
Sun Management Center Change
Manager 1.0.1 Reference Manual

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 817–0892–10
May 2003

Copyright 2003 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Solaris, Sun4U, and docs.sun.com are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S.
and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the
U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2003 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Solaris, Sun4U, et docs.sun.com sont des marques de fabrique ou des marques déposées, ou marques de service,
de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique
ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur
une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

030430@5533

Contents

Preface 5

Change Manager System Administration Commands 7

bart(1MCM) 8

changemgr(1MCM) 13

cmgetprop(1MCM) 20

flar(1MCM) 21

flarcreate(1MCM) 27

Change Manager File Formats 31

bart_manifest(4CM) 32

bart_rules(4CM) 35

cmsp(4CM) 39

flash_archive(4CM) 42

ichange.cfg(4CM) 50

3

4 Sun Management Center Change Manager 1.0.1 Reference Manual • May 2003

Preface

This reference manual contains the man pages for the Sun™ Management Center
Change Manager product, henceforth referred to as Change Manager.

Who Should Use This Book
This book is intended for anyone responsible for performing one or more of these
Change Manager operations:

� Installing and configuring the Change Manager software on the Change Manager
server

� Managing deployment objects and audit objects in the Change Manager repository
� Managing hosts on the Change Manager server
� Creating the Solaris™ Flash archives for use with Change Manager
� Deploying software stacks to managed hosts
� Auditing software on managed hosts

Related Books
� Sun Management Center Change Manager 1.0.1 Release Notes
� Sun Management Center Change Manager 1.0.1 Administration Guide
� Solaris 9 Installation Guide
� Sun Management Center 3.5 Installation and Configuration Guide
� Sun Management Center 3.5 User’s Guide

5

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com.

Ordering Sun Documentation
Sun Microsystems offers select product documentation in print form. For a list of
documents and how to order them, see ‘‘Buy printed documentation’’ at
http://docs.sun.com.

6 Sun Management Center Change Manager 1.0.1 Reference Manual • May 2003

http://docs.sun.com
http://docs.sun.com

Change Manager System
Administration Commands

7

bart – basic audit reporting tool

/usr/bin/bart create [-n] [-R root_directory] [-r rules_file | -]

/usr/bin/bart create [-n] [-R root_directory] -I [file_name …]

/usr/bin/bart compare [-i attribute] [-p] [-r rules_file | -
] control-manifest test-manifest

The bart(1MCM) command is a tool that performs a file-level check of the software
contents of a system. Users can optionally specify the files to track and the types of
discrepancies to flag by means of a rules file. See bart_rules(4CM).

The bart command performs two basic functions:

bart create The manifest generator tool takes a file-level ‘‘snapshot’’ of a
system. The output is a catalog of file attributes referred to as a
‘‘manifest.’’ See bart_manifest(4CM).

Users can specify the list of files to be cataloged in three ways. Use
bart create with no options, specify the files by name on the
command line, or create a rules file with directives that specify
which the files to monitor. See bart_rules(4CM).

By default, the manifest generator catalogs all attributes of all files
in the root (/) file system. File systems mounted on the root file
system are cataloged only if they are of the same type as the root
file system.

For example, /, /usr, and /opt are separate UFS file systems.
/usr and /opt are mounted on /. Therefore, all three file systems
are cataloged. However, /tmp, also mounted on /, is not cataloged
because it is a TMPFS file system. Mounted CD-ROMs are not
cataloged since they are HSFS file systems.

bart compare The report tool compares two manifests. The output is a list of
per-file attribute discrepancies. These discrepancies are the
differences between two manifests: a control manifest and a test
manifest. A discrepancy is a change to any attribute for a given file
cataloged by both manifests. Note that a new file or a deleted file
in a manifest is reported as a discrepancy.

The reporting mechanism provides two types of output: verbose
and programmatic. Verbose output is localized and presented on
multiple lines, while programmatic output is more easily parsable
by other programs. See OUTPUT.

By default, the report tool generates verbose output where all
discrepancies are reported except for modified directory
timestamps (the dirmtime attribute).

bart(1MCM)

NAME

SYNOPSIS

DESCRIPTION

8 Sun Management Center Change Manager 1.0.1 Reference Manual • Last Revised 18 February 2003

Note – To ensure consistent and accurate comparison results, both
control-manifest and test-manifest must be built with the same rules
file.

Use the rules file to ignore specified files or subtrees when you generate a manifest or
compare two manifests. Users can compare manifests from different perspectives by
re-running the bart compare command with different rules files.

The following options are supported:

-i attribute ... Specifies the file attributes to be ignored globally. This option
produces the same behavior as supplying the file attributes to a
global IGNORE keyword in the rules file. See bart_rules(4CM).

-I [file_name...] Inputs list of files. The file list can be specified at the command line
or read from standard input.

-n Prevents computation of content signatures for all regular files in
the file list.

-p Displays manifest comparison output in ‘‘programmatic mode,’’
which is suitable for programmatic parsing. The output is not
localized.

-r rules_file Uses rules_file to specify which files and directories to catalog, and
to define which file attribute discrepancies to flag. If rules_file is -,
then the rules are read from standard input. See
bart_rules(4CM) for the definition of the syntax.

-R root_directory Specifies the root directory for the manifest. All paths specified by
the rules, and all paths reported in the manifest, are relative to
root_directory.

The following operands are supported:

control-manifest Manifest created by bart create on the control system.

test-manifest Manifest created by bart create on the test system.

The bart create and bart compare commands write output to standard output,
and write error messages to standard error.

The bart create command generates a system manifest. See
bart_manifest(4CM).

When the bart compare command compares two system manifests, it generates a
list of file differences. By default, the comparison output is localized. However, if the
-p option is specified, the output is generated in a form that is suitable for
programmatic manipulation.

filename
attribute control:xxxx test:yyyy

bart(1MCM)

OPTIONS

OPERANDS

OUTPUT

Default Format

Change Manager System Administration Commands 9

filename Name of the file that differs between control-manifest and
test-manifest. For file names that contain embedded whitespace or
newline characters, see Quoting Syntax in bart_manifest(4CM).

attribute The name of the file attribute that differs between the manifests
that are compared. xxxx is the attribute value from control-manifest,
and yyyy is the attribute value from test-manifest. When
discrepancies for multiple attributes occur for the same file, each
difference is noted on a separate line.

The following default output shows the attribute differences for the /etc/passwd
file. The output indicates that the size, mtime, and contents attributes have
changed.

/etc/passwd:
size control:74 test:81
mtime control:3c165879 test:3c165979
contents control:daca28ae0de97afd7a6b91fde8d57afa

test:84b2b32c4165887355317207b48a6ec7

filename attribute control-val test-val [attribute control-val test-val]*

filename Same as filename in the default format.

attribute control-val test-val A description of the file attributes that differ between
the control and test manifests for each file. Each entry
includes the attribute value from each manifest. See
bart_manifest(4CM) for the definition of the
attributes.

Each line of the programmatic output describes all attribute differences for a single
file.

The following programmatic output shows the attribute differences for the
/etc/passwd file. The output indicates that the size, mtime, and contents
attributes have changed.

/etc/passwd size 74 81 mtime 3c165879 3c165979

contents daca28ae0de97afd7a6b91fde8d57afa 84b2b32c4165887355317207b48a6ec7

0 Success

1 Non-fatal error when processing files; for example, permission problems

>1 Fatal error; for example, invalid command-line options

0 No discrepancies reported

1 Discrepancies found

>1 Fatal error executing comparison

bart(1MCM)

Programmatic
Format

Manifest
Generator

Report Tool

10 Sun Management Center Change Manager 1.0.1 Reference Manual • Last Revised 18 February 2003

EXAMPLE 1 Creating a Default Manifest Without Computing Checksums

The following command line creates a default manifest, which consists of all files in
the / file system. The -n option prevents computation of checksums, which causes the
manifest to be generated more quickly.

bart create -n

EXAMPLE 2 Creating a Manifest for a Specified Subtree

The following command line creates a manifest that contains all files in the
/home/nickiso subtree.

bart create -R /home/nickiso

EXAMPLE 3 Creating a Manifest by Using Standard Input

The following command line uses output from the find(1) command to generate the
list of files to be cataloged. The find output is used as input to the bart create
command that specifies the -I option.

find /home/nickiso -print | bart create -I

EXAMPLE 4 Creating a Manifest by Using a Rules File

The following command line uses a rules file, rules, to specify the files to be
cataloged.

bart create -r rules

EXAMPLE 5 Comparing Two Manifests and Generating Programmatic Output

The following command line compares two manifests and produces output suitable
for parsing by a program.

bart compare -p manifest1 manifest2

EXAMPLE 6 Comparing Two Manifests and Specifying Attributes to Ignore

The following command line compares two manifests. The dirmtime, lnmtime, and
mtime attributes are not compared.

bart compare -i dirmtime lnmtime mtime manifest1 manifest2

EXAMPLE 7 Comparing Two Manifests by Using a Rules File

The following command line uses a rules file, rules, to compare two manifests.

bart compare -r rules manifest1 manifest2

bart(1MCM)

EXAMPLES

Change Manager System Administration Commands 11

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbart

Interface Stability Evolving

find(1), bart_manifest(4CM), bart_rules(4CM), attributes(5)

bart(1MCM)

ATTRIBUTES

SEE ALSO

12 Sun Management Center Change Manager 1.0.1 Reference Manual • Last Revised 18 February 2003

changemgr – Sun Management Center Change Manager command-line interface

/opt/SUNWichange/bin/changemgr command [options] [operands]

The changemgr(1MCM) command is the command-line interface for the Sun
Management Center Change Manager, henceforth referred to as Change Manager. This
command-line interface performs the same operations that can be performed by using
the browser user interface, such as software deployment tasks and system audit tasks.

Change Manager commands must be run by an authenticated user.

The command-line interface can be used to initiate a Change Manager session. A
Change Manager session is a subshell in which you can run Change Manager
commands as an authenticated user. You authenticate when you initiate the session.
All operations run within the session are owned by the authenticated user.

The command-line interface can also run custom scripts that execute multiple Change
Manager commands. The script support facilitates the execution of multiple Change
Manager operations. Authentication is performed once for the script instead of once
per command-line invocation.

The changemgr command supports several command-line options.

Other than the changemgr help commands, all commands must be authenticated. In
the context of a session, the session’s authenticated identity is used.

The following authentication options are supported:

-p file file consists of a single line, which contains the password. If file is
-, then the user can supply the password as standard input.

If the -p option is not supplied, then the changemgr command
prompts the user for his password.

-u username Specifies the user name to authenticate. If the -u option is not
supplied, the user is the current UNIX real user ID, as reported by
id(1M).

These options are used by more than one command:

-d domain Specifies the Sun Management Center administrative domain on
which to operate. In the context of a session, the default is the
domain specified by the session, if any. By default, domain is the
user’s home domain.

-o format format is a blank-separated list or comma-separated list of property
names. If you separate the property names with spaces, make sure
that you surround the list of property names with quotes. The
specified property values are displayed in a name=value format. If
format is specified as all, then all properties are displayed. The
output is suitable for programmatic parsing.

changemgr(1MCM)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

Authentication
Options

Common Options

Change Manager System Administration Commands 13

The output lists each file or folder on a line by itself. The name can
be followed by property lines, which consist of a tab, property
name, equals sign, and a property value. Each file or folder entry is
separated from the next entry by a blank line.

For example, the output is arranged as follows:

path
name=value
...

path
name=value
...

...

The following operands are supported:

filepath An absolute path to a file or a relative (to the current directory)
path to a file. This file path is not in the Change Manager
repository.

relpath Path to a file-like object (including a folder) that is relative to the
top of the Change Manager repository.

relfilepath Path to a file-like object (not including a folder) that is relative to
the top of the Change Manager repository.

reldirpath Path to a folder-like object that is relative to the top of the Change
Manager repository.

.type File name suffix that specifies the file type. File type suffixes are:
.flar for archives, .miniroot for boot images, .bmft for
manifests, .brul for audit rules files, .txt for reports, and .cmsp
for shared profiles. Folders do not require a file name suffix.

topopath Path to a topology object (including a host group) that is relative to
the top of the selected administrative domain.

hostpath Path to a managed host that is relative to the top of the selected
administrative domain.

hostname Network name of a host, for example, netherfield.sun.com.

grouppath Path to a host group that is relative to the top of the selected
administrative domain.

The following sections describe the changemgr subcommands.

changemgr(1MCM)

OPERANDS

SUBCOMMANDS

14 Sun Management Center Change Manager 1.0.1 Reference Manual • Last Revised 18 February 2003

changemgr session [-u username] [-p file] [-d domain] [command
[command-arguments]]

Run the specified command in the context of a Change Manager session so that
individual commands in a script (command) do not need authentication and startup
overhead. The authentication and startup overhead is amoritized over all of the
commands.

command is normally an sh(1) or ksh(1) script that contains Change Manager
commands in the form of the command-line interface.

If command is sh or ksh, a subshell is spawned to create an interactive session. You
are required to authenticate to initiate the session.

If command is not supplied, then an interactive subshell of $SHELL starts, if known
to be compatible. If $SHELL is not compatible, then an interactive ksh subshell
starts.

Note – The csh(1) shell cannot be used to run scripts or initiate a session.

changemgr mkdir [-u username] [-p file] new_reldirpath...
Create one or more folders in the Change Manager repository.

changemgr import [-u username] [-p file] filepath.[type] relfilepath.type
Import a single file, filepath.[type], to the repository as relfilepath.type. The file being
imported can have any file suffix, but the file name in the repository must have the
appropriate suffix.

changemgr import [-u username] [-p file] filepath.type... reldirpath
Import one or more files to the specified folder, reldirpath, in the repository.

Because this command uses the original file names when creating the files in the
repository, the original names must have the appropriate suffixes.

changemgr export [-u username] [-p file] relfilepath filepath
Export a single file, relfilepath, from the repository as filepath.

changemgr export [-u username] [-p file] relfilepath... dirpath
Export one or more files to the specified folder, dirpath, outside of the repository.

changemgr files [-u username] [-p file] [-l] [-d] [-R] [-o format] [relpath...]
List the specified files and folders, or the contents of the specified folders. When no
path is specified, the objects in the root of the repository are listed.

The default output format is one file or folder name per line.

-d Presents information about the folder itself, rather than about the
folder’s contents.

-l Presents more information in tabular output. This output is not suitable
for programmatic parsing.

-R Recursively lists the contents of a folder.

changemgr(1MCM)

Sessions

File Management
Operations

Change Manager System Administration Commands 15

changemgr delete [-u username] [-p file] relpath...
Delete the specified files and folders.

Note that only empty folders can be deleted.

changemgr fileset [-u username] [-p file] [-s name=value]... [-s name]... relpath...
Set properties for the specified files and folders by using the -s name=value option.
The -s option with just the property name deletes the property.

-s name=value Specifies one or more name=value pairs. name is the property
name, and value is the property value. Supply the -s option for
each property value you want to set. If value is blank, then the
property is assigned an empty value.

-s name Specifies one or more property names to delete, where name is
the property name. Supply the -s option for each property you
want to delete.

changemgr filemove [-u username] [-p file] old_relpath... new_dirpath
Move files and folders to another folder. The original file and folder names are
unchanged. The destination folder must already exist.

old_relpath can be a folder or a file.

changemgr filemove [-u username] [-p file] old_relpath.type new_relpath.type
Rename a file or a folder. The type of the renamed file must stay the same.

changemgr mkgroup [-u username] [-p file] [-d domain] new_grouppath...
Create one or more host groups.

changemgr hosts [-u username] [-p file] [-l] [-g] [-R] [-d domain] [-o format]
[topopath...]

List information about topopath, which represents the specified managed hosts or
host groups. With no path arguments, information is listed about the managed
hosts and host groups in the root of the administrative domain.

The default output format is one managed host or host group name per line.

-g Presents information about the group itself, rather than about the
group’s contents.

-l Presents more information in tabular output. This output is not suitable
for programmatic parsing.

-R Recursively lists the contents of a group.

changemgr add [-u username] [-p file] [-d domain] hostname hostpath
Register a network host name as a Sun Management Center host name. The host
path includes the host group and the host name. The name of the managed host can
be different from the network host name.

changemgr add [-u username] [-p file] [-d domain] hostname... grouppath
Add the specified managed hosts to the specified host group, with the managed
host names equal to the network host names.

changemgr(1MCM)

Topology
Operations

16 Sun Management Center Change Manager 1.0.1 Reference Manual • Last Revised 18 February 2003

changemgr remove [-u username] [-p file] [-d domain] topopath...
Remove managed hosts and host groups from the topology.

changemgr hostset [-u username] [-p file] [-d domain] [-s name=value]... [-s
name]... topopath...

Set properties for the specified managed hosts and host groups by using the -s
name=value option. The -s option with just the property name deletes the property.

-s name=value Specifies one or more name=value pairs. name is the property
name, and value is the property value. Supply the -s option for
each property value you want to set. If value is blank, then the
property is assigned an empty value.

-s name Specifies one or more property names to delete, where name is
the property name. Supply the -s option for each property you
want to delete.

changemgr hostmove [-u username] [-p file] [-d domain] old_topopath...
new_grouppath

Move managed hosts or host groups to another host group. The destination host
group must already exist.

changemgr hostmove [-u username] [-p file] [-d domain] old_topopath new_topopath
Rename a single managed host or host group.

changemgr update [-u username] [-p file] [-d domain] [-x operation] topopath...
Update the specified managed hosts to conform to the configuration specified by
their properties.

If topopath is a host group, all members of the host group are updated.

-x operation Specifies the action to take after the update completes. If
operation is reboot, then activate the newly installed software
stack and reboot. If operation is halt, then activate the newly
installed software stack and halt. The default operation is to
reboot the managed host.

changemgr fallback [-u username] [-p file] [-d domain] [-x operation] topopath...
Restore the specified managed hosts to their state prior to the last changemgr
update operation. This action only undoes the last update operation. This action
does not change the parameters associated with the managed host. After the
fallback operation, the managed host’s running configuration will not match the
parameters selected for it, which is the case immediately prior the update
operation.

If topopath is a host group, all members of the host group are restored.

-x operation Specifies the action to take after the fallback completes. If
operation is reboot, then activate the newly selected software
stack and reboot. If operation is halt, then activate the newly
selected software stack and halt. The default operation is to
reboot the managed host.

changemgr(1MCM)

Host Operations

Change Manager System Administration Commands 17

changemgr reinstall [-u username] [-p file] [-d domain] topopath...
Reinstall the specified managed hosts. The reinstallation is equivalent to this:

reboot -- net - install

If topopath is a host group, all members of the host group are reinstalled.

changemgr setup [-u username] [-p file] [-d domain] topopath...
Set up files for initial installation. This operation is required before manually
running boot net - install on the consoles of managed hosts.

If topopath is a host group, all files for the members of the host group are set up.

changemgr reboot [-u username] [-p file] [-d domain] topopath...
Reboot the specified managed hosts.

If topopath is a host group, all members of the host group are rebooted.

changemgr halt [-u username] [-p file] [-d domain] topopath...
Halt the specified managed hosts.

If topopath is a host group, all members of the host group are halted.

changemgr manifest [-u username] [-p file] [-d domain] -o relpathprefix [-r
relfilepath.brul] topopath...

Create manifests for the specified managed hosts.

-o relpathprefix Specifies the prefix to use when creating manifests.
The host name and suffix are appended to the prefix
to form the name of the manifest.

-r relfilepath.brul Specifies the audit rules file to use when building
manifests.

changemgr audit [-u username] [-p file] [-d domain] -o relfilepath.txt [-r
relfilepath.brul] relfilepath.bmft topopath...

Compare managed host contents against a baseline manifest.

-o relfilepath.txt Specifies the file path of the report.

-r relfilepath.brul Specifies the audit rules file to use when auditing
hosts.

changemgr info [-u username] [-p file] [-d domain] -o relfilepath.txt topopath...
Get software status information about the specified managed hosts. Store the results
in the specified report.

-o relfilepath.txt Specifies the file path of the report.

changemgr jobs [-u username] [-p file] [-l] [-o format] [id...]
Display the status of all outstanding jobs or of specified jobs.

-l Presents more information in tabular output. This output is not suitable
for programmatic parsing.

changemgr(1MCM)

Job Management
Operations

18 Sun Management Center Change Manager 1.0.1 Reference Manual • Last Revised 18 February 2003

changemgr kill [-u username] [-p file] id...
Cancel currently running jobs or pending jobs.

changemgr ack [-u username] [-p file] id...
Acknowledge the completion of the specified jobs. This action discards the status of
the specified jobs.

Use this command to purge completed job entries from the job list that were
initiated by the browser interface.

changemgr help
Provide a one-line summary of the available subcommands. No authentication is
required.

changemgr help subcommand
Provide a summary of the specified subcommand. No authentication is required.

csh(1), date(1), ksh(1), sh(1), id(1M)

EXAMPLE 1 Running Commands in an Interactive Change Manager Session

The following example shows an interactive Change Manager session. The
changemgr session command starts a subshell in which you can run authenticated
changemgr commands.

This example shows how to purge a completed job from the job queue. This job, IC_1,
was initiated from the browser interface. When the tasks are completed, exit the
session by typing exit at the subshell prompt.

$ changemgr session
Password: password
$ changemgr jobs -l IC_1
IC_1 succeeded
$ changemgr ack IC_1
$ changemgr jobs l IC_1

$ exit

EXAMPLE 2 Running Scripts in a Change Manager Session

This example shows how to use the changemgr session command to run a script.

The following command line runs the deploy-web script.

$ changemgr session deploy-web web.flar host1

The deploy-web script contains the following:

$ cat deploy-web
#/bin/sh
changemgr import "$1" /
changemgr fileset -s MediaName=s9.miniroot "$1"
changemgr hostset -s base_config_flar_archive="/$1" "$2"
changemgr update "$2"

$

changemgr(1MCM)

Miscellaneous

SEE ALSO

EXAMPLES

Change Manager System Administration Commands 19

cmgetprop – Get Change Manager property value

cmgetprop property-name

The cmgetprop(1MCM) command writes the value of the specified property to
standard output. Note that no value is returned when the property is not set.

Use the cmgetprop command in deployment finish scripts to get property values.
Change Manager finish scripts are stored in the /etc/ichange.d directory.

The cmgetprop command is included in the $PATH supplied to the Change Manager
finish scripts.

EXAMPLE 1 Using the cmgetprop Command

The following line might exist in a Change Manager finish script.

FILENAME=‘cmgetprop FNAME‘

This code assigns the value of the FNAME property to the FILENAME variable.

Sun Management Center Change Manager 1.0.1 Administration Guide

cmgetprop(1MCM)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

SEE ALSO

20 Sun Management Center Change Manager 1.0.1 Reference Manual • Last Revised 10 October 2002

flar – administer flash archives

flar create -n name [-R root] [-H] [-I] [-S] [-c] [-t [-p posn] [-b
blocksize]] [-i date] [-u section…] [-U key=value…] [-m master] [-f
[filelist | -] [-F]] [-a author] [-e descr | -E descr_file] [-T type] [-x
exclude…] [-y include…] [-z filelist…] [-X filelist…] archive

flar combine [-d dir] [-u section…] [-t [-p posn] [-b blocksize]] archive

flar split [-d dir] [-u section…] [-f] [-S section] [-t [-p posn] [-b
blocksize]] archive

flar info [-l] [-k keyword] [-t [-p posn] [-b blocksize]] archive

The flar command is used to administer flash archives. A flash archive is an easily
transportable version of a reference configuration of the Solaris operating
environment, plus other optional software. Such an archive is used for the rapid
installation of the Solaris software on large numbers of machines. You can create a
flash archive using either flar with the create subcommand or the
flarcreate(1MCM) command. See flash_archive(4CM).

In flash terminology, a system on which an archive is created is called a master. The
system image stored in the archive is deployed to systems that are called clones.

An archive is created with the create subcommand. It contains all the files that are in
a system image.

You can run flar create in multiuser or single-user mode. You can also use the
command when the master system is booted from the first Solaris software CD or
from a Solaris net image. Archive creation should be performed when the master
system is in as stable a state as possible.

Following the creation of a flash archive, you can use custom JumpStart to clone the
archive on multiple systems.

The flar command includes subcommands for creating, combining, splitting, and
providing information about archives. A subcommand is the first argument in a flar
command line. The subcommands are as follows:

create Create a new flash archive, of a name you specify with
the -n argument, based on the currently running
system.

The create subcommand requires superuser
privileges.

combine Combine the individual sections that make up an
archive into the archive. If dir is specified (see -d
option), the sections will be gathered from dir.
Otherwise, they will be gathered from the current
directory. Each section is assumed to be in a separate
file, the names of which are the section names. At a

flar(1MCM)

NAME

SYNOPSIS

DESCRIPTION

SUBCOMMANDS

Change Manager System Administration Commands 21

minimum, the archive cookie (cookie), archive
identification (identification), and archive files
(archive) sections must be present. If archive is a
directory, its contents are archived using cpio prior to
inclusion in the archive. If so specified in the
identification section, the contents are
compressed.

Note that no validation is performed on any of the
sections. In particular, no fields in the
identification section are validated or updated.
See flash_archive(4CM) for a description of the
archive sections.

info Extract information on an archive. This subcommand is
analogous to pkginfo.

split Split an archive into one file for each section of the
archive. Each section is copied into a separate file in dir,
if dir is specified (see -d option), or the current
directory if it is not. The files resulting from the split
are named after the sections. The archive cookie is
stored in a file named cookie. If section is specified
(see -u option), only the named section is copied.

The options for each subcommand are described in OPTIONS.

The create subcommand has one required option:

-n name Is the value of the content_name keyword. See
flash_archive(4CM).

Following are the options for the create subcommand. Many of these options supply
values for keywords in the identification section of a file containing a flash archive. See
flash_archive(4CM) for a description of these keywords.

-a author Provides an author name for the archive identification
section of the new flash archive. If you do not specify
-a, no author name is included in the identification
section.

-c Compresses the archive using compress(1).

-e descr Is the description to be included in the archive as the
value of the content_description archive
identification key. This option is incompatible with -E.

-E descr_file Is the description to be used as the value of the archive
identification content_description key as
retrieved from the file descr_file. This option is
incompatible with -e.

flar(1MCM)

OPTIONS

22 Sun Management Center Change Manager 1.0.1 Reference Manual • Last Revised 30 April 2003

-f filelist Uses the contents of filelist as a list of files to include in
the archive. The files are included in addition to the
usual file list, unless -F is specified (see the -F option).
If filelist is -, the list is taken from standard input.

-F Includes only files in the list specified by -f. This
option makes -f filelist an absolute list, rather than a
list that is appended to the usual file list.

-H Does not generate a hash identifier.

-i date By default, the value for the creation_date field in
the identification section is generated automatically,
based on the current system time and date. If you
specify the -i option, date is used instead.

-I Ignores integrity check. To prevent you from excluding
important system files from an archive, flar runs an
integrity check. This check examines all files registered
in a system package database and stops archive
creation if any of them are excluded. Use this option to
override this integrity check.

-m master By default, the value for the creation_master field
in the identification section is the name of the system
on which you run flar create, as reported by
uname -n. If you specify -m, master is used instead.

-R root Creates the archive from the file system tree mounted
at root. If you do not specify this option, flar creates
an archive from a file system mounted at /.

-S Skips the disk space check. Without -S, flar builds a
compressed archive in memory before writing the
archive to disk, to ensure you have sufficient disk
space. Use -S to skip this step. The result of the use of
-S is a significant decrease in the time it takes to create
an archive.

-T type Is the content type included in the archive as the value
of the content_type archive identification key. If you
do not specify -T, the content_type keyword is not
included.

-u section ... Include the user-defined section located in the file
section in the archive. section must be a blank-separated
list of section names as described in the
flash_archive(4CM) man page.

-U key=value... Includes one or more user-defined keywords and their
values in the archive identification section. See
flash_archive(4CM).

flar(1MCM)

Change Manager System Administration Commands 23

-x exclude ... Excludes the file or directory exclude from the archive.
Note that the exclude file or directory is assumed to be
relative to the alternate root specified using -R. If the
parent directory of the file exclude is included with the
-y option (see -y include), then only the specific file or
directory specified by exclude is excluded. Conversely, if
the parent directory of an included file is specified for
exclusion, then only the file include is included. For
example, if you specify:

-x /a -y /a/b

all of /a except for /a/b is excluded. If you specify:

-y /a -x /a/b

all of /a except for /a/b is included.

-X filelist ... Uses the contents of filelist as a list of files to exclude
from the archive. If filelist is –, the list is taken from
standard input.

-y include ... Includes the file or directory include in the archive.
Note that the exclude file or directory is assumed to be
relative to the alternate root specified using -R. See the
description of the -x option for a description of the
interaction of the -x and -y options.

-z filelist ... Is a list of files prefixed with a plus (+) or minus (-). A
plus indicates that a file should be included in the
archive. The minus indicates exclusion. If filelist is –,
the list is taken from standard input.

The options for the info subcommand are as follows:

-k keyword Returns only the value of the keyword keyword.

-l Lists all files in the archive. Does not process content
from any sections other than the archive section.

Following are the info options to use with tape archives:

-b blocksize Is the block size to use when creating the archive. If not
specified, a default block size of 64K is used.

-p posn Specifies the position on the tape device where the
archive should be created. If not specified, the current
position of the tape device is examined.

-t Indicates that the archive to be analyzed is located on a
tape device. The path to the device is specified by
archive (see OPERANDS).

flar(1MCM)

24 Sun Management Center Change Manager 1.0.1 Reference Manual • Last Revised 30 April 2003

The options for the split and combine (split and combine archives) subcommands
are as follows:

-d dir Retrieves sections from dir, rather than from the current
directory.

-f (Used with split only.) Extracts the archive section
into a directory called archive, rather than placing it
in a file of the same name as the section.

-S section (Used with split only.) Extracts only the section
named section from the archive.

-u section... Appends section to the list of sections to be included.
The default list includes the cookie,
identification, and archive sections. section can
be a single section name or a space-separated list of
section names.

The following options are used with tape archives (with both split and combine):

-b blocksize Is the block size to be used when creating the archive.
If not specified, a default block size of 64K is used.

-p posn Used only with -t. Specifies the position on the tape
device where the archive should be created. If not
specified, the current position of the tape device is
used.

-t Creates an archive on or reads an archive from a tape
device. The archive operand (see OPERANDS) is
assumed to be the name of the tape device.

EXAMPLE 1 Creating a Flash Archive

The following command creates a flash archive named pogoS9 and stores it in
/export/home/archives/s9fcs.flar. The currently running system is the basis
for the new archive.

flar create -n pogoS9 /export/home/archives/s9fcs.flar

The following operand is supported:

archive Path to tape device if the -t option was used.
Otherwise, the complete path name of a flash archive.
A file containing a flash archive has a standard file
extension of .flar.

The following exit values are returned for the create, split, and combine
subcommands:

0 Successful completion.

flar(1MCM)

EXAMPLES

OPERANDS

EXIT STATUS

Change Manager System Administration Commands 25

0 An error occurred.

The following exit values are returned for the info subcommand:

0 Successful completion.

1 Command failed. If the -k option is used and the requested keyword is not
found, flar returns 2.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWinst

compress(1), flarcreate(1MCM), flash_archive(4CM), attributes(5)

flar(1MCM)

ATTRIBUTES

SEE ALSO

26 Sun Management Center Change Manager 1.0.1 Reference Manual • Last Revised 30 April 2003

flarcreate – create a flash archive from a master system

flarcreate -n name [-R root] [-H] [-I] [-S] [-c] [-t [-p posn] [-b
blocksize]] [-i date] [-u section…] [-U key=value…] [-m master] [-f
[filelist | -] [-F]] [-a author] [-e descr | -E descr_file] [-T type] [-x
exclude…] [-y include…] [-z filelist…] [-X filelist…] archive

The flarcreate command creates a flash archive from a master system. A master
system is one that contains a reference configuration, which is a particular
configuration of the Solaris operating environment, plus other optional software. A
flash archive is an easily transportable version of the reference configuration.

In flash terminology, a system on which an archive is created is called a master. The
system image stored in the archive is deployed to systems that are called clones.

An archive contains all the files that are in a system image.

Following the creation of a flash archive, you can use custom JumpStart to clone the
archive on multiple systems.

You can run flarcreate in multiuser or single-user mode. You can also use the
command when the master system is booted from the first Solaris software CD or
from a Solaris net image.

Archive creation should be performed when the master system is in as stable a state as
possible. Following archive creation, use the flar(1MCM) command to administer a
flash archive.

See flash_archive(4CM) for a description of the flash archive.

The flarcreate command requires superuser privileges.

The flarcreate command has one required option:

-n name Specifies the name of the flash archive. name is supplied
as the value of the content_name keyword. See
flash_archive(4CM).

The flarcreate command has the following general options:

-c Compresses the archive using compress(1).

-f filelist Uses the contents of filelist as a list of files to include in
the archive. The files are included in addition to the
usual file list, unless -F is specified (see the -F option).
If filelist is -, the list is taken from standard input.

-F Includes only files in the list specified by -f. This
option makes -f filelist an absolute list, rather than a
list that is appended to the usual file list.

-H Does not generate a hash identifier.

flarcreate(1MCM)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

Change Manager System Administration Commands 27

-I Ignores integrity check. To prevent you from excluding
important system files from an archive, flarcreate
runs an integrity check. This check examines all files
registered in a system package database and stops
archive creation if any of them are excluded. Use this
option to override this integrity check.

-R root Creates the archive from the file system tree mounted
at root. If you do not specify this option, flarcreate
creates an archive from a file system mounted at /.

-S Skips the disk space check. Without -S, flarcreate
builds a compressed archive in memory before writing
the archive to disk, to ensure you have sufficient disk
space. Use -S to skip this step. The result of the use of
-S is a significant decrease in the time it takes to create
an archive.

-U key=value... Includes one or more user-defined keywords and their
values in the archive identification section. See
flash_archive(4CM).

-x exclude... Excludes the file or directory exclude from the archive.
Note that the exclude file or directory is assumed to be
relative to the alternate root specified using -R. If the
parent directory of the file exclude is included with the
-y option (see -y include), then only the specific file or
directory specified by exclude is excluded. Conversely, if
the parent directory of an included file is specified for
exclusion, then only the file include is included. For
example, if you specify:

-x /a -y /a/b

all of /a except for /a/b is excluded. If you specify:

-y /a -x /a/b

all of /a except for /a/b is included.

-X filelist... Uses the contents of filelist as a list of files to exclude
from the archive. If filelist is –, the list is taken from
standard input.

-y include... Includes the file or directory include in the archive.
Note that the exclude file or directory is assumed to be
relative to the alternate root specified using -R. See the
description of the -x option for a description of the
interaction of the -x and -y options.

flarcreate(1MCM)

28 Sun Management Center Change Manager 1.0.1 Reference Manual • Last Revised 30 April 2003

-z filelist... Is a list of files prefixed with a plus (+) or minus (-). A
plus indicates that a file should be included in the
archive. The minus indicates exclusion. If filelist is –,
the list is taken from standard input.

Use the following options with user-defined sections:

-d dir Retrieves the section file specified with -u from dir.

-u section... Includes the user-defined section located in the file
section in the archive. section must be a blank-separated
list of section names as described in
flash_archive(4CM).

Use the following options with tape archives:

-b blocksize Is the block size to be used when creating the archive.
If not specified, a default block size of 64K is used.

-p posn Used only with -t. Specifies the position on the tape
device where the archive should be created. If not
specified, the current position of the tape device is
used.

-t Creates an archive on a tape device. The archive
operand (see OPERANDS) is assumed to be the name
of the tape device.

The following options are used for archive identification:

-a author Provides an author name for the archive identification
section. If you do not specify -a, no author name is
included in the identification section.

-e descr Is the description to be included in the archive as the
value of the content_description archive
identification key. This option is incompatible with -E.

-E descr_file Is the description to be used as the value of the archive
identification content_description key as
retrieved from the file descr_file. This option is
incompatible with -e.

-i date By default, the value for the creation_date field in
the identification section is generated automatically,
based on the current system time and date. If you
specify the -i option, date is used instead.

-m master By default, the value for the creation_master field
in the identification section is the name of the system
on which you run flarcreate, as reported by uname
-n. If you specify -m, master is used instead.

flarcreate(1MCM)

Change Manager System Administration Commands 29

-T type Is the content type included in the archive as the value
of the content_type archive identification key. If you
do not specify -T, the content_type keyword is not
included.

The following operand is supported:

archive Path to tape device if the -t option was used.
Otherwise, the complete path name of a flash archive.
A file containing a flash archive has a standard file
extension of .flar.

The following exit values are returned:

0 Successful completion.

0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWinst

compress(1), flar(1MCM), flash_archive(4CM), attributes(5)

flarcreate(1MCM)

OPERANDS

EXIT STATUS

ATTRIBUTES

SEE ALSO

30 Sun Management Center Change Manager 1.0.1 Reference Manual • Last Revised 30 April 2003

Change Manager File Formats

31

bart_manifest – system audit manifest file

The bart(1MCM) command generates a manifest that describes the contents of a
managed host. A manifest consists of a header and entries. Each entry represents a
single file. Entries are sorted in ascending order by file name. Any nonstandard file
names, such as those that contain embedded newline or tab characters, have the
special characters quoted prior to being sorted. See Quoting Syntax.

Lines that begin with ! supply metadata about the manifest. The manifest version line
indicates the manifest specification version. The date line shows the date on which the
manifest was created, in date(1) form.

Some lines are ignored by the manifest comparison tool. Ignored lines include blank
lines, lines that consist only of white space, and comments that begin with #.

In addition to metadata lines, the header contains the format comment block. This
comment block lists the attributes reported for each file type.

To see the format of an manifest file, see EXAMPLES.

Each manifest file entry is a single line of one of the following forms, depending on
the file type:

fname D size mode acl dirmtime uid gid [xattr xcontents]*
fname P size mode acl mtime uid gid [xattr xcontents]*
fname S size mode acl mtime uid gid [xattr xcontents]*
fname F size mode acl mtime uid gid contents [xattr xcontents]*
fname L size mode acl lnmtime uid gid dest [xattr xcontents]*
fname B size mode acl mtime uid gid devnode [xattr xcontents]*
fname C size mode acl mtime uid gid devnode [xattr xcontents]*

Each entry begins with fname, which is the name of the file. To prevent parsing
problems that are caused by special characters embedded in file names, file names are
encoded as described in Quoting Syntax.

Subsequent fields represent the following file attributes.

type Type of file. Possible values are as follows:

� B for a block device node
� C for a character device node
� D for a directory
� F for a file
� L for a symbolic link
� P for a pipe
� S for a socket

size File size in bytes.

mode Octal number that represents the permissions of the
file.

bart_manifest(4CM)

NAME

DESCRIPTION

Manifest File
Entries

32 Sun Management Center Change Manager 1.0.1 Reference Manual • Last Revised 4 October 2002

acl ACL attributes for the file. For a file with ACL
attributes, this field contains the output from
acltotext().

uid Numerical user ID of the owner of this entry.

gid Numerical group ID of the owner of this entry.

dirmtime, lnmtime, mtime Last modification time, in seconds since 00:00:00 UTC,
January 1, 1970, for directories, links, and other files,
respectively.

contents Checksum value of the file. This attribute is only
specified for regular files. If you turn off context
checking or if checksums cannot be computed, the
value of this field is -.

dest Destination of a symbolic link.

devnode Value of the device node. This attribute is for character
device files and block device files only.

[xattr xcontents]* Zero or more checksum values for files with extended
attributes. The attributes are described in alphabetical
order. If you specify the -n option or the IGNORE
contents directive, the value of xcontents is -.

The rules file supports a quoting syntax for representing nonstandard file names.

When generating an manifest for file names that embed tab, space, or newline
characters, the special characters are encoded in their octal forms.

Input Character Quoted Character

(space) \(space)

(tab) \(tab)

(newline) \(newline)

? \?

[\[

* *

EXAMPLE 1 Sample Manifest Output

The following is a sample system manifest file. The file entries are sorted by the
encoded versions of the file names to correctly handle special characters.

! Version 1.0
! Mon Feb 11 10:55:30 2002
Format:

bart_manifest(4CM)

Quoting Syntax

EXAMPLES

Change Manager File Formats 33

EXAMPLE 1 Sample Manifest Output (Continued)

fname D size mode acl dirmtime uid gid [xattr xcontents]*
fname P size mode acl mtime uid gid [xattr xcontents]*
fname S size mode acl mtime uid gid [xattr xcontents]*
fname F size mode acl mtime uid gid contents [xattr xcontents]*
fname L size mode acl lnmtime uid gid dest [xattr xcontents]*
fname B size mode acl mtime uid gid devnode [xattr xcontents]*
fname C size mode acl mtime uid gid devnode [xattr xcontents]*
/etc D 3584 40755 user::rwx,group::r-x,mask::r-x,other::r-x, 3c6803d7 0 3
/etc/.login F 524 100644 user::rw-,group::r--,mask::r--,other::r--, 3c165878

0 3 27b53d5c3e844af3306f1f12b330b318
/etc/.pwd.lock F 0 100600 user::rw-,group::---,mask::---,other::---, 3c166121

0 0 d41d8cd98f00b204e9800998ecf8427e
/etc/.syslog_door L 20 120777 user::rw-,group::r--,mask::rwx,other::r--,

3c6803d5 0 0 /var/run/syslog_door
/etc/autopush L 16 120777 user::r-x,group::r-x,mask::r-x,other::r-x, 3c165863

0 0 ../sbin/autopush
/etc/cron.d/FIFO P 0 10600 user::rw-,group::---,mask::---,other::---, 3c6803d5

0 0

date(1), bart(1MCM), bart_rules(4CM), attributes(5)

bart_manifest(4CM)

SEE ALSO

34 Sun Management Center Change Manager 1.0.1 Reference Manual • Last Revised 4 October 2002

bart_rules – bart rules file

The rules file is a text file that is used by the bart(1MCM) command. The rules file
determines which files to validate and which file attributes of those files to ignore.

Some lines are ignored by the manifest comparison tool. Ignored lines include blank
lines, lines that consist only of white space, and comments that begin with #.

The rules file supports three directives: CHECK, IGNORE, and a subtree directive, which
is an absolute path name and optional pattern matching modifiers. The rules file uses
the directives to create logical blocks.

The syntax for the rules file is as follows:

[IGNORE attribute...]*
[CHECK] [attribute...]*

subtree1 [pattern...]*
[IGNORE attribute...]*
[CHECK] [attribute...]*

subtree2 [pattern...]*
subtree3 [pattern...]*
subtree4 [pattern...]*
[IGNORE attribute...]*
[CHECK] [attribute...]*
...

Rule blocks are composed of statements that are created by using directives and
arguments. There are three types of blocks.

Global block The first block in the file. The block is considered ‘‘global’’ if it
specifies CHECK and IGNORE statements, but no previous subtree
statement. A global block pertains to all subsequent blocks.

Local block A block that specifies CHECK and IGNORE statements as well as a
subtree directive. The rules in this block pertain to files and
directories found in the specified subtree.

Heir block A block that contains a null CHECK statement, no arguments. This
block inherits the global CHECK statements and IGNORE
statements.

Note – The order in which CHECK and IGNORE statements appear in blocks is
important. The bart command processes CHECK and IGNORE statements in the order
in which they are read, with later statements overriding earlier statements.

Subtree specifications must appear one per line. Each specification must begin with an
absolute path name. Optionally, each specification can be followed by
pattern-matching arguments.

When a file being tracked belongs to more than one subtree directive, bart performs
the following resolution steps:

bart_rules(4CM)

NAME

DESCRIPTION

Syntax

Rule Blocks

Change Manager File Formats 35

� Applies the CHECK and IGNORE statements set in the global block. Note that all
CHECK and IGNORE statements are processed in order.

� Finds the last subtree directive that matches the file.

� Processes the CHECK and IGNORE statements that belong to the last matching
subtree directive. These statements are processed in the order in which they are
read, overriding global settings.

AND Statement

For a given subtree directive, all pattern matching statements are logically ANDed
with the subtree. Patterns have the following syntax:

� Wildcards are permitted for both the subtree and pattern matching statements.

� The exclamation point (!) character represents logical NOT.

� A pattern that terminates with a slash is a subtree. The absence of a slash indicates
that the pattern is not a directory. The subtree itself does not require an end slash.

For example, the following subtree example includes the contents of
/home/nickiso/src except for object files, core files, and all of the SCCS subtrees.
Note that directory names that terminate with .o and directories named core are not
excluded because the patterns specified do not terminate with /.

/home/nickiso/src !*.o !core !SCCS/

CHECK all

OR Statement

Group multiple subtree directives together. Such subtree directives are logically ORed
together.

/home/nickiso/src !*.o !core
/home/nickiso/Mail
/home/nickiso/docs *.sdw
CHECK all

IGNORE mtime lnmtime dirmtime

The files included in the previous example are as follows:

� Everything under /home/nickiso/src except for *.o and core files
� Everything under /home/nickiso/Mail
� All files under /home/nickiso/docs that end in *.sdw

For these files, all attributes are checked except for modification times.

The bart command uses CHECK and IGNORE statements to define which attributes to
track or ignore. Each attribute has an associated keyword.

The attribute keywords are as follows:

� acl
� all

bart_rules(4CM)

Pattern Matching
Statements

File Attributes

36 Sun Management Center Change Manager 1.0.1 Reference Manual • Last Revised 28 January 2003

� contents
� dest
� devnode
� dirmtime
� gid
� lnmtime
� mode
� mtime
� size
� type
� uid
� xattrs

The all keyword refers to all file attributes. See bart_manifest(4CM).

EXAMPLE 1 Sample Rules File

Global rules, track everything except dirmtime.
CHECK all
IGNORE dirmtime

The files in /data* are expected to change, so don’t bother
tracking the attributes expected to change.
Furthermore, by specifying ‘‘IGNORE contents,’’ you save
time and resources.
/data*
IGNORE contents mtime size

/home/nickiso f* bar/
IGNORE acl

For /usr, apply the global rules.
/usr
CHECK

Note: Since /usr/tmp follows the /usr block, the /usr/tmp
subtree is subjected to the ‘‘IGNORE all.’’
/usr/tmp
/home/nickiso *.o
/home/nickiso core
/home/nickiso/proto

IGNORE all

The following files are cataloged based on the sample rules file:

� All attributes, except for dirmtime, mtime, size, and contents, are tracked for
files under the /data* subtrees.

� Files under the /usr subtree, except for /usr/tmp, are cataloged by using the
global rules.

� If the /home/nickiso/foo.c file exists, its attributes, except for acl and
dirmtime, are cataloged.

bart_rules(4CM)

EXAMPLES

Change Manager File Formats 37

EXAMPLE 1 Sample Rules File (Continued)

� All .o and core files under /home/nickiso, as well as the
/home/nickiso/proto and /usr/tmp subtrees, are ignored.

� If the /home/nickiso/bar/foo.o file exists, it is ignored because it is subject to
the last block.

bart(1MCM), bart_manifest(4CM), attributes(5)

bart_rules(4CM)

SEE ALSO

38 Sun Management Center Change Manager 1.0.1 Reference Manual • Last Revised 28 January 2003

cmsp – Sun Management Center Change Manager shared profile

Shared profiles describe how one or more managed hosts are configured with a
software stack. Much of the information described by these profiles is the same as
described in an installation profile.

A shared profile file name must use the .cmsp suffix, for example,
web-server.cmsp.

The shared profile is a set of properties and associated property values, one property
per line. The property format is as follows:

property-name=property-value

Lines that contain only whitespace are ignored. Lines whose first non-whitespace
character is # or ! are comments. The rest of the lines in the shared profile describe
properties.

The property name consists of all the characters in the line starting with the first
non-whitespace character and up to, but not including, the first equals sign (=)
character.

The property value consists of the rest of the line after the equals sign.

If you want a backslash character to appear in the property value, escape the
backslash with another backslash.

The following example shows that the value of the base_config_target_arch
property is sun4u.

base_config_target_arch=sun4u

EXAMPLE 1 Default Shared Profile for Creating One Boot Environment

The following example shared profile uses the default values to create one boot
environment.

#
Example shared profile for a system with one boot environment.
#
This example shared profile assumes a disk that is no smaller than
7 Gbytes in size.
#
You must also specify the following properties with appropriate
values:
#
o base_config_flar_archive
Name of the Solaris Flash archive associated with this
shared profile
o base_config_boot_image
Location of the Solaris boot image associated with the
specified Solaris Flash archive
o base_config_sysidcfg_rootpw

cmsp(4CM)

NAME

DESCRIPTION

EXAMPLES

Change Manager File Formats 39

EXAMPLE 1 Default Shared Profile for Creating One Boot Environment (Continued)

Encrypted root password entry, which can be taken from the
password entry in the /etc/shadow file
o base_config_sysidcfg_timezone
Appropriate time zone value from /usr/share/lib/zoneinfo
#
base_config_target_arch=sun4u
base_config_sysidcfg_nameservice=none
base_config_sysidcfg_networkinterface=primary
base_config_sysidcfg_netmask=255.255.255.0
base_config_sysidcfg_ipv6=no
base_config_sysidcfg_defaultroute=none
base_config_sysidcfg_systemlocale=C
base_config_sysidcfg_terminal=vt100
base_config_sysidcfg_timeserver=localhost
base_config_sysidcfg_security_policy=none
base_config_be_0_root_device=rootdisk.s0
base_config_be_0_root_size=free
base_config_be_0_var_device=rootdisk.s3
base_config_be_0_var_size=1024
base_config_local_swap1_device=rootdisk.s1

base_config_local_swap1_size=2048

EXAMPLE 2 Default Shared Profile for Creating Two Boot Environments

The following example shared profile uses the default values to create two boot
environments.

#
Example shared profile for a system with two boot environments.
#
This example shared profile assumes a disk that is no smaller than
12 Gbytes in size.
#
You must also specify the following properties with appropriate
values:
#
o base_config_flar_archive
Name of the Solaris Flash archive associated with this
shared profile
o base_config_boot_image
Location of the Solaris boot image associated with the
specified Solaris Flash archive
o base_config_sysidcfg_rootpw
Encrypted root password entry, which can be taken from the
password entry in the /etc/shadow file
o base_config_sysidcfg_timezone
Appropriate time zone value from /usr/share/lib/zoneinfo
#
base_config_target_arch=sun4u
base_config_sysidcfg_nameservice=none
base_config_sysidcfg_networkinterface=primary
base_config_sysidcfg_netmask=255.255.255.0
base_config_sysidcfg_ipv6=no

cmsp(4CM)

40 Sun Management Center Change Manager 1.0.1 Reference Manual • Last Revised 10 October 2002

EXAMPLE 2 Default Shared Profile for Creating Two Boot Environments (Continued)

base_config_sysidcfg_defaultroute=none
base_config_sysidcfg_systemlocale=C
base_config_sysidcfg_terminal=vt100
base_config_sysidcfg_timeserver=localhost
base_config_sysidcfg_security_policy=none
base_config_be_0_root_device=rootdisk.s0
base_config_be_0_root_size=free
base_config_be_0_var_device=rootdisk.s3
base_config_be_0_var_size=1024
base_config_be_1_root_device=rootdisk.s4
base_config_be_1_root_size=4096
base_config_be_1_var_device=rootdisk.s5
base_config_be_1_var_size=1024
base_config_local_swap1_device=rootdisk.s1

base_config_local_swap1_size=2048

Sun Management Center Change Manager 1.0.1 Administration Guide

cmsp(4CM)

SEE ALSO

Change Manager File Formats 41

flash_archive – format of flash archive

flash_archive

A flash archive is an easily transportable version of a reference configuration of the
Solaris operating environment, plus other optional software. Such an archive is used
for the rapid installation of the Solaris software on large numbers of machines. The
machine that contains a flash archive is referred to as a master system. A machine that
receives a copy of a flash archive is called a clone system.

An archive is used for initial installation or whenever a complete, fresh installation is
required. An archive contains all of the files from a master and overwrites the installed
software on a clone completely.

You create a flash archive with the flar(1MCM) command or the
flarcreate(1MCM) command. You view information about a given flash archive
with flar. The flar command also enables you to split or combine the sections of a
flash archive.

Flash archives are monolithic files that contain the following:

� Archive identification information

� Files that have been copied from a master system and that will be extracted onto a
clone system

The standard extension for a file that contains a flash archive is .flar.

The flash archive is laid out in the following sections:

� Archive cookie
� Archive identification
� Predeployment
� Postdeployment
� Reboot
� Summary
� User-defined (optional)
� Archive files

The only assumptions that an application processing the archive can make about
section number and placement is that there is an identification section located
immediately after the archive cookie and that the last section in the archive is an
archive files section.

These sections are described in the following subsections.

The very beginning of the archive contains a cookie, which serves to identify the file as
a flash archive. It is also used by the deployment code for identification and validation
purposes.

flash_archive(4CM)

NAME

SYNOPSIS

DESCRIPTION

Archive Cookie
Section

42 Sun Management Center Change Manager 1.0.1 Reference Manual • Last Revised 25 April 2003

The case-sensitive, newline-terminated cookie that identifies version 1.n flash archives,
is FlAsH-aRcHiVe-1.n, where n is an integer in the range 0 through 9.

The archive version is designed to allow for the future evolution of the flash archive
specification while allowing applications that process flash archives to determine
whether specific archives are of a format that can be handled correctly. The archive
version is a number of the form x.y, where x is the major version number, and y is the
minor version number.

When an application encounters a flash archive with an unknown major version
number, it should issue an error message and exit.

The archive identification section is plain text, delimited with newline characters. It is
composed of a series of keyword and value pairs, with one pair allowed per line.
Keywords and values are separated by a single equal sign. There are no limits to the
length of individual lines. Binary data to be included as the value to a keyword is
base64 encoded. The keywords themselves are case-insensitive. The case-sensitivity of
the values is determined by the definition of the keyword, though most are
case-insensitive.

The global order of the keywords within the identification section is undefined, except
for the section boundary keywords. The identification section must begin with
section_begin=ident and must end with section_end=ident.

In addition to the keywords defined for the flash archive and enumerated in the
following table, users can define their own. These user-defined keywords are ignored
by the flash mechanisms, but can be used by user-provided scripts or programs that
process the identification section. User-defined keywords must begin with X, and
contain characters other than linefeeds, equal signs, and null characters. For example,
X-department is a valid user-defined keyword. department, which lacks the X-
prefix, is not. Suggested naming conventions for user-defined keywords include the
underscore-delimited descriptive method used for the pre-defined keywords, or a
federated convention similar to that used to name Java packages.

Applications that process the identification section will process unrecognized
non-user-defined keywords differently, depending on whether the archive version is
known. If the application recognizes the archive specification version, it will reject any
unrecognized non-user-defined keyword. If the application does not recognize the
specification version, that is, if the minor version number is higher than the highest
minor version it knows how to process, unrecognized non-user-defined keywords will
be ignored. These ignored keywords are reported to the user by means of a non-fatal
warning message.

Following are the keywords defined for this version of the Flash archive specification.

flash_archive(4CM)

Archive
Identification

Section

Change Manager File Formats 43

Keyword Type of Value Required

section_begin Text Yes

section_end Text Yes

archive_id Text No

files_archived_method Text No

files_compressed_method Text No

files_archived_size Numeric No

files_unarchived_size Numeric No

creation_date Text No

creation_master Text No

content_name Text Yes

content_type Text No

content_description Text No

content_author Text No

content_architectures Text list No

creation_node Text No

creation_hardware_class Text No

creation_platform Text No

creation_processor Text No

creation_release Text No

creation_os_name Text No

creation_os_version Text No

Future versions of the identification section might define additional keywords. The
only guarantee regarding the new keywords is that they will not intrude upon the
user-defined keyword namespace as shown previously.

Following is an example identification section:

section_begin=identification
files_archived_method=cpio
files_compressed_method=compress
files_archived_size=259323342
files_unarchived_size=591238111
creation_date=20000131221409
creation_master=pumbaa
content_name=Finance Print Server

flash_archive(4CM)

44 Sun Management Center Change Manager 1.0.1 Reference Manual • Last Revised 25 April 2003

content_type=server
content_description=Solaris 8 Print Server
content_author=Mighty Matt
content_architectures=sun4u
creation_node=pumbaa
creation_hardware_class=sun4u
creation_platform=SUNW,Sun-Fire
creation_processor=sparc
creation_release=5.9
creation_os_name=SunOS
creation_os_version=s81_49
x-department=Internal Finance

section_end=identification

Following are descriptions of the identification section keywords:

section_begin
section_end

These keywords are used to delimit sections in the archive and are not limited
exclusively to the identification section. For example, the archive files section includes
a section_begin keyword, though with a different value. User-defined archive
sections will be delimited by section_begin and section_end keywords, with
values appropriate to each section. The currently defined section names are given in
the following table. User-defined names should follow the same convention as
user-defined identification sections, with the additional restriction that they not
contain forward slashes (/).

Section Boundary

Identification identification

Archive files archive

Archive cookie cookie

Note that while the archive cookie does not use section boundaries, and thus has no
need for a section name within the archive itself, the flar(1MCM) command uses
section names when splitting the archive, and thus requires a section name for the
archive cookie. The name cookie is reserved for that purpose.

The following keywords, used in the archive identification section, describe the
contents of the archive files section.

archive_id
This optional keyword uniquely describes the contents of the archive. It is computed
as a unique hash value of the bytes representing the archive. Currently this value is
represented as an ASCII hexadecimal 128-bit MD5 hash of the archive contents.
This value is used by the installation software only to validate the contents of the
archive during archive installation.

flash_archive(4CM)

Change Manager File Formats 45

If the keyword is present, the hash value is recomputed during extraction based on
the contents of the archive being extracted. If the recomputed value does not match
the stored value in the identification section, the archive is deemed corrupt, and
appropriate actions can be taken by the application.

If the keyword is not present, no integrity check is performed.

files_archived_method
This keyword describes the archive method used in the files section. If this keyword
is not present, the files section is assumed to be in CPIO format with ASCII headers
(the -c option to cpio). If the keyword is present, it can have the following value:

cpio The archive format in the files section is CPIO with
ASCII headers.

The compression method indicated by the files_compressed_method keyword
(if present) is applied to the archive file created by the archive method.

The introduction of additional archive methods will require a change in the major
archive specification version number, as applications aware only of cpio will be
unable to extract archives that use other archive methods.

files_compressed_method
This keyword describes the compression algorithm (if any) used on the files section.
If this keyword is not present, the files section is assumed to be uncompressed. If
the keyword is present, it can have one of the following values:

none The files section is not compressed.

compress The files section is compressed using compress(1).

The compression method indicated by this keyword is applied to the archive file
created by the archive method indicated by the value of the
files_archived_method keyword (if any). gzip compression of the flash
archive is not currently supported, as the gzip decompression program is not
included in the standard miniroot.

Introduction of an additional compression algorithm would require a change in the
major archive specification version number, as applications aware only of the above
methods will be unable to extract archives that use other compression algorithms.

files_archived_size
The value associated with this keyword is the size of the archived files section, in
bytes. This value is used by the deployment software only to give extraction
progress information to the user. While the deployment software can easily
determine the size of the archived files section prior to extraction, it cannot do so in
the case of archive retrieval via a stream. To determine the compressed size when
extracting from a stream, the extraction software would have to read the stream
twice. This double read would result in an unacceptable performance penalty
compared to the value of the information gathered.

flash_archive(4CM)

46 Sun Management Center Change Manager 1.0.1 Reference Manual • Last Revised 25 April 2003

If the keyword is present, the value is used only for the provision of status
information. Because this keyword is only advisory, deployment software must be
able to handle extraction of archives for which the actual file section size does not
match the size given in files_archive_size.

If files_archive_size is not present and the archive is being read from a
stream device that does not allow the prior determination of size information, such
as a tape drive, completion status information will not be generated. If the keyword
is not present and the archive is being read from a random-access device such as a
mounted file system, or from a stream that provides size information, the
compressed size will be generated dynamically and used for the provision of status
information.

files_unarchived_size
This keyword defines the cumulative size in bytes of the extracted archive. The
value is used for file system size verification. The following verification methods
are possible using this approach:

No checking If the files_unarchived_size keyword is
absent, no checking for space will be performed.

Aggregate checking If the files_unarchived_size keyword is
present and the associated value is an integer, the
integer will be compared against the aggregate free
space created by the requested file system
configuration.

The following keywords provide descriptive information about the archive as a whole.
They are generally used to assist the user in archive selection and to aid in archive
management. These keywords are all optional and are used by the deployment
programs only to assist the user in distinguishing between individual archives.

creation_date
The value of the creation_date keyword is a textual timestamp representing the
time of creation for the archive. The value of this keyword can be overridden at
archive creation time through flarcreate(1MCM). The timestamp must be in
ISO-8601 complete basic calendar format without the time designator (ISO-8601,
§5.4.1(a)) as follows:

CCYYMMDDhhmmss

For example:

20000131221409

(January 31st, 2000 10:14:09pm)

The date and time included in the value should be in GMT.

creation_master
The value of the creation_master keyword is the name of the master machine
used to create the archive. The value can be overridden at archive creation time.

flash_archive(4CM)

Change Manager File Formats 47

content_name
The value of the content_name keyword should describe the archive’s function
and purpose. It is similar to the NAME parameter found in Solaris packages.

The value of the content_name keyword is used by the deployment utilities to
identify the archive and can be presented to the user during the archive selection
process, the extraction process, or both. The value must be no longer than 256
characters.

content_type
The value of this keyword specifies a category for the archive. This category is
defined by the user and is used by deployment software for display purposes. This
keyword is the flash analog of the Solaris packaging CATEGORY keyword.

content_description
The value of this keyword is used to provide the user with a description of what
the archive contains and should build on the description provided in
content_name. In this respect, content_description is analogous to the DESC
keyword used in Solaris packages.

There is no length limit to the value of content_description. To facilitate
display, the value can contain escaped newline characters. As in C, the escaped
newline takes the form of \n. Due to the escaped newline, backlashes must be
included as \\. The description is displayed in a non-proportional font, with at
least 40 characters available per line. Lines too long for display are wrapped.

content_author
The value of this keyword is a user-defined string identifying the creator of the
archive. Suggested values include the full name of the creator, the creator’s email
address, or both.

content_architectures
The value of this keyword is a comma-delimited list of the kernel architectures
supported by the given archive. The value of this keyword is generated at archive
creation time, and can be overridden by the user at that time. If this keyword is
present in the archive, the extraction mechanism validates the kernel architecture of
the clone system with the list of architectures supported by the archive. The
extraction fails if the kernel architecture of the clone is not supported by the
archive. If the keyword is not present, no architecture validation is performed.

The following keywords have default values that are filled in by uname(2) at the time
the flash archive is created. If you create a flash archive in which the root directory is
not /, the flash archive software inserts the string UNKNOWN for all of the creation_*
keywords except creation_node, creation_release, and creation_os_name.
For creation_node, the flash software uses the contents of the nodename(4) file. For
creation_release and creation_os_name, the flash software attempts to use the
contents of <root_directory>/var/sadm/system/admin/INST_RELEASE. If it is
unsuccessful in reading this file, it assigns the value UNKNOWN.

Regardless of its source, you cannot override the value of a keyword that is filled in by
uname.

flash_archive(4CM)

48 Sun Management Center Change Manager 1.0.1 Reference Manual • Last Revised 25 April 2003

creation_node
The return from uname -n.

creation_hardware_class
The return from uname -m.

creation_platform
The return from uname -i.

creation_processor
The return from uname -p.

creation_release
The return from uname -r.

creation_os_name
The return from uname -s.

creation_os_version
The return from uname -v.

Contain internal information that the flash software uses before and after deploying an
operating environment image. These sections are for the exclusive use of the flash
software.

Contains a summary of archive creation. This section records the activities of
predeployment and postdeployment scripts.

Following the identification section can be zero or more user-defined sections. These
sections are not processed by the archive extraction code and can be used for any
purpose.

User-defined sections must be line-oriented, terminated with newline (ASCII 0x0a)
characters. There is no limit on the length of individual lines. If binary data is to be
included in a user-defined section, it should be encoded using base64 or a similar
algorithm.

The archive files section contains the files gathered from the master system. While the
length of this section should be the same as the value of the files_archived_size
keyword in the identification section, you should not assume that these two values are
equal. This section begins with section_begin=archive, but it does not have an
ending section boundary.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWinst

compress(1), cpio(1), flar(1MCM), flarcreate(1MCM), md5(3EXT),
attributes(5)

flash_archive(4CM)

Predeployment,
Postdeployment,

and Reboot
Sections

Summary Section

User-Defined
Sections

Archive Files
Section

ATTRIBUTES

SEE ALSO

Change Manager File Formats 49

ichange.cfg – Sun Management Center Change Manager configuration file

You can change the behavior of the Change Manager application by modifying certain
runtime parameters. These parameters are stored in the application configuration file,
ichange.cfg. The configuration file is located in the /var/opt/SUNWsymon/cfg
directory.

Note – When you make changes to the ichange.cfg file, you must restart the Sun
Management Center services before the changes can take effect.

Restart the Sun Management Center services by running the following command as
superuser:

/opt/SUNWsymon/sbin/es-stop -S

/opt/SUNWsymon/sbin/es-start -S

The cmdataroot parameter specifies the location of the Change Manager file
hierarchy. cmdataroot points to the root of the Change Manager file hierarchy.

You might want to change the value of this parameter if you are moving the Change
Manager repository to a different location.

The default value is the /var/opt/ichange directory.

This is the Sun Management Center agent parameter:

agentport Sun Management Center agent port to be used. Any update or
reinstallation operations in which host parameters do not explicitly
specify a value for the agent port will use this one.

The default value is 161.

The following parameters describe job execution characteristics:

boottimeout Interval to wait for a reboot, update, or reinstallation to complete.
This is equivalent to the time it takes for the following events to
occur:

� Complete the entire software installation, including any finish
scripts

� The subsequent reboot to return
� Any boot-time startup procedures to run
� The Sun Management Center agent to reestablish

communications with the management server

If the host does not reboot and reestablish agent communications
with the Sun Management Center server within the specified time
period, the associated management operation will fail with a
timeout error.

You might need to change this value if any of the following are
true:

ichange.cfg(4CM)

NAME

DESCRIPTION

File Location
Parameter

Sun Management
Center Agent

Parameter

Job Execution
Parameters

50 Sun Management Center Change Manager 1.0.1 Reference Manual • Last Revised 10 October 2002

� A managed host takes an unusually long time to boot.
� Your Sun Management Center topology requires a long time to

establish server context for a newly configured agent.
� A particular software stack takes a long time to install.
� Finish and startup scripts take a long time to complete.

The default value is 1800000 milliseconds (30 minutes).

downtimeout Amount of time to wait for a managed host to shut down after a
management operation has requested a reboot. This is effectively
the time it takes for a system to complete an init 6 sequence.

If the host does not shut itself down within the specified time, the
associated management operation will fail with a timeout error.
Thus, you might need to adjust this value if a host or software
stack takes an unusually long time to complete its shutdown
sequence.

The default value is 300000 milliseconds (5 minutes).

debug Control the printing of debug messages to the Sun Management
Center server console.

The default value is false. To turn on the debugging messages,
change the value to true.

Sun Management Center Change Manager 1.0.1 Administration Guide

ichange.cfg(4CM)

Other Parameters

SEE ALSO

Change Manager File Formats 51

ichange.cfg(4CM)

52 Sun Management Center Change Manager 1.0.1 Reference Manual • Last Revised 10 October 2002

