
Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054 U.S.A.
650-960-1300

Send comments about this document to: docfeedback@sun.com

What’s New

Sun™ ONE Studio 8

Part No. 817-0921-10
May 2003, Revision A

Please
Recycle

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

This distribution may include materials developed by third parties.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers. Portions of this product are derived in part
from Cray90, a product of Cray Research, Inc.

libdwarf and libredblack are Copyright 2000 Silicon Graphics, Inc. and are available under the GNU Lesser General Public License from
http://www.sgi.com.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Java, Sun ONE Studio, the Solaris logo and the Sun ONE logo are trademarks or registered trademarks of
Sun Microsystems, Inc. in the U.S. and other countries.

Netscape and Netscape Navigator are trademarks or registered trademarks of Netscape Communications Corporation in the United States and
other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the
export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether
direct or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion
lists, including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits reserves.

Droits du gouvernement americain, utlisateurs gouvernmentaux logiciel commercial. Les utilisateurs gouvernmentaux sont soumis au contrat
de licence standard de Sun Microsystems, Inc., ainsi qu aux dispositions en vigueur de la FAR (Federal Acquisition Regulations) et des
supplements a celles-ci.

Distribue par des licences qui en restreignent l’utilisation.

Cette distribution peut comprendre des composants developpes par des tierces parties.

Des parties de ce produit pourront etre derivees Cray CF90, un produit de Cray Inc.

Des parties de ce produit pourront etre derivees des systemes Berkeley BSD licencies par l’Universite de Californie.UNIX est une marque
deposee aux Etats-Unis et dans d’autres pays et licenciee exclusivement par X/Open Company, Ltd.

libdwarf et libredblack sont déposent 2000 Silicon Graphics, Inc. et sont disponible sous le GNU Moins Général Public Permis de
http://www.sgi.com.

Sun, Sun Microsystems, le logo Sun, Java, Sun ONE Studio, le logo Solaris et le logo Sun ONE sont des marques de fabrique ou des marques
deposees de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Netscape et Netscape Navigator sont des marques de fabrique ou des marques déposées de Netscape Communications Corporation aux Etats-
Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisees sous licence et sont des marques de fabrique ou des marques deposees de SPARC International, Inc.
aux Etats-Unis et dans d’autres pays. Les produits protant les marques SPARC sont bases sur une architecture developpee par Sun
Microsystems, Inc.

Les produits qui font l’objet de ce manuel d’entretien et les informations qu’il contient sont regis par la legislation americaine en matiere de
controle des exportations et peuvent etre soumis au droit d’autres pays dans le domaine des exportations et importations. Les utilisations
finales, ou utilisateurs finaux, pour des armes nucleaires, des missiles, des armes biologiques et chimiques ou du nucleaire maritime,
directement ou indirectement, sont strictement interdites. Les exportations ou reexportations vers des pays sous embargo des Etats-Unis, ou
vers des entites figurant sur les listes d’exclusion d’exportation americaines, y compris, mais de maniere non exclusive, la liste de personnes qui
font objet d’un ordre de ne pas participer, d’une facon directe ou indirecte, aux exportations des produits ou des services qui sont regi par la
legislation americaine en matiere de controle des exportations et la liste de ressortissants specifiquement designes, sont rigoureusement
interdites.

LA DOCUMENTATION EST FOURNIE “EN L’ÉTAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFAÇON.

Contents

Before You Begin 5

Typographic Conventions 5

Shell Prompts 6

Accessing Compiler Collection Tools and Man Pages 7

Accessing Compiler Collection Documentation 9

Resources for Developers 10

Contacting Sun Technical Support 11

Sending Your Comments 11

Sun ONE Studio 8, Compiler Collection New Features 13

C Compiler 14

C++ Compiler 20

Fortran Compiler 29

dbx Command-Line Debugger 34

Interval Arithmetic 34

Sun Performance Library 35

dmake 36

Performance Analysis Tools 37

Documentation 39
3

4 What’s New • May 2003

Before You Begin

The What’s New describes the new features of this Sun™ ONE Studio 8, Compiler
Collection compilers and command-line tools release.

Typographic Conventions

TABLE P-1 Typeface Conventions

Typeface Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when contrasted
with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.

AaBbCc123 Command-line placeholder text;
replace with a real name or value

To delete a file, type rm filename.
5

.

Shell Prompts

TABLE P-2 Code Conventions

Code
Symbol Meaning Notation Code Example

[] Brackets contain arguments
that are optional.

O[n] O4, O

{ } Braces contain a set of choices
for a required option.

d{y|n} dy

| The “pipe” or “bar” symbol
separates arguments, only one
of which may be chosen.

B{dynamic|static} Bstatic

: The colon, like the comma, is
sometimes used to separate
arguments.

Rdir[:dir] R/local/libs:/U/a

… The ellipsis indicates omission
in a series.

xinline=f1[,…fn] xinline=alpha,dos

Shell Prompt

C shell machine-name%

C shell superuser machine-name#

Bourne shell and Korn shell $

Superuser for Bourne shell and Korn shell #
6 What’s New • May 2003

Accessing Compiler Collection Tools and
Man Pages
The compiler collection components and man pages are not installed into the
standard /usr/bin/ and /usr/share/man directories. To access the compilers and
tools, you must have the compiler collection component directory in your PATH
environment variable. To access the man pages, you must have the compiler
collection man page directory in your MANPATH environment variable.

For more information about the PATH variable, see the csh(1), sh(1), and ksh(1)
man pages. For more information about the MANPATH variable, see the man(1) man
page. For more information about setting your PATH variable and MANPATH variables
to access this release, see the installation guide or your system administrator.

Note – The information in this section assumes that your Sun ONE Studio compiler
collection components are installed in the /opt directory. If your software is not
installed in the /opt directory, ask your system administrator for the equivalent
path on your system.

Accessing the Compilers and Tools
Use the steps below to determine whether you need to change your PATH variable to
access the compilers and tools.

▼ To Determine Whether You Need to Set Your PATH
Environment Variable

1. Display the current value of the PATH variable by typing the following at a
command prompt.

2. Review the output to find a string of paths that contain /opt/SUNWspro/bin/.

If you find the path, your PATH variable is already set to access the compilers and
tools. If you do not find the path, set your PATH environment variable by following
the instructions in the next procedure.

% echo $PATH
Before You Begin 7

▼ To Set Your PATH Environment Variable to Enable Access to
the Compilers and Tools

1. If you are using the C shell, edit your home .cshrc file. If you are using the
Bourne shell or Korn shell, edit your home .profile file.

2. Add the following to your PATH environment variable.

/opt/SUNWspro/bin

Accessing the Man Pages
Use the following steps to determine whether you need to change your MANPATH
variable to access the man pages.

▼ To Determine Whether You Need to Set Your MANPATH
Environment Variable

1. Request the dbx man page by typing the following at a command prompt.

2. Review the output, if any.

If the dbx(1) man page cannot be found or if the man page displayed is not for the
current version of the software installed, follow the instructions in the next
procedure for setting your MANPATH environment variable.

▼ To Set Your MANPATH Environment Variable to Enable
Access to the Man Pages

1. If you are using the C shell, edit your home .cshrc file. If you are using the
Bourne shell or Korn shell, edit your home .profile file.

2. Add the following to your MANPATH environment variable.

/opt/SUNWspro/man

% man dbx
8 What’s New • May 2003

Accessing Compiler Collection
Documentation
You can access the documentation at the following locations:

■ The documentation is available from the documentation index that is installed
with the software on your local system or network at
file:/opt/SUNWspro/docs/index.html.

If your software is not installed in the /opt directory, ask your system
administrator for the equivalent path on your system.

■ Most manuals are available from the docs.sun.comsm web site. The following
titles are available through your installed software only:

■ Standard C++ Library Class Reference
■ Standard C++ Library User’s Guide
■ Tools.h++ Class Library Reference
■ Tools.h++ User’s Guide

■ The release notes are available from the docs.sun.com web site.

The docs.sun.com web site (http://docs.sun.com) enables you to read, print,
and buy Sun Microsystems manuals through the Internet. If you cannot find a
manual, see the documentation index that is installed with the software on your
local system or network.

Note – Sun is not responsible for the availability of third-party web sites mentioned
in this document and does not endorse and is not responsible or liable for any
content, advertising, products, or other materials on or available from such sites or
resources. Sun will not be responsible or liable for any damage or loss caused or
alleged to be caused by or in connection with use of or reliance on any such content,
goods, or services available on or through any such sites or resources.
Before You Begin 9

Documentation in Accessible Formats
The documentation is provided in accessible formats that are readable by assistive
technologies for users with disabilities. You can find accessible versions of
documentation as described in the following table. If your software is not installed
in the /opt directory, ask your system administrator for the equivalent path on your
system.

Resources for Developers
Visit http://www.sun.com/developers/studio and click the Compiler
Collection link to find these frequently updated resources:

■ Articles on programming techniques and best practices

■ A knowledge base of short programming tips

■ Documentation of compiler collection components, as well as corrections to the
documentation that is installed with your software

■ Information on support levels

■ User forums

■ Downloadable code samples

■ New technology previews

You can find additional resources for developers at
http://www.sun.com/developers/.

Type of Documentation Format and Location of Accessible Version

Manuals (except third-party
manuals)

HTML at http://docs.sun.com

Third-party manuals:
• Standard C++ Library Class

Reference
• Standard C++ Library

User’s Guide
• Tools.h++ Class Library

Reference
• Tools.h++ User’s Guide

HTML in the installed software through the documentation
index at file:/opt/SUNWspro/docs/index.html

Readmes and man pages HTML in the installed software through the documentation
index at file:/opt/SUNWspro/docs/index.html

Release notes HTML at http://docs.sun.com
10 What’s New • May 2003

Contacting Sun Technical Support
If you have technical questions about this product that are not answered in this
document, go to:

http://www.sun.com/service/contacting

Sending Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. Email your comments to Sun at this address:

docfeedback@sun.com

Please include the part number (817-0921-10) of your document in the subject line of
your email.
Before You Begin 11

12 What’s New • May 2003

Sun ONE Studio 8, Compiler
Collection New Features

This chapter describes the new features of the Sun ONE Studio 8, Compiler
Collection compilers and command-line tools. The primary focus of this release is
significant performance and portability updates to our C, C++ and Fortran language
systems; and support for a subset of C99 syntax and for OpenMP™ programs in the
dbx command-line debugger.

This chapter has the following sections:

■ C Compiler
■ C++ Compiler
■ Fortran Compiler
■ dbx Command-Line Debugger
■ Sun Performance Library
■ Interval Arithmetic
■ Performance Analysis Tools
■ Documentation

In most sections, there is a table that lists the new features of that component. The
table has either two columns or three columns:

■ Two-column table. The left-hand column provides a short description of the
feature, and the right-hand column has a longer description.

■ Three-column table. The left-hand column provides a short description of the
feature, the middle column lists the relevant command or option, and the
right-hand column has a longer description of the new feature.

Note – To find the Sun ONE Studio 8, Compiler Collection documentation described
in this chapter, see the documentation index installed with the product software at
/opt/SUNWspro/docs/index.html. If your software is not installed in the /opt
directory, contact your system administrator for the equivalent path on your system
or network.
13

C Compiler
This section lists the new features of the C compiler for this release. The new
features are organized into the following tables:

■ TABLE 1 General Enhancements
■ TABLE 2 Faster Compilation
■ TABLE 3 Improved Performance
■ TABLE 4 Easier Debugging

For more information about the specific compiler options referenced in this section,
see the C User’s Guide or the cc(1) man page.

TABLE 1 lists the general enhancements of the C compiler.

TABLE 1 General Enhancements of the C Compiler

Feature Description

Linker mapfiles are no
longer needed for
variable scoping:
-xldscope

There are now two different ways you can control the exporting
of symbols in dynamic libraries. This facility is called linker
scoping, and has been supported by linker mapfiles for some
time. First, you can now embed new declaration specifiers in
code.
By embedding __global, __symbolic, and __hidden directly
in code, you no longer need to use mapfiles. Second, you can
override the default setting for variable scoping by specifying
-xldscope at the command line.
14 What’s New • May 2003

Implementation of
additional C99 features

This release adds support for the following ISO/IEC 9899:1999
(referred to as C99 in this document) features. The following list
only details the C99 features implemented in this release, which
is a subset of all the implemented C99 features. See the C User’s
Guide for a complete listing of all C99 features implemented over
the past and current release of the C compiler. The sub-section
number of the C99 standard is listed for each item.
• 6.2.5 _Bool
• 6.2.5 _Complex type
This release supports a partial implementation of _Complex. You
must link with -lcplxsupp on Solaris 7, 8, and 9 Operating
Environments.
• 6.3.2.1 Conversion of arrays to pointers not limited to lvalues
• 6.4.4.2 Hexadecimal floating-point literals
• 6.5.2.5 Compound literals
• 6.7.2 Type specifiers
• 6.10.6 STDC pragmas
• 6.10.8 __STDC_IEC_559 and __STDC_IEC_559_COMPLEX

macros

Support for the VIS™

Developers Kit: -xvis
(SPARC®)

Use the -xvis=[yes|no] option when you are using the
assembly-language templates defined in the VIS instruction set
Software Developers Kit (VSDK).
The VIS instruction set is an extension to the SPARC v9
instruction set. Even though the UltraSPARC® processors are
64-bit, there are many cases, especially in multimedia
applications, when the data are limited to eight or 16 bits in size.
The VIS instructions can process four 16-bit data with one
instruction so they greatly improve the performance of
applications that handle new media such as imaging, linear
algebra, signal processing, audio, video and networking.
For more information on the VSDK, see http://www.sun.com
/processors/vis

Larger default stack
size for slave threads

The default stack size for slave threads is now larger. All slave
threads have the same stack size, which is four megabytes for
32-bit applications and eight megabytes for 64-bit applications by
default. The size is set with the STACKSIZE environment
variable.

TABLE 1 General Enhancements of the C Compiler (Continued)

Feature Description
15

Improved -xprofile
(SPARC)

The -xprofile option offers the following improvements:
• Support for profiling shared libraries
• Thread-safe profile collection using -xprofile=collect
-mt

• Improved support for profiling multiple programs or shared
libraries in a single profile directory

With -xprofile=use, the compiler can now find profile data in
profile directories that contain data for multiple object files with
nonunique basenames. For cases where the compiler is unable to
find an object file’s profile data, the compiler provides a new
option -xprofile_pathmap=collect-prefix: use-prefix.

Support for UTF-16
string literals: -xustr

Specify -xustr=ascii_utf16_ushort if you need to support
an internationalized application that uses ISO10646 UTF-16 string
literals. In other words, use this option if your code contains a
string literal composed of sixteen-bit characters. Without this
option, the compiler neither produces nor recognizes sixteen-bit
character string literals. This option enables recognition of the
U”ASCII_string” string literals as an array of type unsigned short.
Since such strings are not yet part of any standard, this option
enables recognition of non-standard C.

TABLE 1 General Enhancements of the C Compiler (Continued)

Feature Description
16 What’s New • May 2003

TABLE 2 lists the new features of the C compiler that support faster compilation.

TABLE 2 New C Features That Support Faster Compilation

Feature Description

Faster profiling
(SPARC)

Use -xprofile_ircache[=path] with -xprofile=collect|use
to improve compilation time during the use phase by reusing
compilation data saved from the collect phase.
With large programs, compilation time in the use phase can improve
significantly because the intermediate data is saved. The saved data
could increase disk space requirements considerably.

Precompiled
headers: -xpch

This release of the compiler introduces the new precompiled-header
feature. The precompiled-header file is designed to reduce compile
time for applications whose source files share a common set of
include files containing a large amount of source code. A
precompiled header works by collecting information about a
sequence of header files from one source file, and then using that
information when recompiling that source file, and when compiling
other source files that have the same sequence of headers. You can
take advantage of this feature through the -xpch and -xpchstop
options in combination with the #pragma hdrstop directive.

Using multiple
processors:
-xjobs=n (SPARC)

Specify the -xjobs=n option to set how many processes the
compiler creates to complete its work. This option can reduce the
build time on a multi-CPU machine. Currently, -xjobs works only
with the -xipo option. When you specify -xjobs=n, the
interprocedural optimizer uses n as the maximum number of code
generator instances it can invoke to compile different files.
17

TABLE 3 lists the new features of the C compiler that support improved performance.

TABLE 3 New C Features That Support Improved Performance

Feature Description

Improving run-time
with linker
supported
thread-local storage:
-xthreadvar

Use the new linker supported thread-local storage facility of the
compiler to do the following:
• Utilize a fast implementation for the POSIX interfaces for

allocating thread-specific data.
• Convert multi-process programs to multi-thread programs.
• Port Windows applications using thread-local storage to Solaris.
• Utilize a fast implementation for the threadprivate variables in

OpenMP programs.
Thread-local storage is now available in the compiler through the
declaration of thread-local variables. The declaration consists of a
normal variable declaration with the addition of the variable
specifier __thread and the command line option -xthreadvar.

Improving run-time
by reducing page
faults: -xF

Use the new functionality of -xF to enable the optimal reordering of
variables and functions by the linker. This can help solve the
following problems which negatively impact run-time performance:
• Cache and page contention caused by unrelated variables that are

near each other in memory.
• Unnecessarily large work-set size as a result of related variables

which are not near each other in memory.
• Unnecessarily large work-set size as a result of unused copies of

weak variables that decrease the effective data density.
18 What’s New • May 2003

Improving run-time:
-xlinkopt
(SPARC)

The C++ compiler can now perform link-time optimization on
relocatable object files when you specify the -xlinkopt command.
Specify -xlinkopt and the compiler performs some additional
optimizations at link time without modifying the .o files that are
linked. The optimizations appear only in the executable program.
The -xlinkopt option is most effective when you use it to compile
the whole program, and with profile feedback.

Improving run-time:
-xpagesize=n
(SPARC)

Set the page size in memory for the stack. n can be 8K, 64K, 512K,
4M, 32M, 256M, 2G, 16G, or default. You must specify a valid page
size for the Solaris operating environment on the target platform, as
returned by getpagesize(3C). If you do not specify a valid page
size, the request is silently ignored at run-time. You can use pmap(1)
or meminfo(2) to determine page size at the target platform.
Note that this feature is only available on Solaris 9 environments. A
program compiled with this option will not link in earlier Solaris
environments.
This option is a macro for -xpagesize_stack and
-xpagesize_heap.

Hardware
counter-based
profiling:
-xhwcprof
(SPARC)

Use the -xhwcprof=[enable|disable] option to enable compiler
support for hardware counter-based profiling.
When -xhwcprof is enabled, the compiler generates information
that helps tools match hardware counter data reference and miss
events with associated instructions. Corresponding data-types and
structure-members may also be identified in conjunction with
symbolic information (produced with -g). This information can be
useful in performance analysis because it is not easily identified
from profiles based on code addresses, source statements, or
routines.

TABLE 3 New C Features That Support Improved Performance (Continued)

Feature Description
19

TABLE 4 lists the new features of the C compiler that support easier debugging

C++ Compiler
This section lists the new features of the C++ compiler for this release. The new
features are organized into the following tables:

■ TABLE 5 General Enhancements
■ TABLE 6 Faster Compilation
■ TABLE 7 Easier Porting
■ TABLE 8 Improved Performance
■ TABLE 9 Added Warning and Error Controls

For more information about the specific compiler options referenced in this section,
see the C++ User’s Guide or the CC(1) man page.

TABLE 4 New C Features That Support Easier Debugging

Feature Description

DWARF-format
debugger
information:
-xdebugformat

The C compiler is migrating the format of debugging information
from the stabs format to the DWARF format as specified in DWARF
Debugging Information Format. If you maintain software that reads
debugging information, you now have the option to transition your
tools from the stabs format to the DWARF format. The default
setting for this release is -xdebugformat=stabs.
Use the -xdebugformat=dwarf option as a way of accessing the
new format for the purpose of porting tools. There is no need to use
this option unless you maintain software that reads debugging
information, or unless a specific tool tells you that it requires
debugging information in one of these formats.

Support for
debugging OpenMP
programs:
-xopenmp=noopt

If you are debugging an OpenMP program with dbx, compile with
-g and -xopenmp=noopt so you can breakpoint within parallel
regions and display the contents of variables.
20 What’s New • May 2003

TABLE 5 lists the general enhancements of the C++ compiler (version 5.5).

TABLE 5 General Enhancements of the C++ Compiler

Feature Description

Template cache no
longer needed:
-instances

This release of the C++ compiler improves template instantiation
significantly. Programs that use the default template instantiation
model are no longer restricted from building more than one
program in a directory.
Most programs that rely on an alternate instantiation model, with
-instances=static, can now use the new default instantiation
model.
The improvements and changes to template instantiation will
either improve compile time by avoiding a template cache, or
reduce executable size by avoiding duplicate static functions.

Linker mapfiles no
longer needed for
variable scoping:
-xldscope

There are now two different ways you can control the exporting
of symbols in dynamic libraries. This facility is called linker
scoping, and has been supported by linker mapfiles for some
time. First, you can now embed new declaration specifiers in
code.
By embedding __global, __symbolic, and __hidden directly
in code, you no longer need to use mapfiles. Second, you can
override the default setting for variable scoping by specifying
-xldscope at the command line.

Powerful new
diagnostics for macros:
-xdumpmacros

This release introduces two new pragmas and a new compiler
option designed to help you track the behavior of macros in your
application. This includes macros defined in system headers.
You can use the -xdumpmacros option at the command line to
see the macro definitions and also to see where macros are
defined, undefined, and used in your program. To narrow your
focus, use the new dumpmacros and end_dumpmacros pragmas
directly in the source.

Support for VIS
Developers Kit: -xvis

Use the -xvis=[yes|no] option when you are using the
assembly-language templates defined in the VIS instruction set
Software Developers Kit (VSDK). The default is -xvis=no.
For more information on the VSDK, see http://www.sun.com
/processors/vis

Support for C99
runtime libraries and
environment: -xlang

On operating systems that support the C99 standard (ISO/IEC
9899:1999, Programming Language - C),
-xlang=c99 specifies C99 runtime behavior for C and C++ code
that invokes C library functions. Some C99 behavior, like the C
complex type, depends on the use of the
-xc99=%all option with the C compiler, and some behavior, like
printf, does not.
C99 support is not available in compat mode (-compat=4).
21

Support for UTF-16
string literals: -xustr

Specify -xustr=ascii_utf16_ushort if you need to support
an internationalized application that uses ISO10646 UTF-16 string
literals. In other words, use this option if your code contains a
string literal composed of 16-bit characters. Without this option,
the compiler neither produces nor recognizes 16-bit character
string literals. This option enables recognition of the U”...” string
literals as an array of type unsigned short. Since such strings are
not yet part of any standard, this option enables recognition of
non-standard C++.

Expanded support for
OpenMP™: -xopenmp

The C++ compiler continues its implementation of the OpenMP
interface for explicit parallelization. See the CC(1) man page for
specific details of the -xopenmp option.
The compiler has expanded OpenMP functionality to allow the
following:
• Class objects are permitted in OpenMP data clauses.
• OpenMP pragmas are permitted in class member functions.

Improved -xprofile The -xprofile option offers the following improvements:
• Support for profiling shared libraries
• Thread-safe profile collection using
-xprofile=collect -mt

• Improved support for profiling multiple programs or shared
libraries in a single profile directory.

TABLE 5 General Enhancements of the C++ Compiler (Continued)

Feature Description
22 What’s New • May 2003

TABLE 6 lists the new features of the C++ compiler that support faster compilation.

TABLE 6 New C++ Features That Support Faster Compilation

Features Description

Speeding up syntax
checking: -xe

When you specify -xe, the compiler checks only for syntax and
semantic errors and does not produce any object code.
Use the -xe option if you do not need the object files produced
by compilation. For example, if you are trying to isolate the cause
of an error message by deleting sections of code, you can speed
the edit and compile cycle by using -xe.

Faster profiling:
-xprofile_ircache

Use -xprofile_ircache[=path] with
-xprofile=collect|use to improve compilation time during
the use phase by reusing compilation data saved from the collect
phase.
With large programs, compilation time in the use phase can
improve significantly because the intermediate data is saved. The
saved data could increase disk space requirements considerably.

Stopping redundant
template instantiations:
-instlib=filename

Use -instlib=filename to inhibit the generation of template
instances that are duplicated in a library and the current object. In
general, if your program shares large numbers of instances with
libraries, try
-instlib=filename and see whether or not compilation time
improves.
Use the filename argument to specify the library that you know
contains the existing template instances. The filename argument
must contain a forward slash ’/’ character. For paths relative to
the current directory, use dot-slash ’./’. The
-instlib=filename option has no default and is only used if you
specify it. This option can be specified multiple times and
accumulates.
23

Generating functions:
-template=
geninlinefuncs

Usually, the C++ compiler will not generate an inline template
function unless the function is called and cannot be inlined.
However, you can specify
-template=geninlinefuncs and the compiler instantiates
inline member functions of the explicitly instantiated class
template which were not generated previously. Linkage for these
functions is local in all cases.

Precompiled headers:
-xpch

This release of the compiler introduces the new
precompiled-header feature. The precompiled-header file is
designed to reduce compile time for applications whose source
files share a common set of include files containing a large
amount of source code. A precompiled header works by
collecting information about a sequence of header files from one
source file, and then using that information when recompiling
that source file, and when compiling other source files that have
the same sequence of headers. You can take advantage of this
feature through the -xpch and -xpchstop options in
combination with the #pragma hdrstop directive.

Using multiple
processors: -xjobs=n

Specify the -xjobs=n option to set how many processes the
compiler creates to complete its work. This option can reduce the
build time on a multi-CPU machine. Currently,
-xjobs works only with the -xipo option. When you specify
-xjobs=n, the interprocedural optimizer uses n as the maximum
number of code generator instances it can invoke to compile
different files.

TABLE 6 New C++ Features That Support Faster Compilation (Continued)

Features Description
24 What’s New • May 2003

TABLE 7 lists the new features of the C++ compiler that support easier porting:

TABLE 7 New C++ Features That Support Easier Porting

Feature Description

Simplified porting:
-xmemalign

Use the -xmemalign option to control the assumptions the compiler
makes about the alignment of data. By controlling the code
generated for potentially misaligned memory accesses and by
controlling program behavior in the event of a misaligned access,
you can more easily port your code to the Solaris Operating
Environment.
The -xmemalign option is also used to improve performance for
data that is aligned more than necessary, and to access structures
that are packed more than normal.

Setting the sign of
char: -xchar

The -xchar[={signed|s|unsigned|u}] option is provided solely
for the purpose of easing the migration of code from systems where
the char type is defined as unsigned. Do not use this option unless
you are migrating from such a system. Only code that relies on the
sign of a char type needs to be rewritten to explicitly specify signed
or unsigned.

Debugging ported
code: -xport64

Use the new -xport64 option to help you port code to a 64-bit
environment. Specifically, this option warns against problems such
as truncation of values (including pointers), sign extension, and
changes to bit-packing that are common when you port code from a
32-bit architecture such as V7 (ILP32) to a 64-bit architecture such as
V9 (LP64).
An additional option,
-xnocastwarn, is also now available to disable truncation
warnings in
64-bit compilation mode when an explicit cast is the cause of data
truncation.
25

TABLE 8 lists the new features of the C++ compiler that support improved
performance:

TABLE 8 New C++ Features That Support Improved Performance

Feature Description

Linker supported
thread-local storage
of data:
-xthreadvar
(SPARC)

Use the new linker supported thread-local storage facility of the
compiler to do the following:
• Utilize a fast implementation for the POSIX interfaces for

allocating thread-specific data.
• Convert multi-process programs to multi-thread programs.
• Port Windows applications using thread-local storage to Solaris.
• Utilize a fast implementation for the threadprivate variables in

OpenMP.
Thread-local storage is now available in the compiler through the
declaration of thread-local variables. The declaration consists of a
normal variable declaration with the addition of the variable
specifier __thread and the command line option -xthreadvar.

Reducing page
faults: -xF

Use the new functionality of -xF to enable the optimal reordering of
variables and functions by the linker. This can help solve the
following problems which negatively impact run-time performance:
• Cache and page contention caused by unrelated variables that are

near each other in memory.
• Unnecessarily large work-set size as a result of related variables

which are not near each other in memory.
• Unnecessarily large work-set size as a result of unused copies of

weak variables that decrease the effective data density.
26 What’s New • May 2003

New pragmas The C++ compiler now supports four new pragmas that you can use
to help improve the optimization of your code. See the C++ User’s
Guide for complete descriptions of these pragmas:
• #pragma does_not_read_global_data

• #pragma does_not_return

• #pragma does_not_write_global_data

• #pragma rarely_called

Improving run-time:
-xlinkopt

The C++ compiler can now perform link-time optimization on
relocatable object files when you specify the -xlinkopt option.
See the CC(1) man page.
Specify -xlinkopt and the compiler performs some additional
optimizations at link time without modifying the .o files that are
linked. The optimizations appear only in the executable program.
The -xlinkopt option is most effective when you use it to compile
the whole program, and with profile feedback.

Improving run-time:
-xpagesize=n

Use the -xpagesize=n option to set the preferred page size for the
stack and the heap. n can be 8K, 64K, 512K, 4M, 32M, 256M, 2G,
16G, or default. You must specify a valid page size for the Solaris
Operating Environment on the target platform, as returned by
getpagesize(3C). If you do not specify a valid page size, the
request is silently ignored at run-time. You can use pmap(1) or
meminfo(2) to determine page size of the target platform.
This feature is only available on Solaris 9 Operating Environments.
A program compiled with this option will not link in earlier Solaris
Operating Environments.

TABLE 8 New C++ Features That Support Improved Performance (Continued)

Feature Description
27

TABLE 9 lists the newly added error and warning controls of the C++ compiler:

TABLE 9 Newly Added Error and Warning Controls of the C++ Compiler

Feature Description

Filtering warning
messages: -erroff

You can now use the new -erroff option to suppress warning
messages from the compiler front-end. Neither error messages
nor messages from the driver are affected. You can also use
-erroff to single out a particular warning message so that
either it alone is suppressed or it alone is issued.

Aborting compilation:
-errtags, -errwarn

You can now use the -errtags compiler option and the
-errwarn compiler option to stop compilation if the compiler
issues a particular warning. Set -errtags=yes to find the tag
for a particular warning and then specify -errwarn=tag where
tag is the unique identifier returned by -errtags for a particular
warning message.
You can also abort compilation if any warning is issued by
specifying -errwarn=%all. See also -xwe in the CC(1) man
page.

Improved filtering for
standard-library
names:
-filt=[no%]stdlib

The -filt=[no%]stdlib option is set by default and simplifies
names from the standard library in both the linker and compiler
error messages. This makes it easier for you to recognize the
name of standard-library functions. Specify -filt=no%stdlib
to disable this filtering.
28 What’s New • May 2003

Fortran Compiler
The Sun ONE Studio 8, Compiler Collection release provides a Fortran 95 compiler,
f95, with compatibility support for legacy Fortran 77 programs. See the chapter
“FORTRAN 77 Compatibility: Migrating to Fortran 95” in the Fortran User’s Guide
for details on porting legacy Fortran 77 programs to the Fortran 95 compiler.

TABLE 10 lists the new features of the Fortran 95 compiler. See the Fortran User’s
Guide, Fortran Programming Guide, and the Fortran Library Reference for details.

TABLE 10 Fortran 95 Compiler New Features

Feature Option Description

Fortran 2000 features The following features appearing in
the Fortran 2000 draft standard,
which can be found in PDF format at
http://www.dkuug.dk/jtc1
/sc22/open/n3501.pdf, have
been implemented in this release of
Fortran 95 compiler:
• Exceptions and IEEE Arithmetic
• Interoperability with C
• PROTECTED Attribute
• ASYNCHRONOUS I/O Specifier

Enhanced
compatibility with
legacy f77

A number of new features enhance
the Fortran 95 compiler’s
compatibility with legacy Fortran 77
compiler, f77. These include:
• Variable format expressions

(VFE’s)
• Long identifiers
• -arg=loc

• -vax compiler option
29

I/O error handlers Two new functions enable the user
to specify their own error handling
routine for formatted input on a
logical unit. When a formatting error
is detected, the runtime I/O library
calls the specified user-supplied
handler routine with data pointing
at the character in the input line
causing the error. The handler
routine can supply a new character
and allow the I/O operation to
continue at the point where the error
was detected using the new
character; or take the default Fortran
error handling.
The new routines,
SET_IO_ERR_HANDLER(3f) and
GET_IO_ERR_HANDLER (3f), are
module subroutines and require USE
SUN_IO_HANDLERS in the routine
that calls them. See the man pages
for these routines for details.

Unsigned integers With this release, the Fortran 95
compiler accepts a new data type,
UNSIGNED, as an extension to the
language. Four KIND parameter
values are accepted with UNSIGNED:
1, 2, 4, and 8, corresponding to 1-, 2,
4-, and 8-byte unsigned integers,
respectively.
The form of an unsigned integer
constant is a digit-string followed by
the upper or lower case letter U,
optionally followed by an
underscore and KIND parameter.

TABLE 10 Fortran 95 Compiler New Features (Continued)

Feature Option Description
30 What’s New • May 2003

Preferred stack/heap
page size

-xpagesize A new compiler option,
-xpagesize, enables the running
program to set the preferred stack
and heap page size at program
startup. For example,
-xpagesize=4M sets the preferred
Solaris 9 Operating Environment
stack and heap page sizes to 4
megabytes. Choose from a set of
preset values.
Stack or heap page sizes can be set
individually with
-xpagesize_stack and
-xpagesize_heap.
This feature is only available on
Solaris 9 Operating Environments. A
program compiled with this flag will
fail to link in earlier Solaris
Operating Environments.)

Faster profiling xprofile_ircache=path This release introduces the new
command-line option
-xprofile_ircache=path, to
speed up the use compilation phase
during profile feedback.
With this flag specified, the compiler
saves intermediate data on path
during the collect compilation
phase, -xprofile=collect, for
reuse later during the
-xprofile=use phase, eliminating
the need to regenerate this
information. For large programs this
could amount to a significant
savings in compile time in the
-xprofile=use phase.

Enhanced “known
libraries”

-xknown_lib The -xknown_lib option has been
enhanced to include more routines
from the Basic Linear Algebra
Subprograms library, BLAS, and
introduces three sub-options.
The compiler recognizes calls to
select BLAS library routines and is
free to optimize appropriately for
the Sun Performance Library
implementation.

TABLE 10 Fortran 95 Compiler New Features (Continued)

Feature Option Description
31

Link-time
optimization

-xlinkopt Compile and link with the new
-xlinkopt flag to invoke a
post-optimizer to apply a number of
advanced performance
optimizations on the generated
binary object code at link time.
This option is most effective when
used to compile the whole program
with profile feedback.

Initialization of local
variables

-xcheck=init_local A new extension to the -xcheck
option flag enables special
initialization of local variables.
Compiling with
-xcheck=init_local initializes
local variables to a value that is
likely to cause an arithmetic
exception if it is used before it is
assigned by the program. Memory
allocated by the ALLOCATE
statement will also be initialized in
this manner. SAVE variables, module
variables, and variables in COMMON
blocks are not initialized.

Enhanced -openmp
option

-openmp The -openmp option flag has been
enhanced to facilitate debugging
OpenMP programs. To use dbx to
debug your OpenMP application,
compile with -openmp=noopt -g

You will then be able to use dbx to
breakpoint within parallel regions
and display contents of variables.

Multi-process
compilation

-xjobs=n Specify -xjobs=n with -xipo and
the interprocedural optimizer will
invoke at most n code generator
instances to compile the files listed
on the command line. This option
can greatly reduce the build time of
large applications on a multi-CPU
machine.

TABLE 10 Fortran 95 Compiler New Features (Continued)

Feature Option Description
32 What’s New • May 2003

Making assertions
with PRAGMA
ASSUME

-xassume_control The ASSUME pragma is a new feature
in this release of the compiler. This
pragma gives hints to the compiler
about conditions the programmer
knows are true at some point in a
procedure. This may help the
compiler to do a better job
optimizing the code. The
programmer can also use the
assertions to check the validity of
the program during execution. The
new -xassume_control flag
determines how the ASSUME
pragmas are processed.

OpenMP support for
explicitly threaded
programs.

-xopenmp The implementation of the OpenMP
API in this release supports
programs that are explicitly
threaded.

TABLE 10 Fortran 95 Compiler New Features (Continued)

Feature Option Description
33

dbx Command-Line Debugger
TABLE 11 lists the new features in this release of the dbx command-line debugger. For
more information about these features, see the Debugging a Program With dbx
manual.

Interval Arithmetic
There are no new interval arithmetic features in this compiler collection release.

TABLE 11 dbx New Features

Feature Description

Debug programs with
mixed-language code

dbx now supports the following C99 language types:
• complex
• imaginary
• double complex
• double imaginary
• long double complex
• long double imaginary
You can print the values of variables and expressions
involving these types.

Support for debugging
OpenMP programs

dbx now supports debugging of OpenMP programs in
Fortran 95, C+++, and C. dbx can display threads, stacks,
functions, parameters, and variables correctly in the
presence of OpenMP code generated by the Fortran 95
compiler, the C++ compiler, and the C compiler.

New -stop option for
detach command

The detach -stop command detaches dbx from the target
program and leaves the process in a stopped state. The
-stop option allows temporary application of other
/proc-based debugging tools that may be blocked due to
exclusive access.

New -resumeone event
modifier

The new -resumeone modifier for event handlers helps
with conditions with function calls in multi-threaded
programs.
34 What’s New • May 2003

Sun Performance Library
Sun Performance Library™ is a set of optimized, high-speed mathematical
subroutines for solving linear algebra problems and other numerically intensive
problems. Sun Performance Library is based on a collection of public domain
applications available from Netlib (at http://www.netlib.org). These routines
have been enhanced and bundled as the Sun Performance Library.

TABLE 12 lists the new features in this release of the Sun Performance Library. See the
Sun Performance Library User’s Guide and the section 3p man pages for more
information.

TABLE 12 Sun Performance Library New Features

Feature Description

Performance improvements This release of Sun Performance Library includes the
following performance improvements.
• BLAS and FFT Performance Improvements: Improved

GEMM performance of small problem sizes for US-III,
and improved FFT performance of small problem sizes
when using 32-bit FFT routines in V9 libraries

• Sparse Solver Performance Improvements: Enhanced
single-CPU performance of Sun Performance Library
sparse solver, and parallelized Sun Performance Library
sparse solver

• Sparse BLAS Performance Improvements: Parallelized
sparse matrix-vector operations, and improved
performance of small problem sizes

Portable library performance Internal changes that simplify getting optimal performance
have been made to this release of the Sun Performance
Library. At runtime, a version of Sun Performance Library
optimized for the SPARC hardware platform that the
executable is being run on, is dynamically loaded. This only
occurs when the shared library versions of Sun Performance
Library are linked, which is the default.

Sparse solver new features The sparse solver now includes Hermitian positive definite
matrix support.

Combined parallelization
models

This release of the Sun Performance Library includes
combined parallelization models, which reduces the number
of libraries shipped with the Sun Performance Libraries and
reduces the size of the Sun Performance Library.
Combining the parallelization models simplifies linking for
serial or parallel behavior from Sun Performance Library.
35

http://www.netlib.org

dmake
dmake is a command-line tool, compatible with make(1). dmake can build targets in
distributed, parallel, or serial mode. If you use the standard make(1) utility, the
transition to dmake requires little if any alteration to your makefiles. dmake is a
superset of the make utility. With nested makes, if a top-level makefile calls make,
you need to use $(MAKE). dmake parses the makefiles and determines which targets
can be built concurrently and distributes the build of those targets over a number of
hosts set by you. See man dmake for additional details.

Interval BLAS man pages
moved to man3pi folder

The Interval BLAS man pages have been moved to the
man3pi folder.
For information on the Fortran 95 interfaces and types of
arguments used in each Interval BLAS routine, see the
section 3pi man pages for the individual routines. For
example, to display the man page for the
constructv_i.3pi routine, type
man -s 3pi constructv_i. Routine names must be
lowercase.

TABLE 13 dmake New Features

Feature Description

dmake memory usage
reduced

While results depend on many factors, memory heap usage
has been reduced by 50% to 60%.

Increased consistency dmake now consistent with Solaris make

dmake now automatically
adjusts the limit of parallel
jobs to prevent overloading

The environment variable DMAKE_ADJUST_MAX_JOBS can
be set to automatically adjust the limit of parallel jobs to
prevent overloading.
• If set to YES, dmake adjusts the limit of parallel jobs

according to the current loading of the system. If the
system is not overloaded, dmake will use the limit
defined by the user. If the system is overloaded, dmake
will set the current limit lower than the limit defined by
the user. If this variable is not set, dmake will adjust the
limit of parallel jobs according to the current loading of
the system. This setting is the dmake default.

• NO Causes dmake to switch off the autoadjustment
mechanism.

TABLE 12 Sun Performance Library New Features (Continued)

Feature Description
36 What’s New • May 2003

Performance Analysis Tools
TABLE 14 lists the new data collection and presentation features in the Sun ONE
Studio 8, Compiler Collection release of the performance analysis tools. For more
information, see the following man pages:

■ collect(1)
■ collector(1)
■ er_print(1)
■ libcollector(3)

TABLE 14 Performance Analysis Tools New Features

Feature Description

Support for clock-based
profiling and
hardware-counter overflow
profiling for Java™ programs

The Java programming language is now fully supported for
clock-based profiling and hardware-counter overflow
profiling, as well as synchronization-delay tracing, and
memory allocation tracing. Data is collected for both a
machine representation of the target, and the Java
representation. A Java API to libcollector is provided.

Clock-based profiling Clock-based profiling is no longer restricted to multiples of
the system clock resolution for versions of the Solaris
Operating Environment that support a higher resolution
clock. The range of profiling intervals supported is returned
when you use the collect command with no arguments.

Archiving of loadobjects Archiving of loadobjects can be controlled using the -A
option of the collect command or the dbx collector
archive command.

Application programming
interface for pausing and
resuming data collection

An API for pausing and resuming data collection for
individual threads has been provided.

Hardware counters that
count memory access events

For hardware counters that count memory access events,
prefixing the counter name with “+” activates a search by
the Collector for the program counter and virtual address
that triggered the event.

Filtering by CPU Filtering by CPU has been added to the Performance
Analyzer and the er_print utility. This capability is not
available for versions of the Solaris Operating Environment
earlier than 9. The capability is implemented in the
er_print commands cpu_select and cpu_list.
37

Display lists The performance tools display lists are ordered by metric
value for source lines and program counters. These lists are
shown in the Lines tab and PCs tab of the Performance
Analyzer, and are generated by the er_print utility using
the lines command and the pcs commands. The Summary
tab in the Performance Analyzer displays all the metrics for
the selected source line. The summary panels for lines and
for program counters can be displayed in er_print utility
with the lsummary command and the psummary command.

Timeline tab The Timeline Options dialog box has been merged with the
Set Data Presentation dialog box as a Timeline tab.
The Timeline tab can display data bars for LWPs, for
threads, or for CPUs. Use the Timeline tab of the Set Data
Presentation dialog box to choose to display data for one of
these three.
The call stacks in the Timeline tab can be aligned on the root
function or on the leaf function, and the number of visible
frames can be set. Selections are made using the Timeline
tab of the Set Data Presentation dialog box.

Selection of an object Selection of an object has been extended to include source
lines and program counters as well as functions. The
selected object is displayed in the menu bar, and its metrics
are displayed in the Summary tab. The selected object is
displayed when you navigate from the current tab to
another tab. In particular, switching to source or
disassembly will position on the line or instruction selected,
rather than always positioning on the first line or
instruction of the selected function.

Experiments on descendant
processes

Experiments on descendant processes are automatically
loaded when the experiment for the founder process is
loaded, but the display of their data is disabled. You must
use the Filter Data dialog box in the Performance Analyzer
or the experiment_select command in the er_print
utility to enable data display for descendant experiments.

Leaklist tab The Leaklist tab shows leak and allocation data graphically,
and allows navigation between the call stack of a leak or
allocation and the source or disassembly of the function on
the call stack.

Java mode Experiments on applications written in the Java
programming language may be presented with Java mode
set to on, expert, or off.

TABLE 14 Performance Analysis Tools New Features (Continued)

Feature Description
38 What’s New • May 2003

Documentation
This section describes Sun ONE Studio 8, Compiler Collection documentation new
features.

■ The Debugging a Program With dbx manual has a new chapter entitled
“Debugging OpenMP Applications” The chapter describes how you can use the
dbx command-line debugger to debug applications that use the OpenMP
interface for explicit parallelization.

■ Previous releases of the FORTRAN 77 Language Reference are available through the
docs.sun.com web site. This manual has not been updated for this release.

■ Sun ONE Studio 8, Compiler Collection product documentation is provided in
formats that are readable by assistive technologies for users with disabilities. For
more information, see “Documentation in Accessible Formats” on page 10.
39

40 What’s New • May 2003

	What’s New
	Contents
	Before You Begin
	Typographic Conventions
	Shell Prompts
	Accessing Compiler Collection Tools and Man Pages
	Accessing the Compilers and Tools
	Accessing the Man Pages

	Accessing Compiler Collection Documentation
	Documentation in Accessible Formats

	Resources for Developers
	Contacting Sun Technical Support
	Sending Your Comments

	Sun ONE Studio 8, Compiler Collection New Features
	C Compiler
	C++ Compiler
	Fortran Compiler
	dbx Command-Line Debugger
	Interval Arithmetic
	Sun Performance Library
	dmake
	Performance Analysis Tools
	Documentation

