

Sun Fire™ V890 サーバー オーナーマニュアル

Sun Microsystems, Inc. www.sun.com

Part No. 817-6667-12 2005 年 10 月, Revision A

コメントの送付:http://www.sun.com/hwdocs/feedback

Copyright 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

米国 Sun Microsystems, Inc. (以下、米国 Sun Microsystems 社とします)は、本書に記述されている技術に関する知的所有権を有していま す。これら知的所有権には、http://www.sun.com/patentsに掲載されているひとつまたは複数の米国特許、および米国ならびにその他の 国におけるひとつまたは複数の特許または出願中の特許が含まれています。

本書およびそれに付属する製品は著作権法により保護されており、その使用、複製、頒布および逆コンパイルを制限するライセンスのもと において頒布されます。サン・マイクロシステムズ株式会社の書面による事前の許可なく、本製品および本書のいかなる部分も、いかなる 方法によっても複製することが禁じられます。

本製品のフォント技術を含む第三者のソフトウェアは、著作権法により保護されており、提供者からライセンスを受けているものです。

本製品の一部は、カリフォルニア大学からライセンスされている Berkeley BSD システムに基づいていることがあります。UNIX は、 X/Open Company Limited が独占的にライセンスしている米国ならびに他の国における登録商標です。

本製品は、株式会社モリサワからライセンス供与されたリュウミン L-KL (Ryumin-Light) および中ゴシック BBB (GothicBBB-Medium) の フォント・データを含んでいます。

本製品に含まれるHG明朝LとHGゴシックBは、株式会社リコーがリョービイマジクス株式会社からライセンス供与されたタイプフェー スマスタをもとに作成されたものです。平成明朝体W3は、株式会社リコーが財団法人日本規格協会文字フォント開発・普及センターから ライセンス供与されたタイプフェースマスタをもとに作成されたものです。また、HG明朝LとHGゴシックBの補助漢字部分は、平成明 朝体W3の補助漢字を使用しています。なお、フォントとして無断複製することは禁止されています。

Sun, Sun Microsystems, AnswerBook2, docs.sun.com, Java, Sun Fire, SunCluster, UltraSPARC, VIS, OpenBoot, Solstice DiskSuite, JumpStart, Sun StorEdge, SunSolve Online, SunVTS は、米国およびその他の国における米国 Sun Microsystems 社の商標もしくは登録商標です。サンのロゴマークおよび Solaris は、米国 Sun Microsystems 社の登録商標です。

すべての SPARC 商標は、米国 SPARC International, Inc. のライセンスを受けて使用している同社の米国およびその他の国における商標また は登録商標です。SPARC 商標が付いた製品は、米国 Sun Microsystems 社が開発したアーキテクチャーに基づくものです。OPENLOOK、 OpenBoot、JLE は、サン・マイクロシステムズ株式会社の登録商標です。

ATOK は、株式会社ジャストシステムの登録商標です。ATOK8 は、株式会社ジャストシステムの著作物であり、ATOK8 にかかる著作権その他の権利は、すべて株式会社ジャストシステムに帰属します。ATOK Server/ATOK12 は、株式会社ジャストシステムの著作物であり、ATOK Server/ATOK12 にかかる著作権その他の権利は、株式会社ジャストシステムおよび各権利者に帰属します。

本書で参照されている製品やサービスに関しては、該当する会社または組織に直接お問い合わせください。

OPEN LOOK および Sun™ Graphical User Interface は、米国 Sun Microsystems 社が自社のユーザーおよびライセンス実施権者向けに開発 しました。米国 Sun Microsystems 社は、コンピュータ産業用のビジュアルまたは グラフィカル・ユーザーインタフェースの概念の研究開 発における米国 Xerox 社の先駆者としての成果を認めるものです。米国 Sun Microsystems 社は米国 Xerox 社から Xerox Graphical User Interface の非独占的ライセンスを取得しており、このライセンスは米国 Sun Microsystems 社のライセンス実施権者にも適用されます。

U.S. Government Rights—Commercial use. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions of the FAR and its supplements.

本書は、「現状のまま」をベースとして提供され、商品性、特定目的への適合性または第三者の権利の非侵害の黙示の保証を含みそれに限 定されない、明示的であるか黙示的であるかを問わない、なんらの保証も行われないものとします。

本書には、技術的な誤りまたは誤植のある可能性があります。また、本書に記載された情報には、定期的に変更が行われ、かかる変更は本 書の最新版に反映されます。さらに、米国サンまたは日本サンは、本書に記載された製品またはプログラムを、予告なく改良または変更す ることがあります。

本製品が、外国為替および外国貿易管理法(外為法)に定められる戦略物資等(貨物または役務)に該当する場合、本製品を輸出または日本国 外へ持ち出す際には、サン・マイクロシステムズ株式会社の事前の書面による承諾を得ることのほか、外為法および関連法規に基づく輸出 手続き、また場合によっては、米国商務省または米国所轄官庁の許可を得ることが必要です。

原典: Sun Fire V890 Server Owner's Guide Part No: 817-3956-12 Revision A

目次

Regulatory Compliance Statements xiii

Declaration of Conformity xvii

安全のための注意事項 xix

はじめに xxiii

 システムの概要 1
 Sun Fire V890 サーバーについて 1 物理的な格納装置 1 処理能力 2 システムのメモリー 2 システム I/O 2 FC-AL 記憶装置アレイ 3 その他の周辺装置 3 Ethernet インタフェース 4 シリアルポートおよびシステムコンソール 4 Remote System Control ソフトウェアを使用した監視と管理 5 電源 5 ラック搭載オプション 6 信頼性、可用性、保守性機能 6

正面パネルの機能 7

背面パネルの機能 9

状態およびコントロールパネルについて 11

LED 状態インジケータ 12

電源ボタン 13

セキュリティーキースイッチ 14

- 信頼性、可用性、保守性機能について 15
 - ホットプラグ対応のディスクドライブおよび PCI カード 15

N+1 冗長電源装置 16

- ホットスワップ対応の電源装置 16
- ホットスワップ対応の冗長ファントレー 17

環境の監視および制御 17

温度の監視 17

ファンの監視 18

電源サブシステムの監視 18

自動システム回復 19

ハードウェアのウォッチドッグ機能 19

Remote System Control ソフトウェア 20

デュアルループ対応の FC-AL 外部記憶装置サブシステム 20

RAID 記憶装置構成のサポート 21

エラー訂正とパリティーチェック 21

状態表示 LED 21

4 レベルのシステム診断 22

2. システムの設定 23

出荷内容について 23

Sun Fire V890 サーバーの設置方法 24

準備作業 24

作業手順 25

コンソールの設定について 30

文字端末の接続方法 31

- 準備作業 31
- 作業手順 31
- 次の作業 32
- ローカルグラフィックスコンソールの設定方法 33
 - 準備作業 33
 - 作業手順 33
 - 次の作業 35
- システムの電源投入方法 35
 - 準備作業 35
 - 作業手順 35
 - 次の作業 37
- システムの電源切断方法 38
 - 作業手順 38
- 再起動 (boot -r) の開始方法 40
 - 準備作業 40
 - 作業手順 40
 - 次の作業 42
- システムコンソールを RSC に切り替える方法 42
 - 準備作業 43
 - 作業手順 43
 - 次の作業 44
- ローカルシステムコンソールの復元方法 45
 - 準備作業 45
 - 作業手順 45
- 3. ハードウェア構成 47

CPU/メモリーボードについて 48 メモリーモジュールについて 51 メモリーのインタリーブ 53 独立メモリーサブシステム 53 構成規則 54 PCI カードおよびバスについて 56 構成規則 58 システムコントローラカードおよび RSC ソフトウェアについて 60 構成規則 61 電源装置について 62 構成規則 64 ファントレーについて 65 構成規則 67 リムーバブルメディア装置について 68 シリアルポートについて 68 USB ポートについて 69 ハードウェアジャンパについて 70 シリアルポートジャンパについて 71 フラッシュ PROM ジャンパについて 73 システム I/O ボード 73 FC-AL ディスクバックプレーン 75 4. 大容量記憶装置サブシステムの構成 77

FC-AL 技術について 77
 Sun Fire V890 大容量記憶装置機能について 79
 大容量記憶装置サブシステムのコンポーネントについて 80
 FC-AL ディスクバックプレーンについて 82
 デュアルループ構成 83
 完全バックプレーン構成および分割バックプレーン構成 84

構成規則 84

内蔵ディスクドライブについて 85 構成規則 86 FC-AL ホストアダプタについて 86 構成規則 88

FC-AL のデバイスアドレスについて 89

5. ネットワークインタフェースの構成 91 ネットワークインタフェースについて 92 冗長ネットワークインタフェースについて 93 プライマリネットワークインタフェースの設定方法 94 進備作業 94 作業手順 94 次の作業 95 追加ネットワークインタフェースの設定方法 96 準備作業 96 作業手順 96 次の作業 99 光ファイバ Gigabit Ethernet ケーブルの接続方法 99 準備作業 99 作業手順 100 次の作業 101 より対線 Ethernet ケーブルの接続方法 101 準備作業 101 作業手順 101 次の作業 102

ブートデバイスの選択方法 103

準備作業 103

6. システムのファームウェア構成 105

OpenBoot 環境監視について 106

OpenBoot 環境監視の使用可能または使用不可への切り替え 106

自動システム停止 107

OpenBoot 環境の状態情報 108

OpenBoot 環境監視を使用可能にする方法 108

準備作業 108

作業手順 109

OpenBoot 環境監視を使用不可にする方法 109

作業手順 109

OpenBoot 環境の状態情報の取得方法 110

作業手順 110

自動システム回復について 111

auto-boot オプション 112

エラー処理の概要 113

リセットシナリオ 114

通常モードおよび保守モードの情報 114

ASR ユーザーコマンド 115

ASR を使用可能にする方法 115

作業手順 115

ASR を使用不可にする方法 116

作業手順 116

手動による装置の構成について 116

装置およびスロットの構成解除 116

すべてのシステムプロセッサの構成解除 117

デバイスパス 117

手動による装置の構成解除方法 118

作業手順 118

手動による装置の再構成方法 119

作業手順 119

ASR 状態情報の取得方法 120

作業手順 120

OpenBoot の非常時の手順について 121

Stop-A の機能 121

Stop-D の機能 121

Stop-F の機能 121

Stop-N の機能 122

Stop-N 機能の実現方法 122

準備作業 122

作業手順 123

次の作業 123

装置識別名の関連情報 124

7. サーバーの管理 127

サーバー管理ソフトウェアについて 127

ホットプラグ対応コンポーネントとホットスワップ対応コンポーネントについ て 129

ファントレーおよび電源装置 130

ディスクドライブ 131

PCIカード 131

PCI ホットプラグユーザーインタフェース 132

関連情報 133

Multipathing ソフトウェアについて 133

関連情報 134

Sun Management Center ソフトウェアについて 134

関連情報 134

Sun Remote System Control ソフトウェアについて 135

RSC の機能 135 RSC ユーザーインタフェース 136 関連情報 136 Volume Management Center ソフトウェアについて 136 Multipathing ソフトウェア 137 RAID の概念 137 ディスクの連結 138 RAID 1: ディスクのミラー化 138 RAID 0: ディスクのストライプ化 139 RAID 5: ディスクのパリティー付きストライプ化 139 ホットスペア (ホットリロケーション) 139 Solaris luxadm ユーティリティーについて 140 関連情報 140 Sun Cluster ソフトウェアについて 141

- 8. LED 状態インジケータ 143 CPU/メモリースロットの LED について 144 PCI スロットの LED について 145 電源装置の LED について 147 ファントレーの LED について 148 ディスクドライブの LED について 149 Gigabit Ethernet の LED について 151
- 9. リムーバブルメディア記憶装置の使用 153
 DVD-ROM ドライブについて 154
 CD または DVD のドライブへの挿入方法 154
 作業手順 154
 次の作業 155
 ソフトウェアコマンドによる CD または DVD の取り出し方法 156

- 準備作業 156
- 作業手順 156
- 次の作業 157
- 手動での CD または DVD の取り出し方法 157
 - 準備作業 157
 - 作業手順 157
 - 次の作業 158
- 非常時の CD または DVD の取り出し方法 159
 - 準備作業 159
 - 作業手順 159
 - 次の作業 160
- CD または DVD のクリーニング方法 160
 - 準備作業 160
 - 作業手順 161
 - 次の作業 161
- テープドライブおよびテープカートリッジについて 162 テープカートリッジの取り扱いと保管 162
 - 温度の調整 162
- テープカートリッジの挿入方法 163
 - 作業手順 163
 - 次の作業 163
- テープカートリッジの取り出し方法 164
 - 準備作業 164
 - 作業手順 164
 - 次の作業 165
- テープドライブの制御方法 165
 - 作業手順 165
- テープドライブのクリーニング方法 165

準備作業 165

作業手順 165

- A. コネクタのピン配列 167
 - シリアルポート A および B コネクタの関連情報 168

シリアルポートコネクタ図 168

- シリアルポートの信号 168
- USB コネクタの関連情報 169

USB コネクタ図 169

USB コネクタの信号 169

より対線 Ethernet コネクタの関連情報 170

TPE コネクタ図 170

TPE コネクタの信号 170

システムコントローラ Ethernet コネクタの関連情報 171

システムコントローラ Ethernet コネクタ図 171

システムコントローラ Ethernet コネクタの信号 171

- システムコントローラシリアルコネクタの関連情報 172 システムコントローラシリアルコネクタ図 172 システムコントローラシリアルコネクタの信号 172
- B. システム仕様 173
 - 物理仕様の関連情報 174
 - 電気仕様の関連情報 174
 - 環境要件の関連情報 175
 - 適合規格仕様の関連情報 176
 - 必要スペースおよび保守用スペースの関連情報 176

索引 179

Regulatory Compliance Statements

Sun の製品には、次の適合規制条件のクラスが明記されています。

- 米連邦通信委員会 (FCC) アメリカ合衆国
- カナダ政府通産省デジタル機器工業規格 (ICES-003) カナダ
- 情報処理装置等電波障害自主規制協議会 (VCCI) 日本
- 台湾経済部標準検験局 (BSMI) 台湾

本装置を設置する前に、装置に記載されているマークに従って、該当する節をよくお読みください。

FCC Class A Notice

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

- 1. This device may not cause harmful interference.
- 2. This device must accept any interference received, including interference that may cause undesired operation.

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy, and if it is not installed and used in accordance with the instruction manual, it may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case the user will be required to correct the interference at his own expense.

Modifications: Any modifications made to this device that are not approved by Sun Microsystems, Inc. may void the authority granted to the user by the FCC to operate this equipment.

FCC Class B Notice

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

- 1. This device may not cause harmful interference.
- 2. This device must accept any interference received, including interference that may cause undesired operation.

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/television technician for help.

Modifications: Any modifications made to this device that are not approved by Sun Microsystems, Inc. may void the authority granted to the user by the FCC to operate this equipment.

ICES-003 Class A Notice - Avis NMB-003, Classe A

This Class A digital apparatus complies with Canadian ICES-003. Cet appareil numérique de la classe A est conforme à la norme NMB-003 du Canada.

ICES-003 Class B Notice - Avis NMB-003, Classe B

This Class B digital apparatus complies with Canadian ICES-003. Cet appareil numérique de la classe B est conforme à la norme NMB-003 du Canada.

VCCI 基準について

クラス A VCCI 基準について

クラスAVCCIの表示があるワークステーションおよびオプション製品は、クラスA情報技術装置です。これらの製品には、下記の項目が該当します。

この装置は、情報処理装置等電波障害自主規制協議会(VCCI)の基準に基づくクラス A情報技術装置です。この装置を家庭環境で使用すると電波妨害を引き起こすことが あります。この場合には使用者が適切な対策を講ずるよう要求されることがあります。

クラス B VCCI 基準について

クラス B VCCI の表示 🚾 があるワークステーションおよびオプション製品は、クラ ス B 情報技術装置です。これらの製品には、下記の項目が該当します。

この装置は、情報処理装置等電波障害自主規制協議会(VCCI)の基準に基づくクラス B情報技術装置です。この装置は、家庭環境で使用することを目的としていますが、 この装置がラジオやテレビジョン受信機に近接して使用されると、受信障害を引き起 こすことがあります。取扱説明書に従って正しい取り扱いをしてください。

BSMI Class A Notice

The following statement is applicable to products shipped to Taiwan and marked as Class A on the product compliance label.

CCC Class A Notice

The following statement is applicable to products shipped to China and marked with "Class A" on the product's compliance label.

以下声明适用于运往中国且其认证标志上注有 "Class A" 字样的产品。

声明 此为A级产品,在生活环境中,该产品可能会造成无线电干扰。 在这种情况下,可能需要用户对其干扰采取切实可行的措施。

GOST-R Certification Mark

Declaration of Conformity

Compliance Model Number:	
Product Family Name:	

890 Sun Fire V890

EMC

European Union

EN61000-4-6

EN61000-4-11

This equipment complies with the following requirements of the EMC Directive 89/336/EEC: As Telecommunication Network Equipment (TNE) in both Telecom Centers and Other Than Telecom Centers per (as applicable): EN300-386 V.1.3.1 (09-2001) Required Limits: EN55022/CISPR22 Class A Pass EN61000-3-2 EN61000-3-3 Pass EN61000-4-2 6 kV (Direct), 8 kV (Air) EN61000-4-3 3 V/m 80-1000MHz, 10 V/m 800-960 MHz and 1400-2000 MHz EN61000-4-4 1 kV AC and DC Power Lines, 0.5 kV Signal Lines, EN61000-4-5 2 kV AC Line-Gnd, 1 kV AC Line-Line and Outdoor Signal Lines, 0.5 kV Indoor Signal Lines > 10m.

As Information Technology Equipment (ITE) Class A per (as applicable):

3 V

Pass

87 1 1	
EN55022:1998/CISPR22:1997 EN55024:1998 Required Limits:	Class A
EN61000-4-2	4 kV (Direct), 8 kV (Air)
EN61000-4-3	3 V/m
EN61000-4-4	1 kV AC Power Lines, 0.5 kV Signal and DC Power Lines
EN61000-4-5	1 kV AC Line-Line and Outdoor Signal Lines, 2 kV AC Line-Gnd, 0.5 kV DC Power Lines
EN61000-4-6	3 V
EN61000-4-8	1 A/m
EN61000-4-11	Pass
EN61000-3-2:1995 + A1, A2, A14	Pass
EN61000-3-3:1995	Pass

Safety: This equipment complies with the following requirements of the Low Voltage Directive 73/23/EEC: EC Type Examination Certificates:

JI	
EN 60950-1:2001	TÜV Rheinland Certificate No. S72040123
IEC 60950-1:2001	CB Scheme Certificate Noon file-
Evaluated to all CB Countries	
UL 60950-1, First Edition; CSA C22.2 No. 60950-00	File: E113363
FDA DHHS Accession Number (Monitor Only)	

Supplementary Information: This product was tested and complies with all the requirements for the CE Mark .

Burt Hemp

Burt Hemp Manager, Product Compliance July 5, 2004

Sun Microsystems, Inc. One Network Circle, UBUR03-213 Burlington, MA 01803 USA

Tel: 781-442-2118 Fax: 781-442-1673 /S/

Donald Cameron Program Manager July 5, 2004

Sun Microsystems Scotland, Limited Blackness Road, Phase I, Main Bldg Springfield, EH49 7LR Scotland, United Kingdom

Tel: +44 1 506 672 539 Fax: +44 1 506 670 011

安全のための注意事項

作業を開始する前に、この章を必ずお読みください。以下 では、Sun Microsystems, Inc. の製品を安全に取り扱って いただくための注意事項について説明しています。

取り扱いの注意

システムを設置する場合には、次のことに注意してください。

- 装置上に記載されている注意事項や取り扱い方法に 従ってください。
- ご使用の電源の電圧や周波数が、装置の電気定格表示 と一致していることを確認してください。
- 装置の開口部に物を差し込まないでください。内部は 高電圧になります。金属など導体を入れるとショート して、発火、感電、装置の損傷の原因となることがあ ります。

記号について

このマニュアルでは、以下の記号を使用しています。

注意 – 事故や装置故障が発生する危険性があります。指示に従ってください。

注意 – 表面は高温です。触れないでください。火傷をする危険性があります。

注意 - 高電圧です。感電や怪我を防ぐため、 説明に従ってください。 装置の電源スイッチの種類に応じて、以下のいずれかの記 号を使用しています。

装置の改造

装置に対して機械的または電気的な改造をしないでください。Sun Microsystems, Inc. は、改造された Sun 製品に対して一切の責任を負いません。

Sun 製品の設置場所

注意 – Sun 製品の開口部を塞いだり覆ったり しないでください。また、Sun 製品の近くに放 熱機器を置かないでください。このガイドライ ンに従わないと、Sun 製品が過熱し、信頼性が 損われる可能性があります。

騒音の水準

ドイツ規格協会 (DIN) 45635 第 1000 部で定められている要 件に従って、作業環境の騒音の水準は 70 db(A) 未満で す。

SELV 対応

I/O 接続の安全状態は、SELV (Safety Extra Low Voltage) の条件を満たしています。

電源コードの接続

注意 – Sun 製品は、アースされた中性線 (DC 電源の製品ではアースされた帰線)を持つ電力 系を使用する設計になっています。それ以外の 電源に Sun 製品を接続すると、感電や故障の 原因になります。建物に供給されている電力の 種類がわからない場合は、施設の管理者または 有資格の技術者に問い合わせてください。

注意 - 必ずしもすべての電源コードの定格電 流が同じではありません。装置に付属の電源 コードを他の製品や用途に使用しないでくださ い。家庭用の延長コードには過負荷保護がない ため、コンピュータ用として使用できません。 家庭用延長コードを Sun 製品に接続しないで ください。

注意 - 添付の電源コードを他の装置や用途に 使用しない 添付の電源コードは本装置に接続し、使用する ことを目的として設計され、その安全性が確認 されているものです。決して他の装置や用途に

使用しないでください。火災や感電の原因とな る恐れがあります。

次の警告は、スタンバイ電源スイッチのある装置にのみ適 用されます。

注意 - この製品の電源スイッチは、スタンバ イ型の装置としてのみ機能します。システムの 電源を完全に切るためには、電源プラグを抜い てください。設置場所の近くのアースされた電 源コンセントに電源プラグを差し込んでくださ い。システムシャーシから電源装置が取り外さ れた状態で、電源コードを接続しないでくださ い。 以下の注意事項は、複数の電源コードを使用する装置にの み適用されます。

注意 - 複数の電源コードを使用する製品の場合、システムの電源供給を完全に停止するには、すべての電源コードを外す必要があります。

電池に関する警告

 注意 - 電池は、誤操作や不適切な交換により 爆発する危険があります。交換可能な電池を備 えたシステムでは、製品のサービスマニュアル の指示に従って、必ず同じメーカーの同じ種類 の電池か、メーカーが推奨する同等の種類の電 池と交換してください。電池の分解やシステム 外での充電はしないでください。電池を火の中 に投入しないでください。電池を火の中 に投入しないでください。の分の際には、メー カーの指示および各地域で定められている法規 に従って適切に処理してください。Sun の CPU ボード上にあるリアルタイムクロックに は、リチウム電池が埋め込まれています。ユー ザー自身でこのリチウム電池を交換することは できません。

システム本体のカバー

カード、メモリー、内部記憶装置を追加するためには、 Sunのシステム本体のカバーを取り外す必要があります。 作業後は、必ずカバーをもとどおりに取り付けてから、電 源を入れてください。

注意 – カバーを閉じてから電源を入れてくだ さい。Sun 製品をカバーを開けたまま使用する のは危険です。傷害や故障の原因になります。

ラックシステムに関する警告

次の警告は、ラックおよびラック搭載型のシステムに適用 されます。

注意 – 安全性を考慮して、装置は常に下から 順に取り付けてください。まず、ラックのもっ とも低い位置に装置を取り付けてから、その上 に順にシステムを取り付けていきます。

注意 – 装置の取り付け作業中にラックが倒れ ないように、必ずラックの転倒防止バーを使用 してください。

注意 – ラック内の動作時の温度が過度に上昇 することを防ぐため、最高温度が製品の定格周 囲温度を超えないようにしてください。

注意 – 通気の減少によって動作時の温度が過 度に上昇することを防ぐため、装置が安全に動 作するために必要な通気量を確保する必要があ ります。

レーザー規定適合について

Sun 製品は、レーザー規定クラス1に準拠するレーザー技術を使用しています。

Class 1 Laser Product Luokan 1 Laserlaite Klasse 1 Laser Apparat Laser Klasse 1

CD および DVD 装置

以下の注意事項は、CD、DVD、およびその他の光磁気装 置に適用されます。

注意 – このマニュアルに記載されていない操 作を行うと、有害な電波や光線が漏れる可能性 があります。

はじめに

このマニュアルでは、Sun Fire™ V890 サーバーの設定および運用方法について説明 します。Sun Fire V890 サーバーの機能と別売品、システムの設定と設置、ハード ウェア構成、システム管理に関する疑問点を調べる際に、このマニュアルを利用して ください。

このマニュアルの構成は、Sun Fire V890 サーバーの設置、構成、および使用にあ たって発生する可能性がある疑問点をカテゴリ別に分類して、各疑問点の対処方法を 解説する形式になっています。各節の見出しには、疑問点と対処方法の種別を示す次 の語句が含まれ、これを元に必要な情報を検索できるようになっています。

- ■特定の作業の具体的な方法を知りたい場合は、「~方法」の節を参照します。
- 特定のトピックに関する詳細な情報を知りたい場合は、「~について」の節を参照します。
- 特定のトピックの関連情報が記載されたマニュアルなどを知りたい場合は、「~の関連情報」の節を参照します。

読む必要がある記載情報の範囲は、状況に応じて判断してください。

目次、または各章の先頭にある作業リストを利用すると、特定のトピックおよび作業 手順をすばやく検索できます。各節の情報は短いものですが、ほかの節と相互に関連 しているので、必要の度合いに応じてほかの節を参照して十分な情報を得られる構造 になっています。たとえば、手動による装置の再構成が必要な状況で、すでにこの作 業に関する知識がある場合は、「手動による装置の再構成方法」の節を参照して、そ の手順に従います。しかし、この作業を行う前に基本的な情報が必要な場合は、まず 「手動による装置の再構成について」の節を参照してください。

UNIX コマンド

このマニュアルには、システムの停止、システムの起動、およびデバイスの構成など に使用する基本的な UNIX® コマンドと操作手順に関する説明は含まれていない可能 性があります。これらについては、以下を参照してください。

- 『Sun 周辺機器 使用の手引き』
- SolarisTM オペレーティングシステムに関するマニュアル

書体と記号について

書体または記号	意味	例
AaBbCc123	コマンド名、ファイル名、ディレ クトリ名、画面上のコンピュータ 出力、コード例。	.login ファイルを編集します。 ls -a を実行します。 % You have mail.
AaBbCc123	ユーザーが入力する文字を、画面 上のコンピュータ出力と区別して 表します。	% su Password:
AaBbCc123	コマンド行の可変部分。実際の名 前や値と置き換えてください。	rm filename と入力します。
ſ J	参照する書名を示します。	『Solaris ユーザーマニュアル』
ſJ	参照する章、節、または、 強調する語を示します。	第6章「データの管理」を参照。 この操作ができるのは「スーパーユー ザー」だけです。
\	枠で囲まれたコード例で、テキス トがページ行幅を超える場合に、 継続を示します。	<pre>% grep `^#define \ XV_VERSION_STRING'</pre>

シェルプロンプトについて

シェル	プロンプト	
UNIX の C シェル	machine_name%	
UNIX の Bourne シェルと Korn シェル	\$	
スーパーユーザー (シェルの種類を問わない)	#	

Sun 以外の Web サイト

このマニュアルで紹介する Sun 以外の Web サイトが使用可能かどうかについては、 Sun は責任を負いません。このようなサイトやリソース上、またはこれらを経由して 利用できるコンテンツ、広告、製品、またはその他の資料についても、Sun は保証し ておらず、法的責任を負いません。また、このようなサイトやリソース上、またはこ れらを経由して利用できるコンテンツ、商品、サービスの使用や、それらへの依存に 関連して発生した実際の損害や損失、またはその申し立てについても、Sun は一切の 責任を負いません。

関連マニュアル

用途	タイトル
インストール	『Sun Fire V890 サーバーラックマウントの手引き』
	『Sun Fire V490/V890 CPU/メモリーモジュール構成マニュアル』
	『Solaris インストールの手引き』
	『Solaris インストールガイド (SPARC 版)』
	『Solaris ご使用にあたって (SPARC 版)』
	『Solaris インストールガイド』
	『Solaris のインストール (上級編)』
保守	『Sun Fire V890 Server Service Manual』(英語版)

用途	タイトル
最新情報	『Sun Fire V890 サーバーご使用にあたって』 『Solaris ご使用にあたって』 『Solaris Sun ハードウェアマニュアル (補足)』
システム診断	『Sun Fire V890 Diagnostics and Troubleshooting Guide』(英語版) 『SunVTS ユーザーマニュアル』 『SunVTS テストリファレンスマニュアル』 『SunVTS リファレンスカード』
システム管理	『Sun Management Center ソフトウェアインストールガイド』 『Sun Management Center ソフトウェアユーザーマニュアル』 『Sun Management Center ワークグループサーバーのための追補 マニュアル』 『Sun Management Center ソフトウェアご使用にあたって』
システム管理	Solaris システム管理者用マニュアル 『特記事項: eri FastEthernet デバイスドライバ』 『特記事項: Sun GigabitEthernet デバイスドライバ』 『特記事項: luxadm ソフトウェア』 『Sun Fire V890 Dynamic Reconfiguration User's Guide』(英語版) 『OpenBoot 4.x Command Reference Manual』(英語版) 『OpenBoot PROM Enhancements for Diagnostic Operation』(英語版) 『OpenBoot 4.x Quick Reference』(英語版)
遠隔システムの 監視および制御	『Sun Remote System Control (RSC) ユーザーマニュアル』

Sun のオンラインマニュアル

各言語対応版を含む Sun の各種マニュアルは、次の URL から表示、印刷、または購入できます。

http://www.sun.com/documentation

Sun の技術サポート

このマニュアルに記載されていない技術的な問い合わせについては、次の URL にア クセスしてください。

http://www.sun.com/service/contacting

コメントをお寄せください

マニュアルの品質改善のため、お客様からのご意見およびご要望をお待ちしておりま す。コメントは下記よりお送りください。

http://www.sun.com/hwdocs/feedback

ご意見をお寄せいただく際には、下記のタイトルと Part No. を記載してください。

『Sun Fire V890 サーバーオーナーマニュアル』、Part No. 817-6667-12

第1章

システムの概要

この章では、Sun Fire V890 サーバーの概要とその機能の一部について説明します。 この章の内容は次のとおりです。

- 1ページの「Sun Fire V890 サーバーについて」
- 7ページの「正面パネルの機能」
- 9 ページの「背面パネルの機能」
- 11ページの「状態およびコントロールパネルについて」
- 15ページの「信頼性、可用性、保守性機能について」

Sun Fire V890 サーバーについて

Sun Fire V890 サーバーは、最大 8 つの Sun UltraSPARC[®] プロセッサをサポートする、高性能でメモリー共有型の対称型多重処理サーバーシステムです。UltraSPARC には、1 つの物理プロセッサで 2 つのスレッドを実行する、チップマルチスレッディ ング (CMT) が組み込まれています。このプロセッサは、マルチメディア、ネット ワーキング、暗号化、および JavaTM の処理を高速化する SPARC V-9 命令セットアー キテクチャー (ISA) と VISTM (Visual Instruction Set) 拡張機能を実装しています。

物理的な格納装置

システムは、移動可能なタワー型格納装置に収められています。寸法は、高さ 71.4 cm (28.1 インチ)、幅 48.0 cm (18.9 インチ)、奥行 83.6 cm (32.9 インチ) となります。 システムの最大重量は、130.6 kg (288 ポンド)です。

処理能力

CPU/メモリーボードは4枚まで搭載できます。各ボードには、次の部品が搭載されています。

- 2 つのデュアルスレッド UltraSPARC プロセッサ
- ローカル SRAM (Static Random Access Memory) 外部キャッシュメモリー
- 16のメモリーモジュール用スロット(プロセッサごとに8つ)

フル構成されたシステムでは、合計 8 つの UltraSPARC プロセッサが、4 枚の CPU/ メモリーボードに搭載されます。詳細は、48 ページの「CPU/メモリーボードについ て」を参照してください。

システムのメモリー

システムの主記憶には、75 MHz のクロック周波数で動作する、最大 64 枚の DIMM (Dual Inline Memory Module) を使用します。さまざまな容量の DIMM がサポート されています。詳細は、『Sun Fire V490/V890 CPU/メモリーモジュール構成マニュアル』を参照してください。このマニュアルは、次の URL から入手できます。

http://www.sun.com/products-n-solutions/hardware/docs/Servers/

システム全体のメモリーは、システム内のすべてのプロセッサで共有されます。最小 値および最大値は、DIMM モジュールの容量によって異なります。システムメモ リーの詳細は、51 ページの「メモリーモジュールについて」を参照してください。

システム 1/0

システム I/O は、独立した 4 つの PCI (Peripheral Component Interconnect) バスで 処理されます。この業界標準のバスで、PCI インタフェースカード用の 9 スロットに 加え、システムボード上のすべての I/O コントローラをサポートします。9 つの PCI スロットのうち、7 スロットは 33 MHz のクロックレートで動作し、2 スロットは 33 MHz または 66 MHz で動作します。PCI スロットはすべて、PCI Local Bus Specification Rev. 2.1 に準拠し、PCI ホットプラグ操作をサポートします。Solaris オ ペレーティングシステム (Solaris OS) 対応の適切なソフトウェアドライバがあり、そ のドライバが PCI ホットプラグ操作をサポートしていれば、どの標準 PCI カードで もホットプラグできます。詳細は、56 ページの「PCI カードおよびバスについて」 を参照してください。

FC-AL 記憶装置アレイ

内蔵ディスク記憶装置としては、ホットプラグが可能なデュアルポートの FC-AL (Fibre Channel-Arbitrated Loop) ディスクドライブを 12 基まで搭載できます。基本 システムには、最大 6 基のディスクドライブを搭載する FC-AL ディスクバックプ レーンが 1 つ含まれます。オプションの拡張バックプレーンを追加すると、さらに 6 基のディスクドライブを搭載できます。

完全バックプレーン構成では、どちらのバックプレーンも、各 FC-AL ディスクドラ イブへのデュアルループアクセスを提供します。1 つのループは、システムのマザー ボードに取り付けられているオンボードの FC-AL コントローラによって制御されま す。もう1 つのループは、PCI FC-AL ホストアダプタカード (システムのオプション として入手可能) によって制御されます。このデュアルループ構成によって、2 つの 別々のコントローラを介して内蔵記憶装置に同時にアクセスすることができます。こ のため、使用可能な I/O 帯域幅が、シングルループの毎秒 100M バイトに対して、 毎秒 200M バイトに増加します。

また、デュアルループ構成を Multipathing ソフトウェアと組み合わせると、ハード ウェアの冗長性とフェイルオーバー機能を拡張できます。コンポーネントの障害に よって1つのループにアクセスできなくなった場合、ソフトウェアは自動的にデータ のトラフィックを2番目のループに切り替えて、システムの可用性を維持します。シ ステムの内蔵ディスクアレイの詳細は、77ページの「大容量記憶装置サブシステム の構成」を参照してください。

分割バックプレーン構成では、FC-AL サブシステムを使用できます。詳細は、84 ページの「完全バックプレーン構成および分割バックプレーン構成」および 『Sun Fire V890 Server Service Manual』の付録「Split Backplane Configurations」 を参照してください。

シングルチャネルまたはマルチチャネルの PCI ホストアダプタカードを取り付け、 適切なシステムソフトウェアをインストールすることで、外部マルチディスク記憶装 置サブシステムおよび RAID (Redundant Array of Independent Disks) 記憶装置アレ イをサポートできます。Solaris OS には、SCSI、FC-AL、およびその他の形式の装置 をサポートするソフトウェアドライバが含まれています。

その他の周辺装置

Sun Fire V890 サーバーの正面パネルには、装着ベイが 3 つあります。ベイの 1 つに は、すべてのシステム構成で標準となる、IDE DVD-ROM ドライブを搭載します。 ほかの 2 つのベイには、別途注文する必要のある、オプションの取り外し可能なワイ ド SCSI テープ装置を搭載します。オプションのテープドライブには、別途注文する 必要のある、SCSI ケーブルおよび SCSI アダプタカードも必要です。金属製の仕切板 を取り外すことによって、2 つの SCSI 装置のベイを 1 つのフルハイトのベイに簡単 に変更できます。詳細は、68 ページの「リムーバブルメディア装置について」を参 照してください。

Ethernet インタフェース

システムは、Gigabit Ethernet と Fast Ethernet インタフェースの2種類のオンボード Ethernet インタフェースを1つずつ備えています。Gigabit Ethernet インタフェースは、1000メガビット/秒 (Mbps) で動作します。Fast Ethernet インタフェースは、10 Mbps または 100 Mbps での動作が可能で、リンク先 (接続相手) と自動的にネゴシエーションを行なって、動作のコモンモードを選択します。

適切な PCI インタフェースカードを取り付けると、Ethernet インタフェースを追加 したり、その他のネットワークタイプに接続できます。複数のネットワークインタ フェースを Multipathing ソフトウェアと組み合わせると、ハードウェアの冗長性と フェイルオーバー機能を実現できます。1 つのインタフェースに障害が発生すると、 ソフトウェアは自動的にすべてのネットワークトラフィックを代替インタフェースに 切り替えて、ネットワークの可用性を維持します。ネットワーク接続の詳細は、91 ページの「ネットワークインタフェースの構成」を参照してください。

シリアルポートおよびシステムコンソール

Sun Fire V890 サーバーは、システムの背面パネルにある1つの共有 DB-25 コネクタ を介して使用できる、2つのシリアル通信ポートを装備しています。一次ポートは同 期通信および非同期通信の両方に対応しますが、二次ポートは非同期通信だけに対応 します。二次シリアルポートを使用する場合には、オプションのシリアルポートスプ リッタケーブルが必要です。詳細は、68 ページの「シリアルポートについて」を参 照してください。

背面パネルには、2 つの USB (Universal Serial Bus) ポートも装備され、モデム、プ リンタ、スキャナ、デジタルカメラ、Sun Type 6 USB キーボード、マウスなどの USB 周辺装置を接続できます。USB ポートは等時モードと非同期モードの両方をサ ポートし、1.5 Mbps および 12 Mbps でのデータ転送が可能です。詳細は、69 ページ の「USB ポートについて」を参照してください。

ローカルのシステムコンソール装置は、標準の ASCII 文字端末またはローカルグラ フィックスコンソールのどちらでもかまいません。ASCII 端末はシステムの2つのシ リアルポートのうちの1つに接続しますが、ローカルグラフィックスコンソールの場 合は、PCI グラフィックスカード、モニター、USB キーボード、およびマウスを取り 付ける必要があります。また、Ethernet に接続している遠隔ワークステーションか ら、または RSC (Remote System Control) コンソールからシステムを管理することも できます。

Remote System Control ソフトウェアを使用した 監視と管理

Sun RSC (Remote System Control) はセキュリティー保護されたサーバー管理ツール で、シリアルポートまたはネットワーク接続を経由して、サーバーを監視および制御 できます。RSC を使用すると、地理的に分散しているシステムや、物理的にアクセ ス不可能なシステムを遠隔で管理できます。RSC ソフトウェアは、すべての Sun Fire V890 サーバーに組み込まれているシステムコントローラカードと連係して 動作します。システムコントローラカードは、ホストサーバーから独立して、システ ムの電源装置の 5 V のスタンバイ電力で動作します。このハードウェアとソフトウェ アを併用することによって、RSC は、サーバーのオペレーティングシステムがオフ ラインになった場合、またはサーバーの電源が切断された場合でも機能し続ける、 「停電」管理ツールとして動作します。

RSC ソフトウェアを使用すると、次のことが可能になります。

- システムコントローラカードのシリアルポートおよび Ethernet ポートを経由して、Solaris および OpenBoot[™] PROM コンソール機能に遠隔でアクセス
- 遠隔コンソールからの電源投入時自己診断 (POST) および OpenBoot 診断の実行
- サーバーがオフラインの場合も、ファン、温度、電源装置の状態など、サーバーの環境条件を遠隔で監視
- 要求に応じて、遠隔サーバーの再起動、電源投入、電源切断を実行

詳細は、60 ページの「システムコントローラカードおよび RSC ソフトウェアについ て」および 135 ページの「Sun Remote System Control ソフトウェアについて」を参 照してください。

電源

基本システムには、内部ファンを搭載した、1629 W 出力、200/240 VAC 入力の電源 装置が3つ取り付けられています。2つの電源装置によって、最大構成のシステムに も十分な電力が供給されます。3つ目の電源装置はN+1の冗長性を提供します。こ れによって、電源装置の1つに問題が発生した場合でも、システムは動作を続けるこ とができます。冗長構成の電源装置はホットスワップに対応しているため、オペレー ティングシステムを停止したりシステム電源を切断しなくても、障害が発生した電源 装置の取り外しおよび交換ができます。電源装置の詳細は、62ページの「電源装置 について」を参照してください。

ラック搭載オプション

Sun Fire V890 サーバーは、EIA (Electronic Industries Association:米国電子工業会) 310 準拠の 19 インチ (48.3 cm) ラックに設置できます。ラックには、縦方向に 17 ラックユニット (75.6 cm、29.8 インチ) 以上の搭載スペースがあり、十分な耐荷重能 力を備えたものを使用してください。オプションのラックマウントキットを使用する と、奥行 81.3 cm (32 インチ) から 91.4 cm (36 インチ) のラックにサーバーを設置で きます。サーバーのラックへの搭載については、ラックマウントキットの説明書を参 照してください。

信頼性、可用性、保守性機能

システムの信頼性、可用性、保守性 (RAS) が著しく強化されています。RAS 機能の 詳細は、15 ページの「信頼性、可用性、保守性機能について」を参照してください。

正面パネルの機能

次の図に、正面ドアを開けたときに正面パネルから取り扱うことのできるシステム機能を示します。

正面パネルのコントロールおよびインジケータの詳細は、11ページの「状態および コントロールパネルについて」を参照してください。 システムの内蔵ディスクドライブを扱う場合には、システム正面の大きなヒンジ付き のドアを開きます。セキュリティーを強化するため、正面ドアにはキーロックが付い ています。キーが水平位置の場合、ドアはロック解除されています。ドアを閉める前 には、キーが水平位置になっていることを確かめてください。ディスクドライブが不 正に取り扱われないように、キーを反時計回りに 90 度回してドアをロックしてか ら、キーを取り外します。

注 – 同じキーで、正面パネルのキースイッチを操作し、正面および側面ドアをロックします。
背面パネルの機能

次の図に、背面パネルから取り扱うことのできるシステム機能を示します。

3 つの電源装置は、システムの背面パネルから取り扱うことができます。各電源装置の3 つの LED インジケータに、電源および障害の状態が表示されます。詳細は、147 ページの「電源装置の LED について」を参照してください。

アース用ねじは、中央の電源装置のすぐ上にあります。Sun Fire V890 サーバーを ラックに設置する場合、またはサーバーを外部記憶装置アレイに接続する場合は、 サーバーのアース用ねじと、ラック格納装置または外部記憶装置アレイのアース用ね じとの間に、適切なアース用ストラップを接続してください。アース用ストラップ は、システムと周辺装置の間のアースループを防ぎ、データが損失しないよう保護し ます。

状態およびコントロールパネルについて

システムの状態およびコントロールパネルには、いくつかの LED 状態インジケー タ、電源ボタン、およびセキュリティーキースイッチがあります。次の図に、状態お よびコントロールパネルを示します。

LED 状態インジケータ

各 LED 状態インジケータは、システムの一般的な状態を表示し、システムの問題を ユーザーに警告します。またこのインジケータによって、システム障害の発生場所を 確認できます

- 状態およびコントロールパネルの上部にある3つの一般的な状態表示 LED に、シ ステムの状態のスナップショットを表示
- 電源ボタンおよびセキュリティーキースイッチの下にあるグラフィカルディスプレイに、障害の具体的な状態や発生場所を示す、補足のLEDアイコンを表示

一般的な状態表示 LED は、特定の障害 LED アイコンと連動して機能します。たとえ ば、ディスクサブシステムに障害があると、パネル上部のシステム障害 LED とその 下にあるグラフィカルディスプレイのディスク障害アイコンが点灯します。格納装置 内の障害 LED によって、障害の発生した装置の位置を特定できます。正面パネルの すべての LED には、システムの5Vのスタンバイ電源によって電力が供給されてい るため、システムが停止するような障害時にも、障害 LED は点灯し続けます。背面 パネル上および格納装置内の LED については、143 ページの「LED 状態インジケー タ」を参照してください。

システム起動時に、正面パネルの LED のオンとオフが交互に切り替えられ、各 LED が正しく機能していることが確認されます。その後、正面パネルの LED は、次の表 に示すように動作します。

名前	アイコン	説明
電源障害	Ø	システムが停止する恐れのある重大な電源サブシステムの 障害が検出されると、オレンジ色の LED が点灯します。こ の LED が点灯すると、システムの背面パネルにある1つ以 上の電源装置の LED が点灯することがあります。詳細は、 147 ページの「電源装置の LED について」を参照してくだ さい。
温度障害		システムが停止する恐れのある重大な温度障害(ファン障害 または適正温度を超えた状態)が検出されると、オレンジ色 のLEDが点灯します。障害がシステムの左右どちら側にあ るかを示すために、ディスプレイ内の温度障害LEDは2つ あります。ファン障害の場合は、システム内部にある障害 LEDが、障害の発生したファンアセンブリを示します。詳 細は、148ページの「ファントレーのLEDについて」を参 照してください。
左側注意	\Box	システムの左側にある内部コンポーネントで保守が必要に なると、オレンジ色の LED が点灯します。
右側注意	\bigcirc	システムの右側にある内部コンポーネントで保守が必要に なると、オレンジ色の LED が点灯します。

電源ボタン

システムの電源ボタンは、誤ってシステムの電源投入または切断を行わないように、 くぼんでいます。電源ボタンでシステムの電源投入または切断を行なったときの動作 は、セキュリティーキースイッチによって制御されます。

オペレーティングシステムが動作中の場合、電源ボタンを押してすぐ放すと、ソフト ウェアによるシステムの正常な停止が始まります。電源ボタンを5秒間押し続ける と、ハードウェアによる即時停止が行われます。

注意 – 可能なかぎり、正常な停止方法を使用してください。ハードウェアによる即 時停止を強制すると、ディスクドライブが破壊されたり、データが失われることがあ ります。ほかに手段がない場合にかぎり、この方法を使用してください。

セキュリティーキースイッチ

セキュリティーキースイッチには4つの位置があり、システムの電源投入モードを制 御して、権限のないユーザーがシステムの電源を切断したり、システムファームウェ アを再プログラミングすることを防ぎます。次の表に、各入力位置におけるキース イッチの働きを示します。

位置	アイコン	説明
標準		スイッチをこの位置に入れると、システムの電源ボタンによっ てシステムに電源を投入および切断できます。オペレーティン グシステムが動作中の場合、電源ボタンを押してすぐ放すと、 ソフトウェアによるシステムの正常な停止が始まります。電源 ボタンを5秒間押し続けると、ハードウェアによる即時電源切 断が行われます。
ロック		次の機能があります。
		 システムの電源ボタンを使用不可にして、権限のないユー ザーがシステムの電源を投入または切断することを防ぎま す。
		 キーボードの Stop-A コマンド、端末の Break キーコマンド、tip ウィンドウの~# コマンド、RSC の break コマンドを使用不可にして、ユーザーがシステム操作を中断してシステムの ok プロンプトにアクセスすることを防ぎます。
		 権限のないユーザーがシステムのフラッシュ PROM をプロ グラミングすることを防ぎます。
		通常の運用時には、このロック位置にスイッチを入れておくこ とをお勧めします。
診断		スイッチをこの位置に入れると、システムは保守モードになり、システムの起動時またはシステムのリセット時に、電源投入時自己診断 (POST) および OpenBoot 診断ソフトウェアが Sun 規定のレベルで実行されます。電源ボタンの機能は、キー スイッチが標準位置に入っているときと同じです。
強制切断	↺	スイッチをこの位置に入れると、システムの電源はただちに強 制切断され、5 V のスタンバイモードになります。また、シス テムの電源ボタンが使用不可になります。この設定は、AC 電 源の供給が中断された場合で、電源の回復後自動的にシステム を再起動したくないときに便利です。キースイッチがほかの位 置に入っていると、電源供給が中断される前にシステムが動作 していた場合は、電源の回復後自動的に再起動が行われます。
		また、スイッチを強制切断位置に入れると、RSC コンソールで のシステムの再起動を防ぐこともできます。ただし、システム コントローラカードは、システムの5Vのスタンバイ電源を使 用して動作し続けます。

信頼性、可用性、保守性機能について

信頼性、可用性、保守性 (RAS) は、システム設計に関する事項で、システムの連続 稼働性を高め、保守に必要な時間を最小限にします。信頼性とは、障害を発生させず にシステムを連続稼働し、データの完全性を維持する能力を意味します。可用性と は、システムがアクセス可能で使用可能な状態になっている時間の割合を意味しま す。保守性とは、システムに障害が発生してからサービスの復帰までに必要な時間を 意味します。信頼性、可用性、保守性の3つを実現することによって、システムの連 続稼働性を最大限に引き出すことが可能となります。

Sun Fire V890 は、高度な信頼性、可用性、保守性を実現するため、次の機能を備えています。

- ホットプラグ対応のディスクドライブおよび PCI カード
- N+1 の電源装置冗長性
- ホットスワップ対応の電源装置
- ホットスワップ対応の冗長ファントレー
- 環境監視機能と障害保護
- 自動システム回復 (ASR) 機能
- ハードウェアのウォッチドッグ機能
- RSC (Remote System Control)の遠隔「停電」管理機能
- 自動フェイルオーバー機能を備えた、ディスクおよびネットワークマルチパッシングのサポート
- デュアルループが可能な FC-AL 大容量記憶装置サブシステム
- RAID 0、1、0 + 1、1 + 0、5 記憶装置構成のサポート
- データの完全性を高める誤り訂正およびパリティーチェック
- 交換可能なすべての内部コンポーネントへの容易なアクセス性
- 見やすい LED 状態インジケータ
- 4 レベルのシステム診断

ホットプラグ対応のディスクドライブおよび PCI カード

Sun Fire V890 システムのハードウェアは、内蔵ディスクドライブおよび PCI カード の「ホットプラグ」をサポートするように設計されています。適切なソフトウェアの サポートにより、認定された保守作業員は、システムの動作中にこれらのコンポーネ ントの取り付けまたは取り外しを行うことができます。ホットプラグ技術によって次 のことが可能になり、システムの保守性と可用性が大幅に向上します。

- 記憶装置容量および I/O 能力を動的に増加させることで、作業負荷の増大に対応 し、システム性能を向上できる
- サービスを中断せずディスクドライブおよび PCI カードを交換できる

Solaris OS 対応の適切なソフトウェアドライバがあり、そのドライバが PCI ホットプ ラグ操作をサポートしていれば、認定された保守作業員はどの標準 PCI カードでも ホットプラグできます。また、カードは PCI Hot-Plug Specification Rev.1.1 対応で、 システムで Sun Fire V890 PCI ホットプラグ操作をサポートする Solaris 8 2/04 オペ レーティングシステムまたはそれ以降のリリースが動作している必要があります。

PCIのホットプラグ手順では、カードを取り外す前のシステムの準備と、PCIカード を取り付けたあとのオペレーティングシステムの再構成で、ソフトウェアコマンドを 使用する場合があります。PCIのホットプラグ手順の詳細は、129ページの「ホット プラグ対応コンポーネントとホットスワップ対応コンポーネントについて」を参照し てください。

注意 – デバイスドライバが PCI ホットプラグ操作をサポートしていることを確認す るまで、PCI カードのホットプラグを実行しないでください。システムにパニックが 発生する場合があります。PCI ホットプラグ操作をサポートする Sun の PCI カード およびデバイスドライバの一覧は、『Sun Fire V890 サーバーご使用にあたって』を 参照してください。

ホットプラグ対応のコンポーネントの詳細は、129ページの「ホットプラグ対応コン ポーネントとホットスワップ対応コンポーネントについて」を参照してください。

N+1 冗長電源装置

システムには3つの電源装置が取り付けられており、システムが機能するためには、 そのうちの2つが動作している必要があります。3つ目の電源装置はN+1の冗長性 を提供します。これによって、電源装置の1つに問題が発生した場合でも、システム は動作を続けることができます。

電源装置、冗長性、構成規則の詳細は、62 ページの「電源装置について」を参照し てください。

ホットスワップ対応の電源装置

冗長構成の電源装置は、「ホットスワップ」機能を提供します。オペレーティングシ ステムを停止しなくても、障害が発生した電源装置を取り外し、交換できます。電源 装置は、システムの背面から簡単に取り扱うことができます。システムのカバーを取 り外す必要はありません。

ホットスワップ対応の冗長ファントレー

基本システム構成には、システムを冷却する3つのファントレーアセンブリが2組装 備されています。3つのファントレーアセンブリの1組は主冷却機能を提供し、もう 1組は冷却機能の障害からシステムを保護するための冗長性を提供します。通常のシ ステム運用時は、主ファントレーだけが動作します。主ファントレーに障害が発生す ると、環境監視サブシステムが障害を検出して、自動的に適切な副ファントレーが動 作を開始します。

すべてのファントレーは、ホットスワップに対応します。認定された保守作業員は、 オペレーティングシステムを停止しなくても、障害が発生したファントレーを取り外 し、交換できます。詳細は、65ページの「ファントレーについて」を参照してくだ さい。

環境の監視および制御

Sun Fire V890 システムは、環境監視サブシステム機能によって、次の問題に対応できるように設計されています。

- 極端な低温および高温
- システム内の通気の不足
- 電源装置の障害

監視および制御機能は、オペレーティングシステムレベルのほかに、システムのフ ラッシュ PROM ファームウェアにもあります。そのため、システムが停止した場 合、または起動できない場合でも、監視機能は動作し続けることができます。

環境監視サブシステムは、業界標準の I²C バスを使用します。I²C バスは単純な 2 線 式のシリアルバスで、システム全体で使用され、これによって、温度センサー、ファ ン、電源装置、状態表示 LED、および正面パネルのキースイッチの監視および制御 が可能になります。

温度の監視

温度センサーは、システム全体に配置され、システムの周囲の温度および各プロセッ サの温度を監視します。監視サブシステムは、各センサーに頻繁にポーリングし、サ ンプリングした温度を使用して、適正温度を超えた状態または適正温度より低い状態 に反応し報告します。

ハードウェアおよびソフトウェアは、格納装置内の温度が所定の「安全動作」範囲を 超えないようにしています。センサーが監視している温度が低温警告しきい値より低 くなるか、または高温警告しきい値を超える場合は、監視サブシステムソフトウェア はシステムコンソールに警告メッセージを表示します。温度が低温または高温限界し きい値を超える場合、ソフトウェアは危険メッセージを表示し、システムを適切に停止します。どちらの場合も、正面状態パネルのシステム障害および温度障害 LED が 点灯して、問題の種類を示します。

また、この温度による停止機能は、ハードウェア回路にフェイルセーフ手段として組 み込まれています。この機能によって、環境監視サブシステムがソフトウェアおよび ファームウェアレベルの両方で使用不可になった場合の、予備の過熱防止機能が提供 されます。

すべてのエラーメッセージおよび警告メッセージはシステムコンソール (接続されて いる場合)に表示され、/var/adm/messages ファイルに記録されます。正面パネル の一般障害 LED は、障害診断のため、システムの自動停止後も点灯し続けます。

ファンの監視

また、監視サブシステムは、ファンの障害を検出するように設計されています。シス テムには、合計5つのファンが取り付けられた3つの主ファントレーと、さらに3つ の補助(副)ファントレーが装備されているため、ファンの数は合わせて10になりま す。通常動作時は、5つの主ファンだけが動作します。ファンのいずれかに障害が発 生すると、監視サブシステムが障害を検出して、次のように対応します。

- エラーメッセージを生成し、/var/adm/messages ファイルに、そのメッセージ を記録
- 状態およびコントロールパネルにある、システム障害 LED および温度障害 LED を点灯
- システム内の該当するファン障害 LED を点灯
- 適切な副ファントレーを自動的に起動

電源サブシステムの監視

電源サブシステムも同じ方法で監視されます。監視サブシステムは、定期的に電源装置の状態レジスタをポーリングし、電源装置の OK ステータスを確認します。このとき、各電源装置の 3.3 V、5.0 V、12 V、48 V DC 出力の状態が示されます。

電源装置に障害が検出されると、エラーメッセージがシステムコンソールに表示され、/var/adm/messages ファイルに記録されます。また、状態およびコントロールパネルにあるシステム障害 LED および電源障害 LED が点灯します。各電源装置の背面にある LED は、障害の発生源と種類を示します。

環境監視サブシステムが生成するエラーメッセージの詳細は、『Sun Fire V890 Diagnostics and Troubleshooting Guide』を参照してください。このマニュアルは、 http://www.sun.com/documentation より入手できます。システム LED の詳細 は、第8章を参照してください。

自動システム回復

Sun Fire V890 システムは、自動システム回復 (Automatic System Recovery : ASR) と呼ばれる機能を提供します。重大ではないハードウェアの故障または障害による中 断のあと、ASR 機能は障害を特定し、オペレーティングシステムの自動復元を実行 します。ASR は、ハードウェアの問題によるオペレーティングシステムの停止を防 止しません。

詳細は、111ページの「自動システム回復について」を参照してください。

注 – システムの復元およびサーバーの可用性を向上させるために、Sun は、最近、 新しい標準 (デフォルト) OpenBoot ファームウェア構成を導入しました。この新しい 構成は Sun Fire V890 などのサーバーの動作に影響します。詳細は、『OpenBoot PROM Enhancements for Diagnostic Operation』を参照してください。このマニュ アルは、Sun Fire V890 Documentation CD に収録されています。

ハードウェアのウォッチドッグ機能

システムのハングアップ状態を検出し、それに対応するため、Sun Fire V890 システ ムは、ハードウェアのウォッチドック機能を備えています。これは、オペレーティン グシステムの動作中、継続的にリセットされるハードウェアタイマーです。システム がハングアップすると、オペレーティングシステムはタイマーをリセットできなくな ります。そのためタイマーが切れて、オペレータが介入する必要なく、システムが自 動的にリセットされます。

注 – ハードウェアのウォッチドッグ機能は、使用可能に設定しないと起動されません。

この機能を使用可能にするには、/etc/system ファイルを編集して、次のように入力する必要があります。

set watchdog_enable = 1

システムを再起動しないと、この変更は有効になりません。

Remote System Control ソフトウェア

RSC (Remote System Control) ソフトウェアはセキュリティー保護されたサーバー管 理ツールで、シリアルポートまたはネットワーク接続を経由して、サーバーを監視し て制御できます。RSC を使用すると、地理的に分散しているシステムや、物理的に アクセス不可能なシステムを遠隔で管理できます。RSC ソフトウェアは、Sun Fire V890 システムの I/O ボード上のシステムコントローラカードと連係して動作しま す。システムコントローラカードは、遠隔コンソールへのプライベート Ethernet 接 続と、ローカル文字端末へのシリアル接続を提供します。

RSC でサーバーを管理するように設定すると、RSC を使用して、診断テストの実 行、診断メッセージやエラーメッセージの表示、サーバーの再起動、および遠隔コン ソールの環境状態情報の表示を行うことができます。

RSC には、次の機能があります。

- 遠隔システムの監視およびエラー通知 (診断の出力を含む)
- 遠隔からの再起動、電源投入、および切断機能
- システム環境の状態の遠隔監視
- 遠隔コンソールからの診断テストの実行
- 適正温度を超えた状態、電源障害、重大なシステムエラー、またはシステムク
 ラッシュのイベント遠隔通知
- 詳細なイベントログへの遠隔アクセス
- Ethernet またはシリアルポートを介した遠隔コンソール機能

詳細は、60 ページの「システムコントローラカードおよび RSC ソフトウェアについ て」および 135 ページの「Sun Remote System Control ソフトウェアについて」を参 照してください。

デュアルループ対応の FC-AL 外部記憶装置サブシ ステム

システムのデュアルポートの FC-AL ディスクドライブおよびデュアルループ対応の バックプレーンを、オプションの PCI FC-AL ホストアダプタカードと組み合わせる と、耐障害性とデータの高可用性を実現できます。このデュアルループ構成によっ て、2 つの異なるデータパスから各ディスクドライブにアクセスできるため、次のこ とが可能になります。

- 処理能力の向上 データ転送速度が、シングルループ構成の毎秒 100M バイトに 比べて、毎秒最大 200M バイトに増加
- ハードウェアの冗長性 -1つのパスでコンポーネントの障害が発生しても、すべてのデータ転送を代替パスに切り替え可能

大容量記憶装置サブシステムの詳細は、第4章を参照してください。分割バックプレーン構成の詳細は、84ページの「完全バックプレーン構成および分割バックプレーン構成」および『Sun Fire V890 Server Service Manual』の付録「Split Backplane Configurations」を参照してください。

RAID 記憶装置構成のサポート

Solstice DiskSuite[™] などのソフトウェア RAID アプリケーションによって、さまざ まな RAID レベルでシステムディスク記憶装置を構成できます。構成のオプションと して、RAID 0 (ストライプ化)、RAID 1 (ミラー化)、RAID 0+1 (ストライプ化とミ ラー化)、RAID 1+0 (ミラー化とストライプ化)、RAID 5 (インタリーブパリティー付 きのストライプ化)構成があります。システムの価格、性能、信頼性、可用性などの 目的に合わせて、適切な RAID 構成を選択してください。また、1 つ以上のドライブ を「ホットスペア」として設定し、ディスクに障害が発生した場合に自動的にそのド ライブの代用とすることもできます。

詳細は、136 ページの「Volume Management Center ソフトウェアについて」を参照 してください。

エラー訂正とパリティーチェック

高度なデータ完全性を保証するために、システム内のすべてのデータパスで誤り訂正 符号 (ECC) を使用しています。プロセッサ、メモリー、PCI ブリッジチップ間で送 受信されるデータは、ECC によって完全に保護されます。

システムは、訂正可能な ECC エラーを報告および記録します。訂正可能な ECC エ ラーとは、128 ビットフィールド内のシングルビットエラーを意味します。この種の エラーは、検出後すぐに訂正されます。また、システムに実装されている ECC 機能 は、同じ 128 ビットフィールド内のダブルビットエラーおよび同じニブル (4 ビット) 内の複数ビットエラーも検出できます。

データの ECC 保護に加え、すべてのシステムアドレスバス上でパリティー保護機能 も提供されます。パリティー保護は、PCI バスと、UltraSPARC プロセッサの内部お よび外部キャッシュでも使用されます。

状態表示 LED

システムには見やすい発光ダイオード (LED) インジケータが装備されており、シス テムおよび各装置の状態を目視で確認できます。LED は、システムの正面パネル、 内蔵ディスクベイ、電源装置、ファントレーアセンブリ、各 CPU/メモリーボードと PCI スロットの横にあります。状態表示 LED によって、問題点を推測する手間が省 かれ、問題の診断が簡単になって、保守性が向上します。 正面パネルの状態表示 LED については、11 ページの「状態およびコントロールパネ ルについて」を参照してください。システム内部の LED の詳細は、第8章を参照し てください。

4 レベルのシステム診断

保守性と可用性を高めるため、システムには4レベルの診断テストが用意されていま す。

- 電源投入時自己診断 (POST)
- OpenBoot 診断
- SunVTSTM (Sun Validation Test Suite)
- Sun Management Center システム監視および管理ソフトウェア

POST および OpenBoot 診断はファームウェア常駐型の診断機能で、サーバーがオペ レーティングシステムを起動できない場合でも実行可能です。POST 診断は、コアシ ステムハードウェアの機能を検査します。OpenBoot 診断は、I/O サブシステムおよ び差し込み式カードのテストを中心に行います。

注 – システムの復元およびサーバーの可用性を向上させるために、Sun は、最近、 新しい標準 (デフォルト) OpenBoot ファームウェア構成を導入しました。この新しい 構成は Sun Fire V890 などのサーバーの動作に影響します。詳細は、『OpenBoot PROM Enhancements for Diagnostic Operation』を参照してください。このマニュ アルは、Sun Fire V890 Documentation CD に収録されています。

SunVTS、Sun Management Center などのソフトウェアは、オペレーティングシステムの起動後に実行できるアプリケーションレベルの診断機能で、障害追跡を補助します。SunVTS ソフトウェアは、外部インタフェースを含むシステムの総合的な診断を行います。また、SunVTS ソフトウェアを使用すると、ネットワーク接続を介して、または RSC コンソールから、遠隔テストを実行できます。Sun Management Center シフトウェアは、各種の継続的なシステム監視機能を提供します。Sun Management Center を使用すると、サーバーのシステムハードウェア状態とオペレーティングシステムの性能を監視できます。診断ツールの詳細は、『Sun Fire V890 Diagnostics and Troubleshooting Guide』を参照してください。このマニュアルは、http://www.sun.com/documentation より入手できます。

第2章

システムの設定

この章では、Sun Fire V890 サーバーを起動および実行するために必要な事項につい て説明します。ソフトウェアが関連する箇所では、必要な作業だけを説明します。詳 細は、紹介する適切なソフトウェアマニュアルを参照してください。

この章では、次の作業手順について説明します。

- 24 ページの「Sun Fire V890 サーバーの設置方法」
- 31 ページの「文字端末の接続方法」
- 33 ページの「ローカルグラフィックスコンソールの設定方法」
- 35ページの「システムの電源投入方法」
- 38 ページの「システムの電源切断方法」
- 40 ページの「再起動 (boot -r) の開始方法」
- 42 ページの「システムコンソールを RSC に切り替える方法」
- 45ページの「ローカルシステムコンソールの復元方法」

また、次の情報についても説明します。

- 23 ページの「出荷内容について」
- 30ページの「コンソールの設定について」

出荷内容について

Sun Fire V890 サーバーの標準機能は、出荷時に取り付けられています。モニターな どのオプションを注文した場合、それらはシステムから取り外した状態で出荷されま す。

適合するシステムソフトウェアをすべて収録した Solaris メディアキットおよび付属 のマニュアルも出荷内容に含まれます。注文どおりの内容がすべて届いていることを 確認してください。 出荷用の箱に物理的な損傷がないかどうかを確認してください。損傷があった場合は 運送代理店に連絡し、代理店の立ち会いのもとで開梱してください。梱包箱などを含 むすべての内容物はそのまま保管し、代理店による適正な検査を受けられる状態にし ておいてください。開梱の手順は、梱包箱の外側に印刷してあります。

Sun Fire V890 サーバーの設置方法

ここに示す手順の詳細は、関連するマニュアルまたはこのマニュアルの作業手順の節 を参照してください。各手順は、記載されている順に実行してください。

準備作業

Sun Fire V890 サーバーは汎用サーバーで、多様なアプリケーションに使用できます。実際の設定方法の詳細は、マシンの使用目的によって異なります。

ここではほとんどの場合に適応できるように、できるだけ一般的な設定の手順を説明 します。ただし、ここで説明する手順に沿って設定する場合でも、次の項目について は、状況に合わせて各自で個別に設定する必要があります。

■ マシンを動作させるネットワークに関する情報

ネットワークサポートの基本的な情報については、92 ページの「ネットワークイン タフェースについて」を参照してください。

■ システム内蔵記憶装置アレイの構成および使用方法

内蔵記憶装置アレイの構成オプションの基本的な情報については、77ページの「大容量記憶装置サブシステムの構成」を参照してください。

■ 読み込むソフトウェアの種類

ソフトウェアによっては (Solaris のメディアキット内のソフトウェアも含む)、ディ スク容量やディスクパーティションの設定に関して、一定の要件を満たす必要があり ます。各ソフトウェアに付属するマニュアルを参照して、要件を確認してください。

注 – Sun Fire V890 サーバーを設置する前に、『Sun Fire V890 サーバーご使用にあたって』を参照して、ご使用のシステムのソフトウェアアプリケーションおよび Solaris OS に関する情報を確認してください。

作業手順

1. システムの内容がすべてそろっていることを確認します。

詳細は、23ページの「出荷内容について」を参照してください。

2. システムを適切な環境に設定します。

Sun Fire V890 サーバーは、デスクサイドシステムまたはラック搭載システムとして 設置できます。システムをラックに設置する場合は、『Sun Fire V890 サーバーラッ クマウントの手引き』を参照してください。このマニュアルは、 http://www.sun.com/documentationより入手できます。

注 – システムをラックに設置する場合、オプション装置は、システムをラックに設置したあとで取り付けてください。

デスクサイドシステムとしてサーバーを設置する場合、適切な環境にシステムを配置 するための情報を入手するには、『Site Planning Guide for Entry-Level Servers』を 参照してください。このマニュアルは、Sun Fire V890 Documentation CD に収録さ れています。

3. 各電源装置の背面にある AC 電源差し込み口に、AC 電源コードを接続します。電源 コードのもう一方の端を、アースされた専用の AC 電源コンセントに接続します。 V890 サーバーに付属の電源コードを使用してください。V890 サーバーは、200/240

注 – 各電源装置は、専用の AC 回路に接続する必要があります。詳細な要件については、使用地域の電気に関する条例を調べてください。

4. 各 AC 電源コードに留め具を取り付けます。

VAC ライン入力のみをサポートします。

留め具とは、プラスチック製のタイラップと、サーバーの背面パネルにはめ込まれた タイラップの固定具のことです。電源コードをサーバーの AC 電源差し込み口に取り 付けたあと、この留め具でコードを固定します。

留め具を使用するときは、爪を押してタイラップを外します。タイラップの外れてい る方を AC 電源コードに巻きつけ、固定具の開口部にタイラップを通します。タイ ラップの端を引き上げて締めます。

5. オプションのコンポーネントを取り付けます。

出荷時には取り付けられていないオプションを注文した場合は、『Sun Fire V890 Server Service Manual』の取り付け手順を参照してください。

注 – オプションの PCI カードは、システムの電源を入れてテストを実行したあと で、システムに取り付けてください。

注意 – AC 電源コードは静電気を放電させる経路になるため、システムコントローラ カードを除く内部コンポーネントの取り付けやその他の作業は、電源コードを AC 電 源コンセントに接続したまま行う必要があります。システムコントローラカードの保 守を行う場合は、すべての AC 電源コードが接続されていないことを確認してくださ い。

注意 – ディスクドライブと電源装置を除き、すべての内部オプションの取り付けは 認定された保守作業員が行なってください。これらのコンポーネントの取り付け手順 については、『Sun Fire V890 Server Service Manual』を参照してください。このマ ニュアルは、Sun Fire V890 Documentation CD に収録されています。

必要に応じて、シリアルポートジャンパを設定して、周辺シリアルデバイスを接続します。

システムの I/O ボード上にある 2 つのシリアルポートジャンパを設定して、システ ムのシリアルポートを米国電子工業会 (EIA) 標準規格 EIA-423 または EIA-232D に 準拠するように構成できます。ジャンパは出荷時に EIA-423 標準規格用に設定され ています。北米ではこれがデフォルトです。EU 加盟国のデジタル通信では、EIA-232D 標準規格に準拠している必要があります。EIA-232D に準拠する必要がある場 合は、『Sun Fire V890 Server Service Manual』および 71 ページの「シリアルポー トジャンパについて」を参照してください。シリアルポートの特性については、68 ページの「シリアルポートについて」を参照してください。

注意 – 内部ジャンパの変更は、認定された保守作業員が行なってください。

7. システムコンソールを設定します。

システムソフトウェアをインストールし、診断メッセージを参照するには、端末またはコンソールの設定が必要です。

初期インストール時に、別のサーバーから tip 接続を確立するか、文字 (ASCII) 端 末をシリアルポートに接続します。詳細は、30 ページの「コンソールの設定につい て」を参照してください。

注 – デフォルトでは、電源投入時自己診断 (POST)のメッセージはシリアルポート A (ttya)に出力されます。初期インストール後、システムコンソールとして RSC を使 用するようにシステムを構成すると、システムは POST メッセージの出力先を RSC コンソールに切り替えます。初期インストールを実行するには、POST 診断出力を参 照するためにコンソールをシリアルポート A に接続する必要があります。

注 – RSC を使用して、Solaris OS の初期インストールを実行することはできません。オペレーティングシステムは、RSC コンソールを設定する前にインストールしてください。

8. ネットワークインタフェースを準備します。

Sun Fire V890 サーバーは、標準構成で、Fast Ethernet と Gigabit Ethernet インタフェースの2種類のオンボード Ethernet インタフェースを備えています。サポートされている各種の PCI カードを使用することによって、Ethernet を追加したり、その他のネットワークに接続したりできます。ネットワークインタフェースオプションと構成手順の詳細は、次の節を参照してください。

- 92 ページの「ネットワークインタフェースについて」
- 94 ページの「プライマリネットワークインタフェースの設定方法」
- 96ページの「追加ネットワークインタフェースの設定方法」
- 9. サーバーに電源を入れます。

詳細は、35 ページの「システムの電源投入方法」を参照してください。 システムに電源をはじめて入れたときに、システムは、電源投入時自己診断 (POST) および OpenBoot 診断テストを自動的に実行し、コンソールにその出力を表示しま す。システムは、自動システム回復 (ASR) も使用可能にします。

注 - システムが診断テストを実行し状態メッセージを表示して、システムコンソー ルに ok プロンプトが表示されるまで、30 分以上かかる場合があります。要する時間 は、システム構成 (プロセッサ、メモリーモジュール、および PCI カードの数) と、 OpenBoot 変数の標準構成によって異なります。OpenBoot 変数は、デフォルトで、 diag-level=max、verbosity=normal に設定されています。起動時間の見積も り方法、および初回の電源投入後の標準構成のカスタマイズ方法については、 『OpenBoot PROM Enhancements for Diagnostic Operation』を参照してください。 このマニュアルは、Sun Fire V890 Documentation CD に収録されています。

10. Solaris オペレーティングシステムをインストールして、起動します。

Solaris ソフトウェアに付属のインストールマニュアルを参照してください。また、 『Sun Fire V890 サーバーご使用にあたって』も参照して、ご使用のシステムの Solaris OS に関する情報を確認してください。

11. RSC ソフトウェアをインストールして構成します。

Solaris メディアキットに収録されている RSC ソフトウェアをインストールします。 RSC を使用するには、RSC を手動でインストールする必要があります。

RSC の構成および使用方法については、『Sun Remote System Control (RSC) 2.2 ユーザーマニュアル』を参照してください。このマニュアルは、Sun Fire V890 Documentation CD に収録されています。

注 - RSC ソフトウェアをインストールしたあとは、RSC をシステムコンソールとし て使用するようにシステムを設定できます。詳細は、42 ページの「システムコン ソールを RSC に切り替える方法」を参照してください。

12. (任意) Solaris メディアキットからその他のソフトウェアを読み込みます。

Solaris メディアキット (別売品) には、サーバーの運用、構成、管理を支援するソフトウェアを収録した数枚の CD が含まれています。収録されている全ソフトウェアの 一覧およびインストール手順については、Solaris メディアキットに付属のマニュアルを参照してください。

13. FC-AL ディスクバックプレーンファームウェアを確認して更新します。

最新バージョンの FC-AL バックプレーンファームウェアをインストールすると、 I/O システムが正しく動作するようになります。最新のバックプレーンファームウェ アの確認および読み込み方法については、『Sun Fire V890 サーバーご使用にあたっ て』を参照してください。

14. 必要に応じて、システムの必須パッチおよび推奨パッチを読み込みます。

システムには、必要なパッチがすべてプリインストールされています。パッチの詳細 は、『Sun Fire V890 サーバーご使用にあたって』を参照してください。システムの 最新パッチおよびサービス情報については、http://sunsolve.sun.comの SunSolve OnlineSM Web サイトを確認してください。

15. 必要な OpenBoot PROM 構成オプションを設定します。

OpenBoot PROM コマンドおよび構成変数を使用して、システムの動作の一部を制御 できます。詳細は、105 ページの「システムのファームウェア構成」を参照してくだ さい。

16. 追加ネットワークインタフェースを設定します。

Sun Fire V890 サーバーは、2 つのオンボード Ethernet インタフェースを備えていま す。適切な PCI インタフェースカードを取り付けると、インタフェースおよび接続 の追加が可能になります。取り付け手順については、『Sun Fire V890 Server Service Manual』を参照してください。このマニュアルは、Sun Fire V890 Documentation CD に収録されています。

17. Sun Fire V890 Documentation CD から電子マニュアルを読み込みます。

マニュアルの読み込み方法は、CD に付属する小冊子に印刷されています。

18. システムのキースイッチをロック位置に入れます。

通常の運用時には、このロック位置にスイッチを入れておくことをお勧めします。この設定によって、システムの電源ボタンと、ok プロンプトへのアクセスを可能にする break コマンドの一部が使用不可になり、権限のないユーザーがシステムのフラッシュ PROM をプログラミングすることを防ぎます。

コンソールの設定について

サーバーのインストールや問題の診断には、システムコマンドを入力してシステム出力を表示する手段が必要です。これには次の4つの方法があります。

1. シリアルポート A に文字 (ASCII) 端末を接続します。

シリアルポート A には簡単な端末を接続することができます。詳細は、31 ページの 「文字端末の接続方法」を参照してください。

2. ほかの Sun のシステムから tip 接続を確立します。

tip 接続の確立方法については、『OpenBoot 4.x Command Reference Manual』を 参照してください。このマニュアルは、http://docs.sun.comの「Sun ハード ウェア対応 Solaris」より入手できます。最新情報については、『Sun Fire V890 サー バーご使用にあたって』を参照してください。

3. サーバーにローカルのグラフィックスコンソールを取り付けます。

多くの場合、サーバーにはマウス、キーボード、モニター、画像表示用フレームバッファーは付属していません。サーバーにローカルグラフィックスコンソールを取り付けるには、認定された保守作業員は、PCIスロットに画像表示用のフレームバッファーカードを取り付け、背面パネルの適切なポートにモニター、マウス、キーボードを接続する必要があります。詳細は、33ページの「ローカルグラフィックスコンソールの設定方法」を参照してください。

注 – 電源投入時自己診断 (POST) のメッセージは、シリアルポート A (ttya) または RSC コンソールにのみ出力されます。

4. RSC コンソールを設定します。

RSC はセキュリティー保護されたサーバー管理ツールで、シリアルポートまたは ネットワーク接続を経由して、サーバーを監視および制御できます。RSC を使用す ると、地理的に分散しているシステムや、物理的にアクセス不可能なシステムを遠隔 で管理できます。詳細は、60 ページの「システムコントローラカードおよび RSC ソ フトウェアについて」および 135 ページの「Sun Remote System Control ソフトウェ アについて」を参照してください。

注 – RSC コンソールを使用して、Solaris OS の初期インストールを実行することは できません。オペレーティングシステムは、RSC コンソールを設定する前にインス トールしてください。オペレーティングシステムおよび RSC ソフトウェアをインス トールしたあとは、RSC をシステムコンソールとして使用するようにシステムを設 定できます。詳細は、42 ページの「システムコンソールを RSC に切り替える方法」 を参照してください。

文字端末の接続方法

準備作業

サーバーにローカルグラフィックスコンソールが構成されていない場合は、Solaris オペレーティングシステムのインストールや診断テストの実行のために、サーバーに 文字 (ASCII) 端末を接続する必要があります。代わりに、ローカルグラフィックスコ ンソールを取り付ける方法、別の Sun のシステムから tip 接続を確立する方法、 RSC コンソールを設定する方法もあります。詳細は、30 ページの「コンソールの設 定について」を参照してください。

注 – RSC コンソールを使用して、Solaris OS の初期インストールを実行することは できません。Solaris OS は、RSC コンソールを設定する前にインストールしてくださ い。

作業手順

- DB-25 ヌルモデムシリアルケーブル、または DB-25 シリアルケーブルとヌルモデム アダプタを、端末のシリアルポートに接続します。
- ケーブルのもう一方の端を、システムのシリアルポートコネクタまたはシリアルスプリッタケーブルのシリアルポートAに接続します。

3. 端末の電源コードを AC コンセントに接続します。

4. 端末の受信設定を次のように設定します。

- 9600 ボー
- 8ビット信号、パリティーなし、ストップビット1

詳細は、ご使用の端末に付属のマニュアルを参照してください。

次の作業

この作業が終了すると、システムコマンド入力や、システムメッセージの表示が可能 になります。必要に応じて、ほかのインストール作業または診断手順に進んでくださ い。

ローカルグラフィックスコンソールの設 定方法

準備作業

サーバーにローカル文字 (ASCII) 端末が構成されていない場合は、Solaris オペレー ティングシステムのインストールや診断テストの実行のために、ローカルグラフィッ クスコンソールを接続する必要があります。代わりに、文字端末を取り付ける方法、 別の Sun のシステムから tip 接続を確立する方法、RSC コンソールを設定する方法 もあります。詳細は、30 ページの「コンソールの設定について」を参照してくださ い。

注 – RSC コンソールを使用して、Solaris OS の初期インストールを実行することは できません。Solaris OS は、RSC コンソールを設定する前にインストールしてくださ い。

ローカルグラフィックスコンソールの設置には、次のものが必要です。

- サポートされる PCI ベースのグラフィックスフレームバッファーカードおよびソ フトウェアドライバ
- 適切な解像度のモニター
- Sun Type 6 USB キーボード
- Sun 互換の USB 3 ボタンマウス

作業手順

1. 適切な PCI スロットにグラフィックスカードを取り付けます。

PCI バスおよびスロットについては、56 ページの「PCI カードおよびバスについて」 を参照してください。

注 – PCI カードの取り付けは、認定された保守作業員が行う必要があります。PCI カードの取り付け手順については、『Sun Fire V890 Server Service Manual』を参照 してください。このマニュアルは、Sun Fire V890 Documentation CD に収録されて います。

2. **グラフィックスカードのビデオポートに、モニターのビデオケーブルを接続します**。 つまみねじを締めて、しっかりと接続してください。

- 3. モニターの電源コードを、適切な AC コンセントに接続します。
- 4. キーボードケーブルをシステムの USB ポートに接続します。

5. マウスケーブルを、システムのもう 1 つの USB ポートまたはキーボードの USB ポート (該当する場合) に接続します。

次の作業

この作業で、システムコマンド入力や、システムメッセージの表示が可能になりま す。必要に応じて、ほかのインストール作業または診断手順に進んでください。

システムの電源投入方法

準備作業

オペレーティングシステムがインストール済みで、内部オプションや外部記憶装置の 新規追加直後の場合は、この電源投入手順を使用しないでください。このようなオプ ションの追加後にシステムの電源を入れる手順については、次の節を参照してください。

■ 40 ページの「再起動 (boot -r) の開始方法」

作業手順

注意 – システムの電源を入れる前に、正面および側面のドアと、すべてのプラス チック製の外部パネルが正しく取り付けられていることを確認してください。

- 1. すべての周辺装置および外部記憶装置の電源を入れます。
- 2. 文字端末またはローカルグラフィックスコンソール (使用している場合) の電源を入れます。

3. 正面パネルのキースイッチにシステムキーを挿入し、標準または診断位置に入れま す。

「標準」位置に入れると、システムに定義されている診断テストに関する標準の OpenBoot 構成が有効になります。

「診断」位置に入れると、保守モード、および Sun が規定したレベルでの診断の実 行が有効になります。システムは、自動的に最高レベルの POST および OpenBoot 診 断テストを実行し、その出力を表示します。

診断テストに関する標準のデフォルト Open Boot 構成については、『OpenBoot PROM Enhancements for Diagnostic Operation』を参照してください。このマニュアルは、Sun Fire V890 Documentation CD に収録されています。

キースイッチの詳細は、11ページの「状態およびコントロールパネルについて」を 参照してください。

注 – キースイッチが診断位置に設定されている場合は、システムのオペレーティング環境を手動で起動する必要があります。

注 – 高可用性環境の場合は、キースイッチをロック位置または標準位置に設定して ください。 4. キースイッチの左側にある電源ボタンを押して、システムの電源を入れます。

注 - システムが診断テストを実行して状態メッセージを表示し、システムコンソー ルに ok プロンプトが表示されるまで、30 分以上かかる場合があります。要する時間 は、システム構成 (プロセッサ、メモリーモジュール、および PCI カードの数) と、 OpenBoot 変数の構成によって異なります。OpenBoot 変数は、デフォルトで、 diag-level=max、verbosity=normal に設定されています。起動時間の見積も り方法、および初回の電源投入後の標準構成のカスタマイズ方法については、 『OpenBoot PROM Enhancements for Diagnostic Operation』を参照してください。 このマニュアルは、Sun Fire V890 Documentation CD に収録されています。

5. キースイッチをロック位置に入れます。

これによって、誤ってシステムの電源が切断されることを防ぎます。

6. キースイッチからキーを外し、安全な場所に保管します。

次の作業

システムの正面パネルの LED インジケータは、電源の状態を示します。システム LED の詳細は、11 ページの「状態およびコントロールパネルについて」を参照して ください。

システムの電源切断方法

作業手順

- 1. システムの電源を切断することをユーザーに通知します。
- 2. 必要に応じて、システムファイルとデータのバックアップを取ります。
- 3. 正面パネルのキースイッチが標準または診断位置に入っていることを確認します。

4. 正面パネルの電源ボタンを押してすぐ放します。

ソフトウェアによるシステムの正常な停止が始まります。

注 - 電源ボタンを押してすぐ放すと、ソフトウェアによるシステムの正常な停止が 始まります。電源ボタンを5秒間押し続けると、ハードウェアによる即時停止が行わ れます。可能なかぎり、正常な停止方法を使用してください。ハードウェアによる即 時停止を強制すると、ディスクドライブが破壊されたり、データが失われることがあ ります。ほかに手段がない場合にかぎり、この方法を使用してください。

- 5. 正面パネルの電源/OK LED が消えるまで待機します。
- 6. キースイッチを1番左側まで回して、強制切断の位置に入れます。

注意 – 内部コンポーネントを扱う場合は、キースイッチを事前に強制切断位置に入れてください。これを行わないと、内部の作業中に、RSC ユーザーが遠隔からシステムを再起動する可能性があります。RSC ユーザーによるシステムの再起動を防ぐ キースイッチ位置は、強制切断位置だけです。

7. キースイッチからキーを外し、安全な場所に保管します。

再起動 (boot -r) の開始方法

新しい内部オプションまたは外部記憶装置を取り付けたあとは、再起動 (boot -r) を 行なって、新しく取り付けた装置をオペレーティングシステムに認識させる必要があ ります。また、認定された保守作業員が装置を取り外したあと、交換用装置を取り付 けずにシステムを再起動する場合も、オペレーティングシステムに構成の変更を認識 させるために boot -r を行います。これは、メモリーモジュール、CPU/メモリー ボード、電源装置など、システムの I²C バスに接続されているコンポーネントにも必 要です。

次のコンポーネントには、再起動は不要です。

- ホットプラグ操作で取り付けまたは取り外されたもの
- オペレーティングシステムのインストール前に取り付けまたは取り外されたもの
- オペレーティングシステムによって認識済みのコンポーネントと同一の交換品として取り付けられたもの (FC-AL ディスクドライブを除く)

注意 – ディスクドライブと電源装置を除き、すべての内部オプションの取り付けは 認定された保守作業員が行なってください。これらのコンポーネントの取り付け手順 については、『Sun Fire V890 Server Service Manual』を参照してください。このマ ニュアルは、Sun Fire V890 Documentation CD に収録されています。

準備作業

注意 – システムの電源を入れる前に、正面および側面のドアと、すべてのプラス チック製の外部パネルが正しく取り付けられていることを確認してください。

ソフトウェアコマンドを実行するには、システムコンソールが必要です。詳細は、次 の節を参照してください。

■ 30ページの「コンソールの設定について」

作業手順

- 1. すべての周辺装置および外部記憶装置の電源を入れます。 詳細は、それぞれの装置に付属のマニュアルを参照してください。
- 2. コンソールに電源を入れます。

- 3. 正面パネルのキースイッチにシステムキーを挿入し、標準位置に入れます。
- 4. キースイッチの左側にある電源ボタンを押して、システムの電源を入れます。

5. 診断テストが終了したら、起動画面がシステムコンソールに表示され、続けて ok プロンプトが表示されます。

起動画面には、Ethernet アドレスとホスト ID が表示されます。

注 - システムが診断テストを実行して状態メッセージを表示し、システムコンソー ルに ok プロンプトが表示されるまで、30 分以上かかる場合があります。要する時間 は、システム構成 (プロセッサ、メモリーモジュール、および PCI カードの数) と、 OpenBoot 変数の標準デフォルト構成によって異なります。OpenBoot 変数は、デ フォルトで、diag-level=max、verbosity=normal に設定されています。初回 の電源投入後の標準構成のカスタマイズ方法については、『OpenBoot PROM Enhancements for Diagnostic Operation』を参照してください。このマニュアルは、 Sun Fire V890 Documentation CD に収録されています。

6. ok プロンプトに対して、次のように入力します。

ok **env-on** Environmental monitor is ON ok **boot -r**

アボートキーシーケンスのため使用不可になっている可能性のある OpenBoot 環境モ ニターが、env-on コマンドによってふたたび使用可能になります。boot -r コマ ンドによって、システムのデバイスツリーが再作成され、新しく取り付けた装置が組 み込まれて、オペレーティングシステムがそれらを認識できるようになります。 7. キースイッチをロック位置に入れ、キーを外し、安全な場所に保管します。 これによって、誤ってシステムの電源が切断されることを防ぎます。

次の作業

システムの正面パネルの LED インジケータは、電源の状態を示します。システム LED の詳細は、11 ページの「状態およびコントロールパネルについて」を参照して ください。

システムの起動中に障害が発生し、そのときキースイッチが標準位置にあった場合 は、キースイッチを診断モードにしてシステムを再起動し、障害の原因を確認できる かどうか試してください。正面パネルのキースイッチを診断位置に入れて、電源を再 投入します。

システムコンソールを RSC に切り替え る方法

Solaris オペレーティングシステムおよび RSC ソフトウェアをインストールしたあ と、RSC をシステムコンソールとして使用するようにシステムを設定する場合に、 この手順を実行します。RSC の詳細は、60 ページの「システムコントローラカード および RSC ソフトウェアについて」および 135 ページの「Sun Remote System Control ソフトウェアについて」を参照してください。 **注** – システムコンソールとして RSC を使用するようにシステムを構成すると、 POST 診断の出力先が RSC コンソールに切り替わります。

準備作業

この作業手順は、OpenBoot ファームウェアに関する知識があり、OpenBoot 環境に 入る方法を理解していることを前提としています。OpenBoot ファームウェアについ ては、『OpenBoot 4.x Command Reference Manual』を参照してください。このマ ニュアルは、http://docs.sun.comの「Sun ハードウェア対応 Solaris」より入手 できます。最新情報については、『Sun Fire V890 サーバーご使用にあたって』を参 照してください。

作業手順

1. システムの ok プロンプトで、次のコマンドを入力します。

```
ok diag-console rsc
ok setenv input-device rsc-console
ok setenv output-device rsc-console
```

新しい設定が、システムに永続的に保存されます。変更は、次にリセットしたあとで 有効になります。

変更内容をすぐに有効にするには、次のように入力してシステムをリセットします。

ok **reset-all**

システムは変更を永続的に保存し、OpenBoot 変数 auto-boot? が true (デフォル ト値) に設定されていると、自動的に起動します。

電源を入れ直す方法でも、変更をすぐに有効にすることができます。

注 - システムコンソールが RSC に切り替わっているときにシステムコントローラ カードに障害が発生すると、システムコンソールは使用できなくなります。この状態 を回復するには、システムの電源ボタンを押して、ソフトウェアによる正常な停止を 実行します。その後、キースイッチを診断位置に入れるか、OpenBoot の非常時の手 順を実行して、ID PROM の構成変数をデフォルト値にリセットします。詳細は、 121 ページの「OpenBoot の非常時の手順について」を参照してください。この操作 によって、システムコンソールが一時的に出荷時のデフォルト装置に切り替わりま す。交換用のシステムコントロールカードをすぐに取り付けない場合は、交換用カー ドが準備できるまで、ローカルシステムコンソールの復元が必要になる場合がありま す。詳細は、45 ページの「ローカルシステムコンソールの復元方法」を参照してく ださい。

注意 – ディスクドライブと電源装置を除き、すべての内部オプションの取り付けは 認定された保守作業員が行なってください。これらのコンポーネントの取り付け手順 については、『Sun Fire V890 Server Service Manual』を参照してください。このマ ニュアルは、Sun Fire V890 Documentation CD に収録されています。

次の作業

システムコントローラカードおよび RSC ソフトウェアの使用方法については、 『Sun Remote System Control (RSC) ユーザーマニュアル』を参照してください。こ のマニュアルは、Sun Fire V890 Documentation CD に収録されています。
ローカルシステムコンソールの復元方法

RSC をシステムコンソールとして使用するシステム構成の場合で、システムコン ソールをローカルグラフィックスコンソール、文字端末、または確立された tip 接 続に切り替える必要があるときには、この作業手順を実行します。RSC の詳細は、 60 ページの「システムコントローラカードおよび RSC ソフトウェアについて」およ び 135 ページの「Sun Remote System Control ソフトウェアについて」を参照してく ださい。

準備作業

この作業手順は、OpenBoot ファームウェアに関する知識があり、OpenBoot 環境に 入る方法を理解していることを前提としています。OpenBoot ファームウェアについ ては、『OpenBoot 4.x Command Reference Manual』を参照してください。このマ ニュアルは、http://docs.sun.comの「Sun ハードウェア対応 Solaris」より入手 できます。最新情報については、『Sun Fire V890 サーバーご使用にあたって』を参 照してください。

作業手順

1. システムの ok プロンプトで、次のコマンドを入力します。

ok diag-console ttya
ok setenv input-device keyboard
ok setenv output-device screen

新しい設定が、システムに永続的に保存されます。変更は、次にリセットしたあとで 有効になります。

2. 変更をすぐに有効にするには、次のように入力します。

ok reset-all

システムはパラメタの変更を永続的に保存し、OpenBoot 変数 auto-boot? が true (デフォルト値) に設定されていると、自動的に起動します。

注 – 電源を入れ直す方法でも、変更をすぐに有効にすることができます。

第3章

ハードウェア構成

この章では、Sun Fire V890 サーバーのハードウェア構成について説明します。この 章の内容は、次のとおりです。

- 48 ページの「CPU/メモリーボードについて」
- 51 ページの「メモリーモジュールについて」
- 56 ページの「PCI カードおよびバスについて」
- 60 ページの「システムコントローラカードおよび RSC ソフトウェアについて」
- 62ページの「電源装置について」
- 65 ページの「ファントレーについて」
- 68ページの「リムーバブルメディア装置について」
- 68 ページの「シリアルポートについて」
- 69 ページの「USB ポートについて」
- 70ページの「ハードウェアジャンパについて」
- 71 ページの「シリアルポートジャンパについて」
- 73 ページの「フラッシュ PROM ジャンパについて」

注 – 内蔵大容量記憶装置サブシステムの構成情報については、77 ページの「大容量 記憶装置サブシステムの構成」を参照してください。ネットワークインタフェースの 構成情報については、91 ページの「ネットワークインタフェースの構成」を参照し てください。

CPU/メモリーボードについて

システムマザーボードのスロットには、CPU/メモリーボードを4枚まで取り付ける ことができます。各CPU/メモリーボードには、16M バイトのSRAM (スタティック RAM) レベル2外部キャッシュメモリーを搭載した UltraSPARC チップマルチスレッ ディングプロセッサ (CMP) が2つと、メモリーモジュール用のスロットが16個組み 込まれています。外部キャッシュメモリーはアップグレードできません。

注 – Sun Fire V890 システムでは、同じ速度の CPU/メモリーボードを使用する必要 があります。

チップマルチスレッディング技術によって、UltraSPARC プロセッサごとに2 つのス レッドが可能になります。このデュアルスレッドアーキテクチャーにより、各 UltraSPARC プロセッサは、共有メモリーを使用する2 つの仮想プロセッサとして構 成されます。動的な調停方式によって、各スレッドは使用可能なメモリーを最適に使 用できるため、その結果、性能が向上します。 次の図は、スロットに CPU/メモリーボードを 4 枚取り付けたシステムマザーボード です。スロットには下から上の順に A ~ D の識別子が付いています。システムの仮 想プロセッサ (CPU) には、各 CPU/メモリーボードを取り付けたスロットによっ て、固有の番号が付けられます。たとえば、スロット D に取り付けられた CPU/メ モリーボードの CPU の番号は、システムに取り付けられた CPU/メモリーボードが ほかに存在しない場合でも、常に 5 と 21、および 7 と 23 になります。

UltraSPARC プロセッサは、バイナリ互換性を維持しながらアプリケーションスルー プットの向上を可能にする、高度に統合された高性能 CMP プロセッサです。このプ ロセッサは、64 ビット SPARC インターナショナルバージョン 9 命令セットアーキテ クチャー (ISA) を実装しています。

UltraSPARC プロセッサは、データベース、Web サーバー、HTPC (High Performance Technical Computing) などの商用アプリケーションにおけるスルー プット性能を向上させます。このプロセッサは、高度な VIS (Visual Instruction Set) 拡張機能を使用して、2D および 3D グラフィックスのほか、イメージ処理、ビデオ の圧縮と圧縮解除、ビデオ効果をサポートします。VIS は、他のハードウェアによる サポートがなくても、リアルタイムのビデオ圧縮および圧縮解除や、2 本の完全なブ ロードキャストクオリティの MPEG-2 圧縮解除ストリームなどの、高いレベルのマ ルチメディア性能を提供します。

Sun Fire V890 サーバーは、同じ物理アドレス領域を共有するすべてのプロセッサ で、メモリー共有型マルチプロセッサアーキテクチャーを採用しています。 UltraSPARC プロセッサ、主記憶、および I/O サブシステムは、150 MHz のクロッ クレートで動作する高速なシステムインターコネクトバスを介して通信を行います。 複数の CPU/メモリーボードを持つシステムでは、システムバス上のどのプロセッサ からでもすべての主記憶にアクセスできます。主記憶は、システム内のすべてのプロ セッサおよび I/O 装置によって論理的に共有されます。

メモリーモジュールとメモリーの構成に関するガイドラインについては、51 ページ の「メモリーモジュールについて」を参照してください。

注意 - CPU/メモリーボードは、認定された保守作業員が行う必要があります。 CPU/メモリーボードを取り付けたあとは、再起動 (boot -r) を行い、環境ソフトウェ アに新しい装置を認識させる必要があります。詳細は、40 ページの「再起動 (boot r)の開始方法」を参照してください。

注意 – 各 CPU/メモリースロットには、常に CPU/メモリーボードまたはエア バッフルが装備されている必要があります。CPU/メモリーボードを取り外した あと、認定された保守作業員は、すぐに交換用ボードまたはエアバッフルを取り 付けて過熱による自動停止を防いでください。取り付け手順については、『Sun Fire V890 Server Service Manual』を参照してください。このマニュアルは、Sun Fire V890 Documentation CD に収録されています。

メモリーモジュールについて

Sun Fire V890 サーバーは、3.3 V の大容量 DIMM (Dual Inline Memory Module) を 使用します。DIMM は、75 MHz のクロック周波数で動作する SDRAM (Synchronous Dynamic Random Access Memory) チップを搭載しています。システ ムは、さまざまな容量の DIMM をサポートします。詳細は、『Sun Fire V490/V890 CPU/メモリーモジュール構成マニュアル』を参照してください。このマニュアル は、次の URL から入手できます。

http://www.sun.com/products-n-solutions/hardware/docs/Servers/

各 CPU/メモリーボードには DIMM のスロットが 16 個あります。使用可能なシステ ムメモリーの合計は、取り付けられている DIMM の容量によって異なります。

各 CPU/メモリーボード内で、16 個の DIMM スロットは 4 つのグループにまとめら れます。システムは、1 つのグループの 4 枚すべての DIMM に対して、同時に読み 取りおよび書き込みを行います。そのため、DIMM は 4 枚を 1 組として追加する必 要があります。

次の図は、Sun Fire V890 の CPU/メモリーボードにある DIMM スロットと DIMM グループを示します。同じ DIMM グループに属するスロットは 3 つおきに並んでい ます。4 つのグループは A0、A1、B0、および B1 で表されます。

認定された保守作業員は、DIMM の取り付けまたは取り外しを行う前に、システム から CPU/メモリーボードを物理的に取り外す必要があります。DIMM は、4 枚 1 組 で、同じ DIMM グループに同一のものを追加する必要があります。つまり、4 枚の DIMM は、同じメーカー製の同じ容量のものになります (たとえば、512M バイトの DIMM が 4 枚、1G バイトの DIMM が 4 枚など)。

メモリーのインタリーブ

メモリーインタリーブ機能を利用して、システムメモリーの処理能力を最大限に引き 出すことができます。Sun Fire V890 システムは、2 ウェイ、4 ウェイ、および 8 ウェ イのメモリーインタリーブをサポートします。ほとんどの場合、インタリーブファク タを大きくした方がシステム性能に効果があります。ただし、システムアプリケー ションによって実際の結果は異なることがあります。

システムのインタリーブ機能をまとめると、次のようになります。

- メモリーインタリーブは、同じ CPU/メモリーボード内のメモリーに制限されます。別の CPU/メモリーボードとのメモリーインタリーブはサポートされていません。
- 1 枚の CPU/メモリーボードの 16 スロットすべてに同じ容量の DIMM が取り付け られた場合 (同一の DIMM が 16 枚)、自動的に 8 ウェイのインタリーブが発生し ます。
- 同じ構成を持つ 2 つの DIMM グループ (同一容量の 8 枚の DIMM) の間では、自動的に 4 ウェイのインタリーブが発生します。
- DIMM の容量がほかのグループで使用されているものと一致しない DIMM グルー プでは、自動的に 2 ウェイのインタリーブが発生します。

独立メモリーサブシステム

Sun Fire V890 の各 CPU/メモリーボードは、2 つの独立メモリーサブシステムを備 えています (各 UltraSPARC プロセッサに 1 つ)。UltraSPARC プロセッサに組み込ま れたメモリーコントローラロジックによって、プロセッサがそれぞれ独自のメモリー サブシステムを制御することが可能になります。1 つのプロセッサが DIMM グルー プ AO および A1 を制御し、もう 1 つのプロセッサが DIMM グループ BO および B1 を制御します。

Sun Fire V890 システムは、共有メモリーアーキテクチャーを使用します。通常のシ ステム運用中は、システム内のすべてのプロセッサがシステムメモリー全体を共有し ます。しかし、プロセッサに障害が発生した場合には、システム内のほかのすべての プロセッサは、障害の発生したプロセッサに関連付けられた 2 つの DIMM グループ を使用できなくなります。

次の表に、プロセッサと、それに対応する DIMM グループの関連を示します。

プロセッサ番号	CPU/メモリースロット	関連する DIMM グループ
0	スロット A	A0、A1
2	スロット A	B0、B1
1	スロット B	A0、A1
3	スロット B	B0、B1

プロセッサ番号	CPU/メモリースロット	関連する DIMM グループ
4	スロット C	A0, A1
6	スロット C	B0、B1
5	スロット D	A0, A1
7	スロット D	B0、B1

構成規則

- DIMM を追加するときは、4枚1組で同じグループの DIMM スロットに追加し、
 同じ DIMM グループに属するものは3スロットおきに並べる必要があります。
- 使用するグループには、同じ種類の4枚のDIMMを取り付ける必要があります。 つまり、4枚のDIMMはすべて同じメーカー製の同じ容量のものになります(た とえば、512MバイトのDIMMが4枚、1GバイトのDIMMが4枚など)。
- 各 CPU/メモリーボードには、8 枚以上の同じ種類の DIMM を取り付ける必要が あります。

注意 – ディスクドライブと電源装置を除き、すべての内部オプションの取り付けは 認定された保守作業員が行なってください。DIMMの取り付けまたは取り外し手順 については、『Sun Fire V890 Server Service Manual』を参照してください。このマ ニュアルは、Sun Fire V890 Documentation CD に収録されています。

注意 - DIMM は静電気にきわめて弱い電子部品で作られています。衣服または作業 環境で発生する静電気によりモジュールが損傷を受けることがあります。CPU/メモ リーボードに取り付ける準備ができるまで、静電気防止袋から DIMM を取り出さな いでください。取り扱う際は、モジュールの縁を持ってください。構成部品や金属部 分には触れないでください。モジュールを扱うときは、必ず静電気防止用ストラップ を装着してください。静電放電の回避方法の詳細は、『Sun Fire V890 Server Service Manual』を参照してください。このマニュアルは、Sun Fire V890 Documentation CD に収録されています。 次の表に、CPU/メモリーボードに DIMM を取り付けるときのガイドラインを示し ます。DIMM は、認定された保守作業員が行う必要があります。取り付け手順につ いては、『Sun Fire V890 Server Service Manual』を参照してください。このマニュ アルは、Sun Fire V890 Documentation CD に収録されています。

搭載する順序 メモリーのインタリーブファクタ 最初の 8 枚の DIMM を 8 枚の DIMM がすべて同一の場 グループ A0 および B0 合は4 ウェイのインタリーブとな に取り付けます (スロッ り、それ以外の場合は2ウェイの トが1つおきに埋まり インタリーブとなります。 ます)。 次の4枚の DIMM をグ 同一構成を持つ2つのグループ間 ループ A1 に取り付け では4ウェイのインタリーブとな ます。 り、容量がほかのグループで使用 されているものと一致しないグ ループでは2ウェイのインタリー ブとなります。 最後の4枚を空いてい 16 枚のすべての DIMM が同一の 場合は8ウェイのインタリーブと るスロット (グループ B1) に取り付けます。 なり、同一構成を持つ2つのグ ループ間では4ウェイのインタ リーブとなります。容量がほかの グループで使用されているものと 一致しないグループでは2ウェイ のインタリーブとなります。

PCI カードおよびバスについて

周辺記憶装置とネットワークインタフェース装置間のすべてのシステム通信は、シス テムのマザーボードに搭載された 2 つの PCI (Peripheral Component Interconnect) ブリッジチップを介して行われます。各ブリッジチップは、システムのメインイン ターコネクトバスと 2 つの PCI バスとの間の通信を管理し、合計で 4 つの個別の PCI バスをシステムで使用できるようにします。これら 4 つの PCI バスは、最大 9 枚の PCI インタフェースカードと 4 つのマザーボードデバイスをサポートします。

次の表に、PCI バスの特徴と、各バスに割り当てられる関連するブリッジチップ、マ ザーボードデバイス、および PCI スロットを示します。すべての PCI スロットは、 PCI Local Bus Specification Rev. 2.1 に準拠しています。

PCI ブリッジ	PCI バス	クロックレート (MHz)/ 帯域幅 (ビット)/ 電圧 (V)	マザーボードデバイス	PCI スロット
0	PCI A	66 MHz/ 64 ビット/ 3.3 V	Gigabit Ethernet コント ローラ FC-AL コントローラ	なし。搭載さ れたコント ローラにのみ 使用
0	PCI B	33 MHz/ 64 ビット/ 5 V	IDE コントローラ (IDE DVD-ROM ドライブへの インタフェース)	スロット 0、 1、2、3
1	PCI C	33 または 66 MHz/ 64 ビット/ 3.3 V	なし	スロット7お よび8
1	PCI D	33 MHz/ 64 ビット/ 5 V	システムコントローラカー ド、RIO ASIC (Ethernet、 USB、および EBus インタ フェース)	スロット 4、 5、6

システムの PCI ホットプラグ機能により、認定された保守作業員は、システムの動 作中に PCI カードの取り外しおよび取り付けを行うことができます。Solaris デバイ スドライバが PCI ホットプラグ操作をサポートし、Sun Fire V890 PCI ホットプラグ 操作をサポートする Solaris オペレーティングシステムがシステムで動作している場 合、認定された保守作業員は、任意の標準 PCI カードをホットプラグすることがで きます。また、PCI カードは PCI Hot-Plug Specification Rev. 1.1 に準拠している必 要があります。 PCIのホットプラグ手順では、カードを取り外す前のシステムの準備と PCI カードを 取り付けたあとのオペレーティングシステムの再構成で、ソフトウェアコマンドを使 用する場合があります。PCI のホットプラグ手順の詳細は、129ページの「ホットプ ラグ対応コンポーネントとホットスワップ対応コンポーネントについて」を参照して ください。

注意 – デバイスドライバが PCI ホットプラグ操作をサポートしていることを確認す るまで、PCI カードのホットプラグを実行しないでください。システムにパニックが 発生する場合があります。PCI ホットプラグ操作をサポートする Sun の PCI カード およびデバイスドライバの一覧は、『Sun Fire V890 サーバーご使用にあたって』を 参照してください。

状態表示 LED には、各 PCI スロットの電源、障害、ホットプラグの状態が表示され ます。各スロットには接触式のプッシュボタンも付いており、保守作業員はサーバー でホットプラグ手順を開始できます。状態表示 LED については、145ページの「PCI スロットの LED について」を参照してください。 次の図に、I/O ボードの PCI スロットを示します。

構成規則

- すべての PCI スロットで、フルサイズおよびハーフサイズの両方の PCI カードを 使用できます。
- 5 VのPCIカードは、5 Vのスロットに取り付ける必要があります。3.3 VのPCI カードは、3.3 Vのスロットに取り付ける必要があります。すべてのPCIスロット で、ユニバーサル(3.3 V/5 V)PCIカードを使用できます。
- すべての PCI スロットで、32 ビットおよび 64 ビットの PCI カードを使用できます。

- すべての PCI スロットは、PCI Local Bus Specification Rev. 2.1 に準拠しています。
- 各スロットは、最大 25 W の電力を供給します。9つのスロットに使用する電力の 合計が 135 W を超えてはいけません。
- Compact PCI (cPCI) カードおよび SBus カードは使用できません。
- スロット7と8は、33 MHz または66 MHz のどちらでも動作しますが、2 つのスロットは常に同じ速度にしてください。システムが起動したとき、どちらのスロットにも33 MHzのPCIカードが取り付けられていないと、両方のスロットが66 MHzで動作します。その後、どちらかのスロットにホットプラグ機能を使用してPCIカードを追加する場合、そのカードは66 MHzでなければなりません。この状況で33 MHzのカードを使用すると、障害が発生します。
- システムが起動したとき、スロット7または8に33 MHzのPCIカードが取り付けられていると、両方のスロットが33 MHzで動作します。この場合、ホットプラグ機能を使用してどちらのスロットにも33 MHzまたは66 MHzのカードを取り付けることができます。ただし、66 MHzのカードは33 MHzで動作します。
- 最高の性能が得られるようにするには、スロット7および8には高スループット のカードを取り付けます。
- また、冗長ネットワークや記憶装置インタフェースをそれぞれ異なる PCI バスおよび PCI ブリッジに接続することによって、全体的なシステムの可用性を高めることもできます。詳細は、133ページの「Multipathing ソフトウェアについて」を参照してください。

注意 – ディスクドライブと電源装置を除き、すべての内部オプションの取り付けは 認定された保守作業員が行なってください。PCI カードの取り付けまたは取り外し手 順については、『Sun Fire V890 Server Service Manual』を参照してください。この マニュアルは、Sun Fire V890 Documentation CD に収録されています。

システムコントローラカードおよび RSC ソフトウェアについて

システムコントローラ (SC) カードを RSC ソフトウェアとともに使用すると、遠隔地 から Sun Fire V890 サーバーにアクセスし、監視および制御することができます。こ のカードは、独自の常駐ファームウェア、電源投入時自己診断 (POST)、リアルタイ ムオペレーティングシステムを備えた、完全に独立したプロセッサカードです。この カードは、シリアルインタフェースおよび Ethernet インタフェースを備えているた め、複数の RSC ユーザーが Sun Fire V890 サーバーへ同時にアクセスできます。RSC ユーザーは、システムの Solaris および OpenBoot コンソール機能に対してセキュリ ティー保護されたアクセスを行い、POST および OpenBoot 診断を自由に制御するこ とができます。

システムコントローラカードは、ホストサーバーから独立して、システムの電源 装置の5Vのスタンバイ電力で動作します。システムコントローラカードは、シ ステムの環境監視サブシステムとのインタフェースになるオンボード装置を備 え、管理者にシステム障害を自動的に警告することができます。これらの機能に よって、システムコントローラカードとRSCソフトウェアは、サーバーのオペ レーティングシステムがオフラインになった場合、またはサーバーの電源が切断 された場合でも機能し続ける、「停電」管理ツールとして動作します。

システムコントローラカードはシステムの I/O ボードの専用スロットに差し込みます。システムコントローラカードには次のポートがあり、システム背面パネルの開口部から利用できます。

- RJ-45 より対線 Ethernet (TPE) コネクタ使用の 10 Mbps Ethernet ポート
- RJ-45 コネクタ使用の EIA-232D シリアルポート

2つのシステムコントローラポートは、同時に使用できます。

注 – RSC コンソールを設定する前に、Solaris オペレーティングシステムおよび Sun RSC ソフトウェアをインストールする必要があります。詳細は、135 ページの「Sun Remote System Control ソフトウェアについて」を参照してください。

オペレーティングシステムおよび RSC ソフトウェアをインストールしたあとは、 RSC をシステムコンソールとして使用するようにシステムを設定できます。詳細 は、42 ページの「システムコンソールを RSC に切り替える方法」を参照してくださ い。

構成規則

認定された保守作業員は、システムコントローラカードを、システム I/O ボードの 下部にある専用スロットに取り付けることができます。システムコントローラカード は PCI 互換のカードではないため、別のシステムスロットには取り付けないでくだ さい。 **注** - システムコントローラカードはホットプラグ対応コンポーネントではありません。システムコントローラカードの取り付けまたは取り外しの前に、認定された保守 作業員は、システムの電源を切って、すべてのシステム電源コードを外す必要があり ます。

注意 – ディスクドライブと電源装置を除き、すべての内部オプションの取り付けは 認定された保守作業員が行なってください。システムコントローラカードの取り付け または取り外し手順については、『Sun Fire V890 Server Service Manual』を参照し てください。このマニュアルは、Sun Fire V890 Documentation CD に収録されてい ます。

電源装置について

システム内部の各コンポーネントで使用する DC 電力は、すべて中央の配電盤から供給されます。システムの電源装置は、この配電盤のコネクタに接続します。取り付けられているすべての電源装置から電力が均等に供給され、システムの電力要求を満たします。

Sun Fire V890 の電源装置はモジュラーユニットであるため、システムが完全に動作 している状態ですばやく簡単に取り付けおよび取り外しできます。次の図に示すよう に、電源装置はシステム背面のベイに取り付けられています。

システムには、それぞれ 10 A の AC 電源コードが付いた電源装置を最大 3 つまで格 納できます。各電源装置は、200/240 VAC ライン入力で最大 1629 W の DC 電源を供 給します。基本的なシステム構成では、3 つの電源装置が取り付けられています。3 つ目の電源装置は N+1 の電源冗長性を提供します。これによって、電源装置の1つ に問題が発生した場合でも、システムは動作を続けることができます。

各電源装置が提供する DC 出力電圧の種類は、合計 5 つ (3.3 V、5.0 V、12 V、48 V、スタンバイ時の 5.0 V) です。出力電流は、アクティブな電流共有回路を使用して 各装置から均等に供給されます。

冗長構成の電源装置は、ホットスワップ機能を提供します。オペレーティングシステムを停止したりシステム電源を切断しなくても、障害が発生した電源装置を取り外し、交換できます。詳細は、129ページの「ホットプラグ対応コンポーネントとホットスワップ対応コンポーネントについて」を参照してください。

各電源装置の3つの状態表示 LED に、電源および障害の状態の情報が表示されます。詳細は、147ページの「電源装置の LED について」を参照してください。

構成規則

- 各電源装置は、専用のAC回路に接続することをお勧めします。詳細な要件については、使用地域の電気に関する条例を調べてください。
- 最小のシステム構成では、2つの電源装置が必要です。基本的なシステム構成では、3つの電源装置が取り付けられています。電源装置が1つしかないシステムは使用できません。
- 電源装置が2つのシステムの場合、どちらかに障害が発生すると、システムが急に停止することがあります。3つ目の電源装置によって、いずれかの電源装置に障害が発生してもシステムは動作を続けることができます。
- 電源装置のベイ0およびベイ1には、常に電源装置を取り付けておきます。どちらかのベイの電源装置に障害が発生してもシステム運用ができる場合は、交換用の電源装置の取り付けが可能になるまで、障害の発生した電源装置をそのベイに入れたままにします。ベイ0またはベイ1の障害の発生した電源装置はエアバッフルとして機能し、ディスクケージ内のディスクドライブの下段を冷却する気流を送ります。障害の発生した電源装置はできるだけ早く交換して、N+1冗長電源を回復してください。

注意 – 電源装置に障害が発生した場合、交換用装置を取り付ける準備ができるまで、その装置をベイから取り外さないでください。

電源装置の取り付け手順については、『Sun Fire V890 Server Service Manual』を参照してください。このマニュアルは、Sun Fire V890 Documentation CD に収録されています。

ファントレーについて

基本システムには、CPU ファントレー、I/O ファントレー、マザーボードファント レーの、3 つのファントレーが装備されています。CPU ファントレーおよび I/O ファントレーにはそれぞれ 2 つ、マザーボードファントレーには 1 つのファンがあり ます。すべてのシステムは、この主ファントレーセットと、同じファントレー構成の 副セットによる冗長冷却を装備しています。

マザーボードファントレーは、その主な目的がシステムマザーボード上の I/O ブ リッジチップを冷却することであるため、I/O ブリッジファントレーとも呼ばれま す。

ベイ ファン 説明 1 主 CPU ファントレー ファントレー1つに6インチの ファンが2つ 副 CPU ファントレー 2 ファントレー1つに6インチの ファンが2つ 主 I/O ファントレー 3 ファントレー1つに4インチの ファンが2つ 4 ファントレー1つに4インチの 副 I/O ファントレー ファンが2つ 主マザーボードファントレー 5 3インチのファンが1つ 副マザーボードファントレー 6 3インチのファンが1つ

次の表に、システムのファントレーを示します。

通常のシステム運用時は、主ファントレーだけが動作します。主ファントレーに障害 が発生すると、環境監視サブシステムが障害を検出して、自動的に副ファントレーが 動作を開始します。

すべてのファントレーは、ホットスワップに対応します。認定された保守作業員は、 オペレーティングシステムの停止やシステム電源の切断を行うことなく、障害が発生 したファントレーを取り外し、交換できます。詳細は、129ページの「ホットプラグ 対応コンポーネントとホットスワップ対応コンポーネントについて」を参照してくだ さい。

環境監視サブシステムは、システム内のファンに関して次の点を監視または制御しま す。

- ファンの有無 (監視)
- 1 分あたりの回転数 (RPM) によるファンのスピード (監視) ファンの機能低下を 早い段階で検出するために使用
- ファンの電源入力(制御) 気流および冷却能力を増加または減少させるために使用
- ファン障害 LED (制御)

主 CPU ファンだけが、スピードを調節できます。副 CPU ファン、主および副マ ザーボードファン、主および副 I/O ファンの場合は、電源を完全に入れるか、完全 に切ることしかできません。ファンのスピードは、システム内の温度の状況に応じ て、環境監視サブシステムによって制御されます。詳細は、17 ページの「環境の監 視および制御」を参照してください。

状態表示 LED に、各ファントレーの電源、障害、ホットスワップの状況が表示され ます。状態表示 LED については、148 ページの「ファントレーの LED について」を 参照してください。

注意 – ディスクドライブと電源装置を除き、すべての内部オプションの取り付けは 認定された保守作業員が行なってください。ファントレーアセンブリの取り付けまた は取り外し手順については、『Sun Fire V890 Server Service Manual』を参照してく ださい。このマニュアルは、Sun Fire V890 Documentation CD に収録されていま す。

構成規則

- 最小のシステム構成では、動作する3つのファントレー(CPUファントレー、I/O ファントレー、マザーボードファントレー)の完全なセットが必要です。
- システムに副 CPU ファントレーが取り付けられていない場合は、その場所に CPU ファントレーのフィラーパネルを取り付けます。

注意 - システムには動作する3つのファントレーが常にセットで取り付けられてい る必要があります。ファントレーを取り外すことによって動作するファントレーが2 つ以下になる場合、認定された保守作業員は、過熱による自動停止を防ぐため、すぐ に交換用ファントレーを取り付ける必要があります。詳細は、17ページの「環境の 監視および制御」を参照してください。

リムーバブルメディア装置について

Sun Fire V890 サーバーの正面パネルには、装着ベイが3つあります。ベイの1つに は、すべてのシステム構成で標準となる、IDE DVD-ROM ドライブを搭載します。 ほかの2つのベイには、別途注文する必要のある、オプションの取り外し可能なワイ ド(68 ピン) SCSI 装置を搭載します。オプションのテープドライブには、別途注文す る必要のある、SCSI ケーブルおよび SCSI アダプタカードも必要です。認定された保 守作業員は、金属製の仕切板を取り外すことによって、2つの SCSI 装置のベイを簡 単に1つのフルハイトのベイに変更できます。

リムーバブルメディア装置をサポートする SCSI バスは Fast/Wide 対応 (毎秒 20M バ イトの転送能力) で、シングルエンドのワイド SCSI 装置をサポートします。

SCSI バス用のターゲットアドレス (SCSI ID) は、0 ~ 5 および 8 ~ 15 の範囲で設定 できます。

オプションのテープドライブに予約されているターゲットアドレスは5です。

テープドライブが取り付けられていない場合は、このアドレスを外部装置用として使 用できます。あとで内蔵テープドライブを取り付けるときは、そのアドレスに5を使 用して、外部装置には異なるアドレスを割り当てる必要があります。

注意 – ディスクドライブと電源装置を除き、すべての内部オプションの取り付けは 認定された保守作業員が行なってください。リムーバブルメディア装置の取り付けま たは取り外し手順については、『Sun Fire V890 Server Service Manual』を参照して ください。このマニュアルは、Sun Fire V890 Documentation CD に収録されていま す。

シリアルポートについて

システムは、背面パネルにある1つの共有 DB-25 コネクタを介して、2 つのシリアル 通信ポートを装備しています。一次ポートは同期通信および非同期通信の両方に対応 しますが、二次ポートは非同期通信だけに対応します。同期モードでクロックを内部 生成した場合、プライマリポートは50K ~ 256K ボーの任意の速度で動作できます。 クロックを外部ソースから生成した場合は、最高 384K ボーの速度で同期通信できま す。非同期モードでは、どちらのポートも、50、75、110、200、300、600、1200、 1800、2400、4800、9600、19200、38400、57600、76800、115200、153600、 230400、307200、460800 のボーレートをサポートします。 プライマリポートを使用するには、標準シリアルケーブルを背面パネルのシリアル ポートコネクタに接続します。セカンダリポートを使用するには、背面パネルのシリ アルポートコネクタに、シリアルポートスプリッタケーブル (Sun のパーツ番号 X985A)を接続する必要があります。スプリッタケーブルに「A」とある方のコネク タがプライマリポート用で、「B」とある方のコネクタがセカンダリポート用となり ます。

認定された保守作業員は、システム I/O ボード上にあるジャンパを設定して、2 つの シリアルポートを米国電子工業会 (EIA) 標準規格 EIA-423 または EIA-232D に準拠す るように構成できます。ジャンパは出荷時に EIA-423 標準規格用に設定されていま す。北米ではこれがデフォルトです。EU 加盟国のデジタル通信では、EIA-232D 標 準規格に準拠している必要があります。シリアルポートジャンパの構成については、 71 ページの「シリアルポートジャンパについて」を参照してください。

コネクタ図、背面パネルのアイコン、ピンの割り当てについては、168 ページの「シ リアルポート A および B コネクタの関連情報」を参照してください。

USB ポートについて

システムの背面パネルには 2 つの USB (Universal Serial Bus) ポートがあり、次の USB 周辺装置を接続できます。

- Sun Type 6 USB キーボード
- Sun USB 3 ボタンマウス
- モデム
- プリンタ
- スキャナ
- デジタルカメラ

USB ポートの位置については、9 ページの「背面パネルの機能」を参照してください。

注 – Sun Fire V890 サーバーでは、キーボードおよびマウスは別途注文が必要です。 ご使用の Sun Type 6 キーボードに USB ハブが付いていない場合は、キーボードとマ ウスでシステム背面パネルの両方の USB ポートがふさがってしまいます。ほかの USB 装置を接続する場合は、USB ハブを追加する必要があります。

USB ポートは Open HCI (Open Host Controller Interface) の USB Rev. 1.0 仕様に準拠しています。2 つのポートは等時モードと非同期モードをサポートし、1.5 Mbps および 12 Mbps でのデータ転送が可能です。USB を使用したデータ転送速度は標準のシリアルポートと比べて著しく高速で、最高 460K ボーで転送できます。

USB ポートを使用するには、USB ケーブルを背面パネルの USB コネクタに接続しま す。USB ケーブルの両端のコネクタの形状は異なるため、接続場所を間違えること はありません。一方のコネクタはシステムまたは USB ハブに差し込み、もう一方は 周辺装置に差し込みます。USB ハブを使用すると、最大 126 個の USB 装置に同時に 接続できます。

注 – USB は、モデムなどの小型の USB 装置に電力を供給します。スキャナなどの大型の USB 装置の場合は、専用の電源が必要です。

どちらの USB ポートもホットプラグに対応しています。システムの実行中に USB ケーブルと周辺装置を接続したり切り離したりしても、システムの運用に影響はありません。

注 – USB ホットプラグ操作は、オペレーティングシステムが動作しているときにだ け実行できます。USB ホットプラグ操作は、システムの ok プロンプトが表示されて いる状態ではサポートされません。

ハードウェアジャンパについて

Sun Fire V890 サーバーのハードウェアジャンパには、次の機能があります。

- システム I/O ボードの J2902 および J2903 は、シリアルポートを EIA-423 または EIA-232D に準拠するように構成する場合に使用します。EIA-423 および EIA-232D のジャンパ設定については、71 ページの「シリアルポートジャンパについ て」を参照してください。
- J3002、J3003、および J3004 は、システム I/O ボードの OpenBoot フラッシュ PROM の動作に影響を与えます。詳細は、73 ページの「フラッシュ PROM ジャ ンパについて」を参照してください。
- J01701、J01003、および J0803 は、FC-AL ディスクバックプレーンのフラッシュ PROM の動作に影響を与えます。詳細は、73 ページの「フラッシュ PROM ジャ ンパについて」を参照してください。

注意 – 内部ジャンパの変更は、認定された保守作業員が行う必要があります。

注意 – システムコントローラカードが起動しなくなるため、システムコントローラ カードの J0501 および J0502 の設定はデフォルトから変更しないでください。 すべてのジャンパに識別番号が付いています。たとえば、システム I/O ボードのシ リアルポートジャンパは J2902 および J2903 となります。ジャンパピンは、この識別 番号のすぐ隣にあります。デフォルトのジャンパ位置は斜線で示しています。ピン1 には、次に示すいずれかの位置にアスタリスク (*) マークが付いています。

シリアルポートジャンパについて

システム I/O ボードのシリアルポートジャンパ (J2902 および J2903) は、システムの 2 つのシリアルポートの信号レベルを EIA-423 または EIA-232D に設定します。北米 では、EIA-423 レベルがデフォルトの規格です。EU 加盟国のデジタル通信では、 EIA-232D レベルに設定する必要があります。

フラッシュ PROM ジャンパについて

非揮発性システムメモリーに保持されている特定のファームウェアコードブロックの 再プログラミングや、このようなコードをローカルエリアネットワークからシステム 管理者が遠隔で再プログラミングすることを可能にするために、Sun Fire V890 シス テムではフラッシュ PROM を使用します。ファームウェアを更新する必要がある場 合は、http://sunsolve.sun.comの SunSolve Online Web サイトからダウンロー ドできます。

ファームウェアの更新手順については、ダウンロードしたファームウェアイメージに 付属する説明を参照してください。

システム I/O ボードおよび FC-AL ディスクバックプレーンにあるジャンパの一部 は、フラッシュ PROM の動作に影響します。ジャンパの位置および設定について は、後述の節を参照してください。各ジャンパがフラッシュ PROM の更新手順に与 える影響については、ファームウェアイメージに付属する説明を参照してください。

システム 1/0 ボード

次に、システム I/O ボード上のフラッシュ PROM ジャンパの位置と機能を示します。

ジャンパ	ピン分路 1 + 2 セレクト	ピン分路 2 + 3 セレクト	デフォルト設定
J3004 ••• 1 2 3	OpenBoot フラッシュ PROM	出荷時設定のみ	1 + 2
J3003 ● ● •] 3 2 1	書き込み禁止	書き込み許可	2 + 3
J3002 [• • • 1 2 3	ハイハーフ起動	通常起動	2 + 3

注 – ジャンパ J3003 は出荷時設定のため、フラッシュ PROM は書き込み許可されて います。フラッシュ PROM を書き込み禁止にするには、正面パネルのキースイッチ を使用します。スイッチがロック位置の場合、フラッシュ PROM は書き込み禁止で す。スイッチが標準位置または診断位置の場合、フラッシュ PROM は書き込み許可 されています。

FC-AL ディスクバックプレーン

次に、FC-AL ディスクバックプレーンのフラッシュ PROM ジャンパの位置と機能を示します。

第4章

大容量記憶装置サブシステムの構成

この章では、Sun Fire V890の大容量記憶装置サブシステムの機能、コンポーネント、およびサポートされる構成について説明します。この章の内容は、次のとおりです。

- 77 ページの「FC-AL 技術について」
- 79 ページの「Sun Fire V890 大容量記憶装置機能について」
- 80ページの「大容量記憶装置サブシステムのコンポーネントについて」
- 82 ページの「FC-AL ディスクバックプレーンについて」
- 85 ページの「内蔵ディスクドライブについて」
- 86 ページの「FC-AL ホストアダプタについて」
- 89 ページの「FC-AL のデバイスアドレスについて」

FC-AL 技術について

Fibre Channel (FC) は、高性能なシリアル相互接続の規格で、サーバー、ストレージ システム、ワークステーション、スイッチ、およびハブの間の双方向の二地点間通信 用に設計されています。

FC 規格の重要な拡張機能である FC-AL は、ストレージシステムの相互接続の必要性 に応えるために開発されました。FC-AL では単純なループトポロジを使用している ため、単純な構成と、ハブ、スイッチ、サーバー、およびストレージシステムによる 複雑な構成の両方をサポートできます。

FC-AL デバイスは、高性能な Gigabit シリアルインタフェースを使用します。このイ ンタフェースは、SCSI (Small Computer System Interface)、ATM (Asynchronous Transfer Mode) などの、複数の標準プロトコルをサポートします。これらの標準プロ トコルをサポートすることによって、FC-AL は、既存のレガシーシステム、ファー ムウェア、アプリケーション、およびソフトウェアの資産も保持できます。

FC-AL 固有の機能には、ほかのデータ転送技術と比較して多数の利点があります。 次の表に、FC-AL の機能と利点を示します。FC-AL 技術の詳細は、Fibre Channel Association (ファイバチャネル協議会)の Web サイト、 http://www.fibrechannel.com を参照してください。

 FC-AL の機能	利点
毎秒 100M バイトのデータ転送をサポート	最新の高性能プロセッサおよびディスクで必要
(デュアルポートの場合は毎秒 200M バイト)	とされる高スループットを実現
ループごとに最大 126 の装置と 1 つのコント	1 つの装置が制御する接続数が多いため、柔軟
ローラのアドレス指定が可能	で単純な構成が可能
光ファイバケーブルを使用して、装置間の距	装置間の距離が長くなると、遠隔ミラーリング
離を 10 km までサポート (銅ケーブルの場合	およびキャンパスクラスタリングが可能にな
は最長 30 m)	り、データの可用性が向上
ホットプラグ対応のデュアルポートディス ク、冗長データパス、複数のホスト接続など の、信頼性、可用性、保守性 (RAS) 機能を 提供	RAS 機能によって、耐障害性とデータの可用性 が向上
IP、SCSI などの標準プロトコルのサポート	FC-AL への移行は、ソフトウェアまたはファー ムウェアにほとんど、またはまったく影響しな い
銅ケーブルまたはファイバケーブルを介した	シリアル接続を使用する構成は、接続ごとの
単純なシリアルプロトコルを実装	ケーブル数が少ないため、より単純
RAID のサポート	RAID のサポートによりデータの可用性が向上

Sun Fire V890 大容量記憶装置機能について

Sun Fire V890 大容量記憶装置サブシステムに実装されている FC-AL 技術は、サーバーの信頼性、可用性、保守性 (RAS) および性能を大きく向上させます。

次の表に、RAS 機能を向上させる Sun Fire V890 大容量記憶装置サブシステムの機能 を示します。

機能	RAS の機能
デュアルポート FC-AL ディスク ドライブ、デュアルループバック プレーン、複数 FC-AL ホストア ダプタ	これらの機能は、耐障害性とデータの高い可用性を提供 します。最大4つのFC-ALホストアダプタおよび適切 な Multipathing ソフトウェアを使用して、最大4つの 独立した冗長データパスを設定することによって、自動 フェイルオーバーを実装できます。いずれかのパスのコ ンポーネントに障害が発生した場合、ソフトウェアは自 動的に障害を検出して、すべてのデータ転送をもう1つ のパスに切り替えます。詳細は、133ページの 「Multipathing ソフトウェアについて」を参照してくだ さい。
RAID ソフトウェアのサポート	Solstice DiskSuite などのソフトウェア RAID アプリ ケーションを使用して、耐障害性およびデータの冗長性 を実現することによって、データの高可用性を保証でき ます。詳細は、136 ページの「Volume Management Center ソフトウェアについて」を参照してください。
ホットプラグ対応のディスク ドライブ	ホットプラグ対応のディスクドライブによって、データ の高可用性が保証され、保守性が向上します。システム のほかの部分の機能に影響を与えずに、電源が入ってい るシステムの、障害の発生したディスクドライブをすば やく交換できます。詳細は、85ページの「内蔵ディスク ドライブについて」および129ページの「ホットプラグ 対応コンポーネントとホットスワップ対応コンポーネン トについて」を参照してください。

次の表に、性能を向上させる Sun Fire V890 大容量記憶装置サブシステムの機能を示します。

機能	向上する性能
デュアルポート FC-AL ディスク ドライブ、デュアルループバック プレーン、複数 FC-AL ホストア ダプタ	これらの機能によって、2 つの別々のループを使用した 内蔵記憶装置アレイへの同時アクセスが可能になりま す。Sun Fire V890 サーバーのマルチパッシング機能を 活用できるボリューム管理ソフトウェアとともに使用す ると、ディスクのスループットが向上します。詳細は、 82 ページの「FC-AL ディスクバックプレーンについ て」および 136 ページの「Volume Management Center ソフトウェアについて」を参照してください。
RAID レベル 0、0+1、1+0、5 の サポート	オプションの RAID ソフトウェアを使用して構成する と、Sun Fire V890 システムはディスクのストライプ化 が組み込まれている RAID レベル 0、0+1、1+0、5 をサ ポートします。ディスクのストライプ化によって、連続 するデータブロックが複数のディスクに分散されます。 複数のディスクコントローラが同時にデータにアクセス するため、データへのアクセスが高速になります。詳細 は、136 ページの「Volume Management Center ソフト ウェアについて」を参照してください。

大容量記憶装置サブシステムのコンポー ネントについて

すべての Sun Fire V890 サーバーは、次の大容量記憶装置サブシステムのコンポーネントを含みます。

コンポーネント	数量	説明
FC-AL ディスクバック プレーン	1	最大 6 基のデュアルポート FC-AL ディスクドラ イブを接続できるベースバックプレーン。詳細 は、82 ページの「FC-AL ディスクバックプレー ンについて」を参照してください。
オンボード FC-AL ホスト アダプタ	1	システムマザーボードに搭載されています。大 容量記憶装置サブシステムのループ A の FC-AL 入出力操作およびデータ転送を管理します。詳 細は、86 ページの「FC-AL ホストアダプタにつ いて」を参照してください。
次の表に、システムオプションとして使用できる大容量記憶装置サブシステムのコン ポーネントを示します。

コンポーネント	数量	
拡張 FC-AL ディスク バックプレーン	1	ベースアレイを拡張して、最大 12 基のディスク を搭載可能にします。詳細は、82 ページの「FC- AL ディスクバックプレーンについて」を参照し てください。
FC-AL ディスクドライブ	最大 12 (バックプ レーン 1 つ につき 6)	さまざまな記憶容量の、ロープロファイル (1.0 インチ) デュアルポートディスク。詳細は、85 ページの「内蔵ディスクドライブについて」を参 照してください。
PCI FC-AL ホスト アダプタカード	最大 9	内部または外部 FC-AL 装置を制御する PCI ホス トアダプタカード。これらのカードは、システム I/O ボードの PCI スロットに差し込みます。最 大 3 つの PCI FC-AL ホストアダプタを内部接続 して、大容量記憶装置サブシステムのループ A および B での FC-AL 入出力操作およびデータ転 送を管理できます。詳細は、86 ページの「FC- AL ホストアダプタについて」を参照してくださ い。

FC-AL ディスクバックプレーンについて

すべての Sun Fire V890 サーバーは、最大6基のディスクを搭載する FC-AL ディス クバックプレーンを1つ装備しています。オプションの拡張バックプレーンはベース バックプレーンの上部に取り付けられ、最大6基の追加ディスクを搭載できます。

正面図

FC-AL バックプレーンには、ロープロファイル (1.0 インチ) デュアルポート FC-AL ディスクドライブを取り付けることができます。各ディスクドライブは、標準の 40 ピン SCA (Single Connector Attachment) インタフェースを使用してバックプレーン に接続します。SCA テクノロジは、すべての電源および信号接続を1 つのブライン ドメイトコネクタに統合して、システムのディスクドライブの追加および取り外しを 容易にします。SCA コネクタを使用するディスクは、ほかのタイプのコネクタを使 用したディスクに比べ、より高い可用性とより優れた保守性を提供します。

デュアルループ構成

FC-AL ディスクバックプレーンは、完全バックプレーン構成および分割バックプレーン構成の両方で、すべての内蔵ディスクドライブへのデュアルループアクセスを 提供します (84 ページの「完全バックプレーン構成および分割バックプレーン構成」 を参照)。デュアルループ構成では、2 つの異なるデータパスから各ディスクドライブ にアクセスできます。この機能によって、次のことが可能になります。

- 処理能力の向上 データ転送速度が、シングルループ構成の毎秒 100M バイトに 比べて、毎秒最大 200M バイトに増加
- ハードウェアの冗長性 -1つのパスでコンポーネントの障害が発生しても、すべてのデータ転送を代替パスに切り替え可能

大容量記憶装置サブシステムの、RAS および性能を向上させる機能については、79 ページの「Sun Fire V890 大容量記憶装置機能について」を参照してください。

注 – FC-AL バックプレーンのデュアルループ機能を利用するには、2番目のループ (ループ B)を制御する PCI FC-AL ホストアダプタカード (オプション)を取り付ける 必要があります。詳細は、86ページの「FC-AL ホストアダプタについて」を参照し てください。

ディスクバックプレーンの PBC (Port Bypass Controllers) は、ループの完全性を保証 します。ディスクまたは外部装置が接続されていないか、あるいは障害が発生した場 合、PBC は自動的にその装置を迂回し、ループを閉じてデータの可用性を維持しま す。

また、各バックプレーンは、2 つの統合 SSC100 SES (SCSI Enclosure Services) コン トローラをループに1つずつ含みます。SES コントローラによって、次のことが可能 になります。

- ホストのソフトウェアから送信される格納装置保守コマンドの解釈
- バックプレーンの FC-AL ループ構成の管理
- ディスクおよびディスクバックプレーンからの状態信号の監視
- ディスクの状態表示 LED の制御

2 番目のバックプレーンが取り付けられ、12 ディスクのアレイに拡張された場合は、 ベースバックプレーンの SES コントローラだけが動作し、上部のバックプレーンの SES コントローラは動作しません。

完全バックプレーン構成および分割バックプレー ン構成

12 ディスクに拡張されたアレイでは、2 つの FC-AL ディスクバックプレーンが内部 ケーブルによって接続されます。内部ケーブルは、2 つのバックプレーン間のループ A (任意でループ B も)を拡張します。これを、「完全バックプレーン構成」と呼び ます。デュアルループの完全バックプレーン構成は、ディスク、データパス、および ホストアダプタの冗長性を提供します。

また、「分割バックプレーン構成」を設定することもできます。この構成では、完全 バックプレーン構成とは異なり、ベースバックプレーンと拡張バックプレーン間の配 線はありません。デュアルループの分割バックプレーン構成には、4 つの独立した ループ(各バックプレーンに2つ)があり、ディスク、データパス、ホストアダプ タ、およびバックプレーンの冗長性を提供します。

分割バックプレーン構成は、認定された保守作業員が設定する必要があります。詳細は、『Sun Fire V890 Server Service Manual』の付録「Split Backplane Configurations」を参照してください。

構成規則

- FC-AL ディスクバックプレーンには、ロープロファイル (1.0 インチ) ディスクド ライブが必要です。
- オプションの拡張ディスクバックプレーンは、ベースバックプレーンの上部に取り付けます。

注意 – ディスクドライブと電源装置を除き、すべての内部オプションの取り付けは 認定された保守作業員が行なってください。FC-AL ディスクバックプレーンの取り 付けまたは取り外し手順については、『Sun Fire V890 Server Service Manual』を参 照してください。このマニュアルは、Sun Fire V890 Documentation CD に収録され ています。

内蔵ディスクドライブについて

Sun Fire V890 大容量記憶装置サブシステムは、最大 12 基のロープロファイル (1.0 インチ) FC-AL ディスクドライブを搭載できます。さまざまな記憶容量のディスクを 使用できます。

すべての Sun Fire V890 ディスクドライブは、マルチパスアクセス用にデュアルポートになっています。デュアルループ構成で使用すると、2 つの異なるデータパスから 各ドライブにアクセスできます。デュアルデータパスには次の利点があります。

- 処理能力の向上 データ転送速度が、シングルループ構成の毎秒 100M バイトに 比べて、毎秒最大 200M バイトに増加
- ハードウェアの冗長性 -1つのパスでコンポーネントの障害が発生しても、すべてのデータ転送を代替パスに切り替え可能

大容量記憶装置サブシステムの、RAS および性能を向上させる機能については、79ページの「Sun Fire V890 大容量記憶装置機能について」を参照してください。

Sun Fire V890 のディスクドライブはホットプラグに対応しています。システム運用 中に、ディスクの追加、取り外し、交換ができます。この機能によって、ディスクド ライブの交換に伴うシステムの停止時間を大幅に短縮できます。ディスクドライブの ホットプラグ手順では、ディスクドライブを取り外す前のシステムの準備と、ドライ ブを取り付けたあとのオペレーティングシステムの再構成で、ソフトウェアコマンド を使用します。詳細は、129 ページの「ホットプラグ対応コンポーネントとホットス ワップ対応コンポーネントについて」を参照してください。

システムのディスクケージの正面には、ディスクドライブの状態表示 LED がいくつ かあります。各ドライブに関連する LED は 3 つあり、それぞれドライブの動作状 態、ホットプラグの準備状態、ドライブに関連する障害状態を示します。これらの状 態表示 LED によって、管理者は保守の必要なドライブをすばやく特定できます。詳 細は、149 ページの「ディスクドライブの LED について」を参照してください。 次の図に、システムの 12 の内蔵ディスクスロットと、関連する LED を示します。 ディスクスロットには、0 ~ 11 までの番号が付いています。

構成規則

ディスクドライブは、Sun 標準の FC-AL ディスクの、ロープロファイル (1.0 インチ) フォームファクタを使用する必要があります。

FC-AL ホストアダプタについて

Sun Fire V890 サーバーは、オンボード FC-AL コントローラとして、Qlogic ISP2200A インテリジェントファイバチャネルプロセッサを使用します。システムマ ザーボードに組み込まれている ISP2200A は、PCI バス A に搭載され、64 ビット、 66 MHz の PCI インタフェースをサポートします。オンボード FC-AL コントローラ は、ベースバックプレーン (2 つのバックプレーンが拡張アレイとして結合されてい る場合は、上部のバックプレーン)のループ A の FC-AL 処理を制御します。 FC-AL バックプレーンのデュアルループ機能を利用するには、2番目のループ (ルー プ B) を制御するオプションの PCI FC-AL ホストアダプタカードが必要です。このた め、Sun では、Sun StorEdge[™] PCI Dual Fibre Channel ホストアダプタカード (パー ツ番号 X6727A) を用意しています。このカードは、それぞれが Qlogic ISP2200A プ ロセッサによって制御される、2つの別々の FC-AL チャネルを提供します。各チャ ネルは、外部のファイバチャネル装置に接続するための外部ポートを備えています。 チャネルの1つは、ベース FC-AL ディスクバックプレーンのループ B ポートに接続 するための内部ポートも備えています。内部ポートが使用されている場合は、外部 ポート 1 を使用して外部装置に接続することはできません。

ハードウェアの冗長性を追加するために、設置場所で取り付けられるオプションとして2つの分割バックプレーン構成を使用できます。詳細は、『Sun Fire V890 Server Service Manual』の付録「Split Backplane Configurations」を参照してください。

外部 FC-AL 装置を制御するさまざまな PCI FC-AL ホストアダプタカードは、Sun お よびその他のベンダーから入手できます。これには、デュアルチャネルカードおよび コンビネーションカードも含まれます。デュアルチャネルカードは、1 枚のカード に、2 つの異なるループを制御する 2 つの FC-AL コントローラを含みます。コンビ ネーションカードは、FC-AL コントローラと、別のタイプのコントローラ (Gigabit Ethernet コントローラなど)を組み合わせたものです。詳細は、ホストアダプタカー ドに付属のマニュアルを参照してください。

Sun StorEdge PCI Dual Fibre Channel ホストアダプタカード

構成規則

- Sun Fire V890 サーバーは、Qlogic ISP2200 シリーズのインテリジェントファイバ チャネルプロセッサを組み込んだ、Sun の FC-AL ホストアダプタカードをサポー トします。Qlogic ISP2100 シリーズのプロセッサを使用する Sun のホストアダプ タカードはサポートしません。サポートされるカードについては、ご購入先にお 問い合わせください。
- Sun StorEdge PCI Dual Fibre Channel ホストアダプタカードを使用して構成した システムで、その内部ポートを FC-AL ディスクバックプレーンのループ B ポート に接続している場合は、カードの外部ポート1を使用しないでください。このような状況でポート1を外部装置に接続する構成は、サポートされていません。この場合、外部装置への接続にはポート2 だけを使用します。
- Sun StorEdge PCI Dual Fibre Channel ホストアダプタカードの内部ポートを使用 して、FC-AL ディスクバックプレーンのループ A ポートに接続しないでくださ い。カードの内部ポートは、ループ B だけに接続します。
- 最高の性能を得るため、66 MHz の FC-AL ホストアダプタカードは 66 MHz の PCI スロット (空いていれば、スロット 7 または 8) に取り付けます。詳細は、56 ページの「PCI カードおよびバスについて」を参照してください。

注意 – ディスクドライブと電源装置を除き、すべての内部オプションの取り付けは 認定された保守作業員が行なってください。PCI FC-AL ホストアダプタカードの取 り付けまたは取り外し手順については、『Sun Fire V890 Server Service Manual』を 参照してください。このマニュアルは、Sun Fire V890 Documentation CD に収録さ れています。

FC-AL のデバイスアドレスについて

Sun Fire V890 の内蔵記憶装置アレイでは、各 FC-AL 装置は記憶装置アレイ内の物理 的な位置に基づいて、固有の選択 ID を割り当てられます。ディスクバックプレーン の各スロットは、異なる選択 ID に固定されています。

各 FC-AL ディスクドライブは、ファイバチャネルループに直接接続され、ループ上 では1つのノードとして動作します。ループ上の各ノードは、ループごとに 127 個の 使用可能なアドレスから、固有の AL_PA (Arbitrated Loop Physical Address) を割り 当てられます。

AL_PA の値は、ハード割り当てまたはソフト割り当てされ、ループが初期化される とき(通常は、システムの起動時またはホットプラグ操作で装置を追加、取り外しす るとき)に決定します。各装置の選択 ID に従って、ハード割り当てされた AL_PA が 最初に確立されます。何らかの理由によって、ループの初期化中にハード割り当てさ れたアドレスが衝突した場合、その装置は自動的にソフト割り当てのアドレスに戻さ れて、衝突が解決します。

各装置にハード割り当てされる AL_PA の値は、バックプレーン内のその装置の位置 (ディスクスロット番号)によって異なります。次の表に、装置の位置に応じて Sun Fire V890 の内蔵 FC-AL 装置にハード割り当てされた選択 ID および AL_PA の 値を示します。選択 ID および AL_PA の値は、どちらも 16 進数で表します。

ベースバックプレーン	選択 I	D AL_PA	拡張バックプレーン	選択 I	D AL_PA
ディスク 0	00	EF	ディスク 6	08	D9
ディスク 1	01	E8	ディスク 7	09	D6
ディスク 2	02	E4	ディスク8	0A	D5
ディスク3	03	E2	ディスク 9	0B	D4
ディスク 4	04	E1	ディスク 10	0C	D3
ディスク 5	05	E0	ディスク 11	0D	D2
SES プロセッサ	06	DC			

第5章

ネットワークインタフェースの構成

この章では、システムのネットワークオプションについて説明し、サポートされているネットワークインタフェースの計画および構成に必要な情報と手順を示します。

この章では、次の作業手順について説明します。

- 94 ページの「プライマリネットワークインタフェースの設定方法」
- 96ページの「追加ネットワークインタフェースの設定方法」
- 99 ページの「光ファイバ Gigabit Ethernet ケーブルの接続方法」
- 101 ページの「より対線 Ethernet ケーブルの接続方法」
- 103 ページの「ブートデバイスの選択方法」

また、次の情報についても説明します。

- 92ページの「ネットワークインタフェースについて」
- 93ページの「冗長ネットワークインタフェースについて」

ネットワークインタフェースについて

Sun Fire V890 サーバーは、Gigabit Ethernet と Fast Ethernet インタフェースの 2 種 類のオンボード Ethernet インタフェースを 1 つずつ備えています。100BASE-TX Fast Ethernet インタフェースはシステム I/O ボード上にあり、IEEE 802.3u Ethernet 規格に準拠しています。Fast Ethernet インタフェースは、自動感知および切り替え が可能なインタフェースで、100 Mbps または 10 Mbps で動作します。このインタ フェースは、リンク先 (接続相手) と自動的にネゴシエーションを行なって、動作の コモンモードを選択します。

1000BASE-SX Gigabit Ethernet インタフェースはシステムマザーボード上にあり、 IEEE 802.3z Ethernet 規格に準拠しています。Gigabit Ethernet インタフェースは、 1000 Mbps でしか動作しません。

オンボード Ethernet インタフェースには、背面パネルの次の2つのコネクタを使用 して接続します。

- Gigabit Ethernet インタフェースに 62.5/125 ミクロンまたは 50/125 ミクロンの光 ファイバケーブルを接続するための、1000BASE-SX 対応の SC コネクタ1つ
- Fast Ethernet インタフェースにカテゴリ 5 のより対線 Ethernet (TPE) ケーブルを 接続するための、RJ-45 コネクタ1つ

適切な PCI インタフェースカードを取り付けると、Ethernet インタフェースを追加 したり、その他のネットワークタイプに接続できます。Gigabit Ethernet または Fast Ethernet の PCI カードは、システムのオンボードインタフェースのいずれかの冗長 ネットワークインタフェースとしても動作できます。動作中のネットワークインタ フェースが使用できなくなった場合、可用性を維持するために、システムは自動的に 冗長インタフェースに切り替えることができます。この機能は、自動フェイルオー バーと呼ばれ、Solaris オペレーティングシステムレベルで設定する必要がありま す。詳細は、93 ページの「冗長ネットワークインタフェースについて」を参照して ください。

ge Gigabit Ethernet ドライバ、eri Fast Ethernet ドライバ、およびその他のいくつ かのネットワークインタフェースドライバは、Solaris のインストール手順の間に自 動的にインストールされます。詳細は、ご使用のソフトウェアに付属する Solaris の マニュアルを参照してください。

システムのネットワークインタフェースの構成方法については、次の節を参照してく ださい。

- 94 ページの「プライマリネットワークインタフェースの設定方法」
- 96ページの「追加ネットワークインタフェースの設定方法」

冗長ネットワークインタフェースについ て

システムを冗長ネットワークインタフェースで構成して、ネットワーク接続の可用性 を高めることができます。このような構成は、障害の発生した、または発生しそうな ネットワークインタフェースを検知し、自動的にすべてのネットワークトラフィック を冗長インタフェースに切り替える Solaris の特別なソフトウェア機能に依存しま す。この機能は、自動フェイルオーバーと呼ばれます。

冗長ネットワークインタフェースを設定するために、Solaris オペレーティングシス テムの IP Network Multipathing 機能を使用して、2 つのインタフェース間の自動 フェイルオーバーを使用可能にすることができます。詳細は、133 ページの

「Multipathing ソフトウェアについて」を参照してください。認定された保守作業 員は、同一の PCI ネットワークインタフェースカードを2枚取り付けるか、2つのオ ンボード Ethernet インタフェースのいずれかと同じインタフェースを持つカードを1 枚取り付けることもできます。

システムの可用性を最大限に高めるため、異なる PCI バスに搭載された冗長ネット ワークインタフェースは、異なる PCI ブリッジがサポートするようにしてくださ い。詳細は、56 ページの「PCI カードおよびバスについて」を参照してください。

プライマリネットワークインタフェース の設定方法

準備作業

必要な作業は次のとおりです。

- 24 ページの「Sun Fire V890 サーバーの設置方法」に示す設置手順を完了しておきます。
- システムの背面パネルの適切なネットワークコネクタに、ケーブルを接続します。詳細は、99ページの「光ファイバ Gigabit Ethernet ケーブルの接続方法」または 101ページの「より対線 Ethernet ケーブルの接続方法」を参照してください。

PCI ネットワークインタフェースカードを使用する場合は、カードに付属のマニュア ルを参照してください。

注 – ディスクドライブと電源装置を除き、すべての内部オプションの取り付けは認 定された保守作業員が行なってください。これらのコンポーネントの取り付け手順に ついては、『Sun Fire V890 Server Service Manual』を参照してください。このマ ニュアルは、Sun Fire V890 Documentation CD に収録されています。

作業手順

1. システムにホスト名を割り当てます。

接続するネットワーク内に同じホスト名が存在してはいけません。ホスト名には英数 字およびハイフン (-) を使用します。ドットは使用できません。また、数字および特 殊文字から始まるホスト名も使用できません。ホスト名は 30 文字以下にする必要が あります。

ネットワークインタフェースの固有の IP アドレスを設定し、そのアドレスを書き留 めておきます。

あとの手順で、このアドレスを使用します。

IP アドレスは、ネットワーク管理者が割り当ててください。各ネットワークデバイ スまたはインタフェースには、固有の IP アドレスを割り当てる必要があります。 3. システムのインストールを再開します。

24 ページの「Sun Fire V890 サーバーの設置方法」に戻ります。

注 - Solaris オペレーティングシステムのインストール作業中、ソフトウェアは、シ ステムのオンボードネットワークインタフェースと、対応するネイティブの Solaris デバイスドライバが存在する PCI ネットワークインタフェースカードを自動的に検 出します。次に、オペレーティングシステムは、そのうちの1つをプライマリネット ワークインタフェースとして選択し、ホスト名および IP アドレスを入力するよう要 求します。オペレーティングシステムのインストール中に構成できるネットワークイ ンタフェースは1つだけです。追加のインタフェースは、オペレーティングシステム のインストール後、別に設定する必要があります。詳細は、96ページの「追加ネッ トワークインタフェースの設定方法」を参照してください。

次の作業

この設定手順を完了すると、プライマリネットワークインタフェースは動作可能にな ります。ただし、システムとその他のネットワークデバイスの通信を可能にするに は、ネットワークネームサーバーの名前空間に、そのシステムの IP アドレスとホス ト名を入力する必要があります。ネットワークネームサービスの設定方法について は、次のマニュアルを参照してください。

■ ご使用の Solaris リリースに付属する『Solaris ネーミングの設定と構成』

システムのオンボードの Sun GigaSwift Ethernet インタフェース用のデバイスドライ バは、Solaris のインストール時に自動的にインストールされます。ドライバの動作 特性と構成パラメタについては、次のマニュアルを参照してください。

■ 『特記事項: Sun GigaSwift Ethernet デバイスドライバ』

このマニュアルは、http://docs.sun.comの「Sun ハードウェア対応 Solaris」より入手できます。最新情報については、『Sun Fire V890 サーバーご使用にあたって』を参照してください。

追加のネットワークインタフェースの設定は、オペレーティングシステムのインス トール後、別に行う必要があります。詳細は、次の節を参照してください。

■ 96ページの「追加ネットワークインタフェースの設定方法」

注 – Sun Fire V890 システムは、Ethernet 10/100BASE-T 規格に準拠しています。こ の規格は、ホストシステムと Ethernet ハブの両方で Ethernet 10BASE-T 接続完全性 テスト (Link Integrity Test) 機能を常に有効にしておくように規定しています。シス テムと Ethernet ハブの接続に問題がある場合は、Ethernet ハブ側の接続完全性テス ト機能が有効になっていることを確認してください。接続完全性テスト機能の詳細 は、ハブに付属しているマニュアルを参照してください。

追加ネットワークインタフェースの設定 方法

準備作業

次の作業を行なって、ネットワークインタフェースを追加する準備をします。

- 24 ページの「Sun Fire V890 サーバーの設置方法」に従って、Sun Fire V890 サーバーを設置します。
- 冗長ネットワークインタフェースを設定する場合は、93ページの「冗長ネット ワークインタフェースについて」を参照してください。
- PCI ネットワークインタフェースカードを取り付ける必要がある場合は、 『Sun Fire V890 Server Service Manual』を参照してください。
- システムの背面パネルの適切なポートに、Ethernet ケーブルを接続します。詳細 は、99 ページの「光ファイバ Gigabit Ethernet ケーブルの接続方法」または 101 ページの「より対線 Ethernet ケーブルの接続方法」を参照してください。

PCI ネットワークインタフェースカードを使用する場合は、カードに付属のマニュア ルを参照してください。

注 – ディスクドライブと電源装置を除き、すべての内部オプションの取り付けは認 定された保守作業員が行なってください。これらのコンポーネントの取り付け手順に ついては、『Sun Fire V890 Server Service Manual』を参照してください。このマ ニュアルは、Sun Fire V890 Documentation CD に収録されています。

作業手順

1. 新しいインタフェースにそれぞれネットワークホスト名を割り当てます。

接続するネットワーク内に同じホスト名が存在してはいけません。ホスト名には英数 字およびハイフン (-) を使用します。ドットは使用できません。また、数字および特 殊文字から始まるホスト名も使用できません。

通常、インタフェースのホスト名には、マシンのホスト名に基づいた名前を設定しま す。たとえば、ホスト名が sunrise のマシンに追加するネットワークインタフェー スには、sunrise-1 などの名前を割り当てます。マシンのホスト名は、Solaris ソフ トウェアのインストール時に割り当てられます。詳細は、Solaris ソフトウェアに付 属のインストールマニュアルを参照してください。 2. 新しいインタフェースにそれぞれ IP アドレスを設定します。

IP アドレスは、ネットワーク管理者が割り当ててください。ネットワーク上の各インタフェースには、固有の IP アドレスを割り当てる必要があります。

 オペレーティングシステムが動作中でない場合は起動して、スーパーユーザーでシス テムにログインします。

新しい PCI ネットワークインタフェースカードを追加したときは、再起動 (boot -r) を実行します。詳細は、40 ページの「再起動 (boot -r) の開始方法」を参照してくだ さい。

システムプロンプトに対して su コマンドを入力してから、スーパーユーザーのパス ワードを入力します。

\$ **su** Password:

 新しいネットワークインタフェースそれぞれに対して、適切な /etc/hostname ファイルを作成します。

作成するファイルの名前は、/etc/hostname.typenumの形式で設定してください。ここで、typeにはネットワークインタフェースのタイプを示す識別子(一般的なタイプはle、hme、eri、ge)、numにはシステムに取り付けた順序に基づくインタフェースのデバイスインスタンス番号を入力します。

たとえば、システムのオンボードの Fast Ethernet および Gigabit Ethernet インタ フェースのファイル名は、それぞれ /etc/hostname.eri0 および /etc/hostname.ge0 となります。どちらのインタフェースも、そのタイプではじ めてシステムに取り付けられたインタフェースなので、0 というデバイスインスタン ス番号が付きます。2 つ目の ge インタフェースとして PCI Gigabit Ethernet アダプ タカードを追加した場合は、ファイル名には hostname.ge1 を割り当てます。これ らのファイルの少なくとも1つは、プライマリネットワークインタフェースとして、 Solaris インストール処理時に自動的に作成されています。

注 - 通常、ネットワークインタフェースカードのタイプは、そのインタフェースに 付属のマニュアルに記述されています。また、ok プロンプトから show-devs コマ ンドを入力して、システムに取り付けられているすべてのデバイスの情報を一覧表示 させ、インタフェースのタイプを調べることもできます。 5. 手順 4 で作成した /etc/hostname ファイルを編集して、手順 1 で決定したホスト 名を入力します。

次に、sunrise という名前のマシンに必要な /etc/hostname ファイルの例を示し ます。この例では、2 つのオンボードの Ethernet インタフェース (ge0 および eri0) と、PCI Gigabit Ethernet アダプタカード (ge1) を装備しています。オンボードの eri0 インタフェースに接続されたネットワークは、システムを sunrise として認 識します。ge0 および ge1 インタフェースに接続されたネットワークは、システム をそれぞれ sunrise-1 および sunrise-2 として認識します。

```
sunrise # cat /etc/hostname.eri0
sunrise
sunrise # cat /etc/hostname.ge0
sunrise # cat /etc/hostname.ge1
sunrise # cat /etc/hostname.ge1
```

6. /etc/hosts ファイル内に、有効なネットワークインタフェースに対して 1 つずつ エントリを作成します。

エントリは、各インタフェースの IP アドレスとホスト名で構成します。

次に、この手順で例として使用した3つのネットワークインタフェースに対する /etc/hostsファイルのエントリの例を示します。

```
sunrise # cat /etc/hosts
#
# Internet host table
#
127.0.0.1 localhost
129.144.10.57 sunrise loghost
129.144.14.26 sunrise-1
129.144.11.83 sunrise-2
```

7. ifconfig コマンドを使用して手動で plumb し、新しいインタフェースをそれぞれ 使用可能にします。

たとえば、論理インタフェース ge0 を使用可能にするには、次のように入力します。

sunrise # ifconfig ge0 plumb up

詳細は、ifconfig(1M)のマニュアルページを参照してください。

次の作業

この設定手順を完了すると、新しいネットワークインタフェースは動作可能になりま す。ただし、システムとその他のネットワークデバイスの通信を可能にするには、 ネットワークネームサーバーの名前空間に、新しいインタフェースの IP アドレスと ホスト名を入力する必要があります。ネットワークネームサービスの設定について は、次のマニュアルを参照してください。

■ ご使用の Solaris リリースに付属する『Solaris ネーミングの設定と構成』

システムのオンボードの Ethernet インタフェース用の eri および ge デバイスドラ イバは、Solaris のインストール時に自動的に構成されます。これらのデバイスドラ イバの動作特性と構成パラメタについては、次のマニュアルを参照してください。

- 『特記事項: eri FastEthernet デバイスドライバ』
- 『特記事項: Sun GigabitEthernet デバイスドライバ』

このマニュアルは、ご使用の Solaris ソフトウェアおよび http://docs.sun.com の「Sun ハードウェア対応 Solaris」より入手できます。最新情報については、『Sun Fire V890 サーバーご使用にあたって』を参照してください。

注 – Sun Fire V890 システムは、Ethernet 10/100BASE-T 規格に準拠しています。こ の規格は、ホストシステムと Ethernet ハブの両方で Ethernet 10BASE-T 接続完全性 テスト (Link Integrity Test) 機能を常に有効にしておくように規定しています。シス テムと Ethernet ハブの接続に問題がある場合は、ハブ側の接続テスト機能が有効に なっていることを確認してください。接続完全性テスト機能の詳細は、ハブに付属し ているマニュアルを参照してください。

光ファイバ Gigabit Ethernet ケーブルの 接続方法

準備作業

次の節で説明する、事前に行なっておくべき手順を完了します。

■ 24 ページの「Sun Fire V890 サーバーの設置方法」

作業手順

1. Sun Fire V890 のすべての接続要件に適合する光ファイバケーブルを選択します。

Sun Fire V890 のオンボードの Gigabit Ethernet インタフェースは、50/125 ミクロン または 62.5/125 ミクロンの、マルチモードのデュプレックス光ファイバケーブルを サポートします。ケーブルは、UL910 および UL1651 仕様に準拠し、UL94V-2 以上 に認定された標準デュアル SC コネクタが付属している必要があります。

ケーブルの長さは、62.5/125 ミクロンのケーブルの場合は 300 m、50/125 ミクロン のケーブルの場合は 550 m を超えてはいけません。

システムに PCI Gigabit Ethernet アダプタカードが取り付けられている場合は、カードに付属のマニュアルを参照して、ケーブルの要件を確認してください。

2. Gigabit Ethernet インタフェースのデュアル SC コネクタの位置を確認します。

詳細は、9ページの「背面パネルの機能」を参照してください。PCI Gigabit Ethernet アダプタカードについては、カードに付属のマニュアルを参照してください。

- 3. SC コネクタからダストカバーを取り外します。
- 4. 光ファイバケーブルを、Gigabit Ethernet コネクタおよび Ethernet ネットワークに接続します。

ケーブルおよびコネクタは、正しい差し込み方向を向く形状になっています。

次の作業

システムを設置している場合は、この手順を完了したあと、次の節に戻ってください。

■ 24 ページの「Sun Fire V890 サーバーの設置方法」

システムにネットワークインタフェースを追加インストールする場合は、次の節を参照してインタフェースを設定してください。

■ 96ページの「追加ネットワークインタフェースの設定方法」

より対線 Ethernet ケーブルの接続方法

準備作業

次の節で説明する、事前に行なっておくべき手順を完了します。

■ 24 ページの「Sun Fire V890 サーバーの設置方法」

作業手順

 適切な Fast Ethernet インタフェースの、RJ-45 より対線 Ethernet (TPE) コネクタの 位置を確認します。
 詳細は、9ページの「背面パネルの機能」を参照してください。PCI Fast Ethernet ア

ダプタカードについては、カードに付属のマニュアルを参照してください。

 適切な RJ-45 コネクタに、カテゴリ 5 のシールドなし、より対線 (UTP) ケーブルを 差し込みます。

コネクタの爪が適切に差し込まれると、カチッという音が聞こえます。UTP ケーブ ルの長さは、100 m (328 フィート)を超えてはいけません。

3. ケーブルのもう一方の端を、適切なネットワークデバイスの RJ-45 コンセントに接続します。

コネクタの爪が適切に差し込まれると、カチッという音が聞こえます。

ネットワークの接続方法については、ネットワーク管理者にお問い合わせください。

次の作業

システムを設置している場合は、この手順を完了したあと、次の節に戻ってください。

■ 24 ページの「Sun Fire V890 サーバーの設置方法」

システムにネットワークインタフェースを追加インストールする場合は、次の節を参照してインタフェースを設定してください。

■ 96ページの「追加ネットワークインタフェースの設定方法」

ブートデバイスの選択方法

ブートデバイスは、OpenBoot ファームウェア構成変数 boot-device の設定によっ て決まります。この変数は、デフォルトで disk net に設定されています。この設 定により、ファームウェアは、まずシステムハードディスクからの起動を試み、この 起動に失敗した場合にオンボードの Fast Ethernet インタフェースからの起動を試み ます。

準備作業

ブートデバイスを選択する前に、設置手順を完了している必要があります。設置方法 については、次の節を参照してください。

■ 24 ページの「Sun Fire V890 サーバーの設置方法」

特に、システムコンソールを設定し、システムに電源を入れる必要があります。詳細 は、次の節を参照してください。

- 31ページの「文字端末の接続方法」
- 33 ページの「ローカルグラフィックスコンソールの設定方法」
- 35 ページの「システムの電源投入方法」

ネットワークから起動する場合は、ネットワークインタフェースをネットワークに接 続して、構成する必要もあります。詳細は、次の節を参照してください。

- 101 ページの「より対線 Ethernet ケーブルの接続方法」
- 94 ページの「プライマリネットワークインタフェースの設定方法」
- 96ページの「追加ネットワークインタフェースの設定方法」

この作業手順は、OpenBoot ファームウェアに関する知識があり、OpenBoot 環境に 入る方法を理解していることを前提としています。OpenBoot ファームウェアについ ては、『OpenBoot 4.x Command Reference Manual』を参照してください。このマ ニュアルは、http://docs.sun.com の「Sun ハードウェア対応 Solaris」より入手 できます。最新情報については、『Sun Fire V890 サーバーご使用にあたって』を参 照してください。

作業手順

1. ok プロンプトに対して、次のように入力します。

ok **setenv boot-device** device-specifier

device-specifier には、次のいずれかの値を入力します。

- cdrom CD-ROM ドライブ
- disk システム起動ディスク
- disk0 内蔵ディスク 0
- disk1 内蔵ディスク1
- disk2 内蔵ディスク 2
- disk3 内蔵ディスク 3
- disk4 内蔵ディスク 4
- disk5 内蔵ディスク 5
- disk6 内蔵ディスク 6
- disk7 内蔵ディスク 7
- disk8 内蔵ディスク 8
- disk9 内蔵ディスク 9
- disk10 内蔵ディスク 10
- disk11 内蔵ディスク 11
- tape SCSI テープドライブ (存在する場合)
- net- オンボードの Fast Ethernet インタフェース
- gem オンボードの Gigabit Ethernet インタフェース
- full path name デバイスまたはネットワークインタフェースをフルパス名で指定

注 – 起動プログラムの実行方法を指定するほか、起動するプログラムの名前を指定 することもできます。詳細は、ご使用の Solaris ソフトウェアに付属の『OpenBoot 4.x Command Reference Manual』を参照してください。

デフォルトのブートデバイスに、オンボードの Ethernet インタフェース以外のネットワークインタフェースを指定する場合は、次のコマンドによって各インタフェースのフルパス名を調べることができます。

ok show-devs

show-devs コマンドを実行すると、システムデバイスが一覧で表示され、各 PCI デ バイスのフルパス名が表示されます。たとえば、Fast Ethernet PCI カードの場合、次 のように表示されます。

/pci@8,700000/pci@2/SUNW,hme@0,1

2. 変数の変更を有効にするには、次のように入力します。

ok **reset-all**

注 – 変数の変更を保存するには、正面パネルの電源ボタンを使用してシステムの電 源を再投入する方法もあります。

第6章

システムのファームウェア構成

この章では、Sun Fire V890 システムの次の動作を構成するときに使用できる OpenBoot ファームウェアコマンドおよび構成変数について説明します。

- OpenBoot 環境監視
- 自動システム回復 (ASR)

また、OpenBoot の非常時の手順を実行するためのキーボードコマンドおよび代替方 法についても説明します。

この章では、次の作業手順について説明します。

- 108 ページの「OpenBoot 環境監視を使用可能にする方法」
- 109 ページの「OpenBoot 環境監視を使用不可にする方法」
- 110 ページの「OpenBoot 環境の状態情報の取得方法」
- 115 ページの「ASR を使用可能にする方法」
- 116 ページの「ASR を使用不可にする方法」
- 118 ページの「手動による装置の構成解除方法」
- 119 ページの「手動による装置の再構成方法」
- 120 ページの「ASR 状態情報の取得方法」
- 122 ページの「Stop-N 機能の実現方法」

また、次の情報についても説明します。

- 106 ページの「OpenBoot 環境監視について」
- 111 ページの「自動システム回復について」
- 116 ページの「手動による装置の構成について」
- 121 ページの「OpenBoot の非常時の手順について」
- 124 ページの「装置識別名の関連情報」

注 – システムの復元およびサーバーの可用性を向上させるために、現在、新しい標 準 (デフォルト) OpenBoot ファームウェア構成を導入しています。この新しい構成は Sun Fire V890 などのサーバーの動作に影響します。詳細は、『OpenBoot PROM Enhancements for Diagnostic Operation』を参照してください。このマニュアルは、 Sun Fire V890 Documentation CD に収録されています。 注 – この章で説明する作業手順は、OpenBoot ファームウェアに関する知識があり、 OpenBoot 環境に入る方法を理解していることを前提としています。OpenBoot ファームウェアについては、『OpenBoot 4.x Command Reference Manual』を参照 してください。このマニュアルは、http://docs.sun.com の「Sun ハードウェア 対応 Solaris」より入手できます。最新情報については、『Sun Fire V890 サーバーご 使用にあたって』を参照してください。

OpenBoot 環境監視について

Sun Fire V890 システムの環境監視および制御の機能は、オペレーティングシステム レベルと OpenBoot ファームウェアレベルの両方に常駐します。そのため、システム が停止した場合または起動できない場合でも、監視機能は動作可能です。OpenBoot がシステムを制御している場合は、OpenBoot 環境監視がシステムの電源装置、ファ ン、および温度センサーの状態を 30 秒ごとに検査します。検査によって、電圧、電 流、ファンスピード、または温度の異常が検出された場合は、OpenBoot 環境監視は システムコンソールに警告メッセージを表示します。ファンの重大な障害や高温状態 が検出された場合は、OpenBoot 環境監視は停止の警告を表示し、ハードウェアの損 傷を防ぐため、30 秒後にシステムの電源を切断します。

システムの環境監視機能の詳細は、17ページの「環境の監視および制御」を参照してください。

OpenBoot 環境監視の使用可能または使用不可への切り替え

OpenBoot 環境監視は、システムを ok プロンプトから操作している場合は、デフォ ルトで使用可能になっています。ただし、OpenBoot コマンド env-on および envoff を使用して、OpenBoot 環境監視機能の使用可能または使用不可を切り替えるこ ともできます。詳細は、次の節を参照してください。

- 108 ページの「OpenBoot 環境監視を使用可能にする方法」
- 109 ページの「OpenBoot 環境監視を使用不可にする方法」

注 – Stop-A キーボードコマンドを使用して OpenBoot 環境に入ると、OpenBoot 環境監視はただちに使用不可になります。OpenBoot 環境監視を使用可能にする場合 は、システムを再起動する前にふたたび使用可能にする必要があります。オペレー ティングシステムの停止やシステムの電源の再投入によって、またはシステムパニッ クの結果として OpenBoot 環境に入った場合は、OpenBoot 環境監視は使用可能のま まになります。

自動システム停止

OpenBoot 環境監視が重大なファン障害または高温状態を検出した場合は、自動シス テム停止処理が行われます。このとき、システムコンソールに次のような警告メッ セージが表示されます。

WARNING: SYSTEM POWERING DOWN IN 30 SECONDS! Press Ctrl-C to cancel shutdown sequence and return to ok prompt.

必要に応じて、Control-Cを入力して自動停止を中止し、システムの ok プロンプト に戻ることができます。これを行わないと、30 秒後にシステムの電源が自動的に切 断されます。

注 – Control-C を入力してシステム停止を中止すると、OpenBoot 環境監視が使用不可になります。そのため、これ以上の自動停止処理が引き起こされることはないので、危険な状態の原因になっているコンポーネントを交換するのに十分な時間ができます。障害の発生したコンポーネントを交換したあとは、OpenBoot 環境監視を使用可能にするため、env-on コマンドを入力する必要があります。

注意 – Control-C を入力してシステム停止を中止した場合は、危険な状態の原因に なっているコンポーネントをただちに交換してください。交換部品をすぐに手配でき ない場合は、システムハードウェアの損傷を防ぐため、システムの電源を切断してく ださい。

OpenBoot 環境の状態情報

OpenBoot コマンド.env を使用すると、OpenBoot 環境監視に関する現在の状態情報をすべて取得できます。OpenBoot 環境監視の使用可能、使用不可にかかわらず、 環境の状態情報はいつでも取得できます。.env 状態コマンドは、現在の環境の状態 情報を報告するだけです。異常または範囲を超えた状態を検出しても、それに対する 処置は行いません。

.env コマンドの出力例については、110 ページの「OpenBoot 環境の状態情報の取 得方法」を参照してください。

OpenBoot 環境監視を使用可能にする方 法

OpenBoot 環境監視は、システムを ok プロンプトから操作している場合は、デフォ ルトで使用可能になっています。ただし、OpenBoot コマンド env-on および envoff を使用して、OpenBoot 環境監視機能の使用可能または使用不可を切り替えるこ ともできます。

注 - コマンド env-on および env-off は、OpenBoot レベルの環境監視機能にのみ 影響します。これらのコマンドは、オペレーティングシステム動作中のシステムの環 境監視および制御には影響しません。

準備作業

この作業手順は、OpenBoot ファームウェアに関する知識があり、OpenBoot 環境に 入る方法を理解していることを前提としています。OpenBoot ファームウェアについ ては、『OpenBoot 4.x Command Reference Manual』を参照してください。このマ ニュアルは、http://docs.sun.comの「Sun ハードウェア対応 Solaris」より入手 できます。最新情報については、『Sun Fire V890 サーバーご使用にあたって』を参 照してください。

作業手順

 ● OpenBoot 環境監視を使用可能にするには、システムの ok プロンプトで env-on と 入力します。

ok **env-on** Environmental monitor is ON ok

OpenBoot 環境監視を使用不可にする方 法

OpenBoot 環境監視は、システムを ok プロンプトから操作している場合は、デフォ ルトで使用可能になっています。ただし、OpenBoot コマンド env-on および envoff を使用して、OpenBoot 環境監視機能の使用可能または使用不可を切り替えるこ ともできます。

注 – コマンド env-on および env-off は、OpenBoot レベルの環境監視機能にのみ 影響します。これらのコマンドは、オペレーティングシステム動作中のシステムの環 境監視および制御には影響しません。

注 – Stop-A キーボードコマンドを使用して OpenBoot 環境に入ると、OpenBoot 環境監視はただちに使用不可になります。システムを再起動する前に、OpenBoot 環境 監視をふたたび使用可能にする必要があります。オペレーティングシステムの停止や システムの電源の再投入によって、またはシステムパニックの結果として OpenBoot 環境に入った場合は、OpenBoot 環境監視は使用可能のままになります。

作業手順

● OpenBoot 環境監視を使用不可にするには、システムの ok プロンプトで env-off と入力します。

```
ok env-off
Environmental monitor is OFF
ok
```

OpenBoot 環境の状態情報の取得方法

システムの ok プロンプトで OpenBoot コマンド .env を使用して、システムの電源 装置、ファン、および温度センサーの状態情報を取得します。

作業手順

● OpenBoot 環境の状態情報を取得するには、システムの ok プロンプトで .env と入 カします。

```
ok .env
Environmental Status:
Power Supplies:
PS0:
                           Present, receiving AC power
PS1:
                           Present, receiving AC power
PS2:
                          Present, receiving AC power
Fans:
Tray 1 (CPU):
                      Present, Fan A @ 3225 RPM, Fan B @ 3157 RPM
Tray 2 (CPU):
                        Present, Fan A @ 3529 RPM, Fan B @ 3571 RPM
Tray 3 (I/O):
                      Present, Fan A @ 3529 RPM, Fan B @ 3488 RPM
Tray 4 (I/O):
                       Present, Fan A @ 3157 RPM, Fan B @ 3030 RPM
Fan 5 (IO-Bridge):
                          Present, Fan @ 3846 RPM
Fan 6 (IO-Bridge):
                           Present, Fan
                                         @ 3658 RPM
Temperatures:
CMP0:
                           Ambient = 32 \text{ deg. C}, Die = 56 \text{ deg. C}
                           Ambient = 34 deg. C, Die = 52 deg. C
CMP1:
CMP2:
                           Ambient = 31 deg. C, Die = 52 deg. C
CMP3:
                           Ambient = 33 deg. C, Die = 57 deg. C
                           Ambient = 36 \text{ deg. C}, Die = 59 \text{ deg. C}
CMP4:
                           Ambient = 32 deg. C, Die = 53 deg. C
CMP5:
                           Ambient = 33 deg. C, Die = 59 deg. C
CMP6:
CMP7:
                          Ambient = 32 \text{ deg. C}, Die = 56 \text{ deg. C}
Motherboard:
                         Ambient = 22 \text{ deg. C}
I/O Board:
                         Ambient = 19 deg. C
Disk Backplane 0:
                         Ambient = 19 \text{ deg. C}
Environmental monitor is ON
```

注 - OpenBoot 環境監視が使用可能かどうかにかかわらず、環境の状態情報はいつで も取得できます。.env 状態コマンドは、現在の環境の状態情報を報告するだけで す。異常または範囲を超えた状態を検出しても、それに対する処置は行いません。

自動システム回復について

自動回復システム (ASR) は、ハードウェアに障害が発生した場合にオペレーティン グシステムを保護して、オペレーティングシステムが起動および動作している状態を 継続できるようにする機能を指す場合があります。しかし、Sun Fire V890 サーバー での ASR の実装は、これとは異なります。Sun Fire V890 サーバーで ASR を使用す ると、ハードウェアの重大ではない故障または障害のあと、自動的に障害を特定して オペレーティングシステムを復元できます。

- プロセッサ
- メモリーモジュール
- PCI バスおよびカード
- IDE バス
- FC-AL サブシステム
- Fast Ethernet インタフェース
- Gigabit Ethernet インタフェース
- USB インタフェース
- シリアルインタフェース

これらのハードウェアに障害が発生すると、ファームウェアベースの診断テストは、 問題を特定し、IEEE 1275 に準拠したクライアントインタフェースを使用して、デバ イスツリー上でその装置に「障害 (Failed)」または「使用不可 (Disabled)」のマーク を付けます。そのあと、OpenBoot ファームウェアは、障害のある装置を構成解除 し、オペレーティングシステムを再起動します。障害の発生したコンポーネントがな くても Sun Fire V890 システムが動作可能であれば、この機能はすべて自動的に実行 されます。

回復後、オペレーティングシステムは構成解除した装置にはアクセスしません。これ により、ハードウェアコンポーネントの障害によってシステム全体が停止したり、シ ステムが繰り返しクラッシュすることを回避できます。

障害のあるコンポーネントが電気的に休止し、ランダムなバスエラーまたは信号雑音 が発生しないかぎり、システムは自動的に再起動して動作を再開します。障害のある コンポーネントの交換については、認定された保守作業員に問い合わせてください。

auto-boot オプション

OpenBoot 構成変数 auto-boot? は、リセットするたびにオペレーティングシステ ムを起動するかどうかを制御します。Sun のプラットフォームのデフォルト設定は、 true です。

注 – 保守モードの場合、システムは自動的に起動しません。詳細は、114 ページの「リセットシナリオ」を参照してください。

システムが電源投入時診断に失敗すると、auto-boot?は無視されて、オペレータ が手動でシステムを起動しないかぎりシステムは起動されません。この動作は、シス テムの可用性を制限します。そのため、Sun Fire V890の OpenBoot ファームウェア には、auto-boot-on-error?という2つ目の OpenBoot 構成変数スイッチがあり ます。このスイッチは、サブシステムの障害が検出された場合に、システムを起動す るどうかを制御します。

ファームウェアで重大でないサブシステムの障害が検出されたあとの自動起動を使用 可能にするには、auto-boot?および auto-boot-on-error? スイッチの両方を true に設定する必要があります (デフォルト値)。

ok setenv auto-boot? true ok setenv auto-boot-on-error? true

保守モードの場合、または重大で回復不可能なエラーが発生した場合には、システム は起動しません。重大で回復不可能なエラーの例は、113ページの「エラー処理の概 要」を参照してください。

エラー処理の概要

電源投入シーケンスでのエラー処理は、次の表にまとめる3つの状況に分類されま す。

状況	システムの動作	注記
エラーが検出されな い	auto-boot? が true に設定されて いる場合、システムは起動します。	デフォルトでは、auto-boot? および auto- boot-on-error? の両方が true に設定され ています。
重大でないエラーが 検出された	auto-boot? および auto-boot- on-error? の両方が true に設定 されている場合、システムは起動し ます。	 重大でないエラーには、次のものがあります。 IDE バスの障害 FC-AL サブシステムの障害[*] Gigabit Ethernet または Fast Ethernet イン タフェースの障害 USB インタフェースの障害 シリアルインタフェースの障害 PCI カードの障害 プロセッサの障害[†] メモリーの障害[‡]
重大で回復不可能な エラーが検出された	OpenBoot 構成変数の設定にかかわ らず、システムは起動しません。	 重大で回復不可能なエラーには、次のものがあります。 すべてのプロセッサの障害 すべての論理メモリーバンクの障害 フラッシュ RAM の巡回冗長検査 (CRC) の障害 重大な FRU-ID SEEPROM 構成データの障害 重大な特定用途向け集積回路 (ASIC)の障害

* 起動ディスクへの機能している代替パスが必要です。詳細は、133ページの「Multipathing ソフトウェアについて」を参照してくだ さい。

↑ 1 つのプロセッサの障害によって、CPU/メモリーモジュール全体が構成解除されます。再起動するには、別の CPU/メモリーモジュールが機能している必要があります。

↓ 物理的な各 DIMM は 2 つの論理的なメモリーバンクに属するため、ファームウェアは、影響のある DIMM に関連する両方のメモ リーバンクを構成解除します。このとき、CPU/メモリーモジュールは動作を継続しますが、プロセッサの1 つのメモリー容量は小 さくなります。

> **注** – POST または OpenBoot 診断が、通常のブートデバイスに関連する重大でないエ ラーを検出した場合は、OpenBoot ファームウェアは自動的に障害のある装置を構成 解除し、boot-device 構成変数で次に指定されているブートデバイスからの起動を 試みます。

リセットシナリオ

システムのキースイッチ位置と OpenBoot NVRAM の 2 つの構成変数 diagswitch? および diag-trigger は、システムのリセットイベントが発生したとき、 システムがファームウェア診断を実行するかどうかを制御します。

システムのキースイッチを診断位置に設定すると、システムは保守モードになり、 OpenBoot 構成変数の設定を無視して、Sun が指定したレベルでテストを実行しま す。

diag-switch? 変数を true に設定してもシステムは保守モードになり、システムのキースイッチを診断位置に設定した場合とまったく同じ結果になります。

注 – システムが保守モードに設定されている場合、自動起動は使用不可になります。

システムのキースイッチを標準位置に設定し、OpenBoot 変数 diag-switch? を false (デフォルト値) に設定すると、システムは通常モードになります。システム がこのモードに設定されている場合は、OpenBoot 構成変数 (主に diag-trigger) を設定することによって、診断および自動起動の動作を制御できます。

次の表に、変数 diag-trigger の各種設定 (キーワード) を示します。最初の3つの キーワードは、任意に組み合わせて使用できます。

キーワード	機能
power-on-reset (デフォルト)	システムの電源を再投入するとリセットされます。
error-reset (デフォルト)	RED State Exception、Watchdog Reset、Fatal Reset などのハード ウェアエラーが発生すると、リセットされます。
user-reset	オペレーティングシステムのパニック、あるいは OpenBoot (reset- all、boot) または Solaris OS (reboot、shutdown、init) からの ユーザー主導のコマンドによってリセットされます。
none	診断テストは実行されません。

通常モードおよび保守モードの情報

通常モードおよび保守モードに関する説明や、ASR の動作に影響のある OpenBoot 構成変数の詳細は、『OpenBoot PROM Enhancements for Diagnostic Operation』を 参照してください。このマニュアルは、Sun Fire V890 Documentation CD に収録さ れています。

ASR ユーザーコマンド

OpenBoot コマンド.asr、asr-disable、および asr-enable は、ASR 状態情報 の取得、およびシステム装置の手動による構成解除または再構成に使用します。詳細 は、次の節を参照してください。

- 118 ページの「手動による装置の構成解除方法」
- 119 ページの「手動による装置の再構成方法」
- 120 ページの「ASR 状態情報の取得方法」

ASR を使用可能にする方法

システムが通常モードのとき、自動システム回復 (ASR) 機能はデフォルトで使用可 能になっています。ただし、ASR を制御する OpenBoot 構成変数を編集した場合 は、次の手順を実行して構成変数を元に戻します。詳細は、114 ページの「リセット シナリオ」を参照してください。

作業手順

1. システムの ok プロンプトで、次のように入力します。

```
ok setenv diag-switch? false
ok setenv auto-boot? true
ok setenv auto-boot-on-error? true
```

 diag-trigger および diag-script 変数を次のように設定します。次のように入 カします。

```
ok setenv diag-trigger power-on-reset error-reset
ok setenv diag-script normal
```

パラメタの変更が、システムに永続的に保存されます。

ASR を使用不可にする方法

自動システム回復(ASR)機能を使用不可にするには、システムを保守モードに設定するか、OpenBoot構成変数を次の手順に従って編集します。詳細は、114ページの「リセットシナリオ」を参照してください。

作業手順

● システムの ok プロンプトで、次のように入力します。

ok setenv auto-boot-on-error? false

パラメタの変更が、システムに永続的に保存されます。

手動による装置の構成について

この節では、装置とスロットの構成解除の違い、システムのプロセッサをすべて構成 解除した場合の動作、およびデバイスパスの取得方法について説明します。

装置およびスロットの構成解除

装置によっては、スロットを構成解除したときと、スロット内の装置を構成解除した ときの結果が異なる場合があります。

PCI「装置」を構成解除した場合、ファームウェアはその装置をプローブすることが でき、オペレーティングシステムはその装置を認識できます。Solaris OS は、このよ うな装置を確認すると「障害 (Failed)」として報告し、その装置の使用を避けます。

PCI「スロット」を構成解除した場合、ファームウェアはスロットをプローブしません。また、オペレーティングシステムは、そのスロットに差し込まれているすべての装置を認識しません。

どちらの場合も、構成解除した装置は使用できません。では、なぜ区別されているの でしょうか。場合によっては、装置に、プローブするとシステムが停止するような障 害が発生することがあります。このような場合は、その装置が取り付けられたスロッ トを構成解除した方が、問題を抑制する可能性が高くなります。
すべてのシステムプロセッサの構成解除

asr-disable コマンドを使用すると、すべてのシステムプロセッサを構成解除でき ます。これによってシステムがクラッシュすることはありません。OpenBoot システ ムファームウェアは、すべてのプロセッサが構成解除されていると報告しますが、実 際には1つのプロセッサが機能し続けてファームウェアを実行します。

デバイスパス

手動による装置の構成解除および再構成を行うとき、その装置の物理的なフルパスを 確認する必要がある場合があります。これを行うには、次のように入力します。

ok show-devs

show-devs コマンドは、システムの装置とそのフルパス名を表示します。たとえば、Fast Ethernet PCI カードの場合、次のように表示されます。

/pci@8,700000/pci@2/SUNW,hme@0,1

次のように入力すると、現在の装置の別名を一覧表示できます。

ok **devalias**

次のように入力すると、物理デバイスに対して独自の装置の別名を作成できます。

ok **devalias** alias_name physical_device_path

ここで、alias_name には割り当てる別名を、physical_device_path には装置の物理デバ イスとしてのフルパスを入力します。

注 – asr-disable を使用して手動で装置を構成解除し、その装置にほかの別名を割 り当てた場合、装置の別名が変更されてもその装置は構成解除されたままです。

次のように入力すると、現在使用不可になっている装置を判定できます。

ok .asr

詳細は、120ページの「ASR 状態情報の取得方法」を参照してください。

構成解除および再構成の手順については、次の節を参照してください。

- 118 ページの「手動による装置の構成解除方法」
- 119 ページの「手動による装置の再構成方法」

装置識別名は、次の節に記載されています。

124 ページの「装置識別名の関連情報」

手動による装置の構成解除方法

重要ではないコンポーネントに障害が発生したときに起動できるように、OpenBoot ファームウェアは asr-disable コマンドを提供しています。このコマンドによっ て、システム装置を手動で構成解除できます。このコマンドは、該当するデバイスツ リーノードに適切な「状態」属性を作成することによって、特定の装置に「使用不可 (Disabled)」のマークを付けます。規定では、UNIX は、このようにマークされてい る装置のドライバを起動しません。

作業手順

1. ok プロンプトに対して、次のように入力します。

ok **asr-disable** device-identifier

device-identifier には、次のいずれかの値を入力します。

- OpenBoot show-devs コマンドが報告する物理デバイスのフルパス
- OpenBoot devalias コマンドが報告する有効な装置の別名
- 124 ページの「装置識別名の関連情報」に記載されている装置識別名

注-1つのプロセッサを手動で構成解除すると、ボード上のすべてのプロセッサとメモリーを含む CPU/メモリーボード全体が構成解除されます。

OpenBoot 構成変数の変更は、次にシステムをリセットしたあとで有効になります。

2. 変更をすぐに有効にするには、次のように入力します。

ok **reset-all**

注 – 変更をすぐに有効にするには、正面パネルの電源ボタンを使用してシステムの 電源を再投入する方法もあります。

手動による装置の再構成方法

OpenBoot asr-enable コマンドを使用すると、asr-disable コマンドを使用して 以前に構成解除した装置を再構成できます。

作業手順

1. ok プロンプトに対して、次のように入力します。

ok **asr-enable** device-identifier

device-identifier には、次のいずれかの値を入力します。

- OpenBoot show-devs コマンドが報告する物理デバイスのフルパス
- OpenBoot devalias コマンドが報告する有効な装置の別名
- 124 ページの「装置識別名の関連情報」に記載されている装置または一連の装置の 識別名
- 2. 次のいずれかの手順を実行します。
 - a. プロセッサを再構成する場合は、正面パネルの電源ボタンを使用してシステムの 電源を再投入します。
 - b. ほかの装置を再構成する場合は、次のように入力します。

ok **reset-all**

注 - プロセッサを再構成するには、システムの電源を再投入する必要があります。 reset-all コマンドでは、プロセッサをオンラインに戻すことはできません。

ASR 状態情報の取得方法

作業手順

● システムの ok プロンプトで、次のように入力します。

ok .asr ASR Disablemen	t Status
Component:	Status
CMP0: Memory Bank0: Memory Bank1: Memory Bank2: Memory Bank3: CMP1/Memory: CMP2/Memory: CMP3/Memory: CMP5/Memory: CMP5/Memory: CMP5/Memory: IO-Bridge8: IO-Bridge9: GPTwo Slots: Onboard SCSI: Onboard GEM: DCL Cloto.	Enabled Disabled Enabled
The following /pci@8,700000/	devices have been ASR disabled: ISI,gfxp@5

.asr コマンドの出力例で、使用不可 (Disabled) とマークされているものが、asrdisable コマンドを使用して手動で構成解除された装置です。この例の.asr 出力 は、CMP 0 によって制御されるメモリーバンクの1 つと PCI スロット 0 にあるフ レームバッファーカードが構成解除されていることを示しています。

注 - .asr コマンドは、asr-disable コマンドを使用して手動で構成解除された装置だけを表示します。ファームウェア診断の失敗により自動的に構成解除された装置 は、表示されません。POST 診断の失敗により自動的に構成解除された装置を確認す るには、『Sun Fire V890 Diagnostics and Troubleshooting Guide』の説明に従って show-post-results コマンドを使用してください。このマニュアルは、 http://www.sun.com/documentation より入手できます。 詳細は、次の節を参照してください。

- 111ページの「自動システム回復について」
- 115 ページの「ASR を使用可能にする方法」
- 116 ページの「ASR を使用不可にする方法」
- 118 ページの「手動による装置の構成解除方法」
- 119 ページの「手動による装置の再構成方法」

OpenBoot の非常時の手順について

この節では、Sun Fire V890 システムなどの USB キーボードを使用するシステムでの、Stop コマンドの機能について説明します。

Stop-A の機能

Stop-A (Abort) は、システムを OpenBoot ファームウェアの制御下 (ok プロンプトが 表示された状態) に移行する break コマンドを発行します。Sun Fire V890 のキーシー ケンスは、マシンのリセット後、最初の数秒間は機能しないこと以外は、以前のキー ボードを使用するシステムと同様に動作します。

Stop-D の機能

Stop-D (Diags) キーシーケンスは、USB キーボードを使用するシステムではサポート されていません。ただし、システムのキースイッチを診断位置に入れることによっ て、Stop-D 機能をほぼエミュレートできます。詳細は、11 ページの「状態およびコ ントロールパネルについて」を参照してください。

また、RSC の bootmode diag コマンドによっても同様な機能が提供されます。詳細は、『Sun Remote System Control (RSC) 2.2 ユーザーマニュアル』を参照してください。このマニュアルは、Sun Fire V890 Documentation CD に収録されています。

Stop-F の機能

Stop-F 機能は、USB キーボードを使用するシステムでは使用できません。ただし、 RSC の bootmode forth コマンドによって同様な機能が提供されます。詳細は、 『Sun Remote System Control (RSC) 2.2 ユーザーマニュアル』を参照してくださ い。このマニュアルは、Sun Fire V890 Documentation CD に収録されています。

Stop-N の機能

Stop-N シーケンスを使用すると、システムの OpenBoot 構成変数が誤って構成され ている場合に発生する可能性の高い問題を回避できます。以前のキーボードを使用す るシステムでは、システムの電源が入っている状態で Stop-N シーケンスを押してい ました。

Sun Fire V890 などの USB キーボードを使用しているシステムでは、この機能の実現 はやや複雑で、システムが特定の状態になるまで待つ必要があります。詳細は、122 ページの「Stop-N 機能の実現方法」を参照してください。

Sun Fire V890 システムで Stop-N を使用することの短所は、診断を有効にしている 場合に、システムが適切な状態になるまで時間がかかることです。しかし、代替手段 として、システムのキースイッチを診断位置にする方法があります。

システムのキースイッチを診断位置に入れると、OpenBoot 構成変数の設定が上書き されます。これによって、システムは ok プロンプトに戻り、誤って設定した構成を 修正できます。

RSC ソフトウェアにアクセスできる場合は、同様な機能を提供する RSC コマンド bootmode reset_nvram を使用することもできます。詳細は、『Sun Remote System Control (RSC) ユーザーマニュアル』を参照してください。このマニュアル は、Sun Fire V890 Documentation CD に収録されています。

Stop-N 機能の実現方法

準備作業

この手順では、Sun Fire V890 システムで Stop-N 機能を実現して、OpenBoot 構成変数を一時的にデフォルトの設定に戻します。この手順は、Sun Fire V890 システムに診断テストの実行を構成していない場合にもっとも役立ちます。代替手段として、システムのキースイッチを診断位置に入れる方が便利な場合もあります。基本的な情報については、次の節を参照してください。

■ 121 ページの「OpenBoot の非常時の手順について」

システムのキースイッチの詳細は、次の節を参照してください。

11 ページの「状態およびコントロールパネルについて」

作業手順

1. システムの電源を入れます。

POST 診断が実行されるように構成していると、正面パネルの障害 LED および取り 外し可能 LED の両方がゆっくり点滅します。

2. システムの障害 LED のみがすばやく点滅する状態になるまで待ちます。

注 – 診断テストが実行されるように Sun Fire V890 システムを構成していると、この 状態になるまで 30 分以上かかる場合があります。

3. 正面パネルの電源ボタンを、1 秒以内の短い間隔で2回押します。

OpenBoot 構成変数が一時的にデフォルト値にリセットされたことを示す、次のよう な画面が表示されます。

Setting NVRAM parameters to default values. Probing I/O buses Sun Fire V890, No Keyboard Copyright 1998-2004 Sun Microsystems, Inc. All rights reserved. OpenBoot x.x, xxxx MB memory installed, Serial #xxxxxxx. Ethernet address x:x:x:x:x, Host ID: xxxxxxx. System is operating in Safe Mode and initialized with factory default configuration. No actual NVRAM configuration variables have been changed; values may be displayed with 'printenv' and set with 'setenv'. System will resume normal initialization and configuration after the next hardware or software reset.

ok

注 – 正面パネルの LED の点滅が止まり電源/OK LED が点灯した状態で、もう一度 電源ボタンを押すと、システムの正常な停止が開始されます。

次の作業

OpenBoot ファームウェアコードの実行中、すべての OpenBoot 構成変数は、I/O 装置の設定などの問題を引き起こす可能性のあるものを含めて、一時的に出荷時のデフォルト値である safe に設定されます。唯一の例外は auto-boot で、false に設定されます。

システムが ok プロンプトを表示するときには、OpenBoot 構成変数は誤って設定さ れている可能性のある元の値に戻ります。システムをリセットするまで、この値は有 効になりません。この値は、printenv コマンドを使用して表示できます。また、 setenv コマンドを使用して手動で変更できます。

ここでシステムをリセットするだけでは、値は有効にはなりません。問題を引き起こ す可能性のある設定も含め、カスタマイズした OpenBoot 構成変数のすべての設定が 保持されます。

この問題を修正するには、setenv コマンドを使用して個々の OpenBoot 構成変数を 手動で変更するか、set-defaults を実行して、すべての OpenBoot 構成変数を永 続的にデフォルト設定に復元します。

装置識別名の関連情報

構成解除および再構成の対象になる装置を手動で指定するときは、次の表を参照して ください。関連する手順については、次の節を参照してください。

- 118 ページの「手動による装置の構成解除方法」
- 119 ページの「手動による装置の再構成方法」

装置識別名	装置
cmpx (x は 0 ~ 7 または 16 ~ 23 の数字)	特定のプロセッサ
cmp0-bank0、cmp0-bank1、cmp0-bank2、cmp0-bank3、 cmp7-bank0、cmp7-bank1、cmp7-bank2、cmp7-bank3	各プロセッサのメモリーバンク 0 ~ 3
gptwo-slotA、gptwo-slotB、gptwo-slotC、gptwo-slotD	CPU/メモリーボードスロット A ~ D
ob-gem	オンボード Gigabit Ethernet コントローラ
ob-fcal	オンボード FC-AL コントローラ
ob-ide	オンボード IDE コントローラ
pci-slot0, pci-slot1,pci-slot8	PCI スロット 0 ~ 8
hba8、hba9	PCI ブリッジチップ 0 および 1

注 – 前述の装置識別名には、大文字と小文字の区別はありません。大文字または小 文字のどちらでも入力できます。

装置識別名	装置
*	すべての装置
cmp*	すべてのプロセッサ
cmp0-bank*、cmp1-bank*、 cmp7-bank*	各プロセッサのすべてのメモリーバンク
hba*	すべての PCI ブリッジチップ
gptwo-slot*	すべての CPU/メモリーボードスロット
pci-slot*	すべての PCI スロット
pci*	すべてのオンボード PCI 装置 (オンボード Gigabit Ethernet、FC-AL、IDE コントローラ) およびすべて の PCI スロット

次の表に示すように、装置識別名にワイルドカードを使用すると、指定した範囲の一 連の装置を再構成できます。

注 – 範囲を指定して一連の装置を構成解除することはできません。ワイルドカードは、一連の装置を再構成する場合にのみ有効です。

第7章

サーバーの管理

この章では、Sun Fire V890 システムがサポートしているサーバー管理ツールについ て説明します。この章の内容は次のとおりです。

- 127 ページの「サーバー管理ソフトウェアについて」
- 129 ページの「ホットプラグ対応コンポーネントとホットスワップ対応コンポーネントについて」
- 133 ページの「Multipathing ソフトウェアについて」
- 134 ページの「Sun Management Center ソフトウェアについて」
- 135 ページの「Sun Remote System Control ソフトウェアについて」
- 136 ページの「Volume Management Center ソフトウェアについて」
- 140 ページの「Solaris luxadm ユーティリティーについて」
- 141 ページの「Sun Cluster ソフトウェアについて」

サーバー管理ソフトウェアについて

システムの性能と可用性を高めるための構成、システムの監視と管理、およびハード ウェアの障害の特定に役立つソフトウェアベースの管理ツールが多数用意されていま す。管理ツールには、次のものがあります。

- Solaris Dynamic Reconfiguration (DR) ソフトウェア
- Multipathing ソフトウェア
- Sun Management Center ソフトウェア
- Sun RSC (Remote System Control) ソフトウェア
- ボリューム管理ソフトウェア
- Solaris luxadm ユーティリティー
- Sun ClusterTM ソフトウェア

次の表に、各ツールの概要および参照先を示します。

ツール	説明	関連情報
Solaris Dynamic Reconfiguration (DR) ソフトウェア	DR は、ホットプラグ操作と関連して使用しま す。DR を使用すると、通常のシステム動作に影 響を与えずに、PCI カードなどのハードウェア 資源を論理的および物理的に接続または切り離 すことができます。	129 ページの 「ホットプラグ対 応コンポーネント とホットスワップ 対応コンポーネン トについて」を参 照
Multipathing ソフトウェア	Multipathing ソフトウェアは、I/O 装置への代 替 (冗長) 物理パスの定義および制御に使用しま す。装置への現在のパスが使用不可になった場 合、可用性を維持するために、Multipathing ソ フトウェアは自動的に代替パスへの切り替えを 行います。	133 ページの 「Multipathing ソ フトウェアについ て」を参照
Sun Management Center ソフトウェ ア	Sun Management Center ソフトウェアは、複数 のSun のサーバー、装置、およびネットワーク 資源を管理するための、便利な唯一のソリュー ションです。Sun Management Center を使用す ると、Java TM テクノロジベースの使いやすいグ ラフィカルインタフェースによって、ネット ワーク上の任意の場所からサーバーを管理およ び監視できます。また、リアルタイムなシステ ムの性能および構成データを提供するので、潜 在的な容量や性能の問題の診断に役立ちます。	134 ページの 「Sun Management Center ソフトウェ アについて」を参 照
Sun RSC (Remote System Control) ソフトウェア	RSC は、シリアル回線や Ethernet ネットワーク を介して、地理的に分散していたり物理的にア クセス不可能なサーバーの監視および制御を可 能にする遠隔管理ツールです。RSC ソフトウェ アは、Sun Fire V890 サーバーのシステムコント ローラカードと連動して、「停電」管理ツール として動作します。これにより、サーバーのオ ペレーティングシステムがオフラインになった 場合や、サーバーの電源が切断された場合で も、システムは機能し続けます。	135 ページの 「Sun Remote System Control ソ フトウェアについ て」を参照
ボリューム管理 ソフトウェア	Solstice DiskSuite などのボリューム管理アプリ ケーションは、企業のコンピューティング環境 に、使いやすいオンラインのディスク記憶装置 管理手段を提供します。高度な RAID 技術を使 用したボリューム管理ソフトウェアは、データ の可用性を高め、入出力性能を向上させ、管理 を簡素化します。	136 ページの 「Volume Management Center ソフトウェ アについて」を参 照

ツール	説明	関連情報
Solaris luxadm ユーティリティー	Solaris 1uxadm ユーティリティーは、 Sun Fire V890 の内蔵 FC-AL ディスクサブシス テム、および接続されている外部記憶装置アレ イを管理するためのコマンド行管理ツールで す。このユーティリティーは、ディスクのホッ トプラグ操作を含む、物理ディスクの管理作業 に使用します。	140 ページの 「Solaris luxadm ユーティリティー について」を参照
Sun Cluster ソフト ウェア	Sun Cluster ソフトウェアを使用すると、可用性 および拡張性の高い単一のシステムとして動作 するように、複数の Sun のサーバーを相互接続 できます。Sun Cluster ソフトウェアは、自動障 害検出および回復機能による高可用性および拡 張性を提供するので、基幹アプリケーションお よびサービスを必要なときにいつでも使用でき ます。	141 ページの 「Sun Cluster ソ フトウェアについ て」を参照

ホットプラグ対応コンポーネントとホッ トスワップ対応コンポーネントについて

Sun Fire V890 システムは、マシンが動作している間も保守できる、さまざまなコン ポーネントを提供します。

「ホットプラグ対応」コンポーネントとは、システムの実行中に、システムのほかの 機能に影響を与えずに、認定された保守作業員が取り付けまたは取り外しを行うこと のできるコンポーネントです。ただし、多くの場合は、ホットプラグ機能を使用する 前に、なんらかのシステム管理作業を行なって、オペレーティングシステムを準備す る必要があります。

このような準備をせずに保守できるコンポーネントを、「ホットスワップ対応」コン ポーネントと呼びます。これらのコンポーネントは、事前にオペレーティングシステ ムの準備をしなくても、いつでも取り外しまたは取り付けができます。

Sun Fire V890 のホットプラグ対応コンポーネントは、次の3つの基本的なグループ に分類されます。

- ファントレーおよび電源装置
- ディスクドライブ
- PCI カード

各グループの詳細は、次節以降で説明します。

注 – PCI およびディスクのホットプラグ操作は、システムの ok プロンプトが表示されている状態ではサポートされません。認定された保守作業員は、オペレーティングシステムが動作しているときにのみ、ホットプラグ操作を実行できます。

注意 – システムコントローラ (SC) カードは、システムの動作中に保守することはで きません。システムコントローラカードの取り付けまたは取り外しを行う前には、シ ステムの電源を切断してすべての AC 電源コードを外す必要があります。

ファントレーおよび電源装置

Sun Fire V890 のファントレーおよび電源装置はホットスワップ対応で、事前にソフ トウェアの準備をしなくても、いつでも取り外しまたは取り付けが可能です。電源装 置は、N+1 冗長電源構成の一部でなければ、ホットスワップ対応にはなりません。 運用中のシステムから電源装置を取り外すと、動作する電源装置が1つしか残らない 場合は、これを取り外さないでください。

電源装置およびファントレーは、システムに ok プロンプトが表示されている場合で も取り付けまたは取り外しが可能です。ただし電源装置の場合は、ok プロンプトで reset-all コマンドを実行して、次にオペレーティングシステムを起動するときに 変更を認識させる必要があります。

注 – オペレーティングシステムの動作中に電源装置またはファントレーを取り外し たときは、システムコンソールに肯定応答メッセージが表示されてから交換用の部品 を取り付けます。これを行わないと、環境監視ソフトウェアが新しい装置を認識せ ず、不正なエラーが発生します。

注意 – 冗長ファントレーをホットスワップするとき、空いているファントレーベイ に手を入れないでください。他のベイに入っているファンはまだ回転しています。

詳細は、次の節を参照してください。

- 62 ページの「電源装置について」
- 65 ページの「ファントレーについて」

ディスクドライブ

Sun Fire V890 の内蔵ディスクドライブはホットプラグ対応です。ただし、ソフト ウェアの準備が必要です。Sun Fire V890 のディスクドライブのホットプラグ操作を 実行するには、Solaris luxadm ユーティリティーを使用します。luxadm ユーティリ ティーは、Sun StorEdge A5x00 シリーズのディスクアレイ、Sun Fire V890 内蔵記憶 装置アレイなどの統合記憶装置アレイを管理するコマンド行ツールです。

1uxadmの詳細は、140ページの「Solaris 1uxadm ユーティリティーについて」を参照してください。ディスクのホットプラグ手順の詳細は、『特記事項:luxadm ソフトウェア』を参照してください。このマニュアルは、Sun Fire V890 Documentation CD に収録されています。最新情報については、『Sun Fire V890 サーバーご使用にあたって』を参照してください。

注意 - ディスクドライブをホットプラグする場合、ドライブをバックプレーンから 切り離したあと、ドライブの回転が完全に停止するまで約 30 秒待ってから、ドライ ブベイから取り外してください。

PCIカード

Sun Fire V890 システムでは、PCI カードはホットプラグ対応ですが、システムコン トローラカードはマシンの動作中には保守できません。

PCI カードのホットプラグ操作は、動的再構成 (DR) を伴います。DR は、システム の動作中にシステムハードウェアを再構成する機能を提供する、オペレーティングシ ステムの機能です。DR によって、動作中のオペレーティングシステム上で、ハード ウェア資源の論理的な接続または切り離しを実行できます。DR の主な利点は、保守 プロバイダが、通常のシステム動作にほとんど、あるいはまったく影響を与えずに、 ハードウェア資源を追加または交換できることです。

PCI ホットプラグ手順では、装置を取り外す前にシステムを準備するため、または新 しい装置を取り付けたあとでオペレーティングシステムを再構成するために、ソフト ウェアコマンドを使用する場合があります。また、ホットプラグ操作を正常に行うに は、特定のシステム要件を満たす必要があります。

システム要件および制限事項の詳細と、PCI ホットプラグ手順の詳細は、

『Sun Fire V890 Dynamic Reconfiguration User's Guide』を参照してください。この マニュアルは、http://docs.sun.comの「Sun ハードウェア対応 Solaris」より入 手できます。最新情報については、『Sun Fire V890 サーバーご使用にあたって』を 参照してください。

注意 – 認定された保守作業員は、PCI Hot-Plug Specification Rev.1.1 に準拠する標準 PCI カードであれば、どれでもホットプラグを実行できます。ただし、Solaris オペ レーティングシステム対応の適切なソフトウェアドライバがあり、そのドライバが 『Sun Fire V890 Dynamic Reconfiguration User's Guide』で説明するホットプラグ操 作をサポートしている必要があります。Sun Fire V890 システムでは、Sun Fire V890 PCI ホットプラグ操作をサポートする、Solaris 8 7/01 オペレーティングシステムま たはそれ以降のリリースが動作している必要があります。デバイスドライバが正式に サポートしていることを確認するまで、PCI カードをホットプラグしないでくださ い。確認しないでホットプラグを行うと、システムに障害が発生する場合がありま す。PCI ホットプラグ操作をサポートする Sun の PCI カードおよびデバイスドライ バの一覧は、『Sun Fire V890 サーバーご使用にあたって』を参照してください。

注 – DR は Multipathing ソフトウェアと連動して動作します (ただし、必須ではあり ません)。DR 操作の準備のため、Multipathing ソフトウェアを使用して、1 つの I/O コントローラから別の I/O コントローラへ入出力操作を切り替えることができま す。DR と Multipathing ソフトウェアを組み合わせて使用すると、認定された保守 作業員は、システム操作にほとんどまたはまったく影響を与えずに、PCI コントロー ラカードの取り外し、交換、または停止を行うことができます。これには冗長ハード ウェアが必要で、取り外すまたは交換するカードと同じ装置に接続する代替 I/O コ ントローラがシステムに取り付けられている必要があります。代替コントローラは別 の PCI カードに搭載するか、Sun Fire V890 システムのマザーボードまたは I/O ボー ドに取り付ける必要があります。詳細は、133 ページの「Multipathing ソフトウェア について」を参照してください。

PCI ホットプラグユーザーインタフェース

Sun Fire V890 システムで PCI ホットプラグ操作を実行する方法は2つあります。

- プッシュボタンによる方法
- コマンド行による方法

プッシュボタンによる方法では、各 PCI スロットの近くにあるプッシュボタンと状態表示 LED を使用します。認定された保守作業員は、対応するスロットのプッシュ ボタンを押すことによって、PCI ホットプラグ操作を開始できます。コマンド行による方法では、遠隔ログインセッション、RSC コンソール、またはローカルに接続し たコンソールを通じて PCI ホットプラグ操作を開始します。この方法は、Solaris の cfgadm(1) コマンドを使用します。

どちらの場合でも、各 PCI スロットの近くにある状態表示 LED を使用します。これ らの LED は、いつ、どの場所のカードの取り付けまたは取り外しができるかを示し ます。また、取り付けまたは取り外し操作の成功、失敗も示します。ホットプラグの 状態表示 LED の詳細は、145 ページの「PCI スロットの LED について」を参照して ください。 注 - 使用する方法にかかわらず、多くの場合は PCI ホットプラグの取り外し操作の 準備のため、管理的な手順を追加する必要があります。取り外し操作を実行する前 に、カードに搭載されている装置が現在使用中でないことを必ず確認してください。 使用中の装置を特定して手動で終了するために、システム管理者は、mount(1M)、 umount(1M)、swap(1M)、ifconfig(1M)、ps(1) などの Solaris OS の標準的な コマンドを使用できます。

関連情報

PCI カードのホットプラグ手順の詳細は、『Sun Fire V890 Dynamic Reconfiguration User's Guide』を参照してください。このマニュアルは、http://docs.sun.com の「Sun ハードウェア対応 Solaris」より入手できます。最新情報については、『Sun Fire V890 サーバーご使用にあたって』を参照してください。

Multipathing ソフトウェアについて

Multipathing ソフトウェアを使用すると、記憶装置、ネットワークなどの I/O 装置 に対する冗長物理パスを定義して制御できます。デバイスへの現在のパスが使用不可 になった場合、可用性を維持するために、Multipathing ソフトウェアは自動的に代 替パスへの切り替えを行います。この機能を「自動フェイルオーバー」と呼びます。 マルチパッシング機能を活用するには、サーバーが、冗長ネットワークインタフェー ス、同一のデュアルポート記憶装置アレイに接続されている 2 つの FC-AL ホストバ スアダプタなどの、冗長ハードウェア構成である必要があります。

多くの場合、Multipathing ソフトウェアは、Solaris Dynamic Reconfiguration (DR) ソフトウェアと併用されます (129 ページの「ホットプラグ対応コンポーネントと ホットスワップ対応コンポーネントについて」を参照)。使用中のパスのコンポーネ ント障害が発生すると、Multipathing ソフトウェアは自動的に代替パスに切り替え ます。さらに DR 機能により、通常のシステム動作に影響を与えずに障害が発生した コンポーネントを取り外しおよび交換できます。

Sun Fire V890 システムでは、次の2種類の Multipathing ソフトウェアを使用できます。

- Solaris IP Network Multipathing は、IP ネットワークインタフェース用のマルチ パッシングおよび負荷均衡機能を提供します。
- Sun StorEdge Traffic Manager。このソフトウェアの詳細は、『Sun Fire V890 サーバーご使用にあたって』を参照してください。

関連情報

記憶装置またはネットワーク用の冗長ハードウェアインタフェースの設定について は、次の節を参照してください。

- 79 ページの「Sun Fire V890 大容量記憶装置機能について」
- 93ページの「冗長ネットワークインタフェースについて」

Solaris IP Network Multipathing の設定および管理の詳細は、ご使用のリリースの Solaris に付属している『IP ネットワークマルチパスの管理』を参照してください。

Sun Management Center ソフトウェア について

Sun Management Center ソフトウェアは、複数の Sun のシステム、装置、および ネットワーク資源を管理するための唯一のソリューションを提供します。Java ベー スの直感的なグラフィカルインタフェースを使用した Sun Management Center が提 供する強力な管理機能によって、次のことが可能になります。

- ネットワークの任意の場所からのサーバーの遠隔管理および遠隔監視
- サーバー構成の正確な物理および論理表示
- システムの健全性状態の監視
- リアルタイムなシステム性能および構成データを利用し、潜在的な容量や性能の
 問題を診断
- ハードウェアの問題のオンライン診断用に SunVTS 診断ソフトウェアを起動
- 予測障害分析機能を使用して、障害が発生する前に、潜在的なメモリーおよび ディスクハードウェア障害を警告
- 地理的位置、サーバーの機能、管理責任、または増加する管理の柔軟性に対する
 その他の条件でシステムを構成
- 認証、データの完全性、アクセス制御リストなど、企業規模のセキュリティー手段の実現

関連情報

Sun Management Center ソフトウェアは、ご使用のリリースの Solaris メディアキットで提供されるソフトウェアサプリメント CD に収録されています。Sun Management Center ソフトウェアのインストールおよび使用方法については、Sun Management Center ソフトウェアとともに提供される次のマニュアルを参照してください。

- 『Sun Management Center ソフトウェアインストールガイド』
- 『Sun Management Center ソフトウェアユーザーマニュアル』
- 『Sun Management Center ワークグループサーバーのための追補マニュアル』

Sun Remote System Control ソフトウェ アについて

Sun RSC (Remote System Control) ソフトウェアは遠隔サーバー管理ツールで、シリアル回線またはネットワーク経由で、サポートする Sun のサーバーを監視して制御できます。RSC は、地理的に分散しているシステムや物理的にアクセス不可能なシステムへの遠隔システム管理を提供し、Sun Management Center、SunVTS、 OpenBoot PROM、OpenBoot 診断などの Sun の既存の監視ツールおよび診断ツールを補助します。

RSC ソフトウェアは、すべての Sun Fire V890 サーバーに組み込まれているシステム コントローラカードと連係して動作します。システムコントローラカードは、ホスト サーバーから独立して、システムの電源装置の5Vのスタンバイ電力で動作します。 このハードウェアとソフトウェアを併用することによって、RSC は、サーバーのオ ペレーティングシステムがオフラインになった場合、またはシステムの電源が切断さ れた場合でも機能し続ける「停電」管理ツールとして動作します。

システムコントローラカードはシステムの I/O ボードの専用スロットに差し込みま す。RSC カードには次のポートがあり、システム背面パネルの開口部から利用でき ます。

- RJ-45 より対線 Ethernet (TPE) コネクタ使用の 10 Mbps Ethernet ポート
- RJ-45 コネクタ使用の EIA-232D シリアルポート

RSC の機能

RSC ソフトウェアを使用すると、次のことが可能になります。

- システムコントローラカードのシリアルポートおよび Ethernet ポートを経由して、Solaris および OpenBoot PROM コンソール機能に遠隔でアクセス
- 遠隔コンソールからの電源投入時自己診断 (POST) および OpenBoot 診断の実行
- サーバーがオフラインの場合も、ファン、温度、電源装置の状態など、サーバーの環境条件を遠隔で監視
- サーバーの正面パネルにキースイッチ位置、LED 状態などをグラフィカルに表示
- ■要求に応じて、遠隔サーバーの再起動、電源投入、電源切断を実行
- RSC イベントの詳細ログ、コマンド履歴、および検出エラーへのアクセス

第7章 サーバーの管理 135

RSC ユーザーインタフェース

RSC には、次のユーザーインタフェースがあります。

- グラフィカルユーザーインタフェース (GUI)。GUI は、Ethernet インタフェース、または標準のシリアル接続を介してサーバーに接続するワークステーション上の Java クライアントアプリケーションとして実行されます。
- コマンド行インタフェース (CLI)。CLI には、Ethernet ネットワーク、またはシス テムコントローラカードのシリアルポートに直接接続する英数字端末を介してア クセスできます。

Java ベースの GUI クライアントアプリケーションは、Solaris、Microsoft Windows 98、または Windows NT オペレーティングシステムが動作しているワークステー ション上で動作します。

関連情報

Sun RSC ソフトウェアは、ご使用の Solaris リリースのソフトウェアサプリメント CD に収録されています。インストール方法については、Solaris メディアキットで提 供されている『Solaris Sun ハードウェアマニュアル』を参照してください。RSC の 構成および使用方法については、『Sun Remote System Control (RSC) 2.2 ユーザー ニュアル』を参照してください。このマニュアルは、Sun Fire V890 Documentation CD に収録されています。

Volume Management Center ソフトウェ アについて

Sun は、Sun Fire V890 システム用に、次の 2 つのボリューム管理アプリケーションを提供します。

- Solstice DiskSuite ソフトウェア
- Sun StorEdge Traffic Manager

ボリューム管理ソフトウェアを使用すると、ディスクボリュームを作成できます。ボ リュームとは論理的なディスク装置で、1つ以上の物理ディスク、または複数の異な るディスクのパーティションから構成されます。ボリュームが作成されると、オペ レーティングシステムは、そのボリュームを単一のディスクとして使用および維持し ます。この論理的なボリューム管理層を提供することによって、ボリューム管理ソフ トウェアは物理的なディスク装置による制約をなくします。 また、Sun のボリューム管理製品は、RAID によるデータの冗長性および性能を提供 します。RAID (Redundant Array of Independent Disks) は、ディスクおよびハード ウェアの障害の保護に役立つ技術です。RAID 技術によって、ボリューム管理ソフト ウェアは、高度なデータ可用性、優れた入出力性能、および簡素化された管理を提供 できます。

Sun のボリューム管理アプリケーションには、次の機能があります。

- 数種類の RAID 構成のサポート。各 RAID 構成は、可用性、容量、および性能の 程度が異なります。
- ホットスペア機能。ディスク障害時に自動的にデータを回復します。
- 入出力性能の監視およびボトルネックの特定を行うための性能分析ツール
- 記憶装置の管理を簡素化するグラフィカルユーザーインタフェース
- オンラインサイズ変更のサポート。ボリュームおよびファイルシステムをオンラ インで拡張および縮小できます。
- オンライン再構成機能。ほかの RAID 構成への変更、または既存の構成の特性の 変更ができます。

Multipathing ソフトウェア

Solaris OS 用 Sun StorEdge Traffic Manager ソフトウェアは、Sun の SAN Foundation Suite の一部で、マルチパス I/O フェイルオーバー、フェイルバック、および SAN 環境全体での負荷均衡を自動化します。この製品の詳細は、『Sun Fire V890 サーバーご使用にあたって』を参照してください。

RAID の概念

Solstice DiskSuite ソフトウェアは、性能、可用性、およびユーザーのコストを最適 化する RAID 技術をサポートしています。RAID 技術は、性能を向上させ、ファイル システムエラー時の回復時間を短縮し、ディスク障害時でもデータの可用性を高めま す。RAID 構成にはいくつかのレベルがあり、それぞれ性能およびコストとデータ可 用性とのかね合いの度合いが異なります。

この節では、RAID 構成の中でも特に一般的で有用な、次の構成について説明します。

- ディスクの連結
- ディスクのミラー化 (RAID 1)
- ディスクのストライプ化 (RAID 0)
- ディスクのパリティー付きストライプ化 (RAID 5)
- ホットスペア

ディスクの連結

ディスクの連結は、複数の小容量ドライブから1つの大容量ボリュームを作成することによって、単体のディスクドライブの容量の上限を超える論理ボリュームを作成する手法です。この方法によって、大きなパーティションを自由に作成できます。

1つ目のディスクに空き領域がなくなると、2つ目のディスクに書き込みが行われ、2 つ目のディスクに空き領域がなくなると、3つ目のディスクに書き込みが行われると いうように、連結されたディスクには、順にデータが書き込まれていきます。

RAID 1: ディスクのミラー化

ディスクのミラー化 (RAID 1) は、データの冗長性を利用して、ディスク障害による データの損失を防ぐ手法です。すべてのデータについて、完全に同じ内容のコピーが 2 つの異なるディスクに格納されます。1 つの論理ボリュームが 2 つの異なるディス クに複製されます。

オペレーティングシステムがミラー化ボリュームに書き込みを行うときは、必ず、両 方のディスクが更新されます。両方のディスクには、常に同じ情報が格納されます。 ミラー化ボリュームを読み取る必要がある場合、オペレーティングシステムは、その 時点でアクセスしやすい方のディスクを読み取ります。これにより読み取り操作の性 能が向上します。

RAID1によりデータ保護の機能は最大限まで高まりますが、すべてのデータが二重 に格納されるため、記憶装置のコストが高くなり、書き込み性能は低下します。

RAID 0:ディスクのストライプ化

ディスクのストライプ化 (RAID 0) は、複数のディスクドライブを並列化して使用することによってシステムのスループットを向上させる手法です。非ストライプ化ディスクでは、オペレーティングシステムが1つのディスクに1つのブロックを書き込むのに対し、ストライプ化構成では各ブロックが分割され、分割されたブロックが部分ごとにそれぞれ異なるディスクに同時に書き込まれます。

RAID 0 を使用したときのシステム性能は RAID 1 や5 より向上しますが、障害ディ スクドライブに格納されたデータの読み出しや再構築の手段がないため、データが失 われる可能性は高くなります。

RAID 5: ディスクのパリティー付きストライプ化

RAID5は、ディスクへの書き込みごとのパリティー情報を含むディスクのストライプ化手法です。この手法の利点は、RAID5アレイのディスクの1つで問題が発生した場合に、その障害ディスクのすべての情報を、残りのディスクのデータとパリティーから再構築できることです。

RAID 5 を使用したときのシステム性能は、RAID 0 と RAID 1 の間ですが、RAID 5 は、制限付きのデータの冗長性を提供します。2 つ以上のディスクに障害が発生した場合は、すべてのデータが失われます。

ホットスペア (ホットリロケーション)

「ホットスペア」編成では、通常の運用中は使用しない、1 つ以上のディスクドライ ブをシステムに取り付けます。動作中のドライブのうちの1 つに障害が発生すると、 データセット全体の可用性を維持するため、障害ディスクのデータはホットスペア ディスクに自動的に再構築され、生成されます。

詳細は、Solstice DiskSuite ソフトウェアに付属するマニュアルを参照してください。

Solaris luxadm ユーティリティーについて

luxadm プログラムは、Sun Fire V890の内蔵 FC-AL 記憶装置サブシステムおよびサポートされる外部記憶装置アレイを管理するためのコマンド行管理ユーティリティーです。luxadm ユーティリティーは、ディスクのホットプラグ操作を含む、物理ディスクの管理作業に使用します。luxadm ユーティリティーは、Solaris OS のインストール時に自動的にインストールされます。

luxadm ユーティリティーは、多数のサブコマンドおよびコマンド行オプションを介 してさまざまな制御および照会タスクを実行します。luxadm を使用すると、次のこ とが可能です。

- Sun Fire V890 内蔵記憶装置アレイに対する、わかりやすい格納装置名の割り当て
- 物理および論理デバイスパス、ワールドワイドネーム (WWN)、記憶装置アレイまたは個々のディスクの格納装置名の表示
- アレイまたは個々のディスクの構成、環境、および状態情報の表示
- 単一ホストが排他的に使用する特定ディスクの予約
- ディスクのホットプラグ取り付けまたは取り外しの実行
- 外部記憶装置コンポーネントのファームウェアおよび fcode 最新情報のダウン ロード

注 - 正面パネルのキースイッチをロック位置に入れると、システムファームウェア を再プログラミングできなくなります。ファームウェアの更新操作の開始後にキース イッチをロック位置に入れた場合は、更新が完了するまで操作が続行します。正面パ ネルのキースイッチの詳細は、11ページの「状態およびコントロールパネルについ て」を参照してください。

関連情報

『特記事項: luxadm ソフトウェア』では、Sun Fire V890 内蔵ディスクドライブの ホットプラグ手順を含めて、1uxadm ユーティリティーについて説明しています。こ のマニュアルは、Sun Fire V890 Documentation CD に収録されています。また、 1uxadm(1M)のマニュアルページも参照してください。最新情報については、『Sun Fire V890 サーバーご使用にあたって』を参照してください。

Sun Cluster ソフトウェアについて

Sun Cluster ソフトウェアによって、複数の Sun のサーバーをクラスタ構成で接続で きます。「クラスタ」とは、可用性および拡張性の高い単一のシステムとして動作す るように相互接続されたノードのグループです。「ノード」とは、Solaris ソフト ウェアの単一のインスタンスで、スタンドアロンサーバー上またはスタンドアロン サーバー内のドメイン上で動作します。Sun Cluster ソフトウェアを使用すると、オ ンライン状態でノードを追加または削除し、具体的な要求に合わせてサーバーを組み 合わせることができます。

Sun Cluster ソフトウェアは、自動的な障害検出および回復機能による高可用性と、 拡張性を提供するため、基幹アプリケーションおよびサービスを必要なときにいつで も使用できます。

Sun Cluster ソフトウェアをインストールすると、ノードが停止した場合にクラスタ 内のほかのノードが自動的にそのノードの作業負荷を引き継ぎ、停止したノードに代 わって機能するようになります。ローカルアプリケーションの再起動、個々のアプリ ケーションのフェイルオーバー、ローカルネットワークアダプタのフェイルオーバー などの機能によって、予測可能性および高速回復機能を提供します。Sun Cluster ソ フトウェアは、停止時間を著しく削減し、すべてのユーザーに対して確実にサービス を継続することによって生産性を向上させます。

Sun Cluster ソフトウェアを使用すると、同一クラスタ内で標準および並列アプリ ケーションを実行できます。ノードの動的な追加および削除が行えるため、Sun の サーバーおよび記憶装置を多様な構成でクラスタ化できます。既存の資源がより効果 的に使用されるため、いっそうの経費削減になります。

Sun Cluster ソフトウェアを使用すると、ノードを最大 10 km 離れた場所に設置できます。これにより 1 つの場所で災害が発生した場合でも、すべての重要なデータおよびサービスを、影響を受けていないほかの場所から引き続き使用できます。

詳細は、Sun Cluster ソフトウェアに付属するマニュアルを参照してください。

第8章

LED 状態インジケータ

この章では、システム内部および背面パネルの LED 状態インジケータについて説明 します。この章の内容は、次のとおりです。

- 144 ページの「CPU/メモリースロットの LED について」
- 145 ページの「PCI スロットの LED について」
- 147 ページの「電源装置の LED について」
- 148 ページの「ファントレーの LED について」
- 149 ページの「ディスクドライブの LED について」
- 151 ページの「Gigabit Ethernet の LED について」

システムの正面パネルの LED インジケータについては、11 ページの「状態およびコ ントロールパネルについて」を参照してください。

CPU/メモリースロットの LED について

CPU/メモリースロットの LED は、CPU/メモリースロット B と C の間の水平パネ ルにあり、右側のドアを開けると見えます。次に示すように、各 CPU/メモリース ロットには 2 つの LED があります。

アイコン	名前	LED の機能
Ø	電源投入	スロットに電力が供給されると点灯します。
ŗ	障害	将来の使用に備えて予約されています。

PCI スロットの LED について

PCI スロットの LED は、PCI スロットの右側の垂直留め具にあり、左側のドアを開けると見えます。次に示すように、各 PCI スロットには 3 つの LED があります。

アイコン	名前	LED の機能
Ø	電源投入	スロットに電力が供給されると点灯します。
Ļ	障害	カードのテスト中、ホットプラグ操作の実行中、またはカー ドの電源は入っていてもオペレーティングシステムから論理 的に切り離されている場合に点滅します。
ŧ۵	取り外し可能	カードが障害を検出すると点灯し続けます。 カードが安全に取り外せる場合に点灯します。

次の表に、発生する可能性のある LED の組み合わせパターンを説明します。

Ø	ŗ	* D	説明
消灯	消灯	消灯	スロットの電源が切れています。PCI カードを挿入して、 ホットプラグ操作を安全に開始できます。
点灯	点滅	消灯	取り付けられているカードは、テスト中、構成中、または 構成解除中です。あるいは、カードの電源は入っています が、オペレーティングシステムから論理的に切り離されて います。
点灯	消灯	消灯	スロットの電源が投入されていて、PCI カードは正常に動 作しています。
消灯	点灯	点灯	PCI カードが障害を検出しました。安全にカードを取り外 せます。
消灯	消灯	点灯	安全にカードを取り外せます。

注 – スロットが空いていて、障害 LED または取り外し可能 LED が点灯している場合は、そのスロットの接触式プッシュボタンを押すと、LED が消えます。

PCI カードおよびホットプラグ操作の詳細は、次を参照してください。

- 56 ページの「PCI カードおよびバスについて」
- 129 ページの「ホットプラグ対応コンポーネントとホットスワップ対応コンポーネントについて」

次に示すように、各電源装置の背面には3つの LED があります。

アイコン	名前	LED の機能
ſ	障害	電源装置が障害を検出すると点灯します。
\sim	AC 供給状態	AC 電源が供給されていて、操作条件を満たしている場合に点 灯します。
	DC 状態	すべての DC 出力が機能していて、操作条件を満たしている 場合に点灯します。

ファントレーの LED について

システムの状態およびコントロールパネルの温度障害 LED は、冷却システム全体の 状態を示します。温度障害 LED は、ファンの障害または適正温度を超える状態が検 出されると点灯します。システム内部の LED は、各ファントレーアセンブリの障害 状態を示します。

ファントレーの LED は、各ファントレーアセンブリの横または下にあります。次に 示すように、ファントレーには3つの LED があります。

アイコン	名前	LED の機能
Ø	電源投入	ファントレーに電力が供給されると点灯します。
Ţ	障害	ファントレーが障害を検出すると点灯します。
* D	取り外し可能	電源が入っている状態のシステムからファントレーアセンブリ を安全に取り外せる場合に点灯します (冗長ファントレーがある 場合のみ)。

次の表に、発生する可能性のある LED の組み合わせパターンを説明します。

Ø	ſ	* D	説明
消灯	消灯	消灯	ファントレーに電力が供給されていないか、または正しく 挿入されていません。
点灯	消灯	消灯	ファントレーに電力が供給され、正常に動作しています。
消灯	点灯	点灯	ファントレーが障害を検出し、電源が入っているシステム から安全に取り外すことができます。

ファントレーおよびホットプラグ操作の詳細は、次の節を参照してください。

- 65ページの「ファントレーについて」
- 129ページの「ホットプラグ対応コンポーネントとホットスワップ対応コンポーネントについて」

ディスクドライブの LED について

システムの状態およびコントロールパネルのディスク障害 LED は、ディスクサブシ ステム全体の状態を示します。ディスクサブシステムで障害が検出されると、ディス ク障害 LED が点灯します。システム内部の LED は、個々のディスクドライブの障害 状態を示します。

各ディスクドライブには、3 つの LED があります。次に示すように、ディスクドラ イブの LED は、各ディスクケージの正面にあります。

アイコン	名前	LED の機能
Ø	動作状態	ホットプラグ操作によるディスクドライブのテスト中、構成 中、または構成解除中に、ゆっくりと点滅します。
		ディスクドライブの起動または停止中は、すばやく点滅しま す。
		ディスクドライブが高速回転中で正常に動作しており、読み 取りまたは書き込みアクティビティーがない場合には、点灯 したままです。ディスクの読み取りまたは書き込みアクティ ビティーが発生すると、これに対応してすばやく不規則に点 滅します。
J	障害	ディスクドライブが障害を検出すると点灯します。
+ D	取り外し可能	ホットプラグ操作中にディスクドライブを安全に取り外せる場 合に点灯します。
_		ディスクドライブに注意を促す場合に (ソフトウェアの制御によ り) 点滅します。

次の表に、発生する可能性のある LED の組み合わせパターンを説明します。

Ø	ļ	+0	説明
消灯	消灯	消灯	スロットの電源が切れています。ホットプラグ操作 の一部として、ディスクドライブを安全に挿入でき ます。
すばやく 点滅	消灯	消灯	ディスクドライブが起動中または停止中です。
ゆっくり 点滅	消灯	消灯	ホットプラグ操作によるディスクドライブの構成中 または構成解除中です。
点灯	消灯	消灯	ディスクドライブが規定の回転数になり、正常に動 作しています。
不規則な 点滅	消灯	消灯	ディスクドライブに対して、読み取りまたは書き込 みアクティビティーが行われています。
点灯	点灯	消灯	ディスクドライブが障害を検出しました。
消灯	消灯	点灯	ホットプラグ操作の一部として、ディスクドライブ を安全に取り外せます。

ディスクドライブおよびホットプラグ操作の詳細は、次の節を参照してください。

- 85ページの「内蔵ディスクドライブについて」
- 129ページの「ホットプラグ対応コンポーネントとホットスワップ対応コンポーネントについて」

Gigabit Ethernet の LED について

Gigabit Ethernet ポートでは、4 つの LED で状態情報を表します。次に示すように、 LED は、システム背面パネルの Gigabit Ethernet ポート上部にあります。

ラベル	名前	LED の機能
RX	受信アクティビティー	受信チャネル上のデータアクティビティーを示しま す。
ТХ	転送アクティビティー	転送チャネル上のデータアクティビティーを示しま す。
FDX	全二重	Gigabit Ethernet インタフェースが、全二重モードで 動作していることを示します。
Link	接続	接続相手との接続が確立されていることを示しま す。
第9章

リムーバブルメディア記憶装置の使 用

この章では、リムーバブルメディア記憶装置の基本的な使用方法を説明します。

この章では、次の作業について説明します。

- 154 ページの「CD または DVD のドライブへの挿入方法」
- 156 ページの「ソフトウェアコマンドによる CD または DVD の取り出し方法」
- 157 ページの「手動での CD または DVD の取り出し方法」
- 159 ページの「非常時の CD または DVD の取り出し方法」
- 160 ページの「CD または DVD のクリーニング方法」
- 163 ページの「テープカートリッジの挿入方法」
- 164 ページの「テープカートリッジの取り出し方法」
- 165 ページの「テープドライブの制御方法」
- 165 ページの「テープドライブのクリーニング方法」

また、次の情報についても説明します。

- 154 ページの「DVD-ROM ドライブについて」
- 162 ページの「テープドライブおよびテープカートリッジについて」

Sun Fire V890 サーバーの正面パネルには、装着ベイが3つあります。ベイの1つには、すべてのシステム構成で標準となる IDE DVD-ROM ドライブを搭載します。

ほかの 2 つのベイには、別途注文する必要のある、オプションの取り外し可能なワイド (68 ピン) SCSI 装置を搭載します。オプションのテープドライブには、別途注文する必要のある、SCSI ケーブル (Sun のパーツ番号 X912A) および SCSI アダプタカード (Sun のパーツ番号 X6758A) も必要です。

金属製の仕切板を取り外すことによって、2つの SCSI 装置のベイを簡単に1つのフ ルハイトのベイに変更できます。

DVD-ROM ドライブについて

システムの DVD-ROM ドライブには、次の情報を含む仕様書が付属しています。

- ドライブで使用できる DVD-ROM ディスクの種類
- 取り扱いと保管に関する情報
- 物理特性
- 電源条件
- クリーニング方法
- DVD-ROM ドライブコントロール、インジケータ、およびジャンパ設定の説明

CD または DVD のドライブへの挿入方 法

作業手順

- 1. DVD-ROM ドライブの取り出しボタンを押して、ドライブトレーを引き出します。
- 2. ラベル面を上にして、ドライブトレーに CD または DVD を置きます。

ディスクは、片面または両面の記憶媒体です。次に示すように、ラベル面を上にし て、トレーに置いてください。

トレーをゆっくり押して、ドライブに戻します。
 トレーを戻すと、ドライブは自動的に閉まります。

次の作業

ドライブから CD または DVD を取り出すには、次の3つの方法があります。

- ソフトウェアコマンドを使用する方法 156ページの「ソフトウェアコマンドによる CD または DVD の取り出し方法」を 参照してください。
- 手動で取り出す方法 157 ページの「手動での CD または DVD の取り出し方法」を参照してください。
- 非常時の手順を使用する方法 159 ページの「非常時の CD または DVD の取り出し方法」を参照してください。

ソフトウェアコマンドによる CD または DVD の取り出し方法

準備作業

サーバーがコンソールを使用しない設定になっている場合は、ソフトウェアコマンド を実行するためにシステムコンソールを設定する必要があります。詳細は、次の節を 参照してください。

■ 30ページの「コンソールの設定について」

作業手順

- システムコンソール装置で、ディレクトリを / cdrom 階層以外のディレクトリに変更します。
- 2. 次のコマンドを入力して、CD または DVD を取り出します。

% eject cdrom

ディスクが排出されます。

ディスクが排出されない場合は、DVD-ROM ドライブにアクセスしているすべてのプロセスを終了して、手順2を繰り返します。

ドライブが使用されていると、ディスクは排出されません。DVD-ROM ドライブに アクセスしているプロセスを終了するには、スーパーユーザーで、次のように入力し ます。

% su
Password:
fuser -k /cdrom/cdrom0

注 – ユーザーに警告を出してから、プロセスを終了してください。DVD-ROM ドラ イブにアクセスしているユーザーの特定には、fuser -u /cdrom/cdrom0 コマン ドが役立ちます。fuser コマンドの詳細は、Solaris のシステム管理ガイドを参照し てください。

次の作業

ディスクは、次の方法で取り出すこともできます。

- 手動で取り出す方法 157 ページの「手動での CD または DVD の取り出し方法」を参照してください。
- 非常時の手順を使用する方法
 159 ページの「非常時の CD または DVD の取り出し方法」を参照してください。

手動での CD または DVD の取り出し方 法

準備作業

サーバーがコンソールを使用しない設定になっている場合は、ソフトウェアコマンド を実行するためにシステムコンソールを設定する必要があります。詳細は、次の節を 参照してください。

■ 30ページの「コンソールの設定について」

作業手順

- 1. システムコンソール装置で、ディレクトリを /cdrom 階層以外のディレクトリに変 更します。
- 2. 正面パネルの取り出しボタンを押します。

ドライブトレーが出るので、ディスクを取り出します。

ディスクが排出されない場合は、DVD-ROM ドライブにアクセスしているすべてのプロセスを終了して、手順2を繰り返します。

ドライブが使用されていると、ディスクは排出されません。DVD-ROM ドライブに アクセスしているプロセスを終了するには、スーパーユーザーで、次のように入力し ます。

% su
Password:
fuser -k /cdrom/cdrom0

注 - ユーザーに警告を出してから、プロセスを終了してください。DVD-ROM ドラ イブにアクセスしているユーザーの特定には、fuser -u /cdrom/cdrom0 コマン ドが役立ちます。fuser コマンドの詳細は、Solaris のシステム管理ガイドを参照し てください。

次の作業

ディスクは、次の方法で取り出すこともできます。

- ソフトウェアコマンドを使用する方法 156ページの「ソフトウェアコマンドによる CD または DVD の取り出し方法」を 参照してください。
- 非常時の手順を使用する方法 159 ページの「非常時の CD または DVD の取り出し方法」を参照してください。

非常時の CD または DVD の取り出し方 法

準備作業

この節で説明する取り出し方法は、ディスクをアンマウントして取り出しボタンが機能しないなどの非常時にだけ使用してください。

作業手順

注意 – ディスクがマウントされているときに次の手順を使用すると、システムの データが変更されたり、破壊されることがあります。

- 1. システムの電源を切ります。 詳細は、38 ページの「システムの電源切断方法」を参照してください。
- 2. 大きめのクリップを広げて、先の部分を真っ直ぐにします。
- クリップの真っ直ぐにした方の端を非常用の取り出し穴に差し、しっかりと押し込み ます。
- 4. クリップを穴に差し込んだら、ドライブからトレーを引き出します。

次の作業

ディスクは、次の方法で取り出すこともできます。

- ソフトウェアコマンドを使用する方法 156ページの「ソフトウェアコマンドによる CD または DVD の取り出し方法」を 参照してください。
- 手動で取り出す方法 157 ページの「手動での CD または DVD の取り出し方法」を参照してください。

CD または DVD のクリーニング方法

準備作業

トレーを引き出して、CD または DVD を取り出してください。取り出し方法については、次の節を参照してください。

■ 156 ページの「ソフトウェアコマンドによる CD または DVD の取り出し方法」

注 – ディスクにほこりが付着していたり、汚れていたりすると、ドライブがディス クを読み取れないことがあります。

作業手順

1. 圧縮空気でディスクをクリーニングします。

圧縮空気によって、ディスクに付着したほこりの大部分を取り除くことができます。 ドライブの読み取りヘッドを見ることができる場合は、ヘッドにほこりが付着してい ないことを確認してください。

- E縮空気でディスクに付着したほこりを取り除けない場合は、糸くずの出ない柔らか い乾燥した布でディスクを拭きます。
 - ラベルが付いていない方の面、または両面を、中心から外側に向かって放射線状 に拭いてください。
 - 円状に拭かないでください。
 - ディスクの汚れている部分だけ拭いてください。

正しい拭き方

次の図に、CD または DVD の正しい拭き方と誤った拭き方を示します。

次の作業

ドライブに CD または DVD を挿入する方法については、次の節を参照してください。

■ 154 ページの「CD または DVD のドライブへの挿入方法」

誤った拭き方

テープドライブおよびテープカートリッ ジについて

Sun では、数種類のテープドライブを提供しています。各テープドライブには、次の 情報を含む仕様書が付属しています。

- ドライブで使用できるカートリッジの種類
- カートリッジの記憶容量
- 取り扱いと保管に関する情報
- 物理特性
- ∎ 電源条件
- クリーニング方法
- コントロール、インジケータ、およびジャンパ設定の説明

テープカートリッジの取り扱いと保管

テープドライブ用のカートリッジの取り扱いと保管については、次の一般的なガイド ラインが適用されます。

- 磁気を帯びたものの近くに置かないでください。
- ほこりのない場所に保管してください。
- 直射日光に当てたり、室温と極端に温度や湿度が異なるものの近くに置かないで ください。一定の室温で、湿度 50% に保つことを推奨します。
- テープ面に触れないでください。

温度の調整

適切に温度管理をするには、24時間、テープカートリッジをドライブと同じ温度に 維持してください。これは、すべてのテープドライブ用のカートリッジに当てはまり ます。

テープカートリッジの挿入方法

作業手順

テープカートリッジの書き込み禁止スイッチが正しい位置に入っていることを確認します。

ロックウィンドウが開いている場合は、テープは書き込み禁止になっています。

- 2. ラベル面を上にしてカートリッジをドライブに挿入します。
- カートリッジをゆっくり押し込みます。途中でカートリッジが自動的にドライブ内に 引き込まれます。

次の作業

ドライブからテープカートリッジを取り出す方法については、次の節を参照してください。

■ 164 ページの「テープカートリッジの取り出し方法」

テープカートリッジの取り出し方法

準備作業

この節では、DDS-3 テープドライブの使用を前提に説明します。異なる種類のテー プドライブをご使用の場合は、ドライブに付属の仕様書を参照してください。

作業手順

1. ドライブが動作していないことを確認します。

緑色の動作状態 LED が消灯していることを確認してください。ドライブの動作中は、この LED は点滅しています。

2. 取り出しボタンを押して、テープカートリッジを取り出します。

次の作業

ドライブにテープカートリッジを挿入する方法については、次の節を参照してください。

■ 163 ページの「テープカートリッジの挿入方法」

テープドライブの制御方法

作業手順

テープドライブに対してデータを読み書きするために必要なソフトウェアコマンドについては、『Sun 周辺機器使用の手引き』または『Solaris ユーザーズガイド』を参照してください。

テープドライブのクリーニング方法

準備作業

テープドライブをクリーニングするときは、次の規則に従ってください。

- 1. 新しいテープではじめて使用したときは、4時間後にクリーニングします。
- 2. それ以降は、信頼できる動作を維持するために、25時間使用するたびにクリーニングします。
- 3. ほこりの多い環境で使用したり、あまり頻繁に使用しない場合は、前述の2倍の 頻度でクリーニングします。

作業手順

● クリーニング用のカートリッジをドライブに挿入します。 クリーニング用のテープが短時間再生されたあと、自動的に排出されます。

テープドライブのクリーニングには、DDS で承認されているクリーニングテープ カートリッジ以外のものは使用しないでください。

付録A

コネクタのピン配列

この付録では、システムの背面パネルのポートおよびピン配列について説明します。 この付録の内容は、次のとおりです。

- 168 ページの「シリアルポート A および B コネクタの関連情報」
- 169 ページの「USB コネクタの関連情報」
- 170 ページの「より対線 Ethernet コネクタの関連情報」
- 171 ページの「システムコントローラ Ethernet コネクタの関連情報」
- 172 ページの「システムコントローラシリアルコネクタの関連情報」

シリアルポート A および B コネクタの 関連情報

シリアルポートは、EIA-423 および EIA-232D 仕様に準拠しています。

シリアルポートコネクタ図

シリアルポートの信号

信号説明の末尾の「A」は、その信号が標準の DB-25 シリアルケーブルまたはオプ ションの DB-25 スプリッタケーブルで「A」とラベルが付いているコネクタが提供す るポートに対応することを示します。信号説明の末尾の「B」は、その信号がオプ ションの DB-25 スプリッタケーブルで「B」とラベルが付いているコネクタが提供す るポートに対応することを示します。

ピン	信号説明	ピン	信号説明
1	接続なし	14	送信データ B
2	送信データ A	15	送信クロック A (外部)
3	受信データ A	16	受信データ B
4	送信要求 A	17	受信クロック A
5	送信可 A	18	受信クロック B
6	同期 A	19	送信要求 B
7	信号グランド A	20	データ端末レディー A
8	データキャリア検出 A	21	接続なし
9	接続なし	22	接続なし
10	接続なし	23	接続なし
11	データ端末レディー B	24	送信クロック A (内部)
12	データキャリア検出 B	25	送信クロック B

ピン	信号説明	ピン	信号説明
13	送信可 B		

USB コネクタの関連情報

2 つの USB (Universal Serial Bus) コネクタは、システムの I/O ボード上にあり、背面パネルから使用できます。

USB コネクタ図

USB コネクタの信号

ピン	信号説明	ピン	信号説明
A1	+5 VDC	B1	+5 VDC
A2	ポートデータ_N	B2	ポートデータ_N
A3	ポートデータ_P	B3	ポートデータ_P
A4	グランド	B4	グランド

より対線 Ethernet コネクタの関連情報

より対線 Ethernet (TPE) コネクタは、システムの I/O ボード上にある RJ-45 コネク タで、背面パネルから使用できます。

TPE コネクタ図

TPE コネクタの信号

ピン	信号説明	ピン	信号説明
1	送信データ +	5	コモンモード終端
2	送信データ -	6	受信データ-
3	受信データ +	7	コモンモード終端
4	コモンモード終端	8	コモンモード終端

システムコントローラ Ethernet コネク タの関連情報

システムコントローラ Ethernet コネクタは、システムコントローラボード上にある RJ-45 コネクタで、背面パネルから使用できます。

システムコントローラ Ethernet コネクタ図

システムコントローラ Ethernet コネクタの信号

ピン	信号説明	ピン	信号説明
1	送信データ +	5	コモンモード終端
2	送信データ -	6	受信データ-
3	受信データ +	7	コモンモード終端
4	コモンモード終端	8	コモンモード終端

システムコントローラシリアルコネクタ の関連情報

システムコントローラシリアルコネクタは、システムコントローラカード上にある RJ-45 コネクタで、背面パネルから使用できます。

システムコントローラシリアルコネクタ図

システムコントローラシリアルコネクタの信号

ピン	信号説明	ピン	信号説明
1	送信要求	5	グランド
2	データ端末レディー	6	受信データ
3	送信データ	7	接続なし
4	グランド	8	送信可

付録B

システム仕様

この付録では、Sun Fire V890 サーバーの次の仕様について説明します。

- 174 ページの「物理仕様の関連情報」
- 174 ページの「電気仕様の関連情報」
- 175 ページの「環境要件の関連情報」
- 176 ページの「適合規格仕様の関連情報」
- 176 ページの「必要スペースおよび保守用スペースの関連情報」

物理仕様の関連情報

システムの寸法および重量は、次のとおりです。

測定値	米国表記	メートル表記	備考
高さ (キャスター含む)	28.1 インチ	71.4 cm	
幅	18.9 インチ	48.0 cm	
奥行	32.9 インチ	83.6 cm	
重量:			
最小	194.0 ポンド	88.0 kg	実際の重量は、取り付けるオ
最大	288.0 ポンド	130.6 kg	プションによって異なりま す。
電源コード	8.2 フィート	2.5 m	

電気仕様の関連情報

次の表に、システムの電気仕様を示します。

パラメタ	值
入力	
周波数	50 Hz または 60 Hz
入力電圧	自動レンジ調節 200 ~ 240 VAC
最大電流 AC RMS	8 A @ 200 VAC (各システムの 2 つの電源装 置の各電源コード)
AC 動作範囲	180 \sim 264 Vrms, 47 \sim 63 Hz
出力	
+3.3 VDC	$3\sim72~\mathrm{A}$
+5 VDC	$3\sim 56~{ m A}$
+12 VDC	$1\sim 35~{ m A}$
+48 VDC	$0\sim 50~{ m A}$
最大 DC 電力出力	2509 W
システムの最大 AC 電力消費	3200 W
システムの最大放熱量	1 時間あたり 10,912 BTU
定格電圧・電流	2078 VA、1629 W 負荷 (PF=0.98)

環境要件の関連情報

システムの動作時および非動作時の環境要件は、次のとおりです。

パラメタ	值
動作時	
温度	$5 \sim 35^{\circ}$ C (41 $\sim 95^{\circ}$ F)-IEC 68-2-1, 68-2-2
湿度	20 ~ 80% RH (結露のないこと)、27℃ 最大湿球温度 -IEC 68-2-2、68-2-3
高度	0 ~ 3000 m (0 ~ 10,000 フィート)ーIEC 68-2-40、68-2-41
振動:	
デスクサイド	0.0002 g ² /Hz、5 ~ 500 Hz (任意)-IEC 68-2-6
ラック搭載	0.00015 g ² /Hz、5 ~ 500 Hz (任意)-IEC 68-2-6
衝撃:	
デスクサイド	ピーク値4g、11 ms 半正弦パルス-IEC 68-2-27
ラック搭載	ピーク値 3 g、11 ms 半正弦パルス-IEC 68-2-27
定格音響	動作時 6.7 ベル dB(A)、ok プロンプト表示時 7.6 ベル dB(A)
非動作時	
温度	-20 \sim 60 °C (-4 \sim 140 °F) – IEC 68-2-1 \sim 68-2-2
湿度	95% RH (結露のないこと)、40℃-IEC 68-2-2、68-2-3
高度	0 ~ 12,000 m (0 ~ 40,000 フィート)ーIEC 68-2-40、68-2-41
振動:	
デスクサイド	0.002 g ² /Hz、5 ~ 500 Hz (任意)-IEC 68-2-6
ラック搭載	0.0015 g ² /Hz、5 ~ 500 Hz (任意)-IEC 68-2-6
衝撃:	
デスクサイド	ピーク値 15 g、11 ms 半正弦パルス-IEC 68-2-27e
ラック搭載	ピーク値 10 g、11 ms 半正弦パルス-IEC 68-2-27e
衝撃	50 mm-IEC 68-2-31
しきい値影響	1 m/s-SUN 900-1813

適合規格仕様の関連情報

システムは、次の仕様に準拠しています。

カテゴリ	関連する標準規格
安全性	EN60950/IEC60950 TUV
	UL Ø UL 60950、CB Scheme IEC 60950、C22.2 No. 60950
RFI/EMI	オーストラリア/ニュージーランド AS/NZ 3548 クラス A
	カナダ政府通産省 ICES-003 クラス A
	欧州連合 EN55022 クラス A
	日本 VCCI クラス A
	台湾 CNS 13438 クラス A
	米国 FCC 47CFR15.B クラス A
イミュニティー	EN55024
	EN61000-4-2
	EN61000-4-3
	EN61000-4-4
	EN61000-4-5
	EN61000-4-6
	EN61000-4-8
	EN61000-4-11
X 線	米国 DHHS 21CFR Subchapter J
	PTB German X-ray Decree

必要スペースおよび保守用スペースの関 連情報

適切な冷却に必要なスペースは、次のとおりです。

遮断物	必要なスペース
正面の遮断物のみ	7.6 cm (3.0 インチ)
背面の遮断物のみ	8.9 cm (3.5 インチ)
正面および背面の遮断物	
正面	8.9 cm (3.5 インチ)
背面	10.2 cm (4.0 インチ)

システムの保守に必要なスペースは、次のとおりです。

範囲	必要なスペース
正面	
デスクサイドシステム	91 cm (36 インチ)
ラック搭載システム	122 cm (48 インチ)
背面	91 cm (36 インチ)
右側	91 cm (36 インチ)
左側	91 cm (36 インチ)

索引

記号

/etc/hostname ファイル, 97 /etc/hosts ファイル, 98 /var/adm/messages ファイル, 18

А

AC 電源コード 接続,25 抜き取るとき,26 AL_PA,89 .asrコマンド,115,117~120 asr-disableコマンド,115,118~120 asr-enableコマンド,115,118~120 auto-boot?構成変数,43,45,112~115 auto-boot-on-error?構成変数,112~116

В

boot-device 構成変数, 113 Break キー 使用不可, 14

С

CD または DVD の取り出し, 156~158 cfgadm コマンド, 132 Compact PCI (cPCI) カード, 59
Control-C キーコンビネーション, 107
CPU ファントレー、「ファントレーアセンブリ」 を参照
CPU/メモリーボード, 2, 48, 50
CPU 番号, 49
UltraSPARC IV, 48
エアバッフル, 50
構成ガイドライン, 48, 50
スロットの状態表示 LED, 144

D

devalias コマンド, 118~119 diag-console $\exists \forall \mathcal{V} \check{\mathsf{F}}, 43, 45$ diag-switch? 構成変数, 114~115, 123 diag-trigger 構成変数, 114~??, 114~115 DIMM、「メモリーモジュール」を参照 Dual Inline Memory Module (DIMM)、「メモリー モジュール」を参照 DVD クリーニング,161 手動での取り出し, 157 ソフトウェアコマンドによる取り出し,156 ドライブがディスクを読み取れない場合,161 ドライブへの挿入,154 非常時の取り出し, 159 DVD-ROM ドライブ, 154~161 位置,7

仕様, 154 Dynamic Multipathing (DMP), 80

Е

EIA-232D シリアル通信, 27,68,71 EIA-423 シリアル通信, 27,68,71 eject cd コマンド, 156, 158 .env コマンド, 108, 110, 111 env-off コマンド, 106, 109 env-on コマンド, 41, 106, 108 eri Fast Ethernet ドライバ, 92,99 Ethernet, 4,91 「Fast Ethernet ポート」も参照 インタフェースの構成,28,91 インタフェースの追加,96 冗長ネットワークインタフェース,93 接続完全性テスト, 95,99 接続要件, 100, 101 ドライバ, 92,99 複数のインタフェースの使用, 4,92,93 より対線ケーブル、接続,101

F

位置,9

Fast Ethernet # - h, 4,92

より対線ケーブルの接続, 101 FC-AL AL_PA, 89 管理, 140 技術概要, 77, 78 FC-AL ディスクドライブ、「ディスクドライブ」 を参照 FC-AL ディスクバックプレーン, 3, 79, 84 完全および分割構成, 84 構成ガイドライン, 82, 83 ジャンパ, 75 デュアルループ構成, 3, 20, 79, 83, 84, 87 FC-AL ホストアダプタ, 3, 20, 79, 84, 86, 88 構成ガイドライン, 86, 88 Fibre Channel-Arbitrated Loop、「FC-AL」を参照 fuser コマンド, 156, 158

G

ge Gigabit Ethernet ドライバ, 92, 99 Gigabit Ethernet ポート, 4, 92 LED, 151 位置, 9 接続要件, 100

T

I/O ファントレー、「ファントレーアセンブリ」 を参照
I/O ブリッジファントレー、「ファントレーアセ ンブリ」を参照
I/O ボード, 20, 61, 71 ~ 75, 81, 92, 132, 135
PCI スロットの位置, 58
ジャンパ, 69, 71
I²C バス, 17
IDE
パリティー保護, 21
input-device 構成パラメタ, 43
input-device 構成変数, 45, 123
IP アドレス, 94, 97
ISP2100 プロセッサ, 88
ISP2200A プロセッサ, 86, 88

L

LED、「状態表示 LED」を参照 luxadm ユーティリティー, 131, 140

Μ

Multipathing ソフトウェア, 3, 4, 79, 128, 132, 133

0

ok プロンプト、「OpenBoot ファームウェア」を 参照 OpenBoot 環境監視, 41, 106~111 「環境監視サブシステム」を参照 Stop-A キーボードコマンドによる使用不可への 切り替え,107,109 温度による自動停止, 107 使用可能, 41, 106, 108 状態情報の取得, 108, 110, 111 使用不可, 41, 106, 109 OpenBoot 構成変数 auto-boot?, 112~115 auto-boot-on-error?, 112~116 boot-device, 113 diag-switch?, 114~115,123 diag-trigger, 114 ~ ??, 114 ~ 115 input-device, 123 output-device, 123 デフォルト値へのリセット, 123 OpenBoot 診断, 5, 14, 22, 60 自動システム回復の役割, 111 OpenBoot の非常時の手順, 121 OpenBoot ファームウェア, 5, 43, 45, 103, 106~121 output-device 構成変数, 43, 45, 123

Ρ

PBC, 83
PCIカード

構成ガイドライン, 56~59
スロットの位置, 9,58
スロットの状態表示 LED, 57, 145
スロットの特性, 56
デバイス名, 104, 117
フレームバッファーカード, 4, 30, 33
ホストアダプタ, 3, 4, 20, 79, 84, 86, 92
ホットプラグ操作, 2, 16, 56, 129~132

PCIバス, 2, 56~59

可用性に関する考慮事項, 59, 93
構成ガイドライン, 56~59
スロットの特性, 56
性能に関する考慮事項, 59

パリティー保護, 21 PCI ブリッジチップ, 56~59 Port Bypass Controller (PBC), 83 .post コマンド, 120

Q

Qlogic ISP2100 プロセッサ, 88 Qlogic ISP2200A プロセッサ, 86,88

R

Remote System Control、「RSC」を参照 reset-all コマンド, 43, 45, 104, 119, 130 RSC, 5, 20, 135, 136 Ethernet ポート, 135 概要, 5, 20, 60, 61 キースイッチの強制切断位置, 39 機能, 5, 20, 61, 135 システムコンソールの切り替え, 42 シリアルポート, 135, 136 ソフトウェアのインストール, 28, 61 ユーザーインタフェース, 136 ユーザーマニュアル, 28

S

SBus カード, 59
SCSI 構成ガイドライン, 68
SCSI Enclosure Services (SES) プロセッサ, 83
SES プロセッサ, 83
show-devs コマンド, 104, 117, 118
Solaris オペレーティングシステム, 3, 5, 61, 131, 140
インストール, 95
Solstice DiskSuite, 21, 79, 129, 136, 137
SSC100 プロセッサ, 83
Stop-A キーコンビネーション, 107, 109, 121
OpenBoot 環境監視の使用不可への切り替え, 107, 109 使用不可, 14 Stop-D キーコンビネーション, 121 Stop-F キーコンビネーション, 121 Stop-N キーコンビネーション, 123 Sun Cluster ソフトウェア, 141 Sun Management Center ソフトウェア, 22, 128, 134, 135 Sun StorEdge PCI Dual Fibre Channel ホストアダ プタカード, 87, 88 SunSolve Online Web サイト, 73 SunVTS (Sun Validation Test Suite), 22

Т

tip 接続, 30

U

USB (Universal Serial Bus) ポート, 4,35 ホットプラグ機能,70 USB ポート,69 USB ハブ,69 位置,9 ハードウェア構成,69 USB、「USB ポート」を参照

V

VIS, 1,50

あ

アース用ねじ, 9,10 誤り訂正符号 (ECC), 21 安全のための規格仕様, 176

い

インタリーブ、メモリー,53

う

ウォッチドッグ、ハードウェア 使用可能, 19

え

エアバッフル、CPU, 50 エラーメッセージ 温度関連, 18 訂正可能な ECC エラー, 21 電源関連, 18, 130 ファン関連, 18, 130 ログファイル, 18

お

オペレーティングシステムソフトウェア、インス トール,95 温度障害 LED, 13,18,148 温度センサー,17 温度による停止,18,50,67,107

か

外部記憶装置, 3,87,88 書き込み可能なテープカートリッジ, 163 書き込み禁止のテープカートリッジ, 163 確認、出荷内容, 23 仮想プロセッサ, 49 環境監視サブシステム 「OpenBoot 環境監視」を参照 RSC, 5,60 エラーメッセージ, 18,107,130 温度監視, 17,106,107 温度による自動停止, 18,50,67,107 電源障害の監視, 18,106,130 ファン障害の監視, 18,66,106,107,130 ホットスワップイベント, 130 環境仕様, 175

き

キースイッチ 位置,7,11 監視および制御,17 強制切断位置,14,38 RSC への影響,14,39 診断位置,14,36,75 設定,14 標準位置,14,36,75 ロック位置,14,75,140 キーのロック,8 キーボード、接続,33 キーボードおよびマウスコネクタ、位置,9 起動 新しいハードウェアの取り付け後,40 起動画面,41

<

クラスタ構成,141

け

ケーブル Gigabit Ethernet, 100 キーボードおよびマウス, 35 シリアルポートスプリッタケーブル, 31 より対線 Ethernet (TPE), 101

こ

高温状態, 17, 107 構成、「ハードウェア構成」を参照 このマニュアルの書体と記号, xxiv コンソール、「システムコンソール」を参照 コンパクトディスク クリーニング, 161 手動での取り出し, 157 ソフトウェアコマンドによる取り出し, 156 ドライブがディスクを読み取れない場合, 161 ドライブへの挿入, 154 非常時の取り出し, 159

さ

サーバーの設置, 24 再起動 (boot -r), 40,50

ι

システムインターコネクトバス,50 システム構成、「ハードウェア構成」を参照 システムコンソール, 4,30 RSC への切り替え,42 設定,30 ローカルコンソールへの切り替え,45 システムコントローラカード,60 位置,9 キースイッチの強制切断位置,14 コネクタの位置,61 障害の発生した RSC コンソールの回復, 44 ハードウェア構成,60 システム仕様、「仕様」を参照 システム障害 LED, 12,18 システムの機能.1~?? 正面パネル,7 背面パネル,9 自動システム回復 (ASR) 概要, 19 手動での装置の構成解除, 117, 118 手動での装置の再構成, 117, 119 使用可能, 112 状態情報の取得, 120, 121 使用不可, 116 自動フェイルオーバー,92 シャーシのアース用ねじ,10 ジャンパ.70 FC-AL ディスクバックプレーン, 75 シリアルポートジャンパ,71 フラッシュ PROM ジャンパ, 73 出荷 (届いた内容), 23 出荷内容の確認,23

出荷用の箱,23 仕様, 173~177 DVD-ROM ドライブ, 154 Ethernet ケーブルの要件, 100, 101 環境, 175 適合規格, 176 電気, 174 必要スペース, 176, 177 物理, 174 保守用スペース, 176, 177 障害インジケータ、「状態表示 LED」を参照 状態およびコントロールパネル, 7,11 状態表示 LED, 11~13, 21, 143~151 CPU/メモリーボードスロット, 144 Gigabit Ethernet \mathcal{O} LED, 151 PCI スロット, 57, 145 POST 実行中の動作, 12 位置, 11, 143~151 意味, 12, 143~151 温度障害 LED, 13, 18, 148 環境障害インジケータ,18 システム障害 LED, 12,18 ディスク障害 LED, 12, 149 ディスクドライブの LED, 7,85,149 電源 LED, 12 電源障害 LED, 13, 18 電源装置 LED, 10, 13, 18, 64, 147 取り外し可能 LED, 12, 144, 145, 148, 149 ファントレーの LED, 67,148 冗長性、「ハードウェアの冗長性」を参照 正面パネルの機能,7 書体と記号について, xxiv シリアルポート, 4,68 位置,9 ジャンパ,71 スプリッタケーブル, 4,31,69 接続,31 設定, 27, 68, 71 診断テスト, 5, 14, 22, 120 信頼性、可用性、保守性 (RAS), 6, 15~??

せ

セキュリティー機能, 8,11,14 接続完全性テスト, 95,99 設置、サーバー, 24

そ

損傷、予防 静電気,54 テープカートリッジ,162

た

端末、文字, 4, 31

ち

チップマルチスレッディングプロセッサ,48

τ

低温状態, 17 停止, 13, 14, 18, 38, 107 ディスク、コンパクト、「コンパクトディスク」 を参照 ディスク、デジタル多用途、「DVD」を参照 ディスク構成 RAID 0, 21, 80, 139 RAID 1, 21, 138 RAID 5, 21, 80, 139 構成ガイドライン,85,86 ストライプ化, 21,80,139 ホットスペア, 21,139 ホットプラグ, 15, 85, 129~132, 140 ミラー化, 21, 137 連結, 138 ディスクドライブ, 3,85,86 LED, 7, 12, 85, 149 構成ガイドライン, 85,86 デュアルポート, 20, 79, 84, 85 ドアの取り扱い,8

ドライブベイの位置,7,86 ホットプラグ, 3, 15, 79, 85, 129~132, 140 ディスクのストライプ化, 21,80,139 ディスクの連結,138 ディスクバックプレーン、「FC-AL ディスクバッ クプレーン」を参照 訂正可能な ECC エラー, 21 テープカートリッジ 書き込み可能, 163 書き込み禁止, 163 磁界, 162 直射日光, 162 ドライブへの挿入,163 取り扱い, 162 取り出し,164 保管, 162 テープドライブ クリーニング,165 ソフトウェアコマンドによる制御,165 適合規格の仕様,176 デジタル多用途ディスク、「DVD」を参照 デバイスツリー、再作成,41 デュアルループ FC-AL 構成, 3, 20, 79, 84, 87 電気仕様, 174 電源 LED インジケータ, 12, 38 仕様, 174 切断, 38 投入,35 電源コード、AC 接続. 25 抜き取るとき,26 電源障害 LED, 13, 18 電源装置, 5,9 DC 出力電圧, 64 LED, 10, 13, 18, 64, 147 位置,9 構成ガイドライン, 62,64 出力容量, 5, 64, 174 障害監視および報告, 18, 130 冗長性, 5, 16, 64, 130 ホットスワップ機能, 5,64

電源投入時自己診断 (POST), 5,14,22,120 RSC,60 電源ボタン,13,37,38,41 位置,7,11 使用不可,14

لح

ドアのロック,8 動的再構成 (DR),131 取り外し可能 LED,12,145,149,150

な

内蔵ディスクドライブベイ、位置,7,86

ね

ネットワーク 「Ethernet」を参照 インタフェースの構成, 28,91 冗長インタフェース, 93 タイプ, 28 ネームサーバー, 99 プライマリインタフェース, 94,95

は

ハードウェア構成,47
CPU/メモリーボード,48,50
FC-ALディスクバックプレーン,82,83
FC-ALホストアダプタ,86,88
PCIカード,56~59
SCSI装置,68
USBポート,69
システムコントローラカード,60
シリアルポート,68
ディスクドライブ,85,86
電源装置,62,64
ハードウェアジャンパ,70~??
FC-ALディスクバックプレーン,75

シリアルポート, 71 フラッシュ PROM, 73 ファントレーアセンブリ, 65~67 メモリー, 51~?? リムーバブルメディア装置, 68
ハードウェアジャンパ、「ジャンパ」を参照 ハードウェアのウォッチドッグ、使用可能, 19 ハードウェアの冗長性, 3, 4, 5, 16, 59, 79, 92, 93
配電盤, 62
背面パネルの機能, 9
バックプレーン、「FC-AL ディスクバックプレー ン」を参照
パリティー, 21, 32, 139

ひ

非常停止, 13, 14 非常取り出し (CD または DVD), 159 必要スペースの仕様, 176, 177

ふ

ファームウェアの更新, 73,140 ファン 「ファントレーアセンブリ」を参照 障害監視および報告, 17, 18, 66, 130 ファントレーアセンブリ 「ファン」を参照 CPU ファントレーのフィラーパネル, 67 LED, 67, 148 構成ガイドライン,65~67 冗長性, 17 ホットスワップ機能, 66, 129~132 フィラーパネル CPU エアバッフル, 50 CPUファントレー,67 ブートデバイス、選択方法, 103 フェイルオーバー機能, 3,4,5,16,17,79,92,93 物理仕様, 174 フラッシュ PROM ジャンパ,73

プログラミング,73 使用不可,14,75,140 フレームバッファーカード,4,30

ほ

ボーレート, 32,68 保守用スペースの仕様, 176,177 ホスト名,94,96 ホットスペア、「ディスク構成」を参照 ホットスワップ機能 定義,129 電源装置,129~132 ファントレーアセンブリ,17,129~132 ホットプラグ機能 PCIカード,2,15,56,59,129~132 定義,129 ディスクドライブ,3,15,79,85,129~132,140 取り外し可能 LED,12,145,149,150 ユーザーインタフェース,132,140

ま

マザーボード, 3, 48, 65, 80, 86, 92, 132 マザーボードファントレー、「ファントレーアセ ンブリ」を参照 マニュアル 関連, xxv

み

ミラー化、ディスク, 21,137

め

メモリーモジュール, 2,51 構成ガイドライン, 51~?? 取り扱い, 54 バンク, 51 メモリーのインタリーブ, 53,55 容量, 51

ŧ

文字端末, 4,31 接続,31 設定,31 モニター、接続,33

Þ

ユーザーインタフェース, 136 ユニバーサル PCI カード, 58

ら ラックマウントキット,6

り

リムーバブルメディア装置 構成,68 リムーバブルメディア装置の構成,68

れ

レンチアイコンの LED、「システム障害 LED」、 「状態表示 LED」を参照

ろ

ログファイル RSC, 20 エラー, 18