
Sun Microsystems, Inc.
www.sun.com

Submit comments about this document at: http://www.sun.com/hwdocs/feedback

Netra™ CP2000 and CP2100
Series CompactPCI Boards

Programming Guide

for the Solaris Operating Environment

Part No. 816-2485-14
October 2004, Revision A

http://www.sun.com/hwdocs/feedback

Please
Recycle

Copyright 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, AnswerBook2, docs.sun.com, Netra, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and in other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and in other
countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

U.S. Government Rights—Commercial use. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés
à http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats-Unis et dans
les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, parquelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y ena.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des
fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, AnswerBook2, docs.sun.com, Netra, et Solaris sont des marques de fabrique ou des marques déposées de
Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.
aux Etats-Unis et dans d’autres pays. Les produits protant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développment du concept des interfaces d’utilisation visuelle ou graphique
pour l’industrie de l’informatique. Sun détient une license non exclusive do Xerox sur l’interface d’utilisation graphique Xerox, cette licence
couvrant également les licenciées de Sun qui mettent en place l’interface d ’utilisation graphique OPEN LOOK et qui en outre se conforment
aux licences écrites de Sun.

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFAÇON.

Contents

1. Watchdog Timer 1

Watchdog Timers 1

Watchdog Timer Driver 2

Operations on the Watchdog Timers 3

Parameters Transfer Structure 3

Input/Output Controls 7

Errors 8

Example 8

Configuration 10

OpenBoot PROM Interface 11

Data Structure 12

Watchdog Operation 12

Commands at OpenBoot PROM Prompt 12

Corner Cases 13

Setting the Watchdog Timer at OpenBoot PROM 13

2. User Flash 15

User Flash Usage and Implementation 15

User Flash Address Range 16

System Compatibility 17
 iii

User Flash Driver 19

Switch Settings 19

OpenBoot PROM Device Tree and Properties 20

User Flash Packages 20

User Flash Device Files 21

Interface (Header) File 21

Application Programming Interface 21

Structures to Use in IOCTL Arguments 22

Errors 23

Example Programs 23

Sample User Flash Application Program 33

3. Advanced System Management 41

ASM Component Compatibility 42

Typical ASM System Application 42

Typical Cycle From Power Up to Shutdown 44

ASM Protection at the OpenBoot PROM 44

ASM Protection at the Operating Environment Level 45

Post Shutdown Recovery 46

Hardware ASM Functions 46

CPU-Vicinity Temperature Monitoring 53

Inlet/Exhaust Temperature Monitoring 54

CPU Sensor Temperature Monitoring 54

Adjusting the ASM Warning and Shutdown Parameter Settings on the Board 55

OpenBoot PROM Environmental Parameters 57

OpenBoot PROM/ASM Monitoring 59

CPU Sensor Monitoring 59

show-sensors Command at OpenBoot PROM 61

IPMI Command Examples at OpenBoot PROM 62
iv Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

ASM Application Programming 68

Specifying the ASM Polling Rate 69

Monitoring the Temperature 69

Solaris Driver Interface 69

Sample Application Program 71

Temperature Table Data 73

System Configuration and Test Equipment 73

Thermocouple Locations 74

4. Programming the User LED 75

Files and Packages Required to Support the Alarm/User LED 77

Applications 77

Application Programming Interface (API) 78

Compile 80

Link 80

5. Programming Netra CP2100 Series Board Controlled Devices 81

Overview of Hot-Swap Device States 81

Retrieving Device Type Information 82

Using cphsc to Collect Information 82

HSIOC_GET_INFO ioctl() 83

Using Library Interfaces to Collect Information 87

High Availability Signal Support 89

Setting OpenBoot PROM Configuration Variables 89

Controlling and Monitoring High Availability Signals 90

Bringing a Slot Online 92

Using the HSIOC_SETHASIG ioctl() 94

Creating a Header File for the CP2100 Series Software 96

6. Reconfiguration Coordination Manager 99
Contents v

Reconfiguration Coordination Manager (RCM) Overview 100

Using RCM with the Netra CP2100 Series CompactPCI Board 100

Using RCM to Work With the Intel 21554 Bridge Chip 102

RCM Script Example 103

Testing the RCM Script Example 105

Avoiding Error Messages When Extracting Devices in Basic Hot-Swap Mode 107

Index 109
vi Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

Figures

FIGURE 3-1Typical Netra CP2000/CP2100 Series ASM Application Block Diagram 49

FIGURE 3-2Location of ASM Hardware on the Netra CP2040/CP2140 Board 55

FIGURE 3-3Location of ASM Hardware on the Netra CP2060 Board 56

FIGURE 3-4Location of ASM Hardware on the Netra CP2080 Board 57

FIGURE 3-5Location of ASM Hardware on the Netra CP2160 Board 58

FIGURE 3-6Netra CP2000/CP2100 Series ASM Functional Block Diagram 59

FIGURE 4-1Illustration of a Typical Netra CP2140 Board Front Panel Showing the Alarm/User
LED 82
 vii

viii Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

Tables

TABLE 1-1OpenBoot PROM Prompt Commands 18

TABLE 2-1User Flash Implementation 22

TABLE 2-2Compatible Releases That Support the User Flash Driver 23

TABLE 2-3User Flash Node Properties 26

TABLE 2-4System Calls 27

TABLE 3-1Compatible Netra CP2000/CP2100 Series ASM Components 48

TABLE 3-2Typical Netra CP2060 Hardware ASM Functions 52

TABLE 3-3Typical Netra CP2160 Hardware ASM Functions 53

TABLE 3-4Local I2C Bus 54

TABLE 3-5Reported Temperature Readings at an Ambient Room Temperature of 21˚C on a
Typical Netra CP2040 Board 61

TABLE 3-6Reported Temperature Readings at an Ambient Room Temperature of 21˚C on a
Typical Netra CP2160 Board 62

TABLE 3-7Default Threshold Temperature Settings 63

TABLE 3-8Typical Netra CP2160 Board Temperature Thresholds and Firmware Action 64

TABLE 3-9OpenBoot PROM Sensor Reading Typical for a Typical Netra CP2060 Board 67

TABLE 3-10OpenBoot PROM Sensor Reading Typical for a Typical Netra CP2160 Board 68

TABLE 4-1Supported LED and Command Combinations for the Netra CP2140 Board 84

TABLE 4-2Supported LED and Command Combinations for the Netra CP2160 Board 85

TABLE 5-1poweron-vector Variable Bit Definition and Power Setting 95

TABLE 5-2Hot-Swap HA Signal States for a Single CompactPCI Slot 99
 ix

x Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

Code Samples

CODE EXAMPLE 1-1 Include File wd_if.h 10

CODE EXAMPLE 1-2 Status of Watchdog Timers and Starting Timers 14

CODE EXAMPLE 2-1 PROM Information Structure 28

CODE EXAMPLE 2-2 User Flash Interface Structure 28

CODE EXAMPLE 2-3 Read Action on User Flash Device 30

CODE EXAMPLE 2-4 Write Action on User Flash Device 32

CODE EXAMPLE 2-5 Erase Action on User Flash Device 35

CODE EXAMPLE 2-6 Block Erase Action on User Flash Device 37

CODE EXAMPLE 2-7 Sample User Flash Application Program 39

CODE EXAMPLE 3-1 Input Output Control Data Structure 75

CODE EXAMPLE 3-2 Sample ASM Application Program 75

CODE EXAMPLE 4-1 Application Programming Interface for the Netra CP2140 Board 84

CODE EXAMPLE 4-2 Application Programming Interface for the Netra CP2160 Board 84

CODE EXAMPLE 5-1 HSIOC_GET_INFO ioctl() Header File 89

CODE EXAMPLE 5-2 Using cphsc to Find Device Type Information 91

CODE EXAMPLE 5-3 Netra CP2100 Series Software Header File 102

CODE EXAMPLE 6-1 RCM Script Example (SUNW,cp2000_io.pl) 109
 xi

xii Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

Preface

The Netra™ CP2040, Netra CP2060 and Netra CP2080, Netra CP2140 and Netra
CP2160 CompactPCI boards are a crucial building block that network equipment
providers (NEPs) and carriers can use when scaling and improving the availability
of next-generation, carrier-grade systems.

The Netra CP2000 and CP2100 Series cPCI Boards Programming Guide is written for
program developers and users who want to program these products in order to
design original equipment manufacturer (OEM) systems, supply additional
capability to an existing compatible system, or work in a laboratory environment for
experimental purposes.

In the Netra CP2000 and CP2100 Series cPCI Boards Programming Guide, references are
made to the Netra CP2000 board series and the Netra CP2100 board series. For the
purpose of this book, the CP2000 board series refers to CP2040, CP2060 and CP2080
boards and the CP2100 board series currently includes the CP2140 and CP2160
boards.

Before You Read This Book
You are required to have a basic knowledge of computers and digital logic
programming , in order to fully use the information in this document.
 xiii

How This Book Is Organized
Chapter 1 provides details on the Netra CP2000 board and the CP2100 board series
watchdog timer driver and its operation.

Chapter 2 describes the user flash driver for the Netra CP2000 board series and the
CP2100 board series onboard flash PROMs and how to use it.

Chapter 3 describes the specific Advanced System Management (ASM) functions of
the Netra CP2000 board series and the CP2100 board series.

Chapter 4 describes how to program the User LED on the Netra CP2100 board series.

Chapter 5 describes how to create applications that can identify and control
hardware devices connected to Netra CP2100 series board-controlled systems.

Chapter 6 describes how to use Reconfiguration Coordination Manager scripts to
automate certain dynamic reconfiguration processes for the Netra CP2100 board
series.

Using UNIX Commands
This document may not contain information on basic UNIX® commands and
procedures such as shutting down the system, booting the system, and configuring
devices.

See one or more of the following for this information:

■ Solaris Handbook for Sun Peripherals

■ AnswerBook2™ online documentation for the Solaris™ operating environment

■ Other software documentation that you received with your system
xiv Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

Typographic Conventions

Shell Prompts

Typeface*

* The settings on your browser might differ from these settings.

Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your.login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when contrasted
with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized.
Replace command-line variables
with real names or values.

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.
To delete a file, type rm filename.

Shell Prompt

C shell machine-name%

C shell superuser machine-name#

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #
Preface xv

Related Documentation

Accessing Sun Documentation
You can view, print, or purchase a broad selection of Sun documentation, including
localized versions, at:

http://www.sun.com/documentation

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. You can email your comments to Sun at:

docfeedback@sun.com

Please include the part number (816-2485-13) of your document in the subject line of
your email.

Application Title Part Number

Reference and Installation Netra CP2060/CP2080 Technical Reference
and Installation Manual

806-6658-xx

Reference and Installation Netra CP2040 Technical Reference and
Installation Manual

806-4994-xx

Reference and Installation Netra CP2140 Technical Reference and
Installation Manual

816-4908-xx

Reference and Installation Netra CP2160 CompactPCI Board
Installation and Technical Reference
Manual

816-5772-xx
xvi Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

CHAPTER 1

Watchdog Timer

The System Management Controller (SMC) on the Netra CP2000/CP2100 board,
implements a two-level watchdog timer. The watchdog timer is used to recover the
central processing unit (CPU) in case the CPU freezes.

This chapter provides detailed information on the SMC-based watchdog timer
driver and its operation for the Netra CP2000/CP2100 boards. This chapter also
describes the user-level application programming interface (API) and behavior of the
Netra CP2000/CP2100 board watchdog timer. For functional details of the watchdog
timer, see the technical reference and installation guide for your board product. See
“Accessing Sun Documentation” on page xvi for information on accessing this
documentation.

This chapter includes the following sections:
■ “Watchdog Timers” on page 1
■ “Watchdog Timer Driver” on page 2
■ “Operations on the Watchdog Timers” on page 3
■ “Parameters Transfer Structure” on page 3
■ “Input/Output Controls” on page 7
■ “Data Structure” on page 12
■ “Watchdog Operation” on page 12

Watchdog Timers
There are two watchdog timers:
■ 16-bit timer
■ 8-bit pre-timeout timer

This section described one of the many different options the user can select
regarding the actions for WD1 and WD2.
1

16-bit Timer (WD1)

Each tick represents 100 ms. This timer, set to a nonzero number, counts down first.
When the timer reaches zero, a warning is sent to the host CPU through EBus and
the WD2 pre-timeout counter is set to a nonzero value when interrupt option is
enabled. Otherwise the SMC resets the host CPU immediately. The reset action takes
place when the reset option is enabled

8-bit Pre-timeout Timer (WD2)

Each tick represents one second. This timer is started when the countdown timer
reaches zero (if WD1 is set to zero, WD2 starts right away). When the value of this
counter reaches zero, the host is reset. If the hard reset option is enabled, no warning
is issued prior to reset

Watchdog Timer Driver
The watchdog driver is a loadable STREAMS pseudo driver layered atop the Netra
CP2000/CP2100 series service processor hardware. This driver implements a
standardized watchdog timer function that can be used by systems management
software for a number of systems timeout tasks.

The systems management software that uses the watchdog driver has access to two
independent timers, the WD1 timer and the WD2 timer. The WD2 is the main timer
and is used to detect conditions where the Solaris operating environment hangs.
Systems management software starts and periodically restarts the WD2 timer before
it expires. If the WD2 timer expires, the watchdog function of the WD2 timer can
force the SPARC™ processor to reset. The maximum range for WD2 is 255 seconds.
Or the WD2 timer could be set to take no action.

The WD1 timer is typically set to a shorter interval than the WD2 timer. User
applications can examine the expiration status of the WD1 timer to get advance
warning if the main timer, WD2, is about to expire. The system management
software has to start WD1 before it can start WD2. If WD1 expires, then WD2 starts
only if enabled. The maximum range for WD1 is 6553.5 seconds.

The applications programming interface exported by the watchdog driver is input
output control-based (IOCTL-based). The watchdog driver is an exclusive-use
device. If the device has already been opened, subsequent opens fail with EBUSY.
2 Netra CP2000 and CP2100 Series Compact PCI Boards Programming Guide • October 2004

Operations on the Watchdog Timers
Operations on the watchdog timers require a call to ioctl(2) using the parameters
appropriate to the operation. The watchdog driver exports Input Output Controls
(IOCTLs) to start, stop, and get the current status of the watchdog timers.

When the device is initially opened, both the watchdog timers, WD1 and WD2, are
in STOPPED state. To start either timer, an application program must use the
WIOCSTART command. Once started, the WD1 timer can be stopped by using the
WIOCSTOP command. Once started, the WD2 timer cannot be stopped—it can only
be restarted. Each watchdog timer takes the default action when it expires.

If the WD1 timer expires and the default action is enabled, WD1 interrupts the
SPARC processor. This interrupt is handled and the status of the WD1 timer queried
shows the EXPIRED condition. If the default action is disabled, then the WD1 timer
is in FREERUN state and no interrupt is delivered to the SPARC processor on
expiration.

If the WD2 timer expires and the default action is enabled, WD2 resets the SPARC
processor. If the default action is disabled, the WD2 timer is put in FREERUN state
and its expiration does not affect the SPARC processor.

In the Netra CP2000/CP2100 series board, the SMC-based watchdog timers are not
independant. The WD2 timer is a continuation of the WD1 timer. There are some
behavioral consequences to this implementation that result in the Netra
CP2000/CP2100 series watchdog timer having different semantics. The most obvious
difference is that starting one timer when the other timer is active causes the other
timer to be restarted with its programmed timeout period.

Parameters Transfer Structure
The IOCTL-based watchdog timer application programming interface (API) uses a
common data structure to communicate all requests and responses between the
watchdog timer driver and user applications.

Along with other API definitions, this structure is defined in the include file
sys/wd_if.h. The structure, called watchdog_if_t, is provided below for
reference.
Chapter 1 Watchdog Timer 3

CODE EXAMPLE 1-1 Include File wd_if.h

#ifndef _SYS_WD_IF_H
#define _SYS_WD_IF_H

#pragma ident "@(#)wd_if.h 1.3 01/12/17 SMI"

/*
 * wd_if.h
 * watchdog timer user interface header file.
 */

#ifdef __cplusplus
extern "C" {
#endif

/*
 * handy defines:
 */
#define WD1 1 /* wd level 1 */
#define WD2 2 /* wd level 2 */
#define WD3 3 /* wd level 3 */

/*
 * state of the counters:
 */
#define FREERUN 0x01 /* counter is running, no intr */
#define EXPIRED 0x02 /* counter has expired */
#define RUNNING 0x04 /* counter is running, intr is on */
#define STOPPED 0x08 /* counter not started at all */
#define SERVICED 0x10 /* intr was serviced */

/*
 * IOCTL related stuff.
 */
/*
 * TIOC ioctls for watchdog control and monitor
 */
#if (!defined(_POSIX_C_SOURCE) && !defined(_XOPEN_SOURCE)) || \
 defined(__EXTENSIONS__)
#define wIOC (’w’ << 8)
#endif /* (!defined(_POSIX_C_SOURCE) && !defined(_XOPEN_SOURCE))... */

#define WIOCSTART (wIOC | 0) /* start counters */
#define WIOCSTOP (wIOC | 1) /* inhibit interrupts (stop) */
#define WIOCGSTAT (wIOC | 2) /* get status of counters */
4 Netra CP2000 and CP2100 Series Compact PCI Boards Programming Guide • October 2004

The following fields are used by the IOCTL interface. The watchdog timer driver
does not use the thr_fd and thr_lock fields.

typedef struct {
 int thr_fd; /* wd fd, used in the thread */
 uint8_t thr_lock; /* lock for the thread */
 uint8_t level; /* wd level */
 uint16_t count; /* value to be loaded into limit reg */
 uint16_t next_count; /* next lev timer count */
 uint8_t restart; /* timer to restart, 0 = stop */
 uint8_t status[3]; /* status filled in ioctl() */
 uint8_t inhibit; /* inhibit timers, bit field */
} watchdog_if_t;

/*
 * Bit field defines for the user interface
 * inhibit.
 */
#define WD1_INHIBIT 0x1 /* inhibit timer 1 */
#define WD2_INHIBIT 0x2 /* inhibit timer 2 */
#define WD3_INHIBIT 0x4 /* inhibit timer 3 */

#ifdef __cplusplus
}
#endif

#endif /* _SYS_WD_IF_H */

level Select timer to perform operations on: WD1 or WD2

count The period for the timer specified by level to run before it expires.
Legal values lie in the range from 1 to 65534. If the value of count
is equal to 0 or -1, the timer is set to its default value. The default
value for WD1 is 10 seconds and for WD2 it is 15 seconds.

restart (Optional) Select a timer to start automatically when the timer
specified by level expires. Legal values are WD1 or WD2. This
timer can be the same or different from that specified by level.

CODE EXAMPLE 1-1 Include File wd_if.h (Continued)
Chapter 1 Watchdog Timer 5

The states that each watchdog timer can assume are listed below. These states are
exclusive of each other.

In addition to these states, the following modes can become attached to a timer,
based on its state:

next_count (Optional) The period for the timer specified by restart to run
before it expires. The next_count parameter is subject to the same
range and default value rules as count, described above.

inhibit This is a mechanism for controlling the action taken by a timer
when it expires. The inhibit flag is a mask to control the default
actions taken on the expiration of each timer. A bit corresponding to
each timer determines whether the timer’s default action is enabled
or disabled. If the corresponding bit in inhibit is zero, then the
default action occurs on expiration of that timer; if the bit is set to
one, then the default action is disabled. The symbolic names for the
control masks, defined in sys/wd_if.h, are WD1_INHIBIT for
timer WD1, and WD2_INHIBIT for timer WD2.

status After a call to ioctl(2) with the WIOCGSTAT command, the status
vector reflects the state of each watchdog timer (WD1 and WD2)
available on the system. The status vector element status[0]
corresponds to the state of WD1 and status[1] corresponds to the
state of WD2.

STOPPED The counter is not running.

RUNNING The counter is running, and its associated action (interrupt or
system reset) is enabled.

FREERUN The counter is running, but no associated action is enabled.

EXPIRED This mode is applicable only to the WD1 timer. This mode indicates
that the WD1 timer interrupt has expired.

SERVICED This mode is also applicable only to the WD1 timer. This mode
indicates that an expiration interrupt has occurred and been
serviced by the driver. This mode is cleared once it is reported to
the user through WIOCGSTAT. Thus, if two consecutive IOCTL calls
using WIOCGSTAT are made by a user program, the driver might
return SERVICED for the first IOCTL call, but not for the second.
6 Netra CP2000 and CP2100 Series Compact PCI Boards Programming Guide • October 2004

Input/Output Controls
The watchdog timer driver supports the following input/output control (IOCTL)
requests:

WIOCGSTAT Get the state of all the watchdog timers. If the level field of the
watchdog_if_t structure is a valid value (either WD1 or WD2), the
WIOCGSTAT IOCTL returns the status of both timers in the status
vector or the structure. Getting the status of the timers clears the
EXPIRED bit if set for the timer specified by the level field of the
watchdog_if_t structure, so that each timer expiration event is
reported.

WIOCSTART A few behavioural consequences are associated with the WIOCSTART
command that arise from the fact that WD1 and WD2 timers are not
independent in the Netra CP2000/CP2100 series board
implementation. When a WIOCSTART command is issued, the other
timer, if already running, will be restarted from its current initial
value. In addition, since the WD2 timer is in a sense an extension of
the WD1 timer, it is not permissible to set the count value for WD1
to a value greater than that of an active WD2 timer. Similarly, it is
not permissible to set the count value for WD2 to a value greater
than that of an active WD1 timer. The following rules are applied
when setting a timer if the other timer is already active: When WD1
is active, lowering WD2 to a value less than that of WD1 will cause
WD1 to be lowered to be equal to WD2. When WD2 is active, raising
WD1 to a value greater than that of WD2 will raise the value of
WD2 to be the same as WD1.

WIOCSTOP The WIOCSTOP command disables timer expiration actions. The
inhibit mask parameter of the watchdog_if_t structure
determines which timer is being controlled by WIOCSTOP. The
level parameter of the watchdog_if_t structure passed with this
command must be a valid watchdog level: either WD1 or WD2. If
the watchdog level is not valid, you will receive an error message
indicating that the device is not valid. It is possible to stop the WD1
timer if it is running. However, once started, the WD2 timer cannot
be stopped and resets the system unless it is prevented from
expiration by being periodically restarted.
Chapter 1 Watchdog Timer 7

Errors

Example
This code example retrieves the status of the watchdog timers, then starts both
timers:

EBUSY An application program attempted to perform an open(2) on
/dev/wd but another application already owned the device.

EFAULT An invalid pointer to a watchdog_if_t structure was passed as a
parameter to ioctl(2).

EINVAL The IOCTL command passed to the driver was not recognized.
OR
The level parameter of the watchdog_if_t structure is set to an
invalid value. Legal values are WD1 or WD2.
OR
The restart parameter of the watchdog_if_t structure is set to
an invalid value. Legal values are WD1, WD2, or zero.

ENXIO The watchdog driver has not been plumbed to communicate with
the SMC device driver.

CODE EXAMPLE 1-2 Status of Watchdog Timers and Starting Timers

#include sys/fcntl.h
#include sys/wd_if.h

.

.

.
int fd;
watchdog_if_t wdog1;
watchdog_if_t wdog2;
int rperiod = 5;

/*
 * open the watchdog driver
 */

if ((fd = open("/dev/wd", O_RDWR)) < 0) {
perror("/dev/wd open failed");
exit(0);

}

/*
8 Netra CP2000 and CP2100 Series Compact PCI Boards Programming Guide • October 2004

 * get the status of the timers

 */
wdog1.level = WD1;

 /* must be a valid value */
if (ioctl(fd, WIOCGSTAT, &wdog1) < 0) {

perror("WIOCGSTAT ioctl failed");
exit(0);

}

printf("Status WD1: 0x%x WD2: 0x%x\n",
wdog1.status[0], wdog1.status[1]);

/*
 * Start WD1 to give advance warning if we don’t
 * respond in 10 seconds. Also, when WD1 expires,
 * restart it automatically.
 */

#define RES(sec) (10 * (sec))
 /* convert to 0.1 sec resolution */

wdog1.level = WD1;
wdog1.count = RES(10);

 /* 10 sec, resolution of 0.1 sec */
wdog1.restart = WD1;
wdog1.next_count = RES(10);

 /* 10 sec, resolution of 0.1 sec */

/*
 * start the timers ticking...
 */
if (ioctl(fd, WIOCSTART, &wdog1) < 0) {

perror("WIOCSTART ioctl failed");
exit(0);

}

/*
 * Start WD2 to reset the SPARC processor if we don’t
 * kick it again within 20 seconds.
 */
wdog2.level = WD2;
wdog2.count = RES(20);

 /* 20 sec, resolution of 0.1 sec */
wdog2.restart = 0;

if (ioctl(fd, WIOCSTART, &wdog2) < 0) {
perror("WIOCSTART ioctl failed");

CODE EXAMPLE 1-2 Status of Watchdog Timers and Starting Timers (Continued)
Chapter 1 Watchdog Timer 9

Configuration
The watchdog device driver runs only on the following implementations:

exit(0);
}

/*
 * loop, restarting the timers to prevent RESET
 */

for (;;) {
watchdog_if_t wstat;

/*
 * first sleep for the desired period
 * before restarting the timer(s)
 */
sleep(rperiod);

/*
 * setup to get the status of the timers
 */
wstat.level = WD1;/* must be a valid value */
if (ioctl(fd, WIOCGSTAT, &wstat) < 0) {

perror("WIOCGSTAT ioctl failed");
exit(0);

}
/*
 * If the WD1 timer has expired, take
 * appropriate action.
 */
if (wstat.status[0] & EXPIRED) {

/* timer expired. shorten sleep? */
puts("WD1: <EXPIRED>");

}

/*
 * restart the timers
 */
if (ioctl(fd, WIOCSTART, &wdog2) < 0) {

perror("WIOCSTART ioctl failed");
exit(0);

}
}

CODE EXAMPLE 1-2 Status of Watchdog Timers and Starting Timers (Continued)
10 Netra CP2000 and CP2100 Series Compact PCI Boards Programming Guide • October 2004

■ SUNW, UltraSPARCengine_CP-40 (for Netra CP2040 and CP2140)

■ SUNW, UltraSPARCengine_CP-60 (for Netra CP2060 CP2160)

■ SUNW, UltraSPARCengine_CP-80 (for Netra CP2080)

By rule, the watchdog driver and its configuration file must reside in the platform-
specific driver directory, /platform/implementation/kernel/drv. The value of
implementation for a given Netra CP2000/CP2100 board system can be obtained by
running the uname(1) command on that machine with the -i option:

This directory contains the wdog.conf driver configuration file. This file controls
the boot-time configuration of the watchdog timer driver. The driver is configured
through a directive to send a notice to syslog when the WD1 timer interrupt is
serviced. The Netra CP2000/CP2100 board implementation requires that the
appropriate control directive be placed in wdog.conf.

The format for this directive is as follows:

OpenBoot PROM Interface
The OpenBoot™ PROM provides two environmental parameters, settable at the ok
prompt, that control the behavior of the SMC watchdog timer.

These parameters are watchdog-enable? and watchdog-timeout?. The
watchdog-enable? parameter is a logical switch with two possible values: true or
false.

uname -i
SUNW, UltraSPARCengine_CP-60

 #

 # control to enable syslog notification when a WD1

 # interrupt is handled.

 # handler-message="on" enables syslog notice.

 # handler-message="off" disables syslog notice.

 #

 handler-message="on"
Chapter 1 Watchdog Timer 11

If watchdog-enable? is set to false,the watchdog timer is disabled at boot time,.
Once the kernel is booted, applications have the option to start the watchdog timer.

If watchdog-enable? is set to true, the watchdog timer is enabled at boot time
with its default actions: The WD1 timer is controlled by the value in watchdog-timeout
variable. When WD1 expires it sends an asynchronous message to the local CPU. It
also starts the WD2 timer. The default value for the WD2 timer is 1 second. If the
WD2 timer expires, it resets the CPU board.

If the watchdog timer is enabled at boot time, it is your responsibility to ensure that
an application program is run to periodically restart the WD1 timer. If you fail to do
so, the timer expires. The system could be reset when the watchdog timer expires.

Data Structure
Refer to CODE EXAMPLE 1-1 for details on the data structure that is used with
watchdog timer programs.

Watchdog Operation
The watchdog operation (the local watchdog) is the watchdog that works between the
host CPU and System Management Controller (SMC).

Commands at OpenBoot PROM Prompt
TABLE 1-1 lists the commands at OpenBoot prompt.

TABLE 1-1 OpenBoot PROM Prompt Commands

Command Description

smc-get-wdt Gets the current timers values, and other watchdog state bits.

smc-set-wdt Sets the timers values and other flags. This command is also used to
stop watchdog operations.

smc-reset-wdt Starts timer countdown and is often referred to as the "heartbeat".
12 Netra CP2000 and CP2100 Series Compact PCI Boards Programming Guide • October 2004

Corner Cases
When watchdog reset occurs, the power module is toggled. Thus, the state of the
CPU, except those stored in nonvolatile memory, will be lost. Once watchdog reset
occurs after the host CPU is restarted, the host CPU must restart the watchdog timer.

The host CPU must perform a corner case. After the SMC resets the host CPU, the
output buffer full (OBF) bit and OEM1 bit in the EBus status register remain set.
Since this is a read-only bit, the SMC cannot reset the bit. The host must ignore the
status bits and clear the OBF bit by reading one byte of data from EBus. This action
must be performed after watchdog reset. Otherwise, the host CPU can inadvertently
restart watchdog. For example, if the timer’s values are set to very low numbers, the
board can never boot to the Solaris operating system.

The SMC manages the race condition by putting interlock. The SMC does not start
pre-timeout timer unless the warning is dispatched to the host CPU. The code is set
up on the host side after watchdog warning is issued. Use a Keyboard Controller
Style (KCS) command to clear the watchdog interrupt. Using this command is the
only way to avoid the selected pre-timeout action such as hard reset. This command
rewinds the watchdog timer. The host code internally manages the warning, along
with the command being sent to the SMC.

If diag-switch? is set to true, the timing for watchdog can be affected.

Setting the Watchdog Timer at OpenBoot PROM

▼ To Set the Watchdog Timer Without Running the Pre-
Timeout Timer

The examples below are at the OpenBoot PROM level. AFter Level 1 expires the
local CPU is put into reset.

1. Set the timer to 10 minutes = 600 sec = 600,000/10 msec = 0x1770.

2. Set the reload values inside the SMC:

3. Start the watchdog timer:

ok 17 70 ff 0 31 4 smc-set-wdt

ok smc-reset-wdt
Chapter 1 Watchdog Timer 13

▼ To Set the Watchdog Timer With Pre-Timeout Time

This procedure sets the reload values of countdown timer and pre-timeout timer.
Following the Level 1 expiry, there are 80 seconds before the reset action.

1. Set the timer to 80 seconds = 0x50.

Set the countdown value to 10 minutes, as in the previous procedure, and set the
pre-timout timer to 80 seconds.

2. Start the watchdog timer:

▼ To Stop the Watchdog Timer

ok 17 70 ff 50 31 4 smc-set-wdt

ok smc-reset-wdt

ok ff ff ff 0 31 4 smc-set-wdt
14 Netra CP2000 and CP2100 Series Compact PCI Boards Programming Guide • October 2004

CHAPTER 2

User Flash

This chapter describes the user flash driver for the onboard flash PROMs and how to
use it. The Netra CP2000/CP2100 series boards are equipped with user flash
memory. This chapter includes the following sections:

■ “User Flash Usage and Implementation” on page 15
■ “User Flash Address Range” on page 16
■ “System Compatibility” on page 17
■ “User Flash Driver” on page 19
■ “User Flash Packages” on page 20
■ “Example Programs” on page 23

User Flash Usage and Implementation
The customer can use the flash memory for various purposes such as storage for
RTOS, user data storage, OpenBoot PROM information or to store dropins. Dropins
simplify customizing a system for the user.

When OpenBoot PROM in system flash is corrupted, and if a backup copy of
OpenBoot PROM is stored in user flash, you can switch the SMC switch to boot the
OpenBoot PROM from the user flash and then use flash update to get a good
OpenBoot PROM image back into the system flash.

A user flash switch SW2501 determines whether the user flash is detected during
OpenBoot PROM boot and whether or not it is write-enabled. See “Switch Settings”
on page 19 for more information.
15

The user flash includes flash PROM chips that can be programmed by users (see
TABLE 2-1).

User Flash Address Range
The address range for 1 x 4MB user flash : 0x1ff.f040.0000 to 0x1ff.f07f.ffff.

The address range for 1 X 8MB flash: 0x1ff.f040.0000 to 0x1ff.f0bf.ffff

TABLE 2-1 User Flash Implementation

CompactPCI Board Implementation Total Memory Size

Netra CP2040 Two user flash modules 2 X 4MB

Netra CP2060 One user flash module 1 x 4 MB

Netra CP2080 One user flash module 1 x 4 MB

Netra CP2140 Two user flash modules 2 x 4MB

Netra CP2160 One user flash module 1 x 8MB
16 Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

System Compatibility
TABLE 2-2 lists the compatible releases that support the user flash driver.

TABLE 2-2 Compatible Releases That Support the User Flash Driver

CompactPCI Board Component Compatible Release

Netra CP2060 Hardware

OpenBoot PROM

Operating
environment

All board versions

OpenBoot PROM Release 4.0.45
SMC Firmware Release 3.10.5
FPGA Version 1.2
PLD Version 4.2
All the above versions or other versions that
support this feature
Solaris 8 1/01 operating environment or
other versions that support this feature

Netra CP2080 Hardware

OpenBoot PROM

Operating
environment

All board versions

OpenBoot PROM Release 4.0.45
SMC Firmware Release 3.10.5
FPGA Version 1.2
PLD Version 4.2
All the above versions or other versions that
support this feature
Solaris 8 1/01 operating environment or
other versions that support this feature
Chapter 2 User Flash 17

Netra CP2040 Hardware

OBP

Operating
environment

All board versions

OpenBoot PROM Release 4.0.27
SMC Firmware Release 3.4.4
FPGA Version 1.0
PLD Version 1.2
All the above versions or other versions that
support this feature
Solaris 8 1/01 operating environment or
other versions that support this feature

Netra CP2140 Hardware

OBP

Operating
environment

All board versions

OpenBoot PROM Release 4.0.3
SMC Firmware Release 3.4.10
FPGA Version 1.0
PLD Version 1.3
All the above versions or other versions that
support this feature
Solaris 8 2/02 operating environment or
other versions that support this feature

Netra CP2160 Hardware

OBP

All board versions

OpenBoot PROM Release 4.0.11
SMC Firmware Release 4.0.6
FPGA Version 1.2
PLD Version 4.2
All the above versions or other versions that
support this feature
Solaris 8 2/02 operating environment or
other versions that support this feature

TABLE 2-2 Compatible Releases That Support the User Flash Driver

CompactPCI Board Component Compatible Release
18 Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

User Flash Driver
The uflash is the device driver for flash PROM devices on the Netra CP2000/CP2100
series boards. Access to the driver is carried out through open, read, write, pread,
pwrite and ioctl system interfaces.

Depending on the platform, one or more of these devices are supported. There is one
logical device file for each physical device that can be accessed from applications.
Users can use these devices for storing applications and data.

When multiple user flash devices are supported by the system, an instance of the
driver is loaded per device. The driver blocks any reads to the device, while a write
is in progress. Multiple, concurrent reads can go through to the same device at the
same time. Writes to a device occur independently of the others. All read and write
operations are supported at this time.

Access to the device normally happens a byte at a time. Devices support buffers to
speed up writes. The driver automatically switches to the buffer mode, when the
feature is available and the request is of sufficient size.

Devices also support erase and lock features. Applications can use them through the
IOCTL interface. Devices are divided into logical blocks. Applications that issue
these operations also supply a block number or a range of blocks that are a target of
these operations. Locks are preserved across reboots. Locking a block prevents an
erase or write operation on that block.

Switch Settings
The user flash modules on the Netra boards are write enabled by default. The user
flash is detected during OpenBoot PROM boot by default.

See the following documents for more details on switch settings:

■ Netra CP2040 Technical Reference and Installation Manual, (806-4994-xx)

■ Netra CP2140 Technical Reference and Installation Manual (816-4908-xx)

■ Netra CP2060 and CP2080 Technical Reference and Installation Manual (806-6658-xx)

■ Netra CP2160 CompactPCI Board Installation and Technical Reference Manual (816-
5772-xx)
Chapter 2 User Flash 19

OpenBoot PROM Device Tree and Properties
This section provides information on the user flash OpenBoot PROM device node
and its properties.

User flash OpenBoot PROM device node:

/pci@1f,0/pci@1,1/ebus@1/flashprom@10,800000
/pci@1f,0/pci@1,1/ebus@1/flashprom@10,400000

See TABLE 2-3 for the user flash node properties.

User Flash Packages
The user flash packages are as follows:

■ SUNWufr.u—32 bit driver

■ SUNWufrx.u—64 bit driver

■ SUNWufu—include files

These packages are available with the rest of the software on the CP2000
Supplemental CD 4.0 for Solaris 8.

TABLE 2-3 User Flash Node Properties

Property Description/Value

compatible user flash

user

reg 00000010 00400000 00400000

block-size 00010000

dcode-offset 00000002

blocks-per-bank 00000020

model SUNW,yyy-yyyy
20 Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

User Flash Device Files
The user flash device files are as follows:

■ /dev/uflash0—Netra CP2060, Netra CP2080, and Netra CP2160

■ /dev/uflash0, /dev/uflash1—Netra CP2040

■ /dev/uflash0, /dev/uflash1—Netra CP2140

Interface (Header) File
The user flash header file is located in the following path:

/usr/include/sys/uflash_if.h

Application Programming Interface
Access to the user flash device from the Solaris operating environment is through a
C program. No command-line tool is available. User programs open these device
files and then issue read, write, or ioctl commands to use the user flash device.

The systems calls are listed below in TABLE 2-4.

The ioctl commands are listed below.

TABLE 2-4 System Calls

Call Description

read(), pread() reads devices

pwrite() writes devices

ioctl() erases device, queries device parameters

#define UIOCIBLK (uflashIOC|0) /* identify */

#define UIOCQBLK (uflashIOC|1) /* query a block */

#define UIOCLBLK (uflashIOC|2) /* lock a block */

#define UIOCMLCK (uflashIOC|3) /* master lock */

#define UIOCCLCK (uflashIOC|4) /* clear all locks */
Chapter 2 User Flash 21

Structures to Use in IOCTL Arguments

PROM Information Structure

The PROM information structure holds device information returned by the driver in
response to an identify command.

User Flash User Interface Structure

The user flash user interface structure holds user parameters to commands such as
erase.

#define UIOCEBLK (uflashIOC|5) /* erase a block */

#define UIOCEALL (uflashIOC|6) /* erase all unlocked blocks */

#define UIOCEFUL (uflashIOC|7) /* erase full chip */

CODE EXAMPLE 2-1 PROM Information Structure

/*

 * PROM info structure.

 */

typedef struct {

 uint16_t mfr_id; /* manufacturer id */

 uint16_t dev_id; /* device id */

 /* allow future expansion */

 int8_t blk_status[256]; /* blks status filled
by driver */

 int32_t blk_num; /* total # of blocks */

 int32_t blk_size; /* # of bytes per block */

} uflash_info_t;

CODE EXAMPLE 2-2 User Flash Interface Structure

/*

 * uflash user interface structure.

 */

typedef struct {

 int blk_num;
22 Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

Errors

Example Programs
Example programs are provided in this section for the following actions on user
flash device:

■ Read
■ Write
■ Erase
■ Block Erase

 int num_of_blks;

 uflash_info_t info; /* to be filled by the
driver */

} uflash_if_t;

EINVAL Application passed one or more incorrect arguments to the system
call.

EACCESS Write or Erase operation was attempted on a locked block.

ECANCELLED A hardware malfunction has been detected. Normally, retrying the
command should fix this problem. If the problem persists, power
cycling the system may be necessary.

ENXIO This error indicates problems with the driver state. Power cycle of
the system or reinstallation of driver may be necessary.

EFAULT An error was encountered when copying arguments between the
application and driver (kernel) space.

ENOMEM System was low on memory when the driver attempted to acquire it.

CODE EXAMPLE 2-2 User Flash Interface Structure
Chapter 2 User Flash 23

Read Example Program

CODE EXAMPLE 2-3 contains the Read Action on the user flash device.

CODE EXAMPLE 2-3 Read Action on User Flash Device

/*

* uflash_read.c

 * An example that shows how to read user flash

 */

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <errno.h>

#include <uflash_if.h>

char *uflash0 = "/dev/uflash0";

char *uflash1 = "/dev/uflash1";

int ufd0, ufd1;

uflash_if_t ufif0, ufif1;

char *buf0;

char *buf1;

char *module;

static int

uflash_init() {

 char *buf0 = malloc(ufd0.info.blk_size);

 char *buf1 = malloc(ufd1.info.blk_size);

if (!buf0 || !buf1) {

 printf("%s: cannot allocate memory\n", module);

 return(-1);

 }

/* open device(s) */

 if ((ufd0 = open(uflash0, O_RDWR)) == -1) {

 perror("uflash0: ");

 }

if ((ufd1 = open(uflash1, O_RDWR)) == -1) {

 perror("uflash1: ");

 }

if ((ufd0 == -1) && (ufd1 == -1)) {

 printf("\n%s: cannot open uflash devices\n");

 exit(1);

 }

if (ufd0 == -1)
24 Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

 ufd0 = 0;

 if (ufd1 == -1)

 ufd1 = 0;

/* get uflash sizes */

 if (ufd0 && ioctl(ufd0, UIOCIBLK, &ufif0) == -1) {

 perror("ioctl(ufd0, UIOCIBLK): ");

 exit(1);

 }

if (ufd1 && ioctl(ufd1, UIOCIBLK, &ufif1) == -1) {

 perror("ioctl(ufd1, UIOCIBLK): ");

 exit(1);

 }

if (ufd0) {

 printf("%s: \n", uflash0);

 printf("manfacturer id = 0x%p\n", ufd0.info.mfr_id);

 printf("device id = 0x%p\n", ufd0.info.dev_id);

 printf("number of blocks = 0x%p", ufd0.info.blk_num);

 printf("block size = 0x%p" ufd0.info.blk_size);

 }

if (ufd1) {

 printf("%s: \n", uflash1);

 printf("manfacturer id = 0x%p\n", ufd1.info.mfr_id);

 printf("device id = 0x%p\n", ufd1.info.dev_id);

 printf("number of blocks = 0x%p", ufd1.info.blk_num);

 printf("block size = 0x%p" ufd1.info.blk_size);

 }

}

static int

uflash_uninit() {

 if (ufd0)

 close(ufd0);

 if (ufd1)

 close(ufd1);

cleanup:

 if (buf0)

 free(buf0);

 if (buf1)

 free(buf1);

}

static int

uflash_read() {

 /* read block 0 of user flash 0 */

CODE EXAMPLE 2-3 Read Action on User Flash Device (Continued)
Chapter 2 User Flash 25

Write Example Program

CODE EXAMPLE 2-4 contains the Write Action on the user flash device.

 if (pread(ufd0, buf0, ufd0.info.blk_size, 0) !=
ufd0.info.blk_size)

 perror("uflash0:read");

/* read block 1 of user flash 1 */

 if (pread(ufd1, buf1, ufd1.info.blk_size, ufd0.info.blk_size)

 != ufd1.info.blk_size)

 perror("uflash1:read");

return(0);

}

main() {

 int ret;

module = argv[0];

ret = uflash_init();

if (!ret)

 uflash_read();

uflash_uninit();

}

CODE EXAMPLE 2-4 Write Action on User Flash Device

/*

 * uflash_write.c

 * An example that shows how to write user flash

 */

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <errno.h>

#include <uflash_if.h>

char *uflash0 = "/dev/uflash0";

char *uflash1 = "/dev/uflash1";

int ufd0, ufd1;

uflash_if_t ufif0, ufif1;

char *buf0;

char *buf1;

char *module;

CODE EXAMPLE 2-3 Read Action on User Flash Device (Continued)
26 Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

static int

uflash_init() {

 char *buf0 = malloc(ufd0.info.blk_size);

 char *buf1 = malloc(ufd1.info.blk_size);

if (!buf0 || !buf1) {

 printf("%s: cannot allocate memory\n", module);

 return(-1);

 }

/* open device(s) */

 if ((ufd0 = open(uflash0, O_RDWR)) == -1) {

 perror("uflash0: ");

 }

if ((ufd1 = open(uflash1, O_RDWR)) == -1) {

 perror("uflash1: ");

 }

if ((ufd0 == -1) && (ufd1 == -1)) {

 printf("\n%s: cannot open uflash devices\n");

 exit(1);

 }

if (ufd0 == -1)

 ufd0 = 0;

 if (ufd1 == -1)

 ufd1 = 0;

/* get uflash sizes */

 if (ufd0 && ioctl(ufd0, UIOCIBLK, &ufif0) == -1) {

 perror("ioctl(ufd0, UIOCIBLK): ");

 exit(1);

 }

if (ufd1 && ioctl(ufd1, UIOCIBLK, &ufif1) == -1) {

 perror("ioctl(ufd1, UIOCIBLK): ");

 exit(1);

 }

if (ufd0) {

 printf("%s: \n", uflash0);

 printf("manfacturer id = 0x%p\n", ufd0.info.mfr_id);

 printf("device id = 0x%p\n", ufd0.info.dev_id);

 printf("number of blocks = 0x%p", ufd0.info.blk_num);

 printf("block size = 0x%p" ufd0.info.blk_size);

 }

if (ufd1) {

 printf("%s: \n", uflash1);

 printf("manfacturer id = 0x%p\n", ufd1.info.mfr_id);

 printf("device id = 0x%p\n", ufd1.info.dev_id);

CODE EXAMPLE 2-4 Write Action on User Flash Device (Continued)
Chapter 2 User Flash 27

 printf("number of blocks = 0x%p", ufd1.info.blk_num);

 printf("block size = 0x%p" ufd1.info.blk_size);

 }

}

static int

uflash_uninit() {

 if (ufd0)

 close(ufd0);

 if (ufd1)

 close(ufd1);

cleanup:

 if (buf0)

 free(buf0);

 if (buf1)

 free(buf1);

}

static int

uflash_write() {

 int i;

/* write some pattern to the buffers */

 for (i = 0; i < ufd0.info.blk_size; i += sizeof(int))

 *((int *) (buf0 + i)) = 0xDEADBEEF;

for (i = 0; i < ufd1.info.blk_size; i += sizeof(int))

 *((int *) (buf1 + i)) = 0xDEADBEEF;

/* write block 0 of user flash 0 */

 if (pwrite(ufd0, buf0, ufd0.info.blk_size, 0) !=
ufd0.info.blk_size)

 perror("uflash0:write");

/* write block 1 of user flash 1 */

 if (pwrite(ufd1, buf1, ufd1.info.blk_size, ufd0.info.blk_size)

 != ufd1.info.blk_size)

 perror("uflash1:write");

return(0);

}

main() {

 int ret;

module = argv[0];

ret = uflash_init();

if (!ret)

 uflash_write();

uflash_uninit();

}

CODE EXAMPLE 2-4 Write Action on User Flash Device (Continued)
28 Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

Erase Example Program

CODE EXAMPLE 2-5 contains the Erase Action on the User Flash Device.

CODE EXAMPLE 2-5 Erase Action on User Flash Device

/*

 * uflash_erase.c

 * An example that shows how to erase user flash

 */

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <errno.h>

#include <uflash_if.h>

char *uflash0 = "/dev/uflash0";

char *uflash1 = "/dev/uflash1";

int ufd0, ufd1;

uflash_if_t ufif0, ufif1;

char *module;

static int

uflash_init() {

 /* open device(s) */

 if ((ufd0 = open(uflash0, O_RDWR)) == -1) {

 perror("uflash0: ");

 }

if ((ufd1 = open(uflash1, O_RDWR)) == -1) {

 perror("uflash1: ");

 }

if ((ufd0 == -1) && (ufd1 == -1)) {

 printf("\n%s: cannot open uflash devices\n");

 exit(1);

 }

if (ufd0 == -1)

 ufd0 = 0;

 if (ufd1 == -1)

 ufd1 = 0;

/* get uflash sizes */

 if (ufd0 && ioctl(ufd0, UIOCIBLK, &ufif0) == -1) {

 perror("ioctl(ufd0, UIOCIBLK): ");

 exit(1);

 }
Chapter 2 User Flash 29

if (ufd1 && ioctl(ufd1, UIOCIBLK, &ufif1) == -1) {

 perror("ioctl(ufd1, UIOCIBLK): ");

 exit(1);

 }

if (ufd0) {

 printf("%s: \n", uflash0);

 printf("manfacturer id = 0x%p\n", ufd0.info.mfr_id);

 printf("device id = 0x%p\n", ufd0.info.dev_id);

 printf("number of blocks = 0x%p", ufd0.info.blk_num);

 printf("block size = 0x%p" ufd0.info.blk_size);

 }

if (ufd1) {

 printf("%s: \n", uflash1);

 printf("manfacturer id = 0x%p\n", ufd1.info.mfr_id);

 printf("device id = 0x%p\n", ufd1.info.dev_id);

 printf("number of blocks = 0x%p", ufd1.info.blk_num);

 printf("block size = 0x%p" ufd1.info.blk_size);

 }

}

static int

uflash_uninit() {

 if (ufd0)

 close(ufd0);

 if (ufd1)

 close(ufd1);

}

static int

uflash_erase() {

 if (ufd0 && ioctl(ufd0, UIOCEFUL, &ufd0) == -1) {

 perror("ioctl(ufd0, UIOCEFUL): ");

 return(-1);

 }

 printf("\nerase successful on %s\n", uflash0);

if (ufd1 && ioctl(ufd1, UIOCEFUL, &ufd1) == -1) {

 perror("ioctl(ufd1, UIOCEFUL): ");

 return(-1);

 }

 dprintf("\nerase successful on %s\n", uflash1);

return(0);

}

main() {

 int ret;

module = argv[0];

CODE EXAMPLE 2-5 Erase Action on User Flash Device (Continued)
30 Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

Block Erase Example Program

CODE EXAMPLE 2-6 contains the Block Erase Action on the user flash device.

ret = uflash_init();

if (!ret)

 uflash_erase();

uflash_uninit();

}

CODE EXAMPLE 2-6 Block Erase Action on User Flash Device

/*

 * uflash_blockerase.c

 * An example that shows how to erase block(s) of user flash

 */

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <errno.h>

#include <uflash_if.h>

char *uflash0 = "/dev/uflash0";

char *uflash1 = "/dev/uflash1";

int ufd0, ufd1;

uflash_if_t ufif0, ufif1;

char *module;

static int

uflash_init() {

 /* open device(s) */

 if ((ufd0 = open(uflash0, O_RDWR)) == -1) {

 perror("uflash0: ");

 }

if ((ufd1 = open(uflash1, O_RDWR)) == -1) {

 perror("uflash1: ");

 }

if ((ufd0 == -1) && (ufd1 == -1)) {

 printf("\n%s: cannot open uflash devices\n");

 exit(1);

 }

if (ufd0 == -1)

CODE EXAMPLE 2-5 Erase Action on User Flash Device (Continued)
Chapter 2 User Flash 31

 ufd0 = 0;

 if (ufd1 == -1)

 ufd1 = 0;

/* get uflash sizes */

 if (ufd0 && ioctl(ufd0, UIOCIBLK, &ufif0) == -1) {

 perror("ioctl(ufd0, UIOCIBLK): ");

 exit(1);

 }

if (ufd1 && ioctl(ufd1, UIOCIBLK, &ufif1) == -1) {

 perror("ioctl(ufd1, UIOCIBLK): ");

 exit(1);

 }

if (ufd0) {

 printf("%s: \n", uflash0);

 printf("manfacturer id = 0x%p\n", ufd0.info.mfr_id);

 printf("device id = 0x%p\n", ufd0.info.dev_id);

 printf("number of blocks = 0x%p", ufd0.info.blk_num);

 printf("block size = 0x%p" ufd0.info.blk_size);

 }

if (ufd1) {

 printf("%s: \n", uflash1);

 printf("manfacturer id = 0x%p\n", ufd1.info.mfr_id);

 printf("device id = 0x%p\n", ufd1.info.dev_id);

 printf("number of blocks = 0x%p", ufd1.info.blk_num);

 printf("block size = 0x%p" ufd1.info.blk_size);

 }

}

static int

uflash_uninit() {

 if (ufd0)

 close(ufd0);

 if (ufd1)

 close(ufd1);

}

static int

uflash_blockerase() {

 /* erase 2 blocks starting from block 1 of user flash 0 */

 uf0.blk_num = 1;

 uf0.num_of_blks = 2;

 if (ufd0 && ioctl(ufd0, UIOCEBLK, &ufd0) == -1) {

 perror("ioctl(ufd0, UIOCEBLK): ");

 return(-1);

 }

CODE EXAMPLE 2-6 Block Erase Action on User Flash Device (Continued)
32 Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

Sample User Flash Application Program
You can use the following program to test the user flash device and driver. This
program also demonstrates how this device can be used.

 printf("\nblockerase successful on %s\n", uflash0);

/* erase 4 blocks starting from block 5 of user flash 1 */

 uf1.blk_num = 5;

 uf1.num_of_blks = 4;

 if (ufd1 && ioctl(ufd1, UIOCEBLK, &ufd1) == -1) {

 perror("ioctl(ufd1, UIOCEBLK): ");

 return(-1);

 }

 printf("\nblockerase successful on %s\n", uflash1);

return(0);

}

main() {

 int ret;

module = argv[0];

ret = uflash_init();

if (!ret)

 uflash_blockerase();

uflash_uninit();

}

CODE EXAMPLE 2-7 Sample User Flash Application Program

/*

 *

 * This application program demonstrates the user program

 * interface to the User Flash PROM driver.

 *

 * One can read or write a number of bytes up to the size of

 * the user PROM by means of pread() and pwrite() calls.

 * All other functions of the PROM can be reached by the
means

 * of ioctl() calls such as:

 * -) identify the chip,

 * -) query block,

 * -) lock block/unlock block,

 * -) master lock,

 * -) erase block, erase all unlocked blocks, and

CODE EXAMPLE 2-6 Block Erase Action on User Flash Device (Continued)
Chapter 2 User Flash 33

 * erase whole PROM

 * Please note that not all of the above ioctl calls are

 * available for all flash PROMs. It is the user’s
responsibility

 * to find out the features of a given PROM. The type, block
size,

 * and number of blocks of the PROM are returned by

 *"identify" ioctl().

 *

 * The pwrite() erases the block[s] and then does the .

writing.

 * The driver uses the buffered write. If the buffered write

 * is not supported in a particular PROM, the non-buffered

 * writes are used instead. The buffered write is 15 folds

 * faster than the non-buffered write.

 *

 * Use the following line to compile your custom application

 * programs:

 * make uflash_test

 */

#pragma ident "@(#)uflash_test.c 1.3 99/08/03 SMI"

#include <stdio.h>

#include <sys/signal.h>

#include <stdio.h>

#include <sys/time.h>

#include <errno.h>

#include <sys/types.h>

#include <sys/fcntl.h>

#include <sys/stream.h>

#include "uflash_if.h"

/*

 * PROM size: 4 or 8 MBytes

 * Uncomment the right block

 */

 #if 1

 #define PROM_SIZE 0x400000 /* 4 MBytes */

 #endif

 #if 0

 #define PROM_SIZE 0x800000 /* 8 MBytes */

 #endif

static char *help[14] = {

CODE EXAMPLE 2-7 Sample User Flash Application Program (Continued)
34 Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

"0 -- read user flash PROM",

"1 -- write user flash PROM",

"2 -- identify user flash PROM",

"3 -- query blocks",

"4 -- lock blocks",

"5 -- master lock",

"6 -- clear all locks",

"7 -- erase blocks",

"8 -- erase all unlocked blocks",

"9 -- erase whole PROM",

"a -- switch PROMs",

"q -- quit",

"?/h -- display this menu",

""

};

/*char get_cmd(); */

static char

get_cmd()

{

char buf[10];

gets(buf);

return (buf[0]);

}

/*

 * Main

 */

main(int argc, char *argv[])

{

int n_byte; /* returned from pread/pwrite */

int size, offset, pat;

int fd0, fd1, h, i;

int fd, prom_id;

uflash_if_tuflash_if;

caddr_t r_buf, w_buf;

char *devname0 = "/dev/uflash0";

char *devname1 = "/dev/uflash1";

char c;

/*

 * Assume that the PROM size is 4 MB.

CODE EXAMPLE 2-7 Sample User Flash Application Program (Continued)
Chapter 2 User Flash 35

 */

r_buf = (caddr_t)malloc(PROM_SIZE);

w_buf = (caddr_t)malloc(PROM_SIZE);

/*

 * Open the user flash PROM #0.

 */

if ((fd0 = open(devname0, O_RDWR)) < 0) {

fprintf(stderr, "couldn’t open device: %s\n",
devname0);

exit(1);

}

/*

 * Open the user flash PROM #1.

 */

if ((fd1 = open(devname1, O_RDWR)) < 0) {

fprintf(stderr, "couldn’t open device: %s\n",
devname1);

exit(1);

}

/* set the default PROM */

prom_id = 0;

fd = fd0;

/* let them know about the help menu */

 fprintf(stderr, "Enter <h> or <?> for help on commands\n");

while (1) {

fprintf(stderr, "[%d]command> ", prom_id);

switch(get_cmd()) {

case ’q’:

goto getout;

case ’h’:

case ’?’:

h = 0;

while (*help[h]){

fprintf(stderr, "%s\n", help[h]);

h++;

}

break;

CODE EXAMPLE 2-7 Sample User Flash Application Program (Continued)
36 Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

case ’a’:/* switch PROM */

fd = (fd == fd0)? fd1: fd0;

prom_id = (prom_id == 1)? 0: 1;

break;

case ’9’: /* erase the whole flash PROM */

fprintf(stderr,

 "Are you sure?[y/n]");

 scanf ("%c", &c);

if (c != ’y’)

continue;

if (ioctl(fd, UIOCEFUL, &uflash_if) == -1)

 goto getout;

break;

case ’8’: /* erase all unlocked flash PROM blocks */

/*

 * This ioctl is valid only for those

 * chips that have query command.

 */

if (ioctl(fd, UIOCEALL, &uflash_if) == -1)

 goto getout;

break;

case ’7’: /* erase flash PROM block */

fprintf(stderr,

 "Enter PROM block number[0, 31]> ");

 scanf ("%d", &uflash_if.blk_num);

fprintf(stderr,

"Enter number of block> ");

scanf ("%d", &uflash_if.num_of_blks);

if (ioctl(fd, UIOCEBLK, &uflash_if) == -1)

 goto getout;

break;

case ’6’: /* clear all locks */

/* on certain PROMs */

if (ioctl(fd, UIOCCLCK, &uflash_if) == -1)

 goto getout;

CODE EXAMPLE 2-7 Sample User Flash Application Program (Continued)
Chapter 2 User Flash 37

break;

case ’5’: /* master lock */

/* on certain PROMs */

if (ioctl(fd, UIOCMLCK, &uflash_if) == -1)

 goto getout;

break;

case ’4’: /* lock flash PROM block */

/* on certain PROMs */

fprintf(stderr,

 "Enter PROM block number[0, 31]> ");

 scanf ("%d", &uflash_if.blk_num);

fprintf(stderr,

"Enter number of block> ");

scanf ("%d", &uflash_if.num_of_blks);

if (ioctl(fd, UIOCLBLK, &uflash_if) == -1)

 goto getout;

break;

case ’3’: /* query flash PROM */

/* on certain PROMs */

fprintf(stderr,

 "Enter PROM block number[0, 31]> ");

 scanf ("%d", &uflash_if.blk_num);

fprintf(stderr,

"Enter number of block> ");

scanf ("%d", &uflash_if.num_of_blks);

if (ioctl(fd, UIOCQBLK, &uflash_if) == -1)

 goto getout;

for (i = uflash_if.blk_num;

i < (uflash_if.blk_num+uflash_if.num_of_blks);

i++)

{

fprintf(stderr, "block[%d] status = %x\n",

i, uflash_if.info.blk_status[i] & 0xF);

}

break;

CODE EXAMPLE 2-7 Sample User Flash Application Program (Continued)
38 Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

case ’2’: /* identify flash PROM */

if (ioctl(fd, UIOCIBLK, &uflash_if) == -1)

 goto getout;

fprintf(stderr, "manufacturer id = 0x%x, device id
=\

0x%x\n# of blks = %d, blk size = 0x%x\n",

uflash_if.info.mfr_id & 0xFF,

uflash_if.info.dev_id & 0xFF,

uflash_if.info.blk_num,

uflash_if.info.blk_size);

break;

case ’1’: /* write to user flash PROM */

fprintf(stderr,

 "Enter PROM offset[0, 0xXX,XXXX]> ");

 scanf ("%x", &offset);

fprintf(stderr,

"Enter number of bytes[hex]> ");

scanf ("%x", &size);

fprintf(stderr,

 "Enter data pattern[0, 0xFF]> ");

 scanf ("%x", &pat);

/*

 * init write buffer.

 */

for (i = 0; i < size; i++) {

w_buf[i] = pat;

}

n_byte = pwrite (fd, w_buf, size, offset);

if (n_byte != size) {

/* the write failed */

printf ("Write process was failed at byte 0x%x \
n",

n_byte);

}

break;

case ’0’:/* read from user flash PROM */

CODE EXAMPLE 2-7 Sample User Flash Application Program (Continued)
Chapter 2 User Flash 39

fprintf(stderr,

 "Enter PROM offset[0, 0xXX,XXXX]> ");

 scanf ("%x", &offset);

fprintf(stderr,

"Enter number of bytes[hex]> ");

scanf ("%x", &size);

getchar();/* clean up the char buf */

n_byte = pread (fd, r_buf, size, offset);

if (n_byte != size) {

 /* the read failed */

 printf ("Read process was failed at \

byte 0x%x \n",

 n_byte);

continue;

 }

printf ("\nuser data buffer:\n");

for (i = 0; i < size; i++) {

printf("%2x ", r_buf[i] & 0xff);

}

printf("\n");

default:

continue;

}

}

/* exit */

getout:

close(fd0);

close(fd1);

return;

} /* end of main() */

CODE EXAMPLE 2-7 Sample User Flash Application Program (Continued)
40 Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

CHAPTER 3

Advanced System Management

Advanced System Monitoring (ASM) is an intelligent fault detection system that
increases uptime and manageability of the board. The System Management
Controller (SMC) module on the Netra CP2000/CP2100 series supports the
temperature monitoring functions of ASM. This chapter describes the specific ASM
functions of the Netra CP2000/CP2100 series. This chapter includes the following
sections:

■ “ASM Component Compatibility” on page 42
■ “Typical ASM System Application” on page 42
■ “Typical Cycle From Power Up to Shutdown” on page 44
■ “Hardware ASM Functions” on page 46
■ “Adjusting the ASM Warning and Shutdown Parameter Settings on the Board” on

page 55
■ “OpenBoot PROM Environmental Parameters” on page 57
■ “OpenBoot PROM/ASM Monitoring” on page 59
■ “ASM Application Programming” on page 68
■ “Temperature Table Data” on page 73
41

ASM Component Compatibility
TABLE 3-1 lists the compatible ASM hardware, OpenBoot PROM, and Solaris
operating environment for the Netra CP2000/CP2100 series.

Typical ASM System Application
FIGURE 3-1 illustrates the Netra CP2000/CP2100 series ASM application block
diagram.

TABLE 3-1 Compatible Netra CP2000/CP2100 Series ASM Components

Component ASM Compatibility

Hardware All board versions support ASM

OpenBoot PROM ASM is supported by OpenBoot PROM.

Operating
environment

Solaris 8 2/02 operating environment or subsequent compatible
versions, with one of the following CD supplements:
• CP2000 Supplemental CD 4.0 for Solaris 8
• CP2000 Supplemental CD 3.1 for Solaris 8
42 Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

FIGURE 3-1 Typical Netra CP2000/CP2100 Series ASM Application Block Diagram

FIGURE 3-1 is a typical Netra CP2000/CP2100 series system application block
diagram. For locations of the temperature sensors, see FIGURE 3-2, FIGURE 3-3 and
FIGURE 3-4.

Transition card
(OEM supplied)

I2C
node

Rack
midplane

PWR PWRPWR
MUX

I2C
internal
bus

Solaris
SC driver

Temp.
sensor

ASM
driver

ASM app.
program
(monitor &
warn only)

Voltage
outputs

Other CompactPCI boards
Power-supply

(OEM supplied)
Netra CP2060/CP2080
system controller board

I2C
external
bus Power bus (+5.0 and 3.3 volts)

SMC
firmware
Chapter 3 Advanced System Management 43

The Netra CP2000/CP2100 series functions as a system controller board or as a
satellite board in a CompactPCI system rack. The Netra CP2000/CP2100 series
board monitors its CPU-vicinity temperature and issues warnings at both the
OpenBoot PROM and Solaris operating environment levels when these
environmental readings are out of limits. At the Solaris operating environment level,
the application program monitors and issues warnings for the system controller and
the satellite board. In the host and satellite modes of operation, at the OBP level, the
CPU vicinity temperature is monitored if the the NVRAM variable env-monitor is
enabled.

Typical Cycle From Power Up to
Shutdown
This section describes a typical ASM cycle from power up to shutdown.

ASM Protection at the OpenBoot PROM
The OpenBoot PROM monitors CPU-vicinity temperature at the fixed polling rate
(from the env-mon-interval parameter) of 10 seconds and the OpenBoot PROM
displays warning messages on the default output device whenever the measured
temperature exceeds the pre-programmed NVRAM module configurable variable
warning temperature (the warning-temperature parameter) or the pre-
programmed NVRAM module configurable variable shutdown temperature (the
shutdown-temperature parameter). See “OpenBoot PROM Environmental
Parameters” on page 57 for information on changing these pre-programmed
parameters.

The OpenBoot PROM cannot shut down power to the Netra CP2000/CP2100 series
board. The shutdown temperature message is only a warning message to the user
that the Netra CP2000/CP2100 series board is overheating and needs to be shut
down immediately by external means.

OpenBoot PROM-level protection takes place only when the env-monitor
parameter is enabled (it is not the default setting). Disabling env-monitor
completely disables ASM protection at the OpenBoot PROM level but does not affect
ASM protection at the Solaris operating environment level.

Note – To protect the system at OpenBoot PROM level, the env-monitor should be
enabled at all times.
44 Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

ASM Protection at the Operating Environment
Level
Monitoring changes in the ASM temperatures can be a useful tool for determining
problems with the room where the system is installed, functional problems with the
system, or problems on the board. Establishing baseline temperatures early in
deployment and operation could be used to trigger alarms if the temperatures from
the sensors increase or decrease dramatically. If all the sensors go to room ambient,
power has probably been lost to the host system. If one or more sensors rise in
temperature substantially, there may be a system fan malfunction, the system
cooling may have been compromised, or room air conditioning may have failed.

When the application program opens the system controller device and pushes the
ASM streams module, the ASM module is loaded.

To access the CPU-vicinity temperature measurements at the Solaris operating
environment level, use the ioctl system call in an application program. To specify
the ASM polling rate, use the sleep system call.

Protection at the operating environment level takes place only when the ASM
application program is running, which is initiated by the end user. Failure to run the
ASM application program completely disables ASM protection at the Solaris level
but does not affect ASM protection at the OpenBoot PROM level. Keep the ASM
application program running at all times.

In a typical ASM application program, the software reads the following temperature
sensors once every polling cycle:

■ Netra CP2040/CP2060/CP2080/CP2140 boards: CPU, heat sink, board memory,
power module, SDRAM memory module 1

■ Netra CP2080 boards only: SDRAM memory module 2

■ Netra CP2160 boards: CPU, inlet 1, exhaust 1, exhaust 2, power module, and
SDRAM module 1

The program then compares the measured CPU-vicinity temperature with the
warning temperature and displays a warning message on the default output device
whenever the warning temperature is exceeded.

The program can also issue a shutdown message on the default output device
whenever the measured CPU-vicinity temperature exceeds the shutdown
temperature. In addition, the ASM application program can be programmed to sync
and shut down the Solaris operating environment when conditions warrant.

The use of system calls to access the ASM device driver at the Solaris level enables
OEMs to implement their own monitoring, warning, and shutdown policies through
a high-level programming language such as the C programming language. An OEM
can log and analyze the environmental data for trends (such as drift rate or sudden
Chapter 3 Advanced System Management 45

changes in average readings). Or, an OEM can communicate the occurrence of an
unusual condition to a specialized management network using the Netra
CP2000/CP2100 series board Ethernet port.

Refer to “Sample Application Program” on page 71 for an example of how a simple
ASM monitoring program can be implemented.

The power module is controlled by the SMC subsystem (except for automatic
controls such as overcurrent shutdown or voltage regulation). The functions
controlled are core voltage output level and module on/off state.

Post Shutdown Recovery
The onboard voltage controller is a hardware function that is not controlled by either
firmware or software. At the OpenBoot PROM level, there is no mechanism for the
OpenBoot PROM to either remove or restore power to the Netra CP2000/CP2100
series board when the CPU-vicinity temperature exceeds its maximum
recommended level.

There is no mechanism for the Solaris operating environment to either recover or
restore power to the Netra CP2000/CP2100 series board when an unusual condition
occurs (for example, if the CPU-vicinity temperature exceeds its maximum
recommended level). In either case, the end user must intervene and manually
recover the Netra CP2000/CP2100 series board as well as the CompactPCI system
through hardware control.

Hardware ASM Functions
This section summarizes the hardware ASM features on the Netra CP2000/CP2100
series board. TABLE 3-2 lists the ASM functions and shows the location of the ASM
hardware on a typical Netra CP2060 board. TABLE 3-3 shows the same information for
the Netra CP2160 board.
46 Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

Note that in TABLE 3-2 and TABLE 3-3 the readings for the SDRAM modules show the
sensor readings as currently unavailable because the tables list information of a
typical Netra board that does not support memory modules.

TABLE 3-2 Typical Netra CP2060 Hardware ASM Functions

Function Capability

PMC Temperature Senses the PMC temperature

CPU heat sink Senses the temperature of the heat sink

Netra CP2060
Memory

Senses the temperature of Netra CP2060 memory module

SDRAM module#1
Temperature (for
Netra boards with
memory modules)

Sensor reading is currently unavailable*

* This reading would be available on a typical Netra board that supports memory modules.

SDRAM module#2
Temperature (for
Netra boards with
memory modules)

Sensor reading is currently unavailable

Power Module
Temperature

Senses the temperature of the power module

TABLE 3-3 Typical Netra CP2160 Hardware ASM Functions

Function Capability

Board exhaust air
temperature #1

Senses the board exhaust air temperature

Board exhaust air
temperature #2

Senses the board exhaust air temperature

CPU sensor
temperature

Senses the CPU sensor temperature

Board inlet air
temperature

Senses the board inlet air temperature

SDRAM module #1
temperature (for
Netra boards with
memory modules)

Sensor reading is currently unavailable*

Power module
temperature

Senses the temperature of the power module
Chapter 3 Advanced System Management 47

FIGURE 3-2, FIGURE 3-3, FIGURE 3-4 and FIGURE 3-5 show the location of the ASM
hardware on the Netra CP2000/CP2100 series boards.

* This reading would be available on a typical Netra board that supports memory modules.

TABLE 3-4 Local I2C Bus

Function Device

I2C Multiplexer PCA9540

CPU-vicinity temperature MAX1617

Inlet 1 MAX1617

Exhaust 1 MAX1617

Exhaust 2 MAX1617

General I/O*

* General Purpose I/O bit assignments:
P7 = Input; CPU EPD
P6 = Input; PLD_FLASH0_SEL
P5 = Input; PLD_FLASH1_SEL
P4 = Input; VID<0>
P3 = Input; VID<1>
P2 = Input; VID<2>
P1 = Input; VID<3>
P0 = Not used, not connected.

PCF8574

FRU ID AT24C64 EEPROM

Ethernet ID AT24C64 EEPROM

SDRAM module 1 temperature MAX1617

SDRAM module 1 ID AT24C64 EEPROM

SDRAM module 2 temperature MAX1617

SDRAM module 2 ID AT24C64 EEPROM

Power module temperature DS1721

Power module†

† Power module interface gives control of 4-bit VID setting.

PCF8574

Power module ID AT24C64 EEPROM
48 Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

FIGURE 3-2 Location of ASM Hardware on the Netra CP2040/CP2140 Board

3
4

S
V

4
9J

1
2

1
2

S
V

2
8F

S
W

2401
S

W
1801

PMC temperature sensor

Memory onboard
temperature sensor

Heat sink temperature
sensor

Memory module temperature
sensor (on the module)

Power module temperature sensor
(located on underside of the power
module)
Chapter 3 Advanced System Management 49

FIGURE 3-3 Location of ASM Hardware on the Netra CP2060 Board

xxxxxx

Board temperature sensor

PMC temperature sensor
Heat sink temperature

Power module temperature sensor
(located on the underside of the
power module)
50 Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

FIGURE 3-4 Location of ASM Hardware on the Netra CP2080 Board

xxxxxx

PMC temperature sensor

Power module temperature sensor
(located on underside of the power
module)

Heat sink temperature
Memory module temperature
sensor (on the module)

Board temperature sensor
Chapter 3 Advanced System Management 51

FIGURE 3-5 Location of ASM Hardware on the Netra CP2160 Board

2 ADDRESS

0003BA03F44E

Exhaust 1
temperature
sensor

Exhaust 2
temperature
sensor

Inlet 1
temperature
sensor
52 Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

FIGURE 3-6 is a block diagram of the ASM functions.

FIGURE 3-6 Netra CP2000/CP2100 Series ASM Functional Block Diagram

CPU-Vicinity Temperature Monitoring
The Netra CP2040/CP2060/CP2080/CP2140 boards use a MAX1617 temperature
sensor located near the CPU underneath its heat sink. The Netra CP2160 board does
not have this temperature sensor.

External I2C
(on cPCI J5 connector)On-board I2C

I2C
Temperature

Sensor

12.0 volts

5.0 volts

3.3 volts

1.7 volts

Voltage
controller

Power
Module

OBP

MUX

ASM
Application
Program

I2C

I2C

Microcontroller

EBus

PCIO

ASM
Device
Driver

Solaris
Operating

Env

OEMs can modify
factory defaults

OEMs can implement
their own monitoring
and control logic

UltraSPARC
CPU

OEMs can write their
own device drivers

OEMs are Original
Equipment Manufacturers
Chapter 3 Advanced System Management 53

Power On/Off Switching

The onboard voltage controller allows power to the rest of the Netra
CP2000/CP2100 series board only when the following conditions are met:

■ The VDD core-1.7-volt supply voltage is greater than 1.53 volts (within 10% of
nominal).

■ The 12-volt supply voltage is greater than 10.8 volts (within 10% of nominal).

■ The 5-volt supply voltage is greater than 4.5 volts (within 10% of nominal)

■ The 3.3-volt supply voltage is greater than 3.0 volts (within 10% of nominal).

The controller requires these conditions to be true for at least 100 milliseconds to
help ensure the supply voltages are stable. If any of these conditions become untrue,
the voltage monitoring circuit shuts down the power of the board.

Inlet/Exhaust Temperature Monitoring
The inlet board temperature sensor can be used to ensure that the maximum
allowable short-term system-level air inlet temperature is not exceeded. The sensor
can also be used to monitor potential issues with the system or installation, since
inlet temperature for the Netra CP2160 board should be kept low for the installation
reliability requirements.

The two exhaust temperature sensors can be used to ensure that the proper airflow
across the board is being maintained. The difference in the temperature between the
inlet air temperature and exhaust temperatures can be monitored to determine if
system filters need servicing, if air movers have failed, or if an electrical problem has
occured due to components drawing too much power on the board.

During normal operation of the Netra CP2160 board, any sudden, sustained, or
substantial changes in the delta temperature across the board can be used to alert
service personnel to a potential system or board service issue.

CPU Sensor Temperature Monitoring
The CPU sensor temperature can be used to prevent damage to the board by
shutting the board down if this sensor exceeds predetermined limits.
54 Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

Adjusting the ASM Warning and
Shutdown Parameter Settings on the
Board
The Netra CP2000/CP2100 board uses the Advanced System Monitoring (ASM)
detection system to monitor the temperature of the board. The ASM system will
display messages if the board temperature exceeds the set warning and shutdown
settings. Because the on-board sensors may report different temperature readings for
different system configurations and airflows, you may want to adjust the warning
and shutdown temperature parameter settings.

The CP2000/CP2100 board determines the board temperature by retrieving
temperature data from sensors located on the board. A board sensor reads the
temperature of the immediate area around the sensor. Although the software may
appear to report the temperature of a specific hardware component, the software is
actually reporting the temperature of the area near the sensor. For example, the CPU
heat sink sensor reads the temperature at the location of the sensor and not on the
actual CPU heat sink. The board’s OpenBoot PROM collects the temperature
readings from each board sensor at regular intervals. You can display these
temperature readings using the show-sensors OpenBoot PROM command. See
“show-sensors Command at OpenBoot PROM” on page 61

The temperature read by the CPU heat sink sensor will trigger OpenBoot PROM
warning and shutdown messages. When the CPU heat sink sensor reads a
temperature greater than the warning parameter setting, the OpenBoot PROM will
display a warning message. Likewise, when the sensor reads a temperature greater
than the shutdown setting, the OpenBoot PROM will display a shutdown message.

Many factors affect the temperature readings of the sensors, including the airflow
through the system, the ambient temperature of the room, and the system
configuration. These factors may contribute to the sensors reporting different
temperature readings than expected.
Chapter 3 Advanced System Management 55

TABLE 3-5 shows the sensor readings of a typical Netra CP2040 board operating in a
Sun server in a room with an ambient temperature of 21˚C. The temperature
readings were reported using the show-sensors OpenBoot PROM command. Note
that the reported temperatures are higher than the ambient room temperature.

TABLE 3-6 shows the sensor readings of a typical Netra CP2160 board, which has
different sensor locations than those on the other Netra CP2000/CP2100 series
boards.

Note that the inlet temperature sensor typically does not capture true board inlet
temperature due to the heat of nearby components. For typical Netra
CP2000/CP2100 series systems, subtract 4˚C from the temperature sensor value.
Note that the temperature sensor has an accuracy of up to plus or minus 2˚C. Users
should conduct their own temperature sensor tests to obtain accurate readings.

TABLE 3-5 Reported Temperature Readings at an Ambient Room Temperature of 21˚C
on a Typical Netra CP2040 Board*

* Other boards will have differnt but similar readings.

Board Sensor Location
Reported Temperatures
(in Degrees Celsius)

Difference Between Reported and Ambient
Room Temperature (in Degrees Celsius)

CPU heat sink 28˚C 7˚C

PMC 33˚C 12˚C

Board heat sink 29˚C 8˚C

Board memory 37˚C 16˚C

SDRAM module 1 42˚C 21˚C

SDRAM module 2 36˚C 15˚C

Power module 34˚C 13˚C

TABLE 3-6 Reported Temperature Readings at an Ambient Room Temperature of 21˚C
on a Typical Netra CP2160 Board

Board Sensor Location
Reported Temperatures
(in Degrees Celsius)

Difference Between Reported and
Ambient Room Temperature (in
Degrees Celsius)

CPU sensor temperature 37˚C 16˚C

Board inlet air
temperature

34˚C 13˚C

Board exhaust air
temperature #1

35˚C 14˚C
56 Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

Since the temperature reported by the CPU sensor might be different than the actual
CPU die temperature, you may want to adjust the settings for both the warning-
temperature and shutdown-temperature OpenBoot PROM parameters. The
default values of these parameters have been conservatively set at 70˚C for the
warning temperature and 80˚C for the shutdown temperature.

Note – If you have developed an application that uses the ASM software to monitor
the temperature sensors, you may want to adjust your application’s settings
accordingly.

OpenBoot PROM Environmental
Parameters
This section describes how to change the OpenBoot PROM environmental
monitoring parameters. These global OpenBoot PROM parameters do not apply at
the Solaris level. Instead, the ASM application program provides equivalent
parameters that do not necessarily have to be set to the same values as their
OpenBoot PROM counterparts. Refer to “ASM Application Programming” on
page 68 for information about using ASM at the Solaris level. The OpenBoot PROM
polling rate is at fixed intervals of 10 seconds.

Board exhaust air
temperature #2

35˚C 14˚C

SDRAM module #1
temperature

33˚C 12˚C

Power module
temperature

25˚C 4˚C

TABLE 3-6 Reported Temperature Readings at an Ambient Room Temperature of 21˚C
on a Typical Netra CP2160 Board

Board Sensor Location
Reported Temperatures
(in Degrees Celsius)

Difference Between Reported and
Ambient Room Temperature (in
Degrees Celsius)
Chapter 3 Advanced System Management 57

OpenBoot PROM Warning Temperature Parameter

OBP programs SMC for temperature monitoring using the sensor commands.
TABLE 3-7 lists the default threshold temperature settings for the CP2000/CP2100
series boards.

For example, on a Netra CP2160 there are three NVRAM variables that provide
different temperature levels. The critical-temperature limit lies between warning and
shutdown thresholds. The default values of these temperature thresholds and
corresponding action is shown in TABLE 3-8:

Note that there is a lower limit of 50˚ C on shutdown-temperature value. If the
temperature is set to a value lower than 50˚ C, OpenBoot PROM resets it back to 50˚
C in SMC. However, OpenBoot PROM does not reset the NVRAM variable
shutdown-temperature to 50˚ C. Therefore, everytime the user resets the system, the
OpenBoot PROM displays a warning message similar to the message below:

This safeguards against a user setting the shutdown-temperature lower than the
room temperature and thereby causing the CPU processor and the Netra CP2160
board to be powered off by SMC on the next reset.

TABLE 3-7 Default Threshold Temperature Settings

Netra cPCI Board
Default Threshold Temperature Settings for Netra
Boards (In Degrees Celsius)

Warning
Temperature

Critical
Temperature

Shutdown
Temperature

Netra CP2060/CP2080
Board

60 not applicable 65

Netra CP2040 Board 60 not applicable 65

Netra CP2140 Board 60 65 70

Netra CP2160 Board 70 75 80

TABLE 3-8 Typical Netra CP2160 Board Temperature Thresholds and Firmware Action

Thresholds With Default Firmware Action

warning-temperature = 70˚ C OBP displays warning message

critical-temperature=75˚ C OBP displays warning message

shutdown-temperature=80˚ C SMC shuts down the CPU processor and the Netra CP2160
board

WARNING!!! shutdown-temperature is set too low at 40˚ C. Setting
the threshold at a safer value of 50˚ C.
58 Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

The warning-temp global OpenBoot PROM parameter determines the temperature
at which a warning is displayed. The shutdown-temperature global OpenBoot
PROM parameter determines the temperature at which the system is shut down. The
temperature monitoring environment variables can be modified at the OpenBoot
PROM command level as shown in examples below:

OR,:

The critical-temperature is a second-level warning temperature with a default value
of 75˚ C. This variable can be modified using the OpenBoot PROM level setenv
command as shown in example below::

OpenBoot PROM/ASM Monitoring
This section describes the ASM monitoring in the OpenBoot PROM. Please note that
the figures in the examples below are for a typical Netra CP2160 board.

CPU Sensor Monitoring
The following NVRAM module variables are in OpenBoot PROM for ASM for a
typical Netra CP2160 board:

■ NVRAM module variable name: env-monitor

■ Function: enables or disables environment monitoring at OpenBoot PROM
■ Data type: string
■ Valid values: disabled or enabled
■ Default value: disabled
■ OpenBoot PROM usage:

ok setenv warning-temperature 71

ok setenv shutdown-temperature 82

ok setenv critical-temperature 76

ok setenv env-monitor disabled or enabled
Chapter 3 Advanced System Management 59

■ NVRAM module variable name: warning-temperature

■ Function: sets the CPU warning temperature threshold
■ Data type: byte
■ Unit: decimal
■ Default value: 70
■ OpenBoot PROM usage:

■ NVRAM module variable name : critical-temperature

■ Function: sets the CPU critical temperature threshold
■ Data type: byte
■ Unit: decimal
■ Default value: 75
■ OpenBoot PROM usage:

■ NVRAM module variable name: shutdown-temperature

■ Function: sets the CPU shutdown temperature threshold
■ Data type: byte
■ Unit: decimal
■ Default value: 80
■ OpenBoot PROM usage:

Caution – Exercise caution while setting the above two parameters. Setting these
values too high will leave the system unprotected against system over-heat.

ok setenv warning-temperature temperature-value

ok setenv critical-temperature temperature-value

ok setenv shutdown-temperature temperature-value
60 Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

Warning Temperature Response at OpenBoot PROM

When the CPU-vicinity temperature reaches “warning-temperature,” a similar
message is displayed at the ok prompt at a regular interval:

Critical Temperature Response at OpenBoot PROM

When the CPU-vicinity temperature reaches “warning-temperature”, a similar
message is displayed at the ok prompt at a regular interval:

show-sensors Command at OpenBoot PROM
The show-sensors command at OpenBoot PROM displays the readings of all the
temperature sensors on the board TABLE 3-9 shows typical sensor readings for a
Netra CP2060 board (which would be similar to the Netra CP2040/CP2080/CP2140
boards) and TABLE 3-10 shows typical sensor readings for a Netra CP2160 board.

Temperature sensor #2 has threshold event of

<<< WARNING!!! Upper Non-critical - going high >>>

The current threshold setting is : 70

The current temperature is : 71

Temperature sensor #2 has threshold event of

<<< !!! ALERT!!! Upper Critical - going high >>>

The current threshold setting is : 75

The current temperature is : 76
Chapter 3 Advanced System Management 61

IPMI Command Examples at OpenBoot PROM
The Intelligent Platform Management Interface (IPMI) commands can be used to
enable the sensors monitoring and subsequent event generation from satellite boards
in the Netra CP2000/CP2100 series CompactPCI system.

The IPMI command examples provided in this section are based on the IPMI
Specification Version 1.0. Please use the IPMI Specification for additional information
on how to implement these IPMI commands.

TABLE 3-9 OpenBoot PROM Sensor Reading Typical for a Typical Netra CP2060 Board

Sensor Name Current Reading

2 CPU-vicinity temperature
(senses the local temperature of
the CPU area)

28oC

3 PMC temperature 29oC

4 Motherboard Heat Sink
temperature

33oC

5 Motherboard memory
temperature for Netra C2060

32oC

a SDRAM module#1 temperature
for Netra CP2080

This sensor reading is not available*

* The readings are from a typical Netra CP2060 board which does not support memory modules.

c SDRAM module#2 temperature
for Netra CP2080

This sensor reading is not available

e Power module temperature 25oC

TABLE 3-10 OpenBoot PROM Sensor Reading Typical for a Typical Netra CP2160 Board

Sensor Name Current Reading

2 CPU 37oC

3 Inlet 1 34oC

4 Exhaust 1 35oC

5 Exhaust 2 35oC

a SDRAM module 1 33oC

e Power module 25oC
62 Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

Note – To execute an IPMI command, at the OpenBoot PROM ok prompt, type the
packets in reverse order followed by the relevant information as shown in examples in
“Examples of IPMI Command Packets” on page 64. Change the bytes in the example
packet to accommodate different IPMI addresses, different threshold values or
different sensor numbers. See also the IPMI Specification Version 1.0.

▼ Set or Change the Thresholds for a Sensor

1. Set the thresholds for the sensors.

See “Set Sensor Threshold” on page 64. If no threshold is set, the default threshold
operates:

2. Follow instructions in “Check Whether the IPMI Commands Are Executed
Properly” on page 63 to check proper execution of the command.

▼ Enable Events From a Sensor

1. To execute a command to enable events from the sensor, type:

See “Set Sensor Event Enable Command” on page 66 and “Get Sensor Event Enable”
on page 67.

There are supporting commands for any sensor and the corresponding packets at
these commands: get sensor threshold, get sensor reading, and get
sensor event enable.

2. Follow instructions in “Check Whether the IPMI Commands Are Executed
Properly” on page 63 to check proper execution of the command.

▼ Check Whether the IPMI Commands Are Executed Properly

1. Check whether the stack on the ok prompt displays 0 when the command is
issued.

A 0 indicates that the command packet sent to the board was successful.

ok packet bytes number-of-bytes-in-packet 34 execute-smc-cmd

ok packet bytes number-of-bytes-in-packet 34 execute-smc-cmd
Chapter 3 Advanced System Management 63

2. Type execute-smc-cmd (cmd 33) command at the ok prompt as follows:

This command verifies that the target satellite board received and executed the
command and sent a response.

3. Check the completion code which is the seventh byte from left.

If the completion code is 0, then the target board successfully executed the
command. Otherwise the command was not successfully executed by the board.

4. Check that rsSA and rqSA are swapped in the response packet.

The rsSA is the responder slave address and the rqSA is the requestor slave address.

5. (Optional) If command not correctly executed, resend the IPMI command.

Examples of IPMI Command Packets

The following packets are IPMI command packets that can be sent from the
OpenBoot PROM ok prompt:

Set Sensor Threshold

A typical example of the sensor command is as follows:

ok 0 33 execute-smc-cmd

37 0 41 10 0 0 3 1b 2 26 12 20 34 12 ba 0 10 34 execute-smc-cmd
64 Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

Note – In byte number 9, if the bit for a corresponding threshold is set to 1, then
that threshold is set. If the bit is 0, the System Management Controller ignores that
threshold. But if an attempt is made to set a threshold that is not supported, an error
is returned in the command response.

Get Sensor Threshold

A typical example of the sensor command is as follows

a5 2 27 12 20 34 12 ba 0 9 34 execute-smc-cmd

0 xx 12 xx xx xx 26 xx xx xx xx 0 xx xx 0 xx

upper nc

channel number

dont care

upper c

dont care

checksum2

lower critical

lower nc threshold

Byte to tell what is being set
sensor num

cmd

rqSeq/rsLUN

rq Slave addr

checksum1 (calculate it every time the packet is formed)

NetFn/LUN

rs Slave addr
Chapter 3 Advanced System Management 65

Get Sensor Reading

A typical example of the sensor command is as follows:

Set Sensor Event Enable Command

A typical example of the sensor command is as follows:

93 e 2d 12 20 34 12 ba 0 9 34 execute-smc-cmd

24 0 0 0 0 80 2 28 12 20 34 12 ba 0 e 34 execute-smc-cmd

0 xx 12 xx xx xx 27 xx

sensor num

xx

checksum2

cmd

rqSeq/rsLUN

rq Slave addr

checksum1 (calculate it every time the packet is formed)

NetFn/LUN

re Slave addr
channel number

0 xx 12 xx xx xx 2d xx

sensor num

xx

checksum2

cmd

rqSeq/rsLUN

rq Slave addr

check1 (calculate it every time the packet is formed)

NetFn/LUN

re Slave addr
channel number
66 Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

Get Sensor Event Enable

A typical example of the sensor command is as follows:

a3 2 29 12 20 34 12 ba 0 9 34 execute-smc-cmd

0 xx 12 xx xx xx 28 c xx 0 0 0 0 0 xx

checksum2

dont care

channel number

dont care

dont care

dont care

dont care

Set the event enable (writing 00 instead
of 80 would disable the events)

sensor num

cmd

rqSeq/rsLUN

rq Slave addr

checksum1 (calculate it every time the packet is formed)

NetFn/LUN

rs Slave addr
Chapter 3 Advanced System Management 67

Note – The NetFN/LUN for all sensor IPMI commands is 12, which implies that the
netFn is 0x04 lun= 0x2.

ASM Application Programming
The following sections describe how to use the ASM functions in an application
program.

For the ASM application program to monitor the hardware environment, the
following conditions must be met:

■ The system controller device driver must be installed.
■ The ASM device driver must be present.
■ The ASM application program must be installed and running.

The ASM parameter values in the application program apply when the system is
running at the Solaris level and do not necessarily have to be the same as the
corresponding to the parameter settings in the OpenBoot PROM.

To change the ASM parameter setting at the OpenBoot PROM level, see “OpenBoot
PROM Environmental Parameters” on page 57 for the procedure. The OpenBoot
PROM ASM parameter values only apply when the system is running at the
OpenBoot PROM level.

0 xx 12 xx xx xx 29 c

sensor num

xx

checksum2

cmd

rqSeq/rsLUN

rq Slave addr

check1 (calculate it every time the packet is formed)

NetFn/LUN

re Slave addr
channel number
68 Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

Specifying the ASM Polling Rate
For most applications, an ASM polling rate of once every 60 seconds is adequate.

To specify a polling rate of every 60 seconds in an ASM application program, type
the following at the command line for the Solaris operating environment:

Monitoring the Temperature
The ASM application program monitors the CPU-vicinity temperature as follows
(see “Sample Application Program” on page 71 for C code):

1. Get the CPU-vicinity temperature measurements and other sensor measurements
using the ioctl system call.

2. Examine the measurement readings and take the appropriate action.

Note – The warning and shutdown temperatures are set for the CPU processor.

3. Repeat the process for every ASM polling cycle.

Solaris Driver Interface
The ASM driver is a STREAMS module that sits on top of the Solaris system
controller driver. The Netra CP2000/CP2100 series ASM driver accepts STREAMS
IOCTL input to the ASM driver, passes it onto the system controller driver as a
command, and sends the sensor temperature as the output to the user. Currently,
this driver handles only the local I2C bus. On the Netra CP2000 series and the Netra
CP2140 board, this driver enables the user to monitor the CPU-vicinity temperature,
PMC temperature, memory module heat sink temperature, memory module
temperature, SDRAM module1 temperature, SDRAM module2 temperature, and the

do {

... /* read and process I2C bus devices data */

sleep (60); /* sets the ASM polling rate to every 60 seconds */

} while (1);
Chapter 3 Advanced System Management 69

power module temperature. On the Netra CP2160 board, th driver enables the user
to monitor the CPU temperature, the Inlet 1, Exhaust 1, Exhaust 2, SDRAM module
1 and the power module temperatures.

Note – The local I2C bus is supported by the Solaris driver interface.

Interface Summary

Input Output Control with I_STR should be used to get sensor information. The data
structure used to pass it as an argument for streams IOCTL is as follows.

When the monitoring is successful, it returns a 0. For any error, it returns -1 and the
errno is set correspondingly. Trying to read any sensor which is not physically
present sets errno as ENXIO. For any hardware or firmware failures, the errno is
EINVAL. For any memory allocation problems, the errno is EAGAIN.

CODE EXAMPLE 3-1 Input Output Control Data Structure

typedef struct stdasm_data_t {
uchar_t busId;/* reserved */
uchar_t sensorValue;/* return sensor Temperature */
uchar_t scportNum; /* scport number for SC driver */
uchar_t res1; /* Reserved */
uchar_t res2; /* Reserved */
uchar_t sensorNum; /* sensor Number */
uchar_t res3; /* Reserved */
uchar_t res4; /* Reserved */

} stdasm_data;

#define STDASM_CPU2/* CPU Temperature Sensor */
#define STDASM_INLET1/* Inlet1 Temperature Sensor */
#define STDASM_EXHAUST1/* Exhaust1 Temperature Sensor */
#define STDASM_EXHAUST2/* Exhaust 2 Temperature Sensor */
#define STDASM_SDRAM10xa/* SDRAM module 1 Temperature Sensor */
#define STDASM_SDRAM20xc/* SDRAM module 2 Temperature Sensor */
#define STDASM_POWER0xe/* Power Module Temperature Sensor */
70 Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

Sample Application Program
This section presents a sample ASM application that monitors the CPU-vicinity
temperature. Please refer to /usr/platform/sun4u/include/sys/stdasm.h if
you want to add support for the other six sensors in the application.

CODE EXAMPLE 3-2 Sample ASM Application Program

#include <stdio.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stropts.h>
#include <sys/uadmin.h>
#include <stdasm.h>/* lives in /usr/platform/sun4u/include/sys directory */

/* Right now, this application monitors the CPU temperature only, if you want
to add support for the other 6 sensors, you have to duplicate 12 lines
in the ProcessAllTemps routine. Also refer the stdasm.h for sensorNum */

#define MaxTemperature 65

static void ProcessTemp(int CurrentTemp)
{

FILE *WarnFile;
printf(" %d C\n", CurrentTemp);
if (CurrentTemp > MaxTemperature) {

printf("WARNING!! Current Temperature <%d> exceeds MaxTemp <%d> \n",
CurrentTemp, MaxTemperature);
 WarnFile = fopen("WarnFile", "w");

if (WarnFile) {
fprintf(WarnFile, "WARNING!! Current Temperature <%d> exceeds

MaxTemp <%d> \n", CurrentTemp, MaxTemperature);
system("wall -a *WarnFile");
fclose(WarnFile);
uadmin(A_SHUTDOWN, AD_HALT, 0);

} else {
printf("Creation of WarnFile failed\n");
uadmin(A_SHUTDOWN, AD_HALT, 0);
exit(4);

}
}

}
static void ProcessAllTemps(int AsmFd, int ScPort)
{

int Result;
Chapter 3 Advanced System Management 71

stdasm_data SAData;
struct strioctl sioc;

SAData.sensorNum = STDASM_CPU; /* Can be STDASM_PMC or any other */
SAData.scportNum = ScPort;
sioc.ic_cmd = STDASM_GETSENSOR; /* Ioctl flag for asm driver */
sioc.ic_len = sizeof(stdasm_data);
sioc.ic_dp = (char *)&(SAData);
sioc.ic_timout = 200;
do {

system("date");
printf(" \n");
printf("******************************\n");
printf(" \n");

/* Read the CPU Temperature */
Result = ioctl(AsmFd, I_STR, &sioc);
if (Result == -1) printf("ioctl RetValue %d\n", errno); /* error cond

*/
else printf("Temperature %d\n", SAData.sensorValue); /* Sensor Temp

*/
ProcessTemp(SAData.sensorValue);

/* Duplicate the above 12 lines for other 6 sensors STDASM_PMC,
STDASM_MBHS, STDASM_MBMem, STDASM_SDRAM1, STDASM_SDRAM2,
STDASM_POWER too */

sleep(60);/* Recommended polling rate */
} while(1);

}
int main(int argc, char *argv[])
{

int AsmFd;
int Result;
struct strioctl sioc;
int ScPort = 0;

if ((AsmFd = open("/dev/sc", O_RDWR)) < 0) { /* open the SC device */
printf("Unable to open device /dev/sc; errno=%d\n", errno);
exit(1);

}
/* Reserve the SC port for SC driver */
sioc.ic_cmd = SCIOC_RESERVE_PORT;
sioc.ic_len = sizeof(ScPort);
sioc.ic_dp = (char *)&(ScPort);
sioc.ic_timout = 200;
Result = ioctl(AsmFd, I_STR, &sioc);

CODE EXAMPLE 3-2 Sample ASM Application Program (Continued)
72 Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

Note – The stdasm.h header file is located in the following directory:
/usr/platform/sun4u/include/sys

Temperature Table Data
This section describes the test configuration used to generate the data used for the
OpenBoot PROM temperature table in the ASM table temperature monitoring
function. It should be used as a guideline by OEMs who need to revise the
OpenBoot PROM temperature table because of changes to the enclosure, system, or
fan configuration.

System Configuration and Test Equipment
The system configuration and test equipment used to obtain the ASM temperature
data is as follows:

■ Netra CP2000 or CP2100 series board with memory module

■ Chassis: 5-slot CompactPCI chassis, 8-slot HA CompactPCI chassis, power
supply, hard disk drive, floppy disk drive, and fan

■ Environmental chamber

■ Air Flow Measurement Tool

■ Data Logger

■ Two thermocouples

if (Result == -1) {
printf("I_STR RetValue %d\n", errno);
exit(2);

} else printf("SC PORT is <%d>\n", ScPort);

/* Push the ’ASM’ driver module */
Result = ioctl(AsmFd, I_PUSH, "stdasm");
if (Result == -1) {

printf("I_PUSH stdasm failed RetValue %d\n", errno);
exit(3);

}
ProcessAllTemps(AsmFd, ScPort);

}

CODE EXAMPLE 3-2 Sample ASM Application Program (Continued)
Chapter 3 Advanced System Management 73

Thermocouple Locations
The two thermocouples are positioned as follows:

■ The first thermocouple is attached at the base of a fin on the CPU heat sink in the
center area of the heat sink so that it is directly above the CPU.

■ The second thermocouple is placed near the bottom edge of the board to measure
inlet temperature to the board. It is not positioned in direct air flow in order to
read the true ambient temperature for the board.

▼ To Attach and Test Thermocouples
1. Attach the thermocouples on the board.

See the section on “Thermocouple Locations” on page 74 above for further details.

2. Install the board in the far left slot (slot #1) of the CompactPCI chassis

For location of thermocouple see FIGURE 3-2, FIGURE 3-3 and FIGURE 3-4 and
FIGURE 3-5.

3. Install a dummy 6U CompactPCI board in the next slot to control the air flow.

The front panels of the chassis should be filled.

4. Set up the fan speed to maintain air flow of 320 linear feet per minute (LFM) or
greater.

Air flow is measured by securing the air flow sensor approximately 5 mm from the
side of CPU heat sink.

5. Place the chassis inside the environmental chamber.

6. Set up the chamber temperature to cycle from 0oC to 60oC in 5oC steps.

7. Run the SunVTS™ software during the test.

8. Read the thermocouple temperatures after at least one hour.

Wait at each temperature step.
74 Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

CHAPTER 4

Programming the User LED

This chapter describes how to use the Alarm/User LED. The Alarm/User LED is
located on the front panel of the Netra CP2100 series boards. The bi-colored LED is
red and green in color (see FIGURE 4-1 for the location of the Alarm/User LED on the
board front panel).

Note – Programming the User LED is supported on the Netra CP2140 and the Netra
CP2160 boards when they are used with the CP2000 Supplemental CD 4.0 for Solaris 8
only.

In order to use the LED function, support with a sparc v9 64 bit C library and
the led.h file are required. The Application Programming Interface (API) for the
user is documented in the led.h file. The library and the file are available on the
CP2000 Supplemental CD 4.0 for Solaris 8.
75

FIGURE 4-1 Illustration of a Typical Netra CP2140 Board Front Panel Showing the
Alarm/User LED

Files and Packages Required to Support
the Alarm/User LED
To use the Alarm/User LED feature, the user should update the firmware with the
appropriate firmware version that supports this feature on the Netra board.

P

M

C

ABORT

RESET

COM

CP2140-650

HOT
SWAP

ALARM/
USER

READY

microsystems

ETHERNET
76 Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

Note – To check the current firmware version and for instructions on how to update
the firmware, refer to the technical reference manual of the Netra board that you are
using.

The list of packages that are required are as follows:

■ SUNWledl: SPARC V9 64-bit C library libcp2000.so available at:

/usr/platform/${PLATFORM}/lib

■ SUNWledu: LED include file available at:

/usr/include/sys/

Ensure that the following drivers are also there, as needed:

■ SUNWcph: 32-bit sc driver and

■ SUNWcphx: 64-bit sc driver available at:

/platform/${PLATFORM}/kernel/drv/sparcv9/sc

■ SUNWled.u: 32-bit LED driver and

■ SUNWledx.u: 64-bit LED driver available at:

/platform/${PLATFORM}/kernel/strmod/sparcv9/s_led

A typical example of ${PLATFORM} is UltraSPARCengine_CP-60 for the Netra
CP2160 board. An example for the library directory is:

/usr/platform/UltraSPARCengine_CP-60/lib

Applications
This section provides the application programming interface (API) to control the
command combination of the Alarm/User LED, and instructions on how to compile
and link the information.

Note – Since the LED interface installs and then removes the led_s streams module,
an error can occur when multiple applications attempt to use this interface at the
same time. If the user desires more than one application to use this interface,
application software should incorporate a synchronization method such that only
one access to the interface exists at any time.
Chapter 4 Programming the User LED 77

Application Programming Interface (API)

The supported LED and command combinations are shown in TABLE 4-1 and
TABLE 4-2.

CODE EXAMPLE 4-1 Application Programming Interface for the Netra CP2140 Board

extern int led(int led, int cmd);

/* leds */

#define USER_LED_RED0x2

#define USER_LED_GREEN0x4

/* commands*/

#define LED_OFF0x0

#define LED_ON0x1

#define LED_SQUAREWAVE0x2

#define LED_HEARTBEAT0x3

CODE EXAMPLE 4-2 Application Programming Interface for the Netra CP2160 Board

extern int led(int led, int cmd);

/* leds */

#define USER_LED_RED0x2

#define USER_LED_GREEN0x4

/* commands*/

#define LED_OFF0x0

#define LED_ON0x1

TABLE 4-1 Supported LED and Command Combinations for the Netra CP2140 Board

Color of LED*

* When the user turns on the red and green LED at the same time, the light shows as amber. There is no support
for a red LED blinking light.

LED_OFF LED_ON LED_SQUAREWAVE LED_HEARTBEAT

USER_LED_RED Yes Yes No No

USER_LED_GREEN Yes Yes Yes Yes
78 Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

TABLE 4-2 Supported LED and Command Combinations for the Netra CP2160 Board

Color of LED* LED_OFF LED_ON LED_SQUAREWAVE LED_HEARTBEAT

USER_LED_RED† Yes Yes No No

USER_LED_GREEN Yes Yes No No

* When the user turns on the red LED, the green LED goes out and when the user turns out the green LED, the
red LED goes out. When the user turns off the red LED, only the red LED turns off, and when the user turns off
the green LED, only the green LED turns off..

† The Netra CP2160 board has a green and amber light, rather than a green and red light. In the software code,
however, the amber light is represented by USER_LED_RED.
Chapter 4 Programming the User LED 79

Compile
As you compile your application, you need to use the compiler command (cc) flag
-I, to include the sys/led.h file named in “Files and Packages Required to
Support the Alarm/User LED” on page 77. Specify 64-bit binaries by setting the -
xarch=v9 and -D__sparcv9 compiler flags.

For example:

Note – Type the above command all on one line.

Link
To create a link to the library named (libcp2000.so) listed in “Files and Packages
Required to Support the Alarm/User LED” on page 77, use the linker flag -L
command.

For example:

-xCC -xarch=v9 -D__sparcv9 -I/usr/platform/
sun4u/include/

-L /usr/platform/UltraSPARCengine_CP-60/lib
80 Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

CHAPTER 5

Programming Netra CP2100 Series
Board Controlled Devices

This chapter describes, for developers, how to create applications that can identify
and control hardware devices connected to Netra CP2100 series board-controlled
systems.

Note – These applications are supported on the Netra CP2140 and Netra CP2160
boards when they are used with the CP2000 Supplemental CD 4.0 for Solaris 8 only.

This document contains the following sections:

■ “Overview of Hot-Swap Device States” on page 81

■ “Retrieving Device Type Information” on page 82

■ “High Availability Signal Support” on page 89

■ “Bringing a Slot Online” on page 92

■ “Using the HSIOC_SETHASIG ioctl()” on page 94

■ “Creating a Header File for the CP2100 Series Software” on page 96

Overview of Hot-Swap Device States
The Netra CP2100 series hot-swap software can display the various hot-swap states
for a CompactPCI device connected to the system. A device that has been installed
and connected to a system’s slot can have one of the following states:

■ Configured – The device has been powered on in a slot and its hardware
resources are available to the operating system.

■ Unconfigured – The device’s resources are not available to the operating system.
The device can safely be removed from the system.
81

■ Unknown – The device has been powered on in a slot and connected to the
system, but the system has not attempted to configure the device.

■ Failed – The device has failed an attempt to be unconfigured from a slot. The
resources from the device remain available to the operating system and the
Solaris software cfgadm(1M) command reports that the device is still in the
configured state.

Use the cfgadm hot-swap command to verify the state of a device. Note that a
configured device remains in the configured state until it has been successfully
unconfigured.

Retrieving Device Type Information
Using a pseudo device, an ioctl(), and libdevinfo library interfaces, you can
retrieve the device type information (for example, the vendor IDs and the driver
names) for every configured CompactPCI card in a system. With this information,
you can deduce the type of CompactPCI card configured in each system slot.

Using cphsc to Collect Information
The CompactPCI hot-swap controller pseudo device driver, cphsc, maintains the
new device state information for all slots in a system. You can access this device state
information by using an ioctl() on an instance of the cphsc pseudo device. The
cphsc device returns a table containing an entry for each slot within the system’s
chassis. Each entry contains the new device state, the slot state, the cpci device
number, and the logical slot number. Access permission for the /dev/cphsc device
is read-write (rw) for superuser only.
82 Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

The cphsc device driver exports an hsc_slotinfo_t element that has the
following structure:

Where the state of a chassis’s CompactPCI slot (hsc_slot_state_t) can be:

■ HSC_SLOT_EMPTY – The slot is empty.

■ HSC_SLOT_DISCONNECTED – A card occupies the slot, but the slot is not
connected to the system. The hot-swap software must connect the slot to the
system before the card’s software resources can be configured to the system.

■ HSC_SLOT_CONNECTED – A card occupies the slot and the slot’s resources are
available to the system.

■ HSC_SLOT_UNKNOWN –The slot may or may not be occupied. The system cannot
derive the state of the slot.

Note – See “Overview of Hot-Swap Device States” on page 81 for a description of
each hot-swap device state (hsc_dev_state_t).

HSIOC_GET_INFO ioctl()
A single HSIOC_GET_INFO ioctl() returns the entire table of hsc_slotinfo_t
structures. The structure is defined as 64-bit aligned. Constraining the structure to
align to the larger of the two data models enables the structure to have the same
format in either a 32-bit or a 64-bit application.

typedef struct hsc_slotinfo {
hsc_slot_state_t hsc_slot_state;
hsc_dev_state_t hsc_dev_state;
uint16_t hsc_devnum;
uint16_t hsc_slotnum;

} hsc_slotinfo_t;

typedef enum {HSC_SLOT_EMPTY, HSC_SLOT_DISCONNECTED,
HSC_SLOT_CONNECTED, HSC_SLOT_UNKNOWN} hsc_slot_state_t;

typedef enum {HSC_DEV_CONFIG, HSC_DEV_UNCONFIG,
HSC_DEV_UNCONFIG_FAILED, HSC_DEV_UNKNOWN} hsc_dev_state_t;
Chapter 5 Programming Netra CP2100 Series Board Controlled Devices 83

Creating a Header File for the HSIOC_GET_INFO ioctl()

To make full use of the HSIOC_GET_INFO ioctl(), create a header file containing
the required preprocessing directives and macros (see CODE EXAMPLE 5-1). After
creating the header file, include the file in any application that uses the ioctl().

Note – The hsc_gi_tbl_u.tbl and hsc_gi_tblsize_u.tblsize entries can
only be used in 64-bit applications. If you are developing a 32-bit application, use
the hsc_gi_tbl_u.tbl64 and the hsc_gi_tblsize_u.tblsize64 entries,
which work for either 32-bit or 64-bit applications.

CODE EXAMPLE 5-1 HSIOC_GET_INFO ioctl() Header File

/*
 * HSIOC_GET_INFO ioctl() Header File
 */

/*
 * Argument to HSIOC_GET_INFO ioctl()
 * Define struct to be 64-bit aligned
 */
typedef struct hsc_gi_arg {
 union hsc_gi_tbl {
 hsc_slotinfo_t *tbl;
 uint64_t tbl64;
 } hsc_gi_tbl_u;
 union hsc_gi_tblsize {
 int *tblsize;
 uint64_t tblsize64;
 } hsc_gi_tblsize_u;
} hsc_gi_arg_t;

/*
 * Binary definition of the HSIOC_GET_INFO ioctl()
 */
#define HSIOC_GET_INFO ((’h’ << 8) | 1)

#define hs_tbl hsc_gi_tbl_u.tbl
#define hs_tbl64 hsc_gi_tbl_u.tbl64
#define hs_tblsize hsc_gi_tblsize_u.tblsize
#define hs_tblsize64 hsc_gi_tblsize_u.tblsize64
84 Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

Using the HSIOC_GET_INFO ioctl()
This ioctl() has one argument, arg, which is a pointer to an hsc_gi_arg_t
structure. The first field of hsc_gi_arg_t is a pointer to user-allocated storage; the
second field is a pointer to the size of this storage in bytes.

To find out how much user storage to allocate for the slot table, call the ioctl()
with the first field of hsc_gi_arg_t set to NULL and the second argument defined
as a pointer to an integer. Since the tbl field is NULL, the ioctl() returns only the
number of elements in the table in the tblsize field.

When both fields have non-NULL values, the slot table is copied into the
user-allocated storage if tblsize is large enough to contain the table. The returned
table is an array of hsc_slotinfo_t structures where the size of the table is:

If tblsize is too small, the ioctl() returns an EINVAL error. If either the tbl field
or the tblsize field contains invalid pointers, the ioctl() returns an EFAULT
error.

Note – In a failed device state—for instance, where a device has failed to be
unconfigured—the cfgadm command shows that the device remains configured to
the system and the HSIOC_GET_INFO ioctl() reports that the device is in the
HSC_DEV_UNCONFIG_FAILED state. In this device state, the card that an operator
attempted to extract remains plumbed and connected to the system’s resources.
When the condition preventing the device from being unconfigured is removed, the
operator can unconfigure the device using the cfgadm command. A Reconfiguration
Coordination Manager (RCM) script can also be written to automatically shut down
applications using the device so that unconfiguration is successful. See Chapter 6 for
infomation on RCM.

hsc_gi_arg_t arg;

ioctl(fd, HSIOC_GET_INFO, &arg)

hsc_gi_arg_t arg;
int n;
int tblsize;
hsc_slotinfo_t *tbl;

arg.hs_tbl64 = (uint64_t)tbl;
arg.hs_tblsize64 = (uint64_t)&n;

tblsize = n * sizeof (hsc_slotinfo_t);
Chapter 5 Programming Netra CP2100 Series Board Controlled Devices 85

In CODE EXAMPLE 5-2, a pseudo function finds the device type information for a
given slot number (hsc_slotnum) and device number (hsc_devnum). The
paragraphs that follow CODE EXAMPLE 5-2 describe how you might implement this
function in your application.

The cphsc pseudo driver registers the attachment points (slots) with the hot-swap
framework when the user-level system controller daemon, sctrld, activates it. The
sctrld daemon plumbs the cphsc driver to the system management controller
driver.

CODE EXAMPLE 5-2 Using cphsc to Find Device Type Information

int n;
int tblsize = 0;
hsc_slotinfo_t *tbl;
hsc_gi_arg_t arg;

if ((fd = open("/dev/cphsc")) < 0)
return (FAILURE);

arg.hs_tbl64 = NULL;
arg.hs_tblsize64 = (uint64_t)&n;

/* get the number of entries in the slotinfo table */
if (ioctl(fd, HSIOC_GET_INFO, &arg) < 0)

return (FAILURE);

tblsize = n * sizeof (hsc_slotinfo_t);
tbl = (hsc_slotinfo_t *)malloc(tblsize);
arg.tbl64 = (uint64_t)tbl;

/* get the slotinfo table */
if (ioctl(fd, HSIOC_GET_INFO, &arg) < 0)

return (FAILURE);

tp = tbl;

for (i = 0; i < n; i++, tp++) {

if (tp->hsc_dev_state == HSC_DEV_UNCONFIG_FAILED)
if ((dip = find_device_info(tp->hsc_slotnum,

tp->hsc_devnum)) != NULL) {
unplumb_device(dip);
unconfig_device_again(dip);

}
}

86 Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

The attachment points (slots) are represented as minor nodes of the CompactPCI bus
node. The minor number of these nodes corresponds to the PCI device number. This
is not a true device tree node because it represents a receptacle rather than the
occupant itself. When a device is configured into the slot, a device node is created
that represents the configured device. This device node is a child of the system board
controller’s (SBC) CompactPCI root nexus, and its PCI bus address corresponds to
the PCI device number of the corresponding slot.

To search the SBC’s device tree for slots with configured devices, use the interfaces
provided by the libdevinfo library.

When an attachment point represents a multifunction device, device nodes are
created for each of these functions. In the SBC’s device tree, these device nodes
appear as children of the attachment point device node. Use interfaces provided by
libdevinfo to get the following information for each function (for example, for
each child node):

■ Vendor ID
■ Subsystem vendor ID (if present)
■ Device ID
■ Subsystem ID (if present)
■ Driver name and instance number

Using the above information, you can find out what type of device was configured
in a given slot.

Note – For satellite CPU boards, the above information must be obtained from the
attachment point device node itself, because the device tree ends at that node.

Using Library Interfaces to Collect Information
Use the libdevinfo library interfaces to derive the device type information
(vendor ID, device ID, subsystem ID, and so on) based on a CompactPCI card’s
device number. The following example procedure shows how you can implement
the find_device_info() routine shown in CODE EXAMPLE 5-2 using the
libdevinfo application programmer’s interface.

Note – You can use the libdevinfo library interfaces to find information only on
devices that are in a configured state. If a device is in an unconfigured state, you
cannot retrieve this information.You can use the libdevinfo library interfaces to
find information only on devices that are in a configured state. If a device is in an
unconfigured state, you cannot retrieve this information.
Chapter 5 Programming Netra CP2100 Series Board Controlled Devices 87

1. Call the di_init() function to retrieve a snapshot of the kernel device tree
starting from the top (root node denoted by “/”).

For example:

2. Call the di_walk_minor() function, starting from the root node, to find the
attachment point node with a minor node whose minor number is equal to the
PCI device number under question.

For example:

The attachment point node returned in this step is the CompactPCI root nexus node.

3. Look for a child node (immediate child) using libdevinfo function calls such as
di_child_node() and di_sibling_node() to find the desired attachment point
node.

This attachment point node has a bus address equal to the PCI device number under
question. Use the libdevinfo function di_bus_addr() to get the bus address.

4. To find the properties of the child nodes of the attachment point node, use the
following libdevinfo function calls:

■ di_driver_name() – To find the driver name
■ di_instance() – To find the instance number

Since the properties of interest (device-id, subsystem-id, vendor-id, subsystem-vendor-id)
are all of type DDI_PROP_TYPE_INT (32-bit integer), you can use the
di_prop_lookup_ints() and di_prom_prop_lookup_ints() functions to find
the property values.

To get the PROM properties using di_prom_lookup_ints(), call the
di_prom_init() and di_prom_fini() functions before accessing the PROM
property list, as the list is not included in the snapshot returned by the di_init()
function.

5. Call the di_fini() function to destroy the snapshot of the kernel device tree and
free up memory.

root = di_init("/", DINFOSUBTREE | DINFOPROP | DINFOMINOR)

di_walk_minor(root, DDI_NT_PCI_ATTACHMENT_POINT, 0,
(void *)&pci_device_num,)
88 Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

High Availability Signal Support
Using high availability (HA) signal support, you can write your application to
control which CompactPCI slots in an HA chassis are powered on. Before your
application can control these signals, you must first set two Netra CP2140 series
board OpenBoot™ PROM configuration variables.

Note – The following section applies only to CP2140 boards used as system
controllers.

Setting OpenBoot PROM Configuration Variables
You must set these two Netra CP2140 series board OpenBoot PROM configuration
variables before an application can gain control of the HA signals:

■ ha-signal-handler

■ poweron-vector

The ha-signal-handler variable indicates whether the system management
controller (SMC) module controls the HA signals or if an external application
controls these signals. By default, the variable’s value is 0, which means that the
SMC module controls the HA signals. If you set the variable to 1, an external
application can control the HA signals.

If you are developing an application that must control the HA signals, set the
ha-signal-handler variable to 1 using the setsmcenv OpenBoot PROM
command:

To confirm that the variable has been set correctly, use the printsmcenv command
at the ok prompt:

Note – To display the setting for every configuration variable, type the
printsmcenv command at the ok prompt without a variable.

ok setsmcenv ha-signal-handler 1

ok printsmcenv ha-signal-handler
1

Chapter 5 Programming Netra CP2100 Series Board Controlled Devices 89

The poweron-vector configuration variable is an 8-bit bit-vector that indicates
which CompactPCI slots will be powered on during the chassis power-on. By setting
this variable, you set which slots in the chassis will be powered on.

Note – You can use the poweron-vector variable only when the
ha-signal-handler variable is set to 1.

TABLE 5-1 defines the poweron-vector variable’s 8-bit vector.

If you are developing an application that controls the power of every slot in the
chassis, you must shut off the power-on bit-vector for every slot. At the ok prompt,
use the setsmcenv command to set the poweron-vector variable to 0xff:

Note – It is not possible to control the powering of the Netra CP2140 board system
controller slots. They will always be powered on by the SMC module irrespective of
the value of ha-signal-handler.

Controlling and Monitoring High Availability
Signals
Each slot has BDSEL#, HEALTHY#, and RESET# signals. These HA signals can be
controlled and monitored by an application. An extra flag, called slot_flg, is also
available that indicates whether a slot is empty or full.

TABLE 5-1 poweron-vector Variable Bit Definition and Power Setting

Bit Slot Power Setting

7 Not in use

6 8 0 is on, 1 is off

5 7 0 is on, 1 is off

4 6 0 is on, 1 is off

3 5 0 is on, 1 is off

2 4 0 is on, 1 is off

1 3 0 is on, 1 is off

0 2 Not supported since the SBC can occupy this slot

ok setsmcenv poweron-vector ff
90 Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

An 8-bit bit-vector represents all the slots within an 8-slot HA CompactPCI chassis.
The SBC and the standby SBC (SSBC) are reserved slots in an HA chassis and are not
counted in the 8-bit bit-vector. See TABLE 5-1 for the bit number to slot number
sequencing.

Use the bdsel, healthy and reset bit-vectors to control a slot’s BDSEL#,
HEALTHY#, and RESET# signals. When using these bit-vectors, any set bit means
that the signal is de-asserted on that slot. Conversely, any clear bit means that the
signal is asserted. For example, a slot that is not healthy will have its bit set, which
means that the HEALTHY# signal is de-asserted. When a slot has its RESET# signal
asserted, the appropriate bit for this slot is cleared, and the board will not be visible
on the CompactPCI bus until this RESET# signal is de-asserted or has its bit set.

The bdsel bit-vector has two meanings depending on whether the bit-vector is
being written to or read. When the bdsel bit-vector is written, the value of the
bit-vector should set the bits for slots that should have BDSEL# disabled, and cleared
for slots that have BDSEL# asserted. The value of the bdsel bit-vector that is read
has set bits for slots that are requesting BDSEL# to be asserted. For more information
about this process, see “Bringing a Slot Online” on page 92.

The slot_flg bit-vector has two values: 0 (for an empty slot) or 1 (for an occupied
slot).

The following data structure encapsulates all of the above bit-vectors:

The cphsc pseudo driver exports an ioctl() that retrieves an
hsc_ha_sigstate_t data structure and an ioctl() that sets the BDSEL# and
RESET# HA signals.

To get the HA signal state, use the HSIOC_GETHASIG ioctl() as follows:

typedef struct hsc_ha_sigstate {
uchar_t bdsel; /* bdsel bit-vector */
uchar_t healthy; /* healthy bit-vector */
uchar_t reset; /* reset bit-vector */
uchar_t slot_flg; /* empty/full bit-vector */

} hsc_ha_sigstate_t;

hsc_ha_sigstate_t arg;

ioctl(cphscfd, HSIOC_GETHASIG, &arg);
Chapter 5 Programming Netra CP2100 Series Board Controlled Devices 91

To set the HA signal state, use the HSIOC_SETHASIG ioctl() as follows:

Note – Only the bdsel and reset fields in the hsc_ha_sigstate_t structure are
writable. The other fields are ignored.

Bringing a Slot Online
Note – The following section applies only to CP2140 boards used as system
controllers.

Only slots with slot_flg and bdsel bits set are in a state to be powered on. This
state means that the slot is FULL and is requesting a BDSEL# signal.

For example, if the HSIOC_GETHASIG ioctl() returns an hsc_ha_signal_t
struct, arg, with the value shown below, slot 5’s slot_flg and bdsel bits are set.

To power on slot 5, your application should assert the BDSEL# signal on this slot.
You can calculate the new value for the bdsel bit-vector by clearing the slot 5 bit
from the healthy bit-vector and storing the result in arg.bdsel as follows:

Note – The value (slot - 2) is the bit position in the bdsel bit-vector for a given slot.
For example, if the slot number is 5, the corresponding bit is 3 or (5 - 2).

The value in the reset bit-vector should remain unchanged and be set to the value
returned by the HSIOC_GETHASIG ioctl().

The healthy bit-vector and slot_flg flag fields are read-only so the
HSIOC_SETHASIG ioctl() ignores them.

hsc_ha_sigstate_t arg;

ioctl(cphscfd, HSIOC_SETHASIG, &arg);

arg.bdsel == 0x8
arg.healthy == 0xff
arg.reset == 0
arg.slot_flg == 0x8

arg.bdsel = arg.healthy & ~(1 << (slot - 2));
92 Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

Slot 5’s BDSEL# signal is asserted after the HSIOC_SETHASIG ioctl() is executed,
as follows:

Use the HSIOC_GETHASIG ioctl() to poll the HA signals until slot 5 asserts a
HEALTHY# signal. The condition to wait for is:

When the healthy bit is clear, the board in this slot is powered on and is ready to
be taken out of reset.

The HSIOC_SETHASIG ioctl() sets both the bdsel and the reset bit-vectors. For
slots that are to remain powered off, their bdsel bit should be set to 1. In this
example, slot 5 is the only slot powered on, so the bit-vector should be:

To de-assert reset for slot 5, set the reset bit-vector to:

Executing the HSIOC_SETHASIG ioctl() with the following arg takes the board
out of reset and causes the board to generate an ENUM# signal if it has hot-swap
friendly silicon:

The Solaris hot-swap framework recognizes this ENUM# signal, which in this case
indicates that the board has been freshly inserted, and then configures the board.
Use the cfgadm command at a Solaris command prompt to verify that this slot has
been successfully configured.

arg.bdsel = 0xf7
arg.healthy = 0xff
arg.reset = 0

ioctl(cphscfd, HSIOC_SETHASIG, &arg)

(arg.healthy & (1 << (slot -2))) == 0

arg.bdsel = 0xf7

arg.reset = 0x8

ioctl(cphscfd, HSIOC_SETHASIG, &arg)
Chapter 5 Programming Netra CP2100 Series Board Controlled Devices 93

After a board is successfully removed from the chassis, the slot containing this board
should have its BDSEL# and RESET# signals set to 1 so that future hot-swap
insertions will be detected within this slot.

Note – All other HA signal combinations indicate errors.

Using the HSIOC_SETHASIG ioctl()
Note – The following section applies only to CP2140 boards used as system
controllers.

The HSIOC_SETHASIG ioctl() simultaneously sets both the bdsel and reset
bit-vectors. The bdsel bit-vector should have the bits set for the slots that are not
requesting the BDSEL# signal. This bit setting is the complement of the bit pattern
returned from the HSIOC_GETHASIG ioctl(). The value returned from the
HSIOC_GETHASIG ioctl() indicates which slots have requested the BDSEL#
signal.

For example, if the bdsel bit-vector is 0xa8, the chassis slots 5 and 7 are requesting
BDSEL# signals (bit 7 is ignored so this is equivalent to a setting of 0x28). Also, the
slot configuration flag should be set to 0x28, which indicates that slots 5 and 7 have

TABLE 5-2 Hot-Swap HA Signal States for a Single CompactPCI Slot

BDSEL HEALTHY RESET slot_flg Description System Board Controller (SBC) Actions

0 1 0 0 Slot empty Poll for the bdsel and slot_flg bits
being set to 1.

1 1 0 1 Slot full Use the HSIOC_SETHASIG ioctl()
to assert bdsel. Note that the bdsel
bit-vector should contain a 1 wherever
a slot should remain powered off.

0 1 0 1 Slot powered Poll for the board’s HEALTHY# signal
to be asserted.

0 0 0 1 Board healthy Take board out of reset. Use the
HSIOC_SETHASIG ioctl().

0 0 1 1 Board powered on
CompactPCI bus

The board has successfully powered
up and is visible. An ENUM# signal is
generated.

0 1 1 1 Board unhealthy Board is reporting problems, and
should be taken off the bus.
94 Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

boards installed in them. If both slots 5 and 7 assert the BDSEL# signal, the value for
the bdsel bit-vector (used with the HSIOC_SETHASIG ioctl()) should be the
complement of 0xa8 (or 0x57).

You can also use the healthy bit-vector as a guide to setting the bdsel bit-vector.
Any bit set in the healthy bit-vector indicates that the HEALTHY# signal is
de-asserted, and that the board should not be powered on unless the board was
already powered on and then became unhealthy for some reason. To assert the
BDSEL# signal on any slot, the bit corresponding to the slot requesting the BDSEL#
signal can be cleared in the healthy bit-vector as follows:

To enable the board configuration, the RESET# signal should be de-asserted when a
board is asserting the HEALTHY# signal.

Add the following variables to your system’s /etc/system file to generate an
ENUM# signal when a board de-asserts a RESET# signal:

Note – The pkgadd utility should have already added these lines to the
/etc/system file when you installed the hot-swap software packages.

You must reboot your system before these settings affect the operating system.

Since the HSIOC_SETHASIG ioctl() sets both the bdsel and reset bit-vectors,
the correct value for the bdsel bit-vector has to be constructed using the healthy
bit-vector. The healthy bit-vector indicates which slots have the BDSEL# signal
asserted.

hsc_ha_signal_t arg;

ioctl(cphscfd, HSIOC_GETHASIG, &arg); /* get current values */

arg.bdsel = arg.healthy & ~(0x28); /* clear bits for slot 5 and 7 */

ioctl(cphscfd, HSIOC_GETHASIG, &arg);

cphsc:hsc_do_enum=1
cphsc:hsc_enum_reactivate=1
Chapter 5 Programming Netra CP2100 Series Board Controlled Devices 95

For example, to de-assert the RESET# signal for slots 5 and 7, you would do the
following:

Please note that the preceding code section is only an example of how the
HSIOC_SETHASIG ioctl() can be used to bring some slots out of reset and allow
the occupants to get configured.

The preceding example assumes that your application controls the powering on of
all of the slots. However, if you do not want to control the powering on and off of
some of the slots and would prefer to delegate this control to the system (by
appropriately setting the OpenBoot PROM variable, poweron-vector), you should
only derive the bdsel mask from the healthy status of the slots under your
application’s control. Taking this action prevents accidentally powering off slots not
under your application’s control.

Note – Power off a slot only after the board has been unconfigured and the RESET#
has been asserted. Do not attempt to control a slot’s power while there is a board in
the configured state and there is a driver attached as it could lead to a system panic
or hang.

Creating a Header File for the CP2100
Series Software
CODE EXAMPLE 5-3 displays a header file containing all of the directives, macros, and
definitions listed throughout this document. You must use a header file like the one
below in order to develop applications using the software described in this
document.

Note – The following ioctl() commands: HSIOC_GETHASIG and
HSIOC_SETHASIG only apply to Netra CP2140 boards as system controllers. These
commands cannot be used for Netra CP2160 boards.

hsc_ha_signal_t arg;

ioctl(cphscfd, HSIOC_GETHASIG, &arg); /* get current values */

arg.bdsel = arg.healthy; /* BDSEL set to HEALTHY */
arg.reset |= 0x28; /* de-assert reset for slot 5 and 7 */

ioctl(cphscfd, HSIOC_SETHASIG, &arg);
96 Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

CODE EXAMPLE 5-3 Netra CP2100 Series Software Header File

/*
 * Binary definition of the HSIOC_* ioctl()s
 */

#define _HSIOC (’h’ << 8)

#define HSIOC_GET_INFO (_HSIOC | 1) /* get hsc_slot_t table */
#define HSIOC_GETHASIG (_HSIOC | 8) /* get ha signal state */
#define HSIOC_SETHASIG (_HSIOC | 9) /* set ha signal state */

typedef enum { HSC_DEV_CONFIG, HSC_DEV_UNCONFIG, HSC_DEV_UNCONFIG_FAILED,
 HSC_DEV_CONFIG_FAILED, HSC_DEV_UNKNOWN } hsc_dev_state_t;

typedef enum { HSC_SLOT_EMPTY, HSC_SLOT_DISCONNECTED, HSC_SLOT_CONNECTED,
 HSC_SLOT_UNKNOWN } hsc_slot_state_t;

typedef struct hsc_slotinfo {
 hsc_slot_state_t hsc_slot_state;
 hsc_dev_state_t hsc_dev_state;
 uint16_t hsc_devnum;
 uint16_t hsc_slotnum;
} hsc_slotinfo_t;
/*
Chapter 5 Programming Netra CP2100 Series Board Controlled Devices 97

98 Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

CHAPTER 6

Reconfiguration Coordination
Manager

This document describes how you can use Reconfiguration Coordination Manager
scripts to automate certain dynamic reconfiguration processes when a Netra
CP2000/CP2100 series board is used as a system controller.

Note – The Reconfiguration Coordination Manager scripts are supported on the
Netra CP2140 and Netra CP2160 boards when they are used with the CP2000
Supplemental CD 4.0 for Solaris 8 only.

This chapter contains the following sections:

■ “Reconfiguration Coordination Manager (RCM) Overview” on page 100

■ “Using RCM with the Netra CP2100 Series CompactPCI Board” on page 100

■ “RCM Script Example” on page 103

■ “Testing the RCM Script Example” on page 105

■ “Avoiding Error Messages When Extracting Devices in Basic Hot-Swap Mode” on
page 107

Note that the RCM framework can only be used in systems with the Netra CP2100
series CompactPCI boards as system controllers with full hot-swap support.
99

Reconfiguration Coordination Manager
(RCM) Overview
Beginning with the Solaris 8 2/02 release, the Solaris operating environment
provides a Reconfiguration Coordination Manager (RCM) scripting interface that
enables you to create scripts that can shut down applications and release system
resources from hardware devices during dynamic reconfiguration (DR) operations.
For example, you can create an RCM script to release network interfaces of a
network interface card prior to unconfiguring the card from the system.

Prior to the RCM software, operators had to release system resources manually
before the operating system could dynamically remove hardware devices (for
example, network interface cards and hard drives) from the system. Manually
releasing these devices often left system applications and devices in unknown states,
which would force the operators to shut down the system before they could remove
the devices.

You can now write and install RCM scripts that can better control this dynamic
reconfiguration process. When responding to reconfiguration requests, the Solaris
RCM daemon will launch the RCM scripts at the appropriate time to allow for the
orderly removal of system resources. With the system resources released, a hardware
device can be successfully unconfigured during dynamic reconfiguration operations.

For instructions on how to write and install RCM scripts, and for a description of all
of the RCM commands, refer to the “Reconfiguration Coordination Manager (RCM)
Scripts” section of the Solaris 8 System Administration Supplement (806-7502-xx), which
is part of the Solaris 8 2/02 Update Collection. You can view this document online on
the http://docs.sun.com website. Refer to the rcmscript(4) man page for
additional information about creating and installing RCM scripts.

Using RCM with the Netra CP2100
Series CompactPCI Board
The RCM framework is fully integrated into the CP2000 Supplemental CD 4.0 for
Solaris 8 software and can be used in systems with the Netra CP2100 series
CompactPCI boards as system controllers (with full hot-swap support).
100 Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

You can write RCM scripts to shut down applications running on peripheral
CompactPCI cards installed into the system backplane. The RCM daemon will
execute these scripts when an operator attempts to unconfigure a card using the
cfgadm command or by opening the CompactPCI board’s ejection levers. For more
information about the cfgadm command, refer to the cfgadm(1M) man page and the
Solaris documentation.

The Solaris RCM software includes RCM modules that interact with dynamic
reconfigurable devices. These RCM modules are shared object files, shipped with the
Solaris software, that use the RCM application programming interface (API) to
interact with the RCM framework. Both RCM modules and user-created RCM scripts
can act as RCM clients during dynamic reconfiguration processes.

RCM scripts contain RCM commands that the Solaris DR framework will use to
perform its operations. These RCM commands include register, which is used to
specify the devices the script will manage, and preremove, which is used to remove
resources from devices. For a full list of RCM commands, refer to the Solaris RCM
documentation.

When an operator starts to unconfigure a card, the Solaris DR framework will call
the RCM script’s preremove function to do the necessary quiescing prior to
proceeding with the actual unconfiguration. However, you can write an RCM script
that can deny extraction requests, so when an operator tries to unconfigure a card,
the Solaris DR framework will not attempt to unconfigure the device. In this case,
the device will remain in a configured state and the card’s blue extraction LED will
stay unlit.

In the event that a device does not have associated RCM clients registered to receive
device extraction notifications, the Solaris DR framework will automatically proceed
with the unconfigure operation. The unconfigure operation will fail if the device is
still in use. If the device is not in use, the unconfigure operation will succeed and the
blue extraction LED will turn on.

If you are using a Netra CP2100 series system controller in a system that is set to
basic hot-swap mode, use the cfgadm command with the -f option to prevent any
possible interference from other RCM clients that have been registered for removal
notifications of the same device. See “Avoiding Error Messages When Extracting
Devices in Basic Hot-Swap Mode” on page 107 for more information.

Note – The RCM functionality that enables you to write scripts to shut down
applications operating on dumb I/O cards (like network interface cards) is not
available on satellite CPU boards. You will need to shut down applications,
including the Solaris operating environment, running on satellite CPU boards
manually before dynamically removing these boards.
Chapter 6 Reconfiguration Coordination Manager 101

Using RCM to Work With the Intel 21554 Bridge
Chip
CompactPCI cards containing the Intel 21554 PCI-PCI bridge chip falsely turn on the
blue extraction LED when they are dynamically removed from a chassis using the
Netra CP2100 series board as a system controller. This blue extraction LED, located
on a CompactPCI card’s front panel, incorrectly turns on when the ejection levers are
opened for extraction while the card’s devices (for example, the card’s network
interfaces) are still in use. The Intel 21554 bridge chip logic that clears the extraction
bit during a dynamic removal operation will also turn on the card’s blue extraction
LED in error.

The Solaris DR framework must clear the extraction bit at the end of a dynamic
removal operation, whether or not it is successful, to indicate that the ENUM
interrupt has been handled. The Solaris DR framework will issue the command to
turn on the blue extraction LED only when the card’s unconfiguration operation is
successful. Because the Intel 21554 bridge chip turns on the blue LED even when the
unconfiguration fails, an operator may falsely assume that the card can be safely
removed even though the card is actually still in use by the system.

With the addition of RCM script support, however, you can create applications that
use the RCM framework to either approve or deny dynamic removal operations
before the Solaris dynamic reconfiguration software proceeds with the card’s
unconfiguration. Using an RCM script, your application can deny the removal of the
card if it currently cannot be freed, possibly because it is engaged in a critical task at
the time. Since the RCM script denies the operation prior to starting the
unconfiguration process, the blue extraction LED will not turn on.

If, on the other hand, your application approves the removal request and uses the
RCM script to quiesce the card, the card’s unconfiguration will succeed and the
Solaris DR framework will turn on blue extraction LED correctly.

Note – If your application approves the dynamic removal operation, the RCM script
should also shut down all applications using the card’s devices. Otherwise, the blue
extraction LED may come on in error if the unconfiguration fails because the device
is still in use.

By providing a mechanism for either denying a dynamic reconfiguration request or
quiescing the devices, the RCM framework provides a workaround to the incorrect
lighting of the blue extraction LED.
102 Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

RCM Script Example
CODE EXAMPLE 6-1 shows an example RCM Perl script designed to shut down
applications running on a network interface of a Sun Dual FastEthernet/SCSI 6U
CompactPCI Adapter with PMC. This CompactPCI card contains two network (qfe)
interfaces and two SCSI interfaces.

The example script uses the following RCM commands:

■ scriptinfo – Get script information
■ register – Registers the resources the script handles
■ resourceinfo – Get resource information
■ queryremove – Queries whether the resource can be released
■ preremove – Releases the resource

For more information about these RCM commands, refer to rcmscript(4) man page
and the Solaris RCM documentation.

See “Testing the RCM Script Example” on page 105 for a test run of this script in a
system controlled by a typical Netra CP2100 series CompactPCI board.

CODE EXAMPLE 6-1 RCM Script Example (SUNW,cp2000_io.pl)

#! /usr/bin/perl -w
#
Copyright 2002 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.
#
#ident "@(#)SUNW,cp2000_io.pl 1.1 02/03/28 SMI"
#
A Sample site customization RCM script.
#
When RCM_ENV_FORCE is FALSE, the script indicates to RCM that it can not
release the network interface when the interface is plumbed and up
When RCM_ENV_FORCE is TRUE, this script allows DR to remove the QFE device
by bringing down the network interface that has been plumbed and up.
#
For more information on RCM scripts see the man page rcmscript(4).
#

use strict;

my ($cmd, $rsrc, %dispatch);
Chapter 6 Reconfiguration Coordination Manager 103

dispatch table for RCM commands
%dispatch = (
 "scriptinfo" => \&do_scriptinfo,
 "register" => \&do_register,
 "resourceinfo" => \&do_resourceinfo,
 "queryremove" => \&do_preremove,
 "preremove" => \&do_preremove
);

sub do_scriptinfo
{
 print "rcm_script_version=1\n";
 print "rcm_script_func_info=ifconfig coordinator for DR\n";

 #
 # optionally specify command timeout value in seconds to override
 # the default timeout value.
 # Eg:
 # print "rcm_cmd_timeout=10\n";
 #

 exit (0);
}

sub do_register
{
 #
 # register all resource names of interest using
 # print "rcm_resource_name=resourcename\n";
 # Eg: to register /dev/rmt/0 and /dev/dsk/c1t1d0s0
 # print "rcm_resource_name=/dev/rmt/0\n";
 # print "rcm_resource_name=/dev/dsk/c1t1d0s0\n";
 #

 # register all resource names of interest

 my ($devname);
 $devname=’/devices/pci@1f,0/pci@1/pci@1/pci@12/SUNW,qfe@0,1’;
 print "rcm_resource_name=$devname\n";
 exit(0);
}

sub do_resourceinfo
{
 #
 # specify the resource usage information of the given resource $rsrc
 #

CODE EXAMPLE 6-1 RCM Script Example (SUNW,cp2000_io.pl) (Continued)
104 Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

Testing the RCM Script Example
This section demonstrates how the SUNW,cp2000_io.pl RCM script
(CODE EXAMPLE 6-1) unconfigures a network interface of a Sun Dual
FastEthernet/SCSI 6U CompactPCI adapter.

 print "rcm_resource_usage_info=ifconfig managed QFE device\n";
 exit (0);
}

sub do_preremove
{
 if ($ENV{RCM_ENV_FORCE} eq ’TRUE’) {
 if ($cmd eq ’preremove’) {
 ‘/usr/sbin/ifconfig qfe0 down‘;

if ($? == 0) {
 ‘/usr/sbin/ifconfig qfe0 unplumb‘;

}
}

 exit(0);
} else {

 print "rcm_failure_reason=device in use by ifconfig\n";
 exit (3);
 }
}

$ENV{’RCM_ENV_FORCE’} = "TRUE";
$cmd = $ARGV[0];
if (defined($ARGV[1])) {
 # resource name
 $rsrc = $ARGV[1];
}

if (defined($dispatch{$cmd})) {
 &{$dispatch{$cmd}};
} else {
 # unsupported command
 exit (2);
}

CODE EXAMPLE 6-1 RCM Script Example (SUNW,cp2000_io.pl) (Continued)
Chapter 6 Reconfiguration Coordination Manager 105

In this example, the test system is operating in full hot-swap mode and has the
following configuration:

■ 8-slot High-Availability (HA) CompactPCI chassis

■ Netra CP2100 series board used as the system board controller (SBC)

■ Sun Dual FastEthernet/SCSI 6U CompactPCI adapter in slot 4

■ Netra CP2100 series board used as a satellite CPU board in slot 5

The cfgadm command output below shows that the Sun Dual FastEthernet/SCSI 6U
CompactPCI adapter is inserted and configured in slot 4 (pci1:cpci0_slot4) of
the chassis.

Using the ifconfig command, the first FastEthernet device (qfe0) is plumbed (the
streams needed for TCP/IP are set up) and brought up. Finally, the ifconfig -a
command output shows that the adapter’s qfe0 device has been connected to a
Ethernet network, where test_ip is the hostname that corresponds to the
192.168.210.225 IP address. Refer to the ifconfig(1M) man page for more
information about using ifconfig to configure network devices.

cfgadm
Ap_Id Type Receptacle Occupant Condition
c0 scsi-bus connected configured unknown
c1 scsi-bus connected unconfigured unknown
pci1:cpci0_slot2 unknown connected unconfigured unknown
pci1:cpci0_slot3 unknown connected unconfigured unknown
pci1:cpci0_slot4 stpcipci/fhs connected configured ok
pci1:cpci0_slot5 mcd/fhs connected configured ok
pci1:cpci0_slot6 unknown connected unconfigured unknown
pci1:cpci0_slot7 unknown connected unconfigured unknown
pci1:cpci0_slot8 unknown connected unconfigured unknown

ifconfig qfe0 plumb
ifconfig qfe0 test_ip up
ifconfig -a
lo0: flags=1000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4> mtu 8232 index 1
 inet 127.0.0.1 netmask ff000000
eri0: flags=1000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 index 2
 inet 192.168.210.213 netmask ffffff00 broadcast 192.168.210.255
 ether 0:3:ba:3:f4:58
qfe0: flags=1000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 index 3
 inet 192.168.210.225 netmask ffffff00 broadcast 192.168.210.255
 ether 0:3:ba:3:f4:58
106 Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

At this point, the operator opens the ejection levers of the Sun Dual
FastEthernet/SCSI 6U CompactPCI adapter to begin the extraction process. When
the levers are opened, the Solaris DR framework (in conjunction with the Solaris
RCM framework) calls the SUNW,cp2000_io.pl RCM script, which unplumbs and
brings down the FastEthernet (qfe0) interface. The Solaris DR framework then
unconfigures the adapter and turns on the adapter’s blue extraction LED, signalling
that it can be safely removed.

The cfgadm and ifconfig output below show that the card has been successfully
unconfigured from the system.

Avoiding Error Messages When
Extracting Devices in Basic Hot-Swap
Mode
If you attempt to extract a hardware device using the cfgadm command when the
system is operating in basic hot-swap mode, and you have installed an RCM script
for the device, you may see error messages displayed in the system console. To
avoid seeing these error messages, use the -f option with the cfgadm command
when unconfiguring hardware devices. Using the -f option will help avoid any
possible interference with other registered Solaris RCM modules or user-created
RCM scripts.

cfgadm
Ap_Id Type Receptacle Occupant Condition
c0 scsi-bus connected configured unknown
c1 scsi-bus connected unconfigured unknown
pci1:cpci0_slot2 unknown connected unconfigured unknown
pci1:cpci0_slot3 unknown connected unconfigured unknown
pci1:cpci0_slot4 unknown connected unconfigured unknown
pci1:cpci0_slot5 mcd/fhs connected configured ok
pci1:cpci0_slot6 unknown connected unconfigured unknown
pci1:cpci0_slot7 unknown connected unconfigured unknown
pci1:cpci0_slot8 unknown connected unconfigured unknown

ifconfig -a
lo0: flags=1000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4> mtu 8232 index 1
 inet 127.0.0.1 netmask ff000000
eri0: flags=1000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 index 2
 inet 192.168.210.213 netmask ffffff00 broadcast 192.168.210.255
 ether 0:3:ba:3:f4:58
Chapter 6 Reconfiguration Coordination Manager 107

For example, if you attempt to extract the Sun Dual FastEthernet/SCSI 6U
CompactPCI adapter from a system operating in basic hot-swap mode, and you
have installed the RCM script shown in CODE EXAMPLE 6-1, you may see error
messages produced by other Solaris RCM modules in the system’s console. For
instance, if the adapter has a plumbed IP address, the Solaris SUNW,ip_rcm.so
RCM module will fail the dynamic removal operation and display error messages
unless you use the cfgadm -f command. By using the cfgadm -f command, you
will avoid interfering with any other registered Solaris RCM modules or scripts.

The purpose of the SUNW,ip_rcm.so module is to protect anonymous consumers
from inadvertent denial of service. Therefore, if an IP address is plumbed on a
network interface card, the SUNW,ip_rcm.so module will fail the removal
operation unless you unconfigure the card with the -f option.

However, if your Netra CP2100 series board controlled system is operating in full
hot-swap mode, the Solaris hot-swap framework will automatically apply the -f
option. Consequently, network cards with plumbed IP addresses will be
unconfigured successfully even if there is no user-level RCM script installed. The -f
option will force the SUNW,ip_rcm.so module to release the board and properly
shut down all applications using the network card.

For more information about the cfgadm command, refer to the cfgadm(1M) man
page and the Solaris system administration documentation. You can view this
documentation on the http://docs.sun.com/ website.
108 Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

Index
Numerics
16-bit timer, 7
8-bit pre-timeout timer, 7

A
address range, 22
Advanced System Monitoring, 47
ASM, 47

application block diagram, 48
application program, 73
Compatibility, 48
Functional Block Diagram, 59
monitoring, 65
polling rate, 73

B
Block Erase Action, 37

C
C programming language, 51
CPU-vicinity temperature, 49, 50, 74

D
device node, 26
diag-switch?, 19
drift rate, 51
dropins, 21

E
EACCESS, 29
Ebus status register, 19

EBUSY, 14
ECANCELLED, 29
EFAULT, 14, 29
EINVAL, 14, 29
ENOMEM, 29
env-monitor parameter, 50
ENXIO, 14, 29
Erase Action, 35

I
input output control-based (IOCTL-based), 8
Intelligent Platform Management Interface

(IPMI), 68
ioctl system call, 51
IPMI Specification, 68

K
keyboard controller style (KSC), 19

N
nonvolatile memory, 19

O
OBP environmental monitoring, 63
on-board voltage controller, 60
OpenBoot PROM, 17
original equipment manufacturer (OEM), 3
output buffer full (OBF), 19

P
PMC Temperature, 52
 109

Power Module Temperature, 53
PROM chips, 22
PROM information structure, 28

R
Read Action, 30
RTOS, 21

S
SDRAM module1 Temperature, 53
SDRAM module2 Temperature, 53
show-sensor command, 67
sleep system call, 51
SMC, 47
SMC switch, 21
specialized management network, 51
Starting Timers, 14
switch settings, 25
System Management Controller (SMC), 7

T
thermocouples, 78

U
user data storage, 21
User Flash

Application Program, 39
Interface Structure, 28

user flash
device, 27
device files, 27
driver, 21
header file, 27
node properties, 26
packages, 26

W
watchdog timer, 7
watchdog-enable?, 17
watchdog-timeout?, 17
WD1, 8
WD2, 8
WIOCGSTAT, 13
WIOCSTART, 13
WIOCSTOP, 13

Write Action, 32
110 Netra CP2000 and CP2100 Series cPCI Boards Programming Guide • October 2004

	Netra™ CP2000 and CP2100 Series CompactPCI Boards Programming Guide
	Contents
	Figures
	Tables
	Code Samples
	Preface
	Watchdog Timer
	Watchdog Timers
	16-bit Timer (WD1)
	8-bit Pre-timeout Timer (WD2)

	Watchdog Timer Driver
	Operations on the Watchdog Timers
	Parameters Transfer Structure
	Input/Output Controls
	Errors
	Example
	Configuration
	OpenBoot PROM Interface

	Data Structure
	Watchdog Operation
	Commands at OpenBoot PROM Prompt
	Corner Cases
	Setting the Watchdog Timer at OpenBoot PROM
	To Set the Watchdog Timer Without Running the Pre- Timeout Timer
	To Set the Watchdog Timer With Pre-Timeout Time
	To Stop the Watchdog Timer

	User Flash
	User Flash Usage and Implementation
	User Flash Address Range
	System Compatibility
	User Flash Driver
	Switch Settings
	OpenBoot PROM Device Tree and Properties

	User Flash Packages
	User Flash Device Files
	Interface (Header) File
	Application Programming Interface
	Structures to Use in IOCTL Arguments
	PROM Information Structure
	User Flash User Interface Structure

	Errors

	Example Programs
	Read Example Program
	Write Example Program
	Erase Example Program
	Block Erase Example Program
	Sample User Flash Application Program

	Advanced System Management
	ASM Component Compatibility
	Typical ASM System Application
	Typical Cycle From Power Up to Shutdown
	ASM Protection at the OpenBoot PROM
	ASM Protection at the Operating Environment Level
	Post Shutdown Recovery

	Hardware ASM Functions
	CPU-Vicinity Temperature Monitoring
	Power On/Off Switching

	Inlet/Exhaust Temperature Monitoring
	CPU Sensor Temperature Monitoring

	Adjusting the ASM Warning and Shutdown Parameter Settings on the Board
	OpenBoot PROM Environmental Parameters
	OpenBoot PROM Warning Temperature Parameter

	OpenBoot PROM/ASM Monitoring
	CPU Sensor Monitoring
	Warning Temperature Response at OpenBoot PROM
	Critical Temperature Response at OpenBoot PROM

	show-sensors Command at OpenBoot PROM
	IPMI Command Examples at OpenBoot PROM
	Set or Change the Thresholds for a Sensor
	Enable Events From a Sensor
	Check Whether the IPMI Commands Are Executed Properly
	Examples of IPMI Command Packets

	ASM Application Programming
	Specifying the ASM Polling Rate
	Monitoring the Temperature
	Solaris Driver Interface
	Interface Summary

	Sample Application Program

	Temperature Table Data
	System Configuration and Test Equipment
	Thermocouple Locations
	To Attach and Test Thermocouples

	Programming the User LED
	Files and Packages Required to Support the Alarm/User LED
	Applications
	Application Programming Interface (API)
	Compile
	Link

	Programming Netra CP2100 Series Board Controlled Devices
	Overview of Hot-Swap Device States
	Retrieving Device Type Information
	Using cphsc to Collect Information
	HSIOC_GET_INFO ioctl()
	Creating a Header File for the HSIOC_GET_INFO ioctl()
	Using the HSIOC_GET_INFO ioctl()

	Using Library Interfaces to Collect Information

	High Availability Signal Support
	Setting OpenBoot PROM Configuration Variables
	Controlling and Monitoring High Availability Signals

	Bringing a Slot Online
	Using the HSIOC_SETHASIG ioctl()
	Creating a Header File for the CP2100 Series Software

	Reconfiguration Coordination Manager
	Reconfiguration Coordination Manager (RCM) Overview
	Using RCM with the Netra CP2100 Series CompactPCI Board
	Using RCM to Work With the Intel 21554 Bridge Chip

	RCM Script Example
	Testing the RCM Script Example
	Avoiding Error Messages When Extracting Devices in Basic Hot-Swap Mode

	Index

