
Sun Microsystems, Inc.
www.sun.com

Submit comments about this document at: http://docs.sun.com/app/docs/form/comments

Sun Java™ System

Content Delivery Server 5.0
Customization Guide

2005Q4

Part No.: 819-3213-10

http://docs.sun.com/app/docs/form/comments

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

This distribution may include materials developed by third parties.

Sun, Sun Microsystems, the Sun logo, Java, J2EE, Java Naming and Directory Interface, and Javadoc are trademarks or registered trademarks of
Sun Microsystems, Inc. in the U.S. and other countries.

Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the
export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether
direct or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion
lists, including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plus des brevets américains listés à
l'adresse http://www.sun.com/patents et un ou les brevets supplémentaires ou les applications de brevet en attente aux Etats - Unis et
dans les autres pays.

Cette distribution peut comprendre des composants développés par des tierces parties.

Sun, Sun Microsystems, le logo Sun, Java, J2EE, Java Naming and Directory Interface, et Javadoc sont des marques de fabrique ou des marques
déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.

Les produits qui font l'objet de ce manuel d'entretien et les informations qu'il contient sont regis par la legislation americaine en matiere de
controle des exportations et peuvent etre soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations
finales, ou utilisateurs finaux, pour des armes nucleaires, des missiles, des armes biologiques et chimiques ou du nucleaire maritime,
directement ou indirectement, sont strictement interdites. Les exportations ou reexportations vers des pays sous embargo des Etats-Unis, ou
vers des entites figurant sur les listes d'exclusion d'exportation americaines, y compris, mais de maniere non exclusive, la liste de personnes qui
font objet d'un ordre de ne pas participer, d'une facon directe ou indirecte, aux exportations des produits ou des services qui sont regi par la
legislation americaine en matiere de controle des exportations et la liste de ressortissants specifiquement designes, sont rigoureusement
interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A
L'ABSENCE DE CONTREFACON.

http://www.sun.com/patents
http://www.sun.com/patents

Contents

Preface xxi

1. Introduction 1–1

1.1 Event Service API 1–1

1.2 Billing API 1–2

1.3 Content Management API 1–2

1.4 Content Validation API 1–3

1.5 User Profile API 1–3

1.6 WAP Gateway API 1–3

1.7 Messaging API 1–4

1.8 Confirm Service API 1–4

1.9 Subscriber API 1–4

1.10 API by Feature 1–5

2. Event Service API 2–1

2.1 SQL*Net Client Application 2–3

2.1.1 Event Tables 2–3

2.1.1.1 CDS_EVENT Table 2–4

2.1.1.2 CDS_EVENT_TYPE Table 2–5

2.1.1.3 CDS_EVENT_GROUP Table 2–5
iii

2.1.1.4 EVENT_SOURCE_TYPE_ID Table 2–6

2.1.2 Reporting Tools 2–6

2.2 JMS Client Application 2–7

2.3 Events and Event Data 2–7

2.4 Using the Event Service API 2–12

2.4.1 Developing an SQL*Net Client Application 2–12

2.4.2 Developing a JMS Client Application 2–12

2.5 Sample Implementation of MessageListener 2–13

3. Billing API 3–1

3.1 General Process Flow 3–2

3.1.1 Content Listing 3–2

3.1.2 Transaction Initiation 3–3

3.1.3 Subscriber Purchase 3–4

3.1.4 Download Confirmation 3–5

3.1.5 Subscription Verification 3–6

3.1.6 Error Handling 3–7

3.2 BillingManager Interface 3–7

3.2.1 authorize() 3–8

3.2.2 checkSubscription() 3–9

3.2.3 confirm() 3–9

3.2.4 getBillingInfo() 3–9

3.2.5 getBillingInfos() 3–10

3.2.6 getLog() 3–11

3.2.7 refund() 3–11

3.2.8 reverse() 3–11

3.2.9 subscribe() 3–11

3.2.10 unsubscribe() 3–12

3.3 Using the Billing API 3–12
iv Customization Guide • 2005Q4

3.4 Sample Billing Adapter 3–13

4. Content Management API 4–1

4.1 General Process Flow 4–2

4.1.1 Obtaining a List of Content 4–2

4.1.2 Obtaining Content Details 4–3

4.1.3 Downloading Content 4–3

4.2 ContentManager Interface 4–4

4.2.1 getContentInfo() 4–5

4.2.2 getContentInfos() 4–5

4.2.3 getContentDescriptor() 4–5

4.2.4 getContentBinary() 4–6

4.3 Using the Content Management API 4–6

4.4 Sample Content Management Adapter 4–7

5. Content Validation API 5–1

5.1 General Process Flow 5–1

5.2 ValidationAdapter Class 5–2

5.2.1 execute() 5–2

5.2.2 returns() 5–3

5.3 ValidationContent Class 5–3

5.4 Using the Content Validation API 5–3

5.5 Sample Content Validation Adapter 5–5

6. User Profile API 6–1

6.1 UserManager Class 6–1

6.1.1 doAccountExists() 6–2

6.1.2 doAddUser() 6–2

6.1.3 doDisableUser() 6–2

6.1.4 doEnableUser() 6–2
Contents v

6.1.5 doFormatMobileId() 6–2

6.1.6 doFormatLoginId() 6–2

6.1.7 doGetAllLikeInOrder() 6–3

6.1.8 doGetAllUsers() 6–3

6.1.9 doGetAllUsersContainingFirstName() 6–3

6.1.10 doGetAllUsersContainingId() 6–3

6.1.11 doGetAllUsersContainingLastName() 6–3

6.1.12 doGetAllUsersContainingName() 6–4

6.1.13 doGetAnonymousUser() 6–4

6.1.14 doGetFieldName() 6–4

6.1.15 doGetUser() 6–4

6.1.16 doGetUserByMobileId() 6–4

6.1.17 doGetUserByUniqueDeviceId() 6–4

6.1.18 doGetUserInstance() 6–5

6.1.19 doIsActive() 6–5

6.1.20 doIsAuthenticated() 6–5

6.1.21 doRemoveUser() 6–5

6.1.22 doUpdateUser() 6–5

6.2 User Interface 6–6

6.2.1 getActivateDate() 6–6

6.2.2 getAttribute() 6–6

6.2.3 getAttribute() 6–6

6.2.4 getAttributes() 6–6

6.2.5 getCity() 6–6

6.2.6 getCountry() 6–7

6.2.7 getCreateDate() 6–7

6.2.8 getDeActivateDate() 6–7

6.2.9 getEmail() 6–7
vi Customization Guide • 2005Q4

6.2.10 getFirstName() 6–7

6.2.11 getGender() 6–7

6.2.12 getLastLogin() 6–8

6.2.13 getLastName() 6–8

6.2.14 getLoginId() 6–8

6.2.15 getMiddleName() 6–8

6.2.16 getMobileId() 6–8

6.2.17 getPassword() 6–8

6.2.18 getPhone() 6–9

6.2.19 getPostalCode() 6–9

6.2.20 getSalutation() 6–9

6.2.21 getState() 6–9

6.2.22 getStreet1() 6–9

6.2.23 getStreet2() 6–9

6.2.24 getUniqueDeviceId() 6–10

6.2.25 hasLoggedIn() 6–10

6.2.26 isConfirmed() 6–10

6.2.27 isEnabled() 6–10

6.2.28 isPrepay() 6–10

6.2.29 setActivateDate() 6–10

6.2.30 setAttribute() 6–11

6.2.31 setAttributes() 6–11

6.2.32 setCity() 6–11

6.2.33 setCountry() 6–11

6.2.34 setCreateDate() 6–11

6.2.35 setDeActivateDate() 6–11

6.2.36 setEmail() 6–12

6.2.37 setFirstName() 6–12
Contents vii

6.2.38 setGender() 6–12

6.2.39 setHasLoggedIn() 6–12

6.2.40 setIsEnabled() 6–12

6.2.41 setIsPrepay() 6–12

6.2.42 setLastName() 6–13

6.2.43 setLoginId() 6–13

6.2.44 setMiddleName() 6–13

6.2.45 setMobileId() 6–13

6.2.46 setPassword() 6–13

6.2.47 setPhone() 6–13

6.2.48 setPostalCode() 6–14

6.2.49 setSalutation() 6–14

6.2.50 setState() 6–14

6.2.51 setStreet1() 6–14

6.2.52 setStreet2() 6–14

6.2.53 setUniqueDeviceId() 6–14

6.2.54 updateLastLogin() 6–15

6.3 UserDeviceManager Interface 6–15

6.3.1 getUniqueDeviceID() 6–15

6.4 Using the User Profile API 6–15

6.5 Sample Implementation of the User Manager API 6–16

6.5.1 Support Files 6–16

6.5.2 SampleUserImpl.java 6–20

6.5.3 SampleUserManagerImpl.java 6–27

7. WAP Gateway API 7–1

7.1 WAPGatewayAdapter Class 7–2

7.1.1 doHandle() 7–2

7.1.2 getMSISDN() 7–2
viii Customization Guide • 2005Q4

7.1.3 getUniqueId() 7–2

7.2 Using the WAP Gateway API 7–3

7.3 Sample WAP Gateway Adapter 7–3

8. Messaging API 8–1

8.1 PushMsgSender Interface 8–2

8.1.1 pushMessage() 8–2

8.2 PushMsgListener Interface 8–2

8.2.1 connect() 8–2

8.2.2 initialize() 8–3

8.2.3 listen() 8–3

8.2.4 sendKeepAliveMsg() 8–3

8.3 PushMessage Class 8–3

8.3.1 addUserAgent() 8–3

8.3.2 getAllUserAgents() 8–4

8.3.3 getAttribute() 8–4

8.3.4 getContentBinary() 8–4

8.3.5 getContentType() 8–4

8.3.6 getDestinationAddress() 8–4

8.3.7 getJMSMessageId() 8–4

8.3.8 getKeyword() 8–5

8.3.9 getMessageId() 8–5

8.3.10 getMessageText() 8–5

8.3.11 getMimeType() 8–5

8.3.12 getPushCategory() 8–5

8.3.13 getPushDomain() 8–5

8.3.14 getPushType() 8–6

8.3.15 getShortCode() 8–6

8.3.16 getSubscriberId() 8–6
Contents ix

8.3.17 getUniqueDeviceId() 8–6

8.3.18 getVendingContentId() 8–6

8.3.19 setAllUserAgents() 8–6

8.3.20 setAttribute() 8–7

8.3.21 setContentBinary() 8–7

8.3.22 setContentType() 8–7

8.3.23 setDestinationAddress() 8–7

8.3.24 setJMSMessageId() 8–7

8.3.25 setKeyword() 8–7

8.3.26 setMessageId() 8–8

8.3.27 setMessageText() 8–8

8.3.28 setMimeType() 8–8

8.3.29 setPushCategory() 8–8

8.3.30 setPushDomain() 8–8

8.3.31 setShortCode() 8–8

8.3.32 setSubscriberId() 8–9

8.3.33 setUniqueDeviceId() 8–9

8.3.34 setVendingContentId() 8–9

8.3.35 toString() 8–9

8.4 SMSMessage Class 8–9

8.5 WapPushMessage Class 8–10

8.6 SMTPMessage Class 8–10

8.7 ContentSlide Class 8–10

8.7.1 getContentData() 8–10

8.7.2 getContentId() 8–10

8.7.3 getContentMimeType() 8–11

8.7.4 setContentData() 8–11

8.7.5 setContentId() 8–11
x Customization Guide • 2005Q4

8.7.6 setContentMimeType() 8–11

8.8 MMSSlide Class 8–11

8.8.1 getAudioContent() 8–11

8.8.2 getImageContent() 8–12

8.8.3 getTextContent() 8–12

8.8.4 getVideoContent() 8–12

8.8.5 setAudioContent() 8–12

8.8.6 setImageContent() 8–12

8.8.7 setTextContent() 8–12

8.8.8 setVideoContent() 8–13

8.9 MMSPushMessage Class 8–13

8.9.1 addMMSSlide() 8–13

8.9.2 addRecipient() 8–13

8.9.3 getAllMMSSlides() 8–13

8.9.4 getAllRecipients() 8–13

8.9.5 getDeliveryReportRequired() 8–14

8.9.6 getFromAddress() 8–14

8.9.7 getMessageClass() 8–14

8.9.8 getMessagePriority() 8–14

8.9.9 getReadReportRequired() 8–14

8.9.10 getSenderVisibility() 8–14

8.9.11 getSMILPresentation() 8–15

8.9.12 setDeliveryReportRequired() 8–15

8.9.13 setFromAddress() 8–15

8.9.14 setMessageClass() 8–15

8.9.15 setMessagePriority() 8–15

8.9.16 setReadReportRequired() 8–15

8.9.17 setSenderVisibility() 8–16
Contents xi

8.9.18 setSMILPresentation() 8–16

8.10 MMSSender Interface 8–16

8.10.1 sendMMS() 8–16

8.11 PushResponse Class 8–17

8.11.1 getMessageId() 8–18

8.11.2 getResponseDescription() 8–18

8.11.3 getResponseStatus() 8–18

8.12 PushConstants Class 8–18

8.13 Using the Messaging API 8–18

9. Confirm Service API 9–1

9.1 General Process Flow 9–1

9.2 ConfirmServiceAdapter Class 9–2

9.2.1 connect() 9–2

9.2.2 listen() 9–2

9.2.3 messageReceived() 9–3

9.3 Using the Confirm Service API 9–3

10. Subscriber API 10–1

10.1 General Process Flow 10–2

10.2 Using the Subscriber API 10–3

10.2.1 Managing Transactions 10–4

10.2.2 Example of Creating an IApiContext Object 10–4

10.2.3 Example of Creating a Service 10–5

10.3 XML-RPC Implementation 10–6

10.3.1 Accessing the Content Delivery Server 10–6

10.3.2 Using XML-RPC Handlers for the Subscriber API 10–7

10.3.2.1 Guidelines for Calls to XML-RPC Methods 10–7

10.3.2.2 AuthenticationHandler 10–9
xii Customization Guide • 2005Q4

10.3.2.3 CategoryHandler 10–10

10.3.2.4 ContentHandler 10–11

10.3.2.5 DownloadHandler 10–15

10.3.2.6 GiftingHandler 10–17

10.3.2.7 MessageHandler 10–18

10.3.2.8 SystemHandler 10–20

10.3.2.9 UserHandler 10–21

10.3.2.10 Parameters for the Methods 10–25

10.3.3 Examples of Using Handlers 10–42

10.3.3.1 Example of Creating an ApiContext Object 10–43

10.3.3.2 Example of Creating a Handler and Purchasing
Content 10–44

Index Index–1
Contents xiii

xiv Customization Guide • 2005Q4

Figures

FIGURE 2-1 Event Service Overview 2–2

FIGURE 3-1 Process Flow for Content Listing 3–2

FIGURE 3-2 Process Flow for Transaction Initiation 3–3

FIGURE 3-3 Process Flow for Subscriber Purchase 3–4

FIGURE 3-4 Process Flow for Download Confirmation 3–5

FIGURE 3-5 Process Flow for Subscription Verification 3–6

FIGURE 7-1 WAP Gateway Adapter Architecture 7–1

FIGURE 8-1 Architecture of the Messaging API 8–1

FIGURE 8-2 Process Flow for Sending an MMS Message 8–17
xv

xvi Customization Guide • 2005Q4

Tables

TABLE 1-1 Mapping of Feature to Content Delivery Server API 1–5

TABLE 2-1 CDS_EVENT Table 2–4

TABLE 2-2 CDS_EVENT_TYPE Table 2–5

TABLE 2-3 CDS_EVENT_GROUP Table 2–5

TABLE 2-4 EVENT_SOURCE_TYPE_ID Table 2–6

TABLE 2-5 Events 2–7

TABLE 2-6 Event Data 2–9

TABLE 2-7 Files Required for Execution 2–13

TABLE 9-1 ConfirmResponse Parameters 9–2

TABLE 10-1 Methods for AuthenticationHandler 10–9

TABLE 10-2 Methods for CategoryHandler 10–10

TABLE 10-3 Methods for ContentHandler 10–12

TABLE 10-4 Methods for DownloadHandler 10–16

TABLE 10-5 Methods for GiftingHandler 10–17

TABLE 10-6 Methods for MessageHandler 10–19

TABLE 10-7 Methods for SystemHandler 10–20

TABLE 10-8 Methods for UserHandler 10–22

TABLE 10-9 Method Parameters 10–25
xvii

xviii Customization Guide • 2005Q4

Code Samples

CODE EXAMPLE 2-1 Sample MessageListener Implementation 2-13

CODE EXAMPLE 3-1 Sample BillingManager Implementation 3-13

CODE EXAMPLE 4-1 Sample ContentManager Implementation 4-7

CODE EXAMPLE 5-1 Sample ValidationAdapter Implementation 5-5

CODE EXAMPLE 6-1 Sample Property File 6-16

CODE EXAMPLE 6-2 Sample External Proxy 6-16

CODE EXAMPLE 6-3 Sample User Implementation 6-20

CODE EXAMPLE 6-4 Example Using the UserManager Class 6-27

CODE EXAMPLE 7-1 Example Using the WAPGatewayAdapter Class 7-3

CODE EXAMPLE 8-1 Sample pushsenderfactory.xml File 8-19

CODE EXAMPLE 8-2 Sample pushlistenerfactory.xml File 8-19

CODE EXAMPLE 10-1 Create an IApiContext Object Using Java Classes 10-4

CODE EXAMPLE 10-2 Create a Service 10-5

CODE EXAMPLE 10-3 Create an APIContext Object Using XML-RPC 10-43

CODE EXAMPLE 10-4 Create a Handler 10-44
xix

xx Customization Guide • 2005Q4

Preface

The Sun Java™ System Content Delivery Server Customization Guide describes each of
the Content Delivery Server application programming interfaces (APIs.) These APIs
are used for integrating the Content Delivery Server with an existing infrastructure.

Before You Read This Document
This guide is for programmers who are responsible for writing adapters based on the
APIs and system administrators who are responsible for integrating the Sun Java
System Content Delivery Server with their existing infrastructure. It assumes some
knowledge of the Java programming language and networking, database, and web
technologies.

Note – Sun is not responsible for the availability of third-party web sites mentioned
in this document, and does not endorse and is not responsible or liable for any
content, advertising, products, or other materials available through such sites.

How this Document is Organized
■ Chapter 1 provides an overview of the Content Delivery Server APIs.

■ Chapter 2 describes the Event Service API, which provides asynchronous
reporting of billable events.

■ Chapter 3 describes the Billing API, which provides an interface between the
Content Delivery Server and your billing system.
xxi

■ Chapter 4 describes the Content Management API, which is used to manage the
interface between the Content Delivery Server and your content management
system.

■ Chapter 5 describes the Content Validation API, which is used to validate and
protect content that is submitted to the Content Delivery Server.

■ Chapter 6 describes the User Profile API, which is used to add, delete, retrieve,
update, enable, and disable users in the system.

■ Chapter 7 describes the WAP Gateway API, which retrieves the MSISDN, device
profile, and other attributes from the HTTP header.

■ Chapter 8 describes the Messaging API, which provides a mechanism for carriers
or application vendors to integrate their own Wireless Access Protocol (WAP),
Short Message Service (SMS), and Multimedia Messaging Service (MMS) push
implementations.

■ Chapter 9 enables the Content Delivery Server to handle confirmation messages
sent from a Multimedia Messaging Service Center (MMSC).

■ Chapter 10 provides access to data maintained by the Content Delivery Server.

Typographic Conventions

Typefacea

a The settings on your browser might differ from these settings.

Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your.login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when contrasted
with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized.

Replace command-line variables
with real names or values.

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.

To delete a file, type rm filename.
xxii Customization Guide • 2005Q4

Related Documentation
The Sun Java System Content Delivery Server manuals are available as Portable
Document Format (PDF) and Hypertext Markup Language (HTML) files. These files
are available in the Documentation subdirectory of the directory where the Content
Delivery Server is installed as well as online at http://docs.sun.com.

The following table summarizes the books included in the Content Delivery Server
documentation set.

Book Title Description Part Number

Sun Java System Content Delivery Server
Administration Guide

Describes how to manage content, devices, and
access to the Content Delivery Server.

819-3209-10

Sun Java System Content Delivery Server
Branding and Localization Guide

Describes how to customize the Subscriber Portal
and Developer Portal components of the Content
Delivery Server for the look and feel of your
enterprise. This guide also describes how to localize
the Content Delivery Server interfaces.

819-3210-10

Sun Java System Content Delivery Server
Capacity Planning Guide

Provides guidelines for determining what hardware
and software is needed to efficiently run the Content
Delivery Server.

819-3211-10

Sun Java System Content Delivery Server
Content Developer Guide

Describes how to submit content to the Content
Delivery Server.

819-3212-10

Sun Java System Content Delivery Server
Error Messages

Describes error messages that are generated by the
Content Delivery Server and suggests actions to take
to resolve problems reported.

819-3214-10

Sun Java System Content Delivery Server
Installation Guide

Provides information about installing and
configuring the Content Delivery Server.

819-3215-10

Sun Java System Content Delivery Server
Integration Guide

Describes adapters for integrating the Content
Delivery Server with existing systems such as billing,
user data, WAP gateway, and push delivery. It also
describes the framework for creating device-specific
versions of the Subscriber Portal.

819-3216-10

Sun Java System Content Delivery Server
Migration Guide

Describes how to migrate from the previous version
of the Content Delivery Server to the current version.

819-3217-10

Sun Java System Content Delivery Server
System Management Guide

Provides information on running and maintaining
the Content Delivery Server.

819-3218-10
Preface xxiii

http://docs.sun.com

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions.

To share your comments, go to http://docs.sun.com and click Send Comments.
In the online form, provide the document title and part number.
xxiv Customization Guide • 2005Q4

http://docs.sun.com

CHAPTER 1

Introduction

To deploy a commercial service, operators must integrate the Sun Java System
Content Delivery Server with their existing infrastructure. Billing systems, user
management systems, and reporting systems each have integration requirements,
and involve levels of complexity for the operator. The Sun Java System Content
Delivery Server external APIs help with this system integration.

This section introduces the following APIs:

■ Event Service API
■ Billing API
■ Content Management API
■ Content Validation API
■ User Profile API
■ WAP Gateway API
■ Messaging API
■ Confirm Service API
■ Subscriber API

Section 1.10, “API by Feature” on page 1-5 identifies by feature the API that is used
to integrate the Content Delivery Server with your existing systems.

1.1 Event Service API
The Event Service API provides asynchronous reporting of billable events and
enables external systems to extract or be notified of these events. The Event Service
API consumes all of the messages published by the manager components. For each
message, the context and details of the message are extracted, inserted into the
database, and broadcast for reporting and billing.
1-1

The transfer of billing data can occur in both directions, and data transfer can
happen in real time or in batch mode. For example, the Content Delivery Server can
push data to the operator’s billing system as the usage data is recorded or use a
batch pull to query the server periodically. The usage data exchanged between
components is in XML format and includes pricing information that can be captured
for billing integration. The Content Delivery Server can interact with any billing
system through this API.

1.2 Billing API
The Billing API supports prepaid and synchronous billing models. For billing
systems that support the collection of fees prior to content being purchased, the
Billing API is used to verify that subscribers have enough funds in their account
before allowing subscribers to download content. For billing systems that require
real-time billing, the Billing API is used to charge a subscriber’s account at the time
content is purchased.

The Billing API also enables an operator to charge a different fee for content than
what is specified in the Vending Manager. For example, if the operator wants to
provide business subscribers with a special discount, the Billing API is used to
retrieve the special price from the billing system and show that price to the
customer.

1.3 Content Management API
The Content Management API enables content to be instrumented at the time the
content is downloaded to a subscriber’s device. This API is used when the content
needs to be instrumented with either user-specific or billing-specific data
immediately before being delivered to the subscriber. The Content Management API
can also be used to change the attributes of the content, such as MIME type or
content type.
1-2 Customization Guide • 2005Q4

1.4 Content Validation API
The Content Validation API processes content that is submitted to the Content
Delivery Server. Use this API to create the content validation adapters that you need
to automatically validate submitted content. Content validation adapters are used by
the submission verifier workflow that is executed for content submitted to the
Content Delivery Server.

1.5 User Profile API
The User Profile API provides an interface into existing subscriber databases. It
integrates with data sources for subscribers, application developers, administrators,
and devices. Operators do not need to create new, separate databases to work with
the Content Delivery Server. If operators need to combine or merge multiple
database entries, the User Profile API helps integrate this data without impacting
other services requesting information. It also helps with legacy information
integration.

Through the User Profile API, the Content Delivery Server provides a common
service layer for all components to access the database. The abstraction of data
access frees the Content Delivery Server from being tied to a particular database.
This service provides scalable data access to the underlying data by caching
frequently requested data. Combined with security, data access can be controlled
across different users or administrators.

1.6 WAP Gateway API
The WAP Gateway API handles implementation differences in mobile identity
number (MSISDN) authentication and header transmission. Using the MSISDN for
authentication and session management provides benefit for the subscriber and
operator. The Content Delivery Server supports single sign-on, so if the subscriber is
accessing the system through a cell phone, the authentication is performed through
the network and the subscriber’s user name and password are not needed. The
Content Delivery Server can be configured to communicate concurrently with
multiple gateway types.
Chapter 1 Introduction 1-3

The Content Delivery Server works with a standard HTTP web server to handle
presentation logic. It serves both HTML content for the subscriber web site and
Administrator Console and WML for device-side access through a WAP 1.x
compatible browser. The Content Delivery Server supports secure sockets layer (SSL)
connections for secure communication.

1.7 Messaging API
The Messaging API provides a mechanism for carriers or application vendors to
integrate their own WAP or Short Message Service (SMS) push implementations by
providing an adapter. The Content Delivery Server also provides default WAP and
SMS push implementations that can be used in most cases.

1.8 Confirm Service API
The Confirm Service API enables the Content Delivery Server to handle
confirmation messages sent from a Multimedia Messaging Service Center (MMSC).
Confirmation messages are generally sent after content is downloaded to a device.
This API is used to create the connection to the MMSC and to monitor the messages
that the MMSC sends.

1.9 Subscriber API
The Subscriber API provides access to data maintained by the Content Delivery
Server. Use this API to get the data needed to create a client application for
providing subscribers with access to content managed by the Content Delivery
Server. The Subscriber API can be accessed directly by local Java technology-based
applications (Java applications) or from remote applications or applications written
in a programming language other than Java by using XML-RPC.
1-4 Customization Guide • 2005Q4

1.10 API by Feature
The following table identifies which API to use to integrate some of the Content
Delivery Server features with your existing systems. For the features that you want
to support in your installation of the Content Delivery Server, you must implement
the API specified.

TABLE 1-1 Mapping of Feature to Content Delivery Server API

Feature System API

Buy for a friend Simple Mail Transfer Protocol
(SMTP), Short Message Service
Center (SMSC), Push Proxy
Gateway (PPG), and
Multimedia Message Service
Center (MMSC)

Messaging API

Tell a friend SMTP, SMSC, PPG, and MMSC Messaging API

Event-driven campaign1 SMTP, SMSC, PPG, and MMSC Messaging API

Outbound campaign1 SMTP, SMSC, PPG, and MMSC Messaging API

Confirm push message SMTP, SMSC, PPG, and MMSC
(service must return a
confirmation message)

Confirm Service API

External user database Lightweight Directory Access
Protocol (LDAP)

User Profile API

Billing - prepaid Prepaid billing system Billing API

Billing - postpaid Postpaid billing system Event Service API

Integration with external
digital rights management
(DRM)

External DRM engine Content Validation
API, Content
Management API

Single sign-on and device login WAP gateway (must pass
MSIDN or unique ID)

WAP Gateway API

Portal integration Web portal Subscriber API

1Promotional campaigns do not require integration with external systems
Chapter 1 Introduction 1-5

1-6 Customization Guide • 2005Q4

CHAPTER 2

Event Service API

This chapter describes the Sun Java System Content Delivery Server Event Service
API. The Event Service API consists of the following external interfaces:

■ A database schema for querying the event data directly from SQL*Net client
applications

■ The Java Message Service (JMS) topics available for subscription by JMS client
applications

The Event Service propagates messages that come through the Event Queue to any
interested event listener that has subscribed to the topics published by the Event
Service. The Event Service also stores the event data in the Content Delivery Server
database. You can use either the SQL*Net client or the JMS client application
approach. Both approaches have access to the same information in near real time.

Use the Event Service API to write an application that listens for specific events and
takes action as needed by your enterprise. For example, this API can be used to write
a custom billing adapter that processes purchase events and charges subscribers
after content is purchased.

FIGURE 2-1 is a simplified representation of the general systems and components that
interact with the Event Service, which illustrates how information is passed through
the various system interactions.
2-1

FIGURE 2-1 Event Service Overview

The Content Delivery Server Catalog Manager and Vending Manager components
publish appropriate messages to a JMS queue. These messages are retrieved and
processed by the Event Service. Any component within the Content Delivery Server
can publish events to the Event Service. Because event publishing is an
asynchronous operation, the publishing component continues processing as soon as
the message is sent.

The Event Service runs as a separate process within the Content Delivery Server
environment. The Event Service performs the following tasks:

■ Consumes all of the messages published by the various server components

■ Extracts the context and details of the message and inserts the information into
the database

■ Sends an acknowledgement to the JMS queue upon successful processing of the
message

■ If an error occurs, puts the message into an error queue

The message can then be processed and possibly resubmitted to the Event Queue.
The message is still acknowledged as successfully processed by the Event Service.

The current implementation of the Event Service API uses JMS Point-to-Point (PTP)
messaging domain, where various publishers publish to a single queue and an
instance of the Event Service JMS client application processes the messages.

After the events are successfully processed by the Event Service, they are placed into
the database. When the Event Service is deployed with a Vending Manager, events
are placed in the Vending Manager database schema. When the Event Service is

Manager
Components

SQL Client
Application

JMS
Publish

JMS
Subscribe

SQL*Net

SQL*Net

Event
Service

JMS Client

JMS Client
2-2 Customization Guide • 2005Q4

deployed with only a Catalog Manager, the events are placed in the Catalog
Manager database schema. The data model used to store these messages is described
in Section 2.1.1, “Event Tables” on page 2-3.

2.1 SQL*Net Client Application
Data resides in a standard relational database. A set of views enables developers to
write applications in any programming language that can query an Oracle database.
For example, these applications can be written in the Java programming language,
C++, or Visual Basic.

2.1.1 Event Tables
This section describes the tables that hold the event data after the event is processed
by the Event Service. As an integrator, you have access to the data in these tables.

■ If the Event Service is deployed with a Vending Manager, connect to the Oracle
database using the user prefix_vs_app. prefix is the value specified for the Prefix
element under the Vending element in the database configuration file used to
create the database. Use the password that was specified for the Password
element under the Vending element.

■ If the Event Service is deployed with only a Catalog Manager, connect to the
Oracle database using the user prefix_ps_app. prefix is the value specified for the
Prefix element under the Catalog element in the database configuration file used
to create the database. Use the password that was specified for the Password
element under the Catalog element.

See the Sun Java System Content Delivery Server Installation Guide for information on
the database configuration file.
Chapter 2 Event Service API 2-3

2.1.1.1 CDS_EVENT Table

The CDS_EVENT table holds a record for each event processed successfully by the
Event Service. This table is actively updated as events are processed.

TABLE 2-1 CDS_EVENT Table

Column Name Data Type Description

CDS_EVENT_ID NUMBER(18) unique, system-generated number used
as the record ID. This field is the table’s
primary key.

CDS_EVENT_DATE DATE Timestamp indicating when the event
message was generated.

CDS_EVENT_TYPE_ID NUMBER(18) Foreign key to the CDS_EVENT_TYPE
table.

EVENT_SOURCE_ID NUMBER(18) Foreign key to the
EVENT_SOURCE_TYPE table.

SVR_INSTANCE_ID NUMBER(18) System data.

SVR_SESSION_ID VARCHAR2(128) System data.

SUB_SYSTEM_ID VARCHAR2(80) The MSISDN associated with the
session and event. If the MSISDN is not
known, this column is null.

CDS_USER_ID NUMBER(18) The Content Delivery Server User ID
associated with the session and event. If
a user is not logged in, this column
might be null.

VENDOR_ID NUMBER(18) Foreign key to the Vendor table.

CONTENT_ID NUMBER(18) Foreign key to the Content table.

RAW_EVENT_MESSAGE CLOB Raw event message XML.

CREATE_DATE DATE System data.

MOD_DATE DATE System data.

LOCK_VERSION NUMBER(1) System data.
2-4 Customization Guide • 2005Q4

2.1.1.2 CDS_EVENT_TYPE Table

The CDS_EVENT_TYPE table is a static table that contains Event Type definitions.
These definitions are listed in Section 2.3, “Events and Event Data” on page 2-7.

2.1.1.3 CDS_EVENT_GROUP Table

The CDS_EVENT_GROUP table is a static table that maintains the definitions of all
of the event groups in the system. All events belong to the event group called
cds_group.

TABLE 2-2 CDS_EVENT_TYPE Table

Column Name Data Type Description

CDS_EVENT_TYPE_ID NUMBER(18) Unique, system-generated number
used as the record ID. This field is
the table’s primary key.

CDS_EVENT_GROUP_ID NUMBER(18) Foreign key to the EVENT_GROUP
table. Used to group Event Types.

CDS_EVENT_TYPE_NAME VARCHAR2(80) Human-readable name.

DESCRIPTION VARCHAR2(80) Description of the particular Event
Type.

LONG_DESCRIPTION VARCHAR2(255) Long description of the Event Type,
if needed.

IS_ACTIVE NUMBER(1) Flag that indicates if this is an active
event type.

CREATE_DATE DATE System data.

MOD_DATE DATE System data.

LOCK_VERSION NUMBER(1) System data.

TABLE 2-3 CDS_EVENT_GROUP Table

Column Name Data Type Description

CDS_EVENT_GROUP_ID NUMBER(18) Unique, system-generated
number used as the record ID.
This field is the table’s
primary key.

CDS_EVENT_GROUP_NAME VARCHAR2(255) Human-readable name.

DESCRIPTION VARCHAR2(1024) Description of the particular
Event Group.
Chapter 2 Event Service API 2-5

2.1.1.4 EVENT_SOURCE_TYPE_ID Table

The EVENT_SOURCE_TYPE_ID table is a static table that contains Event Source Type
definitions.

2.1.2 Reporting Tools
You can use any database reporting tool that connects to an Oracle database to build
various types of reports from this data such as Crystal Reports. See Appendix B,
“Reports,” in the Sun Java System Content Delivery Server Installation Guide for
additional information on report data.

LONG_DESCRIPTION VARCHAR2(2048) Long description of the Event
Group, if needed.

PARENT_GROUP_ID NUMBER(18) Enables group hierarchies.

IS_ACTIVE NUMBER(1) Flag that indicates if this is an
active event group.

CREATE_DATE DATE System data.

MOD_DATE DATE System data.

LOCK_VERSION NUMBER(1) System data.

TABLE 2-4 EVENT_SOURCE_TYPE_ID Table

Column Name Data Type Description

EVENT_SOURCE_TYPE_ID NUMBER(18) Unique, system-generated number
used as the record ID. This field is
the table’s primary key.

EVENT_SOURCE_TITLE VARCHAR2(255) Human-readable name.

CREATE_DATE DATE System data.

MOD_DATE DATE System data.

LOCK_VERSION NUMBER(1) System data.

TABLE 2-3 CDS_EVENT_GROUP Table (Continued)

Column Name Data Type Description
2-6 Customization Guide • 2005Q4

2.2 JMS Client Application
In addition to the SQL-based interface to the event data, you can implement a JMS
client application that interfaces directly with the Event Service through a JMS topic.
While more difficult to implement, this approach provides greater flexibility for
using the events generated by the Content Delivery Server.

To successfully use this API to integrate with the Event Service, you need to be
familiar with writing JMS client applications and understand the Publish/Subscribe
Messaging domain described in the JMS specification for the Java 2 Platform,
Enterprise Edition (J2EETM platform). Any number of JMS client applications can
subscribe to the messages published by the Event Service by using the Publish/
Subscribe messaging model.

2.3 Events and Event Data
This section provides information on the events and the event data provided by the
Event Service. Both the SQL*Net and JMS client applications use this information to
filter and process the events. Your client application can handle each type of event as
needed by your enterprise. For example, premium SMS billing can be performed
when the sms_content_push_sent event is received.

The following table describes the events generated by the Event Service.

TABLE 2-5 Events

Event Description

content_changed A Catalog Manager administrator made a change to
the content.

content_purchased A subscriber purchased an item of content or
downloaded a free item.

content_refunded A refund was issued for an item of content.

download_deleted Downloaded content was deleted from a device.

download_error The device indicated that an error occurred when
content was downloaded.

download_initiated A subscriber started downloading content.

download_install_notified A device confirmed that the download was
successful.
Chapter 2 Event Service API 2-7

external_content_updated Externally hosted content was updated.

gift_cancelled A gift subscription was cancelled.

gift_download_confirm A gift was downloaded by the recipient.

gift_download_deleted A gift that was downloaded by the recipient was
deleted.

gift_download_error An error occurred when a gift was downloaded.

gift_download_initiated The recipient of a gift started downloading it.

gift_expired The gift expired.

gift_purchased An item of content was purchased as a gift.

gift_refunded A refund was issued for a gift purchased by the
subscriber.

gift_subscription_purchased A subscription to an item of content was purchased
as a gift.

gift_usage_purchased A number of uses of an item of content was
purchased as a gift.

mms_push_sent An MMS message was sent.

pricing_changed The pricing of one or more items of content was
changed using the Category Price Edit feature.

sms_content_push_sent Binary content was sent in an SMS message. Use this
event to trigger premium SMS billing.

sms_push_sent An SMS message was sent.

sms_received An SMS message was received.

smtp_push_sent An SMTP message was sent.

status_changed_to_deleted The status of an item of content was changed to
Deleted.

status_changed_to_denied The status of an item of content was changed to
Denied.

status_changed_to_new The status of an item of content was changed to New.

status_changed_to_pending The status of an item of content was changed to
Pending.

status_changed_to_published The status of an item of content was changed to
Published.

status_changed_to_testing The status of an item of content was changed to
Testing.

TABLE 2-5 Events (Continued)

Event Description
2-8 Customization Guide • 2005Q4

The following table lists information that can be included with an event. Each event
contains only parameters that are relevant to that event.

submission_failed Submitted content was rejected by the Content
Delivery Server.

submission_successful Submitted content was accepted by the Content
Delivery Server.

subscriber_registered A subscriber successfully registered.

subscription_cancelled A subscription for an item of content was cancelled.

subscription_purchased A subscription for an item of content was purchased.

usage_purchased A number of uses were purchased for an item of
content.

validation_passed Submitted content was successfully processed by the
submission verifier workflow.

validation_failed Submitted content failed a step in the submission
verifier workflow.

wap_push_sent A WAP message was sent.

TABLE 2-6 Event Data

Parameter Data Type Description

billing-ticket String The billing ticket for this transaction.

campaign_coupon String The coupon code for a campaign.

campaign_id String The unique identifier for the campaign.

catalog-res-id String The unique identifier for the content edition.

content_binary_mimetype String The MIME type of the content.

content_class_id String The unique identifier for the content item.

content_description String The long description of the content.

content_drm_type_id String The string that identifies the DRM method used to
protect the content.

content_short_description String The short description of the content.

content-id String The unique identifier for the content that was purchased.
This value is the same as catalog-res-id.

content_name String The name of the content.

current-status String The current status of this transaction.

TABLE 2-5 Events (Continued)

Event Description
Chapter 2 Event Service API 2-9

date Date The date on which the transaction occurred.

destination-address String The address to which content is sent, for example, the
MSISDN of the subscriber who requested content.

developer-content-id String The unique identifier used by the developer to identify
the content.

developer-id String The unique identifier for the developer of the content.

developer_name String The name of the developer who submitted the content.

download-confirm Boolean The flag that indicates if a confirmation is required after
a successful download.

download-count Integer The number of times the content can be downloaded for
the price paid.

download-current-count Integer The number of times the subscriber downloaded this
content, including this time.

download-expiration Boolean The flag that indicates if the download period is expired.

download-period Integer The time period during which the content can be
downloaded without additional charge to the subscriber.

download-price Float The price of the content purchased.

download-purchase Boolean The flag that indicates this is a purchase request.

download-recurring Boolean The flag that indicates if the subscriber is charged for
each download.

event-log String The name of the event log.

event-msg String The message issued with the event.

event-source-type-id Integer The number that identifies the source of the event.

event-type Integer The numeric representation of the event that occurred.

event-type-id String The type of event that occurred.

external_content_id String The tag used by the billing system to identify content.

external_group_id String The tag used by the billing system to identify the group
to which the content belongs.

external-request-text String The text of the request from the subscriber, for example,
the MO push request content.

gift_message String The message included with the gift.

gifted_current_downloads Integer The number of times the recipient downloaded this gift,
including this time.

TABLE 2-6 Event Data (Continued)

Parameter Data Type Description
2-10 Customization Guide • 2005Q4

gifted_current_subscriptions Integer The number of subscription periods used by the
recipient, including this period.

gift_download_date Date The date that the gift was first downloaded by the
recipient.

gift_expiration_date Date The date by which the gift must be claimed by the
recipient.

gift_purchase_date Date The date the gift was purchased by the giver.

gifted_downloads Integer The number of downloads included in the gift.

gifted_subscriptions Integer The number of subscription periods included in the gift.

is_on_device Boolean The flag that indicates if the content is already on the
device.

is-prepay Boolean The flag that indicates if the subscriber prepaid for the
content.

locale String The subscriber’s locale.

msisdn String The MSISDN for the subscriber device.

push-msgtext String The message sent to the subscriber’s device or email.

recipient_locale_code String The locale of the intended recipient of the content.

recipient_login_id String The login ID of the intended recipient of the content.

recipient_mobile_id String The mobile ID of the intended recipient of the content.

recipient_unique_device_id String The unique device ID of the intended recipient.

server-id String The unique identifier for the Vending Manager.

session-id String The string that identifies the subscriber’s session.

source-address String The address of the external entity from which the
message was received, for example, the MSISDN of the
SMSC.

subscription-expiration Date The date that the subscription period ends.

subscription-frequency String How often the subscription price is charged.

subscription-recurring Boolean The flag that indicates if the subscriber is automatically
charged for the next period when the current
subscription period ends.

subscription-price Float The price of the subscription period.

timestamp Timestamp The time at which the transaction occurred.

unique-device-id String The unique identifier for the device used.

TABLE 2-6 Event Data (Continued)

Parameter Data Type Description
Chapter 2 Event Service API 2-11

2.4 Using the Event Service API
To use the Event Service API, you need either an SQL*Net client application or a JMS
client application. This section provides information on developing the type of client
that you need for your system.

2.4.1 Developing an SQL*Net Client Application
The application must obtain an SQL*Net connection to the database to directly query
an Oracle database. The specifics of how that is done depends on your database
server and your client application’s local environment.

See Section 2.1.1, “Event Tables” on page 2-3 for information on connecting to the
database.

2.4.2 Developing a JMS Client Application
To compile your JMS client, include in your classpath the Java Archive (JAR) file for
JMS. This file is located at /cds-home/deployment/deployment-name/lib/jms.jar
where cds-home is the directory in which you installed the Content Delivery Server
and deployment-name is the name that you gave the deployment.

usage-count Integer The number of uses allowed for the price specified for
usage-price.

usage-price Float The price charged for the number of uses specified for
usage-count.

user-id String The unique identifier for the user who initiated the
transaction.

username String The login name for the subscriber.

vending-res-id String The tag by which the Vending Manager identifies the
content.

TABLE 2-6 Event Data (Continued)

Parameter Data Type Description
2-12 Customization Guide • 2005Q4

To execute your JMS client, follow these steps:

1. Include in your classpath the JAR files for the components in the following table.

2. Specify the following options for the execute command:

■ -Dcds.home=cds-home

■ -Dcds.config.file=CDS.properties

■ -Dcds.config.dir=cds-home/deployment/deployment-name/conf

2.5 Sample Implementation of
MessageListener
The following code example is an implementation of the MessageListener class.
This sample shows what to do to receive billing events from the CDS billing topic.

TABLE 2-7 Files Required for Execution

JAR File Location1

JMS cds-home/deployment/deployment-name/lib/jms.jar

File System Context
(required only if you
are using Sun Java
System Application
Server)

cds-home/deployment/deployment-name/lib/cdslib/
fscontext.jar

1cds-home is the directory in which you installed the Content Delivery Server. deployment-
name is the name that you gave the deployment.

CODE EXAMPLE 2-1 Sample MessageListener Implementation

package com.sun.content.server.eventservice.subscriber.internal;

import java.util.Properties;

import javax.jms.*;
import javax.naming.Context;
import javax.naming.InitialContext;

/**
* Attach to the CDS billing topic to receive billing events

 */
Chapter 2 Event Service API 2-13

public class CDSBillingSubscriber
 implements ExceptionListener, MessageListener
{
 private static final String kUSAGE = "CDSBillingSubscriber {JNDI Factory}
{JNDI URL}";
 private static final String kTOPIC_CONNECTION_FACTORY_NAME =
"cds.jms.TopicConnectionFactory";
 private static final String kTOPIC_NAME = "cds.messaging.billingTopic";

 private TopicConnection fConnection;
 private TopicSession fSession;
 private boolean fDone = false;

 public static void main(String[] args)
 {
 if (args.length != 2)
 {
 System.out.println(kUSAGE);
 System.exit(-1);
 }

 try
 {

CDSBillingSubscriber billingSubscriber = new CDSBillingSubscriber();
 billingSubscriber.initJMS(args[0], args[1]);

 while (!billingSubscriber.fDone)
 {
 synchronized (billingSubscriber)
 {
 System.out.println("Waiting...");
 billingSubscriber.wait(1000 * 10);
 }
 }
 }
 catch (Exception e)
 {
 e.printStackTrace();
 System.exit(-1);
 }
 }

 /**
 * Initialize the JMS topic subscriber
 *
 * @param jndiFactory the JNDI context factory

CODE EXAMPLE 2-1 Sample MessageListener Implementation (Continued)
2-14 Customization Guide • 2005Q4

 * @param jndiProviderUrl the JNDI connection URL
 *
 * @throws Exception
 */
 private void initJMS(String jndiFactory, String jndiProviderUrl)
 throws Exception
 {
 // Initialize the context
 Properties props = new Properties();
 props.put(Context.INITIAL_CONTEXT_FACTORY, jndiFactory);
 props.put(Context.PROVIDER_URL, jndiProviderUrl);
 InitialContext context = new InitialContext(props);

 // Get the topic connection factory and topic
 TopicConnectionFactory topicConnectionFactory =
 (TopicConnectionFactory
)context.lookup(kTOPIC_CONNECTION_FACTORY_NAME);
 Topic topic = (Topic)context.lookup(kTOPIC_NAME);

 // Initialize the topic connection
 fConnection = topicConnectionFactory.createTopicConnection();
 fConnection.setExceptionListener(this);

 // Get a session and subscriber
 fSession = fConnection.createTopicSession(false,
Session.AUTO_ACKNOWLEDGE);
 TopicSubscriber subscriber = fSession.createSubscriber(topic);
 subscriber.setMessageListener(this);

 fConnection.start();
 }

 /**
 * Listen for messages asynchronously. Simply print them.
 *
 * @param message
 */

 public void onMessage(Message message)
 {
 try
 {
 // simply prints the message
 TextMessage txtMsg = (TextMessage)message;
 System.out.println(txtMsg.getText());
 }

CODE EXAMPLE 2-1 Sample MessageListener Implementation (Continued)
Chapter 2 Event Service API 2-15

 catch (JMSException e)
 {
 e.printStackTrace();
 }
 }

 /**
 * Listen for exceptions and stop waiting
 *
 * @param jmse
 */
 public void onException(JMSException jmse)
 {
 jmse.printStackTrace();
 fDone = true;
 this.notifyAll();
 }
}

CODE EXAMPLE 2-1 Sample MessageListener Implementation (Continued)
2-16 Customization Guide • 2005Q4

CHAPTER 3

Billing API

The Sun Java System Content Delivery Server Billing API provides an interface
between the Content Delivery Server and your billing system. Use the Billing API to
create a customized billing adapter that supports prepaid billing or synchronous
billing.

The Billing API consists of the following elements:

■ BillingManager - Interface that you implement to integrate the Content
Delivery Server with your billing system. The BillingManager interface
handles the authorization of a purchase, confirmation of download, subscribe and
unsubscribe transactions, reversal of charges for a failed download, and a refund
for purchased content.

■ BillingInfo - Class that contains the information for a billing transaction, such
as the price and pricing model for the content, subscriber identification, content
identification, developer identification, and billing status. This class also includes
process information, such as whether authorization is required before subscribers
can download an item and whether the billing system is to be notified when the
content is successfully downloaded. The BillingInfo object provides
communication between the billing system and the Content Delivery Server.

■ BillingException - Exception that is thrown by the Billing API.

■ BillingConstants - Class that defines the constants used by the Billing API.

For additional information on these classes, see the HTML output of the Javadoc tool
at $CDS_HOME/javadoc/cdsapi/index.html.
3-1

3.1 General Process Flow
The Billing API handles the communication between the Content Delivery Server
and the external billing system. The details of the billing transaction are maintained
in a BillingInfo object. The billing adapter, which is your implementation of the
BillingManager interface, determines how the transaction is processed.

This section describes the following flows of information between the Content
Delivery Server and the external billing system:

■ Content Listing
■ Transaction Initiation
■ Subscriber Purchase
■ Download Confirmation
■ Subscription Verification
■ Error Handling

For details on the BillingManager methods mentioned in this section, see
Section 3.2, “BillingManager Interface” on page 3-7.

3.1.1 Content Listing
The list process is initiated when a subscriber requests a list of available content or a
Vending Manager administrator requests a list of stocked content. FIGURE 3-1 shows
this process.

FIGURE 3-1 Process Flow for Content Listing

Content Delivery Server creates a list of BillingInfo
objects and calls getBillingInfos()

Content Delivery Server
shows the list of content

getBillingInfos()modifies billing information if needed, sets the
Authorize Needed flag, and returns the list of BilllingInfo objects

Subscriber or Vending Manager
administrator requests a list of content
3-2 Customization Guide • 2005Q4

The following items provide additional detail on the process for listing content:

1. When a subscriber or Vending Manager administrator requests a list of content,
the Content Delivery Server creates an initial BillingInfo object for each object
in the list and calls the billing adapter’s getBillingInfos() method.

2. Your implementation of getBillingInfos() can modify the purchase price or
other details of each transaction, if needed. You can also specify if authorization is
needed at the time of purchase and if you want a confirmation message when the
content is successfully downloaded. These details are set in the BillingInfo
objects returned to the Content Delivery Server. See Section 3.2.5,
“getBillingInfos()” on page 3-10 for additional information.

3. The Content Delivery Server uses each returned BillingInfo object to show the
pricing information in the list displayed.

3.1.2 Transaction Initiation
A billing transaction is initiated when a subscriber clicks View Details for an item of
content. FIGURE 3-2 shows this process.

FIGURE 3-2 Process Flow for Transaction Initiation

The following items provide additional detail on the process for initiating
transactions:

1. When a subscriber requests the details for an item, the Content Delivery Server
creates the initial BillingInfo object for the subscriber’s selection based on
information in the Content Delivery Server database.

Subscriber selects an
item from the list of content

Content Delivery Server creates BillingInfo
object and calls getBillingInfo()

getBillingInfo()modifies billing information if needed,
sets the Authorize Needed flag, and returns BilllingInfo object

Content Delivery Server
shows the content details page
Chapter 3 Billing API 3-3

2. The Content Delivery Server then calls the billing adapter’s getBillingInfo()
method and passes the BillingInfo object to the method.

3. Your implementation of getBillingInfo() can modify the purchase price or
other details of the transaction, if needed. You can also specify if authorization is
needed at the time of purchase and if you want a confirmation message when the
content is successfully downloaded. These details are set in the BillingInfo
object returned to the Content Delivery Server. See Section 3.2.4,
“getBillingInfo()” on page 3-9 for additional information.

4. The Content Delivery Server uses the returned BillingInfo object to show the
content details and pricing information for the selected item to the subscriber.

3.1.3 Subscriber Purchase
The purchase process is initiated when the subscriber selects an item and clicks
Purchase. The BillingInfo object that was created when the transaction was
initiated is used for the purchase. FIGURE 3-3 shows this process.

FIGURE 3-3 Process Flow for Subscriber Purchase

Content Delivery Server
calls authorize()

authorize()sets
OK flag and returns

BillingInfo object

Subscriber chooses
to purchase content

OK flag
is true

OK flag is
false

Authorize Needed flag
is false and

OK flag is trueAuthorize Needed
flag is true

Content Delivery Server

shows error

Content Delivery Server

shows the purchase page
3-4 Customization Guide • 2005Q4

The following items provide additional detail on the process for a subscriber
purchase:

1. When the subscriber chooses to purchase the content, the Content Delivery Server
checks the BillingInfo object returned by getBillingInfo() to see if
authorization is required.

2. If authorization is required, the Content Delivery Server calls the billing adapter’s
authorize() method and passes the BillingInfo object. This method is
expected to determine if the subscriber is allowed to purchase the content and set
the OK flag in the BillingInfo object. That object is then returned to the
Content Delivery Server. See Section 3.2.1, “authorize()” on page 3-8 for
additional information.

3. If the subscriber is authorized to purchase the content, or no authorization is
needed, the purchase page is presented. If the subscriber is not authorized to
purchase the content, an error message is issued.

When a subscriber purchases content, the BillingInfo object associated with the
transaction is stored in the Content Delivery Server database. For any further actions
that require the billing information, the Content Delivery Server retrieves the object
from the database using the subscriber ID and content ID as the key.

3.1.4 Download Confirmation
The confirmation process is initiated when the device completes the download and
notifies the Content Delivery Server. FIGURE 3-4 shows this process. If the download
is successful and the billing system does not require notification, no action is taken.

FIGURE 3-4 Process Flow for Download Confirmation

Manager
Components

Content Delivery Server
calls reverse()

Content Delivery Server
calls confirm()

Download failed

Download successful
and Confirm Needed

flag is true

Device notifies the
Content Delivery Server

that download has
completed
Chapter 3 Billing API 3-5

The following items provide additional detail on the process for confirming a
download:

1. When the Content Delivery Server receives confirmation from the device that a
download was successful, the Content Delivery Server checks the billing
information to see if the billing system wants to be notified of the confirmation.

2. If confirmation is required, the Content Delivery Server calls the billing adapter’s
confirm() method. See Section 3.2.3, “confirm()” on page 3-9 for additional
information.

3. If the device returns an error instead of a successful confirmation, the Content
Delivery Server calls the billing adapter’s reverse() method and passes the
BillingInfo object for this transaction. Code your implementation of
reverse() to ensure that the subscriber is not charged for the content that was
not downloaded. See Section 3.2.8, “reverse()” on page 3-11 for additional
information.

3.1.5 Subscription Verification
The subscription verification process is initiated when a subscriber accesses content
after the subscription period has ended. FIGURE 3-5 shows this process.

FIGURE 3-5 Process Flow for Subscription Verification

Content Delivery Server calls
checkSubscription()

checkSubscription()
sets Subscription Terminated

flag and returns
BilllingInfo object

Subscription is
not canceled

Subscription is
canceled

Subscriber accesses
content after the

subscription period ends

Subscriber is

prompted to

renew

Subscription is

renewed and

subscriber is

 allowed to

access content
3-6 Customization Guide • 2005Q4

The following items provide additional detail on the process for verifying a
subscription:

1. When a subscriber accesses content after the subscription period has ended, the
Content Delivery Server calls checkSubscription() to see if the subscription
was canceled outside of Content Delivery Server.

2. Code your implementation of checkSubscription() to set the Subscription
Terminated flag in the BillingInfo object that is returned to the Content
Delivery Server. See Section 3.2.2, “checkSubscription()” on page 3-9 for
additional information.

3. If the Subscription Terminated flag in the BillingInfo object is true, or if the
Content Delivery Server subscription status is canceled, the subscriber is
prompted to renew the subscription. If the flag is false and the status is not
canceled, the subscription is automatically renewed and the content is run.

3.1.6 Error Handling
When the billing system detects an error, a generic error message is displayed to the
subscriber. You can customize this message to display additional information by
setting the reply message in the BillingInfo object returned by your
implementation of the BillingManager interface. Whenever an error is detected by
your billing adapter, call setOK() to set the OK flag in the BillingInfo object to
false, and call setReplyMessage() to set the message displayed to the subscriber.

3.2 BillingManager Interface
The BillingManager interface processes the billing transaction based on the
details of the transaction contained in the BillingInfo object. Implement
BillingManager to create a billing adapter for your system. This billing adapter is
the interface between the Content Delivery Server and your billing system.

The BillingManager interface is in the com.sun.content.server.billing
package.
Chapter 3 Billing API 3-7

3.2.1 authorize()
abstract BillingInfo authorize(BillingInfo inBillingInfo,

boolean[] inNeedToAuthorizeBillingModel)

If the external billing system requires that transactions be authorized, this method is
called by the Content Delivery Server when the subscriber clicks the Purchase button
for an item. To indicate that authorization is required, the Authorize Needed flag in
the BillingInfo object must be set by getBillingInfo().

Use this method to determine if the subscriber is authorized to purchase the content
requested. If your billing system supports the prepaid billing model, use this method
to verify that there are enough funds in the subscriber’s account to purchase the
content.

The parameter inNeedToAuthorizeBillingModel provides an array of flags that
are indexed by the following pricing model constants, which are defined in the
BillingConstants class:

■ DOWNLOAD - Charge by download
■ SUBSCRIPTION - Charge by subscription
■ TRIAL - Offer a free trial
■ USAGE - Charge by number of uses
■ LIMITED_TIME - Charge for a specific interval of time

Each flag indicates if that pricing model is considered when the transaction is
authorized. For example, assume you are given the following parameters:

■ Pricing model is download
■ Subscriber is charged for the first download only
■ The current billing transaction is for a second download by the subscriber

The flag indexed by DOWNLOAD is set to false, indicating that there is no download
charge for this transaction. Therefore, the download charge does not need to be
considered when authorizing the transaction. Use or ignore these flags based on the
needs of your system.

If the subscriber is authorized to purchase the content, set the OK flag in the
BillingInfo object to true by calling setIsOK() before returning the
BillingInfo object to the Content Delivery Server. If the subscriber is not
authorized to purchase the content, set the OK flag to false.

If the Confirm Needed flag in the BillingInfo object was not set by
getBillingInfo(), set the flag by calling setConfirmNeeded(). To notify the
billing system when the content is successfully downloaded to the device, set the
flag to true. If you do not want the billing system notified, set the flag to false.
3-8 Customization Guide • 2005Q4

3.2.2 checkSubscription()
abstract BillingInfo checkSubscription(BillingInfo inBillingInfo)

throws BillingException

This method is called by the Content Delivery Server when a subscriber attempts to
use content after the subscription period ends. Use this method to notify the Content
Delivery Server that a subscription was terminated outside of the Content Delivery
Server.

Code your implementation to set the Subscription Terminated flag by calling the
setSubscriptionTerminated() method for the BillingInfo object. To indicate
that the subscription was terminated, set the flag to true. The subscriber is then
prompted to renew the subscription. To indicate that the subscription is still valid,
set the flag to false. The subscription is then automatically renewed for another
period.

3.2.3 confirm()
abstract BillingInfo confirm(BillingInfo inBillingInfo)

If the external billing system requires notification of successful downloads, this
method is called by the Content Delivery Server when confirmation of the download
is received from the subscriber’s device. To indicate that confirmation is required,
the Confirm Needed flag in the BillingInfo object must be set by either
getBillingInfo() or authorize().

Use this method to perform the actions needed when the download of content is
confirmed. For example, you might want to deduct funds from a subscriber’s
account only after confirmation of a successful download is received.

3.2.4 getBillingInfo()
abstract BillingInfo getBillingInfo(BillingInfo inBillingInfo)

This method is called by the Content Delivery Server when a subscriber requests the
details for an item or purchases an item. The Content Delivery Server creates a
BillingInfo object that contains the billing information and passes it to this
method.

Use this method to modify the billing information as needed and return the
modified BillingInfo object to the Content Delivery Server. For example, to
provide a discount to selected subscribers, change the price specified by the Content
Delivery Server.
Chapter 3 Billing API 3-9

Code your implementation to set the Authorize Needed flag by calling the
setAuthorizeNeeded() method for the BillingInfo object. To have the billing
system verify that a subscriber is authorized to purchase the selected content, set the
flag to true. If you do not want to preauthorize the subscriber, set the flag to false.

If you set the Authorize Needed flag to false, set the Confirm Needed flag and the
OK flag in this method. To notify the billing system when the content is successfully
downloaded to the device, set the Confirm Needed flag to true by calling
setConfirmNeeded(). If you do not want the billing system notified, set the flag to
false.

To enable the subscriber to purchase content when the Authorize Needed flag is
false, set the OK flag to true by calling setOK(). If you set the OK flag to false
and the Authorize Needed flag is also false, the subscriber is not allowed to
download the selected content. If the Authorize Needed flag is set to true, set the
OK flag in authorize().

3.2.5 getBillingInfos()
abstract BillingInfo[] getBillingInfos(BillingInfo[] inBillingInfos)

This method is called by the Content Delivery Server when a subscriber requests the
list of content available, or the Vending Manager administrator requests the list of
stocked content. The Content Delivery Server creates a list of BillingInfo objects
that contains the billing information and passes it to this method.

Use this method to modify the billing information as needed and return the
modified list of BillingInfo objects to the Content Delivery Server. For example,
to provide a discount, change the price specified by the Content Delivery Server.

Code your implementation to set the Authorize Needed flag by calling the
setAuthorizeNeeded() method for each BillingInfo object in the list. To have
the billing system verify that a subscriber is authorized to purchase the selected
content, set the flag to true. If you do not want to preauthorize the subscriber, set
the flag to false.

If you set the Authorize Needed flag to false, set the Confirm Needed flag and the
OK flag in this method. To have the billing system notified when the content is
successfully downloaded to the device, set the Confirm Needed flag to true by
calling setConfirmNeeded(). If you do not want the billing system notified, set
the flag to false.

To enable the subscriber to purchase content when the Authorize Needed flag is
false, set the OK flag to true by calling setOK(). If you set the OK flag to false
and the Authorize Needed flag is also false, the subscriber is not allowed to
download the selected content. If the Authorize Needed flag is set to true, set the
OK flag in authorize().
3-10 Customization Guide • 2005Q4

3.2.6 getLog()
protected static com.sun.content.server.log.LogCategory getLog()

This method returns a LogCatetory object that is used to log error and warning
messages generated by the Billing API. Use this method to get the log file to use to
record errors and other information when processing billing transactions from the
Content Delivery Server.

3.2.7 refund()
abstract void refund(BillingInfo inBillingInfo)

This method is called by the Content Delivery Server when a customer care agent
uses the Vending Manager administration console to refund a subscriber’s purchase.
The Content Delivery Server creates a BillingInfo object from the billing
information stored in the database for the original billing transaction and passes the
object to this method.

Use this method to perform the actions needed to credit a subscriber’s account.

3.2.8 reverse()
abstract void reverse(BillingInfo inBillingInfo)

This method is called by the Content Delivery Server when the download of content
to a subscriber’s device fails. The Content Delivery Server creates a BillingInfo
object from the billing information stored in the database for the original billing
transaction and passes the object to this method.

Use this method to cancel the billing transaction so the subscriber is not charged for
the content.

3.2.9 subscribe()
abstract void subscribe(BillingInfo inBillingInfo)

This method is called by the Content Delivery Server when a subscriber starts a
subscription for content. The Content Delivery Server creates a BillingInfo object
from the billing information stored in the database for the original billing transaction
and passes the object to this method.
Chapter 3 Billing API 3-11

Use this method to initiate a subscription for a subscriber. If the subscription is
recurring, this method is called only once when the subscription starts. The billing
system must remember to charge the subscriber each time the subscription period
ends. If the subscription is non-recurring, this method is called each time the
subscriber renews the subscription.

3.2.10 unsubscribe()
abstract void unsubscribe(BillingInfo inBillingInfo)

This method is called by the Content Delivery Server when a subscriber cancels a
recurring subscription. The Content Delivery Server creates a BillingInfo object
from the billing information stored in the database for the original billing transaction
and passes the object to this method.

Use this method to stop the automatic charge when the subscription period ends.

3.3 Using the Billing API
The classes for the Billing API are available in the cdsapi.jar file, which is found
in the $CDS_HOME/deployment/deployment-name/lib/cdslib directory. The
cdsapi.jar file must be in your classpath when you compile your adapter.

To make your adapter available to the Content Delivery Server, follow these steps:

1. Create a JAR file for your adapter.

2. Place the JAR file in the $CDS_HOME/deployment/deployment-
name/lib/external directory.

3. Open the security.config file in the $CDS_HOME/deployment/deployment-
name/conf directory.

4. Set the module.security.billingmanager property to the class name of your
implementation of the BillingManager class, for example:

module.security.billingmanager=
com.sun.content.server.billing.external.MyBillingManager

5. Save your changes.

6. Restart the Content Delivery Server to make it aware of the new JAR file.
3-12 Customization Guide • 2005Q4

3.4 Sample Billing Adapter
CODE EXAMPLE 3-1 shows the default implementation of the BillingManager.

CODE EXAMPLE 3-1 Sample BillingManager Implementation

package com.sun.content.server.billing.external;

import com.sun.content.server.billing.BillingException;
import com.sun.content.server.billing.BillingInfo;
import com.sun.content.server.billing.BillingManager;
import com.sun.content.server.log.BillingManagerKeys;
import com.sun.content.server.log.LogCategory;

/**
* This is a sample implementation of the Billing API.
*/
public class CDSBillingManager implements BillingManager
{

// These flags can be used to simulate responses from the billing
//integration.
public static final int SUCCESS = 0;
public static final int EXCEPTION = 1;
public static final int BILLING_EXCEPTION = 2;
public static final int UNAUTHORIZED = 3;
public static final int NULL = 4;

// by default everything will pass through fine
// but you can change these at runtime.
public static int AUTHORIZE_RESPONSE = SUCCESS;
public static int GET_BILLING_INFO_RESPONSE = SUCCESS;
public static int GET_BILLING_INFOS_RESPONSE = SUCCESS;
public static int CONFIRM_RESPONSE = SUCCESS;
public static int DELETE_RESPONSE = SUCCESS;
public static int REFUND_RESPONSE = SUCCESS;
public static int REVERSE_RESPONSE = SUCCESS;
public static int SUBSCRIBE_RESPONSE = SUCCESS;
public static int UNSUBSCRIBE_RESPONSE = SUCCESS;
public static int CHECK_SUBSCRIPTION_RESPONSE = SUCCESS;

/**
* This is used to log debug, warning, and error messages to the
* logging system.
*/
private static final LogCategory sLog =

LogCategory.getLog("BillingManager");
Chapter 3 Billing API 3-13

/**
* see BillingManager#getBillingInfo(BillingInfo)
*/
public BillingInfo getBillingInfo(BillingInfo inBillingInfo)

throws BillingException
{

if (GET_BILLING_INFO_RESPONSE == NULL)
return null;

if (GET_BILLING_INFO_RESPONSE == EXCEPTION)
throw new NullPointerException("Developer Null Pointer");

if (GET_BILLING_INFO_RESPONSE == BILLING_EXCEPTION)
throw new BillingException("Developer Billing Exception");

// Set IsAuthorizeNeeded flag
inBillingInfo.setAuthorizeNeeded(true);
return inBillingInfo;

}

/**
* see BillingManager#getBillingInfos(BillingInfo[])
*/
public BillingInfo[]

getBillingInfos(BillingInfo[] inBillingInfos)
throws BillingException

{
for (int index = 0; index < inBillingInfos.length; index++)

{
// Set IsAuthorizeNeeded flag
inBillingInfos[index].setAuthorizeNeeded(true);

}

if (GET_BILLING_INFOS_RESPONSE == NULL)
return null;

if (GET_BILLING_INFOS_RESPONSE == EXCEPTION)
throw new NullPointerException("Testing Null Pointer");

if (GET_BILLING_INFOS_RESPONSE == BILLING_EXCEPTION)
throw new BillingException("Testing Billing Exception");

return inBillingInfos;
}

/**

CODE EXAMPLE 3-1 Sample BillingManager Implementation (Continued)
3-14 Customization Guide • 2005Q4

* see.BillingManager#authorize(BillingInfo, boolean[])
*/
public BillingInfo authorize(BillingInfo inBillingInfo,

boolean[] inNeedToAuthorizeBillingModel)
throws BillingException

{
if (AUTHORIZE_RESPONSE == NULL)

return null;

if (AUTHORIZE_RESPONSE == EXCEPTION)
throw new NullPointerException("Testing Null Pointer");

if (AUTHORIZE_RESPONSE == BILLING_EXCEPTION)
 throw new BillingException("Testing Billing Exception");

if (AUTHORIZE_RESPONSE == UNAUTHORIZED)
{

inBillingInfo.setOk(false);
inBillingInfo.setReplyMessage("You are not authorized");
return inBillingInfo;

}

// Set IsOk and IsConfirmNeeded flags
inBillingInfo.setConfirmNeeded(true);
inBillingInfo.setOk(true);

return inBillingInfo;
}

/**
* seeBillingManager#confirm(BillingInfo)
*/
public BillingInfo confirm(BillingInfo inBillingInfo)

throws BillingException
{

if (CONFIRM_RESPONSE == EXCEPTION)
throw new NullPointerException("Developer Null Pointer");

if (CONFIRM_RESPONSE == BILLING_EXCEPTION)
throw new BillingException("Developer Billing Exception");

}

/**
* see BillingManager#reverse(BillingInfo)
*/
public void reverse(BillingInfo inBillingInfo)

throws BillingException

CODE EXAMPLE 3-1 Sample BillingManager Implementation (Continued)
Chapter 3 Billing API 3-15

{
if (REVERSE_RESPONSE == EXCEPTION)

throw new NullPointerException("Developer Null Pointer");

if (REVERSE_RESPONSE == BILLING_EXCEPTION)
throw new BillingException("Developer Billing Exception");

}

/**
* see BillingManager#refund(BillingInfo)
*/
public void refund(BillingInfo inBillingInfo)

throws BillingException
{

if (REFUND_RESPONSE == EXCEPTION)
throw new NullPointerException("Developer Null Pointer");

if (REFUND_RESPONSE == BILLING_EXCEPTION)
throw new BillingException("Developer Billing Exception");

}

/**
* seeBillingManager#subscribe(BillingInfo)
*/
public void subscribe(BillingInfo inBillingInfo)

throws BillingException
{

if (SUBSCRIBE_RESPONSE == EXCEPTION)
throw new NullPointerException("Developer Null Pointer");

if (SUBSCRIBE_RESPONSE == BILLING_EXCEPTION)
throw new BillingException("Developer Billing Exception");

}

/**
* see BillingManager#unsubscribe(BillingInfo)
*/
public void unsubscribe(BillingInfo inBillingInfo)

throws BillingException
{

if (UNSUBSCRIBE_RESPONSE == EXCEPTION)
throw new NullPointerException("Developer Null Pointer");

if (UNSUBSCRIBE_RESPONSE == BILLING_EXCEPTION)
throw new BillingException("Developer Billing Exception");

}

CODE EXAMPLE 3-1 Sample BillingManager Implementation (Continued)
3-16 Customization Guide • 2005Q4

/**
* see BillingManager#checkSubscription(BillingInfo)
*/
public BillingInfo checkSubscription(BillingInfo inBillingInfo)

throws BillingException
{

if (CHECK_SUBSCRIPTION_RESPONSE == NULL)
return null;

if (CHECK_SUBSCRIPTION_RESPONSE == EXCEPTION)
throw new NullPointerException("Developer Null Pointer");

if (CHECK_SUBSCRIPTION_RESPONSE == BILLING_EXCEPTION)
throw new BillingException("Developer Billing Exception");

inBillingInfo.setSubscriptionTerminated(false);

return inBillingInfo;
}

/**
* see BillingManager#contentDelete(BillingInfo)
*/
public void contentDelete(BillingInfo inBillingInfo)

throws BillingException
{

if (DELETE_RESPONSE == EXCEPTION)
throw new NullPointerException("Developer Null Pointer");

if (DELETE_RESPONSE == BILLING_EXCEPTION)
 throw new BillingException("Developer Billing Exception");

}
}

CODE EXAMPLE 3-1 Sample BillingManager Implementation (Continued)
Chapter 3 Billing API 3-17

3-18 Customization Guide • 2005Q4

CHAPTER 4

Content Management API

The Sun Java System Content Delivery Server Content Management API provides an
interface between the Content Delivery Server and your content management
system. Use this API to write a content management adapter that instruments the
content binary or alters the content information at the time that content is sent to a
subscriber’s device. For example, you can create a content management adapter that
adds code to handle Digital Rights Management (DRM).

Note – If your content management adapter needs to operate on the original version
of the content that was submitted by the developer, the submission verifier
workflow must not perform any instrumentation or modification at the time of
submission. See the Sun Java System Content Delivery Server Integration Guide for
information on creating workflows. See the Sun Java System Content Delivery Server
Installation Guide for information on configuring the submission verifier workflows
provided with Content Delivery Server.

The time needed by the content management adapter to process the calls received
can delay the delivery of the content to the subscriber. As much as possible, limit the
use of the Content Manager API to operations that do not add a lot of overhead.

The Content Management API consists of the following elements:

■ ContentManager - Interface that you implement to integrate the Content
Delivery Server with your content management system. The ContentManager
interface provides several methods for accessing the information about the
content.

■ ContentInfo - Class that contains the information for a content object, such as
the content descriptor and binary, the MIME type of the content descriptor and
binary, the content size and type (for example, MIDlet, ringtone, and so on) and
the transaction details, such as one-step or two-step download.

■ ContentException - Exception that is thrown by the Content Management API.
Use this class to report errors in processing the information about content or in a
purchase transaction.
4-1

■ ContentConstants - Class that defines the key values used by the
ContentInfo object to access content metadata.

For additional information on these classes, see the HTML output of the Javadoc tool
at $CDS_HOME/javadoc/cdsapi/index.html.

4.1 General Process Flow
The Content Management API handles the communication between the Content
Delivery Server and the external content management system or DRM server. The
details of the content and transaction are maintained in a ContentInfo object. Use
this API to access and manipulate the information about content at the time it is
delivered to subscribers.

This section describes the flow of information between the device, the Content
Delivery Server, and the content management adapter. The following topics are
discussed:

■ Obtaining a List of Content
■ Obtaining Content Details
■ Downloading Content

4.1.1 Obtaining a List of Content
A request for a list of content is initiated when the subscriber clicks a content
heading under Categories in the Subscriber Portal. The following actions occur to
fulfill the request:

1. The subscriber’s device sends a request to Content Delivery Server for the
information about the content items in the selected category.

2. The Content Delivery Server creates the initial ContentInfo objects for the items
in the list, based on information in the Content Delivery Server database. This
information is shown to subscribers or used by the Content Delivery Server.

3. Content Delivery Server calls getContentInfos and passes ContentInfo
objects for the items in the list.

Your implementation of getContentInfos can alter the content information as
needed for your system. Modify only information that is shown to subscribers in
the list of content at this time.

4. Content Delivery Server returns the list of content items for that category and
additional information to the subscriber’s device.
4-2 Customization Guide • 2005Q4

5. The Subscriber Portal displays the list in the Results section of the page.

4.1.2 Obtaining Content Details
A request for detailed information about a specific item of content is initiated when
the subscriber clicks either the name of a content item or More Details in the Results
page of the Subscriber Portal. The following items describe the transaction steps for
obtaining content details:

1. The subscriber clicks the name of a particular content item or More Details in the
Results page of the Subscriber Portal.

2. The subscriber’s device sends a request to the Content Delivery Server for
information on the selected content item.

3. The Content Delivery Server calls getContentInfo for a single item. Your
implementation of the method can return detailed information about the content,
such as its binary and descriptor MIME type, its content size and type (ringtone
or MIDlet, for example), and the transaction details.

4. The Content Delivery Server passes the detailed information about the content
item to the subscriber’s device.

4.1.3 Downloading Content
The process of obtaining content is initiated when subscribers choose to purchase
content from their device. Typically, the content is instrumented before it is delivered
to the subscriber. The instrumentation can be based on a number of factors, such as
the subscriber’s phone type (CDMA or GSM), pricing model (subscription or usage),
content type, or other characteristics. The following items describe the transaction
steps for downloading content:

1. The subscriber chooses the desired content item in the Subscriber Portal and
clicks Download Now. The subscriber must be accessing the Subscriber Portal
from a device, not a PC.

2. For two-step downloads, the device sends a request to the Content Delivery
Server to download the content descriptor.

3. Content Delivery Server generates the initial ContentInfo object for the
requested content item.

4. Content Delivery Server retrieves the content binary, the descriptor, and their
MIME types from the Content Delivery Server database, and passes them to the
content management system.
Chapter 4 Content Management API 4-3

5. Content Delivery Server calls getContentDescriptor to process the content
details and make the appropriate updates to the descriptor file.

6. The content management system returns the updated version of the descriptor file
that contains the values that are delivered to the subscriber.

7. Content Delivery Server passes the updated descriptor file to the subscriber’s
device.

8. The device sends a request to the Content Delivery Server for the content binary.
One of the ways this occurs is when a subscriber clicks a URL displayed on the
device.

9. Content Delivery Server populates the ContentInfo object with the content
binary and its MIME type, and passes the object to the content management
adapter.

10. Content Delivery Server calls getContentBinary to create an updated content
binary file.

11. The content management adapter instruments the content and passes the
updated content binary file and binary MIME type back to the Content Delivery
Server.

Note – Capability matching, which determines the devices on which the content
runs, is done at the time the content is published. Changes made by the content
management adapter must not alter the content in such a way that the device is no
longer capable of running the content. Changes that might affect the ability of the
device to run the content include increasing the size of the content or changing the
MIME type.

12. Content Delivery Server passes the updated content to the subscriber’s device.

4.2 ContentManager Interface
The ContentManager interface provides the interface between the Content Delivery
Server and your content management system or DRM server. It provides methods
that you can implement to modify the content binary, the descriptor, and other
information, before they are delivered to the subscriber.
4-4 Customization Guide • 2005Q4

The methods in this class take a ContentInfo object and a BillingInfo object as
parameters. The ContentInfo object contains the content binary, the content
descriptor file, and information such as the content binary and descriptor MIME
type, the content size and type, and the number of steps required to download the
content.

The BillingInfo object contains transaction details, such as the pricing model.
This object also contains subscriber information. For more information on billing and
BillingInfo objects, see Chapter 3.

The ContentManager interface is in the com.sun.content.server.content
package.

4.2.1 getContentInfo()
abstract ContentInfo getContentInfo(ContentInfo inContentInfo,
BillingInfo inBillingInfo) throws ContentException

This method is called by the Content Delivery Server when the subscriber requests
information on a single item of content. The ContentInfo object contains
information about the initial content item, such as the content binary and descriptor
MIME type, estimated content size and type (ringtone or MIDlet, for example), and
how many steps are needed to download the content.

4.2.2 getContentInfos()
abstract ContentInfo[] getContentInfos(ContentInfo[]inContentInfos,
BillingInfo[] inBillingInfos) throws ContentException

This method is called by the Content Delivery Server when the subscriber requests
information on a list of content items in a category. Code your implementation to
alter only the information that is shown in the list of content.

4.2.3 getContentDescriptor()
abstract ContentInfo getContentDescriptor(ContentInfo inContentInfo,
BillingInfo inBillingInfo) throws ContentException

This method is called by the Content Delivery Server when the subscriber initiates a
request to download the content descriptor to a device. The Content Delivery Server
retrieves the content descriptor file. The content descriptor and binary are passed to
the content management system. The content management system can update the
content descriptor information, including the size, and return it to the Content
Delivery Server for delivery to the subscriber.
Chapter 4 Content Management API 4-5

4.2.4 getContentBinary()
abstract ContentInfo getContentBinary(ContentInfo inContentInfo,
BillingInfo inBillingInfo) throws ContentException

This method is called by the Content Delivery Server when the subscriber initiates a
request to download content binary to a device. The binary might be passed to the
content management adapter when getContentBinary is called. The instrumented
content binary to be delivered to the subscriber must be returned to the Content
Delivery Server.

4.3 Using the Content Management API
The classes for the Content Management API are available in cdsapi.jar, which is
found in the $CDS_HOME/deployment/deployment-name/lib/cdslib directory.
The cdsapi.jar file and the foundation.jar file must be in your classpath when
you compile your adapter.

To make your adapter available to the Content Delivery Server, follow these steps:

1. Create a JAR file for your adapter.

2. Place the JAR file in the $CDS_HOME/deployment/deployment-
name/lib/external directory.

3. Open the security.config file in the $CDS_HOME/deployment/deployment-
name/conf directory.

4. Add a property named module.security.contentmanager after the existing
property with the same name.

The existing module.security.contentmanager property points to the
implementation used by the DRM agents provided with the Content Delivery Server
and must appear first.

5. Set the property that you added to the fully qualified package and class name of
your implementation of the ContentManager interface.

The following code shows sample settings for the
module.security.contentmanager property:

module.security.contentmanager=
com.sun.content.server.content.external.SunContentManager
module.security.contentmanager=myapps.adapters.ContentManagerImpl
4-6 Customization Guide • 2005Q4

6. Set the module.security.contentmanager.enabled property to true to
indicate that an adapter is available for the Content Delivery Server to call.

7. Save your changes.

8. Restart the Content Delivery Server to make it aware of the new JAR file.

4.4 Sample Content Management Adapter
CODE EXAMPLE 4-1 shows a sample implementation of the ContentManager
interface.

CODE EXAMPLE 4-1 Sample ContentManager Implementation

import com.sun.content.server.content.*;
import com.sun.content.server.billing.BillingInfo;

public class ContentManagerImpl implements ContentManager
{
 public ContentInfo getContentInfo(
 ContentInfo inContentInfo,
 BillingInfo inBillingInfo)
 throws ContentException
 {
 // Update the information that is shown to the user
 return inContentInfo;
 }

 public ContentInfo[] getContentInfos(
 ContentInfo[] inContentInfos,
 BillingInfo[] inBillingInfos)
 throws ContentException
 {
 // Iterate through each ContentInfo object and update the
 // information that is shown to the user when a list of
 // content is shown.
 return inContentInfos;
 }

 public ContentInfo getContentDescriptor(
 ContentInfo inContentInfo,
 BillingInfo inBillingInfo)
 throws ContentException
 {
 // Update content download descriptor
Chapter 4 Content Management API 4-7

 return inContentInfo;
 }

 public ContentInfo getContentBinary(
 ContentInfo inContentInfo,
 BillingInfo inBillingInfo)
 throws ContentException
 {
 // Update content binary, binary MIME type
 return inContentInfo;
 }
}

CODE EXAMPLE 4-1 Sample ContentManager Implementation (Continued)
4-8 Customization Guide • 2005Q4

CHAPTER 5

Content Validation API

This chapter describes the Content Validation API of the Sun Java System Content
Delivery Server. Use this API to create the content validation adapters that you need
to validate and protect content that is submitted. Content validation adapters are
used by the submission verifier workflow that is executed for content submitted to
the Content Delivery Server.

The Content Validation API consists of the following classes:

■ ValidationAdapter - Abstract class that you extend to create your own content
validation adapter. Implement your adapter to validate or modify the submitted
content as needed.

■ ValidationContent - Abstract class that you extend to create your own
ValidationContent object. A ValidationContent object contains the
information that identifies the content that was submitted.

For additional information on these classes, see the HTML output of the Javadoc tool
at $CDS_HOME/javadoc/validation/index.html.

5.1 General Process Flow
Each item of content that is submitted to the Content Delivery Server is processed by
a workflow defined in the $CDS_HOME/deployment/deployment-name/conf/
SubmissionVerifierWorkflows.xml file. A workflow consists of a sequence of
steps. In each step, the content validation adapter named in that step performs some
type of processing on the content binary. For example, one step might provide
obfuscation and another step might add code for digital rights management (DRM).
See the Sun Java System Content Delivery Server Integration Guide for information on
creating content validation workflows.
5-1

For each step in the workflow, the Content Delivery Server calls the content
validation adapter that is specified for that step and passes it a
ValidationContent object and a Properties object. The ValidationContent
object contains the metadata and content binary for the content submitted. The
Properties object contains the arguments defined in the workflow for that step.

For the first step in the workflow, the Content Delivery Server creates an initial
ValidationContent object. For each subsequent step, the ValidationContent
object that was returned by the previous step is passed to the content validation
adapter for the next step.

5.2 ValidationAdapter Class
The ValidationAdapter class processes the metadata and content binary and
performs any transformation that is needed. This section describes the methods that
you need to implement.

5.2.1 execute()
public abstract ValidationContent execute(ValidationContent content,
java.util.Properties properties) throws java.lang.Exception

This method is called by the Content Delivery Server when a step in the workflow is
executed. The arguments for this method ar the ValidationContent object from
the previous step and the arguments specified in the workflow step. You must know
what type of ValidationContent object is created in the previous step in the
workflow. For example, if your adapter is used in the first step in the workflow, it
must be prepared to receive an InitialValidationContent object from the
Content Delivery Server.

In your implementation of this method, you must handle the properties that are
passed and create a ValidationContent object to return. Process the metadata
and content binary as needed. For example, to obfuscate the code, call the obfuscator
that you want to use to transform the content binary and return the new binary in
the ValidationContent object. You must know what type of
ValidationContent object is expected in the next step in the workflow and
generate that type of object. For example, if the next step in the workflow expects to
receive a custom ValidationObject, this method must generate that custom
ValidationObject.

If your adapter requires information that might change or that you do not want to
hard code, create a property file for these values. The adapter can then access the
information from the file through the Properties object that is passed as a
5-2 Customization Guide • 2005Q4

parameter. For example, if your adapter obfuscates the code, you might need a
property that identifies the location of the obfuscator on the system on which the
adapter is running. The property file that you create must be placed in the
$CDS_HOME/deployment/deployment-name/conf directory. You must also set the
property file name for your adapter in the $CDS_HOME/deployment/
deployment-name/conf/SubmissionVerifierAdapters.xml file as described in
Section 5.4, “Using the Content Validation API” on page 5-3.

5.2.2 returns()
public static java.lang.Class returns(java.lang.Class inputType)
throws java.lang.Exception

This method is called by the Content Delivery Server to verify that the adapter can
handle the type of ValidationContent object to be passed. This method must
return the same type of object that the execute method returns. For example, if the
execute method returns a custom ValidationContent object, the returns
method must return the same type of custom ValidationContent object.

See Section 5.5, “Sample Content Validation Adapter” on page 5-5 for a sample
implementation of this method.

5.3 ValidationContent Class
The ValidationContent class is an abstract class that you can extend to create a
customized validation adapter. This class contains the metadata and binary for the
content. If an adapter in a following step in the workflow needs additional
information for the content, add that information to the class that you extend from
this class.

5.4 Using the Content Validation API
The classes for the Content Validation API are in the package
com.sun.content.server.validation.adapter. This package is included in
the validation.jar file in one of the following locations:

■ For Sun Java System Application Server, in $CDS_HOME/deployment/
deployment-name/sun/domains/server-domain/server-name/applications/
j2ee-modules/CDSDeveloperPortal/WEB-INF/lib.
Chapter 5 Content Validation API 5-3

■ For WebLogic Server, in $CDS_HOME/deployment/deployment-name/weblogic/
domains/server-domain/applications/developer/WEB-INF/lib.

deployment-name is the name specified when the Developer Portal was deployed,
server-domain is the value specified in the configuration file for the
app.server.domain property, and server-name is the value specified in the
configuration file for the app.server.name property.

The validation.jar file must be in your classpath when you compile your
adapter.

To make your adapter available to the Content Delivery Server, follow these steps:

1. Create a JAR file for your adapter.

2. Place the JAR file in the $CDS_HOME/deployment/deployment-name/lib/
external directory.

3. Open the SubmissionVerifierAdapters.xml file in the $CDS_HOME/
deployment/deployment-name/conf directory.

4. Add a statement for the adapter that you created.

For example, if you created an adapter named MyValidationAdapter that
requires a property file named validation.properties, add the following
statement to the file:

5. Save your changes.

6. Open the SubmissionVerifierWorkflows.xml file in the $CDS_HOME/
deployment/deployment-name/conf directory.

7. Add a step to the appropriate workflow to execute the adapter that you created.

For the value of the adapter attribute for the step element, specify the value
provided for the id attribute of the adapter element that you added to the
SubmissionVerifierAdapters.xml file in Step 4. See the Sun Java System Content
Delivery Server Integration Guide for information on creating a workflow.

8. Save your changes.

9. Restart the Content Delivery Server to make it aware of the new JAR file.

<adapter id="MyValidationAdapter" name="sample.package.MyValidationAdapter"
propertyfile="validation.properties"/>
5-4 Customization Guide • 2005Q4

5.5 Sample Content Validation Adapter
The following code example is a sample of how the ValidationAdapter class can
be extended to implement your own validation adapter.

CODE EXAMPLE 5-1 Sample ValidationAdapter Implementation

import com.sun.content.server.validation.adapter.*;
import java.io.FileOutputStream;
import java.util.Properties;

public class ExportToFileValidationAdapter
extends ValidationAdapter
{
 public ValidationContent execute(
 ValidationContent content, Properties properties)
 throws Exception
 {
 // Export if the filename is specified
 String outFilename =
 properties.getProperty("ExportToFile.FileName");
 if (outFilename != null)
 {
 FileOutputStream fileOutStream = null;
 try
 {
 // get the first byte[] in the map
 // ignore the rest for this sample
 byte[] bytes = (byte[])
 content.getMimeBytesMap().values().iterator().next();

 // Write the byte[] to the output file.
 fileOutStream = new FileOutputStream(outFilename);
 fileOutStream.write(bytes);
 fileOutStream.flush();
 fileOutStream.close();
 fileOutStream = null;
 }
 finally
 {
 if (fileOutStream != null)
 {
 fileOutStream.flush();
 fileOutStream.close();
 }
 }
Chapter 5 Content Validation API 5-5

 }

 content.setStatus(ValidationContent.VALID);

 return content;
 }

 public static Class returns(Class inputType) throws Exception
 {
 if (!ValidationContent.class.isAssignableFrom(inputType))
 throw new Exception("Wrong input type to adapter.");
 return ValidationContent.class;
 }
}

CODE EXAMPLE 5-1 Sample ValidationAdapter Implementation (Continued)
5-6 Customization Guide • 2005Q4

CHAPTER 6

User Profile API

This chapter describes the Sun Java System Content Delivery Server User
Management API. Use this API to create a subscriber adapter to add, delete, retrieve,
update, enable, and disable users in the system.

The User Profile API consists of the following classes:

■ UserManager - Abstract class that you extend to create your own subscriber
adapter. This class controls the creation and status of an individual user account.

■ User - Interface that you implement to manage the attributes specific for each
user.

■ UserDeviceManager interface - Interface that you implement to provide
information about the device that the subscriber is using. This inteface can be
used to protect against the subscriber paying once and downloading the content
to several devices.

For information on classes or methods not described in this section, see the HTML
output of the Javadoc tool for the User Profile API at
$CDS_HOME/javadoc/cdsapi/index.html.

6.1 UserManager Class
The UserManager class defines methods to create, delete, or access information for
a user.
6-1

6.1.1 doAccountExists()
abstract boolean doAccountExists(String uId)

Returns true if a user account already exists in the persistent storage for a given
user ID.

6.1.2 doAddUser()
protected abstract boolean doAddUser(User u)

Creates a user.

6.1.3 doDisableUser()
protected abstract void doDisableUser(String uId)

Disables a user’s account. Used to lock the user account.

6.1.4 doEnableUser()
protected abstract void doEnableUser(String uId)

Enables a user’s account.

6.1.5 doFormatMobileId()
protected abstract String doFormatMobileId(String mobileId);

Formats the mobile ID to match the requirements of the external database. For
example, use this method to remove special characters for a database that cannot
handle hyphens within the ID.

6.1.6 doFormatLoginId()
protected abstract String doFormatLoginId(String loginId);

Formats the login ID to match the requirements of the external database. For
example, use this method to convert the ID to lowercase for a database that requires
lowercase IDs.
6-2 Customization Guide • 2005Q4

6.1.7 doGetAllLikeInOrder()
protected abstract void doAllLikeInOrder(String[] columns, String[]
values, String[] orders, boolean isDescending, int pageNum, int
recPerPage, String role)

Returns an iterator of requested objects in the order specified.

6.1.8 doGetAllUsers()
protected abstract Iterator doGetAllUsers(String role)

Returns an iterator of all the users in permanent storage based on user role.

6.1.9 doGetAllUsersContainingFirstName()
protected abstract Iterator doGetAllUsersContainingFirstName(String
nameLike, String role)

Returns an iterator of all users containing the specified substring in the first name
based on user role.

6.1.10 doGetAllUsersContainingId()
protected abstract Iterator doGetAllUsersContainingId(String id,
String role)

Returns an iterator of all users containing the specified substring in the user ID
based on user role.

6.1.11 doGetAllUsersContainingLastName()
protected abstract Iterator doGetAllUsersContainingLastName(String
lastName, String role)

Returns an iterator of all users containing the specified substring in the last name
based on user role.
Chapter 6 User Profile API 6-3

6.1.12 doGetAllUsersContainingName()
protected abstract Iterator doGetAllUsersContainingName(String name,
String role)

Returns an iterator of all users containing the specified substring in either the first
name or the last name based on user role.

6.1.13 doGetAnonymousUser()
protected abstract User doGetAnonymousUser()

Returns a guest user for anonymous access to the system.

6.1.14 doGetFieldName()
protected abstract String doGetFieldName(int fieldConstant, String
role)

Gets the name of the field in the external database that corresponds to a field
constant based on the user role.

6.1.15 doGetUser()
protected abstract User doGetUser(String uId)

Returns the user object associated with a given user ID.

6.1.16 doGetUserByMobileId()
protected abstract User doGetUserByMobileId(String inMobileId)

Returns the user object associated with a given user mobile ID.

6.1.17 doGetUserByUniqueDeviceId()
protected abstract User doGetUserByUniqueDeviceId(String
inUniqueDeviceId)

Returns the user object associated with a given user unique device ID.
6-4 Customization Guide • 2005Q4

6.1.18 doGetUserInstance()
protected abstract User doGetUserInstance()

Returns the instance of user class implementation being passed in the addUser
method.

6.1.19 doIsActive()
protected abstract boolean doIsActive(String uId)

Returns true if the user account associated with the userId is active. Returns
false if the account is not active.

6.1.20 doIsAuthenticated()
protected abstract boolean doIsAuthenticated(String userId, String
inPassword)

Returns true if the user ID and password provided are allowed access.

6.1.21 doRemoveUser()
protected abstract boolean doRemoveUser(String uId)

Removes the user from persistent storage. Returns true if successful.

6.1.22 doUpdateUser()
protected abstract boolean doUpdateUser(User u)

Updates an existing user’s account.
Chapter 6 User Profile API 6-5

6.2 User Interface
The User interface defines common methods to get, set, or delete user attributes.

6.2.1 getActivateDate()
public Date getActivateDate()

Returns the date of the user’s account is activated.

6.2.2 getAttribute()
public Object getAttribute (String name)

Returns the value of an attribute associated with a particular user.

6.2.3 getAttribute()
public Object getAttribute (String name, Object defaultValue)

Returns the value of a specific attribute associated with a particular user or the
default value if the attribute is not found.

6.2.4 getAttributes()
public Hashtable getAttributes()

Returns a hash table containing all the attributes associated with a particular user.

6.2.5 getCity()
public String getCity()

Returns the city name.
6-6 Customization Guide • 2005Q4

6.2.6 getCountry()
public String getCountry()

Returns the country name.

6.2.7 getCreateDate()
public java.util.Date getCreateDate()

Returns the date the user’s account is created.

6.2.8 getDeActivateDate()
public Date getDeActivateDate()

Returns the date the user’s account is activated.

6.2.9 getEmail()
public String getEmail()

Returns user’s email ID.

6.2.10 getFirstName()
public String getFirstName()

Returns the user’s first name.

6.2.11 getGender()
public String getGender()

Returns the user’s gender.
Chapter 6 User Profile API 6-7

6.2.12 getLastLogin()
public java.util.Date getLastLogin()

Returns the time of the user’s last login.

6.2.13 getLastName()
public String getLastName()

Returns the user’s last name.

6.2.14 getLoginId()
public String getLoginId()

Returns the user’s unique login ID.

6.2.15 getMiddleName()
public String getMiddleName()

Returns the user’s middle name.

6.2.16 getMobileId()
public String getMobileId()

Returns the user’s mobile ID.

6.2.17 getPassword()
public String getPassword()

Returns the user’s unique password.
6-8 Customization Guide • 2005Q4

6.2.18 getPhone()
public String getPhone()

Returns the user’s contact phone number.

6.2.19 getPostalCode()
public String getPostalCode()

Returns the postal code of the user’s account.

6.2.20 getSalutation()
public String getSalutation()

Returns user’s salutation.

6.2.21 getState()
public String getState()

Returns the state name.

6.2.22 getStreet1()
public String getStreet1()

Returns the first line of the user’s street address.

6.2.23 getStreet2()
public String getStreet2()

Returns the second line of the user’s street address.
Chapter 6 User Profile API 6-9

6.2.24 getUniqueDeviceId()
public String getUniqueDeviceId()

Returns the user’s unique device ID.

6.2.25 hasLoggedIn()
public boolean hasLoggedIn()

Returns true if the user is currently logged in to the system.

6.2.26 isConfirmed()
public boolean isConfirmed()

Returns true if the user’s account is confirmed or verified.

6.2.27 isEnabled()
public boolean isEnabled()

Returns true if the user account is currently enabled and false if disabled.

6.2.28 isPrepay()
public boolean isPrepay()

Returns true if the user account is prepaid.

6.2.29 setActivateDate()
public void setActivateDate(Date aDate)

Sets the date the user’s account is activated.
6-10 Customization Guide • 2005Q4

6.2.30 setAttribute()
public void setAttribute (String name, Object value)

Sets the attribute associated with a particular user.

6.2.31 setAttributes()
public void setAttributes(Hashtable stuff)

Sets the list of attributes associated with a particular user.

6.2.32 setCity()
public void setCity(String city)

Sets the city name.

6.2.33 setCountry()
public void setCountry(String country)

Sets the country name.

6.2.34 setCreateDate()
public void setCreateDate(java.util.Date date)

Sets the date the user’s account is created.

6.2.35 setDeActivateDate()
public void setDeActivateDate(Date daDate)

Sets the date the user’s account is inactivated.
Chapter 6 User Profile API 6-11

6.2.36 setEmail()
public void setEmail(String address)

Sets the user’s email ID.

6.2.37 setFirstName()
public void setFirstName(String firstName)

Sets the user’s first name.

6.2.38 setGender()
public void setGender(String gender)

Sets the user’s gender.

6.2.39 setHasLoggedIn()
public void setHasLoggedIn(boolean value)

Sets the flag to indicate the user has logged into the system.

6.2.40 setIsEnabled()
public void setIsEnabled(boolean value)

Sets the account status to enabled.

6.2.41 setIsPrepay()
public void setIsPrepay(boolean value)

Sets the account to prepaid.
6-12 Customization Guide • 2005Q4

6.2.42 setLastName()
public void setLastName(String lastName)

Sets the user’s last name.

6.2.43 setLoginId()
public void setLoginId(String loginName)

Sets the user’s unique login ID.

6.2.44 setMiddleName()
public void setMiddleName(String name)

Sets the user’s middle name.

6.2.45 setMobileId()
public void setMobileId(String mobileId)

Sets the user’s mobile ID.

6.2.46 setPassword()
public void setPassword(String pass)

Sets the user’s password.

6.2.47 setPhone()
public void setPhone(String phone)

Sets the user’s contact phone number.
Chapter 6 User Profile API 6-13

6.2.48 setPostalCode()
public void setPostalCode(String zip)

Sets the postal code for the user’s address.

6.2.49 setSalutation()
public void setSalutation(String salutation)

Sets the salutation for the user (for example, Mr. or Mrs.)

6.2.50 setState()
public void setState(String state)

Sets the state for the user’s address.

6.2.51 setStreet1()
public void setStreet1(String st1)

Sets the first line of the user’s street address.

6.2.52 setStreet2()
public void setStreet2(String st2)

Sets the second line of the user’s street address.

6.2.53 setUniqueDeviceId()
public void setUniqueDeviceId(String uniqueId)

Sets the user’s unique device ID.
6-14 Customization Guide • 2005Q4

6.2.54 updateLastLogin()
public void updateLastLogin() throws Exception

Updates the timestamp with the time of the last login.

6.3 UserDeviceManager Interface
The UserDeviceManager interface defines a method for accessing the unique ID
for a device.

6.3.1 getUniqueDeviceID()
public String getUniqueDeviceID(String inMSISDN) throws
UserDeviceException

Gets the unique device ID such as the Electronic Serial Number (ESN) given the
MSISDN for the device.

6.4 Using the User Profile API
The classes for the User Profile API are available in cdsapi.jar, which is found in
the $CDS_HOME/deployment/deployment-name/lib/cdslib directory. The
cdsapi.jar file must be in your classpath when you compile your adapter.

To make your adapter available to the Content Delivery Server, follow these steps:

1. Create a JAR file for your adapter.

2. Place the JAR file in the $CDS_HOME/deployment/deployment-
name/lib/external directory.

3. Open the security.config file in the $CDS_HOME/deployment/deployment-
name/conf directory.

4. Set the module.security.subscriber.usermanager property to the class
name of your implementation of the User interface, for example:

module.security.subscriber.usermanager=
com.sun.content.server.server.security.user.SubscriberImpl
Chapter 6 User Profile API 6-15

5. Save your changes.

6. Restart the Content Delivery Server to make it aware of the new JAR file.

6.5 Sample Implementation of the User
Manager API
The following example is the class definition of the MyUserMgr. It is an example of
how you can inherit the UserManager class to manage your user profile system and
integrate it into the Content Delivery Server User Profile framework.The following
sample classes provide an example of how you can use the User Profile API to
manage your user profile system and integrate it into the Content Delivery Server
User Profile framework.

6.5.1 Support Files
The sample implementation of the User Profile API makes use of properties and a
supporting class. The following code shows the properties used.

The SampleExternalProxy class is used as the interface between the Content
Delivery Server and the external database.

CODE EXAMPLE 6-1 Sample Property File

This is a sample of typical Operator Integration properties file
for external user manager client/server connection settings.

SAMPLE OPERATOR CONFIGURATIONS
#
externalserveraddress=localhost
externalserverport=7779
cdsclientlogin=cds14sun
cdsclientpasswd=cds4sun1

CODE EXAMPLE 6-2 Sample External Proxy

package com.sun.content.server.operator.security.adaptor;

import java.util.*;
import com.sun.content.server.service.security.*;
import com.sun.content.server.service.security.util.*;
6-16 Customization Guide • 2005Q4

// import external required packages to connect to the directory service

public class SampleExternalProxy
{

// Create a Client facace for serach
private ExternalClientObject externalUserMgr;

// Create an instance of External Directorory server Client Proxy
public SampleExternalProxy() throws Exception {

// User the external package to instanciate the Proxu
// You need to use the client/server setting in the
// operatorproxy.properties
// The following assume you implemented a class OperatorProxyProperties
// to read the configuration values.

String hostname = OperatorProxyProperties.EXTERNAL_SERVER_ADDRESS;
String port = OperatorProxyProperties.EXTERNAL_SERVER_PORT;
String clientLoginId = OperatorProxyProperties.CLIENT_LOGIN;

String clientPassword = OperatorProxyProperties.CLIENT_PASSWRD;

// instan
try {

externalUserMgr = new ExternalClientObject(hostname, port,
clientLoginId, clientPassword);

} catch (Exception expt) {
// process the exception
throw expt;

}
}

public boolean searchUser(String userName) {

boolean found = false;
// Use the external User manager and search function for the given string
// name
// Typically the call will look like
// found = externalUserMgr.searchUser(userName);
// You may need to catch potential exception and display the appropriate
// message

return found;
}

public SampleUserImpl createUserFromExternal(String loginId)
throw Exception {

System.out.println("DEBUG: SampleExternal Proxy--createUserFromExternal ");

CODE EXAMPLE 6-2 Sample External Proxy (Continued)
Chapter 6 User Profile API 6-17

System.out.println(" Creating a SampleUserImpl from External
Directory...");

System.out.println(" Reference Login Id = "+loginId);

try {

// Assuming the external client has been created and connection is
// established

// The following call typically search for the UserName and return an
// External UserProfile

aUserProfileData aUPD = externalUserMgr.getUserProfileData(loginId);
String password = aUPD.getCredential();

// Create basic User information (firstname,
// middlename, lastname,
// address, etc.)
String firstName = aUPD.getFirstName();
String lastName = aUPD.getLastName();
String middleName = aUPD.getMiddleInitial();
String gender = aUPD.getGender();
String salutation = aUPD.getOccupation();
String street1 = aUPD.getStreet();
String street2 = aUPD.getStreetNumber();
String city = aUPD.getCity();
String state = aUPD.getState();
String postalcode = aUPD.getZipCode();
String country = aUPD.getCountry();
String phone = aUPD.getFixedPhone();

// Creating email information
String email = aUPD.getMailAddress();

// Creating msisdn in this case Unique Device Id ()
String uniqueDeviceId = aUPD.getMsisdn();

// Creating Status data: User Enabled/Desabled and User is
// Prepay/Non-Prepay are valued 1/0

boolean enabled = false;
if (aUPD.getStatus().equals("1"))

enabled = true;

boolean prepay = false;
if (aUPD.getPrepayType().equals("1"))

prepay = true;

// Create activation and deactivation dates if provided

CODE EXAMPLE 6-2 Sample External Proxy (Continued)
6-18 Customization Guide • 2005Q4

Date activatedate = new Date();
Date deactivatedate = null;

// Create and return a Sample User Implementation
return new SampleUserImpl(

loginId,
password,
firstName,
lastName,
middleName,
gender,
street1,
street2,
city,
state,
postalcode,
country,
email,
phone,
activatedate,
deactivatedate,
salutation,
enabled,
uniqueDeviceId,
prepay);

} catch (Exception ex) {
// procecss exception
throw ex;

}

return null;
}

}

CODE EXAMPLE 6-2 Sample External Proxy (Continued)
Chapter 6 User Profile API 6-19

6.5.2 SampleUserImpl.java

The following code is a sample implementation of the User interface. This interface
includes the fields that the Content Delivery Server uses for user profiles. If you
have additional fields for your specific implementation, add the methods required to
get and set those values.

CODE EXAMPLE 6-3 Sample User Implementation

package com.sun.content.server.operator.security.adaptor;
import com.sun.content.server.service.security.User;
import java.util.Date;
import java.util.Hashtable;

public class SampleUserImpl implements User
{

private Hashtable fInfo;
public SampleUserImpl() {

fInfo = new Hashtable();

setLoginId("guest");
setFirstName("guest");
setLastName("guest");
setPassword ("guest");
setCreateDate(new Date());
setActivateDate(new Date());
fInfo.put("enabled", String.valueOf(true));
setMiddleName("guest");
setEmail("guest@email.com");
setUniqueDeviceId("1231231233");

}

public SampleUserImpl(String uid, String pwd, String fname, String lname,
String mname, String gender, String street1, String street2, String city,
String state, String postalcode, String country, String email,
String phone, Date actdate,Date deactdate,String salutation, ,
boolean enabled, String uniqueDeviceId, boolean isprepay) {

fInfo = new Hashtable();

setLoginId(uid);
setPassword(pwd);
setFirstName(fname);
setLastName(lname);
setMiddleName(mname);
setGender(gender);
6-20 Customization Guide • 2005Q4

setStreet1(street1);
setStreet2(street2);
setCity(city);
setState(state);
setPostalCode(postalcode);
setCountry(country);
setEmail(email);
setPhone(phone);
setFixedPhone(phone);

// It is safe to check the activation date and use current date if null
if (actdate == null) {

setCreateDate(new Date());
setActivateDate(new Date());

}
else {

setCreateDate(actdate);
setActivateDate(actdate);

}

setDeActivateDate(deactdate);
setSalutation(salutation);
setIsEnabled(enabled);
setUniqueDeviceId(uniqueDeviceId);
setIsPrepay(isprepay);

}

public SampleUserImpl(User inUser) {

fInfo = new Hashtable();

setLoginId(inUser.getLoginId());
setFirstName(inUser.getFirstName());
setLastName(inUser.getLastName());
setMiddleName(inUser.getMiddleName());
setGender(inUser.getGender());
setStreet1(inUser.getStreet1());
setStreet2(inUser.getStreet2());
setCity(inUser.getCity());
setState(inUser.getState());
setPostalCode(inUser.getPostalCode());
setCountry(inUser.getCountry());
setEmail(inUser.getEmail());
setPhone(inUser.getPhone());
setSalutation(inUser.getSalutation());
setIsEnabled(inUser.isEnabled());
setPassword(inUser.getPassword());

CODE EXAMPLE 6-3 Sample User Implementation (Continued)
Chapter 6 User Profile API 6-21

setUniqueDeviceId(inUser.getUniqueDeviceId());
}

// It is sometimes useful to have the corresponding external user data as a
// hashtable
public Hashtable getExternalUserData()
{
// Create a hash table
Hashtable externalData = new Hashtable();
// Get all the external data from fInfo and update the external data
// externalData = parserUser(fInfo);

return externalData;
}

public Date getLastLogin() {
/**@todo: Implement this com.sun.content.server.service.security.User method*/

throw new java.lang.UnsupportedOperationException("Method
getLastLogin()
not yet implemented.");

}

public Object getAttribute(String param1) {
/**@todo: Implement this com.sun.content.server.service.security.User method*/

throw new java.lang.UnsupportedOperationException("Method getAttribute()
not yet implemented.");

}

public Object getAttribute(String param1, Object parm2) {
/**@todo: Implement this com.sun.content.server.service.security.User method*/

throw new java.lang.UnsupportedOperationException("Method getAttribute()
not yet implemented.");

}

public Hashtable getAttributes() {
/**@todo: Implement this com.sun.content.server.service.security.User method*/

throw new java.lang.UnsupportedOperationException("Method
getAttributes()
not yet implemented.");

}

public void setHasLoggedIn(boolean param1) {
/**@todo: Implement this com.sun.content.server.service.security.User method*/

throw new java.lang.UnsupportedOperationException("Method setAttribute()
not yet implemented.");

}
public boolean hasLoggedIn() {

/**@todo: Implement this com.sun.content.server.service.security.User method*/

CODE EXAMPLE 6-3 Sample User Implementation (Continued)
6-22 Customization Guide • 2005Q4

throw new java.lang.UnsupportedOperationException("Method isConfirmed()
not yet implemented.");

}

public void setAttribute(String param1, Object parm2) {
/**@todo: Implement this com.sun.content.server.service.security.User method*/

throw new java.lang.UnsupportedOperationException("Method setAttribute()
not yet implemented.");

}

public void setAttributes(Hashtable param1) {
/**@todo: Implement this com.sun.content.server.service.security.User method*/

throw new java.lang.UnsupportedOperationException("Method
setAttributes()
not yet implemented.");

}

public String getLoginId() {
return (String)fInfo.get("loginId");

}
public void setLoginId(String param1) {

if (param1 != null)
fInfo.put("loginId", param1);

}

public String getFirstName() {
return (String)fInfo.get("firstName");

}
public void setFirstName(String param1) {

if (param1 != null)
fInfo.put("firstName", param1);

}

public String getLastName() {
return (String)fInfo.get("lastName");

}
public void setLastName(String param1) {

if (param1 != null)
fInfo.put("lastName", param1);

}

public Date getCreateDate() {
return (Date)fInfo.get("createDate");

}
public void setCreateDate(Date param1) {

if (param1 != null)
fInfo.put("createDate", param1);

CODE EXAMPLE 6-3 Sample User Implementation (Continued)
Chapter 6 User Profile API 6-23

}

public String getEmail() {
return (String)fInfo.get("email");

}
public void setEmail(String param1) {

if (param1 != null)
fInfo.put("email", param1);

}

public boolean isConfirmed() {
/**@todo: Implement this com.sun.content.server.service.security.User method*/

throw new java.lang.UnsupportedOperationException("Method
isConfirmed()
not yet implemented.");

}

public void updateLastLogin() throws java.lang.Exception {
/**@todo: Implement this com.sun.content.server.service.security.User method*/

throw new java.lang.UnsupportedOperationException("Method
updateLastLogin()
not yet implemented.");

}

public String getMiddleName() {
return (String)fInfo.get("middleName");

}
public void setMiddleName(String param1) {

if (param1 != null)
fInfo.put("middleName", param1);

}

public String getGender() {
return (String)fInfo.get("gender");

}
public void setGender(String param1) {

if (param1 != null)
fInfo.put("gender", param1);

}

public String getStreet1() {
return (String)fInfo.get("street1");

}
public void setStreet1(String param1) {

if (param1 != null)
fInfo.put("street1", param1);

}

CODE EXAMPLE 6-3 Sample User Implementation (Continued)
6-24 Customization Guide • 2005Q4

public String getStreet2() {
return (String)fInfo.get("street2");

}
public void setStreet2(String param1) {

if (param1 != null)
fInfo.put("street2", param1);

}

public String getPostalCode() {
return (String)fInfo.get("postalCode");

}
public void setPostalCode(String param1) {

if (param1 != null)
fInfo.put("postalCode", param1);

}

public String getCity() {
return (String)fInfo.get("city");

}
public void setCity(String param1) {
if (param1 != null)

fInfo.put("city", param1);
}

public String getState() {
return (String)fInfo.get("state");

}
public void setState(String param1) {

if (param1 != null)
fInfo.put("state", param1);

}

public String getCountry() {
return (String)fInfo.get("country");

}
public void setCountry(String param1) {
if (param1 != null)

fInfo.put("country", param1);
}

public String getPhone() {
return (String)fInfo.get("phone");

}
public void setPhone(String param1) {

if (param1 != null)
fInfo.put("phone", param1);

CODE EXAMPLE 6-3 Sample User Implementation (Continued)
Chapter 6 User Profile API 6-25

}

public Date getActivateDate() {
return (Date)fInfo.get("activateDate");

}
public void setActivateDate(Date param1) {

if (param1 != null)
fInfo.put("activateDate", param1);

}

public Date getDeActivateDate() {
return (Date)fInfo.get("deactivateDate");

}
public void setDeActivateDate(Date param1) {

if (param1 != null)
fInfo.put("deactivateDate", param1);

}

public String getSalutation() {
return (String)fInfo.get("salutation");

}
public void setSalutation(String param1) {
if (param1 != null)

fInfo.put("salutation", param1);
}

public boolean isEnabled() {
return Boolean.valueOf((String)fInfo.get("enabled")).booleanValue();

}
public void setIsEnabled(boolean param1) {

fInfo.put("enabled", String.valueOf(param1));
}

public String getPassword() {
return (String)fInfo.get("password");

}
public void setPassword(String param1) {

if (param1 != null)
fInfo.put("password", param1);

}

public String getUniqueDeviceId(){
return (String)fInfo.get("UniqueDeviceId");

}
public void setUniqueDeviceId(String uniqueId){

if (uniqueId != null)
fInfo.put("UniqueDeviceId", uniqueId);

CODE EXAMPLE 6-3 Sample User Implementation (Continued)
6-26 Customization Guide • 2005Q4

6.5.3 SampleUserManagerImpl.java

The following code is a sample extension of the UserManager class.

}

public String getMobileId(){
return (String)fInfo.get("MobileId");

}
public void setMobileId(String mobileId) {

if (mobileId != null)
fInfo.put("MobileId", mobileId);

}

public boolean isPrepay() {
Boolean isprepay = (Boolean)fInfo.get("isPrepay");
return isprepay.booleanValue();
}
public void setIsPrepay(boolean param1) {
fInfo.put("isPrepay", new Boolean(param1));
}

}

CODE EXAMPLE 6-4 Example Using the UserManager Class

package com.sun.content.server.operator.security.adaptor;

import java.util.*;

//import Content Delivery Server libraries
import com.sun.content.server.service.security.*;
import com.sun.content.server.service.security.util.*;

//import here operator required packages
//

public class SampleUserManagerImpl extends UserManager{

private SampleExternalProxy proxy;

public SampleUserManagerImpl() throws UserProfileResourceException {

try {
init();

CODE EXAMPLE 6-3 Sample User Implementation (Continued)
Chapter 6 User Profile API 6-27

} catch (Exception ex) {
throw new

com.sun.content.server.service.security.util.UserProfileResourceException(
"Failed to instantiate SampleUserManagerImpl ", ex);

}
}

// This method will create an External Directory Server Proxy and
// initiatlize this User Manager
private void init() throws UserProfileResourceException
{
System.out.println("Initializing External UserManager ");

try {
proxy = new SampleExternalProxy();

} catch (Exception ex) {
System.out.println("Fatal Error " + ex.toString());
throw new

com.sun.content.server.service.security.util.UserProfileResourceException(
ex.toString());

}
}

protected boolean doIsAuthenticated(String inUserId, String inPassword)
throws UserProfileResourceException {

System.out.println("SampleUserManagerImpl.doIsAuthenticated --- ");

boolean isauthenticated = false;

try {

User aUser = proxy.createUserFromExternal(inUserId);
isauthenticated = ((aUser.getLoginId()==inUserId) &&

(aUser.getPassword()==inPassword));
if (isauthenticated)
System.out.println("SampleUserManagerImpl.doIsAuthenticated: - User

"+inUserId+" is successfully authenticated.");
else
System.out.println("SampleUserManagerImpl.doIsAuthenticated: - User

"+inUserId+" : unable to authenticate (wrong login and password)");
} catch (Exception ex) {

isauthenticated = false;
System.out.println("SampleUserManagerImpl.doIsAuthenticated: - User

"+inUserId+" can not authenticate (user not found)");

CODE EXAMPLE 6-4 Example Using the UserManager Class
6-28 Customization Guide • 2005Q4

throw new
com.sun.content.server.service.security.util.UserProfileResourceException(
ex.toString());

}
return isauthenticated;
}

protected boolean doAccountExists(String userId) throws
UserProfileResourceException {

System.out.println("SampleUserManagerImpl.doAccountExists --- ");

// Use the External Proxy search method to check if the account exist
return proxy.searchUser(userId);
}

protected boolean doAddUser(User user) throws UserProfileResourceException{

boolean updated = false;

//This is not an allowed operation. If this is not the case add the code to
// implement it
System.out.println("SampleUserManagerImpl.doAddUser - This operation is not

implemented !");

return updated;
}

protected void doDisableUser(String userId) throws
UserProfileResourceException {

//This is not an allowed operation. If this is not the case add the code to
// implement it
System.out.println("SampleUserManagerImpl.doDisableUser - This operation is

not implemented !");

}

protected void doEnableUser(String userId) throws
UserProfileResourceException {

//This is not an allowed operation. If this is not the case add the code to
// implement it
System.out.println("SampleUserManagerImpl.doEnableUser - This operation is

not implemented !");

}

CODE EXAMPLE 6-4 Example Using the UserManager Class
Chapter 6 User Profile API 6-29

protected User doGetAnonymousUser() throws UserProfileResourceException {
return new SampleUserImpl();
}

protected User doGetUser(String userId) throws UserProfileResourceException {

User aUser = null;
try {

aUser = proxy.createUserFromExternal(userId);
if (aUser != null)
System.out.println("SampleUserManagerImpl.doGetUserByUniqueDeviceId: -

User with "+userId+" is found.");
else
System.out.println("SampleUserManagerImpl.doGetUserByUniqueDeviceId: -

User with "+userId+" not found");
} catch (Exception ex) {

System.out.println("SampleUserManagerImpl.doGetUserByUniqueDeviceId: -
User "+userId+" not found)");

throw new
com.sun.content.server.service.security.util.UserProfileResourceException(ex);

}
return aUser;
}

/* This method can be implemented the same way as doGetUser. Instead of
* using the createUserFromExternal(loginId) you can extend the
* SampleExternalProxy to implement a specific
* createUserFromExternalUsingDeviceId(uniqueDeviceId).
* For now we will assume that the string loginId can be replaced by a search
* key ID and it will return the matching profile.
*/

protected User doGetUserByUniqueDeviceId(String inUniqueDeviceId)
throws UserProfileResourceException {

return doGetUser(inUniqueDeviceId);
}

// Sample implementation as doGetUser
protected User doGetUserByMobileId(String inMobileId)

throws UserProfileResourceException {
return doGetUser(inMobileId);
}

protected Iterator doGetAllUsers(String role)
throws UserProfileResourceException {

CODE EXAMPLE 6-4 Example Using the UserManager Class
6-30 Customization Guide • 2005Q4

System.out.println("SampleUserManagerImpl.doGetAllUsers - This operation is
not implemented !");

ArrayList users = new ArrayList();
return users.iterator();
}

protected Iterator doGetAllUsersContainingLastName(String lastName,
String role) throws UserProfileResourceException {

System.out.println("SampleUserManagerImpl.doGetAllUsersContainingLastName
- This operation is not implemented !");

ArrayList users = new ArrayList();
return users.iterator();
}

protected Iterator doGetAllUsersContainingFirstName(String firstName,
String role) throws UserProfileResourceException {

System.out.println("SampleUserManagerImpl.doGetAllUsersContainingFirstName
- This operation is not implemented !");

ArrayList users = new ArrayList();
return users.iterator();
}

protected Iterator doGetAllUsersContainingName(String name, String role)
throws UserProfileResourceException {

System.out.println("SampleUserManagerImpl.doGetAllUsersContainingName -
This operation is not implemented !");

ArrayList users = new ArrayList();
return users.iterator();
}

protected Iterator doGetAllUsersContainingId(String userId, String role)
throws UserProfileResourceException {

System.out.println("SampleUserManagerImpl.doGetAllUsersContainingId - This
operation is not implemented !");

ArrayList users = new ArrayList();
return users.iterator();
}

protected Iterator doGetAllLikeInOrder(String[] columns, String[] values,
String[] orders, boolean isDescending, int pageNum, int recPerPage,
String role)

throws UserProfileResourceException {

CODE EXAMPLE 6-4 Example Using the UserManager Class
Chapter 6 User Profile API 6-31

System.out.println("SampleUserManagerImpl.doGetAllLikeInOrder - This
operation is not implemented !");

ArrayList users = new ArrayList();
return users.iterator();
}

protected String doGetFieldName(int fieldContant, String role)
throws UserProfileResourceException {

System.out.println("SampleUserManagerImpl.doGetFieldName - This operation
is not implemented !");

return null;
}

protected boolean doIsActive(String userId) throws
UserProfileResourceException {

System.out.println("SampleUserManagerImpl.doIsActive - This operation is
not implemented !");

return false;
}

protected boolean doRemoveUser(String userId)
throws UserProfileResourceException {

System.out.println("SampleUserManagerImpl.doRemoveUser - This operation is
not implemented !");

return false;
}

protected boolean doUpdateUser(User user)
throws UserProfileResourceException {

System.out.println("SampleUserManagerImpl.doUpdateUser - This operation is
not implemented !");

return false;
}

protected User doGetUserInstance() throws UserProfileResourceException {

System.out.println("SampleUserManagerImpl.doGetUserInstance - This
operation is not implemented !");

return null;
}

}

CODE EXAMPLE 6-4 Example Using the UserManager Class
6-32 Customization Guide • 2005Q4

CHAPTER 7

WAP Gateway API

This chapter describes the Sun Java System Content Delivery Server WAP Gateway
API. This API retrieves the MSISDN, device profile, and other attributes from the
HTTP header. Authentication based on user and password is not required with WAP
gateway integration.

FIGURE 7-1 is a simplified representation of the general system components that
interact with this API and the access point for it. It also includes additional
components that do not interact with this API, but are necessary for an overall
understanding of the architecture.

FIGURE 7-1 WAP Gateway Adapter Architecture

WAP
Request

WAP
Gateway

HTTP Request
(Unique ID
 in header)

B

A

C

WAP
Integration

Point

Content Delivery
Server Database

Carrier User
Database

Authentication and Authorizations
API based on JAAS Framework

User Profile

Default
Implementation

Carrier-Specific
Implementation

Default
Implementation

Carrier-Specific
Implementation

Carrier-specific implementation can be an implementation of the User Profile API
7-1

The WAP Gateway adapter parses the HTTP header from a specific WAP Gateway
and obtains the MSISDN.

For information on classes or methods not described in this section, see the HTML
output of the Javadoc tool for the WAP Gateway API at
$CDS_HOME/javadoc/cdsapi/index.html.

7.1 WAPGatewayAdapter Class
The public abstract WAPGatewayAdapter class defines the methods to get the
MSISDN and unique device ID from the HTTP header. It also defines a method to
check if this method is supported or implemented.

For information on methods not described in this section, see the HTML output of
the Javadoc tool for the WAP Gateway API at
$CDS_HOME/javadoc/cdsapi/index.html.

7.1.1 doHandle()
public abstract boolean doHandle(String method)
throws WAPGatewayException

Returns true if method is implemented, and returns false if method is not
implemented. This method is used to determine if the other methods for this class
are implemented.

7.1.2 getMSISDN()
public abstract String getMSISDN(HttpServletRequest request)
throws WAPGatewayException

Returns the MSISDN as a string after parsing the HTTP header.

7.1.3 getUniqueId()
public abstract String getUniqueId(HttpServletRequest request) throws
WAPGatewayException

Returns the unique device ID as a string after parsing the HTTP header.
7-2 Customization Guide • 2005Q4

7.2 Using the WAP Gateway API
The Content Delivery Server provides an API implementation for the following WAP
Gateways.

■ Nokia Activ Server 2.0.1
■ Nokia Artus WAP Gateway
■ Openwave WAP Gateway

A WAP gateway must be configured to forward the MSISDN or the unique device
ID to the Content Delivery Server. WAPGatewayManager and WAPGatewayAdapter
classes are available in cdsapi.jar, which is in the
$CDS_HOME/deployment/deployment-name/lib/cdslib directory. To register a
new class that extends the WAPGatewayAdapter class for any other WAP gateway,
add the class file name to the wapgateway.config file inside the
$CDS_HOME/deployment/deployment-name/conf directory. The following statement
is an example of how to register an adapter for Nokia Activ Server 2.0.1 with the
Content Delivery Server.

Place your adapter in the $CDS_HOME/deployment/deployment-
name/lib/external directory so that the Content Delivery Server can find the file
during execution.

7.3 Sample WAP Gateway Adapter
The following code example shows the pseudo code for an adapter for Nokia Activ
Server that extends WAPGatewayAdapter class.

module.gateway.id=
com.sun.content.server.service.gateway.nokia.NokiaActivServerWAPGateway

CODE EXAMPLE 7-1 Example Using the WAPGatewayAdapter Class

package com.sun.content.server.service.gateway.sample;

import com.sun.content.server.service.gateway.WAPGatewayAdapter;
import com.sun.content.server.service.gateway.WAPGatewayException;
import javax.servlet.http.HttpServletRequest;

public class SampleWAPGateway extends WAPGatewayAdapter
{

Chapter 7 WAP Gateway API 7-3

/* Method to check if the passed method is implemented in this
* class or not. */

public boolean doHandle(String method) throws WAPGatewayException
{

if (method.equals("getMSISDN"))
return true;

return false;
}

/* Gets the MSISDN from the header and returns as a string. */
public String getMSISDN(HttpServletRequest request)
{

return request.getHeader("<key to retrieve>");
}

/* This method is not implemented. */
public String getUniqueId(HttpServletRequest req)

throws WAPGatewayException
{

throw new WAPGatewayException("This method is not implemented");
}

}

CODE EXAMPLE 7-1 Example Using the WAPGatewayAdapter Class (Continued)
7-4 Customization Guide • 2005Q4

CHAPTER 8

Messaging API

This chapter describes the Sun Java System Content Delivery Server Messaging API.
The Messaging API provides a mechanism for carriers or application vendors to
integrate their WAP, SMS, and MMS push implementations with the Content
Delivery Server by creating a push adapter. The Messaging API is used to create
both push sender adapters and push listener adapters.

The following figure illustrates the high-level architecture of the Messaging API and
the different components that use this API.

FIGURE 8-1 Architecture of the Messaging API

An external push system can interact or receive push messages from the Content
Delivery Server.

SMS Push
Adapters

External Push System

WAP Push
Adapters

External Push System

MMS Push
Adapters

External Push System

Sun Java System Content Delivery Server

Content Delivery Server Messaging Service

Content Delivery Server Messaging API
8-1

For information on classes or methods not described in this section, see the HTML
output of the Javadoc tool for the Messaging API at
$CDS_HOME/javadoc/cdsapi/index.html.

8.1 PushMsgSender Interface
The PushMsgSender interface declares the methods needed for a push message
sender implementation. This interface is called by the Content Delivery Server
Messaging Service when the Content Delivery Server sends a push message.

8.1.1 pushMessage()
public PushResponse pushMessage(PushMessage msg, int retryNum)
throws PushMessageFailException;

Sends the message. This method is called when the Content Delivery Server sends a
push message.

8.2 PushMsgListener Interface
The PushMsgListener interface declares the methods needed for a push message
listener implementation.

8.2.1 connect()
public boolean connect()

Returns true if the Content Delivery Server is connected to the SMSC, otherwise,
returns false. This method is called by Content Delivery Server Messaging Service
when the SMSC sends a push message.
8-2 Customization Guide • 2005Q4

8.2.2 initialize()
public void initialize(String pushActionType) throws
InitializationFailedException

Initializes SMSC parameters before making a connection to the SMSC. This is the
first method called by the Content Delivery Server Messaging Service.

8.2.3 listen()
public void listen()

Listens for the message coming from the device. This method is called by Content
Delivery Server Messaging Service after PushMsgListener is connected to the
SMSC.

8.2.4 sendKeepAliveMsg()
public void sendKeepAliveMsg()

Sends signal to keep message alive. This method is called by the Content Delivery
Server Messaging Service if the SMSC requires that a “Keep Alive” signal be sent to
keep the connection active.

8.3 PushMessage Class
PushMessage is the base class for all of the different types of push messages
generated by the Content Delivery Server. The MMSPushMessage class used for
MMS messages extends PushMessage.

All of the set methods are used by the Content Delivery Server during message
construction. All of the get methods can be used by a sender’s implementation of a
push message.

8.3.1 addUserAgent()
public void addUserAgent(String ua)

Sets the user agent for the receiver’s device.
Chapter 8 Messaging API 8-3

8.3.2 getAllUserAgents()
public ArrayList getAllUserAgents()

Returns all user agents for the receiver’s device.

8.3.3 getAttribute()
public Object getAttribute(String attributeName)

Returns any message attribute.

8.3.4 getContentBinary()
public Object getContentBinary()

Gets the binary content included in the message.

8.3.5 getContentType()
public String getContentType()

Gets the content type of a message.

8.3.6 getDestinationAddress()
public String getDestinationAddress()

Returns the destination address, which is the phone number or email ID of the
receiver.

8.3.7 getJMSMessageId()

This method is deprecated. Use getMessageId().
8-4 Customization Guide • 2005Q4

8.3.8 getKeyword()
public String getKeyword()

Returns the keyword that is associated with the requested content.

8.3.9 getMessageId()
public String getMessageId()

Returns the ID of the message.

8.3.10 getMessageText()
public String getMessageText()

Returns the message text.

8.3.11 getMimeType()
public String getMimeType()

Gets the MIME type.

8.3.12 getPushCategory()
public long getPushCategory()

Returns the push message category.

8.3.13 getPushDomain()
public long getPushDomain()

Returns the domain of the push message.
Chapter 8 Messaging API 8-5

8.3.14 getPushType()
public String getPushType()

Returns the message type.

8.3.15 getShortCode()
public String getShortCode()

Returns the short code to which the message is sent.

8.3.16 getSubscriberId()
public long getSubscriberId()

Returns the subscriber ID.

8.3.17 getUniqueDeviceId()
public String getUniqueDeviceId()

Returns the unique device ID.

8.3.18 getVendingContentId()
public long getVendingContentId()

Returns the vending content ID.

8.3.19 setAllUserAgents()
public void setAllUserAgents(ArrayList list)

Sets multiple user agents for the receiver’s device.
8-6 Customization Guide • 2005Q4

8.3.20 setAttribute()
public void setAttribute(String attributeName, Object attributeVal)

Sets any message attribute.

8.3.21 setContentBinary()
public void setContentBinary(byte[] content)

Sets the content binary included in the message.

8.3.22 setContentType()
public void setContentType(String contentType)

Sets the content type of the message.

8.3.23 setDestinationAddress()
public void setDestinationAddress(String receiverId)

Sets the destination address of the receiver of the push message. The destination
address can be either a phone number or email ID.

8.3.24 setJMSMessageId()

This method is deprecated. Use setMessageId().

8.3.25 setKeyword()
public void setKeyword(String inputKeyword)

Sets the keyword that is associated with the requested content.
Chapter 8 Messaging API 8-7

8.3.26 setMessageId()
public void setMessageId(String msgId)

Sets the ID of the message.

8.3.27 setMessageText()
public void setMessageText(String text)

Sets the message text.

8.3.28 setMimeType()
public void setMimeType(String mType)

Sets the MIME type.

8.3.29 setPushCategory()
public void setPushCategory(long category)

Sets the push message category.

8.3.30 setPushDomain()
public void setPushDomain(long domain)

Sets the domain of the push message.

8.3.31 setShortCode()
public void setShortCode(String inputShortCode)

Sets the short code to which the message is sent.
8-8 Customization Guide • 2005Q4

8.3.32 setSubscriberId()
public void setSubscriberId(long subId)

Sets the subscriber ID.

8.3.33 setUniqueDeviceId()
public void setUniqueDeviceId(String uniqueId)

Sets the unique ID of the device.

8.3.34 setVendingContentId()
public void setVendingContentId(long contentId)

Sets the vending content ID.

8.3.35 toString()
public String toString()

Displays the PushMessage object’s data to the log. This method is mainly for
debugging purposes.

8.4 SMSMessage Class
This class is deprecated. The following methods are now part of PushMessage class:

■ getContentType
■ getMIMEType
■ setContentType
■ setMIMEType

To get and set the content name or download URL, use the getAttribute() and
setAttribute() methods in PushMessage with the appropriate constant defined
in PushConstants. See the output of the Javadoc tool for these classes at
$CDS_HOME/javadoc/cdsapi/index.html for more information.
Chapter 8 Messaging API 8-9

8.5 WapPushMessage Class
This class is deprecated. To get and set the download URL, use the
getAttribute() and setAttribute() methods in PushMessage with the
appropriate constant defined in PushConstants. See the output of the Javadoc tool
for these classes at $CDS_HOME/javadoc/cdsapi/index.html for more
information.

8.6 SMTPMessage Class
This class is deprecated. To get and set the subject or message’s From address, use
the getAttribute() and setAttribute() methods in PushMessage with the
appropriate constant defined in PushConstants. See the output of the Javadoc tool
for these classes at $CDS_HOME/javadoc/cdsapi/index.html for more
information.

8.7 ContentSlide Class
This class stores the binary data from the MMS push message. The binary data can
have a MIME type and a unique ID associated with it. All of the set methods are
used by the server during message construction. All the get methods can be used by
an implementation of a push message.

8.7.1 getContentData()
public byte[] getContentData()

Returns the MMS push message’s binary data.

8.7.2 getContentId()
public String getContentId()

Returns the unique ID associated with an MMS push message’s binary data.
8-10 Customization Guide • 2005Q4

8.7.3 getContentMimeType()
public String getContentMimeType()

Returns the MIME type of an MMS push message’s binary data.

8.7.4 setContentData()
public void setContentData(byte[] contentData)

Sets the MMS push message’s binary data.

8.7.5 setContentId()
public void setContentId(String contentId)

Sets the unique ID associated with an MMS push message’s binary data.

8.7.6 setContentMimeType()
public void setContentMimeType(String contentMimeType)

Sets the MIME type of an MMS push message’s binary data.

8.8 MMSSlide Class
This class is a wrapper for ContentSlide objects and is used to construct MMS
push messages. All of the set methods are used by the Content Delivery Server
during message construction. All the get methods can be used by an
implementation of a push message.

8.8.1 getAudioContent()
public ContentSlide getAudioContent()

Returns the audio content of an MMSSlide object.
Chapter 8 Messaging API 8-11

8.8.2 getImageContent()
public ContentSlide getImageContent()

Returns the image content of an MMSSlide object.

8.8.3 getTextContent()
public ContentSlide getTextContent()

Returns the text content of an MMSSlide object.

8.8.4 getVideoContent()
public ContentSlide getVideoContent()

Returns the video content of an MMSSlide object.

8.8.5 setAudioContent()
public void setAudioContent(String contentId, String contentMimeType,
byte[] contentData)

Sets the audio content of an MMSSlide object.

8.8.6 setImageContent()
public void setImageContent(String contentId, String contentMimeType,
byte[] contentData)

Sets the image content of an MMSSlide object.

8.8.7 setTextContent()
public void setTextContent(String contentId, String contentMimeType,
byte[] contentData)

Sets the text content of an MMSSlide object.
8-12 Customization Guide • 2005Q4

8.8.8 setVideoContent()
public void setVideoContent(String contentId, String contentMimeType,
byte[] contentData)

Sets the video content of an MMSSlide object.

8.9 MMSPushMessage Class
The MMSPushMessage class extends PushMessage and represents an MMS push
message. All of the set methods are used by the Content Delivery Server during
message construction. All of the get methods can be used by an implementation of
a push message. This class contains the From address, the To addresses,
MMSC-related data, the user agent, and any Synchronized Multimedia Integration
Language (SMIL) data, if available. It also encapsulates the MMSSlide object.

8.9.1 addMMSSlide()
public void addMMSSlide(MMSSlide mmsSlide)

Sets the MMSSlide object.

8.9.2 addRecipient()
public void addRecipient(String to)

Sets the receiver’s phone number or email ID.

8.9.3 getAllMMSSlides()
public ArrayList getAllMMSSlides()

Returns all of the MMSSlide objects associated with this MMSPushMessage.

8.9.4 getAllRecipients()
public ArrayList getAllRecipients()

Returns the phone number or email ID of all of the recipients of the message.
Chapter 8 Messaging API 8-13

8.9.5 getDeliveryReportRequired()
public boolean getDeliveryReportRequired()

Returns the value for DeliveryReportRequired attribute.

8.9.6 getFromAddress()
public String getFromAddress()

Returns the sender’s phone number or email ID.

8.9.7 getMessageClass()
public String getMessageClass()

Returns the value for MessageClass attribute.

8.9.8 getMessagePriority()
public String getMessagePriority()

Returns the value for MessagePriority attribute.

8.9.9 getReadReportRequired()
public boolean getReadReportRequired()

Returns the value for ReadReportRequired attribute.

8.9.10 getSenderVisibility()
public String getSenderVisibility()

Returns the value for SenderVisibility attribute.
8-14 Customization Guide • 2005Q4

8.9.11 getSMILPresentation()
public byte[] getSMILPresentation()

Returns the SMIL data.

8.9.12 setDeliveryReportRequired()
public void setDeliveryReportRequired(boolean
deliveryReportRequired)

Sets the value for DeliveryReportRequired attribute.

8.9.13 setFromAddress()
public void setFromAddress(String from)

Sets the sender’s phone number or email ID.

8.9.14 setMessageClass()
public void setMessageClass(String messageClass)

Sets the value for MessageClass attribute.

8.9.15 setMessagePriority()
public void setMessagePriority(String messagePriority)

Sets the value for MessagePriority attribute.

8.9.16 setReadReportRequired()
public void setReadReportRequired(boolean readReportRequired)

Sets the value for the ReadReportRequired attribute.
Chapter 8 Messaging API 8-15

8.9.17 setSenderVisibility()
public void setSenderVisibility(String senderVisibility)

Sets the value for SenderVisibility attribute.

8.9.18 setSMILPresentation()
public void setSMILPresentation(byte[] smil)

Sets the SMIL data.

8.10 MMSSender Interface
The MMSSender interface declares the method that sends an MMS message. This
interface must be implemented for the vendor-specific MMSC during integration if
you want to support MMS messages.

8.10.1 sendMMS()
sendMMS(com.sun.content.server.server.messaging.message.MMSPushMess
age message)

Encapsulates the functionality for sending an MMS message. This method is called
by the Content Delivery Server Messaging Service when it receives an
MMSPushMessage from the Content Delivery Server.

The Content Delivery Server sends an MMSPushMessage object to the Content
Delivery Server Messaging Service. The Messaging Service uses the value of the
mms.senderclass property in the MsgService.properties file to identify the
fully qualified name of the class that provides the vendor-specific implementation of
MMSSender.sendMMS. The code within the implementation of sendMMS transforms
the MSSPushMessage object into a vendor-specific version of the MMS message
object and sends it to the vendor-specific MMSC for processing. The following figure
shows this process.
8-16 Customization Guide • 2005Q4

FIGURE 8-2 Process Flow for Sending an MMS Message

To implement a vendor-specific version of MMSSender.sendMMS, include the
following items:

1. Connect to the vendor-specific MMSC.

2. Implement MMSSender.sendMMS to do the following tasks:

■ Transform the MMSPushMessage object that is passed to the Content Delivery
Server Messaging Service into a vendor-specific MMS message object.

■ Send the new message object to the vendor-specific MMSC.

8.11 PushResponse Class
The PushResponse class is the base class for all of the different types of push
responses generated by the external push services. All of the set methods are used
by an implementation of a push message sender. All of the get methods can be used
by the Content Delivery Server to log the push message in the database.

Vendor-Specific Multimedia
Message Service Center

(MMSC)

Sun Java System Content Delivery Server

MMSPushMessage

Content Delivery Server Messaging Service

sendMMS(MMSPushMessage message)

Vendor-specific

MMS message object
Chapter 8 Messaging API 8-17

8.11.1 getMessageId()
public String getMessageId()

Returns the message ID.

8.11.2 getResponseDescription()
public String getResponseDescription()

Returns the response description.

8.11.3 getResponseStatus()
public String getResponseStatus()

Returns the response status.

8.12 PushConstants Class
The PushConstants class contains all of the constants that the push services can
support. A specific push service implementation compares these constants with the
values received from the PushMessage object. See the output of the Javadoc tool at
$CDS_HOME/javadoc/cdsapi/index.html for information on the constants
defined.

8.13 Using the Messaging API
A push sender adapter must implement the PushMsgSender interface. During
deployment, the implementation class needs to be registered with the Content
Delivery Server. An XML file is used for registration. This XML file is located in the
$CDS_HOME/deployment/deployment-name/conf directory and is named
pushsenderfactory.xml.
8-18 Customization Guide • 2005Q4

The following example shows the structure of this file.

Four adapters are registered in this file. Specify the fully qualified class name and
the protocol that the adapter supports. For example, if you have an adapter for SMS
push, the protocol is sms. Make sure the adapter class and dependent classes are set
in the classpath.

If you are using the default implementation of a push sender adapter for MMS,
MMSPushMsgSender, you must implement the MMSSender interface. Set the
mms.senderclass property in the MsgServices.properties file to the fully
qualified name of your class. This class is in the
$CDS_HOME/deployment/deployment-name/conf directory.

A push listener adapter implements the PushMsgListener interface. The
implementation class needs to be registered with the Content Delivery Server. An
XML file is used for registration. This XML file is located in the
$CDS_HOME/deployment/deployment-name/conf directory and is named
pushlistenerfactory.xml.

The following example shows the structure of this file.

CODE EXAMPLE 8-1 Sample pushsenderfactory.xml File

<?xml version="1.0" encoding='UTF-8' ?>
<PushSenderConfig nodeid="0">
 <pushmsgsenderset nodeid ="1">

<pushmsgsender nodeid ="2" class =
"com.sun.content.server.server.msgserver.push.HTTPSMSPushMsgSender" protocol="sms"/>

<pushmsgsender nodeid ="3" class =
"com.sun.content.server.server.msgserver.push.WAPPushMsgSender" protocol="wap"/>

<pushmsgsender nodeid ="4" class =
"com.sun.content.server.server.msgserver.push.SMTPushMsgSender" protocol="smtp"/>

<pushmsgsender3 class =
"com.sun.content.server.server.msgserver.push.MMSPushMsgSender" protocol="mms"/>
</pushmsgsenderset>
</PushSenderConfig>

CODE EXAMPLE 8-2 Sample pushlistenerfactory.xml File

<pushmsglistenerset>
<pushmsglistener0 class=

"com.sun.content.server.server.msgserver.protocol.cimd2.CIMD2PushMsgListener"
protocol="sms"/>
</pushmsglistenerset>
Chapter 8 Messaging API 8-19

8-20 Customization Guide • 2005Q4

CHAPTER 9

Confirm Service API

The Sun Java System Content Delivery Server Confirm Service API enables the
Content Delivery Server to handle confirmation messages sent from a Multimedia
Messaging Service Center (MMSC). Confirmation messages are generally sent after
content is downloaded to a device.

The Confirm Service API consists of the following classes:

■ ConfirmServiceAdapter - Abstract class that you extend to connect to the
MMSC and listen for messages.

■ ConfirmResponse - Class that contains the confirmation information received.

■ ConfirmServiceException - Exception that is thrown by the Confirm Service
API.

For additional information on these classes, see the HTML output of the Javadoc tool
at $CDS_HOME/javadoc/cdsapi/index.html.

9.1 General Process Flow
The Content Delivery Server can send content in a multimedia message to devices
that support the MMS standard. When a device receives content in an MMS
message, a confirmation message is returned through the MMSC. The confirm
service adapter that you write using the Confirm Service API sets up the connection
between the Content Delivery Server and the MMSC, and handles the confirmation
messages from the MMSC.
9-1

9.2 ConfirmServiceAdapter Class
The ConfirmServiceAdapter class establishes the connection with the MMSC,
listens for confirmation messages, and passes the messages received to the Content
Delivery Server. Extend ConfirmServiceAdapter to create a confirm service
adapter for your system.

The ConfirmServiceAdapter class is in the
com.sun.content.server.confirmservice package.

9.2.1 connect()
public abstract boolean connect() throws ConnectionFailedException

Use this method to connect to the Content Delivery Server to the MMSC that you are
using.

9.2.2 listen()
public abstract void listen() throws ConfirmServiceException

Use this method to listen for confirmation messages from the MMSC. When a
confirmation message is received, use the information in the message to create a
ConfirmResponse object and call the messageReceived() method.

The ConfirmResponse object requires the information shown in the following
table.

TABLE 9-1 ConfirmResponse Parameters

Parameter Description

pushType The type of message received. The value must be one of the
types defined in the PushConstants class (see Section 8.12,
“PushConstants Class” on page 8-18.)

messageID The ID assigned by the MMSC to identify the message.

responseStatus The status of the response.

responseDescription The description of the response.

responseObject Not used for MMS messages. Pass null.
9-2 Customization Guide • 2005Q4

9.2.3 messageReceived()
protected void messageReceived(ConfirmResponse confirmResponse)
throws ConfirmServiceException

Use this method to send the information received in the confirmation message to the
Content Delivery Server. Call this message from your implementation of the
listen() method.

9.3 Using the Confirm Service API
Modify the ConfirmListener.properties file in the
$CDS_HOME/deployment/deployment-name/conf directory to add another instance
of the following property:

confirmservice.class.id

Set this property to the class name of your implementation of the
ConfirmServiceAdapter class, for example:

confirmservice.class.id=
com.sun.content.server.server.confirm.mms.MMSConfirmService

The classes for the Confirm Service API are available in cdsapi.jar, which is
found in the $CDS_HOME/deployment/deployment-name/lib/cdslib directory.

The cdsapi.jar file must be in your classpath when you compile your adapter.

To make your adapter available to the Content Delivery Server, follow these steps:

1. Create a JAR file for your adapter.

2. Place the JAR file in the $CDS_HOME/deployment/deployment-
name/lib/external directory.

3. Open the ConfirmListener.properties file in the
$CDS_HOME/deployment/deployment-name/conf directory.

4. Add another instance of the confirmservice.class.id property.

Set this property to the class name of your implementation of the
ConfirmServiceAdapter class, for example:

confirmservice.class.id=
com.sun.content.server.server.confirm.mms.MMSConfirmService

5. Save your changes.

6. Restart the Content Delivery Server to make it aware of the new JAR file.
Chapter 9 Confirm Service API 9-3

9-4 Customization Guide • 2005Q4

CHAPTER 10

Subscriber API

The Subscriber API provides access to data maintained by the Content Delivery
Server. Use this API to get the data needed to create your own client application for
providing subscribers with access to content managed by the Content Delivery
Server.

Clients that are written in the Java programming language and located on a server
with the Subscriber Portal component of the Content Delivery Server can call the
Subscriber API directly. Clients written in a language other than Java, or clients that
are located on a server that does not contain the Subscriber Portal must access the
Subscriber API through the XML-RPC (remote procedure call) implementation.

The Subscriber API includes the following classes and interfaces that your client
might use:

■ ApiContextFactory - Class that creates an IApiContext object that contains
the characteristics of the subscriber, such as locale, device model, and mobile ID.

■ ApiServiceFactory - Class that creates a service for a specific subscriber.
Services provide access to a collection of related information. For example, the
Content Service provides access to the list of previous purchases made by a
subscriber, the details of individual items, and a subscriber’s bookmarked
contents.

■ ApiUtil - Class that provides utilities such as initiating a transaction or checking
the version of the database.

■ IApiContext - Interface that provides information about the current subscriber.

■ ICategoryService - Interface that provides access to the category tree and a
subscriber’s category list.

■ IContentService - Interface that provides access to content for browsing,
searching, retrieving, and purchasing.

■ IDownloadService - Interface that provides access to content descriptors.

■ IGiftingService - Interface that enables a subscriber to send gifts or messages
about an item to another subscriber.
10-1

■ IMessageService - Interface that enables messages to be sent to this subscriber
or another subscriber. Messages can be in email, MMS, SMS, or WAP push
formats.

■ ISystemService - Interface that provides access to system-level content such as
locales, content types, and device models.

■ IUserService - Interface that provides access to information on subscribers and
enables new subscriber accounts to be created.

■ CDSException - Exception thrown by the Subscriber API if an error occurs.

For additional information on these and other classes, see the HTML output of the
Javadoc tool at $CDS_HOME/javadoc/subscriberapi/index.html.

10.1 General Process Flow
This section describes general tasks that you might want your client application to
perform. The class names used in this section refer to the classes that make up the
Subscriber API. See Section 10.3, “XML-RPC Implementation” on page 10-6 for the
equivalent handler if you are accessing the Content Delivery Server data using
XML-RPC.

In general, the client application that you create for your subscriber interface
includes actions such as those described in the following list.

■ Create an IApiContext object by calling ApiContextFactory.

The IApiContext object describes either a specific subscriber or an anonymous
subscriber. This object is used by all services to retrieve data specific to the
subscriber described by the object. Typically, you would create the IApiContext
object once per user session and store it in the HttpSession object. See
Section 10.2.2, “Example of Creating an IApiContext Object” on page 10-4 for
sample code.

■ Create the services that you need to obtain the information that you want to use
by calling the ApiServiceFactory.

The services that you create depend on the tasks that you want to perform. For
example, to enable a subscriber to purchase a gift for another subscriber, create an
IGiftingService object. To provide a subscriber with the list of content already
purchased, create an IContentService object. You must have an IApiContext
object to create a service. Each service created provides data specific to the
subscriber described by the IApiContext object. See Section 10.2.3, “Example of
Creating a Service” on page 10-5 for sample code.
10-2 Customization Guide • 2005Q4

■ Retrieve the information that you want to use by calling the methods for the
services that you created.

For example, if you created an IContentService, call getCampaigns() to get
the list of campaigns available to the subscriber or getPurchases() to get the
list of items that the subscriber has already purchased.

10.2 Using the Subscriber API
The classes for the Subscriber API are in the package
com.sun.content.server.subscriberapi. This package is included in the
subscriberportal.jar file in one of the following locations:

■ For Sun Java System Application Server, in
$CDS_HOME/deployment/deployment-name/sun/domains/server-domain/server-
name/applications/j2ee-modules/CDSSubscriberPortal/WEB-
INF/lib.

■ For WebLogic Server, in $CDS_HOME/deployment/deployment-
name/weblogic/domains/server-domain/applications/subscriber/WEB-
INF/lib.

deployment-name is the name specified when the Catalog Manager was deployed,
server-domain is the value specified in the deployment configuration file for the
app.server.domain property and server-name is the value specified in the
deployment configuration file for the app.server.name property.

If your client application is a Java application, create your client using the Subscriber
API classes in the subscriberportal.jar file. This JAR file must be in your
classpath when you compile your application.

To execute, place the JAR file that contains your client in the same
$CDS_HOME/deployment/deployment-name/.../lib directory that contains the
subscriberportal.jar file. Your client must run within the same web
application structure as the Subscriber Portal provided with the Content Delivery
Server. Stand-alone Java applications are not supported.

If your client is not a Java application or will not be located on the same server as
the Subscriber Portal, see Section 10.3, “XML-RPC Implementation” on page 10-6 for
information on accessing the Subscriber API through XML-RPC.
Chapter 10 Subscriber API 10-3

10.2.1 Managing Transactions
A transaction occurs each time you create an instance of a service and call its
methods to perform a task. Your application must manage the transactions with the
Content Delivery Server as described in the following steps:

1. Before a service is invoked, call ApiUtil.initTransaction() to indicate the
start of a transaction.

2. If the transaction completes successfully, call ApiUtil.commitTransaction()
to commit the work done. If an error occurs during the transaction, call
ApiUtil.rollbackTransaction() to terminate the work and restore the data to
its previous state.

3. The transaction resources must be released in a finally block that calls
ApiUtil.disposeTransaction().

See the code examples in Section 10.2.2, “Example of Creating an IApiContext
Object” on page 10-4 and Section 10.2.3, “Example of Creating a Service” on
page 10-5 for sample implementations.

10.2.2 Example of Creating an IApiContext Object
The following code excerpt shows how to create an IApiContext object.

CODE EXAMPLE 10-1 Create an IApiContext Object Using Java Classes

...
try
{

// Open a Transaction
ApiUtil.initTransaction();

// Create a map of credentials (from user input)
Properties credentials = new Properties();
credentials.put(ApiContextFactory.CREDENTIAL_USERNAME, username);
credentials.put(ApiContextFactory.CREDENTIAL_PASSWORD, password);

// Attempt to authenticate using the credentials
IApiContext apiContext = ApiContextFactory.createApiContext(credentials);

// Save the IApiContext in the HttpSession
session.setAttribute("API_CONTEXT", apiContext);

// Commit the Transaction
ApiUtil.commitTransaction();

}

10-4 Customization Guide • 2005Q4

10.2.3 Example of Creating a Service
The following code excerpt shows how to create a Content Service and use that
service to purchase content.

catch (CDSException e)
{

// Rollback the Transaction
ApiUtil.rollbackTransaction();

// Evaluate the exception's error code
if(e.getErrorCode().equals(CDSException.CDS_EX_SUBSCRIBER_DISABLED)
{

// handle disabled user
...

}
else
{

// handle API Exception
...

}
}
finally
{

// clean up Transaction
ApiUtil.disposeTransaction();

}
...

CODE EXAMPLE 10-2 Create a Service

...
try
{

// Open a Transaction
ApiUtil.initTransaction();

// Retrieve the IApiContext from the HttpSession
IApiContext apiContext = (IApiContext) session.getAttribute("API_CONTEXT");

// Get a reference to a Content Service
IContentService cs = ApiServiceFactory.getContentService(apiContext);

// Attempt to purchase a content item as part of a campaign
cs.purchaseContent(contentId, campaignId, true);

CODE EXAMPLE 10-1 Create an IApiContext Object Using Java Classes (Continued)
Chapter 10 Subscriber API 10-5

10.3 XML-RPC Implementation
If your client is not a Java application or is not running on the server with Content
Delivery Server, your client must communicate with the Content Delivery Server
using XML-RPC. XML-RPC enables your client to make remote procedure calls
using HTTP for the transport and XML for data encoding. You can use XML-RPC
with many different programming languages by using bindings available on the
Internet. All of the functionality of the Subscriber API is available through
XML-RPC.

Note – A tutorial on XML-RPC is beyond the scope of this document. Information
on writing applications that use XML-RPC is available from various web sites on the
Internet.

10.3.1 Accessing the Content Delivery Server
To obtain data from the Content Delivery Server, your client must be able to
communicate with the Content Delivery Server. Work with your network
administrator to ensure that the client can contact the Content Delivery Server and
that any required proxy or firewall is configured to allow this access.

// Commit the Transaction
ApiUtil.commitTransaction();

}
catch (CDSException e)
{

// Rollback the Transaction
ApiUtil.rollbackTransaction();

// Handle API Exception
...

}
finally
{

// Clean up Transaction
ApiUtil.disposeTransaction();

}
...

CODE EXAMPLE 10-2 Create a Service (Continued)
10-6 Customization Guide • 2005Q4

In addition, the Content Delivery Server must recognize that your client is
authorized to make requests for data. The subscriberApi.xml-
rpc.trustedHosts property in the $CDS_HOME/deployment/deployment-
name/conf/SubscriberPortal.properties file contains the list of hosts from
which requests are accepted.

Set the subscriberApi.xml-rpc.trustedHosts property to the host name or IP
address of the host on which your client is located, whether it is on the same host as
the Content Delivery Server or on a different host. To accept requests from any host,
leave the value blank. To accept requests from more than one host, separate the host
names or IP addresses with a comma, for example:

subscriberApi.xml-rpc.trustedHosts=127.0.0.1,localhost

10.3.2 Using XML-RPC Handlers for the Subscriber API
The general flow of your application (see Section 10.1, “General Process Flow” on
page 10-2) is the same whether you access the Subscriber API directly or through
XML-RPC. Handlers in the XML-RPC implementation perform the same functions as
the Subscriber API services. Each handler and its corresponding service have
equivalent methods with equivalent parameters.

The following topics are presented in this section:

■ Guidelines for Calls to XML-RPC Methods
■ AuthenticationHandler
■ CategoryHandler
■ ContentHandler
■ DownloadHandler
■ GiftingHandler
■ MessageHandler
■ SystemHandler
■ UserHandler
■ Parameters for the Methods

10.3.2.1 Guidelines for Calls to XML-RPC Methods

Use the following guidelines to code your calls to the handlers. The sample code is
written in the Java programming language.
Chapter 10 Subscriber API 10-7

■ Place the parameters for the method that you are calling in a hash table. Place the
hash table in a vector.

■ To call a method, pass the name of the method and the vector that you created for
the hash table that contains the parameters. A hash table is returned. The method
call must include the name of the handler, for example:
AuthenticationHandler.getApiContext.

■ Verify that the method executed successfully by checking the response code that
is included in the hash table that is returned. If an error occurred, a response
message is also included in the hash table.

...
// Set up the input parameters
Vector parameters = new Vector();
Hashtable ht = new Hashtable();
ht.put("username", "user1");
ht.put("password", "cryptic1");
parameters.addElement(ht);
...

...
// Send the request to Content Delivery Server
Hashtable response =
(Hashtable) client.execute("AuthenticationHandler.getApiContext",
parameters);
...

...
// Evaluate the response
String errorCode = (String)response.get("response_code");
if (!errorCode.equals("1"))
{

// Handle Error
System.out.println((String)response.get("response_message"));

}

10-8 Customization Guide • 2005Q4

■ If the method executes successfully, extract the values that are returned in the
hash table. If a method does not return any values, the hash table contains only
the response code.

The following sections describe the handlers that you can use. Examples are
provided in Section 10.3.3, “Examples of Using Handlers” on page 10-42.

10.3.2.2 AuthenticationHandler

AuthenticationHandler is equivalent to the APIContextFactory class. This
handler creates the object that contains the characteristics of the subscriber. The
guidelines for calling a method in a handler are described in Section 10.3.2.1,
“Guidelines for Calls to XML-RPC Methods” on page 10-7. To call a method,
concatenate the name of the handler with the name of the method, for example:

AuthenticationHandler.getApiContext

The following table describes the AuthenticationHandler methods.

...
// Authentication successful
Hashtable apiContext = (Hashtable)response.get("apiContext");
Integer subscriberId = (Integer)apiContext.get("subscriberId");
String username = (String)apiContext.get("username");
String localeCode = (String)apiContext.get("localeCode");
String mobileId = (String)apiContext.get("mobileId");
Integer modelId = (Integer)apiContext.get("modelId");
...

TABLE 10-1 Methods for AuthenticationHandler

Method Name Description Parameters Returns1

getAnonymousApiContext Create an APIContext
object for an anonymous
subscriber.

localeCode, modelId apiContext

getApiContext Authenticate the subscriber
based on the information
provided and create an
APIContext object that
contains the information for
that subscriber.

One of the following items:
• username and
password

• mobileId

• uniqueId

• subscriberId

• requestHeaders

apiContext

1 In addition to the objects listed, all methods return a response_code and, if an error occurs, a
response_message.
Chapter 10 Subscriber API 10-9

10.3.2.3 CategoryHandler

CategoryHandler is equivalent to the ICategoryService interface. This handler
provides access to the category tree and a subscriber’s category list. The guidelines
for calling a method in a handler are described in Section 10.3.2.1, “Guidelines for
Calls to XML-RPC Methods” on page 10-7. To call a method, concatenate the name
of the handler with the name of the method, for example:

CategoryHandler.getCategory

The following table describes the CategoryHandler methods.

TABLE 10-2 Methods for CategoryHandler

Method Name Description Parameters Returns1

getCategory Get the specified category for
the current subscriber.

apiContext,
categoryId,
includeContentCount

category

getCategoryBranch Get an entire branch of the
category tree beginning with
the category specified in
categoryId. To get the
entire tree, specify the root
category.

apiContext,
categoryId,
includeContentCount

category

getNotEmptySubCategories For the category specified in
categoryId, get the list of
subcategories that contain the
type of content listed in
contentTypeIdList with a
status listed in statusList.
If contentTypeIdList is
not provided, all content
types are considered. If
statusList is not provided,
all statuses are considered.

apiContext,
categoryId,
contentTypeIdList
(optional), statusList
(optional),
includeContentCount

categoryList

getSubCategories For the category specified in
categoryId, get the list of
all subcategories.

apiContext,
categoryId,
includeContentCount

categoryList

getRootCategory Get the root category for the
current subscriber.

apiContext,
includeContentCount

category

hideCategory2 Hide the categories specified
in categoryIds that the
subscriber has chosen to not
view and return the updated
list.

apiContext,
categoryIds,
categoryList

categoryList
10-10 Customization Guide • 2005Q4

10.3.2.4 ContentHandler

ContentHandler is equivalent to the IContentService interface. This handler
provides access to the content for browsing, searching, retrieving, and purchasing.
The guidelines for calling a method in a handler are described in Section 10.3.2.1,
“Guidelines for Calls to XML-RPC Methods” on page 10-7. To call a method,
concatenate the name of the handler with the name of the method, for example:

ContentHandler.browseContent

moveCategoryDown2 Move each category specified
in categoryIds down one
position below the next active
category and return the
updated list.

apiContext,
categoryIds,
categoryList

categoryList

moveCategoryUp2 Move each category specified
in categoryIds up one
position above the next active
category and return the
updated list.

apiContext,
categoryIds,
categoryList

categoryList

showCategory2 Show the categories specified
in categoryIds that the
subscriber has selected and
return the updated list.

apiContext,
categoryIds,
categoryList

categoryList

updateCategories Update the information in the
database for the categories in
categoryList.

apiContext,
categoryList

None

1 In addition to the objects listed, all methods return a response_code and, if an error occurs, a
response_message.
2 This method changes the category list held in memory. To make the changes permanent, you must call
updateCategories.

TABLE 10-2 Methods for CategoryHandler (Continued)

Method Name Description Parameters Returns1
Chapter 10 Subscriber API 10-11

The following table describes the ContentHandler methods.

TABLE 10-3 Methods for ContentHandler

Method Name Description Parameters Returns1

addBookmark Add an item of content
to the subscriber’s list of
bookmarked content.

apiContext,
contentId

None

browseContent Get the number of items
specified in
numberToReturn in
the category specified in
categoryId that are of
the types specified in
contentTypeIdList.
IfcontentTypeIdList
is not provided, all
content types are
included.

apiContext,
categoryId,
contentTypeIdList
(optional),
startIndex,
numberToReturn

contentList,
totalSize

cancelSubscription Cancel the subscriber’s
subscription to an item
of content.

apiContext,
contentId

None

clearBookmarks Clear a subscriber’s list
of bookmarked content.

apiContext None

deleteBookmark Delete an item of
content from the
subscriber’s list of
bookmarked content.

apiContext,
contentId

None

getAnonymousCampaignFor
Coupon

Get the information for
a campaign that is
associated with the
coupon specified. Call
this method if the
subscriber is
anonymous.

apiContext,
couponCode

campaign

getBookmarks Get the list of items the
subscriber has
bookmarked.

apiContext contentList

getBundledItems Get the items of content
in a bundle.

apiContext,
contentId,
criteria

contentList,
totalSize
10-12 Customization Guide • 2005Q4

getBundledItems Get the items of content
in a bundle.
Note: This method is
deprecated. Use the new
version.

apiContext,
contentId

contentList,
totalSize

getCampaign Get the information for
a campaign.

apiContext,
campaignId

campaign

getCampaignForCoupon Get the information for
a campaign that is
associated with the
coupon specified. Call
this method if the
subscriber is known.

apiContext,
couponCode

campaign

getCampaignItems Get the list of content
associated with the
campaign.

apiContext,
campaignId,
startIndex,
numberToReturn

contentList,
totalSize

getCampaigns Get the list of
campaigns that are
available to the
subscriber.

apiContext campaignList

getContentByClassId Get the content ID for a
specific edition of the
content identified by
contentId.

apiContext,
contentId

contentId

getContentByKeyword Get the content ID for a
specific edition of the
content identified by
contentKeyword.

apiContext,
contentKeyword

contentId

getContentDetails Get the information
about an item of
content.

apiContext,
contentId,
criteria

content

getContentDetails Get the information
about an item of
content.
Note: This method is
deprecated. Use the new
version.

apiContext,
contentId,
campaignId
(optional), bundleId
(specify only if the
content is part of a
bundle),
isSkipTrial,
filter

content

TABLE 10-3 Methods for ContentHandler (Continued)

Method Name Description Parameters Returns1
Chapter 10 Subscriber API 10-13

getContentDetailsCriteria Get an empty criteria
object, which can be
used for methods that
accept criteria as a
parameter.

apiContext criteria

getContentDetailsList Get the information for
each item of content
specified in
contentIdList.

apiContext,
contentIdList,
criteria

contentList

getContentSummary Get summary
information for an item
of content.

apiContext,
contentId

contentSummary

getDeliveryType Get the type of delivery
used to deliver this
content.

apiContext,
contentId

deliveryType

getPurchasedBundles Get the list of bundles
purchased by the
subscriber that contain
the item of content
specified in contentId.

apiContext,
contentId

contentList,
totalSize

getPurchases Get the list of content
that the subscriber has
purchased.

apiContext purchaseList

getSupportedModels Get the list of models on
which the content can
run.

apiContext,
contentId

modelList

getTicket Get the purchase ticket
for the content
identified by
contentId.

apiContext,
contentId

codedTicket

hasPurchases Determine if the
subscriber purchased
any content.

apiContext hasPurchases

isBookmarked Determine if the
subscriber bookmarked
the content.

apiContext,
contentId

isBookmarked

isContentInCampaign Determine if the content
specified in contentId
is in the campaign
specified in
campaignId.

apiContext,
contentId,
campaignId

isContentInCampaign

TABLE 10-3 Methods for ContentHandler (Continued)

Method Name Description Parameters Returns1
10-14 Customization Guide • 2005Q4

10.3.2.5 DownloadHandler

DownloadHandler is equivalent to the IDownloadService interface. This handler
provides access to the descriptors needed to download content. The guidelines for
calling a method in a handler are described in Section 10.3.2.1, “Guidelines for Calls
to XML-RPC Methods” on page 10-7. To call a method, concatenate the name of the
handler with the name of the method, for example:

DownloadHandler.downloadConfirm

isMMSCapable Determine if the content
can be pushed to the
device using MMS.

apiContext,
contentId

isMMSCapable

isSMSCapable Determine if the content
can be pushed to the
device using SMS.

apiContext,
contentId

isSMSCapable

purchaseContent Purchase content that is
part of a campaign. Not
available for anonymous
subscribers.

apiContext,
contentId,
campaignId
(optional),
isSkipTrial

None

requestContent Send content to a
subscriber. Content
must first be purchased.

apiContext,
contentId,
requestParams,
maxNumberToSend

wasDelivered

searchContent Get the list of content
that matches the search
criteria. The category
tree is searched
beginning with the
category specified in
categoryId. To search
all content, specify the
root category (see the
getRootCategory
method in
CategoryHandler.)

apiContext,
categoryId,
contentTypeIdList
(optional), keyword,
startIndex,
numberToReturn

contentList,
totalSize

1 In addition to the objects listed, all methods return a response_code and, if an error occurs, a
response_message.

TABLE 10-3 Methods for ContentHandler (Continued)

Method Name Description Parameters Returns1
Chapter 10 Subscriber API 10-15

The following table describes the DownloadHandler methods.

TABLE 10-4 Methods for DownloadHandler

Method Name Description Parameters Returns1

downloadConfirm Confirm if the content was
downloaded to the device.

apiContext,
codedTicket,
isOneStepConfirm,
status

None

downloadContent Download the binary file for
the item of content specified
by contentId.

apiContext,
contentId

contentLength,
contentType,
descriptorData

downloadContentDescriptor Create a content descriptor
file and return it to the caller.

apiContext,
codedTicket

contentLength,
contentType,
descriptorData

downloadDelete Delete content from a device. apiContext,
codedTicket,
isOneStepConfirm,
status

None

downloadJAD Create a Java Application
Descriptor (JAD) file and
return it to the caller.

apiContext,
codedTicket

contentLength,
contentType,
descriptorData

downloadJAM Create an application
descriptor file for an iAppli
application and return it to
the caller.

apiContext,
codedTicket

contentLength,
contentType,
descriptorData

pushMMSContent Push content to the device
using MMS.

apiContext,
contentId

None

pushMMSContentByTicket Push content identified by
codedTicket to the device
using MMS.

apiContext,
codedTicket

None

pushSMSContentBinary Push external content to the
device using SMS.

apiContext,
mobileId,
contentBinary,
mimeType,
contentType,
smsParams

None
10-16 Customization Guide • 2005Q4

10.3.2.6 GiftingHandler

GiftingHandler is equivalent to the IGiftingService interface. This handler
enables gifts or notifications about content to be sent to another subscriber. The
guidelines for calling a method in a handler are described in Section 10.3.2.1,
“Guidelines for Calls to XML-RPC Methods” on page 10-7. To call a method,
concatenate the name of the handler with the name of the method, for example:

GiftingHandler.createGifting

The following table describes the GiftingHandler methods.

pushSMSContentByTicket Push content identified by
codedTicket to the device
using SMS.

apiContext,
codedTicket,
smsParams

None

sendInstall Push content installation file
to a subscriber’s device.

apiContext,
contentId,
bundleId

None

1 In addition to the objects listed, all methods return a response_code and, if an error occurs, a
response_message.

TABLE 10-5 Methods for GiftingHandler

Method Name Description Parameters Returns1

cancelGifting Cancel a gift subscription. apiContext, giftId None

checkAndExpireGifting Determine if the gift is
expired.

apiContext, gifting isGiftExpired

getGiftingById Get the information about the
gift specified by giftId.

apiContext, giftId,
filter,
bundledContentId

gifting

getGiftingByTicket Get the information about the
gift specified by giftTicket.

apiContext,
giftTicket, filter,
bundledContentId

gifting

getGiftingsByGifter Get the information for all of
the gifts given by the
subscriber.

apiContext, filter giftingList

getGiftingsByRecipient Get the information for all of
the gifts received by the
subscriber.

apiContext, filter giftingList

TABLE 10-4 Methods for DownloadHandler (Continued)

Method Name Description Parameters Returns1
Chapter 10 Subscriber API 10-17

10.3.2.7 MessageHandler

MessageHandler is equivalent to the IMessageService interface. This handler
enables email, SMS, WAP push, and MMS messages to be sent to the current
subscriber or to another subscriber. The guidelines for calling a method in a handler
are described in Section 10.3.2.1, “Guidelines for Calls to XML-RPC Methods” on
page 10-7. To call a method, concatenate the name of the handler with the name of
the method, for example:

MessageHandler.sendMessageToSelf

giftContent Purchase an item of content as
a gift for another subscriber.

apiContext,
contentId,
campaignId (optional),
recipientApiContext,
message,
giftedDownloads,
giftedSubscriptions

giftId

isGiftingUsed Determine if the recipient
claimed all of the uses
provided by the gift.

apiContext, gifting isGiftingUsed

messageContent Send a message about an item
of content to another
subscriber.

apiContext,
contentId,
recipientApiContext,
message

giftId

1 In addition to the objects listed, all methods return a response_code and, if an error occurs, a
response_message.

TABLE 10-5 Methods for GiftingHandler (Continued)

Method Name Description Parameters Returns1
10-18 Customization Guide • 2005Q4

The following table describes the MessageHandler methods.

TABLE 10-6 Methods for MessageHandler

Method Name Description Parameters Returns1

sendMessageToMobileId Send a message to the number
specified by the mobile ID
provided.

apiContext,
subject, message,
url, mobileId,
contentId,
messageCategory

None

sendMessageToSelf Send a message to the current
subscriber.

apiContext,
messageType,
subject, message,
url, contentId,
messageCategory

None

sendMessageToSubscriber
Id

Send a message to the subscriber
identified by the subscriber ID
provided.

apiContext,
messageType,
subject, message,
url, subscriberId,
contentId,
messageCategory

None

sendMessageToUsername Send a message to the subscriber
identified by the user name
provided.

apiContext,
messageType,
subject, message,
url, username,
contentId,
messageCategory

None

sendMMSContent Send content to the current
subscriber using MMS push.

apiContext,
mobileId,
contentBinary,
name, contentType,
mimeType, subject,
message, modelId,
contentId,
messageCategory

None

1 In addition to the objects listed, all methods return a response_code and, if an error occurs, a
response_message.
Chapter 10 Subscriber API 10-19

10.3.2.8 SystemHandler

SystemHandler is equivalent to the ISystemService interface. This handler
provides access to system-level data such as content types, locales, and models. The
guidelines for calling a method in a handler are described in Section 10.3.2.1,
“Guidelines for Calls to XML-RPC Methods” on page 10-7. To call a method,
concatenate the name of the handler with the name of the method, for example:

SystemHandler.getContentTypes

The following table describes the SystemHandler methods.

TABLE 10-7 Methods for SystemHandler

Method Name Description Parameters Returns1

createTicket Create a ticket for a subscriber
to use to retrieve an item of
content.

apiContext,
contentId

ticket

getContentTypes Get a list of all of the content
types that are defined in the
Content Delivery Server.

apiContext contentTypeList

getCountries Get a list of all of the countries
that are included in the
Content Delivery Server.

apiContext countryList

getCountry Get the information for a single
country.

apiContext,
countryCode

country

getDefaultLocale Get the default locale for the
system.

apiContext locale

getDefaultModel Get the default device model. apiContext modelId

getLocale Get the information for a single
locale.

apiContext,
localeCode

locale

getLocales Get a list of all of the locales
included in the Content
Delivery Server.

apiContext localeList

getManufacturers Get the names of all of the
device manufacturers included
in the Content Delivery Server.

apiContext manufacturerList

getModel Get the information for a
device.

apiContext,
modelId

model

getModelId Get the internal ID for the
device associated with the user
agent specified in modelId.

apiContext,
userAgent

modelId
10-20 Customization Guide • 2005Q4

10.3.2.9 UserHandler

UserHandler is equivalent to the IUserService interface. This handler provides
access to information on subscribers and enables new subscriber accounts to be
created. The guidelines for calling a method in a handler are described in
Section 10.3.2.1, “Guidelines for Calls to XML-RPC Methods” on page 10-7. To call a
method, concatenate the name of the handler with the name of the method, for
example:

UserHandler.getSubscriberId

getModels Get a list of all of the devices
supported by the Content
Delivery Server.

apiContext modelList

getModelsForManufacturer Get the models in the Content
Delivery Server for a given
manufacturer. Only models
that are not quarantined are
returned.

apiContext,
manufacturer

modelList

isPushEnabled Determine if the subscriber’s
device is push enabled.

apiContext,
modelId

isPushEnabled

isTicketValid Determine if the ticket for an
item of content can be used by
the subscriber.

apiContext,
ticket,
contentId

isTicketValid

sendEvent Send the system event
specified in eventType.
Note: This method is
deprecated. The functionality
is no longer required.

apiContext,
subscriberId,
mobileId,
contentId
(optional),
eventType

None

sendEventWithParameters Send a system event with a set
of event parameters.

apiContext,
requestParams

None

1 In addition to the objects listed, all methods return a response_code and, if an error occurs, a
response_message.

TABLE 10-7 Methods for SystemHandler (Continued)

Method Name Description Parameters Returns1
Chapter 10 Subscriber API 10-21

The following table describes the UserHandler methods.

TABLE 10-8 Methods for UserHandler

Method Name Description Parameters Returns1

disableSubscriberBySubscriberId Disable the
account for the
subscriber
identified by the
subscriber ID.

apiContext,
subscriberId

None

disableSubscriberByUsername Disable the
account for the
subscriber
identified by the
user name.

apiContext, username None

getSubscriberId Get the
subscriber ID for
the subscriber
identified by the
user name.

apiContext, username subscriberId

getUserPreferences Get the
preferences set
by the
subscriber.

apiContext preferenceList

getUserProperties Get the
information for
the current
subscriber.

apiContext propertyList

getUserPropertiesBySubscriberId Get the
information for
the subscriber
identified by the
subscriber ID.

apiContext,
subscriberId

propertyList

getUserPropertiesByUsername Get the
information for
the subscriber
identified by the
user name.

apiContext, username propertyList
10-22 Customization Guide • 2005Q4

provision Populate a
subscriber
account in the
Content Delivery
Server with
information from
an external
subscriber
database.

apiContext, uniqueId,
modelId, mobileId,
localeCode

subscriberId

resetPasswordBySubscriberId Set the password
for the
subscriber
identified by the
subscriber ID to
a value
generated by the
system.

apiContext,
subscriberId,
passwordRequiresReset

password

resetPasswordByUsername Set the password
for the
subscriber
identified by the
user name to a
value generated
by the system.

apiContext, username,
passwordRequiresReset

password

setLocaleCode Change the
subscriber’s
locale code.

apiContext, localeCode None

setModelId Change the
model ID to
match the new
device that the
subscriber is
using.

apiContext, modelId None

setPassword Change the
subscriber’s
password.

apiContext, password None

TABLE 10-8 Methods for UserHandler (Continued)

Method Name Description Parameters Returns1
Chapter 10 Subscriber API 10-23

setUserPreferences Set the
preferences
selected by a
subscriber. These
preferences
manage the
information that
is shown to the
user.

apiContext,
preferenceList

None

setUserProperties Set the
information for a
subscriber.

apiContext,
propertyList

None

signup Create a
subscriber
account in the
Content Delivery
Server and in
any external
subscriber
database.

apiContext, username,
password, modelId,
mobileId, uniqueId,
localeCode

subscriberId

signupWithPropertiesAndPreferences Create a
subscriber
account in the
Content Delivery
Server and in
any external
subscriber
database and set
the information
and preferences
for that
subscriber.

apiContext, username,
password, modelId,
mobileId, uniqueId,
localeCode,
propertyList,
preferenceList

subscriberId

1 In addition to the objects listed, all methods return a response_code and, if an error occurs, a
response_message.

TABLE 10-8 Methods for UserHandler (Continued)

Method Name Description Parameters Returns1
10-24 Customization Guide • 2005Q4

10.3.2.10 Parameters for the Methods

The following table describes the parameters for the methods. Container objects such
as Hashtable and Vector contain elements that are also described in the table.

TABLE 10-9 Method Parameters

Parameter Type Description

addressLine1 String First line of a subscriber’s address.

addressLine2 String Second line of a subscriber’s address.

apiContext Hashtable Container for the information about a subscriber. This
container includes the following items:
• subscriberId

• username

• localeCode

• mobileId

• uniqueId

• modelId

• isAnonymous

• isProvisioned

• isRegistered

• passwordRequiresReset

• isCategoryCustomized

• roleId

• propertyMap

Note: For an anonymous subscriber, only
subscriberId, localeCode, and modelId are
included.

bundledContentId Integer Internal ID that was assigned by the Content Delivery
Server to an individual item in a bundle.

bundleId Integer Internal ID that was assigned by the Content Delivery
Server to the bundle with which you are working.

campaign Hashtable Container for the information about a campaign. This
container includes the following items:
• campaignId

• name

• description

• campaignSubject

• campaignMessage

• campaignDiscount

• campaignExpiration
Chapter 10 Subscriber API 10-25

campaignDiscount Double Percentage by which the items in the campaign are
discounted.

campaignExpiration Date Date that the campaign expires. If the campaign is
expired, null is returned.

campaignId Integer Internal ID that was assigned by the Content Delivery
Server to the campaign with which you are working.

campaignList Vector, elements
of type campaign

List of campaigns available to the subscriber.

campaignMessage String Promotional message included in the notifications sent
to subscribers to announce the campaign.

campaignSubject String Subject added to email notifications sent to subscribers
to announce the campaign.

category Hashtable Container for information about a category. This
container includes the following items:
• categoryId

• name

• description

• parentCategoryId

• isLeafNode

• isActive

• displayOrder

• contentCount

• subCategoryList (only included if returned by the
getCategoryBranch method of
CategoryHandler)

categoryId Integer Internal ID that was assigned by the Content Delivery
Server to the category with which you are working.

categoryIds Vector, elements
of type Integer

List of category IDs. Categories are identified by the
internal ID that was assigned by the Content Delivery
Server.

categoryList Vector, elements
of type category

List of categories.

city String City for the subscriber’s address.

codedTicket String String that identifies the purchase ticket for the
download request.

contactPhone String Subscriber’s phone number.

TABLE 10-9 Method Parameters (Continued)

Parameter Type Description
10-26 Customization Guide • 2005Q4

content Hashtable Container for the information about an item of content.
This container includes the following items:
• contentId

• name

• shortDescription

• longDescription

• submitDate

• sizeInKB

• version

• contentType

• mimeType

• numberOfDownloads

• smallIconUrl

• largeIconUrl

• userGuideUrl

• previewUrl

• screenShot1Url

• screenShot2Url

• developerName

• developerUrl

• downloadTimes

• networks

• downloadUrl

• isBookmarked
• isPurchaseRequiredBeforeDownload

• isUnsubscribeAvailable

• isValidOnCurrentModel

• pricingDetails

• isActive

contentBinary String Binary format of content.

contentCount Integer Number of items of content in the category.

contentId Integer Internal ID that was assigned by the Content Delivery
Server to the item of content with which you are
working.

contentIdList Vector, elements
of type contentId

List of content IDs.

contentKeyword String Keyword used to identify content, typically used for
content delivered directly to a device using SMS.

contentLength Integer Size of the content.

TABLE 10-9 Method Parameters (Continued)

Parameter Type Description
Chapter 10 Subscriber API 10-27

contentList Vector, elements
of type
contentSummary

List of items of content.

contentSummary Hashtable Container for summary information about an item of
content. This container includes the following items:
• contentId

• name

• shortDescription

• submitDate

contentType String Type of content with which you are working. This type
must be one of the content types defined in the
contentTypeList.

contentTypeIdList Vector, elements
of type Integer

List of content type IDs. Content types are identified by
the internal ID that was assigned by the Content
Delivery Server.

contentTypeList Vector, elements
of type Hashtable

Information about each content type defined in the
Content Delivery Server. Each element contains the
following items:
• id

• name

country Hashtable Container for information about a country. This
container includes the following items:
• countryCode

• name

countryCode String Two-character ISO code that represents the subscriber’s
country, for example, US.

countryList Vector, elements
of type country

List of countries.

couponCode String String that identifies the coupon that the subscriber is
using to purchase content.

criteria Hashtable Container for information about an item of content.
This container includes the following items:
• filter

• campaignId (optional)
• bundleId (only if the content is part of a bundle)
• isSkipTrial

• licenseType

TABLE 10-9 Method Parameters (Continued)

Parameter Type Description
10-28 Customization Guide • 2005Q4

deliveryType String Type of delivery used to deliver content. The following
values are valid:
• ems - Enhanced Messaging System
• nsm - Nokia Smart Messaging
• one_step_wap - One-step WAP
• two_step_wap - Two-step WAP

description String Description of the object. Depending on the method
called, this is the description of the category, the
campaign, the device, or the locale.

descriptorData String Content descriptor binary code.
When returned by the downloadContent method of
DownloadHandler, this is the binary preview file.

developerName String Name of the developer who submitted content.

developerUrl String URL for the developer who submitted the content.

devicePhone String Phone number of subscriber’s device.

displayOrder Integer Position of the category in the list of categories. 1
indicates the top of the list.

downloadCount Integer Number of downloads allowed per purchase.

downloadPeriod Integer Number of days of use allowed per purchase.

downloadPrice Double Price charged to download the content.

downloadTimes Vector, elements
of type String

Estimated time that it takes to download the content.
Each element corresponds to an element in the
networks object to indicate the estimated time that the
download takes over the corresponding type of
network.

downloadUrl String URL from which the content is downloaded.

emailAddress String Subscriber’s email address.

eventType String Type of event with which you are working. Use
sms_request_for_content to indicate that the event
is a request for information about an item of content.

TABLE 10-9 Method Parameters (Continued)

Parameter Type Description
Chapter 10 Subscriber API 10-29

filter Hashtable Container for Boolean flags that indicate the type of
information to return. Information of the type
associated with each flag is returned only if the flag is
included in the hash table and is set to true.

The following flags are valid when working with
ContentHandler:
• filterDetailsDownload - Download information
• filterDetailsDownloadCount - Download count
• filterDetailsIsBookmarked - Information on

bookmarks
• filterDetailsResourceURLs - Resource URLs
• filterDetailsPricingAndPurchase - Pricing

and purchase information
• filterDetailsPricingAndGifting - Pricing

information for gifts
• filterDetailsIsValidOnCurrentModel -

Information on whether or not the content executes
on the device

The following flags are valid when working with
GiftHandler:
• filterGiftsContent - Information about the

content
• filterGiftsDownload - Download information

firstName String Subscriber’s first name.

gender String Subscriber’s gender. Valid values and what each value
indicates are described in the following list:
• M - Subscriber is male.
• F - Subscriber is female.

giftCost Double Price of the gift.

giftedDownloads Integer Number of downloads that are paid for by the gift.

giftedSubscriptions Integer Number of subscriptions that are paid for by the gift.

gifterId Integer Subscriber ID for the subscriber who purchased the gift.

gifterMobileId String Mobile ID for the subscriber who purchased the gift.

giftExpirationDate Date Date that the gift expires.

giftId Integer Internal ID that is assigned by the Content Delivery
Server to the gift with which you are working.

TABLE 10-9 Method Parameters (Continued)

Parameter Type Description
10-30 Customization Guide • 2005Q4

gifting Hashtable Container for information about a gift. This container
contains the following items:
• giftId

• giftStatus

• giftIsOnDevice

• contentId

• giftTicket

• gifterId

• gifterMobileId

• giftRecipientId

• giftRecipientMobileId

• giftRecipientModelId

• message

• giftedDownloads

• giftedSubscriptions

• giftCost

• giftPurchaseDate

• giftExpirationDate

• pricingDetails

giftIsOnDevice Boolean Flag that indicates if the content provided by the gift
exists on the target device. True indicates that the
content is on the device. False indicates that the
content is not on the device.

giftingList Vector, elements
of type gifting

List of gifts.

giftPurchaseDate Date Date that the gift was purchased.

giftRecipientId Integer Subscriber ID for the subscriber who is the recipient of
a gift.

giftRecipientMobileId String Mobile ID for the subscriber who is the recipient of a
gift.

giftRecipientModelId Integer Model ID of the device for the subscriber who is the
recipient of a gift

TABLE 10-9 Method Parameters (Continued)

Parameter Type Description
Chapter 10 Subscriber API 10-31

giftStatus Integer Status of a gift. Valid values and what each value
indicates are described in the following list:
• 8 - Gift is purchased
• 9 - Recipient has started downloading the gift
• 10 - Gift was successfully downloaded
• 11 - Gift is expired
• 12 - Gift is cancelled
• 13 - Gift is refunded

giftTicket String Internal object used to validate that the subscriber can
access the gift.

hasPurchases Boolean Flag that indicates if a subscriber has purchased
content. True indicates that the subscriber has
purchased content. False indicates that the subscriber
has not purchased content.

id Integer Internal ID that was assigned by the Content Delivery
Server to the locale, or the content type, that you are
working with.

includeContentCount Boolean Flag that indicates if the number of items in a category
is calculated. True indicates that the number is
calculated. False indicates that the number is be
calculated.

isActive Boolean When included in the category object, this flag
indicates if the category is shown to the subscriber.
True indicates that the category is shown. False
indicates that the category is not shown.
When included in the content object, this flag
indicates if the content is active. True indicates that the
content is active. False indicates that the content is
inactive.

isAnonymous Boolean Flag that indicates if the subscriber is anonymous. True
indicates that the subscriber is anonymous. False
indicates that the subscriber is known.

isBookmarked Boolean Flag that indicates if the subscriber has bookmarked the
content. True indicates that content is bookmarked.
False indicates that the content is not bookmarked.

isCategoryCustomized Boolean Flag that indicates if the subscriber has customized the
categories that are shown. True indicates that the
categories are customized. False indicates that the
categories are not customized.

TABLE 10-9 Method Parameters (Continued)

Parameter Type Description
10-32 Customization Guide • 2005Q4

isContentInCampaign Boolean Flag that indicates if the item of content is included in a
campaign. True indicates that the item is in the
campaign. False indicates that the item is not in the
campaign.

isDefault Boolean Flag that indicates if the device is the default device.
True indicates that the device is the default device.
False indicates that the device is not the default
device.

isDownloaded Boolean Flag that indicates if content has been downloaded.
True indicates that an item of content has been
downloaded. False indicates that an item of content
has not been downloaded.

isDownloadRecurring Boolean Flag that indicates if the subscriber is automatically
charged for additional downloads after the number of
purchased downloads is exceeded. True indicates that
renewal is automatic. False indicates that the
subscriber must manually purchase additional
downloads.

isFree Boolean Flag that indicates if the content is free. True indicates
that the content is free. False indicates that the content
must be purchased.

isGiftExpired Boolean Flag that indicates if the gift is expired. True indicates
that the gift is expired and can no longer be claimed.
False indicates that the gift is not expired.

isGiftingUsed Boolean Flag that indicates if all of the uses purchased for the
gift were used by the recipient. True indicates that all
of the uses that were purchased are used. False
indicates that not all of the uses that were purchased
are used.

isLeafNode Boolean Flag that indicates if the category has any
subcategories. True indicates that the category does not
have subcategories. False indicates that the category
has subcategories.

isMMSCapable Boolean Flag that indicates if the content can be sent to the
device using MMS. True indicates that MMS can be
used. False indicates that MMS cannot be used.

isOnDevice Boolean Flag that indicates if an item of content is on a
subscriber’s device. True indicates that the item is on
the device. False indicates that the item is not on the
device.

TABLE 10-9 Method Parameters (Continued)

Parameter Type Description
Chapter 10 Subscriber API 10-33

isOneStepConfirm Boolean Flag that indicates if one-step or two-step download is
used. True indicates that it is a one-step download.
False indicates that it is a two-step download.

isProvisioned Boolean Flag that indicates if an entry for the subscriber exists in
the Content Delivery Server database. True indicates
that an entry does exist. False indicates that the
subscriber is anonymous.

isPurchaseRequiredBefore
Download

Boolean Flag that indicates if the content must be purchased
before being downloaded. True indicates that the
content must be purchased first. False indicates that
content can be downloaded.

isPushEnabled Boolean Flag that indicates if the device is push enabled. True
indicates that the device is push enabled. False
indicates that the device is not push enabled.

isRegistered Boolean Flag that indicates if the subscriber is registered in an
external subscriber database. True indicates that the
subscriber is registered. False indicates that the
subscriber is not registered.

isSkipTrial Boolean Flag that indicates if the subscriber chooses to skip the
trial usage. True indicates that the subscriber chooses
to skip the trial usage so the content can be purchased
immediately. False indicates that the subscriber
chooses not to skip the trial usage.

isSMSCapable Boolean Flag that indicates if the content can be sent to the
device using SMS. True indicates that SMS can be
used. False indicates that SMS cannot be used.

isSubscriptionExpired Boolean Flag that indicates if the subscription has expired. True
indicates that the subscription is expired. False
indicates that the subscription is not expired.

isSubscriptionRecurring Boolean Flag that indicates if the subscription is automatically
renewed. True indicates that renewal is automatic.
False indicates that the subscriber must manually
renew the subscription.

isTicketValid Boolean Flag that indicates if the subscriber can use the ticket to
get an item of content. True indicates that the
subscriber can use the ticket. False indicates that the
subscriber cannot use the ticket.

isTrialAvailable Boolean Flag that indicates if the content can be used on a trial
basis. True indicates that a trial is available. False
indicates that no trial is available.

TABLE 10-9 Method Parameters (Continued)

Parameter Type Description
10-34 Customization Guide • 2005Q4

isUpdateAvailable Boolean Flag that indicates an update is available for the
content. True indicates that an update is available.
False indicates that an update is not available.

isUnsubscribeAvailable Boolean Flag that indicates if a subscription for the content can
be canceled. True indicates that the subscription can be
canceled. False indicates that there is no subscription
or that the subscription cannot be canceled.

isUsageConsumed Boolean Flag that indicates if a subscriber has used the content
for the number of uses purchased. True indicates that
all purchased uses are used. False indicates that not
all purchased uses are used.

isValidOnCurrentModel Boolean Flag that indicates if the content can be run on the
model that the subscriber is using. True indicates that
the content does run on the model. False indicates
that the content does not run on the model.

keyword String String to match when searching for content.

languageCode String Two-character ISO code that represents the subscriber’s
language, for example, en.

largeIconUrl String URL that points to the large icon for the content.

lastName String Subscriber’s last name.

licenseType Integer Type of license associated with the content. Valid values
and what each value indicates are described in the
following list:
• 0 - Content was purchased.
• 1 - Content was sent as a gift.
• 2 - Content was received as a gift.

listEnd String Together with listStart, specifies the range of items
to return. The alphabetized list ends with items that
match the string specified. The string is case sensitive.
Specify null to end at the end of the complete list.

listStart String Together with listEnd, specifies the range of items to
return. The alphabetized list begins with items that
match the string specified. The string is case sensitive.
Specify null to start at the beginning of the complete
list.

TABLE 10-9 Method Parameters (Continued)

Parameter Type Description
Chapter 10 Subscriber API 10-35

locale Hashtable Container for locale information. This container
contains the following items:
• id

• countryCode

• languageCode

• localeCode

• description

localeCode String String that represents the subscriber’s locale, for
example, en_US.

localeList Vector, elements
of type locale

List of locales.

longDescription String Long description from the information about the
content

manufacturer String Name of the manufacturer of a device.

manufacturerList Vector, elements
of type
manufacturer

List of manufacturers, sorted alphabetically.

maxNumberToSend Integer Maximum number of items to deliver in a call. If more
items exist than the number specified, no content is
sent. To deliver all items, use -1.

message String Message to be sent to a subscriber.

messageCategory Integer Category of message to be sent. Categories one through
seven are sent to the subscriber, category 9 is sent to the
Catalog Manager administrator. Valid values and what
each value indicates are described in the following list:
• 1 - Message contains a URL that points to the details

about an item of content.
• 2 - Message is a mobile originated message that

contains a URL that points to the details about an
item of content.

• 3 - Message contains the content binary.
• 4 - Message contains a gift and includes a URL that

points to the details about an item of content.
• 5 - Message contains a notification and includes a

URL that points to the details about an item of
content.

• 6 - Message contains a password reminder.
• 7 - Message contains information about a campaign.
• 9 - New device was added to the Content Delivery

Server.

TABLE 10-9 Method Parameters (Continued)

Parameter Type Description
10-36 Customization Guide • 2005Q4

messageType Integer Type of message to send. Valid values and what each
value indicates are described in the following list:
• 1 - Message is sent to the subscriber’s device.
• 2 - Message is sent to the subscriber’s email.

middleName String Subscriber’s middle name.

mimeType String MIME type of the content.

mobileId String Phone number for the subscriber.

model Hashtable Container for device information. This container
includes the following items:
• modelId

• name

• description

• modelNumber

• manufacturer

• userAgentPattern

• isDefault

modelId Integer Internal ID that was assigned by the Content Delivery
Server to the device that you are working with.

modelList Vector, elements
of type model

List of devices.

modelNumber String Model number associated with a device.

name String Name of the object. Depending on the method, this is
the name of the category, the country, the campaign, the
device, or the content.

networks Vector, elements
of type String

List of network types that are known by the Content
Delivery Server. Each element corresponds to an
element in the downloadTimes Vector to indicate the
estimated time that the download takes for the
corresponding network.

notifyPromotions Boolean Indicates if the subscriber wants to be notified about
promotions. True indicates that the subscriber wants to
be notified. False indicates that the subscriber does
not want to be notified.

numberOfDownloads Integer Total number of times that the content was downloaded
by all subscribers.

numberToReturn Integer Number of items to return in a list. To return all items,
specify -1.

TABLE 10-9 Method Parameters (Continued)

Parameter Type Description
Chapter 10 Subscriber API 10-37

parentCategoryId Integer Internal ID that was assigned by the Content Delivery
Server to the category that is the parent of the category
that you are working with.

password String Unencrypted password for the subscriber. Encryption is
performed by the Content Delivery Server.

passwordRequiresReset Boolean Flag that indicates if the subscriber’s password must be
reset when the subscriber logs in. True indicates that
the password must be reset. False indicates that the
password does not need to be reset.

postalCode String Postal code or ZIP code for a subscriber’s address.

preferenceList Hashtable Container for a subscriber’s preferences. This container
includes items of type notifyPromotions.
To delete a preference, set the value to the empty string
(‘’).

previewUrl String URL that points to the preview file for the content.

pricingDetails Hashtable Container for pricing information for an item of
content. This container includes the following items:
• campaignDiscount

• downloadPrice

• downloadCount

• downloadPeriod

• isDownloadRecurring

• subscriptionPrice

• subscriptionFrequency

• isSubscriptionRecurring

• trialCount

• usagePrice

• usageCount

• isFree

• isTrialAvailable

TABLE 10-9 Method Parameters (Continued)

Parameter Type Description
10-38 Customization Guide • 2005Q4

propertyList Vector, elements
are of type
Hashtable

Information about each subscriber. Each element
contains the following items:
• salutation

• firstName

• middleName

• lastName

• gender

• emailAddress

• addressLine1

• addressLine2

• city

• stateProvince

• postalCode

• countryCode

• contactPhone

• devicePhone

propertyMap Hashtable Set of name-value pairs used to configure system
behavior. These values are internal values used by the
Content Delivery Server.

purchaseDate Date Date the subscriber purchased the item.

purchaseList Vector, elements
are of type
Hashtable

Information about each item purchased by the
subscriber. Each element contains the following items:
• contentId

• name

• purchaseDate

• subscriptionExpiration

• pricingDetails

• isValidOnCurrentModel

• isSubscriptionExpired

• isUsageConsumed

• isUpdateAvailable

• isDownloaded

• isOnDevice

• codedTicket

TABLE 10-9 Method Parameters (Continued)

Parameter Type Description
Chapter 10 Subscriber API 10-39

recipientApiContext Hashtable Container for the information about the recipient of a
gift. This container includes the following items:
• subscriberId

• username

• localeCode

• mobileId

• uniqueId

• modelId

requestHeaders Hashtable Container for the HTTP headers associated with an
HTTP request.

requestParams Hashtable Container for key-value pairs that provide information
about an event. The following keys must be included:
• request_data - Data included in the request, such

as the unparsed SMS request for content or for a
campaign

• request_source - Source of the request, such as the
short code to which it is sent

• request_type - String that identifies the type of
request, such as portal or mo_push or other value
recognized by your system

Additional keys that your system recognizes can also be
included.

response_code String Code that indicates if the method executed successfully.
1 indicates successful completion. -1 indicates an error
occurred.

response_message String Message returned by the method.

roleId Integer Role assigned to the subscriber. Valid values and what
each value indicates are described in the following list:
• 0 - Subscriber has access only to content with a status

of Testing.
• 1 - Subscriber has standard privileges.

salutation String Courtesy title, such as Mr.

screenShot1Url String URL that points to the first screen shot for the content.

screenShot2Url String URL that points to the second screen shot for the
content.

TABLE 10-9 Method Parameters (Continued)

Parameter Type Description
10-40 Customization Guide • 2005Q4

searchFilter Hashtable Container for the criteria used to filter the results of a
content search. This container includes the following
items:
• categoryId

• developerName

• keyword

The container must include at least one type of
criterion.

shortDescription String Short description from the information about the
content.

sizeInKB String Size of content.

smallIconUrl String URL that points to the small icon for the content.

smsParams Hashtable Container for parameters required to push binary
content to a device. The entries in the hash table are
pairs of strings that identify the name and value of each
parameter needed.

startIndex Integer The position in a list of items at which to begin
processing.

stateProvince String State or province for the subscriber’s address.

status String Confirm status string returned by the device. For
possible values returned by MIDP applications, see
http://www.jcp.org/jsr/detail/118.jsp.

statusList Vector, elements
of type Integer

List of content statuses. Valid values and what each
value indicates are described in the following list:
• 1 - Content is active. Content is stocked and available

to the subscriber.
• 2 - Content is inactive. Content is stocked, but not

available to the subscriber.
• 3 - Content is unavailable. Content is no longer

available from the Catalog Manager.
• 4 - Content is being tested and is available only to

subscribers who are assigned the role of tester.

subCategoryList Vector, elements
of type category

List of categories under a specified node.

subject String Subject of the message to be sent to a subscriber.

submitDate Date Date the content was submitted.

subscriberId Integer Internal ID that was assigned by the Content Delivery
Server to the subscriber account.

TABLE 10-9 Method Parameters (Continued)

Parameter Type Description
Chapter 10 Subscriber API 10-41

http://www.jcp.org/jsr/detail/118.jsp

10.3.3 Examples of Using Handlers
This section presents two examples of using the XML-RPC implementation of the
Subscriber API.

subscriptionExpiration Date Date the subscriber’s subscription expires.

subscriptionFrequency String Period of time covered by a subscription. Valid values
are daily, weekly, monthly, and yearly.

subscriptionPrice Double Price charged for a subscription for the content.

ticket String Internal object used to validate that the subscriber can
access the content requested.

totalSize Integer Number of items found.

trialCount Integer Number of times the content can be used for free before
the subscriber is prompted to purchase.

uniqueId String Unique ID for the subscriber.

url String URL to include in a message sent to a subscriber.

usageCount Integer Number of uses allowed per purchase.

usagePrice Double Price charged per use or number of uses.

userAgent String User agent for a device. This string is the exact string
that was returned in the HTTP header.

userAgentPattern String User agent for a device. This string is a regular
expression, which is a pattern that can match various
text strings.

userGuideUrl String URL that points to the User Guide for the content.

username String User name for the subscriber.

version String The version of the content.

wasDelivered Boolean Flag that indicates that the content was sent to the
device using SMS. True indicates that SMS was used.
False indicates that SMS was not used.

TABLE 10-9 Method Parameters (Continued)

Parameter Type Description
10-42 Customization Guide • 2005Q4

10.3.3.1 Example of Creating an ApiContext Object

The following code excerpt shows how to create an ApiContext Object. This
sample uses the bindings for the Java programming language.

CODE EXAMPLE 10-3 Create an APIContext Object Using XML-RPC

...
// Get a reference to the XmlRpcClient
String url = "http://host1:8080/subscriber/xml_rpc.do";
XmlRpcClientLite client = new XmlRpcClientLite(url);

// Set up the input parameters
Vector parameters = new Vector();
Hashtable ht = new Hashtable();
ht.put("username", "user1");
ht.put("password", "cryptic1");
parameters.addElement(ht);

// Send the request to Content Delivery Server
Hashtable response =
(Hashtable) client.execute("AuthenticationHandler.getApiContext", parameters);

// Evaluate the response
String errorCode = (String)response.get("response_code");
if (!errorCode.equals("1"))
{

// Handle Error
System.out.println((String)response.get("response_message"));
...

}
else
{

// Authentication successful
Hashtable apiContext = (Hashtable)response.get("apiContext");
Integer subscriberId = (Integer)apiContext.get("subscriberId");
String username = (String)apiContext.get("username");
String localeCode = (String)apiContext.get("localeCode");
String mobileId = (String)apiContext.get("mobileId");
Integer modelId = (Integer)apiContext.get("modelId");
...

// Save the ApiContext Hashtable in the Session
session.setAttribute("API_CONTEXT", apiContext);
...

}

...
Chapter 10 Subscriber API 10-43

10.3.3.2 Example of Creating a Handler and Purchasing Content

The following code excerpt shows how to create a handler and use that handler to
purchase content. This sample uses the bindings for the Java programming
language.

CODE EXAMPLE 10-4 Create a Handler

...
// Get a reference to the XmlRpcClient
String url = "http://[[cds server host]]:[[cds server
port]]/subscriber/xml_rpc.do";
XmlRpcClientLite client = new XmlRpcClientLite(url);

// Retrieve the ApiContext Hashtable from the HttpSession
Hashtable apiContext = (Hashtable) session.getAttribute("API_CONTEXT");

// Set up the input parameters
Vector parameters = new Vector();
Hashtable ht = new Hashtable();
ht.put("apiContext", apiContext);
ht.put("contentId", new Integer(1001));
ht.put("campaignId", new Integer(1000));
ht.put(“isSkipTrial”, Boolean.TRUE);
parameters.addElement(ht);

// Send the request to Content Delivery Server
Hashtable response =
(Hashtable) client.execute("ContentHandler.purchaseContent", parameters);

// Evaluate the response
String errorCode = (String)response.get("response_code");
if (!errorCode.equals("1"))
{

// Handle Error
System.out.println((String)response.get("response_message"));
...

}
else
{

// Purchase successful
...

}
...
10-44 Customization Guide • 2005Q4

Index
A
addBookmark, 10-12
addMMSSlide, 8-13
addRecipient, 8-13
addUserAgent, 8-3
ApiContextFactory class, 10-1
APIs

Billing API, 1-2
Confirm Service, 1-4
Content Management, 1-2
Content Validation, 1-3
Event Service, 1-1, 2-1
Messaging, 1-4
Subscriber, 1-4
User Profile, 1-3
WAP Gateway, 1-3

ApiServiceFactory class, 10-1
ApiUtil class, 10-1
AuthenticationHandler, 10-9
authorize, 3-8

B
billing adapter, 3-1
Billing API, 1-2, 3-1

content listing process flow, 3-2
download confirmation process flow, 3-5
error handling, 3-7
general process flow, 3-2
subscriber purchase process flow, 3-4
subscription verification process flow, 3-6
transaction initiation process flow, 3-3
using, 3-12

BillingConstants, 3-1
BillingException, 3-1
BillingInfo, 3-1
BillingManager, 3-1, 3-7
browseContent, 10-12

C
cancelGifting, 10-17
cancelSubscription, 10-12
CategoryHandler, 10-10
CDS_EVENT table, 2-4
CDS_EVENT_GROUP table, 2-5
CDS_EVENT_TYPE table, 2-5
CDSExceptionCDSException class, 10-2
checkAndExpireGifting, 10-17
checkSubscription, 3-9
classes

ApiContextFactory, 10-1
ApiServiceFactory, 10-1
ApiUtil, 10-1
BillingConstants, 3-1
BillingException, 3-1
BillingInfo, 3-1
BillingManager, 3-1
CDSException, 10-2
ConfirmServiceAdapter, 9-2
ContentSlide, 8-10
MMSPushMessage, 8-13
MMSSlide, 8-11
PushConstants, 8-18
PushMessage, 8-3
PushResponse, 8-17
Index-1

SMSMessage, 8-9
SMTPMessage, 8-10
UserManager class, 6-1
WAPGatewayAdapter, 7-2
WapPushMessage, 8-10

clearBookmarks, 10-12
client application

JMS, 2-7
SQL*Net, 2-3

confirm, 3-9
Confirm Service API, 1-4, 9-1

general process flow, 9-1
using, 9-3

ConfirmServiceAdapter class, 9-2
connect, 8-2, 9-2
Content Management API, 1-2

downloading content, 4-3
general process flow, 4-2
getting a list of content, 4-2
getting content details, 4-3
using, 4-6

Content Validation API, 1-3, 5-1
ContentHandler, 10-11
ContentManager, 4-4
ContentSlide class, 8-10
conventions, typographical, xxii
createTicket, 10-20

D
deleteBookmark, 10-12
disableSubscriberBySubscriberId, 10-22
disableSubscriberByUsername, 10-22
doAccountExists, 6-2
doAddUser, 6-2
documentation, related, xxiii
doDisableUser, 6-2
doEnableUser, 6-2
doFormatLogind, 6-2
doFormatMobileId, 6-2
doGetAllLikeInOrder, 6-3
doGetAllUsers, 6-3
doGetAllUsersContainingFirstName, 6-3
doGetAllUsersContainingId, 6-3
doGetAllUsersContainingLastName, 6-3
doGetAllUsersContainingName, 6-4

doGetAnonymousUser, 6-4
doGetFieldName, 6-4
doGetUser, 6-4
doGetUserByMobileId, 6-4
doGetUserByUniqueDeviceId, 6-4
doGetUserInstance, 6-5
doHandle, 7-2
doIsActive, 6-5
doIsAuthenticated, 6-5
doRemoveUser, 6-5
doUpdateUser, 6-5
downloadConfirm, 10-16
downloadContent, 10-16
downloadContentDescriptor, 10-16
downloadDelete, 10-16
DownloadHandler, 10-15
downloadJAD, 10-16
downloadJAM, 10-16

E
event data, 2-7
Event Service API

example, 2-13
introduction, 1-1
overview, 2-1
overview diagram, 2-2
using, 2-12

event tables, 2-3
EVENT_SOURCE_TYPE_ID table, 2-6
events, 2-7
execute, 5-2

G
getActivateDate, 6-6
getAllMMSSlides, 8-13
getAllRecipients, 8-13
getAllUserAgents, 8-4
getAnonymousApiContext, 10-9
getAnonymousCampaignForCoupon, 10-12
getApiContext, 10-9
getAttribute, 6-6, 8-4
getAttributes, 6-6
getAudioContent, 8-11
getBillingInfo, 3-9
Index-2 Customization Guide • 2005Q4

getBillingInfos, 3-10
getBookmarks, 10-12
getBundledItems, 10-12
getCampaign, 10-13
getCampaignForCoupon, 10-13
getCampaignItems, 10-13
getCampaigns, 10-13
getCategory, 10-10
getCategoryBranch, 10-10
getCity, 6-6
getContentBinary, 4-6, 8-4
getContentByClassId, 10-13
getContentByKeyword, 10-13
getContentData, 8-10
getContentDescriptor, 4-5
getContentDetails, 10-13
getContentDetailsCriteria, 10-14
getContentDetailsList, 10-14
getContentId, 8-10
getContentInfo, 4-5
getContentInfos, 4-5
getContentMimeType, 8-11
getContentSummary, 10-14
getContentType, 8-4
getContentTypes, 10-20
getCountries, 10-20
getCountry, 6-7, 10-20
getCreateDate, 6-7
getDeActivateDate, 6-7
getDefaultLocale, 10-20
getDefaultModel, 10-20
getDeliveryReportRequired, 8-14
getDeliveryType, 10-14
getDestinationAddress, 8-4
getEmail, 6-7
getFirstName, 6-7
getFromAddress, 8-14
getGender, 6-7
getGiftingById, 10-17
getGiftingByTicket, 10-17
getGiftingsByGifter, 10-17
getGiftingsByRecipient, 10-17
getImageContent, 8-12

getJMSMessageId, 8-4
getKeyword, 8-5, 8-7
getLastLogin, 6-8
getLastName, 6-8
getLocale, 10-20
getLocales, 10-20
getLog, 3-11
getLoginId, 6-8
getManufacturers, 10-20
getMessageClass, 8-14
getMessageId, 8-5, 8-18
getMessagePriority, 8-14
getMessageText, 8-5
getMiddleName, 6-8
getMimeType, 8-5
getMobileId, 6-8
getModel, 10-20
getModelId, 10-20
getModels, 10-21
getModelsForManufacturer, 10-21
getMSISDN, 7-2
getNotEmtpySubCategories, 10-10
getPassword, 6-8
getPhone, 6-9
getPostalCode, 6-9
getPurchasedBundles, 10-14
getPurchases, 10-14
getPushCategory, 8-5
getPushDomain, 8-5
getPushType, 8-6
getReadReportRequired, 8-14
getResponseDescription, 8-18
getResponseStatus, 8-18
getRootCategory, 10-10
getSalutation, 6-9
getSenderVisibility, 8-14
getShortCode, 8-6
getSMILPresentation, 8-15
getState, 6-9
getStreet1, 6-9
getStreet2, 6-9
getSubCategories, 10-10
getSubscriberId, 8-6, 10-22
Index-3

getSupportedModels, 10-14
getTextContent, 8-12
getTicket, 10-14
getUniqueDeviceID, 6-15
getUniqueDeviceId, 6-10, 8-6
getUniqueId, 7-2
getUserPreferences, 10-22
getUserProperties, 10-22
getUserPropertiesBySubscriberId, 10-22
getUserPropertiesByUsername, 10-22
getVendingContentId, 8-6
getVideoContent, 8-12
giftContent, 10-18
GiftingHandler, 10-17
guidelines, XML-RPC method calls, 10-7

H
hasLoggedIn, 6-10
hasPurchases, 10-14
hideCategory, 10-10
HTTPSMSPushMsgSender class, 8-19

I
IApiContext interface, 10-1
ICategoryService interface, 10-1
IContentService interface, 10-1
IDownloadService interface, 10-1
IGiftingService interface, 10-1
IMessageService interface, 10-2
initialize, 8-3
interfaces

IApiContext, 10-1
ICategoryService, 10-1
IContentService, 10-1
IDownloadService, 10-1
IGiftingService, 10-1
IMessageService, 10-2
ISystemService, 10-2
IUserService, 10-2
MMSSender, 8-16
PushMsgListener, 8-2
PushMsgSender, 8-2
User, 6-6
UserDeviceManager, 6-15

introduction, 1-1

isBookmarked, 10-14
isConfirmed, 6-10
isContentInCampaign, 10-14
isEnabled, 6-10
isGiftingUsed, 10-18
isMMSCapable, 10-15
isPrepay, 6-10
isPushEnabled, 10-21
isSMSCapable, 10-15
isTicketValid, 10-21
ISystemService interface, 10-2
IUserService interface, 10-2

J
JMS client application, 2-7

L
listen, 8-3, 9-2

M
messageContent, 10-18
MessageHandler, 10-18
messageReceived, 9-3
Messaging API, 1-4
Messaging API, using, 8-18
methods

authorize, 3-8
checkSubscription, 3-9
confirm, 3-9
doAccountExists, 6-2
doAddUser, 6-2
doDisableUser, 6-2
doEnableUser, 6-2
doFormatLogind, 6-2
doFormatMobileId, 6-2
doGetAllLikeInOrder, 6-3
doGetAllUsers, 6-3
doGetAllUsersContainingFirstName, 6-3
doGetAllUsersContainingId, 6-3
doGetAllUsersContainingLastName, 6-3
doGetAllUsersContainingName, 6-4
doGetAnonymousUser, 6-4
doGetFieldName, 6-4
doGetUser, 6-4
doGetUserByMobileId, 6-4
doGetUserByUniqueDeviceId, 6-4
Index-4 Customization Guide • 2005Q4

doGetUserInstance, 6-5
doIsActive, 6-5
doIsAuthenticated, 6-5
doRemoveUser, 6-5
doUpdateUser, 6-5
execute, 5-2
getActivateDate, 6-6
getAttribute, 6-6
getAttributes, 6-6
getBillingInfo, 3-9
getBillingInfos, 3-10
getCity, 6-6
getCountry, 6-7
getCreateDate, 6-7
getDeActivateDate, 6-7
getEmail, 6-7
getFirstName, 6-7
getGender, 6-7
getLastLogin, 6-8
getLastName, 6-8
getLog, 3-11
getLoginId, 6-8
getMiddleName, 6-8
getMobileId, 6-8
getPassword, 6-8
getPhone, 6-9
getPostalCode, 6-9
getSalutation, 6-9
getState, 6-9
getStreet1, 6-9
getStreet2, 6-9
getUniqueDeviceID, 6-15
getUniqueDeviceId, 6-10
hasLoggedIn, 6-10
isConfirmed, 6-10
isEnabled, 6-10
isPrepay, 6-10
refund, 3-11
returns, 5-3
reverse, 3-11
setActiveDate, 6-10
setAttribute, 6-11
setAttributes, 6-11
setCity, 6-11
setCountry, 6-11
setCreateDate, 6-11
setDeActivateDate, 6-11
setEmail, 6-12
setFirstName, 6-12

setGender, 6-12
setHasLoggedIn, 6-12
setIsEnabled, 6-12
setIsPrepay, 6-12
setLastName, 6-13
setLoginId, 6-13
setMiddleName, 6-13
setMobileId, 6-13
setPassword, 6-13
setPhone, 6-13
setPostalCode, 6-14
setSalutation, 6-14
setState, 6-14
setStreet1, 6-14
setStreet2, 6-14
setUniqueDeviceId, 6-14
subscribe, 3-11
unsubscribe, 3-12
updateLastLogin, 6-15

MMSPushMessage class, 8-13
MMSPushMsgSender class, 8-19
MMSSender interface, 8-16
MMSSlide class, 8-11
module.security.billingmanager

property, 3-12
module.security.contentmanager

property, 4-6
module.security.subscriber.usermanager

property, 6-15
moveCategoryDown, 10-11
moveCategoryUp, 10-11

O
organization of this guide, xxi

P
provision, 10-23
purchaseContent, 10-15
PushConstants class, 8-18
pushMessage, 8-2
PushMessage class, 8-3
pushMMSContent, 10-16
pushMMSContentByTicket, 10-16
PushMsgListener interface, 8-2
PushMsgSender interface, 8-2
PushResponse class, 8-17
Index-5

pushSMSContentBinary, 10-16
pushSMSContentByTicket, 10-17

R
refund, 3-11
related documentation, xxiii
reporting tools, 2-6
requestContent, 10-15
resetPasswordBySubscriberId, 10-23
resetPasswordByUsername, 10-23
returns, 5-3
reverse, 3-11

S
searchContent, 10-15
sendEvent, 10-21
sendEventWithParameters, 10-21
sendInstall, 10-17
sendKeepAliveMsg, 8-3
sendMessageToMobileId, 10-19
sendMessageToSelf, 10-19
sendMessageToSubscriberId, 10-19
sendMessageToUsername, 10-19
sendMMS, 8-16
sendMMSContent, 10-19
setActiveDate, 6-10
setAllUserAgents, 8-6
setAttribute, 6-11, 8-7
setAttributes, 6-11
setAudioContent, 8-12
setCity, 6-11
setContentBinary, 8-7
setContentData, 8-11
setContentId, 8-11
setContentMimeType, 8-11
setContentType, 8-7
setCountry, 6-11
setCreateDate, 6-11
setDeActivateDate, 6-11
setDeliveryReportRequired, 8-15
setDestinationAddress, 8-7
setEmail, 6-12
setFirstName, 6-12

setFromAddress, 8-15
setGender, 6-12
setHasLoggedIn, 6-12
setImageContent, 8-12
setIsEnabled, 6-12
setIsPrepay, 6-12
setJMSMessageId, 8-7
setLastName, 6-13
setLocaleCode, 10-23
setLoginId, 6-13
setMessageClass, 8-15
setMessageId, 8-8
setMessagePriority, 8-15
setMessageText, 8-8
setMiddleName, 6-13
setMimeType, 8-8
setMobileId, 6-13
setModelId, 10-23
setPassword, 6-13, 10-23
setPhone, 6-13
setPostalCode, 6-14
setPushCategory, 8-8
setPushDomain, 8-8
setReadReportRequired, 8-15
setSalutation, 6-14
setSenderVisibility, 8-16
setShortCode, 8-8
setSMILPresentation, 8-16
setState, 6-14
setStreet1, 6-14
setStreet2, 6-14
setSubscriberId, 8-9
setTextContent, 8-12
setUniqueDeviceId, 6-14, 8-9
setUserPreferences, 10-24
setUserProperties, 10-24
setVendingContentId, 8-9
setVideoContent, 8-13
showCategory, 10-11
signup, 10-24
signupWithPropertiesAndPreferences, 10-

24
SMSMessage class, 8-9
Index-6 Customization Guide • 2005Q4

SMTPMessage class, 8-10
SMTPushMsgSender class, 8-19
SQL*Net, 2-3, 2-12
SubmissionVerifierWorkflows.xml, 5-1
subscribe, 3-11
Subscriber API, 1-4, 10-1

general process flow, 10-2
using, 10-3
XML-RPC

guidelines, 10-7
method parameters, 10-25
setting up access, 10-6
using the handlers, 10-7

SystemHandler, 10-20

T
toString, 8-9
typographical conventions, xxii

U
unsubscribe, 3-12
updateCategories, 10-11
updateLastLogin, 6-15
User interface, 6-6
User Profile api, 1-3
UserDeviceManager interface, 6-15
UserHandler, 10-21
UserManager class, 6-1

V
validation.jar, 5-3
ValidationAdapter, 5-2
ValidationContent, 5-3

W
WAP Gateway API, 1-3
WAP Gateway API, using, 7-3
WAPGatewayAdapter class, 7-2
WapPushMessage class, 8-10
WAPPushMsgSender class, 8-19

X
XML-RPC, See Subscriber API
Index-7

Index-8 Customization Guide • 2005Q4

	Content Delivery Server 5.0 Customization Guide
	Contents
	Figures
	Tables
	Code Samples
	Preface
	Introduction
	1.1 Event Service API
	1.2 Billing API
	1.3 Content Management API
	1.4 Content Validation API
	1.5 User Profile API
	1.6 WAP Gateway API
	1.7 Messaging API
	1.8 Confirm Service API
	1.9 Subscriber API
	1.10 API by Feature

	Event Service API
	2.1 SQL*Net Client Application
	2.1.1 Event Tables
	2.1.1.1 CDS_EVENT Table
	2.1.1.2 CDS_EVENT_TYPE Table
	2.1.1.3 CDS_EVENT_GROUP Table
	2.1.1.4 EVENT_SOURCE_TYPE_ID Table

	2.1.2 Reporting Tools

	2.2 JMS Client Application
	2.3 Events and Event Data
	2.4 Using the Event Service API
	2.4.1 Developing an SQL*Net Client Application
	2.4.2 Developing a JMS Client Application

	2.5 Sample Implementation of MessageListener

	Billing API
	3.1 General Process Flow
	3.1.1 Content Listing
	3.1.2 Transaction Initiation
	3.1.3 Subscriber Purchase
	3.1.4 Download Confirmation
	3.1.5 Subscription Verification
	3.1.6 Error Handling

	3.2 BillingManager Interface
	3.2.1 authorize()
	3.2.2 checkSubscription()
	3.2.3 confirm()
	3.2.4 getBillingInfo()
	3.2.5 getBillingInfos()
	3.2.6 getLog()
	3.2.7 refund()
	3.2.8 reverse()
	3.2.9 subscribe()
	3.2.10 unsubscribe()

	3.3 Using the Billing API
	3.4 Sample Billing Adapter

	Content Management API
	4.1 General Process Flow
	4.1.1 Obtaining a List of Content
	4.1.2 Obtaining Content Details
	4.1.3 Downloading Content

	4.2 ContentManager Interface
	4.2.1 getContentInfo()
	4.2.2 getContentInfos()
	4.2.3 getContentDescriptor()
	4.2.4 getContentBinary()

	4.3 Using the Content Management API
	4.4 Sample Content Management Adapter

	Content Validation API
	5.1 General Process Flow
	5.2 ValidationAdapter Class
	5.2.1 execute()
	5.2.2 returns()

	5.3 ValidationContent Class
	5.4 Using the Content Validation API
	5.5 Sample Content Validation Adapter

	User Profile API
	6.1 UserManager Class
	6.1.1 doAccountExists()
	6.1.2 doAddUser()
	6.1.3 doDisableUser()
	6.1.4 doEnableUser()
	6.1.5 doFormatMobileId()
	6.1.6 doFormatLoginId()
	6.1.7 doGetAllLikeInOrder()
	6.1.8 doGetAllUsers()
	6.1.9 doGetAllUsersContainingFirstName()
	6.1.10 doGetAllUsersContainingId()
	6.1.11 doGetAllUsersContainingLastName()
	6.1.12 doGetAllUsersContainingName()
	6.1.13 doGetAnonymousUser()
	6.1.14 doGetFieldName()
	6.1.15 doGetUser()
	6.1.16 doGetUserByMobileId()
	6.1.17 doGetUserByUniqueDeviceId()
	6.1.18 doGetUserInstance()
	6.1.19 doIsActive()
	6.1.20 doIsAuthenticated()
	6.1.21 doRemoveUser()
	6.1.22 doUpdateUser()

	6.2 User Interface
	6.2.1 getActivateDate()
	6.2.2 getAttribute()
	6.2.3 getAttribute()
	6.2.4 getAttributes()
	6.2.5 getCity()
	6.2.6 getCountry()
	6.2.7 getCreateDate()
	6.2.8 getDeActivateDate()
	6.2.9 getEmail()
	6.2.10 getFirstName()
	6.2.11 getGender()
	6.2.12 getLastLogin()
	6.2.13 getLastName()
	6.2.14 getLoginId()
	6.2.15 getMiddleName()
	6.2.16 getMobileId()
	6.2.17 getPassword()
	6.2.18 getPhone()
	6.2.19 getPostalCode()
	6.2.20 getSalutation()
	6.2.21 getState()
	6.2.22 getStreet1()
	6.2.23 getStreet2()
	6.2.24 getUniqueDeviceId()
	6.2.25 hasLoggedIn()
	6.2.26 isConfirmed()
	6.2.27 isEnabled()
	6.2.28 isPrepay()
	6.2.29 setActivateDate()
	6.2.30 setAttribute()
	6.2.31 setAttributes()
	6.2.32 setCity()
	6.2.33 setCountry()
	6.2.34 setCreateDate()
	6.2.35 setDeActivateDate()
	6.2.36 setEmail()
	6.2.37 setFirstName()
	6.2.38 setGender()
	6.2.39 setHasLoggedIn()
	6.2.40 setIsEnabled()
	6.2.41 setIsPrepay()
	6.2.42 setLastName()
	6.2.43 setLoginId()
	6.2.44 setMiddleName()
	6.2.45 setMobileId()
	6.2.46 setPassword()
	6.2.47 setPhone()
	6.2.48 setPostalCode()
	6.2.49 setSalutation()
	6.2.50 setState()
	6.2.51 setStreet1()
	6.2.52 setStreet2()
	6.2.53 setUniqueDeviceId()
	6.2.54 updateLastLogin()

	6.3 UserDeviceManager Interface
	6.3.1 getUniqueDeviceID()

	6.4 Using the User Profile API
	6.5 Sample Implementation of the User Manager API
	6.5.1 Support Files
	6.5.2 SampleUserImpl.java
	6.5.3 SampleUserManagerImpl.java

	WAP Gateway API
	7.1 WAPGatewayAdapter Class
	7.1.1 doHandle()
	7.1.2 getMSISDN()
	7.1.3 getUniqueId()

	7.2 Using the WAP Gateway API
	7.3 Sample WAP Gateway Adapter

	Messaging API
	8.1 PushMsgSender Interface
	8.1.1 pushMessage()

	8.2 PushMsgListener Interface
	8.2.1 connect()
	8.2.2 initialize()
	8.2.3 listen()
	8.2.4 sendKeepAliveMsg()

	8.3 PushMessage Class
	8.3.1 addUserAgent()
	8.3.2 getAllUserAgents()
	8.3.3 getAttribute()
	8.3.4 getContentBinary()
	8.3.5 getContentType()
	8.3.6 getDestinationAddress()
	8.3.7 getJMSMessageId()
	8.3.8 getKeyword()
	8.3.9 getMessageId()
	8.3.10 getMessageText()
	8.3.11 getMimeType()
	8.3.12 getPushCategory()
	8.3.13 getPushDomain()
	8.3.14 getPushType()
	8.3.15 getShortCode()
	8.3.16 getSubscriberId()
	8.3.17 getUniqueDeviceId()
	8.3.18 getVendingContentId()
	8.3.19 setAllUserAgents()
	8.3.20 setAttribute()
	8.3.21 setContentBinary()
	8.3.22 setContentType()
	8.3.23 setDestinationAddress()
	8.3.24 setJMSMessageId()
	8.3.25 setKeyword()
	8.3.26 setMessageId()
	8.3.27 setMessageText()
	8.3.28 setMimeType()
	8.3.29 setPushCategory()
	8.3.30 setPushDomain()
	8.3.31 setShortCode()
	8.3.32 setSubscriberId()
	8.3.33 setUniqueDeviceId()
	8.3.34 setVendingContentId()
	8.3.35 toString()

	8.4 SMSMessage Class
	8.5 WapPushMessage Class
	8.6 SMTPMessage Class
	8.7 ContentSlide Class
	8.7.1 getContentData()
	8.7.2 getContentId()
	8.7.3 getContentMimeType()
	8.7.4 setContentData()
	8.7.5 setContentId()
	8.7.6 setContentMimeType()

	8.8 MMSSlide Class
	8.8.1 getAudioContent()
	8.8.2 getImageContent()
	8.8.3 getTextContent()
	8.8.4 getVideoContent()
	8.8.5 setAudioContent()
	8.8.6 setImageContent()
	8.8.7 setTextContent()
	8.8.8 setVideoContent()

	8.9 MMSPushMessage Class
	8.9.1 addMMSSlide()
	8.9.2 addRecipient()
	8.9.3 getAllMMSSlides()
	8.9.4 getAllRecipients()
	8.9.5 getDeliveryReportRequired()
	8.9.6 getFromAddress()
	8.9.7 getMessageClass()
	8.9.8 getMessagePriority()
	8.9.9 getReadReportRequired()
	8.9.10 getSenderVisibility()
	8.9.11 getSMILPresentation()
	8.9.12 setDeliveryReportRequired()
	8.9.13 setFromAddress()
	8.9.14 setMessageClass()
	8.9.15 setMessagePriority()
	8.9.16 setReadReportRequired()
	8.9.17 setSenderVisibility()
	8.9.18 setSMILPresentation()

	8.10 MMSSender Interface
	8.10.1 sendMMS()

	8.11 PushResponse Class
	8.11.1 getMessageId()
	8.11.2 getResponseDescription()
	8.11.3 getResponseStatus()

	8.12 PushConstants Class
	8.13 Using the Messaging API

	Confirm Service API
	9.1 General Process Flow
	9.2 ConfirmServiceAdapter Class
	9.2.1 connect()
	9.2.2 listen()
	9.2.3 messageReceived()

	9.3 Using the Confirm Service API

	Subscriber API
	10.1 General Process Flow
	10.2 Using the Subscriber API
	10.2.1 Managing Transactions
	10.2.2 Example of Creating an IApiContext Object
	10.2.3 Example of Creating a Service

	10.3 XML-RPC Implementation
	10.3.1 Accessing the Content Delivery Server
	10.3.2 Using XML-RPC Handlers for the Subscriber API
	10.3.2.1 Guidelines for Calls to XML-RPC Methods
	10.3.2.2 AuthenticationHandler
	10.3.2.3 CategoryHandler
	10.3.2.4 ContentHandler
	10.3.2.5 DownloadHandler
	10.3.2.6 GiftingHandler
	10.3.2.7 MessageHandler
	10.3.2.8 SystemHandler
	10.3.2.9 UserHandler
	10.3.2.10 Parameters for the Methods

	10.3.3 Examples of Using Handlers
	10.3.3.1 Example of Creating an ApiContext Object
	10.3.3.2 Example of Creating a Handler and Purchasing Content

	Index

