
Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303-4900 U.S.A.
650-960-1300

Send comments about this document to: docfeedback@sun.com

Sun™ MTP Client User’s Guide

Release 7.2

Part No. 816-2797-10
November 2001, Revision A

Please
Recycle

Copyright © 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in this product. In particular, and without limitation,
these intellectual property rights may include one or more of the U.S. patents listed at http://www.sun.com/patents and one or more
additional patents or pending patent applications in the U.S. and other countries.

This product or document is distributed under licenses restricting its use, copying distribution, and decompilation. No part of this product or
document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, and the Sun logo are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Federal Acquisitions: Commercial Software - Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans ce produit. En particulier, et sans la
limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés à http://www.sun.com/patents et
un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats - Unis et les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l'utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s'il y ena.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des
fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l'Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d'autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, et le logo Sun, sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et
dans d'autres pays.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, CONDITIONS, DECLARATIONS ET
GARANTIES EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE,
Y COMPRIS NOTAMMENT TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE
UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFAÇON.

MTP Client User’s Guide Sun MTP Release 7.2 iii

Contents

Chapter 1 Overview
1.1 Capabilities of MTP Client . 1-1
1.2 Supported transport protocols. 1-2

1.2.1 TCP/IP . 1-2
1.2.2 SNA . 1-2

1.3 Operating requirements . 1-3
1.3.1 Qualified operating systems . 1-3

1.4 Related documentation . 1-3
1.5 Typographic conventions . 1-3
1.6 Notation conventions . 1-4
1.7 Terminology . 1-4

Chapter 2 Installation
2.1 Installing MTP Client on Windows. 2-1
2.2 Installing MTP Client on Solaris . 2-3

Chapter 3 Configuring MTP Client and MTP
3.1 Configuring MTP Client . 3-1

3.1.1 Adding systems to the KIXCLI.INI file . 3-2
3.1.1.1 Required fields for a TCP/IP-connected system 3-2
3.1.1.2 Required fields for an SNA-connected system. 3-2

3.1.2 Defining Client behavior in the KIXCLI.INI file . 3-3
3.2 Enabling a diagnostic trace . 3-4
3.3 Disabling a diagnostic trace . 3-5
3.4 Configuring MTP for a TCP/IP connection to MTP Client 3-5
3.5 Configuring MTP and SNA for an SNA-connected MTP Client 3-6

Chapter 4 Starting MTP Client and MTP
4.1 Starting MTP Client on Windows . 4-1
4.2 Starting MTP Client on Solaris. 4-1
4.3 Enabling MTP to receive connections . 4-2

Chapter 5 MTP Client Administration
5.1 Administering MTP Client for Windows . 5-1

5.1.1 Control Panel . 5-1
5.1.2 TCP Systems Panel . 5-2
5.1.3 MS SNA Systems Panel . 5-3
5.1.4 Messages Panel . 5-3

5.2 Administering MTP Client for Solaris . 5-5

iv Sun MTP Release 7.2 MTP Client User’s Guide

Contents

Chapter 6 3270 Terminal
6.1 Configuring the 3270 Terminal . 6-1

6.1.1 Command line parameters . 6-1
6.1.2 Initialization file contents . 6-2

6.2 Starting the 3270 Terminal. 6-2
6.2.1 Starting the 3270 Terminal from the 3270 Terminal icon 6-3
6.2.2 Starting the 3270 Terminal from a command line . 6-3

6.3 3270 Terminal screen. 6-4
6.4 Stopping the 3270 Terminal . 6-5

Chapter 7 3270 Printer
7.1 Configuring the 3270 Printer . 7-1
7.2 Example kixprnt commands . 7-2
7.3 Starting the 3270 Printer . 7-3

7.3.1 Starting the printer from the 3270 Printer icon . 7-3
7.3.2 Starting the 3270 Printer from a command line . 7-4

7.4 3270 Printer screen . 7-4
7.5 Stopping the 3270 Printer . 7-4

Chapter 8 External Call Interface (ECI)
8.1 ECI example code. 8-1
8.2 How does the MTP ECI work?. 8-1
8.3 CICS_ExternalCall call types . 8-2

8.3.1 Program link calls . 8-3
8.3.2 Reply solicitation calls. 8-3
8.3.3 Status information calls . 8-4

8.4 Application design . 8-4
8.4.1 Managing logical units-of-work . 8-4
8.4.2 Designing an application for Windows. 8-5
8.4.3 Designing an application for Solaris. 8-6

8.5 ECI data structures . 8-6
8.6 ECI functions . 8-9

8.6.1 CICS_ExternalCall() . 8-9
8.6.2 CICS_EciListSystems() . 8-11
8.6.3 KixCli_QueryFD() . 8-12

8.7 Common ECI scenarios . 8-13
8.7.1 Performing a one-shot DPL. 8-13

8.7.1.1 Performing a one-shot asynchronous DPL using message notification 8-13
8.7.1.2 Performing a one-shot asynchronous DPL using semaphore notification . .

8-15
8.7.1.3 Performing a one-shot asynchronous DPL using callback notification 8-16
8.7.1.4 Performing a one-shot synchronous DPL . 8-18

8.7.2 Starting a multiple part unit-of-work. 8-19
8.7.3 Continuing a long running unit-of-work . 8-19
8.7.4 Explicitly syncpointing a unit-of-work . 8-19
8.7.5 Rolling back a unit-of-work. 8-20
8.7.6 Interrogating connections to a remote system. 8-21
8.7.7 Using callbacks . 8-22

MTP Client User’s Guide Sun MTP Release 7.2 v

Contents

8.8 MTP ECI interface enhancements . 8-22
8.8.1 Reply message formats . 8-23

Chapter 9 External Presentation Interface (EPI)
9.1 EPI examples . 9-1
9.2 Developing an EPI application . 9-1

9.2.1 Initializing and terminating EPI . 9-2
9.2.2 Adding and deleting EPI terminals . 9-2
9.2.3 Starting transactions. 9-2
9.2.4 Processing events. 9-3

9.2.4.1 Event notification on Windows. 9-3
9.2.4.2 Event notification on Solaris . 9-3

9.2.5 Sending and receiving data. 9-4
9.3 EPI constants and data structures . 9-4

9.3.1 Constants . 9-4
9.3.2 Standard data types . 9-4
9.3.3 Data structures . 9-5

9.3.3.1 CICS_EpiSystem_t . 9-5
9.3.3.2 CICS_EpiDetails_t . 9-5
9.3.3.3 CICS_EpiEventData_t . 9-6
9.3.3.4 CICS_EpiSysError_t . 9-7
9.3.3.5 CICS_EpiNotify_t . 9-8
9.3.3.6 CICS_EpiEvent_t . 9-8
9.3.3.7 CICS_EpiEnd_t . 9-8
9.3.3.8 CICS_EpiATIState_t. 9-9
9.3.3.9 CICS_EpiSenseCode_t . 9-9
9.3.3.10 CICS_EpiWait_t . 9-9

9.4 EPI events . 9-10
9.4.1 CICS_EPI_EVENT_SEND . 9-10
9.4.2 CICS_EPI_EVENT_CONVERSE . 9-10
9.4.3 CICS_EPI_EVENT_END_TRAN . 9-11
9.4.4 CICS_EPI_EVENT_START_ATI . 9-11
9.4.5 CICS_EPI_EVENT_END_TERM . 9-12

9.5 EPI functions . 9-12
9.5.1 CICS_EpiInitialize() . 9-12
9.5.2 CICS_EpiTerminate() . 9-13
9.5.3 CICS_EpiListSystems(). 9-13
9.5.4 CICS_EpiAddTerminal() . 9-14
9.5.5 CICS_EpiDelTerminal() . 9-15
9.5.6 CICS_EpiStartTran() . 9-16
9.5.7 CICS_EpiReply() . 9-17
9.5.8 CICS_EpiATIState() . 9-18
9.5.9 CICS_EpiSenseCode() . 9-18
9.5.10 CICS_EpiGetEvent() . 9-19
9.5.11 CICS_EpiGetSysError() . 9-20
9.5.12 CICS_EpiInquireSystem(). 9-21

vi Sun MTP Release 7.2 MTP Client User’s Guide

Contents

Appendix A KIXTERM.INI
A.1 Identifying file comments . A-1
A.2 Key mappings. A-1
A.3 Defining the normal and light colors for a terminal . A-4
A.4 Mapping colors . A-4
A.5 Resetting a keyboard . A-5

Appendix B Messages
B.1 Examining messages . B-1
B.2 Message format . B-1
B.3 MTP Client Messages . B-2
B.4 Emulator Messages . B-5

Glossary

Index

MTP Client User’s Guide Sun MTP Release 7.2 vii

Figures

Figure 1.1 MTP Client Network Connection Alternatives . 1-1
Figure 1.2 MTP Client Application Support . 1-2
Figure 2.1 Select Destination Location . 2-1
Figure 2.2 Setup Type Screen . 2-2
Figure 2.3 MTP Client Start Menu . 2-3
Figure 3.1 KIXCLI.INI MTP Client Control File. 3-1
Figure 5.1 Control Panel . 5-2
Figure 5.2 TCP Systems Panel . 5-3
Figure 5.3 MS SNA Systems Panel . 5-4
Figure 5.4 Messages Panel Example . 5-4
Figure 6.1 3270 Terminal System Selection Dialog. 6-3
Figure 6.2 3270 Terminal Screen . 6-4
Figure 7.1 3270 Printer System Selection Dialog . 7-3
Figure 7.2 3270 Printer Icon . 7-4
Figure 7.3 3270 Printer Screen. 7-4

MTP Client User’s Guide Sun MTP Release 7.2 viii

Tables

Table 1.1 Typographic Conventions . 1-3
Table 1.2 Notation Conventions . 1-4
Table 6.1 3270 Terminal Status Bar Information. 6-4
Table 8.1 eci_call_type for Functions . 8-2
Table 8.2 ECI_STATUS Structure Fields. 8-7
Table 8.3 ECI_PARMS Structure Fields . 8-7
Table 8.4 CICS_EciSystem_t Structure Fields . 8-11
Table 8.5 ECI_PARMS Values for One-Shot Asynchronous DPL using Message Notification. . 8-14
Table 8.6 ECI_PARMS Values for Obtaining a Specific Reply . 8-15
Table 8.7 ECI_PARMS Values for One-Shot Asynchronous DPL using Semaphore

Notification . 8-15
Table 8.8 ECI_PARMS Values for One-Shot Asynchronous DPL using Callback Notification . 8-17
Table 8.9 ECI_PARMS Values for One-Shot Synchronous DPL . 8-18
Table 8.10 ECI_PARMS Values for Syncpointing a Unit-of-Work. 8-20
Table 8.11 ECI_PARMS Values for Rolling Back a Unit-of-Work. 8-20
Table 8.12 ECI_PARMS Values for ECI_STATE_ASYNC Call . 8-21
Table 8.13 ECI_PARMS Values for STATE_ASYNC_MESSAGE Reply Solicitation 8-22
Table A.1 KIXTERM.INI 3270 Keys . A-2
Table A.2 KIXTERM.INI System Keys . A-2
Table A.3 KIXTERM.INI Modifier Keys . A-3
Table A.4 KIXTERM.INI . A-4

MTP Client User’s Guide Sun MTP Release 7.2 1-1

Chapter 1 Overview

1.1 Capabilities of MTP Client
MTP Client provides the following client capabilities

• 3270 Terminal (only available for Windows)
• 3270 Printer (only available for Windows)
• External Presentation Interface (EPI) application programming interface

(API)
• External Call Interface (ECI) API
• Pascal bindings in the form of a Dynamic Link Library (DLL)

These capabilities allow a user to connect a terminal or printer, EPI application or
ECI application running on a PC or UNIX machine, directly into one or more MTP
server systems running on one or more UNIX machines. In addition, MTP Client
provides examples that you can use for ideas when creating your own
applications.

Each MTP Client in Figure 1.1 can support multiple ECI applications, EPI
applications, and 3270 Terminals or Printers as shown in Figure 1.2.

This chapter describes the
• Client capabilities of MTP Client
• Supported protocols
• Operating requirements
• Required documentation
• Text, notation and terminology conventions
• technical support procedures

Figure 1.1 MTP Client Network Connection Alternatives

MTP

UNIX

MTP

UNIX

MTP

UNIX

MS SNA Server
(Windows NT

MTP Client

Server)

(Windows +
MS SNA Client)

MTP Client
(Windows)

SNA

Local LAN

SNASNA

TCP/IPTCP/IP TCP/IP

Overview 1.2 Supported transport protocols

1-2 Sun MTP Release 7.2 MTP Client User’s Guide

1.2 Supported transport protocols
This section describes how MTP Client supports connection to MTP via TCP/IP
and SNA.

1.2.1 TCP/IP
MTP Client supports the TCP/IP protocol. It is available for Solaris and Windows
versions.

On Windows, it is implemented by any WINSOCK compliant sockets Dynamic
Linked Library (DLL). Chapter 2, Installation, describes the method used by
MTP Client to determine the version of the DLL it uses, if more than one
implementation is installed on your PC.

On Solaris, TCP/IP is part of the operating system.

1.2.2 SNA
Connection from MTP Client for Windows to MTP is supported using either the
Microsoft SNA Server or IBM Communications Server. This requires a machine
running the Windows Server and the SNA Server that has an LU 6.2 connection
configured to each MTP Client region to which access is required. Then you can
connect MTP Client for Windows to MTP from one or more Windows machines via
the SNA Server (See Figure 5.3). Each machine running MTP Client must also
have the SNA Client software installed.

Connection between each SNA Client and the SNA Server is achieved using a
number of alternatives. For more details, see the documentation for your SNA
Server.

SNA is not currently supported for MTP Client on Solaris.

Figure 1.2 MTP Client Application Support

To MTP via TCP/IP

MS SNA Server

3270
Terminal or Printer EPI

Application
ECI

Application

Windows PC with Winsock and/or MS SNA Client

MTP
Client

or

MTP Client User’s Guide Sun MTP Release 7.2 1-3

1.3 Operating requirements Overview

1.3 Operating requirements
MTP Client is available on several platforms. The minimum requirements for
each are described in the following sections.

1.3.1 Qualified operating systems
MTP Client runs on the following platforms

• Microsoft Windows NT 4 or Windows 2000
– WINSOCK.DLL or Microsoft SNA Client for Windows NT as described in

Section 1.2.
– Program development environment of your choice. Explicit support is

provided for C and C++.
• Solaris

– Program development environment of your choice. Explicit support is
provided for C and C++.

1.4 Related documentation
The following table provides a reference to other documents relevant to the
operation of MTP Client.

1.5 Typographic conventions
Table 1.1 lists the typographic conventions used in this document.

Product Document Title Part Number

Sun Mainframe
Transaction
Processing

Administrator’s Guide 816-2784-10

3270 Data Stream IBM 3270 Information Display System Data Stream
Programmers Reference CA23-0059

Table 1.1 Typographic Conventions

Description Example

Pathnames, directories, file names and extensions are in italics. AUTOEXEC.BAT

Commands, error messages and text the user must enter are
shown in bold kixterm /w Emulator

User-defined items, including command parameters, are shown as
bold italicized characters C:\dirname

Indicates actions or situations that pose possible serious damage
to equipment, data or software

Indicates actions or situations that pose a hazard to any person or
irreversible damage to data or the operating system

Caution

Warning

Overview 1.6 Notation conventions

1-4 Sun MTP Release 7.2 MTP Client User’s Guide

1.6 Notation conventions
This document uses the following format for commands

command required_argument [optional_argument]

If a command does not support an optional_argument, enter the command
followed by a Return.

This document uses the following conventions when referring to files

• Where applicable, all files are referred to in their DOS name version, that is,
path specifications use the \ character as the directory separator and may
include a drive letter such as C:.

• Where applicable, the term $INSTROOT is used to refer to the directory into
which MTP Client was installed.

1.7 Terminology
This document uses the following terms

• Windows refers to Microsoft Windows NT Version 4 or Windows 2000
• UNIX refers to the Solaris operating system

Information that appears on screens, including field labels, is
shown as Arial characters Creating: TRANS

MTP transaction identifiers are shown as bold Arial characters CSSF LOGOFF

Code examples are shown as fixed-pitch characters CICS_EpiTerminate()

Environment variables are in uppercase characters $CLASSPATH

Table 1.2 Notation Conventions

Notation Description

[] Square brackets indicate optional arguments.

| Vertical bars between arguments indicate to select only one of the arguments.

. . . Ellipses indicate that the preceding argument may be repeated one or more
times.

Table 1.1 Typographic Conventions (Continued)

Description Example

MTP Client User’s Guide Sun MTP Release 7.2 2-1

Chapter 2 Installation

2.1 Installing MTP Client on Windows
Follow these steps to install MTP Client on Windows platforms.

This chapter provides the steps for installing on these platforms
• Windows NT or Windows 2000 (Section 2.1)
• Solaris (Section 2.2)

Step
Description

1 Start the installation by double-clicking the .exe file. InstallShield will guide you
through the installation process.

2

Choose the destination folder for the installation. If the default value is not what you
require, click Browse to choose a different directory.

Figure 2.1 Select Destination Location

Installation 2.1 Installing MTP Client on Windows

2-2 Sun MTP Release 7.2 MTP Client User’s Guide

3

The Setup Type screen (Figure 2.2) gives three choices for the type of installation

Typical Installs the complete MTP Client. This is sufficient for application
development and execution.

Compact Installs only the parts required to run applications. Application
development is not possible.

Custom Displays the Select Components screen, which allows you to choose the
parts of the product that you want to install. The Production Files
component is required for all other components.

4
When the installation completes, the Setup Complete screen appears. There will be
an option to reboot your system now or later. However, you must reboot before using
the MTP Client software.

Step
Description

Figure 2.2 Setup Type Screen

MTP Client User’s Guide Sun MTP Release 7.2 2-3

2.2 Installing MTP Client on Solaris Installation

2.2 Installing MTP Client on Solaris
MTP Client for Solaris is supplied in a tar image. You can install the files
wherever it is required on the target machine. However, there is a standard
installation directory

/opt/kixcli

If the MTP Client is installed into the standard directory, it simplifies the
configuration. If, however, the MTP Client is installed into a different directory,
you must configure the users so that they can access the shared libraries provided
by the MTP Client. The system documentation for your platform provides this
information. It is strongly recommended that you use the standard directories for
installation.

5

MTP Client will be installed on the Start Menu.

6 When the installation is complete, you must change the PATH environment variable.
You can change the PATH environment variable using the Control Panel.

Step
Description

Figure 2.3 MTP Client Start Menu

Installation 2.2 Installing MTP Client on Solaris

2-4 Sun MTP Release 7.2 MTP Client User’s Guide

MTP Client User’s Guide Sun MTP Release 7.2 3-1

Chapter 3 Configuring
MTP Client
and MTP

3.1 Configuring MTP Client
MTP Client can connect a machine running Windows or Solaris to multiple MTP
regions simultaneously (see Figure 1.1). Each of these regions must be defined to
MTP Client in the Systems section of KIXCLI.INI, a control file. The location of
this file is platform dependent

Solaris platforms /opt/kixcli/config
Windows C:\KIXCLI\CONFIG

The default version of the file is illustrated in Figure 3.1.

Before running MTP Client, you must edit this file to define the MTP regions, as
described in Section 3.1.1. In addition, you can modify some of the behavior of
MTP Client by entries in the General section of the file as described in
Section 3.1.2.

There are two procedures you must perform before using MTP Client to connect
to MTP.
• Configuring MTP Client, described in Section 3.1
• Configuring MTP, described in Section 3.4

;---
;
:MTP Client Configuration File
;---

[Systems]
Accounts=TCP,abc.mycompany.com,9111,Customer Accounting System
Payroll=TCP,def.mycompany.com,9111,Employee Payroll System
Ordering=TCP,ghi.mycompany.com,9111,Internal Ordering System
Test=TCP,555.555.55.5,9111,Test System
SnaSyst=MSSNA,RLUALIAS,LLUALIAS,MODENAME,MS SNA Connected System

[General]
DefaultSystem=Accounts
;TraceDir=C:\tmp
;TraceMask=0
;MsgDir=C:\tmp
;MaxRequests=20
;MaxSystems=3
;EnableConnect=false

Figure 3.1 KIXCLI.INI MTP Client Control File

Configuring MTP Client and MTP 3.1.1 Adding systems to the KIXCLI.INI file

3-2 Sun MTP Release 7.2 MTP Client User’s Guide

3.1.1 Adding systems to the KIXCLI.INI file
Each line in the Systems section defines an MTP region. Add an entry in the
Systems section for each region that you plan to use. The format of each region
entry is different, depending on the transport protocol used to connect to that
system (TCP/IP or SNA). The use of SNA as a transport is only supported on the
Microsoft Windows versions of MTP Client, not on the Solaris version.

3.1.1.1 Required fields for a TCP/IP-connected system

Fields in each entry indicate the following

In Figure 3.1, the first line in this section, Systems defines a system that will be
known locally as Accounts. This system uses the TCP transport to connect to a
MTP region that is running on host abc.mycompany.com and listening for TCP
connections from MTP Clients on port 9111. The last field contains a description
of the system, Customer Accounting System.

3.1.1.2 Required fields for an SNA-connected system

Fields in each entry indicate the following

All fields are required. Even if you do not enter a comment, you must type a
comma delimiter after the port number field.

Name Name (up to 8 characters) by which the region is known by
MTP Client.

Transport protocol Set to the characters, TCP, to indicate the definition of a
TCP/IP-connected system.

Host address TCP/IP address of the host where the region is running.
Port number TCP/IP port number on which the region is listening for TCP

connections from MTP Client. On the UNIX host, the MTP
server, unikixmain, must be started with the -P option and
this port number (see Section 4.1).

Comment Comment (up to 60 characters), which can be zero length.
However, you must type a comma to delimit the port number
field.

All fields are required. Even if you do not enter a comment, you must type a
comma delimiter after the port number field.

Name Name (up to 8 characters) by which the region is known by
MTP Client.

Transport protocol Set to the characters, MSSNA, to indicate the definition of
a SNA - connected system.

Remote LU Alias Set to the LU alias of the MTP region to which to connect
as defined on the SNA Server. This is referred to on the
SNA Server as a remote or partner LU alias.

Local LU Alias Set to the local LU alias that MTP Client should use as
defined on the SNA Server. This is referred to on the SNA
server as an LU Alias.

MTP Client User’s Guide Sun MTP Release 7.2 3-3

3.1.2 Defining Client behavior in the KIXCLI.INI file Configuring MTP Client and MTP

In Figure 3.1, the last line in the Systems section defines a system that is known
locally as SnaSyst. This system uses Microsoft SNA or IBM Communications
Manager to connect to MTP using the local LU LLUALIAS, where MTP has a
remote LU Alias of RLUALIAS. The APPC mode to be used is MODENAME. The last
field contains a description of the system, MS SNA Connected System.

3.1.2 Defining Client behavior in the KIXCLI.INI file
Entries in the General section of the KIXCLI.INI file control the behavior of
MTP Client and are optional. These entries take the form of Attribute=value
pairs, and are described below.

Note Use the semicolon character to comment out any entries you do not need.
As shipped and illustrated in Figure 3.1, most of the entries in the
General section are commented out.

DefaultSystem=System_name
Sets which default system to use by MTP Client; system
must be defined in the Systems section. If DefaultSystem
is not specified, it defaults to the first entry in the
Systems section of the KIXCLI.INI file. For example,
Accounts in Figure 3.1 is the default system even if this
entry is commented out.

TraceDir=C:\TMP Controls the destination directory for MTP diagnostic
trace files. Each trace file is given the name *.trc, where *
is a file name root identifying the task or process
concerned. If TraceDir is not specified, it defaults to
$INSTROOT/BIN.

TraceMask=0 A decimal integer that controls the generation of a
diagnostic trace by MTP Client. This entry should be left
commented out or set to zero, unless you are asked to
obtain a diagnostic trace by the technical support.

When using diagnostic trace, be aware that

• Trace files *.trc can quickly use large quantities of disk
space. Therefore, you should disable trace and delete
unwanted trace files as soon as possible.

• Generation of diagnostic traces degrades the
performance of MTP Client.

MsgDir=C:\TMP As part of its normal function, MTP Client generates
messages, which are written to the file KIXCLI.MSG in
the MsgDir directory. If MsgDir is not specified, it
defaults to $INSTROOT\BIN. The message file,
KIXCLI.MSG, is overwritten each time MTP Client is
started.

ModeName Set to the APPC ModeName to be used for the connection
between the local and remote LUs as defined on the SNA
Server.

Comment Comment (up to 60 characters), which can be zero length.
However, you must type a comma to delimit the port
number field.

Configuring MTP Client and MTP 3.2 Enabling a diagnostic trace

3-4 Sun MTP Release 7.2 MTP Client User’s Guide

MaxRequests=20 Defines the maximum number (default 20) of concurrent
requests allowed by MTP Client. A request is defined as
an ECI unit-of-work, an EPI, or terminal emulator
session. This parameter is designed to limit any problems
that an errant application may cause, such as an ECI
application that erroneously loops, continually starting
new units-of-work, but never completing them.

MaxSystems=3 Defines the maximum number (default 3) of systems to
which MTP Client can be simultaneously connected.

EnableConnect=false
Allows you to configure the action taken by MTP Client
when the right mouse button is pressed from the Systems
display.

true Displays the menu for connecting or disconnecting
from a MTP region. (Default)

false Does not display the connect/disconnect menu.
This facility is provided for environments in which
users should not be able to select a system. This is
the recommended value for production
installations.

3.2 Enabling a diagnostic trace
For support purposes, you may be asked by the technical support to obtain
diagnostic information by running a diagnostic trace of MTP Client.

To run the diagnostic trace, perform the following steps.

Note On Windows NT you can also run a diagnostic trace from the Control
panel of the admin program, KIXCTLG.

Note also that it is possible to enable and disable Trace dynamically on Windows
versions of MTP Client by using the graphical user interface KIXCTLG.

Step
Description

1 Stop MTP Client.

2
Ensure that the TraceDir attribute in the MTP Client configuration file,
KIXCLI.INI, is uncommented, and that the directory specified exists, is writable, and
has sufficient space for diagnostic trace output.

3 Ensure that the TraceMask attribute in the MTP Client configuration file,
KIXCLI.INI, is uncommented and set to the value requested by technical support.

4 Delete any unnecessary existing diagnostic trace files *.trc from the TraceDir.

5 Restart MTP Client.

MTP Client User’s Guide Sun MTP Release 7.2 3-5

3.3 Disabling a diagnostic trace Configuring MTP Client and MTP

3.3 Disabling a diagnostic trace
After you obtain the diagnostic trace, follow these steps to disable it.

3.4 Configuring MTP for a TCP/IP connection to
MTP Client
Before using MTP Client to connect to MTP, MTP must be configured to accept
incoming TCP/IP connections. Access to MTP by the PC Client is provided by
specifying a port by number or name when starting the MTP server on the host.
The name is used to look up a well-known port number in /etc/services or NIS
tables. Perform the following steps to configure MTP. See also Section 4.3,
Enabling MTP to receive connections and the MTP Configuration Guide for
additional information.

Step
Description

1 Stop MTP Client.

2 Edit the KIXCLI.INI file, and set the TraceMask back to zero (or comment out the
TraceMask line) to disable diagnostic trace.

3 Copy the trace file(s) *.trc to another location before restarting MTP Client.

Step
Description

1

On the host, define the well-known port in /etc/services or NIS tables
cicstcp1435/tcp

The well-known port can be used for one region. If additional regions running on the
same machine will listen for a TCP connection, each MTP server must identify a port
that is unique on that machine.

2

Define the TCPRTERM environment variable in your MTP setup file.
This sets the maximum number of concurrent inbound requests for TCP/IP
connections from MTP Client and remote MTP or CICS regions. If there are more
requests than available sessions, MTP queues the extra requests, which may affect
performance.
Each $TCPRTERM configured requires 32KB of shared memory.

3

Define the TCPSTERM environment variable in your MTP setup file.
This sets the maximum number of concurrent outbound requests for TCP/IP
connections to remote MTP or CICS regions. If there are more requests than
available sessions, MTP queues the extra requests, which may affect performance.
Each $TCPSTERM configured requires 32KB of shared memory.

4

Define the KIXMAXIST environment variable in your MTP setup file.
This sets the maximum number of autoinstalled MTP Client and remote MTP or
CICS regions. A request from a remote region is rejected if there are no available
entries to install the region.

Configuring MTP Client and MTP 3.5 Configuring MTP and SNA for an SNA-connected MTP Client

3-6 Sun MTP Release 7.2 MTP Client User’s Guide

3.5 Configuring MTP and SNA for an
SNA-connected MTP Client
For information about configuring MTP and SNA for a MTP Client, refer to the
chapter describing Intersystem Communication (ISC) in the MTP Configuration
Guide.

MTP Client User’s Guide Sun MTP Release 7.2 4-1

Chapter 4 Starting
MTP Client
and MTP

4.1 Starting MTP Client on Windows
MTP Client for Windows systems is designed to run as a Windows Service.
Normally, it is not necessary to start MTP Client; it starts for you. However, there
are cases where you may want to control the starting and stopping of MTP Client.

When MTP Client is installed, a service is created that is started each time your
machine is booted. However, this may not be the mode of operation that you
require. Whether or not MTP Client is started is determined using the Control
Panel, Services option. If the MTP Client service has the automatic flag set, it is
started when your machine boots. To modify this setting, press the Startup ...
button, then select the options you require.

MTP Client can be started using the Control Panel, Services option. This
operation is performed in the same way as for all services, by selecting the
required service and pressing the Start button.

In addition to using the Control Panel to start and stop MTP Client, you can use
the MTP Client Administrator (see Section 5.2).

4.2 Starting MTP Client on Solaris
MTP Client for Solaris is designed to run as a daemon process. It can be started
manually from the shell, using the kixcli command, but this is not the normal
method of operation. Normally, you should run MTP Client as a daemon started
from inittab. This means that ECI/EPI facilities are available whenever the
machine is running.

To create an inittab entry, consult your operating system documentation for the
exact syntax for your platform. The following is an example of an inittab entry

kixcli:2:once:/opt/kixcli/bin/kixcli >/dev/console 2>&1

This chapter describes how to start MTP Client and how to start MTP on the
host.
What should I start first?
Although you can start the processes in either order, you cannot connect to an
MTP system that isn’t started. When you start MTP, the server listens for TCP
and SNA requests. If you start an application automatically, it fails if the MTP
system is not started.

Starting MTP Client and MTP 4.3 Enabling MTP to receive connections

4-2 Sun MTP Release 7.2 MTP Client User’s Guide

4.3 Enabling MTP to receive connections
The connection on the MTP host is established by starting the MTP server,
unikixmain, on the host with the -P option. When started in this way, in
addition to starting transaction servers, it starts the unikixtcp server, which
listens on the port number for incoming requests.

The server also provides the -L option for setting the number of file descriptors.

-L connections Number of socket connections that the MTP server can
support for TCP connections. This number represents the
maximum number of connections that can be opened by a
process. Reduce the number to restrict the number of TCP
Clients that can be attached or raise it if Clients are being
rejected.

The default is the current system soft limit for files.

-P port# Port name or number for the MTP server to use as a
listening port for CICS Clients running ECI and EPI
applications over a TCP/IP connection. There is no default
port so you must supply one, either by name or by number,
for example

-P cicstcp
-P 5100

The port number must match the port number of a system
identified in the Client INI file. For example, to listen for
requests from the Payroll system listed in Figure 3.1,
enter port number 9111 as the argument to the -P option.
Note that cicstcp is the name defined in /etc/services in
Section 3.4.

You can start unikixmain directly or use the shell script, kixstart, to start it
indirectly. kixstart passes any command line options to unikixmain. The MTP
Configuration Guide describes the procedure for starting MTP and the Reference
Manual describes all the options for unikixmain.

MTP Client User’s Guide Sun MTP Release 7.2 5-1

Chapter 5 MTP Client
Administration

5.1 Administering MTP Client for Windows
As stated in Section 4.1, MTP Client for Windows runs as a system service.
Therefore, you can use the Windows Control Panel to perform some of the
administration of the Client. However, you cannot do all the administration
functions.

MTP Client contains a program (KIXCTLG.EXE) that is a monitor and
administrator for the Client. KIXCTLG.EXE is a windowed application that
contains a single window with up to four notebook-style tabs. Using these tabs,
you can select up to four displays of information, which are described in the
following sections

• Control panel
• TCP Systems panel
• MS SNA Systems panel
• Messages display

5.1.1 Control Panel
On the Control panel, it is possible to perform two types of tasks

• Start and stop MTP Client. On Windows, pressing the Start/Stop buttons is the
equivalent of starting and stopping the system service.

• Trace enables you to dynamically control the trace output by MTP Client. Only
use trace under the supervision of the MTP system administrator.

Figure 5.1 shows an example of the Control Panel.

This chapter describes how to administer MTP Client on Windows and Solaris
platforms.

MTP Client Administration 5.1.2 TCP Systems Panel

5-2 Sun MTP Release 7.2 MTP Client User’s Guide

5.1.2 TCP Systems Panel
The TCP Systems panel is only displayed when there are TCP systems defined in
the KIXCLI.INI file. This panel contains a list of the defined TCP systems, along
with their configuration values. It also gives an indication of whether MTP Client
is connected to those systems.

Each system has an icon to the left of it

The systems in the list are manipulated by pressing their name button. This
produces a menu that allows the connection or forced disconnection of the system.
Note that you should only use disconnection when absolutely necessary.

Figure 5.1 Control Panel

X The system is not connected.
- The system is being connected.
(Check) The system is connected.

MTP Client User’s Guide Sun MTP Release 7.2 5-3

5.1.3 MS SNA Systems Panel MTP Client Administration

5.1.3 MS SNA Systems Panel
The MS SNA Systems panel only displays when there are MS SNA systems
defined in the KIXCLI.INI file.

This panel contains a list of the defined MS SNA systems, along with their
configuration values. It also gives an indication of whether MTP Client is
connected to those systems.

Each system has an icon to the left of it.

The systems in the list are manipulated by pressing their name button. This
produces a menu that allows the connection or forced disconnection of the system.

Note You should only use disconnection when absolutely necessary.

5.1.4 Messages Panel
The Messages screen shows the 100 most recent messages issued by MTP Client.
There are three message categories that display in different colors

• Informational (I)
• Warning (W)
• Error (E)

The same messages are also written to a message file, KIXCLI.MSG, and include
a date and time stamp. Appendix B describes the MTP Client messages.

Figure 5.2 TCP Systems Panel

X The system is not connected.
- The system is being connected.
(Check) The system is connected.

MTP Client Administration 5.1.4 Messages Panel

5-4 Sun MTP Release 7.2 MTP Client User’s Guide

Figure 5.3 MS SNA Systems Panel

Figure 5.4 Messages Panel Example

MTP Client User’s Guide Sun MTP Release 7.2 5-5

5.2 Administering MTP Client for Solaris MTP Client Administration

5.2 Administering MTP Client for Solaris
There is no graphical administration tool available for MTP Client on Solaris; you
must use kixctl.

Format

kixctl [-v] [-s] [-l] [-m] [-D] [-c <system>] [-d <system>]
[-t <mask>]

where

The system administrator should monitor the kixcli.msg file, which contains
information about any significant errors and/or events that occur on the system.

-v Prints out the MTP Client version information.
-s Shuts down MTP Client.
-l Lists the defined systems and their status.
-m Displays messages when the status of a system changes.
-D Performs a dump.

Note Only the System Administrator should perform this
function.

-c <system> Connects to the named system.
-d <system> Disconnects from the named system.
-t <mask> Sets the trace mask to <mask>.

Note Only the system administrator should perform this
function.

MTP Client Administration 5.2 Administering MTP Client for Solaris

5-6 Sun MTP Release 7.2 MTP Client User’s Guide

MTP Client User’s Guide Sun MTP Release 7.2 6-1

Chapter 6 3270 Terminal

6.1 Configuring the 3270 Terminal
The terminal is configured using

• Command line parameters to configure the startup conditions; for example, the
window name, the system, the transaction, as described in Section 6.1.1

• Initialization file to configure the colors, key mappings and field attributes, as
described in Section 6.1.2

6.1.1 Command line parameters
This section describes how to configure the terminal with command line
parameters.

The 3270 Terminal is a Windows application that uses the MTP Client EPI
interface to provide a 3270 gateway into MTP. The terminal allows remote
access to standard 3270 MTP transactions from a PC running Windows. You can
configure the terminal using command line parameters and an initialization file.
This chapter describes how to configure, start and stop the 3270 Terminal.

Note The 3270 Terminal is not available on Solaris.

Step
Description

1 Highlight the 3270 Terminal icon from the MTP Client program group.

2 Select Properties from the Program Manager File menu.

3270 Terminal 6.1.2 Initialization file contents

6-2 Sun MTP Release 7.2 MTP Client User’s Guide

6.1.2 Initialization file contents
The terminal is supplied with a default initialization file, KIXTERM.INI, that
contains the settings for the colors and keyboard used by the terminal. You can
modify this file or define your own.

You must always place the initialization file in the Windows default system
directory. During installation, the KIXTERM.INI file is placed in the default
system directory if a copy does not already exist. Appendix A describes the format
and contents of the KIXTERM.INI file.

6.2 Starting the 3270 Terminal
The following subsections describe the two methods of starting the terminal and
connecting to a system

• From the 3270 Terminal icon
• From a command line

3

When the dialog box for kixterm.exe appears, add the command line parameters you
need using the following syntax
• Specify each parameter with either a “—” or “/” character followed by the

parameter identifier either lower- or upper case.
• Separate data passed with a parameter flag from the flag by at least one space

character.
• If an argument to a parameter includes spaces, enclose the argument with

quotation marks, for example
kixterm /t "CEBR" -w "Accounts Payable" /s Accounts

The following command line parameters are accepted

/d device_type MTP device type for this terminal; truncated if it exceeds 16
characters. Section 9.5.4, CICS_EpiAddTerminal(), lists the
MTP valid models.

/i file_name Name of which initialization file to use. If not specified, the
terminal uses the supplied initialization file, KIXTERM.INI.

/n netname MTP netname (up to 8 characters) to assign to this terminal. This
name is assigned in the TCT and is normally obtained from the
System Administrator.

/s system_name Name (up to 8 characters) of the MTP region to which to connect,
for example, Accounts, as illustrated in Figure 3.1. You must
define this name in KIXCLI.INI before the terminal is started. If
not specified by the start-up command line, a selection dialog
appears to allow the user to choose the system.

/t tranid Initial transaction and data. Specifies which transaction to run
immediately after a successful connection to MTP.

/w title Window title (up to 50 characters) to be displayed on the terminal
title bar.

Step
Description

MTP Client User’s Guide Sun MTP Release 7.2 6-3

6.2.1 Starting the 3270 Terminal from the 3270 Terminal icon 3270 Terminal

6.2.1 Starting the 3270 Terminal from the 3270 Terminal
icon
This section describes the procedure for starting the terminal from the 3270
Terminal icon with the properties set as described in the Configuration section.

Note If the terminal was configured in the Program Manager with a system
name, the System Selection dialog does not appear.

6.2.2 Starting the 3270 Terminal from a command line
An alternative method for start-up is from the Program Manager File - Run
window.

Note To bypass the System Selection dialog, specify the /s parameter and a
system name; the 3270 Terminal automatically attempts to connect to
the specified system.

Step
Description

1 From the MTP Client group, double click the 3270 Terminal icon.

2

If the System Selection dialog appears, as illustrated in Figure 6.1, connect to a
system by either
• Double clicking the system
• Single clicking the system, then clicking the OK button

Figure 6.1 3270 Terminal System Selection Dialog

Step
Description

1 Select Run from the Program Manager File menu.

2 Type the kixterm command in the Command box with the parameters desired. See
Section 6.1.1 for a description of the parameters and syntax.

3270 Terminal 6.3 3270 Terminal screen

6-4 Sun MTP Release 7.2 MTP Client User’s Guide

6.3 3270 Terminal screen
The 3270 Terminal screen that is created on startup displays either

• A blank screen if no transaction was specified in the command line.
• The specified transaction screen. Figure 6.2 illustrates a screen.

where.

Figure 6.2 3270 Terminal Screen

Title Bar
Displays the title assigned to the terminal, by default,
MTP Client 3270 Terminal. You can change it with the command
line parameter -W or /W.

Display Area Area where you type MTP transactions and where data is
displayed by transactions.

Status Bar Displays information about the current status of the terminal
session as described in Table 6.1

Table 6.1 3270 Terminal Status Bar Information

Information Displayed Example Description

Connection status 1B# Symbols shown in the bottom left
corner when a connection is established

Terminal netname =2AAA3M Name of the terminal on the remote
region

Keyboard lock XSystem Symbol displayed when the keyboard is
locked.

Error messages EMU0014E: System
unavailable Keyboard status flags

Keyboard status flags

CAPS Caps lock indicator

NUM Num lock indicator

INS Insert Mode flag

MTP Client User’s Guide Sun MTP Release 7.2 6-5

6.4 Stopping the 3270 Terminal 3270 Terminal

6.4 Stopping the 3270 Terminal
To shut down the 3270 Terminal follow these steps.

Step
Description

1 Close the connection with the CSSF LOGOFF command.

2 Double-click the Control-menu box in the upper left hand corner of the 3270 Terminal
screen (Figure 6.2).

3270 Terminal 6.4 Stopping the 3270 Terminal

6-6 Sun MTP Release 7.2 MTP Client User’s Guide

MTP Client User’s Guide Sun MTP Release 7.2 7-1

Chapter 7 3270 Printer

7.1 Configuring the 3270 Printer
This section describes the command line parameters for configuring the printer.

The 3270 Printer is a Windows application that uses the MTP Client EPI
interface to provide a 3270 gateway into MTP. The printer allows printer-based
applications to send data to a virtual printer device. The printer can either
• Format and write data to a text file on the local host.
• Format the data to a temporary file, then execute a command to process the

file.
Data written to a file can be edited for inclusion in spreadsheets, word processor
documents or other applications.
The printer formats data according to the printing rules specified in the IBM
3270 Information Display System Data Stream Programmers Reference.

Note The 3270 Printer is not available on Solaris.

Step
Description

1 Highlight the MTP Printer icon from the MTP Client program group.

2 Select Properties from the Program Manager File menu.

3270 Printer 7.2 Example kixprnt commands

7-2 Sun MTP Release 7.2 MTP Client User’s Guide

7.2 Example kixprnt commands
This section provides examples of kixprnt commands.

Example 1 Write text to the 3270.txt file in the c:\ directory

kixprnt /f c:\3270.txt

Example 2 Writes the print text to a temporary file, then executes a
user-written command, usercmd, with the name of the temporary
file appended to the end of the command

kixprnt /p usercmd

3

When the dialog box for kixprnt.exe appears, add the command line parameters you
need
• Specify each parameter with either a “—” or “/” character followed by the parameter

identifier in either lower- or uppercase.
• Separate data passed with a parameter flag from the flag by at least one space

character.
• If an argument to a parameter includes spaces, enclose it with quotation marks,

for example
kixprnt /t "hp sys1" /f c:\acct.txt /s Accounts

The following command line parameters are accepted
/d device_type MTP device type, up to 16 characters, for this virtual printer device.
/f print_file File to which formatted output is appended. If no file name or print

command are specified, the printer opens and appends to a default
file, kixprnt.txt. You can edit the print file and extract data for use
in other applications. The printer does not delete the file. If both /f
and /p are given, the printer ignores the file specified with /f and
writes to a temporary file created by the printer as described in /p.

/n netname MTP netname, up to 8 characters, to assign this virtual printer
device. Check with your system administrator.

/p command Command run by the printer every time a print request is received.
The name of the temporary file to process is appended to the end of
the command string. For example, for this command

kixprnt /p hppmt
the printer appends the name of the temporary file forming this
command

kixprnt /p hppmt c:\tmp\123
The user command must delete the temporary file. See also
Section 7.2 for additional examples.

/s system_name Name, up to 8 characters, of the MTP region to which to connect. If
not specified at start-up, select a system from the System selection
dialog. Section 3.1.1 describes how to add systems to the
KIXCLI.INI file.

/t trans_id [data] Transaction to run when the printer has successfully connected to
MTP. If passing data with the initial transaction, you must enclose
the transaction id and data in quotes, for example

kixprnt /t "CEBR testq"

Step
Description

MTP Client User’s Guide Sun MTP Release 7.2 7-3

7.3 Starting the 3270 Printer 3270 Printer

Example 3 If the temporary file for the previous command was created as
c:\tmp\453, the user command executed is

usercmd c:\tmp\453

Example 4 The name of the temporary file is always appended to the end of the
command. Therefore, if the kixprnt command had flags defined as
/c and /g, for example

kixprnt /p "usercmd /c /g"

then the user command executed is

usercmd /c /g c:\tmp\453

7.3 Starting the 3270 Printer
The following subsections describe the two methods for starting the printer and
connecting to a system

• From the 3270 Printer icon
• From a command line

7.3.1 Starting the printer from the 3270 Printer icon
Follow these steps to start the 3270 Printer from the 3270 Printer icon.

Note If the printer was configured in the Program Manager with a system
name, the System Selection dialog does not appear.

Step
Description

1 From the MTP Client group, double click the 3270 Printer icon.

2

If the System Selection dialog appears, illustrated in Figure 7.1, select a system to
connect to by either
• Double clicking the system
• Single clicking the system, then selecting OK

Figure 7.1 3270 Printer System Selection Dialog

3270 Printer 7.3.2 Starting the 3270 Printer from a command line

7-4 Sun MTP Release 7.2 MTP Client User’s Guide

7.3.2 Starting the 3270 Printer from a command line
An alternative method of start-up is from the Program Manager File - Run
window.

7.4 3270 Printer screen
On startup, the printer appears as an icon, by default. When a connection is made
to the MTP region, the netname under which the printer was installed is
displayed beneath the icon (Figure 7.2). The printer window displays details of
the print file, print command, and any error messages, as illustrated in
Figure 7.3.

7.5 Stopping the 3270 Printer
You can stop the printer by

• Selecting the close option from the system menu in the top left hand corner of
the main window

• Using the icon

Step
Description

1 Select Run from the Program Manager File menu.

2 Type the kixprnt command in the Command box with the parameters desired. See
Section 7.1 for a description of the parameters.

Figure 7.2 3270 Printer Icon

Figure 7.3 3270 Printer Screen

MTP Client User’s Guide Sun MTP Release 7.2 8-1

Chapter 8 External Call
Interface (ECI)

8.1 ECI example code
You can find example code illustrating the use of ECI from the C programming
language in $INSTROOT\EXAMPLES. $INSTROOT indicates the name of the
directory where MTP Client was installed.

8.2 How does the MTP ECI work?
The MTP ECI allows applications to call MTP programs in an MTP server. ECI is
a method of gaining access to MTP programs; it does not issue EXEC CICS
commands, but instructs MTP to execute programs to do the processing. The MTP
program then appears to have been called by EXEC CICS LINK with the COMMAREA
option.

An ECI application can call any MTP program as long as the MTP program is
written to follow the rules for Distributed Program Link (DPL)

• It must not use EXEC CICS SYNCPOINT or EXEC CICS SYNCPOINT ROLLBACK
commands in an extended LUW.

• For linked-to programs, add this entry into the PPT to only execute the
DPL-restricted API commands

APISet=D
• It cannot issue CICS commands against the principal facility.

An application can run multiple MTP programs concurrently; either on the same
or different MTP regions.

When considering the use of ECI, note the following points

• A single ECI unit-of-work cannot be spanned across multiple regions. (A
unit-of-work is a series of actions that must be completed before any action can
be committed.)

• A single ECI unit-of-work cannot have more than one part executing at any one
time.

The complete ECI functionality comes from two API function calls

CICS_ExternalCall()
Provides most of the functionality of ECI, as described in
Section 8.3. The function takes a single parameter, which is a
pointer to an ECI_PARMS block. It is the fields within this control
structure that determine what functionality is performed.
Section 8.6.1 describes this function.

This chapter describes the MTP Client External Call Interface (ECI) as used
with the C programming language. The C function calls and defines are usable
from C++.

External Call Interface (ECI) 8.3 CICS_ExternalCall call types

8-2 Sun MTP Release 7.2 MTP Client User’s Guide

CICS_EciListSystems()
Provides an interface for the programmer to inquire as to
which server systems are configured for use. Section 8.6.2
describes the syntax.

8.3 CICS_ExternalCall call types
There are three types of calls to CICS_ExternalCall()

In order to perform any of the above tasks, the eci_call_type field of the
ECI_PARMS control block must be set to one of the required values. The values
available are listed in Table 8.1.

In addition to the categorization in Table 8.1, a distinction must be made between
synchronous and asynchronous call types

Program link Causes program execution of the MTP server.
Status information Obtains connection information about specific systems.

Reply solicitation Obtains results and status from previous program link
calls.

Table 8.1 eci_call_type for Functions

Function eci_call_type Values

Program link

ECI_SYNC

ECI_ASYNC

ECI_ASYNC_NOTIFY_MSG (Windows only)
ECI_ASYNC_NOTIFY_SEM (Windows only)

Status request

ECI_STATE_SYNC

ECI_STATE_ASYNC

ECI_STATE_ASYNC_MSG (Windows only)
ECI_STATE_ASYNC_SEM (Windows only)

Reply solicitation

ECI_GET_REPLY

ECI_GET_REPLY_WAIT

ECI_GET_SPECIFIC_REPLY

ECI_GET_SPECIFIC_REPLY_WAIT

Synchronous calls The function does not return control to the application
until the request has completed. This means that the
request traveled over the network to the MTP region, the
program was scheduled, completed and the response is
available. This may take considerable time, especially on
busy systems and networks with a narrow bandwidth.
During this time, the application making the synchronous
call is unable to service requests; therefore, it cannot
perform other tasks.

Note Because of their behavior, synchronous calls are
not recommended.

MTP Client User’s Guide Sun MTP Release 7.2 8-3

8.3.1 Program link calls External Call Interface (ECI)

8.3.1 Program link calls
Program link calls are either synchronous or asynchronous. For asynchronous
calls, it is the responsibility of the calling application to solicit the reply using one
of the reply solicitation calls. See Section 8.3.2.

Program link calls either initiate a program as part of a unit-of-work or to
complete a unit-of-work. The functions that a program link call can perform are

• Perform a one-shot unit-of-work
• Start a new unit-of-work
• Continue an existing unit-of-work
• Syncpoint a unit-of-work
• Roll back a unit-of-work

8.3.2 Reply solicitation calls
Reply solicitation calls get information back after asynchronous program link or
asynchronous status information calls. There are two types of reply solicitation
calls

An application that uses the asynchronous method of calling may have several
program link and status information calls outstanding at any time. The
eci_message_qualifier parameter in the ECI parameter block is used on an
asynchronous call to provide a user-defined identifier for the call.

Note The use of different identifiers for different asynchronous calls within a
single application is the programmer’s responsibility.

When a general reply solicitation call is made, ECI uses the
eci_message_qualifier field to return the name of the call to which the reply
belongs. When a specific reply solicitation call is made, it is necessary to supply a
value in the eci_message_qualifier field to identify the asynchronous call
about which information is being sought.

Within the Windows programming environment, the use of specific reply
solicitation calls is recommended because when an ECI request is made, the
application can be told when the reply for that request is ready. Therefore, there
is enough information to specify which request to handle.

Asynchronous calls On Windows, the ECI is thread safe. In this case,
processing could continue on another thread, if required.
The function returns to the application as soon as the
request is scheduled. This means that the application gets
control back before the request is given to the network.
The application can perform other work and is informed
asynchronously when the request has completed. The
result of the request is obtained using a reply solicitation
call.

General Retrieving any piece of outstanding information.
Specific Retrieving information for a named asynchronous request

External Call Interface (ECI) 8.3.3 Status information calls

8-4 Sun MTP Release 7.2 MTP Client User’s Guide

8.3.3 Status information calls
Status information calls can be either synchronous or asynchronous. For
asynchronous calls, it is the responsibility of the calling application to obtain the
reply using a reply solicitation call. See Section 8.3.2.

Status information is supplied in the ECI status block (ECI_STATUS), which is
passed across the interface in the eci_commarea parameter.

The ECI status block contains the following status information

• The type of connection (whether the ECI program is locally connected to a MTP
server, a MTP client, or nothing)

• The state of the MTP server (available, unavailable, or unknown)
• The state of the MTP client (available, not applicable, or unknown)

The status information calls allow you to perform these tasks

• Inquire about the type of system on which the application is running and its
connection with a given server. You need to provide a COMMAREA in which to
return the status.

• Set up a request to notify you when the status is different from the status
specified. You need to provide a COMMAREA in which the specified status is
described. You can only use asynchronous calls for this purpose.

• Cancel a request for notification of status change. No COMMAREA is required.

The format of the status request block is described in Section 8.5.

8.4 Application design
Application design is different between Solaris and Windows environments
because of the different paradigms that are usually followed for applications in
those environments. This section describes the management of logical
units-of-work, which is common to all platforms, and provides guidelines for
programming in the Windows and Solaris environments.

8.4.1 Managing logical units-of-work
An ECI application is often concerned with updating recoverable resources on the
server. The application programmer must understand the facilities that ECI
provides for managing logical units-of-work. A logical unit-of-work is all the
processing in the server that is needed to establish a set of updates to recoverable
resources. When the logical unit-of-work ends normally, the changes are all
committed. When the logical unit-of-work ends abnormally, for instance because a
program abends, the changes are all backed out. You can use ECI to start and end
logical units-of-work on the server.

The changes to recoverable resources in a logical unit-of-work are affected by

• A single program link call
• A sequence of program link calls. On successful return from the first of a

sequence of calls for a logical unit-of-work, the eci_luw_token field in the
control block contains a token that should be used for all later calls related to
the same logical unit-of-work. All program link calls for the same logical
unit-of-work are sent to the same server.

Be careful when extending a logical unit-of-work across multiple
program link calls that may span a long time. Logical units-of-work
hold locks and other MTP resources on the server; this may cause
delays to other users who are waiting for those same locks and
resources.

Caution

MTP Client User’s Guide Sun MTP Release 7.2 8-5

8.4.2 Designing an application for Windows External Call Interface (ECI)

When a logical unit-of-work ends, the MTP server attempts to commit the
changes. The last, or only, program link call of a logical unit-of-work is advised if
the attempt was successful.

Only one program link call per logical unit-of-work can be outstanding at any
time. (An asynchronous program link call is outstanding until a reply solicitation
call has processed the reply.)

The techniques required to manipulate units-of-work from ECI are illustrated in
Section 8.7. Using these techniques, an application can manage the control flow
within the unit-of-work to perform the tasks required.

Each logical unit-of-work ties up one MTP non-facility task for the duration of its
execution. This means that you must define enough free tasks in the MTP server
to service the maximum expected number of concurrent calls. The number of
tasks is affected by the TCPRTERM environment variable described in
Section 3.4 and by the number of transaction servers created when MTP is
started. For example, if you need six concurrent units-of-work to the same MTP
region, set $TCPRTERM to at least six; the number of transaction servers must
also be set to at least six in the VSAM Configuration Table (VCT).

An ECI application is not restricted to running a single unit-of-work at any one
time. An application can perform many simultaneous units-of-work directed at
one or many MTP regions. These units-of-work are independent of each other, and
can be controlled by the application so that they work in harmony. For example,
an application may need to obtain data from two different regions for display on
the screen. Obtaining the data would be done with an ECI call to each of the
regions, both running simultaneously but within separate units-of-work. The data
is then received by the application and displayed to the end user as required.

As described in Section 8.2 and Section 8.3, ECI provides a series of methods for
performing the same user functionality.

8.4.2 Designing an application for Windows
This section describes programming methods that work best in a Windows
environment.

Since Windows is a multi-threaded environment, it is possible, and in some cases
desirable, to design applications using synchronous ECI calls. When these calls
are executed from multiple threads, it is possible to have multiple synchronous
units-of-work active at any one time. However, the creation of multi-threaded
applications is problematic since it normally requires a lot of work to synchronize
multiple threads.

It is easier, and more effective to use the notification facilities available on
asynchronous calls within the Windows environment. This enables the
application to be written as a normal Windows application and to have
notification of completion of DPLs done via a variety of mechanisms. Thus, ECI
can easily be fitted into the design of the rest of the application.

The most important of the notification mechanisms is the Windows message.
When using this mechanism, the application is notified that work has completed
by posting a Windows message. The message parameters informs the application
what has happened to each ECI request. The application then uses the reply
solicitation calls to obtain the completed results of the work. This message posting
method fits normal Windows programming modes where an application is mainly
concerned with the presentation to the user. The message posted to the
application concerning ECI completion is the same as all other Windows
messages.

There are two other notification mechanisms the semaphore and the callback.
Semaphore notification is a misnomer because the notification is actually via a
Windows Event.

External Call Interface (ECI) 8.4.3 Designing an application for Solaris

8-6 Sun MTP Release 7.2 MTP Client User’s Guide

An application creates an Event, and when an ECI request completes, ECI signals
the Event. Then the application can use the WaitForSingleObject() and
WaitForMultipleObjects() system calls to wait for the completion of the
request.

The callback notification mechanism is less useful but may be what an application
requires. Using this mechanism, a user-defined function is executed when an ECI
request completes. The callback routine should not perform large amounts of
work. An application must not call ECI in that callback, so the callback normally
just notifies the rest of the application that there is work to be done to receive the
reply. On Windows, this callback is made on a separate thread that is owned by
ECI.

ECI is not used to notify the application about the completion of the call. Here, it
is the responsibility of the application to solicit the reply when it is appropriate. If
there is no reply ready, the relevant return code is returned from the ECI
solicitation call.

8.4.3 Designing an application for Solaris
This section describes programming methods that work best in a Solaris
environment.

There are two choices for application design

• Synchronous mode
The application blocks during the processing of a DPL. In many cases, this is
satisfactory.

• Asynchronous mode
Some applications require many units-of-work active at any one time. On the
Solaris implementation, there is only one method of asynchronous request
notification, the callback. However, there are several design issues with this
callback mechanism.

MTP Client communicates with an application via named pipes. Since
MTP Client is single threaded, data can only be read from the pipe when an
application calls into the ECI/EPI interface. It is only at this point that any
callbacks can be performed. Thus, notification callbacks are only performed while
processing other ECI/EPI functions. These limitations can cause problems when
designing an application that works effectively. To simplify this process, use the
KixCli_QueryFD() function, which returns a standard UNIX file descriptor that
is the pipe used for communications. An application can use the select()
function call to wait until there is information for the ECI/EPI to process. When
the application is told that there is data, it should call into the ECI/EPI APIs to
ensure any callbacks are performed.

The supplied sample ECIEX2 shows how this mechanism can be fitted into a
curses application that performs multiple concurrent units-of-work, while
simultaneously servicing user input.

8.5 ECI data structures
The tables in this section define the ECI data structures

• ECI_STATUS, Table 8.2
• ECI_PARMS, Table 8.3

MTP Client User’s Guide Sun MTP Release 7.2 8-7

8.5 ECI data structures External Call Interface (ECI)

Table 8.2 ECI_STATUS Structure Fields

Field Value Description

ConnectionType

ECI_CONNECTED_NOWHERE Should never use.

ECI_CONNECTED_TO_CLIENT
Application is running on a
MTP Client system.

ECI_CONNECTED_TO_SERVER Should never use.

CicsServerStatus

ECI_SERVERSTATE_UNKNOWN Should never use.

ECI_SERVERSTATE_UP
MTP server is currently
connected and available for
work.

ECI_SERVERSTATE_DOWN
MTP server is not available for
work.

CicsClientStatus

ECI_CLIENTSTATE_UNKNOWN Should never use.

ECI_CLIENTSTATE_UP ECI Client is available.

ECI_CLIENTSTATE_INAPPLICABLE Should never use.

Table 8.3 ECI_PARMS Structure Fields

Field Type Description

eci_call_type sshort
The primary call type that is modified by the
eci_extend_mode field, which together define
the call being requested.

eci_program_name char[8]
Name of the program to execute on the MTP
server.

eci_userid char[8] Userid for server security checking.

eci_password char[8] Password for server security checking.

eci_transid char[4]
The transaction name under which the program
will run, as available to the MTP program via the
EIBTRNID field.

eci_abend_code char[4]
The abend code that is returned from a failed
program. This can also be set for some ECI Client
side errors.

eci_commarea char *
A pointer to the COMMAREA. Data is either sent
from, or placed into this area (or both), depending
on the call type.

eci_commarea_length sshort The length of the eci_commarea block.

eci_timeout sshort
A timeout in seconds for a request. This is
normally set to 0 to indicate no timeout; only set
to other values in rare instances.

eci_sys_return_code sshort
A return code that provides extended information
about a failure. This field is never set by the ECI
Client.

External Call Interface (ECI) 8.5 ECI data structures

8-8 Sun MTP Release 7.2 MTP Client User’s Guide

eci_extend_mode sshort
A modifier to the eci_call_type field. Together
with eci_call_type, this field fully defines the
functionality required.

eci_window_handle HWND
Window handle of a window that receives posted
messages upon completion of asynchronous calls.
(Windows Only)

eci_hinstance HINSTANCE Ignored by the ECI Client.

eci_message_id ushort
ID of the message that is sent to the
eci_window_handle window upon completion of
asynchronous calls.

eci_message_qualifi
er

sshort
User-defined value that is used to identify
different asynchronous calls.

eci_luw_token slong
A token returned by some ECI calls and used as
input by others, to identify the unit-of-work that
is being acted on.

eci_sysid char[4] Ignored by the ECI Client.

eci_version sshort

The version of ECI in use. For new applications,
set to ECI_UNIKIX_VERSION_1. However,
MTP Client also supports ECI_VERSION_1 for
compatibility with the IBM Client ECI.

eci_system_name char[8]

Name of the MTP server, which are any of the
values specified in the [Systems] section of the INI
file (obtained with the CICS_EciListSystems()
call). Alternatively, you can use the default
system by specifying NULLs in this parameter.
Note that this parameter is ignored on some calls.

eci_callback func*
A pointer to a callback routine that may be called
on completion of an asynchronous request.

eci_userid2 char[16] Ignored.

eci_password2 char[16] Ignored.

eci_tpn char[4]

The transaction ID under which the program
actually runs instead of CPMI. This value is
ignored for ECI_VERSION_1 and
ECI_UNIKIX_VERSION_1.

Table 8.3 ECI_PARMS Structure Fields (Continued)

Field Type Description

MTP Client User’s Guide Sun MTP Release 7.2 8-9

8.6 ECI functions External Call Interface (ECI)

8.6 ECI functions
This section lists and describes the syntax of the two ECI functions.

8.6.1 CICS_ExternalCall()
CICS_ExternalCall() gives access to the program link calls, status information
calls, and reply solicitation calls described in the previous section. The
eci_call_type field in the ECI parameter block controls the function performed.

Format

cics_sshort_t CICS_ExternalCall(ECI_PARMS *EciParms);

where

Section 8.7 contains examples of the CICS_ExternalCall() and describes which
calls and control block values are needed for a particular use.

Return Codes

ECI_NO_ERROR The call to CICS_ExternalCall() was successful.

ECI_ERR_INVALID_DATA_LENGTH
The eci_commarea length is invalid and is caused by one
of the following

eci_commarea length < 0
eci_commarea length > 32500
eci_commarea length = 0 and
eci_commarea is not a NULL pointer
eci_commarea length > 0 and
eci_commarea is a NULL pointer

ECI_ERR_INVALID_EXTEND_MODE
The value of eci_extend_mode is either invalid, or not
appropriate to the value of eci_call_type.

ECI_ERR_NO_CICS
Either the ECI Client is unavailable, or the server is not
available.

ECI_ERR_CICS_DIED
The MTP Server that is servicing an extended
unit-of-work is no longer available. When this occurs, it is
not possible to determine if the resource changes were
committed or backed out. Log this event to aid in manual
recovery of the resources involved.

ECI_ERR_NO_REPLY
A reply solicitation has asked for a reply when none is
available.

ECI_ERR_RESPONSE_TIMEOUT
The request has timed out before completion. When this
occurs, it is not possible to determine if resource changes
were committed or backed out. Log this event to aid in
manual recovery of the resources involved.

EciParms Pointer to an ECI parameter block. Different fields within this block
are required for the different call types. Later sections describe
those required for the normal usage of the CICS_ExternalCall().
Before calling this function, set the entire block to NULL before
setting the relevant fields. See Table 8.3 for a description of the
ECI_PARMS structure fields.

External Call Interface (ECI) 8.6.1 CICS_ExternalCall()

8-10 Sun MTP Release 7.2 MTP Client User’s Guide

ECI_ERR_TRANSACTION_ABEND
The request to which this call refers has caused the MTP
transaction to abend. The abend code is returned in the
eci_abend_code field of the ECI_PARMS structure.

ECI_ERR_LUW_TOKEN
The eci_luw_token field contains an invalid value.

ECI_ERR_SYSTEM_ERROR
An internal error has occurred.

ECI_ERR_NULL_WIN_HANDLE
The eci_window_handle field specified does not refer to
an existing window.

ECI_ERR_NULL_SEM_HANDLE
The eci_sem_handle field specified is NULL.

ECI_ERR_NULL_MESSAGE_ID
The eci_message_id field is 0.

ECI_ERR_INVALID_CALL_TYPE
The eci_call_type field contains an invalid value.

ECI_ERR_ALREADY_ACTIVE
An attempt was made to continue a unit-of-work while an
existing request for that unit-of-work was active.

ECI_ERR_RESOURCE_SHORTAGE
There were insufficient system resources to satisfy the
request.

ECI_ERR_NO_SESSIONS
The application attempted to create a new unit-of-work
when the ECI Client had reached its maximum allowed
number of concurrent units-of-work.

ECI_ERR_INVALID_DATA_AREA
Either the pointer to the ECI_PARMS structure is NULL, or
the eci_commarea pointer is NULL when it is not
expected to be NULL.

ECI_ERR_INVALID_VERSION
The eci_version field is not one of
ECI_UNIKIX_VERSION_1, ECI_UNIKIX_VERSION_1A,
ECI_VERSION_1 or ECI_VERSION_1A.

ECI_ERR_UNKNOWN_SERVER
The eci_system_name field contains an unknown system.

ECI_ERR_CALL_FROM_CALLBACK

A call to CICS_ExternalCall() was made from inside a
callback routine. This is not allowed.

ECI_ERR_INVALID_TRANSID
The value in eci_transid is different from the one
specified in previous calls in the same unit-of-work.

ECI_ERR_SECURITY_ERROR
The eci_userid/eci_password pair that was supplied
were invalid.

MTP Client User’s Guide Sun MTP Release 7.2 8-11

8.6.2 CICS_EciListSystems() External Call Interface (ECI)

ECI_ERR_MAX_SYSTEMS
The number of systems that the ECI Client can talk to
concurrently is reached.

ECI_ERR_ROLLEDBACK
When attempting to commit a unit-of-work, the MTP
region was unable to do so, and rolled the changes back.

8.6.2 CICS_EciListSystems()
The CICS_EciListSystems() function enables the programmer to obtain a list of
remote systems at which ECI requests can be directed. The list of systems
returned is the set of systems defined in the KIXCLI.INI file (see Section 3.1.1). A
system appearing in the list does not mean that a connection exists to the remote
system; it only indicates that the system is defined in the KIXCLI.INI file.

On successful return from this function, the array pointed to by the List
parameter contains details of the systems; the Systems parameter is updated to
reflect the number of systems that are available.

The systems returned by this function allow an application to provide a valid
Systems parameter to the CICS_ExternalCall() function. The only valid values
for the Systems parameter are those returned by this call and a special value
consisting of eight spaces.

Format

cics_sshort_t CICS_EciListSystems(cics_char_t *NameSpace,
cics_ushort_t *Systems,
CICS_EciSystem_t *List);

where

Table 8.4 describes the fields within the CICS_EciSystem_t structure.

Return Codes

ECI_NO_ERROR
The call to CICS_EciListSystems() was successful.

ECI_ERR_INVALID_DATA_LENGTH
The value of Systems is such that the amount of storage in
the List parameter exceeds 32767 bytes.

NameSpace Must be set to a NULL pointer; it is ignored.

Systems

Pointer to a number. On entry, it contains the number of
CICS_EciSystem_t structures that can fit into the area of storage
pointed to by the List parameter. On return, it contains the
number of systems that exist, regardless of how many were
requested.

List
Pointer to an area of storage that contains details of the systems
defined. It only contains the information found in the Systems
area.

Table 8.4 CICS_EciSystem_t Structure Fields

Field Type Description

SystemName char[9]
Name of the remote system, which is a NULL- terminated
character string obtained from the KIXCLI.INI file. Also used in
the CICS_ExternalCall() function to perform remote requests.

Description char[61] Textual description of the system obtained from the KIXCLI.INI
file.

External Call Interface (ECI) 8.6.3 KixCli_QueryFD()

8-12 Sun MTP Release 7.2 MTP Client User’s Guide

ECI_ERR_NO_CICS
The ECI Client is unavailable.

ECI_ERR_SYSTEM_ERROR
An internal error has occurred.

ECI_ERR_INVALID_DATA_AREA
The List parameter is NULL, and the Systems
parameter is non-zero.

ECI_ERR_CALL_FROM_CALLBACK
A call to CICS_EciListSystems() was made from inside
a callback routine. This is not allowed.

ECI_ERR_NO_SYSTEMS

The number of systems defined in the KIXCLI.INI file is 0.

ECI_ERR_MORE_SYSTEMS

The number of systems in the KIXCLI.INI file is greater
than the number requested in the List parameter. In this
case, the value in the List parameter is the number of
systems that exist.

8.6.3 KixCli_QueryFD()
This function is only available on Solaris and enables the programmer to
determine the file descriptor (FD) that is being used for communications between
the application process and the Client process. It is an extension to enable the
writing of efficient ECI and EPI applications.

When asynchronous API calls are made, there is no way for the application to
know when a reply is available. The application process is single threaded, so the
only way that the ECI/EPI APIs can know when data is ready is for the
application is to make calls into the APIs. In addition, the application does not
know when data is ready to be received.

The KixCli_QueryFD() function allows an application to obtain the FD that is
used for communications. Giving this to the application allows it to use the system
select() function call to determine when there is work for the ECI/EPI APIs to
perform. After an application finds that there is incoming data on the FD, it
should make a call into the ECI/EPI APIs to enable the data to be read and
processed. The type of call does not matter; the purpose of the call is to allow the
data to be read and any callbacks to occur. For example, the application could call
KixCli_QueryFD() again, which has no real effect, but allows the callbacks to
occur.

The supplied samples, ECIEX2 and EPIEX2, demonstrate the use of this call to
enable the processing of curses I/O while concurrently performing ECI and EPI
requests.

Format

cics_sshort_t KixCli_QueryFD(int *pFD);

where

pFD Pointer to an FD that is returned by this call.

Return Codes

ECI_NO_ERROR
The call to KixCli_QueryFD() was successful.

ECI_ERR_FROM_CALLBACK
The call to KixCli_QueryFD()was made while processing
a callback.

MTP Client User’s Guide Sun MTP Release 7.2 8-13

8.7 Common ECI scenarios External Call Interface (ECI)

ECI_ERR_NO_CICS
Could not contact the MTP Client.

8.7 Common ECI scenarios
This section describes the sample applications supplied with MTP Client and
demonstrate some methods for using ECI. Only those relevant to your platform
are provided.

ECI provides a variety of mechanisms to create and use units-of-work. The first
thing you must do when designing an application is to decide on the requirements
for reply notification. Section 8.4 provides some platform specific guidelines on
this issue.

Note Since some methods only apply to certain platforms, read the guidelines
in Section 8.4 before using this section.

When deciding which of these scenarios most closely matches your requirements,
consider the programs that you are going to execute on the MTP server.

• Is there a single program to run?
• Do you need to control whether the program commits the work, or whether it

backs it out?
• Do you need to run many programs to form a logical unit-of-work?

Answering these questions should enable you to chose the appropriate
programming model.

8.7.1 Performing a one-shot DPL
The most frequently required functionality available from ECI is to perform a
unit-of-work that consists of a single DPL to an MTP region. It is normally used
for a single set of updates or a single set of queries, directed at a single MTP
region. Many applications require this functionality.

8.7.1.1 Performing a one-shot asynchronous DPL using
message notification
Note This is only available on Windows platforms.

Performing an asynchronous DPL consists of three actions.

1. The application must first call CICS_ExternalCall(), telling it to perform the
work, and informing it how to notify the application program of any reply.

2. It must wait until it receives notification that the request is complete.

3. It must call CICS_ExternalCall() again to perform a reply solicitation call to
obtain the results of the request.

The first part of the process gets ECI to perform the request. This is done with the
CICS_ExternalCall() function with the ECI_PARMS block set with the values
listed in Table 8.5. Set all other parameters to NULL.

After this call completes, the ECI Client fills this field in the ECI_PARMS
structure

eci_luw_token
Contains an ECI Client LUW token. This serves no
purpose for this type of request.

External Call Interface (ECI) 8.7.1 Performing a one-shot DPL

8-14 Sun MTP Release 7.2 MTP Client User’s Guide

The eci_call_type value specified in Table 8.5 means that a message with the
identifier eci_message_id is posted to the window specified in the
eci_window_handle field.

Format

On receipt of this message, the application should perform the ECI request to
obtain the results of the DPL. This is done by another call to
CICS_ExternalCall(), but this time with the parameter block set with the
values shown in Table 8.6. Set all other fields to NULL.

After this call completes, the comm area specified in the eci_commarea field
contains the returned data. The unit-of-work, as far as the MTP server is
concerned, is complete; any changes are committed.

Table 8.5 ECI_PARMS Values for One-Shot Asynchronous DPL using
Message Notification

Field Value

eci_call_type ECI_ASYNC_NOTIFY_MSG

eci_program_name
Name of the program to execute as specified in the PPT of the
MTP region.

eci_userid Userid under which to execute the program.

eci_password Password corresponding to the eci_userid.

eci_commarea
Pointer to the space allocated within the application for the
data to pass to the MTP region.

eci_commarea_length
Length of the data block pointed to by the eci_commarea
field.

eci_extend_mode ECI_NO_EXTEND

eci_message_qualifier
User-defined value that you can specify so that, upon receipt
of notification messages, the application can determine to
which unit-of-work the notification corresponds.

eci_version UNIKIX_ECI_VERSION_1

eci_system_name

Name of the system that is the destination for this request.
This name is either one of the names returned from the
CICS_EciListSystems() call, or set it to all NULLs, in
which case, the default server is used (as defined in
KIXCLI.INI).

eci_window_handle
Window handle of a window that receives posted messages
upon completion of this request.

eci_message_id
ID of the message that is sent to the eci_window_handle
window upon completion of this request.

wParam Return code of the asynchronous call.

lParam
Low order 16 bits contain the eci_message_qualifier specified on
the asynchronous call.

MTP Client User’s Guide Sun MTP Release 7.2 8-15

8.7.1 Performing a one-shot DPL External Call Interface (ECI)

This call may have modified the following field

After this reply is received, the unit-of-work is complete.

8.7.1.2 Performing a one-shot asynchronous DPL using
semaphore notification
Note This is only available on Windows platforms.

Performing an asynchronous DPL consists of three actions.

1. The first part of the process gets ECI to perform the request. This is done with
the CICS_ExternalCall() function with the ECI_PARMS block set up with
the values listed in Table 8.7. Set all other parameters to NULL.

Table 8.6 ECI_PARMS Values for Obtaining a Specific Reply

Field Value

eci_call_type ECI_GET_SPECIFIC_REPLY

eci_commarea
Pointer to space allocated within the application for the data
that the MTP region returns. This data must be the same
length as the original data sent on the DPL.

eci_commarea_length Length of the data block pointed to by the eci_commarea field.

eci_message_qualifier Message qualifier that was specified on the original DPL call.

eci_version ECI_UNIKIX _VERSION_1

eci_abend_code If the transaction running this unit-of-work abended, the
abend code is placed in this field.

Table 8.7 ECI_PARMS Values for One-Shot Asynchronous DPL using
Semaphore Notification

Field Value

eci_call_type ECI_ASYNC_NOTIFY_SEM

eci_program_name
Name of the program to execute as specified in the PPT of the
MTP region.

eci_userid Userid under which to execute the program.

eci_password Password corresponding to the eci_userid.

eci_commarea
Pointer to space allocated within the application for the data to
pass to the MTP region.

eci_commarea_length Length of the data block pointed to by the eci_commarea field.

eci_extend_mode ECI_NO_EXTEND

eci_message_qualifier
User-defined value that you can specify so that, upon receipt of
notification messages, the application can determine to which
unit-of-work the notification corresponds.

eci_version UNIKIX_ECI_VERSION_1

External Call Interface (ECI) 8.7.1 Performing a one-shot DPL

8-16 Sun MTP Release 7.2 MTP Client User’s Guide

After this call completes, the ECI Client fills this field in the ECI_PARMS
structure

eci_luw_token
Contains an ECI Client LUW token. This serves no
purpose for this type of request.

The eci_call_type value specified in Table 8.7 means that the Event specified
in the eci_sem_handle parameter is set when the request completes. An
application can use the Windows functions WaitForMultipleObjects() and
WaitForSingleObject() to wait for this to happen.

When an application receives notification of completion, it should perform the ECI
request to obtain the results of the DPL. This is done by another call to
CICS_ExternalCall(), but this time with the parameter block set with the
values shown in Table 8.6. Set all other fields to NULL.

After this call completes, the comm area specified in the eci_commarea field
contains the returned data. The unit-of-work, as far as the MTP server is
concerned, is complete, and any changes made are committed.

This call may have modified the following fields

After this reply is received, the unit-of-work is complete.

8.7.1.3 Performing a one-shot asynchronous DPL using
callback notification
Performing an asynchronous DPL consists of three actions.

1. The application must first call CICS_ExternalCall(), telling it to perform the
work, and informing it how to notify the application program of any reply.

2. It must wait until it receives notification that the request is complete.

3. It must call CICS_ExternalCall() again to obtain the results of the request.

There are two areas of added complexity for callback notification

• It is not possible to issue ECI calls while inside a callback. This means that all
you should do inside a callback is to notify some other part of the program that
there is a reply ready, and that it should obtain it.

• The context of the callback and the conditions under which it is performed for
your implementation differs for the various platforms.

For Windows, the callback is called on a different thread than the rest of the
application. Thus, the callback can happen at any point in the processing of the
applications other threads. Therefore, it is important that any work done inside
the callback is thread-safe.

eci_system_name

Name of the system that is the destination for this request.
This name is either one of the names returned from the
CICS_EciListSystems() call, or set it to all NULLs, in which
case, the default server is used (as defined in KIXCLI.INI).

eci_sem_handle
Handle of a system Event that is set when the request is
complete.

Table 8.7 ECI_PARMS Values for One-Shot Asynchronous DPL using
Semaphore Notification (Continued)

Field Value

eci_abend_code If the transaction running this unit-of-work abended, then
the abend code is placed in here.

MTP Client User’s Guide Sun MTP Release 7.2 8-17

8.7.1 Performing a one-shot DPL External Call Interface (ECI)

For Solaris, the MTP Client communicates with an application via named pipes.
Since the application is single-threaded, data can only be read from the pipe when
the application calls into the ECI interface. It is only at this point that any
callbacks can be performed. Therefore, notification callbacks are only performed
while processing other ECI functions.

These limitations can cause problems when designing an application on Solaris
that works effectively. In order to simplify this process, you can use the
KixCli_QueryFD() function, which returns a standard UNIX file descriptor that
is the pipe that is used for the communications. An application can use the
select() function call to wait until there is information for the ECI to process.
When the application is told that there is data, it should call into the ECI
interface to get any necessary callbacks processed. The supplied samples show
how you can use this method to enable curses applications to work cleanly with
the ECI. The first part of the process is to get ECI to perform the request. This is
done with the CICS_ExternalCall() function with the ECI_PARMS block set up
with the values listed in Table 8.8. Set all other parameters to NULL.

After this call completes, the ECI Client fills the following field in the
ECI_PARMS structure

The eci_call_type value specified in Table 8.8 means that the callback specified
in the eci_callback parameter is executed when the request completes.

Table 8.8 ECI_PARMS Values for One-Shot Asynchronous DPL using
Callback Notification

Field Value

eci_call_type ECI_ASYNC

eci_program_name
Name of the program to execute as specified in the PPT of
the MTP region.

eci_userid Userid under which to execute the program.

eci_password Password corresponding to the eci_userid.

eci_commarea
Pointer to the space allocated within the application for the
data to pass to the MTP region.

eci_commarea_length
Length of the data block pointed to by the eci_commarea
field.

eci_extend_mode ECI_NO_EXTEND

eci_message_qualifier
User-defined value you can specify so that, upon receipt of
notification messages, the application can determine to
which unit-of-work the notification corresponds.

eci_version UNIKIX_ECI_VERSION_1

eci_system_name

Name of the system that is the destination for this request.
This name is either one of the names returned from the
CICS_EciListSystems() call, or it set to all NULLs, in
which case the default server is used (as defined in
KIXCLI.INI).

eci_callback Pointer to a function to call when a response is ready.

eci_luw_token Contains an ECI Client LUW token. This serves no purpose
for this type of request.

External Call Interface (ECI) 8.7.1 Performing a one-shot DPL

8-18 Sun MTP Release 7.2 MTP Client User’s Guide

When an application receives notification of completion, it should perform the ECI
request to obtain the results of the DPL. This is done by another call to
CICS_ExternalCall(), but with the parameter block set with the values shown
in Table 8.6. Set all other fields to NULL.

After this call completes, the memory location specified in the eci_commarea field
contains the returned data. The unit-of-work, as far as the MTP server is
concerned, is complete; any changes made are committed.

The following fields may have been modified by this call.

After this reply is received, the unit-of-work is complete.

8.7.1.4 Performing a one-shot synchronous DPL
Performing a synchronous DPL consists of a single action. The application must
make a single call to CICS_ExternalCall(), telling it to perform the work. The
call to CICS_ExternalCall() is done with the ECI_PARMS block set with the
values listed in Table 8.9. Set all other parameters to NULL.

After this call completes, the memory location specified in the eci_commarea field
contains the returned data. The unit-of-work, as far as the MTP server is
concerned, is complete, and any changes made are committed.

This call may have modified the following field

After this call returns, the unit-of-work is complete.

eci_abend_code If the transaction running this unit-of-work abended, then
the abend code is placed in here.

Table 8.9 ECI_PARMS Values for One-Shot Synchronous DPL

Field Value

eci_call_type ECI_SYNC

eci_program_name
Name of the program to execute as specified in the PPT of the
MTP region.

eci_userid Userid under which to execute the program.

eci_password Password corresponding to the eci_userid.

eci_commarea
Pointer to space allocated within the application for the data
to pass to the MTP region.

eci_commarea_length
Length of the data block pointed to by the eci_commarea
field.

eci_extend_mode ECI_NO_EXTEND

eci_version UNIKIX_ECI_VERSION_1

eci_system_name

Name of the system that is the destination for this request.
This name is either one of the names returned from the
CICS_EciListSystems() call, or it set it to all NULLs, in
which case, the default server is used (as defined in
KIXCLI.INI).

eci_abend_code If the transaction running this unit-of-work abended, then
the abend code is placed in here.

MTP Client User’s Guide Sun MTP Release 7.2 8-19

8.7.2 Starting a multiple part unit-of-work External Call Interface (ECI)

8.7.2 Starting a multiple part unit-of-work
The method for starting a multiple part unit-of-work is similar to that of starting
a unit-of-work consisting of a single program. For asynchronous, the application
must perform the same steps for issuing the request, waiting for notification of
the results, and obtaining the results. The most significant difference is that after
obtaining the results, the unit-of-work is not over, and it can be extended to the
users requirements.

Therefore, to initiate a long running unit-of-work, follow the same steps as a
one-shot DPL, with the exception that you must set the eci_extend_mode
parameter on the initial call to CICS_ExternalCall() to ECI_EXTEND instead of
ECI_NO_EXTEND. On return from the initiating call to CICS_ExternalCall(), the
eci_luw_token contains a value that must be supplied to later calls. You should
store this value to facilitate the completion of the unit-of -work.

After the reply is received, the unit-of-work is ready to be extended or completed.

At this point, an MTP transaction server process is tied-up awaiting a
reply. Therefore, it is unavailable to run other MTP transactions. Do
not leave a transaction processor in this state any longer than
necessary.

8.7.3 Continuing a long running unit-of-work
To continue a long running unit-of-work, you must have initiated a unit-of-work,
using methods similar to those described in Section 8.7.2. You must retain the
eci_luw_token returned by the call to CICS_ExternalCall() that initiated the
unit-of-work to use in these extensions to the unit-of-work.

The steps required for continuing a unit-of-work are the same as those for
initiating one. A call to CICS_ExternalCall() must be made to run a program.
These is either synchronous or asynchronous. The only significant difference
between continuing a unit-of-work and initiating one is that the eci_luw_token
field in the ECI_PARMS structure must contain the value that was returned on
the original initiating program call. If the eci_no_extend of the latest DPL
initiating call is set to ECI_EXTEND, then after the reply is received, the
unit-of-work is complete, and the eci_luw_token that was stored away is no
longer valid. If the eci_extend_mode is ECI_EXTEND, the unit-of-work is ready to
have more action applied to it after the reply is received.

8.7.4 Explicitly syncpointing a unit-of-work
To syncpoint a unit-of-work, you must have initiated a unit-of-work, using the
methods described in Section 8.7.2. You must retain the eci_luw_token returned
by the call to CICS_ExternalCall() that initiated the unit-of-work for use in
these extensions to the unit-of-work.

The steps required for syncpointing a unit-of-work are the same as those for
initiating one. You must make a call to CICS_ExternalCall() to syncpoint the
unit-of-work, and if necessary, the application then waits until a reply is ready;
then, it gets the reply. The significant difference is that the eci_luw_token field
in the ECI_PARMS structure must contain the value that was returned on the
original program call.

The first part of the process is to get ECI to perform the request. This is done with
the CICS_ExternalCall() function with the ECI_PARMS block set up with the
values given in Table 8.10. Set all other parameters to NULL.

After this call is complete and the reply received, if necessary, the unit-of-work, as
far as the MTP server is concerned, is complete, and any changes made are
committed.

Caution

External Call Interface (ECI) 8.7.5 Rolling back a unit-of-work

8-20 Sun MTP Release 7.2 MTP Client User’s Guide

8.7.5 Rolling back a unit-of-work
In order to roll back a unit-of-work, you must have initiated a unit-of-work, using
methods similar to those described in Section 8.7.2. You must retain the
eci_luw_token returned by the call to CICS_ExternalCall() that initiated the
unit-of-work for use in these extensions to the unit-of-work.

The basic steps required for rolling back a unit-of-work are the same as those for
syncpointing one. A call to CICS_ExternalCall() must be made to roll back the
unit-of-work, the application then waits until a reply is ready, then it receives the
reply.

The first part of the process is to get ECI to perform the request. This is done with
the CICS_ExternalCall() function with the ECI_PARMS block set up with the
values given in Table 8.11. Set all other parameters to NULL.

Table 8.10 ECI_PARMS Values for Syncpointing a Unit-of-Work

Field Value

eci_call_type
ECI_ASYNC_NOTIFY_MSG, ECI_ASYNC_NOTIFY_SEM, or
ECI_SYNC

eci_commarea NULL pointer because no program is to be run.

eci_commarea_length 0 because no program is to be run.

eci_extend_mode ECI_COMMIT

eci_luw_token Token returned by the initial ECI call in this unit-of-work.

eci_message_qualifier

User-defined value you can specify so that, upon receipt of
notification messages, the application can determine to which
unit-of-work the notification corresponds. This value does not
have to be the same as the value for the original request.

eci_version ECI_UNIKIX_VERSION_1

eci_window_handle
Window handle of a window that received posted messages
upon completion of this request. (For
ECI_ASYNC_NOTIFY_MSG.)

eci_message_id
ID of the message that is sent to the eci_window_handle
window upon completion of this request. (For
ECI_ASYNC_NOTIFY_MSG.)

eci_sem_handle
Handle of a system Event that is set when the request is
complete. (For ECI_ASYNC_NOTIFY_SEM.)

Table 8.11 ECI_PARMS Values for Rolling Back a Unit-of-Work

Field Value

eci_call_type ECI_ASYNC_NOTIFY_MSG

eci_commarea NULL pointer because no program is to be run.

eci_commarea_length 0 because no program is to be run.

eci_extend_mode ECI_BACKOUT

eci_luw_token Token returned by the initial ECI call in this unit-of-work.

MTP Client User’s Guide Sun MTP Release 7.2 8-21

8.7.6 Interrogating connections to a remote system External Call Interface (ECI)

After this call is complete and the reply is received, if necessary, the unit-of-work,
as far as the MTP server is concerned, is over; any changes made have been rolled
back.

8.7.6 Interrogating connections to a remote system
Using the ECI, it is possible to make a call to interrogate the ECI Client as to
whether there is a connection to a specified MTP region. To do this, the
application must call CICS_ExternalCall()with the parameters set as shown in
Table 8.12. Set all other parameters to NULL.

After ECI has completed the request, a notification message is posted to the
eci_window_handle window. On receipt of this message, the application should
solicit the results of the request using a call to CICS_ExternalCall() with the
values listed in Table 8.13 set within the ECI_PARMS structure.

eci_message_qualifier

User-defined value you can specify so that, upon receipt of
notification messages, the application can determine to which
unit-of-work the notification corresponds. This value does not
have to be the same as the value for the original request.

eci_version ECI_UNIKIX_VERSION_1

eci_window_handle
Window handle of a window that receives posted messages
upon completion of this request. For ECI_ASYNC_NOTIFY_MSG.

eci_message_id
ID of the message that is sent to the eci_window_handle
window upon completion of this request. For
ECI_ASYNC_NOTIFY_MSG.

eci_sem_handle
Handle of a system Event that is set when the request is
complete. For ECI_ASYNC_NOTIFY_SEM.

Table 8.12 ECI_PARMS Values for ECI_STATE_ASYNC Call

Field Value

eci_call_type ECI_STATE_ASYNC_MSG

eci_commarea
Pointer to a space allocated within the application for a
structure of type ECI_STATUS.

eci_commarea_length
Length of the data block pointed to by the eci_commarea field
(size of ECI_STATUS).

eci_extend_mode ECI_STATE_IMMEDIATE

eci_message_qualifier
User-defined value you can specify so that, upon receipt of
notification messages, the application can determine to which
unit-of-work the notification corresponds.

eci_version ECI_UNIKIX_VERSION_1

eci_window_handle
Window handle of a window that receives posted messages
upon completion of this request.

eci_message_id
ID of the message that is sent to the eci_window_handle
window upon completion of this request.

Table 8.11 ECI_PARMS Values for Rolling Back a Unit-of-Work (Continued)

Field Value

External Call Interface (ECI) 8.7.7 Using callbacks

8-22 Sun MTP Release 7.2 MTP Client User’s Guide

The ECI_STATUS structure now contains the values. For the meanings of these
fields, see Table 8.2.

In addition to this basic status request, it is possible to have ECI notify the
application when the status of a particular system changes. or example, you can
use this to alert you when a system is ready for work. Set the following
parameters to issue a call to CICS_ExternalCall()

After this is done, a notification is sent when the system state changes from that
specified in the eci_commarea fields.

8.7.7 Using callbacks
You can call ECI to generate callbacks instead of Windows messages.
Section 8.7.1 through Section 8.7.6 detail how to generate notification via
Windows messages using the eci_window_handle parameter of the ECI_PARMS
structure.

To generate callbacks instead of Windows messages, set the eci_window_handle
parameter to NULL, and set the eci_callback parameter as a pointer to a
callback function. After this is set up and an ECI request completes, the callback
function is called. The callback function receives a single value as its parameter,
the eci_message_qualifier field, as specified on the original call.

Within the callback function, the application must not call any ECI functionality.
If it does, these calls return the ECI_ERR_IN_CALLBACK return code. Because of
this restriction, the callback function must find some way to communicate the
notification to the main section of the Windows program. This is normally done by
posting a Windows message.

8.8 MTP ECI interface enhancements
MTP Client has four different versions of the ECI API. These are obtained by
setting the eci_version field of the ECI parameter block to any one of the
following

Table 8.13 ECI_PARMS Values for STATE_ASYNC_MESSAGE Reply Solicitation

Field Value

eci_call_type ECI_GET_SPECIFIC_REPLY

eci_commarea
Pointer to a space allocated within the application for a
structure of type ECI_STATUS.

eci_commarea_length
Length of the data block pointed to by the eci_commarea field;
size of ECI_STATUS.

eci_message_qualifier
Message qualifier that was specified on the original call and
returned as part of the notification function.

eci_version ECI_UNIKIX_VERSION_1

eci_call_type ECI_STATE_ASYNC_MSG

eci_extend_mode ECI_STATE_CHANGED

ECI_VERSION_1 IBM compatible version of the ECI API
Version 1.

ECI_VERSION_1A IBM compatible version of the ECI API
Version 1A.

MTP Client User’s Guide Sun MTP Release 7.2 8-23

8.8.1 Reply message formats External Call Interface (ECI)

8.8.1 Reply message formats
When an application makes an asynchronous ECI call and has requested
notification by a message, a message is delivered to the specified window as

ECI_VERSION_1 and ECI_VERSION_1A

ECI_UNIKIX_VERSION_1 and ECI_UNIKIX_VERSION_1A

The message qualifier is usually more important information than the abend
code. You can also obtain the abend code by performing an
ECI_GET_SPECIFIC_REPLY, specifying the message qualifier.

ECI_UNIKIX_VERSION_1 Same interface as ECI_VERSION_1 but with
enhancements to the reply message formats,
as described in Section 8.8.1.

ECI_UNIKIX_VERSION_1A Same interface as ECI_VERSION_1A but with
enhancements to the reply message formats,
as described in Section 8.8.1.

wParam The return code of the asynchronous call.

lParam
The four-character abend code of the asynchronous call. (This may
be four spaces if no abend occurred).

wParam The return code of the asynchronous call.

lParam
The low-order 16 bits contain the eci_message_qualifier
specified on the asynchronous call.

External Call Interface (ECI) 8.8.1 Reply message formats

8-24 Sun MTP Release 7.2 MTP Client User’s Guide

MTP Client User’s Guide Sun MTP Release 7.2 9-1

Chapter 9 External
Presentation
Interface (EPI)

9.1 EPI examples
Examples that illustrate how to use EPI from the C programming language are
found in the $INSTROOT\EXAMPLES directory, where $INSTROOT indicates
the name of the directory where the MTP Client was installed on your machine.
The directory also contains a README file explaining its use and the necessary
MTP server COBOL source code.

9.2 Developing an EPI application
EPI is a set of functions in a library that can be called from any program. These
routines are a C language interface.

• For Windows
– The ECI/EPI code is in CCLAPI32.DLL
– Link applications with CCLWIN32.LIB

• For Solaris
– The ECI/EPI code is in libcclapi.so.
– Link applications with libcclapi.so.

All applications must include cics_epi.h to obtain the definitions and prototypes
described in this manual.

The External Presentation Interface (EPI) for MTP is an API that allows a
non-CICS application program to appear to MTP as one or more standard 3270
terminals. The EPI application communicates with MTP as if it is a normal 3270
terminal and allows you to
• Log on terminals
• Start transactions
• Send and receive standard 3270 datastreams to and from those transactions
The EPI application is responsible for the presentation of the 3270 data it
receives. It may present the data to a device by emulating a 3270 terminal or by
any other means appropriate to the user.
This chapter describes EPI as C program function specifications and the data
structures they require.

External Presentation Interface (EPI) 9.2.1 Initializing and terminating EPI

9-2 Sun MTP Release 7.2 MTP Client User’s Guide

9.2.1 Initializing and terminating EPI
The EPI functions, CICS_EpiInitialize() and CICS_EpiTerminate(),
initialize and terminate EPI, respectively.

The CICS_EpiInitialize() function must be called once per task to initialize
the EPI interface. All other EPI calls are invalid before the initialization function
is complete. Initialization is complete when the CICS_EpiInitialize() call
returns with a good return code.

The CICS_EpiTerminate() function must be called when a process has
completed using EPI, typically just before the task terminates. This terminate
function cleanly terminates EPI.

Future compatibility between EPI versions is provided by the
CICS_EpiInitialize() function, which requires a parameter that defines the
version of EPI for which this application is coded.

9.2.2 Adding and deleting EPI terminals
After the application completes the initialization, it can install one or more EPI
terminals, which appear to MTP as 3270 terminals. The application must call the
CICS_EpiAddTerminal() function once for each terminal to be added. This
function returns a value that is used to identify it uniquely within the application.

To apply any EPI functions using this terminal, the application passes this
TermIndex to the EPI functions.

When the application no longer needs a terminal, delete it by calling the
CICS_EpiDelTerminal() function. After the deletion completes successfully, the
TermIndex value becomes free and can be reused by EPI. However, the deletion
does not complete until the application receives the CICS_EPI_EVENT_END_TERM
event.

The delete function fails if the terminal is currently running a transaction. In this
case, the function returns an error code.

To track information on a per terminal basis, the application can use a simple
array indexing scheme., which uses the TermIndex value to maintain the
corresponding terminal information.

9.2.3 Starting transactions
The application can start transactions against any installed terminal. From the
MTP perspective, the transaction appears as if a terminal user entered a
transaction on the screen and pressed an AID key.

The application calls the CICS_EpiStartTran() function to start a transaction.
The CICS_EpiStartTran() parameters are the name of the transaction and the
initial 3270 data associated with the transaction.

If the transaction name is not given, EPI determines the name of the required
transaction from up to the first four data characters in the 3270 data following the
AID sequence. This simplifies EPI applications that provide true 3270 terminal
emulation. The initial 3270 data is not normally empty. It contains at least the
AID byte for the 3270 key that causes the terminal input.

For information about the format of the 3270 datastream, refer to the IBM 3270
Information Display System Data Stream Programmers Reference.

MTP Client User’s Guide Sun MTP Release 7.2 9-3

9.2.4 Processing events External Presentation Interface (EPI)

9.2.4 Processing events
A variety of events can affect an added terminal. The events are the result of
actions within the remote system, not actions of the terminal user. When events
occur, the EPI application is informed by EPI.

On receipt of event notification, the EPI application should make calls to the
CICS_EpiGetEvent() function to retrieve a single event from the queue for
processing. This function returns a data structure, CICS_EpiEventData_t, with
information to indicate the event that occurred and any associated data. It also
indicates if there are more events waiting in the queue. Refer to Section 9.4 for
more information on the possible events and the information in the
CICS_EpiEventData_t data structure.

If there are more events available for this terminal, the application should
continue to call CICS_EpiGetEvent() until the event queue is empty. Failure to
do so prevents the application from being notified of future events for the
terminal.

The application should try to process events as quickly as possible. This
synchronization prevents conditions in which the EPI state and the application
state do not agree. When this mismatch occurs, the application receives an
unexpected error return code when it tries to issue EPI functions.

Event notification varies on the supported platforms. The following sections
describe these differences.

9.2.4.1 Event notification on Windows
On Windows NT, event notification is performed through a callback mechanism.
When there are events ready for a particular terminal, the callback routine
specified on the CICS_EpiAddTerminal() call is initiated. This callback is on a
separate thread owned by EPI; no EPI work should be performed from this
thread. Normally, the callback routine must inform the main code that there is
something ready using messages and events.

9.2.4.2 Event notification on Solaris
There are special considerations required to get the callback mechanism to work
properly on Solaris. MTP Client communicates with an application via named
pipes. Since MTP Client is single threaded, data can only be read from the pipe
when an application calls into the ECI/EPI interface. It is only at this point that it
is possible to perform callbacks. Thus, event notification callbacks are only
performed while processing other ECI/EPI functions. This limitation can cause
problems when designing an application that works effectively.

To simplify this process, use the KixCli_QueryFD() function, which returns a
standard UNIX file descriptor (FD) that is the pipe used for communications. An
application can use the select() function call to wait until there is information
for the ECI/EPI to process. When the application is told that there is data, it can
call into the ECI/EPI to process any callbacks.

The supplied sample, EPIEX2, shows how to fit this mechanism into a curses
application that performs multiple concurrent units-of-work, while
simultaneously servicing user input.

External Presentation Interface (EPI) 9.2.5 Sending and receiving data

9-4 Sun MTP Release 7.2 MTP Client User’s Guide

9.2.5 Sending and receiving data
EPI generates either a CICS_EPI_EVENT_SEND or a CICS_EPI_EVENT_CONVERSE
event when a transaction sends data to a terminal. The CICS_EPI_EVENT_SEND
event does not require a reply from the terminal. The CICS_EPI_EVENT_CONVERSE
event does require a reply from the terminal.

The EPI application replies by calling the CICS_EpiReply() function to provide
the response data. Use this function to respond to the
CICS_EPI_EVENT_CONVERSE event only; calling this function in response to any
other event returns an error.

For information about the format of the 3270 datastream, refer to the IBM 3270
Information Display System Data Stream Programmers Reference.

9.3 EPI constants and data structures
EPI include files provide constants and data structures for using EPI. The
following sections describe the constants, standard data types, and data
structures.

9.3.1 Constants
EPI defines the following constants for use in EPI applications (#define
statements in C)

CICS_EPI_SYSTEM_MAX 8
CICS_EPI_DESCRIPTION_MAX 60
CICS_EPI_NETNAME_MAX 8
CICS_EPI_TRANSID_MAX 4
CICS_EPI_ABEND_MAX 4
CICS_EPI_DEVTYPE_MAX 16
CICS_EPI_ERROR_MAX 60
CICS_EPI_TERM_INDEX_NONE 0xFFFF

9.3.2 Standard data types
EPI defines the following data types for use in EPI applications

cics_char_t character type
cics_sbyte_t signed 8-bit integer
cics_sshort_t signed 16-bit integer
cics_slong_t signed 32-bit integer
cics_ubyte_t unsigned 8-bit integer
cics_ushort_t unsigned 16-bit integer
cics_ulong_t unsigned 32-bit integer
cics_ptr_t general pointer type
cics_shandle_t general 16-bit handle
cics_lhandle_t general 32-bit handle

MTP Client User’s Guide Sun MTP Release 7.2 9-5

9.3.3 Data structures External Presentation Interface (EPI)

9.3.3 Data structures
EPI defines the following data structures for use in EPI applications

CICS_EpiSystem_t
CICS_EpiDetails_t
CICS_EpiEventData_t
CICS_EpiSysError_t
CICS_EpiNotify_t
CICS_EpiEvent_t
CICS_EpiEnd_t
CICS_EpiATIState_t
CICS_EpiSenseCode_t

The data structures are described in the following subsections.

9.3.3.1 CICS_EpiSystem_t
This data structure contains the name and description of a remote MTP region.
The CICS_EpiListSystems() function returns information of this type.

C definition

typedef struct
{

cics_char_t SystemName[CICS_EPI_SYSTEM_MAX+1];
cics_char_t Description[CICS_EPI_DESCRIPTION_MAX+1];

} CICS_EpiSystem_t;

where

9.3.3.2 CICS_EpiDetails_t
Pass a pointer to this structure to the CICS_EpiAddTerminal() function. When
the terminal install is complete, the structure contains details about the terminal.

C definition

typedef struct
{

cics_char_t SystemName[CICS_EPI_SYSTEM_MAX+1];
cics_char_t Description[CICS_EPI_DESCRIPTION_MAX+1];
cics_char_t NetName[CICS_EPI_NETNAME_MAX+1];
cics_sshort_t NumLines;
cics_sshort_t NumColumns;
cics_ushort_t MaxData;
cics_sshort_t ErrLastLine;
cics_sshort_t ErrIntensify;
cics_sshort_t ErrColor;
cics_sshort_t ErrHilight;
cics_sshort_t Hilight;
cics_sshort_t Color;
cics_sshort_t Printer;

} CICS_EpiDetails_t;

SystemName Name of an MTP region. Pass this string as a parameter to the
CICS_EpiAddTerminal() function to identify the region to
which the terminal should attach. This string is padded with
NULL bytes and is terminated by an extra NULL byte.

Description Brief description of the system. This string is padded with NULL
bytes and is terminated by an extra NULL byte.

External Presentation Interface (EPI) 9.3.3 Data structures

9-6 Sun MTP Release 7.2 MTP Client User’s Guide

where

9.3.3.3 CICS_EpiEventData_t
Pass a pointer to this structure (with the Data and Size fields set) to the
CICS_EpiGetEvent() function. If the function returns successfully, it returns
this structure with details about the event. Not all fields are valid for all events;
any invalid fields are set to zero or NULL bytes.

C definition

typedef struct
{
u_short_t TermIndex;
CICS_EpiEvent_t Event;
CICS_EpiEnd_t EndReason;
char TransId[CICS_EPI_TRANSID_MAX+1];
char AbendCode[CICS_EPI_ABEND_MAX+1];
u_byte_t *Data;
u_short_t Size;

} CICS_EpiEventData_t;

where

SystemName Name of a MTP region. Pass this string as a parameter to the
CICS_EpiAddTerminal() function to identify the region to
which the terminal should attach. This string is padded with
NULL bytes and is terminated by an extra NULL byte.

Description Brief description of the system. This string is padded with NULL
bytes and is terminated by an extra NULL byte.

NetName An 8-character string that specifies the VTAM-style NetName by
which the terminal gets installed. This string is padded with
NULL bytes and is terminated by an extra NULL byte.

NumLines Contains the number of lines supported by the terminal.
NumColumns Contains the number of columns supported by the terminal.
MaxData Contains the maximum possible size of the data MTP sends to

the terminal.
ErrLastLine Non-zero if the terminal displays error messages on its last line.
ErrIntensify Non-zero if the terminal displays intensified error messages.
ErrColor Contains the 3270 attribute defining the color value for

displaying error messages.
ErrHilight Contains the 3270 attribute defining the highlight value for

displaying error messages.
Hilight Non-zero if the terminal supports extended highlighting.
Color Non-zero if the terminal supports color.
Printer Non-zero if the terminal is a printer.

TermIndex
Index number for the terminal against which this event
occurred.

Event
Specifies the event. See Section 9.4 for a description of the
event indicators.

EndReason
Termination reason, if the event is a
CICS_EPI_EVENT_END_TERM.

TransId[]
Four-character string that specifies the transaction name. The
string is padded with spaces and is terminated by a NULL
byte.

MTP Client User’s Guide Sun MTP Release 7.2 9-7

9.3.3 Data structures External Presentation Interface (EPI)

9.3.3.4 CICS_EpiSysError_t
Pass a pointer to this structure as a parameter to the CICS_EpiGetSysError()
function. If the function returns successfully, it returns this structure with details
about the cause of a system error.

C definition

typedef struct
{
u_long_t Cause;
u_long_t Value;
char Msg[CICS_EPI_ERROR_MAX+1];

} CICS_EpiSysError_t;

where

The possible values for the Cause field are

CICS_EPI_SYSERROR_UNEXPECTED_DATASTREAM
A datastream was received from the MTP region that
MTP Client could not decode.

CICS_EPI_SYSERROR_NO_MEMORY
MTP Client encountered memory allocation problems.

CICS_EPI_SYSERROR_DUPLICATE_NETNAME
The NetName specified in the add terminal command was
already in use.

CICS_EPI_SYSERROR_UNKNOWN_NETNAME
NetName specified in the add terminal command was
unknown to the end system.

CICS_EPI_SYSERROR_UNKNOWN_DEVTYPE
DevType specified in the add terminal command was
unknown to the end system.

CICS_EPI_SYSERROR_INVALID_TPNAME
The end system did not recognize the terminal installation
transaction.

CICS_EPI_SYSERROR_UNEXPECTED_ERROR
An internal function has produced an unexpected error.

CICS_EPI_SYSERROR_UNKNOWN_SYSTEM
System specified in the add terminal command is not
defined.

AbendCode[]
Four-character string that specifies the ABEND code. The string
is padded with spaces and is terminated by a NULL byte.

Data
Pointer to a buffer that contains any terminal data stream
associated with the event.

Size
Contains the maximum size of the buffer addressed by Data.
When the CICS_EpiGetEvent() function returns, this field
contains the actual length of the data returned.

Cause
Operating environment specific value that indicates the cause of the
last error.

Value
Operating environment specific value that indicates the nature of
the last error.

Msg
Text message that may describe the last error. This string is padded
with NULL bytes; EPI terminates it with an extra NULL byte. If no
message is available, the string is all NULLS.

External Presentation Interface (EPI) 9.3.3 Data structures

9-8 Sun MTP Release 7.2 MTP Client User’s Guide

CICS_EPI_SYSERROR_TERMINAL_OUT_OF_SERVICE
Could not install the terminal into the end system because
its definition is set out of service.

CICS_EPI_SYSERROR_SYSTEM_UNAVAILABLE
System specified in the add terminal command is
unavailable at this time.

CICS_EPI_SYSERROR_INTERNAL_LOGIC_ERROR
Internal logic error in MTP Client.

CICS_EPI_SYSERROR_AUTOINSTALL_FAILED
Autoinstall process failed on the MTP region.

CICS_EPI_SYSERROR_TERM_INSTALL_FAILED
The terminal install process failed on the MTP region.

9.3.3.5 CICS_EpiNotify_t
This type is used as a parameter to the CICS_EpiAddTerminal() function. It
defines a function to be called when there is an EPI event outstanding.

C definition

typedef void (CICS_EpiCallback_t)(cics_ushort_t Trm);
typedef CICS_EpiCallback_t *CICS_EpiNotify_t;

9.3.3.6 CICS_EpiEvent_t
This type defines the event codes that EPI generates. For additional information
about each event code, see Section 9.4.

C definition

typedef cics_ushort_t CICS_EpiEvent_t;

Values

CICS_EPI_EVENT_SEND
CICS_EPI_EVENT_CONVERSE
CICS_EPI_EVENT_END_TRAN
CICS_EPI_EVENT_START_ATI
CICS_EPI_EVENT_END_TERM

9.3.3.7 CICS_EpiEnd_t
This type defines the possible reason codes for a CICS_EPI_EVENT_END_TERM
event. For more information about each reason code, see Section 9.4.5.

C definition

typedef cics_ushort_t CICS_EpiEnd_t;

Values

CICS_EPI_END_SIGNOFF
CICS_EPI_END_SHUTDOWN
CICS_EPI_END_OUTSERVICE
CICS_EPI_END_UNKNOWN
CICS_EPI_END_FAILED

MTP Client User’s Guide Sun MTP Release 7.2 9-9

9.3.3 Data structures External Presentation Interface (EPI)

9.3.3.8 CICS_EpiATIState_t
This type defines the possible values to pass to the CICS_EpiATIState()
function. This function also returns these values when the function completes.

C definition

typedef cics_ushort_t CICS_EpiATIState_t;

Values

CICS_EPI_ATI_ON
EPI processes Asynchronous Transaction Initiation (ATI)
requests in the normal manner.

CICS_EPI_ATI_HOLD
EPI queues all ATI requests until CICS_EPI_ATI_ON is
set.

CICS_EPI_ATI_QUERY
The ATI request status of EPI is unchanged. Use this
value to query the current setting.

9.3.3.9 CICS_EpiSenseCode_t
This type defines the possible values to pass to the CICS_EpiSenseCode()
function. The CICS_EpiSenseCode() function performs no function, and is
provided for compatibility only.

C definition

typedef cics_ushort_t CICS_EpiSenseCode_t;

Values

CICS_EPI_SENSE_OPCHECK
EPI detects an error in the 3270 datastream.

CICS_EPI_SENSE_REJECT
EPI detects an invalid 3270 command.

9.3.3.10 CICS_EpiWait_t
This type defines the possible values to pass to the CICS_EpiGetEvent()
function. The value has no meaning but must be one of the defined values.

C definition

typedef cics_ushort_t CICS_EpiWait_t;

Values

CICS_EPI_WAIT
CICS_EPI_NOWAIT

External Presentation Interface (EPI) 9.4 EPI events

9-10 Sun MTP Release 7.2 MTP Client User’s Guide

9.4 EPI events
The EPI application is responsible for collecting and processing all EPI events.
When an event occurs against a terminal, EPI informs the application that there
is an event outstanding.

When event notification is received, the EPI application calls
CICS_EpiGetEvent() to retrieve the CICS_EpiEventData_t structure. This
structure indicates the event that occurred and contains details about the event.

The following are the possible EPI events and are described in detail in the
following sections

CICS_EPI_EVENT_SEND
CICS_EPI_EVENT_CONVERSE
CICS_EPI_EVENT_END_TRAN
CICS_EPI_EVENT_START_ATI
CICS_EPI_EVENT_END_TERM

9.4.1 CICS_EPI_EVENT_SEND
A MTP transaction sent some 3270 data to a terminal and is not expecting a reply.
However, the data should display. This is typically the result of an EXEC CICS
SEND type command.

The following fields are complete in the CICS_EpiEventData_t structure for this
event

9.4.2 CICS_EPI_EVENT_CONVERSE
A MTP transaction sent some 3270 data to a terminal and is expecting a reply.
This is the result of an EXEC CICS RECEIVE type command or an EXEC CICS
CONVERSE type command. Here, the application uses the CICS_EpiReply() call to
return the reply data to MTP.

The type of reply expected by MTP depends on the 3270 command order in the
first byte of the supplied Data field. If the 3270 command order is a Read Buffer
command, MTP expects the reply immediately. If the command is a Read
Modified or Read Modified All, MTP expects the reply when the user next
presses an AID key. This event may occur with or without any associated data. If
there is no data, the Size field is set to zero.

The following fields are completed in the CICS_EpiEventData_t structure for
this event

Event CICS_EPI_EVENT_SEND

Data
Buffer pointed to by this field that contains the data sent by the
transaction. The first two bytes are the 3270 command and the WCC
(Write Control Character).

Size Length of the data in the Data buffer.

Event CICS_EPI_EVENT_CONVERSE

Data
Buffer pointed to by this field that contains the data sent by the
transaction.

Size
Length of the data in the Data buffer. If zero, it indicates that no data
was sent, but a reply is expected.

MTP Client User’s Guide Sun MTP Release 7.2 9-11

9.4.3 CICS_EPI_EVENT_END_TRAN External Presentation Interface (EPI)

9.4.3 CICS_EPI_EVENT_END_TRAN
An MTP transaction against a terminal is ended. If the transaction ends
abnormally, the event may indicate the AbendCode. If the transaction finishes
normally, the AbendCode field is four spaces. If the transaction is
pseudo-conversational, the TransId field contains the name of the next
transaction required. The application should start this transaction when the user
next presses an AID key (use the CICS_EpiStartTran() function).

An application may only begin a transaction if no other transaction is running.
The CICS_EPI_EVENT_END_TRAN event signals that EPI is in a state to accept a
new transaction.

The following fields are in the CICS_EpiEventData_t structure for this event

9.4.4 CICS_EPI_EVENT_START_ATI
An Asynchronous Transaction Initiation (ATI) transaction is started against this
terminal. If the terminal receives an ATI request while it is running another
transaction, the request is held by EPI until the end of the current transaction.
When the current transaction ends, the ATI transaction starts for the terminal
and EPI generates this event to inform the application.

The CICS_EPI_EVENT_START_ATI event indicates an ATI transaction is started
and the EPI state no longer allows transactions to start. If the application calls
the CICS_EpiStartTran() function after EPI generates the
CICS_EPI_EVENT_START_ATI event but before it is received, the start transaction
function fails.

The following fields are in the CICS_EpiEventData_t structure for this event

Event CICS_EPI_EVENT_END_TRAN

TransId

If the transaction is pseudo-conversational, this is the name of
the next transaction to start. The name is four characters and is
terminated with an extra NULL byte. If there is no next
transaction, the field is all NULL bytes.

AbendCode

If the transaction ends abnormally, this field may contain the
AbendCode, which is four characters terminated with an extra
NULL byte. If the transaction finishes successfully, it contains
four spaces and a NULL byte.

Event CICS_EPI_EVENT_START_ATI

TransId Name of the ATI transaction started. It is four characters and
terminated with an extra NULL byte.

External Presentation Interface (EPI) 9.4.5 CICS_EPI_EVENT_END_TERM

9-12 Sun MTP Release 7.2 MTP Client User’s Guide

9.4.5 CICS_EPI_EVENT_END_TERM
This event indicates that a terminal no longer exists. The TermIndex for this
terminal is no longer valid after this event is retrieved.

The following fields are in the CICS_EpiEventData_t structure for this event

Event CICS_EPI_EVENT_END_TERM

EndReason Contains one of the following reasons why the terminal
was ended or no longer exists

CICS_EPI_END_SIGNOFF
Terminal is signed-off; possibly the result of calling
CICS_EpiDelTerminal().

CICS_EPI_END_SHUTDOWN
MTP is shutting down.

CICS_EPI_END_OUTSERVICE
Terminal is switched to out-of-service.

CICS_EPI_END_UNKNOWN
Unexpected error occurred.

CICS_EPI_END_FAILED
Failure to delete a terminal occurred.

9.5 EPI functions
The EPI library includes the following functions that you can call from a C
program

CICS_EpiInitialize()
CICS_EpiTerminate()
CICS_EpiListSystems()
CICS_EpiAddTerminal()
CICS_EpiDelTerminal()
CICS_EpiStartTran()
CICS_EpiReply()
CICS_EpiSenseCode()
CICS_EpiATIState()
CICS_EpiGetEvent()
CICS_EpiGetSysError()

9.5.1 CICS_EpiInitialize()
The CICS_EpiInitialize function initializes EPI. You should call this function
once per process; any other EPI calls before this function are invalid.

Format

cics_sshort_t CICS_EpiInitialize(cics_ulong_t Version);

where

Version Version of the EPI library for which the application is
coded. This provides future compatibility with EPI library
versions.

For this version of EPI, set this parameter to the constant
CICS_EPI_VERSION_101.

MTP Client User’s Guide Sun MTP Release 7.2 9-13

9.5.2 CICS_EpiTerminate() External Presentation Interface (EPI)

Return Codes

CICS_EPI_NORMAL
Successful completion.

CICS_EPI_ERR_FAILED
EPI is unable to initialize the interface.

CICS_EPI_ERR_VERSION
EPI cannot support the version requested.

CICS_EPI_ERR_IS_INIT
EPI is already initialized for this process.

9.5.2 CICS_EpiTerminate()
This function terminates EPI. Call this function once per process, usually just
before the process terminates. Any EPI calls made after this function are invalid.
Calling this function does not delete any EPI terminals defined by the application.
The application must issue the CICS_EpiDelTerminal() calls before terminating
the interface.

Format

cics_sshort_t CICS_EpiTerminate(void);

Return Codes

CICS_EPI_NORMAL
Successful completion.

CICS_EPI_ERR_NOT_INIT
Initialization is not completed.

CICS_EPI_ERR_FAILED
Unable to terminate EPI.

9.5.3 CICS_EpiListSystems()
This function obtains a list of possible candidate systems (MTP regions) to which
a terminal can be attached.

Format

cics_sshort_t CICS_EpiListSystems (cics_char_t *NameSpace,
cics_ushort_t *Systems,
CICS_EpiSystem_t *List);

where

Return Codes

CICS_EPI_NORMAL
Successful completion.

CICS_EPI_ERR_NOT_INIT
Initialization is not completed; call
CICS_EpiInitialize().

Namespace parameter is ignored but should be set to a NULL pointer.
Systems Set to the maximum number of CICS_EpiSystem_t structures

that EPI may return. When the function returns, this field
contains the actual number of systems found.

List Array of CICS_EpiSystem_t data structures. The function fills
in these structures and returns them to the application. The
caller provides the storage for the array and sets the Systems
parameter to indicate the maximum size of the array.

External Presentation Interface (EPI) 9.5.4 CICS_EpiAddTerminal()

9-14 Sun MTP Release 7.2 MTP Client User’s Guide

CICS_EPI_ERR_FAILED
Unable to find candidate systems.

CICS_EPI_ERR_NO_SYSTEMS
EPI fails to find a candidate system. The return value in
the Systems field is zero.

CICS_EPI_ERR_MORE_SYSTEMS
Not enough space in the array to store all the candidate
systems. The actual number of systems is found in the
Systems field. Use this to reallocate enough storage for all
the candidate systems and retry the function.

9.5.4 CICS_EpiAddTerminal()
This function installs a new terminal. It returns a TermIndex value to use on all
further terminal-specific EPI calls. The index number is the next available small
integer, starting at zero. The application must maintain a mapping between index
numbers and terminals to process per-terminal information.

Format

cics_sshort_t CICS_EpiAddTerminal(cics_char_t *NameSpace,
cics_char_t *System,
cics_char_t *NetName,
cics_char_t *DevType,
CICS_EpiNotify_t NotifyFn,
CICS_EpiDetails_t *Details,
cics_ushort_t *TermIndex);

where
Namespace Parameter is ignored but should be set to a NULL pointer.
System Name of the system to which the terminal is to be attached.This

name should match one of the systems returned from the
CICS_EpiListSystems() function call. If a string of 0 length is
specified, the default system is used as specified in the
KIXCLI.INI configuration file.This is a pointer to a NULL
terminated string.

NetName VTAM-style net name for the terminal found in the MTP TCT.
This is a pointer to a string that is padded with NULL bytes and
terminated with an extra NULL byte. If this parameter is set to
a NULL pointer, a default is used. If this parameter is provided,
it must be unique and must match one of the net names in the
terminal definitions listed in the system’s terminal database.
The terminal is auto-installed if no NetName is specified.

MTP Client User’s Guide Sun MTP Release 7.2 9-15

9.5.5 CICS_EpiDelTerminal() External Presentation Interface (EPI)

Return Codes

CICS_EPI_NORMAL
Successful completion.

CICS_EPI_ERR_NOT_INIT
Initialization is not completed.

CICS_EPI_ERR_FAILED
Unable to install the terminal.

CICS_EPI_ERR_SYSTEM
Name specified in the System parameter does not exist.

CICS_EPI_ERR_MAX_TERMS
EPI maximum number of terminals supported is reached.

The following return codes are returned by CICS_EpiGetSysError() if
CICS_EpiAddTerminal() fails while performing its asynchronous work

CICS_EPI_ERR_SYSTEM
Name specified in the System parameter does not exist.

CICS_EPI_ERR_MAX_TERMS
EPI maximum number of terminals supported is reached.

9.5.5 CICS_EpiDelTerminal()
This function deletes an installed EPI terminal. If the terminal was autoinstalled,
its definition is deleted. However, the application cannot delete a terminal if the
terminal is currently running a transaction. If the application calls this function
while the terminal is processing a transaction, the function fails. When the
current transaction finishes, the application can successfully call this function.
The application should not consider the terminal completely deleted until it
receives a good return code and the CICS_EPI_EVENT_END_TERM event.

DevType Pointer to a string that specifies the model terminal. This string
is padded with NULL bytes and terminated with an extra NULL
byte. This parameter is ignored if the NetName parameter is not
NULL.

If this field is set to a NULL pointer, the default model
IBM-3278-2 is used.

The names for the terminal models are system specific, but for
MTP, the valid models are

IBM-3278-2 IBM-3278-2-E
IBM-3278-4 IBM-3278-4-E
IBM-3278-5 IBM-3278-5-E
IBM-3287

The -E suffix indicates that the terminal has extended visual
attributes.

NotifyFn Address of a routine to call when an EPI event occurs for this
terminal.

Details Pointer to a structure that EPI fills with details about the
terminal that was installed.
An application can safely use and discard this storage on receipt
of the CICS_EPI_WIN_INSTALLED message.

TermIndex Index number of the terminal that was installed. Use this index
number on all other EPI functions that are specific to this
terminal. The index generated is the first available integer
starting from 0.

External Presentation Interface (EPI) 9.5.6 CICS_EpiStartTran()

9-16 Sun MTP Release 7.2 MTP Client User’s Guide

Format

cics_sshort_t CICS_EpiDelTerminal(cics_ushort_t TermIndex);

where

TermIndex Index number of the terminal to delete.

Return Codes

CICS_EPI_NORMAL
Successful completion.

CICS_EPI_ERR_NOT_INIT
Initialization is not completed.

CICS_EPI_ERR_FAILED
Unable to delete the terminal.

CICS_EPI_ERR_BAD_INDEX
TermIndex parameter does not represent a valid terminal.

CICS_EPI_ERR_TRAN_ACTIVE
A transaction is currently running against the terminal.

9.5.6 CICS_EpiStartTran()
This function starts a transaction for an installed terminal. If the transaction
begins, no other start requests are accepted by EPI until the
CICS_EPI_EVENT_END_TRAN event is generated.

The application may get an unexpected return code of
CICS_EPI_ERR_ATI_ACTIVE. This can occur even if the application believes a
terminal is not currently running a transaction. It means that an ATI request was
started against the terminal and a CICS_EPI_EVENT_START_ATI event has been
raised, but the application has not processed this event.

Format

cics_sshort_t CICS_EpiStartTran(cics_ushort_t TermIndex,
cics_char_t *TransId,
cics_ubyte_t *Data,
cics_ushort_t Size);

where
TermIndex Index number of the terminal to run the transaction.
TransId Transaction code to run against the terminal. This field is a

pointer to a string that is padded with spaces and terminated
with an extra NULL byte.

If the field is a NULL pointer, EPI attempts to extract the
correct transaction code from the Data buffer. It does this by
examining the first byte of the data and skipping any 3270
control codes to find the start of the user data. It copies up to the
next four characters until either another 3270 control code is
found or no more data is available. The result is padded with
spaces to four characters.

To start a continuing portion of a pseudo-conversational
transaction, this field must contain the TransId returned when
the CICS_EPI_EVENT_END_TRAN event occurred.

Data Pointer to the initial 3270 data buffer associated with the
transaction. This parameter cannot be a NULL pointer; it must
contain at least the 3270 AID key that caused the terminal read.

Size Number of bytes in the Data buffer.

MTP Client User’s Guide Sun MTP Release 7.2 9-17

9.5.7 CICS_EpiReply() External Presentation Interface (EPI)

Return Codes

CICS_EPI_NORMAL
Successful completion.

CICS_EPI_ERR_NOT_INIT
Initialization is not completed.

CICS_EPI_ERR_FAILED
Unable to start the transaction.

CICS_EPI_ERR_BAD_INDEX
TermIndex parameter does not represent a valid terminal.

CICS_EPI_ERR_TTI_ACTIVE
A TTI transaction is already active for this terminal.

CICS_EPI_ERR_ATI_ACTIVE
An ATI transaction is active for this terminal.

CICS_EPI_ERR_NO_DATA
No initial data is provided.

9.5.7 CICS_EpiReply()
This function sends data from a terminal to an MTP transaction. It is used only
for replying to a CICS_EPI_EVENT_CONVERSE event.

Format

cics_sshort_t CICS_EpiReply (cics_ushort_t TermIndex,
cics_ubyte_t *Data,
cics_ushort_t Size);

where

Return Codes

CICS_EPI_NORMAL
Successful completion.

CICS_EPI_ERR_NOT_INIT
Initialization is not completed.

CICS_EPI_ERR_FAILED
Unable to send the reply data.

CICS_EPI_ERR_BAD_INDEX
TermIndex parameter does not represent a valid
terminal.

CICS_EPI_ERR_NO_CONVERSE
No CICS_EPI_EVENT_CONVERSE event is outstanding for
the terminal.

CICS_EPI_ERR_NO_DATA
No reply data is provided.

TermIndex Index number of the terminal that is sending the data.

Data
Pointer to a buffer of 3270 data to be sent to the transaction. This
field cannot be a NULL pointer; it must contain at least the 3270
AID byte that causes the terminal read.

Size Size of the Data buffer.

External Presentation Interface (EPI) 9.5.8 CICS_EpiATIState()

9-18 Sun MTP Release 7.2 MTP Client User’s Guide

9.5.8 CICS_EpiATIState()
This function allows the application to query and change the terminal handling of
ATI requests. If ATI requests are enabled (CICS_EPI_ATI_ON) and an ATI request
is issued, EPI automatically starts the request as soon as the terminal is
available. If ATI requests are held (CICS_EPI_ATI_HOLD), any ATI requests are
queued and started when ATI requests are enabled.

EPI always begins in the CICS_EPI_ATI_HOLD state. The application can change
the handling of ATI requests when it is ready to allow ATI processing and
provided the terminal definition allows ATI requests.

Format

cics_sshort_t CICS_EpiATIState (cics_ushort_t TermIndex,
CICS_EpiATIState_t *ATIState);

where

Return Codes

CICS_EPI_NORMAL
Successful completion.

CICS_EPI_ERR_NOT_INIT
Initialization is not completed; call
CICS_EpiInitialize().

CICS_EPI_ERR_FAILED
Unable to set or query the ATI state.

CICS_EPI_ERR_BAD_INDEX
TermIndex parameter does not represent a valid terminal.

CICS_EPI_ATI_STATE
An invalid ATIState was given.

9.5.9 CICS_EpiSenseCode()
Call this function when an application detects an error on the datastream sent to
it.

Note This function is retained only for compatibility and is ignored.

Format

cics_sshort_t CICS_EpiSenseCode(cics_ushort_t TermIndex,
CICS_EpiSenseCode_t SenseCode);

where

TermIndex Index number of the terminal.

SenseCode Sense Code failure reason, one of CICS_EPI_ATI_OPCHECK
or CICS_EPI_ATI_REJECT, as defined in Section 9.3.3.9.

Return Codes

CICS_EPI_NORMAL
Successful completion.

CICS_EPI_ERR_NOT_INIT
Initialization is not completed.

TermIndex Index number of the terminal.
ATIState One of CICS_EPI_ATI_ON, CICS_EPI_ATI_HOLD,

CICS_EPI_ATI_QUERY, as defined in Section 9.3.3.8.On entry to
this function, this field contains the required new ATI state. On
exit from this function, this field contains the previous state.

MTP Client User’s Guide Sun MTP Release 7.2 9-19

9.5.10 CICS_EpiGetEvent() External Presentation Interface (EPI)

9.5.10 CICS_EpiGetEvent()
This function retrieves an event from the event queue for processing.

Format

cics_sshort_t CICS_EpiGetEvent(cics_ushort_t TermIndex,
CICS_EpiWait_t Wait,
CICS_EpiEventData_t *Event);

where

Return Codes

CICS_EPI_NORMAL
Successful completion.

CICS_EPI_ERR_NOT_INIT
Initialization is not completed.

CICS_EPI_ERR_FAILED
Unable to get next event.

CICS_EPI_ERR_BAD_INDEX
The TermIndex parameter does not represent a valid
terminal.

CICS_EPI_ERR_WAIT
Wait parameter is invalid.

CICS_EPI_ERR_NO_EVENT
No events are outstanding for this terminal.

CICS_EPI_ERR_MORE_DATA
Data buffer is insufficient to contain the terminal’s data;
the data is truncated.

CICS_EPI_ERR_MORE_EVENTS
An event is successfully obtained, but more events against
this terminal are outstanding.

TermIndex Index number of the terminal for which to obtain an event. This
can be the constant CICS_EPI_TERM_INDEX_NONE to indicate that
the next event for any registered terminal is to be returned. In
this case, the application should examine the TermIndex field in
the returned CICS_EpiEventData_t structure to determine the
relevant terminal.

Wait Ignored, but must be set to either
CICS_EPI_WAIT
CICS_EPI_NOWAIT

Event Pointer to a structure that contains details of the event that
occurred.

The Data field of the structure points to the data buffer that is
updated by any terminal datastream for the event.

The Size field indicates the maximum size of the data buffer and
is updated to contain the actual length of the data returned.

External Presentation Interface (EPI) 9.5.11 CICS_EpiGetSysError()

9-20 Sun MTP Release 7.2 MTP Client User’s Guide

9.5.11 CICS_EpiGetSysError()
This function obtains detailed error information about the last error that
occurred. Error information is saved by EPI when any EPI command failed with a
return code of CICS_EPI_ERR_FAILED

If an EPI function gave this return code, call this function specifying the
TermIndex relevant to the original EPI request. The value returned in the SysErr
parameter further describes the return code from any other EPI function.The
values are operating system and environment specific and are explained in the
documentation provided for each environment.

Format

cics_sshort_t CICS_EpiGetSysError(cics_ushort_t TermIndex,
CICS_EpiSysError_t *SysErr);

where

Return Codes

CICS_EPI_NORMAL
Successful completion.

CICS_EPI_ERR_NOT_INIT
Initialization is not completed.

CICS_EPI_ERR_BAD_INDEX
TermIndex parameter does not represent a valid terminal.

CICS_EPI_ERR_FAILED
Unable to obtain the SysErr information.

Other Return code from the command that caused the last error.
Refer to the sections on the original calls to decide on the
meaning of these values. This is especially relevant to the
CICS_EpiAddTerminal() function.

When the values returned in the SysErr parameter are relevant, the following
values for the Cause field have the listed meanings.

CICS_EPI_SYSERROR_UNEXPECTED_DATASTREAM
MTP Client received a datastream from MTP that it could
not decode.

CICS_EPI_SYSERROR_NO_MEMORY
MTP Client was unable to obtain memory for its internal
processing.

CICS_EPI_SYSERROR_DUPLICATE_NETNAME
NetName specified on the CICS_EpiAddTerminal() call is
already being used.

TermIndex Index number of the terminal for which to obtain the additional
error information. This can be the constant
CICS_EPI_TERM_INDEX_NONE to indicate that further error
information is required from the CICS_EpiInitialize(),
CICS_EpiTerminate(), CICS_EpiListSystems(), or
CICS_EpiAddTerminal() functions.

SysErr Pointer to a CICS_EpiSysError_t structure that contains the
system error information.The values in the Cause and Value
fields of the SysErr structure can be used to further qualify the
return code for an EPI function.
The Msg field returns an operating environment-specific text
message describing the error that occurred, if available.

MTP Client User’s Guide Sun MTP Release 7.2 9-21

9.5.12 CICS_EpiInquireSystem() External Presentation Interface (EPI)

CICS_EPI_SYSERROR_UNKNOWN_NETNAME
NetName specified on the CICS_EpiAddTerminal() call is
unknown to the MTP region to which you are
communicating.

CICS_EPI_SYSERROR_UNKNOWN_DEVTYPE
DevType specified on the CICS_EpiAddTerminal() call is
unknown to the MTP region to which you are
communicating.

CICS_EPI_SYSERROR_INVALID_TPNAME
The terminal install transaction CTIN is not available on
the remote MTP region.

CICS_EPI_SYSERROR_UNEXPECTED_ERROR
An internal error has occurred.

CICS_EPI_SYSERROR_UNKNOWN_SYSTEM
System specified was unknown to MTP Client.

CICS_EPI_SYSERROR_TERM_OUT_OF_SERVICE
Terminal corresponding to the specified NetName is set out
of service.

CICS_EPI_SYSERROR_SYSTEM_UNAVAILABLE
Cannot access the specified system at the present time.

CICS_EPI_SYSERROR_INTERNAL_LOGIC_ERROR
An internal error has occurred.

CICS_EPI_SYSERROR_AUTOINSTALL_FAILED
Terminal autoinstall failed for an unknown reason.

CICS_EPI_SYSERROR_TERM_INSTALL_FAILED
Terminal install failed for an unknown reason.

9.5.12 CICS_EpiInquireSystem()
This function supplies limited information about a terminal. When a TermIndex
is specified, this function returns the name of the system to which the terminal is
attached.

Format

cics_sshort_t CICS_EpiInquireSystem(cics_ushort_t TermIndex,
cics_char_t *System);

where

Return Codes

CICS_EPI_NORMAL
Successful completion.

CICS_EPI_ERR_NOT_INIT
Initialization is not completed. Call
CICS_EpiInitialize().

CICS_EPI_ERR_BAD_INDEX
TermIndex parameter does not represent a valid terminal.

CICS_EPI_ERR_FAILED
Unable to obtain system information.

TermIndex Index number of the terminal for which system information is
required.

System Pointer to a buffer that contains the name of the system to which
the TermIndex is connected.

External Presentation Interface (EPI) 9.5.12 CICS_EpiInquireSystem()

9-22 Sun MTP Release 7.2 MTP Client User’s Guide

MTP Client User’s Guide Sun MTP Release 7.2 A-1

Appendix A KIXTERM.INI

A.1 Identifying file comments
Identify a comment by preceding the comment text with a semicolon, for example

; ---------------------------
; 3270 color designation
; ---------------------------

A.2 Key mappings
The [keys] section of the KIXTERM.INI file contains the key mappings.

Format

3270 key = System Key [+ Modifier key]

where

This appendix describes the initialization file, KIXTERM.INI, which contains
definitions for color and the keyboard that are used by the ECI/EPI Client
terminal emulator. The file contains three sections

[keys] Key mappings, described in Section A.2

[system_colors] Color mapping from RGB values to symbolic names,
described in Section A.3

[colors] Color mappings from symbolic names to 3270 values,
described in Section A.4

[general] All other initialization settings, described in Section A.5.

In addition, the initialization file contains comments, the format of which is
described in Section A.1.

3270 key Defined by the terminal emulator as a key that performs a
specific 3270 operation. All 3270 keys have a symbolic
representation. See Table A.1.

System Key Defined as a symbolic representation of a key on a PC
keyboard that is supported by the terminal emulator. See
Table A.2 for the definitions.

Modifier key Allow 3270 keys to be represented by key combinations. For
example, the following defines the reset key as Alt R

reset = R + Alt
See Table A.3 for the definitions.

KIXTERM.INI A.2 Key mappings

A-2 Sun MTP Release 7.2 MTP Client User’s Guide

Table A.1 KIXTERM.INI 3270 Keys

Symbolic Name 3270 Operation

backspace Deletes the character to the left of the cursor in unprotected fields and
moves the cursor 1 position left.

backtab
Moves the cursor to the first character position in the current field, if
it is unprotected and it is not in the first character position.
Otherwise, the cursor is moved to the previous unprotected field.

clear Clears the screen and moves the cursor to the home position. An AID
is transmitted.

cursorleft Moves the cursor 1 position to the left.

cursordown Moves the cursor 1 line down.

cursorright Moves the cursor 1 position to the right.

cursorup Moves the cursor 1 line up.

delete Deletes the character under the cursor.

enter Transmits the enter AID.

eraseeof Erases all characters from the current cursor position to the end of the
field.

eraseinput Erases all unprotected fields.

insert Toggles the terminal between insert and overtype mode.

newline Moves the cursor to the first unprotected field on a line.

pa1 through pa3 Transmits the appropriate PA key AID.

pf1 through pf24 Transmits the appropriate PF key AID.

printscreen Prints the current display on the local printer.

reset Resets the keyboard lock.

tab Moves the cursor to the first character position of the next unprotected
field.

Table A.2 KIXTERM.INI System Keys

Symbolic Name System Keys

A through Z Keys A through Z

0 through 9 Keys 0 through 9

backspace Backspace key

delete Delete key

down Down arrow

end End key

escape Esc key

f1 through f24 Function keys

MTP Client User’s Guide Sun MTP Release 7.2 A-3

A.2 Key mappings KIXTERM.INI

home Home key

insert Insert key

left Left arrow

rightctrl Right control key

newline Newline (enter) key

numpad0
through
numpad9

Keys 0 through 9 on the numeric keypad

numpad+ + key on the numeric keypad

numpad- - key on the numeric keypad

numpad* * key on the numeric keypad

numpad/ / key on the numeric keypad

numpad. . key on the numeric keypad

pagedown Page down key

pageup Page up key

pause Pause key

printscreen Print screen key

right Right arrow

scroll_lock Scroll lock key

tab Tab key

up Up arrow

Table A.3 KIXTERM.INI Modifier Keys

Symbolic Name System Key

Shift Shift key

Control Left Control key

Ctrl Left Control key

Alt Right Alt Key

Table A.2 KIXTERM.INI System Keys (Continued)

Symbolic Name System Keys

KIXTERM.INI A.3 Defining the normal and light colors for a terminal

A-4 Sun MTP Release 7.2 MTP Client User’s Guide

A.3 Defining the normal and light colors for a
terminal
The system_color mapping allows the definition of the normal and light forms
of color used by the terminal. Table A.4 lists the system colors.

Format

system_color = RGB(red, green, blue)

where

A.4 Mapping colors
Color mapping allows you to map from symbolic names to 3270 values. The color
mapping takes two forms, which define the color representation used by the
emulator

• When displaying 3270 fields that contain color attributes. For example
3270 color = System color

• When displaying fields that do not contain any color attributes. In this form,
the color of a field is determined by the field attribute. For example, the
following causes all normal unprotected fields to appear as light green, by
default.

normal_unprotected = light_green

Table A.4 defines the symbolic representation of

• 3270 colors
• System colors
• Field attributes

red, green, blue Numbers between 0 and 255 that represent the amount of
color used in the resulting system color. For example

light_white = RGB(255,255,255)

Table A.4 KIXTERM.INI

3270 Colors System Colors Field Attributes

Default red / light_red normal_unprotected

red green / light_green normal_protected

green blue / light_blue intensified_unprotected

blue pink / light_pink intensified_protected

pink cyan / light_cyan

turquoise yellow / light_yellow

yellow white / light_white

white black

MTP Client User’s Guide Sun MTP Release 7.2 A-5

A.5 Resetting a keyboard KIXTERM.INI

A.5 Resetting a keyboard
The general section contains initialization options that do not relate to key or
color mapping. In this release of the emulator, only one entry is valid

kbd_reset = end_of_transaction

The kbd_reset option causes a keyboard reset to occur every time a transaction
ends. The option is incorporated into the emulator because it makes the terminal
easier to use. This action is not part of the standard 3270 architecture and, if it is
not required, you can remove it from the KIXTERM.INI file by commenting it out
with a semi-colon

; kdb_reset = end_of_transaction

If you comment it out, you may have to reset the keyboard if a transaction locks
the keyboard.

KIXTERM.INI A.5 Resetting a keyboard

A-6 Sun MTP Release 7.2 MTP Client User’s Guide

MTP Client User’s Guide Sun MTP Release 7.2 B-1

Appendix B Messages

B.1 Examining messages
MTP Client issues various status and error messages. You can examine these
messages in one of two ways

• On the MTP Client Messages Display
• Reviewing the message log file KIXCLI.MSG

Note that only the last 100 messages are displayed on the MTP Client Messages
appear.

B.2 Message format
All messages have the same form regardless of their category.

UCM####a Text of message####a Text of message

where

This chapter describes how to examine MTP Client messages, defines the
categories and form used for messages, how to contact technical support for
system support, and the meaning of MTP Client and 3270 terminal emulator
messages.

UCM Error generated by the MTP Client
EMU Error generated by the 3270 terminal emulator
MTP error number.
a Letter indicating the severity of the error.

I Informative message
W Warning message
E Non-fatal error occurred
F Fatal error occurred
T Transaction abend occurred that did not affect MTP.

Text of message
Message issued by MTP. In some cases, the name of subroutine
that originated the message is given in brackets before the
message text. In these cases, the message appears as

UCM####a [subroutine_name] Message
For convenience, the messages are listed in numerical order.
Within the Text of message, the following variable conventions are
used

%c Replaced in the message by a single character.
%d Replaced in the message by a by a decimal value
%s Replaced in the message by a string of characters
%r Replaced in the message by the name of a subroutine.
%x Replaced in the message by a hexadecimal value

Messages B.3 MTP Client Messages

B-2 Sun MTP Release 7.2 MTP Client User’s Guide

B.3 MTP Client Messages
The message log file, KIXCLI.MSG, is written to the directory specified by the
MsgDir parameter in the KIXCLI.INI configuration file. This message log
contains all the messages for the most recent execution of MTP Client. Each
message includes a date and time stamp. KIXCLI.MSG is overwritten each time
MTP Client is started. This section lists the messages returned by MTP Client.

UCM0001I: MTP Client startup is complete

Informational message.

UCM0002W: Unable to create timer

UCM0003E: Unable to resolve TCP host %s for system %s

UCM0004W: Unable to connect to TCP host %s for system %s

UCM0005E: Lost contact with TCP host %s for system %s:

UCM0006I: TCP/IP transport support loaded

Informational message.

UCM0007I: Connected to system %s as ApplID %s

Informational message.

UCM0008E: Redefinition of system %s; the first definition is being used

UCM0009W: No systems found

UCM0010I: Winsock used is %s

Informational message.

UCM0011E: The definition of system %s has insufficient parameters

Action Enter the necessary parameters.

UCM0012E: The transport %s for system %s is invalid

UCM0013E: The port %s for system %s is not numeric

UCM0014E: Default system %s does not exist. Using %s

UCM0015W: No default system specified. Using %s

UCM0016E: Alias %s is too long; it is being ignored

UCM0017W: Trace is enabled. TraceMask is 0x%4.4x

UCM0018W: Alias %s has port 0 specified. The default port %d will be
used

UCM0019W: Invalid MaxRequests value of %s specified

UCM0020I: Setting MaxRequests to %d

Informational message.

UCM0021W: Invalid MaxSystems value of %s specified

MTP Client User’s Guide Sun MTP Release 7.2 B-3

B.3 MTP Client Messages Messages

UCM0022I: Setting MaxSystems to %d

Informational message.

UCM0023E: The TCP address %s for system %s is longer than the
maximum %d characters:

UCM0024W: The description for system %s is longer than the
maximum %d characters

UCM0025I: A request has been made to cease communication with
system %s

Informational message.

UCM0026E: Resource shortage while in function %s

UCM0027E: Specified TraceDir is invalid. Using default TraceDir

UCM0028E: Specified MsgDir %s is invalid. Using %s

UCM0029E: Trace file could not be opened. Trace is disabled

UCM0030E: Client Install Transaction CCIN is invalid in system %s

UCM0031E: Unexpected return code received while decoding a CCIN
reply from system %s

UCM0032E: Client Install Transaction CCIN could not be executed on
system %s

UCM0033W: LU6.2 Error Reply received from system %s.
Sense data is {%2.2x,%2.2x,%2.2x,%2.2x}

UCM0040I: Copyright © 2001 by Sun Microsystems, Inc.

Informational message.

UCM0041I: --

Informational message.

UCM0042W: MaxSystems has been reached. Connection to system %s
has been aborted.

UCM0043E: The MTP Client could not be contacted.

UCM0044I: kixctl [-s] [-l] [-m] [-D] [-c <system>] [-d <system>]
[-t <mask>]

Informational message.

UCM0045E: kixctl [-s] [-l] [-m] [-D] [-c <system>] [-d <system>]
[-t <mask>]

UCM0046I: A connection request has been issued for system ‘%s’

Informational message.

UCM0047E: System name ‘%s’ is not valid

UCM0048E: System name ‘%s’ could not be connected

Messages B.3 MTP Client Messages

B-4 Sun MTP Release 7.2 MTP Client User’s Guide

UCM0049I: A disconnection request has been issued for system ‘%s’

Informational message.

UCM0050E: System ‘%s’ could not be disconnected

UCM0051E: Contact with the MTP Client has been lost

UCM0052E: Remote system %s sent invalid block
header %2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x

UCM0053I: A request to shutdown the MTP Client has been issued

Informational message.

UCM0054I: MTP Client shutdown is complete

Informational message.

UCM0055E: A reply from the MTP Client could not be obtained

UCM0056I: A dump is being taken into %s

Informational message.

UCM0057E: A request to dump could not be performed

UCM0058E: The MTP Client could not create pipe %s

UCM0059I: Destroying terminated application pipe %s

Informational message.

UCM0060E: Could not delete file %s

UCM0061E: Could not create file %s

UCM0062E: The dump request could not be processed

UCM0063E: A dump request has been issued

UCM0064E: The TCP/IP transport support library could not be loaded

UCM0065I: SNA transport support loaded

Informational message.

UCM0066W: An SNA conversation could not be allocated. primary_rc =
0x%4.4x, secondary_rc = 0x%8.8lx

UCM0067E: The SNA Remote LU name %s for system %s is longer than
the maximum %d characters

UCM0068E: The SNA Local LU name %s for system %s is longer than
the maximum %d characters

UCM0069E: The SNA Mode name %s for system %s is longer than the
maximum %d characters

UCM0070E: The Remote LU Alias %s for system %s is invalid

UCM0071E: The Mode Name %s for system %s is invalid

MTP Client User’s Guide Sun MTP Release 7.2 B-5

B.4 Emulator Messages Messages

UCM0072W: The local SNA Transaction Program could not perform a
TP_START. primary_rc = 0x%4.4x, secondary_rc = 0x%8.8lx

UCM0073E: The Local LU Alias %s for system %s is invalid

UCM0074E: The SNA transport support library could not be loaded

UCM0075E: WinAPPCStartup() failed with return code 0x%8.8x

UCM0076E: The SNA PU2.1 node could not be contacted

UCM0077E: The underlying network subsystem is not ready for
network communication

UCM0078E: A connection attempt to system %s failed due to a
transport initialization failure

UCM0079E: An attempt to run the terminal install transaction CTIN
failed on system %s

UCM0080I: %s BuildStamp %s

Informational message.

B.4 Emulator Messages
This section describes the messages generated by the MTP Client 3270 terminal
emulator and printer emulator.

EMU0001E Unknown error

EMU0002E Terminal not initialized

EMU0003E Bad Index

EMU0004E Failed

EMU0005E Unexpected datastream

EMU0006E Out of memory

EMU0007E Duplicate netname

EMU0008E Unknown netname
Netname is not defined.

Action Define or correct the netname.

EMU0009E Unknown devtype

EMU0010E Terminal install failed

EMU0011E Unexpected error

EMU0012E Unknown system

System is not defined.

Action Define or correct the name of the system.

EMU0013W Terminal out of service

Messages B.4 Emulator Messages

B-6 Sun MTP Release 7.2 MTP Client User’s Guide

EMU0014E System unavailable

EMU0015E Internal Logic error

EMU0016E Auto Install failed

EMU0017E Terminal Install error

EMU0018E EPI version not supported

EMU0019E Is Init

EMU0020E No Systems

EMU0021E No more terminal resources

EMU0022E System Error

EMU0023E Transaction active

EMU0024E TTI active

EMU0025E No server connection

EMU0026E Invalid data length

EMU0027E Invalid datastream

EMU0028E Terminal install error

EMU0029E Closing terminal

EMU0032W Are you sure you want to quit?

EMU0033E Terminal Initialization Error: 0x%4.4x

EMU0034E No connections available

EMU0040I Printer installed as netname: %s

EMU0041W Printer not installed

EMU0042I Printer file: %s

Informational message.

EMU0043I Printer Command: %s

Informational message.

EMU0044E Cannot execute command: 0x%4.4x

EMU0045E Cannot open file: %s

EMU0046E Cannot open temporary file: %s

System cannot locate the named command or file.

Action Check the syntax for the command and verify that you
are using the correct file name, then resubmit.

MTP Client User’s Guide Sun MTP Release 7.2 Glossary-1

Glossary

3270 SNA device

A terminal device that displays an IBM SNA 3270 datastream.

API

See Application Programing Interface

Application Programming Interface (API)

A predefined interface used by application programs. The API consists of a
routine name and its associated arguments and adheres to the syntax of the
associated application program language.

asynchronous processing

A bi-directional process that allows a mainframe to start transactions on MTP
or allows MTP to start transactions on the mainframe while continuing to
process.

Basic Mapping Support (BMS)

Macro instructions, which are used as input to the MTP BMS Assembler to
create physical and symbolic definition map files.

BMS

See Basic Mapping Support.

CICS

See Customer Information Control System.

conversational transaction

One in which dialogue with the user (typically a SEND/RECEIVE sequence) is
carried on while the transaction is active.

Customer Information Control System (CICS)

A general purpose transaction processing environment.

Distributed Program Link (DPL)

Method of intersystem communication in which a program on one region can
synchronously link to a program on another region.

Distributed Transaction Processing (DTP)

The distribution of processing between transactions that communicate
synchronously with one another over intersystem or interregion links.

DPL

See Distributed Program Link.

DTP

See Distributed Transaction Processing.

Glossary-2 Sun MTP Release 7.2 MTP Client User’s Guide

Glossary

ECI

See External Call Interface.

EPI

See External Presentation Interface.

environment variables

Variables that define the location of program files and applications. Both
clients and the server use environment variables.

External Call Interface (ECI)

API for writing programs that allow non-CICS application programs to call a
CICS program that follows the rules for Distributed Program Link (DPL) and
is running on a server

External Presentation Interface (EPI)

API for writing programs that allow a non-CICS application program to appear
to MTP as one or more standard 3270 terminals. The EPI application
communicates with MTP as if it is a real 3270 terminal.

File permissions (or modes)

Control access to a file as defined by the operating system.

Intersystem Communication (ISC)

Communication between separate systems by means of SNA networking
facilities or by means of the application-to-application facilities of an SNA
access method.

ISC

See Intersystem Communication

logical unit (LU)

In SNA, a port through which an end user accesses the SNA network to
communicate with another end user and through which the end user accesses
the functions provided by system services control points (SSCPs).

logical unit-of-work

A logical unit-of-work is all the processing in the server that is needed to
establish a set of updates to recoverable resources.

LU

See logical unit.

LU6.2

Logical unit type that supports general communication between programs in a
distributed processing environment.

SNA

See Systems Network Architecture.

sockets

A mechanism for interprocess communication that allows the use of different
network protocols.

Glossary

MTP Client User’s Guide Sun MTP Release 7.2 Glossary-3

SSCP

See System Services Control Point.

System Services Control Point (SSCP)

In SNA, the focal point within an SNA network for managing the
configuration, coordinating network operator and problem determination
requests, and providing directory support and other session services for end
users of the network.

Systems Network Architecture (SNA)

The logical structure, formats, protocols, and operational sequences for
transmitting information units through, and controlling the configuration and
operation of networks.

TCP/IP

A suite of network protocols on which the Internet is based. Transmission
Control Protocol (TCP) is a protocol that provides a reliable, full-duplex
datastream. Internet Protocol (IP) is a protocol that provides the packet
delivery services for TCP. The TCP protocol interacts with the IP, not the user
process.

TN3270 protocol

An extension of the traditional TCP/IP Telnet protocol that allows non-ASCII,
block mode devices, such as IBM-3270s, and applications, such as EBM, to
communicate via TCP/IP. Also includes TN3270E.

TN3270 Server (unikixtnemux)

Allows MTP to support 3270 emulators running on PCs, Macintosh, and UNIX
machines using the TCP/IP - TN3270 protocol. Also supports TN3270E.

MTP region

A set of UNIX processes, files, and environment variables that define separate
CICS applications on a system.

transaction routing

Allows terminals connected to one MTP/CICS region to run transactions on
another MTP/CICS region either on the same or a different machine.

unikixtnemux

See TN3270 Server.

Glossary-4 Sun MTP Release 7.2 MTP Client User’s Guide

Glossary

MTP Client User’s Guide Sun MTP Release 7.2 Index-1

Index

Symbols
$INSTROOT/BIN 3-3
$INSTROOTEXAMPLES 8-1, 9-1
/etc/services 3-5

Numerics
3270 colors A-4
3270 Printer

command line parameters 7-2
configuring 7-1
kixprnt command 7-2
kixprnt.txt file 7-2
messages B-5
MTP region name 7-2
netname display 7-4
screen display 7-4
starting 7-3

from icon 7-3
starting from a command line 7-4
stopping 7-4

3270 Terminal
color mapping A-4
command line parameters 6-1
configuration 6-1
Display Area 6-4
key mapping A-1
messages B-5
screen description 6-4
starting 6-2

from command line 6-3
from icon 6-3

Status Bar 6-4
stopping 6-5
stopping session with CSSF LOGOFF 6-5
Title Bar 6-4
window title 6-2

A
API function calls 8-1

CICS_EciListSystems() 8-2
CICS_ExternalCall() 8-1, 8-2

application design 8-4
asynchronous mode 8-6
callback mechanism 8-6
callback notification 8-6
named pipes 8-6
Solaris 8-6
synchronous mode 8-6

asynchronous calls 8-3, 8-4, 8-12
asynchronous DPL 8-13, 8-15, 8-16
asynchronous mode

application design 8-6

C
call types

program link 8-2
reply solicitation 8-2
status information 8-2

callback mechanism
application design 8-6

callback notification
application design 8-6
ECI_PARMS

values for one-shot asynchronous
DPL 8-17

one-shot asynchronous DPL 8-16
Solaris 8-17
Windows 8-16

callbacks 8-22
CCLAPI.DLL 9-1
CCLWIN32.LIB 9-1
CICS_EciListSystems() 8-2, 8-11

Return Codes 8-11
CICS_EciSystem_t

structure fields 8-11
cics_epi.h 9-1
CICS_EPI_EVENT_CONVERSE 9-4, 9-10
CICS_EPI_EVENT_END_TERM 9-2, 9-12
CICS_EPI_EVENT_END_TRAN 9-11
CICS_EPI_EVENT_SEND 9-4, 9-10
CICS_EPI_EVENT_START_ATI 9-11
CICS_EpiAddTerminal() 9-2
CICS_EpiATIState() 9-18
CICS_EpiATIState_t 9-9
CICS_EpiDelTerminal() 9-2, 9-15
CICS_EpiEnd_t 9-8
CICS_EpiEvent_t 9-8
CICS_EpiEventData_t 9-3
CICS_EpiGetEvent() 9-3, 9-19
CICS_EpiGetSysError() 9-20
CICS_EpiInitialize() 9-2, 9-12
CICS_EpiInquireSystem() 9-21
CICS_EpiListSystems() 9-13
CICS_EpiNotify_t 9-8
CICS_EpiReply() 9-4, 9-17
CICS_EpiSenseCode() 9-18
CICS_EpiSenseCode_t 9-9
CICS_EpiStartTran() 9-2, 9-16
CICS_EpiSysError_t 9-7
CICS_EpiTerminate() 9-2, 9-13
CICS_EpiWait_t 9-9
CICS_ExternalCall() 8-1, 8-9

program link 8-2
reply solicitation 8-2
Return Codes 8-9
status information 8-2

Index-2 Sun MTP Release 7.2 MTP Client User’s Guide

CICS_ExternalCall() (continued)
types 8-2

client behavior
KIXCLI.INI file 3-3

color mapping A-1, A-4
colors

3270 A-4
system A-4

command line
starting 3270 Printer 7-4
starting 3270 Terminal 6-3

commands
kixcli 4-1
kixctl 5-5
kixprnt 7-2

examples 7-2
kixterm 6-3

concurrent calls
maximum number 8-5

configuring
MTP Client 3-1

connecting to a system 5-5
connection status

on terminal status bar 6-4
CSSF LOGOFF 6-5

D
data structures

CICS_EpiATIState_t 9-9
CICS_EpiDetails_t 9-5
CICS_EpiEnd_t 9-8
CICS_EpiEvent_t 9-8
CICS_EpiEventData_t 9-6
CICS_EpiNotify_t 9-8
CICS_EpiSenseCode_t 9-9
CICS_EpiSysError_t 9-7
CICS_EpiSystem_t 9-5
CICS_EpiWait_t 9-9
ECI 8-6
EPI 9-5

default system 3-3
defined systems MTP Client

Solaris 5-5
diagnostic trace

disabling 3-5
enabling 3-4
Windows 3-4

diagnostics
trace mask 3-3

directories
$INSTROOT/BIN 3-3
$INSTROOTEXAMPLES 8-1, 9-1
/etc/services 3-5
/opt/kixcli 2-3
diagnostics 3-3
KIXCLICONFIG 3-1

disconnecting a system 5-5
Distributed Program Link. See DPL

DPL
asynchronous 8-13, 8-15, 8-16
one-shot synchronous 8-18
rules 8-1

Dynamic Link Library (DLL) 1-2

E
ECI

common scenarios 8-13
data structures 8-6
example C code 8-1
functions 8-9

CICS_EciListSystems() 8-11
CICS_EXTERNALCALL() 8-9
KixCli_QueryFD() 8-12

MTP interface 8-22
ECI examples 8-13

continuing a long running unit-of-work
8-19

determining whether a remote system is
connected 8-21

example directory 8-1
one-shot asynchronous DPL 8-13

callback notification 8-16
message notification 8-13
semaphore notification 8-15

one-shot synchronous DPL 8-18
rolling back a unit-of-work 8-20
starting a long running asynchronous

unit-of-work 8-19
starting a multiple part unit-of-work 8-19
syncpointing a unit-of-work 8-19
using callbacks 8-22

ECI functions
CICS_EciListSystems() 8-11
CICS_ExternalCall() 8-9

ECI status block
contents 8-4

eci_call_type 8-2
values 8-2

eci_commarea 8-4
eci_luw_token 8-4, 8-13, 8-16, 8-17
eci_message_qualifier 8-3
ECI_PARMS 8-13

eci_luw_token 8-16, 8-17
structure fields 8-7
values for ECI_STATE_ASYNC call 8-21
values for obtaining a specific reply 8-15
values for one-shot asynchronous DPL

8-14
callback notification 8-17
semaphore notification 8-15

values for one-shot synchronous DPL 8-18
values for rolling back a unit-of-work 8-20
values for STATE_ASYNC_MESSAGE

reply solicitation 8-22
values for syncpointing a unit-of-work

8-20

MTP Client User’s Guide Sun MTP Release 7.2 Index-3

ECI_PARMS control block
eci_call_type 8-2

ECI_STATE_ASYNCH call
ECI_PARMS values 8-21

ECI_STATUS 8-4
structure fields 8-7

ECIEX2
sample application 8-6

EciParms 8-9
environment variable

KIXMAXIST 3-5
PATH 2-3
TCPRTERM 8-5
TCPSTERM 3-5

EPI
constants 9-4
definition 9-1
example directory 9-1

EPI application
adding and deleting EPI terminals 9-2
developing 9-1
EPI events 9-10
event notification

UNIX 9-3
Windows 9-3

initializing and terminating 9-2
processing events 9-3
sending and receiving data 9-4
starting transactions 9-2

EPI data structures
constants 9-4
data types 9-4

EPI events 9-10
CICS_EPI_EVENT_CONVERSE 9-10
CICS_EPI_EVENT_END_TERM 9-12
CICS_EPI_EVENT_END_TRAN 9-11
CICS_EPI_EVENT_SEND 9-10
CICS_EPI_EVENT_START_ATI 9-11

EPI functions 9-12
CICS_EpiAddTerminal() 9-14
CICS_EpiATIState() 9-18
CICS_EpiDelTerminal() 9-15
CICS_EpiGetEvent() 9-19
CICS_EpiGetSysError() 9-20
CICS_EpiInitialize() 9-12
CICS_EpiInquireSystem() 9-21
CICS_EpiListSystems() 9-13
CICS_EpiReply() 9-17
CICS_EpiSenseCode() 9-18
CICS_EpiStartTran() 9-16
CICS_EpiTerminate() 9-13

event
EPI 9-10
processing 9-3
Windows 8-6

examples
ECI directory 8-1
ECI scenarios 8-13
EPI directory 9-1

examples (continued)
kixprnt 7-2

extended LUW 8-1
External Call Interface. See ECI.
External Presentation Interface (EPI). See

EPI

F
field attributes

KIXTERM.INI A-4
file descriptor (FD) 8-12
files

initialization
content 6-2

KIXCLI.INI 3-1, 3-3, 3-4, 3-5, 5-2, 5-3, 6-2,
8-11

KIXCLI.MSG 3-3, 5-3, B-1
kixcli.msg 5-5
kixprnt.txt 7-2
KIXTERM.INI 6-2, A-1

keyboard resetting A-5
print 7-2

I
IBM Communications Server 1-2
identifying file comments A-1
initialization file A-1

contents 6-2
inittab

starting MTP Client on Solaris 4-1
installation

Solaris 2-3
Windows 2-1

K
key mapping A-1

location A-1
keyboard

resetting A-5
kixcli command 4-1
KIXCLI.INI 3-1
KIXCLI.INI file 3-4, 3-5, 5-2, 5-3, 6-2, 8-11
KIXCLI.MSG B-1
KIXCLI.MSG file 3-3, 5-3
kixcli.msg file 5-5
KixCli_QueryFD() 8-12, 9-3

format 8-12
Return Codes 8-12

KixCli_QueryFD() function 8-6
KIXCLICONFIG 3-1
kixctl command

format 5-5
KIXCTLG 3-4
KIXCTLG.EXE 5-1
KIXMAXIST environment variable 3-5
kixprnt command 7-2

examples 7-2

Index-4 Sun MTP Release 7.2 MTP Client User’s Guide

kixprnt.exe 7-2
kixprnt.txt file 7-2
kixstart 4-2
kixterm command 6-3
kixterm.exe 6-2
KIXTERM.INI 6-2, A-1

3270 colors A-4
3270 keys A-2
color mapping A-4
field attributes A-4
keyboard resetting A-5
modifier keys A-3
system colors A-4
system keys A-2

L
libcclapi.so 9-1
libraries

CCLAPI.DLL 9-1
libcclapi.so 9-1

linking
CCLWIN32.LIB 9-1
libcclapi.so 9-1

local LU alias
SNA 3-2

logical unit-of-work
definition 8-4

LU 6.2 connection 1-2

M
maximum concurrent requests 3-4
maximum systems 3-4
message directory 3-3
message log file B-1
message notification

formats 8-23
one-shot asynchronous DPL 8-13

messages
3270 Printer B-5
3270 Terminal B-5
format B-1
MTP Client 5-5, B-1

Messages panel
Windows 5-3

Microsoft SNA Server 1-2
modifier keys A-3
MS SNA systems

defined 5-3
MS SNA Systems Panel

Windows 5-3
MTP

ECI interface 8-22
enable to receive connections 4-2
region

name 7-2

MTP (continued)
server

concurrent calls 8-5
logical unit-of-work 8-5

SNA connection 3-6
socket connections 4-2
TCP/IP connection 3-5
unikixtcp server 4-2

MTP Client
administration

Solaris 5-5
Windows 5-1

client capabilities 1-1
configuring 3-1
connecting to a system 5-5
disconnecting a system 5-5
maximum autoinstalled 3-5
messages 5-5, B-1
starting on Solaris 4-1, 5-5
starting on Windows 4-1, 5-1
stopping

Solaris 5-5
Windows 5-1

tracing 5-1, 5-5
multiple threads 8-5

N
named pipes 8-17

application design 8-6
netname

3270 Printer 7-4
NIS tables 3-5
notation conventions 1-4
notification mechanisms 8-5

O
operating systems supported 1-3

P
PATH environment variable 2-3
port name 4-2
port number

/etc/services 3-5
NIS tables 3-5
TCP/IP 4-2
well known 3-5

print file 7-2
printer device type 7-2
printer icon

starting 3270 Printer 7-3
program link 8-2

calls 8-3
unit-of-work 8-4

programming methods
Windows environment 8-5

protocol
types supported 1-2

MTP Client User’s Guide Sun MTP Release 7.2 Index-5

R
remote LU alias

SNA 3-2
remote MTP/CICS regions

maximum autoinstalled 3-5
remote systems

determine connections 8-21
listing 8-11

reply solicitation
call values 8-2
calls 8-3

resetting keyboard A-5
roll back

unit-of-work 8-20

S
sample application

ECIEX2 8-6
select() function call 8-6, 8-12
semaphore notification 8-5

one-shot asynchronous DPL 8-15
shared library

libcclapi.so 9-1
SNA

comment parameter 3-3
connection to MTP 3-6
local LU alias 3-2
ModeName 3-3
MTP region name 3-2
remote LU alias 3-2
required fields 3-2
supported products 1-2
transport protocol 3-2

socket connections 4-2
Solaris

application design 8-6
callback notification 8-17
configuration file 3-1
EPI application development 9-1
installation 2-3
MTP Client administration 5-5
named pipes 8-17
starting MTP Client 4-1

start 3270 Printer
from command line 7-4
from icon 7-3

start 3270 Terminal 6-2
from command line 6-3
from icon 6-3

starting MTP Client
Solaris 4-1, 5-5
Windows 4-1, 5-1

STATE_ASYNC_MESSAGE
ECI_PARMS values 8-22

status information 8-2
calls 8-4

status request 8-2
stop 3270 Printer 7-4

stop 3270 Terminal 6-5
stopping MTP Client

Solaris 5-5
Windows 5-1

synchronous calls 8-2, 8-3, 8-4, 8-5
synchronous mode 8-6
syncpoint a unit-of-work 8-19
system colors A-4
system keys

KIXTERM.INI A-2
system name

MTP region 7-2
system_color mapping A-4

T
TCP server

maximum number of connections 4-2
number of connections to 4-2

TCP systems
defined 5-2

TCP Systems panel
Windows 5-2

TCP/IP
connecting MTP Client to MTP 3-5
connections

maximum concurrent inbound
requests 3-5

maximum number concurrent
outbound requests 3-5

host address 3-2
MTP region name 3-2
port number 3-2, 4-2
protocol 1-2
required fields 3-2
transport protocol parameter 3-2

TCPRTERM environment variable 8-5
TCPSTERM environment variable 3-5
terminal netname

on terminal status bar 6-4
terminology 1-4
trace file

MTP diagnostics 3-3
trace files 3-3
trace mask 3-3
tracing MTP Client 5-1, 5-5
transaction servers 8-5
transport protocol

supported 1-2
typographic conventions 1-3

U
unikixmain

starting MTP 4-2
unikixtcp server 4-2
unit-of-work 8-3

definition 8-1
ECI_PARMS values 8-20
logical 8-4

Index-6 Sun MTP Release 7.2 MTP Client User’s Guide

unit-of-work (continued)
long running 8-19
multiple 8-5, 8-6, 8-19
program link 8-4
roll back 8-20
syncpoint 8-19

V
VSAM Configuration Table (VCT) 8-5

W
window title

3270 Terminal 6-2
Windows

application design 8-5
callback notification 8-16
configuration file 3-1
EPI application development 9-1
event 8-5
installation 2-1
KIXCTLG 3-4
Messages panel 5-3
MS SNA Systems Panel 5-3
Setup Type screen 2-2
starting MTP Client 4-1
TCP Systems panel 5-2

WINSOCK 1-2

	Sun™ MTP Client User’s Guide
	Contents
	Figures
	Tables
	Chapter�1 Overview
	1.1 Capabilities of MTP�Client
	Figure 1.1 MTP�Client Network Connection Alternatives
	Figure 1.2 MTP�Client Application Support

	1.2 Supported transport protocols
	1.2.1 TCP/IP
	1.2.2 SNA

	1.3 Operating requirements
	1.3.1 Qualified operating systems

	1.4 Related documentation
	1.5 Typographic conventions
	Table 1.1 Typographic Conventions �

	1.6 Notation conventions
	Table 1.2 Notation Conventions

	1.7 Terminology

	Chapter�2 Installation
	2.1 Installing MTP�Client on Windows
	Figure 2.1 Select Destination Location
	Figure 2.2 Setup Type Screen
	Figure 2.3 MTP�Client Start Menu

	2.2 Installing MTP�Client on Solaris

	Chapter�3 Configuring MTP�Client and MTP
	3.1 Configuring MTP�Client
	Figure 3.1 KIXCLI.INI MTP�Client Control File
	3.1.1 Adding systems to the KIXCLI.INI file
	3.1.1.1 Required fields for a TCP/IP-connected system
	3.1.1.2 Required fields for an SNA-connected system

	3.1.2 Defining Client behavior in the KIXCLI.INI file

	3.2 Enabling a diagnostic trace
	3.3 Disabling a diagnostic trace
	3.4 Configuring MTP for a TCP/IP connection to MTP�Client
	3.5 Configuring MTP and SNA for an SNA-connected MTP�Client

	Chapter�4 Starting MTP�Client and MTP
	4.1 Starting MTP�Client on Windows
	4.2 Starting MTP�Client on Solaris
	4.3 Enabling MTP to receive connections

	Chapter�5 MTP�Client Administration
	5.1 Administering MTP�Client for Windows
	5.1.1 Control Panel
	Figure 5.1 Control Panel
	5.1.2 TCP Systems Panel
	Figure 5.2 TCP Systems Panel
	5.1.3 MS SNA Systems Panel
	Figure 5.3 MS SNA Systems Panel
	5.1.4 Messages Panel
	Figure 5.4 Messages Panel Example

	5.2 Administering MTP�Client for Solaris

	Chapter�6 3270 Terminal
	6.1 Configuring the 3270 Terminal
	6.1.1 Command line parameters
	6.1.2 Initialization file contents

	6.2 Starting the 3270 Terminal
	6.2.1 Starting the 3270 Terminal from the 3270 Terminal icon
	Figure 6.1 3270 Terminal System Selection Dialog
	6.2.2 Starting the 3270 Terminal from a command line

	6.3 3270 Terminal screen
	Figure 6.2 3270 Terminal Screen
	Table 6.1 3270 Terminal Status Bar Information

	6.4 Stopping the 3270 Terminal

	Chapter�7 3270 Printer
	7.1 Configuring the 3270 Printer
	7.2 Example kixprnt commands
	7.3 Starting the 3270 Printer
	7.3.1 Starting the printer from the 3270 Printer icon
	Figure 7.1 3270 Printer System Selection Dialog
	7.3.2 Starting the 3270 Printer from a command line

	7.4 3270 Printer screen
	Figure 7.2 3270 Printer Icon
	Figure 7.3 3270 Printer Screen

	7.5 Stopping the 3270 Printer

	Chapter�8 External Call Interface (ECI)
	8.1 ECI example code
	8.2 How does the MTP ECI work?
	8.3 CICS_ExternalCall call types
	Table 8.1 eci_call_type for Functions�
	8.3.1 Program link calls
	8.3.2 Reply solicitation calls
	8.3.3 Status information calls

	8.4 Application design
	8.4.1 Managing logical units-of-work
	8.4.2 Designing an application for Windows
	8.4.3 Designing an application for Solaris

	8.5 ECI data structures
	Table 8.2 ECI_STATUS Structure Fields
	Table 8.3 ECI_PARMS Structure Fields�

	8.6 ECI functions
	8.6.1 CICS_ExternalCall()
	8.6.2 CICS_EciListSystems()
	Table 8.4 CICS_EciSystem_t Structure Fields
	8.6.3 KixCli_QueryFD()

	8.7 Common ECI scenarios
	8.7.1 Performing a one-shot DPL
	8.7.1.1 Performing a one-shot asynchronous DPL using message notification

	Table 8.5 ECI_PARMS Values for One-Shot Asynchronous DPL using Message Notification�
	Table 8.6 ECI_PARMS Values for Obtaining a Specific Reply�
	8.7.1.2 Performing a one-shot asynchronous DPL using semaphore notification

	Table 8.7 ECI_PARMS Values for One-Shot Asynchronous DPL using Semaphore Notification�
	8.7.1.3 Performing a one-shot asynchronous DPL using callback notification

	Table 8.8 ECI_PARMS Values for One-Shot Asynchronous DPL using Callback Notification�
	8.7.1.4 Performing a one-shot synchronous DPL

	Table 8.9 ECI_PARMS Values for One-Shot Synchronous DPL�
	8.7.2 Starting a multiple part unit-of-work
	8.7.3 Continuing a long running unit-of-work
	8.7.4 Explicitly syncpointing a unit-of-work
	Table 8.10 ECI_PARMS Values for Syncpointing a Unit-of-Work�
	8.7.5 Rolling back a unit-of-work
	Table 8.11 ECI_PARMS Values for Rolling Back a Unit-of-Work�
	8.7.6 Interrogating connections to a remote system
	Table 8.12 ECI_PARMS Values for ECI_STATE_ASYNC Call�
	Table 8.13 ECI_PARMS Values for STATE_ASYNC_MESSAGE Reply Solicitation�
	8.7.7 Using callbacks

	8.8 MTP ECI interface enhancements
	8.8.1 Reply message formats

	Chapter�9 External Presentation Interface (EPI)
	9.1 EPI examples
	9.2 Developing an EPI application
	9.2.1 Initializing and terminating EPI
	9.2.2 Adding and deleting EPI terminals
	9.2.3 Starting transactions
	9.2.4 Processing events
	9.2.4.1 Event notification on Windows
	9.2.4.2 Event notification on Solaris

	9.2.5 Sending and receiving data

	9.3 EPI constants and data structures
	9.3.1 Constants
	9.3.2 Standard data types
	9.3.3 Data structures
	9.3.3.1 CICS_EpiSystem_t
	9.3.3.2 CICS_EpiDetails_t
	9.3.3.3 CICS_EpiEventData_t
	9.3.3.4 CICS_EpiSysError_t
	9.3.3.5 CICS_EpiNotify_t
	9.3.3.6 CICS_EpiEvent_t
	9.3.3.7 CICS_EpiEnd_t
	9.3.3.8 CICS_EpiATIState_t
	9.3.3.9 CICS_EpiSenseCode_t
	9.3.3.10 CICS_EpiWait_t

	9.4 EPI events
	9.4.1 CICS_EPI_EVENT_SEND
	9.4.2 CICS_EPI_EVENT_CONVERSE
	9.4.3 CICS_EPI_EVENT_END_TRAN
	9.4.4 CICS_EPI_EVENT_START_ATI
	9.4.5 CICS_EPI_EVENT_END_TERM

	9.5 EPI functions
	9.5.1 CICS_EpiInitialize()
	9.5.2 CICS_EpiTerminate()
	9.5.3 CICS_EpiListSystems()
	9.5.4 CICS_EpiAddTerminal()
	9.5.5 CICS_EpiDelTerminal()
	9.5.6 CICS_EpiStartTran()
	9.5.7 CICS_EpiReply()
	9.5.8 CICS_EpiATIState()
	9.5.9 CICS_EpiSenseCode()
	9.5.10 CICS_EpiGetEvent()
	9.5.11 CICS_EpiGetSysError()
	9.5.12 CICS_EpiInquireSystem()

	Appendix�A KIXTERM.INI
	A.1 Identifying file comments
	A.2 Key mappings
	Table A.1 KIXTERM.INI 3270 Keys�
	Table A.2 KIXTERM.INI System Keys�
	Table A.3 KIXTERM.INI Modifier Keys

	A.3 Defining the normal and light colors for a terminal
	A.4 Mapping colors
	Table A.4 KIXTERM.INI

	A.5 Resetting a keyboard

	Appendix�B Messages
	B.1 Examining messages
	B.2 Message format
	B.3 MTP�Client Messages
	B.4 Emulator Messages

	Glossary
	Index
	Return to Main Menu

