

Sun Fire V1280/Netra 1280 System Administration Guide

Sun Microsystems, Inc. 4150 Network Circle Santa Clara, CA 95054 U.S.A. 650-960-1300

Part No. 817-0509-10 December 2002, Revision A

Send comments about this document to: docfeedback@sun.com

Copyright 2002 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, AnswerBook2, docs.sun.com, and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and in other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and in other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun[™] Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license agreements.

U.S. Government Rights—Commercial use. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2002 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans le produit qui est décrit dans ce document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés à http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats-Unis et dans les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l'utilisation, la copie, la distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, parquelque moyen que ce soit, sans l'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s'il y ena.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l'Université de Californie. UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, AnswerBook2, docs.sun.com, et Solaris sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits protant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développment du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient une license non exclusive do Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciées de Sun qui mettent en place l'interface d'utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

LA DOCUMENTATION EST FOURNIE "EN L'ÉTAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFAÇON.

Contents

Overview 1 1. System Controller 1 I/O Ports 2 LOM Prompt 3 Solaris Console 4 Environmental Monitoring 4 System Indicator Board 4 Reliability, Availability, and Serviceability (RAS) 6 Reliability 6 Disabling Components or Boards and Power-On Self-Test (POST) 7 Manual Disabling of Components 7 Environmental Monitoring 7 Availability 7 Dynamic Reconfiguration 8 Power Failure 8 System Controller Reboot 8 Host Watchdog 8 Serviceability 8 LEDs 9

Nomenclature 9 System Controller Error Logging 9 System Controller XIR (eXternally Initiated Reset) Support 9

2. Starting and Setting Up the Sun Fire V1280/Netra 1280 11

Installing and Cabling Hardware 12

Using the Power (On/Standby) Switch 13

Powering On and Off 14

Powering On 14

- ▼ Initial Power-On 14
- ▼ Powering On from Standby Mode 14

Bringing the System to Standby Mode 15

After Powering On 18

Setting Up the System 19

- ▼ To Set the Date and Time 19
- ▼ To Set Up the Password 20
- ▼ To Configure Network Parameters 20

Installing and Booting the Solaris Operating Environment 22

- ▼ To Install and Boot the Solaris Operating Environment 22
- ▼ To Install the Lights Out Management Packages 23
 - ▼ To Install the LOM Drivers 23
 - ▼ To Install the LOM Utility 25
 - ▼ To Install the LOM Manual Pages 27

Resetting the System 27

- ▼ To Forcibly Reset the System 27
- ▼ To Reset the System Controller 28

3. Console Navigation Procedures 29

Establishing a LOM/Console Connection 30

Accessing the LOM/Console Using the Serial Port 30

- ▼ To Connect to an ASCII Terminal 30
- ▼ To Connect to a Network Terminal Server 32
- ▼ To Connect to Serial Port B of a Workstation 33
- ▼ To Access the LOM/Console Using the Telnet Command 35
- ▼ To Disconnect from the LOM/Console 36

Switching Between the Different Consoles 37

- ▼ To Break to the LOM Prompt 39 Selecting an Escape Sequence 39
- ▼ To Connect to the Solaris Console from the LOM Prompt 39
- ▼ To Break to the LOM Prompt from the OpenBoot PROM 40
- ▼ To Break to the OpenBoot Prompt when Solaris is Running 41
- ▼ To Terminate a Session If You Are Connected To the System Controller Through the Serial Port 41
- ▼ To Terminate a Session If You Are Connected to the System Controller with telnet 42
- 4. System Controller Message Logging 43
- 5. Using Lights Out Management and the System Controller from Solaris 45

LOM Command Syntax 45

Monitoring the System From Solaris 46

Viewing Online LOM Documentation 46

Viewing the LOM Configuration (lom -c) 48

Checking the Status of the Fault LED and Alarms (lom -1) 48

Viewing the Event Log (lom -e) 49

Checking the Fans (lom -f) 50

Checking the Internal Voltage Sensors (lom -v) 50

Checking the Internal Temperature (lom -t) 53

Viewing All Component Status Data and the LOM Configuration Data (lom - a) 54

Other LOM Tasks Performed From Solaris 55

Turning Alarms On and Off (lom -A) 55

Changing the lom> Prompt Escape Sequence (lom -x) 56

Stopping LOM from Sending Reports to the Console When at the LOM Prompt (lom -E off) 56

Upgrading the Firmware (lom -G filename) 57

6. Running POST 59

OpenBoot PROM Variables for POST Configuration 59 Controlling POST With the bootmode Command 63 Controlling the System Controller POST 64

7. Troubleshooting 67

Device Mapping 67

CPU/Memory Mapping 67

IB_SSC Assembly Mapping 69

System Faults 72

Customer Replaceable Units 74

Sun Fire V1280 74

Netra 1280 74

Manual Blacklisting (while waiting for repair) 75

Special Considerations for CPU/Memory Boards 76

Recovering a Hung System 77

▼ To Recover a Hung System Manually 77

Moving System Identity 79

Temperature 79

Power Supplies 82

Displaying Diagnostic Information 82 Assisting Sun Service Personnel in Determining Causes of Failure 83

8. Firmware Upgrade Procedures 85

Using the flashupdate Command 85 flashupdate Command—Examples 87 Using the lom -G Command 88 Examples 89

9. CPU/Memory Board Replacement and Dynamic Reconfiguration (DR) 91

Dynamic Reconfiguration 91 Overview 91 Command Line Interface 91 DR Concepts 92 Quiescence 92 Suspend-Safe and Suspend-Unsafe Devices 92 Attachment Points 93 DR Operations 94 Hot-Plug Hardware 94 Conditions and States 94 Board States and Conditions 95 Board Receptacle States 95 Board Occupant States 95 Board Conditions 96 Component States and Conditions 96 Component Receptacle States 96 96 Component Occupant States Component Conditions 97 Component Types 97

Nonpermanent and Permanent Memory 97 Limitations 98 Memory Interleaving 98 Reconfiguring Permanent Memory 98 Command Line Interface 99 The cfgadm Command 99 Displaying Basic Board Status 99 Displaying Detailed Board Status 100 Command Options 101 Testing Boards and Assemblies 102 ▼ To Test a CPU/Memory Board 102 Installing or Replacing CPU/Memory Boards 104 To Install a New Board 104 ▼ To Hot-Swap a CPU/Memory Board 104 ▼ To Remove a CPU/Memory Board From the System 105 ▼ To Disconnect a CPU/Memory Board Temporarily 106 Troubleshooting 107 Unconfigure Operation Failure 107 CPU/Memory Board Unconfiguration Failures 107 Configure Operation Failure 110 CPU/Memory Board Configuration Failure 110 Error Logging 111 Glossary 113

Index 117

Figures

I/O Ports 2

FIGURE 1-1

FIGURE 1-2	System Indicator Board 5	
FIGURE 2-1	Sun Fire V1280/Netra 1280 System Power (On/Standby) Switch 13	3
FIGURE 3-1	Navigation Procedures 38	
FIGURE 4-1	System Controller Logging 44	

- FIGURE 7-1 Sun Fire V1280/Netra 1280 IB_SSC PCI Physical Slot Designations for IB6 71
- FIGURE 7-2 System Indicators 73
- FIGURE 9-1 Details of the Display for <code>cfgadm -av 101</code>

Tables

- TABLE 1-1 Selected Management Tasks 3
- TABLE 1-2 System Indicator LED Functions 5
- TABLE 6-1 POST Configuration Parameters 60
- TABLE 7-1 CPU and Memory Agent ID Assignment 68
- TABLE 7-2 I/O Assembly Type and Number of Slots 69
- TABLE 7-3 Number and Name of I/O Assemblies per System 69
- TABLE 7-4 I/O Controller Agent ID Assignments 69
- TABLE 7-5 IB_SSC Assembly PCI Device Mapping 70
- TABLE 7-6 System Fault Indicator States 73
- TABLE 7-7 Blacklisting Component Names 75
- TABLE 7-8 Checking Temperature Conditions Using the showenvironment Command 79
- TABLE 9-1 Types of DR Operation 94
- TABLE 9-2 Board Receptacle States 95
- TABLE 9-3 Board Occupant States 96
- TABLE 9-4 Board Conditions 96
- TABLE 9-5 Component Occupant States 97
- TABLE 9-6 Component Conditions 97
- TABLE 9-7 Component Types 97
- TABLE 9-8 DR Board States from the System Controller (SC) 99
- TABLE 9-9cfgadm -cCommand Options102

- TABLE 9-10 cfgadm -x Command Options 102
- TABLE 9-11 Diagnostic Levels 103

Code Samples

CODE EXAMPLE 2-1	Hardware Reset Output from the System Controller 18
CODE EXAMPLE 2-2	Output From the setupnetwork Command 21
CODE EXAMPLE 2-3	Installing the LOM Drivers 23
CODE EXAMPLE 2-4	Installing the LOM Utility 25
CODE EXAMPLE 2-5	Installing the LOM Manual Pages 27
CODE EXAMPLE 5-1	Sample Output from the lom $-c$ Command 48
CODE EXAMPLE 5-2	Sample Output from the lom -1 Command 48
CODE EXAMPLE 5-3	Sample LOM Event Log (Oldest Event Reported First) 49
CODE EXAMPLE 5-4	Sample Output from the lom $-f$ Command 50
CODE EXAMPLE 5-5	Sample Output from the lom $-v$ Command 50
CODE EXAMPLE 5-6	Sample Output from the lom -t Command 53
CODE EXAMPLE 6-1	POST Output Using max Setting 62
CODE EXAMPLE 6-2	Setting SCPOST Diagnostic Level to min 64
CODE EXAMPLE 6-3	SCPOST Output with Diagnostic Level Set to min 65
CODE EXAMPLE 8-1	Downloading the sgpci.flash Image 89
CODE EXAMPLE 8-2	Downloading the sgcpu.flash Image 89
CODE EXAMPLE 9-1	Output of the Basic cfgadm Command 100
CODE EXAMPLE 9-2	Output of the <code>cfgadm -av</code> Command 100

Preface

This book presents a step-by-step description on how to power on and customize the platform setup.

This book describes information on system controller security, software steps to power off the system, how to perform firmware updates, how to remove and replace system boards (CPU/Memory boards and I/O assemblies), PCI cards, plus the software steps needed to remove the System Controller and Repeater boards, troubleshooting, and a glossary of technical terms.

How This Book Is Organized

Chapter 1 describes the system controller, and explains board states, describes redundant system components, minimum system configurations, and reliability, serviceability, and availability.

Chapter 2 describes how to power on and set up the system for the first time.

Chapter 3 describes how to navigate within the system controller.

Chapter 4 explains System Controller message logging..

Chapter 5 describes how to use the LOM from the Solaris console.

Chapter 6 describes how to run the power-on self-test (POST).

Chapter 7 describes troubleshooting information including LEDs, system faults, displaying diagnostic information, displaying system configuration information, disabling components (blacklisting) and mapping device path names to physical system devices.

Chapter 8 provides information on firmware updates, including how to update the flash PROMs and the procedure for updating the system controller firmware.

Chapter 9 describes Dynamic Reconfiguration and the procedures you can use.

Using UNIX Commands

This book assumes you are experienced with the UNIX[®] operating environment. If you are not experienced with the UNIX operating environment, see one or more of the following for this information:

- AnswerBook2[™] online documentation for the Solaris operating environment.
- Other software documentation that you received with your system.

Typographic Conventions

Typeface	Meaning	Examples	
AaBbCc123	The names of commands, files, and directories; on-screen computer output	s, Edit your .login file. Use 1s -a to list all files. % You have mail.	
AaBbCc123	What you type, when contrasted with on-screen computer output	% su Password:	
AaBbCc123	Book titles, new words or terms, words to be emphasized	Read Chapter 6 in the <i>User's Guide.</i> These are called <i>class</i> options. You <i>must</i> be superuser to do this.	
	Command-line variable; replace with a real name or value	To delete a file, type rm <i>filename</i> .	

Shell Prompts

Shell	Prompt
C shell	machine_name%
C shell superuser	machine_name#
Bourne shell and Korn shell	\$
Bourne shell and Korn shell superuser	#
LOM shell	lom>

Related Documentation

Type of Book	Title	Part Number
Service	Sun Fire V1280/Netra 1280 Service Manual	817-0510
System Controller	Sun Fire V1280/Netra 1280 System Controller Command Reference Manual	817-0511

Accessing Sun Documentation

You can view and print a broad selection of $\mathsf{Sun}^{\mathsf{TM}}$ documentation, including localized versions, at:

http://www.sun.com/documentation

Sun Welcomes Your Comments

Sun is interested in improving its documentation and welcomes your comments and suggestions. You can email your comments to Sun at:

docfeedback@sun.com

Please include the part number of your document, which is on the title page, in the subject line of your email.

CHAPTER 1

Overview

This chapter presents a software overview of the Sun Fire V1280/Netra 1280 system. The objective of this chapter is to provide you with a basic understanding of the features of the Sun Fire V1280/Netra 1280 system.

The procedural overview of how to set up your system, and detailed procedures, is covered in Chapter 2.

System Controller

The System Controller is an embedded system resident on the IB_SSC Assembly which connects to the system baseplane. The system controller is responsible for providing the Lights Out Management (LOM) functions which include power on sequencing, sequencing module power on self tests (POST), environmental monitoring, fault indication and alarms.

The System Controller provides an RS232 serial interface and one 10/100 Ethernet interface. Access to the LOM command line interface and the Solaris/OpenBoot PROM console is shared and obtained through these interfaces.

System Controller functions include:

- Monitoring the system
- Providing the Solaris and OpenBoot PROM consoles
- Providing the virtual TOD (time of day)
- Performing environmental monitoring
- Performing system initialization
- Coordinating POST

The software application running on the System Controller provides a command line interface for you to modify system settings.

I/O Ports

The following ports are on the rear of the system:

- Console serial (RS-232) port (RJ45)
- Reserved serial (RS-232) port (RJ45)
- Two Gigabit Ethernet ports (RJ-45)
- Alarms port (DB15)
- System Controller 10/100 Ethernet port (RJ45)
- UltraSCSI port
- Up to six PCI ports (five 33 MHz, one 66 MHz)

Their locations are shown in FIGURE 1-1.

FIGURE 1-1 I/O Ports

The console serial port and 10/100 Ethernet port can be used to access the System Controller.

Use the console serial port to connect directly to an ASCII terminal or a NTS (network terminal server). Connecting the System Controller board with a serial cable enables you to access the System Controller command line interface with an ASCII terminal or an NTS.

Use the 10/100 Ethernet port to connect the System Controller to the network.

LOM Prompt

The LOM prompt provides the command line interface for the System Controller. It is also the place where console messages are displayed.

The prompt is:

lom>

Some of the system management tasks are shown in TABLE 1-1.

TABLE 1-1	Selected	Management Tasks
-----------	----------	------------------

System Controller Management Tasks	System Controller Commands To Use		
Configuring the System Controller.	password, setescape, seteventreporting, setupnetwork, setupsc		
Configuring the system.	setalarm, setlocator		
Powering boards on and off and powering the system on or off.	poweron, poweroff, reset, shutdown		
Testing the CPU/Memory board.	testboard		
Resetting the System Controller.	resetsc		
Marking components as faulty or OK.	disablecomponent, enablecomponent		
Upgrading firmware.	flashupdate		
Displaying the current System Controller settings.	showescape, showeventreporting, shownetwork, showsc		

System Controller Management Tasks	System Controller Commands To Use		
Displaying the current system state.	showalarm, showboards, showcomponent, showenvironment, showfault, showhostname, showlocator, showlogs, showmodel, showresetstate		
Setting the date, time, and time zone.	setdate		
Displaying the date and time.	showdate		

TABLE 1-1 Selected Management Tasks (Continued)

Solaris Console

If the Solaris operating environment, the OpenBoot PROM, or POST is running, you can access the Solaris console. When you connect to the Solaris console, you will be in one of the following modes of operation:

- Solaris operating environment console (% or # prompts)
- OpenBoot PROM (ok prompt)
- System will be running POST and you can view the POST output.

To switch between these prompts and the LOM prompt, refer to "Switching Between the Different Consoles" on page 37.

Environmental Monitoring

There are sensors that monitor temperature, voltage, and cooling.

The System Controller polls these sensors in a timely manner and makes the environmental data available. If necessary, the System Controller shuts down various components to prevent damage.

For instance, in the case of an overtemperature, the System Controller notifies the Solaris operating environment of the overtemperature and the operating environment takes action. In the case of extreme overtemperature, the System Controller software can shut down the system without first notifying the operating environment.

System Indicator Board

The system indicator board contains the On/Standby switch and indicator LEDs as shown in FIGURE 1-2.

The indicator LEDs function as shown in TABLE 1-2.

TABLE 1-2	System	Indicator	LED	Functions

Name	Colour	Function
Locator [*]	White	Normally off; can be lit by user command
System Fault [*]	Amber	Lights when the LOM detects a fault
System Active [*]	Green	Lights when power is applied to the system
Top Access	Amber	Lights when a fault occurs in a FRU which can only be replaced from the top of the system
UNIX Running	Green	Lights when Solaris is running.
Alarm1 and Alarm2	Green	Light when triggered by events as specified in the LOM
Source A and Source B	Green	Light when the relevant power feeds are present

* This indicator is repeated on the rear of the system.

Reliability, Availability, and Serviceability (RAS)

Reliability, availability, and serviceability (RAS) are features of this system. The descriptions of these features are:

- Reliability is the probability that a system stays operational for a specified time period when operating under normal environmental conditions. Reliability differs from availability in that reliability involves only system failure, whereas availability depends on both failure and recovery.
- Availability, also known as average availability, is the percentage of time that a
 system is available to perform its functions correctly. Availability can be measured
 at the system level or in the context of the availability of a service to an end client.
 The "system availability" is likely to impose an upper limit on the availability of
 any products built on top of that system.
- Serviceability measures the ease and effectiveness of maintenance and system repair for the product. There is no single well-defined metric, because serviceability can include both Mean Time to Repair (MTTR) and diagnosability.

The following sections provide details on RAS. For more hardware-related information on RAS, refer to the *Sun Fire V1280 Service Manual*. For RAS features that involve the Solaris operating environment, refer to the *Sun Hardware Platform Guide*.

Reliability

The software reliability features include:

- Disabling Components or Boards and Power-On Self-Test (POST)
- Manual Disabling of Components
- Environmental Monitoring

The reliability features also improve system availability.

Disabling Components or Boards and Power-On Self-Test (POST)

The power-on self-test (POST) is part of powering on the system. If the board or component failed testing, POST disables components or boards. The showboards command displays the board as either being failed or degraded. The system, running the Solaris operating environment, is booted only with components that have passed POST testing.

Manual Disabling of Components

The system controller provides component-level status and user-controlled disabling of components, which is also referred to as blacklisting.

You can add a faulty component to a blacklist with the disablecomponent command. Components in the blacklist will not be configured. You can remove a component from the blacklist with the enablecomponent command.

The showcomponent command displays status information about the component, including whether or not it has been disabled.

Environmental Monitoring

The System Controller monitors the system's temperature, cooling, and voltage sensors. The System Controller provides the latest environmental status information to the Solaris operating environment and Sun Management Center software for Sun Fire systems. If hardware needs to be powered off, the System Controller notifies the Solaris operating environment to perform a system shutdown.

Availability

The software availability features include:

- Dynamic Reconfiguration.
- Power Failure.
- System Controller Reboot.
- Host Watchdog.

Dynamic Reconfiguration

The following components can be dynamically reconfigured:

- Hard disk drives.
- CPU/Memory boards.
- Power supplies.
- Fans.

Power Failure

On recovery from a power outage, the System Controller attempts to restore the system to its previous state.

System Controller Reboot

The System Controller can be rebooted and will start up and resume management of the system. The reboot does not disturb the currently running Solaris operating environment.

Host Watchdog

The System Controller monitors the state of the Solaris operating environment and will initiate a reset if Solaris stops responding.

Serviceability

The software serviceability features promote the efficiency and timeliness of providing routine as well as emergency service to the system.

- LEDs.
- Nomenclature.
- System Controller error logging.
- System Controller XIR (eXternally Initiated Reset) support.

LEDs

All field-replaceable units (FRUs) that are accessible from outside the system have LEDs that indicate their state. The System Controller manages all the LEDs in the system, with the exception of the power supply LEDs, which are managed by the power supplies. For a discussion of LED functions, refer to the appropriate board or device chapter of the *Sun Fire V1280/Netra 1280 Service Manual*.

Nomenclature

The System Controller, the Solaris operating environment, the power-on self-test (POST), and the OpenBoot PROM error messages use FRU name identifiers that match the physical labels in the system. The only exception is the OpenBoot PROM nomenclature used for I/O devices, which use the device path names as described in Chapter 7, to indicate I/O devices during device probing.

System Controller Error Logging

System Controller error messages are automatically notified to the Solaris operating environment. The System Controller also has an internal buffer where error messages are stored. You can display the System Controller logged events, stored in the System Controller message buffer, by using the showlogs command.

System Controller XIR (eXternally Initiated Reset) Support

The System Controller reset command enables you to recover from a hung system and extract a Solaris operating environment core file. .

Starting and Setting Up the Sun Fire V1280/Netra 1280

This chapter describes how to power on your system using the System Controller command line interface (LOM prompt), how to set up the System Controller using the setupnetwork command, and how to boot the Solaris operating environment.

This chapter contains the following topics:

- "Installing and Cabling Hardware" on page 12
- "Using the Power (On/Standby) Switch" on page 13
- "Powering On and Off" on page 14
- "Setting Up the System" on page 19
- "Installing and Booting the Solaris Operating Environment" on page 22
- "Resetting the System" on page 27

The list below summarizes the major steps you must perform to power on and set up the system, which are explained using step-by-step procedures.

- 1. Install and cable the hardware.
- 2. Apply external power to the hardware.
- 3. Set the date and time for the system.
- 4. Set the password for the System Controller.
- 5. Set up system-specific parameters with the setupnetwork command.
- 6. Power on all hardware with the poweron command.
- 7. If the Solaris operating environment is not pre-installed, install it.
- 8. Boot the Solaris operating environment.
- 9. Install the Lights Out Management packages from the Solaris Supplementary CD.

Installing and Cabling Hardware

1. Connect a terminal to the System Controller board serial port.

Refer to FIGURE 1-1.

2. Set up the terminal to use the same baud rate as the serial port.

The serial port settings of the System Controller board are:

- 9600 8N1:
 - 9600 baud
 - 8 data bits
 - No parity
 - 1 stop bit

More details can be found in the Sun Fire V1280 Site Preparation and Installation Guide.

Using the Power (On/Standby) Switch

Caution – The power switch is not an On/Off switch, it is an On/Standby switch. It does not isolate the equipment.

The power (On/Standby) switch of the Sun Fire V1280/Netra 1280 system is a rocker type, momentary action switch. It controls only low voltage signals and no high voltage circuits pass through it.

FIGURE 2-1 Sun Fire V1280/Netra 1280 System Power (On/Standby) Switch

The symbols on the switch are:

l On

 Press and release to power on the server. This is the equivalent of the LOM power on command.

() Standby

- Press for less than four seconds to initiate an orderly shutdown of the system into Standby mode. This is equivalent to issuing the shutdown command at the lom> prompt. This is the method to use under normal operation.
- Press and hold down for more than four seconds to perform a system power down to standby mode. This is equivalent to issuing the poweroff command at the lom> prompt. This process is not interruptible. You should ensure that Solaris is cleanly shut down before powering a system to standby mode otherwise data is at risk of being lost. The recommended method of powering down to standby is by using the shutdown command at the LOM prompt.

Use the LOM setupsc command to prevent accidental operation of the On/Standby switch.

Powering On and Off

Powering On

Initial Power-On

1. Ensure all power cables are connected and external circuit breakers are switched on.

2. The system will enter Standby mode.

The only indicator LEDs to be illuminated on the system indicator board are the Source A and Source B indicators. The IB_SSC assembly Active LED will also be illuminated, but not visible from the front of the system.

▼ Powering On from Standby Mode

Powering the system on from Standby mode can be achieved in either of two ways:

- Operating the On/Standby switch
- Sending the poweron command via the LOM port.

If the auto-boot? variable has been set in the OBP, the system will automatically boot into the Solaris operating environment.

Using the On/Standby Switch

1. Check that power is applied to the system and that it is correctly in Standby mode.

The only indicator LEDs to be illuminated on the system indicator board are the Source A and Source B indicators. The IB_SSC assembly Active LED will also be illuminated, but not visible from the front of the system.

2. Momentarily press the On/Standby switch to the right.

The system will power on completely. The System Active indicator will be illuminated in addition to the Source A and Source B indicators. The system will execute the power on self tests (POST).

• At the lom> prompt, type:

lom>poweron

The System Controller will first power on all the power supplies, followed by the fan tray. Finally the System Controller will power on the system boards. If the value of the OpenBoot PROM variable auto-boot? is true then the system will also boot the Solaris operating environment.

Individual modules can also be powered on using the poweron command. For further details see the *Sun Fire V1280 System Controller Command Reference Manual*.

The System Active indicator will be illuminated in addition to the Source A and Source B indicators. The system will execute the power on self tests (POST).

Note – The poweron all command only powers on individual components; it does not boot Solaris.

Refer to the Sun Fire V1280/Netra 1280 System Controller Command Reference Manual for a full description of the poweron command.

Bringing the System to Standby Mode

This can be achieved in one of five ways:

- Using the UNIX shutdown command.
- Sending the shutdown command via the LOM port
- Sending the shutdown command using the On/Standby switch
- Sending the poweroff command via the LOM port
- Sending the poweroff command using the On/Standby switch

Note – You should ensure that Solaris is cleanly shut down before powering a system to standby mode otherwise data is at risk of being lost.

Using the Solaris shutdown Command

• At the system prompt, type:

shutdown -i5

The system will power off to standby mode. The only indicator LEDs to be illuminated on the system indicator board are the Source A and Source B indicators. The IB_SSC assembly Active LED will also be illuminated, but not visible from the front of the system.

Sending the LOM shutdown Command

Use the LOM shutdown command to perform a clean shutdown of Solaris followed by a power down of all modules and system chassis to standby mode.

Note – If Solaris is running this command will attempt to halt the system cleanly before powering down the system to standby mode, and is the equivalent of the Solaris init 5 command.

At the lom> prompt, type:

lom>**shutdown**

After Solaris has been stopped, the system will power off to standby mode. The only indicator LEDs to be illuminated on the system indicator board are the Source A and Source B indicators. The IB_SSC assembly Active LED will also be illuminated, but not visible from the front of the system.

Refer to the Sun Fire V1280/Netra 1280 System Controller Command Reference Manual for a full description of the LOM shutdown command.

Sending the shutdown Command Using the On/Standby Switch

• Momentarily press the system On/Standby switch to the left.

This initiates an orderly shutdown of the system into Standby mode. This is equivalent to issuing the shutdown command at the lom> prompt.

Sending the LOM poweroff Command

Use the poweroff command when you wish to power down all modules and system chassis to standby mode.

• At the lom> prompt, type:

lom>poweroff

This will abruptly terminate Solaris. Do you want to continue? [no]

Only answer yes if you wish to forcibly power down the system regardless of the state of Solaris. Under normal operation you should use the shutdown command.

Type y to continue or press Return to cancel the command.

The system will power off to standby mode. The only indicator LEDs to be illuminated on the system indicator board are the Source A and Source B indicators. The IB_SSC assembly Active LED will also be illuminated, but not visible from the front of the system.

Refer to the Sun Fire V1280/Netra 1280 System Controller Command Reference Manual for a full description of the poweroff command.

Sending the poweroff Command Using the On/Standby Switch

Only use this method if you wish to forcibly power down the system regardless of the state of Solaris. Under normal operation you should send the shutdown command either from the lom> prompt or from the On/Standby Switch (see "Sending the shutdown Command Using the On/Standby Switch" on page 16).

• Press the On/Standby switch to the left and hold it for at least four seconds.

The system will power down to standby mode. The only indicator LEDs to be illuminated on the system indicator board are the Source A and Source B indicators. The IB_SSC assembly Active LED will also be illuminated, but not visible from the front of the system.

After Powering On

You will see the following output on the System Controller serial port connection:

```
CODE EXAMPLE 2-1 Hardware Reset Output from the System Controller
```

```
Hardware Reset...
@(#) SYSTEM CONTROLLER(SC) POST 23 2002/03/22 18:03
PSR = 0x044010e5
PCR = 0x04004000
Basic sanity checks done.
Skipping POST ...
ERI Device Present
Getting MAC address for SSC1
Using SCC MAC address
MAC address is 0:3:xx:xx:xx:xx
Hostname: some name
Address: xxx.xxx.xxx
Netmask: 255.255.255.0
Attached TCP/IP interface to eri unit 0
Attaching interface lo0...done
Gateway: xxx.xxx.xxx
interrupt: 100 Mbps half duplex link up
          Copyright 2001-2002 Sun Microsystems, Inc. All rights reserved.
          Use is subject to license terms.
Lights Out Management Firmware
RTOS version: 23
ScApp version: 5.13.0007 LW8_build0.7
SC POST diag level: off
The date is Friday, July 19, 2002, 3:48:50 PM BST.
Fri Jul 19 15:48:51 some_name lom: Boot: ScApp 5.13.0007, RTOS 23
Fri Jul 19 15:48:54 some_name lom: SBBC Reset Reason(s): Power On Reset
Fri Jul 19 15:48:54 some_name lom: Initializing the SC SRAM
Fri Jul 19 15:48:59 some_name lom: Caching ID information
Fri Jul 19 15:49:00 some_name lom: Clock Source: 75MHz
Fri Jul 19 15:49:02 some name lom: /NO/PSO: Status is OK
Fri Jul 19 15:49:03 some_name lom: /NO/PS1: Status is OK
Fri Jul 19 15:49:03 some_name lom: Chassis is in single partition mode.
Fri Jul 19 15:49:05 some_name lom: Cold boot detected: recovering active domains
```
CODE EXAMPLE 2-1 Hardware Reset Output from the System Controller (*Continued*)

```
Hardware Reset...
Fri Jul 19 15:49:06 some_name lom: NOTICE: /NO/FTO is powered off
Connected.
```

Setting Up the System

After powering on, you must set up your system using the System Controller setdate and setupnetwork commands described in this chapter.

This section contains the following topics:

- "To Set the Date and Time" on page 19
- "To Configure Network Parameters" on page 20
- "To Install and Boot the Solaris Operating Environment" on page 22

To Set the Date and Time

Note – If your time zone area is using daylight or summer time, this is set automatically.

• Set the date, time, and time zone for the system using the setdate command at the LOM prompt:

The following example shows setting the time zone to Pacific Standard Time (PST) using the offset from Greenwich mean time (GMT), date, and time to Thursday, April 20, 2000 at 18 hours 15 minutes and 10 seconds.

lom>setdate -t GMT-8 042018152000.10

If Solaris is running, use the Solaris date command instead.

For more information on the setdate command, refer to the Sun Fire V1280/Netra 1280 System Controller Command Reference Manual.

▼ To Set Up the Password

- 1. At the LOM prompt, type the System Controller password command.
- 2. At the Enter new password: prompt, type in your password.
- 3. At the Enter new password again: prompt, re-type in your password.

```
lom>password
Enter new password:
Enter new password again:
lom>
```

In the event that your password has been lost or forgotten, contact SunService for advice.

▼ To Configure Network Parameters

The Sun Fire V1280/Netra 1280 system can be administered from the System Controller LOM prompt and from Solaris. There are two ways to access the LOM/Console connection.

- Through the System Controller Serial port connection.
- Through a telnet (network connection) using the 10/100 Ethernet port.

Note – The system can be administered solely through the serial port, but if you want to use the 10/100 Ethernet port it is recommended that a separate secure subnet be used for this connection.

• At the LOM prompt type setupnetwork:

lom>setupnetwork

Note – If you press the Return key after each question, the current value will not be changed.

See the Sun Fire V1280/Netra 1280 System Controller Command Reference Manual for full details of the setupnetwork command. CODE EXAMPLE 2-2 shows an example of the setupnetwork command.

CODE EXAMPLE 2-2 Output From the setupnetwork Command

Use the information in CODE EXAMPLE 2-2 as a guide for the information you need to enter for each parameter value entry.

Installing and Booting the Solaris Operating Environment

To use LOM commands you must install the Lights Out Management 2.0 packages (SUNWlomu, SUNWlomr and SUNWlomm) from the Solaris Supplementary CD.

▼ To Install and Boot the Solaris Operating Environment

1. Access the LOM prompt.

See Chapter 3.

2. Power on the system. Type poweron.

Depending on the setting of the OpenBoot PROM auto-boot? parameter the system will attempt to boot Solaris or will remain at the OpenBoot PROM ok prompt. The default setting is true which will attempt to initiate a Solaris boot. If the setting of auto-boot? is false or there is no bootable Solaris image installed then you will get the OpenBoot PROM ok prompt.

```
lom>poweron
<POST messages displayed here . . . >
    . . .
    . . .
    ok
```

3. If necessary, install the Solaris operating environment.

Refer to your installation documentation, which is available with your Solaris operating environment release.

4. At the ok prompt, boot the Solaris operating environment by typing the OpenBoot PROM boot command:

ok boot [device]

For the optional *device* parameter, see the OpenBoot PROM devalias command, which displays the predefined aliases.

After the Solaris operating environment is booted, the login: prompt is displayed.

```
login:
```

▼ To Install the Lights Out Management Packages

The three LOM packages needed on a Sun Fire V1280/Netra 1280 are SUNWlomu (LOMlite Utilities (usr)), SUNWlomm (LOMlite manual pages), and SUNWlomr (LOM drivers). These are available on the Solaris Supplementary CD.

Note – The latest patches to these packages is available from SunSolve in patch 110208. It is strongly advised that the latest version of patch 110208 is obtained from SunSolve and is installed on the Sun Fire V1280/Netra 1280 to make use of the latest LOM utility updates.

▼ To Install the LOM Drivers

• As root, type:

CODE EXAMPLE 2-3 Installing the LOM Drivers

```
# pkgadd -d . SUNWlomr
Processing package instance <SUNWlomr> from </var/tmp>
LOMlite driver (root)
(sparc) 2.0, REV=2000.08.22.14.14
Copyright 2000 Sun Microsystems, Inc. All rights reserved.
## Executing checkinstall script.
Using </> as the package base directory.
## Processing package information.
## Processing system information.
   9 package pathnames are already properly installed.
## Verifying package dependencies.
## Verifying disk space requirements.
## Checking for conflicts with packages already installed.
## Checking for setuid/setgid programs.
This package contains scripts which will be executed with super-user
permission during the process of installing this package.
Do you want to continue with the installation of \langle SUNW | omr \rangle [y,n,?] y
Installing LOMlite driver (root) as <SUNWlomr>
```

```
CODE EXAMPLE 2-3 Installing the LOM Drivers (Continued)
```

```
## Installing part 1 of 1.
20 blocks
i.drivers (INFO): Starting
i.drivers (INFO): Installing /var/tmp/SUNWlomr/reloc/platform/sun4u/kernel/drv/lom
i.drivers (INFO): Installing /var/tmp/SUNWlomr/reloc/platform/sun4u/kernel/drv/lomp
i.drivers (INFO): Installing /var/tmp/SUNWlomr/reloc/platform/sun4u/kernel/drv/sparcv9/lom
i.drivers (INFO): Installing /var/tmp/SUNWlomr/reloc/platform/sun4u/kernel/drv/sparcv9/lomp
i.drivers (INFO): Installing /var/tmp/SUNWlomr/reloc/platform/sun4u/kernel/drv/sparcv9/lomv
i.drivers (INFO): Identified drivers 'lom lomp lomv'
i.drivers (INFO): Cleaning up old driver 'lom'...
Cleaning up old devlink entry 'type=ddi_pseudo;name=SUNW,lom
                                                                1 om '
i.drivers (INFO): Cleaning up old driver 'lomp'...
Cleaning up old devlink entry 'type=ddi_pseudo;name=lomp
                                                                lomp'
i.drivers (INFO): Cleaning up old driver 'lomv'...
Cleaning up old devlink entry 'type=ddi_pseudo;name=SUNW,lomv
                                                                \M0
type=ddi_pseudo;name=lomv
                               \M0'
i.drivers (INFO): Cleaning up old driver 'lomh' ...
Cleaning up old devlink entry 'type=ddi_pseudo;name=SUNW,lomh lom'
i.drivers (INFO): Adding driver 'lomp'...
 driver = 'lomp'
 aliases = ''
 link = 'lomp'
 spec
       = 'lomp'
Adding devlink entry 'type=ddi_pseudo;name=lomp lomp'
adding driver with aliases '' perm '* 0644 root sys'
devfsadm: driver failed to attach: lomp
Warning: Driver (lomp) successfully added to system but failed to attach
i.drivers (INFO): Adding driver 'lomv'...
 driver = 'lomv'
 aliases = 'SUNW, lomv'
 link = 'SUNW,lomv lomv'
 spec = ' \setminus M0'
Adding devlink entry 'type=ddi_pseudo;name=SUNW,lomv
                                                        \M0'
Adding devlink entry 'type=ddi_pseudo;name=lomv \M0'
adding driver with aliases 'SUNW,lomv' perm '* 0644 root sys'
devfsadm: driver failed to attach: lomv
Warning: Driver (lomv) successfully added to system but failed to attach
i.drivers (INFO): Adding driver 'lom'...
 driver = 'lom'
  aliases = 'SUNW, lomh SUNW, lom'
 link = 'SUNW,lomh SUNW,lom'
 spec = 'lom'
Adding devlink entry 'type=ddi_pseudo;name=SUNW,lomh
                                                        lom'
Adding devlink entry 'type=ddi_pseudo;name=SUNW,lom
                                                        lom'
```

CODE EXAMPLE 2-3 Installing the LOM Drivers (Continued)

```
adding driver with aliases 'SUNW,lomh SUNW,lom' perm '* 0644 root sys'
devfsadm: driver failed to attach: lom
Warning: Driver (lom) successfully added to system but failed to attach
i.drivers (SUCCESS): Finished
[ verifying class <drivers> ]
Installation of <SUNWlomr> was successful.
#
```

Note – The WARNING messages concerning lomp, lomv and lom driver attachment seen during the installation of the SUWNlomr package can be safely ignored since the SUNWlomr package is not used on the Sun Fire V1280/Netra 1280 system. However, the presence of the package is required to allow successful upgrade via future patches.

- ▼ To Install the LOM Utility
 - As root, type:

CODE EXAMPLE 2-4 Installing the LOM Utility

```
# pkgadd -d . SUNWlomu
Processing package instance <SUNWlomu> from
</cdrrom/suppcd_s28u7_multi_s28u7_supp.08al1/Lights_Out_Management_2.0/Product>
LOMlite Utilities (usr)
(sparc) 2.0, REV=2000.08.22.14.14
Copyright 2000 Sun Microsystems, Inc. All rights reserved.
Using </>> as the package base directory.
## Processing package information.
## Processing system information.
   4 package pathnames are already properly installed.
## Verifying package dependencies.
## Verifying disk space requirements.
## Checking for conflicts with packages already installed.
## Checking for setuid/setgid programs.
Installing LOMlite Utilities (usr) as <SUNWlomu>
## Installing part 1 of 1.
1432 blocks
```

```
Installation of <SUNWlomu> was successful.
#
```

▼ To Install the LOM Manual Pages

• As root, type:

CODE EXAMPLE 2-5 Installing the LOM Manual Pages

```
# pkgadd -d . SUNWlomm
Processing package instance <SUNWlomm> from
</cdrom/suppcd_s28u7_multi_s28u7_supp.08al1/Lights_Out_Management_2.0/Product>
LOMlite manual pages
(sparc) 2.0, REV=2000.08.22.14.14
Copyright 2000 Sun Microsystems, Inc. All rights reserved.
Using </> as the package base directory.
## Processing package information.
## Processing system information.
   5 package pathnames are already properly installed.
## Verifying disk space requirements.
## Checking for conflicts with packages already installed.
## Checking for setuid/setgid programs.
Installing LOMlite manual pages as <SUNWlomm>
## Installing part 1 of 1.
71 blocks
Installation of <SUNWlomm> was successful.
```

Resetting the System

The reset command is used to reset the system in the event of a system hang or hardware problem. If Solaris is running then you will be prompted to confirm this action:

```
lom>reset
```

```
This will abruptly terminate Solaris.
Do you want to continue? [no] y
NOTICE: XIR on CPU 3
```

By default, reset uses XIR (externally initiated reset) to reset the CPU processors in the system. The externally initiated reset forces control of the processors into the OpenBoot PROM and begins the OpenBoot PROM's error reset recovery actions. The error reset recovery actions preserve most of the Solaris states to allow the collection of data need for debugging the hardware and software, including a Solaris operating environment core file. After saving the debug information, if the value of the OpenBoot PROM variable auto-boot? is true, the system will boot Solaris. The OpenBoot PROM's error reset recovery actions are controlled by setting the OpenBoot PROM error-reset-recovery configuration variable.

reset is prevented in standby, and the message reset not allowed, domain A keyswitch is set to off is displayed.

Note – If the system is still hung (you cannot log into the Solaris operating environment and typing the break command did not force control of the system back into the OpenBoot PROM ok prompt), after you type the reset command for the first time, you must next type reset -a in order to reset everything.

The reset -a command is equivalent to the OpenBoot PROM reset-all word.

▼ To Reset the System Controller

Use the resetsc command to reset the System Controller. This can be used in the event of a hardware or software problem causing the System Controller Application to malfunction.

```
lom>resetsc
Are you sure you want to reboot the system controller now? [no] y
```

This will cause the System Controller to reset, execute the System Controller POST level specified using the setupsc command and restart the LOM software.

Console Navigation Procedures

This chapter explains step-by-step procedures and provides illustrations for connecting to the system and navigating between the LOM shell and the console. It also explains how to terminate a System Controller session.

Topics covered in this chapter include:

- "Establishing a LOM/Console Connection" on page 30
 - "To Connect to an ASCII Terminal" on page 30
 - "To Connect to a Network Terminal Server" on page 32
 - "To Connect to Serial Port B of a Workstation" on page 33
 - "To Access the LOM/Console Using the Telnet Command" on page 35
- "Switching Between the Different Consoles" on page 37
 - "To Break to the LOM Prompt" on page 39
 - "To Connect to the Solaris Console from the LOM Prompt" on page 39
 - "To Break to the LOM Prompt from the OpenBoot PROM" on page 40
 - "To Break to the OpenBoot Prompt when Solaris is Running" on page 41
 - "To Terminate a Session If You Are Connected To the System Controller Through the Serial Port" on page 41
 - "To Terminate a Session If You Are Connected to the System Controller with telnet" on page 42

Establishing a LOM/Console Connection

There are two ways to access the LOM/Console connection.

- Through the System Controller Serial port connection.
- Through a telnet (network connection) using the 10/100 Ethernet port.

Under normal operation (when Solaris is running or the system is in the OpenBoot PROM) connecting to the LOM/Console will automatically select a connection to the Solaris console, otherwise a connection to the LOM prompt is made.

The LOM prompt is:

lom>

Accessing the LOM/Console Using the Serial Port

With the serial port, you can connect to one of three types of device.

- ASCII terminal
- Network terminal server
- Workstation

Please see the Sun Fire V1280 Site Preparation and Installation Guide for details of how to make the physical connections.

The procedure is different for each type of device.

1. If the LOM password has been set (and the previous connection was logged out) you will be prompted for a password.

Enter Password:

Enter the correct password as previously set up using the password command.

2. If the password is accepted the System Controller indicates that a connection has been made.

If the system is in standby mode the lom prompt is automatically displayed.

Connected. lom>

#

Otherwise type a single carriage return and the Solaris console prompt will be displayed.

```
Connected.
```

3. If a connection to the LOM/console is already established over the network port then you will be offered the opportunity to forcefully connect by logging out the other connection:

```
Enter Password:
The console is already in use.
Host:
          somehost.acme.com
Connected: May 24 10:27
Idle time: 00:23:17
Force logout of other user? (y/n) y
Connected.
lom>
```

Otherwise type a single carriage return and the Solaris console prompt will be displayed.

Connected.

#

▼ To Connect to a Network Terminal Server

- **1.** You will be provided with a menu of various servers to which you can connect. Select the required server.
- 2. If the LOM password has been set (and the previous connection was logged out) you will be prompted for a password.

Enter Password:

Enter the correct password as previously set up using the password command.

3. If the password is accepted the System Controller indicates that a connection has been made.

If the system is in standby mode the lom prompt is automatically displayed.

Connected.

lom>

Otherwise type a single carriage return and the Solaris console prompt will be displayed.

Connected.

#

4. If a connection to the LOM/console is already established over the network port then you will be offered the opportunity to forcefully connect by logging out the other connection:

```
Enter Password:
The console is already in use.
Host: somehost.acme.com
Connected: May 24 10:27
Idle time: 00:23:17
Force logout of other user? (y/n) y
Connected.
lom>
```

Otherwise type a single carriage return and the Solaris console prompt will be displayed.

```
Connected.
```

- To Connect to Serial Port B of a Workstation
- 1. At the Solaris shell prompt type:

tip hardwire

#

See the tip man page for a complete description of the tip command.

2. If the LOM password has been set (and the previous connection was logged out) you will be prompted for a password.

Enter Password:

Enter the correct password as previously set up using the password command.

3. If the password is accepted the System Controller indicates that a connection has been made.

If the system is in standby mode the lom prompt is automatically displayed.

```
Connected.
lom>
```

Otherwise type a single carriage return and the Solaris console prompt will be displayed.

```
Connected.
```

4. If a connection to the LOM/console is already established over the network port then you will be offered the opportunity to forcefully connect by logging out the other connection:

```
Enter Password:

The console is already in use.

Host: somehost.acme.com

Connected: May 24 10:27

Idle time: 00:23:17

Force logout of other user? (y/n) y

Connected.

lom>
```

To Access the LOM/Console Using the Telnet Command

In order to be able to access the LOM/System Controller via telnet to the 10/100 Ethernet port you must first set up the interface.

Refer to "To Configure Network Parameters" on page 20.

1. Type the telnet command at the Solaris prompt to connect to the System Controller.

```
% telnet <system_controller_hostname>
Trying 123.123.123.95...
Connected to interpol-sc.
Escape character is `^]'.
```

2. If the LOM password has been set up you will be prompted for a password.

```
# telnet <system_controller_hostname>
Trying 123.123.123.95...
Connected to interpol-sc.
Escape character is `^]'.
Enter password:
```

- 3. Enter the correct password as previously set up using the password command.
- 4. If the password is accepted the System Controller indicates that a connection has been made.

If the system is in standby mode the lom prompt is automatically displayed.

Connected.

lom>

Otherwise type a single carriage return and the Solaris console prompt will be displayed.

Connected.

#

5. If a connection to the LOM/Console is already established over the serial port then you will be offered the opportunity to forcefully connect by logging out the other connection:

```
# telnet <system_controller_hostname>
Trying 123.123.123.95...
Connected to interpol-sc.
Escape character is `^]'.
The console is already in use.
Host:
          somehost.acme.com
Connected: May 24 10:27
Idle time: 00:23:17
Force logout of other user? (y/n) y
Connected.
lom>
```

In this case you should first use the LOM logout command on the serial connection to make the connection available. Refer to the Sun Fire V1280/Netra 1280 System Controller Command Reference Manual for further details.

▼ To Disconnect from the LOM/Console

When you have finished using the LOM/Console you can disconnect your connection by using the logout command.

On the serial port the response is:

lom>logout Connection closed.

When connected over the network the response is:

```
lom>logout
Connection closed.
Connection to <system controller host> closed by foreign host.
$
```

Switching Between the Different Consoles

The System Controller console connection provides access to the System Controller LOM command line interface or the Solaris/OpenBoot PROM console.

This section describes the procedures how to navigate between the:

- LOM prompt.
- Solaris system console.
- OpenBoot PROM.

These procedures are summarized in FIGURE 3-1

FIGURE 3-1 Navigation Procedures

▼ To Break to the LOM Prompt

• When connected to the Solaris console, typing the *escape sequence* will take the console into the LOM prompt.

By default the escape sequence is set to '#.'. That is, a # sign followed by a period.

For instance, if the escape sequence is the default of **#.** you will see:

lom>

Selecting an Escape Sequence

If you are typing at the console and type the first character of the escape sequence, there is a one second delay before the character appears on the screen. This is because the system waits to see if the next character in the escape sequence is about to be typed. The second character must be typed within this one-second window. If all the characters in the escape sequence are typed then the lom> prompt appears. If the next character to be typed is not the next character in the escape sequence, then the characters belonging to the escape sequence that were typed are output to the screen.

It is recommended that you choose an escape sequence that does not start with a sequence of characters that is frequently typed at the console, otherwise the delay between your striking the keys and the character appearing on the screen may be confusing.

To Connect to the Solaris Console from the LOM Prompt

• To connect to the Solaris console, use the console command from the LOM prompt, then type a carriage return.

If Solaris is running the system will respond with the Solaris prompt:

lom>console # If the system was in the OpenBoot PROM then the system will respond with the OpenBoot PROM prompt:

```
lom>console \{2\} ok
```

If the system is in standby mode, the following message will be generated:

```
lom>console
Solaris is not active
```

- To Break to the LOM Prompt from the OpenBoot PROM
 - The process of moving from the OpenBoot PROM to the LOM prompt is the same as moving from Solaris to the LOM prompt.

Type the sequence of escape characters (default #.).

{2} ok
lom>

- To Break to the OpenBoot Prompt when Solaris is Running
 - When the Solaris operating environment is running the usual effect of sending a break signal to the console is to force entry to the OpenBoot PROM or kernel debugger.

Do this by using the break command from the LOM prompt:

```
lom>break
This will suspend Solaris.
Do you want to continue? [no] y
Type 'go' to resume
debugger entered.
{1} ok
```

- ▼ To Terminate a Session If You Are Connected To the System Controller Through the Serial Port
 - If you are at the Solaris prompt or the OpenBoot PROM go to LOM prompt by typing the escape sequence, then terminate the LOM prompt session by typing logout followed by a single carriage return:

lom>logout

- If you are connected through a terminal server invoke the terminal server's command to disconnect the connection.
- If the connection was established using a tip command then type the tip exit sequence '~.':

~.

- To Terminate a Session If You Are Connected to the System Controller with telnet
 - If you are at the Solaris prompt or the OpenBoot PROM, go to the LOM prompt by typing the escape sequence and terminate the LOM prompt session by using the logout command.

The telnet session will terminate automatically:

```
lom>logout
Connection closed by foreign host. %
```

System Controller Message Logging

The Sun Fire V1280/Netra 1280 System Controller generates timestamped messages for system events, processes such as when powering on, booting, powering off, changes to hot pluggable units, environmental warnings etc.

The messages are initially stored in the System Controller onboard memory in a circular 128-message buffer (note that a single message can span multiple lines). In addition, the System Controller sends the messages to the Solaris host when it is running Solaris, and these are processed by the system log daemon (syslogd). When Solaris is running, messages are sent at the time they are generated by the System Controller. Retrieval of messages not already copied from the System Controller takes place at Solaris boot time or when the System Controller is reset.

The logged messages can be viewed at the System Controller lom> prompt by using the showlogs command. The messages can also be displayed at the Solaris prompt by using the lom(lm) utility (see Chapter 5).

Typically, the messages are stored on the Solaris host in the /var/adm/messages file, the only limiting factor being the available disk space.

Messages that are held in the System Controller core memory are volatile and are not retained if the power is removed from the System Controller by loss of both power sources, less than two power supplies are operational, removal of the IB_SSC, or the System Controller is reset. Messages stored on the system disk are available when Solaris is rebooted.

The display of the messages on the shared Solaris/System Controller console port, when at the lom> prompt is controlled by the seteventreporting command (see the *Sun Fire V1280/Netra 1280 System Controller Command Reference Manual*). This determines whether a message is printed at the lom> prompt at the time the message is logged, and also whether it is posted to the Solaris logging system so that it is written to /var/adm/messages.

FIGURE 4-1 System Controller Logging

Using Lights Out Management and the System Controller from Solaris

This chapter explains how to use the LOM-specific commands available in Solaris for monitoring and managing a Sun Fire V1280/Netra 1280 system. To use these commands you should install the Lights Out Management 2.0 packages (SUNWlomr, SUNWlomu and SUNWlomm) from the Solaris Supplemental CD. Refer to "To Install the Lights Out Management Packages" on page 23 for a description of how to install the LOM packages.

Note – The latest patches to these packages is available from SunSolve in patch 110208. It is strongly advised that the latest version of patch 110208 is obtained from SunSolve and is installed on the Sun Fire V1280/Netra 1280 to make use of the latest LOM utility updates.

The chapter contains the following sections:

- "Monitoring the System From Solaris" on page 46
- "Other LOM Tasks Performed From Solaris" on page 55

LOM Command Syntax

```
lom [-c] [-1] [-f] [-v] [-t] [-a] [-G] [-X]
lom -e <n>, [x]
lom -A on|off <n>
lom -E on|off
```

where:

-c displays LOM configuration.

-1 displays the status of the Fault and Alarms LEDs.

-e displays the event log.

-f displays fan status. This information is also displayed in the output from the Solaris <code>prtdiag -v</code> command.

-v displays the status of the voltage sensors. This information is also displayed in the output from the Solaris prtdiag -v command.

-t displays temperature information. This information is also displayed in the output from the Solaris prtdiag -v command.

- -a displays all component status data.
- -A turns alarms on and off.
- -x changes the escape sequence.
- -E switches event logging to the console on and off.
- -G upgrades the firmware.

Monitoring the System From Solaris

There are two ways of interrogating the LOM device (System Controller) or of sending it commands to perform:

By executing LOM commands from the lom> shell prompt

For information about how to do this, see Chapter 3.

By executing LOM-specific Solaris commands from the UNIX # prompt
 These common do and described in this shorter.

These commands are described in this chapter.

The Solaris commands described in this section, which are all available from the UNIX # prompt, run the /usr/sbin/lom utility.

Where appropriate, the command lines given in this section are accompanied by typical output from the commands.

Viewing Online LOM Documentation

• To view the manual pages for the LOM utility, type:

man lom

Viewing the LOM Configuration (lom -c)

• To view the current LOM configuration, type:

```
CODE EXAMPLE 5-1 Sample Output from the lom -c Command
```

```
# lom -c
LOM configuration settings:
serial escape sequence=#.
serial event reporting=default
Event reporting level=fatal, warning & information
Serial security=disabled
Automatic return to console=disabled
firmware version=13.7
firmware checksum=0000
product revision=0.0
product ID=Netra T12
```

Checking the Status of the Fault LED and Alarms (lom -1)

• To check whether the System Fault LED and alarms are on or off, type:

CODE EXAMPLE 5-2 Sample Output from the lom -1 Command

```
# lom -l
LOM alarm states:
Alarm1=off
Alarm2=off
Alarm3=on
Fault LED=off
#
```

Alarms 1 and 2 are software flags. They are associated with no specific conditions but are available to be set by your own processes or from the command line (see "Turning Alarms On and Off (lom -A)" on page 55). Alarm 3 is UNIX Running and is not user-configurable.

Viewing the Event Log (lom -e)

• To see the event log, type:

lom -e n, [x]

where *n* is the number of reports (up to 128) that you want to see and *x* specifies the level of reports you are interested in. There are four levels of event:

- 1. Fatal events
- 2. Warning events
- 3. Information events
- 4. User events (not used on Sun Fire V1280/Netra 1280 systems)

If you specify a level, you will see reports for that level and above. For example, if you specify level 2, you will see reports of level 2 and level 1 events. If you specify level 3, you will see reports of level 3, level 2, and level 1 events.

If you do not specify a level, you will see reports of level 3, level 2, and level 1 events.

CODE EXAMPLE 5-3 shows a sample event log display.

CODE EXAMPLE 5-3 Sample LOM Event Log (Oldest Event Reported First)

```
# lom -e 11
LOMlite Event Log:
Fri Jul 19 15:16:00 commando-sc lom: Boot: ScApp 5.13.0007, RTOS
23
Fri Jul 19 15:16:06 commando-sc lom: Caching ID information
Fri Jul 19 15:16:08 commando-sc lom: Clock Source: 75MHz
Fri Jul 19 15:16:10 commando-sc lom: /N0/PS0: Status is OK
Fri Jul 19 15:16:11 commando-sc lom: /N0/PS1: Status is OK
Fri Jul 19 15:16:11 commando-sc lom: Chassis is in single
partition mode.
Fri Jul 19 15:27:29 commando-sc lom: Locator OFF
Fri Jul 19 15:27:46 commando-sc lom: Alarm 1 ON
Fri Jul 19 15:27:52 commando-sc lom: Alarm 2 ON
Fri Jul 19 15:28:03 commando-sc lom: Alarm 1 OFF
Fri Jul 19 15:28:08 commando-sc lom: Alarm 2 OFF
```

Checking the Fans (lom -f)

• To check status of the fans, type:

```
CODE EXAMPLE 5-4 Sample Output from the lom -f Command
```

```
# lom -f
Fans:
1 OK speed self-regulating
2 OK speed self-regulating
3 OK speed self-regulating
4 OK speed self-regulating
5 OK speed self-regulating
6 OK speed self-regulating
7 OK speed self-regulating
8 OK speed self-regulating
9 OK speed 100 %
10 OK speed 100 %
#
```

If you need to replace a fan, contact your local Sun sales representative and quote the part number of the component you need. For information, see the *Sun Fire V1280/Netra 1280 Service Manual*.

The information output from this command is also contained in the output from the Solaris prtdiag -v command.

Checking the Internal Voltage Sensors (lom -v)

The -v option displays the status of the Sun Fire V1280/Netra 1280 system internal voltage sensors.

• To check the status of the supply rails and internal voltage sensors, type:

# lom -v				
Supply voltages:				
1 SSC1	v_1.5vdc0	status=ok		
2 SSC1	v_3.3vdc0	status=ok		
3 SSC1	v_5vdc0	status=ok		
4 RP0	v_1.5vdc0	status=ok		
5 RP0	v_3.3vdc0	status=ok		
6 RP2	v_1.5vdc0	status=ok		
7 RP2	v_3.3vdc0	status=ok		

CODE EXAMPLE 5-5 Sample Output from the lom -v Command

CODE EXAMPLE 5-5 Sample Output from the lom -v Command (*Continued*)

8	SB0	v_1.5vdc0	status=ok		
9	SB0	v_3.3vdc0	status=ok		
10	SB0/P0	v_cheetah0	status=ok		
11	SB0/P1	v_cheetah1	status=ok		
12	SB0/P2	v_cheetah2	status=ok		
13	SB0/P3	v_cheetah3	status=ok		
14	SB2	v_1.5vdc0	status=ok		
15	SB2	v_3.3vdc0	status=ok		
16	SB2/P0	v_cheetah0	status=ok		
17	SB2/P1	v_cheetah1	status=ok		
18	SB2/P2	v_cheetah2	status=ok		
19	SB2/P3	v_cheetah3	status=ok		
20	IB6	v_1.5vdc0	status=ok		
21	IB6		status=ok		
22	IB6	v_5vdc0	status=ok		
23	IB6	v_12vdc0	status=ok		
24	IB6	v_3.3vdc1	status=ok		
25	IB6	v_3.3vdc2	status=ok		
26	IB6	v_1.8vdc0	status=ok		
27	IB6		status=ok		
Sys	stem status	flags:			
1	PS0	status=okay			
2	PS1	status=okay			
3	FT0	status=okay			
4	FT0/FAN0	status=okay			
5	FT0/FAN1	status=okay			
6	FT0/FAN2	status=okay			
7	FT0/FAN3	status=okay			
8	FT0/FAN4	status=okay			
9	FT0/FAN5	status=okay			
10	FT0/FAN6	status=okay			
11	FT0/FAN7	status=okay			
12	RP0	status=okay			
13	RP2	status=okav			
14	SB0	status=ok			
15	SB0/P0	status=onlir	ne		
16	SB0/P0/B0/I	00 status=oka	ау		
17	SB0/P0/B0/I	01 status=oka	ay		
18	SB0/P0/B0/I	02 status=oka	ay		
19	SB0/P0/B0/I	03 status=oka	_ ay		
20	SB0/P1	status=onlir	ne		
21	SB0/P1/B0/I	00 status=oka	ay		
22 SB0/P1/B0/D1 status=okay					
23 SB0/P1/B0/D2 status=okay					
24 SB0/P1/B0/D3 status=okay					
25	25 SB0/P2 status=online				
26	SB0/P2/B0/I	00 status=oka	ay		

```
CODE EXAMPLE 5-5 Sample Output from the lom -v Command (Continued)
```

27 SB0/P2/B0/D1 status=okay 28 SB0/P2/B0/D2 status=okay 29 SB0/P2/B0/D3 status=okay 30 SB0/P3 status=online 31 SB0/P3/B0/D0 status=okay 32 SB0/P3/B0/D1 status=okay 33 SB0/P3/B0/D2 status=okay 34 SB0/P3/B0/D3 status=okay 35 SB2 status=ok 36 SB2/P0 status=online 37 SB2/P0/B0/D0 status=okay 38 SB2/P0/B0/D1 status=okay 39 SB2/P0/B0/D2 status=okay 40 SB2/P0/B0/D3 status=okay 41 SB2/P1 status=online 42 SB2/P1/B0/D0 status=okay 43 SB2/P1/B0/D1 status=okay 44 SB2/P1/B0/D2 status=okay 45 SB2/P1/B0/D3 status=okay 46 SB2/P2 status=online 47 SB2/P2/B0/D0 status=okay 48 SB2/P2/B0/D1 status=okay 49 SB2/P2/B0/D2 status=okay 50 SB2/P2/B0/D3 status=okay 51 SB2/P3 status=online 52 SB2/P3/B0/D0 status=okay 53 SB2/P3/B0/D1 status=okay 54 SB2/P3/B0/D2 status=okay 55 SB2/P3/B0/D3 status=okay 56 IB6 status=ok 57 IB6/FAN0 status=okay 58 IB6/FAN1 status=okay #

The information output from this command is also contained in the output from the Solaris prtdiag -v command.

Checking the Internal Temperature (lom -t)

• To check the internal temperature of the system and also the system's warning and shutdown threshold temperatures, type:

# lom -t				
System Temperature Sensors:				
1 SSC1 t_sbbc0	36 degC : warning 102 degC : shutdown 107 degC			
2 SSC1 t_cbh0	45 degC : warning 102 degC : shutdown 107 degC			
3 SSC1 t_ambient0	23 degC : warning 82 degC : shutdown 87 degC			
4 SSC1 t_ambient1	21 degC : warning 82 degC : shutdown 87 degC			
5 SSC1 t_ambient2	28 degC : warning 82 degC : shutdown 87 degC			
6 RP0 t_ambient0	22 degC : warning 82 degC : shutdown 87 degC			
7 RP0 t_ambient1	22 degC : warning 53 degC : shutdown 63 degC			
8 RPO t_sdc0	62 degC : warning 102 degC : shutdown 107 degC			
9 RP0 t_ar0	47 degC : warning 102 degC : shutdown 107 degC			
10 RP0 t_dx0	62 degC : warning 102 degC : shutdown 107 degC			
11 RP0 t_dx1	65 degC : warning 102 degC : shutdown 107 degC			
12 RP2 t_ambient0	23 degC : warning 82 degC : shutdown 87 degC			
13 RP2 t_ambient1	22 degC : warning 53 degC : shutdown 63 degC			
14 RP2 t_sdc0	57 degC : warning 102 degC : shutdown 107 degC			
15 RP2 t_ar0	42 degC : warning 102 degC : shutdown 107 degC			
16 RP2 t_dx0	53 degC : warning 102 degC : shutdown 107 degC			
17 RP2 t_dx1	56 degC : warning 102 degC : shutdown 107 degC			
18 SB0 t_sdc0	48 degC : warning 102 degC : shutdown 107 degC			
19 SB0 t_ar0	39 degC : warning 102 degC : shutdown 107 degC			
20 SB0 t_dx0	49 degC : warning 102 degC : shutdown 107 degC			
21 SB0 t_dx1	54 degC : warning 102 degC : shutdown 107 degC			
22 SB0 t_dx2	57 degC : warning 102 degC : shutdown 107 degC			
23 SB0 t_dx3	53 degC : warning 102 degC : shutdown 107 degC			
24 SB0 t_sbbc0	53 degC : warning 102 degC : shutdown 107 degC			
25 SB0 t_sbbc1	40 degC : warning 102 degC : shutdown 107 degC			
26 SB0/P0 Ambient	29 degC : warning 82 degC : shutdown 87 degC			
27 SB0/P0 Die	57 degC : warning 92 degC : shutdown 97 degC			
28 SB0/P1 Ambient	27 degC : warning 82 degC : shutdown 87 degC			
29 SB0/P1 Die	51 degC : warning 92 degC : shutdown 97 degC			
30 SB0/P2 Ambient	27 degC : warning 82 degC : shutdown 87 degC			
31 SB0/P2 Die	53 degC : warning 92 degC : shutdown 97 degC			
32 SB0/P3 Ambient	29 degC : warning 82 degC : shutdown 87 degC			
33 SB0/P3 Die	50 degC : warning 92 degC : shutdown 97 degC			
34 SB2 t_sdc0	51 degC : warning 102 degC : shutdown 107 degC			
35 SB2 t_ar0	40 degC : warning 102 degC : shutdown 107 degC			
36 SB2 t_dx0	52 degC : warning 102 degC : shutdown 107 degC			
37 SB2 t_dx1	54 degC : warning 102 degC : shutdown 107 degC			
38 SB2 t_dx2	61 degC : warning 102 degC : shutdown 107 degC			

CODE EXAMPLE 5-6 Sample Output from the lom -t Command

39	SB2	t_dx3	53 degC : warning 102 degC : shutdown 107 degC
40	SB2	t_sbbc0	52 degC : warning 102 degC : shutdown 107 degC
41	SB2	t_sbbcl	42 degC : warning 102 degC : shutdown 107 degC
42	SB2/P0	Ambient	27 degC : warning 82 degC : shutdown 87 degC
43	SB2/P0	Die	54 degC : warning 92 degC : shutdown 97 degC
44	SB2/P1	Ambient	26 degC : warning 82 degC : shutdown 87 degC
45	SB2/P1	Die	53 degC : warning 92 degC : shutdown 97 degC
46	SB2/P2	Ambient	27 degC : warning 82 degC : shutdown 87 degC
47	SB2/P2	Die	51 degC : warning 92 degC : shutdown 97 degC
48	SB2/P3	Ambient	27 degC : warning 82 degC : shutdown 87 degC
49	SB2/P3	Die	51 degC : warning 92 degC : shutdown 97 degC
50	IB6	t_ambient0	29 degC : warning 82 degC : shutdown 87 degC
51	IB6	t_ambient1	29 degC : warning 82 degC : shutdown 87 degC
52	IB6	t_sdc0	68 degC : warning 102 degC : shutdown 107 degC
53	IB6	t_ar0	77 degC : warning 102 degC : shutdown 107 degC
54	IB6	t_dx0	76 degC : warning 102 degC : shutdown 107 degC
55	IB6	t_dx1	78 degC : warning 102 degC : shutdown 107 degC
56	IB6	t_sbbc0	51 degC : warning 102 degC : shutdown 107 degC
57	IB6	t_schizo0	48 degC : warning 102 degC : shutdown 107 degC
58	IB6	t_schizol	53 degC : warning 102 degC : shutdown 107 degC

CODE EXAMPLE 5-6 Sample Output from the lom -t Command (*Continued*)

The information output from this command is also contained in the output from the Solaris prtdiag -v command.

Viewing All Component Status Data and the LOM Configuration Data (lom -a)

• To view all LOM status and configuration data, type:

lom -a
Other LOM Tasks Performed From Solaris

This section explains how to:

- Turn the alarm indicators on and off
- Change the LOM escape sequence
- Stop the LOM from sending reports to the console
- Upgrade the firmware

Turning Alarms On and Off (lom -A)

There are two alarms associated with the LOM. They are associated with no specific conditions but are software flags available to be set by your own processes or from the command line.

• To turn an alarm on from the command line, type:

lom -A on, n

where *n* is the number of the alarm you want to set: 1 or 2.

• To turn the alarm off again, type:

lom -A off, n

where *n* is the number of the alarm you want to turn off: 1 or 2.

Changing the lom> Prompt Escape Sequence (lom -X)

The character sequence #. (hash, dot) enables you to escape from Solaris to the lom> prompt.

• To change the default escape sequence, type:

lom - x xy

where *xy* are the alpha-numeric characters you want to use.

Note – Quotes may be required for special characters to be interpreted by the shell.

Note – If you are typing at the console and type the first character of the escape sequence, there is a one second delay before the character appears on the screen. This is because the system waits to see if the next character in the escape sequence is about to be typed. If all the characters in the escape sequence are typed then the lom> prompt appears. If the next character to be typed is not the next character in the escape sequence, then the characters belonging to the escape sequence that were typed are output to the screen.

Stopping LOM from Sending Reports to the Console When at the LOM Prompt (lom -E off)

LOM event reports can interfere with information you are attempting to send or receive on the console.

• To stop the LOM from sending reports to the console, type:

lom -E off

To prevent LOM messages displaying when you are at the LOM prompt, turn off serial event reporting. This is equivalent to the seteventreporting command described in the *Sun Fire V1280/Netra 1280 System Controller Command Reference Manual*.

• To turn serial event reporting on again, type:

lom -E on

Upgrading the Firmware (lom -G filename)

For a full description, refer to Chapter 8.

Running POST

Each of the system boards (CPU/Memory boards and IB_SSC Assembly) contain a flash PROM that provides storage for power-on self-test (POST) diagnostics. POST tests the following:

- CPU chips
- External cache
- Memory
- Bus interconnect
- I/O ASICs
- I/O buses

POST provides several diagnostic levels which can be selected using the OpenBoot PROM variable diag-level. In addition, the bootmode command enables the POST settings to be declared for the next system reboot.

There is a separate POST which runs on the System Controller and which can be controlled using the setupsc command.

OpenBoot PROM Variables for POST Configuration

The OpenBoot PROM enables you to set variables that configure how POST runs. These are described in the *OpenBoot 4.x Command Reference Manual*.

You can use the OpenBoot printenv command to display the current settings:

```
{3} ok printenv diag-level
diag-level init (init)
```

You can use the OpenBoot PROM setenv command to change the current setting of a variable:

```
{1} ok setenv diag-level quick
diag-level=quick
```

For example, you can configure POST to run fastest by using:

```
{1} ok setenv diag-level init
diag-level=init
{1} ok setenv verbosity-level off
verbosity-level=off
```

This has the same effect as using the System Controller command bootmode skipdiag at the LOM prompt. The difference is that by using the OpenBoot command the settings remain permanent until you change them again.

 TABLE 6-1
 POST Configuration Parameters

Parameter	Value	Description
diag-level	init (default value)	Only system board initialization code is run. No testing is done. This is a very fast pass through POST.
	quick	All system board components are tested using few tests with few test patterns.
	max	All system board components are tested with all tests and test patterns, except for memory and Ecache modules. For memory and Ecache modules, all locations are tested with multiple patterns. More extensive, time-consuming algorithms are not run at this level.
	meml	Runs all tests at the default level plus more exhaustive DRAM and SRAM test algorithms.
	mem2	This is the same as mem1 with the addition of a DRAM test that does explicit compare operations of the DRAM data.
verbosity-level	off	No status messages are displayed.
	min (default value)	Test names status messages, and error messages are displayed.
	max	Subtest trace messages are displayed.
error-level	off	No error messages are displayed.
	min	The failing test name is displayed.

Parameter	Value	Description
	max (default value)	All relevant error statuses are displayed.
interleave-scope	within-board (default value)	The memory banks on a system board will be interleaved with each other.
	across-boards	The memory will be interleaved on all memory banks across all of the boards in the system.
interleave-mode	optimal (default value)	The memory is mixed-size interleaving in order to gain optimal performance.
	fixed	The memory is fixed-size interleaving.
	off	There is no memory interleaving.
reboot-on-error	false (default value)	The system will be paused when there is an error.
	true	The system will be rebooted.
use-nvramrc?		This parameter is the same as the OpenBoot PROM nvramrc? parameter. This parameter uses aliases that are stored in nvramrc.
	true	The OpenBoot PROM executes the script stored in nvramrc if this parameter is set to true.
	false (default value)	The OpenBoot PROM does not evaluate the script stored in nvramrc if this parameter is set to false.
auto-boot?		Controls booting of the Solaris operating environment.
	true (default value)	If this value is true, the system boots automatically after POST has run.
	false	If this parameter value is set to false, you will obtain the OpenBoot PROM ok prompt after POST runs, from which you must type a boot command to boot the Solaris operating environment.
error-reset-recovery		Controls the behavior of the system after an externally initiated reset (XIR) as well as a red mode trap.

TABLE 6-1 POST Configuration Parameters (C	Continued)
--	------------

Parameter	Value	Description
	sync (default value)	The OpenBoot PROM invokes sync. A core file is generated. If the invocation returns, the OpenBoot PROM performs a reboot.
	none	The OpenBoot PROM prints a message describing the reset trap that triggered the error reset and passes control to the OpenBoot PROM ok prompt. The message describing the reset trap type is platform specific.
	boot	The OpenBoot PROM firmware reboots the system. A core file is not generated. Rebooting a system occurs using the OpenBoot PROM settings for diag-device or boot- device, depending on the value of the OpenBoot PROM configuration variable diag-switch? If diag-switch? is set to true, the device names in diag-device will be the default for boot. If diag-switch? is set to false, the device names in boot-device will be the default for boot.

 TABLE 6-1
 POST Configuration Parameters (Continued)

The default output from POST will be similar to CODE EXAMPLE 6-1.

CODE EXAMPLE 6-1 POST Output Using max Setting

```
Testing CPU Boards ...
Loading the test table from board SBO PROM 0 ...
{/N0/SB0/P0} Running CPU POR and Set Clocks
{/N0/SB0/P1} Running CPU POR and Set Clocks
{/N0/SB0/P2} Running CPU POR and Set Clocks
{/N0/SB0/P3} Running CPU POR and Set Clocks
{/N0/SB0/P0} @(#) lpost 5.13.0007
                                        2002/07/18 12:45
{/N0/SB0/P2} @(#) lpost 5.13.0007
                                        2002/07/18 12:45
{/N0/SB0/P1} @(#) lpost 5.13.0007
                                        2002/07/18 12:45
{/N0/SB0/P0} Copyright 2001 Sun Microsystems, Inc. All rights reserved.
{/N0/SB0/P0} Subtest: Setting Fireplane Config Registers
{/N0/SB0/P0} Subtest: Display CPU Version, frequency
{/N0/SB0/P0} Version register = 003e0015.21000507
{/N0/SB0/P0} Cpu/System ratio = 6, cpu actual frequency = 900
{/N0/SB0/P1} Copyright 2001 Sun Microsystems, Inc. All rights reserved.
 . . <more POST ouput>
. . .
. .
pci bootbus-controller pci
Probing /ssm@0,0/pci@18,700000 Device 1 Nothing there
Probing /ssm@0,0/pci@18,700000 Device 2 Nothing there
Probing /ssm@0,0/pci@18,700000 Device 3 ide disk cdrom
```

CODE EXAMPLE 6-1 POST Output Using max Setting (Continued)

```
Probing /ssm@0,0/pci@18,600000 Device 1 Nothing there
Probing /ssm@0,0/pci@18,600000 Device 2 scsi disk tape scsi disk tape
pci pci
Probing /ssm@0,0/pci@19,700000 Device 1 Nothing there
Probing /ssm@0,0/pci@19,700000 Device 2 Nothing there
Probing /ssm@0,0/pci@19,700000 Device 3 Nothing there
Probing /ssm@0,0/pci@19,600000 Device 1 network
Probing /ssm@0,0/pci@19,600000 Device 2 network
Sun Fire V1280
OpenFirmware version 5.13.0007 (07/18/02 12:45)
Copyright 2001 Sun Microsystems, Inc. All rights reserved.
SmartFirmware, Copyright (C) 1996-2001. All rights reserved.
16384 MB memory installed, Serial #9537054.
Ethernet address 8:0:xx:xx:xx, Host ID: 80xxxxxx.
NOTICE: obp_main: Extended diagnostics are now switched on.
{0} ok
```

Controlling POST With the bootmode Command

The System Controller bootmode command allows you to specify the boot configuration for the next system reboot only. This removes the necessity for taking the system down to the OpenBoot PROM to make these changes, for instance to the diag-level variable.

For example, use the following command to force the highest level of POST tests to be run prior to the next reboot:

```
lom>shutdown
lom>bootmode diag
lom>poweron
```

To force the lowest level of POST tests to be run prior to the next reboot, use:

lom>shutdown
lom>bootmode skipdiag
lom>poweron

If the system is not rebooted within 10 minutes of the bootmode command being issued, the bootmode setting is returned to normal and the previously-set values of diag-level and verbosity-level are applied.

For a fuller description of these commands, refer to the Sun Fire V1280/Netra 1280 System Controller Command Reference Manual.

Controlling the System Controller POST

The System Controller Power-On Self Test is configured using the LOM setupsc command. This enables the System Controller POST level to be set to off, min or max. For a fuller description of this command, refer to the Sun Fire V1280/Netra 1280 System Controller Command Reference Manual.

System Controller POST output only appears on the System Controller serial connection.

To set the SCPOST diagnostic level default to min:

CODE EXAMPLE 6-2 Setting SCPOST Diagnostic Level to min

```
lom>setupsc
```

```
System Controller Configuration
SC POST diag Level [off]: min
Host Watchdog [enabled]:
Rocker Switch [enabled]:
Secure Mode [off]:
lom>
```

When SCPOST diag-level is set to min you will see the following output on the serial port whenever the System Controller is reset:

CODE EXAMPLE 6-3 SCPOST Output with Diagnostic Level Set to min

```
@(#) SYSTEM CONTROLLER(SC) POST 21 2001/12/11 17:11
PSR = 0x044010e5
PCR = 0x04004000
        SelfTest running at DiagLevel:0x20
SC Boot PROM
                         Test
       BootPROM CheckSum
                                        Test
IU
          Test
        IU instruction set
                                        Test
       Little endian access
                                        Test
FPU
          Test
        FPU instruction set
                                        Test
SparcReferenceMMU
                     Test
        SRMMU TLB RAM
                                        Test
        SRMMU TLB Read miss
                                        Test
        SRMMU page probe
                                        Test
        SRMMU segment probe
                                        Test
        SRMMU region probe
                                        Test
        SRMMU context probe
                                        Test
    . <more SCPOST ouput>
 .
. . .
Local I2C AT24C64
                     Test
        EEPROM
                    Device
                                        Test
        performing eeprom sequential read
Local I2C PCF8591
                     Test
        VOLT AD
                     Device
                                        Test
        channel[00000001] Voltage(0x00000099) :1.49
        channel[0000002] Voltage(0x000009D) :3.37
        channel[0000003] Voltage(0x0000009A) :5.1
        channel[0000004] Voltage(0x0000000) :0.0
Local I2C LM75
                      Test
        TEMP0(IIep) Device
                                        Test
        Temparature : 24.50 Degree(C)
Local I2C LM75
                     Test
       TEMP1(Rio) Device
                                        Test
        Temparature : 23.50 Degree(C)
```

CODE EXAMPLE 6-3 SCPOST Output with Diagnostic Level Set to min (Continued)

Local I2C LM75 Test TEMP2(CBH) Device Test Temparature : 32.0 Degree(C) Local I2C PCF8574 Test Sc CSR Device Test Console Bus Hub Test CBH Register Access Test POST Complete.

Troubleshooting

This chapter provides troubleshooting information for a system administrator. The chapter describes the following topics:

- "System Faults" on page 72
- "Displaying Diagnostic Information" on page 82
- "Assisting Sun Service Personnel in Determining Causes of Failure" on page 83
- "Recovering a Hung System" on page 77

Device Mapping

The physical address represents a physical characteristic that is unique to the device. Examples of physical addresses include the bus address and the slot number. The slot number indicates where the device is installed.

You reference a physical device by the node identifier—Agent ID (AID). The AID ranges from 0 to 31 in decimal notation (0 to 1f in hexadecimal). In the device path beginning with ssm@0, 0 the first number, 0, is the node ID.

CPU/Memory Mapping

CPU/Memory board and memory agent IDs (AIDs) range from 0 to 23 in decimal notation (0 to 17 in hexadecimal). The system can have up to three CPU/Memory boards.

Each CPU/Memory board has four CPUs, depending on your configuration. Each CPU/Memory board has up to four banks of memory. Each bank of memory is controlled by one memory management unit (MMU), which is the CPU. The following code example shows a device tree entry for a CPU and its associated memory:

/ssm@0,0/SUNW/UltraSPARC-III@b,0 /ssm@0,0/SUNW/memory-controller@b,400000

where:

in b,0

- b is the CPU agent identifier (AID)
- 0 is the CPU register

in b,400000

- b is the memory agent identifier (AID)
- 400000 is the memory controller register

There are up to four CPUs on each CPU/Memory board (TABLE 7-1):

- CPUs with agent IDs 0–3 reside on board name SB0
- CPUs with agent IDs 8–11 on board name SB2, and so on.

CPU/Memory Board Name		Agent IDs On Ea	ach CPU/Memory	Board	
	CPU 0	CPU 1	CPU 2	CPU 3	
SB0	0 (0)	1 (1)	2 (2)	3 (3)	
SB2	8 (8)	9 (9)	10 (a)	11 (b)	
SB4	16 (10)	17 (11)	18 (12)	19 (13)	

TABLE 7-1 CPU and Memory Agent ID Assignment

The first number in the columns of agent IDs is a decimal number. The number or letter in parentheses is in hexadecimal notation.

IB_SSC Assembly Mapping

TABLE 7-2 lists the types of I/O assembly, the number of slots each I/O assembly has, and the systems the I/O assembly types are supported on.

 TABLE 7-2
 I/O Assembly Type and Number of Slots

I/O Assembly Type	Number of Slots Per I/O Assembly
PCI	6

TABLE 7-3 lists the number of I/O assemblies per system and the I/O assembly name.

 TABLE 7-3
 Number and Name of I/O Assemblies per System

Number of I/O Assemblies	I/O Assembly Name
1	IB6

Each I/O assembly hosts two I/O controllers:

- I/O controller 0
- I/O controller 1

When mapping the I/O device tree entry to a physical component in the system, you must consider up to five nodes in the device tree:

- Node identifier (ID)
- ID controller agent ID (AID)
- Bus offset
- PCI slot
- Device instance

TABLE 7-4 lists the AIDs for the two I/O controllers in each I/O assembly.

TABLE 7-4 I/O Controller Agent ID Assignments

Slot Number	I/O Assembly Name	Even I/O controller AID	Odd I/O Controller AID
6	IB6	24 (18)	25 (19)

The first number in the column is a decimal number. The number (or a number and letter combination) in parentheses is in hexadecimal notation.

The I/O controller has two bus sides: A and B.

- Bus A, which is 66 MHz, is referenced by offset 600000.
- Bus B, which is 33 MHz, is referenced by offset 700000.

The board slots located in the I/O assembly are referenced by the device number.

This section describes the PCI I/O assembly slot assignments and provides an example of the device path.

The following code example gives a breakdown of a device tree entry for a SCSI disk:

/ssm@0,0/pci@19,700000/pci@3/SUNW,isptwo@4/sd@5,0

Note – The numbers in the device path are hexadecimal.

where:

in 19,700000

- 19 is the I/O controller agent identifier (AID)
- 700000 is the bus offset

in pci@3

• 3 is the device number

isptwo is the SCSI host adapter

in sd@5,0

- 5 is the SCSI target number for the disk
- 0 is the logic unit number (LUN) of the target disk

This section describes the PCI I/O assembly slot assignments and provides an example of the device path.

TABLE 7-5 lists, in hexadecimal notation, the slot number, I/O assembly name, device path of each I/O assembly, the I/O controller number, and the bus.

I/O Assembly Name	Device Path	Physical Slot Number	I./O Controller Number	Bus
IB6	/ssm@0,0/pci@18,700000/*@1	0	0	В
	/ssm@0,0/pci@18,700000/*@2	1	0	В
	/ssm@0,0/pci@18,700000/*@3	X	0	В
	/ssm@0,0/pci@18,600000/*@1	5	0	А
	/ssm@0,0/pci@18,600000/*@2	W	0	А
	/ssm@0,0/pci@19,700000/*@1	2	1	В
	/ssm@0,0/pci@19,700000/*@2	3	1	В

 TABLE 7-5
 IB_SSC Assembly PCI Device Mapping

I/O Assembly Name	Device Path	Physical Slot Number	I./O Controller Number	Bus
	/ssm@0,0/pci@19,700000/*@3	4	1	В
	/ssm@0,0/pci@19,600000/*@1	у	1	А
	/ssm@0,0/pci@19,600000/*@2	Z	1	А

 TABLE 7-5
 IB_SSC Assembly PCI Device Mapping (Continued)

where:

w = onboard LSI1010R SCSI controller

x = onboard CMD646U2 EIDE controller

y = onboard Gigaswift Ethernet controller 0

z = onboard Gigaswift Ethernet controller 1

and * is dependent upon the type of PCI card installed in the slot.

Note the following:

- 600000 is the bus offset and indicates bus A, which operates at 66 MHz.
- 700000 is the bus offset and indicates bus B, which operates at 33 MHz.
- *@3 is the device number. In this example @3 means it is the third device on the bus.

FIGURE 7-1 Sun Fire V1280/Netra 1280 IB_SSC PCI Physical Slot Designations for IB6

where * is dependent upon the type of PCI card installed in the slot.

For instance:

- Dual Differential Ultra SCSI card (375-0006) in Slot 4
- FC-AL card (375-3019) in Slot 3
- FC-AL card (375-3019) in Slot 2

would generate device paths as follows:

```
/ssm@0,0/pci@19,700000/scsi@3,1
/ssm@0,0/pci@19,700000/scsi@3,1 (scsi-2)
/ssm@0,0/pci@19,700000/scsi@3,1/disk (block)
/ssm@0,0/pci@19,700000/scsi@3,1/disk (block)
/ssm@0,0/pci@19,700000/scsi@3/tape (byte)
/ssm@0,0/pci@19,700000/scsi@3/disk (block)
/ssm@0,0/pci@19,700000/suNW,qlc@2 (scsi-fcp)
/ssm@0,0/pci@19,700000/SUNW,qlc@2/fp@0,0 (fp)
/ssm@0,0/pci@19,700000/SUNW,qlc@2/fp@0,0/disk (block)
/ssm@0,0/pci@19,700000/SUNW,qlc@1 (scsi-fcp)
/ssm@0,0/pci@19,700000/SUNW,qlc@1 (fp)
/ssm@0,0/pci@19,700000/SUNW,qlc@1/fp@0,0 (fp)
/ssm@0,0/pci@19,700000/SUNW,qlc@1/fp@0,0 (fp)
```

System Faults

A system fault is any condition that is considered to be unacceptable for normal system operation. When the system has a fault, the Fault LED () will turn on. The system indicators are shown in FIGURE 7-2.

The indicator states are shown in TABLE 7-6. You must take immediate action to eliminate a system fault.

TABLE 7-6	System	Fault	Indicator	States
-----------	--------	-------	-----------	--------

FRU name	Fault indicator lit when fault detected [*]	System Fault indicator lit on FRU fault*	Top Access lit on FRU fault ¹	Comments
System Board	Yes	Yes	Yes	Includes processors, Ecache and DIMMs
Level 2 repeater	Yes	Yes	Yes	
IB_SSC	Yes	Yes	Yes	
System Controller	No	Yes	Yes	IB_SSC fault LED lit
Fan	Yes	Yes	Yes	IB Fan fault LED lit
Power Supply	Yes (by hardware)	Yes	No	All power supply indicators are lit by the power supply hardware. There is also a predicted fault indicator. Power supply EEPROM errors do not cause degraded state as there is no indicator control.
Power distribution board	No	Yes	Yes	Can only be degraded.
Baseplane	No	Yes	Yes	Can only be degraded.
System indicator board	No	Yes	Yes	Can only be degraded.
System configuration card	No	Yes	No	

FRU name	Fault indicator lit when fault detected [*]	System Fault indicator lit on FRU fault*	Top Access lit on FRU fault ¹	Comments
Fan tray	Yes	Yes	No	
Main fan	Yes	Yes	No	
Media bay	No	Yes	Yes	
Disk	Yes	Yes	No	

TABLE 7-6 System Fault Indicator States (Continued)

* This includes faults where the FRU is only degraded.

Customer Replaceable Units

Sun Fire V1280

The following FRUs are considered to be ones on which you can deal with faults:

- Hard disks hot swappable
- PSUs (PS0/PS1/PS2/PS3) hot swappable
- CPU/Memory Boards (SB0/SB2/SB4) can be blacklisted if considered faulty
- Repeater Boards (RP0/RP2) can be blacklisted if considered faulty

If a fault is indicated on any other FRU or a physical replacement of blacklisted FRUs above is required, then SunService should be called.

Netra 1280

The following FRUs are considered to be ones on which you can deal with faults:

- Hard disks hot swappable
- PSUs (PS0/PS1/PS2/PS3) hot swappable

Note – Only suitably trained personnel or SunService are permitted to enter the Restricted Access Location to hotswap PSUs or hard disk drives.

- CPU/Memory Boards (SB0/SB2/SB4) can be blacklisted if considered faulty
- Repeater Boards (RP0/RP2) can be blacklisted if considered faulty

If a fault is indicated on any other FRU or a physical replacement of blacklisted FRUs above is required, then SunService should be called.

Manual Blacklisting (while waiting for repair)

The System Controller supports the blacklisting feature, which allows you to disable components on a board (TABLE 7-7).

Blacklisting provides a list of system board components that will not be tested and will not be configured into the Solaris operating environment. The blacklist is stored in nonvolatile memory.

System Component	Component Subsystem	Component Name
CPU system		slot/port/physical_bank/logical_bank
	CPU/Memory boards (slot)	SB0, SB2, SB4
	Ports on the CPU/Memory board	P0, P1, P2, P3
	Physical memory banks on CPU/Memory boards	B0, B1
	Logical banks on CPU/Memory boards	L0, L1, L2, L3
I/O assembly system		<pre>slot/port/bus or slot/card</pre>
	I/O assembly	IB6
	Ports on the I/O assembly	P0, P1
	Buses on the I/O assembly	B0, B1
	I/O cards in the I/O assemblies	PCI0, PCI1, PCI2, PCI3, PCI4, PCI5
Repeater system		<slot></slot>
	Repeater board	RP0, RP2

 TABLE 7-7
 Blacklisting Component Names

Blacklist a component or device if you believe it might be failing intermittently or is failing. Troubleshoot a device you believe is having problems.

There are three system controller commands for blacklisting:

- disablecomponent
- enablecomponent
- showcomponent

The disablecomponent and enablecomponent commands only update the blacklist. They do not directly affect the state of the currently configured system boards.

The updated lists will take effect when you do one the following:

- Reboot the system.
- Use dynamic reconfiguration to configure the board containing the blacklisted component out of and then back into the system.

In order to use disable component and enable component on the Repeater Boards (RP0/RP2) the system first has to be shut down to Standby using the poweroff command.

When the disablecomponent or enablecomponent command is issued for a Repeater Board (RP0/RP2), the System Controller will be automatically reset to make use of the new settings.

If a replacement Repeater Board is inserted, it is necessary to manually reset the System Controller using the resetsc command. Refer to the *Sun Fire V1280/Netra 1280 System Controller Command Reference Manual* for a description of this command.

Special Considerations for CPU/Memory Boards

In the unlikely event that a CPU/Memory board fails the interconnect test during POST, a message similar to the following will appear in POST output:

```
Jul 15 15:58:12 noname lom: SB0/ar0 Bit in error P3_ADDR [2]
Jul 15 15:58:12 noname lom: SB0/ar0 Bit in error P3_ADDR [1]
Jul 15 15:58:12 noname lom: SB0/ar0 Bit in error P3_ADDR [0]
Jul 15 15:58:12 noname lom: AR Interconnect test: System board SB0/ar0 address
repeater connections to system board RP2/ar0 failed
Jul 15 15:58:13 noname lom: SB0/ar0 Bit in error P3_INCOMING [0]
Jul 15 15:58:17 noname lom: SB0/ar0 Bit in error P3_PREREQ [0]
Jul 15 15:58:17 noname lom: SB0/ar0 Bit in error P3_ADDR [18]
Jul 15 15:58:17 noname lom: SB0/ar0 Bit in error P3_ADDR [17]
```

A CPU/Memory board failing the interconnect test may prevent the poweron command from completely powering up the system. The system will then drop back to the lom> prompt.

As a provisional measure, before Service intervention is obtained, the faulty CPU/Memory board can be isolated from the system using the following sequence of commands at the System Controller lom> prompt:

```
lom>disablecomponent SBX
.
.
lom>poweroff
.
.
lom>resetsc -y
```

A subsequent poweron command should now be successful.

Recovering a Hung System

If you cannot log into the Solaris operating environment, and typing the break command from the LOM shell did not force control of the system back to the OpenBoot PROM ok prompt, then the system has stopped responding.

In some circumstances the host watchdog will detect that the Solaris operating environment has stopped responding and will automatically reset the system.

Assuming that the host watchdog has not been disabled (using the setupsc command) then the Host Watchdog will cause an automatic reset of the system.

Also, you can issue the reset command (default option is -x which causes an XIR to be sent to the processors) from the lom> prompt. The reset command causes the Solaris operating environment to be terminated.

Caution – When the Solaris operating environment is terminated, data in memory might not be flushed to disk. This could cause a loss or corruption of the application file system data. Before the Solaris operating environment is terminated, this action requires confirmation from you.

▼ To Recover a Hung System Manually

- 1. Complete the steps in "Assisting Sun Service Personnel in Determining Causes of Failure" on page 83.
- 2. Access the LOM shell.

See Chapter 3.

3. Type the reset command to force control of the system back to the OpenBoot PROM. The reset command sends an externally initiated reset (XIR) to the system and collects data for debugging the hardware.

lom>reset

Note – An error is displayed if the setsecure command has been used to set the system into secure mode. You cannot use the reset or break commands while the system is in secure mode. Refer to the *Sun Fire V1280/Netra 1280 System Controller Command Reference Manual* for more details.

- 4. This step depends on the setting of the Open Boot PROM error-reset-recovery configuration variable.
 - If the error-reset-recovery configuration variable is set to none, the system returns immediately to the OpenBoot PROM. When the OpenBoot PROM takes control, it takes actions based on the setting of the OpenBoot PROM error-reset-recovery configuration variable. You can type any OpenBoot PROM command from the ok prompt, including rebooting the Solaris operating environment with the boot command. Also, you can force a core file with the sync command. The actions that can be configured by this variable might mean that the system will not return to the ok prompt.
 - If the error-reset-recovery configuration variable is *not* set to none, the OpenBoot PROM will automatically take recovery actions.
 - If the error-reset-recovery configuration variable is set to sync (default), the system generates a Solaris operating environment core file and reboots the system.
 - If the OpenBoot PROM error-reset-recovery configuration variable is set to boot, the system is rebooted.
- 5. If the previous actions fail to reboot the system, use the poweroff and poweron commands to power cycle the system.

To power off the system, type:

lom>poweroff

To power on the system, type:

lom>poweron

Moving System Identity

You may decide that the simplest way to restore service in some circumstances is to use a complete replacement system. In order to facilitate the rapid transfer of system identity and critical settings from one system to its replacement, the System Configuration Card (SCC) can be physically removed from the SCC Reader (SCCR) of the faulty system and inserted into the SCCR of the replacement system.

The following information is stored on the System Configuration Card (SCC):

- MAC addresses
 - System Controller 10/100 Ethernet Port
 - Onboard Gigabit Ethernet port NET0
 - Onboard Gigabit Ethernet port NET1
- Hostid
- Critical LOM configurations
 - LOM password
 - escape sequence
 - SC network settings (IP address / DHCP / gateway etc.)
 - eventreporting level
 - host watchdog enabled/disabled
 - On/Standby enabled/disabled
 - secure mode enabled/disabled
- Critical OBP configurations
 - auto-boot?
 - boot-device
 - diag-device
 - use-nvramrc?
 - local-mac-address?

Temperature

One indication of problems may be overtemperature of one or more components. Use the showenvironment command to list current status.

TABLE 7-8 Checking Temperature Conditions Using the showenvironment Command

10m>snowenv1roment							
Slot	Device	Sensor	Value	Units	Age	Status	
SSC1	SBBC 0	Temp. 0	34	Degrees C	1 sec	OK	
SSC1	CBH 0	Temp. 0	41	Degrees C	1 sec	OK	

TABLE 7-8 Che	ecking Temperature	Conditions Using	g the showen	vironment (Command	(Continued)
---------------	--------------------	------------------	--------------	-------------	---------	-------------

SSC1 Board 0 Temp. 0	22 Deg	rees C 1	sec OK	
SSC1 Board 0 Temp. 1	22 Deg	rees C 1	sec OK	
SSC1 Board 0 Temp. 2	28 Deg	rees C 1	sec OK	
SSC1 Board 0 1.5 VDC 0	1.49 Vol	ts DC 1	sec OK	
SSC1 Board 0 3.3 VDC 0	3.35 Vol	ts DC 1	sec OK	
SSC1 Board 0 5 VDC 0	4.98 Vol	ts DC 1	sec OK	
/N0/PS0 Input 0 Volt. 0	-	-	1 sec	OK
/N0/PS0 48 VDC 0 Volt. 0	48.00	Volts DC	1 sec	OK
/N0/PS1 Input 0 Volt. 0	-	-	5 sec	OK
/N0/PS1 48 VDC 0 Volt. 0	48.00	Volts DC	5 sec	OK
/N0/FT0 Fan 0 Cooling	0 Auto		5 sec	OK
/N0/FT0 Fan 1 Cooling	0 Auto		5 sec	OK
/N0/FT0 Fan 2 Cooling	0 Auto		5 sec	OK
/N0/FT0 Fan 3 Cooling	0 Auto		5 sec	OK
/N0/FT0 Fan 4 Cooling	0 Auto		5 sec	OK
/N0/FT0 Fan 5 Cooling	0 Auto		5 sec	OK
/N0/FT0 Fan 6 Cooling	0 Auto		5 sec	OK
/N0/FT0 Fan 7 Cooling	0 Auto		5 sec	OK
/N0/RP0 Board 0 1.5 VDC	0 1.49	Volts DC	5 sec	OK
/N0/RP0 Board 0 3.3 VDC	0 3.37	Volts DC	5 sec	OK
/N0/RP0 Board 0 Temp. 0	20	Degrees C	5 sec	OK
/N0/RP0 Board 0 Temp. 1	19	Degrees C	5 sec	OK
/N0/RP0 SDC 0 Temp. 0	55	Degrees C	5 sec	OK
/NO/RPO AR O Temp. O	45	Degrees C	5 sec	OK
/N0/RP0 DX 0 Temp. 0	57	Degrees C	5 sec	OK
/NO/RPO DX 1 Temp. 0	59	Degrees C	5 sec	OK
/N0/RP2 Board 0 1.5 VDC	0 1.48	Volts DC	5 sec	OK
/N0/RP2 Board 0 3.3 VDC	0 3.37	Volts DC	5 sec	OK
/N0/RP2 Board 0 Temp. 0	22	Degrees C	5 sec	OK
/N0/RP2 Board 0 Temp. 1	22	Degrees C	5 sec	OK
/N0/RP2 SDC 0 Temp. 0	53	Degrees C	5 sec	OK
/NO/RP2 AR 0 Temp. 0	43	Degrees C	5 sec	OK
/NO/RP2 DX 0 Temp. 0	49	Degrees C	5 sec	OK
/NO/RP2 DX 1 Temp. 0	52	Degrees C	5 sec	OK
/N0/SB0 Board 0 1.5 VDC	0 1.51	Volts DC	5 sec	OK
/N0/SB0 Board 0 3.3 VDC	0 3.29	Volts DC	5 sec	OK
/N0/SB0 SDC 0 Temp. 0	46	Degrees C	5 sec	OK
/NO/SBO AR 0 Temp. 0	39	Degrees C	5 sec	OK
/NO/SBO DX 0 Temp. 0	45	Degrees C	5 sec	OK
/NO/SBO DX 1 Temp. 0	49	Degrees C	5 sec	OK
/NO/SBO DX 2 Temp. 0	53	Degrees C	5 sec	OK
/NO/SBO DX 3 Temp. 0	48	Degrees C	5 sec	OK
/NO/SBO SBBC 0 Temp. 0	49	Degrees C	5 sec	OK
/NO/SBO Board 1 Temp. 0	24	Degrees C	5 sec	OK
/NO/SBO Board 1 Temp. 1	24	Degrees C	6 sec	OK
/NO/SBO CPU 0 Temp. 0	47	Degrees C	6 sec	OK
/N0/SB0 CPU 0 1.8 VDC	0 1.72	Volts DC	б ѕес	OK

/NO/SBO CPU 1	Temp. 0	47 Degrees C	6 sec OK
/N0/SB0 CPU 1	1.8 VDC 1	1.72 Volts DC	6 sec OK
/NO/SBO SBBC 1		37 Degrees C	6 SAC OK
		57 Degrees e	
/NU/SB0 Board 1	Temp. 2	24 Degrees C	6 sec OK
/N0/SB0 Board 1	Temp. 3	24 Degrees C	6 sec OK
/NO/SBO CPU 2	Temp, 0	49 Degrees C	6 sec OK
		1 71 Wolta DC	6 and OV
/NO/SBO CPO Z	1.8 VDC 0	I./I VOILS DC	0 SEC OK
/NU/SB0 CPU 3	Temp. 0	46 Degrees C	6 sec OK
/N0/SB0 CPU 3	1.8 VDC 1	1.72 Volts DC	7 sec OK
/NO/SB2 Board 0	1.5 VDC 0	1.51 Volts DC	6 sec OK
(NO (CD2 Deard O		2.20 Volta DC	6 and OV
/NU/SB2 BOard U	3.3 VDC U	3.29 VOILS DC	6 SEC OK
/NO/SB2 SDC 0	Temp. 0	55 Degrees C	6 sec OK
/N0/SB2 AR 0	Temp. 0	37 Degrees C	6 sec OK
/N0/SB2 DX 0	Temp, 0	47 Degrees C	6 sec OK
1 עם 292/ 10		50 Degrees C	6 seg OK
/NO/SBZ DA 1		JU Degrees C	o sec or
/NU/SB2 DX 2	Temp. 0	53 Degrees C	6 sec OK
/NO/SB2 DX 3	Temp. 0	47 Degrees C	6 sec OK
/N0/SB2 SBBC 0	Temp. 0	48 Degrees C	6 sec OK
/NO/SB2 Board 1		23 Degrees C	7 SAC OK
(NO/GD2 Dourd 1	Temp. 0		
/NU/SB2 Board 1	Temp. 1	24 Degrees C	/ Sec UK
/NO/SB2 CPU 0	Temp. 0	45 Degrees C	7 sec OK
/NO/SB2 CPU 0	1.8 VDC 0	1.72 Volts DC	7 sec OK
/N0/SB2 CPU 1	Temp, 0	46 Degrees C	7 sec OK
/NO/SP2 CDU 1		1.72 Volta DC	7 202 04
/NO/362 CFU 1			7 Sec OR
/NU/SB2 SBBC 1	Temp. 0	37 Degrees C	7 sec OK
/N0/SB2 Board 1	Temp. 2	24 Degrees C	7 sec OK
/N0/SB2 Board 1	Temp. 3	25 Degrees C	7 sec OK
/NO/SB2 CPU 2	Temp ()	47 Degrees C	7 sec OK
/NO/CD2 CDU 2		1 71 Welte DO	
/NU/SB2 CPU 2	1.8 VDC 0	I./I VOILS DC	
/NU/SB2 CPU 3	Temp. 0	45 Degrees C	7 sec OK
/NO/SB2 CPU 3	1.8 VDC 1	1.71 Volts DC	7 sec OK
/NO/IB6 Board O	1.5 VDC 0	1.50 Volts DC	7 sec OK
/NO/IB6 Board 0	3 3 100 0	3 35 Volte DC	7 Sec OK
/NO/IEC Decard 0			
/NU/IB6 Board U	5 VDC U	4.95 Volts DC	/ Sec UK
/N0/IB6 Board 0	12 VDC 0	11.95 Volts DC	7 sec OK
/NO/IB6 Board O	Temp. 0	29 Degrees C	7 sec OK
/NO/IB6 Board 0	Temp. 1	28 Degrees C	7 sec OK
/NO/TR6 Board O	2 2 770/1	3 30 Volta DC	7 seg 0K
/NO/IBO BOALD 0		3.30 VOILS DC	7 SEC OR
/NU/IB6 Board 0	3.3 VDC 2	3.28 VOLTS DC	/ SEC UK
/N0/IB6 Board 0	1.8 VDC 0	1.81 Volts DC	7 sec OK
/N0/IB6 Board 0	2.5 VDC 0	2.51 Volts DC	7 sec OK
/NO/IB6 Fan O	Cooling O	High	7 sec OK
/NO/TR6 For 1	Cooling 0	J	7 595 04
	COOTING 0		
/NU/IB6 SDC 0	Temp. 0	63 Degrees C	/ sec UK
/NO/IB6 AR O	Temp. 0	77 Degrees C	7 sec OK
/NO/IB6 DX 0	Temp. 0	69 Degrees C	7 sec OK
/N0/TB6 DX 1	Temp 0	73 Degrees C	8 sec OK
, 100, 100 DA 1	1Cm2. 0	, Degrees e	

 TABLE 7-8
 Checking Temperature Conditions Using the showenvironment Command (Continued)

 TABLE 7-8
 Checking Temperature Conditions Using the showenvironment Command (Continued)

/N0/IB6 SBBC 0	Temp. 0	51	Degrees C	8 sec OK	
/N0/IB6 IOASIC 0	Temp. 0	46	Degrees C	8 sec OK	
/N0/IB6 IOASIC 1	Temp. 1	52	Degrees C	8 sec OK	

Power Supplies

Each power supply unit (PSU) has its own LEDs as follows:

- Power/Active lit if PSU is supplying main power; blinks if PSU is in Standby mode
- Faulty lit if PSU has detected a fault condition and has turned off its main output
- Predictive Fail lit if PSU has detected a pending internal fault but is still providing main output power (degraded PSU fan speed is the only trigger for this condition).

In addition there are two System LEDs labelled SourceA and SourceB. These show the state of the power feeds to the system. There are four physical power feeds and they are split into A and B.

Feed A supplies PS0 and PS1, feed B supplies PS2 and PS3. If either PS0 or PS1 receives input power then the SourceA indicator is lit. If either PS2 or PS3 receives input power then the SourceB indicator is lit. If neither of the supplies receives input power, the indicator is turned off.

These indicators are set on the basis of periodic monitoring at least once every 10 seconds.

Displaying Diagnostic Information

For information on displaying diagnostic information, refer to the *Sun Hardware Platform Guide*, which is available with your Solaris operating environment release.

Assisting Sun Service Personnel in Determining Causes of Failure

Provide the following information to Sun service personnel so that they can help you determine the causes of your failure:

- A verbatim transcript of all output written to the system console leading up to the failure. Also include any output printed subsequent to user actions. If the transcript does not show certain user actions, in a separate file include comments on what actions prompted particular messages.
- A copy of the system log file from /var/adm/messages from the time leading up to the failure.
- The following system controller command output from the LOM shell:
 - showsc -v command
 - showboards -v command
 - showlogs command
 - history
 - date
 - showresetstate
 - showenvironment

Firmware Upgrade Procedures

This chapter explains how to upgrade the system firmware.

The firmware on the Sun Fire V1280/Netra 1280 system can be updated by two mechanisms:

- The flashupdate command from the System Controller LOM prompt.
- The lom -G command in the Solaris operating environment.

The first method requires that the 10/100 System Controller Ethernet port is connected to a suitable network and is configured so that it can see an external ftp or http server which contains the new firmware images to be downloaded.

Using the flashupdate Command

The flashupdate command requires that the 10/100 Ethernet port can access an external ftp or http server.

The flashupdate command updates the flash PROMs in the System Controller and the system boards (CPU/Memory boards and I/O assembly). The source flash image is normally held on an NFS server. In the case of CPU/Memory boards you can update one board with the flash image from another.

The syntax for the flashupdate command is:

where:

-y does not prompt for confirmation.

-n does not execute this command if confirmation is required.

-f specifies a URL as the source of the flash images. This option requires a network connection with the flash image held on an NFS server. Use this option to install new firmware.

<url> is the URL of the directory containing the flash images and must be of the form:

```
ftp://[<userid>:<password>@]<hostname>/<path>
    or
    http://<hostname>/<path></path>
```

all causes all boards (CPU/Memory, I/O Assembly and System Controller) to be updated. This action reboots the System Controller.

 ${\tt systemboards\ }$ causes all CPU/Memory boards and the I/O Assembly to be updated.

scapp causes the System Controller application to be updated. This action reboots the System Controller.

rtos causes the System Controller real time operating system to be updated. This action reboots the System Controller.

<body>

 $-c\,$ specifies a board as the source of flash images. Use this option to update replacement CPU/Memory boards.

<source_board> is a pre-existing CPU/Memory board to be used as the source of the flash image (sb0, sb2 or sb4).

 $<\!\!\textit{destination_board}\!\!>$ is the CPU/Memory board to be updated (sb0, sb2 or sb4).

-u automatically updates all CPU/Memory boards with the image from the board which currently has the highest firmware revision. Use this option to update replacement CPU/Memory boards.

-h displays help for this command.

A power cycle is required in order to activate the updated OpenBoot PROM.

Note — flashupdate cannot retrieve flash images from a secure (userid/password) protected HTTP URL. A message of the form flashupdate: failed, URL does not contain required file: <*file>* will be returned, although the file may exist.

Caution – Do not interrupt the flashupdate operation. If the flashupdate command is terminated abnormally, the System Controller will go into single use mode and will only be accesible from the serial port.

Caution – Before performing a flashupdate, check the firmware revisions of all boards using the showboards -p version command.

Caution – If the System Controller application (scapp) or real time operating system (rtos) are to be updated, you are strongly recommended to run the flashupdate command from a LOM shell running on the serial connection so that the results can be fully monitored.

Caution – Before updating CPU/Memory boards or the I/O Assembly, ensure that all boards to be updated are powered on by using the poweron command.

flashupdate Command—Examples

To update the flash PROMs on the System Controller, I/O Assembly and all CPU/Memory boards, type:

lom>flashupdate -f ftp://<host>/<path> all

To update the System Controller application and real time operating system type:

lom>flashupdate -f ftp://<host>/<path> scapp rtos

To bring CPU/Memory boards $\tt sb2$ and $\tt sb4$ up to the same firmware level as board $\tt sb0,$ type:

lom>flashupdate -c sb0 sb2 sb4

A power cycle is required in order to activate the updated OpenBoot PROM.

Using the lom -G Command

There are four image types which may need to be transferred using this method with names of the following form:

- sgpci.flash (contains I/O board Local POST)
- sgcpu.flash (contains CPU/Memory Board Local POST and OBP)
- sgsc.flash (contains LOM/System Controller firmware)
- sgrtos.flash (contains LOM/System Controller Real Time Operating System)

You must place these in a suitable directory, for instance /var/tmp, and issue the lom -G command with the filename of the file to be downloaded. The firmware knows from header information contained in the file which image type is being upgraded.

These images will be provided in a patch downloadable from www.sunsolve.sun.com or from your SunService representative.

The patch README file should contain full instructions for installing these new firmware images. It is very important that the instructions are followed exactly otherwise you may render your system unbootable.

Caution – Do not interrupt the lom -G operation. If the lom -G command is terminated abnormally, the System Controller will go into single use mode and will only be accessible from the serial port.

Caution – Before performing a lom -G, check the firmware revisions of all boards using the showboards -p version command.

Caution – You are strongly recommended to run the lom -G command from a Solaris console running on the serial connection so that the results can be fully monitored.

Caution – Before updating CPU/Memory boards or the I/O Assembly, ensure that all boards to be updated are powered on by using the poweron command.

Examples

Downloading the sgpci.flash image:

CODE EXAMPLE 8-1 Downloading the sgpci.flash Image

```
# lom -G sqpci.flash
WARNING:
This program will replace LOMlite2 firmware version 5.13 with version 0.1
Are you sure you want to continue?
Enter 'C' and return to Continue or anything else to Terminate
C
Transferring 308 kB image to the system controller.
This may take several minutes.
Validating image ...
308 kB IO image transferred.
Programming /N0/IB6 PROM 0
Comparing image and flash
# Image and flash are different, proceeding with update.
Erasing
          .... Done
Programming .... Done
Verifying ..... Done
May 22 14:28:37 commando lw8: /N0/IB6 PROM 0 updated with version 5.13.5 05/17/2
002.
Firmware update complete.
You must reboot Solaris to load the new firmware.
#
```

Downloading the sgcpu.flash image:

CODE EXAMPLE 8-2 Downloading the sgcpu.flash Image

```
# lom -G sgcpu.flash
WARNING:
This program will replace LOMlite2 firmware version 5.13 with version 0.1
Are you sure you want to continue?
Enter 'C' and return to Continue or anything else to Terminate
C
Transferring 792 kB image to the system controller.
This may take several minutes.
.....
```

```
CODE EXAMPLE 8-2 Downloading the sgcpu.flash Image (Continued)
```

```
Validating image ...
# 792 kB CPU image transferred.
Programming /N0/SB0 PROM 0
Comparing image and flash
Image and flash are different, proceeding with update.
Erasing
          ..... Done
Programming ..... Done
Verifying ..... Done
May 22 14:46:40 commando lw8: /N0/SB0 PROM 0 updated with version 5.13.5 05/17/2
002.
Programming /N0/SB0 PROM 1
Comparing image and flash
Image and flash are different, proceeding with update.
Erasing
          ..... Done
Programming ..... Done
Verifying ..... Done
May 22 14:47:08 commando lw8: /N0/SB0 PROM 1 updated with version 5.13.5 05/17/2
002.
Programming /N0/SB2 PROM 0
Comparing image and flash
Image and flash are different, proceeding with update.
Erasing
         ..... Done
Programming ..... Done
Verifying
         ..... Done
May 22 14:47:36 commando lw8: /N0/SB2 PROM 0 updated with version 5.13.5 05/17/2
002.
Programming /N0/SB2 PROM 1
Comparing image and flash
Image and flash are different, proceeding with update.
Erasing ..... Done
Programming ..... Done
Verifying
         ..... Done
May 22 14:48:10 commando lw8: /N0/SB2 PROM 1 updated with version 5.13.5 05/17/2
002.
Firmware update complete.
You must reboot Solaris to load the new firmware.
#
```
CPU/Memory Board Replacement and Dynamic Reconfiguration (DR)

This chapter describes how to dynamically reconfigure the CPU/Memory boards on the Sun Fire V1280/Netra 1280 system.

Dynamic Reconfiguration

Overview

DR software is part of the Solaris operating environment. With the DR software you can dynamically reconfigure system boards and safely remove them or install them into a system while the Solaris operating environment is running and with minimum disruption to user processes running on the system. You can use DR to do the following:

- Minimize the interruption of system applications while installing or removing a board.
- Disable a failing device by removing it before the failure can crash the operating system.
- Display the operational status of boards.
- Initiate system tests of a board while the system continues to run.

Command Line Interface

The Solaris cfgadm(1M) command provides the command line interface for the administration of DR functionality.

DR Concepts

Quiescence

During the unconfigure operation on a system board with permanent memory (OpenBoot PROM or kernel memory), the operating environment is briefly paused, which is known as operating environment quiescence. All operating environment and device activity on the baseplane must cease during a critical phase of the operation.

Note – Quiescence may take several minutes, depending on workload and system configuration.

Before it can achieve quiescence, the operating environment must temporarily suspend all processes, CPUs, and device activities. It may take a few minutes to achieve quiescence depending on system usage and activities currently in progress. If the operating environment cannot achieve quiescence, it displays the reasons, which may include the following:

- An execution thread did not suspend.
- Real-time processes are running.
- A device exists that cannot be paused by the operating environment.

The conditions that cause processes to fail to suspend are generally temporary. Examine the reasons for the failure. If the operating environment encountered a transient condition—a failure to suspend a process—you can try the operation again.

RPC or TCP Time-out or Loss of Connection

Time-outs occur by default after two minutes. Administrators may need to increase this time-out value to avoid time-outs during a DR-induced operating system quiescence, which may take longer than two minutes. Quiescing a system makes the system and related network services unavailable for a period of time that can exceed two minutes. These changes affect both the client and server machines.

Suspend-Safe and Suspend-Unsafe Devices

When DR suspends the operating environment, all of the device drivers that are attached to the operating environment must also be suspended. If a driver cannot be suspended (or subsequently resumed), the DR operation fails.

A *suspend-safe* device does not access memory or interrupt the system while the operating environment is in quiescence. A driver is suspend-safe if it supports operating environment quiescence (suspend/resume). A suspend-safe driver also guarantees that when a suspend request is successfully completed, the device that the driver manages will not attempt to access memory, even if the device is open when the suspend request is made.

A *suspend-unsafe* device allows a memory access or a system interruption to occur while the operating environment is in quiescence.

Attachment Points

An attachment point is a collective term for a board and its slot. DR can display the status of the slot, the board, and the attachment point. The DR definition of a board also includes the devices connected to it, so the term 'occupant' refers to the combination of board and attached devices.

- A slot (also called a receptacle) has the ability to electrically isolate the occupant from the host machine. That is, the software can put a single slot into low-power mode.
- Receptacles can be named according to slot numbers or can be anonymous (for example, a SCSI chain). To obtain a list of all available logical attachment points, use the -1 option with the cfgadm(1M) command.

There are two formats used when referring to attachment points:

• A *physical* attachment point describes the software driver and location of the slot. An example of a physical attachment point name is:

/devices/ssm@0,0:N0.SBX

where N0 is node 0 (zero),

SB is a system board,

x is a slot number. A slot number can be 0, 2 or 4 for a system board.

• A *logical* attachment point is an abbreviated name created by the system to refer to the physical attachment point. Logical attachment points take the following form:

N0.SBX

• Note that cfgadm will also show the I/O assembly NO.IB6, but as this is non-redundant no DR actions will be allowed on this attachment point.

DR Operations

There are four main types of DR operation.

TABLE 9-1	Types	of DR	Operation
-----------	-------	-------	-----------

Connect	The slot provides power to the board and monitors its temperature.
Configure	The operating environment assigns functional roles to a board, and loads device drivers for the board, and brings the devices on that board into use by the Solaris operating environment.
Unconfigure	The system detaches a board logically from the operating environment. Environmental monitoring continues, but devices on the board are not available for system use.
Disconnect	The system stops monitoring the board, and power to the slot is turned off.

If a system board is in use, stop its use and disconnect it from the system before you power it off. After a new or upgraded system board is inserted and powered on, connect its attachment point and configure it for use by the operating environment. The cfgadm(1M) command can connect and configure (or unconfigure and disconnect) in a single command, but if necessary, each operation (connection, configuration, unconfiguration, or disconnection) can be performed separately.

Hot-Plug Hardware

Hot-plug devices have special connectors that supply electrical power to the board or module before the data pins make contact. Boards and devices that have hot-plug connectors can be inserted or removed while the system is running. The devices have control circuits to ensure they have a common reference and power control during the insertion process. The interfaces are not powered on until the board is home and the System Controller instructs them to.

The CPU/Memory boards used in the Sun Fire V1280/Netra 1280 system are hotplug devices.

Conditions and States

A state is the operational status of either a receptacle (slot) or an occupant (board). A condition is the operational status of an attachment point.

Before you attempt to perform any DR operation on a board or component from a system, you must determine state and condition. Use the cfgadm(1M) command with the -la options to display the type, state, and condition of each component and the state and condition of each board slot in the system. See the section "Component Types" on page 97 for a list of the component types.

Board States and Conditions

This section contains descriptions of the states and conditions of CPU/Memory boards (also known as system slots).

Board Receptacle States

A board can have one of three receptacle states: empty, disconnected, or connected. Whenever you insert a board, the receptacle state changes from empty to disconnected. Whenever you remove a board the receptacle state changes from disconnected to empty.

Caution – Physically removing a board that is in the connected state, or that is powered on and in the disconnected state, crashes the operating system and can result in permanent damage to that system board.

Name	Description
empty	A board is not present.
disconnected	The board is disconnected from the system bus. A board can be in the disconnected state without being powered off. However, a board must be powered off and in the disconnected state before you remove it from the slot.
connected	The board is powered on and connected to the system bus. You can view the components on a board only after it is in the connected state.

 TABLE 9-2
 Board Receptacle States

Board Occupant States

A board can have one of two occupant states: configured or unconfigured. The occupant state of a disconnected board is always unconfigured.

 TABLE 9-3
 Board Occupant States

Name	Description
configured	At least one component on the board is configured.
unconfigured	All of the components on the board are unconfigured.

Board Conditions

A board can be in one of four conditions: unknown, ok, failed, or unusable.

 TABLE 9-4
 Board Conditions

Name	Description
unknown	The board has not been tested.
ok	The board is operational.
failed	The board failed testing.
unusable	The board slot is unusable.

Component States and Conditions

This section contains descriptions of the states and conditions for components.

Component Receptacle States

A component cannot be individually connected or disconnected. Thus, components can have only one state: connected.

Component Occupant States

A component can have one of two occupant states: configured or unconfigured.

 TABLE 9-5
 Component Occupant States

Name	Description
configured	Component is available for use by the Solaris operating environment.
unconfigured	Component is not available for use by the Solaris operating environment.

Component Conditions

A component can have one of three conditions: unknown, ok, failed.

 TABLE 9-6
 Component Conditions

Name	Description	
unknown	Component has not been tested.	
ok	Component is operational.	
failed	Component failed testing.	

Component Types

You can use DR to configure or to unconfigure several types of component.

 TABLE 9-7
 Component Types

Name	Description
сри	Individual CPU
memory	All the memory on the board

Nonpermanent and Permanent Memory

Before you can delete a board, the environment must vacate the memory on that board. Vacating a board means flushing its nonpermanent memory to swap space and copying its permanent (that is, kernel and OpenBoot PROM memory) to another memory board. To relocate permanent memory, the operating environment on a system must be temporarily suspended, or quiesced. The length of the suspension depends on the system configuration and the running workloads. Detaching a board with permanent memory is the only time when the operating environment is suspended; therefore, you should know where permanent memory resides so that you can avoid significantly impacting the operation of the system. You can display the permanent memory by using the cfgadm(1M) command with the -v option. When permanent memory is on the board, the operating environment must find another memory component of adequate size to receive the permanent memory. If that is not possible the DR operation will fail.

Limitations

Memory Interleaving

System boards cannot be dynamically reconfigured if system memory is interleaved across multiple CPU/Memory boards.

Reconfiguring Permanent Memory

When a CPU/Memory board containing non-relocatable (permanent) memory is dynamically reconfigured out of the system, a short pause in all domain activity is required which may delay application response. Typically, this condition applies to one CPU/Memory board in the system. The memory on the board is identified by a non-zero permanent memory size in the status display produced by the cfgadm -av command.

DR supports reconfiguration of permanent memory from one system board to another only if one of the following conditions is met:

• The target system board has the same amount of memory as the source system board;

-OR-

• The target system board has more memory than the source system board. In this case, the additional memory is added to the pool of available memory.

Command Line Interface

The following procedures are discussed in this section:

- "To Test a CPU/Memory Board" on page 102
- "To Install a New Board" on page 104
- "To Hot-Swap a CPU/Memory Board" on page 104
- "To Remove a CPU/Memory Board From the System" on page 105
- "To Disconnect a CPU/Memory Board Temporarily" on page 106

Note – There is no need to enable dynamic reconfiguration explicitly. DR is enabled by default.

The cfgadm Command

The cfgadm(1M) command provides configuration administration operations on dynamically reconfigurable hardware resources. TABLE 9-8 lists the DR board states.

Board States	Description
Available	The slot is not assigned.
Assigned	The board is assigned, but the hardware has not been configured to use it. The board may be reassigned by the chassis port or released.
Active	The board is being actively used. You cannot reassign an active board.

 TABLE 9-8
 DR Board States from the System Controller (SC)

Displaying Basic Board Status

The cfgadm program displays information about boards and slots. Refer to the cfgadm(1) man page for options to this command.

Many operations require that you specify the system board names. To obtain these system names, type:

```
# cfgadm
```

When used without options, cfgadm displays information about all known attachment points, including board slots and SCSI buses. The following display shows a typical output.

CODE EXAMPLE 9-1 Output of the Basic cfgadm Command

_			
	# cfgadm		
	Ap_Id Type Receptacle Occupant Condition		
	N0.IB6 PCI_I/O_Boa connected configured ok		
	N0.SB0 CPU_Board connected configured unknown		
	N0.SB4 unknown emptyunconfigured unknown		
	c0 scsi-bus connected configured unknown		
	cl scsi-bus connected unconfigured unknown		
	c2 scsi-bus connected unconfigured unknown		
	c3 scsi-bus connected configured unknown		

Displaying Detailed Board Status

For a more detailed status report, use the command cfgadm -av. The -a option lists attachment points and the -v option turns on expanded (verbose) descriptions.

CODE EXAMPLE 9-2 is a *partial* display produced by the cfgadm -av command. The output appears complicated because the lines wrap around in this display. (This status report is for the same system used in CODE EXAMPLE 9-1.) FIGURE 9-1 provides details of each display item.

```
CODE EXAMPLE 9-2 Output of the cfgadm -av Command
```

```
# cfgadm -av
Ap_Id Receptacle Occupant Condition Information
When Type Busy Phys_Id
NO.IB6 connected configured ok powered-on, assigned
Apr 3 18:04 PCI_I/O_Boa n /devices/ssm@0,0:N0.IB6
N0.IB6::pci0 connected configured ok device
/ssm@0,0/pci@19,70000
Apr 3 18:04 io n /devices/ssm@0,0:N0.IB6::pci0
N0.IB6::pcil connected configured ok device
/ssm@0,0/pci@19,600000
Apr 3 18:04 io n /devices /ssm@0,0:N0.IB6::pci1
N0.IB6::pci2 connected configured ok device
/ssm@0,0/pci@18,700000
Apr 3 18:04 io n /devices/ssm@0,0:N0.IB6::pci2
N0.IB6::pci3 connected configured ok device
/ssm@0,0/pci@18,600000
Apr 3 18:04 io n /devices/ssm@0,0:N0.IB6::pci3
N0.SB0 connected configured unknown powered-on, assigned
```

CODE EXAMPLE 9-2 Output of the cfgadm -av Command (Continued)

Apr 3 18:04 CPU_Board n /devices/ssm@0,0:N0.SB0 N0.SB0::cpu0 connected configured ok cpuid 0, speed 750 MHz, ecache 8 MBytes Apr 3 18:04 cpu n /devices/ssm@0,0:N0.SB0::cpu0 N0.SB0::cpu1 connected configured ok cpuid 1, speed 750 MHz, ecache 8 MBytes Apr 3 18:04 cpu n /devices/ssm@0,0:N0.SB0::cpu1 N0.SB0::cpu2 connected configured ok cpuid 2, speed 750 MHz, ecache 8 MBytes Apr 3 18:04 cpu n /devices/ssm@0,0:N0.SB0::cpu2

FIGURE 9-1 shows details of the display in CODE EXAMPLE 9-2:

FIGURE 9-1 Details of the Display for cfgadm -av

Command Options

The options to the cfgadm -c command are listed in TABLE 9-9.

TABLE 9-9 cfgadm -c Command Options

cfgadm -c Option	Function
connect	The slot provides power to the board and begins monitoring the board. The slot is assigned if it was not previously assigned.
disconnect	The system stops monitoring the board and power to the slot is turned off.
configure	The operating system assigns functional roles to a board and loads device drivers for the board and for the devices attached to the board.
unconfigure	The system detaches a board logically from the operating system and takes the associated device drivers offline. Environmental monitoring continues, but any devices on the board are not available for system use.

The options provided by the cfgadm -x command are listed in TABLE 9-10.

 TABLE 9-10
 cfgadm
 -x
 Command Options

cfgadm -x Option	Function
poweron	Powers on a CPU/Memory board.
poweroff	Powers off a CPU/Memory board.

The cfgadm_sbd man page provides additional information on the cfgadm -c and cfgadm -x options. The sbd library provides the functionality for hotplugging system boards of the class sbd, through the cfgadm framework.

Testing Boards and Assemblies

▼ To Test a CPU/Memory Board

Before you can test a CPU/Memory board, it must first be powered on and disconnected. If these conditions are not met, the board test fails.

You can use the Solaris cfgadm command to test CPU/memory boards. As superuser, type:

cfgadm -t ap-id

To change the level of diagnostics that cfgadm runs, supply a diagnostic level for the cfgadm command as follows:

```
# cfgadm -o platform=diag=<level> -t ap-id
```

where *level* is a diagnostic level, and *ap-id* is one of the following: N0.SB0, N0.SB2 or N0.SB4.

If you do not supply *level*, the default diagnostic level is set to the default. The diagnostic levels are:

Diagnostic Level	Description
init	Only system board initialization code is run. No testing is done. This is a very fast pass through POST.
quick	All system board components are tested with few tests and test patterns.
default	All system board components are tested with all tests and test patterns, except for memory and Ecache modules. Note that max and default are the same definition.
max	All system board components are tested with all tests and test patterns, except for memory and Ecache modules. Note that max and default are the same definition.
meml	Runs all tests at the default level, plus more exhaustive DRAM and SRAM test algorithms. For Memory and Ecache modules, all locations are tested with multiple patterns. More extensive, time- consuming algorithms are not run at this level.
mem2	The same as mem1, with the addition of a DRAM test that does explicit compare operations of the DRAM data.

 TABLE 9-11
 Diagnostic Levels

Installing or Replacing CPU/Memory Boards

Caution – Physical board replacement should only be carried out by qualified service personnel.

▼ To Install a New Board

Caution – For complete information about physically removing and replacing CPU/Memory boards, refer to the *Sun Fire V1280/Netra 1280 Service Manual*. Failure to follow the stated procedures can result in damage to system boards and other components.

Note – When replacing boards, you sometimes need filler panels.

If you are unfamiliar with how to insert a board into the system, read the *Sun Fire V1280/Netra 1280 Service Manual* before you begin this procedure.

- 1. Make sure you are properly grounded with a wrist strap.
- 2. After locating an empty slot, remove the system board filler panel from the slot.
- **3.** Insert the board into the slot within one minute to prevent the system overheating.

Refer to the *Sun Fire V1280/Netra 1280 Service Manual* for complete step-by-step board insertion procedures.

4. Power on, test, and configure the board using the cfgadm -c configure command:

cfgadm -c configure ap_id

where *ap_id* is one of the following: N0.SB0, N0.SB2 or N0.SB4.

▼ To Hot-Swap a CPU/Memory Board

Caution – For complete information about physically removing and replacing boards, refer to the *Sun Fire V1280/Netra 1280 Service Manual*. Failure to follow the stated procedures can result in damage to system boards and other components.

1. Make sure you are properly grounded using a wrist strap.

2. Power off the board with cfgadm.

```
# cfgadm -c disconnect ap_id
```

where *ap_id* is one of the following: N0.SB0, N0.SB2 or N0.SB4.

This command removes the resources from the Solaris operating environment and the OpenBoot PROM, and powers off the board.

3. Verify the state of the Power and Hotplug OK LEDs.

The green Power LED will flash briefly as the CPU/Memory board is cooling down. In order to safely remove the board from the systems the green Power LED must be off and the amber Hotplug OK LED must be on.

- 4. Complete the hardware removal and installation of the board. For more information refer to the *Sun Fire V1280/Netra 1280 Service Manual*.
- 5. After removing and installing board, bring the board back to the Solaris operating environment with the Solaris dynamic reconfiguration cfgadm command.

cfgadm -c configure ap_id

where *ap_id* is one of the following: N0.SB0, N0.SB2 or N0.SB4.

This command powers the board on, tests it, attaches the board, and brings all of its resources back to the Solaris operating environment.

- 6. Verify that the green Power LED is lit.
- ▼ To Remove a CPU/Memory Board From the System

Note – Before you begin this procedure, make sure you have ready a system board filler panel to replace the system board you are going to remove. A system board filler panel is a metal board with slots that allow cooling air to circulate.

1. Detach and power off the board from the system by using the cfgadm -c disconnect command.

```
# cfgadm -c disconnect ap_id
```

where *ap_id* is one of the following: N0.SB0, N0.SB2 or N0.SB4.

Caution – For complete information about physically removing and replacing boards, refer to the *Sun Fire V1280/Netra 1280 Service Manual*. Failure to follow the stated procedures can result in damage to system boards and other components.

2. Remove the board from the system.

Refer to the *Sun Fire V1280/Netra 1280 Service Manual* for complete step-by-step board removal procedures.

3. Insert a system board filler panel into the slot within one minute of removing the board to prevent system overheating.

▼ To Disconnect a CPU/Memory Board Temporarily

You can use DR to power down the board and leave it in place. For example, you might want to do this if the board fails and a replacement board or a system board filler panel is not available.

• Detach and power off the board using the cfgadm -c disconnect command.

```
# cfgadm -c disconnect ap_id
```

where *ap_id* is one of the following: N0.SB0, N0.SB2 or N0.SB4.

Troubleshooting

This section discusses common types of failure:

- "Unconfigure Operation Failure" on page 35
- "Configure Operation Failure" on page 41

The following are examples of cfgadm diagnostic messages. (Syntax error messages are not included here.)

```
cfgadm: hardware component is busy, try again
cfgadm: operation: Data error: error_text
cfgadm: operation: Hardware specific failure: error_text
cfgadm: operation: Insufficient privileges
cfgadm: operation: Operation requires a service interruption
cfgadm: System is busy, try again
WARNING: Processor number number failed to offline.
```

See the following man pages for additional error message detail: cfgadm(1M), $cfgadm_sbd(1M)$, and $config_admin(3X)$.

Unconfigure Operation Failure

An unconfigure operation for a CPU/Memory board can fail if the system is not in a correct state before you begin the operation.

CPU/Memory Board Unconfiguration Failures

- Memory on a board is interleaved across boards before an attempt to unconfigure the board.
- A process is bound to a CPU before an attempt to unconfigure the CPU.
- Memory remains configured on a system board before you attempt a CPU unconfigure operation on that board.
- The memory on the board is configured (in use). See "Unable to Unconfigure Memory on a Board With Permanent Memory" on page 108.
- CPUs on the board cannot be taken off line. See "Unable to Unconfigure a CPU" on page 110.

Cannot Unconfigure a Board Whose Memory Is Interleaved Across Boards

If you try to unconfigure a system board whose memory is interleaved across system boards, the system displays an error message such as:

cfgadm: Hardware specific failure: unconfigure N0.SB2::memory: Memory is interleaved across boards: /ssm@0,0/memory-controller@b,400000

Cannot Unconfigure a CPU to Which a Process is Bound

If you try to unconfigure a CPU to which a process is bound, the system displays an error message such as the following:

cfgadm: Hardware specific failure: unconfigure N0.SB2::cpu3: Failed to off-line: /ssm@0,0/SUNW,UltraSPARC-III

• Unbind the process from the CPU and retry the unconfigure operation.

Cannot Unconfigure a CPU Before All Memory is Unconfigured

All memory on a system board must be unconfigured before you try to unconfigure a CPU. If you try to unconfigure a CPU before all memory on the board is unconfigured, the system displays an error message such as:

cfgadm: Hardware specific failure: unconfigure NO.SB2::cpu0: Can't unconfig cpu if mem online: /ssm@0,0/memory-controller

• Unconfigure all memory on the board and then unconfigure the CPU.

Unable to Unconfigure Memory on a Board With Permanent Memory

To unconfigure the memory on a board that has permanent memory, move the permanent memory pages to another board that has enough available memory to hold them. Such an additional board must be available before the unconfigure operation begins.

Memory Cannot Be Reconfigured

If the unconfigure operation fails with a message such as the following, the memory on the board could not be unconfigured:

cfgadm: Hardware specific failure: unconfigure N0.SB0: No available memory target: /ssm@0,0/memory-controller@3,400000

Add to another board enough memory to hold the permanent memory pages, and then retry the unconfigure operation.

To confirm that a memory page cannot be moved, use the verbose option with the cfgadm command and look for the word permanent in the listing:

cfgadm -av -s "select=type(memory)"

Not Enough Available Memory

If the unconfigure fails with one of the messages below, there will not be enough available memory in the system if the board is removed:

cfgadm: Hardware specific failure: unconfigure N0.SB0: Insufficient memory

• Reduce the memory load on the system and try again. If practical, install more memory in another board slot.

Memory Demand Increased

If the unconfigure fails with the following message, the memory demand has increased while the unconfigure operation was proceeding:

cfgadm: Hardware specific failure: unconfigure N0.SB0: Memory operation failed

cfgadm: Hardware specific failure: unconfigure N0.SB0: Memory operation refused

• Reduce the memory load on the system and try again.

Unable to Unconfigure a CPU

CPU unconfiguration is part of the unconfiguration operation for a CPU/Memory board. If the operation fails to take the CPU offline, the following message is logged to the console:

WARNING: Processor *number* failed to offline.

This failure occurs if:

- The CPU has processes bound to it.
- The CPU is the last one in a CPU set.
- The CPU is the last online CPU in the system.

Unable to Disconnect a Board

It is possible to unconfigure a board and then discover that it cannot be disconnected. The cfgadm status display lists the board as not detachable. This problem occurs when the board is supplying an essential hardware service that cannot be relocated to an alternate board.

Configure Operation Failure

CPU/Memory Board Configuration Failure

Cannot Configure Either CPU0 or CPU1 While the Other Is Configured

Before you try to configure either CPU0 or CPU1, make sure that the other CPU is unconfigured. Once both CPU0 and CPU1 are unconfigured, it is then possible to configure both of them.

CPUs on a Board Must Be Configured Before Memory

Before configuring memory, all CPUs on the system board must be configured. If you try to configure memory while one or more CPUs are unconfigured, the system displays an error message such as: cfgadm: Hardware specific failure: configure NO.SB2::memory: Can't config memory if not all cpus are online: /ssm@0,0/memorycontroller

Error Logging

Error messages from Solaris are logged using syslog and SunMC. Error messages from the System Controller are also logged to SunMC.

Glossary

ap_id	Attachment point identifier; an ap_id specifies the type and location of the attachment point in the system and is unambiguous. There are two types of identifier: physical and logical. A physical identifier contains a fully specified pathname, while a logical identifier contains a shorthand notation.
Attachment point	A collective term for a board and its card cage slot. A <i>physical</i> attachment point describes the software driver and location of the card cage slot. A <i>logical</i> attachment point is an abbreviated name created by the system to refer to the physical attachment point.
cfgadm command	cfgadm is the primary command for dynamic reconfiguration on the Sun Fire V1280/Netra 1280 system. For information about the command and its options, refer to the cfgadm(1M), cfgadm_sbd(1M), and cfgadm_pci(1M) man pages. For any late-breaking news about this and related commands, refer to the Solaris 8 section at the DR web site. See Chapter 9.
Condition	The operational status of an attachment point.
Configuration (system)	The collection of attached devices known to the system. The system cannot use a physical device until the configuration is updated. The operating system assigns functional roles to a board and loads device drivers for the board and for devices attached to the board.
Configuration (board)	The operating system assigns functional roles to a board and loads device drivers for the board and for devices attached to the board.
Connection	A board is present in a slot and is electrically connected. The temperature of the slot is monitored by the system.
Detachability	The device driver supports DDI_DETACH and the device (such as an I/O board or a SCSI chain) is physically arranged so that it can be detached.
Disconnection	The system stops monitoring the board and power to the slot is turned off. A board in this state can be unplugged.
DR	See Dynamic Reconfiguration

Dynamic

- **Reconfiguration** Dynamic Reconfiguration (DR) is software that allows the administrator to (1) view a system configuration; (2) suspend or restart operations involving a port, storage device, or board; and (3) reconfigure the system (detach or attach hotswappable devices such as disk drives or interface boards) without the need to power down the system. When DR is used with IPMP or Solstice DiskSuite software (and redundant hardware), the server can continue to communicate with disk drives and networks without interruption while a service provider replaces an existing device or installs a new device. DR supports replacement of a CPU/Memory, provided the memory on the board is not interleaved with memory on other boards in the system.
 - **Hot-plug** Hot-plug boards and modules have special connectors that supply electrical power to the board or module before the data pins make contact. Boards and devices that do not have hot-plug connectors cannot be inserted or removed while the system is running.
 - **Hot swap** A hot swap device has special DC power connectors and logic circuitry that allow the device to be inserted without the necessity of turning off the system.

IP Multipathing

(IPMP) Internet Protocol multipathing. Enables continuous application availability by load balancing failures when multiple network interface cards are attached to a system. If a failure occurs in a network adapter, and if an alternate adapter is connected to the same IP link, the system switches all the network accesses from the failed adapter to the alternate adapter. When multiple network adapters are connected to the same IP link, any increases in network traffic are spread across multiple network adapters, which improves network throughput.

- **Logical DR** A DR operation in which hardware is not physically added or removed. An example is the deactivation of a failed board that is then left in the slot (to avoid changing the flow of cooling air) until a replacement is available.
 - **Occupant** Hardware resource such as a system board or a disk drive that occupies a DR receptacle or slot.
 - **Platform** A specific Sun Fire system model, such as the Sun Fire V1280/Netra 1280 system.
- **Physical DR** A DR operation that involves the physical addition or removal of a board. See also "Logical DR."
- Quiescence A brief pause in the operating environment to allow an unconfigure and disconnect operation on a system board with non-pageable OpenBoot PROM (OBP) or kernel memory. All operating environment and device activity on the backplane must cease for a few seconds during a critical phase of the operation.
- **Receptacle** A receiver such as a board slot or SCSI chain.
 - **Port** A board connector.

- **SNMP** Simple Network Management Protocol. SNMP is any system listening to SNMP events. This is usually the system with the Sun Management Center software installed.
 - State The operational status of either a receptacle (slot) or an occupant (board).
- **Suspendability** To be suitable for DR, a device driver must have the ability to stop user threads, execute the DDI_SUSPEND call, stop the clock, and stop the CPUs.
- **Suspend-safe** A suspend-safe device is one that does not access memory or interrupt the system while the operating system is in quiescence. A driver is considered suspend-safe if it supports operating system quiescence (suspend/resume). It also guarantees that when a suspend request is successfully completed, the device that the driver manages will not attempt to access memory, even if the device is open when the suspend request is made.
- **Suspend-unsafe** A suspend-unsafe device is one that allows a memory access or a system interruption while the operating system is in quiescence.

System Controller

- **software** The main application that performs all of the System Controller hardware management functions.
- **Unconfiguration** The system detaches a board logically from the operating system and takes the associated device drivers off-line. Environmental monitoring continues, but any devices on the board are not available for system use.

Index

Α

alarms, checking status, 48 alarms, setting, 55 attachment points, 93 auto-boot? OpenBoot variable, 61 availability, 7

В

blacklisting components, 75 manual, 75 board condition, 96 displaying status, 99 occupant state, 95 receptacle state, 95 board status, detailed, 100 bootmode command, 60, 63

С

cfgadm command, 91, 99 componens blacklisting, 75 disabling, 75 component condition, 97 occupant state, 96 receptacle state, 96 state, 96 type, 97 condition, component, 95 CPU/Memory board, replacement, 91 CPU/Memory mapping, 67

D

date and time, setting, 19 device name mapping, 67 device path names to physical system devices, 67 diag-level OpenBoot variable, 60 diagnostic information, displaying, 82 disablecomponent command, 75 disabling a component, 75 domain console, 4 Dynamic Reconfiguration, 91

Ε

enablecomponent command, 75 environmental monitoring, 4 error-level OpenBoot variable, 60 error-reset-recovery OpenBoot variable, 61 event reporting, 56

F

failures, determining causes, 83 fans, checking status, 50 fault LED, checking status remotely, 48 fault, system, 72 firmware, upgrading, 85 flashupdate command, 85

Н

hangs, determining causes, 83 hard hung system, recovering from, 78 hardware, powering on, 18 hot-plug devices, 94 hung system, recovering, 77 hung system, recovering from, 78

I

I/O assemblies mapping, 69 initial power-on, 14 interleave-mode OpenBoot variable, 61 interleave-scope OpenBoot variable, 61 internal temperature, checking, 53 internal voltage sensors, 50

L

logical attachment point, 93 LOM escape sequence, changing, 56 monitoring the system, 46 to ?? online documentation, 46 sample Event Log, 49 setting the alarms, 55 lom -A command, 55 lom -E command, 55 lom -f command, 50 lom -G command, 88 lom -1 command, 48 LOM prompt accessing, 39 LOM serial port, 56 stopping event reporting, 56 lom -t command, 53 lom -v command, 50 lom -x command, 56

Μ

maintenance, 85 manual blacklisting, 75 mapping, 67 CPU/Memory, 67 I/O assembly, 69 node, 67 memory interleaved, 98 nonpermanent, 97 permanent, 97 reconfiguring, 98 monitoring, environmental conditions, 4

Ν

navigation procedures, 29 network parameters, setting, 20 node mapping, 67 nonpermanent memory, 97

0

On/Standby switch, 13 OpenBoot PROM variables, 59 OpenBoot prompt, accessing, 41 overtemperature, 79

Ρ

password command, 20 password, setting, 20 permanent memory, 97 physical attachment point, 93 POST, 59 controlling, 59, 63 OpenBoot PROM variables, 59 power supply, 82 powering on hardware, 18 power-off, 15 to standby, 15 poweroff command, 17 power-on, 14 from standby, 14 initial, 14 poweron command, 15 power-on self test, *See* POST printenv command, 60

Q

quiescence, 92

R

RAS, 6 reboot-on-error OpenBoot variable, 61 recovering from a hard hung system, 78 reliability, 6

S

SCPOST, controlling, 64 serviceability, 8 setdate command, 19 setenv command, 60 setupnetwork command, 20 setupsc command, 64 showcomponent command, 75 showenvironment command, 79 shutdown command, 16 Solaris console accessing, 39 Solaris, installing and booting, 22 standby power off to, 15 power on from, 14 state, component, 95 suspend-safe devices, 92

suspend-unsafe devices, 92 system hard hung, recovering from, 78 System Controller POST, *See* SCPOST system faults, 72 system identity, moving, 79 system, hung, recovering, 77

Т

temperature, 79 terminal, connecting, 30 troubleshooting, 67

U

use-nvramrc? OpenBoot variable, 61

V

verbosity-level OpenBoot variable, 60 voltage sensors, 50