
SunATM-155SBusCardsManual
Part No.: 801-6572-11
Revision A, May 1995

A Sun Microsystems, Inc. Business

2550 Garcia Avenue

Mountain View, CA 94043 U.S.A.

415 960-1300 FAX 415 969-9131

Please

Recycle

 1995 Sun Microsystems, Inc.

2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product and related documentation are protected by copyright and distributed under licenses

restricting its use, copying, distribution, and decompilation. No part of this product or related documentation may be

reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® and Berkeley 4.3 BSD systems, licensed from UNIX System

Laboratories, Inc., a wholly owned subsidiary of Novell, Inc., and the University of California, respectively. Third-party font

software in this product is protected by copyright and licensed from Sun’s font suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions

set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS

Sun, the Sun logo, Sun Microsystems, Sun-4, SunATM, SunDiag, SunView, OpenBoot, AnswerBook, and Solaris are

trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and certain other countries. UNIX is a registered

trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd. OPEN LOOK is a

registered trademark of Novell, Inc. PostScript and Display PostScript are trademarks of Adobe Systems, Inc. All other

product names mentioned herein are the trademarks of their respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC International,

Inc. SPARCstation, SPARCserver, SPARCengine, SPARCstorage, SPARCware, SPARCcenter, SPARCclassic, SPARCcluster,

SPARCdesign, SPARC811, SPARCprinter, UltraSPARC, microSPARC, SPARCworks, and SPARCompiler are licensed

exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun

Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.

Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user

interfaces for the computer industry. Sun holds a nonexclusive license from Xerox to the Xerox Graphical User Interface,

which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license

agreements.

X Window System is a product of the Massachusetts Institute of Technology.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE

PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW

EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN

THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Your SBus card is marked to indicate its FCC, DOC, and VCCI class. Please read the appropriate section that corresponds to the

marking on your SBus card before attempting to install it into your system.

FCC Class A Notice — United States
This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

1.This device may not cause harmful interference.

2.This device must accept any interference received, including interference that may cause undesired operation.

Note – This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of

the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is

operated in a commercial environment. This equipment generates, uses and can radiate radio frequency energy and, if not

installed and used in accordance with the instruction manual, may cause harmful interference to radio communications.

Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required

to correct the interference at his own expense.

Modifications

Modifications to this device, not approved by Sun Microsystems, Inc., may void the authority granted to the user by the FCC to

operate this equipment.

FCC Class B Notice — United States
This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

1.This device may not cause harmful interference.

2.This device must accept any interference received, including interference that may cause undesired operation.

Note – This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of

the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential

installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance

with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference

will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception,

which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one

or more of the following measures:

• Reorient or relocate the receiving antenna.

• Increase the separation between the equipment and receiver.

• Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.

• Consult the dealer or an experienced radio/television technician for help.

Modifications

Modifications to this device, not approved by Sun Microsystems, Inc., may void the authority granted to the user by the FCC to

operate this equipment.

DOC Class A Notice — Canada
This digital apparatus does not exceed the Class A limits for radio noise emission for a digital apparatus as set out in the Radio

Interference Regulations of the Canadian Department of Communications.

Avis Concernant les Systèmes Appartenant à la Classe A du DOC — Canada

Le présent appareil numérique n’émet pas de bruits radioélectriques dépassant les limites applicables aux appareils numériques

de la classe A prescrites dans le Règlement sur le brouillage radioélectrique édicté par le ministère des Communications du

Canada.

DOC Class B Notice — Canada
This digital apparatus does not exceed the Class B limits for radio noise emission for a digital apparatus as set out in the Radio

Interference Regulations of the Canadian Department of Communications.

Avis Concernant les Systèmes Appartenant à la Classe B du DOC — Canada

Le présent appareil numérique n’émet pas de bruits radioélectriques dépassant les limites applicables aux appareils numériques

de la classe B prescrites dans le Règlement sur le brouillage radioélectrique édicté par le ministère des Communications du

Canada.

Nippon—Japan

Contents
1. Introducing the SunATM-155 SBus Cards 1-1

1.1 Hardware Requirements . 1-5

1.2 Software Requirements . 1-5

2. Installing SunATM-155 Hardware . 2-1

2.1 Attaching the Wrist Strap . 2-1

2.2 SBus Card Installation . 2-2

2.2.1 SunATM-155/MFiber . 2-4

2.2.2 SunATM-155/UTP5 . 2-6

2.3 Testing the SunATM-155 Card Before Booting the System 2-8

3. Installing SunATM-155 Software and Configuring the ATM
Interface . 3-1

3.1 Installing and Removing Software 3-2

3.1.1 Command Line Utilities . 3-2

3.1.2 Graphical User Interface . 3-6

3.2 SBus ATM Interface Configuration 3-15

3.2.1 Changes to System Configuration 3-16
vii

3.3 Rebooting the System and Examining Network Interfaces3-35

A. Wiring Scheme and Pin Descriptions. A-1

B. SunATM-155 SBus Cards Specifications. B-1

B.1 Performance Specifications . B-1

B.2 Power Specifications . B-2

B.3 Physical Dimensions . B-2

B.4 Environmental Specifications . B-3

C. Running Diagnostic Tests . C-1

C.1 Selftest . C-1

C.1.1 Setting the Diag-switch . C-4

C.1.2 Running Selftest . C-4

C.2 SunDiag . C-5

C.2.1 SunDiag Window . C-5

C.2.2 Starting the Test . C-6

D. Application Programmers’ Interface . D-1

D.1 Q.93B API . D-2

D.1.1 Q.93B Driver . D-4

D.1.2 Q.93B User Space API. D-7

D.1.3 Q.93B Kernel Space API . D-25

D.2 Driver API . D-38

E. Advanced Configurations . E-1

E.1 Flags That Specify Additional Entry Types. E-1

E.2 Flags That Change the Behavior of the Interface E-3
viii SunATM-155 SBus Cards Manual—May 1995

Figures
Figure 1-1 SunATM-155/MFiber SBus Card and Back Panel 1-3

Figure 1-2 SunATM-155/UTP SBus Card and Back Panel. 1-4

Figure 2-1 Wrapping the Wrist Strap Around Your Wrist. 2-2

Figure 2-2 Handling the SunATM-155 Card . 2-2

Figure 2-3 SunATM-155/MFiber Card with Back Panel 2-4

Figure 2-4 SunATM-155/UTP5 Card with Back Panel 2-6

Figure 3-1 ATM Address Fields . 3-33

Figure A-1 Designation T568B. A-1

Figure C-1 SunDiag Window . C-6

Figure D-1 ATM Signaling . D-2

Figure D-2 Message Format . D-3
ix

x SunATM-155 SBus Cards Manual—May 1995

Tables
Table 1-1 Platform Architecture with Examples of Systems 1-2

Table 3-1 Acronyms and Abbreviations . 3-15

Table 3-2 /etc/aarconfig File Flags. 3-22

Table 3-3 Predefined SunATM Variables . 3-24

Table A-1 Pin Descriptions for the 96-Pin SBus Connector A-2

Table B-1 Performance Specifications . B-1

Table B-2 Power Specifications . B-2

Table B-3 Physical Dimensions . B-2

Table B-4 Environmental Specifications . B-3

Table D-1 Message Meanings . D-3

Table D-2 Messages Between the User and the Q.93B Driver. D-4

Table E-1 /etc/aarconfig Advanced Configuration Flags. E-3
xi

xii SunATM-155 SBus Cards Manual—May 1995

Preface
This manual provides information about the SunATM™-155 SBus cards. The

manual is organized into three chapters and five appendixes.

When You Need Help with UNIX Commands
This manual may not include specific software commands or procedures.

Instead, it names software tasks and refers you to operating system

documentation or the handbook that was shipped with your new hardware.

The type of information that you might need to use references for includes:

• Shutting down the system

• Booting the system

• Configuring devices

• Other basic software procedures

Refer to one or more of the following:

• Solaris 2.x Handbook for SMCC Peripherals contains Solaris 2.x software

commands.

• On-line AnswerBook® for the complete set of documentation supporting the

Solaris 2.x software environment.

• Other software documentation that you received with your system.
xiii

What Typographic Changes Mean
The following table describes the typographic changes used in this book.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt

for the C shell, Bourne shell, and Korn shell.

Table P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands,

files, and directories;

on-screen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% You have mail.

AaBbCc123 What you type, contrasted

with on-screen computer

output

machine_name% su
Password:

AaBbCc123 Command-line placeholder:

replace with a real name or

value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or

terms, or words to be

emphasized

Read Chapter 6 in User’s Guide.

These are called class options.

You must be root to do this.

Table P-2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell

prompt

$

Bourne shell and Korn shell

superuser prompt

#

xiv SunATM-155 SBus Cards Manual—May 1995

Notes, Cautions, and Warnings

Warning – This equipment contains lethal voltage. Accidental contact can

result in serious injury or death.

Caution – Improper handling by unqualified personnel can cause serious

damage to this equipment. Unqualified personnel who tamper with this

equipment may be held liable for any resultant damage to the equipment.

Individuals who remove any outer panels to access this equipment must

observe all safety precautions and ensure compliance with skill level

requirements, certification, and all applicable local and national laws.

Procedures contained in this document must be performed by qualified

service-trained maintenance providers.

Note – Before you begin, carefully read each of the procedures in this manual.

If you have not performed similar operations on comparable equipment, do
not attempt to perform these procedures.

!

Preface xv

xvi SunATM-155 SBus Cards Manual—May 1995

Introducing theSunATM-155
SBusCards 1
The SunATM-155/MFiber Adapter and SunATM-155/UTP Adapter are two

single-wide SBus cards that conform to the specifications of the Asynchronous

Transfer Mode (ATM) Forum. The cards offer 155 Mbps network bandwidth

over either multimode fiber optic cable or category 5 unshielded twisted pair

(UTP) copper wire.

SunATM-155 SBus cards (SunATM-155 cards) are designed for operation in

systems that run under the Solaris environment, revision 2.4 or later, or other

compatible operating systems. To utilize the SunATM-155 cards, the system

also needs to contain OpenBoot™ PROM (OBP) level 2.0 or later. An on-board

FCode PROM provides configuration support that identifies the SunATM-155

cards to the system and contains selftest routines.

SunATM-155 SBus cards highlights are:

• Conform to IEEE 1496, offering 32 bit SBus and 32 byte burst support

• Support 155 Mbps operation over:

• 62.5/125 µ Multimode fiber or

• UTP Category 5 wire

• Integrate SBus/SAR (Segmentation And Reassembly) ASIC SAHI2 (SBus to

ATM Host Interface, version 2) implemented in standard CMOS

• SAR function aligned with ATM Forum specified and International

Consultative Committee for Telegraph and Telephone (CCITT) approved

AAL 5 (ATM Adaptation Layer)
1-1

1

• Support SONET/SDH (Synchronous Optical NETwork/Synchronous Digital

Hierarchy) physical layer framing structure

• Up to 135 simultaneous transmit channels and up to 1024 simultaneous

open receive channels

• Compatible with relevant emerging standards (including existing ATM

Forum baseline specifications and CCITT)

Note – Level 2.x boot PROMs (or later) are required for systems using the

SunATM-155 cards. If lower-level boot PROMs are installed on your system,

you must upgrade the boot PROMs before using SunATM-155 cards.

To find the OBP revision level on your system, type .version at the <#0> ok

prompt.

Table 1-1 shows the SBus based Sun-4m and Sun-4c architecture systems that

support SunATM-155 SBus cards when running under the Solaris environment,

revision 2.4 or later, or other compatible operating systems.

Figure 1-1 shows the SunATM-155/MFiber Adapter SBus card and Figure 1-2

shows the SunATM-155/UTP Adapter SBus card.

Table 1-1 Platform Architecture with Examples of Systems

Platform Architecture System Type

Sun-4m SPARCstation™ 4

SPARCstation 5

SPARCstation 10

SPARCstation 20

SPARCstation 600 Series

Sun-4d SPARCserver™ 1000

SPARCcenter™ 2000

Sun-4c SPARCstation 2

SPARCstation IPX
1-2 SunATM-155 SBus Cards Manual—May 1995

1

Figure 1-1 SunATM-155/MFiber SBus Card and Back Panel

SC fiber receptacle

SUN
ATM-155

Fiber
TX RX
Introducing the SunATM-155 SBus Cards 1-3

1

Figure 1-2 SunATM-155/UTP SBus Card and Back Panel

RJ45

SUN
ATM-155

UTP
1-4 SunATM-155 SBus Cards Manual—May 1995

1

1.1 Hardware Requirements
You need an ATM switch to build an ATM network. To connect the SunATM-

155 cards to the ATM switch, you need the following cables:

• SunATM-155/MFiber Adapter - Multimode fiber cable with SC connector

• SunATM-155/UTP Adapter - Category 5 UTP with RJ45 connector

Only one SunATM-155 card is supported per SBus. For example, on desktop

machines that have only one SBus per system (even though there may be

multiple SBus slots), only one SunATM-155 card is supported per system.

Refer to the manual supplied with the ATM switch for specific instructions

about cable connections.

1.2 Software Requirements

Note – Install SunATM-155 hardware first. Then install the software and

configure the ATM interface.

SunATM-155 SBus cards are supported on systems running under the Solaris

environment, revision 2.4 or later, or other compatible operating systems.

The SunATM CD-ROM that shipped with the SBus card contains required
driver software that must be installed in order to connect a SunATM-155 SBus

card to a network.
Introducing the SunATM-155 SBus Cards 1-5

1

1-6 SunATM-155 SBus Cards Manual—May 1995

InstallingSunATM-155Hardware 2
Install the SunATM-155 hardware first, before you install the software.

Note – SunATM-155 cards are supported on systems running the Solaris

software environment, revision 2.4 or later, or other compatible operating

systems.

Only one SunATM-155 card is supported per SBus. For example, on desktop

machines that have only one SBus per system (even though there may be

multiple SBus slots), only one SunATM-155 card is supported per system.

2.1 Attaching the Wrist Strap
The wrist strap provides grounding for static electricity between your body

and the system unit chassis. When used properly, the wrist strap keeps static

electricity from building up on your hands.

Caution – If you do not wear a wrist strap, the system components can be

damaged by harmful electrical discharge.

1. Wrap the wrist strap around your wrist twice with the conductive
adhesive tape against your skin.

!

2-1

2

Figure 2-1 Wrapping the Wrist Strap Around Your Wrist

2. Peel the liner from the copper foil at the opposite end of the wrist strap.

3. Attach the copper end of the wrist strap to the metal casing of the power
supply in the system unit.

2.2 SBus Card Installation
1. Remove the SunATM-155 card from the antistatic bag, spread the bag on a

firm surface to provide a protective mat, and place the SunATM-155 card
on the bag.

Figure 2-2 Handling the SunATM-155 Card

Note – The SunATM-155/MFiber card is shipped with a rubber plug that keeps

the connector free of dust. To install the card, the plug must be removed.

2. Install the SunATM-155 card according to the SBus installation
procedures in the hardware installation or service manual for your
system.

Note – Do not boot the system until SunATM-155 installation is verified. See

“Testing the SunATM-155 Card Before Booting the System” on page 2-8.
2-2 SunATM-155 SBus Cards Manual—May 1995

2

Caution – Do not change the SBus slot in which a SunATM-155 card is

installed once the system has been booted. The Solaris 2.x software

environment remembers the location of each SBus card that has been installed.

Switching SBus slots will cause the operating system to assume that you

removed your original SunATM-155 card and added a second card to the

system. Refer to the online man page about path_to_inst for more

information.

3. Verify SunATM-155 installation by executing a test command.
See “Testing the SunATM-155 Card Before Booting the System” on page 2-8.

Sections 2.2.1 and 2.2.2 provide an introduction to the physical connectors and

wiring characteristics of the SunATM-155/MFiber and SunATM-155/UTP

adapters, respectively.

!

Installing SunATM-155 Hardware 2-3

2

2.2.1 SunATM-155/MFiber

Figure 2-3 SunATM-155/MFiber Card with Back Panel

2.2.1.1 Extender Plate

A sheet metal extender plate is attached to the SunATM-155 SBus card. You

must use the extender plate to install this SBus card correctly in some systems.

Refer to the hardware installation or service manual that shipped with your

system for information about installing SBus cards.

Note – The SunATM-155/MFiber card is shipped with a rubber plug that keeps

the connector free of dust. To install the card, the plug must be removed.

2.2.1.2 Wiring Configuration

The SunATM-155/MFiber SBus card is shipped with the SC connector already

keyed. As you hold the SBus card with the connector pointed toward you,

“transmit” is on the left and “receive” is on the right.

SC fiber receptacle
2-4 SunATM-155 SBus Cards Manual—May 1995

2

2.2.1.3 Connecting the SBus Card to the Network

♦ Connect one end of the multimode fiber cable into the fiber receptacle on
the SBus card and connect the other end to the ATM switch.

Refer to the installation or users manual supplied with the hardware interface

for additional information.
Installing SunATM-155 Hardware 2-5

2

2.2.2 SunATM-155/UTP5

Figure 2-4 SunATM-155/UTP5 Card with Back Panel

2.2.2.1 Extender Plate

A sheet metal extender plate is attached to the SunATM-155 SBus card. You

must use the extender plate to install this SBus card correctly in some systems.

Refer to the hardware installation or service manual that shipped with your

system for information about installing SBus cards.

2.2.2.2 Wiring Configuration

The SunATM-155/UTP SBus card is shipped with the RJ45 connector already

keyed for “transmit” (Pair 2, pins 1 and 2) and “receive” (Pair 4, pins 7 and 8)

in accordance with the EIA/TIA (T568B) wiring scheme.

RJ45
2-6 SunATM-155 SBus Cards Manual—May 1995

2

2.2.2.3 Connecting the SBus Card to the Network

♦ Plug one end of the Category 5 UTP network cable into the RJ45
receptacle on the SBus card and connect the other end to the ATM switch.

Refer to the installation or users manual supplied with the hardware interface

for additional information.
Installing SunATM-155 Hardware 2-7

2

2.3 Testing the SunATM-155 Card Before Booting the System
After you install the SunATM-155 card, before booting the system, verify

installation by executing the show-devs and test commands.

1. Use show-devs to find out SBus card information.
The show-devs [device path] command displays all devices known to

the system directly beneath a given level in the device hierarchy. The

show-devs command used by itself shows the entire device tree. Examples

below show information for a SPARCstation 10 system.

Note – The /sa@3,0 entry in the lines of text circled indicates the system

recognizes the SunATM-155 card plugged into SBus slot 3.

<#0> ok show-devs /iommu/sbus
/iommu@f,e0000000/sbus@f,e0001000/sa@3,0
/iommu@f,e0000000/sbus@f,e0001000/SUNW,DBRIe@f,8010000
/iommu@f,e0000000/sbus@f,e0001000/SUNW,bpp@f,4800000
/iommu@f,e0000000/sbus@f,e0001000/ledma@f,400010
/iommu@f,e0000000/sbus@f,e0001000/espdma@f,400000
/iommu@f,e0000000/sbus@f,e0001000/SUNW,DBRIe@f,8010000/mmcodec
/iommu@f,e0000000/sbus@f,e0001000/ledma@f,400010/le@f,c00000
/iommu@f,e0000000/sbus@f,e0001000/espdma@f,400000/esp@f,800000
/iommu@f,e0000000/sbus@f,e0001000/espdma@f,400000/esp@f,800000/st
/iommu@f,e0000000/sbus@f,e0001000/espdma@f,400000/esp@f,800000/sd
<#0> ok
2-8 SunATM-155 SBus Cards Manual—May 1995

2

<#0> ok show-devs
/TI,TMS390Z50@f,f8fffffc
/eccmemctl@f,0
/virtual-memory@0,0
/memory@0,0
/obio
/iommu@f,e0000000
/openprom
/aliases
/options
/packages
/obio/power@0,a01000
/obio/auxio@0,800000
/obio/SUNW,fdtwo@0,700000
/obio/interrupt@0,400000
/obio/counter@0,300000
/obio/eeprom@0,200000
/obio/zs@0,0
/obio/zs@0,100000
/iommu@f,e0000000/sbus@f,e0001000
/iommu@f,e0000000/sbus@f,e0001000/sa@3,0
/iommu@f,e0000000/sbus@f,e0001000/SUNW,DBRIe@f,8010000
/iommu@f,e0000000/sbus@f,e0001000/SUNW,bpp@f,4800000
/iommu@f,e0000000/sbus@f,e0001000/ledma@f,400010
/iommu@f,e0000000/sbus@f,e0001000/espdma@f,400000
/iommu@f,e0000000/sbus@f,e0001000/SUNW,DBRIe@f,8010000/mmcodec
/iommu@f,e0000000/sbus@f,e0001000/ledma@f,400010/le@f,c00000
/iommu@f,e0000000/sbus@f,e0001000/espdma@f,400000/esp@f,800000
/iommu@f,e0000000/sbus@f,e0001000/espdma@f,400000/esp@f,800000/st
/iommu@f,e0000000/sbus@f,e0001000/espdma@f,400000/esp@f,800000/sd
/packages/obp-tftp
/packages/deblocker
/packages/disk-label
<#0> ok
Installing SunATM-155 Hardware 2-9

2

2. Set the diag-switch to “true” to test the ATM SBus hardware and the
connection to the hub:

3. Use a test command to test the specified “sa” device, then check the
output messages for any errors.
The example refers to a card installed in slot 3 of a SPARCstation 10 system.

Note – If the test command fails, verify that the SBus card hardware is

installed correctly. If necessary, replace the SBus card and/or contact your

service provider.

4. Set the diag-switch to “false” to turn off diag:

5. Boot the system.

ok setenv diag-switch? true

ok test /iommu@f,e0000000/sbus@f,e0001000/sa@3,0

ok setenv diag-switch? false
2-10 SunATM-155 SBus Cards Manual—May 1995

InstallingSunATM-155Software
andConfiguring theATMInterface 3
Install the SunATM-155 hardware first; then install the software and configure

the ATM interface.

Before beginning the software installation, you need the IP hostname(s) and the

IP addresses for your ATM interface(s). You will be prompted to enter these

during software installation.

ATM does not currently support broadcast, therefore, ypbind with the

-broadcast option cannot be used to automatically locate the ypserver on the

ATM subnet.

If you are planning to run nis over ATM, you must specify the list of

ypservers via the ypinit -c . See ypinit for details of setting up the

ypserver. It is important to note that the IP addresses of the ypservers must be

available in the /etc/hosts file.

Since ATM does not currently support multicast, hosts cannot use in.rdisc
to locate routers on the ATM subnet. in.rdisc uses IP multicasting to

automatically locate routers and pick the best router among many. Hosts

cannot use RIP (in.routed) since RIP uses broadcast. Routes to the routers in

the ATM subnet have to be exclusively added. You may also specify one router

as a default router to provide connectivity outside of the ATM subnet. See

details of the route command to add specific router entries and to add a

default router.
3-1

3

3.1 Installing and Removing Software

Note – SunATM-155 cards are supported on systems running the Solaris

software environment, revision 2.4 or later (or other compatible operating

systems).

Under the Solaris 2.4 environment, all unbundled software is delivered as

“packages,” and can be installed by using either:

• Command line utilities, or

• Graphical user interface program (swmtool(1))

You must use one of these methods to install the required driver software

using the SunATM CD-ROM that came with the SBus card.

Note – The SunATM Device Drivers (SUNWatm) and SunATM Runtime

Support Software (SUNWatmu) packages are required for SunATM-155 cards.

3.1.1 Command Line Utilities

The primary commands used to add, remove, or check any packages are:

pkgadd (1M) to add packages

pkgrm (1M) to remove packages

pkgchk (1M) and

pkginfo (1M) to check installation

3.1.1.1 Adding Software Packages Using pkgadd

1. Become superuser:

% su
Password:
#

3-2 SunATM-155 SBus Cards Manual—May 1995

3

2. Before adding a package, insert the CD-ROM in its caddy and mount the
CD-ROM:

The volume manager should mount the CD on the directory:

/cdrom/sunatm_1_0
The last directory in this path is determined by information on the CD.

3. To add software packages named SUNWatm, SUNWatmu, and
SUNWatma, after becoming superuser, enter:

Multiple packages can be added by separating package names with a space.

Note – The SunATM Device Drivers (SUNWatm) and SunATM Runtime

Support Software (SUNWatmu) packages are required for SunATM-155 SBus

cards. SunATM Interim API Support Software (SUNWatma) is only needed if

you want to use the Application Programmers’ Interface (API).

4. Respond to the questions about your system configuration, as prompted,
during package installation:

• Is the hardware installed [y,n,?,q]

Answer “y” for yes. Install the SunATM-155 SBus card before beginning

the software installation.

• How many SBus ATM (sa) interfaces do you wish to install [0-14,?,q]

Enter the number of SBus cards being installed.

• What host name do you wish to use for sa0:

Enter the IP host name you wish to use for the ATM interface.

mkdir /cdrom

/usr/sbin/pkgadd -d /cdrom/sunatm_1_0\
 SUNWatm SUNWatmu SUNWatma
Installing SunATM-155 Software and Configuring the ATM Interface 3-3

3

• What ip address do you wish to use for (host name):

Enter the IP address to be assigned to the ATM interface.

• Do you want to continue with installation of this package [y,n,?]

Enter “y” for yes to proceed with the installation.

The specified packages will be installed as follows:

• SunATM Device Drivers (SUNWatm) will go into /kernel/drv
• SunATM Runtime Support Software (SUNWatmu) will go into

/opt/SUNWatm/bin
• SunATM Interim API (SUNWatma) will go into /usr/include/atm and

/usr/lib

Note – Man pages contained in the SUNWatmu package will go into

/opt/SUNWatm/man (Add this path to the MANPATH environment variable.)

Interim API examples will go into /opt/SUNWatm/examples .

Is the hardware installed [y,n,?,q] y

How many SBus ATM (sa) interfaces do you wish to install [0-14,?,q] 1

What host name do you wish to use for sa0: chances

What ip address do you wish to use for chances [129.146.101.94]
Processing package information.
Processing system information.
5 package pathnames are already properly installed.
Verifying package dependencies.
Verifying disk space requirements.
Checking for conflicts with packages already installed.
Checking for setuid/setgid programs.

This package contains scripts that will be executed with super-user
permission during the process of installing this package.

Do you want to continue with the installation of this package [y,n,?] y
3-4 SunATM-155 SBus Cards Manual—May 1995

3

When the device on which the package resides is not specified, pkgadd checks

the default spool directory (/var/spool/pkg). If the package is not there,

installation fails. The -d option allows you to specify a different spool

directory, and the name specified after -d must be a full pathname to a device

or directory (as shown in the examples).

When pkgadd encounters a problem, information about the problem is

displayed with the following prompt:

You should respond with either yes , no , or quit . If more than one package

has been specified, no stops the installation of the package being installed but

informs pkgadd to continue with installation of the other packages. quit tells

pkgadd to stop installation of all packages.

3.1.1.2 Checking Installation of a Package Using pkgchk

Once the package is installed, you can use the pkgchk command to check the

installation completeness:

Multiple packages can be specified at the command line by separating the

package names with a space. If no package identifier is specified, the entire

contents of the machine are checked.

3.1.1.3 Checking ATM Software Installation Using pkginfo

Check the ATM software installation by using the pkginfo command:

Do you want to continue with this installation?

/usr/sbin/pkgchk SUNWatm

/usr/bin/pkginfo | grep SUNWatm
Installing SunATM-155 Software and Configuring the ATM Interface 3-5

3

3.1.1.4 Removing Software Packages Using pkgrm

You can remove one or more packages with the following command:

In this example, pkgrm removes the packages identified as SUNWatm

(SunATM Device Drivers), SUNWatma (SunATM Interim API Support

Software), and SUNWatmu (SunATM Runtime Support Software).

3.1.2 Graphical User Interface

Software Manager, a Solaris 2.4 OPEN LOOK application, installs and removes

software packages. For additional information about using Software Manager,

refer to relevant installation documentation for the Solaris release you are

using.

3.1.2.1 Adding Packages By Using Software Manager

1. Become superuser, insert the CD-ROM in its caddy, and mount the
CD-ROM:

The volume manager should mount the CD on the directory:

/cdrom/sunatm_1_0
The last directory in this path is determined by information on the CD.

2. Run the Software Manager application on your system.

/usr/sbin/pkgrm SUNWatm SUNWatma SUNWatmu

% su
Password:
mkdir /cdrom

% su
Password:
#/usr/sbin/swmtool &
3-6 SunATM-155 SBus Cards Manual—May 1995

3

3. Select “Install” on the Software Manager window that is displayed.

4. Click on “Props...”. In the “Properties” window that pops up:

a. Select Category: Source Media

b. Select Media Type: Mounted Directory

c. Enter for Directory Name: /cdrom/sunatm_1_0

d. Press the Apply button.
After you press the Apply button, the SunATM-155 package icons

should appear in the Software Manager window.

5. Select the software packages to be installed by clicking on the icons.
The package being installed in the example that follows is SunATM Device
Drivers.

Note – The SunATM Device Drivers (SUNWatm) and SunATM Runtime

Support Software (SUNWatmu) packages are required for SunATM-155 SBus

cards. SunATM Interim API Support Software (SUNWatma) is only needed if

you want to use the Application Programmers’ Interface (API).

File

Software Manager

Help... Begin Installation Category: All Software

View Edit Props... Install RemoveMode:
Installing SunATM-155 Software and Configuring the ATM Interface 3-7

3

Note – Select only the software packages to be installed at this time, and make

sure all other packages are deselected. To deselect a package, click once on its

icon. To deselect all the packages, choose “Deselect All” from the Edit menu.

6. Press the ”Begin Installation” button.
The Software Manager: Command Input/Output window is displayed.
3-8 SunATM-155 SBus Cards Manual—May 1995

3

7. Respond to the questions about your system configuration, as prompted
by Software Manager, during package installation:

• Is the hardware installed [y,n,?,q]

Answer “y” for yes. Install the SunATM-155 SBus card before beginning

the software installation.

Software Manager: Command Input/Output

Installing <SUNWatm> package instance on host <chances>
Processing package instance <SUNWatm> from </home/d2/catwoman/atm2.4pkgs>

SunATM Device Drivers
(sparc) 1.0,REV=C
Copyright 1995 Sun Microsystems, Inc. All Rights Reserved.
Printed in the United States of America.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

This product and related documentation are protected by copyright and
distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or related documentation may be
reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any.

Portions of this product may be derived from the UNIX(R) and Berkeley 4.3 BSD
systems, licensed from UNIX Systems Laboratories, Inc. and the University of
California, respectively. Third party software, including font technology, in
this product is protected by copyright and licensed from Sun’s suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government
is subject to restrictions as set forth in subparagraph (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 252.227-7013
and FAR 52.227-19.

Sun, Sun Microsystems, the Sun Logo, Solaris, SunOS, SunSoft, the SunSoft
Logo, ONC, NFS, OpenWindows, DeskSet, AnswerBook, SunLink, SunView, SunDiag,
NeWS, OpenBoot, OpenFonts, SunInstall, SunNet, ToolTalk, X11/NeWS and XView
are trademarks or registered trademarks of Sun Microsystems, Inc.
Installing SunATM-155 Software and Configuring the ATM Interface 3-9

3

• How many SBus ATM (sa) interfaces do you wish to install [0-14,?,q]

Enter the number of SBus cards being installed.

• What host name do you wish to use for sa0:

Enter the IP host name you wish to use for the ATM interface.

• What ip address do you wish to use for (host name):

Enter the IP address to be assigned to the ATM interface.

• Do you want to continue with installation of this package [y,n,?]

Enter “y” for yes to proceed with the installation.

Software Manager: Command Input/Output

The OPEN LOOK(R) and SUN(TM) Graphical User Interfaces were developed by
Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of
visual or graphical user interfaces for the computer industry. Sun holds
a nonexclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun’s licensees who implement OPEN LOOK GUIs and
otherwise comply with Sun’s written license agreements.

The X Window System is a product of the Massachusetts Institute of Technology.

This product incorporates technology used under license from Fulcrum
Technologies, Inc.
Using </> as the package base directory.

Is the hardware installed [y,n,?,q] y
3-10 SunATM-155 SBus Cards Manual—May 1995

3

The selected packages will be installed as follows:

• SunATM Device Drivers (SUNWatm) will go into /kernel/drv
• SunATM Runtime Support Software (SUNWatmu) will go into

/opt/SUNWatm/bin
• SunATM Interim API (SUNWatma) will go into /usr/include/atm and

/usr/lib

Software Manager: Command Input/Output

The X Window System is a product of the Massachusetts Institute of Technology.

This product incorporates technology used under license from Fulcrum
Technologies, Inc.
Using </> as the package base directory.

Is the hardware installed [y,n,?,q] y

How many SBus ATM (sa) interfaces do you wish to install [0-14,?,q] 1

What host name do you wish to use for sa0: chances

What ip address do you wish to use for chances [129.146.101.94]
Processing package information.
Processing system information.
5 package pathnames are already properly installed.
Verifying package dependencies.
Verifying disk space requirements.
Checking for conflicts with packages already installed.
Checking for setuid/setgid programs.

This package contains scripts that will be executed with super-user permission
during the process of installing this package.

Do you want to continue with the installation of this package [y,n,?] y
Installing SunATM-155 Software and Configuring the ATM Interface 3-11

3

Note – Man pages contained in the SUNWatmu package will go into

/opt/SUNWatm/man (Add this path to the MANPATH environment variable.)

Interim API examples will go into /opt/SUNWatm/examples .

Software Manager: Command Input/Output

Installing SunATM Device Drivers as <SUNWatm>

Installing part 1 of 1.
/etc/aarconfig
/etc/rc2.d/S79atm
/kernel/drv/aar
/kernel/drv/aar.conf
/kernel/drv/atmip
/kernel/drv/q93b
/kernel/drv/q93b.conf
/kernel/drv/qcc
/kernel/drv/qcc.conf
/kernel/drv/sa
/kernel/drv/sscop
[verifying class <base>]
Executing postinstall script.
postinstall configuration (sa):

Create /etc/hostatm.sa0

Please edit /etc/aarconfig to add IP-ATM address configuration.

Installation of <SUNWatm> was successful.
3-12 SunATM-155 SBus Cards Manual—May 1995

3

3.1.2.2 Removing Software Packages

Use the Software Manager “Remove” mode to remove software packages. For

additional information, refer to relevant documentation for the Solaris release

you are using.

1. Select the software package to be removed by clicking on the icon.
Make sure all software that you do not want removed is deselected.

2. Press the ”Begin Removal” button.
The Software Manager: Command Input/Output window is displayed.

3. Respond to the questions, as prompted by Software Manager, during
package removal.
Installing SunATM-155 Software and Configuring the ATM Interface 3-13

3

The SunATM Device Drivers (SUNWatm) package was removed from the host

chances in this example.

Note – The complete list of installed software displayed in the Software

Manager window will then be updated to reflect the changes you made.

Software Manager: Command Input/Output

Removing <SUNWatm> package instance from host <chances>
The following package is currently installed:
 SUNWatm SunATM Device Drivers

 (sparc) 1.0,REV=C
Do you want to remove this package [y,n,?,q] y
Removing installed package instance <SUNWatm>
This package contains scripts that will be executed with super-user permission
during the process of removing this package.
Do you want to continue with the removal of this package [y,n,?,q] y
Verifying package dependencies.
Processing package information.
Removing pathnames in class <base>
/sbin <shared pathname not removed>
/kernel/drv/sscop
/kernel/drv/sa
/kernel/drv/qcc.conf
/kernel/drv/qcc
/kernel/drv/q93b.conf
/kernel/drv/q93b
/kernel/drv/atmip
/kernel/drv/aar.conf
/kernel/drv/aar
/kernel/drv <shared pathname not removed>
/kernel <shared pathname not removed>
/etc/rc2.d/S79atm
/etc/rc2.d <shared pathname not removed>
/etc/aarconfig
/etc <shared pathname not removed>
Executing postremove script.
Updating system information.
Removal of <SUNWatm> was successful.
3-14 SunATM-155 SBus Cards Manual—May 1995

3

3.2 SBus ATM Interface Configuration

Note – SunATM-155 cards are supported on systems running the Solaris

software environment, revision 2.4 or later (or other compatible operating

systems).

See Table 3-1 for some of the acronyms and abbreviations used in this section.

Table 3-1 Acronyms and Abbreviations

Abbreviation: Meaning:

AFI Authority and Format Identifier

ATM ARP ATM Address Resolution Protocol

B-LLI Broadband - Lower Layer Information

ESI End System Identifier

ICD International Code Designator

IDI Initial Domain Identifier

ILMI Interim Local Management Interface

LIS Logical IP Subnetwork

LLC/SNAP Logical Link Control/Subnetwork Attach Point

NSAP Network Service Access Point

PVC Permanent Virtual Connection

RFC Request for Comments

SNMP Simple Network Management Protocol

SSCOP Service Specific Connection Oriented Protocol

SVC Switched Virtual Connection

VC Virtual Connection

VCC Virtual Channel Connection

VPC Virtual Path Connection
Installing SunATM-155 Software and Configuring the ATM Interface 3-15

3

3.2.1 Changes to System Configuration

3.2.1.1 Selecting SONET or SDH Framing Interface

The default framing interface is SONET, however, SDH is also supported. To

change from the default SONET to SDH:

1. Add the following line to the /etc/system file:
set sa:sa_sdh = 1

2. Reboot the system.
Changes will not be in effect until the system is rebooted.

3.2.1.2 Editing the /etc/aarconfig File

TCP/IP and UDP/IP are supported over ATM transparently, therefore, the

establishment of an ATM connection to carry the TCP/IP and UDP/IP packets

is hidden from IP. When IP attempts to resolve an IP address to the physical

address for an ATM interface, the IP address must first be resolved to an ATM

address. A connection must then be established to the ATM address; this

connection is identified by a virtual circuit identifier, or VC. This process is

done via the ATM ARP (RFC 1577, “Classical IP and ARP over ATM”)

mechanism. See the description of the ATM ARP software, Section 3.2.1.6,

“ATM ARP Daemon (aarpd),” for details on setting up the ATM ARP server

and ATM ARP clients in a subnet.

The /etc/aarconfig file is a generic file that must appear on every SunATM

system. It allows you to specify IP to ATM address translation, PVCs to

destinations, and specify the VCI to an ATM ARP server. The environment

allows for a mix of PVCs and SVCs.

Each time the /etc/aarconfig file is modified, you must restart the ATM

ARP daemon (aarpd). It is recommended that aarpd be restarted by sending a

SIGHUP signal to the process. aarpd is in the /opt/SUNWatm/bin directory.

In addition, if the local address has been modified, the address registration

daemon ilmid (see Section 3.2.1.10, “ATM Address Registration Daemon

(ILMID)”) must also be restarted in order to register the new address with the

switch. ilmid is in the /opt/SUNWatm/bin directory. ilmid must be killed

and restarted; a SIGHUP signal cannot be used.
3-16 SunATM-155 SBus Cards Manual—May 1995

3

Every node, or client, will have both an IP address and either an ATM address

or a VCI. See Section 3.2.1.9, “ATM Address and Address Registration,” for

ATM addressing schemes information.

Code Example 3-1 shows the format of the /etc/aarconfig file. The flags

describe the options. See Table 3-2. All the flags required for most standard

configurations are described in this section. If you have unusual configuration

requirements, such as back-to-back connections over SVC, or interoperability

issues, see Appendix E, “Advanced Configurations.”

In the IP-ATM address table shown in the /etc/aarconfig file:

• Interface is the last part of the device name in /dev (sa0 , for example).

• Hostname is either an IP address in “dot” notation or the name of a host that

should be locally available unless a non-ATM network connection also exists.

• ATM address consists of 20 octets with each octet represented by a one- or

two-digit hexadecimal number and separated by colons.

• The VCI field is a positive decimal integer.

• An unused field is denoted by a “-”
Installing SunATM-155 Software and Configuring the ATM Interface 3-17

3

Code Example 3-1 /etc/aarconfig File

#pragma ident "@(#)aarconfig 1.13 95/03/13 SMI"
#---
#
IP-ATM address table -- (used by aarpd)
#
Format

Interface Hostname ATM_Address VC Flags
#
Comments are represented by '#' at the beginning of the line.
Unused fields are represented by '-'.
#
Flags are:
l - assigns ATM address to local machine on ARP client or system that
doesn't use an ARP server
L - assigns ATM address to local machine on ARP server
t - adds an entry in the local table of IP to ATM addresses
s - creates an entry to the ARP Server
a - restricts access to the specified address on ARP server
#
#
Variables

Since ATM addresses are very long, the use of variables to represent
portions of or entire ATM addresses is permitted. Variables are set
as follows:
#
set switch1 = 45:00:00:00:00:00:00:00:0f:00:00:00:00
#
A set of predefined variables is provided. They are:
#
prefix: the 13-byte Network Prefix associated with the local switch.
#
mac: the 6-byte MAC address assigned to this host or interface.
#
sel: the default 1-byte Selector for this interface.
#
macsel: the concatenation of $mac:$sel.
#
myaddress: the concatenation of $prefix:$mac:$sel. Should only be
used in ‘l' and ‘L' entries.
3-18 SunATM-155 SBus Cards Manual—May 1995

3

#
anymac: wild card representing any 6-byte ESI. Should only be used
in ‘a' entries.
#
anymacsel: wild card representing any 7-byte ESI and Selector. Should
only be used in ‘a' entries.
#
sunmacselN: the concatenation of one of a set of reserved MAC addresses
(identified by N, which is a number in the range 0 - 199)
and $sel. Since this is meant to be used as a server address,
which may apply across several switches, it does not include
a prefix. The prefix must be explicitly specified.
#
localswitch_server: the concatenation of $prefix, a reserved MAC address,
and $sel. May be used as the server address in a
one-switch network. On the server, use of this as
the local address also implies restricted access to
hosts on this switch only.
#
Use of these variables is demonstrated in the examples that follow.
#
#
Examples

#
Local Host - ARP Client

The Hostname and VC fields are illegal for the local host entry.
#
sa0 - $myaddress - l
sa0 - $localswitch_server - s
#
Local Host - ARP Server

The Hostname and VC fields are illegal for the local host entry.
#
sa0 - $localswitch_server - L
#
#
SVC

sa0 host1 $switch1:08:00:20:13:00:10:00 - t
sa0 host2 $switch1:08:00:20:13:00:11:00 - t

Code Example 3-1 /etc/aarconfig File (Continued)
Installing SunATM-155 Software and Configuring the ATM Interface 3-19

3

#
#
PVC

sa0 pvc_host1 - 110 t
sa0 pvc_host2 - 111 t
#
#
ARP Server over PVC (on clients' machines)
--
The Hostname field is illegal for the server entry.
#
sa0 - - 200 s
#
#
ARP Server over SVC (on clients' machines)
--
The Hostname field is illegal for the server entry.
#
sa0 - $prefix:$sunmacsel0 - s
#
#
ARP Server restricting access to 2 subnets
--
#
sa0 - $prefix:$sunmacsel0 - L
sa0 - $prefix:$anymacsel - a
sa0 - $switch1:$anymacsel - a
#
#
Add IP to ATM_Address or PVC entries below
#---

Code Example 3-1 /etc/aarconfig File (Continued)
3-20 SunATM-155 SBus Cards Manual—May 1995

3

Description of flags:

l Represents the ATM address of the local interface on ARP clients or

systems not using an ARP server for ATM address resolution, and can be

used to assign an ATM address to the host. Hostname should not appear;

ATM Address should be provided if and only if SVCs are used. If an s entry

is provided to use an ARP server (see below), ATM Address must be

provided (a server is meaningful only in an SVC environment). See

Table 3-2.

L Represents the IP and ATM address of the local interface on an ARP server.

Hostname should not appear; ATM Address is required. See Table 3-2.

Note – If a client aarconfig does not contain an l entry for a given interface,

aarpd will provide a default entry equivalent to:

sa n - $myaddress - 1
Where n is the physical interface number. An L entry must appear for each

physical interface that represents an ARP server.

t Represents an IP to ATM address/VCI entry. aarpd adds these entries into

the local table. Any t entries on the server must contain ATM Address and

may also contain VCI if PVC communication between the server and client

is desired. In addition, there are some cases when a t entry may be useful

on an ARP client system. If a client wants to communicate with another

system over PVCs, the PVC to be used is provided in a t entry containing

VCI; or if a client wishes to cache frequently used addresses to avoid

frequent ARP requests, a t entry containing ATM Address may be provided.

See Table 3-2.

Note – In order for the two clients to communicate over PVCs, corresponding

PVC connections must also be established in the ATM switch fabric.

a On an ARP server, a represents an address that may have access to this

ARP server. If no a entries appear in a servers’ aarconfig file, access to

the server is unrestricted. Including a entries allows access to be restricted

to known hosts. As an alternative to listing individual addresses, the ATM

address field may contain a prefix, followed by the wildcard $anymacsel ,

which matches any 7-byte ESI/Selector combination following the given
Installing SunATM-155 Software and Configuring the ATM Interface 3-21

3

prefix. This allows access by any host connected to the switch specified by

the given prefix. Hostname and VCI should not appear; ATM Address is

required. See Table 3-2.

s Specifies a connection to the ATM ARP server. Either ATM Address or VCI
(in the case of a PVC connection) should appear, but not both. Hostname
should not appear. The s entry is required on all clients that want to

communicate with the server for ATM address resolution. See Table 3-2.

Note – Although SunATM supports PVC connections to a server for ARP

traffic, RFC 1577 does not specify this case. For interoperability with other

implementations, connections to the server should use SVCs.

Note – Corresponding ATM connections between the ATM ARP server and the

client have to be established in the ATM switch fabric in order for the ATM

ARP requests and replies to be exchanged over PVCs.

Note – Entries in the aarconfig file must be grouped in a designated order:

the local (l or L) entry must be first, the table (t) entries next, and then the

server (s) entries. Other flags may appear in any order. Also, the ordering need

only be maintained among entries for each physical interface; for example, all

of the sa0 entries may appear first, and then all of the sa1 entries, etc.

Table 3-2 /etc/aarconfig File Flags

* Interface Host ATM Address VCI Flags *

required illegal SVC only illegal l local information

required illegal required illegal L local information on server

required illegal required illegal a access list entry

required required or1 or1 t permanent table entry

required illegal xor2 xor2 s server address/PVC

1or – Means one or the other required, and both are also legal.
2xor – Means one or the other required, but both are illegal.
3-22 SunATM-155 SBus Cards Manual—May 1995

3

Note – Additional flags that can be used for advanced configurations, such as

back-to-back connections over SVC, or used to change the behavior of the

interface, are described in Appendix E, “Advanced Configurations.”

3.2.1.3 Using Variables in the /etc/aarconfig File

Because the prefix portion of an ATM address specifies the ATM switch, a

number of hosts specified in an aarconfig file may have ATM addresses

which share the same prefix. To simplify setting up the aarconfig file, one

can define variables that contain part of an ATM address.

A variables's name is an identifier consisting of a collection of no more than 32

letters, digits, and underscores (_). The value associated with the variable is

denoted by a dollar sign ($) followed immediately by the variable name.

Note – Variables may only be used in the ATM address field. They may not be

used in any of the other fields in an entry.

Multiple variables may be concatenated to represent a single ATM address

expression. A colon must be used to concatenate the variables. Thus, if one

variable, v1, is set to 11:22 and another, v2, is set to 33:44 , the sequence

$v1:$v2 represents 11:22:33:44 . Hexadecimal numbers may also be

included with variables in the expression. The expression 45:$v1:$v2 would

have the value 45:11:22:33:44 .

Variables are defined in the aarconfig file according to the following format:

set VARIABLE = EXPRESSION

where VARIABLE is the name of a variable and EXPRESSION is an expression

concatenating one or two-digit hexadecimal numbers and/or the values of

variables that have been previously defined. The equal sign is optional, but the

variable and expression must be separated by either whitespace (spaces or

tabs), an equal sign, or both.

Several predefined variables are built into the SunATM software. These

variables are summarized in Table 3-3.
Installing SunATM-155 Software and Configuring the ATM Interface 3-23

3

In most network configurations, the ATM address assigned to the local

interface will be myaddress; using this variable in the l entry makes it possible

to use identical aarconfig files on all clients using a given server.

The sunmacsel N variables may be used in conjunction with a prefix as well-

known server addresses which are not bound to a particular system. As an

example, consider the case where a server which supports 50 clients fails. If the

ATM address of the server is specific to that particular server, the s entry must

be changed on all 50 clients in order to switch to a backup server. However, if

instead the ATM address used for that server is $prefix:$sunmacsel3 , this

address is not only guaranteed to be unique, since it uses reserved MAC

addresses, it is also possible to simply assign that address to the backup server

on the same switch by changing the l entry to an s entry on one system, and

bring up a new server with no changes to the clients.

Table 3-3 Predefined SunATM Variables

Variable Description

prefix The 13-byte prefix associated with the local switch.

mac The 6-byte MAC address associated with the local host or

interface.

sel The default 1-byte selector for the local interface.

macsel The concatenation of $mac:$sel .

myaddress The concatenation of $prefix:$mac:$sel , resulting in

the default address for the local interface.

anymac A wild card representing any 6-byte ESI. Should only be

used in a entries.

anymacsel A wild card representing any 7-byte ESI and Selector

combination. Should only be used in a entries.

sunmacsel N The concatenation of one of a series of reserved MAC

addresses and $sel to create a block of reserved ATM

ARP server addresses. N should be a decimal number in

the range 0 - 199.

localswitch_server The concatenation of $prefix , a unique reserved MAC

address, and $sel . When used as a server address,

restricts server access to clients connected to the local

switch only.
3-24 SunATM-155 SBus Cards Manual—May 1995

3

Note – The sunmacsel N variables do not include a prefix since a client and

server may be on different switches and thus have different local prefix values.

In the case of a single-switch network, localswitch_server may be used as

a well-known server address. Not only does it include the prefix associated

with the local switch with a unique MAC address and appropriate Selector, it

also restricts server access to clients on the local switch. Thus any host with a

network prefix other than that of the local switch will be refused a connection

to the ARP server if the ARP server's address is $localswitch_server .

Several rules apply to the use of variables in the aarconfig file:

1. Two variables cannot follow each other in an expression without an

intervening colon. Thus $v1:$v2 is legal while $v1$v2 is not.

2. Fields in each line in the aarconfig file are separated by whitespace.

Therefore variables should not be separated from the rest of an ATM

address with whitespace. For example, $v1: $v2 is illegal.

3. Once a variable is defined by a set command, it may not be redefined later

in the aarconfig file.

4. The reserved variable names may not be set. These names include prefix ,

mac, sel , macsel , myaddress , anymac , anymacsel , sunmacsel N (where

N is a number between 0 and 199), and localswitch_server .

Note – The ESI portion of localswitch_server and the sunmacsel N
variables is a reserved MAC address. The hexadecimal values of the reserved

addresses are:

localswitch_server 08:00:20:75:48:08
sunmacsel N base 08:00:20:75:48:10

To calculate the ESI portion for a sunmacsel N address, simply add the value

of N (converted to a hexadecimal number) to the sunmacsel N base address.

For example, the ESI portion of sunmacsel20 would be

08:00:20:75:48:10 + 0x14 = 08:00:20:75:48:24.
Installing SunATM-155 Software and Configuring the ATM Interface 3-25

3

3.2.1.4 Sample Configurations

The following examples demonstrate entries in the /etc/aarconfig file for

several typical network configurations.

Although some of the examples show only one sample aarconfig file,

similarly configured files must appear on each system. Example 2 shows the

files for each of the three systems in the configuration.

1. SVC-only: Clients use the default address and access to the ARP server is

restricted to clients on the local switch only.

a. The /etc/aarconfig file on a client:

b. The /etc/aarconfig file on the server:

2. PVC-only: hosta is connected to hostb and hostc over PVCs. There is no ARP

server.

a. /etc/aarconfig on hosta:

b. on hostb:

Interface Host ATM Address VCI Flag
sa0 - $localswitch_server - s

Interface Host ATM Address VCI Flag
sa0 - $localswitch_server - L

Interface Host ATM Address VCI Flag
sa0 - - - l
sa0 hostb - 100 t
sa0 hostc - 101 t

Interface Host ATM Address VCI Flag
sa0 - - - l
sa0 hosta - 100 t
sa0 hostc - 102 t
3-26 SunATM-155 SBus Cards Manual—May 1995

3

c. on hostc:

3. SVC-only: hosta uses SVCs to connect to hostb and hostc. All hosts are

connected to the same switch; there is no ARP server.

4. PVC/SVC mix: hosta uses a SVC to connect to hostb, and a PVC to connect to

hostc. hostb is not on the local switch; there is no ARP server.

5. ARP server: Hosts are connected to an ATM ARP server that resolves

addresses. Access is restricted to the local switch subnet and one additional

switch subnet.

a. /etc/aarconfig on hosta:

Interface Host ATM Address VCI Flag
sa0 - - - l
sa0 hosta - 101 t
sa0 hostb - 102 t

Interface Host ATM Address VCI Flag
sa0 - $myaddress - l
sa0 hostb $prefix:08:00:20:d5:08:a8:00 - t
sa0 hostc $prefix:08:00:20:21:20:c3:00 - t

Interface Host ATM Address VCI Flag
sa0 - $myaddress - l
sa0 hostb 45:00:00:00:00:00:00:00:0f:00:00:00:00::08:00:20:d5:08:a8:00- t
sa0 hostc - 100 t

Interface Host ATM Address VCI Flag
sa0 - $myaddress - l
sa0 - $prefix:$sunmacsel0 - s
Installing SunATM-155 Software and Configuring the ATM Interface 3-27

3

b. /etc/aarconfig on server:

3.2.1.5 The /etc/hostatm.sa # File

In addition to the aarconfig file, a hostatm.sa # file (where # is the physical

interface number) must appear in /etc for each physical interface. The

hostatm.sa # file must contain the hostname associated with the physical

interface identified by sa#. The file is created by the installation script for each

interface that is specified during software installation; other interfaces may be

added later by manually creating this file.

The hostatm.sa # file is used much like the hostname. xx# file that is

traditionally associated with network interfaces. However, because ATM

software has many new and different modules, its configuration (plumbing)

must be handled differently. The ifconfig program in the Solaris 2.4 operating

environment does not know about these differences; hence the need for a

different identification of ATM interfaces. A hostname.sa # file must not

appear in /etc .

As with any network interface using IP, the hostname of an interface must also

be associated with an IP address. This is done for SunATM interfaces in the

same way it is done for other network interfaces: either with an entry in

/etc/hosts, or with an entry on a naming server running a naming service

such as NIS.

Interface Host ATM Address VCI Flag
sa0 - $prefix:$sunmacsel0 - L
sa0 - $prefix:$anymacsel - a
sa0 - 45:00:00:00:00:00:00:00:0f:00:00:00:00:$anymacsel - a
3-28 SunATM-155 SBus Cards Manual—May 1995

3

3.2.1.6 ATM ARP Daemon (aarpd)

Depending on the aarconfig file, the ATM ARP daemon (aarpd) will run as

either a server or a client. As a server, aarpd is responsible for handling ATM

ARP requests originating from its clients. An ATM server has to be configured

for each subnet. The ATM ARP server code conforms to RFC 1577: clients send

ATM ARP requests to the server to resolve a destination IP address to an ATM

address. The server then replies to ATM ARP requests by sending an ATM

ARP response. If the server does not have the IP to ATM address entry, then it

replies with NAK.

The file /etc/aarconfig is also used by the ATM ARP server. All the IP to

ATM address entries specified in the file will be entered into a kernel resident

table. Additional entries in the kernel table will be added dynamically using

the inverse ARP process. When a client connects to the server, the server will

send an inverse ARP request back to the client to obtain the client’s IP address.

When a response is received, an entry will be created for that client. The

daemon will also respond to client ARP requests. The daemon looks up a

kernel IP to ATM address entry and responds to an ATM ARP request with

either an ATM ARP reply or ATM ARP NAK (if there is no entry in the table).

Note that an ATM ARP client uses the VC specified in the /etc/aarconfig
file to communicate with the server; or, if an ATM address is specified, it

establishes an SVC connection to communicate with the server.

While dynamic entries in the ARP server’s table make network administration

less complex, it also creates a security problem. Any host may register with the

ARP server and, therefore, gains access to the subnet. To resolve this issue, a

list of hosts or networks may optionally be provided with a entries in the

server’s /etc/aarconfig file. If no a entries appear, any host will be allowed

to connect to the server. If any a entries exist, only those hosts whose addresses

match those specified will be allowed to connect.

Although the a entry requires a complete ATM address, multiple addresses can

be referenced in a single entry using the provided wildcards. The variable

anymacsel represents any ESI and Selector combination. When combined

with a 13-byte network prefix, it creates an entry that matches any host on the

switch specified by the given prefix. Additionally, a question mark (?) may be

used as a wildcard with finer granularity, representing one or two hexadecimal

digits within any colon-separated field. Thus, $prefix:$anymac:? is

equivalent to both $prefix:$anymac:?? and $prefix:$anymacsel , and it

will allow addresses with any selector value. However,

$prefix:$anymac:0? will allow only addresses with selectors in the range of
Installing SunATM-155 Software and Configuring the ATM Interface 3-29

3

00 to 0f . Finally, using the predefined variable localswitch_server as the

server’s ATM address implies the existence of an a entry with the ATM address

$prefix:$anymacsel .

The advantage to having an ATM ARP server in the subnet is that it represents

a known source for all address resolutions. It is the only host which a client

must know about to have IP addresses resolved to ATM connections, and it

allows for access control in the ATM network.

When the /etc/aarconfig file has been modified on a system, it is necessary

to restart aarpd . This can be done automatically by sending a SIGHUP signal

to aarpd . Restarting aarpd in this manner is preferred because it causes less

disruption to network services than killing aarpd and restarting it manually.

ilmid must also be restarted if the local address is changed so the new

address is registered with the switch. ilmid must be killed and restarted (a

SIGHUP signal cannot be used).

Note – For better caching, all clients have the option of adding to their

configuration file the IP to ATM address information for other clients.

This can benefit clients who communicate frequently because it eliminates

having to go through the ATM ARP server for IP to ATM address resolution.

Note – If a host has multiple SunATM cards, the host may be a server for one

IP subnet and a client for another. This is handled transparently by aarpd .

3.2.1.7 IP and ATM Signaling

ATM is connection oriented, so a connection must be established between two

communicating entities before data transfer can begin. IP is inherently

connectionless. The implementation on the host has to reconcile the differences

in these two paradigms.

SunATM Signaling architecture allows ATM connections to be established

transparently to IP. IP itself sees the ATM interface just as it sees any

traditional network interface. Every SunATM interface has a subnet IP address.

During the process of bringup of an ATM interface, appropriate signaling and

resolution modules are plumbed. All the TCP/IP and UDP/IP applications run

without modifications, and all the utilities associated with the network

interfaces also run without modification and display similar results (for
3-30 SunATM-155 SBus Cards Manual—May 1995

3

example, netstat , ifconfig utilities, etc.), with one exception. Because of

the different plumbing of the ATM modules, the plumb and unplumb options

of ifconfig will not work on ATM interfaces; the atmplumb command should

be used instead. IP treats the ATM interface as a subnet, choosing the interface

used to send a packet out based on the IP address of the destination and on the

IP address and netmask of the interface itself.

The transparency to IP is enabled by the way the ATM modules are plumbed

on bringup. When IP receives a packet to send over the ATM interface, IP

checks its own tables for address resolution. If the address is not resolved, IP

sends up an ARP request, which is serviced by the ATM Address Resolution

modules, including the ATM ARP Daemon described in Section 3.2.1.6, “ATM

ARP Daemon (aarpd),” on page 3-29. When those modules have located the

desired ATM address, either in their own tables or by contacting the ARP

server, they will then use the signaling modules to open a call to that

destination. The VC for that call is then returned to IP; IP is now able to send

the data directly to the driver.

SunATM signaling conforms to the UNI 3.0 spec of the ATM Forum. Q.2931

runs on top of SSCOP and uses VC 5 for signaling as specified in the Forum

spec.

UNI 3.0 uses ATM addresses for signaling. Every ATM interface will have an

ATM address in addition to the IP address.

3.2.1.8 ATM Address Resolution

Traditional TCP/IP and UDP/IP applications use IP addresses for

communicating to a destination. In order for these applications to run as

before, there is now a need to resolve these IP addresses into ATM addresses.

The ATM address is then used in signaling to establish an ATM connection to

the destination. An ATM connection in turn is represented by a VPI/VCI. The

host must use this returned VPI/VCI to send packets to the destination

representing the ATM connection.

ATM address resolution, also called ATM ARP, follows RFC 1577, the classic

draft that describes the ATM ARP process.

RFC 1577 is based upon the existence of an ATM ARP server on every subnet.

Every client of the subnet communicates with the ATM ARP server to derive

an ATM address of the destination from the IP address of the destination. The

ATM ARP server holds the IP to ATM address information for all hosts in the
Installing SunATM-155 Software and Configuring the ATM Interface 3-31

3

ATM subnet. It is likely that initial ATM configurations will not rely on

dynamic ATM address resolution since it requires the presence of an ATM ARP

server on every subnet. Also, there are no specified standards for providing

redundant ATM ARP servers for a subnet. As specified, the ATM ARP server

would constitute a single point of failure in the system. From a practical

standpoint, however, early configurations may take the course of having the IP

to ATM address data base in every system, thus avoiding the IP to ATM

address resolution step altogether. The RFC requires the use of a router to pass

data between subnets.

SunATM software facilitates this by providing ATM utilities that will allow

configurations to specify IP to ATM addresses in /etc/aarconfig files. The

aarpd uses the information in /etc/aarconfig to create IP to ATM address

resolution tables. Dynamic entries into a server’s resolution table are also

supported.

Code Example 3-1 shows the format of the /etc/aarconfig file for

specifying the IP to ATM address. It is important for the file to be consistent on

all systems in the subnet. See Section 3.2.1.2, “Editing the /etc/aarconfig File,”

on page 3-16.

The ATM Address Resolution software contains several timers which control

its resource usage. Two key timers include the timer controlling the teardown

of inactive connections to peers or the server, and the timer controlling the

deletion from the local kernel table of ARP entries received from peers or the

server. You may choose to lengthen or shorten these timers based on a

particular network’s needs. This is done with system variables, which may be

added to the /etc/system file. After changing this file, you must reboot the

system for the changes to take effect. Set the variables as follows:

set aar:aar_max_quiescent_qcc = m
set aar:aar_max_quiescent_ace = n

where m and n represent the number of 30 second intervals each timer should

last. The first variable, aar_max_quiescent_qcc , determines how many

intervals to wait before tearing down a connection to a peer or server. The

receipt or transmission of a packet on the connection resets the timer. The

second variable, aar_max_quiescent_ace , determines how many intervals

to wait before removing an arp cache entry from the local table. This applies

only to entries that are created via the ATM ARP process, and not to those

entries that are loaded from the /etc/aarconfig file. Receipt or transmission

of a packet from or to the peer, represented by the entry, resets the timer.
3-32 SunATM-155 SBus Cards Manual—May 1995

3

3.2.1.9 ATM Address and Address Registration

ATM addresses, like NSAP addresses, are 20 octets long. The End System

Identifier (ESI) field within the ATM address is a unique 6 octet value; this can

be the IEEE hardware MAC address conventionally associated with every

network interface. Selector field (SEL) is 1 octet long. The 13 octets that make

up the rest of the ATM address should be derived from the ATM switch fabric

to which the interface will connect. Every ATM switch fabric is configured with

a 13 octet ATM address field. On a SunATM host, the prefix associated with the

local switch fabric is represented by the variable prefix . Its value will be

obtained by the system at configuration time.

Figure 3-1 ATM Address Fields

UNI 3.0 spec specifies the Interim Local Management Interface (ILMI) service

interface for a client to learn and register its ATM address. The ILMI service

interface is based on the use of SNMP over AAL5. In the SunATM software

package, ILMI service is provided by an address registration daemon, ilmid .

Determined by ATM switch/13 octets ESI/6 octets SEL

1 octet
Installing SunATM-155 Software and Configuring the ATM Interface 3-33

3

3.2.1.10 ATM Address Registration Daemon (ILMID)

Address registration with a switch is controlled by ilmid . When an ATM

interface is brought up at boot time, ilmid is also started. ilmid then begins

an exchange of messages with the switch: relaying local address information

(the 7 octet ESI and selector) to the switch, and receiving the 13 octet network

prefix information from the switch.

To obtain the local address, ilmid first checks the l or L entry in the

/etc/aarconfig file. If an ESI and selector are specified there, they are used.

If $myaddress , $macsel , $mac is used, ilmid obtains the system mac address

from the ATM driver.

3.2.1.11 Encapsulation of IP Packets

SunATM interface encapsulates the IP packets as LLC_SNAP, as specified in

RFC 1483, “Multiprotocol Encapsulation over ATM Adaptation Layer 5.”

SETUP messages, when originating a call, carry a B-LLI information element.

The B-LLI information element indicates that the call is LAN LLC (ISO

8802/2). The incoming call has to carry the B-LLI information element for the

SunATM interface to accept the call.
3-34 SunATM-155 SBus Cards Manual—May 1995

3

3.3 Rebooting the System and Examining Network Interfaces
1. Reboot the system using the boot -r command.

The -r option is required by the Solaris 2.4 software environment when

installing new hardware, and the -v option causes boot messages to be

printed in verbose mode to allow the user to see that the SunATM clients are

correctly recognized.

To boot from the default boot device use:

Note – For Solaris 2.x, use boot -r whenever the physical configuration of

the system is changed.

2. Execute ifconfig -a and netstat -i commands to examine the state
of all network interfaces.
You can also use /usr/sbin/ping or /usr/sbin/spray commands to

see if a network interface is active.

Examples of output for ifconfig -a , ping , and netstat -i follow.

ok boot -rv

zardoz% /sbin/ifconfig -a
lo0: flags=849<UP,LOOPBACK,RUNNING,MULTICAST> mtu 8232

inet 127.0.0.1 netmask ff000000
sa0: flags=863<UP,BROADCAST,NOTRAILERS,RUNNING,MULTICAST> mtu 1500

inet 129.144.10.57 netmask ffffff00 broadcast 129.144.10.255

zardoz% /usr/sbin/ping zelda
zelda is alive
Installing SunATM-155 Software and Configuring the ATM Interface 3-35

3

Caution – Do not change the SBus slot in which a SunATM-155 card is

installed once the system has been booted. The Solaris 2.x software

environment remembers the location of each SBus card that has been installed.

Switching SBus slots will cause the operating system to assume that you

removed your original SunATM-155 card and added a second card to the

system. Refer to the online man page about path_to_inst for more

information.

zardoz% netstat -i
Name Mtu Net/Dest Address Ipkts Ierrs Opkts Oerrs Collis Queue
lo0 8232 loopback localhost 87 0 87 0 0 0
sa0 1500 umtv15-010-n zardoz 421873 0 60009 1 183 0

!

3-36 SunATM-155 SBus Cards Manual—May 1995

WiringScheme andPin
Descriptions A
Figure A-1 Designation T568B

1 2 3 4 5 6 7 8

Pair 2,
Pins 1 and 2

Pair 4,
Pins 7 and 8

1 2 3 4 5 6 7 8

Transmit Receive

Pin 1 = +
Pin 2 = –

Pin 7 = +
Pin 8 = –
A-1

A

Table A-1 Pin Descriptions for the 96-Pin SBus Connector

Pin Description Pin Description Pin Description Pin Description

1 GND 2 BR\ 49 Clk 50 BG\

3 Sel\ 4 IntReq1\ 51 AS\ 52 GND

5 D00 6 D02 53 D01 54 D03

7 D04 8 IntReq2\ 55 D05 56 +5V

9 D06 10 D08 57 D07 58 D09

11 D10 12 IntReq3\ 59 D11 60 GND

13 D12 14 D14 61 D13 62 D15

15 D16 16 IntReq4\ 63 D17 64 +5V

17 D19 18 D21 65 D18 66 D20

19 D23 20 IntReq5\ 67 D22 68 GND

21 D25 22 D27 69 D24 70 D26

23 D29 24 IntReq6\ 71 D28 72 +5V

25 D31 26 Siz0 73 D30 74 Siz1

27 Siz2 28 IntReq7\ 75 Rd 76 GND

29 PA00 30 PA02 77 PA01 78 PA03

31 PA04 32 LErr\ 79 PA05 80 +5V

33 PA06 34 PA08 81 PA07 82 PA09

35 PA10 36 Ack0\ 83 PA11 84 GND

37 PA12 38 PA14 85 PA13 86 PA15

39 PA16 40 Ack1\ 87 PA17 88 +5V

41 PA18 42 PA20 89 PA19 90 PA21

43 PA22 44 Ack2\ 91 PA23 92 GND

45 PA24 46 PA26 93 PA25 94 PA27

47 DtaPar 48 -12V 95 Reset\ 96 +12V
A-2 SunATM-155 SBus Cards Manual—May 1995

SunATM-155SBusCards
Specifications B
B.1 Performance Specifications

Table B-1 Performance Specifications

Feature Specification

SBus Clock 25 MHz max., 12.5 MHz min.

Max SBus Burst Transfer Rate 34 Mbytes/sec (approximately)

Steady State SBus Transfer Rate 5 Mbytes/sec

SBus Data/Address Lines D (31:0)/PA (27:0)

SBus Modes Master/Slave

Capacitance per SBus Signal Line ≤20 pF

SBus Parity Yes

SBus Version Rev B.0

SBus Burst Sizes 16/32
B-1

B

B.2 Power Specifications

B.3 Physical Dimensions

Table B-2 Power Specifications

Specification Measurement

Power Dissipation 9.5 Watt max.

Voltage Tolerance +/- 5%

Ripple ≤ 100 mV

Operational Current 5V, 2.0 Amps

Table B-3 Physical Dimensions

Dimension Measurement

Length 5.78 in. (146.70 mm)

Width 3.3 in. (83.82 mm)
B-2 SunATM-155 SBus Cards Manual—May 1995

B

B.4 Environmental Specifications

Table B-4 Environmental Specifications

Condition Operating Specification Storage Specification

Temperature 0 to 70°C (+32 to +131°F) -25 to 70°C (-25 to +131°F)

Relative Humidity 5 to 85% non-condensing 0 to 95% non-condensing

(40°C, wet bulb temperature) 40°C /hour

Altitude -1000 to +15,000 ft. -1000 to +50,000 ft.

Shock 5g, 1/2 sine wave, 11 msec 30g, 1/2 sine wave, 11 msec

Vibration, pk to pk displacement 0.005 in. max. (5 to 32 Hz) 0.1 in. max (5 to 17 Hz)

Vibration, peak acceleration 0.25g (5 to 500 Hz) 1.0g (5 to 500 Hz)

(Sweep Rate = 1 octave/min.) (Sweep Rate = 1 octave/min.)
SunATM-155 SBus Cards Specifications B-3

B

B-4 SunATM-155 SBus Cards Manual—May 1995

RunningDiagnosticTests C
The diagnostic tests available for the SunATM-155 cards are selftest and the

SunDiag™ system exerciser.

C.1 Selftest
The SunATM-155 SBus cards selftest verifies correct operation of the SBus card.

The selftest consists of a suite of tests that reside in the FCode PROM on the

card. The code is written in Forth programming language and can only be run

under OpenBoot PROM (OBP) version 2.x or later.

Note – To find the OBP revision level on your system, type .version at the

<#0> ok prompt.

The SunATM-155 selftest does not automatically run after power on or reset,

but you can use selftest any time you want to determine the status of the

hardware.

Note – Selftest does not require connection to the network. Selftest will test

internal loopback (up to SUNI).
C-1

C

• As a Sun SPARCstation system is powered up, the following banner is

displayed:

• Check that the PROM version is 2.x or later.

• If the system is set up to automatically boot, press key combination L1-A

to stop it.

• If the system is not already at the ok prompt, select n for the new

command mode to get to the ok prompt.

• To check that the system has a SunATM-155 SBus card installed, and in

which SBus slot, look for the sa device in the following command:

• To display the OBP set of environment variables, type the following

command:

SPARCstation 10, Type 4 keyboard
Rom Rev 2.4, 16MB memory installed
Ethernet address 8:0:20:8;42:7, Host ID 51000007

Type b (boot), c (command), n (new command)
>n
ok

ok show-devs
...
/iommu@f,e0000000/sbus@f,e0001000
/iommu@f,e0000000/sbus@f,e0001000/sa@3,0
...
ok

ok printenv
selftest-#megs 1
...
auto-boot? true
...
fcode-debug false
...
ok
C-2 SunATM-155 SBus Cards Manual—May 1995

C

• To change an OBP environment variable, for example auto-boot? to false, type

the setenv command as follows, then type reset for the change to take

effect:

• To browse the OBP device tree:

• Type cd to get to a specific working directory.

• Type words to find all the Forth words available in that directory.

• To examine the definition of a word, use the see command as follows:

For more information on using the OBP commands, refer to the Open Boot

Command Reference manual, part no. 800-6076-xx.

ok setenv auto-boot? false
ok reset

ok cd /sbus/sa@3,0
ok words
close open reset
selftest
ok

ok see selftest
: selftest
 (ffd988d0) (ffd98c28) (ffd99564) (ffd98c60) swap (ffd5fb9c)
(ffd988d0)
 if
 (ffd995ec)
 else
 -1
 then
;
ok
Running Diagnostic Tests C-3

C

C.1.1 Setting the Diag-switch

The selftest can be invoked from the ok prompt on a Sun system that has OBP

2.x or later as follows:

1. Set the diag-switch to true.

Note – Optional. If the diag-switch is not set to “true,” reduced tests are run.

2. Test the card. See Section C.1.2, “Running Selftest.”
As each test is executed, the resulting status of either pass or fail will be

displayed. The tests will run sequentially and will stop when any test

encounters an error.

3. Set the diag-switch to false, if necessary, after running tests.

C.1.2 Running Selftest

♦ To test the SunATM-155 card on a SPARCstation 10 system, at the ok
prompt type: test /iommu/sbus/sa@<slot#>,0

Note – If the test command fails, verify that the SBus card hardware is

installed correctly. If necessary, replace the SBus card and/or contact your

service provider.

ok setenv diag-switch? true

ok setenv diag-switch? false

ok test /iommu/sbus/sa@<slot#>,0
C-4 SunATM-155 SBus Cards Manual—May 1995

C

C.2 SunDiag
SunDiag is an online system exerciser that runs diagnostic hardware tests. It is

used primarily with the OpenWindows software interface that enables you to

quickly and easily set test parameters to run tests.

C.2.1 SunDiag Window

Note – Examples in this section show SunDiag running in the OPEN LOOK®

environment. SunDiag, run in the SunView™ environment, will look different.

♦ To start SunDiag, cd to the sundiag directory and type the sundiag
command:

The SunDiag window, the primary interface for running SunDiag, will be

displayed on your screen (see Figure C-1).

The SunDiag window is divided into four small windows:

• The system status window at the upper-left of the screen displays the status

of the tests.

• The performance monitor panel in the upper-middle of the screen displays

the performance statistics for the system that is under test.

• The control panel on the right includes buttons, exclusive choice, toggle, and

pop-up menus that allow you to select test parameters and options.

• The console window at the bottom-left displays test messages and allows

you, as a superuser, to use operating system commands.

Refer to the SunDiag manual that came with your operating system for further

details.

zardoz# cd /opt/SUNWdiag/bin
zardoz# sundiag
Running Diagnostic Tests C-5

C

Figure C-1 SunDiag Window

C.2.2 Starting the Test

1. Review the information in the control panel that identifies the devices
available for testing.

2. Make sure Enable is selected for the “Intervention:” setting.

3. Select “SBUS DEVICES.”

a. select the (sa0) nettest button under “SBUS DEVICES.”

b. click on the Options button for (sa0) nettest.

Intervention:

Test:

Disable Enable

Default None All

Start Reset Print

Set Options... Schedule... Log Files...

Option Files... Status View

MEMORY DEVICES

(mem) pmem

(kmem) vmem

DISK DEVICES

Options...

Options...

Options...

Options...

Options...

Options...

Options...

Options...

Options...

(c0t3d0) rawtest

(c0t3d0) fstest

(c0t6d0) cdtest

CPU DEVICES

(fpu) fputest

(le0) nettest

(zs0) sptest

(audio0) autest

SBUS DEVICES

*** SunDiag Version: 4.3 Hostname:mouse Model: Sun 4_25 ***

Options...

Options...

Options...

(sa0) nettest

(cgsix1) cg. 6test

(bb0) bpptest

MEMORY DEVICE TESTS:
(mem) pmem
(kmem) vmem

DISK DEVICE TESTS:
(c0t3d0) rawtest
(c0t3d0) fstest
(c0t6d0) cdtest

CPU DEVICE TESTS:
(fpu) fputest

(le0) nettest

SBUS DEVICE TESTS:
(sa0) nettest

System status: idle

System passes: 0 Total errors: 0

Elapsed time: 000:00:00 1 of 1

passes: 0 errors: 0
passes: 0 errors: 0

passes: 0 errors: 0
passes: 0 errors: 0
passes: 0 errors: 0

passes: 0 errors: 0

passes: 0 errors: 0

(audio0) autest passes: 0 errors: 0

passes: 0 errors: 0
(cgsix1) cg. 6test passes: 0 errors: 0
(bb0) bpptest passes: 0 errors: 0

cpu

pkts

page

swap

intr

disk

cntxt

load

colls

errs

100

30

16

4

200

40

256

4

4

4

mouse#
C-6 SunATM-155 SBus Cards Manual—May 1995

C

4. In the pop-up option window that is displayed:

a. enter “Target Host:” information.
Enter the name of the target host for sa0.

b. change the “Delay” time from the default setting of 120, if appropriate.

c. click on the Apply button in the pop-up option window.

5. Click on the Start button in the control panel.

6. Watch the console window for messages.

7. To interrupt a test or to stop after a test is completed, click on the Stop
button.

Note – If no problems are identified during the testing, the SunATM-155 card

is ready for operation in your system.

8. To exit SunDiag, use your mouse to Quit the SunDiag window.
Running Diagnostic Tests C-7

C

C-8 SunATM-155 SBus Cards Manual—May 1995

ApplicationProgrammers’ Interface D
The Application Programmers’ Interface (API) that is provided with this

software release is an interim API to be used until the ATM Forum

standardizes an API.

Note – Be aware that since this is an interim API, it can be changed at any time.

Note – For historical reasons, Q.93B and Q.2931 are used interchangeably.

The interim API that Sun provides:

• will cover Q.93B to setup and tear down connections

• will also deal directly with the driver

Each API set, Q.93B and driver, contains both a user API and a kernel API.

The API, called Q.2931 Call Control (qcc), consists of two sets of similar

functions: one for applications running in the kernel, and one for applications

running in user space. Each set provides functions to build and parse the

messages required to setup and tear down connections. Table D-2 lists those

message types. Figure D-2 shows the message format that should be used by

kernel applications; user space applications should use two strbuf structures

instead of the two mblks.
D-1

D

The qcc man pages that provide more details on how to use these functions

are:

user space qcc_bld (3), qcc_parse (3), and qcc_len (3)

kernel space qcc_bld (9F) and qcc_parse (9F)

The man page for the signaling driver is q93b (7).

Figure D-1 ATM Signaling

D.1 Q.93B API
The Q.93B driver is an M-to-N MT safe (D_MP) mux driver. On the upper side,

the Streams interface is the Q_Primitives that consists of two mblocks. The first

mblock is the header of the type M_PROTO, and the second mblock is the raw

Q.93B message of the type M_DATA.

10

Kernel
App

User
App

APIAPI

SSCOP SSCOP

Q.93B Driver

ATM Device Driver (sa driver)
D-2 SunATM-155 SBus Cards Manual—May 1995

D

Figure D-2 Message Format

The upper layer shall leave the Q.93B header portion (9 bytes) of the Q.93B

message in the second mblock blank. The Q.93B driver will fill in the Q.93B

header. The upper layer should reserve 16 bytes at the end of the second

mblock for the layer 2 protocol for performance.

Table D-1 Message Meanings

Explanation

Ifname A null-terminated string containing the device name (for
example, sa0)

Call_ID A unique number from Q.93B per interface.

Type The same as the Q.93B message type except there is a local Non-
Q.93B message type SETUP_ACK. The SETUP_ACK message is
used to provide the Call_ID to the user.

Error_Code The error returned from Q.93B when an erroneous message is
received from the user. The exact same mblock chain shall be
returned to the user with the Error_Code field set. The user
shall always clear this field

Call_Tag A number assigned by the calling application layer to a SETUP
message. When a SETUP_ACK is received from Q.93B, the
Call_ID has been set; the Call_Tag field may be used to identify
the ack with the original request. From that point on, the
Call_ID value should be used to identify the call.

Ifname

Call_ID

Type

Error_Code

M_PROTO M_DATA
mp

Q.2931 Message

(9) (16)

Information
Elements (IEs)

Call_Tag

R
S
V

Application Programmers’ Interface D-3

D

D.1.1 Q.93B Driver
Table D-2 Messages Between the User and the Q.93B Driver

▼ Setup Procedure

When the user decides to make a call, the user sends a SETUP message down

to Q.93B and waits for a SETUP_ACK from Q.93B. After SETUP_ACK is

received, the user waits for either a CALL_PROCEEDING, CONNECT, or

RELEASE_COMPLETE message from Q.93B (Q.93B ignores all other

messages). After the CONNECT message is received, the user can use the

virtual channel.

When the user receives a SETUP message from Q.93B, the user shall respond

with either a CALL_PROCEEDING, CONNECT, or RELEASE_COMPLETE

message to Q.93B. After the CONNECT_ACK message is received, the user can

use the virtual channel.

Message Type Direction

SETUP BOTH

SETUP_ACK UP

CALL_PROCEEDING BOTH

CONNECT BOTH

CONNECT_ACK UP

RELEASE DOWN

RELEASE_COMPLETE BOTH

STATUS_ENQUIRY DOWN

STATUS UP

RESTART BOTH

RESTART_ACK BOTH

UP is from Q.93B to user;
DOWN is from user to Q.93B
D-4 SunATM-155 SBus Cards Manual—May 1995

D

▼ Release Procedure

To clear an active call or a call in progress, the user sends a RELEASE message

down to Q.93B and waits for a RELEASE_COMPLETE from Q.93B. Anytime

the user receives a RELEASE_COMPLETE message from Q.93B, the user shall

release the virtual channel if the call is active or in progress.

Q.93B never sends a RELEASE message to the user. The user only sends the

RELEASE_COMPLETE message right after sending a SETUP_ACK message to

Q.93B to reject the call in response to a SETUP message from Q.93B. At any

other time, to reject or tear down a call, the user shall send a RELEASE

message to Q.93B.

▼ Exception Conditions

When a message is received from the user with an unattached port, Q.93B shall

return the message with the Error_Code BAD_PORT.
Application Programmers’ Interface D-5

D

Normal Call Setup and Tear Down

1 XX(n): Q.93B State Name (Q.93B State Number)
* Optional

SetUp

USER Q.93B SWITCH Q.93B USER

SetUpAck

SetUp

Null (0)1 Null(0)

Call Initiated (1)

Call Present (6)

CallProceeding*

CallProceeding*

Outgoing Call

Incoming Call
Proceeding (9)

Connect

Connect

Connect Request
(8)

Active (10) Active (10)

Release

Release_Complete

Release_Complete

Release Request
(11)

Null (0) Null (0)

SetUp

SetUp

Connect

Connect

ConnectAck

ConnectAck

Release

Release

Release_Complete

Release_Complete

ConnectAck

CallProceeding*

Proceeding (3)
D-6 SunATM-155 SBus Cards Manual—May 1995

D

D.1.2 Q.93B User Space API

Q.93B user space consists of all qcc_bld, qcc_len, qcc_parse, and qcc_util

functions under section 3.

See the qcc_bld (3), qcc_len (3), qcc_parse (3), and qcc_util (3) man pages that

follow.
Application Programmers’ Interface D-7

D

qcc_bld(3) C Library Functions qcc_bld(3)

NAME

qcc_bld, qcc_bld_setup, qcc_bld_call_proceeding,

qcc_bld_connect, qcc_bld_release, qcc_bld_release_complete,

qcc_bld_status, qcc_bld_status_enquiry, qcc_bld_restart,

qcc_bld_restart_ack - build Q.2931 messages

SYNOPSIS

cc [flag ...] file ... -latm [library ...]

#include <atm/types.h>

#include <atm/qcc.h>

int qcc_bld_setup(strbuf_t *ctlp, strbuf_t *datap,

char *ifname, int calltag, int vci, int forward_sdusize,

int backward_sdusize, atm_addr_t *src_addrp,

atm_addr_t *dst_addrp, int sap, int endpt_ref);

int qcc_bld_call_proceeding(strbuf_t *ctlp, strbuf_t *datap,

char *ifname, int callid, int vci, int endpt_ref);

int qcc_bld_connect(strbuf_t *ctlp, strbuf_t *datap,

char *ifname, int callid, int vci,

int forward_sdusize, int backward_sdusize,

int endpt_ref);

int qcc_bld_release(strbuf_t *ctlp, strbuf_t *datap,

char *ifname, int callid, int cause);

int qcc_bld_release_complete(strbuf_t *ctlp,

strbuf_t *datap, char *ifname, int callid,

int cause);

int qcc_bld_status_enquiry(strbuf_t *ctlp, strbuf_t *datap,

char *ifname, int callid, int endpt_ref);

int qcc_bld_status(strbuf_t *ctlp, strbuf_t *datap,

char *ifname, int callid, int callstate, int cause,

int endpt_ref, int endpt_state);
D-8 SunATM-155 SBus Cards Manual—May 1995

D

qcc_bld(3)

int qcc_bld_restart(strbuf_t *ctlp, strbuf_t *datap,

char *ifname, int callid, int vci, int rstall);

int qcc_bld_restart_ack(strbuf_t *ctlp, strbuf_t *datap,

char *ifname, int callid, int vci, int rstall);

MT-LEVEL

Safe.

AVAILABILITY

The functionality described in this man page is available in the SUNWatma

package included with the SunATM adapter board. The libatm.a library,

which is located in /usr/lib, must be included at compile time as indicated

in the synopsis.

DESCRIPTION

These functions build the various messages that make up the Q.2931

protocol which is used for ATM signalling. A full description of the message

format and use can be found in the ATM Forum's User Network Interface

Specification, V3.0. The functions may be used by processes which are

running in user space.

In general, no error checking is performed on the data that is passed in.

Whatever data is passed in will be placed in the message that is built

without examination. The only exceptions to this are mentioned in the

function descriptions.

Each function requires a minimum of 4 parameters: ctlp and datap, which

are pointers to strbuf_t buffers; ifname, which is a string containing the

physical interface (such as sa0); and an integer, either calltag or callid,

depending on the message type. calltag is used in the setup message only; it

is a reference number that is assigned by the calling application. callid is

used in all other messages; it is assigned by the lower layer and will be sent

up to the user, with the calltag, in the setup_ack message.
Application Programmers’ Interface D-9

D

qcc_bld(3)

ctlp and datap make up the control and data portions of the constructed

message, corresponding to the M_PROTO and M_DATA blocks of the

message that will be passed downstream. The buffer fields in the structures

which ctlp and datap point to (ctlp->buf and datap->buf) must be allocated

before calling a qcc_bld* function; size information may be obtained using

the qcc_bld_*_datalen() functions (see qcc_len(3)).

After successful return from a qcc_bld* function, the message may be passed

down an open stream using the putmsg(2) function, with ctlp and datap as

the buffer parameters for putmsg.

Other parameters for each function depend on the type of information

required for each message type, and are defined in the paragraphs

describing each function call.

After a message has been built, the user may add IEs that are not built into

the message; however, the size information returned by the qcc_len

functions only includes the IEs documented here. The user must allocate

enough additional space and correct the message length value in the Q.2931

header if additional IEs are required in the message.

qcc_bld_setup() constructs a setup message containing some or all of the

following Information Elements: AAL parameters, ATM user cell rate,

broadband bearer capability, called party number, calling party number,

quality of service parameter, and endpoint reference. The user must pass in

the forward and backward sdu sizes for the AAL parameter IE, an ATM

address for the destination for the called party number IE, and one for itself

for the calling party number IE (atm_address_t format is defined in the

<atm/qcc.h> header file). The value passed in the sap parameter is placed in

a broadband higher layer IE. The higher layer IE indicates the sap to which

received messages should be directed. If the user passes in a positive vci, a

connection identifier IE will be included; if the user passes in a non-negative

endpt_ref value (0 is valid), an endpoint reference IE is included. The

endpoint reference IE indicates that this is a point-to-multipoint call; point-

to-multipoint calls will be supported starting with the second release of

SunATM software.
D-10 SunATM-155 SBus Cards Manual—May 1995

D

qcc_bld(3)

qcc_bld_call_proceeding() includes a connection identifier IE if a positive vci

is passed in, and an endpoint reference IE if a non-negative endpt_ref is

passed in. An endpoint reference IE should only appear if the call is a point-

to-multipoint call; point-to-multipoint calls will be supported starting with

the second release of SunATM software.

qcc_bld_connect() includes an AAL parameters IE, requiring the forward_

and backward_sdusize values, a connection identifier IE if a positive vci

value is passed in, and an end-point reference IE if a non-negative endpt_ref

value is passed in. An endpoint reference IE should only appear if the call is

a point-to-multipoint call; point-to-multipoint calls will be supported

starting with the second release of SunATM software.

qcc_bld_release() includes a cause IE for which the user must pass in a cause

value. The possible values can be found in the <atm/qcc.h> header file. The

same is true for qcc_bld_release_complete().

qcc_bld_status_enquiry() includes only an endpoint reference IE if a non-

negative endpt_ref value is passed in. An end-point reference IE should

only appear if the call is a point-to-multipoint call; point-to-multipoint calls

will be supported starting with the second release of SunATM software.

qcc_bld_status() includes a call state IE, requiring the user pass in the

callstate parameter; possible values can be found in the <atm/qcc.h> header

file. It also includes a cause IE; the cause value must also be passed in. Its

possible values may also be found in the <atm/qcc.h> header file. Finally, if

the call is a point-to-multipoint call, endpoint reference and endpoint state

IEs may also be included; they are included if a non-negative endpt_ref

value is passed in. The endpt_state parameter is used in the endpoint state

IE; possible party state values may be found in <atm/qcc.h>. Point-to-

multipoint calls will be supported starting with the second release of

SunATM software.

qcc_bld_restart() includes a restart indicator IE, which is used to determine

whether an individual call or all calls on an interface should be restarted. If

rstall is 0, only the call identified by vci should be restarted; in this case, a

connection identifier IE will also be included. If rstall is non-zero, all calls

will be restarted. The same format applies to the qcc_bld_restart_ack()

function.
Application Programmers’ Interface D-11

D

qcc_bld(3)

RETURN VALUES

All functions return 0 on success and -1 on error.

EXAMPLES

The following code fragment builds a setup message and sends it

downstream.

#include <atm/limits.h>

#include <atm/qcc.h>

char ifname[QCC_MAX_IFNAME_LEN] = "sa0";

int calltag = 0x1234;

int vci = 0x100;

int forward_sdusize = 0x2378;

int backward_sdusize = 0x2378;

int sap = 0x100;

atm_addr_t src_addr = {

0x45, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x0f, 0x00, 0x00, 0x00, 0x00,

0x08, 0x00, 0x20, 0x1a, 0xe1, 0x53, 0x00

};

atm_addr_t dst_addr = {

0x45, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x0f, 0x00, 0x00, 0x00, 0x00,

0x08, 0x00, 0x20, 0x1a, 0xb6, 0xb9, 0x00

};

struct strbuf ctl, data;

char ctlbuf[QCC_MAX_CTL_LEN];

char databuf[QCC_MAX_DATA_LEN];

ctl.buf = ctlbuf;

data.buf = databuf;

ctl.maxlen = QCC_MAX_CTL_LEN;

data.maxlen = QCC_MAX_DATA_LEN;
D-12 SunATM-155 SBus Cards Manual—May 1995

D

qcc_bld(3)

qcc_bld_setup(&ctl, &data, ifname, calltag, vci,

forward_sdusize, backward_sdusize,

&src_addr, &dst_addr, sap, -1);

if (putmsg(fd, &ctl, &data, 0) < 0) {

perror("putmsg");

exit (-1);

}

SEE ALSO

qcc_len(3), qcc_parse(3), qcc_util(3), q93b(7)

"ATM User-Network Interface Specification, V3.0," ATM Forum.

NOTES

The functions in this API include support for Information Elements specific

to point-to-multipoint calls. Although point-to-multipoint calls are not

supported in the first release of the SunATM software, they will be

supported in future releases; thus the necessary parameters were included

in the API functions of the first release to avoid changes to the API when

point-to-multipoint support is added to the SunATM software package.

This API is an interim solution until the ATM Forum has standardized an

API. At that time, Sun will implement that API, and support for the Q.2931

Call Control library may not be continued.
Application Programmers’ Interface D-13

D

qcc_len(3) C Library Functions qcc_len(3)

NAME

qcc_bld_setup_datalen, qcc_bld_call_proceeding_datalen,

qcc_bld_connect_datalen, qcc_bld_connect_ack_datalen,

qcc_bld_release_datalen, qcc_bld_release_complete_datalen,

qcc_bld_status_enquiry_datalen, qcc_bld_status_datalen,

qcc_bld_restart_datalen, qcc_bld_restart_ack_datalen

qcc_max_bld_datalen, qcc_ctl_len – get length of Q.2931 messages

SYNOPSIS

cc [flag ...] file ... -latm [library ...]

#include <atm/qcc.h>

#include <atm/limits.h>

size_t qcc_bld_setup_datalen();

size_t qcc_bld_call_proceeding_datalen();

size_t qcc_bld_connect_datalen();

size_t qcc_bld_connect_ack_datalen();

size_t qcc_bld_release_datalen();

size_t qcc_bld_release_complete_datalen();

size_t qcc_bld_status_enquiry_datalen();

size_t qcc_bld_status_datalen();

size_t qcc_bld_restart_datalen();

size_t qcc_bld_restart_ack_datalen();

size_t qcc_max_bld_datalen();

size_t qcc_ctl_len();

MT-LEVEL

Safe.
D-14 SunATM-155 SBus Cards Manual—May 1995

D

qcc_len(3)

AVAILABILITY

The functionality described in this man page is available in the SUNWatm

package included with a SunATM adapter board. The libatm.a library,

which is located in /usr/lib, must be included at compile time as indicated

in the synopsis.

DESCRIPTION

These functions may be used to determine appropriate buffer sizes for the

control and data buffers that are passed into qcc_bld(3) functions. For the

data buffer, the qcc_bld_*_datalen() functions will return the maximum size

of a particular message type. qcc_max_bld_datalen() returns the maximum

size of all Q.2931 message types. A buffer allocated for this size will be able

to hold any message type. For the control buffer, qcc_ctl_len() will return the

required size.

SEE ALSO

qcc_bld(3), qcc_parse(3), q93b(7)

ATM User-Network Interface Specification, V3.0, published by the

ATM Forum. ISBN 0-13-225863-3
Application Programmers’ Interface D-15

D

qcc_parse(3) C Library Functions qcc_parse(3)

NAME

qcc_parse, qcc_parse_setup, qcc_parse_call_proceeding, qcc_parse_connect,

qcc_parse_release, qcc_parse_release_complete, qcc_parse_status_enquiry,

qcc_parse_status, qcc_parse_restart, qcc_parse_restart_ack, qcc_get_hdr

– parse Q.2931 messages

SYNOPSIS

cc [flag ...] file ... –latm [library ...]

#include <atm/types.h>

#include <atm/qcc.h>

int qcc_parse_setup(strbuf_t *datap, int *vcip,

int *forward_sdusizep, int *backward_sdusizep,

atm_addr_t *src_addrp, atm_addr_t *dst_addrp,

int *sapp, int *endpt_refp);

int qcc_parse_call_proceeding(strbuf_t *datap, int *vcip,

int *endpt_refp);

int qcc_parse_connect(strbuf_t *datap, int *vcip,

int *forward_sdusizep, int *backward_sdusizep,

int *endpt_refp);

int qcc_parse_release(strbuf_t *datap, int *causep);

int qcc_parse_release_complete(strbuf_t *datap,

int *causep);

int qcc_parse_status_enquiry(strbuf_t *datap,

int *endpt_refp);

int qcc_parse_status(strbuf_t *datap, int *callstatep,

int *causep, int *endpt_refp, int *endpt_statep);

int qcc_parse_restart(strbuf_t *datap, int *vcip,

int *rstallp);
D-16 SunATM-155 SBus Cards Manual—May 1995

D

qcc_parse(3)

int qcc_parse_restart_ack(strbuf_t *datap, int *vcip,

int *rstallp);

qcc_hdr_t *qcc_get_hdr(strbuf_t *ctlp)

MT-LEVEL

Safe.

AVAILABILITY

The functionality described in this man page is available in the SUNWatma

package included with the SunATM adapter board. The libatm.a library,

which is located in /usr/lib, must be included at compile time as indicated

in the synopsis.

DESCRIPTION

These functions parse the various messages that make up the Q.2931

protocol which is used for ATM signalling. A full description of the message

format and use can be found in the ATM Forum’s User Network Interface

Specification, V3.0. The functions may be used by processes which are

running in user space.

Each function requires a minimum of 1 parameter: datap, which is a pointer

to a strbuf_t buffer, or in the case of qcc_get_hdr, ctlp, which is also a

pointer to a strbuf_t buffer.

datap is the data portion of a STREAMS message, corresponding to the

M_DATA block of the message that is received from downstream. After

receiving a message using the getmsg(2) function, the message type may be

examined and an appropriate parsing routing called to extract information

from the signalling message.
Application Programmers’ Interface D-17

D

qcc_parse(3)

ctlp is the control portion of a STREAMS message, corresponding to the

M_PROTO block of the message that is received from downstream. After

receiving a message using the getmsg(2) function, qcc_get_hdr may be used

to extract the Q.2931 header structure from the control buffer received from

getmsg(2). The Q.2931 header type, qcc_hdr_t, is defined in <atm/types.h>.

Other parameters for each function depend on the type of information that

is available in each message type. In all cases, certain IEs are examined in

each message, as indicated below. If those IEs exist, the data that is expected

from them is retrieved, but no error message is sent if they do not exist; the

value of the parameter is set to -1 for any data that was expected from that

particular IE. Also, IEs that are not expected are ignored. If the user wishes

to ignore any of the parameters of a parse function, passing in a NULL

pointer for that parameter is allowed so that space need not be allocated for

the unnecessary parameter.

qcc_parse_setup() parses a setup message containing the following

Information Elements: AAL parameters, ATM user cell rate, broadband

bearer capability, called party number, calling party number, quality of

service parameter, connection identifier, broadband higher layer

information, and endpoint reference. The endpoint reference IE is only

included in setup messages for point-to-multipoint calls, which will be

supported starting with the second release of SunATM software. The

following table matches the data that is retrieved from the message with the

IE from which it is parsed.

DATA RETRIEVED INFORMATION ELEMENT

vci connection identifier

forward sdusize AAL parameters

backward sdusize AAL parameters

source address calling party number

destination address called party number

sap broadband higher layer

endpoint reference id endpoint reference
D-18 SunATM-155 SBus Cards Manual—May 1995

D

qcc_parse(3)

qcc_parse_call_proceeding() parses a call proceeding message containing a

connection identifier IE, which is used to set the value of vci, and an

endpoint reference IE, setting the value of endpt_ref. The endpoint reference

IE is only included in call proceeding messages for point-to-multipoint calls,

which will be supported starting with the second release of SunATM

software.

qcc_parse_connect() parses a connect message containing an AAL

parameters IE, setting the forward and backward sdusize values, a

connection identifier IE, setting the value of vci, and an endpoint reference

IE, setting the value of endpt_ref. The endpoint reference IE is only included

in connect messages for point-to-multipoint calls, which will be supported

starting with the second release of SunATM software.

qcc_parse_release() parses a cause IE, setting the cause value. A listing of

the possible values can be found in the <atm/qcc.h> header file. The same is

true for qcc_parse_release_complete.

qcc_parse_status_enquiry() parses a status enquiry message containing an

endpoint reference IE, setting the value of endpt_ref. The endpoint reference

IE is only included when enquiring about a party state in a point-to-

multipoint call. Point-to-multipoint calls will be supported starting with the

second release of SunATM software.

qcc_parse_status() parses a status message. The IEs that are parsed are call

state, cause, endpoint reference, and endpoint state. The call state and cause

IEs are used to set the value of the parameters callstate and cause; possible

values for both parameters may be found in the <atm/qcc.h> header file.

The endpoint reference and endpoint state IEs will be used to set the values

of the endpt_ref and endpt_state parameters; they are included if an enquiry

is made about a party state in a point-to-multipoint call or to report an error

condition in a point-to-multipoint call. Point-to-multipoint calls will be

supported starting with the second release of SunATM software.
Application Programmers’ Interface D-19

D

qcc_parse(3)

qcc_parse_restart() parses a restart message containing two possible IEs:

connection identifier and restart indicator. The restart indicator IE is used to

set the value of rstall; this parameter indicates whether a particular vci or all

vcis are to be restarted (rstall = 1 implies all vcis, rstall = 0 implies a

particular vci). The connection identifier identifies the particular vci. In this

case, the value of the parameter vci is set to 0 if there is no connection

identifier IE in the message. The same format applies to the

qcc_parse_restart_ack() function.

qcc_get_hdr() extracts the Q.2931 header from the control buffer received in

getmsg(2). A pointer to this buffer, ctlp, is passed in to the function, and a

pointer to the header of type qcc_hdr_t is returned on success. On failure, a

null pointer is returned.

RETURN VALUES

All functions, with the exception of qcc_get_hdr, return 0 on success and -1

on error. The return values for qcc_get_hdr are described above.
D-20 SunATM-155 SBus Cards Manual—May 1995

D

qcc_parse(3)

EXAMPLES

The following code fragment receives and parses a setup message.

#include <atm/types.h>

#include <atm/qcc.h>

#include <atm/limits.h>

void

wait_for_setup(int fd);

{

int vci;

int forward_sdusize;

int backward_sdusize;

int sap;

int flags = 0;

atm_addr_t src_addr;

atm_addr_t dst_addr;

qcc_hdr_t *hdrp;

struct strbuf ctl, data;

char ctlbuf[QCC_MAX_CTL_LEN];

char databuf[QCC_MAX_DATA_LEN];

ctl.buf = ctlbuf;

data.buf = databuf;

ctl.len = data.len = 0;

ctl.maxlen = QCC_MAX_CTL_LEN;

data.maxlen = QCC_MAX_DATA_LEN;

if (getmsg(fd, &ctl, &data, &flags) < 0) {

perror("getmsg");

exit (-1);

}

hdrp = qcc_get_hdr(&ctl);
Application Programmers’ Interface D-21

D

qcc_parse(3)

if ((hdrp) && (hdrp->type == QCC_SETUP)) {

qcc_parse_setup(&data, &vci, &forward_sdusize,

&backward_sdusize, &src_addr,

&dst_addr, &sap, NULL);

printf("parse_setup: vci = 0x%x, sap = 0x%x\n",

vci, sap);

}

}

SEE ALSO

qcc_bld(3), qcc_len(3), qcc_util(3), q93b(7)

"ATM User-Network Interface Specification, V3.0," ATM Forum.

NOTES

The functions in this API include support for Information Elements specific

to point-to-multipoint calls. Although point-to-multipoint calls are not

supported in the first release of the SunATM software, they will be

supported in future releases; thus the necessary parameters were included

in the API functions of the first release to avoid changes to the API when

point-to-multipoint support is added to the SunATM software package.

This API is an interim solution until the ATM Forum has standardized an

API. At that time, Sun will implement that API, and support for the Q.2931

Call Control library may not be continued.
D-22 SunATM-155 SBus Cards Manual—May 1995

D

qcc_util(3) C Library Functions qcc_util(3)

NAME

q_ioc_bind

SYNOPSIS

cc [flag ...] file ... -latm [library ...]

#include <atm/qccioctl.h>

int q_ioc_bind(int fd, int sap);

MT-LEVEL

Safe.

AVAILABILITY

The functionality described in this man page is available in the SUNWatm

package included with a SunATM adapter board. The libatm.a library,

which is located in /usr/lib, must be included at compile time as indicated

in the synopsis.

DESCRIPTION

This utility may be used to bind an application program that has opened a

stream to the q93b driver. This step is required so that incoming SETUP

messages are directed to the correct application by the q93b driver.

Before using this function, a stream must be opened to the q93b driver,

using the open(2) system call.

q_ioc_bind() may then be used to bind a service access point, sap, to the

opened stream, specified by its file descriptor, fd.

Q.2931 SETUP messages which are to be received by the application

program must contain a Broadband Higher Layer Information IE identifying

the sap to which the message should be directed.

RETURN VALUES

q_ioc_bind returns -1 on error and 0 on success.
Application Programmers’ Interface D-23

D

qcc_util(3)

EXAMPLES

The following example opens a stream to q93b and binds it to sap 0x100.

#include <atm/qccioctl.h>

setup_q93b()

{

char qdriver[] = "/dev/q93b"

int qfd;

int sap = 0x100;

if ((qfd = open(qdriver, O_RDWR, 0)) < 0) {

perror("q93b open");

exit(-1);

}

if (q_ioc_bind(qfd, sap) < 0) {

perror("q_ioc_bind");

exit(-1);

}

}

SEE ALSO

qcc_bld(3), qcc_len(3), qcc_parse(3), qcc_bld(9F),

qcc_parse(9F), sa_util(3), q93b(7), sa(7)
D-24 SunATM-155 SBus Cards Manual—May 1995

D

D.1.3 Q.93B Kernel Space API

Q.93B kernel space consists of all qcc_bld and qcc_parse functions under

section 9F.

See the qcc_bld (9F) and qcc_parse (9F) man pages that follow.
Application Programmers’ Interface D-25

D

qcc_bld(9F) C Library Functions qcc_bld(9F)

NAME

qcc_bld, qcc_bld_setup, qcc_bld_call_proceeding, qcc_bld_connect,

qcc_bld_release, qcc_bld_release_complete, qcc_bld_status,

qcc_bld_status_enquiry, qcc_bld_restart, qcc_bld_restart_ack

– build Q.2931 messages

SYNOPSIS

cc -DKERNEL -D_KERNEL [flag ...] file ...

#include <atm/types.h>

#include <atm/qcc.h>

char _depends_on[] = "drv/qcc";

int qcc_parse_setup(mblk_t *mp, int *vcip,

int *forward_sdusizep, int *backward_sdusizep,

atm_addr_t *src_addrp, atm_addr_t *dst_addrp,

int *sapp, int *endpt_refp);

int qcc_parse_call_proceeding(mblk_t *mp, int *vcip,

int *endpt_refp);

int qcc_parse_connect(mblk_t *mp, int *vcip,

int *forward_sdusizep, int *backward_sdusizep,

int *endpt_refp);

int qcc_parse_release(mblk_t *mp, int *causep);

int qcc_parse_release_complete(mblk_t *mp,

int *causep);

int qcc_parse_status_enquiry(mblk_t *mp,

int *endpt_refp);

int qcc_parse_status(mblk_t *mp, int *callstatep,

int *causep, int *endpt_refp, int *endpt_statep);
D-26 SunATM-155 SBus Cards Manual—May 1995

D

qcc_bld(9F)

int qcc_parse_restart(mblk_t *mp, int *vcip,

int *rstallp);

int qcc_parse_restart_ack(mblk_t *mp, int *vcip,

int *rstallp);

MT-LEVEL

Safe.

AVAILABILITY

The functionality described in this man page is available in the SUNWatma

package included with the SunATM adapter board. The -DKERNEL and -

D_KERNEL flags must be included to indicate that the application should

run in kernel space, and the qcc driver must be loaded (this requirement is

expressed in the code using the "depends_on" line shown in the synopsis).

DESCRIPTION

These functions build the various messages that make up the Q.2931

protocol which is used for ATM signalling. A full description of the message

format and use can be found in the ATM Forum’s User Network Interface

Specification, V3.0. The functions may be used by processes which are

running in kernel space.

In general, no error checking is performed on the data that is passed in.

Whatever data is passed in will be placed in the message that is built

without examination. The only exceptions to this are mentioned in the

function descriptions.

Two mblk_t structures are allocated and linked by each of the functions

(their format is shown in the following diagram). The pointer that is

returned points to the M_PROTO block, and may then be passed

downstream with the putq(9F) command.
Application Programmers’ Interface D-27

D

qcc_bld(9F)

The parameters passed in to each function are used to fill in the data

portions of these two mblks.

Each function requires a minimum of 2 parameters: ifname, which is a string

containing the physical interface (such as sa0); and an integer, either calltag

or callid, depending on the message type. calltag is used in the setup

message only; it is a reference number that is assigned by the calling

application. callid is used in all other messages; it is assigned by the lower

layer and will be sent up to the user, with the calltag, in the setup_ack

message.

Other parameters for each function depend on the type of information

required for each message type, and are defined in the paragraphs

describing each function call.

qcc_bld_setup() constructs a setup message containing the following

Information Elements: AAL parameters, ATM user cell rate, broadband

bearer capability, called party number, calling party number, quality of

service parameter, and endpoint reference. The user must pass in the

forward and backward sdu sizes for the AAL parameter IE, an ATM address

for the destination for the called party number IE, and one for itself for the

calling party number IE (atm_address_t format is defined in the

<atm/qcc.h> header file). The value passed in the sap parameter is placed in

a broadband higher layer IE. The higher layer IE indicates the sap to which

received messages should be directed. If the user passes in a positive vci, a

connection identifier IE will be included; if the user passes in a non-negative

endpt_ref (0 is valid), an endpoint reference IE will be included.

Ifname

Call_ID

Type

Error_Code

M_PROTO M_DATA
mp

Q.2931 Message

(9) (16)

Information
Elements (IEs)

Call_Tag

R
S
V

D-28 SunATM-155 SBus Cards Manual—May 1995

D

qcc_bld(9F)

The endpoint reference IE indicates that this is a point-to-multipoint call;

point-to-multipoint calls will be supported starting with the second release

of SunATM software.

qcc_bld_call_proceeding() includes a connection identifier IE if a positive vci

is passed in, and an endpoint reference IE if a non-negative endpt_ref is

passed in. An endpoint reference IE should only appear if the call is a point-

to-multipoint call; point-to-multipoint calls will be supported starting with

the second release of SunATM software.

qcc_bld_connect() includes an AAL parameters IE, requiring the forward_

and backward_sdusize values, a connection identifier IE if a positive vci

value is passed in, and an endpoint reference IE if a non-negative endpt_ref

value is passed in. An endpoint reference IE should only appear if the call is

a point-to-multipoint call; point-to-multipoint calls will be supported

starting with the second release of SunATM software.

qcc_bld_release() includes a cause IE for which the user must pass in a cause

value. The possible values can be found in the <atm/qcc.h> header file. The

same is true for qcc_bld_release_ complete().

qcc_bld_status_enquiry() includes only an endpoint reference IE if a non-

negative endpt_ref value is passed in. An endpoint reference IE should only

appear if the call is a point-to-multipoint call; point-to-multipoint calls will

be supported starting with the second release of SunATM software.

qcc_bld_status() includes a call state IE, requiring the user pass in the

callstate parameter; possible values can be found in the <atm/qcc.h> header

file. It also includes a cause IE; the cause value must also be passed in. Its

possible values may also be found in the <atm/qcc.h> header file. Finally, if

the call is a point-to-multipoint call, endpoint reference and endpoint state

IEs may also be included; they are included if a non-negative endpt_ref

value is passed in. The endpt_state parameter is used in the enpoint state IE;

possible party state values may be found in <atm/qcc.h>. Point-to-

multipoint calls will be supported starting with the second release of

SunATM software.
Application Programmers’ Interface D-29

D

qcc_bld(9F)

qcc_bld_restart() includes a restart indicator IE, which is used to determine

whether an individual call or all calls on an interface should be restarted. If

rstall is 0, only the call identified by vci should be restarted; in this case, a

connection identifier IE will also be included. If rstall is non-zero, all calls

will be restarted. The same format applies to the qcc_bld_restart_ack()

function.

RETURN VALUES

All functions return a pointer to an mblk_t. If the function is not successful,

the pointer will be NULL.

EXAMPLES

The following code fragment builds a setup message and sends it

downstream.

#include <sys/stream.h>

#include <atm/qcc.h>

#include <atm/limits.h>

char _depends_on[] = "drv/qcc";

void

wait_for_setup(queue_t *q);

{

int vci;

int forward_sdusize;

int backward_sdusize;

int sap;

atm_addr_t src_addr;

atm_addr_t dst_addr;

mblk_t *mp;

qcc_hdr_t *hdrp;
D-30 SunATM-155 SBus Cards Manual—May 1995

D

qcc_bld(9F)

do {

if !(mp = getq(q)) {

perror("getq");

exit (-1);

}

hdrp = (qcc_hdr_t *)mp;

} while (hdrp->type != QCC_SETUP);

qcc_parse_setup(mp->b_cont, &vci, &forward_sdusize,

&backward_sdusize, &src_addr,

&dst_addr, &sap, NULL);

printf("parse_setup: vci = 0x%x, sap = 0x%x0, vci, sap);

}

SEE ALSO

qcc_util(3), qcc_parse(9F), q93b(7)

"ATM User-Network Interface Specification, V3.0," ATM Forum.

NOTES

The functions in this API include support for Information Elements specific

to point-to-multipoint calls. Although point-to-multipoint calls are not

supported in the first release of the SunATM software, they will be

supported in future releases; thus the necessary parameters were included

in the API functions of the first release to avoid changes to the API when

point-to-multipoint support is added to the SunATM software package.

This API is an interim solution until the ATM Forum has standardized an

API. At that time, Sun will implement that API, and support for the Q.2931

Call Control library may not be continued.
Application Programmers’ Interface D-31

D

qcc_parse(9F) C Library Functions qcc_parse(9F)

NAME

qcc_parse, qcc_parse_setup, qcc_parse_call_proceeding, qcc_parse_connect,

qcc_parse_release, qcc_parse_release_complete, qcc_parse_status_enquiry,

qcc_parse_status, qcc_parse_restart, qcc_parse_restart_ack

– parse Q.2931 messages

SYNOPSIS

cc -DKERNEL -D_KERNEL [flag ...] file ...

#include <atm/types.h>

#include <atm/qcc.h>

char _depends_on[] = "drv/qcc";

int qcc_parse_setup(mblk_t *mp, int *vcip,

int *forward_sdusizep, int *backward_sdusizep,

atm_addr_t *src_addrp, atm_addr_t *dst_addrp,

int *sapp, int *endpt_refp);

int qcc_parse_call_proceeding(mblk_t *mp, int *vcip,

int *endpt_refp);

int qcc_parse_connect(mblk_t *mp, int *vcip,

int *forward_sdusizep, int *backward_sdusizep,

int *endpt_refp);

int qcc_parse_release(mblk_t *mp, int *causep);

int qcc_parse_release_complete(mblk_t *mp,

int *causep);

int qcc_parse_status_enquiry(mblk_t *mp,

int *endpt_refp);

int qcc_parse_status(mblk_t *mp, int *callstatep,

int *causep, int *endpt_refp, int *endpt_statep);
D-32 SunATM-155 SBus Cards Manual—May 1995

D

qcc_parse(9F)

int qcc_parse_restart(mblk_t *mp, int *vcip,

int *rstallp);

int qcc_parse_restart_ack(mblk_t *mp, int *vcip,

int *rstallp);

MT-LEVEL

Safe.

AVAILABILITY

The functionality described in this man page is available in the SUNWatma

package included with the SunATM adapter board. The -DKERNEL and -

D_KERNEL flags must be included to indicate that the application should

run in kernel space, and the qcc driver must be loaded (this requirement is

expressed in the code using the "depends_on" line shown in the synopsis).

DESCRIPTION

These functions parse the various messages that make up the Q.2931

protocol which is used for ATM signalling. A full description of the message

format and use can be found in the ATM Forum's User Network Interface

Specification, V3.0. The functions may be used by processes which are

running in kernel space.

Each function requires a minimum of 1 parameter: mp, which is a pointer to

a mblk_t structure, and is extracted from the following structure:

Ifname

Call_ID

Type

Error_Code

M_PROTO M_DATA
mp

Q.2931 Message

(9) (16)

Information
Elements (IEs)

Call_Tag

R
S
V

Application Programmers’ Interface D-33

D

qcc_parse(9F)

When a message is received from the q93b driver using the getq(9F)

function, a pointer to the M_PROTO block shown above is returned.

However, the q93b message which is parsed is contained in the M_DATA

block, so the first parameter passed to a qcc_parse function must be

mp->b_cont, where mp is the pointer received by getq(). The M_PROTO

block data may be examined to determine the message type, which indicates

the parsing function that should be called.

Other parameters for each function depend on the type of information that

is available in each message type. In all cases, certain IEs are examined in

each message, as indicated below. If those IEs exist, the data that is expected

from them is retrieved, but no error message is sent if they do not exist; the

value of the parameter is set to -1 for any data that was expected from that

particular IE. Also, IEs that are not expected are ignored. If the user wishes

to ignore any of the parameters of a parse function, passing in a NULL

pointer for that parameter is allowed so that space need not be allocated for

the unnecessary parameter.

qcc_parse_setup() parses a setup message containing the following

Information Elements: AAL parameters, ATM user cell rate, broadband

bearer capability, called party number, calling party number, quality of

service parameter, connection identifier, broadband higher layer

information, and endpoint reference. The endpoint reference IE is only

included in setup messages for point-to-multipoint calls, which will be

supported starting with the second release of SunATM software. The

following table matches the data that is retrieved from the message with the

IE from which it is parsed.

DATA RETRIEVED INFORMATION ELEMENT

vci connection identifier

forward sdusize AAL parameters

backward sdusize AAL parameters

source address calling party number

destination address called party number

sap broadband higher layer

endpoint reference id endpoint reference
D-34 SunATM-155 SBus Cards Manual—May 1995

D

qcc_parse(9F)

qcc_parse_call_proceeding() parses a call proceeding message containing a

connection identifier IE, which is used to set the value of vci, and an

endpoint reference IE, setting the value of endpt_ref. The endpoint reference

IE is only included in call proceeding messages for point-to-multipoint calls,

which will be supported in the second release of SunATM software.

qcc_parse_connect() parses a connect message containing an AAL

parameters IE, setting the forward and backward sdusize values, a

connection identifier IE, setting the value of vci, and an endpoint reference

IE, setting the value of endpt_ref. The endpoint reference IE is only included

in connect messages for point-to-multipoint calls, which will be supported

starting with the second release of SunATM software.

qcc_parse_release() parses a cause IE, setting the cause value. A listing of

the possible values can be found in the <atm/qcc.h> header file. The same is

true for qcc_parse_release_complete.

qcc_parse_status_enquiry() parses a status enquiry message containing an

endpoint reference IE, setting the value of endpt_ref. The endpoint reference

IE is only included when enquiring about a party state in a point-to-

multipoint call. Point-to-multipoint calls will be supported starting with the

second release of SunATM software.

qcc_parse_status() parses a status message. The IEs that are parsed are call

state, cause, endpoint reference, and endpoint state. The call state and cause

IEs are used to set the values of the parameters callstate and cause; possible

values for both parameters may be found in the <atm/qcc.h> header file.

The endpoint reference and endpoint state IEs will be used to set the values

of the endpt_ref and endpt_state parameters; they are included if an enquiry

is made about a party state in a point-to-multipoint call or to report an error

condition in a point-to-multipoint call. Point-to-multipoint calls will be

supported starting with the second release of SunATM software.
Application Programmers’ Interface D-35

D

qcc_parse(9F)

qcc_parse_restart() parses a restart message containing two possible IEs:

connection identifier and restart indicator. The restart indicator IE is used to

set the value of rstall; this parameter indicates whether a particular vci or all

vcis are to be restarted (rstall = 1 implies all vcis, rstall = 0 implies a

particular vci). The connection identifier identifies the particular vci. In this

case, the value of the parameter vci is set to 0 if there is no connection

identifier IE in the message. The same format applies to the

qcc_parse_restart_ack() function.

RETURN VALUES

All functions return 0 on success and -1 on error.

EXAMPLES

The following code fragment receives and parses a setup message.

#include <sys/stream.h>

#include <atm/qcc.h>

#include <atm/limits.h>

char _depends_on[] = "drv/qcc";

void

wait_for_setup(queue_t *q);

{

int vci;

int forward_sdusize;

int backward_sdusize;

int sap;

atm_addr_t src_addr;

atm_addr_t dst_addr;

mblk_t *mp;

qcc_hdr_t *hdrp;
D-36 SunATM-155 SBus Cards Manual—May 1995

D

qcc_parse(9F)

do {

if !(mp = getq(q)) {

perror("getq");

exit (-1);

}

hdrp = (qcc_hdr_t *)mp;

} while (hdrp->type != QCC_SETUP);

qcc_parse_setup(mp->b_cont, &vci, &forward_sdusize,

&backward_sdusize, &src_addr,

&dst_addr, &sap, NULL);

printf("parse_setup: vci = 0x%x, sap = 0x%x0, vci, sap);

}

SEE ALSO

qcc_util(3), qcc_bld(9F), q93b(7)

"ATM User-Network Interface Specification, V3.0," ATM Forum.

NOTES

The functions in this API include support for Information Elements specific

to point-to-multipoint calls. Although point-to-multipoint calls are not

supported in the first release of the SunATM software, they will be

supported in future releases; thus the necessary parameters were included

in the API functions of the first release to avoid changes to the API when

point-to-multipoint support is added to the SunATM software package.

This API is an interim solution until the ATM Forum has standardized an

API. At that time, Sun will implement that API, and support for the Q.2931

Call Control library may not be continued.
Application Programmers’ Interface D-37

D

D.2 Driver API
The driver supports the ATM-specific ioctls described below. Definitions for

the ioctl commands and structures can be found in <atm/saioctl.h>.

sa(7) Special Files sa(7)

NAME

sa – Sun ATM device driver

SYNOPSIS

#include <sys/stropts.h>

#include <atm/sa.h>

#include <atm/saioctl.h>

DESCRIPTION

The sa driver is a Solaris 2.x DDI/DKI compliant MT safe STREAMS device

driver. It presents a DLPI interface to the upper layers and supports

M_DATA fastpath and M_DATA raw. The hardware interface supports the

SunATM-155 Fiber and UTP products.

The two modes of operation that should be used by application programs

are raw mode and dlpi mode. The mode is specified by the choice of

encapsulation indicated with the A_ADDVC ioctl call. NULL encapsulation

indicates raw mode, while LLC encapsulation indicates dlpi mode. The

mode chosen defines the format in which data should be sent to the driver.

Raw mode implies that only a single mblock will be sent to the driver,

containing a four-byte vpci followed by the data. When a message is

received on a vpci running in raw mode, it will be directed to upper layers

based on the vpci. The four-byte vpci will be sent up with the data if an ioctl

call setting DLIOCRAW has been made; if DLIOCRAW has not been set, the

vpci will be stripped and only the data will be sent up.

DLPI mode implies that two mblocks will be sent to the driver. The first, of

type M_PROTO, contains the dlpi message type, which is dl_unitdata_req

for transmit and dl_unitdata_ind for receive. The vpci is included in this

mblock as well; the format for the mblock is defined in the header file

<sys/dlpi.h>. The second mblock is of type M_DATA and contains the

message. When the driver gets the two mblocks from the upper layer, it will

remove the first mblock, add a LLC header containing the sap which has
D-38 SunATM-155 SBus Cards Manual—May 1995

D

sa(7)

been bound to this stream (by passing down a dl_bind_req message) to the

M_DATA mblock, and transmit it. On receive, the LLC header is stripped,

the M_PROTO mblock is added, and the two-mblock structure is sent up the

stream indicated by the sap in the LLC header.

The driver supports several of the DLPI message types defined in the

<sys/dlpi.h> header file. Specifically, users of the sa driver may use the

DL_ATTACH_REQ, DL_DETACH_REQ, DL_BIND_REQ,

DL_UNBIND_REQ, DL_UNITDATA_IND, and DL_UNITDATA_REQ. In

addition, a Sun-specific dlpi ioctl is supported, DLIOCRAW. There is no

data structure associated with the DLIOCRAW ioctl; simply a strioctl struct

with ic_cmd set to DLIOCRAW may be used to set a stream to raw mode.

The driver also supports the ATM-specific ioctls described below.

Definitions for the ioctl commands and structures may be found in

<atm/saioctl.h>.

IOCTLS

The driver supports a set of ioctl functions which are called using the I_STR

ioctl and strioctl structure as the argument. See the streamio(7) man page

and the <sys/stropts.h> header file for more information on this type of

ioctl call.

The commands supported in the ic_cmd field of the strioctl structure are

described in the following paragraphs. The structures that the ic_dp field

should point to are also described for each command.
Application Programmers’ Interface D-39

D

sa(7)

A_ALLOCBW Allocate bandwidth for this stream. ic_dp should point

to an a_allocbw_t structure, which is defined as:

typedef struct {

int bw;

} a_allocbw_t;

In this and all other ioctls that use amounts of

bandwidth as parameters, the bandwidth amount is

expressed as an integer number of megabits per second

(Mbps). For the SunATM-155 products, the total

bandwidth available is 135 Mbps; some bandwidth is

lost to the physical layer overhead and cell headers. In

addition, 2 Mbps are reserved by the ATM software

stack; thus a total of 133 Mbps may be allocated by the

user. All unallocated bandwidth is given to IP.

A_RELSEBW Release bandwidth that was previously allocated for

this stream. ic_dp should point to an a_allocbw_t

structure.

A_ADDVC Add a vpci to those serviced by this stream, and

specify the encapsulation type. The encapsulation type

defines the format in which data will be sent to the

driver: raw mode, indicated by NULL_ENCAP, implies

a single mblock with only the four-byte vpci followed

immediately by the data. dlpi mode, indicated by

LLC_ENCAP, implies a two-mblock message,

consisting of a M_PROTO mblock followed by a

M_DATA mblock containing the data. The M_PROTO

mblock will contain a dlpi message type

(dl_unitdata_req or dl_unitdata_ind) and the vpci; the

format may be found in <sys/dlpi.h>. For the

A_ADDVC ioctl call, ic_dp points to an a_addVC_t

structure, which is defined as:
D-40 SunATM-155 SBus Cards Manual—May 1995

D

sa(7)

typedef struct {

u_long vp_vc; /* vpci to be added */

int aal_type; /* null -> 0, */

/* AAL5 -> 5 */

int encap; /* encapsulation; see */

/* <atm/saioctl.h> for */

/* possible values */

int buf_type; /* if AAL5: */

/* 0 -> small buf (9 k) */

/* 1 -> big buf (9 k) */

/* 2 -> huge buf (64 k) */

/* if null AAL */

/* -> # of cells */

} a_addVC_t;

A_DELVC Remove a vpci from those serviced by this stream.

ic_dp points to an a_delVC_t structure:

typedef struct {

u_long vp_vc;

} a_delVC_t;

A_ALLOCBW_VC Allocate bandwidth for a specific vpci on this stream.

ic_dp point to an a_allocbw_vc_t structure:

typedef struct {

int bw; /* Mbits/sec */

int vc; /* vpci */

} a_allocbw_vc_t;

A_RELSEBW_VC Releases bandwidth that has been allocated for a

specific vpci. The structure passed in ic_dp should be

an a_relsebw_vc_t structure, which is typedef'ed as an

a_allocbw_vc_t structure:

typedef a_allocbw_vc_t a_relsebw_vc_t;
Application Programmers’ Interface D-41

D

sa(7)

EXAMPLES

The following code fragment demonstrates opening an sa device and

allocating 20 Mbits/sec of bandwidth for that stream.

#include <atm/saioctl.h>

char dev[0x20] = "/dev/sa0";

int fd;

struct strioctl strioctl;

a_allocbw_t ap;

if ((fd = open(dev, O_RDWR)) < 0) {

exit(-1);

}

ap.bw = 20;

strioctl.ic_cmd = A_ALLOCBW;

strioctl.ic_timout = -1;

strioctl.ic_len = sizeof (a_allocbw_t);

strioctl.ic_dp = (caddr_t) ≈

if (ioctl(fd, I_STR, &strioctl) < 0) {

exit(-1);

}

SEE ALSO

sa_util(3), dlpi(7), streamio(7)
D-42 SunATM-155 SBus Cards Manual—May 1995

D

sa_util(3) C Library Functions sa_util(3)

NAME

sa_util, sa_open, sa_close, sa_attach, sa_detach, sa_bind, sa_unbind,

sa_setraw, sa_add_vpci, sa_delete_vpci, sa_allocate_bw, sa_release_bw

– Sun ATM driver utilities

SYNOPSIS

cc [flag ...] file ... –latm [library ...]

#include <atm/sa.h>

int sa_open(register char *interface);

int sa_close(int fd);

int sa_attach(int fd, u_long ppa, int timeout);

int sa_detach(int fd, int timeout);

int sa_bind(int fd, u_long sap, int timeout);

int sa_unbind(int fd, int timeout);

int sa_setraw(int fd);

int sa_add_vpci(int fd, vci_t vpci, int encap, int buf_type);

int sa_delete_vpci(int fd, vci_t vpci);

int sa_allocate_bw(int fd, int bw);

int sa_release_bw(int fd);

MT-LEVEL

Safe.

AVAILABILITY

The functionality described in this man page is available in the SUNWatma

package included with a SunATM adapter board. The libatm.a library,

which is located in /usr/lib, must be included at compile time as indicated

in the synopsis.
Application Programmers’ Interface D-43

D

sa_util(3)

DESCRIPTION

These utilities perform various operations on the SunATM device driver, sa.

They may be used by application programs that need to transmit and

receive data over an ATM connection to set up a data stream to the ATM

driver.

Data may be transmitted over a vc connection in one of two modes: raw

mode, or dlpi mode. The mode is specified by the choice of encapsulation

indicated in the call to sa_add_vpci(). NULL encapsulation indicates raw

mode, while LLC encapsulation indicates dlpi mode. The mode chosen

defines the format in which data should be sent to the driver.

Raw mode implies that only a single mblock will be sent to the driver,

containing a four-byte vpci followed by the data. When a message is

received on a vpci running in raw mode, it will be directed to upper layers

based on the vpci. The four-byte vpci will be sent up with the data if

sa_setraw() has been called; if sa_setraw() has not been called, the vpci will

be stripped and only the data will be sent up.

DLPI mode implies that two mblocks will be sent to the driver. The first, of

type M_PROTO, contains the dlpi message type, which is dl_unitdata_req

for transmit and dl_unitdata_ind for receive. The vpci is included in this

mblock as well; its format is defined in the header file <sys/dlpi.h>. The

second mblock is of type M_DATA and contains the message. When the

driver gets a message of this type from the upper layer, it will remove the

first mblock, add a LLC header containing the sap which has been bound to

this stream using sa_bind() to the message mblock, and transmit it. On

receive, the LLC header is stripped, the M_PROTO mblock is added, and the

two-mblock structure is sent up the stream indicated by the sap in the LLC

header.

Note – If the application is running in user space rather than kernel space, the

M_PROTO and M_DATA mblocks correspond to the ctl and data buffers,

respectively, which are passed into putmsg(2) or received from getmsg(2).
D-44 SunATM-155 SBus Cards Manual—May 1995

D

sa_util(3)

sa_open() opens a stream to the physical interface (i.e. sa0, sa1, etc.) passed

in as a null-terminated string in interface. On success, the file descriptor

(> 0) is returned.

sa_close() closes the stream specified by its file descriptor, fd.

sa_attach() associates a physical point of attachment, ppa, with an opened sa

device specified by its file descriptor, fd. The ppa is usually defined as the

physical interface number (0 for sa0, 1 for sa1, etc.). timeout may optionally

be used to specify an amount of time in milliseconds to wait for the function

to complete. The function will fail if it does not complete in the specified

amount of time. Possible values for timeout are -1, which blocks until

completion, 0, which returns immediately, or a number greater than 0 which

specifies a number of milliseconds to wait. This value will be rounded up to

an implementation-dependent minimum value, which is currently at

approximately 100 ms.

sa_detach() detaches the stream specified by its file descriptor fd from its

ppa. Values of timeout apply as described in sa_attach().

sa_allocate_bw() specifies a bandwidth amount in megabits per second (in

the SunATM-155 products, the user may allocate up to 135 Mbps; 2 Mbps is

reserved by the ATM software stack, and 20 Mbps is lost to cell header and

physical layer overhead) passed in as bw, that will be allocated for

transmitting data from the stream identified by the file descriptor fd. All

unallocated bandwidth is assigned to IP and dlpi mode traffic. This step is

not necessary if a stream is only to be used to receive data; and SHALL NOT

be called if a stream is using dlpi mode.

sa_release_bw() releases all bandwidth that has been previously allocated to

the stream identified by fd.

sa_add_vpci() adds the given virtual path connection identifier, vpci, to

those recognized on the specified stream (identified by its file descriptor, fd).

The type of encapsulation that is being used on this connection must also be

specified in encap; the possible values are NULL_ENCAP, LLC_ENCAP, and
Application Programmers’ Interface D-45

D

sa_util(3)

NLPID_ENCAP, as defined in <atm/saioctl.h>. Finally, the buffer type must

be specified in buf_type; definitions may also by found in <atm/saioctl.h>

for the possible types SMALL_BUF_TYPE, BIG_BUF_TYPE, and

HUGE_BUF_TYPE.

sa_delete_vpci() deletes given virtual path connection identifier, vpci, from

the specified stream (identified by its file descriptor, fd).

sa_bind() binds a service access point, sap, to an opened stream, specified by

its file descriptor, fd. sap values of 0x800 and 0x806 are reserved for IP and

ARP traffic, respectively; the user shall not use these values. The sap is used

by the driver to direct traffic to upper layers if LLC encapsulation is used.

This function also has a timeout parameter; the values of timeout described

in sa_attach() apply in sa_bind() as well.

sa_unbind() disassociates a stream-to-sap binding. The stream is specified

by its file descriptor, fd. Values of timeout apply as described in sa_attach().

sa_setraw() indicates to the driver that the stream specified by the file

descriptor fd will be transmitting and receiving raw data which will be

interpreted directly by the application at the stream head. The only header

information included in messages passed down the stream will be the 4-byte

virtual path connection identifier. When a message is received, the vpci will

be used to direct the message to upper layers.

The ordering of the sa utility function calls is important. After calling

sa_open(), the order must be sa_attach(), followed by sa_allocate_bw() if

required, and sa_add_vpci(). Next, depending on the type of encapsulation

used on this stream, should be either sa_bind() for LLC encapsulation or

sa_setraw() for null encapsulation. All functions must be called only once

per interface, with the exception of sa_add_vpci(), which may be called

multiple times to support multiple vpcis.

RETURN VALUES

All functions return -1 on error. With the exception of sa_open, which

returns the file descriptor on success, all functions return 0 on success.
D-46 SunATM-155 SBus Cards Manual—May 1995

D

sa_util(3)

EXAMPLES

The following example opens a stream to sa0 and sets up that stream to

communicate over vpci 0x100 at 10 Mbits/sec in raw mode.

#include <stdio.h>

#include <sys/types.h>

#include <sys/stropts.h>

#include <sys/errno.h>

#include <atm/sa.h>

main()

{

char interface[] = "sa0";

int fd;

int ppa;

int bw = 10;

int vpci = 0x100;

char ctlbuf[256];

char databuf[256];

struct strbuf ctl, data;

ctl.buf = ctlbuf;

data.buf = databuf;

ctl.maxlen = data.maxlen = 256;

ppa = atoi(&interface[strlen (interface) - 1]);

if ((fd = sa_open(interface)) < 0) {

perror("open");

exit(-1);

}

sa_attach(fd, ppa);

if (sa_allocate_bw(fd, bw) < 0) {

perror("sa_allocate_bw");

exit(-1);

}

Application Programmers’ Interface D-47

D

sa_util(3)

if (sa_add_vpci(fd, vpci, NULL_ENCAP, BIG_BUF_TYPE) < 0) {

perror("sa_add_vpci");

exit(-1);

}

if (sa_setraw(fd) < 0) {

perror("sa_setraw");

exit(-1);

}

<construct a message to pass down in ctlbuf and databuf>

if (putmsg(fd, &ctl, &data, 0) < 0) {

perror("putmsg");

exit(-1);

}

}

The following example opens a stream to sa0 and sets up that stream to

communicate over vpci 0x100, using sap 0x100, in dlpi mode.

#include <stdio.h>

#include <sys/types.h>

#include <sys/stropts.h>

#include <sys/errno.h>

#include <sys/dlpi.h>

#include <atm/sa.h>

main()

{

char interface[] = "sa0";

int fd;

int ppa;

int vpci = 0x100;

int *vpcip;

int sap = 0x100;

char ctlbuf[256];
D-48 SunATM-155 SBus Cards Manual—May 1995

D

sa_util(3)

char databuf[256];

struct strbuf ctl, data;

dl_unitdata_req_t *dludp;

ctl.buf = ctlbuf;

data.buf = databuf;

ctl.maxlen = data.maxlen = 256;

ppa = atoi(&interface[strlen (interface) - 1]);

if ((fd = sa_open(interface)) < 0) {

exit(-1);

}

sa_attach(fd, ppa);

if (sa_add_vpci(fd, vpci, LLC_ENCAP, BIG_BUF_TYPE) < 0) {

perror("sa_add_vpci");

exit(-1);

}

sa_bind(fd, sap);

<construct the message in databuf>

ctllen = sizeof (dl_unitdata_req_t) + 4;

memset(ctlbuf, 0, ctllen);

dludp = (dl_unitdata_req_t *) ctlbuf;

dludp->dlprimitive = DL_UNITDATA_REQ;

dludp->dl_dest_addr_length = 4;

dludp->dl_dest_addr_offset = sizeof (dl_unitdata_req_t);

vpcip = (int *) &ctlbuf[sizeof (dl_unitdata_req_t)];

*vpcip = vpci;

if (putmsg(fd, &ctl, &data, 0) < 0) {

perror("putmsg");

exit(-1);

}

}

Application Programmers’ Interface D-49

D

sa_util(3)

SEE ALSO

dlpi(7), sa(7)
D-50 SunATM-155 SBus Cards Manual—May 1995

AdvancedConfigurations E
Networks are rarely homogeneous. For interoperability purposes, there may be

cases when a network must be configured:

• with different characteristics than the defaults that are built into the

SunATM adapter

• with unusual addressing schemes that require more than the basic flags

described in Section 3.2.1.2, “Editing the /etc/aarconfig File”

Edit the /etc/aarconfig file using the flags in this section to alter the

defaults and/or change the behavior of the interface.

E.1 Flags That Specify Additional Entry Types
b Specifies the VCI to use for back-to-back SVC connections between two

ARP clients. This entry is required in addition to the t entry because the

VCI is normally provided by the switch. VCI is required. See Table E-1.

B Specifies the VCI to use for a back-to-back SVC connection between an

ARP client and a server. This entry is required in addition to the s or t
entry. VCI is required. See Table E-1.

Note – The b and B options are useful for testing. For normal operation, the t
flag may be used with a VCI and no ATM address.
E-1

E

Note – When using SVCs over back-to-back connections, the two systems

should use different VCI values. Also, if both a b and a B entry are used, they

should each have different VCI values.

c Indicates an alternate client address for ARP traffic only in the server’s

aarconfig file. There may be configurations that require an ATM ARP

client to have different ATM addresses or PVCs for ARP connections and

for regular data connections. In this case, a distinction must be made in the

server’s /etc/aarconfig file between the two address entries; the c flag

specifies the ARP address, while the t flag identifies the data address. If

both a t and c entry are provided in a server’s aarconfig file, any of the

VCIs or ATM addresses in those entries may be used by the client to

contact the server. Either ATM Address or VCI is required. See Table E-1.

As an example, consider this situation: a server has a client that uses a

different selector byte to identify the ARP connection. A requirement is

that the ATM address end with 00 for data connections, and end with 05

for ARP connections. To represent this client, the following two entries are

required in the server /etc/aarconfig file:

A Specifies on the server an alternate local ATM address for ARP traffic only.

Similar to situations where a client has different addresses for data and

ARP connections (see above example), it may be that the server also has

different addresses. In this case, it is still sufficient to have only an s entry

in the client /etc/aarconfig file since the client will be able to send ARP

requests to the server for the server’s data address. However, the server

must be aware of the two different addresses. This is accomplished by

using the A flag to identify the ARP address, while the L flag identifies the

data address. ATM Address is required. See Table E-1.

Interface Host ATM Address VCI Flag
sa0 client1 45:00:00:00:00:00:00:00:0f:00:00:00:00::08:00:20:13:00:10:00 - t
sa0 client1 45:00:00:00:00:00:00:00:0f:00:00:00:00::08:00:20:13:00:10:05 - c
E-2 SunATM-155 SBus Cards Manual—May 1995

E

As an example, consider a situation where the server uses an address with

selector 00 for data connections and an address with selector 01 for ARP

connections:

E.2 Flags That Change the Behavior of the Interface
P Enables the function that sends a Call_Proceeding message when setting

up a connection (this message type is optional according to the UNI 3.0

Specification). Some switches may not be designed to handle this message

type since it is not required, so default behavior of the SunATM signaling

is to not send the message.

Use of the Call_Proceeding message is desirable if some amount of delay is

likely in the processing of setup messages because it essentially prolongs

the length of time a caller will wait to receive a connect back before giving

up on the connection.

If your switch supports the Call_Proceeding message, and the feature is

desirable, you can turn the function on for a particular interface using the

P flag.

Interface Host ATM Address VCI Flag
sa0 – 45:00:00:00:00:00:00:00:0f:00:00:00:00::08:00:20:13:00:10:00 - L
sa0 – 45:00:00:00:00:00:00:00:0f:00:00:00:00::08:00:20:13:00:10:01 64 A

Table E-1 /etc/aarconfig Advanced Configuration Flags

Interface Host ATM Address VCI Flags

required illegal illegal required b

required illegal illegal required B

required optional or1 or1 c

required illegal required illegal A

required illegal illegal illegal P

required illegal illegal illegal I

1or – Means one or the other required, and both are also legal.
Advanced Configurations E-3

E

I Provides additional security. If your ARP server is capable of handling

inverse ARP requests (the SunATM implementation has this capability),

you may choose to have a client who receives a setup request from a peer

do address verification with the server rather than the calling party.

The default behavior is to send the inverse ARP for address verification to

the calling party. If the I flag is set in the /etc/aarconfig file for a

particular interface, the inverse ARP will be sent to the server instead.

This allows the access list for the network to be specified in the server

/etc/aarconfig file. Hosts that do not appear in this file will not be

verified by the inverse ARP sent to the server, so the call will not be

accepted.

The default behavior for all interfaces, rather than just one, may be set by

adding one or both of the following lines to the /etc/system file:

set aar:aar_can_use_call_proc = 1

set aar:aar_invarp_to_server = 1

These are equivalent to providing a P or I flag entry for every interface in

/etc/aarconfig .
E-4 SunATM-155 SBus Cards Manual—May 1995

RevisionHistory
Revision Dash Date Comments

801-6772-10 Rev A March 1995 Early Access Release

801-6572-11 Rev A May 1995

SunATM-155 SBus Cards Manual—May 1995

Reader Comments

We welcome your comments and suggestions to help improve this manual. Please let us
know what you think about theSunATM-155 SBus Cards Manual,part number801-
6572-11.

■ The procedures were well documented.
Strongly Strongly Not
Agree Agree Disagree Disagree Applicable
❑ ❑ ❑ ❑ ❑

Comments

■ The tasks were easy to follow.
Strongly Strongly Not
Agree Agree Disagree Disagree Applicable
❑ ❑ ❑ ❑ ❑

Comments

■ The illustrations were clear.
Strongly Strongly Not
Agree Agree Disagree Disagree Applicable
❑ ❑ ❑ ❑ ❑

Comments

■ The information was complete and easy to find.
Strongly Strongly Not
Agree Agree Disagree Disagree Applicable
❑ ❑ ❑ ❑ ❑

Comments

■ Do you have additional comments about theSunATM-155 SBus Cards Manual?

Name:

Title:

Company:

Address:

Telephone:

Email address:

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 1 MOUNTAIN VIEW, CA

POSTAGE WILL BE PAID BY ADDRESSEE

SUN MICROSYSTEMS, INC.
Attn: Manager, Hardware Publications
MS MPK 14-101
2550 Garcia Avenue
Mt. View, CA 94043-9850

	Contents
	Figures
	Tables
	Preface
	Introducing the SunATM-155 SBus Cards
	1.1 Hardware Requirements
	1.2 Software Requirements

	Installing SunATM-155 Hardware
	2.1 Attaching the Wrist Strap
	2.2 SBus Card Installation
	2.2.1 SunATM-155/MFiber
	2.2.1.1 Extender Plate
	2.2.1.2 Wiring Configuration
	2.2.1.3 Connecting the SBus Card to the Network

	2.2.2 SunATM-155/UTP5
	2.2.2.1 Extender Plate
	2.2.2.2 Wiring Configuration
	2.2.2.3 Connecting the SBus Card to the Network

	2.3 Testing the SunATM-155 Card Before Booting the System

	Installing SunATM-155 Software and Configuring the ATM Interface
	3.1 Installing and Removing Software
	3.1.1 Command Line Utilities
	3.1.1.1 Adding Software Packages Using pkgadd
	3.1.1.2 Checking Installation of a Package Using pkgchk
	3.1.1.3 Checking ATM Software Installation Using pkginfo
	3.1.1.4 Removing Software Packages Using pkgrm

	3.1.2 Graphical User Interface
	3.1.2.1 Adding Packages By Using Software Manager
	3.1.2.2 Removing Software Packages

	3.2 SBus ATM Interface Configuration
	3.2.1 Changes to System Configuration
	3.2.1.1 Selecting SONET or SDH Framing Interface
	3.2.1.2 Editing the /etc/aarconfig File
	3.2.1.3 Using Variables in the /etc/aarconfig File
	3.2.1.4 Sample Configurations
	3.2.1.5 The /etc/hostatm.sa# File
	3.2.1.6 ATM ARP Daemon (aarpd)
	3.2.1.7 IP and ATM Signaling
	3.2.1.8 ATM Address Resolution
	3.2.1.9 ATM Address and Address Registration
	3.2.1.10 ATM Address Registration Daemon (ILMID)
	3.2.1.11 Encapsulation of IP Packets

	3.3 Rebooting the System and Examining Network Interfaces

	Wiring Scheme and Pin Descriptions
	SunATM-155 SBus Cards Specifications
	B.1 Performance Specifications
	B.2 Power Specifications
	B.3 Physical Dimensions
	B.4 Environmental Specifications

	Running Diagnostic Tests
	C.1 Selftest
	C.2 SunDiag

	Application Programmers’ Interface
	D.1 Q.93B API
	Setup Procedure
	Release Procedure
	Exception Conditions

	D.2 Driver API

	Advanced Configurations
	E.1 Flags That Specify Additional Entry Types
	E.2 Flags That Change the Behavior of the Interface

	Revision History

