation details that are not otherwise under your control. For example the pack
pragma affects the layout of data within a structure. Compiler pragmas are also
called directives.

Pragma Forms
Note - Pragmas are not part of any C++ standard.

The various forms of a CCpragma are:

#pragma keyword
#pragma keyword

( a [ , a
] ) [ , keyword ( a [ , a ] … ) ] ,…

#pragma sun keyword

The variable keyword identifies the specific directive; a indicates an argument.

The pragma keywords recognized by CCare:

� −align – Makes the parameter variables memory-aligned to a specified number
of bytes, overriding the default.

� init – Marks a specified function as an initialization function.

� fini – Marks a specified function as a finalization function.
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� ident – Places a specified string in the .comment section of the executable.

� pack ( n) – Controls the layout of structure offsets. The value of n is a number—0,
1, 2, 4, or 8—that specifies the worst-case alignment desired for any structure
member.

� unknown_control_flow – Specifies a list of routines that violate the usual
control flow properties of procedure calls.

� weak – Defines weak symbol bindings.

Pragma Reference
#pragma align integer( variable[, variable]...)

Use align to make the listed variables memory-aligned to integer bytes, overriding
the default. The following limitations apply:

� integer must be a power of 2 between 1 and 128; valid values are 1, 2, 4, 8, 16, 32,
64, and 128.

� variable is a global or static variable; it cannot be a local variable or a class member
variable.

� If the specified alignment is smaller than the default, the default is used.

� The pragma line must appear before the declaration of the variables that it
mentions; otherwise, it is ignored.

� Any variable mentioned on the pragma line but not declared in the code following
the pragma line is ignored. Variables in the following example are properly
declared.

#pragma align 64 (aninteger, astring, astruct)
int aninteger;
static char astring[256];
struct S {int a; char *b;} astruct;

#pragma init( identifier [ , identifier ] ...)

Use init to mark identifier as an initialization function. Such functions are expected
to be of type void , to accept no arguments, and to be called while constructing the
memory image of the program at the start of execution. Initializers in a shared object
are executed during the operation that brings the shared object into memory, either
at program start up or during some dynamic loading operation, such as dlopen() .
The only ordering of calls to initialization functions is the order in which they are
processed by the link editors, both static and dynamic.
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Within a source file, the functions specified in #pragma init are executed after the
static constructors in that file. You must declare the identifiers before using them in
the pragma.

#pragma fini ( identifier [, identifier]...)

Use fini to mark identifier as a finalization function. Such functions are expected to
be of type void , to accept no arguments, and to be called either when a program
terminates under program control or when the containing shared object is removed
from memory. As with initialization functions, finalization functions are executed in
the order processed by the link editor.

In a source file, the functions specified in #pragma fini are executed after the
static destructors in that file. You must declare the identifiers before using them in
the pragma.

#pragma ident string

Use ident to place string in the .comment section of the executable.

#pragma pack([ n])

Use pack to affect the packing of structure members.

If present, n must be 0 or a power of 2. A value of other than 0 instructs the compiler
to use the smaller of n-byte alignment and the platform’s natural alignment for the
data type. For example, the following directive causes the members of all structures
defined after the directive (and before subsequent pack directives) to be aligned no
more strictly than on 2-byte boundaries, even if the normal alignment would be on
4- or 8-byte boundaries.

#pragma pack(2)

When n is 0 or omitted, the member alignment reverts to the natural alignment
values.

If the value of n is the same as or greater than the strictest alignment on the
platform, the directive has the effect of natural alignment.
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TABLE 3–1 Strictest Alignment by Platform

Platform
Strictest
Alignment

x86 4

SPARC generic, v7, v8, v8a, v8plus, v8plusa 8

SPARC v9, v9a 16

A pack directive applies to all structure definitions which follow it, until the next
pack directive. If the same structure is defined in different translation units with
different packing, your program may fail in unpredictable ways. In particular, you
should not use a pack directive prior to including a header defining the interface of
a precompiled library. The recommended usage is to place the pack directive in your
program code, immediately before the structure to be packed, and to place
#pragma pack() immediately after the structure.

#pragma unknown_control_flow ( name, [, name] ...)

Use unknown_control_flow to specify a list of routines that violate the usual
control flow properties of procedure calls. For example, the statement following a call
to setjmp() can be reached from an arbitrary call to any other routine. The
statement is reached by a call to longjmp() .

Because such routines render standard flowgraph analysis invalid, routines that call
them cannot be safely optimized; hence, they are compiled with the optimizer
disabled.

#pragma weak function-name1 [= function-name2]

Use weak to define a weak global symbol. This pragma is used mainly in source files
for building libraries. The linker does not warn you if it cannot resolve a weak
symbol.

The following directive defines bar to be a weak symbol. No error messages are
generated if the linker cannot find a definition for a function named bar.

#pragma weak bar

The following directive instructs the linker to resolves any references to bar to bar
if it is defined anywhere in the program, and to foo otherwise.
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#pragma weak bar = foo

You must declare a function before you use it in a weak pragma. For example:

extern void bar(int);
extern void _bar(int);
#pragma weak _bar=bar

The effects of using #pragma weak are:

� If your program calls but does not define function-name1, the linker uses the
definition from the library.

� If your program defines its own version of function-name1, then the program
definition is used, and the weak global definition of function-name1 in the library is
not used.

� If the program directly calls function-name2, the definition from the library is used;
a duplicate definition of function-name2 causes an error.

See the Solaris Linker and Libraries Guide for more information.

Note - The names in the pragma must be the names a seen by the linker, which
means the “mangled” name if the function has C++ linkage.
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CHAPTER 4

Templates

Templates make it possible for you to write a single body of code that applies to a
wide range of types in a type-safe manner. This chapter introduces template concepts
and terminology in the context of function templates, discusses the more complicated
(and more powerful) class templates, and the composition of templates. Also
discussed are template instantiation, default template parameters, and template
specialization. The chapter concludes with a discussion of potential problem areas for
templates.

Function Templates
A function template describes a set of related functions that differ only by the types
of their arguments or return values.

C++ 5.0 does not support non-type template parameters for function templates.

Function Template Declaration
You must declare a template before you can use it. A declaration, as in the following
example, provides enough information to use the template, but not enough
information to implement the template.

template <class Number> Number twice( Number original );

In this example, Number is a template parameter; it specifies the range of functions that
the template describes. More specifically, Number is a template type parameter, and its
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use within template declarations and definitions stands for some to-be-determined
type.

Function Template Definition
If you declare a template, you must also define it. A definition provides enough
information to implement the template. The following example defines the template
declared in the previous example.

template <class Number> Number twice( Number original )
{ return original + original; }

Because template definitions often appear in header files, a template definition might
be repeated in several compilation units. All definitions, however, must be the same.
This restriction is called the One-Definition Rule.

C++ 5.0 does not support non-type template parameters for function templates. For
example, the following template is not supported because its argument is an
expression instead of a type.

template <int count> void foo( ) // unsupported non-type parameter
{

int x[count]
for (int i = 0; i < count; ++i )

// ... do something with x
}

foo<10>(); // call foo with template argument 10; unsupported

Function Template Use
Once declared, templates can be used like any other function. Their use consists of
naming the template and providing function arguments. The compiler infers the
template type arguments from the function argument types. For example, you can
use the previously declared template as follows.

double twicedouble( double item )
{ return twice( item ); }
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Class Templates
A class template describes a set of related classes, or data types that differ only by
types, by integral values, by pointers or references to variables with global linkage,
or by a combination thereof. Class templates are particularly useful in describing
generic, but type-safe, data structures.

Class Template Declaration

A class template declaration provides only the name of the class and its template
arguments. Such a declaration is an incomplete class template.

The following example is a template declaration for a class named Array that takes
any type as an argument.

template <class Elem> class Array;

This template is for a class named String that takes an unsigned integer as an
argument.

template <unsigned Size> class String;

Class Template Definition
A class template definition must declare the class data and function members, as in
the following examples.

template <class Elem> class Array {
Elem* data;
int size;

public:
Array( int sz );
int GetSize();
Elem& operator[]( int idx );

};

template <unsigned Size> class String {
char data[Size];
static int overflows;

public:
String( char *initial );
int length();

};
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Unlike function templates, class templates can have both type parameters (such as
class Elem ) and expression parameters (such as unsigned Size ). An expression
parameter can be:

� A value that has an integral type or enumeration

� A pointer or a reference to an object

� A pointer or a reference to a function

� A pointer to a class member function

Class Template Member Definitions
The full definition of a class template requires definitions for its function members
and static data members. Dynamic (nonstatic) data members are sufficiently defined
by the class template declaration.

For Function Members
The definition of a template function member consists of the template parameter
specification followed by a function definition. The function identifier is qualified by
the class template’s class name and the template arguments. The following example
shows definitions of two function members of the Array class template, which has a
template parameter specification of template <class Elem> . Each function
identifier is qualified by the template class name and the template argument,
Array<Elem> .

template <class Elem> Array<Elem>::Array( int sz )
{ size = sz; data = new Elem[ size ]; }

template <class Elem> int Array<Elem>::GetSize( )
{ return size; }

This example shows definitions of function members of the String class template.

#include <string.h>
template <unsigned Size> int String<Size>::length( )

{ int len = 0;
while ( len < Size && data[len] != "\0" ) len++;
return len; }

template <unsigned Size> String<Size>::String( char *initial )
{ strncpy( data, initial, Size );

if ( length( ) == Size ) overflow++; }
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For Static Data Members
The definition of a template static data member consists of the template parameter
specification followed by a variable definition, where the variable identifier is
qualified by the class template name and its template actual arguments.

template <unsigned Size> int String<Size>::overflows = 0;

Class Template Use
A template class can be used wherever a type can be used. Specifying a template
class consists of providing the values for the template name and arguments. The
declaration in the following example creates the variable int_array based upon the
Array template. The variable’s class declaration and its set of methods are just like
those in the Array template except that Elem is replaced with int (see “Template
Instantiation” on page 23).

Array<int> int_array( 100 );

The declaration in this example creates the short_string variable using the
String template.

String<8> short_string( ‘‘hello’’ );

You can use template class member functions as you would any other member
function

int x = int_array.GetSize( );

int x = short_string.length( );

.

Template Instantiation
Template instantiation involves generating a concrete class or function (instance) for a
particular combination of template arguments. For example, the compiler generates a
class for Array<int> and a different class for Array<double>. The new classes are
defined by substituting the template arguments for the template parameters in the
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definition of the template class. In the Array<int> example, shown in the preceding
“Class Templates” section, the compiler substitutes int wherever Elem appears.

Implicit Template Instantiation
The use of a template function or template class introduces the need for an instance.
If that instance does not already exist, the compiler implicitly instantiates the
template for that combination of template arguments.

Whole-Class Instantiation
When the compiler implicitly instantiates a template class, it usually instantiates only
the members that are used. To force the compiler to instantiate all member functions
when implicitly instantiating a class, use the -template=wholeclass compiler
option. To turn this option off, specify the -template=no%wholeclass option,
which is the default.

Explicit Template Instantiation
The compiler implicitly instantiates templates only for those combinations of
template arguments that are actually used. This approach may be inappropriate for
the construction of libraries that provide templates. C++ provides a facility to
explicitly instantiate templates, as seen in the following examples.

For Template Functions
To instantiate a template function explicitly, follow the template keyword by a
declaration (not definition) for the function, with the function identifier followed by
the template arguments.

template float twice<float>( float original );

Template arguments may be omitted when the compiler can infer them.

template int twice( int original );
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For Template Classes
To instantiate a template class explicitly, follow the template keyword by a
declaration (not definition) for the class, with the class identifier followed by the
template arguments.

template class Array<char>;

template class String<19>;

When you explicitly instantiate a class, all of its members are also instantiated.

For Template Class Function Members
To explicitly instantiate a template class function member, follow the template
keyword by a declaration (not definition) for the function, with the function
identifier qualified by the template class, followed by the template arguments

template int Array<char>::GetSize( );

template int String<19>::length( );

.

For Template Class Static Data Members
To explicitly instantiate a template class static data member, follow the template
keyword by a declaration (not definition) for the member, with the member identifier
qualified by the template class, followed by the template argument

template int String<19>::overflow;

.

Template Composition
You can use (but not define) templates in a nested manner. This is particularly useful
when defining generic functions over generic data structures, as in the standard C++
library. For example, a template sort function may be declared over a template array
class:

template <class Elem> void sort( Array<Elem> );
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and defined as:

template <class Elem> void sort( Array<Elem> store )
{ int num_elems = store.GetSize( );

for ( int i = 0; i < num_elems-1; i++ )
for ( int j = i+1; j < num_elems; j++ )

if ( store[j-1] > store[j] )
{ Elem temp = store[j];

store[j] = store[j-1];
store[j-1] = temp; } }

The preceding example defines a sort function over the predeclared Array class
template objects. The next example shows the actual use of the sort function.

Array<int> int_array( 100 ); // construct an array of ints
sort( int_array ); // sort it

Default Template Parameters
You can give default values to template parameters for class templates (but not
function templates).

template <class Elem = int> class Array;
template <unsigned Size = 100> class String;

If a template parameter has a default value, all parameters after it must also have
default values. A template parameter can have only one default value.

Template Specialization
There may be performance advantages to treating some combinations of template
arguments as a special case, as in the following examples for twice . Alternatively, a
template description might fail to work for a set of its possible arguments, as in the
following examples for sort . Template specialization allows you to define
alternative implementations for a given combination of actual template arguments.
The template specialization overrides the default instantiation.
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Template Specialization Declaration
You must declare a specialization before any use of that combination of template
arguments. The following examples declare specialized implementations of twice and
sort.

template <> unsigned twice<unsigned>( unsigned original );

template <> sort<char*>( Array<char*> store );

You can omit the template arguments if the compiler can unambiguously determine
them. For example:

template <> unsigned twice( unsigned original );

template <> sort( Array<char*> store );

Template Specialization Definition
You must define all template specializations that you declare. The following
examples define the functions declared in the preceding section.

template <> unsigned twice<unsigned>( unsigned original )
{ return original << 1; }

#include <string.h>
template <> void sort<char*>( Array<char*> store )

{ int num_elems = store.GetSize( );
for ( int i = 0; i < num_elems-1; i++ )

for ( int j = i+1; j < num_elems; j++ )
if ( strcmp( store[j-1], store[j] ) > 0 )

{ char *temp = store[j];
store[j] = store[j-1];
store[j-1] = temp; } }

Template Specialization Use and Instantiation
A specialization is used and instantiated just as any other template, except that the
definition of a completely specialized template is also an instantiation.
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Template Problem Areas
This section describes problems you might encounter when using templates.

Nonlocal Name Resolution and Instantiation
Sometimes a template definition uses names that are not defined by the template
arguments or within the template itself. If so, the compiler resolves the name from
the scope enclosing the template, which could be the context at the point of
definition, or at the point of instantiation. A name can have different meanings in
different places, yielding different resolutions.

Name resolution is complex. Consequently, you should not rely on nonlocal names,
except those provided in a pervasive global environment. That is, use only nonlocal
names that are declared and mean the same thing everywhere. In the following
example, the template function converter uses the nonlocal names intermediary
and temporary . These names have different definitions in use1.cc and use2.cc ,
and will probably yield different results under different compilers. For templates to
work reliably, all nonlocal names (intermediary and temporary in this case)
must have the same definition everywhere.

use_common.h
// Common template definition
template <class Source, class Target>
Target converter( Source source )

{ temporary = (intermediary)source;
return (Target)temporary; }

use1.cc
typedef int intermediary;
int temporary;

#include "use_common.h"}
use2.cc
typedef double intermediary;
unsigned int temporary;

#include "use_common.h"

A common use of nonlocal names is the use of the cin and cout streams within a
template. Few programmers really want to pass the stream as a template parameter,
so they refer to a global variable. However, cin and cout must have the same
definition everywhere.
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Local Types as Template Arguments
The template instantiation system relies on type-name equivalence to determine
which templates need to be instantiated or reinstantiated. Thus local types can cause
serious problems when used as template arguments. Beware of creating similar
problems in your code. For example:

array.h
template <class Type> class Array {

Type* data;
int size;

public:
Array( int sz );
int GetSize( );

};
array.cc
template <class Type> Array<Type>::Array( int sz )

{ size = sz; data = new Type[size]; }
template <class Type> int Array<Type>::GetSize( )

{ return size;}
file1.cc
#include "array.h"
struct Foo { int data; };
Array<Foo> File1Data;
file2.cc
#include "array.h"
struct Foo { double data; };
Array<Foo> File2Data;

The Foo type as registered in file1.cc is not the same as the Foo type registered in
file2.cc . Using local types in this way could lead to errors and unexpected results.

Friend Declarations of Template Functions
Templates must be declared before they are used. A friend declaration constitutes a
use of the template, not a declaration of the template. A true template declaration
must precede the friend declaration. For example, when the compilation system
attempts to link the produced object file for the following example, it generates an
undefined error for the operator<< function, which is not instantiated.

array.h
// generates undefined error for the operator<< function
#ifndef ARRAY_H
#define ARRAY_H
#include <iosfwd>

template<class T> class array {
int size;

public:
array();
friend std::ostream&

operator<<(std::ostream&, const array<T>&);
};
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#endif
array.cc
#include <stdlib.h>
#include <iostream>

template<class T> array<T>::array() { size = 1024; }

template<class T>
std::ostream&
operator<<(std::ostream& out, const array<T>& rhs)

{ return out << ’[’ << rhs.size << ’]’; }
main.cc
#include <iostream>
#include "array.h"

int main()
{

std::cout
<< "creating an array of int... " << std::flush;

array<int> foo;
std::cout << "done\n";
std::cout << foo << std::endl;
return 0;

}

Note that there is no error message during compilation because the compiler reads
the following as the declaration of a normal function that is a friend of the array
class.

friend ostream& operator<<(ostream&, const array<T>&);

Because operator<< is really a template function, you need to supply a template
declaration for it ahead of the declaration of template class array . However,
because operator<< has a parameter of type array<T> , you must precede the
function declaration with a declaration of array<T> . The file array.h must look
like this:

#ifndef ARRAY_H
#define ARRAY_H
#include <iosfwd>

// the next two lines declare operator<< as a template function
template<class T> class array;
template<class T>
std::ostream& operator<<(std::ostream&, const array<T>&);

template<class T> class array {
int size;

public:
array();
friend std::ostream&

operator<<(std::ostream&, const array<T>&);
};
#endif
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Using Qualified Names Within Template
Definitions
The C++ standard requires types with qualified names that depend upon template
arguments to be explicitly noted as type names with the typename keyword. This is
true even if the compiler can “know” that it should be a type. The comments in the
following example show the types with qualified names that require the typename
keyword .

struct simple {
typedef int a_type;
static int a_datum;

};
int simple::a_datum = 0; // not a type
template <class T> struct parametric {

typedef T a_type;
static T a_datum;

};
template <class T> T parametric<T>::a_datum = 0; // not a type
template <class T> struct example {

static typename T::a_type variable1; // dependent
static typename parametric<T>::a_type variable2;// dependent
static simple::a_type variable3; // not dependent

};
template <class T> typename T::a_type // dependent

example<T>::variable1 = 0; // not a type
template <class T> typename parametric<T>::a_type // dependent

example<T>::variable2 = 0; // not a type
template <class T> simple::a_type // not dependent

example<T>::variable3 = 0; // not a type

Nesting Template Declarations
Because the “>>” character sequence is interpreted as the right-shift operator, you
must be careful when you use one template declaration inside another. Make sure
you separate adjacent “>" characters with at least one blank space.

For example, the following ill-formed statement:

Array<String<10>> short_string_array(100); // >> = right-shift

is interpreted as:

Array<String<10 >> short_string_array(100);
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The correct syntax is:

Array<String<10> > short_string_array(100);
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CHAPTER 5

Exception Handling

This chapter explains exception handling as currently implemented in the Sun C++
compiler, and the requirements of the C++ International Standard.

For additional information on exception handling, see The C++ Programming
Language, third edition, by Bjarne Stroustrup, Addison Wesley, 1997.

Understanding Exception Handling
Exceptions are anomalies that occur during the normal flow of a program and
prevent it from continuing. These anomalies—user, logic, or system errors—can be
detected by a function. If the detecting function cannot deal with the anomaly, it
“throws” an exception. A function that “handles” that kind of exception catches it.

In C++, when an exception is thrown, it cannot be ignored—there must be some kind
of notification or termination of the program. If no user-provided exception handler
is present, the compiler provides a default mechanism to terminate the program.

Exception handling is expensive compared to ordinary program flow controls, such
as loops or if-statements. It is therefore better not to use the exception mechanism to
deal with ordinary situations, but to reserve it for situations that are truly unusual.

Exceptions are particularly helpful in dealing with situations that cannot be handled
locally. Instead of propagating error status throughout the program, you can transfer
control directly to the point where the error can be handled.

For example, a function might have the job of opening a file and initializing some
associated data. If the file cannot be opened or is corrupted, the function cannot do
its job. However, that function might not have enough information to handle the
problem. The function can throw an exception object that describes the problem,
transferring control to an earlier point in the program. The exception handler might
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automatically try a backup file, query the user for another file to try, or shut down
the program gracefully. Without exception handlers, status and data would have to
be passed down and up the function call hierarchy, with status checks after every
function call. With exception handlers, the flow of control is not obscured by error
checking. If a function returns, the caller can be certain that it succeeded.

Exception handlers have disadvantages. If a function does not return because it, or
some other function it called, threw an exception, data might be left in an
inconsistent state. You need to know when an exception might be thrown, and
whether the exception might have a bad effect on the program state.

Using Exception Handling Keywords
There are three keywords for exception handling in C++:

� try

� catch

� throw

try
A try block is a group of C++ statements, normally enclosed in braces { } , which
might cause an exception. This grouping restricts exception handlers to exceptions
generated within the try block. Each try block has one or more associated catch
blocks.

catch
A catch block is a group of C++ statements that are used to handle a specific
thrown exception. One or more catch blocks, or handlers, should be placed after
each try block. A catch block is specified by:

� The keyword catch

� A catch parameter, enclosed in parentheses () , which corresponds to a specific
type of exception that may be thrown by the try block

� A group of statements, enclosed in braces { }, whose purpose is to handle the
exception
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throw
The throw statement is used to throw an exception and its value to a subsequent
exception handler. A regular throw consists of the keyword throw and an
expression. The result type of the expression determines which catch block receives
control. Within a catch block, the current exception and value may be re-thrown
simply by specifying the throw keyword alone (with no expression).

In the following example, the function call in the try block passes control to f() ,
which throws an exception of type Overflow . This exception is handled by the
catch block, which handles type Overflow exceptions.

class Overflow {
// ...

public:
Overflow(char,double,double);

};

void f(double x)
{

// ...
throw Overflow(’+’,x,3.45e107);

}

int main() {
try {

// ...
f(1.2);

//...
}
catch(Overflow& oo) {

// handle exceptions of type Overflow here
}

}

Implementing Exception Handlers
To implement an exception handler, do these basic tasks:

� When a function is called by many other functions, code it so that an exception is
thrown whenever an error is detected. The throw expression throws an object.
This object is used to identify the types of exceptions and to pass specific
information about the exception that has been thrown.

� Use the try statement in a client program to anticipate exceptions. Enclose
function calls that might produce an exception in a try block.

� Code one or more catch blocks immediately after the try block. Each catch
block identifies what type or class of objects it is capable of catching. When an
object is thrown by the exception, this is what takes place:
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� If the object thrown by the exception matches the type of the catch
expression, control passes to that catch block.

� If the object thrown by the exception does not match the first catch block,
subsequent catch blocks are searched for a matching type.

� If try blocks are nested, and there is no match, control passes from the
innermost catch block to the nearest catch block surrounding the try block.

� If no matching catch block is found in the current function, any automatic
(local nonstatic) objects in the current function are destroyed and the function
exits immediately. A search for a matching catch block continues with the
function that called the current function. This process continues up to function
main .

� If there is no match in any of the catch blocks, the program is normally
terminated with a call to the predefined function terminate() . By default,
terminate() calls abort() , which destroys all remaining objects and exits
from the program. This default behavior can be changed by calling the
set_terminate() function.

Synchronous Exception Handling
Exception handling is designed to support only synchronous exceptions, such as
array range checks. The term synchronous exception means that exceptions can only be
originated from throw expressions.

The C++ standard supports synchronous exception handling with a termination
model. Termination means that once an exception is thrown, control never returns to
the throw point.

Asynchronous Exception Handling
Exception handling is not designed to directly handle asynchronous exceptions such
as keyboard interrupts. However, you can make exception handling work in the
presence of asynchronous events if you are careful. For instance, to make exception
handling work with signals, you can write a signal handler that sets a global
variable, and create another routine that polls the value of that variable at regular
intervals and throws an exception when the value changes.

Managing Flow of Control
In C++, exception handlers do not correct the exception and then return to the point
at which the exception occurred. Instead, when an exception is generated, control is
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passed out of the block that threw the exception, out of the try block that
anticipated the exception, and into the catch block whose exception declaration
matches the exception thrown.

The catch block handles the exception. It might rethrow the same exception, throw
another exception, jump to a label, return from the function, or end normally. If a
catch block ends normally, without a throw , the flow of control passes over all
other catch blocks associated with the try block.

Whenever an exception is thrown and caught, and control is returned outside of the
function that threw the exception, stack unwinding takes place. During stack
unwinding, any automatic objects that were created within the scope of the block
that was exited are safely destroyed via calls to their destructors.

If a try block ends without an exception, all associated catch blocks are ignored.

Note - An exception handler cannot return control to the source of the error by
using the return statement. A return issued in this context returns from the
function containing the catch block.

Branching Into and Out of try Blocks and
Handlers
Branching out of a try block or a handler is allowed. Branching into a catch block
is not allowed, however, because that is equivalent to jumping past an initiation of
the exception.

Nesting of Exceptions
Nesting of exceptions, that is, throwing an exception while another remains
unhandled, is allowed only in restricted circumstances. From the point when an
exception is thrown to the point when the matching catch clause is entered, the
exception is unhandled. Functions that are called along the way, such as destructors
of automatic objects being destroyed, may throw new exceptions, as long as the
exception does not escape the function. If a function exits via an exception while
another exception remains unhandled, the terminate() function is called
immediately.

Once an exception handler has been entered, the exception is considered handled,
and exceptions may be thrown again.

You can determine whether any exception has been thrown and is currently
unhandled. See “Calling the uncaught_exception() Function” on page 41.
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Specifying Exceptions to Be Thrown
A function declaration can include an exception specification, a list of exceptions that a
function may throw, directly or indirectly.

The two following declarations indicate to the caller that the function f1 generates
only exceptions that can be caught by a handler of type X, and that the function f2
generates only exceptions that can be caught by handlers of type W, Y, or Z:

void f1(int) throw(X);
void f2(int) throw(W,Y,Z);

A variation on the previous example is:

void f3(int) throw(); // empty parentheses

This declaration guarantees that no exception is generated by the function f3 . If a
function exits via any exception that is not allowed by an exception specification, it
results in a call to the predefined function unexpected() . By default,
unexpected() calls abort() to exit the program. You can change this default
behavior by calling the set_unexpected() function. See “set_unexpected() ”
on page 40.

The check for unexpected exceptions is done at program execution time, not at
compile time. Even if it appears that a disallowed exception might be thrown, there
is no error unless the disallowed exception is actually thrown at runtime.

The compiler can, however, eliminate unnecessary checking in some simple cases.
For instance, no checking for f is generated in the following example.

void foo(int) throw(x);
void f(int) throw(x);
{

foo(13);
}

The absence of an exception specification allows any exception to be thrown.

Specifying Runtime Errors
There are five runtime error messages associated with exceptions:

� No handler for the exception

� Unexpected exception thrown
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� An exception can only be re-thrown in a handler

� During stack unwinding, a destructor must handle its own exception

� Out of memory

When errors are detected at runtime, the error message displays the type of the
current exception and one of the five error messages. By default, the predefined
function terminate() is called, which then calls abort() .

The compiler uses the information provided in the exception specification to
optimize code production. For example, table entries for functions that do not throw
exceptions are suppressed, and runtime checking for exception specifications of
functions is eliminated wherever possible. Thus, declaring functions with correct
exception specifications can lead to better code generation.

Modifying the terminate() and
unexpected() Functions
The following sections describe how to modify the behavior of the
terminate() and unexpected() functions using set_terminate() and
set_unexpected() .

set_terminate()
You can modify the default behavior of terminate() by calling the function
set_terminate() , as shown in the following example.

// declarations are in standard header <exception>
namespace std {

typedef void (*terminate_handler)();
terminate_handler set_terminate(terminate_handler f) throw();
void terminate();

}

The terminate() function is called in any of the following circumstances:

� The exception handling mechanism calls a user function (including destructors for
automatic objects) that exits via an uncaught exception while another exception
remains uncaught.

� The exception handling mechanism cannot find a handler for a thrown exception.

� The construction or destruction of a nonlocal object with static storage duration
exits using an exception.
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� Execution of a function registered with atexit() exits using an exception.

� A throw expression with no operand attempts to rethrow an exception and no
exception is being handled.

� The unexpected() function throws an exception that is not allowed by the
previously violated exception specification, and std::bad_exception is not
included in that exception specification.

� The default version of unexpected() is called.

The terminate() function calls the function passed as an argument to
set_terminate() . Such a function takes no parameters, returns no value, and must
terminate the program (or the current thread). The function passed in the most recent
call to set_terminate() is called. The previous function passed as an argument to
set_terminate() is the return value, so you can implement a stack strategy for
using terminate() . The default function for terminate() calls abort() for the
main thread and thr_exit() for other threads. Note that thr_exit() does not
unwind the stack or call C++ destructors for automatic objects.

Note - Selecting a terminate() replacement that returns to its caller, or that does
not terminate the program or thread, is an error.

set_unexpected()
You can modify the default behavior of unexpected() by calling the function
set_unexpected() :

// declarations are in standard header <exception>
namespace std {

class exception;
class bad_exception;
typedef void (*unexpected_handler)();
unexpected_handler

set_unexpected(unexpected_handler f) throw();
void unexpected();

}

The unexpected() function is called when a function attempts to exit via an
exception not listed in its exception specification. The default version of
unexpected() calls terminate() .

A replacement version of unexpected() might throw an exception permitted by
the violated exception specification. If it does so, exception handling continues as
though the original function had really thrown the replacement exception. If the
replacement for unexpected() throws any other exception, that exception is
replaced by the standard exception std::bad_exception . If the original function’s
exception specification does not allow std::bad_exception , function
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terminate() is called immediately. Otherwise, exception handling continues as
though the original function had really thrown std::bad_exception .

unexpected() calls the function passed as an argument to set_unexpected() .
Such a function takes no parameters, returns no value, and must not return to its
caller. The function passed in the most recent call to set_unexpected() is called.
The previous function passed as an argument to set_unexpected() is the return
value, so you can implement a stack strategy for using unexpected() .

Note - Selecting an unexpected() replacement that returns to its caller is an error.

Calling the
uncaught_exception() Function
An uncaught, or active, exception is an exception that has been thrown, but not yet
accepted by a handler. The function uncaught_exception() returns true if there
is an uncaught exception, and false otherwise.

The uncaught_exception() function is most useful for preventing program
termination due to a function that exits with an uncaught exception while another
exception is still active. This situation most commonly occurs when a destructor
called during stack unwinding throws an exception. To prevent this situation, make
sure uncaught_exception() returns false before throwing an exception within
a destructor. (Another way to prevent program termination due to a destructor
throwing an exception while another exception is still active is to design your
program so that destructors do not need to throw exceptions.)

Matching Exceptions With Handlers
A handler type T matches a throw type E if any of the following is true:

� T is the same as E.

� T is const or volatile of E.

� E is const or volatile of T.

� T is ref of E or E is ref of T.

� T is a public base class of E.

� T and E are both pointer types, and E can be converted to T by a standard pointer
conversion.
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Throwing exceptions of reference or pointer types can result in a dangling pointer if
the object pointed or referred to is destroyed before exception handling is complete.
When an object is thrown, a copy of the object is always made through the copy
constructor, and the copy is passed to the catch block. It is therefore safe to throw a
local or temporary object.

While handlers of type (X) and (X&) both match an exception of type X, the
semantics are different. Using a handler with type (X) invokes the object’s copy
constructor (again). If the thrown object is of a type derived from the handler type,
the object is truncated. Catching a class object by reference therefore usually executes
faster.

Handlers for a try block are tried in the order of their appearance. Handlers for a
derived class (or a pointer to a reference to a derived class) must precede handlers
for the base class to ensure that the handler for the derived class can be invoked.

Checking Access Control in Exceptions
The compiler performs the following check on access control on exceptions:

� The formal argument of a catch clause obeys the same rules as an argument of
the function in which the catch clause occurs.

� An object can be thrown if it can be copied and destroyed in the context of the
function in which the throw occurs.

Currently, access controls do not affect matching.

No other access is checked at runtime except for the matching rule described in
“Matching Exceptions With Handlers” on page 41.

Enclosing Functions in try Blocks
If the constructor for a base class or member of a class T exits via an exception, there
would ordinarily be no way for the T constructor to detect or handle the exception.
The exception would be thrown before the body of the T constructor is entered, and
thus before any try block in T could be entered.

A new feature in C++ is the ability to enclose an entire function in a try block. For
ordinary functions, the effect is no different from placing the body of the function in
a try block. But for a constructor, the try block traps any exceptions that escape
from initializers of base classes and members of the constructor’s class. When the
entire function is enclosed in a try block, the block is called a function try block.
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In the following example, any exception thrown from the constructor of base class B
or member e is caught before the body of the T constructor is entered, and is
handled by the matching catch block.

You cannot use a return statement in the handler of a function try block, because
the catch block is outside the function. You can only throw an exception or
terminate the program by calling exit() or terminate() .

class B { ... };
class E { ... };
class T : public B {
public:

T();
private:

E e;
};
T::T()
try : B( args ), E( args )
{

... // body of constructor }
catch( X& x ) {

... // handle exception X }
catch( ... ) {

... // handle any other exception }

Disabling Exceptions
If you know that exceptions are not used in a program, you can use the compiler
option -features=no%except to suppress generation of code that supports
exception handling. The use of the option results in slightly smaller code size and
faster code execution. However, when files compiled with exceptions disabled are
linked to files using exceptions, some local objects in the files compiled with
exceptions disabled are not destroyed when exceptions occur. By default, the
compiler generates code to support exception handling. Unless the time and space
overhead is important, it is usually better to leave exceptions enabled.

Using Runtime Functions and
Predefined Exceptions
The standard header <exception> provides the classes and exception-related
functions specified in the C++ standard. You can access this header only when
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compiling in standard mode (compiler default mode, or with option -compat=5 ).
The header provides the following declarations:

// standard header <exception>
namespace std {

class exception {
exception() throw();
exception(const exception&) throw();
exception& operator=(const exception&) throw();
virtual ~exception() throw();
virtual const char* what() const throw();

};
class bad_exception: public exception { ... };
// Unexpected exception handling
typedef void (*unexpected_handler)();
unexpected_handler

set_unexpected(unexpected_handler) throw();
void unexpected();
// Termination handling
typedef void (*terminate_handler)();
terminate_handler set_terminate(terminate_handler) throw();
void terminate();
bool uncaught_exception() throw();

}

The standard class exception is the base class for all exceptions thrown by selected
language constructs or by the C++ standard library. An object of type exception can
be constructed, copied, and destroyed without generating an exception. The virtual
member function what() returns a character string that describes the exception.

For compatibility with exceptions as used in C++ release 4.2, the header
<exception.h> is also provided for use in standard mode. This header allows for a
transition to standard C++ code and contains declarations that are not part of
standard C++. Update your code to follow the C++ standard (using <exception>
instead of <exception.h> ) as development schedules permit.

// header <exception.h>, used for transition
#include <exception>
#include <new>
using std::exception;
using std::bad_exception;
using std::set_unexpected;
using std::unexpected;
using std::set_terminate;
using std::terminate;
typedef std::exception xmsg;
typedef std::bad_exception xunexpected;
typedef std::bad_alloc xalloc;

In compatibility mode (option -compat=4 ), header <exception> is not available,
and header <exception.h> refers to the same header provided with C++ release
4.2. It is not reproduced here.
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Building Shared Libraries With
Exceptions
When shared libraries are opened with dlopen, you must use RTLD_GLOBALfor
exceptions to work.

Note - When building shared libraries with exceptions in them, do not pass the
option -Bsymbolic to ld . Exceptions that should be caught might be missed.

Using Exceptions in a Multithreaded
Environment
The current exception-handling implementation is safe for
multithreading—exceptions in one thread do not interfere with exceptions in other
threads. However, you cannot use exceptions to communicate across threads; an
exception thrown from one thread cannot be caught in another.

Each thread can set its own terminate() or unexpected() function. Calling
set_terminate() or set_unexpected() in one thread affects only the
exceptions in that thread. The default function for terminate() is abort() for the
main thread, and thr_exit() for other threads (see “Specifying Runtime Errors”
on page 38).

Note - Thread cancellation (pthread_cancel(3T) ) results in the destruction of
automatic (local nonstatic) objects on the stack. When a thread is cancelled, the
execution of local destructors is interleaved with the execution of cleanup routines
that the user has registered with pthread_cleanup_push() . The local objects for
functions called after a particular cleanup routine is registered are destroyed before
that routine is executed.
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CHAPTER 6

Runtime Type Identification

This chapter explains the use of Runtime Type Identification (RTTI). Use this feature
while a program is running to find out type information that you could not
determine at compile time.

Static and Dynamic Types
In C++, pointers to classes have a static type, the type written in the pointer
declaration, and a dynamic type, which is determined by the actual type referenced.
The dynamic type of the object could be any class type derived from the static type.
In the following example, ap has the static type A* and a dynamic type B* .

class A {};
class B: public A {};
extern B bv;
extern A* ap = &bv;

RTTI allows the programmer to determine the dynamic type of the pointer.

RTTI Options
For C++ 5.0 in compatibility mode (-compat=4 ), RTTI support requires significant
resources to implement. RTTI is disabled by default in that mode. To enable RTTI
implementation and recognition of the associated typeid keyword, use the option
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-features=rtti . To disable RTTI implementation and recognition of the associated
typeid keyword, use the option -features=no%rtti (the default).

For C++ 5.0 in standard mode (the default mode) RTTI does not have a significant
impact on program compilation or execution. In standard mode, RTTI is always
enabled.

typeid Operator
The typeid operator produces a reference to an object of class type_info , which
describes the most-derived type of the object. To make use of the typeid()
function, the source code must #include the <typeinfo> header file. The primary
value of this operator/class combination is in comparisons. In such comparisons, the
top-level const and volatile qualifiers are ignored, as in the following example.
Note that, in this example, A and B are types which have default constructors.

#include <typeinfo>
#include <assert.h>
void use_of_typeinfo( )
{

A a1;
const A a2;
assert( typeid(a1) == typeid(a2) );
assert( typeid(A) == typeid(const A) );
assert( typeid(A) == typeid(a2) );
assert( typeid(A) == typeid(const A&) );
B b1;
assert( typeid(a1) != typeid(b1) );
assert( typeid(A) != typeid(B) );

}

The typeid operator raises a bad_typeid exception when given a null pointer.

type_info Class
The class type_info describes type information generated by the typeid operator.
The primary functions provided by type_info are equality, inequality, before and
name. From <typeinfo.h> , the definition is:

class type_info {
public:

virtual ~type_info( );
bool operator==( const type_info &rhs ) const;
bool operator!=( const type_info &rhs ) const;
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bool before( const type_info &rhs ) const;
const char *name( ) const;

private:
type_info( const type_info &rhs );
type_info &operator=( const type_info &rhs );

};

The before function compares two types relative to their implementation-dependent
collation order. The name function returns an implementation-defined,
null-terminated, multibyte string, suitable for conversion and display.

The constructor is a private member function, so you cannot create a variable of type
type_info . The only source of type_info objects is in the typeid operator.
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CHAPTER 7

Cast Operations

This chapter discusses the new cast operators in the recently approved C++
standard: const_cast , reinterpret_cast , static_cast and dynamic_cast .

New Cast Operations
The C++ standard defines new cast operations that provide finer control than
previous cast operations. The dynamic_cast<> operator provides a way to check
the actual type of a pointer to a polymorphic class. You can search with a text editor
for all new-style casts (search for _cast ), whereas finding old-style casts required
syntactic analysis.

Otherwise, the new casts all perform a subset of the casts allowed by the classic cast
notation. For example, const_cast<int*>(v) could be written (int*)v . The new
casts simply categorize the variety of operations available to express your intent
more clearly and allow the compiler to provide better checking.

The cast operators are always enabled in C++ 5.0. They cannot be disabled.

const_cast
The expression const_cast< T>( v) can be used to change the const or volatile
qualifiers of pointers or references. (Among new-style casts, only const_cast<> can
remove const qualifiers.) T must be a pointer, reference, or pointer-to-member type.

class A
{
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public:
virtual void f();
int i;

};
extern const int A::* cimp;
extern const volatile int* cvip;
extern int* ip;
void use_of_const_cast( )
{

const A a1;
const_cast<A&>(a1).f( ); // remove const
a1.*(const_cast<int A::*> cimp) = 1; // remove const
ip = const_cast<int*> cvip; // remove const and volatile

}

reinterpret_cast
The expression reinterpret_cast< T>( v) changes the interpretation of the value
of the expression v. It can be used to convert between pointer and integer types,
between unrelated pointer types, between pointer-to-member types, and between
pointer-to-function types.

Usage of the reinterpret_cast operator can have undefined or
implementation-dependent results. The following points describe the only ensured
behavior:

� A pointer to a data object or to a function (but not a pointer to member) can be
converted to any integer type large enough to contain it. (Type long is always big
enough to contain a pointer value on the architectures supported by Sun C++.)
When converted back to its original type, the value will be the same as it
originally was.

� A pointer to a (nonmember) function can be converted to a pointer to a different
(nonmember) function type. If converted back to the original type, the value will
be the same as it originally was.

� A pointer to an object can be converted to a pointer to a different object type,
provided that the new type has alignment requirements no stricter than the
original type. If converted back to the original type, the value will be the same as
it originally was.

� An lvalue of type T1 can be converted to a type “reference to T2” if an expression
of type “pointer to T1” can be converted to type “pointer to T2” with a reinterpret
cast.

� An rvalue of type “pointer to member of X of type T1” can be explicitly converted
to an rvalue of type “pointer to member of Y of type T2” if T1 and T2 are both
function types or both object types.
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� In all allowed cases, a null pointer of one type when converted to a null pointer of
a different type remains a null pointer.

� The reinterpret_cast operator cannot be used to cast away const ; use
const_cast for that purpose.

� The reinterpret_cast operator should not be used to convert between
pointers to different classes that are in the same class hierarchy; use a static or
dynamic cast for that purpose. (reinterpret_cast does not perform the
adjustments that might be needed.) This is illustrated in the following example:

class A { int a; };
class B : public A { int b, c; }
void use_of_reinterpret_cast( )
{

A a1;
long l = reinterpret_cast<long>(&a1);
A* ap = reinterpret_cast<A*>(l); // safe
B* bp = reinterpret_cast<B*>(&a1); // unsafe
const A a2;
ap = reinterpret_cast<A*>(&a2); // error, const removed

}

static_cast
The expression static_cast< T>( v) converts the value of the expression v to that
of type T. It can be used for any type conversion that is allowed implicitly. In
addition, any value may be cast to void , and any implicit conversion can be
reversed if that cast would be legal as an old-style cast.

class B { ... };
class C : public B { ... };
enum E { first=1, second=2, third=3 };
void use_of_static_cast(C* c1 )
{

B* bp = c1; // implicit conversion
C* c2 = static_cast<C*>(bp); // reverse implicit conversion
int i = second; // implicit conversion
E e = static_cast<E>(i); // reverse implicit conversion

}

The static_cast operator cannot be used to cast away const You can use
static_cast to cast “down” a hierarchy (from a base to a derived pointer or
reference), but the conversion is not checked; the result might not be usable.
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Dynamic Casts
A pointer (or reference) to a class can actually point (refer) to any class derived from
that class. Occasionally, it may be desirable to obtain a pointer to the fully derived
class, or to some other subobject of the complete object. The dynamic cast provides
this facility.

The dynamic type cast converts a pointer (or reference) to one class T1 into a pointer
(reference) to another class T2. T1 and T2 must be part of the same hierarchy, the
classes must be accessible (via public derivation), and the conversion must not be
ambiguous. In addition, unless the conversion is from a derived class to one of its
base classes, the smallest part of the hierarchy enclosing both T1 and T2 must be
polymorphic (have at least one virtual function).

In the expression dynamic_cast<T>(v), v is the expression to be cast, and T is the type
to which it should be cast. T must be a pointer or reference to a complete class type
(one for which a definition is visible), or a pointer to cv void , where cv is an empty
string, const , volatile , or const volatile .

Casting Up the Hierarchy
When casting up the hierarchy, if T points (or refers) to a base class of the type
pointed (referred) to by v, the conversion is equivalent to static_cast< T>( v) .

Casting to void*
If T is void* , the result is a pointer to the complete object. That is, v might point to
one of the base classes of some complete object. In that case, the result of
dynamic_cast<void*>( v) is the same as if you converted v down the hierarchy to
the type of the complete object (whatever that is) and then to void* .

When casting to void* , the hierarchy must be polymorphic (have virtual functions).
The result is checked at runtime.

Casting Down or Across the Hierarchy
When casting down or across the hierarchy, the hierarchy must be polymorphic
(have virtual functions). The result is checked at runtime.

The conversion from v to T is not always possible when casting down or across a
hierarchy. For example, the attempted conversion might be ambiguous, T might be
inaccessible, or v might not point (or refer) to an object of the necessary type. If the
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runtime check fails and T is a pointer type, the value of the cast expression is a null
pointer of type T. If T is a reference type, nothing is returned (there are no null
references in C++), and the standard exception std::bad_cast is thrown.

When you assume the following declarations:

class A { public: virtual void f( ); };
class B { public: virtual void g( ); };
class AB : public virtual A, private B { };

The following function succeeds:

void simple_dynamic_casts( )
{

AB ab;
B* bp = (B*)&ab; // cast needed to break protection
A* ap = &ab; // public derivation, no cast needed
AB& abr = dynamic_cast<AB&>(*bp); // succeeds
ap = dynamic_cast<A*>(bp); assert( ap != NULL );
bp = dynamic_cast<B*>(ap); assert( bp == NULL );
ap = dynamic_cast<A*>(&abr); assert( ap != NULL );
bp = dynamic_cast<B*>(&abr); assert( bp == NULL );

}

In the presence of virtual inheritance and multiple inheritance of a single base class,
the actual dynamic cast must be able to identify a unique match. If the match is not
unique, the cast fails. For example, given the additional class definitions:

class AB_B : public AB, public B { };
class AB_B__AB : public AB_B, public AB { };

The following function succeeds:

void complex_dynamic_casts( )
{

AB_B__AB ab_b__ab;
A*ap = &ab_b__ab;

// okay: finds unique A statically
AB*abp = dynamic_cast<AB*>(ap);

// fails: ambiguous
assert( abp == NULL );

// STATIC ERROR: AB_B* ab_bp = (AB_B*)ap;
// not a dynamic cast

AB_B*ab_bp = dynamic_cast<AB_B*>(ap);
// dynamic one is okay

assert( ab_bp != NULL );
}

The null-pointer error return of dynamic_cast is useful as a condition between two
bodies of code—one to handle the cast if the type guess is correct, and one if it is not.
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void using_dynamic_cast( A* ap )
{

if ( AB *abp = dynamic_cast<AB*>(ap) )
{ // abp is non-null,

// so ap was a pointer to an AB object
// go ahead and use abp

process_AB( abp ); }
else

{ // abp is null,
// so ap was NOT a pointer to an AB object
// do not use abp

process_not_AB( ap );
}

}

In compatibility mode (−-compat=4 ), if runtime type information has not been
enabled with the −-features=rtti compiler option, the compiler converts
dynamic_cast to static_cast and issues a warning. See Chapter 5.

If exceptions have been disabled, the compiler converts dynamic_cast<T&> to
static_cast<T&> and issues a warning. The dynamic cast to a reference might
require an exception in normal circumstances. See Chapter 4.

Dynamic cast is necessarily slower than an appropriate design pattern, such as
conversion by virtual functions. See Design Patterns: Elements of Reusable
Object-Oriented Software by Erich Gamma, Addison Wesley, 1994.
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CHAPTER 8

Performance

You can improve the performance of C++ functions by writing those functions in a
manner that helps the compiler do a better job of optimizing them. Many books have
been written on software performance in general and C++ in particular. (For
example, see Tom Cargill, C++ Programming Style, Addison-Wesley, 1992, Jon Louis
Bentley, Writing Efficient Programs, Prentice-Hall, 1982, and Scott Meyers, Effective
C++, Addison-Wesley, 1992.) This chapter does not repeat such valuable information,
but discusses only those performance techniques that strongly affect the Sun C++
compiler.

Avoiding Temporary Objects
C++ functions often produce many implicit temporary objects, each of which must
be created and destroyed. For non-trivial classes, this creation and destruction can
get expensive. The Sun C++ compiler does eliminate some temporary objects, but it
cannot eliminate all of them.

Write functions to minimize the number of temporary objects as long as your
programs remain comprehensible. Techniques include using explicit variables rather
than implicit temporary objects and using reference parameters rather than value
parameters. Another technique is to implement and use operations such as += rather
than implementing and using only + and =. For example, the first line below
introduces a temporary object for the result of a + b , while the second line does not.

T x = a + b;
T x( a ); x += b;

57



Using Inline Functions
Calls to small and quick functions can be smaller and quicker when expanded inline
than when called normally. Conversely, calls to large or slow functions can be larger
and slower when expanded inline than when branched to. Furthermore, all calls to
an inline function must be recompiled whenever the function definition changes.
Consequently, the decision to use inline functions requires considerable care.

Do not use inline functions when you anticipate changes to the function definition
and recompiling all callers is expensive. Otherwise, use inline functions when the
code to expand the function inline is smaller than the code to call the function or the
application performs significantly faster with the function inline.

The compiler cannot inline all function calls, so making the most effective use of
function inlining may require some source changes. Use the −+w option to learn
when function inlining does not occur. In the following situations, the compiler will
not inline the function:

� The function contains difficult control constructs, such as loops, switch statements,
and try/catch statements. Many times these functions execute the difficult control
constructs infrequently. To inline such a function, split the function into two parts,
an inner part that contains the difficult control constructs and an outer part that
decides whether or not to call the inner part. This technique of separating the
infrequent part from the frequent part of a function can improve performance
even when the compiler can inline the full function.

� The inline function body is large or complicated. Apparently simple function
bodies may be complicated because of calls to other inline functions within the
body, or because of implicit constructor and destructor calls (as often occurs in
constructors and destructors for derived classes). For such functions, inline
expansion rarely provides significant performance improvement, and the function
is best left uninlined.

� The arguments to an inline function call are large or complicated. The compiler is
particularly sensitive when the object for an inline member function call is itself
the result of an inline function call. To inline functions with complicated
arguments, simply compute the function arguments into local variables and then
pass the variables to the function.

Using Default Operators
If a class definition does not declare a parameterless constructor, a copy constructor,
a copy assignment operator, or a destructor, the compiler will implicitly declare
them. These are called default operators. A C-like struct has these default operators.
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When the compiler builds a default operator, it knows a great deal about the work
that needs to be done and can produce very good code. This code is often much
faster than user-written code because the compiler can take advantage of
assembly-level facilities while the programmer usually cannot. So, when the default
operators do what is needed, the program should not declare user-defined versions
of these operators.

Default operators are inline functions, so do not use default operators when inline
functions are inappropriate (see the previous section). Default operators cannot be
virtual. Otherwise, default operators are appropriate when:

� The user-written parameterless constructor would only call parameterless
constructors for its base objects and member variables. Primitive types effectively
have “do nothing” parameterless constructors.

� The user-written copy constructor would simply copy all base objects and member
variables.

� The user-written copy assignment operator would simply copy all base objects
and member variables.

� The user-written destructor would be empty.

Some C++ programming texts suggest that class programmers always define all
operators so that any reader of the code will know that the class programmer did not
forget to consider the semantics of the default operators. Obviously, this advice
interferes with the optimization discussed above. The resolution of the conflict is to
place a comment in the code stating that the class is using the default operator.

Using Value Classes
C++ classes, including structures and unions, are passed and returned by value. For
Plain-Old-Data (POD) classes, the C++ compiler is required to pass the struct as
would the C compiler. Objects of these classes are passed directly. For objects of
classes with user-defined copy constructors, the compiler is effectively required to
construct a copy of the object, pass a pointer to the copy, and destruct the copy after
the return. Objects of these classes are passed indirectly. For classes that fall between
these two requirements, the compiler can choose. However, this choice affects binary
compatibility, so the compiler must choose consistently for every class.

For most compilers, passing objects directly can result in faster execution. This
execution improvement is particularly noticeable with small value classes, such as
complex numbers or probability values. You can sometimes improve program
efficiency by designing classes that are more likely to be passed directly than
indirectly.

In compatibility mode (-compat=4 ), a class is passed indirectly if it has any of the
following:
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� A user-defined constructor

� A virtual function

� A virtual base class

� A base that is passed indirectly

� A non-static data member that is passed indirectly

Otherwise, the class is passed directly

In standard mode (-compat=5 ), a class is passed indirectly if it has any of the
following:

� A user-defined copy constructor

� A user-defined destructor

� A base that is passed indirectly

� A non-static data member that is passed indirectly

Otherwise, the class is passed directly.

Choosing to Pass Classes Directly
To maximize the chance that a class will be passed directly:

� Use default constructors, especially the default copy constructor, where possible.

� Use the default destructor where possible. The default destructor is not virtual,
therefore a class with a default destructor should generally not be a base class.

� Avoid virtual functions and virtual bases.

Passing Classes Directly on Various Processors
Classes (and unions) passed directly by the C++ compiler are passed exactly as the C
compiler would pass a struct (or union). However, C++ structs and unions are
passed differently on different architectures.

On SPARC V7/V8, structs and unions are passed and returned by allocating storage
within the caller and passing a pointer to that storage. (That is, all structs and unions
are passed by reference.)

On SPARC V9, structs with a size no greater than 16 bytes (32 bytes) are passed
(returned) in registers. Unions and all other structs are passed and returned by
allocating storage within the caller and passing a pointer to that storage. (That is,
small structs are passed in registers; unions and large structs are passed by reference.)
As a consequence, small value classes are passed as efficiently as primitive types.

On x86, structs and unions are passed by allocating space on the stack and copying
the argument onto the stack. Structs and unions are returned by allocating a
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temporary object in the caller"s frame and passing the address of the temporary
object as an implicit first parameter.

Cache Member Variables
Accessing member variables is a common operation in C++ member functions.

The compiler must often load member variables from memory through the this
pointer. Because values are being loaded through a pointer, the compiler sometimes
cannot determine when a second load must be performed or whether the value
loaded before is still valid. In these cases, the compiler must choose the safe, but
slow, approach and reload the member variable each time it is accessed.

You can avoid unnecessary memory reloads by explicitly caching the values of
member variables in local variables, as follows

� Declare a local variable and initialize it with the value of the member variable.

� Use the local variable in place of the member variable throughout the function.

� If the local variable changes, assign the final value of the local variable to the
member variable. However, this optimization may yield undesired results if the
member function calls another member function on that object.

This optimization is most productive when the values can reside in registers, as is
the case with primitive types. The optimization may also be productive for
memory-based values because the reduced aliasing gives the compiler more
opportunity to optimize.

This optimization may be counter-productive if the member variable is often passed
by reference, either explicitly or implicitly.

On occasion, the desired semantics of a class requires explicit caching of member
variables, for instance when there is a potential alias between the current object and
one of the member function’s arguments. For example:

complex& operator*= (complex& left, complex& right)
{

left.real = left.real * right.real + left.imag * right.imag;
left.imag = left.real * right.imag + left.image * right.real;

}

will yield unintended results when called with:

x*=x;
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