»
2 Sun

microsystems

Fortran User’s Guide

Sun™ ONE Studio 8

Sun Microsystems, Inc.

4150 Network Circle

Santa Clara, CA 95054 U.S.A.
650-960-1300

Part No. 817-0930-10
May 2003, Revision A

Send comments about this document to: docf eedback@un. com

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,California 95054, U.S.A. All rights reserved.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

This distribution may include materials developed by third parties.

Third-party software, including font technology;, is copyrighted and licensed from Sun suppliers. Portions of this product are derived in part
from Cray90, a product of Cray Research, Inc.

I'i bdwar f and | i br edbl ack are Copyright 2000 Silicon Graphics, Inc. and are available under the GNU Lesser General Public License from
http://ww. sgi.com

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Java, Sun ONE Studio, the Solaris logo and the Sun ONE logo are trademarks or registered trademarks of
Sun Microsystems, Inc. in the U.S. and other countries.

Netscape and Netscape Navigator are trademarks or registered trademarks of Netscape Communications Corporation in the United States and
other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the
export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether
direct or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion
lists, including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS I1S” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits reserves.

Droits du gouvernement americain, utlisateurs gouvernmentaux logiciel commercial. Les utilisateurs gouvernmentaux sont soumis au contrat
de licence standard de Sun Microsystems, Inc., ainsi qu aux dispositions en vigueur de la FAR (Federal Acquisition Regulations) et des
supplements a celles-ci.

Distribue par des licences qui en restreignent I'utilisation.
Cette distribution peut comprendre des composants developpes par des tierces parties.
Des parties de ce produit pourront etre derivees Cray CF90, un produit de Cray Inc.

Des parties de ce produit pourront etre derivees des systemes Berkeley BSD licencies par I’'Universite de Californie. UNIX est une marque
deposee aux Etats-Unis et dans d’autres pays et licenciee exclusivement par X/Open Company, Ltd.

I'i bdwar f etl i br edbl ack sont déposent 2000 Silicon Graphics, Inc. et sont disponible sous le GNU Moins Général Public Permis de
http://ww. sgi.com

Sun, Sun Microsystems, le logo Sun, Java, Sun ONE Studio, le logo Solaris et le logo Sun ONE sont des marques de fabrique ou des marques
deposees de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Netscape et Netscape Navigator sont des marques de fabrique ou des marques déposées de Netscape Communications Corporation aux Etats-
Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisees sous licence et sont des marques de fabrique ou des marques deposees de SPARC International, Inc.
aux Etats-Unis et dans d’autres pays. Les produits protant les marques SPARC sont bases sur une architecture developpee par Sun
Microsystems, Inc.

Les produits qui font I’objet de ce manuel d’entretien et les informations qu’il contient sont regis par la legislation americaine en matiere de
controle des exportations et peuvent etre soumis au droit d’autres pays dans le domaine des exportations et importations. Les utilisations
finales, ou utilisateurs finaux, pour des armes nucleaires, des missiles, des armes biologiques et chimiques ou du nucleaire maritime,
directement ou indirectement, sont strictement interdites. Les exportations ou reexportations vers des pays sous embargo des Etats-Unis, ou
vers des entites figurant sur les listes d’exclusion d’exportation americaines, y compris, mais de maniere non exclusive, la liste de personnes qui
font objet d’un ordre de ne pas participer, d’une facon directe ou indirecte, aux exportations des produits ou des services qui sont regi par la
legislation americaine en matiere de controle des exportations et la liste de ressortissants specifiquement designes, sont rigoureusement
interdites.

LA DOCUMENTATION EST FOURNIE “EN L’ETAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFACON.

Please ("
& ca

Adobe PostScript

Contents

Before You Begin xvii

Typographic Conventions xvii

Shell Prompts xix

Accessing Compiler Collection Tools and Man Pages Xix
Accessing Compiler Collection Documentation xxi
Accessing Related Solaris Documentation xxiii
Resources for Developers xxiii

Contacting Sun Technical Support xxiv

Sun Welcomes Your Comments xxiv

Introduction 1-1

1.1 Standards Conformance 1-1

1.2 Features of the Fortran 95 Compiler 1-2
1.3 Other Fortran Utilities 1-2

1.4 Debugging Utilities 1-3

1.5 Sun Performance Library 1-3

1.6 Interval Arithmetic 1-4

1.7 Man Pages 1-4

1.8 README Files 1-5

1.9 Command-Line Help 1-6

2. Using Fortran 95 2-1

2.1 A Quick Start 2-1

2.2 Invoking the Compiler 2-3
2.2.1 Compile-Link Sequence 2-3
2.2.2 Command-Line File Name Conventions 2-4
2.2.3 Source Files 2-4
2.2.4 Source File Preprocessors 2-5
2.2.5 Separate Compiling and Linking 2-5
2.2.6 Consistent Compiling and Linking 2-6
2.2.7 Unrecognized Command-Line Arguments 2-6
2.2.8 Fortran 95 Modules 2-7

2.3 Directives 2-7
2.3.1 General Directives 2-8
2.3.2 Parallelization Directives 2-15

2.4 Library Interfaces and systeminc 2-16

2.5 Compiler Usage Tips 2-17
25.1 Determining Hardware Platform 2-18
2.5.2 Using Environment Variables 2-18
253 Memory Size 2-19

3. Fortran Compiler Options 3-1

3.1 Command Syntax 3-1

3.2 Options Syntax 3-2

3.3 Options Summary 3-3
3.3.1 Commonly Used Options 3-8
3.3.2 MacroFlags 3-8
3.3.3 Backward Compatibility and Legacy Options 3-9
3.3.4 Obsolete Option Flags 3-10

3.4 Options Reference 3-11

iv Fortran User's Guide « May 2003

-a 3-11
-aligncomon[=n] 3-11
—ansi 3-11

-arg=l ocal 3-12

-aut opar 3-12
—-B{static|dynam c} 3-12
-C 3-13

—C 3-14

—-cg89 3-14

-cg92 3-14

—copyargs 3-14

—Dname[=def] 3-14
—dalign 3-15

—dbl _align_all ={yes| no} 3-16
—depend{=yes|no} 3-16
-dn 3-17

—dryrun 3-17

—-d{y| n} 3-17

-e 3-17

—er r of f =taglist 3-17
—errtags[={yes| no}] 3-18
—explicitpar 3-18

—ext _nanmes=e 3-19

-F 3-19

—f 3-20

-f77[=list] 3-20

—fast 3-22

—fixed 3-24

Contents v

Vi

—flags 3-24

—fnonstd 3-24
—fns[={no| yes}] 3-25

—f pover[={yes| no}] 3-25
-fpp 3-26

—free 3-26

—fround=r 3-26
—fsinmple[=n] 3-26
—ftrap=t 3-28

-G 3-28

—-g 3-28

—hname 3-29

—hel p 3-30

—I path 3-30
—inline=[%uto][[,][no%fl,...[no% fn]
-i oroundi ng=mode 3-31
—Kpic 3-31

—-KPI C 3-31

—Lpath 3-32

-1 x 3-32

—-libml 3-33

—l oopi nfo 3-33

—Mpath 3-33

- noddi r =path 3-34

—mp={ %mone| sun| cray} 3-34
—m 3-34

—native 3-35

—noaut opar 3-35

Fortran User's Guide « May 2003

3-30

—nodepend 3-35
—noexplicitpar 3-35
—nolib 3-35
—nolibm | 3-36

—nor eduction 3-36

—norunpath 3-36

—gn] 3-37
0 3-37
01 3-37
—@ 3-37
-8 3-38
~04 3-38
-6 3-38

—0 name 3-38
—onetrip 3-38

- opennp[=keyword] 3-39
—-PIC 3-40

-p 3-40

—pad[=p] 3-40
—paral l el 3-41
-pg 3-42

—pic 3-42
—Qoptionprls 3-42
—-qp 3-43

—RIs 3-43
-r8const 3-43
—reduction 3-44

-S 3-44

Contents vii

—s 3-44

—sb 3-44
—sbfast 3-45
—silent 3-45

—stackvar 3-45
—stop_status=yn 3-46
—t enp=dir 3-47

—-time 3-47

-U 3-47

- Uname 3-47

-u 3-48

—unroll=n 3-48

-use=list 3-48
-V 3-48
-V 3-48

- vax=keywords 3-49
—vpara 3-49

-w{n] 3-50

—Xlist[x] 3-50

—Xxa 3-51

- xal i as[=keywords] 3-52
—xar ch=isa 3-54

- xassune_cont r ol [=keywords] 3-58
—xaut opar 3-59
—xcache=c 3-59

—-xcg89 3-60

—-xcg92 3-60

- xcheck=keyword 3-60

viii Fortran User’'s Guide « May 2003

—xchi p=c 3-61

—xcode=addr 3-62
—xcommonchk[={no| yes}] 3-63
—xcrossfile[=n] 3-64
—xdepend 3-65
—xexplicitpar 3-65

—xF 3-65

-xhasc[={yes| no}] 3-65
—xhel p=h 3-66

-xia[=v] 3-66

—xi l d{of f| on} 3-67

—xi nli ne=list 3-67
-xinterval [=v] 3-67

-xi po[={0]| 1] 2}] 3-67

-Xj obs=n 3-69

- xknown_1 i b=library_list 3-70
-xlang=f 77 3-71

—xlibml 3-71

—xli bmopt 3-71
—xlic_lib=sunperf 3-71
—xlicinfo 3-71

-xl i nkopt [=level] 3-72

—xl oopi nfo 3-73
—xmaxopt[=n] 3-73
-xmemal i gn[=<a>] 3-74
—-xnolib 3-74

—xnol i bm | 3-75

—xnol i bmopt 3-75

Contents ix

-XxOn 3-75

- xopennmp 3-75

—xpad 3-75

- Xpagesi ze=size 3-75

- Xpagesi ze_heap=size 3-76
- Xpagesi ze_st ack=size 3-76
—xparal lel 3-76

—-Xpg 3-76

—xpp={f pp| cpp} 3-76
—xprefetch[=a[,a]] 3-77
-xprefetch_level=n 3-79
—xprofile=p 3-79
-xprofile_ircache[=path] 3-81
- xprofil e_pat hmap=collect_prefix: use_prefix 3-82
- Xrecursive 3-82
—Xreduction 3-82
—xregs=r 3-83

-XS 3-83

—xsaf e=mrem 3-84

-xsb 3-84

—xsbhf ast 3-84

—xspace 3-84

—xtarget=t 3-84

—xtime 3-87

—Xt ypemap=spec 3-87
—xunrol |l =n 3-87
—xvector[={yes| no}] 3-88

—ztext 3-88

x Fortran User's Guide * May 2003

Fortran 95 Features and Differences 4-1

4.1

4.2

4.3

4.4
4.5

4.6

Source Language Features 4-1

411 Continuation Line Limits 4-1

4.1.2 Fixed-Form Source Lines 4-1

413 Source Form Assumed 4-2

414 Limits and Defaults 4-3

Data Types 4-3

4.2.1 Boolean Type 4-3

4.2.2 Abbreviated Size Notation for Numeric Data Types 4-6
4.2.3 Size and Alignment of Data Types 4-7

Cray Pointers 4-9

43.1 Syntax 4-9

4.3.2 Purpose of Cray Pointers 4-10

4.3.3 Declaring Cray Pointers and Fortran 95 Pointers 4-10
4.3.4 Features of Cray Pointers 4-10

4.3.5 Restrictions on Cray Pointers 4-11

4.3.6 Restrictions on Cray Pointees 4-11

4.3.7 Usage of Cray Pointers 4-11

STRUCTURE and UNI ON (VAX Fortran) 4-12
Unsigned Integers 4-13

45.1 Arithmetic Expressions 4-14

45.2 Relational Expressions 4-14

453 Control Constructs 4-14

45.4 Input/Output Constructs 4-14

455 Intrinsic Functions 4-15

Fortran 2000 Features 4-15

4.6.1 Interoperability with C Functions 4-15

4.6.2 |EEE Floating-Point Exception Handling 4-16

Contents

Xi

4.6.3 PROTECTED Attribute 4-16
4.6.4 Fortran 2000 Asynchronous I/0 4-16
4.6.5 Extended ALLOCATABLE Attribute 4-16
4.6.6 VALUE Attribute 4-17
4.6.7 Fortran 2000 Stream I/0 4-17
4.6.8 Fortran 2000 Formatted I/0 Features 4-18
4.7 Additional 170 Extensions 4-19
4.7.1 1/0 Error Handling Routines 4-19
4.7.2 Variable Format Expressions 4-19
4.7.3 NAMELI ST Input Format 4-19
4.7.4 Binary Unformatted I/0 4-20
475 Miscellaneous I/0 Extensions 4-20
4.8 Directives 4-21
4.8.1 Form of Special f 95 Directive Lines 4-21
4.8.2 FlI XEDand FREE Directives 4-22
4.8.3 Parallelization Directives 4-23
49 Module Files 4-23
4.9.1 Searching for Modules 4-25
4.9.2 The - use=list Option Flag 4-25
4.9.3 Thefdunpnmod Command 4-25
4.10 Intrinsics 4-26
411 Forward Compatibility 4-27

4.12 Mixing Languages 4-27

5. FORTRAN 77 Compatibility: Migrating to Fortran 95 5-1
5.1 Compatible f 77 Features 5-1
5.2 Incompatibility Issues 5-6
5.3 Linking With f 77-Compiled Routines 5-8
5.3.1 Fortran 95 Intrinsics 5-8

xii Fortran User's Guide ¢« May 2003

5.4 Additional Notes About Migrating to the f 95 Compiler 5-9

. Runtime Error Messages 6-1
A.1 Operating System Error Messages 6-1
A.2 95 Runtime 1/0 Error Messages 6-2

. Features Release History 7-1

B.1 Sun ONE Studio 8, Compiler Collection Release: 7-1

B.2 Sun ONE Studio 7, Compiler Collection (Forte Developer 7) Release:

. Less Common —xt ar get Platform Expansions 8-1

. Fortran Directives Summary 9-1

D.1 General Fortran Directives 9-1
D.2 Special Fortran 95 Directives 9-3
D.3 Fortran 95 OpenMP Directives 9-3
D.4 Sun Parallelization Directives 9-4

D.5 Cray Parallelization Directives 9-5

Index Index-1

Contents

Xiii

xiv Fortran User's Guide ¢« May 2003

Tables

TABLE 1-1

TABLE 2-1

TABLE 2-2

TABLE 3-1

TABLE 3-2

TABLE 3-3

TABLE 3-4

TABLE 3-5

TABLE 3-6

TABLE 3-7

TABLE 3-8

TABLE 3-9

TABLE 3-10

TABLE 3-11

TABLE 3-12

TABLE 3-13

TABLE 3-14

TABLE 3-15

TABLE 3-16

TABLE 3-17

READMEs of Interest 1-5

Filename Suffixes Recognized by the Fortran 95 Compiler 2-4
Summary of General Fortran Directives 2-9

Options Syntax 3-2

Typographic Notations for Options 3-2

Compiler Options Grouped by Functionality 3-3
Commonly Used Options 3-8

Macro Option Flags 3-8

Backward Compatibility Options 3-9

Obsolete f 95 Options 3-10

Subnormal REAL and DOUBLE 3-25

—Xl i st Suboptions 3-51

- xal i as Option Keywords 3-52

—xar ch ISA Keywords 3-54

Most General - xar ch Options on SPARC Platforms 3-54
- xar ch Values for SPARC Platforms 3-55

—xcache Values 3-59

Commonly Used —xchi p Processor Names 3-61

Less Commonly Used - xchi p Processor Names 3-61

Expansions of Commonly Used - xt ar get System Platforms 3-86

XV

XVi

TABLE 4-1

TABLE 4-2

TABLE 4-3

TABLE 4-4

TABLE A-1

TABLE C-1

TABLE D-1

TABLE D-2

TABLE D-3

TABLE D-4

F95 Source Form Command-line Options 4-2
Size Notation for Numeric Data Types 4-6
Default Data Sizes and Alignments (in Bytes) 4-8
Nonstandard Intrinsics 4-26

f 95 Runtime 1/O Messages 6-2

- Xt ar get Expansions 8-1

Summary of General Fortran Directives 9-1
Special Fortran 95 Directives 9-3

Sun-Style Parallelization Directives Summary 9-4

Cray Parallelization Directives Summary 9-5

Fortran User's Guide « May 2003

Before You Begin

The Fortran User’s Guide describes the environment and command-line options for
the Sun™ ONE Studio Compiler Collection Fortran 95 compiler f 95.

This guide is intended for scientists, engineers, and programmers who have a
working knowledge of the Fortran language and wish to learn how to use the
Fortran compiler effectively. Familiarity with the Solaris™ operating environment or
UNIX® in general is also assumed.

See also the companion Fortran Programming Guide for essential information on
input/output, program development, libraries, program analysis and debugging,
numerical accuracy, porting, performance, optimization, parallelization, and
interoperability.

Typographic Conventions

TABLEP-1 Typeface Conventions

Typeface Meaning Examples
AaBbCc123 The names of commands, files, Edit your . | ogi n file.
and directories; on-screen Use | s - a to list all files.

computer output % You have mail.

XVii

xviii

TABLEP-1 Typeface Conventions (Continued)
Typeface Meaning Examples
AaBbCc123 What you type, when contrasted % su
with on-screen computer output Passwor d:
AaBbCc123 Book titles, new words or terms, Read Chapter 6 in the User’s Guide.
words to be emphasized These are called class options.
You must be superuser to do this.
AaBbCc123 Command-line placeholder text; To delete a file, type r mfilename.

replace with a real name or value

= The symbol A stands for a blank space where a blank is significant:

AA36. 001

= The FORTRAN 77 standard used an older convention, spelling the name
“FORTRAN?” capitalized. The current convention is to use lower case:
“Fortran 95”

= References to online man pages appear with the topic name and section number.
For example, a reference to the library routine GETENV will appear as get env(3F),
implying that the man command to access this man page would be:
man -s 3F getenv.

TABLEP-2 Code Conventions

Code

Symbol Meaning Notation Code Example

[1] Brackets contain arguments dn] ™, O
that are optional.

{} Braces contain a set of choices d{y| n} dy
for a required option.

| The “pipe” or “bar” symbol B{ dynami c| st ati c} Bstatic

separates arguments, only one
of which may be chosen.

The colon, like the comma, is Rilocal/libs:/U a
sometimes used to separate

arguments.

Rdir[: dir]

The ellipsis indicates omission
in a series.

xi nli ne=fl],...fn] xi nl i ne=al pha, dos

Fortran User's Guide « May 2003

Shell Prompts

Shell Prompt

C shell machine-name%
C shell superuser machine-name#
Bourne shell and Korn shell $

Superuser for Bourne shell and Korn shell #

Accessing Compiler Collection Tools and
Man Pages

The compiler collection components and man pages are not installed into the
standard / usr/ bi n/ and/ usr/ shar e/ man directories. To access the compilers and
tools, you must have the compiler collection component directory in your PATH
environment variable. To access the man pages, you must have the compiler
collection man page directory in your MANPATH environment variable.

For more information about the PATH variable, see the csh(1), sh(1), and ksh(1)
man pages. For more information about the MANPATH variable, see the nan(1) man
page. For more information about setting your PATH variable and MANPATH variables
to access this release, see the installation guide or your system administrator.

Note — The information in this section assumes that your Sun ONE Studio compiler
collection components are installed in the / opt directory. If your software is not
installed in the / opt directory, ask your system administrator for the equivalent
path on your system.

Accessing the Compilers and Tools

Use the steps below to determine whether you need to change your PATH variable to
access the compilers and tools.

Before You Begin xix

v To Determine Whether You Need to Set Your PATH
Environment Variable

1. Display the current value of the PATH variable by typing the following at a
command prompt.

% echo $PATH

2. Review the output to find a string of paths that contain / opt / SUNWpr o/ bi n/ .

If you find the path, your PATH variable is already set to access the compilers and
tools. If you do not find the path, set your PATH environment variable by following
the instructions in the next procedure.

v To Set Your PATH Environment Variable to Enable Access to
the Compilers and Tools

1. If you are using the C shell, edit your home . cshrc file. If you are using the
Bourne shell or Korn shell, edit your home . profi | e file.

2. Add the following to your PATH environment variable.
/ opt / SUNWpr o/ bi n

Accessing the Man Pages

Use the following steps to determine whether you need to change your MANPATH
variable to access the man pages.

v To Determine Whether You Need to Set Your MANPATH
Environment Variable

1. Request the dbx man page by typing the following at a command prompt.

% man dbx

2. Review the output, if any.

If the dbx (1) man page cannot be found or if the man page displayed is not for the
current version of the software installed, follow the instructions in the next
procedure for setting your MANPATH environment variable.

xx Fortran User's Guide ¢« May 2003

v To Set Your MANPATH Environment Variable to Enable
Access to the Man Pages

1. If you are using the C shell, edit your home . cshrc file. If you are using the
Bourne shell or Korn shell, edit your home . profi | e file.

2. Add the following to your MANPATH environment variable.
/ opt/ SUNWpr o/ man

Accessing Compiler Collection
Documentation

You can access the documentation at the following locations:

= The documentation is available from the documentation index that is installed
with the software on your local system or network at
file:/opt/ SUNWspro/ docs/index. htm .

If your software is not installed in the / opt directory, ask your system
administrator for the equivalent path on your system.

= Most manuals are available from the docs. sun. com™ web site. The following
titles are available through your installed software only:

« Standard C++ Library Class Reference
« Standard C++ Library User’s Guide

« Tools.h++ Class Library Reference

« Tools.h++ User’s Guide

= The release notes are available from the docs. sun. comweb site.

The docs. sun. comweb site (htt p: // docs. sun. con) enables you to read, print,
and buy Sun Microsystems manuals through the Internet. If you cannot find a
manual, see the documentation index that is installed with the software on your
local system or network.

Note — Sun is not responsible for the availability of third-party web sites mentioned
in this document and does not endorse and is not responsible or liable for any
content, advertising, products, or other materials on or available from such sites or
resources. Sun will not be responsible or liable for any damage or loss caused or
alleged to be caused by or in connection with use of or reliance on any such content,
goods, or services available on or through any such sites or resources.

Before You Begin xxi

Documentation in Accessible Formats

The documentation is provided in accessible formats that are readable by assistive
technologies for users with disabilities. You can find accessible versions of
documentation as described in the following table. If your software is not installed
in the / opt directory, ask your system administrator for the equivalent path on your
system.

Type of Documentation Format and Location of Accessible Version

Manuals (except third-party HTML at http://docs. sun. com
manuals)

Third-party manuals: HTML in the installed software through the documentation
« Standard C++ Library Class index atfi | e:/opt/ SUNVpr o/ docs/ i ndex. ht m

Reference

= Standard C++ Library
User’s Guide

« Tools.h++ Class Library
Reference

« Tools.h++ User’s Guide

Readmes and man pages HTML in the installed software through the documentation
index atfil e:/opt/ SUN\pro/ docs/i ndex. htm

Release notes HTML at htt p://docs. sun. com

Related Compiler Collection Documentation

The following table describes related documentation that is available at
file:/opt/ SUN\Wpro/docs/index. html and http://docs. sun. com If your
software is not installed in the / opt directory, ask your system administrator for the
equivalent path on your system.

Document Title Description

Fortran Programming Guide Describes how to write effective Fortran programs on
Solaris environments; input/output, libraries,
performance, debugging, and parallelization.

Fortran Library Reference Details the Fortran library and intrinsic routines

OpenMP API User’s Guide Summary of the OpenMP multiprocessing API, with
specifics about the implementation.

Numerical Computation Guide Describes issues regarding the numerical accuracy of
floating-point computations.

xxii Fortran User's Guide » May 2003

Accessing Related Solaris

Documentation

The following table describes related documentation that is available through the

docs. sun. comweb site.

Document Collection

Document Title

Description

Solaris Reference Manual
Collection

Solaris Software Developer
Collection

Solaris Software Developer
Collection

See the titles of man page
sections.

Linker and Libraries Guide

Multithreaded Programming
Guide

Provides information about the
Solaris operating environment.

Describes the operations of the
Solaris link-editor and runtime
linker.

Covers the POSIX and Solaris
threads APIs, programming

with synchronization objects,
compiling multithreaded
programs, and finding tools for
multithreaded programs.

Resources for Developers

Visit htt p: / / ww. sun. coni devel oper s/ st udi o and click the Compiler
Collection link to find these frequently updated resources:

= Articles on programming techniques and best practices
= A knowledge base of short programming tips

= Documentation of compiler collection components, as well as corrections to the
documentation that is installed with your software

= Information on support levels
= User forums

= Downloadable code samples
= New technology previews

You can find additional resources for developers at
http://ww. sun. com devel opers/.

Before You Begin xxiii

Contacting Sun Technical Support

If you have technical questions about this product that are not answered in this
document, go to:

http://ww. sun. com servi ce/ contacting

Sun Welcomes Your Comments

Sun is interested in improving its documentation and welcomes your comments and
suggestions. Email your comments to Sun at this address:

docf eedback@un. com

Please include the part number (817-0930-10) of the document in the subject line of
your email.

xxiv Fortran User's Guide » May 2003

CHAPTER 1

Introduction

The Sun™ ONE Studio Fortran 95 compiler, f 95, described here and in the
companion Fortran Programming Guide, is available under the Solaris operating
environment on SPARC® and UltraSPARC® platforms. The compiler conforms to
published Fortran language standards, and provides many extended features,
including multiprocessor parallelization, sophisticated optimized code compilation,
and mixed C/Fortran language support.

The f 95 compiler also provides a Fortran 77 compatibility mode that accepts most
legacy Fortran 77 source codes. The compiler collection no longer includes a separate
Fortran 77 compiler. See Chapter 5 for information on FORTRAN 77 compatibility
and migration issues.

1.1 Standards Conformance

= 95 was designed to be compatible with the ANSI X3.198-1992, ISO/IEC
1539:1991, and ISO/IEC 1539:1997 standards documents.

» Floating-point arithmetic is based on IEEE standard 754-1985, and international
standard IEC 60559:1989.

= f 95 provides support for the optimization-exploiting features of SPARC V8, and
SPARC V9, including the UltraSPARC implementation. These features are defined
in the SPARC Architecture Manuals, Version 8 (ISBN 0-13-825001-4), and Version
9 (ISBN 0-13-099227-5), published by Prentice-Hall for SPARC International.

= In this document, “Standard” means conforming to the versions of the standards
listed above. “Non-standard” or “Extension” refers to features that go beyond
these versions of these standards.

1-1

The responsible standards bodies may revise these standards from time to time. The
versions of the applicable standards to which these compilers conform may be
revised or replaced, resulting in features in future releases of the Sun Fortran
compilers that create incompatibilities with earlier releases.

1.2 Features of the Fortran 95 Compiler

The Sun ONE Studio Fortran 95 compiler provides the following features and
extensions:

Global program checking across routines for consistency of arguments, commons,
parameters, and the like.

Optimized automatic and explicit loop parallelization for multiprocessor systems.
VAX/VMS Fortran extensions, including:

« Structures, records, unions, maps
« Recursion

OpenMP parallelization directives.
Cray-style parallelization directives, including TASKCOVIVON.

Global, peephole, and potential parallelization optimizations produce high
performance applications. Benchmarks show that optimized applications can run
significantly faster when compared to unoptimized code.

Common calling conventions on Solaris systems permit routines written in C or
C++ to be combined with Fortran programs.

Support for 64-bit enabled Solaris environments on UltraSPARC platforms.
Call-by-value using %/AL.

Compatibility between Fortran 77 and Fortran 95 programs and object binaries.
Interval Arithmetic programming.

Some “Fortran 2000” features, including Stream 1/0.

See Appendix B for details on new and extended features added to the compiler
with each software release.

1.3 Other Fortran Utilities

The following utilities provide assistance in the development of software programs
in Fortran:

1-2 Fortran User's Guide ¢« May 2003

= Sun ONE Studio Performance Analyzer — In depth performance analysis tool
for single threaded and multi-threaded applications. See anal yzer (1).

= asa — This Solaris utility is a Fortran output filter for printing files that have
Fortran carriage-control characters in column one. Use asa to transform files
formatted with Fortran carriage-control conventions into files formatted
according to UNIX line-printer conventions. See asa(l).

= fdunpnod — A utility to display the names of modules contained in a file or
archive. See f dunpnod(1).

= fpp — A Fortran source code preprocessor. See f pp(1).

= fsplit — This utility splits one Fortran file of several routines into several files,
each with one routine per file. Use f spl i t on FORTRAN 77 or Fortran 95 source
files. See fsplit (1)

1.4

Debugging Utilities

The following debugging utilities are available:

= -Xist — A compiler option to check across routines for consistency of
arguments, COMMON blocks, and so on.

= dbx—Provides a robust and feature-rich runtime and static debugger, and
includes a performance data collector.

1.5

Sun Performance Library

The Sun Performance Library™ is a library of optimized subroutines and functions
for computational linear algebra and Fourier transforms. It is based on the standard
libraries LAPACK, BLAS1, BLAS2, BLAS3, FFTPACK, VFFTPACK, and LINPACK
generally available through Netlib (wwv. net | i b. or g).

Each subprogram in the Sun Performance Library performs the same operation and
has the same interface as the standard library versions, but is generally much faster
and accurate and can be used in a multiprocessing environment.

See the perfornmance_l| i brary README file, and the Sun Performance Library
User’s Guide for details. (Man pages for the performance library routines are in
section 3P.)

Chapter 1 Introduction 1-3

1.6

Interval Arithmetic

The Fortran 95 compiler provides the compiler flags - xi a and - xi nt er val to
enable new language extensions and generate the appropriate code to implement
interval arithmetic computations.

See the Fortran 95 Interval Arithmetic Programming Reference for details.

1.7

Man Pages

Online manual (man) pages provide immediate documentation about a command,
function, subroutine, or collection of such things. See the Preface for the proper
setting of the MANPATH environment variable for accessing Sun ONE Studio man

pages.)

You can display a man page by running the command:

denp% nman topic

Throughout the Fortran documentation, man page references appear with the topic
name and man section number: f 95(1) is accessed with man f 95. Other sections,

denoted by i eee_f | ags(3M) for example, are accessed using the - s option on the
man command;

denb% man -s 3Mieee_fl ags

The Fortran library routines are documented in the man page section 3F.

The following lists man pages of interest to Fortran users:

f95(1) The Fortran 95 command-line options

anal yzer (1) Performance Analyzer

asa(l) Fortran carriage-control print output post-processor
dbx (1) Command-line interactive debugger

fpp(2) Fortran source code pre-processor

1-4 Fortran User's Guide * May 2003

cpp(1)

f dunpnod(1)
fsplit(1)

i eee_fl ags(3M)

i eee_handl er (3M)
mat her r (3M)
ild()

I d(1)

1.8

C source code pre-processor

Display contents of a MODULE (. nod) file.

Pre-processor splits Fortran source routines into single files
Examine, set, or clear floating-point exception bits

Handle floating-point exceptions

Math library error handling routine

Incremental link editor for object files

Link editor for object files

README Files

The READVES directory contains files that describe new features, software
incompatibilities, bugs, and information that was discovered after the manuals were
printed. The location of this directory depends on where your software was
installed. The path is: / opt / SUNWs pr o/ READVES/ .

TABLE 1-1 READMES of Interest

README File

Describes...

fortran_95

f pp_readne
interval _arithnetic
math_libraries

profiling_tools

runtinme_libraries

performance_l i brary

new and changed features, known limitations, documentation
errata for this release of the Fortran 95 compiler, f 95.

overview of f pp features and capabilities
overview of the interval arithmetic features in f 95
optimized and specialized math libraries available.

using the performance profiling tools, pr of , gpr of , and
tcov.

libraries and executables that can be redistributed under the
terms of the End User License.

overview of the Sun Performance Library

The README file for each compiler is easily viewed by the - xhel p=r eadne
command-line option. For example, the command:

% f 95 - xhel p=r eadne

Chapter 1 Introduction 1-5

displays the f or t ran_95 README file directly.

1.9 Command-Line Help

You can view very brief descriptions of the f 95 command line options by invoking
the compiler’s - hel p option as shown below:

% 95 - hel p=fl ags

Items within [] are optional. Itenms within < > are variable
par anet ers.
Bar | indicates choice of literal val ues.

-sonmeoption[={yes| no}] inplies -soneoption is equivalent to
- sonmeopti on=yes

-a Col | ect data for tcov basic

bl ock profiling

-al i gncommmon[=<a>] Al'ign common bl ock elenents to the specified
boundary requirenent; <a>={1]2| 4| 8| 16}

-ansi Report non- ANSI ext ensi ons.
- aut opar Enabl e automatic | oop parallelization
- Bdynani ¢ Al l ow dynam ¢ |inking
-Bstatic Require static |inking
-C Enabl e runtime subscript range checking
-C Conpil e only; produce .o files but suppress
l'i nki ng
etc

1-6 Fortran User's Guide * May 2003

CHAPTER 2

Using Fortran 95

This chapter describes how to use the Fortran 95 compiler.

The principal use of any compiler is to transform a program written in a procedural
language like Fortran into a data file that is executable by the target computer
hardware. As part of its job, the compiler may also automatically invoke a system
linker to generate the executable file.

The Fortran 95 compiler can also be used to:

2.1

Generate a parallelized executable file for multiple processors (- opennp).

Analyze program consistency across source files and subroutines and generate a
report (- Xl i st).

Transform source files into:

« Relocatable binary (. o) files, to be linked later into an executable file or static
library (. a) file.

« A dynamic shared library (. so) file (- G).

Link files into an executable file.

Compile an executable file with runtime debugging enabled (- g).
Compile with runtime statement or procedure level profiling (- pg).
Check source code for ANSI standards conformance (- ansi).

A Quick Start

This section provides a quick overview of how to use the Fortran 95 compiler to
compile and run Fortran programs. A full reference to command-line options
appears in the next chapter.

2-1

2-2

The very basic steps to running a Fortran application involve using an editor to
create a Fortran source file witha . f, . for,.f90,.f95,. F . F90, or. F95 filename
suffix; invoking the compiler to produce an executable; and finally, launching the
program into execution by typing the name of the file:

Example: This program displays a message on the screen:

denp% cat greetings.f
PROGRAM GREETI NGS
PRINT *, 'Real progranmers wite Fortran!'
END

denmo% f 95 greetings. f

denp% a. out

Real progranmers wite Fortran!
denp%

In this example, f 95 compiles source file gr eet i ngs. f and links the executable
program onto the file, a. out, by default. To launch the program, the name of the
executable file, a. out, is typed at the command prompt.

Traditionally, UNIX compilers write executable output to the default file called

a. out . It can be awkward to have each compilation write to the same file. Moreover,
if such a file already exists, it will be overwritten by the next run of the compiler.
Instead, use the - o compiler option to explicitly specify the name of the executable
output file;

denp% f95 —o0 greetings greetings.f
denp% gr eeti ngs

Real progranmers wite Fortran!
deno%

In the preceding example, the - o option tells the compiler to write the executable
code to the file gr eet i ngs. (By convention, executable files usually are given the
same name as the main source file, but without an extension.)

Alternatively, the default a. out file could be renamed via the mv command after
each compilation. Either way, run the program by typing the name of the executable
file at a shell prompt.

The next sections of this chapter discuss the conventions used by the f 95
commands, compiler source line directives, and other issues concerning the use of
these compiler. The next chapter describes the command-line syntax and all the
options in detail.

Fortran User's Guide « May 2003

2.2

2.2.1

Invoking the Compiler

The syntax of a simple compiler command invoked at a shell prompt is:
f 95 [options] files...

Here files... is one or more Fortran source file names ending in . f, . F, . f 90, . f 95,
. F90, . F95, or . f or; options is one or more of the compiler option flags. (Files with
names ending in a . f 90 or . f 95 extension are “free-format” Fortran 95 source files
recognized only by the f 95 compiler.)

In the example below, f 95 is used to compile two source files to produce an
executable file named gr owt h with runtime debugging enabled:

denmb% f95 -g -o growth growh.f fft.f95

Note — You can invoke the Fortran 95 compiler with either the f 95 or f 90
command.

Compile-Link Sequence

In the previous example, the compiler automatically generates the loader object files,
grow h. o and f ft. o, and then invokes the system linker to create the executable
program file gr owt h.

After compilation, the object files, growt h. o and f f t . o, will remain. This
convention permits easy relinking and recompilation of files.

If the compilation fails, you will receive a message for each error. No . o files are
generated for those source files with errors, and no executable program file is
written.

Chapter 2 Using Fortran 95 2-3

2.2.2

2.2.3

2-4

Command-Line File Name Conventions

The suffix extension attached to file names appearing on the command-line
determine how the compiler will process the file. File names with a suffix extension
other than one of those listed below, or without an extension, are passed to the

linker.

TABLE 2-1

Filename Suffixes Recognized by the Fortran 95 Compiler

Suffix

Language

Action

f

.95
.90

.for

. F95
. F90

.0

.a,.s.o,
.50. N

Fortran 77 or
Fortran 95
fixed-format

Fortran 95
free-format

Fortran 77 or
Fortran 95

Fortran 77 or
Fortran 95
fixed-format

Fortran 95
free-format

Assembler

Assembler

Inline
expansion

Object files

Libraries

Compile Fortran source files, put object files in current
directory; default name of object file is that of the source but
with . o suffix.

Same action as . f

Same action as . f.

Apply the Fortran (or C) preprocessor to the Fortran 77 source
file before compilation.

Apply the Fortran (or C) preprocessor to the Fortran 95
free-format source file before Fortran compiles it.

Assemble source files with the assembler.

Apply the C preprocessor to the assembler source file before
assembling it.

Process template files for inline expansion. The compiler will
use templates to expand inline calls to selected routines.
(Template files are special assembler files; see the i nl i ne(1)
man page.)

Pass object files through to the linker.

Pass names of libraries to the linker. . a files are static libraries,
.so and . so. n files are dynamic libraries.

Fortran 95 free-format is described in Chapter 4.

Source Files

The Fortran compiler will accept multiple source files on the command line. A single
source file, also called a compilation unit, may contain any number of procedures
(main program, subroutine, function, block data, module, and so on). Applications

Fortran User's Guide « May 2003

2.2.4

2.2.5

may be configured with one source code procedure per file, or by gathering
procedures that work together into single files. The Fortran Programming Guide
describes the advantages and disadvantages of these configurations.

Source File Preprocessors

f 95 supports two source file preprocessors, f pp and cpp. Either can be invoked by
the compiler to expand source code “macros” and symbolic definitions prior to
compilation. The compiler will use f pp by default; the - xpp=cpp option changes
the default from f pp to cpp. (See also the discussion of the - Dname option).

f pp is a Fortran-specific source preprocessor. See the f pp(1) man page and the f pp
README for details. It is invoked by default on files with a . F, . F90, or . F95
extension.

The source code for f pp is available from the Netlib web site at
http://ww. netlib.org/fortran/

See cpp(1) for information on the standard Unix C language preprocessor. Use of
f pp over cpp is recommended on Fortran source files.

Separate Compiling and Linking

You can compile and link in separate steps. The - ¢ option compiles source files and
generates . 0 object files, but does not create an executable. Without the - ¢ option
the compiler will invoke the linker. By splitting the compile and link steps in this
manner, a complete recompilation is not needed just to fix one file, as shown in the
following example:

Compile one file and link with others in separate steps:

demo% f95 -c filel.f (Make new object file)
denb% f95 -0 prgrmfilel.o file2.0 file3.0 (Make executable file)

Be sure that the link step lists all the object files needed to make the complete
program. If any object files are missing from this step, the link will fail with
undefined external reference errors (missing routines).

Chapter 2 Using Fortran 95 2-5

2.2.6

2.2.7

Consistent Compiling and Linking

Ensuring a consistent choice of compiling and linking options is critical whenever
compilation and linking are done in separate steps. Compiling any part of a program
with some options requires linking with the same options. Also, a number of options
require that all source files be compiled with that option, including the link step.

The option descriptions in Chapter 3 identify such options.

Example: Compiling sbr. f with —f ast, compiling a C routine, and then linking in
a separate step:

dem% f95 -c -fast sbr.f
demo% cc -c -fast simmec
demo% f95 -fast sbr.o simmo link step; passes -fast to the linker

Unrecognized Command-Line Arguments

Any arguments on the command-line that the compiler does not recognize are
interpreted as being possibly linker options, object program file names, or library
names.

The basic distinctions are:

= Unrecognized options (with a -) generate warnings.

= Unrecognized non-options (no -) generate no warnings. However, they are passed
to the linker and if the linker does not recognize them, they generate linker error
messages.

For example:

denp% f95 -bit nove. f <- -bit isnota recognized f 95 option
f95: Warning: Option -bit passedto ld, if Idis invoked, ignored
ot herw se

denp% f 95 fast nove. f <- The user meant to type - f ast

Id: fatal: file fast: cannot open file; errno=2

Id: fatal: File processing errors. No output witten to a.out

Note that in the first example, - bi t is not recognized by f 95 and the option is
passed on to the linker (I d), who tries to interpret it. Because single letter | d options
may be strung together, the linker sees -bit as-b -i -t, which are all legitimate
| d options! This may (or may not) be what the user expects, or intended.

2-6 Fortran User's Guide * May 2003

2.2.8

In the second example, the user intended to type the f 95 option - f ast but
neglected the leading dash. The compiler again passes the argument to the linker
which, in turn, interprets it as a file name.

These examples indicate that extreme care should be observed when composing
compiler command lines!

Fortran 95 Modules

f 95 automatically creates module information files for each MODULE declaration
encountered in the source files, and searches for modules referenced by a USE
statement. For each module encountered (MODULE module_name), the compiler
generates a corresponding file, module_name. nod, in the current directory. For
example, f 95 generates the module information file | i st . nod for the MODULE | i st
unit found on file mysrc. f95 .

See the - Mpath and - noddi r dirlist option flags for information on how to set the
defaults paths for writing and searching for module information files.

See also the - use compiler option for implicitly invoking MODULE declarations in all
compilation units.

Use the f dunpnod(1l) command to display information about the contents of a . nod
module information file.

For detailed information, see Section 4.9, “Module Files” on page 4-23.

2.3

Directives

Use a source code directive, a form of Fortran comment, to pass specific information
to the compiler regarding special optimization or parallelization choices. Compiler

directives are also sometimes called pragmas. The compiler recognize a set of general
directives and parallelization directives. Fortran 95 also processes OpenMP shared

memory multiprocessing directives.

Directives unique to f 95 are described in Section 4.8, “Directives” on page 4-21. A
complete summary of all the directives recognized by f 95 appears in Appendix D.

Note — Directives are not part of the Fortran standard.

Chapter 2 Using Fortran 95 2-7

2.3.1

General Directives

The various forms of a general Fortran 95 directive are:

C$PRAGVA keyword (a[,a]...) [,keyword (a[,a]...)]....
C$PRAGVA SUNkeyword (a[,a]...) [, keyword (a[,a]...)],...
C$PRAGVA SPARCkeyword (a[,a]...) [,keyword (a[,a]...)].,...

The variable keyword identifies the specific directive. Additional arguments or
suboptions may also be allowed. (Some directives require the additional keyword
SUN or SPARC, as shown above.)

A general directive has the following syntax:

In column one, any of the comment-indicator characters ¢, C, !, or *

For f 95 free-format, ! is the only comment-indicator recognized (! $PRAGVA). The
examples in this chapter assume fixed-format.

The next seven characters are $PRAGVA, no blanks, in either uppercase or
lowercase.

Directives using the ! comment-indicator character may appear in any position
on the line for free-format source programs.

Observe the following restrictions:

After the first eight characters, blanks are ignored, and uppercase and lowercase
are equivalent, as in Fortran text.

Because it is a comment, a directive cannot be continued, but you can have many
C3PRAGMA lines, one after the other, as needed.

If a comment satisfies the above syntax, it is expected to contain one or more
directives recognized by the compiler; if it does not, a warning is issued.

The C preprocessor, cpp, will expand macro symbol definitions within a comment
or directive line; the Fortran preprocessor, f pp, will not expand macros in
comment lines. f pp will recognize legitimate f 95 directives and allow limited
substitution outside directive keywords. However, be careful with directives
requiring the keyword SUN. cpp will replace lower-case sun with a predefined
value. Also, if you define a cpp macro SUN, it might interfere with the SUN
directive keyword. A general rule would be to spell those pragmas in mixed case
if the source will be processed by cpp or f pp, as in:

C$PRAGVA Sun UNROLL=3

2-8 Fortran User's Guide * May 2003

23.11

The Fortran compiler recognize the following general directives:

TABLE2-2 Summary of General Fortran Directives

C Directive

C$PRAGVA (C(list)
Declares a list of names of external functions as C language
routines.

| GNORE_TKR Directive

C$PRAGMVA | GNORE_TKR {name {, name} ...}

The compiler ignores the type, kind, and rank of the specified
dummy argument names appearing in a generic procedure
interface when resolving a specific call.

UNROLL Directive

C$PRAGVA SUN UNROLL=nN

Advises the compiler that the following loop can be unrolled to a
length n.

WEAK Directive CSPRAGVA VEAK(name[=name2])
Declares name to be a weak symbol, or an alias for name2.
OPT Directive CSPRAGVA SUN OPT=n

Set optimization level for a subprogram to n.

Pl PELOOP Directive

C$PRAGVA SUN Pl PELOOP=n

Assert dependency in the following loop exists between
iterations n apart.

NOVENDEP Directive

C3PRAGVA SUN NOVENMDEP
Assert there are no memory dependencies in the following loop.

PREFETCH Directives

C$PRAGVA SPARC PREFETCH_READ_ONCE(name)
C$PRAGVA SPARC PREFETCH_READ_MANY(name)
C$PRAGMA SPARC PREFETCH WRI TE_ONCE(name)
C$PRAGVA SPARC_PREFETCH_WRI TE_MANY(name)

Request compiler generate prefetch instructions for references to
name. (Requires - xpr ef et ch option.)

ASSUME Directives

C$PRAGVA [BEG N} ASSUME (expression [, probability])
C3PRAGVA END ASSUME

Make assertions about conditions at certain points in the
program that the compiler can assume are true.

The C Directive

The C() directive specifies that its arguments are external functions. It is equivalent
to an EXTERNAL declaration except that unlike ordinary external names, the Fortran
compiler will not append an underscore to these argument names. See the C-Fortran

Interface chapter in the Fortran Programming Guide for more details.

Chapter 2 Using Fortran 95

The C() directive for a particular function should appear before the first reference to
that function in each subprogram that contains such a reference.

Example - compiling ABC and XYZ for C.

EXTERNAL ABC, XYZ
C$PRAGMA C(ABC, XYZ)

2.3.1.2 The | GNORE_TKR Directive

This directive causes the compiler to ignore the type, kind, and rank of the specified
dummy argument names appearing in a generic procedure interface when resolving
a specific call.

For example, in the procedure interface below, the directive specifies that SRC can be
any data type, but LEN can be either KI ND=4 or KI ND=8.

The interface block defines two specific procedures for a generic procedure name.
This example is shown in Fortran 95 free format.

| NTERFACE BLCKX

SUBROUTI NE BLCK_32(LEN, SRC)
REAL SRC(1)
I $PRAGVA | GNORE_TKR SRC
| NTEGER (KI ND=4) LEN
END SUBROUTI NE

SUBROUTI NE BLCK_64(LEN, SRC)
REAL SRC(1)
I $PRAGVA | GNORE_TKR SRC
| NTEGER (KI ND=8) LEN
END SUBROUTI NE

END | NTERFACE
The subroutine call:
| NTEGER L

REAL S(100)
CALL BLCKX(L, S)

2-10 Fortran User's Guide « May 2003

2.3.1.3

23.14

The call to BLCKX will call BLCK_32 when compiled normally, and BLCK_64 when
compiled with - xt ypemap=i nt eger : 64. The actual type of S does not determine
which routine to call. This greatly simplifies writing generic interfaces for wrappers
that call specific library routines based on argument type, kind, or rank.

Note that dummy arguments for assumed-shape arrays, Fortran pointers, or
allocatable arrays cannot be specified on the directive. If no names are specified, the
directive applies to all dummy arguments to the procedure, except dummy
arguments that are assumed-shape arrays, Fortran pointers, or allocatable arrays.

The UNROLL Directive
The UNROLL directive requires that you specify SUN after CSPRAGVA.

The C$PRAGVA SUN UNROLL=n directive instructs the compiler to unroll the
following loop n times during its optimization pass. (The compiler will unroll a loop
only when its analysis regards such unrolling as appropriate.)

n is a positive integer. The choices are:
= If n=1, the optimizer may not unroll any loops.
= If n>1, the optimizer may unroll loops n times.

If any loops are actually unrolled, the executable file becomes larger. For further
information, see the Fortran Programming Guide chapter on performance and
optimization.

Example - unrolling loops two times:

C3PRAGVA SUN UNROLL=2

The WEAK Directive

The WEAK directive defines a symbol to have less precedence than an earlier
definition of the same symbol. This pragma is used mainly in sources files for
building libraries. The linker does not produce an error message if it is unable to
resolve a weak symbol.

C3PRAGVA VEAK (namel [=name2])

WEAK (namel) defines namel to be a weak symbol. The linker does not produce an
error message if it does not find a definition for namel.

WEAK (namel=name2) defines namel to be a weak symbol and an alias for name2.

Chapter 2 Using Fortran 95 2-11

2.3.15

2.3.1.6

2.3.1.7

If your program calls but does not define namel, the linker uses the definition from
the library. However, if your program defines its own version of namel, then the
program’s definition is used and the weak global definition of namel in the library is
not used. If the program directly calls name2, the definition from library is used; a
duplicate definition of name2 causes an error. See the Solaris Linker and Libraries
Guide for more information.

The OPT Directive
The OPT directive requires that you specify SUN after CSPRAGVA.

The OPT directive sets the optimization level for a subprogram, overriding the level
specified on the compilation command line. The directive must appear immediately
before the target subprogram, and only applies to that subprogram. For example:

C$PRAGVA SUN OPT=2
SUBROUTI NE snart(a, b, c,d,e)
...etc

When the above is compiled with an f 95 command that specifies - O4, the directive
will override this level and compile the subroutine at - Q2. Unless there is another
directive following this routine, the next subprogram will be compiled at - (4.

The routine must also be compiled with the - xmaxopt [=n] option for the directive
to be recognized. This compiler option specifies a maximum optimization value for
PRAGVA OPT directives: if a PRAGVA OPT specifies an optimization level greater
than the - xmaxopt level, the - xmaxopt level is used.

The NOVEMDEP Directive
The NOVEMDEP directive requires that you specify SUN after CEPRAGVA.

This directive must appear immediately before a DO loop. It asserts to the optimizer
that there are no memory-based dependencies within an iteration of the loop to
inhibit parallelization. Requires - par al | el or -expl i cit par options.

The Pl PELOOP=n Directive

The PI PELOOP=n directive requires that you specify SUN after CEPRAGVA.

This directive must appear immediately before a DO loop. n is a positive integer
constant, or zero, and asserts to the optimizer a dependence between loop iterations.
A value of zero indicates that the loop has no inter-iteration (loop-carried)

2-12 Fortran User's Guide « May 2003

2.3.1.8

2.3.1.9

dependencies and can be freely pipelined by the optimizer. A positive n value
implies that the I-th iteration of the loop has a dependency on the (I-n)-th iteration,
and can be pipelined at best for only n iterations at a time.

C We know that the value of Kis such that there can be no
C cross-iteration dependencies (E. g. K>N)
C$PRAGVA SUN PI PELOOP=0

DO 1=1,N

A(1)=A(1+K) + D(I)

B(1)=B(1) + A(Il)

END DO

For more information on optimization, see the Fortran Programming Guide.

The PREFETCH Directives

The - xpr ef et ch option flag, “—xpr ef et ch[=a[,a]]” on page 3-77, enables a set of
PREFETCH directives that advise the compiler to generate prefetch instructions for
the specified data element. Prefetch instructions are only available on UltraSPARC
platforms.

C$PRAGVA SPARC PREFETCH_READ ONCE(name)
C$PRAGVA SPARC_PREFETCH_READ_MANY(name)
C$PRAGMA SPARC_PREFETCH WRI TE_ONCE(name)
C$PRAGMA SPARC_PREFETCH WRI TE_MANY(name)

See also the C User’s Guide, or the SPARC Architecture Manual, Version 9 for further
information about prefetch instructions.

The ASSUVME Directives

The ASSUVME directive gives the compiler hints about conditions at certain points in
the program. These assertions can help the compiler to guide its optimization
strategies. The programmer can also use these directives to check the validity of the
program during execution. There are two formats for ASSUME.

The syntax of the “point assertion” ASSUME is

C$PRAGVA ASSUME (expression [, probability])

Chapter 2 Using Fortran 95 2-13

Alternatively, the “range assertion” ASSUME is:

C3PRAGVA BEG N ASSUME [expression [, probability)
block of statements
C3PRAGVA END ASSUME

Use the point assertion form to state a condition that the compiler can assume at that
point in the program. Use the range assertion form to state a condition that holds
over the enclosed range of statements. The BEG Nand END pairs in a range assertion
must be properly nested.

The required expression is a boolean expression that can be evaluated at that point in
the program that does not involve user-defined operators or function calls except for
those listed below.

The optional probability value is a real number from 0.0 to 1.0, or an integer 0 or 1,
giving the probability of the expression being true. A probability of 0.0 (or 0) means
never true, and 1.0 (or 1) means always true. If not specified, the expression is
considered to be true with a high probability, but not a certainty. An assertion with a
probability other than exactly 0 or 1 is a non-certain assertion. Similarly, an assertion
with a probability expressed exactly as 0 or 1 is a certain assertion.

For example, if the programmer knows that the length of a DOloop is always greater
than 10,000, giving this hint to the compiler can enable it to produce better code. The
following loop will generally run faster with the ASSUME pragma than without it.

CSPRAGVA BEG N ASSUME(__tripcount (). GE 10000,1) !! a big | oop
doi =j, n
a(i) =a(j) +1
end do
CSPRAGVA END ASSUMVE

Two intrinsic functions are available for use specifically in the expression clause of
the ASSUME directive. (Note that their names are prefixed by two underscores.)

__branchexp() Use in point assertions placed immediately before a branching
statement with a boolean controlling expression. It yields the same
result as the boolean expression controlling the branching statement.

__tripcount() Yields the trip count of the loop immediately following or enclosed
by the directive. When used in a point assertion, the statement
following the directive must be the first line of a DO When used in a
range assertion, it applies to the outermost enclosed loop.

This list of special intrinsics might expand in future releases.

2-14 Fortran User's Guide « May 2003

2.3.2

23.2.1

Use with the - xassune_cont r ol compiler option. (See

“-xassunme_cont r ol [=keywords]” on page 3-58) For example, when compiled with
- xassume_cont r ol =check, the example above would produce a warning if the
trip count ever became less than 10,000.

Compiling with - xassune_control =ret rospecti ve will generate a summary
report at program termination of the truth or falsity of all assertions. See the f 95
man page for details on - xassune_control .

Another example:

C$PRAGVA ASSUME(__tri pcount. GT. 0, 1)
do i =n0, nx

Compiling the above example with - xassune_cont r ol =check will issue a
runtime warning should the loop not be taken because the trip count is zero or
negative.

Parallelization Directives

Parallelization directives explicitly request the compiler to attempt to parallelize the
DO loop or the region of code that follows the directive. The syntax differs from
general directives. Parallelization directives are only recognized when compilation
options - opennp, - paral | el , or - expl i ci t par are used. Details regarding
Fortran parallelization can be found in the OpenMP API User’s Guide and the Fortran
Programming Guide.

The Fortran compiler supports the OpenMP shared memory parallelization model,
as well as legacy Sun and Cray directives.

OpenMP Parallelization Directives

The Fortran 95 compiler recognizes the OpenMP Fortran shared memory
multiprocessing API as the preferred parallel programming model. The API is
specified by the OpenMP Architecture Review Board (htt p: / / www. opennp. or g).

You must compile with the command-line option - opennp, to enable OpenMP
directives. (See “- opennp[=keyword] ” on page 3-39.)

For more information about the OpenMP directives accepted by f 95, see the
OpenMP API User’s Guide.

Chapter 2 Using Fortran 95 2-15

2.3.2.2

Legacy Sun/Cray Parallelization Directives

Sun style parallelization directives are the default for - paral | el and
-expl i cit par. Sun directives have the directive sentinel $PAR

Cray style parallelization directives, enabled by the - np=cr ay compiler option,
have the sentinel M C$. Interpretations of similar directives differ between Sun and
Cray styles. See the chapter on parallelization in the Fortran Programming Guide for
details. See also the OpenMP API User’s Guide for guidelines on converting legacy
Sun/Cray parallelization directives to OpenMP directives.

Sun/Cray parallelization directives have the following syntax:

= The first character must be in column one.

= The first character can be any one of c, C, *, or !.

= The next four characters may be either $PAR (Sun style), or M C$ (Cray style),
without blanks, and in either upper or lower case.

= Next, the directive keyword and qualifiers, separated by blanks. The explicit
parallelization directive keywords are:

TASKCOVMON, DOALL, DOSERI AL, and DOSERI AL*

Each parallelization directive has its own set of optional qualifiers that follow the
keyword.

Example: Specifying a loop with a shared variable:

C$3PAR DOALL SHARED(yval ue) Sun style
CM C$ DOALL SHARED(yval ue) Cray style

2.4

Library Interfaces and system i nc

The Fortran 95 compiler provides an include file, syst em i nc, that defines the
interfaces for most non-intrinsic library routines. Declare this include file to insure
that functions you call and their arguments are properly typed, especially when
default data types are changed with - xt ypemap.

2-16 Fortran User's Guide « May 2003

For example, the following may produce an arithmetic exception because function
get pi d() is not explicitly typed:

i nteger(4) nypid
nypid = getpid()
print *, nypid

The get pi d() routine returns an integer value but the compiler assumes it returns
a real value if no explicit type is declared for the function. This value is further
converted to integer, most likely producing a floating-point error.

To correct this you should explicitly type get ui d() and functions like it that you
call:

i nteger(4) nypid, getpid
nypid = getpid()
print *, nypid

Problems like these can be diagnosed with the - Xl i st (global program checking)
option. The Fortran 95 include file * system i nc’ provides explicit interface
definitions for these routines.

i nclude 'systeminc'
i nteger(4) nypid
nypid = getpid()
print *, nypid

Including syst em i nc in program units calling routines in the Fortran library will
automatically define the interfaces for you, and help the compiler diagnose type
mismatches. (See the Fortran Library Reference for more information.)

2.5 Compiler Usage Tips

The next sections suggest a number of ways to use the Fortran 95 compiler
efficiently. A complete compiler options reference follows in the next chapter.

Chapter 2 Using Fortran 95 2-17

2.5.1

2.5.2

Determining Hardware Platform

Some compiler flags allow the user to tune code generation to a specific set of
hardware platform options. The utility command f pver si on displays the hardware
platform specifications for the native processor:

denp% f pver si on

A SPARC- based CPU i s avail abl e.

Kernel says CPU s clock rate is 750.0 Mz.

Kernel says main nenory’s clock rate is 150.0 MHz.

Sun-4 floating-point controller version 0 found.
An U traSPARC chip is avail able.

Use "-xtarget=ultra3" code-generation option.

Hosti d = hardware_host_id.

The values printed depend on the load on the system at the moment f pver si on is
called.

See f pver si on(1) and the Numerical Computation Guide for details.

Using Environment Variables

You can specify options by setting the FFLAGS or OPTI ONS variables.

Either FFLAGS or OPTI ONS can be used explicitly in the command line. When you
are using the implicit compilation rules of make, FFLAGS is used automatically by
the make program.

Example: Set FFLAGS: (C Shell)

denmo% set env FFLAGS '-fast -Xlist'

Example: Use FFLAGS explicitly:

dermo% f 95 $FFLAGS any. f

When using make, if the FFLAGS variable is set as above and the makefile’s
compilation rules are implicit, that is, there is no explicit compiler command line, then
invoking make will result in a compilation equivalent to:

2-18 Fortran User's Guide « May 2003

2.5.3

2531

f95 -fast - Xl ist files...

make is a very powerful program development tool that can easily be used with all
Sun compilers. See the make(1) man page and the Program Development chapter in
the Fortran Programming Guide.

Note — Default implicit rules assumed by make may not recognize files with
extensions . f 95 and . nod (Fortran 95 Module files). See the Fortran Programming
Guide and the Fortran 95 readme file for details.

Memory Size

A compilation may need to use a lot of memory. This will depend on the
optimization level chosen and the size and complexity of the files being compiled.
On SPARC platforms, if the optimizer runs out of memory, it tries to recover by
retrying the current procedure at a lower level of optimization and resumes
subsequent routines at the original level specified in the - On option on the command
line.

A processor running the compiler should have at least 64 megabytes of memory; 256
megabytes are recommended. Enough swap space should also be allocated. 200
megabytes is the minimum; 300 megabytes is recommended.

Memory usage depends on the size of each procedure, the level of optimization, the
limits set for virtual memory, the size of the disk swap file, and various other
parameters.

Compiling a single source file containing many routines could cause the compiler to
run out of memory or swap space.

If the compiler runs out of memory, try reducing the level of optimization, or split
multiple-routine source files into files with one routine per file, using f spl i t (1).

Swap Space Limits

The command, swap - s, displays available swap space. See swap(1M).

Chapter 2 Using Fortran 95 2-19

2.5.3.2

2.5.3.3

Example: Use the swap command:

denp% swap -s
total: 40236k bytes allocated + 7280k reserved = 47516k used,
1058708k avail abl e

To determine the actual real memory:

dermo% / usr/sbin/dmesg | grep nmem
mem = 655360K (0x28000000)
avail mem = 602476544

Increasing Swap Space

Use nkfi | e(1M) and swap(1M) to increase the size of the swap space on a
workstation. You must become superuser to do this. nkfi | e creates a file of a
specific size, and swap - a adds the file to the system swap space:

deno# nkfile -v 90m /hone/ swapfile
/' hone/ swapfil e 94317840 bytes
deno# /usr/sbin/swap -a /hone/swapfile

Control of Virtual Memory

Compiling very large routines (thousands of lines of code in a single procedure) at
optimization level - 3 or higher may require additional memory that could degrade

compile-time performance. You can control this by limiting the amount of virtual
memory available to a single process.

In a sh shell, use the ul i M t command. See sh(1).

Example: Limit virtual memory to 16 Mbytes:

demp$ ulimt -d 16000

In a csh shell, use the I i m t command. See csh(1).

2-20 Fortran User's Guide « May 2003

Example: Limit virtual memory to 16 Mbytes:

dem% |l imt datasize 16M

Each of these command lines causes the optimizer to try to recover at 16 Mbytes of
data space.

This limit cannot be greater than the system’s total available swap space and, in
practice, must be small enough to permit normal use of the system while a large
compilation is in progress. Be sure that no compilation consumes more than half the
space.

Example: With 32 Mbytes of swap space, use the following commands:

In a sh shell:

demd$ ulimt -d 1600

In a csh shell:

denb% | imt datasize 16M

The best setting depends on the degree of optimization requested and the amount of
real and virtual memory available.

In 64-bit Solaris environments, the soft limit for the size of an application data
segment is 2 Gbytes. If your application needs to allocate more space, use the shell’s
limt orulimt command to remove the limit.

For csh use:

dem% |l imt datasize unlimted

For sh or ksh, use:

deno$ ulimt -d unlimted

See the Solaris 64-bit Developer’s Guide for more information.

Chapter 2 Using Fortran 95 2-21

2-22 Fortran User's Guide « May 2003

CHAPTER 3

Fortran Compiler Options

This chapter details the command-line options for the f 95 compiler.

= A description of the syntax used for compiler option flags starts at Section 3.1,
“Command Syntax” on page 3-1.

= Summaries of options arranged by functionality starts at Section 3.3, “Options
Summary” on page 3-3.

= The complete reference detailing each compiler option flag starts at Section 3.4,
“Options Reference” on page 3-11.

3.1 Command Syntax

The general syntax of the compiler command line is:

f 95 [options] list_of files additional_options

Items in square brackets indicate optional parameters. The brackets are not part of
the command. The options are a list of option keywords prefixed by dash (-). Some
keyword options take the next item in the list as an argument. The list_of files is a list
of source, object, or library file names separated by blanks. Also, there are some
options that must appear after the list of source files, and these could include
additional lists of files (for example, - B, -1, and - L).

3-1

3.2 Options Syntax

Typical compiler option formats are:

TABLE 3-1 Options Syntax

Syntax Format Example

—flag -9

—flagvalue —Dnost ep
—flag=value —xunrol | =4
—flag value -0 outfile

The following typographical conventions are used when describing the individual
options:

TABLE 3-2 Typographic Notations for Options

Notation Meaning Example: Text/Instance

[1 Square brackets contain arguments that are -an]
optional. -4, -0

{} Curly brackets (braces) contain a set of choices —d{y| n}
for a required option. —dy

| The “pipe” or “bar” symbol separates —B{ dynani c| stati c}
arguments, only one of which may be chosen. _Bstatic
The colon, like the comma, is sometimes used —Rdir[: dir]
to separate arguments. —R/local/libs:/Ua
The ellipsis indicates omission in a series. —xi nl i ne=f1[,...fn]

—Xxi nl i ne=al pha, dos

Brackets, pipe, and ellipsis are meta characters used in the descriptions of the options
and are not part of the options themselves.
Some general guidelines for options are:

= —| xis the option to link with library | i bx. a. It is always safer to put —| x after the
list of file names to insure the order libraries are searched.

= In general, processing of the compiler options is from left to right, allowing
selective overriding of macro options (options that include other options).

« The above rule does not apply to linker options.

3-2 Fortran User’'s Guide » May 2003

= However, some options, —I , —L, and —R for example, accumulate values rather
than override previous values when repeated on the same command line.

Source files, object files, and libraries are compiled and linked in the order in which
they appear on the command line.

3.3

Options Summary

In this section, the compiler options are grouped by function to provide an easy
reference. The details will be found on the pages in the following sections, as
indicated.

The following table summarizes the f 95 compiler options by functionality. The table
does not include obsolete and legacy option flags. Some flags serve more than one
purpose and appear more than once.

TABLE 3-3 Compiler Options Grouped by Functionality

Function Option Flag

Compilation Mode:

Compile only; do not produce an executable file -C

Show commands built by the driver but do not -dryrun
compile

Support Fortran 77 extensions and compatibility -f77

Specify path for writing compiled . mrod Module files - moddi r =path

Specify name of object, library, or executable file to - o filename
write

Compile and generate only assembly code -S

Strip symbol table from executable -s

Suppress compiler messages, except error messages - si | ent

Define path to directory for temporary files - t enp=path
Show elapsed time for each compilation phase -time

Show version number of compiler and its phases -V

Verbose messages -V

Specify non-standard aliasing situations - xal i as=list
Compile with multiple processors - Xj obs=n

Chapter 3 Fortran Compiler Options ~ 3-3

TABLE 3-3 Compiler Options Grouped by Functionality (Continued)

Function Option Flag

Compiled Code:

Add/suppress trailing underscores on external - ext _nanes=x
names

Inline specified user functions -inline=list
Compile position independent code -KPI T -kpi ¢

Inline certain math library routines -libmil

STOP returns integer status value to shell -stop_st at us[=yn]
Specify code address space - xcode=x

Enable UltraSPARC prefetch instructions - xpref et ch[=x]
Specify use of optional registers - Xr egs=x

Specify default data mappings - Xt ypemap=x

Data Alignment:

Specify alignment of data in COMMON blocks -al i gncomon|[=n]
Force COMMON block data alignment to allow -dalign
double word fetch/store
Force alignment of all data on 8-byte boundaries -dbl _align_all
Align COMMON block data on 8-byte boundaries -f
Specify memory alignment and behavior -xmemal i gn[=ab]
Debugging:
Enable runtime subscript range checking -C
Compile for debugging with dbx -g
Compile for browsing with source browser -sb, -sbfast
Flag use of undeclared variables -u
Check C$PRAGVA ASSUME assertions - xassunme_cont r ol =check
Check for stack overflow at runtime - xcheck=st kovf
Enable runtime task common check - xcomronchk
Compile for Performance Analyzer -xF
Generate cross-reference listings -Xlistx
Enable debugging without object files - XS
Diagnostics:
Flag use of non-standard extensions -ansi

3-4 Fortran User’'s Guide » May 2003

TABLE 3-3 Compiler Options Grouped by Functionality (Continued)

Function Option Flag
Suppress specific error messages - errof f =list
Display error tag names with error messages -errtags
Show summary of compiler options -flags, -help

Show version number of the compiler and its phases -V

Verbose messages -V

Verbose parallelization messages -vpara

Show/suppress warning messages -wWn

Display compiler README file - xhel p=r eadne
Licensing:

Show license server information -xlicinfo

Linking and Libraries:

Allow/require dynamic/static libraries - Bx

Allow only dynamic/static library linking -dy, -dn
Build a dynamic (shared object) library -G

Assign name to dynamic library - hname
Add directory to library search path - Lpath
Link with library | i bname. a or | i bname. so - | name
Build runtime library search path into executable - Rpath
Disable use of incremental linker, i | d - xi | dof f
Link with optimized math library - x| i bnopt
Link with Sun Performance Library -xlic_lib=sunperf
Link editor option -zZX
Generate pure libraries with no relocations -zt ext

Numerics and Floating-Point:

Use non-standard floating-point preferences -fnonstd
Select SPARC non-standard floating point -fns

Enable runtime floating-point overflow during input - f pover

Select IEEE floating-point rounding mode - fpround=r
Select floating-point optimization level -fsinpl e=n
Select floating-point trapping mode -ftrap=t

Chapter 3 Fortran Compiler Options

TABLE 3-3 Compiler Options Grouped by Functionality (Continued)

Function Option Flag
Specify rounding method for formatted - i oroundi ng=mode
input/output
Promote single precision constants to double -r8const
precision
Enable interval arithmetic and set the appropriate -xi a[=e]

floating-point environment (includes - xi nt erval)

Enable interval arithmetic extensions -xi nterval [=e]

Optimization and Performance:

Analyze loops for data dependencies - depend

Optimize using a selection of options -fast

Specify optimization level -On

Pad data layout for efficient use of cache - pad[=p]

Allocate local variables on the memory stack - stackvar

Enable loop unrolling -unrol | [=m]
Enable optimization across source files -xcrossfil e[=n]
Invoke interprocedural optimizations pass - xi po[=n]

Set highest optimization level for #pragma OPT - xmaxopt [=n]
Enable/adjust compiler generated prefetch - xpr ef et ch=list
instructions

Control automatic generation of prefetch -xprefetch_l evel =n
instructions

Enable generation or use of performance profiling -xprofile=p
data

Assert that no memory-based traps will occur - xsaf e=nem

Do no optimizations that increase code size - Xspace

Generate calls to vector library functions -xvect or [=yn]

automatically

Parallelization:

Enable automatic parallelization of DO loops - aut opar
Enable parallelization of loops explicitly marked -explicitpar
with directives

Show loop parallelization information -1 oopi nfo
Specify Cray-style parallelization directives - mp=CRAY

3-6 Fortran User’'s Guide » May 2003

TABLE 3-3 Compiler Options Grouped by Functionality (Continued)

Function Option Flag

Compile for hand-coded multithreaded -m
programming

Accept OpenMP API directives and set appropriate - opennp[=keyword]
environment

Parallelize loops with - aut opar - expli cit par -parallel
- depend combination

Recognize reduction operations in loops with -reduction
automatic parallelization

Verbose parallelization messages -vpara

Source Code:

Define preprocessor symbol - Dname[=val]
Undefine preprocessor symbol - Uname
Accept extended (132 character) source lines -e

Apply preprocessor to . F and/or . F90 and . F95 -F

files but do not compile
Accept Fortran 95 fixed-format input -fixed

Preprocess all source files with the f pp preprocessor - f pp

Accept Fortran 95 free-format input -free

Add directory to include file search path - | path

Add directory to module search path - Mpath

Recognize upper and lower case as distinct -uU

Tread hollerith as character in actual arguments - xhasc={yes| no}
Select preprocessor, cpp or f pp, to use -xpp[={f pp| cpp}]
Allow recursive subprogram calls - Xrecursive

Target Platform:

Optimize for the host system -native
Specify target platform instruction set for the - xarch=a
optimizer

Specify target cache properties for optimizer -xcache=a
Specify target processor for the optimizer -xchi p=a
Specify target platform for the optimizer - xtarget=a

Chapter 3 Fortran Compiler Options

3.3.1

3.3.2

Commonly Used Options

The compiler has many features that are selectable by optional command-line
parameters. The short list below of commonly used options is a good place to start.

TABLE 3-4 Commonly Used Options

Action Option

Debug—global program checking across routines for consistency of —Xl i st
arguments, commons, and so on.

Debug—produce additional symbol table information to enable the —g
dbx and debugging.

Performance—invoke the optimizer to produce faster running - n]
programs.

Performance—Produce efficient compilation and run times for the —f ast

native platform, using a set of predetermined options.

Dynamic (—Bdynami c) or static (-Bst at i ¢) library binding. —Bx
Compile only—Suppress linking; make a . o file for each source file. —c
Output file—Name the executable output file nm instead of a. out. -0 nm

Source code—Compile fixed format Fortran source code. -fixed

Macro Flags

Some option flags are macros that expand into a specific set of other flags. These are
provided as a convenient way to specify a number of options that are usually
expressed together to select a certain feature.

TABLE 3-5 Macro Option Flags

Option Flag Expansion

-dalign -xmemal i gn=8s -al i gnconmon=16

-f -al i gnconmmon=16

- fast -x06 -libml -fsinple=2 -dalign -xlibnmopt -depend

-fns -ftrap=comon -pad=local -xvector=yes
- xpref et ch=yes

-fnonstd -fns -ftrap=common

-parallel -autopar -explicitpar -depend

3-8 Fortran User’'s Guide » May 2003

3.3.3

TABLE 3-5 Macro Option Flags (Continued)

Option Flag Expansion

- xi a=wi dest need - xi nterval =wi dest need -ftrap=%one -fns=no
-fsinple=0

-xia=strict -xinterval =strict -ftrap=%one -fns=no -fsinple=0

-xt ar get -xarch=a -xcache=b -xchi p=c

Settings that follow the macro flag on the command line override the expansion of
the macro. For example, to use -f ast but with an optimization level of - O3, the - 3
must come after - f ast on the command line.

Backward Compatibility and Legacy Options

The following options are provided for backward compatibility with earlier compiler
releases, and certain Fortran legacy capabilities.

TABLE 3-6 Backward Compatibility Options

Action Option
Allow assignment to constant arguments. —copyargs
Treat hollerith constant as character or typeless in call -xhasc[={yes| no}]

argument lists.
Support Fortran 77 extensions and conventions -f77

Nonstandard arithmetic—allow nonstandard arithmetic. —f nonstd

Optimize performance for the host system. -native
DO loops—use one trip DO loops. —onetrip
Allow legacy aliasing situations - xal i as=keywords

Use of these option flags is not recommended for producing portable Fortran 95
programs.

Chapter 3 Fortran Compiler Options 3-9

3.34 Obsolete Option Flags

The following options are considered obsolete and should not be used. They might
be removed from later releases of the compiler.

TABLE 3-7 Obsolete f 95 Options

Option Flag Equivalent

-a -xprofile=tcov

-cg89 - xtarget =ss2

-cg92 - Xt ar get =ss1000

- noqueue License queueing. No longer needed.

-p Profiling. Use - pg or the Performance Analyzer
-pic - xcode=pi c13

-PIC - xcode=pi c32

3-10 Fortran User's Guide « May 2003

3.4

Options Reference

This section shows all t he f 95 compiler command-line option flags, including
various risks, restrictions, caveats, interactions, examples, and other details.

This options reference details each option flag.

Profile by basic block using t cov, old style. (Obsolete)

This is the old style of basic block profiling for t cov. See —xpr of i | e=t cov for
information on the new style of profiling and the t cov(1) man page for more details.
Also see the manual, Program Performance Analysis Tools.

-al i gncomon[=n]

—ansi

Specify the alignment of data in common blocks and numeric sequence types.

n may be 1, 2, 4, 8, or 16, and indicates the maximum alignment (in bytes) for data
elements within common blocks and numeric sequence types.

For example, - al i gncommon=4 would align data elements with natural alignments
of 4 bytes or more on 4-byte boundaries.

This option does not affect data with natural alignment smaller than the specified
size.

Without - al i gncomon, the compiler aligns elements in common blocks and
numeric sequence types on (at most) 4-byte boundaries.

Specifying - al i gncommon without a value defaults to 1: all common block and
numeric sequence type elements align on byte boundaries (no padding between
elements).

-al i gnconmon=16 reverts to - al i gnconmon=8 on platforms that are not 64-bit
enabled (platforms other than v9, v9a, or v9b).

Identify many nonstandard extensions.

Warning messages are issued for any uses of non-standard Fortran 95 extensions in
the source code.

Chapter 3 Fortran Compiler Options ~ 3-11

- ar g=l ocal
Preserve actual arguments over ENTRY statements.

When you compile a subprogram with alternate entry points with this option, f 95
uses copy/restore to preserve the association of dummy and actual arguments.

This option is provided for compatibility with legacy Fortran 77 programs. Code
that relies on this option is non-standard.

- aut opar

Enable automatic loop parallelization.

Finds and parallelizes appropriate loops for running in parallel on multiple
processors. Analyzes loops for inter—iteration data dependencies and loop
restructuring. If the optimization level is not specified —Q3 or higher, it will
automatically be raised to —C8.

Also specify the —st ackvar option when using any of the parallelization options,
including —aut opar.

Avoid - aut opar if the program already contains explicit calls to the | i bt hr ead
threads library. See note in “—nt ” on page 3-34.

The - aut opar option is not appropriate on a single—processor system, and the
compiled code will generally run slower.

To run a parallelized program in a multithreaded environment, you must set the
PARALLEL (or OVP_NUM_THREADS) environment variable prior to execution. This tells
the runtime system the maximum number of threads the program can create. The
default is 1. In general, set the PARALLEL or OVP_NUM THREADS variable to the
available number of processors on the target platform.

If you use —aut opar and compile and link in one step, the multithreading library and
the thread—safe Fortran runtime library will automatically be linked. If you use

- aut opar and compile and link in separate steps, then you must also link with

- aut opar to insure linking the appropriate libraries.

The - r educt i on option may also be useful with —aut opar. Other parallelization
options are —par al | el and —expli citpar.

Refer to the Fortran Programming Guide for more information on parallelization.

—B{static| dynam c}
Prefer dynamic or require static library linking.

No space is allowed between —B and dynam c or st at i c. The default, without —B
specified, is —Bdynami c.

3-12 Fortran User's Guide « May 2003

= —Bdynami c: Prefer dynamic linking (try for shared libraries).
= —Bst ati c: Require static linking (no shared libraries).

Also note:

= If you specify st at i ¢, but the linker finds only a dynamic library, then the library
is not linked with a warning that the “library was not found.”

= If you specify dynani c, but the linker finds only a static version, then that library
is linked, with no warning.

You can toggle —Bst at i ¢ and —Bdynami ¢ on the command line. That is, you can link
some libraries statically and some dynamically by specifying - Bst ati ¢ and
- Bdynamni ¢ any number of times on the command line, as follows:

f95 prog.f -Bdynamic -lwells -Bstatic -Isurface

These are loader and linker options. Compiling and linking in separate steps with
- Bx on the compile command will require it in the link step as well.

You cannot specify both - Bdynam ¢ and - dn on the command line because - dn
disables linking of dynamic libraries.

In a 64-bit Solaris environment, many system libraries are available only as shared
dynamic libraries. These includel i bm soandl i bc. so(libmaandli bc. aarenot
provided). This means that —Bst at i ¢ and —dn may cause linking errors in 64-bit
Solaris environments. Applications must link with the dynamic libraries in these
cases.

See the Fortran Programming Guide for more information on static and dynamic
libraries.

Check array references for out of range subscripts and conformance at runtime.

Subscripting arrays beyond their declared sizes may result in unexpected results,
including segmentation faults. The —C option checks for possible array subscript
violations in the source code and during execution. - C also adds runtime checks for
array conformance in array syntax expressions

Specifying —C may make the executable file larger.

If the —C option is used, array subscript violations are treated as an error. If an array
subscript range violation is detected in the source code during compilation, it is
treated as a compilation error.

Chapter 3 Fortran Compiler Options ~ 3-13

If an array subscript violation can only be determined at runtime, the compiler
generates range—checking code into the executable program. This may cause an
increase in execution time. As a result, it is appropriate to enable full array subscript
checking while developing and debugging a program, then recompiling the final
production executable without subscript checking.

—C
Compile only; produce object . o files, but suppress linking.
Compile a . o file for each source file. If only a single source file is being compiled,
the —o option can be used to specify the name of the . o file written.

—cg89
Compile for generic SPARC architecture. (Obsolete)
This option is a macro for: —xar ch=v7 —xchi p=ol d —xcache=64/ 32/ 1 which is
equivalent to —xt ar get =ss2.

—cQg92
Compile for SPARC V8 architecture. (Obsolete)
This option is a macro for:
—xar ch=v8 —xchi p=super —xcache=16/ 32/ 4: 1024/ 32/ 1 which is equivalent to
—xt ar get =ss1000.

—copyargs
Allow assignment to constant arguments.
Allow a subprogram to change a dummy argument that is a constant. This option is
provided only to allow legacy code to compile and execute without a runtime error.
= Without —copyar gs, if you pass a constant argument to a subroutine, and then

within the subroutine try to change that constant, the run aborts.
= With —copyar gs, if you pass a constant argument to a subroutine, and then
within the subroutine change that constant, the run does not necessarily abort.

Code that aborts unless compiled with —copyar gs is, of course, not Fortran standard
compliant. Also, such code is often unpredictable.

—Dname[=def]

Define symbol name for the preprocessor.

This option only applies to . F, . F90, and . F95 source files.

3-14 Fortran User's Guide « May 2003

—Dnamedef Define name to have value def
—Dname Define name to be 1

On the command line, this option will define name as if:
#def i ne name[=def]

had appears in the source file. If no =def specified, the name name is defined as the
value 1. The macro symbol name is passed on to the preprocessor f pp (or cpp — see
the —xpp option) for expansion.

The predefined macro symbols have two leading underscores. The Fortran syntax
may not support the actual values of these macros—they should appear only in f pp
or cpp preprocessor directives.

= The product version is predefined (in hex) in__SUNPRO_F90, and __ SUNPRO_F95.
For example __SUNPRO_F95 is 0x800 for the Sun ONE Studio 8 release.

= The following macros are predefined on appropriate systems:

__sparc, __unix,__sun,__SVR4,
__SunCS 5 6, __SunCs 5 7, __Sun0s 5 8

For instance, the value __spar c is defined on SPARC systems. You can use
these values in such preprocessor conditionals as the following:
#i fdef __sparc
= The following are predefined with no underscores, but they may be deleted in a
future release: sparc, uni x, sun
= On SPARC V9 systems, the __spar cv9 macro is also defined.

f 95 uses the f pp(1) preprocessor by default. Like the C preprocessor cpp(1), f pp
expands source code macros and enables conditional compilation of code. Unlike
cpp, f pp understands Fortran syntax, and is preferred as a Fortran preprocessor. Use
the —xpp=cpp flag to force the compiler to specifically use cpp rather than f pp.

—dal i gn

Align COMMON blocks and numerical sequence types, and generate faster
multi-word load/stores.

This flag changes the data layout in COMMON blocks, numeric sequence types, and
EQUIVALENCE classes, and enables the compiler to generate faster multi-word
load/stores for that data.

The data layout effect is that of the - f flag: double- and quad-precision data in

COMMON blocks and EQUIVALENCE classes are laid out in memory along their
“natural” alignment, which is on 8-byte boundaries (or on 16-byte boundaries for
guad-precision when compiling for 64-bit environments with - xar ch=v9 or v9a).

Chapter 3 Fortran Compiler Options 3-15

3-16

—dbl _al

The default alignment of data in COMMON blocks is on 4-byte boundaries. The
compiler is also allowed to assume natural alignment and generate faster
multi-word load/stores to reference the data.

Note — - dal i gn may result in nonstandard alignment of data, which could cause
problems with variables in EQUI VALENCE or COMMON and may render the program
non-portable if —dal i gn is required.

- dal i gn is a macro equivalent to: - xmenal i gn=8s - al i gnconmon=16. See
“-al i gncommon[=n] ” on page 3-11, and “- xmremal i gn[=<a>] ” on page 3-74.

If you compile one subprogram with —dal i gn, compile all subprograms of the
program with —dal i gn. This option is included in the —f ast option.

Note that because - dal i gn invokes - al i gncommon, numeric sequence types are also
affected by this option.

ign_all ={yes| no}

Force alignment of data on 8-byte boundaries

The value is either yes or no. If yes, all variables will be aligned on 8-byte
boundaries. Default is —dbl _al i gn_al | =no.

When compiling for 64-bit environments with - xar ch=v9 or v9a, this flag will align
guad-precision data on 16-byte boundaries.

This flag does not alter the layout of data in COMMON blocks or user-defined
structures.

Use with —dal i gn to enable added efficiency with multi-word load/stores.

If used, all routines must be compiled with this flag.

—depend{=yes|no}

Analyze loops for data dependencies and do loop restructuring.

Dependence analysis is enabled with - depend or - depend=yes. The analysis is
disabled with - depend=no, which is the compiler default.

This option will raise the optimization level to O3 if no optimization level is
specified, or if it is specified less than O3. —depend is also included with —f ast ,

- aut opar and - par al | el . Note also that specifying an optimization level - 3 or
higher automatically adds - depend. (See the Fortran Programming Guide.)

Fortran User's Guide « May 2003

-dn

Disallow dynamic libraries. See “~d{y| n} ” on page 3-17.

—dryrun

—d{y| n}

Show commands built by the f 95 command-line driver, but do not compile.

Useful when debugging, this option displays the commands and suboptions the
compiler will invoke to perform the compilation.

Allow or disallow dynamic libraries for the entire executable.

= —dy: Yes, allow dynamic/shared libraries.
= —dn: No, do not allow dynamic/shared libraries.

The default, if not specified, is —dy.

Unlike —BXx, this option applies to the whole executable and need appear only once on
the command line.

—dy| —dn are loader and linker options. If you compile and link in separate steps
with these options, then you need the same option in the link step.

In a 64-bit Solaris environment, many system libraries are not available only as
shared dynamic libraries. These include | i bm soandl i bc.so(li bmaandlibc. a
are not provided). This means that —dn and —Bst at i ¢ may cause linking errors in
64-bit Solaris environments. Applications must link with the dynamic libraries in
these cases.

Accept extended length input source line.

Extended source lines can be up to 132 characters long. The compiler pads on the
right with trailing blanks to column 132. If you use continuation lines while
compiling with —e, then do not split character constants across lines, otherwise,
unnecessary blanks may be inserted in the constants.

—err of f =taglist

Suppress warning messages listed by tag name.

Suppress the display of warning messages specified in the comma-separated list of
tag names taglist. If taglist consists of %mone, no warnings are suppressed. If taglist
consists of %al | , all warnings are suppressed (this is equivalent to the —w option.)

Chapter 3 Fortran Compiler Options ~ 3-17

3-18

Example:
f95 -erroff=WDECL_LOCAL_NOTUSED i nk. f

Use the —errtags option to see the tag names associated with warning messages.

—errtags[={yes| no}]

Display the message tag with each warning message.

With- errt ags=yes, the compiler’s internal error tag name will appear along with
warning messages. The default is not to display the tag (- er rt ags=no).

denp% f95 —errtags ink.f
i nk.f:
MAI N:
"ink.f", line 11: Warning: local variable "i" never used
(WDECL_LOCAL_NOTUSED) <- The warning message’s tag name

-errtags alone stands for - errt ags=yes.

—explicitpar

Parallelize loops explicitly marked by Sun or Cray directives.

The compiler will generate parallel code even if there are data dependencies in the
DO loop that would cause the loop to generate incorrect results when run in parallel.
With explicit parallelization, it is the user’s responsibility to correctly analyze loops
for data dependency problems before marking them with parallelization directives.

Parallelization is appropriate only on multiprocessor systems.

This option enables Sun and/or Cray explicit parallelization directives. DO loops
immediately preceded by parallelization directives will have threaded code
generated for them.

To enable OpenMP explicit parallelization directives, do not use - expl i ci t par.
Use - opennp instead. See “- opennp[=keyword] ” on page 3-39)

Note — - expl i ci t par should not be used to compile programs that already do their
own multithreading with calls to the | i bt hr ead library.

Fortran User's Guide « May 2003

To run a parallelized program in a multithreaded environment, you must set the
PARALLEL (or OVP_NUM THREADS) environment variable prior to execution. This tells
the runtime system the maximum number of threads the program can create. The
default is 1. In general, set the PARALLEL or OMP_NUM THREADS variable to the
available number of processors on the target platform.

If you use —expl i ci t par and compile and link in one step, then linking
automatically includes the multithreading library and the thread-safe Fortran
runtime library. If you use —expl i ci t par and compile and link in separate steps,
then you must also link with —expl i ci t par.

To improve performance, also specify the —st ackvar option when using any of the
parallelization options, including —expl i ci t par.

Use the - np option (“—nmp={ %Mone| sun| cr ay}” on page 3-34) to select the style of
parallelization directives enabled. The default with - expl i ci t par is Sun directives.
Use - expl i cit par - np=cr ay to enable Cray directives.

If the optimization level is not —O3 or higher, it is raised to —O3 automatically.

For details, see the “Parallelization” chapter in the Fortran Programming Guide.

—ext _nanes=e

Create external names with or without trailing underscores.

e must be either pl ai n or under scor es. The default is under scor es.
—ext _nanmes=pl ai n: Do not add trailing underscore.

—ext _names=under scor es: Add trailing underscore.

An external name is a name of a subroutine, function, block data subprogram, or
labeled common. This option affects both the name of the routine’s entry point and
the name used in calls to it. Use this flag to allow Fortran 95 routines to call (and be
called by) other programming language routines.

Invoke the source file preprocessor, but do not compile.

Apply the f pp preprocessor to . F files (and . f 95 files with f 95) and write the
processed result on a file with the same name but with suffix changed to . f (or
. £ 95), but do not compile.

Example:
f95 —F source.F

writes the processed source file to sour ce. f

Chapter 3 Fortran Compiler Options 3-19

3-20

f pp is the default preprocessor for Fortran. The C preprocessor, cpp, can be selected
instead by specifying —xpp=cpp.

—f
Align double- and quad-precision data in COMMON blocks.
- f isalegacy option flag equivalent to - al i gncommon=16. Use of - al i gnconmon is
preferred.
The default alignment of data in COMMON blocks is on 4-byte boundaries. - f
changes the data layout of double- and quad-precision data in COMMON blocks
and EQUIVALENCE classes to be placed in memory along their “natural”
alignment, which is on 8-byte boundaries (or on 16-byte boundaries for
guad-precision when compiling for 64-bit environments with - xar ch=v9 or v9a).
Note — - f may result in nonstandard alignment of data, which could cause
problems with variables in EQUI VALENCE or COMMON and may render the program
non-portable if —f is required.
Compiling any part of a program with - f requires compiling all subprograms of that
program with - f .
By itself, this option does not enable the compiler to generate faster multi-word
fetch/store instructions on double and quad precision data. The —dal i gn option
does this and invokes —f as well. Use of —dal i gn is preferred over the older —f . See
“—dal i gn” on page 3-15. Because —dal i gn is part of the —f ast option, so is —f .

- f 77[=list]

Select Fortran 77 compatibility mode.

This option flag enables porting legacy Fortran 77 source programs, including those
with language extensions accepted by the f 77 compiler, to the f 95 Fortran 95
compiler.

list is a comma-separated list selected from the following possible keywords:

keyword meaning

%al | Enable all the Fortran 77 compatibility features.

%mone Disable all the Fortran 77 compatibility features.

backsl ash Accept backslash as an escape sequence in character strings.
i nput Allow input formats accepted by f 77.

Fortran User's Guide « May 2003

keyword

meaning

intrinsics

| ogi cal

m sc
out put

subscri pt

tab

Limit recognition of intrinsics to only Fortran 77 intrinsics.

Accept Fortran 77 usage of logical variables, such as:

- assigning integer values to logical variables

- allowing arithmetic expressions in logical conditional statements,
with . NE. 0 representing . TRUE.

- allowing relational operators . EQ and . NE. with logical operands

Allow miscellaneous f 77 Fortran 77 extensions.

Generate f 77-style formatted output, including list-directed and
NAMELI ST output.

Allow non-integer expressions as array subscripts.

Enable f 77-style TAB-formatting, including unlimited source line
length. No blank padding will be added to source lines shorter than
72 characters.

All keywords can be prefixed by no%to disable the feature, as in:
-f77=%l | , no%acksl| ash

The default, when - f 77 is not specified, is - f 77=%one. Using - f 77 without a list is
equivalent to specifying - f 77=%al | .

Exceptions Trapping and -f 77:

Specifying - f 77 adds - f t r ap=%mone to the comand line to mimic Fortran 77’s
behavior regarding arithmetic exception trapping. The Fortran 77 compiler
allowed execution to continue after an arithmetic exception occurred. Compiling
with - f 77 also causes the program to call i eee_r et r ospect i ve on program exit
to report on any arithmetic exceptions that might have occurred. Specify

- ft rap=common following the - f 77 option flag on the command line to enable
trapping after an exception is raised.

See Chapter 5 for complete information on f 77 compatibility and Fortran 77 to
Fortran 95 migration.

See also the - xal i as flag for handling non-standard programming syndromes that
may cause incorrect results.

Chapter 3 Fortran Compiler Options ~ 3-21

—f ast

Select options that optimize execution performance.

Note — This option is defined as a particular selection of other options that is subject
to change from one release to another, and between compilers. Also, some of the
options selected by —f ast might not be available on all platforms. Compile with the
- v (verbose) flag to see the expansion of - f ast .

- f ast provides high performance for certain benchmark applications. However, the
particular choice of options may or may not be appropriate for your application. Use
- f ast as a good starting point for compiling your application for best performance.
But additional tuning may still be required. If your program behaves improperly
when compiled with - f ast, look closely at the individual options that make up

- fast and invoke only those appropriate to your program that preserve correct
behavior.

Note also that a program compiled with - f ast may show good performance and
accurate results with some data sets, but not with others. Avoid compiling with

- f ast those programs that depend on particular properties of floating-point
arithmetic.

Because some of the options selected by - f ast have linking implications, if you
compile and link in separate steps be sure to link with - f ast also.

—f ast selects the following options:

= —dalign

= —depend

« —fns

« —fsinple=2

=« -ftrap=conmon

= —libml

=« —Xtarget=native
= -6

= —xl| i bropt

= -pad=l ocal

= -Xvector=yes

= -Xxprefetch=yes

=« -xprefetch_| evel =2

Details about the options selected by —f ast :

= The - xt ar get =nat i ve hardware target.
If the program is intended to run on a different target than the compilation
machine, follow the —f ast with a code—generator option. For example:
f95 —fast -xtarget=ultra

= The —Cb optimization level option.

3-22 Fortran User's Guide « May 2003

= The —depend option analyzes loops for data dependencies and possible
restructuring.

= The —li bm | option for system-supplied inline expansion templates.
For C functions that depend on exception handling, follow - f ast by - nol i bmi |
(asin-fast —nolibm|).With-Iibml, exceptions cannot be detected with
errno or mat herr (3m).

= The - f si npl e=2 option for aggressive floating—point optimizations.
—f si npl e=2 is unsuitable if strict IEEE 754 standards compliance is required. See
“—f si npl e[=n] ” on page 3-26.

= The—dal i gn option to generate double loads and stores for double and quad data
in common blocks. Using this option can generate nonstandard Fortran data
alignment in common blocks.

= The —x| i bnopt option selects optimized math library routines.

= -pad=l ocal inserts padding between local variables, where appropriate, to
improve cache usage.

= -xvect or =yes transforms certain math library calls within DO loops to single
calls to a vectorized library equivalent routine with vector arguments.

= —f ns selects non-standard SPARC floating-point arithmetic exception handling
and gradual underflow. See “—f ns[={ no| yes}] ” on page 3-25.

= Trapping on common floating-point exceptions, - f t r ap=conmon, is the enabled
with Fortran 95.

= - Xxpref et ch=yes enables the compiler to generate hardware prefetch instructions
where appropriate.

= -xprefetch_| evel =2 sets the default level for insertion of prefetch instructions.

It is possible to add or subtract from this list by following the —f ast option with
other options, as in:

f95 —fast —fsinple=1 —xnolibnopt

which overrides the —f si nmpl e=2 option and disables the —xI i brropt selected by
-fast.

Because- f ast invokes- dal i gn,-f ns,-fsi npl e=2, programscompiledwith- f ast
can result in nonstandard floating-point arithmetic, nonstandard alignment of data,
and nonstandard ordering of expression evaluation. These selections might not be
appropriate for most programs.

Note that the set of options selected by the - f ast flag can change with each
compiler release.

Chapter 3 Fortran Compiler Options 3-23

3-24

—fi xed

—fl ags

Specify fixed—format Fortran 95 source input files.

All source files on the command-line will be interpreted as fixed format regardless
of filename extension. Normally, f 95 interprets only . f files as fixed format, . f 95 as
free format.

Synonym for —hel p.

—fnonstd

Initialize floating—point hardware to non-standard preferences.

This option is a macro for the combination of the following option flags:

—fns —ftrap=conmmon

Specifying —f nonst d is approximately equivalent to the following two calls at the
beginning of a Fortran main program.

i =i eee_handl er("set", "common", S| GFPE_ABORT)
call nonstandard_arithmetic()

The nonstandard_arit hrmeti c() routine replaces the obsolete
abrupt _under fl ow) routine of earlier releases.

To be effective, the main program must be compiled with this option.

Using this option initializes the floating-point hardware to:

= Abort (trap) on floating-point exceptions.

= Flush underflow results to zero if it will improve speed, rather than produce a
subnormal number as the IEEE standard requires.

See —f ns for more information about gradual underflow and subnormal numbers.

The —f nonst d option allows hardware traps to be enabled for floating—point
overflow, division by zero, and invalid operation exceptions. These are converted
into SIGFPE signals, and if the program has no SIGFPE handler, it terminates with a
dump of memory.

For more information, see the i eee_handl er (3m) and i eee_f unct i ons(3m) man
pages, the Numerical Computation Guide, and the Fortran Programming Guide.

Fortran User's Guide « May 2003

—fns[={no| yes}]
Select SPARC nonstandard floating—point mode.

The default is the SPARC standard floating—point mode (—f ns=no). (See the
“Floating—Point Arithmetic” chapter of the Fortran Programming Guide.)

Optional use of =yes or =no provides a way of toggling the —f ns flag following some
other macro flag that includes it, such as —f ast . —f ns is the same as - f ns=yes.

This option flag enables nonstandard floating-point mode when the program begins
execution. On some SPARC systems, specifying nonstandard floating-point mode
disables “gradual underflow”, causing tiny results to be flushed to zero rather than
producing subnormal numbers. It also causes subnormal operands to be silently
replaced by zero. On those SPARC systems that do not support gradual underflow
and subnormal numbers in hardware, use of this option can significantly improve
the performance of some programs.

Where x does not cause total underflow, x is a subnormal number if and only if | x] is
in one of the ranges indicated:

TABLE 3-8 Subnormal REAL and DOUBLE

Data Type Range
REAL 0.0 < |x] < 1.17549435e-38
DOUBLE PRECI SI ON 0.0 < |x] < 2.22507385072014e-308

See the Numerical Computation Guide for details on subnormal numbers, and the
Fortran Programming Guide chapter “Floating—Point Arithmetic” for more information
about this and similar options. (Some arithmeticians use the term denormalized
number for subnormal number.)

The standard initialization of floating—point preferences is the default:

= |EEE 754 floating—point arithmetic is nonstop (do not abort on exception).
= Underflows are gradual.

To be effective, the main program must be compiled with this option.

—f pover [={yes| no}]
Detect floating-point overflow in formatted input.

With —f pover =yes specified, the 1/0 library will detect runtime floating-point
overflows in formatted input and return an error condition (1031). The default is no
such overflow detection (—f pover =no). —f pover is equivalent to —f pover =yes.

Chapter 3 Fortran Compiler Options 3-25

3-26

-fpp
Force preprocessing of input with f pp.

Pass all the input source files listed on the f 95 command line through the f pp
preprocessor, regardless of file extension. (Normally, only files with . F,. F90, or . F95
extension are automatically preprocessed by f pp.) See also “—xpp={f pp| cpp}” on
page 3-76.

—free

Specify free—format source input files.

All source files on the command-line will be interpreted as f 95 free format
regardless of filename extension. Normally, f 95 interprets . f files as fixed format,
. £ 95 as free format.

—f round=r
Set the IEEE rounding mode in effect at startup.
r must be one of: near est, t ozero, negati ve, positive.
The default is —f r ound=near est .
To be effective, compile the main program with this option.

This option sets the IEEE 754 rounding mode that:

= Can be used by the compiler in evaluating constant expressions.
= Is established at runtime during the program initialization.

Whenrist ozero,negati ve,or positi ve, the option sets the rounding direction to
round-to-zero, round-to-negative-infinity, or round-to-positive-infinity, respectively, when
the program begins execution. When —f r ound is not specified, - f r ound=near est is
used as the default and the rounding direction is round-to-nearest. The meanings are
the same as those for the i eee_f | ags function. (See the “Floating—Point Arithmetic”
chapter of the Fortran Programming Guide.)

—f si npl e[=n]
Select floating—point optimization preferences.

Allow the optimizer to make simplifying assumptions concerning floating—point
arithmetic. (See the “Floating—Point Arithmetic” chapter of the Fortran Programming
Guide.)

For consistent results, compile all units of a program with the same —f si npl e
option.

Fortran User's Guide « May 2003

If n is present, it must be 0, 1, or 2. The defaults are:
= Without the —f si npl e flag, the compiler defaults to —f si npl e=0
= With —f si mpl e alone, the compiler defaults to —f si npl e=1
The different floating—point simplification levels are:
—f si npl e=0
Permit no simplifying assumptions. Preserve strict IEEE 754 conformance.
—fsinpl e=1
Allow conservative simplifications. The resulting code does not strictly conform
to IEEE 754, but numeric results of most programs are unchanged.
With —f si npl e=1, the optimizer can assume the following:

« |EEE 754 default rounding/trapping modes do not change after process
initialization.

« Computations producing no visible result other than potential floating point
exceptions may be deleted.

» Computations with Infinity or NaNs (“Not a Number”) as operands need not
propagate NaNs to their results; e.g., x* 0 may be replaced by 0.

« Computations do not depend on sign of zero.

With —f si npl e=1, the optimizer is not allowed to optimize completely without
regard to roundoff or exceptions. In particular, a floating—point computation
cannot be replaced by one that produces different results with rounding modes
held constant at run time.

—f si mpl e=2

Permit aggressive floating point optimizations. This can cause some programs to
produce different numeric results due to changes in the way expressions are
evaluated. In particular, the Fortran standard rule requiring compilers to honor
explicit parentheses around subexpressions to control expression evaluation order
may be broken with - f si npl e=2. This could result in numerical rounding
differences with programs that depend on this rule.

For example, with - f si npl e=2, the compiler may evaluate C- (A- B) as

(G A) +B, breaking the standard’s rule about explicit parentheses, if the resulting
code is better optimized. The compiler might also replace repeated computations
of x/y with x*z, where z=1/y is computed once and saved in a temporary, to
eliminate the costly divide operations.

Programs that depend on particular properties of floating-point arithmetic should
not be compiled with - f si npl e=2.

Even with —f si npl e=2, the optimizer still is not permitted to introduce a floating
point exception in a program that otherwise produces none.

—f ast sets -f si nmpl e=2.

Chapter 3 Fortran Compiler Options ~ 3-27

3-28

—ftrap=t

Set floating—point trapping mode in effect at startup.
t is a comma-separated list that consists of one or more of the following:

%l | , %0one, conmon, [no%i nval i d, [no%over fl ow [no%under f | ow
[no%di vi si on, [no%i nexact .

-ft rap=common is a macro for
-ftrap=i nval i d, overfl ow, underfl ow, di vi si on.

The f 95 default is - f t r ap=comon.

This option sets the IEEE 754 trapping modes that are established at program
initialization. Processing is left-to-right. The common exceptions, by definition, are
invalid, division by zero, and overflow. For example: —f t r ap=over f | ow

Example: —ftrap=%al | , no% nexact means set all traps, except i nexact .

The meanings for —f t r ap=t are the same as for i eee_f | ags(), except that:

= %al | turns on all the trapping modes, and will cause trapping of spurious and
expected exceptions. Use conmon instead.

= %one turns off all trapping modes.
= A no%prefix turns off that specific trapping mode.

To be effective, compile the main program with this option.

For further information, see the “Floating—Point Arithmetic” chapter in the Fortran
Programming Guide.

Build a dynamic shared library instead of an executable file.

Direct the linker to build a shared dynamic library. Without —G, the linker builds an
executable file. With —G it builds a dynamic library. Use —o with —Gto specify the
name of the file to be written. See the Fortran Programming Guide chapter “Libraries
for details.

Compile for debugging and performance analysis.

Produce additional symbol table information for debugging with dbx (1) debugging
utility and for performance analysis with the Performance Analyzer.

Although some debugging is possible without specifying —g, the full capabilities of
dbx and debugger are only available to those compilation units compiled with —g.

Fortran User's Guide « May 2003

—hname

Some capabilities of other options specified along with —g may be limited. See the
dbx documentation for details.

The —g option makes —xi | don the default incremental linker option when . o object
files appear on the command line (see “—xi | d{ of f | on} ” on page 3-67). That is,
with —g, the compiler default behavior is to automatically invoke i | d in place of | d,
unless the - Goption is present, or any source file is named on the command line.

To use the full capabilities of the Performance Analyzer, compile with - g. While
some performance analysis features do not require - g, you must compile with - g to
view annotated source, some function level information, and compiler commentary
messages. (See the anal yzer (1) man page and the manual Program Performance
Analysis Tools.)

The commentary messages generated with - g describe the optimizations and
transformations the compiler made while compiling your program. The messages,
interleaved with the source code, can be displayed by the er _sr c(1) command.

Note that commentary messages only appear if the compiler actually performed any
optimizations. You are more likely to see commentary messages when you request
high optimization levels, such as with - xO4, or - f ast .

Specify the name of the generated dynamic shared library.

This option is passed on to the linker. For details, see the Solaris Linker and Libraries
Guide, and the Fortran Programming Guide chapter “Libraries.”

The —hname option records the name name to the shared dynamic library being
created as the internal name of the library. A space between —h and name is optional
(except if the library name is el p, for which the space will be needed). In general,
name must be the same as what follows the - 0. Use of this option is meaningless
without also specifying -G

Without the —hname option, no internal name is recorded in the library file.

If the library has an internal name, whenever an executable program referencing the
library is run the runtime linker will search for a library with the same internal name
in any path the linker is searching. With an internal name specified, searching for the
library at runtime linking is more flexible. This option can also be used to specify
versions of shared libraries.

If there is no internal name of a shared library, then the linker uses a specific path for
the shared library file instead.

Chapter 3 Fortran Compiler Options 3-29

3-30

—hel p

—I path

Display a summary list of compiler options.

See also “—xhel p=h” on page 3-66.

Add path to the INCLUDE file search path.

Insert the directory path path at the start of the | NCLUDE file search path. No space is
allowed between —I and path. Invalid directories are ignored with no warning
message.

The include file search path is the list of directories searched for | NCLUDE files—file
names appearing on preprocessor #i ncl ude directives, or Fortran | NCLUDE
statements.

Example: Search for | NCLUDE files in / usr/ app/ i ncl ude:

denp% f 95 —I/usr/app/include growmh. F

Multiple —I path options may appear on the command line. Each adds to the top of
the search path list (first path searched).

The search order for relative paths on | NCLUDE or #i ncl ude is:
1. The directory that contains the source file

2. The directories that are named in the —I options

3. The directories in the compiler’s internal default list

4. [usr/include/

—i nline=[%aut o][[, 1[Nno%f1,...[no%fn]

Enable or disable inlining of specified routines.

Request the optimizer to inline the user—written routines named in the f1,...,fn list.
Prefixing a routine name with no%disables inlining of that routine.

Inlining is an optimization technique whereby the compiler effectively replaces a
subprogram reference such as a CALL or function call with the actual subprogram
code itself. Inlining often provides the optimizer more opportunities to produce
efficient code.

The lists are a comma-separated list of functions and subroutines. To inhibit inlining
of a function, prefix its name with no%

Fortran User's Guide « May 2003

Example: Inline the routines xbar, zbar, vpoi nt:

denp% f 95 -3 —i nl i ne=xbar, zbar, vpoi nt *.f

Following are the restrictions; no warnings are issued:
= Optimization must be —O8 or greater.

= The source for the routine must be in the file being compiled, unless - xi po or
—xcrossfil e are also specified.

= The compiler determines if actual inlining is profitable and safe.

The appearance of -i nl i ne with - O4 disables the automatic inlining that the
compiler would normally perform, unless %aut o is also specified. With - &4, the
compilers normally try to inline all appropriate user-written subroutines and
functions. Adding —i nl i ne with —O4 may degrade performance by restricting the
optimizer’s inlining to only those routines in the list. In this case, use the %aut o
suboption to enable automatic inlining at - &4 and - 5.

denb% f95 -4 -inline=%uto, no%point *.f

In the example above, the user has enabled - O4’s automatic inlining while disabling
any possible inlining of the routine zpoi nt () that the compiler might attempt.

- i or oundi ng=mode

—Kpi ¢

—KPI C

Set floating-point rounding mode for formatted input/output.
Sets the ROUND= specifier globally for all formatted input/output operations.
Allowed values for mode are conpat i bl e and processor - def i ned.

With - i or oundi ng=conpat i bl e, the value resulting from data conversion is the one
closer to the two nearest representations, or the value away from zero if the value is
halfway between them.

With - i or oundi ng=pr ocessor - def i ned, the rounding mode is the processor’s
default mode. This is the default when -i or oundi ng is not specified.

Obsolete synonym for —xcode=pi c13.

Obsolete synonym for —xcode=pi ¢32.

Chapter 3 Fortran Compiler Options 3-31

3-32

—Lpath

Add path to list of directory paths to search for libraries.

Adds path to the front of the list of object-library search directories. A space between
—L and path is optional. This option is passed to the linker. See also “—I x” on
page 3-32.

While building the executable file, | d(1) searches path for archive libraries (. a files)
and shared libraries (. so files). | d searches path before searching the default
directories. (See the Fortran Programming Guide chapter “Libraries” for information
on library search order.) For the relative order between LD_LI BRARY_PATH and
—Lpath, see | d(1).

Note — Specifying/ usr/li bor/usr/ccs/|i b with—Lpath may prevent linking the
unbundled I i bm These directories are searched by default.

Example: Use - Lpath to specify library search directories:

denmp% f95 -L./dirl -L./dir2 any.f

Add library | i bx. a to linker’s list of search libraries.

Pass —I x to the linker to specify additional libraries for | d to search for unresolved
references. | d links with object library | i bx. If shared library | i bx. so is available
(and —Bst at i ¢ or —dn are not specified), | d uses it, otherwise, | d uses static library
I i bx. a. If it uses a shared library, the name is built in to a. out . No space is allowed
between —| and x character strings.

Example: Link with the library | i bVZY:

demo% f 95 any.f -l VzZY

Use - | x again to link with more libraries.

Example: Link with the libraries | i by and | i bz:

denmb% f95 any.f —-ly —-lz

See also the “Libraries” chapter in the Fortran Programming Guide for information on
library search paths and search order.

Fortran User's Guide « May 2003

—libml

Inline selected | i bmlibrary routines for optimization.

There are inline templates for some of the | i bmlibrary routines. This option selects
those inline templates that produce the fastest executable for the floating—point
options and platform currently being used.

For more information, see the man pages | i bm si ngl e(3F) and | i bm_doubl e(3F)

—l oopi nfo

—Mpath

Show loop parallelization results.

Show which loops were and were not parallelized with the —par al | el , —aut opar, or
—expl i ci t par options. (Option —I oopi nf 0 must appear with one of these
parallelization options.)

—I oopi nf o displays a list of messages on standard error:

denp% f 95 —o shal ow —fast —parallel -Iloopinfo shal ow. f

"shal ow. f", line 325: not parallelized, not profitable (inlined | oop)
"shalow. f", line 172: PARALLELIZED, and serial version generated
"shalow. f", line 173: not parallelized, not profitable

"shalow. f", |line 181: PARALLELI ZED, fused

"shalow. f", line 182: not parallelized, not profitable

"shalow. f", line 193: not parallelized, not profitable

"shalow. f", line 199: PARALLELIZED, and serial version generated
"shalow. f", line 200: not parallelized, not profitable

"shalow. f", line 226: PARALLELI ZED, and serial version generated
"shalow. f", line 227: not parallelized, not profitable

...etc

Add path to directory paths searched for Fortran 95 modules. No space appears
between the —Mand path.

path may specify the path to a directory, a . nod precompiled module file, or . a
archive file of precompiled module files. The compiler determines the type of the file
by examining its contents.

. a archive files must be explicitly specified on a - Moption flag to be searched for
modules.

Only . nod files with the same names as the MODULE names appearing on USE
statements will be searched.

Chapter 3 Fortran Compiler Options 3-33

3-34

If not specified, the compiler searches the current directory for module files.

See “Module Files” on page 4-23 for more information about modules in Fortran 95.

- noddi r =path

Specify where the compiler will write compiled . nod MODULE files.

The compiler will write the . rod MODULE information files it compiles in the
directory specified by path. The directory path can also be specified with the MODDI R
environment variable. If both are specified, this option flag takes precedence.

The compiler uses the current directory as the default for writing . nod files.

See “Module Files” on page 4-23 for more information about modules in Fortran 95.

—mp={ %one| sun| cr ay}

Select Sun or Cray parallelization directives.
The default without specifying - expl i ci t par is —np=%one.

The default with - expl i ci t par is - np=sun.

- mp=sun Accept Sun-style directives: CSPAR or ! $PAR prefix.
- nmp=cr ay Accept Cray-style directives: CM C$ or ! M C$ prefix.
- mp=%one Ignore all parallelization directives.

You must also specify - expl i ci t par (or - paral | el) to enable parallelization. For
correctness, also specify - st ackvar:

-explicitpar -stackvar -np=cray

To compile for OpenMP parallelization, use the - opennp flag. See
“- opennp[=keyword] ” on page 3-39.

Sun and Cray directives cannot both be active in the same compilation unit.

A summary of the Sun and Cray parallelization directives appears in Appendix D in
this manual. See the Fortran Programming Guide for details.

Require linking to thread-safe libraries.

If you do your own low-level thread management (for example, by calling the
I'i bt hr ead library), compiling with —nt prevents conflicts.

Fortran User's Guide « May 2003

Use —nt if you mix Fortran with multithreaded C code that calls the | i bt hr ead
library. See also the Solaris Multithreaded Programming Guide.

—nt is implied automatically when using the - aut opar, - expl i ci t par, or
- paral | el options.
Note the following:

= A function subprogram that does 1/0 should not itself be referenced as part of an
1/0 statement. Such recursive 1/0 may cause the program to deadlock with —nt .

= In general, do not compile your own multithreaded code with - aut opar,
-explicitpar,or-parallel.Thecompiler-generated calls to the threads library
and the program’s own calls may conflict, causing unexpected results.

= On asingle—processor system, performance may be degraded with the —nt option.

—native

Optimize performance for the host system. (Obsolete)

This option is a synonym for —xt ar get =nat i ve. The —f ast option sets
- xtarget=native.

—nhoaut opar

Disables automatic parallelization invoked by —aut opar earlier on the command
line.

—nodepend

Cancel any —depend appearing earlier on the command line.

—noexplicitpar

—nolib

Disables explicit parallelization invoked by —expl i ci t par earlier on the command
line.

Disable linking with system libraries.

Do not automatically link with any system or language library; that is do not pass
any default —| x options on to | d. The normal behavior is to link system libraries into
the executables automatically, without the user specifying them on the command
line.

Chapter 3 Fortran Compiler Options 3-35

3-36

The —nol i b option makes it easier to link one of these libraries statically. The system
and language libraries are required for final execution. It is your responsibility to
link them in manually. This option provides you with complete control.

Link I i bmstatically and | i bc dynamically with f 95:

denp% f95 —nolib any.f95 —Bstatic —I m-Bdynanmic —lc

The order for the —I x options is important. Follow the order shown in the examples.

—nol i bm |

Cancel -l i bm | on command line.

Use this option after the - f ast option to disable inlining of | i bmmath routines:

demo% f 95 —fast —nolibml

—nor educti on

Disable —r educt i on on command line.

This option disables —r educt i on.

—nor unpat h

Do not build a runtime shared library search path into the executable.

The compiler normally builds into an executable a path that tells the runtime linker
where to find the shared libraries it will need. The path is installation dependent.
The - nor unpat h option prevents that path from being built in to the executable.

This option is helpful when libraries have been installed in some nonstandard
location, and you do not wish to make the loader search down those paths when the
executable is run at another site. Compare with —Rpaths.

See the Fortran Programming Guide chapter on “Libraries” for more information.

Fortran User's Guide « May 2003

-an]

Specify optimization level.
ncan be 1, 2, 3, 4, or 5. No space is allowed between —Oand n.

If - d n] is not specified, only a very basic level of optimization limited to local
common subexpression elimination and dead code analysis is performed. A
program’s performance may be significantly improved when compiled with an
optimization level than without optimization. Use of —O (which sets —O3) or
—fast (which sets —06) is recommended for most programs.

Each —On level includes the optimizations performed at the levels below it.
Generally, the higher the level of optimization a program is compiled with, the better
runtime performance obtained. However, higher optimization levels may result in
increased compilation time and larger executable files.

Debugging with —g does not suppress —On, but —On limits —g in certain ways; see the
dbx documentation.

The - 3 and - &4 options reduce the utility of debugging such that you cannot
display variables from dbx, but you can still use the dbx wher e command to get a
symbolic traceback.

If the optimizer runs out of memory, it attempts to proceed over again at a lower
level of optimization, resuming compilation of subsequent routines at the original
level.

For details on optimization, see the Fortran Programming Guide chapters
“Performance Profiling” and “Performance and Optimization.”

This is equivalent to —-C3.

Provides a minimum of statement-level optimizations.

Use if higher levels result in excessive compilation time, or exceed available swap
space.

Enables basic block level optimizations.
This level usually gives the smallest code size. (See also —xspace.)
—@3 is preferred over —O2 unless —O8 results in unreasonably long compilation time,

exceeds swap space, or generates excessively large executable files.

Chapter 3 Fortran Compiler Options 3-37

3-38

Adds loop unrolling and global optimizations at the function level. Adds - depend
automatically.

Usually —O3 generates larger executable files.

-4
Adds automatic inlining of routines contained in the same file.
Usually —O4 generates larger executable files due to inlining.
The —g option suppresses the —O4 automatic inlining described above.
—xcr ossfil e increases the scope of inlining with —O4.

-
Attempt aggressive optimizations.
Suitable only for that small fraction of a program that uses the largest fraction of
compute time. —05’s optimization algorithms take more compilation time, and may
also degrade performance when applied to too large a fraction of the source
program.
Optimization at this level is more likely to improve performance if done with profile
feedback. See —xpr of i | e=p.

—0 name
Specify the name of the executable file to be written.
There must be a blank between —o and name. Without this option, the default is to
write the executable file to a. out . When used with —c, —o specifies the target . o
object file; with —Git specifies the target . so library file.

—onetrip

Enable one trip DO loops.

Compile DO loops so that they are executed at least once. DO loops in standard
Fortran are not performed at all if the upper limit is smaller than the lower limit,
unlike some legacy implementations of Fortran.

Fortran User's Guide « May 2003

- opennp[=keyword]

Enable explicit parallelization with Fortran 95 OpenMP Version 2.0 directives.

The flag accepts the following optional keyword suboptions:

paral | el -

noopt -

st ubs -

Enables recognition of OpenMP pragmas, and the program is parallelized
accordingly.

The minimum optimization level for - xopennp=par al | el is-x03. The
compiler changes the optimization from a lower level to - x(8 if
necessary, and issues a warning.

Defines preprocessor token _ OPENMP to be 200011
Invokes - st ackvar automatically.

Enables recognition of OpenMP pragmas, and the program is parallelized
accordingly.

The compiler does not raise the optimization level if it is lower than

- x@8. If you explicitly set the optimization to a level lower than - xC3, as
in -xO2 -opennp=noopt the compiler will issue an error. If you do not
specify an optimization level with - opennp=noopt , the OpenMP
pragmas are recognized, the program is parallelized accordingly, but no
optimization is done.

Defines preprocessor token _OPENWP to be 200011

Invokes - st ackvar automatically.

Disables recognition of OpenMP pragmas, links to stub library routines,
and does not change the optimization level. Use this option if your
application makes explicit calls to the OpenMP runtime library and you
want to compile it to execute serially.

Defines preprocessor token _ OPENMP to be 200011

none Disables recognition of OpenMP pragmas and does not change the
optimization level. (This is the compiler’s default.)

- opennp specified without a suboption keyword is equivalent to
- opennp=par al | el . Note that this default might change in later releases.

To debug OpenMP programs with dbx, compile with - g - opennp=noopt to be able

to breakpoint within parallel regions and display the contents of variables.

The OpenMP directives are summarized in the OpenMP API User’s Guide.

To run a parallelized program in a multithreaded environment, you must set the

PARALLEL (or OVP_NUM THREADS) environment variable prior to execution. This tells

the runtime system the maximum number of threads the program can create. The
default is 1. In general, set the PARALLEL or OMP_NUM THREADS variable to the
available number of processors on the target platform.

Chapter 3 Fortran Compiler Options 3-39

3-40

OpenMP requires the definition of the preprocessor symbol _ OPENVP to have the
decimal value YYYYMM where YYYY and MM are the year and month designations
of the version of the OpenMP Fortran API that the implementation supports.

When compiling and linking in separate steps, also specify -openmp on the link
step. This is especially important when compiling libraries that contain OpenMP
directives.

-PI C
Compile position-independent code with 32-bit addresses. (Obsolete)
—PI Cis equivalent to —xcode=pi c32. See “~xcode=addr” on page 3-62 for more
information about position-independent code.

—Pp
Compile for profiling with the pr of profiler. (Obsolete)
Prepare object files for profiling, see pr of (1). If you compile and link in separate
steps, and also compile with the - p option, then be sure to link with the - p option.
—p with pr of is provided mostly for compatibility with older systems. —pg profiling
with gpr of is possibly a better alternative. See the Fortran Programming Guide
chapter on Performance Profiling for details.

—pad[=p]

Insert padding for efficient use of cache.

This option inserts padding between arrays or character variables, if they are static
local and not initialized, or if they are in common blocks. The extra padding
positions the data to make better use of cache. In either case, the arrays or character
variables can not be equivalenced.

p, if present, must be either or both of:

| ocal Add padding between adjacent local variables.
conmon Add padding between variables in common blocks.
%one Do not add padding. (Compiler default.)

Defaults for —pad:
= Without the —pad[=p] option, the compiler does no padding.

= With —pad, but without the =p, the compiler does both local and common
padding.

Fortran User's Guide « May 2003

—par al |

The following are equivalent:

« f95 —padany.f
=« f95 —pad=l ocal , cormon any. f
=« f95 —pad=comon, | ocal any. f

The —pad[=p] option applies to items that satisfy the following criteria:

= The items are arrays or character variables
= The items are static local or in common blocks

For a definition of local or static variables, see “—st ackvar ” on page 3-45.

Restrictions on —pad=conmon:
= Neither the arrays nor the character strings are equivalenced

= If —pad=conmon is specified for compiling a file that references a common block, it
must be specified when compiling all files that reference that common block. The
option changes the spacing of variables within the common block. If one program
unit is compiled with the option and another is not, references to what should be
the same location within the common block might reference different locations.

= If —pad=conmon is specified, the declarations of common block variables in
different program units must be the same except for the names of the
variables.The amount of padding inserted between variables in a common block
depends on the declarations of those variables. If the variables differ in size or
rank in different program units, even within the same file, the locations of the
variables might not be the same.

= If —pad=conmon is specified, EQUI VALENCE declarations involving common block
variables are flagged with a warning message and the block is not padded.

= Avoid overindexing arrays in common blocks with - pad=conmon specified. The
altered positioning of adjacent data in a padded common block will cause
overindexing to fail in unpredictable ways.

el
Parallelize with: —aut opar, —explicitpar, —-depend

Parallelize loops chosen automatically by the compiler as well as explicitly specified
by user supplied directives. Optimization level is automatically raised to —Q8 if it is
lower. See also “—expl i ci t par” on page 3-18.

To improve performance, also specify the —st ackvar option when using any of the
parallelization options, including —aut opar.

Sun-style parallelization directives are enabled by default. Use - np=cr ay to select
Cray style parallelization directives. (Note: For OpenMP parallelization use
-opennp, not -paral |l el .)

Avoid - par al | el if you do your own thread management. See “—nt ” on page 3-34.

Chapter 3 Fortran Compiler Options 3-41

3-42

—Pg

—pic

Parallelization options like —par al | el are intended to produce executable programs
to be run on multiprocessor systems. On a single—processor system, parallelization
generally degrades performance.

To run a parallelized program in a multithreaded environment, you must set the
PARALLEL (or OVP_NUM THREADS) environment variable prior to execution. This tells
the runtime system the maximum number of threads the program can create. The
default is 1. In general, set the PARALLEL or OMP_NUM THREADS variable to the
available number of processors on the target platform.

If you use —par al | el and compile and link in one step, then linking automatically
includes the multithreading library and the thread—-safe Fortran runtime library. If
you use —par al | el and compile and link in separate steps, then you must also link
with —paral | el .

See the Fortran Programming Guide chapter “Parallelization” for further information.

Compile for profiling with the gpr of profiler.

Compile self-profiling code in the manner of —p, but invoke a runtime recording
mechanism that keeps more extensive statistics and produces a gnon. out file when
the program terminates normally. Generate an execution profile by running gpr of .
See the gpr of (1) man page and the Fortran Programming Guide for details.

Library options must be after the . f and . o files (—pg libraries are static).

If you compile and link in separate steps, and you compile with - pg, then be sure to
link with - pg.

Compile position-independent code for shared library. (Obsolete)

—pi c is equivalent to —xcode=pi c13. See “—xcode=addr” on page 3-62 for more
information on position-indepented code.

—Qoptionprls

Pass the suboption list Is to the compilation phase pr.

There must be blanks separating Qopt i on, pr, and Is. The Qcan be uppercase or
lowercase. The list is a comma-delimited list of suboptions, with no blanks within
the list. Each suboption must be appropriate for that program phase, and can begin
with a minus sign.

Fortran User's Guide « May 2003

—ap

—RIs

This option is provided primarily for debugging the internals of the compiler by
support staff. Use the LD_OPTI ONS environment variable to pass options to the
linker. See the chapter on linking and libraries in the Fortran Programming Guide.

Synonym for —p.

Build dynamic library search paths into the executable file.

With this option, the linker, | d(1), stores a list of dynamic library search paths into
the executable file.

Is is a colon—separated list of directories for library search paths. The blank between
—Rand Is is optional.

Multiple instances of this option are concatenated together, with each list separated
by a colon.

The list is used at runtime by the runtime linker, | d. so. At runtime, dynamic
libraries in the listed paths are scanned to satisfy any unresolved references.

Use this option to let users run shippable executables without a special path option
to find needed dynamic libraries.

Building an executable file using —Rpaths adds directory paths to a default path,
/ opt/ SUNWpr o/ | i b, that is always searched last.

For more information, see the “Libraries” chapter in the Fortran Programming Guide,
and the Solaris Linker and Libraries Guide.

-r 8const

Promote single-precision constants to REAL* 8 constants.

All single-precision REAL constants are promoted to REAL* 8. Double-precision
(REAL* 8) constants are not changed. This option only applies to constants. To
promote both constants and variables, see “—xt ypenap=spec” on page 3-87.

Use this option flag carefully. It could cause interface problems when a subroutine or
function expecting a REAL* 4 argument is called with a REAL* 4 constant that gets
promoted to REAL* 8. It could also cause problems with programs reading
unformatted data files written by an unformatted write with REAL* 4 constants on
the 170 list.

Chapter 3 Fortran Compiler Options 3-43

3-44

—reduction

Recognize reduction operations in loops.

Analyze loops for reduction operations during automatic parallelization. There is
potential for roundoff error with the reduction.

A reduction operation accumulates the elements of an array into a single scalar value.
For example, summing the elements of a vector is a typical reduction operation.
Although these operations violate the criteria for parallelizability, the compiler can
recognize them and parallelize them as special cases when —r educt i on is specified.
See the Fortran Programming Guide chapter “Parallelization” for information on
reduction operations recognized by the compilers.

This option is usable only with the automatic parallelization options —aut opar or
- paral | el . Itisignored otherwise. Explicitly parallelized loops are not analyzed for
reduction operations.

Example: Automatically parallelize with reduction;

denp% f95 -parallel -reduction any.f

Compile and only generate assembly code.

Compile the named programs and leave the assembly—language output on
corresponding files suffixed with . s. No . o file is created.

Strip the symbol table out of the executable file.

This option makes the executable file smaller and more difficult to reverse engineer.
However, this option inhibits debugging with dbx or other tools, and overrides —g.

Produce table information for the source code browser.

Note — - sb cannot be used on source files the compiler automatically passes
through the f pp or cpp preprocessors (that is, files with . F, .F90, or . F95 extensions),
or used with the - F option.

Fortran User's Guide « May 2003

—Sbf ast

—si | ent

Produce only source code browser tables.

Produce only table information for the source code browser. Do not assemble, link, or
make object files.

Note — - sbf ast cannot be used on source files the compiler automatically passes
through the f pp or cpp preprocessors (that is, files with . F, .F90, or . F95 extensions),
or used with the - F option.

Suppress compiler messages.

Normally, the f 95 compiler does not issue messages, other than error diagnostics,
during compilation. This option flag is provided for compatibility with the legacy
f 77 compiler, and its use is redundant except with the - f 77 compatibility flag.

—st ackvar

Allocate local variables on the stack whenever possible.

This option makes writing recursive and re-entrant code easier and provides the
optimizer more freedom when parallelizing loops.

Use of —st ackvar is recommended with any of the parallelization options.

Local variables are variables that are not dummy arguments, COMMON variables,
variables inherited from an outer scope, or module variables made accessible by a
USE statement.

With - st ackvar in effect, local variables are allocated on the stack unless they have
the attributes SAVE or STATI C. Note that explicitly initialized variables are implicitly
declared with the SAVE attribute. A structure variable that is not explicitly initialized
but some of whose components are initialized is, by default, not implicitly declared
SAVE. Also, variables equivalenced with variables that have the SAVE or STATI C
attribute are implicitly SAVE or STATI C.

A statically allocated variable is implicitly initialized to zero unless the program
explicitly specifies an initial value for it. Variables allocated on the stack are not
implicitly initialized except that components of structure variables can be initialized
by default.

Putting large arrays onto the stack with —st ackvar can overflow the stack causing
segmentation faults. Increasing the stack size may be required.

Chapter 3 Fortran Compiler Options 3-45

3-46

The initial thread executing the program has a main stack, while each helper thread
of a multithreaded program has its own thread stack.

The default stack size is about 8 Megabytes for the main stack and 4 Megabytes

(8 Megabytes on SPARC V9 platforms) for each thread stack. The | i mi t command
(with no parameters) shows the current main stack size. If you get a segmentation
fault using —st ackvar, try increasing the main and thread stack sizes.

Example: Show the current main stack size:

denmp% | imt

cputine unlimted

filesize unlimted

dat asi ze 523256 kbytes

st acksi ze 8192 kbytes <——
cor edunpsi ze unlimted

descriptors 64

nmenorysi ze unlimted

denp%

Example: Set the main stack size to 64 Megabytes:

dem% |l imt stacksize 65536

Example: Set each thread stack size to 8 Megabytes:

deno% set env STACKSI| ZE 8192

For further information of the use of —st ackvar with parallelization, see the
“Parallelization” chapter in the Fortran Programming Guide. See csh(1) for details on
thel'i m t command.

—st op_st at us=yn

Permit STOP statement to return an integer status value.
yn is either yes or no. The default is no.

With —st op_st at us=yes, a STOP statement may contain an integer constant. That
value will be passed to the environment as the program terminates:

STOP 123

The value must be in the range 0 to 255. Larger values are truncated and a run-time
message issued. Note that

Fortran User's Guide « May 2003

STOP ‘stop string’

is still accepted and returns a status value of 0 to the environment, although a
compiler warning message will be issued.

The environment status variable is $st at us for the C shell csh, and $? for the
Bourne and Korn shells, sh and ksh.

—t enp=dir

—tinme

- Uname

Define directory for temporary files.

Set directory for temporary files used by the compiler to be dir. No space is allowed
within this option string. Without this option, the files are placed in the / t np
directory.

Time each compilation phase.

The time spent and resources used in each compiler pass is displayed.

Recognize upper and lower case in source files.

Do not treat uppercase letters as equivalent to lowercase. The default is to treat
uppercase as lowercase except within character—string constants. With this option,
the compiler treats Del t a, DELTA, and del t a as different symbols.

Portability and mixing Fortran with other languages may require use of —U. See the
Fortran Programming Guide chapter on porting programs to Fortran 95.

Undefine preprocessor macro name.

This option applies only to . F and . F95 source files that invoke the f pp or cpp
pre-processor. It removes any initial definition of the preprocessor macro name
created by - Dname on the same command line, including those implicitly placed
there by the command-line driver, regardless of the order the options appear. It has
no effect on any macro definitions in source files. Multiple - Uname flags can appear
on the command line. There must be no space between - U and the macro name.

Chapter 3 Fortran Compiler Options 3-47

3-48

Report undeclared variables.

Make the default type for all variables be undeclared rather than using Fortran
implicit typing. This option warns of undeclared variables, and does not override
any | MPLI ClI T statements or explicit type statements.

—unrol | =n

Enable unrolling of DO loops where possible.

n is a positive integer. The choices are:

= n=1 inhibits all loop unrolling.
= n>1 suggests to the optimizer that it attempt to unroll loops n times.

Loop unrolling generally improves performance, but will increase the size of the
executable file. For more information on this and other compiler optimizations, see
the “Performance and Optimization” chapter in the Fortran Programming Guide. See
also “The UNRCLL Directive” on page 2-11.

- use=list

Specify implicit USE modules.
list is a comma-separated list of module names or module file names.

Compiling with - use=module_name has the effect of adding a USE module_name
statement to each subprogram or module being compiled. Compiling with

- use=module_file_name has the effect of adding a USE module_name for each of the
modules contained in the specified file.

See “Module Files” on page 4-23 for more information about modules in Fortran 95.

Show name and version of each compiler pass.
This option prints the name and version of each pass as the compiler executes.

This information may be helpful when discussing problems with Sun service
engineers.

Verbose mode — show details of each compiler pass.

Like —V, shows the name of each pass as the compiler executes, and details the
options, macro flag expansions, and environment variables used by the driver.

Fortran User's Guide « May 2003

- vax=keywords

—vpar a

Specify choice of VAX VMS Fortran extensions enabled.

The keywords specifier must be one of the following suboptions or a
comma-delimited list of a selection of these.

bl ank_zero Interpret blanks in formatted input as zeros on internal files.

debug Interpret lines starting with the character ‘D' to be regular
Fortran statements rather than comments, as in VMS Fortran.

rsize Interpret unformatted record size to be in words rather than
bytes.

struct_align Layout components of a VAX structure in memory as in VMS

Fortran, without padding. Note: this can cause data
misalignments.

%al | Enable all these VAX VMS features.
%mone Disable all these VAX VMS features.

Sub-options can be individually selected or turned off by preceeding with no%
Example:

- vax=debug, r si ze, no%l ank_zero

Show verbose parallelization messages.

As the compiler analyzes loops explicitly marked for parallelization with directives,
it issues warning messages about certain data dependencies it detects; but the loop
will still be parallelized.

Example: Verbose parallelization warnings:

denp% f 95 -explicitpar -vpara any.f
any. f:
MAI N any:
"any.f", linell: Warni ng: t hel oopnay haveparal |l el i zati oninhibiting
reference

Chapter 3 Fortran Compiler Options 3-49

3-50

—wn]

Show or suppress warning messages.

This option shows or suppresses most warning messages. However, if one option
overrides all or part of an option earlier on the command line, you do get a warning.

nmay be 0, 1, 2,3, or 4.

- w0 shows just error messages. This is equivalent to - w

- wl shows errors and warnings. This is the default without -w
- W2 shows errors, warnings, and cautions.

- W3 shows errors, warnings, cautions, and notes.

- w4 shows errors, warnings, cautions, notes, and comments.

Example: —w still allows some warnings to get through:

denb% f95 -w -parallel any.f

f95: Warning: Optimzer |evel changed fromO to 3 to support
paral l el i zed code

denp%

=Xlist[x]

Produce listings and do global program checking (GPC).

Use this option to find potential programming bugs. It invokes an extra compiler
pass to check for consistency in subprogram call arguments, common blocks, and
parameters, across the global program. The option also generates a line-numbered
listing of the source code, including a cross reference table. The error messages
issued by the —Xl i st options are advisory warnings and do not prevent the program
from being compiled and linked.

Note — Be sure to correct all syntax errors in the source code before compiling with
- XlI'i st . Unpredictable reports may result when run on a source code with syntax
errors.

Example: Check across routines for consistency:

demp% f95 -Xlist fil.f

The above example writes the following to the output file fil .l st:

= A line-numbered source listing (default)
= Error messages (embedded in the listing) for inconsistencies across routines

Fortran User's Guide « May 2003

= A cross reference table of the identifiers (default)

By default, the listings are written to the file nan®e. | st, where nane is taken from the
first listed source file on the command line.

A number of sub—-options provide further flexibility in the selection of actions. These
are specified by suffixes to the main —XI i st option, as shown in the following table

TABLE3-9 —Xl i st Suboptions

Option Feature

—Xli st Show errors, listing, and cross reference table

—Xlistc Show call graphs and errors

—Xl'istE Show errors

—Xl'i st err[nnn] Suppress error nnn messages

—Xlistf Show errors, listing, and cross references, but no object files
—Xlisth Terminate compilation if errors detected

—Xlistl Analyze #i ncl ude and | NCLUDE files as well as source files
-XlistL Show listing and errors only

-Xlistln Set page length to n lines

-Xli st Check OpenMP directives

—Xl i st o name Output report file to name instead of file. | st

—Xlists Suppress unreferenced names from the cross—reference table
-Xlistvn Set checking level to n (1,2,3, or 4) — default is 2

Xl i st w{nnn] Set width of output line to nnn columns — default is 79

—XI'i st war [nnn] Suppress warning nnn messages

—Xl'istX Show cross-reference table and errors

See the Fortran Programming Guide chapter “Program Analysis and Debugging” for
details.

Synonym for —a.

Chapter 3 Fortran Compiler Options 3-51

- xal i as[=keywords]
Specify degree of aliasing to be assumed by the compiler.

Some non-standard programming techniques can introduce situations that interfere
with the compiler’s optimization strategies. The use of overindexing, pointers, and
passing global or non-unique variables as subprogram arguments, can introduce

ambiguous aliasing situations that could result code that does not work as expected.

Use the - xal i as flag to inform the compiler about the degree to which the program
deviates from the aliasing requirements of the Fortran standard.

The flag may appear with or without a list of keywords. The keywords list is
comma-separated, and each keyword indicates an aliasing situation present in the
program.

Each keyword may be prefixed by no%to indicate an aliasing type that is not
present.

The aliasing keywords are:

TABLE 3-10 - xal i as Option Keywords

keyword meaning

dunmy Dummy (formal) subprogram parameters can alias each other and
global variables.

no%aunmy (Default). Usage of dummy parameters follows the Fortran standard
and do not alias each other or global variables.

craypointer (Default) (Default). Cray pointers can point at any global variable or
a local variable whose address is taken by the LOC() function. Also,
two Cray pointers might point at the same data. This is a safe
assumption that could inhibit some optimizations.

no%er aypoi nt er Cray pointers point only at unique memory addresses, such as
obtained from mal | oc() . Also, no two Cray pointers point at the
same data. This assumption enables the compiler to optimize Cray
pointer references.

act ual The compiler treats actual subprogram arguments as if they were
global variables. Passing an argument to a subprogram might result
in aliasing through Cray pointers.

no%act ual (Default) Passing an argument does not result in further aliasing.

3-52 Fortran User's Guide « May 2003

TABLE 3-10 - xal i as Option Keywords (Continued)

keyword

meaning

overi ndex

no%over i ndex

= A reference to an element in a COMMON block might refer to any

element in a COMMON block or equivalence group.

Passing any element of a COMMON block or equivalence group
as an actual argument to a subprogram gives access to any
element of that COMMON block or equivalence group to the
called subprogram.

Variables of a sequence derived type are treated as if they were
COMMON blocks, and elements of such a variable might alias
other elements of that variable.

Individual array bounds may be violated, but except as noted
above, the referenced array element is assumed to stay within the
array.

Array syntax, WHERE, and FORALL statements are not considered
for overindexing. If overindexing occurs in these constructs, they
should be rewritten as DO loops.

(Default) Array bounds are not violated. Array references do not

reference other variables.

ftnpointer Calls to external functions might cause Fortran pointers to point at

target variables of any type, kind, or rank.

no% t npoi nt er (Default) Fortran pointers follow the rules of the standard.

Specifying - xal i as without a list gives the best performance for most programs that

do not violate Fortran aliasing rules, and corresponds to:

no%lunmy, no%r aypoi nt er, no%act ual , no%veri ndex, no% t npoi nt er

To be effective, - xal i as should be used when compiling with optimization levels

- X33 and higher.

The compiler default, with no - xal i as flag specified, assumes that the program

conforms to the Fortran 95 standard except for Cray pointers:

no%lummy, cr aypoi nt er, no%act ual , no%overi ndex, no% t npoi nt er

Examples of various aliasing situations and how to specify them with - xal i as are
given in the Porting chapter of the Fortran Programming Guide.

Chapter 3 Fortran Compiler Options 3-53

3-54

—xar ch=isa

Specify instruction set architecture (ISA).

Architectures that are accepted by - xar ch keyword isa are shown in TABLE 3-11:

TABLE 3-11 —xar ch ISA Keywords

Platform Valid - xar ch Keywords

SPARC generic, generic64, nati ve, nati ve64, v7,v8a, v8, v8pl us,
v8pl usa, v8pl ush, v9, v9a, vob

Note that although - xar ch can be used alone, it is part of the expansion of the
—xt ar get option and may be used to override the —xar ch value that is set by a
specific —xt ar get option. For example:

% f95 -xtarget=ultra2 -xarch=v8pl usb
overrides the - xar ch=v8 set by - xt arget =ul tr a2

This option limits the code generated by the compiler to the instructions of the
specified instruction set architecture by allowing only the specified set of
instructions. This option does not guarantee use of any target-specific instructions.

If this option is used with optimization, the appropriate choice can provide good
performance of the executable on the specified architecture. An inappropriate choice
results in a binary program that is not executable on the intended target platform.

TABLE 3-12 summarizes the most general - xar ch options:

TABLE 3-12 Most General - xar ch Options on SPARC Platforms

- xarch= Performance

generic = runs adequately on all platforms

v8pl usa < runs optimally on UltraSPARC-II processors in 32-bit mode
v8pl usb « runs optimally on UltraSPARC-III processors in 32-bit mode

= no execution on other platforms

v9a = runs optimally on UltraSPARC-II processors in 64-bit mode
= no execution on other platforms

v9b = runs optimally on UltraSPARC-III processors in 64-bit mode
= no execution on other platforms

Also note the following:
= SPARC instruction set architectures V7, V8, and V8a are all binary compatible.

Fortran User's Guide « May 2003

= Object binary files (. 0) compiled with v8pl us and v8pl usa can be linked and can
execute together, but only on a SPARC V8plusa compatible platform.

= Object binary files (. 0) compiled with v8pl us, v8pl usa, and v8pl usb can be
linked and can execute together, but only on a SPARC V8plusb compatible
platform.

= -Xxarch values v9, v9a, and v9b are only available on UltraSPARC 64-bit Solaris
environments.

= Object binary files (. 0) compiled with v9 and v9a can be linked and can execute
together, but will run only on a SPARC V9a compatible platform.

= Object binary files (. 0) compiled with v9, v9a, and v9b can be linked and can
execute together, but will run only on a SPARC V9b compatible platform.

For any particular choice, the generated executable may run much more slowly on
earlier architectures. Also, although quad-precision (REAL* 16 and | ong doubl e)
floating-point instructions are available in many of these instruction set
architectures, the compiler does not use these instructions in the code it generates.

TABLE 3-13 gives details for each of the - xar ch keywords on SPARC platforms.

TABLE 3-13 - xar ch Values for SPARC Platforms

- xarch= Meaning

generic Compile for good performance on most 32-bit systems.
This is the default. This option uses the best instruction set for good
performance on most processors without major performance degradation on
any of them. With each new release, the definition of “best” instruction set
may be adjusted, if appropriate, and is currently v8.

generic64 Compile for good performance on most 64-bit enabled systems.
This option uses the best instruction set for good performance on most
64-bit enabled processors without major performance degradation on any of
them. With each new release, the definition of “best” instruction set may be
adjusted, if appropriate, and is currently interpreted as v9.

native Compile for good performance on this system.

This is the default for the - f ast option. The compiler chooses the
appropriate setting for the current system processor it is running on.

native64 Compile for good performance in 64-bit mode on this system.

Like nati ve, compiler chooses the appropriate setting for 64-bit mode on
the current system processor it is running on.

v7 Compile for the SPARC-V7 ISA.
Enables the compiler to generate code for good performance on the V7 ISA.

This is equivalent to using the best instruction set for good performance on
the V8 ISA, but without integer mul and di v instructions, and the f snul d
instruction.

Examples: SPARCstation 1, SPARCstation 2

Chapter 3 Fortran Compiler Options 3-55

3-56

TABLE 3-13 - xar ch Values for SPARC Platforms (Continued)

-xarch= Meaning

v8a Compile for the V8a version of the SPARC-V8 ISA.
By definition, V8a means the V8 ISA, but without the f smul d instruction.

This option enables the compiler to generate code for good performance on
the V8a ISA.

Example: Any system based on the microSPARC | chip architecture

v8 Compile for the SPARC-V8 ISA.
Enables the compiler to generate code for good performance on the V8
architecture.
Example: SPARCstation 10

v8pl us Compile for the V8plus version of the SPARC-V9 ISA.

By definition, V8plus means the V9 ISA, but limited to the 32-bit subset

defined by the V8plus ISA specification, without the Visual Instruction Set

(VIS), and without other implementation-specific ISA extensions.

= This option enables the compiler to generate code for good performance
on the V8plus ISA.

= The resulting object code is in SPARC-V8+ ELF32 format and only
executes in a Solaris UltraSPARC environment—it does not run on a V7 or
V8 processor.

Example: Any system based on the UltraSPARC chip architecture

v8pl usa Compile for the V8plusa version of the SPARC-V9 ISA.

By definition, V8plusa means the V8plus architecture, plus the Visual

Instruction Set (VIS) version 1.0, and with UltraSPARC extensions.

= This option enables the compiler to generate code for good performance
on the UltraSPARC architecture, but limited to the 32-bit subset defined
by the V8plus specification.

= The resulting object code is in SPARC-V8+ ELF32 format and only
executes in a Solaris UltraSPARC environment—it does not run on a V7 or
V8 processor.

Example: Any system based on the UltraSPARC chip architecture

v8pl usb Compile for the V8plusb version of the SPARC-V8plus ISA with

UltraSPARC-I11 extensions.

Enables the compiler to generate object code for the UltraSPARC

architecture, plus the Visual Instruction Set (VIS) version 2.0, and with

UltraSPARC-I1II extensions.

= The resulting object code is in SPARC-V8+ ELF32 format and executes
only in a Solaris UltraSPARC-III environment.

= Compiling with this option uses the best instruction set for good
performance on the UltraSPARC-III architecture.

Fortran User's Guide « May 2003

TABLE 3-13 - xar ch Values for SPARC Platforms (Continued)

-xarch= Meaning

v9 Compile for the SPARC-V9 ISA.

Enables the compiler to generate code for good performance on the V9

SPARC architecture.

« The resulting . o object files are in ELF64 format and can only be linked
with other SPARC-V9 object files in the same format.

= The resulting executable can only be run on an UltraSPARC processor
running a 64-bit enabled Solaris operating environment with the 64-bit
kernel.

= —xar ch=v9 is only available when compiling in a 64-bit enabled Solaris
environment.

voa Compile for the SPARC-V9 ISA with UltraSPARC extensions.

Adds to the SPARC-V9 ISA the Visual Instruction Set (VIS) and extensions

specific to UltraSPARC processors, and enables the compiler to generate

code for good performance on the V9 SPARC architecture.

= The resulting . o object files are in ELF64 format and can only be linked
with other SPARC-V9 object files in the same format.

= The resulting executable can only be run on an UltraSPARC processor
running a 64-bit enabled Solaris operating environment with the 64-bit
kernel.

« —xar ch=v9a is only available when compiling in a 64-bit enabled Solaris
operating environment.

vob Compile for the SPARC-V9 ISA with UltraSPARC-111 extensions.

Adds UltraSPARC-I111 extensions and VIS version 2.0 to the V9a version of

the SPARC-V9 ISA. Compiling with this option uses the best instruction set

for good performance in a Solaris UltraSPARC-I1I environment.

= The resulting object code is in SPARC-V9 ELF64 format and can only be
linked with other SPARC-V9 object files in the same format.

= The resulting executable can only be run on an UltraSPARC-III processor
running a 64-bit enabled Solaris operating environment with the 64-bit
kernel.

« —xar ch=v9b is only available when compiling in a 64-bit enabled Solaris
operating environment.

Chapter 3 Fortran Compiler Options 3-57

3-58

- xassumne_cont r ol [=keywords]

Set parameters to control ASSUME pragmas.

Use this flag to control the way the compiler handles ASSUME pragmas in the source
code.

The ASSUME pragmas provide a way for the programmer to assert special
information that the compiler can use for better optimization. These assertions may
be qualified with a probability value. Those with a probability of 0 or 1 are marked
as certain; otherwise they are considered non-certain.

You can also assert, with a probability or certainty, the trip count of an upcoming DO
loop, or that an upcoming branch will be taken.

See Section 2.3.1.9, “The ASSUME Directives” on page 2-13, for a description of the
ASSUME pragmas recognized by the f 95 compiler.

The keywords on the - xassume_cont r ol option can be a single suboption keyword
or a comma-separated list of keywords. The keyword suboptions recognized are:

optinize The assertions made on ASSUME pragmas affect
optimization of the program.

check The compiler generates code to check the correctness of all
assertions marked as certain, and emits a runtime message
if the assertion is violated; the program continues if f at al
is not also specified.

fatal When used with check, the program will terminate when
an assertion marked certain is violated.

retrospective[:d] The d parameter is an optional tolerance value, and must
be a real positive constant less than 1. The default is ".1".
retrospecti ve compiles code to count the truth or falsity
of all assertions. Those outside the tolerance value d are
listed on output at program termination.

%one All ASSUME pragmas are ignored.

The compiler default is
-xassunme_control =optim ze

This means that the compiler recognizes ASSUMVE pragmas and they will affect
optimization, but no checking is done.

If specified without parameters, - xassune_cont r ol implies

- xassume_cont rol =check, f at al

Fortran User's Guide « May 2003

In this case the compiler accepts and checks all certain ASSUME pragmas, but they do
not affect optimization. Assertions that are invalid cause the program to terminate.

—Xaut opar

Synonym for —aut opar.

—xcache=c
Define cache properties for the optimizer.

¢ must be one of the following:

= generic

= native

= sl/11/al

= s1/11/ al: s2/ 12/ a2

= s1/11/ al: s2/ 12/ a2: s3/ 13/ a3

The si/ li/ ai are defined as follows:

si The size of the data cache at level i, in kilobytes
li The line size of the data cache at level i, in bytes
ai The associativity of the data cache at level i

This option specifies the cache properties that the optimizer can use. It does not
guarantee that any particular cache property is used.

Although this option can be used alone, it is part of the expansion of the
—xt ar get option; it is provided to allow overriding an —xcache value implied by a
specific —xt ar get option.

TABLE 3-14 —xcache Values

Value Meaning

generic Define the cache properties for good performance on
most SPARC processors without any major performance
degradation. This is the default.

native Define the cache properties for good performance on
this host platform.

s1/ 11/ al Define level 1 cache properties.

s1/ 11/ al: s2/ 12/ a2 Define levels 1 and 2 cache properties.

s1/ 11/ al: s2/ 12/ a2: s3/ 13/ a3 Define levels 1, 2, and 3 cache properties

Example: —xcache=16/ 32/ 4: 1024/ 32/ 1 specifies the following:

Chapter 3 Fortran Compiler Options 3-59

3-60

A Level 1 cache has: 16K bytes, 32 byte line size, 4-way associativity.

A Level 2 cache has: 1024K bytes, 32 byte line size, direct mapping associativity.

—xcg89

Synonym for —cg89.

—xcg92

Synonym for —cg92.

- xcheck=keyword

Generate special runtime checks and initializations.

The keyword must be one of the following:

keyword

Feature

st kovf

no%st kovf

init_local

no% nit_I| ocal
%al |

% one

Turn on runtime checking for stack overflow on subprogram entry.
If a stack overflow is detected, a SI GSEGV segment fault will be
raised.

Disable runtime checking for stack overflow.

Perform special initialization of local variables.

The compiler initializes local variables to a value that is likely to
cause an arithmetic exception if it is used by the program before it is
assigned. Memory allocated by the ALLOCATE statement will also be
initialized in this manner.

Module variables, SAVE variables, and variables in COVMON blocks
are not initialized.

Disable local variable initialization. This is the default.
Turn on all these runtime checking features.

Disable all these runtime checking features.

Stack overflows, especially in multithreaded applications with large arrays allocated
on the stack, can cause silent data corruption in neighboring thread stacks. Compile
all routines with - xcheck=st kovf if stack overflow is suspected. But note that
compiling with this flag does not guarantee that all stack overflow situations will be
detected since they could occur in routines not compiled with this flag.

Fortran User's Guide « May 2003

—xchi p=c

Specify target processor for the optimizer.

This option specifies timing properties by specifying the target processor.

Although this option can be used alone, it is part of the expansion of the
—xt ar get option; it is provided to allow overriding a —xchi p value implied by the a
specific —xt ar get option.

Some effects of —xchi p=c are:

= Instruction scheduling
= The way branches are compiled
= Choice between semantically equivalent alternatives

The following tables list the valid —xchi p processor name values:

TABLE 3-15 Commonly Used —xchi p Processor Names

-xchip=

Optimize for:

generic
native
ultra
ultra2
ultraz2e
ul tra2i
ultra3

ultra3cu

most SPARC processors. (This is the default.)
this host platform.

the UltraSPARC processor.

the UltraSPARC Il processor.

the UltraSPARC lle processor.

the UltraSPARC Ili processor.

the UltraSPARC Ill processor.

the UltraSPARC lllcu processor.

The following are older, less common - xchi p processor names and are listed here
for reference purposes:

TABLE 3-16 Less Commonly Used - xchi p Processor Names

-xchip=

Optimize for:

old
super
super 2
mcro

m cro2

pre-SuperSPARC processors.
the SuperSPARC processor.
the SuperSPARC Il processor.
the MicroSPARC processor.
the MicroSPARC Il processor.

Chapter 3 Fortran Compiler Options

3-61

TABLE 3-16 Less Commonly Used - xchi p Processor Names

-xchip= Optimize for:

hyper the HyperSPARC processor.

hyper 2 the HyperSPARC Il processor.

power up the Weitek PowerUp processor.
—xcode=addr

Specify code address space on SPARC platforms.

The values for addr are:

addr Feature

abs32 Generate 32-bit absolute addresses. Code+data+bss size is limited to
2**32 bytes. This is the default on 32-bit platforms:
- xarch=generic, v7, v8, v8a, v8plus, v8plusa

abs44 Generate 44-bit absolute addresses. Code+data+bss size is limited to
2**44 bytes. Available only on 64-bit platforms: - xar ch=v9, v9a

abs64 Generate 64-bit absolute addresses. Available only on 64-bit
platforms: - xar ch=v9, v9a

pi cl3 Generate position-independent code (small model). Equivalent to
- pi c. Permits references to at most 2**11 unique external symbols
on 32-bit platforms, 2**10 on 64-bit platforms.

pi c32 Generate position-independent code (large model). Equivalent to
- PI C. Permits references to at most 2**30 unique external symbols
on 32-bit platforms, 2**29 on 64-bit platforms.

The defaults (not specifying - xcode=addr explicitly) are:

—xcode=abs32on SPARC V8 and V7 platforms.
—xcode=abs64on SPARC and UltraSPARC V9 (—xar ch=v9 or v9a)

Position-Independent Code:

Use - xcode=pi ¢13 or - xcode=pi c32 when creating dynamic shared libraries to
improve runtime performance.

While the code within a dynamic executable is usually tied to a fixed address in
memory, position-independent code can be loaded anywhere in the address space of
the process.

3-62 Fortran User's Guide « May 2003

When you use position-independent code, relocatable references are generated as an
indirect reference through a global offset table. Frequently accessed items in a
shared object will benefit from compiling with - xcode=pi ¢13 or - xcode=pi c32 by
not requiring the large number of relocations imposed by code that is not
position-independent.

The size of the global offset table is limited to 8Kb.

There are two nominal performance costs with -xcode={ pi c13| pi c32} :

= A routine compiled with either - xcode=pi c13 or - xcode=pi c32 executes a few
extra instructions upon entry to set a register to point at the global offset table
used for accessing a shared library’s global or static variables.

= Each access to a global or static variable involves an extra indirect memory
reference through the global offset table. If the compile is done with pi ¢32, there
are two additional instructions per global and static memory reference.

When considering the above costs, remember that the use of - xcode=pi c13 or

- xcode=pi c¢32 can significantly reduce system memory requirements, due to the
effect of library code sharing. Every page of code in a shared library compiled

- xcode=pi c13 or - xcode=pi c32 can be shared by every process that uses the
library. If a page of code in a shared library contains even a single non-pic (that is,
absolute) memory reference, the page becomes nonsharable, and a copy of the page
must be created each time a program using the library is executed.

The easiest way to tell whether or not a . o file has been compiled with
- xcode=pi c13 or - xcode=pi ¢32 is with the nmcommand:
nmfile.o | grep _G.OBAL_OFFSET_TABLE_

A . o file containing position-independent code will contain an unresolved external
reference to _GLOBAL_OFFSET_TABLE_ as marked by the letter U.

To determine whether to use - xcode=pi c13 or - xcode=pi ¢32 use nmto identify the
number of distinct global and static variables used or defined in the library. If the
size of _GLOBAL_COFFSET_TABLE is under 8,192 bytes, you can use pi c13.
Otherwise, you must use pi c32.

Compiling with the - xcode=pi ¢13 or pi ¢32 (or - pi ¢ or - Pl C) options is
recommended when building dynamic libraries. See the Solaris Linker and Libraries
Guide.

—xcomonchk[={ no| yes}]

Enable runtime checking of common block inconsistencies.

This option provides a debug check for common block inconsistencies in programs
using TASK COMMON and parallelization. (See the discussion of the TASK COVMON
directive in the “Parallelization” chapter in the Fortran Programming Guide.)

Chapter 3 Fortran Compiler Options 3-63

3-64

The default is —xcomonchk=no; runtime checking for common block inconsistencies
is disabled because it will degrade performance. Use - xconmobn=yes only during
program development and debugging, and not for production-quality programs.

Compiling with —xcomonchk=yes enables runtime checking. If a common block
declared in one source program unit as a regular common block appears somewhere
else on a TASK COMMON directive, the program will stop with an error message
indicating the first such inconsistency.

Example: Missing TASKCOWMON directive intc. f

denp% cat tc.f
conmon / x/y(1000)
do 1 i=1, 1000

1 y(i) = 1.
call z(57.)
end

denp% cat tz.f
subroutine z(c)
conmon / x/ h(1000)
C3PAR TASKCOMMON X

C$PAR DQOALL
do 1 i=1,1000

1 h(i) = c* h(i)
return
end

denmb% f95 -¢ -4 -parallel -xcomonchk tec.f

denmb% f95 -¢ -4 -parallel -xcommonchk tz.f

denmp% f95 -0 tc -O4 -parallel -xconmonchk tc.o tz.o

deno%tc

ERROR(| i bt sk) : i nconsi st ent decl arati onof t hreadpri vat e/t askconmon
X_: not declared as threadprivate/taskcommon at line 1 of tc.f

demo%

—xcrossfil e[=n]

Enable optimization and inlining across source files.
If specified, n may be 0, or 1.

Normally, the scope of the compiler’s analysis is limited to each separate file on the
command line. For example, —O4’s automatic inlining is limited to subprograms
defined and referenced within the same source file.

With —xcr ossfi | e, the compiler analyzes all the files named on the command line
as if they had been concatenated into a single source file.

—xcrossfil e is only effective when used with —-O4 or —C5.

Fortran User's Guide « May 2003

Cross—file inlining creates a possible source file interdependence that would not
normally be there. If any file in a set of files compiled together with

—xcr ossfil e is changed, then all files must be recompiled to insure that the new
code is properly inlined. See “—i nl i ne=[Yaut o] [[,][no% f1,...[no% fn] ” on
page 3-30.

The default, without —xcr ossf i | e on the command line, is - xcr ossf i | e=0, and no
cross-file optimizations are performed. To enable cross-file optimizations, specify
—xcrossfil e (equivalent to —xcr ossfi | e=1).

—xdepend

Synonym for —depend.

—xexplicitpar

Synonym for —expl i ci t par.

Allow function-level reordering by the Performance Analyzer.

Allow the reordering of functions (subprograms) in the core image using the
compiler, the performance analyzer and the linker. If you compile with the - xF
option, then run the analyzer, you can generate a map file that optimizes the
ordering of the functions in memory depending on how they are used together. A
subsequent link to build the executable file can be directed to use that map by using
the linker - Mmapf i | e option. It places each function from the executable file into a
separate section.

Reordering the subprograms in memory is useful only when the application text
page fault time is consuming a large percentage of the application time. Otherwise,
reordering may not improve the overall performance of the application. See the
Program Performance Analysis Tools manual for further information on the analyzer.

- xhasc[={yes| no}]

Treat Hollerith constant as a character string in an actual argument list.

With - xhasc=yes, the compiler treats Hollerith constants as character strings when
they appear as an actual argument on a subroutine or function call. This is the
default, and complies with the Fortran standard. (The actual call list generated by
the compiler contains hidden string lengths for each character string.)

With - xhasc=no, Hollerith constants are treated as typeless values in subprogram
calls, and only their addresses are put on the actual argument list. (No string length
is generated on the actual call list passed to the subprogram.)

Chapter 3 Fortran Compiler Options 3-65

3-66

Compile routines with - xhasc=no if they call a subprogram with a Hollerith
constant and the called subprogram expects that argument as | NTEGER (or anything
other than CHARACTER).

Example:

denp% cat hasc. f
call z(4habcd, ’'abcdefg’)
end
subroutine z(i, s)
i nteger i
character *(*) s
print *, "string length =", len(s)
return
end
demo% f 95 -0 hasO hasc. f
demo% hasO
string length = 4 <-- should be 7
denp% f95 -0 hasl -xhasc=no hasc.f
denp% has1
string length = 7 <--now correct length for s

Passing 4habcd to z is handled correctly by compiling with - xhasc=no.

This flag is provided to aid porting legacy Fortran 77 programs.

—xhel p=h

Show summary help information on options or README file.
The h is either r eadn®e or f | ags.

-xhel p=readne Show the online READVE file for this release of the compiler.
- xhel p=f I ags Show the compiler flags (options), and is same as - hel p.

- xi a[=v]

Enable interval arithmetic extensions and set a suitable floating-point environment.

v can be one of either wi dest need or stri ct. The default if not specified is
wi dest need.

Fortran 95 extensions for interval arithmetic calculations are detailed in the Interval
Arithmetic Programming Reference. See also “- xi nt er val [=v] ” on page 3-67.

Fortran User's Guide « May 2003

The - xi a flag is a macro that expands as follows:

-xiaor -xi nterval =wi dest need -ftrap=%one -fns=no -fsinple=0

- Xi a=wi dest need

-xia=strict -xinterval =strict -ftrap=%one -fns=no -fsinple=0
—xi | d{ of f| on}

Enable/disable the Incremental Linker.

- Xi | dof f disables the use of the incremental linker, i | d. The standard linker, | d, is
used instead. - xi | don enables use of i | d instead of | d.

- xi | dof f is the default if you do not use the —g option. It is also the default if you
use —G or name any source file on the command line.

- Xi | don is the default if you use —g and do not use —G and no source files appear on
the command line (just object files and/or libraries).

See the section oni | d in the C User’s Guide.

—Xi nl i ne=list

Synonym for —i nl i ne.

- xi nterval [=v]
Enable interval arithmetic extensions.

v can be one of either no, wi dest need or stri ct. The default if not specified is
wi dest need.

no Interval arithmetic extensions not enabled.

wi dest nee Promotes all non-interval variables and literals in any mixed-mode
d expression to the widest interval data type in the expression.

strict Prohibits mixed-type or mixed-length interval expressions. All interval type
and length conversions must be explicit.

Fortran 95 extensions for interval arithmetic calculations are detailed in the

Fortran 95 Interval Arithmetic Programming Reference. See also “- xi a[=v] ” on
page 3-66.

Chapter 3 Fortran Compiler Options 3-67

3-68

- xi po[={ 0] 1] 2}]

Perform interprocedural optimizations.

Performs whole-program optimizations by invoking an interprocedural analysis
pass. Unlike - xcr ossfi | e, - xi po will perform optimizations across all object files in
the link step, and is not limited to just the source files on the compile command.

- Xi po is particularly useful when compiling and linking large multi-file
applications. Object files compiled with this flag have analysis information compiled
within them that enables interprocedural analysis across source and pre-compiled
program files. However, analysis and optimization is limited to the object files
compiled with - xi po, and does not extend to object files on libraries.

- Xi po=0 disables, and - xi po=1 enables, interprocedural analysis. - xi po=2 adds
interprocedural aliasing analysis and memory allocation and layout optimizations to
improve cache performance. The default is - xi po=0, and if - xi po is specified
without a value, - xi po=1 is used.

When compiling and linking are performed in separate steps, - xi po must be
specified in both steps to be effective.

Example using - xi po in a single compile/link step:

demo% f95 -xipo -xO4 -0 prog partl.f part2.f part3.f

The optimizer performs crossfile inlining across all three source files. This is done in
the final link step, so the compilation of the source files need not all take place in a
single compilation and could be over a number of separate compilations, each

specifying - xi po.

Example using - xi po in separate compile/link steps:

denp% f95 -xipo -xHA4 -c partl.f part2.f
denb% f95 -xipo -x4 -c part3.f
denp% f95 -xipo -xO4 -0 prog partl.o part2.0 part3.o0

The object files created in the compile steps have additional analysis information
compiled within them to permit crossfile optimizations to take place at the link step.

Fortran User's Guide « May 2003

A restriction is that libraries, even if compiled with - xi po do not participate in
crossfile interprocedural analysis, as shown in this example:

denp% f95 -xi po -xX4 one.f two.f three.f
demb% ar -r nylib.a one.o two.o three.o

demo% f95 -xipo -xO4 -0 nyprog main.f four.f nylib.a

Here interprocedural optimizations will be performed between one. f, two. f and
t hree. f,and between mai n. f andf our . f, but not between mai n. f orfour. f and
the routines on nyl i b. a. (The first compilation may generate warnings about
undefined symbols, but the interprocedural optimizations will be performed because
it is a compile and link step.)

Other important information about - xi po:
= requires at least optimization level - xO4
= conflicts with - xcrossfi | e; if used together will result in a compilation error

= Objects compiled without - xi po can be linked freely with objects compiled with
- Xi po.

= The - xi po option generates significantly larger object files due to the additional
information needed to perform optimizations across files. However, this
additional information does not become part of the final executable binary file.
Any increase in the size of the executable program will be due to the additional
optimizations performed

= In this release, crossfile subprogram inlining is the only interprocedural
optimization performed by - xi po.

- Xj obs=n
Compile with multiple processors.

Specify the - xj obs option to set how many processes the compiler creates to
complete its work. This option can reduce the build time on a multi-cpu machine. In
this release of the f 95 compiler, - xj obs works only with the - xi po option. When
you specify - xj obs=n, the interprocedural optimizer uses n as the maximum
number of code generator instances it can invoke to compile different files.

Generally, a safe value for n is 1.5 multiplied by the number of available processors.
Using a value that is many times the number of available processors can degrade
performance because of context switching overheads among spawned jobs. Also,
using a very high number can exhaust the limits of system resources such as swap
space.

You must always specify - xj obs with a value. Otherwise an error diagnostic is
issued and compilation aborts.

Chapter 3 Fortran Compiler Options 3-69

Multiple instances of - xj obs on the command line override each other until the
rightmost instance is reached.

The following example compiles more quickly on a system with two processors than
the same command without the - xj obs option.

exanpl e% f95 -xi po -xO4 -xjobs=3 t1.f t2.f t3.f

- xknown_I i b=library_list
Recognize calls to a known library.

When specified, the compiler treats references to certain known libraries as
intrinsics, ignoring any user-supplied versions. This enables the compiler to perform
optimizations over calls to library routines based on its special knowledge of that
library.

The library_list is a comma-delimited list of keywords currently to bl as, bl as1,

bl as2, bl as3, and i ntri nsi cs. The compiler recognizes calls to the following
BLASL, BLAS2, and BLAS3 library routines and is free to optimize appropriately for
the Sun Performance Library implementation. The compiler will ignore
user-supplied versions of these library routines and link to the BLAS routines in the
Sun Performance Library.

-xknown_lib= Feature
bl as1 The compiler recognizes calls to the following BLASI library
routines:

caxpy ccopy cdotc cdotu crotg cscal csrot
csscal cswap dasum daxpy dcopy ddot dr ot
drotg drotm drotng dscal dsdot dswap dnrn®
dzasum dznrnR icamax idamax isamex izamax sasum
saxpy scasum scnrn? scopy sdot sdsdot snrn®
srot srotg srotm srotng sscal sswap zaxpy
zcopy zdotc zdotu zdrot zdscal zrotg zscal
zswap

bl as2 The compiler recognizes calls to the following BLAS2 library
routines:

cgenv cgerc cgeru ctrmv ctrsv dgenv
dger dsymv dsyr dsyr2 dtrmv dtrsv
sgenv sger ssynv ssyr ssyr2 strnv
strsv zgenv zgerc zgeru ztrmv ztrsv

3-70 Fortran User's Guide « May 2003

-xknown_lib= Feature

bl as3 The compiler recognizes calls to the following BLAS2 library
routines:
cgemm csymm csyr2k csyrk ctrmm ctrsm
dgemm dsymm dsyr 2k dsyrk dtrmm dtrsm
sgemm ssynmm ssyr 2k ssyrk strmm strsm
zgemm zsymm zsyr2k zsyrk ztrmm ztrsm

bl as Selects all the BLAS routines. Equivalent to
-xknown_I i b=bl asl, bl as2, bl as3
intrinsics The compiler ignores any explicit EXTERNAL declarations for
Fortran 95 intrinsics, thereby ignoring any user-supplied intrinsic
routines.
- xl ang=f 77

Prepare for linking with runtime libraries compiled with earlier versions of f 77.

f 95 - xI ang=f 77 implies linking with the f 77conpat library, and is a shorthand way
for linking Fortran 95 object files with older Fortran 77 object files. Compiling with
this flag insures the proper runtime environment.

Use f 95 - x| ang=f 77 when linking f 95 and f 77 compiled objects together into a
single executable.

—xIibm |

Synonym for —l i bmi | .

—xI i bnopt
Use library of optimized math routines.

Use selected math routines optimized for speed. This option usually generates faster
code. It may produce slightly different results; if so, they usually differ in the last bit.
The order on the command line for this library option is not significant.

=xlic_Iib=sunperf
Link with the Sun Performance Library.

For example:

f95 —o pgx —fast pgx.f —xlic_lib=sunperf

Chapter 3 Fortran Compiler Options ~ 3-71

3-72

As with —I , this option should appear on the command line after all source and
object file names.

This option must be used to link with the Sun Performance Library. (See the Sun
Performance Library User’s Guide.)

—xlicinfo

Show license information.

Use this option to return serial number entitlement information about the installed
compiler software.

- x| i nkopt [=level]

Perform link-time optimizations on relocatable object files.

The post-optimizer performs a number of advanced performance optimizations on
the binary object code at link-time. The value level sets the level of optimizations
performed, and must be 0, 1, or 2.

0 The post-optimizer is disabled. (This is the default.)

1 Perform optimizations based on control flow analysis, including instruction
cache coloring and branch optimizations, at link time.

2 Perform additional data flow analysis, including dead-code elimination and
address computation simplification, at link time.

Specifying the - xl i nkopt flag without a level parameter implies - x| i nkopt =1.

These optimizations are performed at link time by analyzing the object binary code.
The object files are not rewritten but the resulting executable code may differ from
the original object codes.

This option is most effective when used to compile the whole program, and with
profile feedback.

When compiling in separate steps, - x| i nkopt must appear on both compile and link
steps.

denp% f95 -c¢ -xlinkopt a.f95 b.f95
demo% f95 -0 nyprog -xlinkopt=2 a.o b.o

Note that the level parameter is only used when the compiler is linking. In the
example above, the postoptimization level used is 2 even though the object binaries
were compiled with an implied level of 1.

Fortran User's Guide « May 2003

The link-time post-optimizer cannot be used with the incremental linker, i | d. The
- xl i nkopt flag will set the default linker to be | d. Enabling the incremental linker
explicitly withthe - xi | don flag will disable the - x| i nkopt option if both are
specified together.

For the - xI i nkopt option to be useful, at least some, but not necessarily all, of the
routines in the program must be compiled with this option. The optimizer can still
perform some limited optimizations on object binaries not compiled with

-xl i nkopt .

The -xlinkopt option will optimize code coming from static libraries that appear
on the compiler command line, but it will skip and not optimize code coming from
shared (dynamic) libraries that appear on the command line. You can also use

- xl i nkopt when building shared libraries (compiling with - G).

The link-time post-optimizer is most effective when used with run-time profile
feedback. Profiling reveals the most and least used parts of the code and directs the
optimizer to focus its effort accordingly. This is particularly important with large
applications where optimal placement of code performed at link time can reduce
instruction cache misses. Typically, this would be compiled as shown below:

denp% f95 -0 progt -x0b -xprofile=collect:prog file.f95
denp% pr ogt
demo% f95 -0 prog -x06 -xprofil e=use: prog -xlinkopt file.95

For details on using profile feedback, see the - xpr of i | e option

Note that compiling with this option will increase link time slightly. Object file sizes
also increase, but the size of the executable remains the same. Compiling with the
-xl'i nkopt and - g flags increases the size of the excutable by including debugging
information.

—x| oopi nfo

Synonym for —| oopi nf o.

—xmaxopt [=n]
Enable optimization pragma and set maximum optimization level.

n has the value 1 through 5 and corresponds to the optimization levels of —O1
through —C6. If not specified, the compiler uses 5.

This option enables the CSPRAGVA SUN OPT=n directive when it appears in the source
input. Without this option, the compiler treats these lines as comments. See “The
OPT Directive” on page 2-12.

Chapter 3 Fortran Compiler Options 3-73

If this pragma appears with an optimization level greater than the maximum level
on the —xmaxopt flag, the compiler uses the level set by —xnmaxopt .

- xmemal i gn[=<a>]

Specify maximum assumed memory alignment and behavior of misaligned data
accesses.

For memory accesses where the alignment is determinable at compile time, the
compiler will generate the appropriate load/store instruction sequence for that data
alignment.

For memory accesses where the alignment cannot be determined at compile time,
the compiler must assume an alignment to generate the needed load/store sequence.

The - xmemal i gn flag allows the user to specify the maximum memory alignment of
data to be assumed by the compiler for those indeterminate situations. It also
specifies the error behavior at runtime when a misaligned memory access does take
place.

The value specified consists of two parts: a numeric alignment value, <a>, and an
alphabetic behavior flag, .
Allowed values for alignment, <a>, are:

1Assume at most 1-byte alignment.
2Assume at most 2-byte alignment.
4Assume at most 4-byte alignment.
8Assume at most 8-byte alignment.
16Assume at most 16-byte alignment.
Allowed values for error behavior on accessing misaligned data, , are:

i Interpret access and continue execution
sRaise signal SIGBUS
f Raise signal SIGBUS only for alignments less or equal to 4

The defaults without - xrrenmal i gn specified are:

= 4s for - xarch=generic, v7, v8, v8a, v8pl us, v8pl usa
= 8s for - xarch=v9, v9a for C and C++
=« 8f for - xarch=v9, v9a for Fortran

The default for - xnenal i gn appearing without a value is 1i for all platforms.

The - dal i gn option is a macro:

-dal i gn is a macro for; - xnenal i gn=8s - al i gncomobn=16

3-74 Fortran User's Guide « May 2003

—xnolib

Synonym for —nol i b.

—xnol i bm |

Synonym for —nol i bmi | .

—xnol i bnopt
Do not use fast math library.
Use with —f ast to override linking the optimized math library:

f95 —fast —xnoli bnopt

—XxOn

Synonym for —On.
- xopennp

Synonym for - opennp.
—xpad

Synonym for —pad.

- Xpagesi ze=size
Set the preferred page size for the stack and the heap.
The size value must be one of the following:
8K 64K 512K 4M 32M 256M 2G 16G or def aul t
For example: - xpagesi ze=4M

Not all these page sizes are supported on all platforms and depend on the
architecture and Solaris environment. The page size specified must be a valid page
size for the Solaris operating environment on the target platform, as returned by
get pagesi zes(3C). Ifitis not, the request will be silently ignored at run-time. The
Solaris environment offers no guarantee that the page size request will be honored.

You can use pmap(1) or meni nf 0(2) to determine if your running program received
the requested page size.

If you specify - xpagesi ze=def aul t, the flag is ignored; - xpagesi ze specified
without a size value is equivalent to - xpagesi ze=def aul t .

Chapter 3 Fortran Compiler Options 3-75

This option is a macro for

- Xpagesi ze_heap=size - xpagesi ze_st ack=size
These two options accept the same arguments as - xpagesi ze: 8K, 64K, 512K,
4M 32M 256M 2G 16G defaul t. You can set them both with the same value
by specifying - xpagesi ze=size or you can specify them individually with different
values.

Compiling with this flag has the same effect as setting the LD _PRELQAD environment
variable to npss. so. 1 with the equivalent options, or running the Solaris 9
command ppgsz(1) with the equivalent options, before starting the program. See the
Solaris 9 man pages for details.

Note that this feature is not available on Solaris 7 and 8 environments. A program
compiled with this option will not link on Solaris 7 and 8 environments.
- Xpagesi ze_heap=size
Set the preferred page size for the heap.
The size value must be one of the following:
8K 64K 512K 4M 32M 256M 2G 16G or def aul t
For example: - xpagesi ze_heap=4M

See - xpagesi ze for details.

- Xpagesi ze_st ack=size
Set the preferred page size for the stack.
The size value must be one of the following:
8K 64K 512K 4M 32M 256M 2G 16G or def aul t
For example: - xpagesi ze_st ack=4M

See - xpagesi ze for details.

—xpar al | el

Synonym for —paral | el .

—XpPg
Synonym for —pg.

3-76 Fortran User's Guide « May 2003

—xpp={f pp| cpp}

Select source file preprocessor.
The default is —xpp=f pp.

The compilers use f pp(1) to preprocess . F or . f 95 source files. This preprocessor is
appropriate for Fortran. Previous versions used the standard C preprocessor cpp. To
select cpp, specify —xpp=cpp.

—xpr ef et ch[=a[,al

Enable prefetch instructions on those architectures that support prefetch, such as
UltraSPARC Il or UltraSPARC |11 (- xar ch=v8pl us, v8pl usa, v9pl ushb, v9, v9a, or
v9b)

See “The PREFETCH Directives” on page 2-13 for a description of the Fortran
PREFETCH directives.

a must be one of the following:

ais Meaning

aut o Enable automatic generation of prefetch instructions
no%aut o Disable automatic generation of prefetch instructions
explicit Enable explicit prefetch macros

no%explicit Disable explicit prefetch macros

| at x: factor Adjust the compiler’s assumed prefetch-to-load and prefetch-to-store
latencies by the specified factor. The factor must be a positive
floating-point or integer number.

yes - xpr ef et ch=yes is the same as - xpr ef et ch=aut o, explicit

no - xpr ef et ch=no is the same as - xpr ef et ch=no%aut o, no%expl i cit

With - xpr ef et ch, - xpr ef et ch=aut 0,and - xpr ef et ch=yes, the compiler is free to
insert prefetch instructions into the code it generates. This may result in a
performance improvement on architectures that support prefetch.

If you are running computationally intensive codes on large multiprocessors, you
might find it advantageous to use - xpr ef et ch=l at x: factor. This option instructs the
code generator to adjust the default latency time between a prefetch and its
associated load or store by the specified factor.

The prefetch latency is the hardware delay between the execution of a prefetch
instruction and the time the data being prefetched is available in the cache. The
compiler assumes a prefetch latency value when determining how far apart to place
a prefetch instruction and the load or store instruction that uses the prefetched data.

Chapter 3 Fortran Compiler Options ~ 3-77

3-78

Note — The assumed latency between a prefetch and a load may not be the same as
the assumed latency between a prefetch and a store.

The compiler tunes the prefetch mechanism for optimal performance across a wide
range of machines and applications. This tuning may not always be optimal. For
memory-intensive applications, especially applications intended to run on large
multiprocessors, you may be able to obtain better performance by increasing the
prefetch latency values. To increase the values, use a factor that is greater than 1. A
value between .5 and 2.0 will most likely provide the maximum performance.

For applications with datasets that reside entirely within the external cache, you may
be able to obtain better performance by decreasing the prefetch latency values. To
decrease the values, use a factor that is less than 1.

To use the - xpr ef et ch=| at x: factor option, start with a factor value near 1.0 and run
performance tests against the application. Then increase or decrease the factor, as
appropriate, and run the performance tests again. Continue adjusting the factor and
running the performance tests until you achieve optimum performance. When you
increase or decrease the factor in small steps, you will see no performance difference
for a few steps, then a sudden difference, then it will level off again.

Defaults:
If - xpr ef et ch is not specified, - xpr ef et ch=no%aut o, expl i cit is assumed.
If only - xpr ef et ch is specified, - xpr ef et ch=aut o, expl i ci t is assumed.

The default of no%aut o is assumed unless explicitly overridden with the use of
- xpr ef et ch without any arguments or with an argument of aut o or yes. For
example, - xpr ef et ch=expl i ci t isthesameas- xpr ef et ch=expl i ci t, no%aut o.

The default of expl i cit is assumed unless explicitly overridden with an argument
of no%expl i cit oranargument of no. For example, - xpr ef et ch=aut o is the same
as - xprefetch=auto, explicit.

If automatic prefetching is enabled, such as with - xpr ef et ch or - xpr ef et ch=yes,
but a latency factor is not specified, then - xpr ef et ch=I at x: 1. 0 is assumed.

Interactions:

With - xpr ef et ch=expl i ci t, the compiler will recognize the directives:

Fortran User's Guide « May 2003

$PRAGMA SPARC PREFETCH READ ONCE (name)
$PRAGVA SPARC PREFETCH READ MANY (name)
$PRAGVA SPARC_PREFETCH WRI TE_ONCE (name)
$PRAGVA SPARC PREFETCH WRI TE_MANY (name)

The - xchi p setting effects the determination of the assumed latencies and therefore
the result of a | at x: factor setting.

The | at x: factor suboption is valid only when automatic prefetching is enabled. That
is, | at x: factor is ignored unless it is used with yes or aut o.

Warnings:

Explicit prefetching should only be used under special circumstances that are
supported by measurements.

Because the compiler tunes the prefetch mechanism for optimal performance across
a wide range of machines and applications, you should only use

- xpr ef et ch=l at x: factor when the performance tests indicate there is a clear benefit.
The assumed prefetch latencies may change from release to release. Therefore,
retesting the effect of the latency factor on performance whenever switching to a
different release is highly recommended.

-xprefetch_I evel =n
Control the automatic generation of prefetch instructions.

This option is only effective when compiling with:

= -Xxprefetch=auto,

= Wwith optimization level 3 or greater,

= onaplatformthatsupports prefetch (- xar ch=v8pl us,v8pl usa,v8pl usb,v9,v9a,
v9b, generi c64, nati ve64).

n may be 1, 2, or 3.
The default for - xpr ef et ch=aut o without specifying - xpr ef et ch_I| evel islevel 2.

Prefetch level 2 generates additional opportunities for prefetch instructions than
level 1. Prefetch level 3 generates additional prefetch instructions than level 2.

Prefetch levels 2 and 3 are only effective on UltraSPARC I11 platforms (v8pl usb or
v9b)

Chapter 3 Fortran Compiler Options 3-79

3-80

—xprofile=p

Collect or optimize with runtime profiling data, or perform basic block coverage
analysis.

p must be one of col | ect [: name], use[: name], or t cov.

Compiling with high optimization levels (- xCb) is enhanced by providing the
compiler with runtime performance feedback. To produce the profile feedback the
compiler needs to do its best optimizations, you must compile first with
-xprofil e=coll ect, run the executable against a typical data set, and then
recompile at the highest optimization level and with - xpr of i | e=use.

col | ect [: name]

Collect and save execution frequency data for later use by the optimizer with
- xprof i | e=use. The compiler generates code to measure statement execution
frequency.

The name is the name of the program that is being analyzed. This name is
optional. If name is not specified, a. out is assumed to be the name of the
executable.

At runtime a program compiled with —xpr of i | e=col | ect : name will create by
default the subdirectory name. pr of i | e to hold the runtime feedback information.
The program writes its runtime profile data to the file named f eedback in this
subdirectory. If you run the program several times, the execution frequency data
accumulates in the f eedback file; that is, output from prior runs is not lost.

You can set the environment variables SUN_PROFDATA and SUN_PROFDATA DI Rto
control the file and directory where a program compiled with

-xprofil e=col | ect writes its runtime profile data. With these variables set, the
program compiled with - xpr of i | e=col | ect writes its profile data to
$SUN_PROFDATA DI R/ $SUN_PROFDATA.

These environment variables similarly control the path and names of the profile
data files written by t cov, as described in the t cov(1) man page.

Profile collection is “MT-safe”. That is, profiling a program that does its own
multitasking by compiling with - nt and calling the multitasking library directly
will give accurate results.

When compiling and linking in separate steps, the link step must also specify
-xprofil e=col |l ect if it appears on the compile step.

use[: nm]
Use execution frequency data to optimize strategically at optimization level - x 5.

As with col | ect: nm the nm is optional and may be used to specify the name of
the program.

Fortran User's Guide « May 2003

The program is optimized by using the execution frequency data previously
generated and saved in the profile data files written by a previous execution of
the program compiled with —xpr of i | e=col | ect .

The source files and other compiler options must be exactly the same as used for
the compilation that created the compiled program that generated the f eedback
file. If compiled with —xpr of i | e=col | ect : nm, the same program name nm must
appear in the optimizing compilation: —xpr of i | e=use: nm.

See also - xprofil e_i rcache for speeding up compilationg between the collect
and use phases.

See also - xpr of i | e_pat hmap for controlling where the compiler looks for
profile data files.

t cov

Basic block coverage analysis using “new” style t cov. Optimization level must be
- Q2 or greater.

Code instrumentation is similar to that of —a, but . d files are no longer generated
for each source file. Instead, a single file is generated, whose name is based on the
name of the final executable. For example, if st uf f is the executable file, then
stuff.profile/tcovd is the data file.

When running t cov, you must pass it the —x option to make it use the new style
of data. If not, t cov uses the old . d files, if any, by default for data, and produces
unexpected output.

Unlike —a, the TCOVDI R environment variable has no effect at compile-time.
However, its value is used at program runtime to identify where to create the
profile subdirectory.

See the t cov(1) man page, the “Performance Profiling” chapter of the Fortran
Programming Guide, and the Program Performance Analysis Tools manual for more
details.

Note — The report produced by t cov can be unreliable if there is inlining of
subprograms due to - & or -i nl i ne. Coverage of calls to routines that have been
inlined is not recorded.

-xprofil e_ircache[=path]
Save and reuse compilation data between collect and use profile phases.

Use with - xprofi | e=col | ect Juse to improve compilation time during the use
phase by reusing compilation data saved from the collect phase.

If specified, path will override the location where the cached files are saved. By
default, these files will be saved in the same directory as the object file. Specifying a
path is useful when the collect and use phases happen in two different places.

Chapter 3 Fortran Compiler Options 3-81

3-82

A typical sequence of commands might be:

denp% f95 -x06 -xprofile=collect -xprofile_ircache tl.c t2.c
denp% a. out collects feedback data
denp% f95 -x06 -xprofile=use -xprofile_ircache tl.c t2.c

With large programs, compilation time in the use phase can improve significantly by
saving the intermediate data in this manner. But this will be at the expense of disk
space, which could increase considerably.

-xprofil e_pat hmap=collect_prefix: use_prefix

Set path mapping for profile data files.
Use the - xpr of i | e_pat hrmap option with the - xpr of i | e=use option.

Use - xpr of i | e_pat hmap when the compiler is unable to find profile data for an
object file that is compiled with - xpr of i | e=use, and:

= You are compiling with - xpr of i | e=use into a directory that is not the directory
used when previously compiling with - xpr of i | e=col | ect.

= Your object files share a common basename in the profile but are distinguished
from each other by their location in different directories.

The collect-prefix is the prefix of the UNIX pathname of a directory tree in which
object files were compiled using - xpr of i | e=col | ect .

The use-prefix is the prefix of the UNIX pathname of a directory tree in which object
files are to be compiled using - xprof i | e=use.

If you specify multiple instances of - xpr of i | e_pat hrmap, the compiler processes
them in the order of their occurrence. Each use-prefix specified by an instance of
-xprofil e_pat hmap is compared with the object file pathname until either a
matching use-prefix is identified or the last specified use-prefix is found not to match
the object file pathname.

- Xrecursive

Allow routines without RECURSI VE attribute call themselves recursively.

Normally, only subprograms defined with the RECURSI VE attribute can call
themselves recursively.

Compiling with - xr ecur si ve enables subprograms to call themselves, even if they
are not defined with the RECURSI VE attribute. But, unlike subroutines defined
RECURSI VE, use of this flag does not cause local variables to be allocated on the stack
by default. For local variables to have separate values in each recursive invocation of
the subprogram, compile also with - st ackvar to put local variables on the stack.

Fortran User's Guide « May 2003

Indirect recursion (routine A calls routine B which then calls routine A) can give
inconsistent results at optimization levels greater than - xO2. Compiling with the
- Xr ecur si ve flag guarantees correctness with indirect recursion, even at higher
optimization levels.

Compiling with - xr ecur si ve can cause performance degradations.

—Xr educti on

Synonym for —r educt i on.

—Xr egs=r

Specify register usage.

r is a comma-separated list that consists of one or more of the following:
[no%Aappl , [no%f | oat .

Where the %is shown, it is a required character.

Example: —xr egs=appl , no% | oat
= appl : Allow the compiler to use the application registers as scratch registers.

On SPARC systems, certain registers are described as application registers. Using
these registers can increase performance because fewer load and store instructions
are needed. However, such use can conflict with some old library programs
written in assembly code.

The set of application registers depends on the SPARC platform:

« -Xxarch=v8 or v8a — registers %92, %93, and %g4
« -Xxarch=v8pl us or v8pl usa — registers %g2, %g3, and Yg4
« -Xxarch=v9 or v9a — registers ¥g2 and %g3

= no%appl : Do not use the appl registers.

=« fl oat: Allow the compiler to use the floating—point registers as scratch registers
for integer values. This option has no effect on the compiler’s use of
floating-point registers for floating-point values.

= no% | oat: Do not use the floating—point registers. With this option, a source
program cannot contain any floating—point code.

The compiler default is: —xr egs=appl , f| oat .

Allow debugging by dbx without object (. o) files.

Chapter 3 Fortran Compiler Options 3-83

With —xs, all debug information is copied into the executable file. If you move
executables to another directory, then you can use dbx and ignore the object (. 0)
files. Use this option when you cannot retain the . o files.

= The compiler passes - s to the assembler and then the linker places all symbol
tables for dbx in the executable file.

= This way of handling symbol tables is the older way. It is sometimes called no
auto-read

= The linker links more slowly, and dbx initializes more slowly.
Without —xs, if you move the executables, you must move both the source files and
the object (. o) files, or set the path with either the dbx pat hnap or use command.

= This way of handling symbol tables is the newer and default way of loading
symbol tables. It is sometimes called auto-read.

= The symbol tables are distributed in the . o files so that dbx loads the symbol table
information only if and when it is needed. Hence, the linker links faster, and dbx
initializes faster.

—xsaf e=nem

AN\

—Xsb

Allow the compiler to assume that no memory protection violations occur.

Using this option allows the compiler to assume no memory-based traps occur. It
grants permission to use the speculative load instruction on the SPARC V9
platforms.

This option is effective only when used with optimization level - G5 one one of the
following architectures (- xar ch): v8pl us, v8pl usa, v8pl usb, v9, v9a, or v9b

Caution — Because non-faulting loads do not cause a trap when a fault such as
address misalignment or segmentation violation occurs, you should use this option
only for programs in which such faults cannot occur. Because few programs incur
memory-based traps, you can safely use this option for most programs. Do not use
this option with programs that explicitly depend on memory-based traps to handle
exceptional conditions.

Synonym for —sb.

—Xsbf ast

Synonym for —sbf ast .

3-84 Fortran User's Guide « May 2003

—Xspace
Do no optimizations that increase the code size.

Example: Do not unroll or parallelize loops if it increases code size.

—Xt ar get =t
Specify the target platform for the instruction set and optimization.
t must be one of: nati ve, nati ve64, generi c, generi c64, platform—name.

The —xt ar get option permits a quick and easy specification of the —xar ch, - xchi p,
and —xcache combinations that occur on real platforms. The only meaning of
—Xt ar get is in its expansion.

The performance of some programs may benefit by providing the compiler with an
accurate description of the target computer hardware. When program performance
is critical, the proper specification of the target hardware could be very important.
This is especially true when running on the newer SPARC processors. However, for
most programs and older SPARC processors, the performance gain is negligible and
a generi c specification is sufficient.

nat i ve: Optimize performance for the host platform.

The compiler generates code optimized for the host platform. It determines the
available architecture, chip, and cache properties of the machine on which the
compiler is running.

nat i ve64: Compile for native 64-bit environment.

Set the architecture, chip, and cache properties for the 64-bit environment on the
machine on which the compiler is running.

generi c: Get the best performance for generic architecture, chip, and cache.
The compiler expands —xt ar get =generi c to:
—xar ch=generi c —xchi p=generi c —xcache=generic
This is the default value.
generi c64: Compile for generic 64-bit environment.

This expands to - xar ch=v9 -xcache=generic -xchi p=generic
platform—name: Get the best performance for the specified platform.

Usethef pver si on(1) command to determine the expansion of - xt ar get =nat i ve on
a running system.

Note that - xt ar get for a specific host platform might not expand to the same
- xar ch, - xchi p,or-xcache settings as - xt ar get =nat i ve when compiling on that
platform.

Chapter 3 Fortran Compiler Options 3-85

The following table gives a list of the commonly used system platform names
accepted by the compiler. Appendix C gives a list of older and less commonly used
system platform names

TABLE 3-17 Expansions of Commonly Used - xt ar get System Platforms

-xtarget=platform-name -xarch -xchip -xcache

generic generic generic generic

generi c64 v9 generic generic

entr 150 v8pl usa ultra 16/ 32/ 1: 512/ 64/ 1
entr2 v8pl usa ul'tra 16/32/1:512/ 64/ 1
entr2/1170 v8pl usa ultra 16/ 32/ 1: 512/ 64/ 1
entr2/1200 v8pl usa ultra 16/ 32/ 1: 512/ 64/ 1
entr2/2170 v8pl usa ultra 16/ 32/1:512/ 64/ 1
entr2/ 2200 v8pl usa ul'tra 16/32/1:512/ 64/ 1
ent r 3000 v8pl usa ultra 16/ 32/ 1: 512/ 64/ 1
ent r 4000 v8pl usa ultra 16/ 32/ 1: 512/ 64/ 1
ent r 5000 v8pl usa ultra 16/ 32/ 1: 512/ 64/ 1
ent r 6000 v8pl usa ultra 16/ 32/ 1:512/ 64/ 1
ultra v8pl usa ultra 16/ 32/ 1: 512/ 64/ 1
ul tral/ 140 v8pl usa ultra 16/ 32/ 1: 512/ 64/ 1
ultral/ 170 v8pl usa ultra 16/ 32/ 1:512/ 64/ 1
ul tral/ 200 v8pl usa ul'tra 16/32/1:512/ 64/ 1
ultra2 v8pl usa ultra2 16/ 32/ 1: 512/ 64/ 1
ultra2/ 1170 v8pl usa ultra 16/ 32/ 1: 512/ 64/ 1
ul tra2/ 1200 v8pl usa ultra 16/ 32/ 1: 1024/ 64/ 1
ul tra2/ 1300 v8pl usa ultra2 16/ 32/ 1: 2048/ 64/ 1
ul tra2/ 2170 v8pl usa ultra 16/ 32/ 1: 512/ 64/ 1
ul tra2/ 2200 v8pl usa ultra 16/ 32/ 1: 1024/ 64/ 1
ul tra2/ 2300 v8pl usa ultra2 16/ 32/ 1: 2048/ 64/ 1
ul tra2e v8pl usa ul tra2e 16/ 32/ 1: 256/ 64/ 4
ul tra2i v8pl usa ul tra2i 16/ 32/ 1: 512/ 64/ 1
ultra3 v8pl usa ultra3 64/ 32/ 4: 8192/ 512/ 1
ul tra3cu v8pl usa ul tra3cu 64/ 32/ 4: 8192/ 512/ 2

3-86 Fortran User's Guide « May 2003

—Xti me

Synonym for —t i ne.

—Xt ypenmap=spec

Specify default data mappings.

This option provides a flexible way to specify the byte sizes for default data types.
This option applies to both default-size variables and constants.

The specification string spec may contain any or all of the following in a
comma-delimited list:

real : size
doubl e: size
i nt eger: size

The allowable combinations on each platform are:

=« real:32
=« real:64
= doubl e: 64

= doubl e: 128
= integer: 32
i nt eger: 64

For example:
= —Xxtypenmap=real : 64, doubl e: 64, i nt eger: 64

maps both default REAL and DOUBLE to 8 bytes.

This option applies to all variables declared with default specifications (without
explicit byte sizes), as in REAL XYZ (resulting in a 64-bit XYZ). Also, all
single-precision REAL constants are promoted to REAL* 8.

Note that | NTEGER and LOG CAL are treated the same, and COMPLEX is mapped as
two REALs. Also, DOUBLE COVPLEX will be treated the way DOUBLE is mapped.

—xunrol | =n

Synonym for —unr ol | =n.

Chapter 3 Fortran Compiler Options 3-87

3-88

—xvect or[={yes| no}]

-zt ext

Enable automatic calls to the SPARC vector library functions.

With —xvect or =yes, the compiler is permitted to transform certain math library
calls within DO loops into single calls to the equivalent vectorized library routine
whenever possible. This could result in a performance improvement for loops with
large loop counts.

The compiler defaults to —xvect or =no. Specifying —xvect or by itself defaults to
- xvect or =yes.

This option also triggers —depend. (Follow —xvect or with —nodepend on the
command line to cancel the dependency analysis.)

The compiler will automatically notify the linker to include the | i brmvec and | i bc
libraries in the load step if —xvect or appears. However, to compile and link in
separate steps requires specifying —xvect or on the link step as well to correctly
select these necessary libraries.

Generate only pure libraries with no relocations.

The general purpose of —zt ext is to verify that a generated library is pure text;
instructions are all position-independent code. Therefore, it is generally used with
both —Gand —pi c.

With —zt ext, if | d finds an incomplete relocation in the text segment, then it does
not build the library. If it finds one in the data segment, then it generally builds the
library anyway; the data segment is writable.

Without —zt ext, | d builds the library, relocations or not.

A typical use is to make a library from both source files and object files, where you
do not know if the object files were made with —pi c.

Example: Make library from both source and object files:

demo% f95 -G —pi ¢ —ztext —o MyLib -hMyLib a.f b.f Xx.0 y.o0

An alternate use is to ask if the code is position—-independent already: compile
without —pi ¢, but ask if it is pure text.

Example: Ask if it is pure text already—even without —pi c:

denb% f95 -G —ztext —-o MyLib —-hM/Lib a.f b.f x.0 y.o0

Fortran User's Guide « May 2003

If you compile with —zt ext and | d does not build the library, then you can
recompile without —zt ext, and | d will build the library. The failure to build with
- zt ext means that one or more components of the library cannot be shared;
however, maybe some of the other components can be shared. This raises questions
of performance that are best left to you, the programmer.

Chapter 3 Fortran Compiler Options 3-89

3-90 Fortran User's Guide « May 2003

CHAPTER 4

Fortran 95 Features and Differences

This appendix shows some of the major features differences between standard
Fortran 95 and the Fortran 95 compiler, f 95.

4.1

411

4.1.2

Source Language Features

The Fortran 95 compiler provides the following source langauge features and
extensions to the Fortran 95 standard.

Continuation Line Limits

f 95 allows 99 continuation lines (1 initial and 99 continuation lines). Standard
Fortran 95 allows 19 for fixed-form and 39 for free-form.

Fixed-Form Source Lines

In fixed-form source, lines can be longer than 72 characters, but everything beyond

column 73 is ignored. Standard Fortran 95 only allows 72-character lines.

4-1

4.1.3

4131

Tabs in f 95 force the rest of the line to be padded out to column 72. This may cause
unexpected results if the tab appears within a character string that is continued onto
the next line:

Source file:

Alprint *, "Tab on next line

Allthis continuation line starts with a tab."
Al end

Running the code:
Tab on next |ine this
continuation

line starts with a tab.

Source Form Assumed

The source form assumed by f 95 depends on options, directives, and suffixes.

Files with a . f or . F suffix are assumed to be in fixed format. Files with a . f 90,
.95, . F90, or . F95 suffix are assumed to be in free format.

TABLE 4-1 F95 Source Form Command-line Options

Option Action
-fixed Interpret all source files as Fortran fixed form
-free Interpret all source files as Fortran free form

If the - free or - fi xed option is used, it overrides the file name suffix. If either a
I DI R$ FREE or ! DI R$ FI XED directive is used, it overrides the option and file name
suffix.

Mixing Forms

Some mixing of source forms is allowed.
= In the same f 95 command, some source files can be fixed form, some free.

= In the same file, free form can be mixed with fixed form by using ! DI R$ FREE and
I DI R$ FI XED directives.

4-2 Fortran User’'s Guide » May 2003

4.1.3.2

414

Case

Sun Fortran 95 is case insensitive by default. That means that a variable AbcDeF is
treated as if it were spelled abcdef . Compile with the - U option to have the
compiler treat upper and lower case as unique.

Limits and Defaults
= A single Fortran 95 program unit can define up to 65,535 derived types and

4.2

4.2.1

4211

16,777,215 distinct constants.

Names of variables and other objects can be up to 127 characters long. 31 is
standard.

Data Types

This section describes features and extensions to the Fortran 95 data types.

Boolean Type

f 95 supports constants and expressions of Boolean type. However, there are no
Boolean variables or arrays, and there is no Boolean type statement.

Miscellaneous Rules Governing Boolean Type

Masking—A bitwise logical expression has a Boolean result; each of its bits is the
result of one or more logical operations on the corresponding bits of the
operands.

For binary arithmetic operators, and for relational operators:
« If one operand is Boolean, the operation is performed with no conversion.

« If both operands are Boolean, the operation is performed as if they were
integers.

No user-specified function can generate a Boolean result, although some
(nonstandard) intrinsics can.

Boolean and logical types differ as follows:

« Variables, arrays, and functions can be of logical type, but they cannot be
Boolean type.

Chapter 4 Fortran 95 Features and Differences 4-3

4.2.1.2

4-4

« Thereis a LOd CAL statement, but no BOOLEAN statement.

« A logical variable, constant, or expression represents only two values, . TRUE.
or . FALSE. A Boolean variable, constant, or expression can represent any
binary value.

« Logical entities are invalid in arithmetic, relational, or bitwise logical
expressions. Boolean entities are valid in all three.

Alternate Forms of Boolean Constants

f 95 allows a Boolean constant (octal, hexadecimal, or Hollerith) in the following
alternate forms (no binary). Variables cannot be declared Boolean. Standard Fortran
does not allow these forms.

Octal

ddddddB, where d is any octal digit

You can use the letter B or b.
There can be 1 to 11 octal digits (0 through 7).

11 octal digits represent a full 32-bit word, with the leftmost digit allowed to be 0,
1, 2, or 3.

Each octal digit specifies three bit values.

The last (right most) digit specifies the content of the right most three bit
positions (bits 29, 30, and 31).

If less than 11 digits are present, the value is right-justified—it represents the right
most bits of a word: bits n through 31. The other bits are 0.

Blanks are ignored.

Within an 170 format specification, the letter B indicates binary digits; elsewhere it
indicates octal digits.

Hexadecimal

X ddd’ or X"ddd", where d is any hexadecimal digit

There can be 1 to 8 hexadecimal digits (0 through 9, A-F).

Any of the letters can be uppercase or lowercase (X, x, A-F, a-f).
The digits must be enclosed in either apostrophes or quotes.
Blanks are ignored.

The hexadecimal digits may be preceded by a + or - sign.

Fortran User's Guide « May 2003

= 8 hexadecimal digits represent a full 32-bit word and the binary equivalents
correspond to the contents of each bit position in the 32-bit word.

= If less than 8 digits are present, the value is right-justified—it represents the right

most bits of a word: bits n through 31. The other bits are 0.

Hollerith

Accepted forms for Hollerith data are:

nH... " H ""H
nL... L R
nR... "R "."R
Above, “...” is a string of characters and n is the character count.

= A Hollerith constant is type Boolean.

= If any character constant is in a bitwise logical expression, the expression is
evaluated as Hollerith.

= A Hollerith constant can have 1 to 4 characters.

Examples: Octal and hexadecimal constants.

Boolean Constant Internal Octal for 32-bit Word
0B 00000000000
77740B 00000077740
X" ABE" 00000005276
X' - 340" 37777776300
X123 00000000443
X' FFFFFFFFFFFFFFFF' 37777777777

Examples: Octal and hexadecimal in assignment statements.

i = 1357B
X' 28FF"

—
1

k = X -5A

Chapter 4 Fortran 95 Features and Differences

Use of an octal or hexadecimal constant in an arithmetic expression can produce
undefined results and do not generate syntax errors.

4.2.1.3 Alternate Contexts of Boolean Constants

f 95 allows BOZ constants in the places other than DATA statements.

B’ bbb’ 0 000’ Z' 727’
B" bbb" O' 000" Z" 727"
If these are assigned to a real variable, no type conversion occurs.

Standard Fortran allows these only in DATA statements.

4.2.2 Abbreviated Size Notation for Numeric Data
Types

f 95 allows the following nonstandard type declaration forms in declaration
statements, function statements, and | MPLI Cl T statements. The form in column one
is nonstandard Fortran 95, though in common use. The kind numbers in column two
can vary by vendor.

TABLE 4-2 Size Notation for Numeric Data Types

Nonstandard Declarator Short Form Meaning

| NTEGER* 1 | NTEGER(KI ND=1) | NTEGER(1) One-byte signed integers
| NTEGER* 2 I NTEGER(KI ND=2) | NTEGER(2) Two-byte signed integers
| NTEGER* 4 | NTEGER(KI ND=4) | NTEGER(4) Four-byte signed integers

LOG CAL*1 LOG CAL(KI ND=1) LOGd CAL(1) One-byte logicals
LOG CAL*2 LOG CAL(KIND=2) LOG CAL(2) Two-byte logicals
LOG CAL* 4 LOG CAL(KI ND=4) LOG CAL(4) Four-byte logicals

REAL* 4 REAL (KI ND=4) REAL(4) IEEE single-precision four-
byte floating-point

REAL* 8 REAL (KI ND=8) REAL(8) IEEE double-precision
eight-byte floating-point

REAL* 16 REAL(KI ND=16) REAL(16) IEEE quad-precision

sixteen-byte floating-point

4-6 Fortran User’'s Guide » May 2003

TABLE 4-2 Size Notation for Numeric Data Types (Continued)

Nonstandard Declarator Short Form Meaning

COWVPLEX* 8 COVPLEX(KI ND=4) COVPLEX(4) Single-precision complex
(four bytes each part)

COWPLEX*16 COWPLEX(KI ND=8) COVPLEX(8) Double-precision complex
(eight bytes each part)

COWPLEX*32 COWPLEX(KIND=16) COWPLEX(16) Quad-precision complex
(sixteen bytes each part)

4.2.3 Size and Alignment of Data Types

Storage and alignment are always given in bytes. Values that can fit into a single
byte are byte-aligned.

The size and alignment of types depends on various compiler options and platforms,
and how variables are declared. The default maximum alignment in COMMON
blocks is to 4-byte boundaries.

Default data alignment and storage allocation can be changed by compiling with
special options, such as - al i gncomon, -f, -dalign,-dbl _align_all,

-xmemal i gn,, and - xt ypemap. The default descriptions in this manual assume that
these options are not in force.

Chapter 4 Fortran 95 Features and Differences 4-7

The following table summarizes the default size and alignment, ignoring other
aspects of types and options.

TABLE 4-3 Default Data Sizes and Alignments (in Bytes)

Default Alignment in
Fortran 95 Data Type Size Alignment COMMON
BYTE X 1 1 1
CHARACTER X 1 1 1
CHARACTER*n X n 1 1
COWLEX X 8 4 4
COWPLEX*8 X 8 4 4
DOUBLE COWPLEX X 16 8 4
COWPLEX*16 X 16 8 4
COWPLEX*32 X 32 8/16 4
DOUBLE PRECI SI ON X 8 8 4
REAL X 4 4 4
REAL*4 X 4 4 4
REAL*8 X 8 8 4
REAL*16 X 16 8/16 4
I NTEGER X 4 4 4
I NTEGER*2 X 2 2 2
| NTEGER*4 X 4 4 4
| NTEGER*8 X 8 8 4
LO3d CAL X 4 4 4
LO3d CAL*1 X 1 1 1
LOAd CAL*2 X 2 2 2
LOAd CAL*4 X 4 4 4
LOAd CAL*8 X 8 8 4

Note the following:

= REAL*16 and COVPLEX* 32: in 64-bit environments (compiling with - xar ch=v9
or v9a) the default alignment is on 16-byte (rather than 8-byte) boundaries, as
indicated by 8/16 in the table.

= Arrays and structures align according to their elements or fields. An array aligns
the same as the array element. A structure aligns the same as the field with the
widest alignment.

Options - f or - dal i gn force alignment of all 8, 16, or 32-byte data onto 8-byte
boundaries. Option - dbl _al i gn_al | causes all data to be aligned on 8-byte
boundaries. Programs that depend on the use of these options may not be portable.

4-8 Fortran User’'s Guide » May 2003

4.3 Cray Pointers

A Cray pointer is a variable whose value is the address of another entity, called the
pointee.

f 95 supports Cray pointers; Standard Fortran 95 does not.

43.1 Syntax

The Cray PO NTER statement has the following format:

PO NTER (poi nter_nane, pointee_nane [array_spec]),

Where pointer_name, pointee_name, and array_spec are as follows:

pointer_name Pointer to the corresponding pointee_name.
pointer_name contains the address of pointee_name.
Must be: a scalar variable name (but not a derived type)
Cannot be: a constant, a name of a structure, an array, or a
function

pointee_name Pointee of the corresponding pointer_name
Must be: a variable name, array declarator, or array name

array_spec If array_spec is present, it must be explicit shape, (constant or non-
constant bounds), or assumed-size.

Example: Declare Cray pointers to two pointees.

PONTER (p, b), (g, ¢)

The above example declares Cray pointer p and its pointee b, and Cray pointer g
and its pointee c.

Example: Declare a Cray pointer to an array.

PO NTER (ix, x(n, 0:m)

Chapter 4 Fortran 95 Features and Differences 4-9

4.3.2

4.3.3

4.3.4

The above example declares Cray pointer i x and its pointee x; and declares x to be
an array of dimensions n by m+1.

Purpose of Cray Pointers

You can use pointers to access user-managed storage by dynamically associating
variables to particular locations in a block of storage.

Cray pointers allow accessing absolute memory locations.

Declaring Cray Pointers and Fortran 95 Pointers

Cray pointers are declared as follows:

PO NTER (pointer_name, pointee_name [array_spec])
Fortran 95 pointers are declared as follows:

PO NTER object_name

The two kinds of pointers cannot be mixed.

Features of Cray Pointers

= Whenever the pointee is referenced, f 95 uses the current value of the pointer as
the address of the pointee.

= The Cray pointer type statement declares both the pointer and the pointee.

= The Cray pointer is of type Cray pointer.

= The value of a Cray pointer occupies one storage unit on 32-bit processors, and
two storage units on 64-bit SPARC V9 processors.

= The Cray pointer can appear in a COVMON list or as a dummy argument.
= The Cray pointee has no address until the value of the Cray pointer is defined.
= If an array is named as a pointee, it is called a pointee array.

Its array declarator can appear in:

« A separate type statement
= A separate DI MENSI ON statement
« The pointer statement itself

= If the array declarator is in a subprogram, the dimensioning can refer to:
« Variables in a common block, or

4-10 Fortran User's Guide « May 2003

4.3.5

4.3.6

4.3.7

« Variables that are dummy arguments

The size of each dimension is evaluated on entrance to the subprogram, not when
the pointee is referenced.

Restrictions on Cray Pointers

pointee_name must not be a variable typed CHARACTER* (*) .

If pointee_name is an array declarator, it must be explicit shape, (constant or non-
constant bounds), or assumed-size.

An array of Cray pointers is not allowed.
A Cray pointer cannot be:

« Pointed to by another Cray pointer or by a Fortran pointer.
« A component of a structure.
« Declared to be any other data type.

A Cray pointer cannot appear in:

« A PARAMETER statement or in a type declaration statement that includes the
PARAMETER attribute.

« A DATA statement.

Restrictions on Cray Pointees

A Cray pointee cannot appear in a SAVE, DATA, EQUI VALENCE, COMVON, or
PARAMETER statement.

A Cray pointee cannot be a dummy argument.

A Cray pointee cannot be a function value.

A Cray pointee cannot be a structure or a structure component.
A Cray pointee cannot be of a derived type.

Usage of Cray Pointers

Cray pointers can be assigned values as follows:

Set to an absolute address

Example:q = 0

= Assigned to or from integer variables, plus or minus expressions

Example:p = g + 100

Chapter 4 Fortran 95 Features and Differences 4-11

= Cray pointers are not integers. You cannot assign them to a real variable.

= The LOC function (nonstandard) can be used to define a Cray pointer.

Example:p = LOC(x)

Example: Use Cray pointers as described above.

SUBROUTINE sub (n)

COWDON pool (100000)

| NTEGER bl k(128), word64

REAL a(1000), b(n), c(100000-n-1000)

PO NTER (pblk, blk), (ia, a), (ib, b),
(ic, ¢), (address, word64)

DATA address / 64 /

pblk =0
ia = LOC(pool)
ib =ia + 4000
ic =ib +n

&

Remarks about the above example:

= Wwor d64 refers to the contents of absolute address 64

= bl k is an array that occupies the first 128 words of memory
= ais an array of length 1000 located in blank common

= b follows a and is of length n

= ¢ follows b

= a, b, and c are associated with pool

= wor d64 is the same as bl k(17) because Cray pointers are byte address and the

integer elements of bl k are each 4 bytes long

4.4

4-12

STRUCTURE and UNI ON (VAX Fortran)

To aid the migration of programs from f 77, f 95 accepts VAX Fortran STRUCTURE and
UNI ON statements, a precursor to the “derived types” in Fortran 95. For syntax

details see the FORTRAN 77 Language Reference manual.

The field declarations within a STRUCTURE can be one of the following:
= A substructure — either another STRUCTURE declaration, or a record that has been

previously defined.
= A UNI ON declaration.

Fortran User's Guide « May 2003

= A TYPE declaration, which can include initial values.
= A derived type having the SEQUENCE attribute. (This is particular to f 95 only.)

As with f 77, a PO NTER statement cannot be used as a field declaration.

f 95 also allows:

= Either “. ’ or ‘9% can be used as a structure field dereference symbol:
struct.field orstruct%ield.

= Structures can appear in a formatted 1/0 statement.

= Structures can be initialized in a PARAMVETER statement; the format is the same as a
derived type initialization.

= Structures can appear as components in a derived type, but the derived type must
be declared with the SEQUENCE attribute.

4.5

Unsigned Integers

The Fortran 95 compiler accepts a new data type, UNSI GNED, as an extension to the
language. Four Kl ND parameter values are accepted with UNSI GNED: 1, 2, 4, and 8,
corresponding to 1-, 2-, 4-, and 8-byte unsigned integers, respectively.

The form of an unsigned integer constant is a digit-string followed by the upper or
lower case letter U, optionally followed by an underscore and kind parameter. The
following examples show the maximum values for unsigned integer constants:

255u_1

65535u_2

4294967295U 4
18446744073709551615U 8

Expressed without a kind parameter (12345U), the default is the same as for default
integer. This is U_4 but can be changed by the - xt ypemap option, which will change
the kind type for default unsigned integers.

Declare an unsigned integer variable or array with the UNSI GNED type specifier:

UNSI GNED U
UNSI GNED(KI ND=2) :: A
UNSI GNED*8 :: B

Chapter 4 Fortran 95 Features and Differences 4-13

4.5.1

4.5.2

4.5.3

4.5.4

Arithmetic Expressions

Binary operations, such as + - * / cannot mix signed and unsigned operands.
That is, U* N is illegal if U is declared UNSI GNED, and N is a signed | NTEGER

» Use the UNSI GNED intrinsic function to combine mixed operands in a binary
operation, as in U* UNSI GNED(N)

=« An exception is when one operand is an unsigned integer and the other is a
signed integer constant expression with positive or zero value; the result is an
unsigned integer.

« The kind of the result of such a mixed expression is the largest kind of the
operands.

Exponentiation of a signed value is signed while exponentiation of an unsigned
value is unsigned.

Unary minus of an unsigned value is unsigned.

Unsigned operands may mix freely with real, complex operands. (Unsigned
operands cannot be mixed with interval operands.)

Relational Expressions

Signed and unsigned integer operands may be compared using intrinsic relational
operations. The result is based on the unaltered value of the operands.

Control Constructs

The CASE construct accepts unsigned integers as case-expressions.

Unsigned integers are not permitted as DO loop control variables, or in arithmetic
IF control expressions.

Input/Output Constructs

Unsigned integers can be read and written using the I, B, O, and Z edit
descriptors.

They can also be read and written using list-directed and namelist 1/0. The
written form of an unsigned integer under list-directed or namelist I/0 is the
same as is used for positive signed integers.

Unsigned integers can also be read or written using unformatted 1/70.

4-14 Fortran User's Guide « May 2003

4.5.5

Intrinsic Functions

= Unsigned integers are allowed in intrinsic functions, except for SI GN and ABS.

= A new intrinsic function, UNSI GNED, is analogous to | NT but produces a result of
unsigned type. The form is

UNSI GNED(v [, kind]) .

= Another new intrinsic function, SELECTED UNSI GNED_KI ND(var) , returns the
kind parameter for var.

= The M Nand MAX functions do not allow both signed and unsigned integer
operands unless there is at least one operand of REAL type.

= Unsigned arrays cannot appear as arguments to array intrinsic functions.

4.6

4.6.1

Fortran 2000 Features

A number of features proposed in the Fortran 2000 draft standard appear in this
release of the f 95 compiler.

Interoperability with C Functions

The new draft standard for Fortran provides:

= a means of referencing C language procedures and, conversely, a means of
specifying that a Fortran subprogram can be referenced from a C function, and

= a means of declaring global variables that are linked with external C variables

The | SO_C_BI NDI NG module provides access to named constants that are kind type
parameters representing data that is compatible with C types.

The draft standard also introduces the Bl ND(C) attribute. A Fortran derived type is
interoperable with C if it has the Bl ND attribute.

This release of the Fortran 95 compiler implements these features as described in the
chapter 15 of the draft standard. Fortran also provides facilities for defining derived
types, enumerations, and type aliases that correspond to C types, as described in
chapter 4 of the draft standard.

Chapter 4 Fortran 95 Features and Differences 4-15

4.6.2

4.6.3

46.4

4.6.5

IEEE Floating-Point Exception Handling

New intrinsic modules | EEE_ARI THVETI C,and | EEE_FEATURES provide support for
exceptions and IEEE arithmetic in the Fortran language. Full support of these
features is provided by:

USE, INTRINSIC :: |EEE_ARI THMETIC
USE, INTRINSIC :: | EEE FEATURES

These modules define a set of derived types, constants, rounding modes, inquiry
functions, elemental functions, kind functions, and elemental and non-elemental
subroutines. The details are contained in Chapter 14 of the draft standard for
Fortran 2000.

PROTECTED Attribute

The Fortran 95 compiler now accepts the Fortran 2000 PROTECTED attribute.
PROTECTED imposes limitations on the usage of module entities. Objects with the
PROTECTED attribute are only definable within the module that declares them.

Fortran 2000 Asynchronous 170

The compiler recognizes the ASYNCHRONCUS specifier on 1/0 statements:
ASYNCHRONOQUS=[' YES' | ' NO]

This syntax is as proposed in the Fortran 2000 draft standard, Chapter 9. In
combination with the WAI T statement it allows the programmer to specify 1/0
processes that may be overlapped with computation. While the compiler recognizes
ASYNCHRONOUS=" YES' , the draft standard does not require actual asynchronous 1/0.
In this release of the compiler, 170 is always synchronous.

Extended ALLOCATABLE Attribute

Recent decisions by the Fortran 95 standards organizations have extended the data
entities allowed for the ALLOCATABLE attribute. Previously this attribute was limited
to locally stored array variables. It is now allowed with:

= array components of structures
=« dummy arrays
= array function results

4-16 Fortran User's Guide « May 2003

4.6.6

4.6.7

Allocatable entities remain forbidden in all places where they may be storage-
associated: COMVON blocks and EQUI VALENCE statements. Allocatable array
components may appear in SEQUENCE types, but objects of such types are then
prohibited from COMMON and EQUI VALENCE.

VALUE Attribute

The f 95 compiler recognizes the VALUE type declaration attribute. This attribute has
been proposed for the Fortran 2000 standard.

Specifying a subprogram dummy input argument with this attribute indicates that
the actual argument is passed “by value”. The following example demonstrates the
use of the VALUE attribute with a C main program calling a Fortran 95 subprogram
with a literal value as an argument:

C code:
#i ncl ude <stdlib. h>
int main(int ac, char *av[])

{
}

to_fortran(2);

Fortran code:
subroutine to_fortran(i)
integer, value :: i
print *, i
end

Fortran 2000 Stream 1/0

A new “stream” I/0 scheme has been proposed as part of the Fortran 2000 draft
standard. Stream /0 access treats a data file as a continuous sequence of bytes,
addressable by a positive integer starting from 1. Declare a stream 1/0 file with the
ACCESS=" STREAM specifier on the OPEN statement. File positioning to a byte
address requires a POS=scalar_integer_expression specifier on a READ or WRI TE
statement. The | NQUI RE statement accepts ACCESS=" STREAM , a specifier STREAM=
scalar_character_variable, and POS=scalar_integer_variable.

Chapter 4 Fortran 95 Features and Differences 4-17

4.6.8

Fortran 2000 Formatted 1/0O Features

Three new Fortran 2000 formatted 1/0 specifiers have been implemented in f 95.
They may appear on OPEN, READ, WRI TE, PRI NT, and | NQUI RE statements:

= DECI MAL=[' PO NT' |' COWA']
Change the default decimal editing mode. The default uses a period to separate
the whole number and decimal parts of a floating-point number formatted with D,
E, EN, ES, F, and Gediting. ' COWA' changes the default to use comma instead of

a period, to print, for example, 123, 456. The default is' PO NT' , which uses a
period, to print, for example, 123. 456.

= ROUND=[' PROCESSCR_DEFI NED' | ' COVPATI BLE']

Set the default rounding mode for formatted 170 D, E, EN, ES, F, and Gediting.
With ' COVPATI BLE' , the value resulting from data conversion is the one closer
to the two nearest represetnations, or the value away from zero if the value is
halfway between them. With ' PROCESSOR_DEFI NED , the rounding mode is
dependent on the processor’s default mode, and is the compiler default if ROUND
is not specified.

As an example, WRI TE(*, ' (f11.4)"') 0.11115 prints 0. 1111 in default
mode, and 0. 1112 in " COVPATI BLE' mode.

= | OVBG=character-variable

Returns an error message as a string in the specified character variable. This is the
same error message that would appear on standard output. Users should
allocated a character buffer large enough to hold the longest message.
(CHARACTER* 256 should be sufficient.)

When used in | NQUI RE statements, these specifiers declare a character variable for
returning the current values.

New edit descriptors DP, DC, RP, and RC change the defaults within a single FORVAT
statement to decimal point, decimal comma, processor-defined rounding, and
compatible rounding respectively. For example:

WRI TE(*,"' (15,DC,F10.3)') N, W
prints a comma instead of a period in the F10. 3 output item.

See also the - i or oundi ng compiler command-line option for changing the floating-
point rounding modes on formatted 1/0. (“- i or oundi ng=mode” on page 3-31.)

4-18 Fortran User's Guide « May 2003

4.7

4.7.1

4.7.2

4.7.3

Additional 1/0 Extensions

The section describes extensions to Fortran 95 Input/Output handling that are
accepted by the f 95 compiler that are not part of the Fortran 2000 draft standard.
Some are 1/0 extensions that appeared in the Fortran 77 compiler, f 77, and are now
part of the Fortran 95 compiler.

170 Error Handling Routines

Two new functions enable the user to specify their own error handling routine for
formatted input on a logical unit. When a formatting error is detected, the runtime
170 library calls the specified user-supplied handler routine with data pointing at
the character in the input line causing the error. The handler routine can supply a
new character and allow the 1/0 operation to continue at the point where the error
was detected using the new character; or take the default Fortran error handling.

The new routines, SET_| O ERR HANDLER(3f) and GET_| O_ERR HANDLER(3f), are
module subroutines and require USE SUN_| O HANDLERS in the routine that calls
them. See the man pages for these routines for details.

Variable Format Expressions

Fortran 77 allowed any integer constant in a format to be replaced by an arbitrary
expression enclosed in angle brackets:

1 FORMAT(... <expr>...)
Variable format expressions cannot appear as the n in an nH... edit descriptor, in a

FORMAT statement that is referenced by an ASSI GN statement, or in a FORVAT
statement within a parallel region.

This feature is enabled natively in f 95, and does not require the - f 77 compatibility
option flag.

NAMELI ST Input Format

= The group name may be preceded by $ or & on input. The & is the only form
accepted by the Fortran 95 standard, and is what is written by NAMELI ST output.

= Accepts $ as the symbol terminating input except if the last data item in the group
is CHARACTER data, in which case the $ is treated as input data.

Chapter 4 Fortran 95 Features and Differences 4-19

= Allows NAMELI ST input to start in the first column of a record.

4.7.4 Binary Unformatted 1/0

Opening a file with FORM=' Bl NARY' has roughly the same effect as FORM=

" UNFORMATTED , except that no record lengths are embedded in the file. Without this
data, there is no way to tell where one record begins, or ends. Thus, it is impossible
to BACKSPACE a FORM=' Bl NARY' file, because there is no way of telling where to
backspace to. A READon a' Bl NARY' file will read as much data as needed to fill the
variables on the input list.

= WRI TE statement: Data is written to the file in binary, with as many bytes
transferred as specified by the output list.

= READ statement: Data is read into the variables on the input list, transferring as
many bytes as required by the list. Because there are no record marks on the file,
there will be no “end-of-record” error detection. The only errors detected are
“end-of-file” or abnormal system errors.

= | NQUI RE statement: | NQUI RE on a file opened with FORME=" Bl NARY” returns:

FORME" Bl NARY”

ACCESS=" SEQUENTI AL"

DI RECT=" NC’

FORVATTED=" NO'

UNFORVATTED=" YES”

RECL= AND NEXTREC= are undefined

= BACKSPACE statement: Not allowed—returns an error.
= ENDFI LE statement: Truncates file at current position, as usual.
= REW ND statement: Repositions file to beginning of data, as usual.

4.7.5 Miscellaneous I/0 Extensions

= Recursive 1/0 possible on different units (this is because the f 95 1/0 library is
"MT-Warm").

» RECL=2147483646 (231-2) is the default record length on sequential formatted,
list directed, and namelist output.

= ENCODE and DECODE are recognized and implemented as described in the
FORTRAN 77 Language Reference Manual.

= Non-advancing 170 is enabled with ADVANCE=' NO , as in:

wite(*,'(a)',ADVANCE='NO) 'n= "'
read(*,*) n

4-20 Fortran User's Guide « May 2003

4.8 Directives

A compiler directive directs the compiler to do some special action. Directives are
also called pragmas.

A compiler directive is inserted into the source program as one or more lines of text.
Each line looks like a comment, but has additional characters that identify it as more
than a comment for this compiler. For most other compilers, it is treated as a
comment, so there is some code portability.

Sun-style parallelization directives are the default with f 95 - expl i ci t par. To
switch to Cray-style directives, use the - np=cr ay compiler command-line flag.
Explicit parallelization with OpenMP directives requires compiling with - opennp.

A complete summary of Fortran directives appears in Appendix D.

4.8.1 Form of Special f 95 Directive Lines

f 95 recognizes its own special directives in addition to those described in Chapter 2.
These have the following syntax:

I'DIR$ d1, d2,

48.1.1 Fixed-Form Source

Put CDI R$ or ! DI R$ in columns 1 through 5.

Directives are listed in columns 7 and beyond.

Columns beyond 72 are ignored.

An initial directive line has a blank in column 6.

A continuation directive line has a nonblank in column 6.

48.1.2 Free-Form Source
= Put! Dl R$ followed by a space anywhere in the line.

The ! DI R$ characters are the first nonblank characters in the line (actually,
non-whitespace).

= Directives are listed after the space.

= An initial directive line has a blank, tab, or newline in the position immediately
after the ! DI R$.

Chapter 4 Fortran 95 Features and Differences 4-21

4.8.2

4.8.2.1

4.8.2.2

4.8.2.3

= A continuation directive line has a character other than a blank, tab, or newline in
the position immediately after the ! DI R$.

Thus, ! DI R$ in columns 1 through 5 works for both free-form source and fixed-form
source.

FI XED and FREE Directives

These directives specify the source form of lines following the directive line.

Scope

They apply to the rest of the file in which they appear, or until the next FREE or
FI XED directive is encountered.

Uses

= They allow you to switch source forms within a source file.

= They allow you to switch source forms for an | NCLUDE file. You insert the
directive at the start of the | NCLUDE file. After the | NCLUDE file has been
processed, the source form reverts back to the form being used prior to processing
the | NCLUDE file.

Restrictions

The FREE/ FI XED directives:
= Each must appear alone on a compiler directive line (not continued).

= Each can appear anywhere in your source code. Other directives must appear
within the program unit they affect.

Example: A FREE directive.

I DI R$ FREE
DOi =1, n
a(i) = b(i) * c(i)
END DO

4-22 Fortran User's Guide « May 2003

4.8.3

Parallelization Directives

A parallelization directive is a special comment that directs the compiler to attempt to
parallelize the next DO loop. These are summarized in Appendix D and described in
the chapter on parallelization in the Fortran Programming Guide. f 95 recognizes both
Sun and Cray style parallelization directives, as well as the OpenMP Fortran API
directives. OpenMP parallelization is described in the OpenMP API User’s Guide.

4.9

Module Files

Compiling a file containing a Fortran 95 MODULE generates a module interface file
(. mod file) for every MODULE encountered in the source. The file name is derived
from the name of the MODULE; file xyz. nod (all lowercase) will be created for
MODULE xyz.

Compilation also generates a . 0 module implementation object file for the source
file containing the MODULE statements. Link with the module implementation object
file along with the all other object files to create an executable.

The compiler creates module interface files and implementation object files in the
directory specified by the - moddi r =dir flag or the MODDI R evironment variable. If
not specified, the compiler writes . nod files in the current working directory.

The compiler looks in the current working directory for the interface files when
compiling USE modulename statements. The - Mpath option allows you to give the
compiler an additional path to search. Module implementation object files must be
listed explicitly on the command line for the link step.

Typically, programmers define one MODULE per file and assign the same name to the
MODULE and the source file containing it. However, this is not a requirement.

Chapter 4 Fortran 95 Features and Differences 4-23

4-24

In this example, all the files are compiled at once. The module source files appear
first before their use in the main program.

deno% cat nod_one. f 90
MODULE one

END MODULE
denmo% cat nod_t wo. f 90
MODULE t wo

END MODULE
denp% cat nain. f 90
USE one
USE two
END
denp% f95 -0 nain nod_one.f90 nod_two.f90 main.f90

Compilation creates the files:
mai n
mai n. o
one. nod
nod_one. 0
t wo. nod
nod_two. o

The next example compiles each unit separately and links them together.

demo% f 95 -c¢ nod_one. f90 nod_t wo. f 90
dem% f95 -c main. f90
denp% f95 -0 nain main.o nod_one. o nobd_two. o

When compiling mai n. f 90, the compiler searches the current directory for one. nod
and t wo. nod. These must be compiled before compiling any files that reference the
modules on USE statements. The link step requires the module implementation
object files rod_one. o and nod_t wo. o appear along with all other object files to
create the executable.

Fortran User's Guide « May 2003

491

4.9.2

4.9.3

Searching for Modules

With the release of the Sun ONE Studio 7 Fortran 95 compiler, . nod files can be
stored into an archive (. a) file. An archive must be explicitly specified in a - Mpath
flag on the command line for it to be searched for modules. The compiler does not
search archive files by default.

Only . nod files with the same names that appear on USE statements will be searched.
For example, the Fortran 95 statement USE mynod causes the compiler to search for
the module file nynod. nod by default.

While searching, the compiler gives higher priority to the directory where the
module files are being written. This can be controlled by the - noddi r =dir option flag
and the MODDI R environment variable. This implies that if only the - Mpath option is
specified, the current directory will be searched for modules first, before the
directories and files listed on the - Mflag.

The - use=list Option Flag

The - use=list flag forces one or more implicit USE statements into each subprogram
or module subprogram compiled with this flag. By using the flag, it is not necessary
to modify source programs when a module or module file is required for some
feature of a library or application.

Compiling with - use=module_name has the effect of adding a USE module_name to
each subprogram or module being compiled. Compiling with - use=module_file_name
has the effect of adding a USE module_name for each of the modules contained in the
module_file_name file.

The f dunpnod Command

Use the f dumpnod(1) command to display information about the contents of a
compiled module information file.

denp% f dunpnod nods. nod
GROUP 1.0 v8,i4,r4,d8,nl6, a4 nods. nod
X 1.0 v8,i4,r4,d8, nl6, a4 nods. nod

Chapter 4 Fortran 95 Features and Differences 4-25

The f dunprod command will display information about modules in a single . nod
file, files formed by concatenating . nod files, and in . a archives of . nod files. The
display includes the name of the module, a version number, the target architecture,
and flags indicating compilation options with which the module is compatible. See
the f dunpnod(1) man page for details.

4.10

Intrinsics

f 95 supports some intrinsic procedures that are extensions beyond the standard.

TABLE 4-4 Nonstandard Intrinsics
Name Definition Function Type Argument Types Arguments Notes
cor Cotangent real real ([X=]x) P, E
DDl M Positive difference double double precision ([X=]x,[Y=1y) P E
precision
LEADZ Get the number of integer Boolean, integer, real, ([I =]i) NP, |
leading 0 bits or pointer
POPCNT Get the number of integer Boolean, integer, real, ([=]i) NP, |
set bits or pointer
POPPAR Calculate bit integer Boolean, integer, real, ([X=]x) NP, |
population parity or pointer
Notes on the above table:
P The name can be passed as an argument.
NP The name cannot be passed as an argument.
E External code for the intrinsic is called at run time.
| f 95 generates inline code for the intrinsic procedure.
See the Fortran Library Reference for a more complete discussion of intrinsics,
including those from Fortran 77 that are recognized by the Fortran 95 compiler.
4-26 Fortran User's Guide « May 2003

4.11 Forward Compatibility

Future releases of f 95 are intended to be source code compatible with this release.

Module information files generated by this release of f 95 are not guaranteed to be
compatible with future releases.

4.12 Mixing Languages

On Solaris systems, routines written in C can be combined with Fortran programs,
since these languages have common calling conventions.See the C-Fortran Interface
chapter in the Fortran Programming Guide for details on how to interoperate between
C and Fortran routines.

Chapter 4 Fortran 95 Features and Differences 4-27

4-28 Fortran User's Guide « May 2003

CHAPTER 5

FORTRAN 77 Compatibility:
Migrating to Fortran 95

The Fortran 95 compiler, f 95, will compile most legacy FORTRAN 77 programs,
including programs utilizing non-standard extensions previously compiled by the
f 77 compiler.

f 95 will accept many of these FORTRAN 77 features directly. Others require
compiling in FORTRAN 77 compatibility mode (f 95 - 77).

This chapter describes the FORTRAN 77 features accepted by f 95, and lists those

f 77 features that are incompatible with f 95. For details on any of the non-standard
FORTRAN 77 extensions that were accepted by the f 77 compiler, see the
FORTRAN 77 Language Reference manual at

http://docs. sun. coni sour ce/ 806- 3594/ i ndex. htm .

See Chapter 4 for other extensions to the Fortran 95 language accepted by the f 95
compiler.

f 95 will compile standard-conforming FORTRAN 77 programs. To ensure continued
portability, programs utilizing non-standard FORTRAN 77 features should migrate
to standard-conforming Fortran 95. Compiling with the - ansi option will flag all
non-standard usages in your program.

5.1

Compatible f 77 Features

f 95 accepts the following non-standard features of the FORTRAN 77 compiler, f 77,
either directly or when compiling in - f 77 compatibility mode:

= Source Format
« Continuation lines can start with ‘& in column 1. [-f 77=mi sc]
« The first line in an include file can be a continuation line. [- f 77=m sc]
« Use f 77 tab-format. [- f 77=t ab]

5-1

5-2

Tab-formatting can extend source lines beyond column 72. [- f 77=t ab]

f 95 tab-formatting will not pad character strings to column 72 if they extend
over a continuation line. [- f 77]

= |/O:

You can open a file with ACCESS=" APPEND' in Fortran 95.
List-directed output uses formats similar to the f 77 compiler. [- f 77=out put]
f 95 allows BACKSPACE on a direct-access file, but not ENDFI LE.

f 95 allows implicit field-width specifications in format edit descriptors. For
example, FORMAT(1) is allowed.

f 95 will recognize f 77 escape sequences (for example,\n\t \ ") in output
formats. [- f 77=backsl ash.]

f 95 recognizes FI LEOPT= in OPEN statements.

f 95 allows SCRATCH files to be closed with STATUS=" KEEP' [-f 77]. When the
program exits, the scratch file is not deleted. SCRATCH files can also be opened
with FI LE=name when compiled with - f 77.

Direct I/0 is permitted on internal files. [- f 77]
f 95 recognizes FORTRAN 77 format edit descriptors A, $, and SU. [- f 77]
FORME’ PRI NT' can appear on OPEN statements. [- f 77]

f 95 recognizes the legacy FORTRAN input/output statements ACCEPT and
TYPE.

Compile with - f 77=out put to write FORTRAN 77 style NAMELI ST output.

A READwith only ERR=specified (no | OSTAT= or END= branches) treats the ERR=
branch as an END= when an EOF is detected. [- f 77]

VMS Fortran NAME=’ filename’ is accepted on OPEN statements. [- f 77]

f 95 accepts an extra comma after READ() or WRI TE() . [- f 77]

END= branch can appear on direct access READ with REC=. [- f 77=i nput]
Allow format edit descriptor Ew. d. e and treat it as Ew. d. Ee. [- f 77]

Character strings can be used in the FORMAT of an input statement.
[-f77=i nput]

| OSTAT= specifier can appear in ENCODE/ DECODE statements.
List-directed 170 is allowed with ENCODE/ DECODE statements.

Asterisk (*) can be used to stand in for STDI Nand STDOUT when used as a
logical unit in an 1/0 statement.

Arrays can appear in the FMI= specifier. [- f 77=mi sc]
PRI NT statement accepts namelist group names. [- f 77=out put]
The compiler accepts redundant commas in FORVAT statements.

Fortran User's Guide « May 2003

While performing NAMELI ST input, entering a question mark (?) responds with
the name of the namelist group being read. [- f 77=i nput]

Data Types, Declarations, and Usage:

In a program unit, the | MPLI CI T statement may follow any other declarative
statement in the unit.

f 95 accepts the | MPLI CI T UNDEFI NED statement.
f 95 accepts the AUTOVATI C statement, a FORTRAN 77 extension.
f 95 accepts the STATI C statement and treats it like a SAVE statement.

f 95 accepts VAX STRUCTURE, UNI ON, and MAP statements.(See “STRUCTURE
and UNI ON (VAX Fortran)” on page 4-12)

LOG CAL and | NTEGER variables can be used interchangeably.
[-f77=I ogi cal]

| NTEGER variables can appear in conditional expressions, such as DOWHI LE.
[-f77=I ogi cal]

Cray pointers can appear in calls to intrinsic functions.

f 95 will accept data initializations using slashes on type declarations. For
example: REAL MHW 100. 101/, | COMX/ 32. 223/

f 95 allows assigning Cray character pointers to non-pointer variables and to
other Cray pointers that are not character pointers.

f 95 allows the same Cray pointer to point to items of different type sizes (for
example, REAL* 8 and | NTEGER* 4).

A Cray pointer can be declared | NTEGER in the same program unit where it is
declared as a PO NTER. The | NTEGER declaration is ignored. [- f 77=m sc]

A Cray pointer can be used in division and multiplication operations.
[-f77=m sc]

Variables in an ASSI GN statement can be of type | NTEGER* 2. [- f 77=mi sc]

Expressions in alternate RETURN statements can be non-integer type.
[-f77=m sc]

Variables with the SAVE attribute can be equivalenced to an element of a
COVMON block.

Initializers for the same array can be of different types. Example:
REAL*8 ARR(5) /12.3 1, 3, 5.D0, 9/

Type declarations for namelist items can follow the NAMELI ST statement.
f 95 accepts the BYTE data type.
f 95 allows non-integers to be used as array subscripts. [-f 77=subscri pt]

f 95 allows relational operators . EQ and . NE. to be used with logical
operands. [- f 77=I ogi cal]

Chapter 5 FORTRAN 77 Compatibility: Migrating to Fortran 95 5-3

« f 95 will accept the legacy f 77 VI RTUAL statement, and treats it as a DI MENSI ON
statement.

« Different data structures can be equivalenced in a manner that is compatible
with the f 77 compiler. [- f 77=mi sc]

« Like the f 77 compiler, f 95 allows many intrinsics to appear in initialization
expressions on PARAMVETER statements.

« f 95 allows assignment of an integer value to CHARACTER* 1 variables.
[-f77=m sc]

« BOZ constants can be used as exponents. [- f 77=ni sc]

« BOZ constants can be assigned to character variables. For example:

character*8 ch
ch ="12345678"X

« BOZ constants can be used as arguments to intrinsic function calls.
[-f77=m sc]

« A character variable can be initialized with an integer value in a DATA
statement. The first character in the variable is set to the integer value and the
rest of the string, if longer than one character, is blank-filled.

= An integer array of hollerith characters can be used as a format descriptor.
[-f77].

« Constant folding will not be done at compile time if it results in a
floating-point exception. [- f 77=m sc]

« When compiling with - f 77=mi sc, f 95 will automatically promote a REAL
constant to the appropriate kind (REAL* 8 or REAL* 16) in assignments, data,
and parameter statements, in the manner of the f 77 compiler. [- f 77=m sc]

« Equivalenced variables are allowed on an assigned GOTO. [-f 77]
= Non-constant character expressions can be assigned to numeric variables.

« Compiling with - f 77=m sc allows *kind after the variable name in type
declarations. [-f 77=m sc]. For example
REAL Y*4, X*8(21))
| NTEGER FUNCTI ON FOO*8(J)

« A character substring may appear as an implied-DO target in a DATA
statement. [- f 77=mi sc]
For example: DATA (a(i:i), i=1,n) /n*" +/

« Integer expressions within parentheses can appear as a type size. For example:
PARAMETER (N=2)
| NTEGER* (N+2) K

= Programs, Subroutines, Functions, and Executable Statements:
« f 95 does not require a PROGRAMstatement to have a name.

« Functions can be called by a CALL statement as if they were subroutines.
[-f77]

5-4 Fortran User's Guide *« May 2003

Functions do not have to have their return value defined. [- f 77]

An alternate return specifier (* label or &label) can appear in the actual
parameter list and in different positions. [- f 77=mi sc]

%/AL can be used with an argument of type COVPLEX. [- f 77=ni sc]
9REF and %4.OC are available. [- f 77=mi sc]

A subroutine can call itself recursively without declaring itself with a
RECURSI VE keyword. [- f 77=m sc] However, programs that perform indirect
recursion (routine A calls routine B which then calls routine A) should also be
compiled with the - xr ecur si ve flag to work correctly.

A subroutine with alternate returns can be called even when the dummy
argument list does not have an alternate return list.

Compiling with - f 77=mi sc allows statement functions to be defined with
arguments typed other than | NTEGER or REAL, and actual arguments will be
converted to the type defined by the statement function. [- f 77=m sc]

Allow null actual arguments. For example: CALL FOX(I,,,J) has two null
arguments between the first | and the final J argument.

f 95 treats a call to the function %4.0C() as a call to LOC() . [- f 77=m sc]
Allow unary plus and unary minus after another operator such as ** or *.

Allow a second argument with the CVPLX() intrinsic function even when the
first argument is a COVPLEX type. In this case, the real part of the first argument
is used. [-f 77=mi sc]

Allow the argument to the CHAR() intrinsic function to exceed 255 with only a
warning, not an error. [- f 77=m sc]

Allow negative shift counts with only a warning, not an error.

Search for an | NCLUDE file in the current directory as well as those specified in
the -1 option. [- f 77=mi sc]

Allow consecutive . NOT. operations, such as . NOT. . NOT. . NOT. (1. EQ J).
[-f77=m sc]

Miscellaneous

The f 95 normally does not issue progress messages to standard out. The f 77
compiler did issue progress messages, displaying the names of the routines it
was compiling. This convention is retained when compiling with the - f 77
compatibility flag.

Programs compiled by the f 77 compiler did not trap on arithmetic exceptions,
and automatically called i eee_r et rospecti ve on exit to report on any
exceptions that may have occured during execution. Compiling with the - f 77
flag mimics this behavior of the f 77 compiler. By default, the f 95 compiler
traps on the first arithmetic exception encountered and does not call

i eee_retrospective.

Chapter 5 FORTRAN 77 Compatibility: Migrating to Fortran 95 5-5

The f 77 compiler treated a REAL* 4 constant as if it had higher precision in
contexts where higher precision was needed. When compiling with the - f 77
flag, the f 95 compiler allows a REAL* 4 constant to have double or quad
precision when the constant is used with a double or quad precision operand,
respectively.

Allow the DO loop variable to be redefined within the loop. [- f 77=m sc]
Display the names of program units being compiled. [- f 77=mi sc]

Allow the types of the variables used in a DIMENSION statement to be
declared after the DIMENSION statement. Example:

SUBROUTI NE FOO(ARR, G

DI MENSI ON ARR(G

| NTEGER G

RETURN

END

For details on the syntax and semantics of non-standard language extensions, see the
FORTRAN 77 Language Reference at
http://docs. sun. conif sour ce/ 806- 3594/ i ndex. htm .

5.2

Incompatibility Issues

The following lists known incompatibilities that arise when compiling and testing
legacy f 77 programs with this release of f 95. These are due to either missing
comparable features in f 95, or differences in behavior. These items are non-standard
extensions to Fortran 77 supported in f 77 but not in f 95.

=« Source Format

An ANSI warning is given for names longer than 6 characters when the - f 77
option is specified.

=« |/O:

f 95 does not allow ENDFI LE on a direct-access file.

f 95 does not recognize the ' n form for specifying a record number in direct
access I/0: READ (2 '13) X, VY,Z

f 95 does not recognize the legacy f 77 “R” format edit descriptor.
f 95 does not allow the DI SP= specifier in a CLOSE statement.
Bit constants are not allowed on a WRI TE statement.

Fortran 95 NAMELI ST does not allow arrays and character strings with variable
lengths.

Opening a direct access file with RECL=1 cannot be used as a “stream” file. Use
FORVAT=" STREAM instead.

5-6 Fortran User's Guide * May 2003

« Fortran 95 reports illegal 170 specifiers as errors. f 77 gave only warnings.
Data Types, Declarations, and Usage:

« 95 allows only 7 array subscripts; f 77 allowed 20.

« f 95 does not allow non-constants in PARAMETER statements.

« Integer values cannot be used in the initializer of a CHARACTER type
declaration.

« The REAL() intrinsic returns the real part of a complex argument instead of
converting the argument to REAL* 4. This gives different results when the
argument is DOUBLE COMPLEX or COVPLEX* 32

« Fortran 95 will not allow array elements in boundary expressions before the
array is declared. For example:

subroutine s(il,i?2)

integer i1(i2(1):10)

di nensi on i 2(10)

... ERROR "12" has beenusedas afunction, thereforeit nust
not be declaredw ththeexplicit-shape D MENSI ONattri bute.

end

Programs, Subroutines, Functions, Statements:
« The maximum length for names is 127 characters.
Command-line Options:

« f 95 does not recognize the f 77 compiler options - dbl -ol dstruct -i2-i4
and some suboptions of - vax.

f 77 Library Routines Not Supported by f 95;
« The POSIX library.
« Thel O NI T() library routine.

« Thetape I/0 routinest open, tcl ose, twite, tread, trew n, tskipf,
tstate.

« start_iostats and end_i ost at s library routines.
« f77_init() function.

« 95 does not allow the | EEE_RETROSPECTI VE subroutine to be bypassed by
defining the user’s own routine with the same name.

Chapter 5 FORTRAN 77 Compatibility: Migrating to Fortran 95 5-7

5.3 Linking With f 77-Compiled Routines

= To mix f 77 and f 95 object binaries, link with f 95 compile with the - x| ang=f 77
option. Perform the link step with f 95 even if the main program is an f 77
program

= Example: Compiling an f 95 main program with an f 77 object file.

denmp% cat m f 95

CHARACTER*74 :: ¢ = 'This is a test.’
CALL echol(c)

END

deno% f 95 -xl ang=f 77 m f95 sub77.0

denp% a. out

This is a test.

denp%

= The FORTRAN 77 library and intrinsics are available to f 95 programs and are
listed in the Fortran Library Reference Manual.

Example: f 95 main calls a routine from the FORTRAN 77 library.

demb% cat tdtine.f95
REAL e, dtime, t(2)
e =dtime(t)

DOi = 1, 100000
as = as + cos(sqrt(float(i)))
END DO
e =dtime(t)
PRINT *, 'elapsed:', e, ', user:', t(1), ', sys:', t(2)
END

denmp% f 95 tdtine.f95

deno% a. out

el apsed: 0.14 , user: 0.14 , sys: 0.0E+0
denp%

See dt i me(3F).

5.3.1 Fortran 95 Intrinsics
The Fortran 95 standard supports intrinsic functions that FORTRAN 77 did not have.

The full set of Fortran 95 intrinsics, including non-standard intrinsics, appears in the
Fortran Library Reference manual.

5-8 Fortran User's Guide * May 2003

If you use any of the intrinsic names listed in the Fortran Library Reference as a
function name in your program, you must add an EXTERNAL statement for f 95 to use
your routine rather than the intrinsic one.

The Fortran Library Reference also lists all the intrinsics recognized by earlier releases
of the f 77 compiler. The f 95 compiler recognizes these names as intrinsics as well.

Compiling with -f 77=i ntri nsi cs limits the compiler’s recognition of intrinsic
functions to just those that were known to the f 77 compiler, ignoring the Fortran 95
intrinsics.

0.4

Additional Notes About Migrating to the
f 95 Compiler

= Thefl oati ngpoi nt. h header file replacesf 77_f | oat i ngpoi nt . h,and should
be used in source programs as follows:

#i ncl ude "fl oatingpoint.h"

= Header file references of the form f 77/ filename should be changed to remove the
f 77/ directory path.

= Some programs utilizing non-standard aliasing techniques (by overindexing
arrays, or by overlapping Cray or Fortran pointers) may benefit by compiling
with the appropriate - xal i as flag. See “- xal i as[=keywords] ” on page 3-52.
This is discussed with examples in the chapter on porting “dusty deck” programs
in the Fortran Programming Guide.

Chapter 5 FORTRAN 77 Compatibility: Migrating to Fortran 95 5-9

5-10 Fortran User's Guide « May 2003

APPENDIX A

Runtime Error Messages

This appendix describes the error messages generated by the Fortran 95 runtime 1/0
library and operating system.

A.l Operating System Error Messages

Operating system error messages include system call failures, C library errors, and
shell diagnostics. The system call error messages are found in i nt r 0(2). System calls
made through the For t r an library do not produce error messages directly. The
following system routine in the Fort r an library calls C library routines which
produce an error message:

i nteger system status

status = system("cp afile bfile")
print*, "status =", status

end

The following message is displayed:

cp: cannot access afile
status = 512

A-1

A.2 f 95 Runtime 170 Error Messages

The f 95 1/0 library issues diagnostic messages when errors are detected at runtime.
Here is an example, compiled and run with Fortran 95:

denmb% cat wf . f

WRITE(6) 1
END
denm% f95 -0 wf wf.f
denmo% wf

*xxxxx EFORTRAN RUN-TI ME SYSTEM ******
Error 1003: unformatted I/O on formatted unit
Location: the WRITE statenment at line 1 of "wf.f"

Unit: 6
File: standard out put
Abor t

Because the f 95 message contains references to the originating source code filename
and line number, application developers should consider using the ERR= clause in
1/0 statements to softly trap runtime 170 errors.

TABLE A-1 lists the runtime I/0 messages issued by f 95.

TABLEA-1 f 95 Runtime I/0 Messages

Error Message

1000 format error

1001 illegal unit nunber

1002 formatted I/O on unformatted unit

1003 unformatted 1/0O on formatted unit

1004 direct-access 1/0 on sequential -access unit
1005 sequential -access I/0O on direct-access unit

1006 devi ce does not support BACKSPACE
1007 of f begi nning of record

1008 can't stat file

1009 no * after repeat count

1010 record too |ong

A-2 Fortran User's Guide * May 2003

TABLEA-1 f 95 Runtime I/0 Messages (Continued)

Error Message

1011 truncation failed

1012 i ncomprehensible list input

1013 out of free space

1014 unit not connected

1015 read unexpected character

1016 illegal logical input field

1017 "new file exists

1018 can't find 'old file

1019 unknown system error

1020 requires seek ability

1021 illegal argunent

1022 negative repeat count

1023 illegal operation for channel or device
1024 reentrant 1/0

1025 i nconpati ble specifiers in open

1026 illegal input for nanelist

1027 error in FILEOPT paraneter

1028 witing not allowed

1029 readi ng not all owed

1030 i nteger overflow on input

1031 fl oating-point overflow on input

1032 fl oating-point underflow on input
1051 default input unit closed

1052 default output unit closed

1053 direct-access READ from unconnected unit
1054 direct-access WRITE to unconnected unit
1055 unassoci ated internal unit

1056 null reference to internal unit

1057 enpty internal file

1058 list-directed 1/O on unformatted unit

Appendix A Runtime Error Messages

A-3

A-4

TABLEA-1 f 95 Runtime I/0 Messages (Continued)

Error Message
1059 nanelist |/O on unformatted unit
1060 tried to wite past end of internal file

1061 unassoci ated ADVANCE specifier
1062 ADVANCE specifier is not 'YES or 'NO

1063 EOR specifier present for advancing input

1064 S| ZE specifier present for advanci ng input
1065 negative or zero record nunber

1066 record not in file

1067 corrupted fornmat

1068 unassoci ated input variable

1069 more /O list items than data edit descriptors
1070 zero stride in subscript triplet

1071 zero step in inplied DO I oop

1072 negative field width

1073 zero-width field

1074 character string edit descriptor reached on input
1075 Hollerith edit descriptor reached on input

1076 no digits found in digit string

1077 no digits found in exponent

1078 scal e factor out of range

1079 digit equals or exceeds radix

1080 unexpected character in integer field
1081 unexpected character in real field
1082 unexpected character in logical field
1083 unexpected character in integer value
1084 unexpected character in real value
1085 unexpected character in conplex value
1086 unexpected character in |ogical value
1087 unexpected character in character value

1088 unexpected character before NAMELI ST group nane

Fortran User's Guide « May 2003

TABLEA-1 f 95 Runtime I/0 Messages (Continued)

Error Message

1089 NAMELI ST group name does not match the name in the program
1090 unexpected character in NAMELIST item

1091 unmat ched parenthesis in NAMELI ST item name
1092 vari abl e not in NAMELI ST group

1093 too many subscripts in NAMELI ST object nane
1094 not enough subscripts in NAMELI ST object nanme
1095 zero stride in NAMVELI ST object nane

1096 enpty section subscript in NAVELI ST object nane
1097 subscript out of bounds in NAMELI ST object nane
1098 enpty substring in NAMELI ST object nane

1099 substring out of range in NAVELI ST object nane
1100 unexpect ed conponent nane in NAMELI ST object nane
1111 unassoci at ed ACCESS specifier

1112 unassoci ated ACTION specifier

1113 unassoci at ed BI NARY specifier

1114 unassoci at ed BLANK specifier

1115 unassoci ated DELIM specifier

1116 unassoci ated DI RECT specifier

1117 unassoci ated FILE specifier

1118 unassoci ated FMI specifier

1119 unassoci ated FORM specifier

1120 unassoci ated FORVMATTED specifier

1121 unassoci ated NAME specifier

1122 unassoci ated PAD specifier

1123 unassoci ated POSI TI ON specifier

1124 unassoci ated READ specifier

1125 unassoci ated READWRI TE specifier

1126 unassoci at ed SEQUENTI AL specifier

1127 unassoci at ed STATUS specifier

1128 unassoci ated UNFORMATTED speci fier

Appendix A Runtime Error Messages

A-5

TABLEA-1 f 95 Runtime I/0 Messages (Continued)

Error Message

1129 unassoci ated WRI TE specifier

1130 zero length file name

1131 ACCESS specifier is not 'SEQUENTIAL' or 'DI RECT

1132 ACTI ON specifier is not 'READ, 'WRITE or 'READVWRI TE
1133 BLANK specifier is not 'ZERO or 'NULL'

1134 DELI M specifier is not 'APOSTROPHE , 'QUOTE , or ' NONE
1135 unexpect ed FORM specifier

1136 PAD specifier is not 'YES or 'NO

1137 POSI TION specifier is not 'APPEND, 'ASIS, or 'REWND
1138 RECL specifier is zero or negative

1139 no record length specified for direct-access file

1140 unexpect ed STATUS specifier

1141 status is specified and not 'OLD for connected unit
1142 STATUS specifier is not 'KEEP' or 'DELETE

1143 status 'KEEP' specified for a scratch file

1144 i npossi bl e status val ue
1145 a file nane has been specified for a scratch file
1146 attenpting to open a unit that is being read from or

witten to

1147 attenpting to close a unit that is being read from or
witten to

1148 attenpting to open a directory

1149 status is 'OLD and the file is a dangling symbolic |ink
1150 status is "NEW and the file is a synbolic link

1151 no free scratch file names

1152 speci fier ACCESS=' STREAM for default unit

1153 streamaccess to default wunit

1161 devi ce does not support REW ND

1162 read perm ssion required for BACKSPACE

1163 BACKSPACE on direct-access unit

1164 BACKSPACE on binary unit

A-6 Fortran User's Guide » May 2003

TABLEA-1 f 95 Runtime I/0 Messages (Continued)

Error Message

1165 end-of -file seen while backspaci ng

1166 wite permssion required for ENDFILE

1167 ENDFI LE on direct-access unit

1168 streamaccess to sequential or direct-access unit

1169 stream access to unconnected unit

1170 direct-access to streamaccess unit

1171 incorrect value of POS specifier

1172 unassoci at ed ASYNCHRONOUS speci fi er

1173 unassoci at ed DECI MAL specifier

1174 unassoci ated | OVMSG specifier

1175 unassoci ated ROUND specifier

1176 unassoci at ed STREAM specifier

1177 ASYNCHRONQUS specifier is not 'YES or 'NO

1178 ROUND specifier is not 'UP', 'DONN , 'ZERO, 'NEAREST,
" COMPATI BLE' or ' PROCESSOR- DEFI NED

1179 DECI MAL specifier is not 'PONT'" or 'COWA

1180 RECL specifier is not allowed in OPEN statenent for stream
access unit

1181 attenpting to allocate an allocated array

1182 deal | ocating an unassoci ated pointer

1183 deal |l ocating an unall ocated allocatable array

1184 deal | ocating an allocatable array through a pointer

1185 deal | ocating an object not allocated by an ALLOCATE
st at enent

1186 deal l ocating a part of an object

1187 deal | ocating a larger object than was allocated

1191 unal | ocated array passed to array intrinsic function

1192 illegal rank

1193 smal | source size

1194 zero array size

1195 negative elenments in shape

Appendix A Runtime Error Messages

A-7

TABLEA-1 f 95 Runtime I/0 Messages (Continued)

Error Message

1196 illegal kind

1197 nonconformabl e array

1213 asynchronous /O on unconnected unit

1214 asynchronous |/0O on synchronous unit

1215 a data edit descriptor and I/O list itemtype are
i ncompati bl e

1216 current /O list item doesn't match with any data edit
descri ptor

2001 invalid constant, structure, or conponent nane

2002 handl e not created

2003 character argunent too short

2004 array argunent too long or too short

2005 end of file, record, or directory stream

2021 lock not initialized (OpenMP)

2122 deadl ock in using |ock variabl e (OpenMP)
2123 lock not set (OpenMP)

A-8 Fortran User's Guide » May 2003

APPENDIX B

Features Release History

B.1

This Appendix lists the new and changed features in this release and previous
releases of the Fortran 95 compiler.

The Fortran 95 compiler, version 7.1, is a component released with Sun ONE Studio
8, Compiler Collection. Previous versions of the compiler were version 7.0, released
with Sun ONE Studio 7, Compiler Collection (formerly Forte Developer 7), and
version 6.2, released with Forte Developer 6, update 2.

Sun ONE Studio 8, Compiler Collection
Release:

Enhanced - opennp option:
The - opennp option flag has been enhanced to facilitate debugging OpenMP
programs. To use dbx to debug your OpenMP application, compile with

- opennp=noopt -g

You will then be able to use dbx to breakpoint within parallel regions and display
contents of variables. See “- opennp[=keyword] ”” on page 3-39.

Multi-process compilation:

Specify - xj obs=n with - xi po and the interprocedural optimizer will invoke at
most n code generator instances to compile the files listed on the command line.
This option can greatly reduce the build time of large applications on a multi-cpu
machine. See “- xj obs=n" on page 3-69.

Making assertions with PRAGVA ASSUME:

The ASSUME pragma is a new feature in this release of the compiler. This pragma
gives hints to the compiler about conditions the programmer knows are true at
some point in a procedure. This may help the compiler to do a better job

B-1

B-2

optimizing the code. The programmer can also use the assertions to check the
validity of the program during execution. See “The ASSUME Directives” on
page 2-13, and “- xassune_cont r ol [=keywords]” on page 3-58.

More Fortran 2000 features:

The following features appearing in the Fortran 2000 draft standard have been
implemented in this release of Fortran 95 compiler. These are described in
Chapter 4.

« Exceptions and IEEE Arithmetic:

New intrinsic modules IEEE_ARITHMETIC, and IEEE_FEATURES provide
support for exceptions and IEEE arithmetic in the Fortran language. See “IEEE
Floating-Point Exception Handling” on page 4-16.

« Interoperability with C:

The new draft standard for Fortran provides a means of referencing C
language procedures and, conversely, a means of specifying that a Fortran
subprogram can be referenced from a C function. It also provides a means of
declaring global variables that are linked with external C variables. See
“Interoperability with C Functions” on page 4-15.

« PROTECTED Attribute

The Fortran 95 compiler now accepts the Fortran 2000 PROTECTED attribute.
PROTECTED imposes limitations on the usage of module entities. Objects with
the PROTECTED attribute are only definable within the module that declares
them. “PROTECTED Attribute” on page 4-16.

« ASYNCHRONOUS 1/0 Specifier
The compiler recognizes the ASYNCHRONCUS specifier on 1/0 statements:
ASYNCHRONQUS=[' YES' | ' NO]

This syntax is as proposed in the draft standard. See “Fortran 2000
Asynchronous I/0” on page 4-16.

Enhanced compatibility with legacy f 77:

A number of new features enhance the Fortran 95 compiler's compatibility with
legacy Fortran 77 compiler, f 77. These include variable format expressions
(VFE's), long identifiers, - ar g=I ocal , and the - vax compiler option. See
Chapter 3 and Chapter 4.

1/0 error handlers:

Two new functions enable the user to specify their own error handling routine for
formatted input on a logical unit. These routines are described in “1/0 Error
Handling Routines” on page 4-19, and in man pages and the Fortran Library
Reference.

Fortran User's Guide « May 2003

unsigned integers:

With this release, the Fortran 95 compiler accepts a new data type, UNSI GNED, as
an extension to the language. See “Unsigned Integers” on page 4-13.

Set preferred stack/heap page size:

A new command-line option, - xpagesi ze, enables the running program to set the
preferred stack and heap page size at program startup. See “- xpagesi ze=size”
on page 3-75.

Faster and enhanced profiling:

This release introduces the new command-line option - xprofil e_i rcache=
path, to speed up the "use" compilation phase during profile feedback. See

“-xprofile_ircache[=path]” on page 3-81. See also
“-xprofil e_pat hmap=collect_prefix: use_prefix” on page 3-82.

Enhanced "known libraries":

The - xknown_l i b option has been enhanced to include more routines from the
Basic Linear Algebra library, BLAS. See “- xknown_|I i b=library_list” on
page 3-70.

Link-time Optimization:

Compile and link with the new - x| i nkopt flag to invoke a post-optimizer to
apply a number of advanced performance optimizations on the generated binary
object code at link time. See “- x| i nkopt [=level]” on page 3-72.

Initialization of local variables:

A new extension to the - xcheck option flag enables special initialization of local
variables. Compiling with - xcheck=i ni t _| ocal initializes local variables to a
value that is likely to cause an arithmetic exception if it is used before it is
assigned by the program. See “- xcheck=keyword” on page 3-60

Appendix B Features Release History B-3

B.2

Sun ONE Studio 7, Compiler Collection
(Forte Developer 7) Release:

= Fortran 77 Functionality Absorbed Into Fortran 95 Compiler

This release of the Forte Developer software replaces the f 77 compiler with
added functionality in the f 95 compiler. The f 77 command is a script that calls
the f 95 compiler:

the command:
f 77 options files libraries
becomes a call to the f 95 compiler::
fo5 -f77=%l | -ftrap=%one options files -1 f77conpat libraries

See Chapter 5 for details on Fortran 77 compatibilities and incompatibilities.
= Fortran 77 Compatibility Mode:

The new - f 77 flag selects various compatibility features that enable the compiler
to accept many Fortran 77 constructs and conventions that are normally
incompatible with Fortran 95. See “- f 77[=list]” on page 3-20, and Chapter 5.

= Compiling “Dusty Deck” Programs That Employ Non-Standard Aliasing:

The f 95 compiler must assume that programs it compiles adhere to the Fortran 95
standard regarding aliasing of variables through subprogram calls, global
variables, pointers, and overindexing. Many “dusty deck” legacy programs
intentionally utilized aliasing techniques to get around shortcomings in early
versions of the Fortran language. Use the new - xal i as flag to advise the
compiler about how far the program deviates from the standard and what kind of
aliasing syndromes it should expect. In some cases the compiler generates correct
code only when the proper - xal i as suboption is specified. Programs that
conform strictly to the standard will find some performance improvement by
advising the compiler to be unconcerned about aliasing. See

“-xal i as[=keywords] ” on page 3-52, and the chapter on Porting in the Fortran
Programming Guide.

= Enhanced MODULE Features:

« New flag - use=list forces one or more implicit USE statements into each
subprogram. See “- use=list” on page 3-48.

« New flag - noddi r =path controls where the compiler writes compiled MODULE
subprograms (. nod files). See “- noddi r =path” on page 3-34. A new
environment variable, MODDI R, also controls where .mod files are written.

B-4 Fortran User's Guide * May 2003

« The -Mpath flag will now accept directory paths, archive (. a) files, or module
(. mod) files to search for MODULE subprograms. The compiler determines the
type of the file by examining its contents; the actual file name extension is
ignored. See “—Mpath” on page 3-33.

« When searching for modules, the compiler now looks first in the directory
where module files are being written.

See “Module Files” on page 4-23 for details.
Enhanced Global Program Analysis With -Xlist:

This release of the f 95 compiler adds a number of new checks to the global
program analysis provided by the - Xl i st flag. The new - Xl i st MP suboption
opens a new domain of static program analysis, verification of OpenMP
parallelization directives. See “—XlI i st [x] ” on page 3-50, the Forte Developer
OpenMP API User’s Guide, and the chapter on Program Analysis and Debugging
in the Fortran Programming Guide for details.

Identifying Known Libraries With -xknown_lib=library:

A new option, - xknown_|I i b=library, directs the compiler to treat references to
certain known libraries as intrinsics, ignoring any user-supplied versions. This
enables the compiler to perform optimizations over library calls based on its
special knowledge of the library. In this release, the known library names are
limited to bl as, for a subset of the BLAS routines in the Sun Performance Library,
and i ntrinsics, for ignoring explicit EXTERNAL declarations for Fortran 95
standard intrinsics and any user-supplied versions of these routines. See
“-xknown_| i b=library_list” on page 3-70.

Ignoring Dummy Argument Type in Interfaces:

A new directive, ! $PRAGVA | GNORE_TKR({list_of variables}, causes the compiler to
ignore the type, kind, and rank for the specified dummy argument names
appearing in a generic procedure interface when resolving a specific call. Using
this directive greatly simplifies writing generic interfaces for wrappers that call
specific library routines based on argument type, kind, and rank. See “The

| GNORE_TKR Directive” on page 2-10 for details.

Enhanced -C Runtime Array Checking:

In this f 95 compiler release, runtime array subscript range checking with the - C
option has been enhanced to include array conformance checking. A runtime
error is produced when an array syntax statement is executed where the array
sections are not conformable. See “—C” on page 3-13.

Introducing Fortran 2000 Features:

Some new formatted 1/0 features proposed for the next Fortran standard have
been implemented in this release of f 95. These are the DECI MAL=, ROUND=, and
IOVBG= specifiers, and they may appear in OPEN, READ, WRI TE, PRI NT, and

I NQUI RE statements. Also implemented are the DR, DC, RP, and RC edit
descriptors. See “Fortran 2000 Formatted 1/0 Features” on page 4-18 for details.

Appendix B Features Release History B-5

= Rounding in Formatted 1/O:

A new option flag, - i or oundi ng, sets the default rounding mode for formatted
1/0. The modes, processor-defined or compatible, correspond to the ROUND=
specifier implemented as part of the Fortran 2000 features. See

“-i oroundi ng=mode” on page 3-31.

= Obsolete Flags Removed:
The following flags have been removed from the f 95 command line:
-db -dbl

The following f 77 compiler flags have not been implemented in the f 95 compiler
and are also considered obsolete:

-arg=local -i2 -i4 -msalign -oldldo -r8 -vax
-xI -xvpara -xtypemap=i nteger: m xed

= Checking for Stack Overflow:

Compiling with the new - xcheck=st kovf flag adds a runtime check for stack
overflow conditions on entry to subprograms. If a stack overflow is detected, a
SI GSEGV segment fault is raised. Stack overflows in multithreaded applications
with large arrays allocated on the stack can cause silent data corruption in
neighboring thread stacks. Compile all routines with - xcheck=st kovf if stack
overflow is suspected. See “- xcheck=keyword” on page 3-60.

= New Default Thread Stack Size:

With this release, the default slave thread stack size has been increased to 4
Megabytes on SPARC V8 platforms, and 8 Megabytes on SPARC V9 platforms.
See the discussion of stacks and stack sizes in the Parallelization chapter of the
Fortran Programming Guide for details.

= Enhanced Interprocedural Optimizations:

With - xi po=1 the compiler does inlining across all source files. This release adds
- Xi po=2 for enhanced interprocedural aliasing analysis and memory allocation
and layout optimizations to imporve cache performance. See
“-xi po[={0]| 1] 2}] ” on page 3-68.

= Control Prefetch Instructions With -xprefetch_level=n:
Use the new flag - xpr ef et ch_| evel =n to control the automatic insertion of
prefetch instructions with - xpr ef et ch=aut 0. Use requires an optimization level
of - xO3 or greater and a target platform that supports prefetch (- xar ch

platforms v8pl us, v8pl usa, v8pl usb, v9, v9a, v9b, generi c64, or nati ve64).
See “- xprefetch_| evel =n” on page 3-79.

Feature histories for releases prior to Forte Developer 7 can be found in the
documentation sets for those earlier releases on the ht t p: / / docs. sun. comweb site.

B-6 Fortran User's Guide * May 2003

APPENDIX C

Less Common —xt ar get Platform
Expansions

This Appendix details older and less commonly used —xt ar get option platform
system names and their expansions. They appear here for reference purposes. The
values for UltraSPARC platforms are given under the - xt ar get option description
in Chapter 3. Some of the system platforms listed here may no longer be supported
by recent releases of the Solaris operating environment.

Each specific value for —xt ar get expands into a specific set of values for the
- xar ch, —xchi p, and —xcache options, as shown in the following table. Run
f pver si on(1) to determine the target definitions on any system.

For example:

—xt ar get =sun4/ 15

means

—xar ch=v8a —xchi p=m cro —xcache=2/16/1

TABLEC-1 - Xt ar get Expansions

-Xtarget= -xarch -xchip -xcache

€cs6400 v8 super 16/ 32/ 4: 2048/ 64/ 1
sc2000 v8 super 16/ 32/ 4: 2048/ 64/ 1
sol b5 v7 old 128/ 32/ 1

sol b6 v8 super 16/ 32/ 4: 1024/ 32/ 1
ssl v7 old 64/ 16/ 1

ss10 v8 super 16/ 32/ 4

ss10/ 20 v8 super 16/ 32/ 4

ss10/ 30 v8 super 16/ 32/ 4

ss10/ 40 v8 super 16/ 32/ 4

C-1

C-2

TABLEC-1 - xt arget Expansions (Continued)

-Xtarget= -xarch -xchip -xcache

ss10/ 402 v8 super 16/ 32/ 4

ss10/ 41 v8 super 16/ 32/ 4: 1024/ 32/ 1
ss10/ 412 v8 super 16/ 32/ 4: 1024/ 32/ 1
ss10/ 50 v8 super 16/ 32/ 4

ss10/51 v8 super 16/ 32/ 4: 1024/ 32/ 1
ss10/ 512 v8 super 16/ 32/ 4: 1024/ 32/ 1
ss10/ 514 v8 super 16/ 32/ 4: 1024/ 32/ 1
ss10/ 61 v8 super 16/ 32/ 4: 1024/ 32/ 1
ss10/ 612 v8 super 16/ 32/ 4: 1024/ 32/ 1
ss10/ 71 v8 super 2 16/ 32/ 4: 1024/ 32/ 1
ss10/ 712 v8 super 2 16/ 32/ 4: 1024/ 32/ 1
ss10/ hs11l v8 hyper 256/ 64/ 1

ss10/ hs12 v8 hyper 256/ 64/ 1

ss10/ hs14 v8 hyper 256/ 64/ 1

ss10/ hs21 v8 hyper 256/ 64/ 1

ss10/ hs22 v8 hyper 256/ 64/ 1

ss1000 v8 super 16/ 32/ 4: 1024/ 32/ 1
sslpl us v7 old 64/ 16/ 1

ss2 v7 old 64/ 32/ 1

ss20 v8 super 16/ 32/ 4: 1024/ 32/ 1
ss20/ 151 v8 hyper 512/ 64/ 1

$520/ 152 v8 hyper 512/ 64/ 1

s$s20/ 50 v8 super 16/ 32/ 4

ss20/ 502 v8 super 16/ 32/ 4

ss20/ 51 v8 super 16/ 32/ 4: 1024/ 32/ 1
ss20/ 512 v8 super 16/ 32/ 4: 1024/ 32/ 1
ss20/ 514 v8 super 16/ 32/ 4: 1024/ 32/ 1
ss20/ 61 v8 super 16/ 32/ 4: 1024/ 32/ 1
ss20/ 612 v8 super 16/ 32/ 4: 1024/ 32/ 1
ss20/ 71 v8 super 2 16/ 32/ 4: 1024/ 32/ 1

Fortran User's Guide « May 2003

TABLEC-1 - xt arget Expansions (Continued)

-Xtarget= -xarch -xchip -xcache

ss20/ 712 v8 super 2 16/ 32/ 4: 1024/ 32/ 1
ss20/ hs11 v8 hyper 256/ 64/ 1

ss20/ hs12 v8 hyper 256/ 64/ 1

ss20/ hs14 v8 hyper 256/ 64/ 1

ss20/ hs21 v8 hyper 256/ 64/ 1

ss20/ hs22 v8 hyper 256/ 64/ 1

ss2p v7 power up 64/ 32/ 1

ss4 v8a m cro2 8/16/1

ss4/110 v8a m cro2 8/16/1

ss4/ 85 v8a m cro2 8/16/1

ss5 v8a m cro2 8/16/1

ss5/ 110 v8a m cro2 8/16/1

ss5/ 85 v8a m cro2 8/16/1

$s600/ 120 v7 old 64/ 32/ 1

$s600/ 140 v7 old 64/ 32/ 1

ss600/ 41 v8 super 16/ 32/ 4: 1024/ 32/ 1
ss600/ 412 v8 super 16/ 32/ 4: 1024/ 32/ 1
ss600/ 51 v8 super 16/ 32/ 4: 1024/ 32/ 1
s$s600/ 512 v8 super 16/ 32/ 4: 1024/ 32/ 1
ss600/ 514 v8 super 16/ 32/ 4: 1024/ 32/ 1
ss600/ 61 v8 super 16/ 32/ 4: 1024/ 32/ 1
s$s600/ 612 v8 super 16/ 32/ 4: 1024/ 32/ 1
sselc v7 old 64/ 32/ 1

ssi pc v7 old 64/ 16/ 1

SSi px v7 old 64/ 32/ 1

sslc v8a mcro 2/16/1

sslt v7 old 64/ 32/ 1

ssl x v8a mcro 2/16/1

ssl x2 v8a m cro2 8/16/1

ssslc v7 old 64/ 16/ 1

Appendix C Less Common —xt ar get Platform Expansions

C-3

c-4

TABLEC-1 - xt arget Expansions (Continued)
-Xtarget= -xarch -xchip -xcache
ssvyger v8a m cro2 8/ 16/ 1
sun4/ 110 v7 old 2/16/1
sun4/ 15 v8a mcro 2/16/1
sun4/ 150 v7 old 2/16/1
sun4/ 20 v7 old 64/ 16/ 1
sun4/ 25 v7 old 64/ 32/ 1
sun4/ 260 v7 old 128/16/1
sun4/ 280 v7 old 128/ 16/ 1
sun4/ 30 v8a mcro 2/16/1
sun4/ 330 v7 old 128/16/1
sun4/ 370 v7 old 128/16/1
sun4/ 390 v7 old 128/ 16/ 1
sun4/ 40 v7 old 64/ 16/ 1
sun4/ 470 v7 old 128/32/1
sun4/ 490 v7 old 128/32/1
sun4/ 50 v7 old 64/ 32/ 1
sun4/ 60 v7 old 64/ 16/ 1
sun4/ 630 v7 old 64/ 32/ 1
sun4/ 65 v7 old 64/ 16/ 1
sun4/ 670 v7 old 64/ 32/ 1
sun4/ 690 v7 old 64/ 32/ 1
sun4/ 75 v7 old 64/ 32/ 1

Fortran User's Guide « May 2003

APPENDIX D

Fortran Directives Summary

This appendix summarizes the directives recognized by f 95 Fortran compiler:

= General Fortran Directives

= Sun Parallelization Directives

= Cray Parallelization Directives

= OpenMP Fortran 95 Directives, Library Routines, and Environment

D.1

General Fortran Directives

General directives accepted by f 95 are described in Chapter 2.

TABLED-1 Summary of General Fortran Directives

Format
CSPRAGVA keyword (a [, a] ...) [,keyword (a[,a] ...)] ,...

CSPRAGVA SUNkeyword (a [, a] ...) [,keyword(a[,a] ...)], ...
CSPRAGVA SPARC keyword (a [, a] ...) [,keyword(a[,a] ...)] ...

Comment-indicator in column 1 maybe c, C, !,or *. (Weuse Cin these examples. f 95
free-format must use ! .)

C Directive CSPRAGVA (C(list)

Declares a list of names of external functions as C language
routines.

| GNORE_TKR Directive C$PRAGVA | GNORE_TKR {name {, name} ...}
The compiler ignores the type, kind, and rank of the specified
dummy argument names appearing in a generic procedure
interface when resolving a specific call.

D-1

D-2

TABLED-1 Summary of General Fortran Directives (Continued)

UNROLL Directive

C$PRAGVA SUN UNROLL=n

Advises the compiler that the following loop can be unrolled to a
length n.

WEAK Directive CSPRAGVA VEAK(name[=name2])
Declares name to be a weak symbol, or an alias for name2.
OPT Directive C$PRAGVA SUN OPT=n

NOVENDEP Directive

Set optimization level for a subprogram to n.

C$PRAGVA SUN NOVEMDEP

Assert there are no memory dependencies in the following loop.
(Requires - paral | el or-explicitpar.)

Pl PELOOP Directive

C$PRAGVA SUN Pl PELOOP=n

Assert dependency in loop between iterations n apart.

PREFETCH Directives

C$PRAGVA SPARC PREFETCH_READ ONCE (name)
C$PRAGVA SPARC PREFETCH_READ MANY (name)
C$PRAGVA SPARC PREFETCH WWRI TE_ONCE (name)
C$PRAGMA SPARC PREFETCH VR TE_MANY (name)

Request compiler generate prefetch instructions for references to
name. (Requires - xpr ef et ch option.)

ASSUME Directives

C$PRAGVA [BEG N} ASSUME (expression [, probability])
C3PRAGVA END ASSUME

Make assertions about conditions at certain points in the program
that the compiler can assume are true.

Fortran User's Guide « May 2003

D.2

Special Fortran 95 Directives

The following directives are only available with f 95. See “FI XED and FREE
Directives” on page 4-22 for details.

TABLED-2 Special Fortran 95 Directives

Format I DI R$ directive . initial line
I Dl R$& continuation line

With fixed-format source, Cis also accepted as a directive-indicator:
CDI R$ directive... ; the line must start in column 1.
With free-format source, the line may be preceded by blanks.

FI XED/ FREE I DIR$ FREE
Directives IDIR$ FI XED

These directives specify the source format of the lines following the
directive. They apply to the rest of the source file in which they
appear, up to the next FREE or FI XED directive.

D.3

Fortran 95 OpenMP Directives

The Sun Fortran 95 compiler supports the OpenMP 2.0 Fortran API. The - opennp
compiler flag enables these directives. (See “- opennp[=keyword] ” on page 3-39).

See the OpenMP API User’s Guide for complete details.

Appendix D Fortran Directives Summary D-3

D.4 Sun Parallelization Directives

Sun-style parallelization directives are the default (- mp=sun compiler option), and
are detailed in the chapter on parallelization in the Fortran Programming Guide.

TABLED-3 Sun-Style Parallelization Directives Summary

Format C$PAR directive [optional_qualifiers] : initial line
C$PAR& [more_gualifiers] : continuation line

Fixed format, the directive-indicator may be C (as shown), ¢, *, or!.
Separate multiple qualifiers with commas. Characters beyond
column 72 ignored unless - e compiler option specified.

TASKCOMVON C3PAR TASKCOMMON block_name
Directive

Declares variables in common block block_name as thread-private:
private to a thread, but global within the thread. Declaring a
common block TASKCOMMON requires that this directive appear after
every common declaration of that block.

DOALL Directive C$PAR DQALL [qualifiers]

Parallelize DO loop that follows. Qualifiers are:

PRI VATE(list) declare names on list PRIVATE
SHARED(list) declare names on list SHARED
MAXCPUS(Nn) use no more than n threads
READONL Y(list) listed variables not modified in loop
SAVELAST save last value of all private variables
STOREBACK(list) save last value of listed variables
REDUCTI ON\(list) listed variables are reduction variables
SCHEDT YPE(type) use scheduling type: (default is STATI C)

STATIC

SELF(nchunk)

FACTORI NG(m)]

GSs[(m)]

DOSERI AL Directive C$PAR DOSERI AL

Disables parallelization of the loop that follows.

DOSERI AL* Directive C$PAR DOSERI AL*

Disables parallelization of the loop nest that follows.

D-4 Fortran User's Guide * May 2003

D.5

Cray Parallelization Directives

Cray-style parallelization directives are detailed in the chapter on parallelization in
the Fortran Programming Guide. Requires - np=cr ay compiler option.

TABLED-4 Cray Parallelization Directives Summary

Format

CM C$ directive qualifiers :initial line
CM C$& [more_gualifiers] : continuation line

Fixed format. Directive-indicator may be C (as shown here), c, *, or
1. With f 95 free-format, leading blanks can appear before ! M C$.

DQALL Directive

CM C$ DOALL SHARED(list), PRI VATE(list) [, more_qualifiers]

Parallelize loop that follows. Qualifiers are:

Scoping qualifiers are required (unless list is empty)—all variables
in the loop must appear in a PRI VATE or SHARED clause:
PRI VATE(list) declare names on list PRIVATE
SHARED(list)declare names on list SHARED
AUTOSCOPEautomatically determine scope of variables

The following are optional:

MAXCPUS(n)use no more than n threads

SAVELASTsave last value of all private variables
Only one scheduling qualifier may appear:

GUI DEDequivalent to Sun-style GSS(64)

S| NGLEequivalent to Sun-style SELF(1)

CHUNKSI ZE(n)equivalent to Sun-style SELF(n)

NUMCHUNKS(m)equivalent to Sun-style SELF(n/ m)
The default scheduling is Sun-style STATI C, for which there is no
Cray-style equivalent. Interpretations of these scheduling qualifiers
differ between Sun and Cray style. Check the Fortran Programming
Guide for details.

TASKCOVMVON
Directive

CM C$ TASKCOMMON block_name

Declares variables in the named common block as thread-private—
private to a thread, but global within the thread. Declaring a
common block TASKCOVWDON requires that this directive appear
immediately after every common declaration of that block.

DOSERI AL Directive

CM C$ DOSERI AL

Disables parallelization of the loop that follows.

DOSERI AL* Directive

CM C$ DOSERI AL*

Disables parallelization of the loop nest that follows.

Appendix D Fortran Directives Summary D-5

D-6 Fortran User's Guide » May 2003

Index

SYMBOLS

I DI R$ in directives, 4-21
#i f def, 2-5

#i ncl ude, 2-5

A

abrupt _underfl ow, 3-24
accessible documentation, 1-xxii

aliasing, 3-52
-xal i as, 3-52
align
-dal i gn, 3-15

data in COMMON with - al i gncommon, 3-11
See also data
alignment of data types, 4-7
ALLOCATABLE
extensions, 4-16
analyzer compile option, - xF, 3-65
application registers (SPARC), 3-83
arguments, agreement, - Xl i st, 3-50
arithmetic, See floating-point
array bounds checking, 3-13
asa, Fortran print utility, 1-3
assembly code, 3-44
ASSUME directive, 2-13
auto-read (dbx), 3-83

B
backward compatibility, options, 3-9
binary 170, 4-19

binding, dynamic/shared libraries, 3-17
Boolean

constant, alternate forms, 4-4

type, constants, 4-3
browser, 3-44

C
C(..) directive, 2-9
cache
padding for, 3-40
specify hardware cache, 3-59
CALL
inlining subprogram calls with - i nl i ne, 3-30
case, preserve upper and lower case, 3-47
CDI R$ in directives, 4-21
code size, 3-84
command-line
help, 1-6
unrecognized options, 2-6
comments
as directives, 4-21
COMVON
alignment, 3-11
global consistency, - Xl i st, 3-50
padding, 3-40
TASKCOMMON consistency checking, 3-63
compatibility
Fortran 77, 3-20, 5-1
forward, 4-27
with C, 4-27
compile and link, 2-3, 2-5
and - B, 3-13

Index-1

build a dynamic shared library, 3-28

compile only, 3-14

dynamic (shared) libraries, 3-17
compiler

command line, 2-3

driver, show commands with - dr yr un, 3-17

options summary, 3-3

show version, 3-48

timing, 3-47

verbose messages, 3-48
compilers, accessing, 1-xix
constant arguments, - copyar gs, 3-14
continuation lines, 3-17, 4-1
conventions

file name suffixes, 2-4
cpp, C preprocessor, 2-5, 3-15, 3-20
Cray

pointer, 4-9

pointer and Fortran 95 pointer, 4-10
cross reference table, - Xl i st, 3-50

D
data
alignment with - dbl _al i gn_al I , 3-16
alignment with - f, 3-20
alignment with - xmemal i gn, 3-74
COMMON, alignment with - al i gncomon, 3-
11
mappings with - xt ypenmap, 3-87
promote constants to REAL* 8, 3-43
size and alignment, 4-7
data dependence
- depend, 3-16
dbx
compile with - g option, 3-28
faster initialization, 3-84
debug
disable auto-read for dbx, 3-83
debugging
check array subscripts with - C, 3-14
cross-reference table, 3-50
- g option, 3-28
global program checking with - Xl i st, 3-50
show compiler commands with - dr yr un, 3-17
utilities, 1-3
with optimization, 3-29
without object files, 3-83

Index-2 Fortran User's Guide « May 2003

-Xlist, 1-3
default
data sizes and alignment, 4-7
include file paths, 3-30
define symbol for cpp, - Dname, 3-14
directives
ASSUME, 2-13
FIXED, 4-22
Fortran 77, 2-7
FREE, 4-22
| GNORE_TKR, 2-10
loop unrolling, 2-11
OpenMP (Fortran 95), 2-15, 9-3
optimization level, 2-12
parallelization, 2-15, 4-23
parallelization, Cray, Sun, or OpenMP, 3-34
special Fortran 95, 4-21
summary of all directives, 9-1
weak linking, 2-11
directory
temporary files, 3-47
DQALL directive, 2-16
documentation index, 1-xxi
documentation, accessing, 1-xxi to 1-xxii
DOSERI AL directive, 2-16
dynamic library
build, - G 3-28
name a dynamic library, 3-29

E

environment
program terminations by STOP, 3-46
environment variables
usage, 2-18
error messages
95, 6-2
message tags, 3-18
suppress with - err of f, 3-17
exceptions, floating-point, 3-27
trapping, 3-28
executable file
built-in path to dynamic libraries, 3-43
name, 3-38
strip symbol table from, 3-44
explicit
typing, 3-48
explicit parallelization directives, 2-15

extensions

ALLOCATABLE, 4-16

formatted 170, 4-18

non-ANSI, - ansi flag, 3-11

other 170, 4-19

stream 1/0, 4-17

VALUE, 4-17

VAX structures and unions, 4-12
extensions and features, 1-2
external C functions, 2-9
external names, 3-19

F
f 95 command line, 2-3, 3-1
f dunpnod for viewing module contents, 2-7, 4-25
features
Fortran 95, 4-1
release history, 7-1
features and extensions, 1-2
FFLAGS environment variable, 2-18
file
executable, 2-3
object, 2-3
size too big, 2-19
file names
recognized by the compiler, 2-4, 4-2
FI XED directive, 4-22
fixed-format source, 3-24
flags, See options
floating-point
f pver si on, displays hardware platform, 2-18
interval arithmetic, 3-67
non-standard, 3-25
preferences, - f si npl e, 3-26
rounding, 3-26
trapping mode, 3-28
See also the Numerical Computation Guide
Fortran
compatibility with legacy, 3-12, 3-20, 5-1
features and extensions, 1-2
incompatibilities with legacy, 5-6
preprocessor, 3-15
invoking with - F, 3-19
utilities, 1-2
Fortran 95
case, 4-3
directives, 4-21

features, 4-1
Forte Developer 7 release, 7-4

handling nonstandard Fortran 77 aliasing, 5-9

1/0 extensions, 4-19
linking with Fortran 77, 5-8
modules, 4-23

f pp, Fortran preprocessor, 2-5, 3-15, 3-19, 3-26

f pver si on, show floating-point platform

information, 2-18
FREE directive, 4-22
free-format source, 3-26
fsplit,Fortran utility, 1-3
function

external C, 2-9
function-level reordering, 3-65

G
global program checking, - Xl i st, 3-50
global symbols

weak, 2-11

gpr of
- pg, profile by procedure, 3-42

H
hardware architecture, 3-54, 3-61
heap page size, 3-75, 3-76
help

command-line, 1-6

README information, 3-66
hexadecimal, 4-4
Hollerith, 4-5

I
1/0 extensions, 4-19
| GNORE_TKRdirective, 2-10
I NCLUDE files, 3-30
fl oatingpoint.h, 5-9
systeminc, 2-16
incompatibilities, Fortran 77, 5-6
information files, 1-5
initialization of local variables, 3-60
inline
templates, - I'i bm |, 3-33

Index-3

with - f ast, 3-23 disable system libraries, 3-35

inlining enable dynamic linking, shared libraries, 3-17
automatic with - 04, 3-38 explicit parallelization with - expl i ci t par, 3-
with -i nline, 3-30 19

installation, 1-5

path, 3-30
interfaces

library, 2-16
interval arithmetic

- Xi a option, 3-66

- xi nt erval option, 3-67
intrinsics

extensions, 4-26

interfaces, 2-16

legacy Fortran, 5-8
invalid, floating-point, 3-28
ISA, instruction set architecture, 3-54

L
large files, 2-19
legacy compiler options, 3-9

i bm

searched by default, 3-32
library

build, - G 3-28

disable system libraries, 3-35
dynamic search path in executable, 3-43
interfaces, 2-16
linking with - | , 3-32
multithread-save, 3-34
name a shared library, 3-29
path to shared library in executable, 3-36
position-independent and pure, 3-88
Sun Performance Library, 1-3, 3-71
vectorized math library, | i bnvec, 3-88
license information, 3-71
limt
command, 2-20
stack size, 3-46
limits
Fortran 95 compiler, 4-3
linear algebra routines, 3-71
linking
and parallelization with - par al | el , 3-42
consistent compile and link, 2-6
consistent with compilation, 2-6
disable incremental linker, 3-67

Index-4 Fortran User's Guide « May 2003

linker - Mmapfi | e option, 3-65
separate from compilation, 2-5
specifying libraries with - | , 3-32
weak names, 2-11

with automatic parallelization, - aut opar, 3-12

with compilation, 2-3

link-time optimizations, 3-72

list of directives, 9-1

list of options, 3-30

loop
automatic parallelization, 3-12
dependence analysis, - depend, 3-16
executed once, - onet ri p, 3-38
explicit parallelization, 3-18
parallelization messages, 3-33
unrolling with directive, 2-11
unrolling with - unrol I, 3-48

M

macro options, 3-8

man pages, 1-4

man pages, accessing, 1-xix

MANPATH environment variable, setting, 1-xxi

math library
and - Ldir option, 3-32
optimized version, 3-71
memory
actual real memory, display, 2-20
limit virtual memory, 2-20
optimizer out of memory, 2-19
messages
parallelization, 3-33, 3-49
runtime, 6-1
suppress with - si | ent, 3-45
verbose, 3-48
misaligned data, specifying behavior, 3-74
. mod file, module file, 4-23
MODDI R environment variable, 3-34
modules, 4-23
creating and using, 2-7
default path, 3-34
f dunmpnod, 2-7

f dumpnod for displaying module files, 4-25

. mod file, 4-23

-use, 4-25
multithreading, See parallelization
multithread-safe libraries, 3-34

N
name
argument, do not append underscore, 2-9
object, executable file, 3-38
nonstandard_arithmetic(), 3-24

O

object files
compile only, 3-14
name, 3-38
object library search directories, 3-32
obsolete options, 3-10
octal, 4-4
one-trip DOloops, 3-38
OpenMP, 2-15, 3-34
directives summary, 9-3
OPT directive, 2-12
- xmaxopt option, 3-73
optimization
across source files, 3-64, 3-68
aliasing, 3-52
floating-point, 3-26
inline user-written routines, 3-30
interprocedural, 3-68
levels, 3-37
link-time, 3-72
loop unrolling, 3-48
loop unrolling by directive, 2-11
math library, 3-71
OPT directive, 2-12, 3-73
Pl PELOOP directive, 2-12
PREFETCHdirective, 2-13
specify cache, 3-59
specify instruction set architecture, 3-54
specify processor, 3-61
target hardware, 3-35
vector library transformations with -
xvect or, 3-88
with debugging, 3-29
with - f ast, 3-22

options

commonly used, 3-8

grouped by function, 3-3

legacy, 3-9

macros, 3-8

obsolete, 3-10

obsolete f 77 flags not supported, 5-7

order of processing, 3-2

pass option to compilation phase, 3-42

summary, 3-3

syntax on command line, 3-2

unrecognized, 2-6

Reference to all option flags, 3-11

-a, 3-11

-al i gncomon, 3-11

- ansi extensions, 3-11

-arg=l ocal , 3-12

- aut opar, parallelize automatically, 3-12

- Bdynami ¢, 3-13

-Bstatic, 3-13

- C, check subscripts, 3-13

- ¢, compile only, 3-14

- cg89, (obsolete), 3-14

- cg92, (obsolete), 3-14

- copyar gs, allow stores to literal
arguments, 3-14

-dal i gn, 3-15, 3-23

-dbl _al i gn_al I, force data alignment, 3-16

- depend
data dependency analysis, 3-16

- depend, 3-23

-dn, 3-17

- Dnane, define symbol, 3-14

-dryrun, 3-17

-dy, 3-17

- e, extended source lines, 3-17

-errof f, suppress warnings, 3-17

- errtags, display message tag with
warnings, 3-18

-explicitpar, parallelize explicitly, 3-18

- ext _nanes, externals without underscore, 3-
19

-F, 3-19

- f, align on 8-byte boundaries, 3-20

-£77, 3-20

-fast, 3-22

-fixed, 3-24

-fl ags, 3-24

-fnonstd, 3-24

Index-5

-fns, 3-23,3-25 -s, 3-44

- f pp, Fortran preprocessor, 3-26 - sb, SourceBrowser, 3-44
-free, 3-26 - sbfast, 3-45
- fround=r, 3-26 —sil ent, 3-45
-fsimle -stackvar, 3-45, 3-82
simple floating-point model, 3-26 -stop_status, 3-46
-fsinple, 3-23 -tenp, 3-47
-ftrap, 3-28 -time, 3-47
-G 3-28 -u, 3-48
-g, 3-28 - U, do not convert to lowercase, 3-47
- hel p, 3-30 - Uname, undefine preprocessor macro, 3-47
- hname, 3-29 -unrol I, unroll loops, 3-48
- 1 dir, 3-30 -use, 4-25
-inline, 3-30 -V, 3-48
-ioroundi ng, 3-31 -v, 3-48
-KPI C, 3-31 -vax, 3-49
- Kpi ¢, 3-31 -vpara, 3-49
- Ldir, 3-32 -w, 3-50
-libml, 3-23,3-33 - xa, 3-51
- | library, 3-32 - xal i as=list, 3-52
- | oopi nf o, show parallelization, 3-33 - xar ch=isa, 3-54
- Mlir, 195 modules, 3-33, 4-23 - xassune_control, 3-58
-noddi r, 3-34 - xaut opar, 2-15, 3-59
- mp=cr ay, Cray MP directives, 3-34 - xcache=c, 3-59
- mp=sun, Sun MP directives, 3-34 -xcg[89] 92], 3-60
—nt , multithread safe libraries, 3-34 - xcheck=keyword, 3-60
-native, 3-35 - xchi p=c, 3-61
- noaut opar, 3-35 - xcode=c, 3-62
- nodepend, 3-35 - xcommoncheck, 3-63
-noexplicitpar, 3-35 -xcrossfile, 3-64
-nolib, 3-35 - xdepend, 3-65
-nolibml, 3-36 -xexplicitpar, 3-65
-nor educti on, 3-36 - xF, 3-65
- nor unpat h, 3-36 - xhasc, Hollerith as character, 3-65
- 0, output file, 3-38 - xhel p=h, 3-66
-On, 3-22,3-37 - Xi a, interval arithmetic, 3-66
-onetrip, 3-38 -Xi |l dof f, 3-67
- opennp, 3-39 -xinline, 3-67
- p, profile by procedure, 3-40 - xi nt er val =v for interval arithmetic, 3-67
- pad=p, 3-23, 3-40 - Xi po, interprocedural optimizations, 3-67
- par al | el , parallelize loops, 3-41 - Xj obs, multiprocessor compilation, 3-69
- pg, profile by procedure, 3-42 - xknown_l i b, optimize library calls, 3-70
-PI C, 3-40 - xI ang=f 77, link with Fortran 77 libraries, 3—
-pic, 3-42 71
- Qoption, 3-42 -xlibml, 3-71
-R list, 3-43 -xli bnopt, 3-23,3-71
-r8const, 3-43 -xlic_lib=sunperf, 3-71
-reducti on, 3-44 -xlicinfo, 3-71
-S, 3-44 -xli nkopt, 3-72

Index-6 Fortran User's Guide « May 2003

- xl i nkopt , link-time optimizations, 3-72

- Xl'i st, global program checking, 3-50

- x| oopi nf o, 3-73

- Xxmaxopt, 3-73

-xnmemal i gn, 3-74

-xnol i b, 3-74, 3-75

- xnol i bnopt, 3-75

-xOn, 3-75

- xopennp, 3-75

- Xpagesi ze, 3-75,3-76

-xparallel, 3-76

- Xpg, 3-76

- Xpp=p, 3-76

- xprefetch, 2-13,3-23

-xprefetch_|l evel , 3-23,3-79

-xprofile=p, 3-79

-xprofile_ircache, 3-81

- xprofil e_pat hmap=param, 3-82

- Xrecursive, 3-82

- xreducti on, 3-82

- Xregs=r, 3-83

- xs, 3-83

- xsaf e=nem 3-84

- Xsh, 3-84

- xsbf ast, 3-84

- Xspace, 3-84

-xtarget =native, 3-22

- Xt ar get =t, 3-84, 8-1

-xtime, 3-87

- Xt ypemap, 3-87

-xunrol |, 3-87

- xvector, 3-23,3-88

-zt ext, 3-88
OPTI ONS environment variable, 2-18
order of

functions, 3-65
order of processing, options, 3-2
overflow

stack, 3-45

trap on floating-point, 3-28
overindexing

aliasing, 3-52

P
padding, 3-40
page size, setting stack or heap, 3-75, 3-76
parallelization

automatic, 3-12

automatic and explicit, - paral | el , 3-41
directives, 4-23

directives (f 77), 2-15

explicit, 3-18

loop information, 3-33

messages, 3-49

OpenMP, 2-15, 3-39

OpenMP directives summarized, 9-3
reduction operations, 3-44

select directives style, 3-34

with multithreaded libraries, 3-34
See also Fortran Programming Guide

parameters, global consistency, - Xl i st, 3-50

passes of the compiler, 3-48
path

#i ncl ude, 3-30

dynamic libraries in executable, 3-43

library search, 3-32

to standard include files, 3-30
PATH environment variable, setting, 1-xx
performance

optimization, 3-22

Sun Performance Library, 1-3
performance library, 3-71
Pl PELOCP directive, 2-12
pointee, 4-9
pointer, 4-9

aliasing, 3-52
position-independent code, 3-40, 3-42, 3-62
POSIX library, not supported, 5-7
pragma, See directives
PREFETCH directive, 2-13
preprocessor, source file

define symbol, 3-14

force f pp, 3-26

f pp, cpp, 2-5

specify with - xpp=p, 3-76

undefine symbol, 3-47
preserve case, 3-47
print

asa, 1-3
processor

specify target processor, 3-61
prof,-p, 3-40
profile data path map, 3-82
profiling

- pg, gpr of , 3-42

-xprofile, 3-79

Index-7

R

range of subscripts, 3-13
READIVE file, 1-5, 3-66
recursive subprograms, 3-82
register usage, 3-83

release history, 7-1

reorder functions, 3-65
rounding, 3-26, 3-27

S
search
object library directories, 3-32
set
#i ncl ude path, 3-30
shared library
build, - G 3-28
disallow linking, - dn, 3-17
name a shared library, 3-29
pure, no relocations, 3-88
shell
limits, 2-20
shell prompts, 1-xix
S| GFPE, floating-point exception, 3-24
size of compiled code, 3-84
source file
preprocessing, 2-5
source format
mixing format of source lines (f95), 4-2
options (f95), 4-2
source lines
extended, 3-17
fixed-format, 3-24
free-format, 3-26
line length, 4-1
preprocessor, 3-76
preserve case, 3-47
SourceBrowser, 3-44
SPARC platform
cache, 3-59
chip, 3-61
code address space, 3-62
instruction set architecture, 3-55
register usage, - xr egs, 3-83
- Xt ar get expansions, 8-1
stack
increase stack size, 3-46
overflow, 3-45

Index-8 Fortran User's Guide « May 2003

setting page size, 3-75, 3-76
stack overflow, 3-60
standard

include files, 3-30
standards

conformance, 1-1

identify non-ANSI extensions, - ansi flag, 3-11

static

binding, 3-17
STOP statement, return status, 3-46
stream 1/0, 4-17
strict (interval arithmetic), 3-67
strip executable of symbol table, - s, 3-44
suffix

of file names recognized by compiler, 2-4

of file names recognized by compiler (f95), 4-2

suppress

implicit typing, 3-48

linking, 3-14

warnings, 3-50

warnings by tag name, - err of f, 3-17
swap command, 2-19
swap space

display actual swap space, 2-19

limit amount of disk swap space, 2-19
symbol table

for dbx, 3-28, 3-83
syntax

compiler command line, 3-1

f 95 command, 2-3, 3-1

options on compiler command line, 3-2
systeminc, 2-16

T
tape 170, not supported, 5-7
tcov
new style with - xprofil e, 3-81
templates, inline, 3-33
temporary files, directory for, 3-47
trapping
floating-point exceptions, 3-28
on memory, 3-84
type declaration alternate form, 4-6
typographic conventions, 1-xvii

U
ul i mt command, 2-20
underflow

gradual, 3-25

trap on floating-point, 3-28
underscore, 3-19

do not append to external names, 2-9
unrecognized options, 2-6
UNRQOLL directive, 2-11
usage

compiler, 2-3
utilities, 1-2

Vv
variables
alignment, 4-7
local, 3-45
undeclared, 3-48
VAX VMS Fortran extensions, 3-49, 4-12
version
id of each compiler pass, 3-48

W
warnings
message tags, 3-18
suppress messages, 3-50
suppress with - err of f, 3-17
undeclared variables, 3-48
use of non-standard extensions, 3-11
WEAK directive, 2-11
weak linker symbols, 2-11
wi dest need (interval arithmetic), 3-67

Index-9

Index-10 Fortran User’'s Guide « May 2003

	Fortran User’s Guide
	Contents
	Tables
	Before You Begin
	Typographic Conventions
	Shell Prompts
	Accessing Compiler Collection Tools and Man Pages
	Accessing Compiler Collection Documentation
	Accessing Related Solaris Documentation
	Resources for Developers
	Contacting Sun Technical Support
	Sun Welcomes Your Comments

	Introduction
	1.1 Standards Conformance
	1.2 Features of the Fortran 95 Compiler
	1.3 Other Fortran Utilities
	1.4 Debugging Utilities
	1.5 Sun Performance Library
	1.6 Interval Arithmetic
	1.7 Man Pages
	1.8 README Files
	1.9 Command-Line Help

	Using Fortran 95
	2.1 A Quick Start
	2.2 Invoking the Compiler
	2.2.1 Compile-Link Sequence
	2.2.2 Command-Line File Name Conventions
	2.2.3 Source Files
	2.2.4 Source File Preprocessors
	2.2.5 Separate Compiling and Linking
	2.2.6 Consistent Compiling and Linking
	2.2.7 Unrecognized Command-Line Arguments
	2.2.8 Fortran 95 Modules

	2.3 Directives
	2.3.1 General Directives
	2.3.2 Parallelization Directives

	2.4 Library Interfaces and system.inc
	2.5 Compiler Usage Tips
	2.5.1 Determining Hardware Platform
	2.5.2 Using Environment Variables
	2.5.3 Memory Size

	Fortran Compiler Options
	3.1 Command Syntax
	3.2 Options Syntax
	3.3 Options Summary
	3.3.1 Commonly Used Options
	3.3.2 Macro Flags
	3.3.3 Backward Compatibility and Legacy Options
	3.3.4 Obsolete Option Flags

	3.4 Options Reference
	–a
	-aligncommon[=n]
	–ansi
	-arg=local
	-autopar
	–B{static|dynamic}
	–C
	–c
	–cg89
	–cg92
	–copyargs
	–Dname[=def]
	–dalign
	–dbl_align_all={yes|no}
	–depend{=yes|no}
	-dn
	–dryrun
	–d{y|n}
	–e
	–erroff=taglist
	–errtags[={yes|no}]
	–explicitpar
	–ext_names=e
	–F
	–f
	-f77[=list]
	–fast
	–fixed
	–flags
	–fnonstd
	–fns[={no|yes}]
	–fpover[={yes|no}]
	-fpp
	–free
	–fround=r
	–fsimple[=n]
	–ftrap=t
	–G
	–g
	–hname
	–help
	–Ipath
	–inline=[%auto][[,][no%]f1,…[no%]fn]
	-iorounding=mode
	–Kpic
	–KPIC
	–Lpath
	–lx
	–libmil
	–loopinfo
	–Mpath
	-moddir=path
	–mp={%none|sun|cray}
	–mt
	–native
	–noautopar
	–nodepend
	–noexplicitpar
	–nolib
	–nolibmil
	–noreduction
	–norunpath
	–O[n]
	–O
	–O1
	–O2
	–O3
	–O4
	–O5
	–o name
	–onetrip
	-openmp[=keyword]
	–PIC
	–p
	–pad[=p]
	–parallel
	–pg
	–pic
	–Qoption pr ls
	–qp
	–R ls
	-r8const
	–reduction
	–S
	–s
	–sb
	–sbfast
	–silent
	–stackvar
	–stop_status=yn
	–temp=dir
	–time
	–U
	-Uname
	–u
	–unroll=n
	-use=list
	–V
	–v
	-vax=keywords
	–vpara
	–w[n]
	–Xlist[x]
	–xa
	-xalias[=keywords]
	–xarch=isa
	-xassume_control[=keywords]
	–xautopar
	–xcache=c
	–xcg89
	–xcg92
	-xcheck=keyword
	–xchip=c
	–xcode=addr
	–xcommonchk[={no|yes}]
	–xcrossfile[=n]
	–xdepend
	–xexplicitpar
	–xF
	-xhasc[={yes|no}]
	–xhelp=h
	-xia[=v]
	–xild{off|on}
	–xinline=list
	-xinterval[=v]
	-xipo[={0|1|2}]
	-xjobs=n
	-xknown_lib=library_list
	-xlang=f77
	–xlibmil
	–xlibmopt
	–xlic_lib=sunperf
	–xlicinfo
	-xlinkopt[=level]
	–xloopinfo
	–xmaxopt[=n]
	-xmemalign[=<a>]
	–xnolib
	–xnolibmil
	–xnolibmopt
	–xOn
	-xopenmp
	–xpad
	-xpagesize=size
	-xpagesize_heap=size
	-xpagesize_stack=size
	–xparallel
	–xpg
	–xpp={fpp|cpp}
	–xprefetch[=a[,a]]
	-xprefetch_level=n
	–xprofile=p
	-xprofile_ircache[=path]
	-xprofile_pathmap=collect_prefix:use_prefix
	-xrecursive
	–xreduction
	–xregs=r
	–xs
	–xsafe=mem
	–xsb
	–xsbfast
	–xspace
	–xtarget=t
	–xtime
	–xtypemap=spec
	–xunroll=n
	–xvector[={yes|no}]
	–ztext

	Fortran 95 Features and Differences
	4.1 Source Language Features
	4.1.1 Continuation Line Limits
	4.1.2 Fixed-Form Source Lines
	4.1.3 Source Form Assumed
	4.1.4 Limits and Defaults

	4.2 Data Types
	4.2.1 Boolean Type
	4.2.2 Abbreviated Size Notation for Numeric Data Types
	4.2.3 Size and Alignment of Data Types

	4.3 Cray Pointers
	4.3.1 Syntax
	4.3.2 Purpose of Cray Pointers
	4.3.3 Declaring Cray Pointers and Fortran 95 Pointers
	4.3.4 Features of Cray Pointers
	4.3.5 Restrictions on Cray Pointers
	4.3.6 Restrictions on Cray Pointees
	4.3.7 Usage of Cray Pointers

	4.4 STRUCTURE and UNION (VAX Fortran)
	4.5 Unsigned Integers
	4.5.1 Arithmetic Expressions
	4.5.2 Relational Expressions
	4.5.3 Control Constructs
	4.5.4 Input/Output Constructs
	4.5.5 Intrinsic Functions

	4.6 Fortran 2000 Features
	4.6.1 Interoperability with C Functions
	4.6.2 IEEE Floating-Point Exception Handling
	4.6.3 PROTECTED Attribute
	4.6.4 Fortran 2000 Asynchronous I/O
	4.6.5 Extended ALLOCATABLE Attribute
	4.6.6 VALUE Attribute
	4.6.7 Fortran 2000 Stream I/O
	4.6.8 Fortran 2000 Formatted I/O Features

	4.7 Additional I/O Extensions
	4.7.1 I/O Error Handling Routines
	4.7.2 Variable Format Expressions
	4.7.3 NAMELIST Input Format
	4.7.4 Binary Unformatted I/O
	4.7.5 Miscellaneous I/O Extensions

	4.8 Directives
	4.8.1 Form of Special f95 Directive Lines
	4.8.2 FIXED and FREE Directives
	4.8.3 Parallelization Directives

	4.9 Module Files
	4.9.1 Searching for Modules
	4.9.2 The -use=list Option Flag
	4.9.3 The fdumpmod Command

	4.10 Intrinsics
	4.11 Forward Compatibility
	4.12 Mixing Languages

	FORTRAN 77 Compatibility: Migrating to Fortran 95
	5.1 Compatible f77 Features
	5.2 Incompatibility Issues
	5.3 Linking With f77-Compiled Routines
	5.3.1 Fortran 95 Intrinsics

	5.4 Additional Notes About Migrating to the f95 Compiler

	Runtime Error Messages
	A.1 Operating System Error Messages
	A.2 f95 Runtime I/O Error Messages

	Features Release History
	B.1 Sun ONE Studio 8, Compiler Collection Release:
	B.2 Sun ONE Studio 7, Compiler Collection (Forte Developer 7) Release:

	Less Common –xtarget Platform Expansions
	Fortran Directives Summary
	D.1 General Fortran Directives
	D.2 Special Fortran 95 Directives
	D.3 Fortran 95 OpenMP Directives
	D.4 Sun Parallelization Directives
	D.5 Cray Parallelization Directives

	Index

