

Netra[™] 1290 サーバーシステム 管理マニュアル

Sun Microsystems, Inc. www.sun.com

Part No. 819-6907-10 2006 年 8 月, Revision A

コメントの送付:http://www.sun.com/hwdocs/feedback

Copyright 2006 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

米国 Sun Microsystems, Inc. (以下、米国 Sun Microsystems 社とします)は、本書に記述されている技術に関する知的所有権を有していま す。これら知的所有権には、http://www.sun.com/patentsに掲載されているひとつまたは複数の米国特許、および米国ならびにその他の 国におけるひとつまたは複数の特許または出願中の特許が含まれています。

本書およびそれに付属する製品は著作権法により保護されており、その使用、複製、頒布および逆コンパイルを制限するライセンスのもと において頒布されます。サン・マイクロシステムズ株式会社の書面による事前の許可なく、本製品および本書のいかなる部分も、いかなる 方法によっても複製することが禁じられます。

本製品のフォント技術を含む第三者のソフトウェアは、著作権法により保護されており、提供者からライセンスを受けているものです。

本製品の一部は、カリフォルニア大学からライセンスされている Berkeley BSD システムに基づいていることがあります。UNIX は、X/Open Company Limited が独占的にライセンスしている米国ならびに他の国における登録商標です。

本製品は、株式会社モリサワからライセンス供与されたリュウミン L-KL (Ryumin-Light) および中ゴシック BBB (GothicBBB-Medium) の フォント・データを含んでいます。

本製品に含まれるHG明朝LとHGゴシックBは、株式会社リコーがリョービイマジクス株式会社からライセンス供与されたタイプフェー スマスタをもとに作成されたものです。平成明朝体W3は、株式会社リコーが財団法人日本規格協会文字フォント開発・普及センターから ライセンス供与されたタイプフェースマスタをもとに作成されたものです。また、HG明朝LとHGゴシックBの補助漢字部分は、平成明 朝体W3の補助漢字を使用しています。なお、フォントとして無断複製することは禁止されています。

Sun、Sun Microsystems、Java、Netra、OpenBoot、SunVTS、SunSolve、AnswerBook2、docs.sun.com は、米国およびその他の国における米国 Sun Microsystems 社の商標もしくは登録商標です。サンのロゴマークおよび Solaris は、米国 Sun Microsystems 社の登録商標です。

すべての SPARC 商標は、米国 SPARC International, Inc. のライセンスを受けて使用している同社の米国およびその他の国における商標また は登録商標です。SPARC 商標が付いた製品は、米国 Sun Microsystems 社が開発したアーキテクチャーに基づくものです。

OPENLOOK、OpenBoot、JLE は、サン・マイクロシステムズ株式会社の登録商標です。

ATOKは、株式会社ジャストシステムの登録商標です。ATOK8は、株式会社ジャストシステムの著作物であり、ATOK8にかかる著作権その他の権利は、すべて株式会社ジャストシステムに帰属します。ATOK Server/ATOK12は、株式会社ジャストシステムの著作物であり、ATOK Server/ATOK12にかかる著作権その他の権利は、株式会社ジャストシステムおよび各権利者に帰属します。

本書で参照されている製品やサービスに関しては、該当する会社または組織に直接お問い合わせください。

OPEN LOOK および Sun™ Graphical User Interface は、米国 Sun Microsystems 社が自社のユーザーおよびライセンス実施権者向けに開発 しました。米国 Sun Microsystems 社は、コンピュータ産業用のビジュアルまたは グラフィカル・ユーザーインタフェースの概念の研究開 発における米国 Xerox 社の先駆者としての成果を認めるものです。米国 Sun Microsystems 社は米国 Xerox 社から Xerox Graphical User Interface の非独占的ライセンスを取得しており、このライセンスは米国 Sun Microsystems 社のライセンス実施権者にも適用されます。

U.S. Government Rights—Commercial use. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions of the FAR and its supplements.

本書は、「現状のまま」をベースとして提供され、商品性、特定目的への適合性または第三者の権利の非侵害の黙示の保証を含みそれに限定されない、明示的であるか黙示的であるかを問わない、なんらの保証も行われないものとします。

本書には、技術的な誤りまたは誤植のある可能性があります。また、本書に記載された情報には、定期的に変更が行われ、かかる変更は本 書の最新版に反映されます。さらに、米国サンまたは日本サンは、本書に記載された製品またはプログラムを、予告なく改良または変更す ることがあります。

本製品が、外国為替および外国貿易管理法(外為法)に定められる戦略物資等(貨物または役務)に該当する場合、本製品を輸出または日本国 外へ持ち出す際には、サン・マイクロシステムズ株式会社の事前の書面による承諾を得ることのほか、外為法および関連法規に基づく輸出 手続き、また場合によっては、米国商務省または米国所轄官庁の許可を得ることが必要です。

原典: Netra 1290 Server System Administration Guide Part No: 819-4374-10 Revision A

目次

はじめに xv

1. Netra 1290 サーバーの概要 1

製品の概要 1

信頼性、可用性、および保守性 (RAS) 5

信頼性 5

- コンポーネントまたはボードの使用不可への切り替えおよび電源投入時 自己診断 (POST) 5
- 手動によるコンポーネントの使用不可への切り替え 6

環境監視 6

可用性 6

動的再構成 (DR) 6

電源障害時の対処 7

システムコントローラの再起動 7

ホストウォッチドッグ 7

保守性 7

LED 7

命名法 7

システムコントローラのエラーロギング 8

システムコントローラの XIR (外部強制リセット) のサポート 8

システムコントローラ 8

- 1/0 ポート 9
 - システム管理作業 10

Solaris コンソール 10

環境監視 11

システムインジケータボード 11

システムコントローラのメッセージ記録 12

2. システムコンソールの構成 15

LOM コンソール接続の確立 15

シリアルポートを使用した LOM コンソールへのアクセス 16

- ▼ ASCII 端末に接続する 16
- ▼ ネットワーク端末サーバーに接続する 17

▼ ワークステーションのシリアルポート B に接続する 17 遠隔接続を使用した LOM コンソールへのアクセス 18

▼ 遠隔接続を使用して LOM コンソールにアクセスする 18

LOM コンソールからの切り離し 19

コンソール間での切り替え 20

- ▼ Solaris コンソールから LOM プロンプトを表示する 20
- ▼ LOM プロンプトから Solaris コンソールに接続する 21
- ▼ OpenBoot PROM から LOM プロンプトを表示する 22
- ▼ LOM プロンプトから OpenBoot プロンプトを表示する 22
- ▼ Solaris OS の動作中に OpenBoot プロンプトを表示する 23
- ▼ シリアルポートを介してシステムコントローラに接続している場合に セッションを終了する 23
- ▼ ネットワーク接続を介してシステムコントローラに接続している場合に セッションを終了する 23

Solaris コマンド行インタフェースのコマンド 24

cfgadm コマンド 24

コマンドオプション 24

- ▼ 基本的なボード状態を表示する 25
- ▼ 詳細なボード状態を表示する 26
- ▼ CPU/メモリーボードをテストする 27
- ▼ CPU/メモリーボードの電源を一時的に切断する 28
- ▼ CPU/メモリーボードのホットスワップを行う 29
- 3. Lights Out Management 31

LOM コマンドの構文 32

Solaris OS からのシステムの監視 32

- ▼ LOM のオンラインマニュアルを表示する 33
- ▼ LOM の構成を表示する 33
- ▼ 障害 LED およびアラームの状態を確認する 34
- ▼ イベントログを表示する 34
- ▼ ファンの状態を確認する 35
- ▼ 内部電圧センサーの状態を確認する 36
- ▼ 内部温度を確認する 38
- ▼ 全コンポーネントの状態データと LOM の設定データを表示する 40
 Solaris OS から実行できるその他の LOM 操作 40
 - ▼ アラームをオンにする 41
 - ▼ アラームをオフにする 41
 - ▼ 1om> プロンプトのエスケープシーケンスを変更する 41
 - ▼ LOM プロンプトで LOM からコンソールへのレポートの送信を停止す る 42
 - ▼ ファームウェアをアップグレードする 42
- 4. 障害追跡 43

基本的な障害追跡 43

配電 44

▼ 配電システムの障害追跡を行う 44

正常な動作 44

異常な動作 45

メインファン 45

システムコントローラ 45

LED の解釈 45

サーバー格納装置の LED 46

ボードまたはコンポーネントの LED 48

システム障害 50

ユーザーが交換できるユニット 51

ボード上のコンポーネントの使用不可への切り替え 52

CPU/メモリーボードに関する考慮事項 54

▼ CPU/メモリーボードを切り離す 54

ハングアップしたシステムの回復 55

▼ サーバーのハングアップ状態を手動で回復する 55

サーバーの識別情報の移動 56

電源装置の障害追跡 57

CPU/メモリーボードの障害追跡 58

CPU/メモリーボードの構成解除時の障害 58

ボード上のメモリーが複数のボード間でインタリーブされているため、 ボードを構成解除できない 59

処理がバインドされている CPU を構成解除できない 59

- すべてのメモリーを構成解除しないと CPU を構成解除できない 59
- 永続メモリーを搭載するボード上のメモリーを構成解除できない 59

メモリーを再構成できない 60

使用可能なメモリーが十分でない 60

メモリー要求が増加している 60

CPU を構成解除できない 61

ボードを切り離せない 61

CPU/メモリーボードの構成時の障害 61

ほかの CPU が構成されていると CPU0 または CPU1 が構成できない 61

メモリーを構成する前にボード上の CPU を構成する必要がある 61

5. 診断 63

電源投入時自己診断 63

POST の設定に使用する OpenBoot PROM 変数 64

bootmode コマンドを使用した POST の制御 69

システムコントローラの POST の制御 69

▼ SC POST 診断レベルをデフォルトの min に設定する 70 SunVTS ソフトウェア 72

環境条件の診断 72

▼ 温度状態を確認する 72

Sun の保守作業員が障害原因を特定するための支援 75

自動診断および回復の概要 76

ハングアップしたシステムの自動回復 78

診断のイベント 79

診断および回復の制御 79

自動診断および回復情報の取得 81

自動診断イベントメッセージの表示 81

コンポーネントの状態の表示 82

詳細なエラー情報の表示 84

その他の障害追跡コマンド 85

 サーバーのセキュリティー保護 87 セキュリティーに関するガイドライン 87 コンソールのパスワードの定義 88 SNMP プロトコルのデフォルト構成の使用 88 設定を実装するためのシステムコントローラの再起動 88

▼ システムコントローラを再起動する 88

遠隔接続形式の選択 89

SSH の使用可能への切り替え 89

▼ SSH を使用可能にする 90

SSH がサポートしない機能 91

SSH ホスト鍵の変更 91

セキュリティーに関する補足事項 92

RTOS シェルにアクセスするための特殊なキーシーケンス 92

ドメインの最小化 92

Solaris オペレーティングシステムのセキュリティー 93

- A. 動的再構成 (DR) 95
 - 動的再構成 (DR) 95

コマンド行インタフェース 96

DR の概念 96

休止 96

RPC または TCP のタイムアウトと接続の切断 97

一時停止に対して安全なデバイスと危険なデバイス 97

接続点 97

DR の操作 98

ホットプラグ対応のハードウェア 99

条件および状態 99

ボードの状態および条件 99

ボードのソケットの状態 99

ボードの占有装置の状態 100

ボードの条件 100

コンポーネントの状態および条件 101

コンポーネントのソケットの状態 101

コンポーネントの占有装置の状態 101

コンポーネントの条件 101

コンポーネントの種類 102

非永続メモリーおよび永続メモリー 102

制限事項 103

メモリーインタリーブ 103

永続メモリーの再構成 103

B. ウォッチドッグタイマーのアプリケーションモード 105
 ウォッチドッグタイマーのアプリケーションモードの理解 105
 ウォッチドッグタイマーでサポートされていない機能および制限事項 107
 ntwdt ドライバの使用 108
 ユーザー APIの理解 109
 ウォッチドッグタイマーの使用 109
 タイムアウト時間の設定 109
 ウォッチドッグの使用可能または使用不可への切り替え 110
 ウォッチドッグの再設定 110
 ウォッチドッグタイマーの状態の取得 111

データ構造の確認および定義 111

ウォッチドッグのプログラム例 112

アラーム3のプログラム 113

ウォッチドッグタイマーのエラーメッセージ 115

C. ファームウェアの更新 117

flashupdate コマンドの使用 117

- ▼ flashupdate コマンドを使用して Netra 1290 サーバーのファームウェ アをアップグレードする 119
- ▼ flashupdate コマンドを使用して Netra 1290 サーバーのファームウェ アをダウングレードする 120

1om -G コマンドの使用 120

▼ 1om -G コマンドを使用して Netra 1290 サーバーのファームウェアを アップグレードする 121

- ▼ 1om -G コマンドを使用して Netra 1290 サーバーのファームウェアをダ ウングレードする 122
- D. デバイスのマッピング 123
 CPU/メモリーボードのマッピング 123
 IB_SSC アセンブリのマッピング 124

図目次

- 図 1-1 サーバーの上面図 2
- 図 1-2 サーバーの正面図 3
- 図 1-3 サーバーの背面図 4
- 図 1-4 サーバーの I/O ポートの位置 9
- 図 1-5 システムインジケータボード 11
- 図 1-6 システムコントローラのロギング 14
- 図 2-1 コンソール間のナビゲーション 20
- 図 2-2 cfgadm -av コマンド出力の詳細 27
- 図 4-1 サーバーフロントパネルの LED 46
- 図 4-2 サーバー背面パネルの LED 48
- 図 4-3 システムインジケータ 50
- 図 5-1 自動診断および回復処理 76
- 図 D-1 Netra 1290 サーバーの IB6 に対応する IB SSC PCI+ 物理スロット番号 127

表目次

- 表 1-1 システムコントローラの主な管理作業 10
- 表 1-2 システムのインジケータ LED の機能 11
- 表 2-1 システムコントローラ (SC) から出力される DR ボードの状態 24
- 表 2-2 cfgadm -c コマンドの引数 25
- 表 2-3 cfgadm -x コマンドの引数 25
- 表 2-4 cfgadm の診断レベル 28
- 表 3-1 lom コマンドのオプションおよび引数 32
- 表 4-1 FRU の LED 状態 44
- 表 4-2 サーバーの LED の機能 47
- 表 4-3 主要なボードおよびメインファントレーの LED の説明 49
- 表 4-4 システムの障害インジケータの状態 50
- 表 4-5 ブラックリストに登録できるコンポーネントの名称 52
- 表 5-1 POST の構成パラメータ 65
- 表 5-2 SunVTS のマニュアル 72
- 表 5-3 診断およびオペレーティングシステム回復パラメータ 80
- 表 5-4 その他の障害追跡コマンド 85
- 表 6-1 SSH サーバーの属性 89
- 表 A-1 DR 操作の種類 98
- 表 A-2 ボードのソケットの状態 100
- 表 A-3 ボードの占有装置の状態 100

- 表 A-4 ボードの条件 100
- 表 A-5 コンポーネントの占有装置の状態 101
- 表 A-6 コンポーネントの条件 101
- 表 A-7 コンポーネントの種類 102
- 表 B-1 アラーム3の動作 113
- 表 B-2 ウォッチドッグタイマーのエラーメッセージ 115
- 表 D-1 CPU およびメモリーのエージェント ID の割り当て 124
- 表 D-2 I/O アセンブリのタイプおよびスロット数 124
- 表 D-3 1 システムあたりの I/O アセンブリ数および名前 124
- 表 D-4 I/O コントローラのエージェント ID の割り当て 125
- 表 D-5 IB_SSC アセンブリ PCI+ デバイスのマッピング 126

はじめに

『Netra 1290 サーバーシステム管理マニュアル』では、Netra[™] 1290 サーバーの管 理および障害追跡を行うための詳細な手順について説明します。このマニュアルは、 技術者、システム管理者、承認サービスプロバイダ (ASP)、およびサーバーシステム の管理と障害追跡に熟練したユーザーを対象として書かれています。

マニュアルの構成

第1章では、Netra 1290 サーバーの機能に関する基本的な事項について説明します。

第2章では、システムへの接続方法と、LOM シェルとコンソールとの間のナビゲー ションについて説明します。

第3章では、LOM 固有のコマンドの使用法について説明します。

第4章では、サーバーの障害追跡方法について説明します。

第5章では、診断について説明します。

第6章では、システムのセキュリティー保護に関する重要な情報を提供します。

付録 A では、CPU/メモリーボードを動的に再構成する方法について説明します。

付録 B では、ウォッチドッグタイマーのアプリケーションモードについて説明しま す。

付録Cでは、サーバーファームウェアの更新方法について説明します。

付録 D では、デバイスマッピングでの命名法について説明します。

UNIX コマンド

このマニュアルには、システムの停止、システムの起動、およびデバイスの構成など に使用する基本的な UNIX[®] コマンドと操作手順に関する説明は含まれていない可能 性があります。これらについては、以下を参照してください。

- 使用しているシステムに付属のソフトウェアマニュアル
- 下記にある Solaris[™] オペレーティングシステムのマニュアル http://docs.sun.com

シェルプロンプトについて

シェル	プロンプト	
UNIX の C シェル	machine-name%	
UNIX の Bourne シェルと Korn シェル	\$	
スーパーユーザー (シェルの種類を問わない)	#	

書体と記号について

書体または記号*	意味	例
AaBbCc123	コマンド名、ファイル名、ディレ クトリ名、画面上のコンピュータ 出力、コード例。	.login ファイルを編集します。 ls -a を実行します。 % You have mail.
AaBbCc123	ユーザーが入力する文字を、画面 上のコンピュータ出力と区別して 表します。	% su Password:
AaBbCc123	コマンド行の可変部分。実際の名 前や値と置き換えてください。	rm filename と入力します。
ſ J	参照する書名を示します。	『Solaris ユーザーマニュアル』
٢J	参照する章、節、または、強調す る語を示します。	第6章「データの管理」を参照。 この操作ができるのは「スーパー ユーザー」だけです。
\	枠で囲まれたコード例で、テキス トがページ行幅を超える場合に、 継続を示します。	<pre>% grep `^#define \ XV_VERSION_STRING'</pre>

* 使用しているブラウザにより、これらの設定と異なって表示される場合があります。

関連マニュアル

オンラインのマニュアルは、次の URL で参照できます。

http://www.sun.com/products-n-solutions/hardware/docs/

用途	タイトル	Part No.	形式	場所
指針マニュアル	『Netra 1290 Server Getting Started Guide』	819-4378-10	印刷物 PDF	出荷用キット オンライン
設置	『Netra 1290 サーバー設置マニュアル』	819-6898-10	PDF	オンライン
保守	『Netra 1290 Server Service Manual』	819-4373-10	PDF	オンライン
更新	『Netra 1290 Server Product Notes』	819-4375-10	PDF	オンライン
コンプライアンス	『Netra 1290 Server Safety and Compliance Guide』	819-4376-10	PDF	オンライン

マニュアル、サポート、およびトレーニ ング

Sun のサービス	URL
マニュアル	http://jp.sun.com/documentation/
サポート	http://jp.sun.com/support/
トレーニング	http://jp.sun.com/training/

Sun 以外の Web サイト

このマニュアルで紹介する Sun 以外の Web サイトが使用可能かどうかについては、 Sun は責任を負いません。このようなサイトやリソース上、またはこれらを経由して 利用できるコンテンツ、広告、製品、またはその他の資料についても、Sun は保証し ておらず、法的責任を負いません。また、このようなサイトやリソース上、またはこ れらを経由して利用できるコンテンツ、商品、サービスの使用や、それらへの依存に 関連して発生した実際の損害や損失、またはその申し立てについても、Sun は一切の 責任を負いません。

コメントをお寄せください

マニュアルの品質改善のため、お客様からのご意見およびご要望をお待ちしておりま す。コメントは下記よりお送りください。

http://www.sun.com/hwdocs/feedback

ご意見をお寄せいただく際には、下記のタイトルと Part No. を記載してください。

『Netra 1290 サーバーシステム管理マニュアル』、Part No. 819-6907-10

第1章

Netra 1290 サーバーの概要

この章では、Netra 1290 サーバーの機能に関する基本的な事項について説明します。 この章の内容は次のとおりです。

- 1ページの「製品の概要」
- 5 ページの「信頼性、可用性、および保守性 (RAS)」
- 8ページの「システムコントローラ」

製品の概要

この節では、Netra 1290 サーバーの正面図、背面図、および上面図を示します。図 1-1 では、多数のボードおよびその他のデバイスが取り付けられているサーバー上面 の図を示します。図 1-2 では、電源装置、ファン、ファントレー、およびストレージ デバイスが取り付けられているサーバー正面の内部の図を示します。図 1-3 では、 Netra 1290 サーバーのポート、コネクタ、および配電盤の位置を示します。

図 1-3 サーバーの背面図

信頼性、可用性、および保守性 (RAS)

このシステムには RAS (Reliability, Availability and Serviceability) 機能があります。

- 「信頼性」とは、通常の環境条件下で、システムが一定の時間動作を継続する確率です。信頼性は可用性とは異なります。信頼性はシステムの障害だけにかかわりますが、可用性は障害および回復の両方によって左右されます。
- 「可用性」は平均可用性とも呼ばれ、システムが機能を正常に実行している時間のパーセンテージを指します。可用性は、システムレベルで評価される場合と、ユーザーにサービスを提供できるかどうかで評価される場合があります。システム可用性によって、そのシステム上に構築される製品の可用性の上限が決まります。
- 「保守性」は、保守およびサーバー修復の容易さと効率を測るものです。保守性には平均修復時間 (MTTR、Mean Time to Repair) と診断能力の両方が含まれるため、一意に定まった明確な基準はありません。

この節では、RAS について説明します。

信頼性

ソフトウェアの信頼性機能には、次のものがあります。

- 5 ページの「コンポーネントまたはボードの使用不可への切り替えおよび電源投入 時自己診断 (POST)」
- 6ページの「手動によるコンポーネントの使用不可への切り替え」
- 6 ページの「環境監視」

信頼性機能は、システムの可用性も向上させます。

コンポーネントまたはボードの使用不可への切り替えおよび 電源投入時自己診断 (POST)

電源投入時自己診断 (POST) は、サーバーの電源投入処理の一部です。ボードまたは コンポーネントがテストに合格しない場合、POST はそのコンポーネントまたはボー ドを使用不可にします。showboards コマンドを使用すると、問題または機能低下 が検出されたボードを表示できます。Solaris オペレーティングシステムが動作して いるサーバーは、POST 診断に合格したコンポーネントだけを使用して起動します。

手動によるコンポーネントの使用不可への切り替え

システムコントローラは、コンポーネントレベルの状態の表示機能と、ユーザーがコンポーネントの状態を変更するための機能を提供します。

コンソールから set1s コマンドを実行して、コンポーネント位置の状態を設定しま す。コンポーネント位置の状態は、次回のドメインの再起動時、ボードの電源の再投 入時、または POST の実行時 (たとえば、setkeyswitch on または off 操作を行 うと POST が実行される) に更新されます。

注 – enablecomponent および disablecomponent コマンドの代わりに set1s コ マンドを使用してください。これらは、これまでコンポーネント資源の管理に使用し ていたコマンドです。enablecomponent および disablecomponent コマンドは 現在も使用できますが、コンポーネントのサーバーへの構成または構成解除には、 set1s コマンドを使用してください。

showcomponent コマンドは、使用不可になっているかどうかなどの、コンポーネントの状態情報を表示します。

環境監視

システムコントローラ (SC) は、サーバーの温度センサー、冷却センサー、および電 圧センサーを監視します。SC は、Solaris オペレーティングシステムに最新の環境状 態情報を提供します。ハードウェアの電源を切る必要がある場合には、SC は Solaris OS にシステム停止の実行を通知します。

可用性

ソフトウェアの可用性機能には、次のものがあります。

- 6 ページの「動的再構成 (DR)」
- 7 ページの「電源障害時の対処」
- 7ページの「システムコントローラの再起動」
- 7 ページの「ホストウォッチドッグ」

動的再構成 (DR)

次のコンポーネントは、動的に再構成できます。

- ハードドライブ
- CPU/メモリーボード
- 電源装置
- ファン

電源障害時の対処

電源異常からの回復時に、SC はシステムの以前の状態への復元を試みます。

システムコントローラの再起動

SC は、再起動によってシステムの管理を開始し復元します。再起動が現在動作中の Solaris オペレーティングシステムに影響を与えることはありません。

ホストウォッチドッグ

SC は、Solaris オペレーティングシステムの状態を監視し、システムからの応答が途 絶えるとリセットを実行します。

保守性

ソフトウェアの保守性機能によって、サーバーの緊急保守だけでなく、日常の保守作 業も効率よく適時に行うことができます。

- 7 ページの「LED」
- 7 ページの「命名法」
- 8 ページの「システムコントローラのエラーロギング」
- 8ページの「システムコントローラの XIR (外部強制リセット) のサポート」

LED

サーバー外部からアクセスできるすべての現場交換可能ユニット (FRU) には、その ユニットの状態を示す LED があります。SC は、電源装置 LED 以外の、サーバー内 のすべての LED を管理します。電源装置 LED は、電源装置によって管理されます。 LED の機能については、『Netra 1290 Server Service Manual』(819-4373) を参照し てください。

命名法

SC、Solaris オペレーティングシステム、電源投入時自己診断 (POST)、および OpenBoot[™] PROM のエラーメッセージでは、サーバーの物理ラベルと一致する FRU 識別子を使用します。唯一の例外は、OpenBoot PROM で I/O デバイスに使用 される名称です。デバイスのプローブ時には、I/O デバイスは第4章で説明するデバ イスパス名によって示されます。

システムコントローラのエラーロギング

SC のエラーメッセージは、Solaris オペレーティングシステムに自動的に報告されま す。また、SC には、エラーメッセージを格納する内部バッファーもあります。 showlogs コマンドを使用することによって、SC のメッセージバッファーに格納さ れた、SC のログイベントを表示できます。

システムコントローラの XIR (外部強制リセット) のサポート

SC の reset コマンドを使用すると、ハングアップしたシステムを回復して、Solaris オペレーティングシステムの core ファイルを収集できます。

システムコントローラ

システムコントローラ (SC) は、サーバーのバックプレーンに接続された IB_SSC ア センブリに常駐する組み込みシステムです。SC は、電源投入の順序付け、モジュー ルの電源投入時自己診断 (POST) の順序付け、環境監視、障害の表示、アラームなど の Lights Out Management (LOM) 機能を提供します。

SC は、RS-232 シリアルインタフェースおよび 10/100BASE-T Ethernet インタフェー スを 1 つずつ提供します。シリアルインタフェースおよび Ethernet インタフェース を介して、LOM コマンド行インタフェースと、Solaris および OpenBoot PROM コ ンソールへのアクセスを共有し取得できます。

システムコントローラの機能は次のとおりです。

- システムの監視
- Solaris および OpenBoot PROM コンソールの提供
- 仮想時刻 (TOD) の提供
- ■環境監視の実行
- システム初期化の実行
- POST の設定

SC 上で動作するソフトウェアアプリケーションは、システム設定を変更するための コマンド行インタフェースを提供します。

1/0 ポート

サーバーの背面には、次のポートがあります。

- LOM コンソールシリアル (RS-232) ポート (RJ-45)
- 予備シリアル (RS-232) ポート (RJ-45)
- 2 つのギガビット Ethernet ポート、NET0 および NET1 (RJ-45)
- アラームポート (DB-15)
- システムコントローラ用 10/100BASE-T Ethernet ポート (RJ-45)
- UltraSCSI ポート
- 最大 6 つの PCI+ ポート (33 MHz と 66 MHz の両方をサポート)
- 4 つの電源差し込み口

図 1-4 に、各ポートの位置を示します。

図 1-4 サーバーの I/O ポートの位置

システムコントローラへのアクセスには、LOM コンソールシリアルポートおよび 10/100BASE-T Ethernet ポートを使用できます。

コンソールシリアルポートは、ASCII 端末または NTS (ネットワーク端末サーバー) への直接接続に使用します。システムコントローラボードをシリアルケーブルで接続 すると、ASCII 端末または NTS を介してシステムコントローラのコマンド行インタ フェースにアクセスできます。

10/100BASE-T Ethernet ポートは、SC をネットワークに接続するために使用します。

システム管理作業

LOM プロンプトは、SC のコマンド行インタフェースを提供します。また、コンソー ルメッセージもここに表示されます。表 1-1 に、主なシステム管理作業を示します。

表 1-1 システムコントローラの主な管理作業

	コマンド
システムコントローラの構成	password, setescape, seteventreporting, setupnetwork, setupsc
サーバーの構成	setalarm, setlocator
ボードの電源投入または切断と、サーバーの電源 投入または切断	poweron, poweroff, reset, shutdown
CPU/メモリーボードのテスト	testboard
システムコントローラのリセット	resetsc
コンポーネントの使用可/不可の切り替え	disablecomponent, enablecomponent
ファームウェアのアップグレード	flashupdate
現在のシステムコントローラ設定の表示	showescape, showeventreporting, shownetwork, showsc
現在のシステム状態の表示	showalarm, showboards, showcomponent, showenvironment, showfault, showhostname, showlocator, showlogs, showmodel, showresetstate
日付、時刻、およびタイムゾーンの設定	setdate
日付および時刻の表示	showdate

Solaris コンソール

Solaris オペレーティングシステム、OpenBoot PROM、または POST が動作してい るときには、Solaris コンソールにアクセスできます。Solaris コンソールに接続する と、次のいずれかの操作モードになります。

- Solaris オペレーティングシステムのコンソール (% または # プロンプト)。
- OpenBoot PROM (ok プロンプト)。
- システムによって POST が実行されて、POST 出力を確認できる。

これらのプロンプトと LOM プロンプトを切り替える方法については、20 ページの「コンソール間での切り替え」を参照してください。

環境監視

センサーは、温度、電圧、およびファンの動作を監視します。

SC は、これらのセンサーに対して定期的にポーリングを行なって、Solaris OS に環 境データを提供します。いずれかの制限値を超える状況が発生すると、SC は必要に 応じてさまざまなコンポーネントを停止し、損傷を防ぎます。

たとえば、適正温度を超えた場合には、SC は Solaris OS に高温状態を通知し、オペ レーティングシステムが処理を行います。適正温度を大きく超えた場合には、SC は オペレーティングシステムに事前に通知することなくシステムを停止できます。

システムインジケータボード

図 1-5 に示すように、システムインジケータボードには、オン/スタンバイスイッチ とインジケータ LED があります。

オン/スタンバイスイッチ

図 1-5 システムインジケータボード

表 1-2 に、インジケータ LED の機能を示します。

表 1-2 システムのインジケータ LED の機能

名称	色	機能
ロケータ*	白	通常は消灯していて、ユーザーコマンドによって点灯。
システム障害*	オレンジ	LOM で障害が検出されると点灯。
システムアクティブ*	緑	サーバーに電力が供給されると点灯。
上部アクセスが必要	オレンジ	サーバーの上部からのみ交換可能な FRU に障害が発生すると点灯。

名称	色	機能
UNIX 実行中	緑	Solaris OS の動作中に点灯。サーバーへの電源投入中は消灯します。 ウォッチドッグによるタイムアウトまたはユーザー定義のアラーム3 の表明によってリセットされる場合があります(詳細は、113ページ の「アラーム3のプログラム」を参照)。
アラーム1および アラーム2	緑	LOM で指定したイベントが発生すると点灯。
電源 A および電源 B	緑	対応する電力の供給がある場合に点灯。

表 1-2 システムのインジケータ LED の機能

* このインジケータはサーバーの背面パネルにもあります。

システムコントローラのメッセージ記録

SC は、システムイベント、電源投入、起動、電源切断、ホットプラグ対応ユニット の交換などの処理、および環境に関する警告が発生すると、タイムスタンプの付いた メッセージを生成します。

生成されたメッセージは、まず、SC のオンボードメモリー上の 128 メッセージを記 録できる循環バッファーに格納されます。1 つのメッセージが数行に及ぶ場合もあり ます。次に、SC は、ホストで Solaris ソフトウェアが動作中であればメッセージを Solaris ホストに送信します。このメッセージはシステムログデーモン (syslogd) に よって処理されます。Solaris ソフトウェアが動作している場合、メッセージは、SC で生成されるとすぐに送信されます。SC からまだコピーされていないメッセージ は、Solaris OS の起動時または SC のリセット時に送信されます。

メッセージは、Solaris プロンプトから 1om(1M) ユーティリティー (第3章を参照)を 使用して表示することもできます。

通常、メッセージは Solaris ホストの /var/adm/messages ファイルに格納されま す。メッセージの保存は、使用できるディスク領域の大きさによってのみ制限されま す。

SC のメッセージバッファーに保持されるメッセージは揮発性です。次の状況では、 メッセージは失われます。

- 電力が両方とも切断されて、SC に電力が供給されなくなった場合
- 1 台の電源装置だけで動作している場合
- IB_SSC を取り外した場合
- SC がリセットされた場合

システムディスクに格納されたメッセージは、Solaris OS を再起動すると使用できる ようになります。 1om> プロンプトでの、Solaris と SC が共有するコンソールポートのメッセージ表示 は、seteventreporting コマンドによって制御できます(『Sun Fire エントリレベ ルミッドレンジシステムコントローラコマンドリファレンスマニュアル』(819-5589) を参照)。このコマンドによって、メッセージが記録されたときに 1om> プロンプト にメッセージを表示するかどうか、また Solaris のロギングシステムに送信して /var/adm/messages に書き込むかどうかを設定できます。

注 - 拡張メモリー SC (SC V2) を装備するサーバーには、ファームウェアメッセージ を格納するために使用する 112K バイトの追加の SC メモリー領域があります。これ は非揮発性のメモリーで、ここに格納されたメッセージは、SC への電力供給を停止 しても削除されません。本来の LOM 履歴バッファーは動的で、電力供給が停止する と情報が失われます。SC V2 の永続的な履歴ログに格納されたメッセージは、10m> プロンプトで showlogs -p コマンドまたは showerrorbuffer -p コマンドを使用 して表示することができます。詳細は、『Sun Fire エントリレベルミッドレンジシス テムコントローラコマンドリファレンスマニュアル』(819-5589)の該当する節を参照 してください。 図 1-6 に、2 つのメッセージバッファーを示します。

メインサーバーハードウェア

図 1-6 システムコントローラのロギング

第2章

システムコンソールの構成

この章では、システムへの接続と LOM シェルおよびコンソール間のナビゲーション に関する手順と図解を示します。また、SC セッションの終了方法についても説明し ます。

この章の内容は、次のとおりです。

- 15 ページの「LOM コンソール接続の確立」
- 20ページの「コンソール間での切り替え」
- 24 ページの「Solaris コマンド行インタフェースのコマンド」

LOM コンソール接続の確立

LOM コンソール接続にアクセスする方法は2つあります。

- SC シリアルポート (直接) 接続を使用する
- 10/100BASE-T Ethernet ポートを介して Telnet (ネットワーク) 接続を使用する

通常の動作状態で LOM コンソールに接続すると、Solaris コンソールへの接続が自動的に選択されますが、それ以外の動作状態では LOM プロンプトに接続されます。

LOM プロンプトは、次の形式で表示されます。

lom>

シリアルポートを使用した LOM コンソールへの アクセス

シリアルポートを使用すると、次の3つのデバイスのいずれかに接続できます。

- ASCII 端末
- ネットワーク端末サーバー
- ワークステーション

物理的な接続方法については、『Netra 1290 サーバー設置マニュアル』(819-6898)を 参照してください。接続の手順は、デバイスの種類によって異なります。

▼ ASCII 端末に接続する

LOM パスワードが設定されていて、以前の接続がログアウトされている場合には、 パスワードの入力が求められます。

● password コマンドを使用して設定したパスワードを、正確に入力します。

Enter Password:

- パスワードが適切であれば、SC は接続が確立されたことを表示します。
- サーバーがスタンバイモードである場合は、自動的に 1om プロンプトが表示されます。

Connected.

lom>

 サーバーがスタンバイモードでない場合は、Return キーを押すと Solaris コン ソールプロンプトが表示されます。

Connected.

#

ネットワークポートを介した LOM コンソールへの接続がすでに確立されている場合は、次のように、ほかの接続からログアウトすることで、その接続を強制できます。
```
Enter Password:

The console is already in use.

Host: somehost.acme.com

Connected: May 24 10:27

Idle time: 00:23:17

Force logout of other user? (y/n) y

Connected.

lom>
```

または、Return キーを押すと Solaris コンソールのプロンプトが表示されます。

```
Connected.
```

▼ ネットワーク端末サーバーに接続する

- 1. 接続できる各種サーバーのメニューが表示されます。接続するサーバーを選択します。
- 2. 16 ページの「ASCII 端末に接続する」の手順を参照してください。

▼ ワークステーションのシリアルポート B に接続する

1. Solaris のシェルプロンプトで、次のように入力します。

tip hardwire

tip コマンドの詳細は、tip マニュアルページを参照してください。

LOM パスワードが設定されていて、以前の接続がログアウトされている場合には、 パスワードの入力が求められます。

2. 16 ページの「ASCII 端末に接続する」の手順を参照してください。

遠隔接続を使用した LOM コンソールへのアクセ ス

▼ 遠隔接続を使用して LOM コンソールにアクセスする

10/100BASE-T Ethernet ポートへの遠隔接続 (SSH 接続など) を介して LOM コン ソールにアクセスするには、まず、インタフェースを設定する必要があります。

『Netra 1290 サーバー設置マニュアル』(819-6898)を参照してください。

1. Solaris プロンプトで ssh コマンドを入力して、SC に接続します。

% **ssh** hostname

2. LOM パスワードが設定されている場合には、パスワードの入力が求められます。

Enter password:

- 3. password コマンドを使用して設定したパスワードを、正確に入力します。
 - パスワードが適切であれば、SC は接続が確立されたことを表示します。
 - システムがスタンバイモードになっているときは、自動的に 1om プロンプトが表示されます。

Connected.	

lom>

#

 サーバーがスタンバイモードになっていないときは、Return キーを押すと Solaris コンソールプロンプトが表示されます。

■ LOM コンソールへのシリアルポートを介した接続がすでに確立されている場合に は、n と入力して強制ログアウトを取り消します。

```
# ssh hostname
The console is already in use.
Host: somehost.acme.com
Connected: May 24 10:27
Idle time: 00:23:17
Force logout of other user? (y/n) y
Connected.
lom>
```

この場合は、強制ログアウトを行うのではなく、まずこのシリアル接続に対して LOM の logout コマンドを実行して、接続を使用可能にすることをお勧めします。 詳細は、次の節を参照してください。

LOM コンソールからの切り離し

LOM コンソールの使用が終了したら、logout コマンドを使用して切り離すことができます。

シリアルポートでは、次の応答が表示されます。

```
lom>logout
```

Connection closed.

ネットワークを介して接続している場合は、次の応答が表示されます。

lom>logout
Connection closed.
Connection to hostname closed by remote host.
Connection to hostname closed.Connection closed.
\$

コンソール間での切り替え

システムコントローラ (SC) のコンソール接続は、SC の LOM コマンド行インタ フェース、Solaris OS、および OpenBoot PROM へのアクセスを提供します。

この節では、次のコンソール間のナビゲーション方法について説明します。

- LOM プロンプト
- Solaris OS
- OpenBoot PROM

図 2-1 に、コンソール間のナビゲーション手順の概要を示します。

図 2-1 コンソール間のナビゲーション

▼ Solaris コンソールから LOM プロンプトを表示す る

Solaris コンソールへの接続中にエスケープシーケンスを入力すると、コンソールからLOM プロンプトに移行できます。

デフォルトでは、エスケープシーケンスは「#.」に設定されています。ハッシュ記 号 (#)のあとにピリオド (.)を入力します。

エスケープシーケンスがデフォルトの「#.」に設定されている場合には、次のよう に入力します。

```
# #.
lom>
```

注 - この例とは異なり、入力した「#.」は実際には表示されません。

エスケープシーケンスの先頭文字を入力した場合、その文字が表示されるまでに1秒 の遅延があります。その間に、エスケープシーケンスの2文字めを入力してください。1秒の間にエスケープシーケンスの入力を完了すると、1om> プロンプトが表示 されます。2つめのエスケープ文字のあとに文字を入力すると、その文字は1om> プ ロンプトに付加されます。

2 つめのエスケープ文字が誤っているか、1 秒が経過したあとで入力された場合は、 元のプロンプトにすべての文字が表示されます。

エスケープ文字シーケンスの変更方法については、41ページの「1om> プロンプトの エスケープシーケンスを変更する」を参照してください。

▼ LOM プロンプトから Solaris コンソールに接続す る

- LOM プロンプトで console コマンドを入力し、Return キーを押します。
 - Solaris ソフトウェアが動作している場合、システムは Solaris プロンプトを表示します。

lom>**console** #

 システムが OpenBoot PROM モードになっていた場合は、OpenBoot PROM のプ ロンプトが表示されます。

```
lom>console
{2} ok
```

サーバーがスタンバイモードになっている場合は、次のメッセージが生成されます。

lom>**console** Solaris is not active

注 – console コマンドは、まず Solaris コンソールへの接続を試行します。この接 続が使用できない場合、console コマンドは OpenBoot PROM への接続を試行しま す。これに失敗すると、「Solaris is not active」というメッセージが表示さ れます。

- ▼ OpenBoot PROM から LOM プロンプトを表示す る
 - エスケープシーケンス (デフォルトは「#.」) を入力します。

{2} ok #.
lom>

注 – この例とは異なり、入力した「#.」は実際には表示されません。

- ▼ LOM プロンプトから OpenBoot プロンプトを表示する
 - break コマンドを入力します。

lom> **break** {2} ok

- ▼ Solaris OS の動作中に OpenBoot プロンプトを 表示する
 - Solaris プロンプトで init 0 コマンドを入力します。

```
# init 0
{1} ok
```

- ▼ シリアルポートを介してシステムコントローラに 接続している場合にセッションを終了する
 - Solaris コンソールまたは OpenBoot PROM が表示されている場合は、まず、エス ケープシーケンスを入力して LOM プロンプトを表示します。次に、logout と入 力して Return キーを押し、LOM プロンプトセッションを終了します。

lom>logout

~.

- 端末サーバーを介して接続している場合は、端末サーバーのコマンドを実行して 接続を切断します。
- tip コマンドを使用して接続を確立していた場合は、tip の終了シーケンス「~.」(チルドとピリオド)を入力します。

```
▼ ネットワーク接続を介してシステムコントローラ
に接続している場合にセッションを終了する
```

- 1. Solaris プロンプトまたは OpenBoot PROM が表示されている場合は、エスケープ シーケンスを入力して LOM プロンプトを表示します。
- 2. logout コマンドを使用して LOM プロンプトセッションを終了します。 遠隔セッションは自動的に終了します。

```
lom>logout
Connection closed by foreign host.
%
```

Solaris コマンド行インタフェースのコ マンド

サーバーハードウェアの管理タスクの多くは、コマンド行インタフェースで Solaris コマンドを使用することによって実行できます。この節では、その手順のいくつかに ついて説明します。

- 24 ページの「cfgadm コマンド」
- 25 ページの「基本的なボード状態を表示する」
- 26ページの「詳細なボード状態を表示する」
- 27 ページの「CPU/メモリーボードをテストする」
- 28 ページの「CPU/メモリーボードの電源を一時的に切断する」
- 29 ページの「CPU/メモリーボードのホットスワップを行う」

注 – 動的再構成 (DR) を明示的に使用可能にする必要はありません。DR は、デフォルト で使用可能になっています。

cfgadm コマンド

cfgadm(1M) コマンドを使用すると、動的再構成が可能なハードウェア資源に対して 構成管理操作を実行できます。表 2-1 に、DR ボードの状態を示します。

表 2-1 システムコントローラ (SC) から出力される DR ボードの状態

ボードの状態	説明
使用可能 (Available)	スロットは割り当てられていません。
割り当て済み (Assigned)	ボードは割り当てられていますが、使用できるように構成されてい ません。ボードをシャーシポートからもう一度割り当てるか解放す る必要があります。
動作中 (Active)	ボードは動作中で使用されています。動作中のボードを再割り当て することはできません。

コマンドオプション

表 2-2 に、cfgadm -c コマンドの引数を示します。

表 2-2 cfgadm -c コマンドの引数

cfgadm -c の引数	機能
connect	スロットはボードに電力を供給し、ボードの監視を開始します。ス ロットがまだ割り当てられていない場合には割り当てます。
disconnect	システムはボードの監視をやめて、スロットへの電力の供給を停止 します。
configure	オペレーティングシステムはボードに機能的な役割を割り当て、 ボードおよびボードに接続されているデバイスのデバイスドライバ を読み込みます。
unconfigure	システムは、オペレーティングシステムからボードを論理的に切り 離し、関連するデバイスドライバをオフラインにします。環境監視 は継続されますが、ボード上のデバイスはいずれもシステムでは使 用できません。

表 2-3 に、cfgadm -x コマンドの引数を示します。

表 2-3 cfgadm -x コマンドの引数

cfgadm -x の引数	機能
poweron	CPU/メモリーボードに電源を入れます。
poweroff	CPU/メモリーボードの電源を切ります。

cfgadm -c および cfgadm -x オプションの詳細は、cfgadm_sbd マニュアルペー ジを参照してください。sbd ライブラリは、cfgadm フレームワークによって、クラ ス sbd としてホットプラグ対応システムボードのための機能を提供します。

▼ 基本的なボード状態を表示する

cfgadm プログラムは、ボードおよびスロットに関する情報を表示します。このコマ ンドのオプションについては、cfgadm(1M)のマニュアルページを参照してくださ い。

多くの操作では、システムボードの名前を指定する必要があります。

● システムボード名を取得するには、次のように入力します。

cfgadm

オプションを指定せずに cfgadm コマンドを実行すると、ボードスロットや SCSI バスなどの、既知のすべての接続点に関する情報が表示されます。次に、一般的な出力例を示します。

コード例 2-1 基本的な cfgadm コマンドの出力例

# cfgadm				
Ap_Id	Туре	Receptacle	Occupant	Condition
N0.IB6	PCI+_I/O_Bo	connected	configured	ok
N0.SB0	CPU_V3	disconnected	unconfigured	unknown
N0.SB2	CPU_V3	connected	configured	ok
N0.SB4	unknown	empty	unconfigured	unknown
c0	scsi-bus	connected	configured	unknown
c1	scsi-bus	connected	unconfigured	unknown
c2	scsi-bus	connected	configured	unknown

▼ 詳細なボード状態を表示する

● 詳細な状態レポートを表示するには、cfgadm -av コマンドを使用します。

-a オプションを指定すると接続点のリストが表示され、-v オプションによって拡張 (冗長) 説明が表示されます。

コード例 2-2 に、*cfgadm -av* コマンドの出力の一部を示します。この例では、行が折り返しているため、出力内容が判読しにくくなっています。この状態レポートは、 コード例 2-1 と同じサーバーのものです。

コード例 2-2 cfgadm -av コマンドの出力

# cfgadm -av	
Ap_Id Receptacle Occupa	ant Condition Information
When Type	Busy Phys_Id
N0.IB6 connected conf:	igured ok powered-on, assigned
Feb 9 13:38 PCI+_I/O_Bo	n /devices/ssm@0,0:N0.IB6
N0.IB6::pci0 connected	configured ok device /ssm@0,0/pci@19,700000
Feb 9 13:38 io	<pre>n /devices/ssm@0,0:N0.IB6::pci0</pre>
N0.IB6::pci1 connected	configured ok device /ssm@0,0/pci@19,600000
Feb 9 13:38 io	<pre>n /devices/ssm@0,0:N0.IB6::pci1</pre>
N0.IB6::pci2 connected	configured ok device /ssm@0,0/pci@18,700000,
referenced	
Feb 9 13:38 io	n /devices/ssm@0,0:N0.IB6::pci2
N0.IB6::pci3 connected	configured ok device /ssm@0,0/pci@18,600000
Feb 9 13:38 io	<pre>n /devices/ssm@0,0:N0.IB6::pci3</pre>
N0.SB0 disconnected uncon	nfigured unknown assigned
Feb 16 13:39 CPU_V3	y /devices/ssm@0,0:N0.SB0

コード例 2-2 cfgadm -av コマンドの出力(続き)

N0.SB2 connectedconfiguredokpowered-on, assignedFeb 16 10:13 CPU_V3n/devices/ssm@0,0:N0.SB2N0.SB2::cpu0 connectedconfiguredokcpuid 8 and 520, speed 1500MHz, ecache 32 MBytes

図 2-2 に、コード例 2-2 の詳細を示します。

図 2-2 cfgadm -av コマンド出力の詳細

▼ CPU/メモリーボードをテストする

注 – CPU/メモリーボードのテストは、ボードに電源を入れて、ボードを切り離して から実行してください。電源投入および切り離しを行わずにテストを実行すると、 ボードのテストは失敗します。

 スーパーユーザーで cfgadm コマンドを使用して、電源を切断せずにボードを切り 離します。

cfgadm -c disconnect -o nopoweroff ap-id

ap-id には、NO.SBO、NO.SB2、NO.SB4 のいずれかを指定します。

2. ボードをテストします。

cfgadm -o platform=diag=level -t ap-id

ここでの意味は、次のとおりです。

- level は、表 2-4 で説明する診断レベルです。
- *ap-id* は、NO.SB0、NO.SB2、または NO.SB4 のいずれかです。

表 2-4 cfgadm の診断レベル

診断レベル	説明
init	システムボードの初期設定コードだけが実行されます。テストは行 われません。POST の実行がもっとも早く終了します。これは、レベ ルを指定しない場合の、デフォルトのレベルです。
quick	すべてのシステムボードコンポーネントに対して、少数のテストパ ターンによる少数のテストが実行されます。
min	すべてのシステムボードコンポーネントの主要な機能がテストされ ます。このテストでは、テストの対象となるデバイスの簡易妥当性 検査が実行されます。
default	メモリーおよび外部キャッシュモジュールを除くすべてのシステム ボードコンポーネントに対して、すべてのテストおよびテストパ ターンが実行されます。max と default の定義は同じです。 default はデフォルト値ではありません。
max	メモリーおよび外部キャッシュモジュールを除くすべてのシステム ボードコンポーネントに対して、すべてのテストおよびテストパ ターンが実行されます。max と default の定義は同じです。
mem1	default レベルのすべてのテストに加えて、より徹底した DRAM および SRAM テストアルゴリズムが実行されます。メモリーおよび 外部キャッシュモジュールに対しては、複数のパターンによるすべ ての場所のテストが実行されます。このレベルでは、より広範囲で 時間のかかるアルゴリズムは実行されません。
mem2	DRAM データを明示的に比較する DRAM テストも実行されるほか は、mem1 と同じです。

▼ CPU/メモリーボードの電源を一時的に切断する

CPU/メモリーボードに障害が発生し、交換用のボードまたはフィラーボードがない 場合は、cfgadm コマンドを使用してそのボードの電源を切断できます。

● スーパーユーザーで cfgadm コマンドを使用して、ボードを切り離し、電源を切り ます。 *ap-id*には、N0.SB0、N0.SB2、N0.SB4のいずれかを指定します。

▼ CPU/メモリーボードのホットスワップを行う

CPU/メモリーボードのホットスワップ手順は、ボードを取り外して再度取り付ける 手順と同じです。手順の詳細は、『Netra 1290 Server Service Manual』(819-4373)を 参照してください。

Lights Out Management

この章では、Solaris OS 上で使用可能な LOM 固有のコマンドを使用して、Netra 1290 サーバーを監視および管理する方法について説明します。ここに示すコマンド を使用するには、Lights Out Management 2.0 パッケージ (SUNW1omr、SUNW1omu、 および SUNW1omm) をインストールしてください。

これらのパッケージは、次の Web サイトにある Solaris ソフトウェアダウンロードセンターから入手できます。

http://www.sun.com/download/

「Systems Administration」の下の「Systems Management」リンクをクリックします。

注 – これらのパッケージに対するパッチ 110208 の最新版は、SunSolve から入手で きます。パッチ 110208 の最新版を SunSolve から入手して Netra 1290 サーバーにイ ンストールし、最新の LOM ユーティリティーを使用することを強くお勧めします。

この章の内容は、次のとおりです。

- 32 ページの「LOM コマンドの構文」
- 32 ページの「Solaris OS からのシステムの監視」
- 40 ページの「Solaris OS から実行できるその他の LOM 操作」

LOM コマンドの構文

表 3-1 に、1om コマンドのオプションおよび引数の概要を示します。

表 3-1 lom コマンドのオプションおよび引数

lom のオプション	説明
-A on off <i>number</i>	アラーム number をオンまたはオフにします。number には1または2を指定します。
-a	すべてのコンポーネントの状態データを表示します。
-C	LOM の構成を表示します。
-E on off	コンソールへのイベントロギングをオンまたはオフにします。
-e number, level	level に指定したレベルのイベントログを number 行表示します。level には 1、2、 または 3 を指定します。
-f	ファンの状態を表示します。この情報は、Solaris の prtdiag -v コマンドの出 力にも表示されます。
-G firmwarefilename	firmwarefilename を使用してファームウェアをアップグレードします。
-1	障害 LED とアラーム LED の状態を表示します。
-t	温度情報を表示します。この情報は、Solaris の prtdiag -v コマンドの出力に も表示されます。
-v	電圧センサーの状態を表示します。この情報は、Solaris の prtdiag -v コマン ドの出力にも表示されます。
-x xy	エスケープシーケンスを xy に変更します。

Solaris OS からのシステムの監視

LOM デバイス (SC) に、問い合わせまたは実行命令を送信する方法は2つあります。

- 1om> シェルプロンプトから LOM コマンドを実行する。
- この章の説明にしたがって、スーパーユーザーで LOM 固有の Solaris コマンドを 実行する。

この節で説明する Solaris コマンドは、/usr/sbin/lom ユーティリティーから実行 されます。

この節では、次の監視手順について説明します。

- 33 ページの「LOM のオンラインマニュアルを表示する」
- 33 ページの「LOM の構成を表示する」
- 34 ページの「障害 LED およびアラームの状態を確認する」
- 34ページの「イベントログを表示する」
- 35 ページの「ファンの状態を確認する」
- 36ページの「内部電圧センサーの状態を確認する」
- 38ページの「内部温度を確認する」
- 40 ページの「全コンポーネントの状態データと LOM の設定データを表示する」

コマンドの説明のあとには、必要に応じて、そのコマンドの一般的な出力例を示しま す。

▼ LOM のオンラインマニュアルを表示する

● LOM ユーティリティーのマニュアルページを表示するには、次のように入力します。

man lom

▼ LOM の構成を表示する

● 現在の LOM の設定を表示するには、次のように入力します。

10m -c

次に例を示します。

コード例 3-1 lom -c コマンドの出力例

```
# lom -c
LOM configuration settings:
serial escape sequence=#.
serial event reporting=default
Event reporting level=fatal, warning & information
firmware version=5.20.0, build 13.0
product ID=Netra T12
```

▼ 障害 LED およびアラームの状態を確認する

● 障害 LED およびアラームのオンまたはオフを確認するには、次のように入力します。

10m -1

次に例を示します。

コード例 3-2 1om -1 コマンドの出力例

```
# lom -1
LOM alarm states:
Alarm1=off
Alarm2=off
Alarm3=on
Fault LED=off
"
```

Alarm1 および Alarm2 はソフトウェアフラグです。これらは特定の条件に関連付け られているものではなく、ユーザーが作成したプロセスによって、またはコマンド行 で設定できます (41 ページの「アラームをオンにする」を参照)。Alarm3 (システム アラーム)の詳細およびウォッチドッグタイマーとの関係については、113 ページの 「アラーム 3 のプログラム」を参照してください。

▼ イベントログを表示する

● イベントログを表示するには、次のように入力します。

lom -e *n*,[*x*]

nには表示するイベント数 (128 以下)、xには表示するイベントのレベルを指定します。イベントのレベルは、次の4つです。

- 1. Fatal (致命的) イベント
- 2. Warning (警告) イベント
- 3. Information (情報) イベント
- 4. ユーザーイベント (Netra 1290 サーバーでは使用しない)

レベルを指定すると、そのレベル以上のイベントが表示されます。たとえば、レベル 2を指定すると、レベル2と1のイベントが表示されます。レベル3を指定すると、 レベル3、2、1のイベントが表示されます。

レベルを指定しなかった場合は、レベル3、2、1のイベントが表示されます。 コード例 3-3 に、イベントログの出力例を示します。

コード例 3-3 LOM のイベントログの例 - 古い順に表示

	# lon	n -e 1	1			
	LOMli	te Ev	ent Log:			
	Tue H	eb 21	07:53:53	commando-sc 1	lom: 1	Boot: ScApp 5.20.0, RTOS 45
	Tue	Feb 2	1 07:54:02	commando-sc	lom:	Caching ID information
	Tue	Feb 2	1 07:54:03	commando-sc	lom:	Clock Source: 75MHz
	Tue	Feb 2	1 07:54:07	commando-sc	lom:	/N0/PS0: Status is OK
	Tue	Feb 2	1 07:54:08	commando-sc	lom:	/NO/PS1: Status is OK
	Tue	Feb 2	1 07:54:08	commando-sc	lom:	/NO/PS2: Status is OK
	Tue	Feb 2	1 07:54:09	commando-sc	lom:	/N0/PS3: Status is OK
	Tue	Feb 2	1 07:54:09	commando-sc	lom:	Chassis is in single
partition mode.						
	Tue	Feb 2	1 07:55:12	commando-sc	lom:	Starting telnet server
	Tue	Feb 2	1 07:55:12	commando-sc	lom:	Starting telnet server
	Tue	Feb 2	1 08:00:02	commando-sc	lom:	Locator OFF

▼ ファンの状態を確認する

● ファンの状態を確認するには、次のように入力します。

```
# lom -f
```

次に例を示します。

# lom -f				
Fans:				
1 FT0/FAN0	ft_fan0	OK	speed	self-regulating
2 FT0/FAN1	ft_fan1	OK	speed	self-regulating
3 FT0/FAN2	ft_fan2	OK	speed	self-regulating
4 FT0/FAN3	ft_fan3	OK	speed	self-regulating
5 FT0/FAN4	ft_fan4	OK	speed	self-regulating
6 FT0/FAN5	ft_fan5	OK	speed	self-regulating
7 FT0/FAN6	ft_fan6	OK	speed	self-regulating
8 FT0/FAN7	ft_fan7	OK	speed	self-regulating

コード例 3-4 lom -f コマンドの出力例

コード例 3-4 lom -f コマンドの出力例 (続き)

9 IB6/FAN0	ft_fan0	OK	speed	100 %
10 IB6/FAN1	ft_fan1	OK	speed	100 %
#				

ファンを交換する必要がある場合は、ご購入先に交換用のコンポーネントのパーツ番号をお問い合わせください。詳細は、『Netra 1290 Server Service Manual』(819-4374)を参照してください。

このコマンドで出力される情報は、Solaris の prtdiag -v コマンドの出力にも含ま れます。

▼ 内部電圧センサーの状態を確認する

-v オプションを指定すると、Netra 1290 サーバーの内部電圧センサーの状態が表示 されます。

● 電源の供給経路と内部電圧センサーの状態を確認するには、次のように入力します。

10m -v

コード例 3-5 1om -v コマンドの出力例

# lom -v								
Supply voltages:								
1 SSC1	v_1.5vdc0	status=ok						
2 SSC1	v_3.3vdc0	status=ok						
3 SSC1	v_5vdc0	status=ok						
4 RP0	v_1.5vdc0	status=ok						
5 RP0	v_3.3vdc0	status=ok						
6 RP2	v_1.5vdc0	status=ok						
7 RP2	v_3.3vdc0	status=ok						
8 SB0	v_1.5vdc0	status=ok						
9 SB0	v_3.3vdc0	status=ok						
10 SB0/P0	v_cheetah0	status=ok						
11 SB0/P1	v_cheetah1	status=ok						
12 SB0/P2	v_cheetah2	status=ok						
13 SB0/P3	v_cheetah3	status=ok						
14 SB2	v_1.5vdc0	status=ok						
15 SB2	v_3.3vdc0	status=ok						
16 SB2/P0	v_cheetah0	status=ok						
17 SB2/P1	v_cheetah1	status=ok						
18 SB2/P2	v_cheetah2	status=ok						
19 SB2/P3	v_cheetah3	status=ok						

コード例 3-5 lom -v コマンドの出力例 (続き)

20	TDC	rr 1 Errdan	atatua-alr	
∠0 21	IDO	v_1.5vdc0	status=ok	
21	IDO	v_s.svacu	status=ok	
22	IBO	v_5vucu	status=ok	
23	IBO	$v_1 z vacu$	status=ok	
24	IB6		status=ok	
25	IB6	v_3.3vdc2	status=ok	
26	IB6	v_1.8vdc0	status=ok	
27	IB6	v_2.4vdc0	status=ok	
Sys	stem status	flags:		
1	PS0	status=okay		
2	PS1	status=okay		
3	FT0	status=okay		
4	FT0/FAN0	status=okay		
5	FT0/FAN1	status=okay		
6	FT0/FAN2	status=okay		
7	FT0/FAN3	status=okay		
8	FT0/FAN4	status=okay		
9	FT0/FAN5	status=okay		
10	FT0/FAN6	status=okay		
11	FT0/FAN7	status=okay		
12	RP0	status=okay		
13	RP2	status=okay		
14	SB0	status=ok		
15	SB0/P0	status=onli	ne	
16	SB0/P0/B0/I	00 status=ok	ay	
17	SB0/P0/B0/I	01 status=ok	ay	
18	SB0/P0/B0/I	02 status=ok	ay	
19	SB0/P0/B0/I	03 status=ok	ay	
20	SB0/P1	status=onli:	ne	
21	SB0/P1/B0/I	00 status=ok	ay	
22	SB0/P1/B0/I	01 status=ok	ay	
23	SB0/P1/B0/I	02 status=ok	ay	
24	SB0/P1/B0/I	03 status=ok	ay	
25	SB0/P2	status=onli	ne	
26	SB0/P2/B0/I	00 status=ok	ay	
27	SB0/P2/B0/I	01 status=ok	av	
28	SB0/P2/B0/I	02 status=ok	av	
29	SB0/P2/B0/I	03 status=ok	av	
30	SB0/P3	status=onli	ne	
31	SB0/P3/B0/I	00 status=ok	av	
32	SB0/P3/B0/I	01 status=ok	av	
33	SB0/P3/B0/I	02 status=ok	av	
34	SB0/P3/B0/I	3 status=ok	av	
35	SB2	status=ok	~1	
36	SB2/P0	status=onli	ne	
37	SB2/P0/R0/I	0 status=ok	av	
20	GB3/D0/D0/1)1 status-ok	av	
50		J_ SLULUS-OK	uy	

コード例 3	- 5 10	om -v	コマント	(の出力例)	(続き)
	U 10	JIII V		× / H / J / J	

39	SB2/P0/B0/D2	status=okay
40	SB2/P0/B0/D3	status=okay
41	SB2/P1 st	tatus=online
42	SB2/P1/B0/D0	status=okay
43	SB2/P1/B0/D1	status=okay
44	SB2/P1/B0/D2	status=okay
45	5 SB2/P1/B0/D3	status=okay
46	SB2/P2 st	tatus=online
47	SB2/P2/B0/D0	status=okay
48	SB2/P2/B0/D1	status=okay
49	SB2/P2/B0/D2	status=okay
50	SB2/P2/B0/D3	status=okay
51	SB2/P3 s	atus=online
52	SB2/P3/B0/D0	status=okay
53	SB2/P3/B0/D1	status=okay
54	SB2/P3/B0/D2	status=okay
55	SB2/P3/B0/D3	status=okay
56	IB6 s	tatus=ok
57	IB6/FAN0 s	tatus=okay
58	B IB6/FAN1 s	tatus=okay
#		

このコマンドで出力される情報は、Solaris の prtdiag -v コマンドの出力にも含ま れます。

▼ 内部温度を確認する

サーバーの内部の温度とサーバー温度の警告および停止しきい値を確認するには、次のように入力します。

lom -t

次に例を示します。

コード例 3-6 lom -t コマンドの出力例

# :	# lom -t						
Sys	stem Tempera	ature Sensors:					
1	SSC1	t_sbbc0	36	degC	:	warning 102 degC : shutdown 107 degC	
2	SSC1	t_cbh0	45	degC	:	warning 102 degC : shutdown 107 degC	
3	SSC1	t_ambient0	23	degC	:	warning 82 degC : shutdown 87 degC	
4	SSC1	t_ambient1	21	degC	:	warning 82 degC : shutdown 87 degC	
5	SSC1	t_ambient2	28	degC	:	warning 82 degC : shutdown 87 degC	

6 RP0 t_ambient0	22 degC : warning 82 degC : shutdown 87 degC
7 RP0 t_ambient1	22 degC : warning 53 degC : shutdown 63 degC
8 RPO t_sdc0	62 degC : warning 102 degC : shutdown 107 degC
9 RP0 t_ar0	47 degC : warning 102 degC : shutdown 107 degC
10 RP0 t_dx0	62 degC : warning 102 degC : shutdown 107 degC
11 RP0 t_dx1	65 degC : warning 102 degC : shutdown 107 degC
12 RP2 t_ambient0	23 degC : warning 82 degC : shutdown 87 degC
13 RP2 t_ambient1	22 degC : warning 53 degC : shutdown 63 degC
14 RP2 t_sdc0	57 degC : warning 102 degC : shutdown 107 degC
15 RP2 t_ar0	42 degC : warning 102 degC : shutdown 107 degC
16 RP2 t_dx0	53 degC : warning 102 degC : shutdown 107 degC
17 RP2 t_dx1	56 degC : warning 102 degC : shutdown 107 degC
18 SB0 t_sdc0	48 degC : warning 102 degC : shutdown 107 degC
19 SB0 t_ar0	39 degC : warning 102 degC : shutdown 107 degC
20 SB0 t_dx0	49 degC : warning 102 degC : shutdown 107 degC
21 SB0 t_dx1	54 degC : warning 102 degC : shutdown 107 degC
22 SB0 t_dx2	57 degC : warning 102 degC : shutdown 107 degC
23 SB0 t_dx3	53 degC : warning 102 degC : shutdown 107 degC
24 SB0 t_sbbc0	53 degC : warning 102 degC : shutdown 107 degC
25 SB0 t_sbbc1	40 degC : warning 102 degC : shutdown 107 degC
26 SB0/P0 Ambient	29 degC : warning 82 degC : shutdown 87 degC
27 SBO/PO Die	57 degC : warning 92 degC : shutdown 97 degC
28 SB0/P1 Ambient	27 degC : warning 82 degC : shutdown 87 degC
29 SBO/P1 Die	51 degC : warning 92 degC : shutdown 97 degC
30 SB0/P2 Ambient	27 degC : warning 82 degC : shutdown 87 degC
31 SBO/P2 Die	53 degC : warning 92 degC : shutdown 97 degC
32 SB0/P3 Ambient	29 degC : warning 82 degC : shutdown 87 degC
33 SBO/P3 Die	50 degC : warning 92 degC : shutdown 97 degC
34 SB2 t_sdc0	51 degC : warning 102 degC : shutdown 107 degC
35 SB2 t_ar0	40 degC : warning 102 degC : shutdown 107 degC
36 SB2 t_dx0	52 degC : warning 102 degC : shutdown 107 degC
37 SB2 t_dx1	54 degC : warning 102 degC : shutdown 107 degC
38 SB2 t_dx2	61 degC : warning 102 degC : shutdown 107 degC
39 SB2 t_dx3	53 degC : warning 102 degC : shutdown 107 degC
40 SB2 t_sbbc0	52 degC : warning 102 degC : shutdown 107 degC
41 SB2 t_sbbc1	42 degC : warning 102 degC : shutdown 107 degC
42 SB2/P0 Ambient	27 degC : warning 82 degC : shutdown 87 degC
43 SB2/PO Die	54 degC : warning 92 degC : shutdown 97 degC
44 SB2/P1 Ambient	26 degC : warning 82 degC : shutdown 87 degC
45 SB2/P1 Die	53 degC : warning 92 degC : shutdown 97 degC
46 SB2/P2 Ambient	27 degC : warning 82 degC : shutdown 87 degC
47 SB2/P2 Die	51 degC : warning 92 degC : shutdown 97 degC
48 SB2/P3 Ambient	27 degC : warning 82 degC : shutdown 87 degC
49 SB2/P3 Die	51 degC : warning 92 degC : shutdown 97 degC
50 IB6 t_ambient0	29 degC : warning 82 degC : shutdown 87 degC
51 IB6 t_ambient1	29 degC : warning 82 degC : shutdown 87 degC
52 IB6 t_sdc0	68 degC : warning 102 degC : shutdown 107 degC

53 IB6 77 degC : warning 102 degC : shutdown 107 degC t ar0 54 IB6 t dx0 76 degC : warning 102 degC : shutdown 107 degC 55 IB6 t dx1 78 degC : warning 102 degC : shutdown 107 degC 51 degC : warning 102 degC : shutdown 107 degC 56 IB6 t sbbc0 57 IB6 t_schizo0 48 degC : warning 102 degC : shutdown 107 degC 58 IB6 t schizol 53 degC : warning 102 degC : shutdown 107 degC

コード例 3-6 lom -t コマンドの出力例 (続き)

このコマンドで出力される情報は、Solarisのprtdiag -v コマンドの出力にも含ま れます。

▼ 全コンポーネントの状態データと LOM の設定 データを表示する

● LOM のすべての状態データおよび設定データを表示するには、次のように入力します。

10m -a

Solaris OS から実行できるその他の LOM 操作

この節では、次の手順について説明します。

- 41 ページの「アラームをオンにする」
- 41 ページの「アラームをオフにする」
- 41 ページの「1om> プロンプトのエスケープシーケンスを変更する」
- 42 ページの「LOM プロンプトで LOM からコンソールへのレポートの送信を停止 する」
- 42 ページの「ファームウェアをアップグレードする」

▼ アラームをオンにする

LOM に関連するアラームは2つあります。これらのアラームは特定の条件に関連付けられているものではなく、ユーザーが作成したプロセスまたはコマンド行で設定します。

● コマンド行からアラームをオンにするには、次のように入力します。

lom -A on,n

nには、オンにするアラームの番号、1、2、または3を指定します。

▼ アラームをオフにする

● アラームをオフにするには、次のように入力します。

lom -A off,n

nには、オフにするアラームの番号、1、2、または3を指定します。

▼ 1om> プロンプトのエスケープシーケンスを変更 する

文字シーケンス「#.」を入力すると、Solaris OS から 1om> プロンプトに戻ることが できます。

● デフォルトのエスケープシーケンスを変更するには、次のように入力します。

10m -X xy

xyには、エスケープシーケンスに使用する英数字を指定します。

注 – シェルが解釈できるように、特殊文字は引用符で囲む必要があります。

注 - コンソールで頻繁に使用される文字で始まるエスケープシーケンスを選択しないでください。このような文字を選択すると、キーを押してから文字が表示されるまでの遅延によって混乱が生じる場合があります。

▼ LOM プロンプトで LOM からコンソールへのレ ポートの送信を停止する

LOM イベントレポートによって、コンソール上で送信または受信しようとしている 情報が影響を受けることがあります。

LOM プロンプトに LOM メッセージが表示されないようにするには、シリアルへの イベントレポート送信をオフにする必要があります。これは、seteventreporting コマンドで設定します。seteventreporting コマンドの詳細は、『Sun Fire エン トリレベルミッドレンジシステムコントローラコマンドリファレンスマニュアル』 (819-5589) を参照してください。

● LOM がコンソールにレポートを送信するのを停止するには、次のように入力します。

lom -E off

● シリアルへのイベントレポート送信をオンにするには、次のように入力します。

lom -E on

▼ ファームウェアをアップグレードする

● ファームウェアをアップグレードするには、次のように入力します。

lom -G firmwarefilename

詳細は、付録 C を参照してください。

第4章

障害追跡

この章では、サーバーの障害追跡方法について説明します。この章の内容は、次のとおりです。

- 43 ページの「基本的な障害追跡」
- 45 ページの「LED の解釈」
- 50 ページの「システム障害」
- 55 ページの「ハングアップしたシステムの回復」
- 57 ページの「電源装置の障害追跡」
- 58 ページの「CPU/メモリーボードの障害追跡」

基本的な障害追跡

既知の問題がなく正常に機能している Netra 1290 サーバーでは、システムがエラー 状況を表示することはないはずです。次に例を示します。

- システム障害 LED が点灯していない。
- すべての現場交換可能ユニット (FRU)の障害 LED が点灯していない。
- syslog ファイルにエラーメッセージが出力されていない。
- 管理コンソールにエラーメッセージが出力されていない。
- システムコントローラログにエラーメッセージが出力されていない。
- Solaris オペレーティングシステム (Solaris OS) のメッセージファイルに追加エラーが出力されていない。

問題または障害が発生した場合、システムコントローラは次の処理を実行します。

- 障害の発生したハードウェアの特定の試行。
- そのハードウェアが交換されるまで使用されないようにする処置の実行。

システムコントローラが実行する具体的な処理には、次のようなものがあります。

- ソフトウェアがイベントエラーを分析および記録している間、必要に応じてその ハードウェアを一時停止させる。
- エラーが回復可能かどうか、またシステムのリセットが必要かどうかを判定する。
- 可能な場合、システムコンソールメッセージに詳細を表示するとともに、障害が 発生した FRU の障害を LED で表示させる。
- 動的な構成解除および再構成が適用可能かどうかを判定する。

システムが問題を診断できない場合は、以降の節の障害追跡情報を参照してください。

配電

▼ 配電システムの障害追跡を行う

- 1. すべてのケーブルが正しく接続されていることを確認します。
- 2. 関連するすべての FRU で、スイッチの位置が正しいことを確認します。
- 3. 以降の節の説明にしたがって、関連する FRU の LED を確認します。

正常な動作

表 4-1 に、正常に動作している Netra 1290 サーバーの全 FRU の LED 状態を示します。

表 4	l-1	FRU	の]	LED	状態	
-----	-----	-----	----	-----	----	--

FRU	スタンバイモード時の LED 状態	電源投入後の LED 状態
電源装置	緑の電源 LED が点滅 その他の LED はすべて消灯	電源 LED が緑に点灯 その他の LED はすべて消灯
システムボード	IB_SSC の電源 LED が緑に点灯 その他の LED はすべて消灯	電源 LED が緑に点灯 その他の LED はすべて消灯
メインファンおよび ファントレー	ファントレーの電源 LED が緑に点灯 その他の LED はすべて消灯	ファントレーの電源 LED が緑に点灯 その他の LED はすべて消灯
IB ファン	すべての LED が消灯	すべての LED が消灯
ハードドライブ	すべての LED が消灯	電源 LED が緑に点灯 その他の LED はすべて消灯

異常な動作

入力電力の障害という異常な状況では、関連する1つ以上の FRU で、オレンジ色の 障害 LED () が点灯します。

メインファン

このサーバーには、サーバー内のすべてのコンポーネントを冷却するファントレーア センブリがあります。ファントレー内には、ホットスワップ対応のメインファンが 8 つあります。ファントレー内のファンに障害が発生すると、システムコントローラは 減少した通気量を補うために、正常に機能している残りのファンの速度を高速に変更 します。この状況では、障害が発生したファンの障害 LED(→)が点灯します。 ファンの交換手順については、『Netra 1290 Server Service Manual』(819-4373) を参 照してください。

システムコントローラ

システムコントローラは各ボードからエラーメッセージを受信し、実行すべき適切な 処理を判定します。一般に、次のような処理が行われます。

- 適切なエラー状態ビットの設定
- 以降のアドレスパケットを停止するための、エラーによる一時停止の表明
- システムコントローラへの割り込み

LED の解釈

個々のサーバーコンポーネントの LED を使用して、システムが正常に動作している かどうかを判定します。次に示すボードおよびデバイス上の LED を日常的に監視し てください。

- システムコントローラおよび I/O アセンブリ (IB_SSC)
- CPU/メモリーボード
- L2 リピータボード
- ファントレー
- 電源装置

障害(◆→)LED が点灯している場合には、サーバー内で障害が発生していて、その 障害を解決するための処置をただちに実行するべきであることを示しています。表 4-2 に、サーバーおよび次のホットスワップ対応コンポーネントの LED 状態コード を示します。

- CPU/メモリーボード
- 電源装置
- ファン (メインおよび IB)
- ハードドライブ

電源が入った状態のホットスワップ対応コンポーネントは、取り外し可能 LED が点 灯している場合にのみ取り外すことができます。

注 – ファントレー、IB_SSC、および L2 リピータはホットスワップに対応していま せん。これらのコンポーネントを取り外す場合は、サーバーの電源を切ってくださ い。

注 – 電源装置、メインファン、および IB ファンには、取り外し可能 LED は付いて いません。

サーバー格納装置の LED

表 4-2 サーバーの LED の機能

LED のアイコン	および名前	色	LED が点灯	LED が消灯
6	ロケータ	白	通常は消灯しています。ユーザー コマンドによって点灯させること ができます。サーバーの位置を示 すように要求されています。	ユーザーコマンドによって点 灯させることができます。 サーバーの位置を示すように 要求するユーザーはいませ ん。
)	システム 障害	オレン ジ	障害が検出されました。保守が必 要です。	障害が検出されていません。
	システム アクティブ	緑	サーバーは電源投入処理中または 電源投入済みです。	サーバーはスタンバイモード です。
ТОР	上部アクセ スが必要	オレン ジ	サーバーの上部からのみ交換可能 な FRU に障害が発生しました。	サーバーの上部からのみ交換 可能な FRU に障害が発生し ていません。
SYSTEM O	Solaris OS 動作中	緑	Solaris OS が動作しています。	Solaris OS が動作していない か、ドメインが一時停止して います。
ALARM () 1 () 2	アラーム 1 および アラーム 2	緑	 LOM ソフトウェアで指定された トリガーイベントが発生しました。 アラームはカスタマイズ可能です。たとえば、アラーム1を縮退モードに、アラーム2を最終または停止モードに使用できます。 アラームを Solaris OS イベントにリンクするためのパスが、 LOM ソフトウェアによって提供されます。 アラームを特定のユーザーアプリケーションまたはプロセスに関連付けることもできます。 	LOM ソフトウェアで指定さ れたトリガーイベントが発生 していません。
POWER SOURCE	電源 A およ び電源 B	緑	 電源の状態を表示します。電源 A は PS0 および PS1 に電力を供給 し、電源 B は PS2 および PS3 に電 力を供給します。 PS0 または PS1 に電力が供給さ れると、電源 A の LED が点灯 します。 PS2 または PS3 に電力が供給さ れると、電源 B の LED が点灯 します。 	 PS0 および PS1 に電力が供給されていない場合、電源AのLEDは点灯しません。 PS2 および PS3 に電力が供給されていない場合、電源BのLEDは点灯しません。

ロケータ、障害、およびシステムアクティブの各 LED は、サーバーの正面および背 面の両方にあります。図 4-2 に、サーバー背面の LED を示します。

図 4-2 サーバー背面パネルの LED

ボードまたはコンポーネントの LED

表 4-3 に、次のボードまたはアセンブリの LED とその機能についての説明を示します。

- CPU/メモリーボード
- L2 リピータボード
- IB_SCC アセンブリ

■ メインファントレー

電源 [*] (緑)	障害 (オレンジ)	取り外し可能 (青または オレンジ)	意味	修正措置	
	<u>۔</u>	+			
消灯	消灯	消灯	コンポーネントが動作していませ ん。	このコンポーネントをサーバー から取り外すことができます。	
消灯	点灯	消灯	コンポーネントが動作していませ ん。障害状況が発生しています。	このコンポーネントをサーバー から取り外すことはできませ ん。	
消灯	消灯	点灯	コンポーネントが動作していませ ん。障害状況は発生していませ ん。	このコンポーネントをサーバー から取り外すことができます。	
消灯	点灯	点灯	コンポーネントが動作していませ ん。障害状況が発生しています。	このコンポーネントをサーバー から取り外すことができます。	
点灯	消灯	消灯	コンポーネントは正常に動作して います。	該当なし。	
点灯	消灯	点灯	コンポーネントが動作していませ ん。障害状況は発生していませ ん。	このコンポーネントをサーバー から取り外すことができます。	
点灯	点灯	消灯	コンポーネントが動作していま す。障害状況が発生しています。	このコンポーネントをサーバー から取り外すことはできませ ん。	
点灯	点灯	点灯	コンポーネントが動作していま す。障害状況が発生しています。	このコンポーネントをサーバー から取り外すことができます。	

表 4-3 主要なボードおよびメインファントレーの LED の説明

* ファンには適用されません。

各 LED 状態の概要は、『Netra 1290 Server Service Manual』(819-4373) を参照して ください。

システム障害

システム障害とは、システムが正常に動作する上で容認できないとみなされるすべての状態を指します。システムに障害が発生すると、障害 LED ()」)が点灯します。 図 4-3 に、システムインジケータを示します。

図 4-3 システムインジケータ

表 4-4 に、システムインジケータの状態を示します。

表 4-4 システムの障害インジケータの状態

FR	」名	障害が検出 されたとき 障害インジ ケータが点 灯する [*]	FRU 障害に よってシス テム障害イ ンジケータ が点灯する*	FRU 障害に よって上部 アクセスイ ンジケータ が点灯する ¹	備考
シフ	<テムボード	はい	はい	はい	プロセッサ、外部キャッシュ、および DIMM を含む。
レハ	ベル2リピータ	はい	はい	はい	
IB_	SSC	はい	はい	はい	
	システムコントローラ	いいえ	はい	はい	IB_SSC の障害 LED が点灯。
	ファン	はい	はい	はい	IB ファンの障害 LED が点灯。

FRU 名	障害が検出 されたとき 障害インジ ケータが点 灯する [*]	FRU 障害に よってシス テム障害イ ンジケータ が点灯する*	FRU 障害に よって上部 アクセスイ ンジケータ が点灯する ¹	備考
電源装置	はい (電源装置 ハードウェ アによって 点灯)	はい	いいえ	すべての電源装置インジケータは、電 源装置ハードウェアによって点灯され ます。障害予測インジケータもありま す。インジケータの制御が行われない ため、電源装置の EEPROM エラーに よって機能低下状態になることはあり ません。
配電盤	いいえ	はい	はい	機能低下のみ。
バックプレーン	いいえ	はい	はい	機能低下のみ。
システムインジケータ ボード	いいえ	はい	はい	機能低下のみ。
システム構成カード	いいえ	はい	いいえ	
ファントレー	はい	はい	いいえ	
メインファン	はい	はい	いいえ	
メディアベイ	いいえ	はい	はい	
ディスク	はい	はい	いいえ	

表 4-4 システムの障害インジケータの状態 (続き)

* 障害には、FRUの機能が低下した場合も含まれます。

1 点灯した場合、プラットフォームの上部からアクセスする FRU に障害が発生していることを示します。レールからプラットフォーム を引き出す前に、キャビネットの転倒防止脚を配置してください。

ユーザーが交換できるユニット

次に、障害発生時にユーザーが取り扱うことができる FRU を示します。

- ハードドライブ ホットスワップ対応
- PSU (PS0/PS1/PS2/PS3) ホットスワップ対応

注 – 適切にトレーニングを受けた保守作業員のみが、アクセスが制限された場所に入って PSU またはハードドライブのホットスワップを実行できます。

- CPU/メモリーボード (SB0/SB2/SB4) 障害が発生したとみなされる場合は、ブ ラックリストに登録できる
- リピータボード (RP0/RP2) 障害の可能性がある場合は、ブラックリストに登録 できる

上記以外の FRU に障害が発生した場合、またはブラックリストに登録された FRU を 物理的に交換する必要がある場合は、ご購入先にお問い合わせください。

第4章 障害追跡 51

ボード上のコンポーネントの使用不可への切り替 え

SC は、ボード上のコンポーネントを使用不可にするブラックリスト機能をサポート します (表 4-5 を参照)。

ブラックリストに登録することで、テストされず Solaris オペレーティングシステム に構成されないシステムボードコンポーネントを示すことができます。ブラックリス トは非揮発性のメモリーに格納されます。

コンポーネントをブラックリストに登録するには、ブラックリスト登録名を指定する 必要があります。ブラックリスト登録名は、そのコンポーネントが属するシステムお よびサブシステムに基づいて決まります。

CPU システムの場合、ブラックリスト登録名は次の形式となります。

slot/port/physical-bank/logical-bank

I/O アセンブリの場合、ブラックリスト登録名は次の形式となります。

slot/port/bus or slot/card

リピータシステムの場合、ブラックリスト登録名は次の形式となります。

slot

表 4-5 に、各コンポーネントのブラックリスト登録名の説明を示します。

表 4-5 ブラックリストに登録できるコンポーネントの名称

システムコンポーネント	コンポーネントのサブシステム	変数	コンポーネント名
CPU システム	CPU/メモリーボード	slot	SB0、SB2、SB4
	CPU/メモリーボード上のポート	port	P0、P1、P2、P3
	CPU/メモリーボード上の物理メモリー バンク	physical-bank	B0、B1
	CPU/メモリーボード上の論理バンク	logical-bank	L0、L1、L2、L3
I/O アセンブリシステム	I/O アセンブリ	slot	IB6
	I/O アセンブリ上のポート	port	P0、P1
	I/O アセンブリ上のバス	bus	B0、B1
	I/O アセンブリ上の I/O カード	card	C0、C1、C2、C3、 C4、C5
リピータシステム	リピータボード	slot	RP0、RP2

たとえば、SB0/P0/B1/L3といったブラックリスト登録名になります。
障害が断続的または継続的に発生する可能性のあるコンポーネントおよびデバイス は、ブラックリストに登録します。障害の可能性のあるデバイスは、障害追跡しま す。

ブラックリストの登録に関連するシステムコントローラコマンドは、次の2つです。

- setls
- showcomponent

注 – enablecomponent および disablecomponent コマンドの代わりに set1s コ マンドを使用してください。これらは、これまでコンポーネント資源の管理に使用し ていたコマンドです。enablecomponent および disablecomponent コマンドは 現在も使用できますが、コンポーネントのサーバーへの構成または構成解除には、 set1s コマンドを使用することをお勧めします。

set1s コマンドは、ブラックリストを更新するだけです。このコマンドは、現在構成されているシステムボードの状態に直接は影響しません。

更新したリストは、次のいずれかの作業を行なったときに有効になります。

- システムを再起動する場合
- 動的再構成 (DR) を使用して、ブラックリストに登録されているコンポーネントを 含むボードを構成し、サーバーから取り外したあと再度サーバーに戻した場合

リピータボード (RP0/RP2) に対して set1s コマンドを使用する場合は、まず poweroff コマンドによってサーバーを停止してスタンバイモードにする必要があり ます。

リピータボード (RP0/RP2) に対して set1s コマンドを実行すると、SC は新しい設 定を使用するために自動的にリセットされます。

交換用のリピータボードを挿入する場合は、resetsc コマンドを使用して SC を手動でリセットする必要があります。このコマンドの詳細は、『Sun Fire エントリレベルミッドレンジシステムコントローラコマンドリファレンスマニュアル』(819-5589) を参照してください。

CPU/メモリーボードに関する考慮事項

POST 実行中に CPU/メモリーボードがインターコネクトテストに失敗した場合は、 POST 出力で次のようなメッセージが表示されます。

Jul 15 15:58:12 noname lom: SB0/ar0 Bit in error P3_ADDR [2] Jul 15 15:58:12 noname lom: SB0/ar0 Bit in error P3_ADDR [1] Jul 15 15:58:12 noname lom: SB0/ar0 Bit in error P3_ADDR [0] Jul 15 15:58:12 noname lom: AR Interconnect test: System board SB0/ar0 address repeater connections to system board RP2/ar0 failed Jul 15 15:58:13 noname lom: SB0/ar0 Bit in error P3_INCOMING [0] Jul 15 15:58:17 noname lom: SB0/ar0 Bit in error P3_PREREQ [0] Jul 15 15:58:17 noname lom: SB0/ar0 Bit in error P3_ADDR [18] Jul 15 15:58:17 noname lom: SB0/ar0 Bit in error P3_ADDR [17]

> CPU/メモリーボードがインターコネクトテストに失敗すると、poweron コマンドに よるシステムへの完全な電源投入ができなくなることがあります。このとき、システ ムは 1om> プロンプトに戻ります。

保守作業が行われるまでの一時的な処置として、障害が発生した CPU/メモリーボードをシステムから切り離すことができます。

▼ CPU/メモリーボードを切り離す

1. 次のコマンドを入力します。

```
lom>disablecomponent SBx
.
.
lom>poweroff
.
.
lom>resetsc -y
```

2. poweron コマンドを入力します。

ハングアップしたシステムの回復

Solaris オペレーティングシステムにログインできず、LOM シェルから break コマ ンドを入力してもシステムの制御を強制的に OpenBoot PROM の ok プロンプトに戻 せない場合は、システムの応答が停止しています。

ホストウォッチドッグが、Solaris オペレーティングシステムが応答を停止している ことを検出し、システムを自動的にリセットすることもあります。

ホストウォッチドッグが setupsc コマンドによって使用不可にされていないときに は、ホストウォッチドッグによってシステムが自動的にリセットされます。

1om> プロンプトから reset コマンドを実行できます。このコマンドのデフォルト オプションは -x で、プロセッサに外部強制リセット (XIR) が送信されます。reset コマンドを実行すると、Solaris オペレーティングシステムは停止します。

注意 – Solaris オペレーティングシステムを停止したとき、メモリー上のデータが ディスクにフラッシュされない可能性があります。データがディスクにフラッシュさ れないと、アプリケーションのファイルシステムデータが失われるか破壊されること があります。Solaris オペレーティングシステムを停止する前には、停止の実行を確 認するメッセージが表示されます。

▼ サーバーのハングアップ状態を手動で回復する

- 1. 75 ページの「Sun の保守作業員が障害原因を特定するための支援」で説明する情報 を収集します。
- LOM シェルにアクセスします。
 第3章を参照してください。
- reset コマンドを入力して、システムの制御を強制的に OpenBoot PROM に戻します。

reset コマンドは、システムに XIR を送信して、ハードウェアのデバッグに必要な データを収集します。

lom>reset

注 – setsecure コマンドを使用してシステムをセキュリティー保護モードに設定し ていた場合にはエラーが表示されます。システムがセキュリティー保護モードで動作 しているときには、reset または break コマンドは使用できません。詳細は、 『Sun Fire エントリレベルミッドレンジシステムコントローラコマンドリファレンス マニュアル』(819-5589)を参照してください。

- 構成変数 error-reset-recovery に none が設定されている場合、システムは ただちに OpenBoot PROM に戻ります。OpenBoot PROM に制御が移ると、 OpenBoot PROM は、構成変数 error-reset-recovery の設定に基づいて動作 します。ok プロンプトからは、Solaris オペレーティングシステムを再起動する boot コマンドなど、すべての Openboot PROM コマンドを入力できます。ま た、sync コマンドを使用して、コアファイルを強制出力することもできます。こ の構成変数に設定した動作によっては、システムが ok プロンプトに戻らないこと もあります。
- 構成変数 error-reset-recovery が none に設定されていない場合、OpenBoot PROM は自動的に回復処理を行います。
- 構成変数 error-reset-recovery に sync (デフォルト) が設定されている場合、システムは Solaris オペレーティングシステムのコアファイルを生成し、システムを再起動します。
- 構成変数 error-reset-recovery に boot が設定されている場合、システムは 再起動します。
- 4. 手順 3 でサーバーの再起動に失敗した場合は、poweroff および poweron コマンド を使用してシステムの電源を再投入します。
 - サーバーの電源を切るには、次のように入力します。

lom> poweroff

サーバーの電源を入れるには、次のように入力します。

lom>poweron

サーバーの識別情報の移動

サービスを回復するもっとも単純な方法は、サーバーを完全に入れ替えることです。 システムの識別情報および重要な設定を1台のサーバーから交換用のサーバーにすば やく転送するには、障害が発生したシステムのシステム構成カードリーダー (SCCR) からシステム構成カード (SCC)を取り外し、交換用のサーバーの SCCR に挿入しま す。 システム構成カード (SCC) には、次の情報が格納されています。

- MAC アドレス
 - システムコントローラ 10/100BASE-T Ethernet ポート
 - オンボードギガビット Ethernet ポート NET0
 - オンボードギガビット Ethernet ポート NET1
- ホスト ID
- 重要な LOM 設定
 - LOM パスワード
 - エスケープシーケンス
 - SC ネットワーク設定 (IP アドレス/DHCP/ゲートウェイなど)
 - イベント送信レベル
 - ホストウォッチドッグの有効または無効
 - オン/スタンバイの有効または無効
 - セキュリティー保護モードの有効または無効
- 重要な OpenBoot PROM 設定
 - auto-boot?
 - boot-device
 - diag-device
 - use-nvramrc?
 - local-mac-address?

電源装置の障害追跡

各電源装置 (PSU) には、次の LED があります。

- 電源/動作状態 PSU が主電源を供給している場合は点灯、スタンバイモードの 場合は点滅します。
- 障害 PSU が障害状態を検出し、メイン出力を切断した場合に点灯します。
- 障害予測 PSU が未解決の内部障害を検出していますが、まだメイン出力電源を 供給している場合に点灯します。この状態は、PSU ファンの回転速度が低下した 場合にのみ発生します。

このほか、電源 A および電源 B というラベルが付けられた 2 つのシステム LED もあ ります。この 2 つの LED は、システムへの電力の供給状態を示します。4 つの物理 的な電力供給源は、A と B に分割され、各電源に 2 つずつ割り当てられます。

給電 A は PS0 および PS1 に、給電 B は PS2 および PS3 に相当します。PS0 または PS1 に電力が供給されると、電源 A インジケータが点灯します。PS2 または PS3 に 電力が供給されると、電源 B インジケータが点灯します。どちらの電源装置にも電 力が供給されない場合には、インジケータは消灯します。 これらのインジケータは、10秒に1回以上の頻度で、定期的にシステムを監視します。

CPU/メモリーボードの障害追跡

この節では、一般的な障害について説明します。

- 構成解除操作の障害
- 構成操作の障害

次に、cfgadm 診断メッセージの例を示します。

```
cfgadm: hardware component is busy, try again
cfgadm: operation: Data error: error_text
cfgadm: operation: Hardware specific failure: error_text
cfgadm: operation: Insufficient privileges
cfgadm: operation: Operation requires a service interruption
cfgadm: System is busy, try again
WARNING: Processor number number failed to offline.
```

エラーメッセージの詳細は、cfgadm(1M)、cfgadm_sbd(1M)、および config_admin(3X)の各マニュアルページを参照してください。

CPU/メモリーボードの構成解除時の障害

構成解除操作をはじめる前にシステムを適切な状態にしておかないと、CPU/メモ リーボードの構成解除で問題が発生することがあります。

- ボード上のメモリーが複数のボード間でインタリーブされた状態で、ボードの構成解除を試みた。
- 処理が CPU にバインドされた状態で、CPU の構成解除を試みた
- システムボード上のメモリーが構成されたままの状態で、そのボード上の CPU の 構成解除操作を試みた。
- ボード上のメモリーが構成されている(使用中である)。59ページの「永続メモリーを搭載するボード上のメモリーを構成解除できない」を参照してください。
- ボード上の CPU をオフラインにできない。61 ページの「CPU を構成解除できない」を参照してください。

ボード上のメモリーが複数のボード間でインタリーブされて いるため、ボードを構成解除できない

システムボード間でインタリーブされているメモリーを搭載したシステムボードの構成解除を試みると、システムによって次のようなエラーメッセージが表示されます。

cfgadm: Hardware specific failure: unconfigure N0.SB2::memory: Memory is interleaved across boards: /ssm@0,0/memory-controller@b,400000

処理がバインドされている CPU を構成解除できない

処理がバインドされている CPU の構成解除を試みると、システムによって次のよう なエラーメッセージが表示されます。

cfgadm: Hardware specific failure: unconfigure NO.SB2: Failed to off-line: /ssm@0,0/cmp/cpu

● CPU から処理のバインドを解除して、もう一度構成解除操作を行います。

すべてのメモリーを構成解除しないと CPU を構成解除できない

CPUを構成解除するには、システムボード上のすべてのメモリーを構成解除する必要があります。ボード上のすべてのメモリーを構成解除せずに CPU の構成解除を試みると、システムによって次のようなエラーメッセージが表示されます。

cfgadm: Hardware specific failure: unconfigure N0.SB2::cpu0: Can't unconfig cpu if mem online: /ssm@0,0/memory-controller

● ボード上のすべてのメモリーを構成解除したあと CPU の構成解除を行います。

永続メモリーを搭載するボード上のメモリーを構成解除できない

永続メモリーを搭載するボード上のメモリーを構成解除するには、永続メモリーのページを、その内容を格納できるメモリー領域のあるほかのボードに移します。構成解除操作を開始する前に、永続メモリーを移すボードを使用可能にしておく必要があります。

メモリーを再構成できない

次のようなメッセージが表示されて構成解除操作が失敗した場合は、ボード上のメモ リーは構成解除されていません。

cfgadm: Hardware specific failure: unconfigure N0.SB0: No available memory target: /ssm@0,0/memory-controller@3,400000

移動できなかったメモリーページを確認するには、cfgadm コマンドに冗長オプションを付けて実行し、一覧で permanent という文字を検索します。

cfgadm -av -s "select=type(memory)"

● 永続メモリーのページを格納できる容量のメモリーを追加して、もう一度構成解除操作を行います。

使用可能なメモリーが十分でない

次のいずれかのメッセージが表示されて構成解除操作が失敗した場合は、ボードを取 り外すとサーバーの使用可能なメモリーが不足します。

cfgadm: Hardware specific failure: unconfigure N0.SB0: Insufficient memory

● システム上のメモリーの負荷を減らして、もう一度実行します。可能であれば、ほかのボードスロットにメモリーを増設します。

メモリー要求が増加している

次のようなメッセージが表示されて構成解除操作が失敗した場合は、構成解除操作中 にメモリー要求が増加しています。

cfgadm: Hardware specific failure: unconfigure N0.SB0: Memory operation failed

cfgadm: Hardware specific failure: unconfigure N0.SB0: Memory operation refused

● システム上のメモリーの負荷を減らして、もう一度実行します。

CPU を構成解除できない

CPU の構成解除は、CPU/メモリーボードの構成解除操作の一部です。構成解除操作 で CPU をオフライン化できないと、次のメッセージがコンソールに記録されます。

WARNING: Processor *number* failed to offline.

このエラーは、次の場合に発生します。

- オフラインにする CPU に処理がバインドされている。
- CPU セットの最後の CPU のオフライン化を試みた。
- サーバーの最後のオンライン CPU のオフライン化を試みた。

ボードを切り離せない

ボードを構成解除することはできても、切り離すことができない場合があります。このようなボードは、cfgadmの状態表示に切り離し不可と表示されます。ボードが代替ボードに再配置できない重要なハードウェアサービスを提供している場合に、この障害が発生します。

CPU/メモリーボードの構成時の障害

ほかの CPU が構成されていると CPU0 または CPU1 が構成 できない

CPU0 または CPU1 を構成する前に、ほかの CPU が構成解除されていることを確認 してください。CPU0 および CPU1 の両方を構成解除すると、両方の CPU を構成で きるようになります。

メモリーを構成する前にボード上の CPU を構成する必要がある

メモリーを構成する前に、システムボード上のすべての CPU を構成する必要があり ます。1 つ以上の CPU が構成解除されているときにメモリーを構成しようとする と、システムによって次のようなエラーメッセージが表示されます。

cfgadm: Hardware specific failure: configure N0.SB2::memory: Can't config memory if not all cpus are online: /ssm@0,0/memorycontroller

第5章

診断

この章では、各種の診断について説明します。この章の内容は、次のとおりです。

- 63 ページの「電源投入時自己診断」
- 72 ページの「SunVTS ソフトウェア」
- 72 ページの「環境条件の診断」
- 75 ページの「Sun の保守作業員が障害原因を特定するための支援」
- 76 ページの「自動診断および回復の概要」
- 78 ページの「ハングアップしたシステムの自動回復」
- 79 ページの「診断のイベント」
- 79 ページの「診断および回復の制御」
- 81ページの「自動診断および回復情報の取得」
- 85 ページの「その他の障害追跡コマンド」

電源投入時自己診断

各システムボード、つまり CPU/メモリーボードおよび IB_SSC アセンブリには、フ ラッシュ PROM が搭載されています。フラッシュ PROM は、電源投入時自己診断 (POST) 用の記憶領域を提供します。POST では、次のコンポーネントをテストしま す。

- CPU チップ
- 外部キャッシュ (ヘッドキャッシュ)
- メモリー
- バスインターコネクト
- I/O ASIC
- I/O バス

POST にはいくつかの診断レベルがあり、OpenBoot PROM の変数 diag-level を 使用して選択できます。また、bootmode コマンドを使用すると、次回のシステム再 起動時に実行される POST のレベルを設定できます。 SC では別の POST が実行されます。この POST は setupsc コマンドを使用して制 御します。

POST の設定に使用する OpenBoot PROM 変数

OpenBoot PROM では、POST の実行方法を制御する変数を設定できます。これらの 変数の詳細は、『**OpenBoot 4.x Command Reference Manual**』を参照してくださ い。

OpenBoot の printenv コマンドを使用すると、現在の設定を表示できます。

```
{3} ok printenv diag-level
diag-level init (init)
```

OpenBoot PROM の setenv コマンドを使用すると、変数の現在の設定を変更できます。

```
{1} ok setenv diag-level quick
diag-level=quick
```

たとえば、次のように入力すると、POST の実行時間をより短く設定できます。

```
{1} ok setenv diag-level init
diag-level=init
{1} ok setenv verbosity-level off
verbosity-level=off
```

このように設定すると、LOM プロンプトで SC コマンド bootmode skipdiag を 使用した場合と同じ結果が得られます。ただし、OpenBoot コマンドを使用した場合 は、次に変更するまで設定が保持される点が異なります。

パラメータ 値 説明 diag-level init デフォルト値。システムボードの初期設定コードだけが実行 されます。テストは行われません。POST の実行がもっとも 早く終了します。 quick すべてのシステムボードコンポーネントに対して、少数のテ ストパターンによる少数のテストが実行されます。 すべてのシステムボードコンポーネントの主要な機能がテス min トされます。このテストでは、テストの対象となるデバイス の簡易妥当性検査が実行されます。 メモリーおよび外部キャッシュモジュールを除くすべてのシ max ステムボードコンポーネントに対して、すべてのテストおよ びテストパターンが実行されます。メモリーおよび外部 キャッシュモジュールに対しては、複数のパターンによるす べての場所のテストが実行されます。このレベルでは、より 広範囲で時間のかかるアルゴリズムは実行されません。 mem1 デフォルトレベルのすべてのテストに加えて、より徹底した DRAM および SRAM テストアルゴリズムが実行されます。 mem2 DRAM データを明示的に比較する DRAM テストも実行され るほかは、mem1 と同じです。 verbosity-level off 状態メッセージは表示されません。 デフォルト値。テスト名、状態メッセージ、およびエラー min メッセージが表示されます。 max サブテストのトレースメッセージが表示されます。 error-level off エラーメッセージは表示されません。 min 問題が発見されたテスト名が表示されます。 デフォルト値。発生したすべてのエラーの情報が表示されま max す。 interleave-scope within-board デフォルト値。システムボード上のメモリーバンクは、相互 にインタリーブされます。 メモリーは、サーバー内のすべてのボードのすべてのメモ across-boards リーバンクにインタリーブされます。 interleave-mode optimal デフォルト値。パフォーマンスを最適化するために、メモ リーがさまざまなサイズでインタリーブされます。 fixed メモリーは固定サイズでインタリーブされます。 off メモリーはインタリーブされません。 reboot-on-error true エラーが発生すると、サーバーが再起動します。

表 5-1 POST の構成パラメータ

表 5-1 POST の構成パラメータ (続き)

パラメータ	值	説明
	false	デフォルト値。エラーが発生すると、サーバーが一時停止し ます。
use-nvramrc?	true	このパラメータを true に設定すると、 OpenBoot PROM は、nvramrc に格納されているスクリプトを実行します。
	false	デフォルト値。このパラメータを false に設定すると、 OpenBoot PROM は、nvramrc に格納されているスクリプ トを実行しません。
auto-boot?	true	デフォルト値。このパラメータに true を設定すると、POST 実行後、システムは自動的に Solaris オペレーティング環境 を起動します。
	false	このパラメータを false に設定すると、POST 終了後、 OpenBoot PROM の ok プロンプトが表示されます。このプ ロンプトから Solaris オペレーティングシステムを起動する には、boot コマンドを入力します。
error-reset-recovery	sync	デフォルト値。OpenBoot PROM は、sync を呼び出しま す。コアファイルが生成されます。この呼び出しから戻った 場合、OpenBoot PROM は再起動を実行します。
	none	OpenBoot PROM は、エラーリセットの原因になったリセッ トトラップを説明するメッセージを出力し、OpenBoot PROM の ok プロンプトに制御を渡します。リセットトラッ プの種類を説明するメッセージは、プラットフォーム固有で す。
	boot	OpenBoot PROM のファームウェアがサーバーを再起動しま す。コアファイルは生成されません。サーバーの再起動に は、OpenBoot PROM 構成変数 diag-switch? の値に基づ いて、diag-device または boot-device の OpenBoot PROM 設定が使用されます。diag-switch? が true に設 定されている場合は、diag-device のデバイス名が起動時 のデフォルトになります。diag-switch? が false に設定 されている場合は、boot-device のデバイス名が起動時の デフォルトになります。

POST のデフォルト設定では、コード例 5-1 に示すような内容が出力されます。

コード例 5-1 max 設定を使用した場合の POST の出力例

Testing CPU Boards									
{/N0/SB0/P0/C0}	Running	CPU	POR	and	Set	Clocks			
{/N0/SB0/P2/C0}	Running	CPU	POR	and	Set	Clocks			
{/N0/SB0/P1/C0}	Running	CPU	POR	and	Set	Clocks			
{/N0/SB0/P3/C0}	Running	CPU	POR	and	Set	Clocks			

コード例 5-1 max 設定を使用した場合の POST の出力例 (続き)

```
{/N0/SB0/P0/C0} @(#) lpost
                                5.20.0 2006/01/23 14:28
{/N0/SB0/P2/C0} @(#) lpost
                              5.20.0 2006/01/23 14:28
{/N0/SB0/P1/C0} @(#) lpost
                               5.20.0 2006/01/23 14:28
{/N0/SB0/P3/C0} @(#) lpost 5.20.0 2006/01/23 14:28
{/N0/SB0/P0/C0} Copyright 2006 Sun Microsystems, Inc. All rights reserved.
{/N0/SB0/P1/C0} Copyright 2006 Sun Microsystems, Inc. All rights reserved.
{/N0/SB0/P2/C0} Copyright 2006 Sun Microsystems, Inc. All rights reserved.
{/N0/SB0/P0/C0} Use is subject to license terms.
{/N0/SB0/P1/C0} Use is subject to license terms.
{/N0/SB0/P3/C0} Copyright 2006 Sun Microsystems, Inc. All rights reserved.
{/N0/SB0/P2/C0} Use is subject to license terms.
{/N0/SB0/P3/C0} Use is subject to license terms.
{/N0/SB2/P0/C0} Running CPU POR and Set Clocks
{/N0/SB2/P2/C0} Running CPU POR and Set Clocks
{/N0/SB2/P1/C0} Running CPU POR and Set Clocks
{/N0/SB2/P3/C0} Running CPU POR and Set Clocks
                               5.20.0 2006/01/09 14:13
{/N0/SB2/P0/C0} @(#) lpost
{/N0/SB2/P2/C0} @(#) lpost
                               5.20.0 2006/01/09 14:13
{/N0/SB2/P1/C0} @(#) lpost 5.20.0 2006/01/09 14:13
{/N0/SB2/P3/C0} @(#) lpost 5.20.0 2006/01/09 14:13
{/N0/SB2/P0/C0} Copyright 2006 Sun Microsystems, Inc. All rights reserved.
{/N0/SB2/P2/C0} Copyright 2006 Sun Microsystems, Inc. All rights reserved.
{/N0/SB2/P1/C0} Copyright 2006 Sun Microsystems, Inc. All rights reserved.
{/N0/SB2/P3/C0} Copyright 2006 Sun Microsystems, Inc. All rights reserved.
{/N0/SB2/P2/C0} Use is subject to license terms.
{/N0/SB2/P0/C0} Use is subject to license terms.
{/N0/SB2/P3/C0} Use is subject to license terms.
{/N0/SB2/P1/C0} Use is subject to license terms.
{/N0/SB0/P0/C0} Running Basic CPU
{/N0/SB0/P2/C0} Running Basic CPU
{/N0/SB0/P3/C0} Running Basic CPU
{/N0/SB0/P1/C0} Running Basic CPU
{/N0/SB0/P2/C1} Running Basic CPU
{/N0/SB0/P0/C1} Running Basic CPU
{/N0/SB0/P3/C1} Running Basic CPU
{/N0/SB0/P2/C0} Subtest: Setting Fireplane Config Registers for aid 0x2
{/N0/SB0/P3/C0} Subtest: Setting Fireplane Config Registers for aid 0x3
{/N0/SB0/P1/C1} Running Basic CPU
{/N0/SB0/P2/C1} @(#) lpost
                                5.20.0 2006/01/23 14:28
{/N0/SB0/P0/C0} Subtest: Setting Fireplane Config Registers
                                5.20.0 2006/01/23 14:28
{/N0/SB0/P3/C1} @(#) lpost
{/N0/SB0/P1/C0} Subtest: Setting Fireplane Config Registers for aid 0x1
{/N0/SB0/P2/C0} Subtest: Display CPU Version, frequency
{/N0/SB0/P0/C1} @(#) lpost
                              5.20.0 2006/01/23 14:28
{/N0/SB0/P3/C0} Subtest: Display CPU Version, frequency
{/N0/SB0/P2/C1} Copyright 2006 Sun Microsystems, Inc. All rights reserved.
{/N0/SB0/P3/C1} Copyright 2006 Sun Microsystems, Inc. All rights reserved.
```

コード例 5-1

max 設定を使用した場合の POST の出力例 (続き)

{/N0/SB0/P1/C1} @(#) lpost 5.20.0 2006/01/23 14:28 {/N0/SB0/P0/C0} Subtest: Display CPU Version, frequency {/N0/SB0/P1/C0} Subtest: Display CPU Version, frequency {/N0/SB0/P0/C1} Copyright 2006 Sun Microsystems, Inc. All rights reserved. {/N0/SB0/P1/C1} Copyright 2006 Sun Microsystems, Inc. All rights reserved. {/N0/SB0/P2/C0} Version register = 003e0019.21000507 {/N0/SB0/P3/C0} Version register = 003e0019.21000507 {/N0/SB0/P0/C0} Version register = 003e0019.21000507 {/N0/SB0/P2/C1} Use is subject to license terms. {/N0/SB0/P1/C0} Version register = 003e0019.21000507 {/N0/SB0/P3/C1} Use is subject to license terms. {/N0/SB0/P0/C1} Use is subject to license terms. {/N0/SB0/P1/C1} Use is subject to license terms. {/N0/SB0/P2/C0} CPU features = 1c1d726f.5c6206ff {/N0/SB0/P3/C0} CPU features = 1c1d726f.5c6206ff {/N0/SB0/P2/C1} Subtest: I-Cache RAM Test {/N0/SB0/P0/C0} CPU features = 1c1d726f.5c6206ff {/N0/SB0/P3/C1} Subtest: I-Cache RAM Test {/N0/SB0/P1/C0} CPU features = 1c1d726f.5c6206ff {/N0/SB0/P0/C1} Subtest: I-Cache RAM Test {/N0/SB0/P1/C1} Subtest: I-Cache RAM Test {/N0/SB0/P2/C0} Ecache Control Register 0007e500.94e71800 {/N0/SB0/P3/C0} Ecache Control Register 0007e500.94e71800 {/N0/SB0/P0/C0} Ecache Control Register 0007e500.94e71800 {/N0/SB0/P1/C0} Ecache Control Register 0007e500.94e71800 {/N0/SB0/P2/C0} Cpu/System ratio = 10, cpu actual frequency = 1500 {/N0/SB0/P3/C0} Cpu/System ratio = 10, cpu actual frequency = 1500 {/N0/SB0/P0/C0} Cpu/System ratio = 10, cpu actual frequency = 1500 {/N0/SB0/P1/C0} Cpu/System ratio = 10, cpu actual frequency = 1500 5.20.0 2006/01/23 14:28 {/N0/SB0/P2/C0} @(#) lpost {/N0/SB0/P3/C0} @(#) lpost 5.20.0 2006/01/23 14:28 {/N0/SB0/P0/C0} @(#) lpost 5.20.0 2006/01/23 14:28 5.20.0 2006/01/23 14:28 {/N0/SB0/P1/C0} @(#) lpost {/N0/SB0/P2/C0} Copyright 2006 Sun Microsystems, Inc. All rights reserved. Netra 1290 OpenFirmware version 5.20.0 (01/23/06 14:27) Copyright 2006 Sun Microsystems, Inc. All rights reserved. Use is subject to license terms. SmartFirmware, Copyright (C) 1996-2001. All rights reserved. 32768 MB memory installed, Serial #62925221. Ethernet address 0:3:xx:xx:xx, Host ID: 83xxxxxx.

bootmode コマンドを使用した POST の制御

SC の bootmode コマンドを使用すると、次回のサーバー再起動時だけに使用する起 動設定を指定できます。これによって、変数 diag-level などを変更するために、 システムを停止して OpenBoot PROM に移行する必要がなくなります。

たとえば、次回の起動時に最高レベルの POST 診断を強制的に実行するには、次のコ マンドを使用します。

```
lom>shutdown
lom>bootmode diag
lom>poweron
```

次回の起動時に最低レベルの POST 診断を強制的に実行するには、次のコマンドを使用します。

```
lom>shutdown
lom>bootmode skipdiag
lom>poweron
```

bootmode コマンドの実行後 10 分以内にサーバーを再起動しないと、bootmode の 設定が normal に戻り、以前設定した diag-level および verbosity-level の値 が適用されます。

これらのコマンドの詳細は、『Sun Fire エントリレベルミッドレンジシステムコント ローラコマンドリファレンスマニュアル』(819-5589)を参照してください。

システムコントローラの POST の制御

SCのPOST (SC POST) は、LOMの setupsc コマンドを使用して設定します。この コマンドによって、SC POST 診断レベルを off、min、または max に設定できま す。このコマンドの詳細は、『Sun Fire エントリレベルミッドレンジシステムコント ローラコマンドリファレンスマニュアル』(819-5589)を参照してください。

SC POST 出力は、SC シリアル接続にのみ表示されます。

● setupsc コマンドを入力します。次に例を示します。

コード例 5-2 SC POST 診断レベルの min の設定

```
lom>setupsc
System Controller Configuration
_______SC POST diag Level [off]: min
Host Watchdog [enabled]:
Rocker Switch [enabled]:
Secure Mode [off]:
PROC RTUs installed: 8
PROC Headroom Quantity (0 to disable, 4 MAX) [0]:
Tolerate correctable memory errors [false]:
```

lom>

SC POST の diag-level を min に設定すると、SC がリセットされるたびに、シリアルポート上に次のような出力が表示されます。

コード例 5-3 診断レベルを min に設定した場合の SC POST の出力例

```
@(#) SYSTEM CONTROLLER(SC) POST 21 2001/12/11 17:11
PSR = 0x044010e5
PCR = 0x04004000
        SelfTest running at DiagLevel:0x20
SC Boot PROM
                        Test
       BootPROM CheckSum
                                       Test
IU
        Test
       IU instruction set
                                       Test
       Little endian access
                                       Test
FPU
         Test
       FPU instruction set
                                       Test
SparcReferenceMMU Test
       SRMMU TLB RAM
                                       Test
        SRMMU TLB Read miss
                                       Test
       SRMMU page probe
                                       Test
        SRMMU segment probe
                                       Test
       SRMMU region probe
                                       Test
       SRMMU context probe
                                       Test
```

コード例 5-3 診断レベルを min に設定した場合の SC POST の出力例 (続き)

. (その他の POST 出力) Local I2C AT24C64 Test EEPROM Device Test performing eeprom sequential read Local I2C PCF8591 Test VOLT AD Device Test channel[00000001] Voltage(0x00000099) :1.49 channel[0000002] Voltage(0x000009D) :3.37 channel[0000003] Voltage(0x000009A) :5.1 channel[0000004] Voltage(0x0000000) :0.0 Local I2C LM75 Test TEMP0(IIep) Device Test Temparature : 24.50 Degree(C) Local I2C LM75 Test TEMP1(Rio) Device Test Temparature : 23.50 Degree(C) Local I2C LM75 Test TEMP2(CBH) Device Test Temparature : 32.0 Degree(C) Local I2C PCF8574 Test Sc CSR Device Test Console Bus Hub Test CBH Register Access Test POST Complete.

SunVTS ソフトウェア

SunVTS™ ソフトウェアは、1 つのユーザーインタフェースから複数のハードウェア 診断テストを実行します。SunVTS ソフトウェアは、ほとんどのハードウェアコント ローラおよびデバイスの構成、機能性、および信頼性を検証します。SunVTS ソフト ウェアの詳細は、表 5-2 を参照してください。

表 5-2 SunVTS のマニュアル

タイトル	説明
¶SunVTS User's Guide』	SunVTS 環境、各種ユーザーインタフェースの起動および 制御、機能について説明します。
『SunVTS Test Reference Manual』	SunVTS の各テストについて説明します。各種のテストオ プションおよびコマンド行引数を示します。
『SunVTS Quick Reference Card』	vtsui インタフェースの機能の概要を示します。

環境条件の診断

1つ以上のコンポーネントの過熱状態は、問題を示している可能性があります。

▼ 温度状態を確認する

● showenvironment コマンドを入力して、現在の状態を一覧表示します。

コード例 5-4	showenvironment	コマン	ドを使用	した温度の確認
	DIIOWCIIVILOIMICIIC			

lom>showenvironment								
Slot	Device	Sensor	Value	Units	Age	Status		
SSC1	SBBC 0	Temp. 0	40	Degrees C	6 sec	OK		
SSC1	CBH 0	Temp. 0	46	Degrees C	6 sec	OK		
SSC1	Board 0	Temp. 0	28	Degrees C	6 sec	OK		
SSC1	Board O	Temp. 1	27	Degrees C	6 sec	OK		
SSC1	Board 0	Temp. 2	34	Degrees C	6 sec	OK		

コード例 5-4 showenvironment コマンドを使用した温度の確認(続き)

SSC1	Board O	1.5 VDC 0	1.51	Volts DC	6	sec	OK
SSC1	Board 0	3.3 VDC 0	3.35	Volts DC	6	sec	OK
SSC1	Board 0	5 VDC 0	4.98	Volts DC	6	sec	OK
/N0/PS0	Input 0	Volt. 0	-	-	4	sec	OK
/N0/PS0	48 VDC 0	Volt. 0	48.00	Volts DC	4	sec	OK
/N0/PS1	Input 0	Volt. 0	-	-	3	sec	OK
/N0/PS1	48 VDC 0	Volt. 0	48.00	Volts DC	3	sec	OK
/N0/PS2	Input 0	Volt. 0	-	-	3	sec	OK
/N0/PS2	48 VDC 0	Volt. 0	48.00	Volts DC	3	sec	OK
/N0/PS3	Input 0	Volt. 0	-	-	2	sec	OK
/N0/PS3	48 VDC 0	Volt. 0	48.00	Volts DC	2	sec	OK
/N0/FT0	Fan O	Cooling 0	Auto		2	sec	OK
/N0/FT0	Fan 1	Cooling 0	Auto		2	sec	OK
/N0/FT0	Fan 2	Cooling 0	Auto		2	sec	OK
/N0/FT0	Fan 3	Cooling 0	Auto		2	sec	OK
/N0/FT0	Fan 4	Cooling 0	Auto		2	sec	OK
/N0/FT0	Fan 5	Cooling 0	Auto		2	sec	OK
/N0/FT0	Fan 6	Cooling 0	Auto		3	sec	OK
/N0/FT0	Fan 7	Cooling 0	Auto		3	sec	OK
/N0/RP0	Board O	1.5 VDC 0	1.49	Volts DC	2	sec	OK
/N0/RP0	Board O	3.3 VDC 0	3.31	Volts DC	2	sec	OK
/N0/RP0	Board O	Temp. 0	26	Degrees C	2	sec	OK
/N0/RP0	Board O	Temp. 1	26	Degrees C	2	sec	OK
/N0/RP0	SDC 0	Temp. 0	71	Degrees C	2	sec	OK
/N0/RP0	AR 0	Temp. 0	54	Degrees C	2	sec	OK
/N0/RP0	DX 0	Temp. 0	65	Degrees C	2	sec	OK
/N0/RP0	DX 1	Temp. 0	67	Degrees C	2	sec	OK
/N0/RP2	Board 0	1.5 VDC 0	1.48	Volts DC	2	sec	OK
/N0/RP2	Board 0	3.3 VDC 0	3.31	Volts DC	2	sec	OK
/N0/RP2	Board 0	Temp. 0	26	Degrees C	2	sec	OK
/N0/RP2	Board O	Temp. 1	24	Degrees C	2	sec	OK
/N0/RP2	SDC 0	Temp. 0	64	Degrees C	2	sec	OK
/N0/RP2	AR 0	Temp. 0	47	Degrees C	2	sec	OK
/N0/RP2	DX 0	Temp. 0	61	Degrees C	2	sec	OK
/N0/RP2	DX 1	Temp. 0	64	Degrees C	2	sec	OK
/N0/SB0	Board O	1.5 VDC 0	1.51	Volts DC	2	sec	OK
/N0/SB0	Board 0	3.3 VDC 0	3.27	Volts DC	2	sec	OK
/N0/SB0	SDC 0	Temp. 0	63	Degrees C	2	sec	OK
/N0/SB0	AR 0	Temp. 0	46	Degrees C	2	sec	OK
/N0/SB0	DX 0	Temp. 0	67	Degrees C	2	sec	OK
/N0/SB0	DX 1	Temp. 0	72	Degrees C	2	sec	OK
/N0/SB0	DX 2	Temp. 0	73	Degrees C	2	sec	OK
/N0/SB0	DX 3	Temp. 0	73	Degrees C	2	sec	OK

コード例 5-4 showenvironment コマンドを使用した温度の確認(続き)

/N0/SB0	SBBC 0	Temp. 0	70	Degrees C	2 sec OK
/N0/SB0	Board 1	Temp. 0	36	Degrees C	2 sec OK
/N0/SB0	Board 1	Temp. 1	38	Degrees C	2 sec OK
/N0/SB0	CPU 0	Temp. 0	60	Degrees C	2 sec OK
/N0/SB0	CPU 0	Core 0	1.15	Volts DC	2 sec OK
/N0/SB0	CPU 1	Temp. 0	62	Degrees C	2 sec OK
/N0/SB0	CPU 1	Core 1	1.15	Volts DC	2 sec OK
/N0/SB0	SBBC 1	Temp. 0	47	Degrees C	2 sec OK
/N0/SB0	Board 1	Temp. 2	34	Degrees C	2 sec OK
/N0/SB0	Board 1	Temp. 3	35	Degrees C	2 sec OK
/N0/SB0	CPU 2	Temp. 0	56	Degrees C	3 sec OK
/N0/SB0	CPU 2	Core 2	1.14	Volts DC	3 sec OK
/N0/SB0	CPU 3	Temp. 0	60	Degrees C	3 sec OK
/N0/SB0	CPU 3	Core 3	1.14	Volts DC	3 sec OK
/N0/SB2	Board O	1.5 VDC 0	1.51	Volts DC	3 sec OK
/N0/SB2	Board O	3.3 VDC 0	3.29	Volts DC	3 sec OK
/N0/SB2	SDC 0	Temp. 0	58	Degrees C	3 sec OK
/N0/SB2	AR 0	Temp. 0	44	Degrees C	3 sec OK
/N0/SB2	DX 0	Temp. 0	58	Degrees C	3 sec OK
/N0/SB2	DX 1	Temp. 0	62	Degrees C	3 sec OK
/N0/SB2	DX 2	Temp. 0	61	Degrees C	3 sec OK
/N0/SB2	DX 3	Temp. 0	57	Degrees C	3 sec OK
/N0/SB2	SBBC 0	Temp. 0	57	Degrees C	3 sec OK
/N0/SB2	Board 1	Temp. 0	31	Degrees C	3 sec OK
/N0/SB2	Board 1	Temp. 1	32	Degrees C	3 sec OK
/N0/SB2	CPU 0	Temp. 0	51	Degrees C	3 sec OK
/N0/SB2	CPU 0	Core 0	1.14	Volts DC	3 sec OK
/N0/SB2	CPU 1	Temp. 0	55	Degrees C	3 sec OK
/N0/SB2	CPU 1	Core 1	1.15	Volts DC	3 sec OK
/N0/SB2	SBBC 1	Temp. 0	43	Degrees C	3 sec OK
/N0/SB2	Board 1	Temp. 2	34	Degrees C	3 sec OK
/N0/SB2	Board 1	Temp. 3	32	Degrees C	3 sec OK
/N0/SB2	CPU 2	Temp. 0	57	Degrees C	3 sec OK
/N0/SB2	CPU 2	Core 2	1.13	Volts DC	4 sec OK
/N0/SB2	CPU 3	Temp. 0	53	Degrees C	4 sec OK
/N0/SB2	CPU 3	Core 3	1.14	Volts DC	4 sec OK
/N0/IB6	Board O	1.5 VDC 0	1.50	Volts DC	3 sec OK
/N0/IB6	Board O	3.3 VDC 0	3.33	Volts DC	3 sec OK
/N0/IB6	Board O	5 VDC 0	4.95	Volts DC	3 sec OK
/N0/IB6	Board O	Temp. 0	32	Degrees C	3 sec OK
/N0/IB6	Board O	12 VDC 0	11.95	Volts DC	3 sec OK
/N0/IB6	Board O	3.3 VDC 1	3.30	Volts DC	3 sec OK
/N0/IB6	Board O	3.3 VDC 2	3.30	Volts DC	3 sec OK

コード例 5-4

showenvironment コマンドを使用した温度の確認(続き)

/N0/IB6 Board 0	Core 0	1.79	Volts DC	3 sec OK
/N0/IB6 Board 0	2.5 VDC	0 2.51	Volts DC	3 sec OK
/N0/IB6 Fan O	Cooling	0 High		3 sec OK
/N0/IB6 Fan 1	Cooling	0 High		3 sec OK
/N0/IB6 SDC 0	Temp. 0	74	Degrees C	3 sec OK
/N0/IB6 AR 0	Temp. 0	64	Degrees C	3 sec OK
/N0/IB6 DX 0	Temp. 0	71	Degrees C	3 sec OK
/N0/IB6 DX 1	Temp. 0	63	Degrees C	3 sec OK
/N0/IB6 SBBC 0	Temp. 0	52	Degrees C	4 sec OK
/N0/IB6 IOASIC	0 Temp. 0	42	Degrees C	4 sec OK
/N0/IB6 IOASIC	1 Temp. 1	43	Degrees C	4 sec OK

Sun の保守作業員が障害原因を特定する ための支援

Sun の保守作業員が障害原因を特定できるように、次の情報を提供してください。

- システムコンソールに表示されたすべての出力内容の、障害が発生するまでの部分の正確な写し。これには、ユーザーの操作のあとに表示された内容も含めてください。この写しでユーザーの操作を確認できない場合は、どの操作によってどのメッセージが表示されたかを記したコメントを別ファイルとして添付してください。
- /var/adm/messagesのシステムログファイルの、障害が発生するまでの部分の コピー
- 次のシステムコントローラコマンドによって LOM シェルから出力された情報
 - ∎ showsc -v
 - showboards -v
 - showlogs
 - history
 - date
 - showresetstate
 - showenvironment

自動診断および回復の概要

Netra 1290 サーバーの診断および回復機能は、デフォルトで使用可能になっています。この節では、これらの機能の概要について説明します。

システムコントローラは、発生したハードウェアエラーの種類および診断制御の設定 に応じて、図 5-1 に示すように診断処理および回復処理を実行します。ファームウェ アには「自動診断」(AD) エンジンが含まれていて、サーバーの可用性に影響する ハードウェアエラーを検出および診断します。

注 – Netra 1290 サーバーは、ほかのミッドレンジシステムがサポートする複数ドメ インをサポートしませんが、診断の出力には、ほかのミッドレンジシステムと同様 に、システムの状態が「ドメイン A」の状態として表示されます。

図 5-1 自動診断および回復処理

次に、図 5-1 に示す処理の概要を説明します。

- SC がハードウェアエラーを検出して、オペレーティングシステムを一時停止させます。
- AD エンジンはハードウェアエラーを分析して、そのハードウェアエラーに関連する現場交換可能ユニット (FRU) を判定します。
- 3. AD エンジンは、ハードウェアエラーおよび関連するコンポーネントに応じて、次のいずれかの診断結果を出します。
 - エラーの原因である1つの FRU を特定

- エラーの原因である複数のFRUを特定。表示されるすべてのコンポーネントに 障害が発生しているとはかぎりません。特定されたコンポーネントのサブセットに原因がある可能性もあります。
- エラーの原因である FRU を特定できない。この状態は「未解決」であることを示します。保守プロバイダに詳細な調査を依頼する必要があります。
- 4. AD エンジンは、影響を受けるコンポーネントの診断情報を記録して、この情報を 「コンポーネントの健全性状態 (CHS、Component Health Status)」の一部として 保持します。
- 5. AD は、コンソールのイベントメッセージとして診断情報を報告します。

コード例 5-5 に、コンソールに表示される自動診断イベントメッセージの例を示しま す。この例では、1 つの FRU がハードウェアエラーの原因であることが示されてい ます。AD メッセージの内容については、81 ページの「自動診断イベントメッセージ の表示」を参照してください。

コード例 5-5 コンソールに表示される自動診断のイベントメッセージの例

[AD]	Event: N1290.ASIC.AR.ADR_PERR.10473006							
	CSN: DomainID: A ADInfo: 1.SCAPP.17.0							
	Time: Fri Dec 12 09:30:20 PST 2003							
	FRU-List-Count: 2; FRU-PN: 5405564; FRU-SN: A08712; FRU-LOC: /N0/IB6							
	FRU-PN: 5404974; FRU-SN: 000274; FRU-LOC: /N0/RP2							
	Recommended-Action: Service action required							

注 – 自動診断メッセージが表示された場合は、ご購入先の保守作業員にお問い合わせください。保守作業員は自動診断情報を参照して、適切な処置を行います。

showlogs、showboards、showcomponent、および showerrorbuffer の各コ マンドによる出力は、イベントメッセージの診断情報を補完するもので、より詳 細な障害追跡に使用できます。これらのコマンドによって表示される、診断に関 連する情報の詳細は、81ページの「自動診断および回復情報の取得」を参照して ください。

6. 自動復元の処理では、POST は AD エンジンによって更新された FRU のコンポーネント健全性状態を参照します。POST はこの情報を使用して、ハードウェアエラーの原因と判定された FRU をドメインから構成解除して (使用不可に切り替えて)、障害の分離を試みます。POST が障害を分離できない場合は、ドメイン復元の一部として、システムコントローラが自動的にドメインを再起動します。

注 – 自動回復機能を利用する場合は、OpenBoot PROM 変数 hang-policy が reset に設定されていることを確認してください。

ハングアップしたシステムの自動回復

システムコントローラは、システムを自動的に監視して、次のいずれかが生じたとき にはハングアップしたと判断します。

指定したタイムアウト時間内にオペレーティングシステムのハートビートがなかったとき

デフォルトのタイムアウト値は3分ですが、ドメインの /etc/systems ファイル 内の watchdog_timeout_seconds パラメータの設定によって、この値を変更で きます。この値を3分未満に設定すると、システムコントローラはタイムアウト 時間としてデフォルト値の3分を使用します。このシステムパラメータの詳細 は、使用しているリリースの Solaris オペレーティングシステムの system(4) マ ニュアルページを参照してください。

■ システムが割り込みに応答しないとき

host watchdog (setupsc コマンドの説明を参照) が使用可能に設定されている と、システムコントローラは自動的に外部強制リセット (XIR、eXternally Initiated Reset) を実行して、ハングアップしたオペレーティングシステムを再起 動します。OpenBoot PROM の NVRAM 変数 error-reset-recovery が sync に設定されていると、XIR 後にコアファイルも作成され、ハングアップしたオペ レーティングシステムの障害追跡にこれを使用できます。

コード例 5-6 に、オペレーティングシステムのハートビートが停止した場合にコン ソールに表示されるメッセージの例を示します。

コード例 5-6 オペレーティングシステムのハートビートが停止した場合に自動ドメイン回復から出力 されるメッセージの例

Tue Dec 09 12:24:47 commando lom: Domain watchdog timer expired. Tue Dec 09 12:24:48 commando lom: Using default hang-policy (RESET). Tue Dec 09 12:24:48 commando lom: Resetting (XIR) domain.

> コード例 5-7 に、オペレーティングシステムが割り込みに応答しない場合にコンソー ルに表示されるメッセージの例を示します。

コード例 5-7 オペレーティングシステムが割り込みに応答しない場合に自動回復からコンソールに出 力されるメッセージの例

Tue Dec 09 12:37:38 commando lom: Domain is not responding to interrupts. Tue Dec 09 12:37:38 commando lom: Using default hang-policy (RESET). Tue Dec 09 12:37:38 commando lom: Resetting (XIR) domain

診断のイベント

一部の重要ではないハードウェアエラーは、Solaris オペレーティングシステムに よって特定され、システムコントローラに報告されます。システムコントローラは、 次の処理を行います。

- 影響を受ける資源に対してこの診断情報を記録して、コンポーネントの健全性状態の一部として保持します。
- 診断情報は、コンソールに表示されるイベントメッセージとして報告されます。

次に POST を実行したとき、POST は影響を受ける資源の健全性状態を確認し、可能 な場合は該当する資源をシステムから構成解除します。

コード例 5-8 に、重大ではないドメインエラーに対するイベントメッセージを示しま す。このようなイベントメッセージが表示された場合は、ご購入先の保守作業員にお 問い合わせください。保守作業員が適切な処置を行います。表示されるイベントメッ セージの情報については、81ページの「自動診断イベントメッセージの表示」で説 明します。

コード例 5-8 ドメイン診断のイベントメッセージ – 重大ではないドメインハードウェアエラー

[DOM] Event: SFV1280.L2SRAM.SERD.0.60.10040000000128.7fd78d140 CSN: DomainID: A ADInfo: 1.SF-SOLARIS-DE.5_8_Generic_116188-01 Time: Wed Nov 26 12:06:14 PST 2003 FRU-List-Count: 1; FRU-PN: 3704129; FRU-SN: 100ACD; FRU-LOC: /N0/SB0/P0/E0 Recommended-Action: Service action required

> 82 ページの「コンポーネントの状態の表示」の説明にしたがって、showboards お よび showcomponent コマンドを使用すると、POST によって構成解除されたコン ポーネントの詳細情報を表示できます。

診断および回復の制御

この節では、復元機能に影響するさまざまな制御方法およびパラメータについて説明 します。表 5-3 に、診断およびオペレーティングシステムの回復処理を制御するパラ メータの設定を示します。診断およびオペレーティングシステム回復パラメータに は、デフォルトで、推奨される値が設定されています。

注 – デフォルトの設定を使用しないと、復元機能は 76 ページの「自動診断および回復の概要」で説明しているとおりには動作しません。

表 5-3 診断およびオペレーティングシステム回復パラメータ

パラメータ	設定方法	デフォルト値	説明
Host Watchdog	setupsc	enabled	ハードウェアエラーを検出したとき、自動 的にドメインを再起動します。また、 OpenBoot PROM の auto-boot パラメー タが true に設定されている場合は、 Solaris オペレーティングシステムが起動し ます。
Tolerate correctable memory errors	setupsc	false	true に設定すると、Solaris オペレーティ ングシステムは、修正可能な ECC エラーを 示しているメモリーを使用して起動できま す。
			Solaris 10 オペレーティングシステムには、 このようなメモリーモジュールの障害部分 を自動的に分離する機能が組み込まれてい るため、これらのモジュールを完全に使用 不可にする必要がなく、サーバーの可用性 が向上します。
			false に設定すると、修正可能な ECC エ ラーを示しているメモリーモジュールは POST で使用不可となり、Solaris ドメイン に参加できません。
reboot-on-error	setenv	true	ハードウェアエラーを検出したとき、自動 的にドメインを再起動します。また、 OpenBoot PROM の auto-boot パラメー タが true に設定されている場合は、 Solaris オペレーティングシステムが起動し ます。
auto-boot	setenv	true	POST 実行後に Solaris オペレーティングシ ステムを起動します。
error-reset- recovery	setenv	sync	XIR の実行後に自動的にシステムを再起動 し、ハングアップしたサーバーの障害追跡 に使用できるコアファイルを生成します。 コアファイルを保持するには、スワップ領 域に十分なディスク容量を割り当てる必要 があることに注意してください。

自動診断および回復情報の取得

この節では、ハードウェアエラーを監視して、ハードウェアエラーに関連するコン ポーネントの詳細情報を取得するためのさまざまな方法について説明します。

自動診断イベントメッセージの表示

自動診断 ([AD]) およびドメイン ([DOM]) のイベントメッセージは、コンソールに表示されます。また、次の場所にも表示されます。

- 第3章で説明する /var/adm/messages ファイル。イベントレポートを適切に設 定した場合にかぎります。
- showlogs コマンドの出力。コンソールに記録されたイベントメッセージを表示 します。

拡張メモリーシステムコントローラ (SC V2) を取り付けたサーバーでは、ログ メッセージが永続バッファーに保持されます。showlogs -p -f filter コマンドを 使用すると、障害イベントメッセージなどのメッセージの種類ごとに、特定のタ イプのログメッセージを選択して表示できます。詳細は、『Sun Fire エントリレ ベルミッドレンジシステムコントローラコマンドリファレンスマニュアル』の showlogs コマンドに関する説明を参照してください。

[AD] または [DOM] のイベントメッセージ (コード例 5-5、コード例 5-8、コード例 5-9、およびコード例 5-10 を参照) には、次の情報が含まれます。

- [AD] または [DOM] AD は、システムコントローラアプリケーション (ScApp) または POST 自動診断エンジンがイベントメッセージを生成したことを示しま す。DOM は、影響を受けるドメインの Solaris オペレーティングシステムが自動診 断イベントメッセージを生成したことを示します。
- Event 保守プロバイダが使用する、プラットフォームおよびイベント固有の情報を識別するための英数字の文字列。
- CSN シャーシのシリアル番号。使用している Netra 1290 サーバーを特定します。
- DomainID ハードウェアエラーの影響を受けるドメイン。Netra 1290 サーバー は常に「ドメイン A」です。
- ADInfo 自動診断メッセージのバージョン、診断エンジン名 (SCAPP または SF-SOLARIS_DE)、および自動診断エンジンのバージョン。ドメイン診断イベン トの場合、診断エンジンは Solaris オペレーティングシステム (SF-SOLARIS-DE) になります。また、診断エンジンのバージョンは、使用している Solaris オペレー ティングシステムのバージョンになります。
- Time 自動診断が行われた曜日、月、日、時刻(時、分、秒)、タイムゾーン、および年。

- FRU-List-Count エラーに関連するコンポーネント (FRU)の数と、次の FRU データ。
 - 関連しているコンポーネントが1つの場合は、コード例5-5に示すように、 FRUパーツ番号、シリアル番号、および位置が表示されます。
 - 関連しているコンポーネントが複数の場合は、コード例 5-9 に示すように、関連する各コンポーネントの FRU パーツ番号、シリアル番号、および位置が表示されます。
 表示されるすべての FRU コンポーネントに障害があるわけではないことに留意してください。特定されたコンポーネントのサブセットに障害が発生している
 - SCAPP 診断エンジンが特定のコンポーネントを検出できない場合は、コード例 5-9 に示すように、UNRESOLVED と表示されます。
- Recommended-Action: Service action required 保守プロバイダに詳細な調査を依頼することを管理者に勧めるメッセージです。また、自動診断メッセージの終了も示します。

コード例 5-9 自動診断メッセージの例

可能性があります。

コンポーネントの状態の表示

次の項目を確認すると、自動診断処理の一環として構成解除されたか、その他の理由 で使用不可になったコンポーネントの詳細情報を取得できます。

■ 自動診断実行後の showboards コマンドの出力

コード例 5-10 は、サーバー内のすべてのコンポーネントの配置および状態を示しています。診断関連の情報は、コンポーネントの Status 列に表示されます。 Failed または Disabled の状態が表示されたコンポーネントは、サーバーから 構成解除されます。Failed 状態は、ボードが診断テストに合格しておらず、使用 できないことを示します。Disabled 状態は、ボードが setls コマンドで使用不 可に切り替えられたか、POST で問題が発見されたためにサーバーから構成解除さ れていることを示します。Degraded 状態は、ボード上の一部のコンポーネント は Failed または Disabled の状態になっているが、まだ使用可能なコンポーネント もボード上に存在していることを示します。Degraded 状態のコンポーネントは、 サーバーに構成されています。

showcomponent コマンドの出力によって、Failed、Disabled、または Degraded 状態のコンポーネントの詳細を確認できます。

コード例 5-10 showboards コマンドの出力 – Disabled および Degraded 状態のコンポーネント

Slot	Pwr	Component Type	State	Status
SSC1	On	System Controller V2	Main	Passed
/N0/SCC	-	System Config Card	Assigned	OK
/N0/BP	-	Baseplane	Assigned	Passed
/N0/SIB	-	Indicator Board	Assigned	Passed
/N0/SPDB	-	System Power Distribution Bd.	Assigned	Passed
/N0/PS0	On	A166 Power Supply	-	OK
/N0/PS1	On	A166 Power Supply	-	OK
/N0/PS2	On	A166 Power Supply	-	OK
/N0/PS3	On	A166 Power Supply	-	OK
/N0/FT0	On	Fan Tray	Auto Speed	Passed
/N0/RP0	On	Repeater Board	Assigned	OK
/N0/RP2	On	Repeater Board	Assigned	OK
/N0/SB0	On	CPU Board	Active	Passed
/N0/SB2	On	CPU Board V3	Assigned	Disabled
/N0/SB4	On	CPU Board	Active	Degraded
/N0/IB6	On	PCI+ I/O Board	Active	Passed
/N0/MB	-	Media Bay	Assigned	Passed

■ 自動診断実行後の showcomponent コマンドの出力

コード例 5-11 の Status 列には、コンポーネントの状態が表示されています。状態は、enabled または disabled のいずれかで示されます。disabled と表示され たコンポーネントは、サーバーから構成解除されます。POST 状態の chs (コン ポーネントの健全性状態) は、保守プロバイダによる詳細な調査が必要なコンポー ネントであることを示します。

コード例 5-11 showcomponent コマンドの出力 – Disabled 状態のコンポーネント

lom> showcomponen	t					
Component	Status	Pending	POST	Description		
/N0/SB0/P0/C0	disabled	-	pass	UltraSPARC-IV+,	1500MHz,	16M ECache
/N0/SB0/P0/C1	disabled	-	pass	UltraSPARC-IV+,	1500MHz,	16M ECache
/N0/SB0/P1/C0	disabled	-	pass	UltraSPARC-IV+,	1500MHz,	16M ECache
/N0/SB0/P1/C1	disabled	-	pass	UltraSPARC-IV+,	1500MHz,	16M ECache
/N0/SB0/P2/C0	disabled	-	pass	UltraSPARC-IV+,	1500MHz,	16M ECache

ド例 5-11	showcomponent	コマン	′ドの出力 -	- Disabled 状態の	コンポーネント	(続き)
---------	---------------	-----	---------	----------------	---------	------

 $\neg -$

/N0/SB0/P2/C1	disabled	-	pass UltraSPARC-IV+, 1500MHz, 16M ECache	Ī
/N0/SB0/P3/C0	disabled	-	pass UltraSPARC-IV+, 1500MHz, 16M ECache	
/N0/SB0/P3/C1	disabled	-	pass UltraSPARC-IV+, 1500MHz, 16M ECache	
/N0/SB0/P0/B0/L0	disabled	-	untest 2048M DRAM	
/N0/SB0/P0/B0/L2	disabled	-	untest 2048M DRAM	
/N0/SB0/P0/B1/L1	disabled	-	untest empty	
/N0/SB0/P0/B1/L3	disabled	-	untest empty	
/N0/SB0/P1/B0/L0	disabled	-	untest 2048M DRAM	
/N0/SB0/P1/B0/L2	disabled	-	untest 2048M DRAM	
/N0/SB0/P1/B1/L1	disabled	-	untest empty	
/N0/SB0/P1/B1/L3	disabled	-	untest empty	
/N0/SB0/P2/B0/L0	disabled	-	untest 2048M DRAM	
/N0/SB0/P2/B0/L2	disabled	-	untest 2048M DRAM	
/N0/SB0/P2/B1/L1	disabled	-	untest empty	
/N0/SB0/P2/B1/L3	disabled	-	untest empty	
/N0/SB0/P3/B0/L0	disabled	-	untest 2048M DRAM	
/N0/SB0/P3/B0/L2	disabled	-	untest 2048M DRAM	
/N0/SB0/P3/B1/L1	disabled	-	untest empty	
/N0/SB0/P3/B1/L3	disabled	-	untest empty	
•				

注 - POST 状態に chs と表示された使用不可のコンポーネントは、set1s コマンド で使用可能に切り替えることはできません。ご購入先の保守作業員に対処を依頼して ください。場合によっては、ハードウェアエラーに関連する親コンポーネントに属す るサブコンポーネントに、親コンポーネントと同じ使用不可の状態が反映されること があります。ハードウェアエラーに関連する親コンポーネントに属するサブコンポー ネントを使用可能に戻すことはできません。自動診断イベントメッセージを参照し て、エラーに関連している親コンポーネントを確認してください。

詳細なエラー情報の表示

拡張メモリー SC (SC V2) で構成されたサーバーで showerrorbuffer -p コマンド を実行すると、永続バッファーに保持されたシステムエラーの内容を表示できます。

しかし、拡張メモリー SC を装備していないサーバーの場合、showerrorbuffer コ マンドを実行すると動的バッファーの内容が表示されます。ここで表示されるエラー メッセージは、このコマンドを実行しないと、ドメイン回復処理でドメインが再起動 されたときに失われる可能性があります。

いずれの場合も、表示された情報は、保守プロバイダによる障害追跡に使用されます。

コード例 5-12 に、ドメインのハードウェアエラーを表示する例を示します。

コード例 5-12 showerrorbuffer コマンドの出力 - ハードウェアエラー

```
EX07:
lom>showerrorbuffer
ErrorData[0]
  Date: Fri Jan 30 10:23:32 EST 2004
  Device: /SSC1/sbbc0/systemepld
  Register: FirstError[0x10] : 0x0200
            SB0 encountered the first error
ErrorData[1]
  Date: Fri Jan 30 10:23:32 EST 2004
  Device: /SB0/bbcGroup0/repeaterepld
  Register: FirstError[0x10]: 0x0002
            sdc0 encountered the first error
ErrorData[2]
  Date: Fri Jan 30 10:23:32 EST 2004
  Device: /SB0/sdc0
  ErrorID: 0x60171010
  Register: SafariPortError0[0x200] : 0x00000002
               ParSglErr [01:01] : 0x1 ParitySingle error
```

その他の障害追跡コマンド

その他の障害追跡については、表 5-4 のコマンドを使用してください。

表 5-4 その他の障害追跡コマンド

コマンド	説明
prtfru	システムから FRU-ID データを取得します (Solaris OS コマンド)。 詳細は、prtfru のマニュアルページおよび Solaris OS のマニュアルを 参照してください。
inventory	シリアル EEPROM (SEEPROM) の内容を表示します (システムコント ローラコマンド)。詳細は、システムコントローラのマニュアルを参照し てください。

第6章

サーバーのセキュリティー保護

この章では、システムのセキュリティー保護に関する重要な情報を提供し、推奨事項 およびドメインの最小化について説明します。また、Solaris オペレーティングシス テムのセキュリティーに関する参照先を示します。

この章の内容は、次のとおりです。

- 87ページの「セキュリティーに関するガイドライン」
- 89 ページの「遠隔接続形式の選択」
- 92ページの「セキュリティーに関する補足事項」

セキュリティーに関するガイドライン

セキュリティー対策として考慮すべき事項は、次のとおりです。

- すべてのパスワードを、セキュリティーに関するガイドラインに適合させること。
- パスワードは、定期的に変更すること。
- 不正行為発見のため、ログファイルを定期的に検査すること。

不正アクセスを制限するようにシステムを構成することを、強化 (hardening) と呼び ます。システムを強化するために役立つ構成手順はいくつかあります。次に、システ ム構成のガイドラインになる手順を示します。

- Sun Fire リアルタイムオペレーティングシステム (RTOS) および SC アプリケーションファームウェアを更新したら、Sun Fire ドメインを構成またはインストールする前に、ただちにセキュリティーに関する変更を実装します。
- 通常は、SC のオペレーティングシステムである RTOS へのアクセスを制限しま す。
- シリアルポートへの物理アクセスを制限します。
- 構成の変更によっては、再起動が必要になることを考慮します。

コンソールのパスワードの定義

SC のコンソールのパスワードに関する唯一の制限は、使用している ASCII および端 末エミュレータがサポートする文字セットを使用することです。SC は MD5 アルゴ リズムを使用して、入力されたパスワードのハッシュを生成します。したがって、入 力されたすべての文字が重要です。

パスワードは 16 文字以上で指定する必要があるため、パスワードの代わりにパスフレーズを使用することが多くなります。パスワードには、英小文字、英大文字、数字、および句読点を組み合わせて使用する必要があります。コンソールのパスワードの設定方法については、『Netra 1290 サーバー設置マニュアル』(819-6898)を参照してください。

SNMP プロトコルのデフォルト構成の使用

Simple Network Management Protocol (SNMP) は、通常、ネットワークに接続され たデバイスおよびサーバーの監視と管理に使用されます。デフォルトでは、SNMP は使用不可になっています。

注 – Sun Management Center ソフトウェアを使用するには SNMP が必要です。ただし、SC はセキュリティー保護されたバージョンの SNMP プロトコルをサポートしないため、Sun Management Center ソフトウェアを使用する必要がない場合は SNMP を使用可能にしないでください。

設定を実装するためのシステムコントローラの再 起動

▼ システムコントローラを再起動する

次のようなコンソールメッセージが表示されたら、SC を再起動する必要があります。

Rebooting the SC is required for changes in network settings to take effect.

resetsc -y と入力して、SC を再起動します。
 SC は、Solaris ドメインが動作している状態でも再起動できます。
shownetwork コマンドを使用して、ネットワークのすべての変更が実装されたことを確認します。

Sun の Security Toolkit を使用して、Solaris オペレーティングシステムが動作する サーバーでセキュリティー保護された構成を作成する方法については、次の Web サ イトを参照してください。

http://www.sun.com/software/security/jass

遠隔接続形式の選択

SC の SSH および Telnet サービスは、デフォルトで使用不可になっています。

SSH の使用可能への切り替え

SC が汎用ネットワーク上にある場合は、Telnet ではなく SSH を使用することで、 SC へのセキュリティー保護された遠隔アクセスを実現できます。SSH は、ホストと クライアント間のデータフローを暗号化します。SSH が提供する認証機構によっ て、ホストおよびユーザーの両方を識別できるため、既知のシステム間のセキュリ ティー保護された接続が可能になります。Telnet は、基本的にセキュリティー上の危 険性があります。これは、Telnet プロトコルが、パスワードを含む情報を暗号化せず に転送するためです。

注 – SSH は、FTP、HTTP、SYSLOG、または SNMPv1 プロトコルには役立ちません。これらのプロトコルにはセキュリティー上の危険性があるため、汎用ネットワークでは注意して使用してください。

SC が提供する SSH 機能には制限があり、SSH バージョン 2 (SSHv2) のクライアント 要求のみをサポートします。表 6-1 に、SSH サーバーのさまざまな属性と、このサブ セットでの属性の取り扱いについて示します。これらの属性は設定できません。

表 6-1 SSH	[サーバーの属性
-----------	----------

属性	値の例	説明
Protocol	2	SSH v2 のみをサポート
Port	22	待機ポート
ListenAddress	0.0.0.0	複数の IP アドレスをサ ポート

表 6-1 SSH サーバーの属性 (続き)

属性	値の例	説明
AllowTcpForwarding	no	ポート転送をサポートし ない
RSAAuthentication	no	公開鍵認証は使用不可
PubkeyAuthentication	no	公開鍵認証は使用不可
PermitEmptyPasswords	yes	SC がパスワード認証を 制御
MACs	hmac-sha1,hmac-md5	Solaris 9 オペレーティン グシステムと同じ SSH サーバー実装
Ciphers	aes128-cbc,blowfish- cbc,3des-cbc	Solaris 9 オペレーティン グシステムと同じ SSH サーバー実装

▼ SSH を使用可能にする

● SSH を使用可能にするには、次のように入力します。

lom> setupnetwork

ネットワーク構成および接続パラメータの入力を求めるプロンプトが表示されます。 次に例を示します。

lom> setupnetwork

```
Network Configuration
------
Is the system controller on a network? [yes]:
Use DHCP or static network settings? [static]:
Hostname [hostname]:
IP Address [xxx.xxx.xxx]:
Netmask [xxx.xxx.xxx.xx]:
Gateway [xxx.xxx.xxx.xx]:
DNS Domain [xxxx.xxx.xxx]:
Primary DNS Server [xxx.xxx.xx]:
Secondary DNS Server [xxx.xxx.xx]:
Connection type (ssh, telnet, none) [ssh]:
Rebooting the SC is required for changes in the above network
settings to take effect.
lom>
```

setupnetwork コマンドの詳細は、『Sun Fire エントリレベルミッドレンジシステムコントローラコマンドリファレンスマニュアル』(819-5589)のコマンドに関する説明を参照してください。

SSH がサポートしない機能

Netra 1290 サーバー上の SSH サーバーでは、次の機能はサポートされません。

- 遠隔からのコマンド行の実行
- scp (Secure Copy Program) コマンド
- sftp (Secure File Transfer Program) コマンド
- ポート転送
- 鍵ベースのユーザー認証
- SSH v1 クライアント

これらの機能のいずれかを使用すると、エラーメッセージが生成されます。たとえば、次のコマンドを入力したとします。

ssh SCHOST showboards

その結果、次のメッセージが生成されます。

■ SSH クライアント上:

Connection to SCHOST closed by remote host.

■ SC コンソール上:

```
[0x89d1e0] sshdSessionServerCreate: no server registered
    for showboards
[0x89d1e0] sshd: Failed to create sshdSession
```

SSH ホスト鍵の変更

マシンを適切に管理するための望ましいセキュリティー対策は、定期的に新しいホスト鍵を生成することです。ホスト鍵が危険であると疑われる場合は、ssh-keygen コマンドを実行して、システムのホスト鍵を再生成できます。

いったんホスト鍵を生成すると、これを交換することはできますが、setdefaults コマンドを使用しないかぎり削除することはできません。新しく生成されたホスト鍵 を有効にするには、restartssh コマンドを実行するか、再起動のコマンドを実行 して、SSH サーバーを再起動する必要があります。ssh-keygen および restartssh コマンドの詳細と例については、『Sun Fire エントリレベルミッドレ ンジシステムコントローラコマンドリファレンスマニュアル』(819-5589)を参照して ください。

注 – ssh-keygen コマンドを使用して、SC のホスト鍵の指紋を表示することもできます。

セキュリティーに関する補足事項

RTOS シェルにアクセスするための特殊なキー シーケンス

SC の起動中、シリアル接続を介して、特殊なキーシーケンスを SC に対して発行することができます。キーシーケンスは、SC の再起動後 30 秒以内にシリアルポートで入力した場合に、特殊な機能を実現します。

このキーシーケンスの特殊な機能は、Sun の著作権のメッセージが表示されてから 30 秒経過すると、自動的に使用できなくなります。この機能が使用できなくなる と、キーシーケンスは通常の制御キーとして動作します。

SC のセキュリティーは、RTOS シェルへの不正アクセスによって危険にさらされる 可能性があるため、SC のシリアルポートへのアクセスは制御する必要があります。

ドメインの最小化

Netra 1290 サーバーのセキュリティーを向上させる方法の1つは、ソフトウェアの インストールを必要最小限に抑えることです。各ドメインにインストールするソフト ウェアコンポーネントの数を制限すること(ドメインの最小化と呼ぶ)によって、侵 入者によって不正に使用される可能性のあるセキュリティーホールの危険性を低減し ます。

最小化の詳細および例については、次の Web サイトの『Minimizing Domains for Sun Fire V1280, 6800, 12K, and 15K Systems』(2 部構成)を参照してください。

http://www.sun.com/security/blueprints

Solaris オペレーティングシステムのセキュリ ティー

Solaris オペレーティングシステムのセキュリティー保護については、次のマニュア ルおよび情報を参照してください。

- Solaris のセキュリティーに関する最良実例は、次の Web サイトで入手できます。 http://www.sun.com/software/security/blueprints
- Solaris Security Toolkit は、次の Web サイトで入手できます。 http://www.sun.com/software/security/jass
- 『Solaris 8 のシステム管理 (追補)』、または Solaris 9 System Administrator Collection の『Solaris のシステム管理 (セキュリティサービス)』

付録A

動的再構成 (DR)

この付録では、Netra 1290 サーバーで CPU/メモリーボードを動的に再構成する方法 について説明します。

この章の内容は、次のとおりです。

- 95 ページの「動的再構成 (DR)」
- 96 ページの「DR の概念」
- 99 ページの「条件および状態」
- 102 ページの「非永続メモリーおよび永続メモリー」
- 103 ページの「制限事項」

動的再構成 (DR)

動的再構成 (DR) ソフトウェアは、Solaris オペレーティングシステムの一部です。 DR ソフトウェアを使用すると、システムボードを動的に再構成して、Solaris オペ レーティングシステムの動作中でもサーバーからの取り外しまたはサーバーへの取り 付けを安全に行えるため、システム上で実行されているユーザープロセスの中断を最 小限に抑えられます。DR は、次のような目的で使用します。

- ボードの取り付けまたは取り外しによるシステムアプリケーションの中断を最小限にする。
- 障害によってオペレーティングシステムがクラッシュする前に、障害が発生しているデバイスを取り外して使用不可にする。
- ボードの動作状態を表示させる。
- システムを動作させたままでボードのシステム診断を開始する。

コマンド行インタフェース

Solaris の cfgadm(1M) コマンドは、DR 機能を管理するためのコマンド行インタフェースを提供します。

DR の概念

休止

永続メモリー (OpenBoot PROM またはカーネルメモリー) を搭載したシステムボー ドの構成解除操作中、オペレーティングシステムは短時間だけ停止します。これを、 オペレーティングシステムの休止と呼びます。バックプレーン上のすべてのオペレー ティングシステムおよびデバイスの活動は、構成解除操作の重要な段階では停止する 必要があります。

注 – 休止は、作業負荷およびシステム構成によっては数分間に及ぶ場合があります。

休止状態になる前に、オペレーティングシステムは、すべての処理、CPU、およびデ バイスの活動を一時的に停止する必要があります。システムの使用方法および進行中 のシステム活動によっては、システムが休止するまでに数分かかる場合があります。 オペレーティングシステムが休止に失敗した場合には、その理由が表示されます。次 のような理由が考えられます。

- 実行スレッドが中断されなかった。
- リアルタイム処理が実行中である。
- オペレーティングシステムによって一時停止できないデバイスがある。

通常、処理の停止が失敗するような状況は一時的なものです。停止できない原因を調 査してください。オペレーティングシステムで停止処理に失敗するような一時的な状 況が発生した場合には、停止操作を再試行できます。

RPC または TCP のタイムアウトと接続の切断

デフォルトでは、2分が経過するとタイムアウトが発生します。DRによって発生す るオペレーティングシステムの休止は2分以上になる可能性があるため、管理者は、 休止中にタイムアウトが発生しないようにタイムアウト値を大きくしなくてはならな い場合があります。システムが休止すると、システムおよび関連するネットワーク サービスは2分を超える間使用できなくなります。この変化は、クライアントマシン とサーバーマシンの両方に影響します。

ー時停止に対して安全なデバイスと危険なデバイ ス

DR がオペレーティングシステムを停止するときには、オペレーティングシステムに 組み込まれたすべてのデバイスドライバも一時的に停止します。ドライバを停止(ま たは停止後に再開)できない場合、DR 操作は失敗します。

「一時停止に対して安全な」デバイスは、オペレーティングシステムの休止中にメモ リーへのアクセスまたはシステムへの割り込みを行いません。オペレーティングシス テムの休止(一時停止/再開)をサポートするドライバは、一時停止に対して安全で す。また、一時停止に対して安全なドライバは、停止要求が発行されたときに管理す るデバイスがオープンしていた場合でも、停止要求の正常な完了後はそのデバイスが メモリーへのアクセスを行わないことを保証します。

「一時停止に対して危険な」デバイスは、オペレーティングシステムの休止中でも、 メモリーへのアクセスまたはシステムへの割り込みを行います。

接続点

接続点とは、ボードとボード上のスロットをまとめて表す用語です。DRは、スロット、ボード、および接続点の状態を表示できます。DRでボードと言うとき、その定義には接続されたデバイスも含まれます。そのため、「占有装置」とは、ボードと接続されたデバイスの組み合わせを指します。

- スロット (ソケットとも呼ぶ)には、ホストマシンから占有装置を電気的に切り離 す機能があります。この機能により、ソフトウェアによって1つのスロットを低 電力モードに移行させることができます。
- ソケットは、スロット番号に基づいて命名するか、または匿名にできます (SCSI チェーンなど)。使用できるすべての論理接続点の一覧を表示するには、 cfgadm(1M) コマンドに -1 オプションを付けて実行します。

接続点は、次の2つの形式で表すことができます。

 「物理」接続点は、ソフトウェアドライバとスロットの場所を表します。次に、 物理接続点の名前の例を示します。 /devices/ssm@0,0:N0.SBx

ここでの意味は、次のとおりです。

- N0 ノード 0 (ゼロ)
- SB システムボード
- x-スロット番号。スロット番号は、システムボードごとに0、2、または4になります
- 「論理」接続点は、物理接続点を参照するためにシステムによって生成される略 名です。次に、論理接続点の形式を示します。

N0.SBX

■ cfgadm は I/O アセンブリ NO.IB6 も表示しますが、これは冗長部品ではないため、この接続点での DR 操作は許可されません。

DR の操作

DRでは、主に次の4種類の操作を行うことができます。

表	A-1	DR	操化	Fの種類
~~~				

種類	説明
接続	スロットはボードに電力を供給し、ボードの温度を監視します。
構成	オペレーティングシステムはボードに機能的な役割を割り当て、 ボードのデバイスドライバを読み込み、Solaris オペレーティングシ ステムでそのボード上のデバイスを使用できるようにします。
構成解除	システムは、オペレーティングシステムからボードを論理的に切り 離します。環境監視は継続されますが、システムではボード上のデ バイスを使用できません。
切り離し	システムはボードの監視をやめて、スロットへの電力の供給を停止 します。

システムボードが使用中である場合には、使用を停止しシステムから切り離したあと で電源を切ります。新規のまたはアップグレードされたシステムボードを挿入し、電 源を入れたあとは、接続点を接続してオペレーティングシステムで使用できるように 構成します。cfgadm(1M) コマンドは、1回の実行で接続と構成(または構成解除と 切り離し)を行うことができますが、必要に応じて各操作(接続、構成、構成解除、 切り離し)を個々に実行することもできます。

## ホットプラグ対応のハードウェア

ホットプラグデバイスには、データピンが接触する前にボードまたはモジュールに電 力を供給するための特別なコネクタがあります。ホットプラグコネクタがあるボード およびデバイスは、システムの動作中でも挿入または取り外しができます。デバイス には、挿入処理中にコモンリファレンスと電力制御を確実に行うための制御回路があ ります。ボードが正しく取り付けられて、SC が電源投入を指示するまで、インタ フェースには電源が投入されません。

Netra 1290 サーバーで使用される CPU/メモリーボードは、ホットプラグデバイスで す。

## 条件および状態

状態とは、ソケット (スロット) または占有装置 (ボード) の操作状態を指します。条件とは、接続点の操作状態です。

サーバーからのボードまたはコンポーネントの DR 操作を行う前に、状態および条件 を確認してください。cfgadm(1M) コマンドに -1a オプションを指定して実行する と、各コンポーネントの種類、状態、および条件と、サーバーの各ボードスロットの 状態および条件が表示されます。コンポーネントの種類の一覧は、102ページの「コ ンポーネントの種類」を参照してください。

### ボードの状態および条件

ここでは、システムスロットとも呼ばれる CPU/メモリーボードの状態および条件について説明します。

#### ボードのソケットの状態

ボードのソケットは、空き (empty)、切り離し (disconnected)、接続 (connected) の 3 つの状態のいずれかになります。ボードを挿入すると、ソケットの状態は、empty から disconnected に切り替わります。ボードを取り外すと、ソケットの状態は、 disconnected から empty に切り替わります。



**注意** – connected 状態のボード、または電源が入っていて disconnected 状態のボードを物理的に取り外すと、オペレーティングシステムが破壊され、取り外したシステムボードに永久的な損傷を与えます。

表 A-2 ボードのソケットの状態

名称	説明
empty	ボードは挿入されていません。
disconnected	ボードはシステムバスから切り離されています。電源を切らなくて もボードは切り離し状態になります。ボードをスロットから取り外 す場合は、ボードの電源を切って、切り離し状態にする必要があり ます。
connected	ボードに電源が入っていて、システムバスに接続されています。 ボード上のコンポーネントは、ボードが接続状態になると表示され るようになります。

#### ボードの占有装置の状態

ボードの占有装置は、構成 (configured) または構成解除 (unconfigured) のいずれか の状態になります。切り離されたボードの占有装置の状態は、常に unconfigured に なります。

表 A-3 ボードの占有装置の状態

名称	説明
configured	ボード上の1つ以上のコンポーネントが構成されています。
unconfigured	ボード上のすべてのコンポーネントは構成解除されています。

### ボードの条件

ボードは、不明 (unknown)、正常 (ok)、不合格 (failed)、使用不能 (unusable) の 4 つ の条件のいずれかになります。

表 A-4 ボードの条件

名称	説明
unknown	ボードのテストは行われていません。
ok	ボードは操作可能です。
failed	ボードはテストで不合格でした。
unusable	ボードスロットは使用できません。

### コンポーネントの状態および条件

ここでは、コンポーネントの状態および条件について説明します。

#### コンポーネントのソケットの状態

コンポーネントは、単独で接続または切り離すことはできません。そのため、コン ポーネントの状態は、常に接続 (connected) になります。

#### コンポーネントの占有装置の状態

ボードの占有装置は、構成 (configured) または構成解除 (unconfigured) のいずれかの状態になります。

表 A-5 コンポーネントの占有装置の状態

名称	説明
configured	コンポーネントは、Solaris オペレーティングシステムで使用できま す。
unconfigured	コンポーネントは、Solaris オペレーティングシステムで使用できま せん。

### コンポーネントの条件

コンポーネントは、不明 (unknown)、正常 (ok)、不合格 (failed) の 3 つの条件のいず れかになります。

表 A-6 コンポーネントの条件

名称	説明	
unknown	コンポーネントのテストは行われていません。	
ok	コンポーネントは操作可能です。	
failed	コンポーネントはテストで不合格でした。	

#### コンポーネントの種類

DR では、数種類のコンポーネントを構成または構成解除できます。

表 A-7 コンポーネントの種類

名称	説明
сри	個々の CPU
memory	ボード上のすべてのメモリー

## 非永続メモリーおよび永続メモリー

ボードを取り外す前には、その環境でボード上のメモリーを空にする必要がありま す。ボードを空にするとは、非永続メモリーの内容をスワップ空間にフラッシュし、 永続メモリー (カーネルメモリーおよび OpenBoot PROM メモリー)の内容をほかの メモリーボードにコピーすることを意味します。

永続メモリーを再配置するには、システムのオペレーティングシステムを一時的に停止または休止する必要があります。一時停止の長さは、システムの構成および実行中の作業負荷によって異なります。永続メモリーを搭載したボードを取り外すことができるのは、オペレーティングシステムが停止しているときだけです。したがって、システムの動作に重大な影響を与えないように、永続メモリーが搭載されている場所を確認しておく必要があります。

永続メモリーは、cfgadm(1M) コマンドに -v オプションを指定して実行することで 表示できます。ボード上に永続メモリーがある場合、オペレーティングシステムは、 その永続メモリーを受け入れられる容量がある別のメモリーコンポーネントを探す必 要があります。別のメモリーコンポーネントが見つからないと、DR 操作は失敗しま す。

## 制限事項

### メモリーインタリーブ

サーバーメモリーが複数の CPU/メモリーボード間でインタリーブされている場合、 システムボードを動的に再構成することはできません。

### 永続メモリーの再構成

再配置できない(永続)メモリーを搭載する CPU/メモリーボードを動的に再構成し てサーバーから切り離すときには、すべてのドメイン活動を短時間だけ停止する必要 があり、それによってアプリケーションの応答が遅延する可能性があります。通常、 この状況は、サーバー内の1つの CPU/メモリーボードで発生します。このような ボード上のメモリーは、cfgadm -av コマンドによって出力される状態一覧に、サ イズがゼロでない永続メモリーとして表示されます。

DR は、次のどちらかの条件にあてはまる場合にのみ、1 つのシステムボードからほかのボードへの永続メモリーの再構成をサポートします。

- 対象のシステムボードのメモリーサイズがソースシステムボードのサイズと同じ 場合。
- 対象のシステムボードのメモリーサイズがソースシステムボードのサイズより大きい場合。この場合、余分なメモリー領域は使用可能なメモリーのプールに追加されます。

## 付録B

# ウォッチドッグタイマーのアプリ ケーションモード

この付録では、Netra 1290 サーバーのウォッチドッグタイマーのアプリケーション モードについて説明します。

この付録は、次の節で構成されており、ウォッチドッグタイマーを設定して使用する 方法、およびアラーム3をプログラムする方法を理解するために役立ちます。

- 105 ページの「ウォッチドッグタイマーのアプリケーションモードの理解」
- 107 ページの「ウォッチドッグタイマーでサポートされていない機能および制限事項」
- 108 ページの「ntwdt ドライバの使用」
- 109 ページの「ユーザー API の理解」
- 109 ページの「ウォッチドッグタイマーの使用」
- 113 ページの「アラーム 3 のプログラム」
- 115 ページの「ウォッチドッグタイマーのエラーメッセージ」

**注** – アプリケーションウォッチドッグタイマーを使用可能にした場合、デフォルト (プログラム不可能)のウォッチドッグタイマーおよびデフォルトの LED 動作 (アラー ム 3 以外)に戻すには、Solaris オペレーティングシステムを再起動する必要がありま す。

## ウォッチドッグタイマーのアプリケー ションモードの理解

ウォッチドッグのメカニズムは、システムのハングアップ、あるいはアプリケーショ ンのハングアップまたはクラッシュが発生した場合に、それを検出します。ウォッチ ドッグは、オペレーティングシステムとユーザーアプリケーションが動作しているか ぎり、ユーザーアプリケーションによって継続的にリセットされるタイマーです。 アプリケーションがこのアプリケーションウォッチドッグを再設定している場合、次 の原因によって期限切れが発生する可能性があります。

- 再設定しているアプリケーションのクラッシュ
- アプリケーションの再設定スレッドのハングアップまたはクラッシュ
- システムのハングアップ

システムウォッチドッグが動作中の場合は、システムのハングアップ、より具体的に はクロック割り込みハンドラのハングアップによって期限切れが発生します。

デフォルトのモードは、システムウォッチドッグモードです。アプリケーション ウォッチドッグを初期化していない場合は、システムウォッチドッグモードが使用さ れます。

アプリケーションモードでは、次の処理を実行できます。

- ウォッチドッグタイマーの設定 ホストで動作しているアプリケーションで、 ウォッチドッグタイマーを設定して使用できます。この機能を使用すると、アプ リケーションの致命的な問題を検出して、自動的に回復できます。
- アラーム3のプログラム アプリケーションで重大な問題が発生した場合に、ア ラーム3を生成できます。

SC の Lights Out Management の既存のコマンドである setupsc コマンドは、シス テムウォッチドッグの回復の設定のみに使用できます。

lom>setupsc

システムコントローラの設定は次のようになります。

```
SC POST diag Level [off]:
Host Watchdog [enabled]:
Rocker Switch [enabled]:
Secure Mode [off]:
PROC RTUs installed: 0
PROC Headroom quantity (0 to disable, 4 MAX) [0]:
```

アプリケーションウォッチドッグの回復の設定は、ntwdt ドライバに対して実行される入出力制御コード (IOCTL) を使用して行います。

# ウォッチドッグタイマーでサポートされ ていない機能および制限事項

- ウォッチドッグタイマーの期限切れが SC によって検出された場合、一度だけ回復 が試行されます。最初の試行でドメインの回復に失敗した場合でも、これ以上回 復が試行されることはありません。
- アプリケーションウォッチドッグが使用可能になっている場合に、システムコントローラの 1om プロンプトで break コマンドを実行して OpenBoot PROM に割り込むと、SC はウォッチドッグタイマーを自動的に使用不可にします。

**注 – SC**からはウォッチドッグが使用不可になっているように見えることを通知する コンソールメッセージが、SCによって表示されます。

ただし、Solaris OS に再度入ると、Solaris オペレーティングシステムからは ウォッチドッグタイマーが依然として使用可能になっているように見えます。SC および Solaris OS の両方に同じウォッチドッグの状態を表示させるには、ウォッ チドッグアプリケーションを使用して、ウォッチドッグを使用可能または使用不 可のいずれかに切り替える必要があります。

動的再構成 (DR) 操作を実行して、カーネル (永続) メモリーを含むシステムボード を取り外す場合、この DR 操作前にウォッチドッグタイマーのアプリケーション モードを使用不可にし、DR 操作後に使用可能にする必要があります。この処置が 必要なのは、永続メモリーのメモリーを空にする間、Solaris ソフトウェアがすべ てのシステムの入出力を休止し、すべての割り込みを無効にするためです。その 結果、DR 操作中に、システムコントローラファームウェアおよび Solaris ソフト ウェアが通信することはできなくなります。この制限は、メモリーの動的な追 加、および永続メモリーを含まないボードの取り外しには該当しません。これら の場合は、ウォッチドッグタイマーのアプリケーションモードを、DR の実装と並 行して実行できます。

次のコマンドを実行すると、カーネル(永続)メモリーを含むシステムボードの位置を確認できます。

sh> cfgadm -lav | grep -i permanent

- 次の状況で Solaris オペレーティングシステムがハングアップした場合、システム コントローラファームウェアは、Solaris ソフトウェアのハングアップを検出でき ません。
  - ウォッチドッグタイマーのアプリケーションモードが設定されている場合。
  - ウォッチドッグタイマーが使用可能になっていない場合。
  - ユーザーによる再設定が実行されていない場合。

- ウォッチドッグタイマーは、一部の起動の監視を実行します。アプリケーション ウォッチドッグを使用して、ドメインの再起動を監視できます。
   ただし、次の場合のドメインの起動は監視されません。
  - 電源投入 (cold poweron) 後の起動時。
  - ハングアップしたドメインまたは障害の発生したドメインの回復時。
     後者の場合では、起動の失敗は検出されず、回復も試行されません。
- ウォッチドッグタイマーのアプリケーションモードでは、アプリケーションの起動は監視されません。アプリケーションモードでは、アプリケーションが起動に 失敗しても、その失敗は検出されず、回復も実行されません。

## ntwdt ドライバの使用

新しいアプリケーションウォッチドッグ機能を使用するには、ntwdt ドライバをイ ンストールする必要があります。ウォッチドッグのアプリケーションモードを使用可 能にして制御するには、109 ページの「ユーザー API の理解」で説明する LOMIOCDOGxxx IOCTL を使用して、ウォッチドッグシステムをプログラムしてくだ さい。

アプリケーションウォッチドッグの期限が切れたときに、システムコントローラの代わりに、ntwdt ドライバによって Solaris OS のリセットが開始される場合、ntwdtドライバの構成ファイル (ntwdt.conf)の次のプロパティー値が使用されます。

ntwdt-boottimeout="600";

パニック、つまりアプリケーションウォッチドッグの期限切れが発生すると、ntwdt ドライバは、ウォッチドッグのタイムアウトをこのプロパティーに指定されている値 にプログラムし直します。

再起動およびクラッシュダンプの実行にかかる時間よりも長い期間を示す値を割り当 ててください。指定した値の大きさが十分でないと、リセットが使用可能になってい る場合に、SC がホストをリセットします。SC によるこのリセットは、一度だけ発生 します。

## ユーザー API の理解

ntwdt ドライバでは、IOCTL を使用することでアプリケーションのプログラミング インタフェースが提供されます。ウォッチドッグの IOCTL を実行する前に /dev/ntwdt デバイスノードを開いてください。

**注** - /dev/ntwdt では、open() の1つのインスタンスのみが許可されます。 open() の複数のインスタンスを開くと、「EAGAIN - The driver is busy, try again」というエラーメッセージが生成されます。

ウォッチドッグタイマーでは、次の IOCTL を使用できます。

- LOMIOCDOGTIME
- LOMIOCDOGCTL
- LOMIOCDOGPAT
- LOMIOCDOGSTATE
- LOMIOCALCTL
- LOMIOCALSTATE

# ウォッチドッグタイマーの使用

## タイムアウト時間の設定

LOMIOCDOGTIME IOCTL は、ウォッチドッグのタイムアウト時間を設定します。こ の IOCTL は、この IOCTL 内に指定された時間を使用してウォッチドッグハード ウェアをプログラムします。タイムアウト時間 (LOMIOCDOGTIME) は、ウォッチドッ グタイマー (LOMIOCDOGCTL) を使用可能にする前に設定してください。

引数は、符号なし整数へのポインタです。この整数によって、ウォッチドッグの新し いタイムアウト時間が秒単位で保持されます。タイムアウト時間は、1 秒~ 180 分の 範囲で指定できます。

ウォッチドッグ機能を使用可能にすると、タイムアウト時間はすぐにリセットされ、 新しい値が有効になります。タイムアウト時間が1秒未満の場合、または180分を超 える場合は、エラー (EINVAL) が表示されます。 **注** - LOMIOCDOGTIME は、通常の使用を目的としていません。ウォッチドッグおよ びリセットの機能が使用可能になっている場合に、ウォッチドッグのタイムアウトの 設定値が小さすぎると、システムがハードウェアリセットを受信することがありま す。タイムアウトに非常に小さい値を設定する場合は、意図しない期限切れを回避す るために、ユーザーアプリケーションの実行の優先順位をより高くし(リアルタイム スレッドとして実行するなど)、再設定をより頻繁に行なってください。

## ウォッチドッグの使用可能または使用不可への切 り替え

LOMIOCDOGCTL IOCTL は、ウォッチドッグを使用可能または使用不可に切り替え、 リセット機能を使用可能または使用不可に切り替えます。ウォッチドッグタイマーに 対する適切な値については、111ページの「データ構造の確認および定義」を参照し てください。

引数は、lom_dogctl_t 構造体へのポインタです。この構造体の詳細は、111ページの「データ構造の確認および定義」を参照してください。

システムのリセット機能を使用可能または使用不可に切り替えるには、 reset_enable メンバーを使用します。ウォッチドッグ機能を使用可能または使用 不可に切り替えるには、dog_enable メンバーを使用します。ウォッチドッグを使 用不可にしてリセットを使用可能にすると、エラー (EINVAL) が表示されます。

**注** – この IOCTL よりも前に、タイムアウト時間を設定するための LOMIOCDOGTIME が実行されていないと、そのハードウェアでウォッチドッグは使用可能になりません。

### ウォッチドッグの再設定

LOMIOCDOGPAT IOCTL は、ウォッチドッグが秒読みを最初から開始するように、 ウォッチドッグを再設定(パット)します。つまり、LOMIOCDOGTIME に指定されて いる値に再設定します。この IOCTL には、引数は必要ありません。ウォッチドッグ が使用可能になっている場合は、ウォッチドッグのタイムアウトよりも短い一定の間 隔でこの IOCTL を使用する必要があります。このようにしないと、ウォッチドッグ は期限切れになります。

### ウォッチドッグタイマーの状態の取得

LOMIOCDOGSTATE IOCTL は、ウォッチドッグ機能およびリセット機能の状態を取得し、ウォッチドッグの現在のタイムアウト時間を取得します。この IOCTL よりも前に、タイムアウト時間を設定する LOMIOCDOGTIME が実行されていないと、そのハードウェアでウォッチドッグは使用可能になりません。

引数は、1om_dogstate_t 構造体へのポインタです。詳細は、111 ページの「デー タ構造の確認および定義」を参照してください。構造のメンバーは、ウォッチドッグ のリセット回路の現在の状態、およびウォッチドッグの現在のタイムアウト時間を保 持するために使用されます。この時間は、ウォッチドッグが引き起こされるまでの残 り時間ではありません。

LOMIOCDOGSTATE IOCTL の実行には、open() が正常に呼び出されていることだけ が必要です。open() が呼び出されたあとであれば、この IOCTL は何度でも実行で きます。また、その他の DOG IOCTL が実行されている必要はありません。

### データ構造の確認および定義

すべてのデータ構造および IOCTL は、SUNWlomh パッケージで入手可能な lom_io.h に定義されています。

ウォッチドッグタイマーのデータ構造を次に示します。

- ウォッチドッグおよびリセットの状態のデータ構造は次のとおりです。
- **コード例 B-1** ウォッチドッグおよびリセットの状態のデータ構造

```
typedef struct {
    int reset_enable; /* reset enabled if non-zero */
    int dog_enable; /* watchdog enabled if non-zero */
    uint_t dog_timeout; /* Current watchdog timeout */
} lom_dogstate_t;
```

ウォッチドッグおよびリセットの制御のデータ構造は次のとおりです。

**コード例 B-2** ウォッチドッグおよびリセットの制御のデータ構造

```
typedef struct {
    int reset_enable; /* reset enabled if non-zero */
    int dog_enable; /* watchdog enabled if non-zero */
} lom_dogctl_t;
```

## ウォッチドッグのプログラム例

次に、ウォッチドッグタイマーのプログラム例を示します。

**コード例 B-3** ウォッチドッグのプログラム例

```
#include <sys/types.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/stat.h>
#include <lom_io.h>
int main() {
   uint_t timeout = 30; /* 30 seconds */
   lom_dogctl_t dogctl;
   int fd;
   dogctl.reset_enable = 1;
   dogctl.dog_enable = 1;
   fd = open("/dev/ntwdt", O_EXCL);
   /* Set timeout */
   ioctl(fd, LOMIOCDOGTIME, (void *)&timeout);
   /* Enable watchdog */
   ioctl(fd, LOMIOCDOGCTL, (void *)&dogctl);
   /* Keep patting */
   while (1) {
      ioctl(fd, LOMIOCDOGPAT, NULL);
      sleep (5);
    }
   return (0);
3
```

## アラーム3のプログラム

Solaris オペレーティングシステムのユーザーは、ウォッチドッグのモードにかかわ らず、アラーム3を使用できます。アラーム3、つまりシステムアラームのオンおよ びオフの定義は変更されました (後述の表を参照)。

アラーム3の値は、LOMIOCALCTL IOCTL を使用して設定します。アラーム1およびアラーム2を設定およびクリアする場合と同様に、アラーム3をプログラムできます。

次の表に、アラーム3の動作を示します。

**表 B-1** アラーム3の動作

	アラーム 3	リレー	システム LED (緑)
電源切断	オン	COM -> NC	消灯
電源投入または LOM 起動	オン	COM -> NC	消灯
Solaris 動作中	オフ	COM -> NO	点灯
Solaris 非動作中	オン	COM -> NC	消灯
ホストの WDT の期 限切れ	オン	COM -> NC	消灯
ユーザーがオンに設 定	オン	COM -> NC	消灯
ユーザーがオフに設 定	オフ	COM -> NO	点灯

ここでの意味は、次のとおりです。

- COM は共通線
- NC は常閉
- NO は常開

表中のデータをまとめると、次のようになります。

アラーム 3 オン = リレー (COM->NC)、システム LED 消灯

アラーム 3 オフ = リレー (COM->NO)、システム LED 点灯

プログラム時に、showalarm コマンドおよび引数 system を使用すると、アラーム3(システムアラーム)を確認できます。

次に例を示します。

sc> showalarm system
system alarm is on

LOMIOCALCTL および LOMIOCALSTATE IOCTL で使用されるデータ構造は、次のとおりです。

**コード例 B-4** LOMIOCALCTL および LOMIOCALSTATE IOCTL のデータ構造

```
#include <fcntl.h>
#include <lom_io.h>
#define LOM_DEVICE "/dev/lom"
#define ALARM_OFF 0
#define ALARM_ON 1
int main() {
   int fd, ret;
   lom_aldata_t ald;
   ald.alarm_no = ALARM_NUM_3;
    ald.state = ALARM_OFF;
    fd = open(LOM_DEVICE, O_RDWR);
    if (fd == -1) {
    printf("Error opening device: %s\n", LOM_DEVICE);
      return (1);
   }
   /* Set Alarm3 to on state */
   ald.state = ALARM ON;
    ioctl(fd, LOMIOCALCTL, (void *)&ald);
    /* Get Alarm3 state */
   ioctl(fd, LOMIOCALSTATE, (char *)&ald);
    printf("alarm %d state :%d:\n", ald.alarm_no, ald.state);
    /* Set Alarm3 to off state */
    ald.state = ALARM_OFF;
   ioctl(fd, LOMIOCALCTL, (char *)&ald);
    /* Get Alarm3 state */
   ioctl(fd, LOMIOCALSTATE, (char *)&ald);
   printf("alarm %d state :%d:\n", ald.alarm_no, ald.state);
   close (fd);
   return (0);
```

# ウォッチドッグタイマーのエラーメッ セージ

表 B-2 に、表示される可能性のあるウォッチドッグタイマーのエラーメッセージとその意味を示します。

表 B-2 ウォッチドッグタイマーのエラーメッセージ

エラーメッセージ	意味
EAGAIN	/dev/ntwdt で open() の複数のインスタンスを開こうとしまし た。
EFAULT	不正なユーザー空間アドレスが指定されました。
EINVAL	存在しない制御コマンドが要求されたか、無効なパラメータが指定 されました。
EINTR	コンポーネントの状態変更を待機しているスレッドが割り込まれま した。
ENXIO	システムにドライバがインストールされていません。

## <u>付録C</u>

## ファームウェアの更新

この付録では、サーバーファームウェアを更新またはダウングレードする方法につい て説明します。この付録の内容は、次のとおりです。

- 117 ページの「flashupdate コマンドの使用」
- 120 ページの「lom -G コマンドの使用」

## flashupdate コマンドの使用

flashupdate コマンドを実行するには、SC の 10/100BASE-T Ethernet ポートを適切なネットワークに接続し、ダウンロードする新しいファームウェアイメージを格納 した外部の FTP サーバーまたは HTTP サーバーを参照できるように構成する必要が あります。

flashupdate コマンドは、SC およびシステムボード (CPU/メモリーボードおよび I/O アセンブリ) のフラッシュ PROM を更新します。フラッシュイメージのソース は、通常、NFS サーバー上に保持されます。CPU/メモリーボードの場合は、ある ボードのフラッシュイメージを使用して別のボードを更新できます。

flashupdate コマンドの構文は、次のとおりです。

flashupdate [-y|-n] -f *url* all systemboards scapp rtos *board* . . .

flashupdate [-y|-n] -c source-board destination-board . . .

flashupdate [-y|-n] -u

ここでの意味は、次のとおりです。

- -yを指定すると、確認のプロンプトが表示されません。
- -n を指定すると、確認が必要な場合にはコマンドが実行されません。

- -f には、フラッシュイメージのソースの URL を指定します。このオプションを 使用するには、NFS サーバーに保持されているフラッシュイメージとのネット ワーク接続が必要です。新しいファームウェアをインストールする場合には、こ のオプションを使用します。
  - urlは、フラッシュイメージを含むディレクトリを示す URLで、次の形式で指定します。

ftp://[userid:password@]hostname/path

または

http://hostname/path

- allを指定すると、すべてのボード (CPU/メモリーボード、I/O アセンブリ、 およびシステムコントローラ) が更新されます。この操作によって、SC が再起 動されます。
- systemboards を指定すると、すべての CPU/メモリーボードおよび I/O ア センブリが更新されます。
- scapp を指定すると、SC のアプリケーションが更新されます。この操作に よって、SC が再起動されます。
- rtos を指定すると、SC の RTOS が更新されます。この操作によって、SC が 再起動されます。
- board には、更新するボードの名前 (sb0、sb2、sb4、または ib6) を指定します。
- -cには、フラッシュイメージのソースになるボードを指定します。交換用 CPU/ メモリーボードを更新する場合には、このオプションを使用します。
  - source-board には、フラッシュイメージのソースとして使用する既存の CPU/メ モリーボード (sb0、sb2、または sb4)を指定します。
  - destination-board には、更新する CPU/メモリーボード (sb0、sb2、または sb4) を指定します。
- -uを指定すると、現在もっとも新しいバージョンのファームウェアが組み込まれているボードのイメージを使用して、すべての CPU/メモリーボードが自動的に更新されます。交換用 CPU/メモリーボードを更新する場合には、このオプションを使用します。
- -h を指定すると、このコマンドのヘルプが表示されます。

更新した OpenBoot PROM を有効にするため、電源を再投入する必要があります。

**注** – flashupdate では、ユーザー ID およびパスワードでセキュリティー保護され た HTTP URL からフラッシュイメージを取り出すことはできません。ファイルが存 在する場合でも、「flashupdate: failed, URL does not contain required file: *file*」というメッセージが返されます。



**注意** – flashupdate 操作は中断しないでください。flashupdate コマンドが異常 終了すると、SC はシングルユーザーモードになり、シリアルポートからしかアクセ スできなくなります。



注意 – フラッシュ更新を実行する前に、showboards -p version コマンドを実行 して、すべてのボードのファームウェアバージョンを確認してください。



**注意 – SC** のアプリケーション (scapp) または RTOS を更新する場合は、すべての結 果を監視できるように、シリアル接続上で動作している LOM シェルから flashupdate コマンドを実行してください。



**注意 – CPU**/メモリーボードまたは I/O アセンブリを更新する前に、poweron コマンドを使用して、更新するすべてのボードに確実に電源を入れてください。

- ▼ flashupdate コマンドを使用して Netra 1290 サーバーのファームウェアをアップグレードする
  - 1. すべてのボードの電源を投入します。

lom>poweron all

2. SC のファームウェアをアップグレードします。

lom>flashupdate -f url all

この手順を実行すると、CPU/メモリーボード、IB6、およびシステムコントローラ が同じファームウェアレベルにアップグレードされます。

- 3. Solaris OS を停止します。
- 4. サーバーの電源を切ります。
- 5. サーバーに電源を入れます。

- ▼ flashupdate コマンドを使用して Netra 1290 サーバーのファームウェアをダウングレードする
  - 1. すべてのボードの電源を投入します。

lom>poweron all

2. SC のファームウェアをダウングレードします。

lom>flashupdate -f url all

この手順を実行すると、CPU/メモリーボード、IB6、およびシステムコントローラ が同じファームウェアレベルにダウングレードされます。

- 3. Solaris OS を停止します。
- 4. サーバーの電源を切ります。
- 5. サーバーに電源を入れます。

## 1om -G **コマンドの**使用

1om -G コマンドを使用して転送されるイメージには、次の4種類があります。

- lw8pci.flash (I/O ボードのローカル POST)
- lw8cpu.flash (CPU/メモリーボードのローカル POST および OpenBoot PROM)
- sgsc.flash (LOM/SC のファームウェア)
- sgrtos.flash (LOM/SC のリアルタイムオペレーティングシステム)

これらのイメージを /var/tmp などの適切なディレクトリに置き、更新する各ハー ドウェアに応じたファイル名を指定して 1om -G コマンドを実行します。次に例を示 します。

# lom -G lw8cpu.flash

このコマンドは CPU/メモリーボードの POST および OpenBoot PROM を更新します。

ファームウェアは、ファイルのヘッダー情報からアップグレードするイメージの種類 を識別します。 これらのイメージは、パッチとして、www.sunsolve.sun.comからダウンロードするか、ご購入先から入手できます。

パッチの README ファイルには、新しいファームウェアイメージのインストール方 法が記載されています。記載されている手順を正しく実行してください。手順を正し く実行しないと、サーバーが起動できなくなる可能性があります。



**注意** – 1om –G 操作は中断しないでください。1om –G コマンドが異常終了すると、 SC はシングルユーザーモードになり、シリアルポートからしかアクセスできなくな ります。



**注意 –** 1om -Gを実行する前に、showboards -p version コマンドを実行して、 すべてのボードのファームウェアバージョンを確認してください。

注意 – すべての結果を監視できるように、シリアル接続上で動作している Solaris コ





**注意 – CPU**/メモリーボードまたは I/O アセンブリを更新する前に、poweron コマンドを使用して、更新するすべてのボードに確実に電源を入れてください。

## ▼ 1om -G コマンドを使用して Netra 1290 サーバー のファームウェアをアップグレードする

1. システムコントローラのファームウェアをアップグレードします。

ンソールから 1om -G コマンドを実行してください。

```
# lom -G sgsc.flash
```

# lom -G sgrtos.flash

次の手順に進む前に、選択したリリースの両方のパッケージ (sgsc.flash および sgrtos.flash) によって SC がアップグレードされたことを確認してください。 パッケージは対になっており、相互に必要です。

- 2. エスケープシーケンス (#.)を使用して、1om> プロンプトを表示します。
- 3. システムコントローラをリセットします。

lom>resetsc -y

- 4. システムボードのファームウェアをアップグレードします。
  - # lom -G lw8cpu.flash
    # lom -G lw8pci.flash
- 5. Solaris OS を停止します。
- 6. サーバーの電源を切ります。
- 7. サーバーに電源を入れます。
- ▼ 1om -G コマンドを使用して Netra 1290 サーバー のファームウェアをダウングレードする
- 1. SC のファームウェアをダウングレードします。

# lom -G sgsc.flash
# lom -G sgrtos.flash

- 2. エスケープシーケンス (#.)を使用して、1om> プロンプトを表示します。
- 3. システムコントローラをリセットします。

lom>resetsc -y

4. ほかのボードのファームウェアをダウングレードします。

# lom -G lw8cpu.flash
# lom -G lw8pci.flash

- 5. Solaris OS を停止します。
- 6. サーバーの電源を切ります。
- 7. サーバーに電源を入れます。

付録D

## デバイスのマッピング

物理アドレスは、デバイスに固有の物理特性を示します。たとえば、物理アドレスに は、バスアドレスおよびスロット番号が含まれます。スロット番号は、そのデバイス が取り付けられた場所を示します。

物理デバイスは、ノード識別子-エージェント ID (AID)-によって参照します。AID は、10 進法で 0 ~ 31 (16 進法で 0 ~ 1f)の値になります。ssm@0,0 で始まるデバイ スパスの、最初の 0 はノード ID です。

この付録では、Netra 1290 サーバーでのデバイスマッピングの命名法について説明します。この付録の内容は、次のとおりです。

- 123 ページの「CPU/メモリーボードのマッピング」
- 124 ページの「IB_SSC アセンブリのマッピング」

## CPU/メモリーボードのマッピング

CPU/メモリーボードおよびメモリーのエージェント ID (AID) は、10 進法で 0 ~ 23 (16 進法で 0 ~ 17) の値になります。このサーバーには、CPU/メモリーボードを 3 つまで搭載できます。

各 CPU/メモリーボードには、構成に応じて 4 つの CPU を搭載できます。また、各 CPU/メモリーボードには、メモリーバンクを 4 つまで装備できます。各メモリーバンクは、それぞれ 1 つのメモリー管理ユニット (MMU)、つまり CPU によって制御 されます。次のコード例に、CPU とその関連するメモリーのデバイスツリーエント リを示します。

/ssm@0,0/SUNW/UltraSPARC-IV+@b,0 /ssm@0,0/SUNW/memory-controller@b,400000

指定できる値は、次のとおりです。

- b,0の意味は、次のとおりです。
  - bは、CPUのエージェント ID (AID)。
  - 0は、CPU レジスタ。
- b,400000 の意味は、次のとおりです。
  - bは、メモリーのエージェント ID (AID)。
  - 400000 は、メモリーコントローラレジスタ。

各 CPU/メモリーボードには、最大で4つの CPU を搭載できます (表 D-1 を参照)。

- エージェント ID 0 ~ 3 の CPU は、ボード名 SB0 に搭載されます。
- エージェント ID 8 ~ 11 の CPU は、ボード名 SB2 に搭載されます。以降も同様です。

CPU/メモリーボード名	各 CPU/メモリーボードのエージェント ID			
	CPU 0	CPU 1	CPU 2	CPU 3
SB0	0 (0)*	1 (1)	2 (2)	3 (3)
SB2	8 (8)	9 (9)	10 (a)	11 (b)
SB4	16 (10)	17 (11)	18 (12)	19 (13)

表 D-1 CPU およびメモリーのエージェント ID の割り当て

* エージェント ID の欄の最初の数字は 10 進数です。括弧内の数字または文字は 16 進数です。

## IB_SSC アセンブリのマッピング

表 D-2 に、I/O アセンブリのタイプおよび I/O アセンブリごとのスロット数を示します。

表 D-2 I/O アセンブリのタイプおよびスロット数

	I/O アセンブリごとのスロット数
PCI+	6

表 D-3 に、1 システムあたりの I/O アセンブリの数とその名前を示します。

表 D-3 1 システムあたりの I/O アセンブリ数および名前

I/O アセンブリ数	I/O アセンブリ名
1	IB6
I/O アセンブリは、次の2つのI/O コントローラを装備します。

- I/O コントローラ 0
- I/O コントローラ1

I/O デバイスツリーエントリをサーバーの物理的なコンポーネントにマッピングする 場合には、デバイスツリーに最大で次の5つのノードが存在することを考慮してくだ さい。

- ノード識別子 (ID)
- I/O コントローラのエージェント ID (AID)
- バスオフセット
- PCI+ スロット
- デバイスインスタンス

表 D-4 に、各 I/O アセンブリの 2 つの I/O コントローラの AID を示します。

表 D-4 I/O コントローラのエージェント ID の割り当て

スロット番号	I/O アセンブリ名	偶数の I/O コントローラ AID	奇数の I/O コントローラ AID
6	IB6	24 (18)*	25 (19)

* 欄内の最初の数字は10進数です。括弧内の数字(または数字と文字の組み合わせ)は16進数です。

I/O コントローラには、A 側と B 側の 2 つのバスがあります。

- 66 MHz のバス A は、オフセット 600000 によって参照されます。
- 33 MHz のバス B は、オフセット 700000 によって参照されます。

I/O アセンブリ内のボードスロットは、デバイス番号によって参照されます。

ここでは、PCI+ I/O アセンブリスロットの割り当てについて説明し、デバイスパスの例を示します。

次のコード例に、SCSI ディスクのデバイスツリーエントリの詳細情報を示します。

/ssm@0,0/pci@19,700000/pci@3/SUNW,isptwo@4/sd@5,0

注 - デバイスパスの中の数字は16進数です。

指定できる値は、次のとおりです。

- 19,700000の意味は、次のとおりです。
  - 19は、I/O コントローラのエージェント ID (AID)。
  - 700000は、バスオフセット。
- pci@3 の 3 は、デバイス番号。

- isptwo は、SCSI ホストアダプタ。
- sd@5,0の意味は、次のとおりです。
  - 5は、ドライブの SCSI ターゲット番号。
  - 0は、ターゲットドライブの論理ユニット番号 (LUN)。

ここでは、PCI+ I/O アセンブリスロットの割り当てについて説明し、デバイスパスの例を示します。

表 D-5 に、スロット番号、I/O アセンブリ名、各 I/O アセンブリのデバイスパス、 I/O コントローラ番号、およびバスを 16 進数で示します。

表 D-5 IB_SSC アセンブリ PCI+ デバイスのマッピング

I/O アセンブリ名	デバイスパス	物理スロット番号	I/O コントローラ番号	バス
IB6	/ssm@0,0/pci@18,700000/*@1	0	0	В
	/ssm@0,0/pci@18,700000/*@2	1	0	В
	/ssm@0,0/pci@18,700000/*@3	Х	0	В
	/ssm@0,0/pci@18,600000/*@1	5	0	А
	/ssm@0,0/pci@18,600000/*@2	W	0	А
	/ssm@0,0/pci@19,700000/*@1	2	1	В
	/ssm@0,0/pci@19,700000/*@2	3	1	В
	/ssm@0,0/pci@19,700000/*@3	4	1	В
	/ssm@0,0/pci@19,600000/*@1	Y	1	А
	/ssm@0,0/pci@19,600000/*@2	Z	1	А

ここでの意味は、次のとおりです。

- Wは、ボード上のLSI1010R SCSI コントローラ
- X は、ボード上の CMD646U2 EIDE コントローラ
- Yは、ボード上の Gigaswift Ethernet コントローラ 0
- Zは、ボード上の Gigaswift Ethernet コントローラ1
- *は、スロットに取り付けられている PCI カードのタイプに依存。

次のことに注意してください。

- 600000 はバスオフセットで、66 MHz で動作するバス A を示します。
- 700000 はバスオフセットで、33 MHz で動作するバス B を示します。
- *@3 は、デバイス番号です。この例で、@3 はバスの3番めのデバイスを意味します。



図 D-1 Netra 1290 サーバーの IB6 に対応する IB_SSC PCI+ 物理スロット番号

* は、スロットに取り付けられている PCI カードのタイプによって異なります。 たとえば、次のようにカードが取り付けられているとします。

- スロット4に、デュアル差動型 UltraSCSI カード (375-0006)
- スロット3に、FC-ALカード (375-3019)
- スロット2に、FC-ALカード (375-3019)

この場合、次のようなデバイスパス名が生成されます。

```
/ssm@0,0/pci@19,700000/scsi@3,1
/ssm@0,0/pci@19,700000/scsi@3,1 (scsi-2)
/ssm@0,0/pci@19,700000/scsi@3,1/disk (block)
/ssm@0,0/pci@19,700000/scsi@3,1/disk (block)
/ssm@0,0/pci@19,700000/scsi@3/tape (byte)
/ssm@0,0/pci@19,700000/scsi@3/disk (block)
/ssm@0,0/pci@19,700000/sUNW,qlc@2 (scsi-fcp)
/ssm@0,0/pci@19,700000/SUNW,qlc@2/fp@0,0 (fp)
/ssm@0,0/pci@19,700000/SUNW,qlc@2/fp@0,0/disk (block)
/ssm@0,0/pci@19,700000/SUNW,qlc@1 (scsi-fcp)
/ssm@0,0/pci@19,700000/SUNW,qlc@1 (scsi-fcp)
/ssm@0,0/pci@19,700000/SUNW,qlc@1/fp@0,0 (fp)
/ssm@0,0/pci@19,700000/SUNW,qlc@1/fp@0,0 (fp)
```

# 索引

### А

auto-boot? OpenBoot PROM 変数, 66

### В

bootmode コマンド, 64,69 break コマンド, 22

# С

cfgadm コマンド, 24,96 CPU/メモリー 障害追跡,58 構成,61 構成解除,58 ボード 交換,95 テスト,27 電源切断,28 分離,54 マッピング,123

### D

diag-level OpenBoot PROM 変数, 65 disable component コマンド, 53

### Е

enablecomponent コマンド, 53 error-level OpenBoot PROM 変数, 65 error-reset-recovery OpenBoot PROM 変数 , 66

F

flashupdate  $\exists \forall \lor \lor$ , 117

# I

I/O アセンブリのマッピング, 124 ポート, 9 init 0コマンド, 23 interleave-mode OpenBoot PROM 変数, 65 interleave-scope OpenBoot PROM 変数, 65 inventory コマンド, 85

# L

LED, 45 FRU, 44 機能, 47 システムインジケータボード, 11 状態, 50 背面パネル, 48

フロントパネル,46 logout コマンド, 23 LOM アラームの設定,41 イベントレポートの送信停止,42 イベントログの例,35 エスケープシーケンス、変更,41 オンラインマニュアル,33 切り離し,19 システムの監視,32~40 接続 遠隔, 18 シリアルポート,16 プロンプトの表示 OpenBoot プロンプトからの表示, 22 Solaris からの表示, 20 1om -A コマンド, 41 1om -Е コマンド, 42 1om -f コマンド, 35 1om -G コマンド, 120 1om -1 コマンド, 34 1om -t コマンド, 38 1om -v コマンド, 36 1om -X コマンド, 41

#### Ν

ntwdt ドライバ, 108

### 0

```
OpenBoot
PROM 変数, 64
auto-boot?, 66
diag-level, 65
error-level, 65
error-reset-recovery, 66
interleave-mode, 65
interleave-scope, 65
reboot-on-error, 65
use-nvramrc?, 66
verbosity-level, 65
プロンプトの表示
```

LOM からの表示, 22 Solaris からの表示, 23

#### Ρ

POST, 63 OpenBoot PROM 変数, 64 構成, 64 制御, 69 パラメータ, 65 printenv コマンド, 64 prtfru コマンド, 85

### R

RAS, 5 reboot-on-error OpenBoot PROM 変数, 65 restartssh コマンド, 92

### S

SC POST、制御, 69 setenv コマンド, 64 set1s  $\neg \neg \vee ee$ , 53 setupsc  $\exists \forall \mathcal{V}$ , 70 showcomponent  $\exists \forall \forall \mathcal{V}, 53, 83$ showenvironment  $\neg \neg \checkmark ec{}$ , 72 showlogs コマンド, 81 **SNMP**, 88 Solaris コンソール 接続 LOM プロンプトからの接続,21 SSH (Secure Shell) プロトコル SSHv2 サーバー, 89 ホスト鍵,91 ssh-keygen コマンド, 91 Sun の保守作業員の支援, 75 SunVTS 説明.72 マニュアル,72

syslog ファイル, 43

#### U

use-nvramrc? OpenBoot PROM 変数, 66

#### V

verbosity-level OpenBoot PROM 変数, 65

### あ

アラーム 状態の確認, 34 設定, 41

#### い

ー時停止に対して安全なデバイス,97 一時停止に対して危険なデバイス,97 イベントレポート,42

# う

ウォッチドッグタイマー API, 109 使用可能への切り替え, 110 状態の取得, 111 使用不可への切り替え, 110 制限事項, 107 タイムアウト時間の設定, 109 データ構造, 111 プログラム例, 112

### え

永続メモリー, 102遠隔 (ネットワーク) 接続 SSH, 89

#### か

概要,1 過熱状態,72 可用性,6 環境監視,11 監視 環境条件,11 ハングアップしたドメイン,78

### き

休止,96 強化 システム,87

### こ

構成解除操作、障害,58 コマンド bootmode, 64,69 break, 22 cfgadm, 24,96 disablecomponent, 53 enablecomponent, 53 flashupdate, 117 init 0,23 inventory, 85 logout, 23 lom -A, 41 lom -E, 42 lom -f, 35 lom -G, 120 lom -1, 34 lom -t, 38 lom -v, 36 lom -X, 41 printenv, 64 prtfru, 85 restartssh, 92 setenv, 64 setls, 53 setupsc, 70 showcomponent, 53,83 showenvironment, 72 showlogs, 81

ssh-keygen, 91 コンソール POST 出力, 10 コンポーネント 健全性状態 (CHS), 77 種類, 102 条件, 101 状態, 101 使用不可への切り替え, 52 占有装置の状態, 101 ソケットの状態, 101 ブラックリストへの登録, 52

#### さ

最小化、ドメイン,92

### L

システム インジケータボード,11 強化,87 コントローラ,8 POST、「SC POST」を参照 障害追跡, 45 メッセージロギング,12 識別情報の移動,56 障害,50 ハングアップからの回復,55,78 システム障害,50 自動診断 イベントメッセージ,81 エンジン,76 概要,76 自動復元,77 手動によるブラックリストへの登録,52 障害 原因の特定,75 障害 LED、遠隔からの状態の確認,34 隨害追跡 CPU/メモリー, 58 その他のコマンド,85

#### 電源装置,57

条件、コンポーネント,99 状態、コンポーネント,99 使用不可、コンポーネント,52 診断のイベント,79 信頼性,5

#### せ

```
セキュリティー
補足事項,92
ユーザーとパスワード,87
セッションの終了
シリアルポート,23
ネットワーク接続,23
```

#### τ

テスト,43
デバイス

一時停止に対して安全,97
一時停止に対して危険,97
名前のマッピング,123
物理システムデバイスへのパス名のマッピング,123

電圧センサー,36
電源投入時自己診断、「POST」を参照
電力

電源装置 LED,57
配電システム,44

### لح

動的再構成,95 コンポーネント 条件,101 状態,101 制限事項,103 接続点,97 物理,97 論理,98 タイムアウト,97 ボード 条件,100 状態,99 ホットプラグデバイス,99 メモリー 永続,102 非永続,102 利点,95 ドメイン 最小化,92 従来の定義,76

### な

内部 温度の確認,38 電圧センサー,36

#### の

ノードのマッピング,123

## は

パスワード ユーザーとセキュリティー,87 ハングアップ 回復,55,78 原因の特定,75

### ひ

非永続メモリー, 102 表示 イベントメッセージ, 81 エラー情報, 84 コンポーネントの状態, 82

### ふ

ファームウェア アップグレード,117 flashupdate コマンド,119 lom -Gコマンド,121 イメージの種類,120 ファン 状態の確認,35 トレーアセンブリの障害追跡,45 復元の制御,79 ブラックリストへの登録 コンポーネント,51,52 手動,52

#### ほ

ボード 条件,100 状態 基本的,25 詳細,26 占有装置の状態,100 ソケットの状態,99 テスト,27 保守,117 保守性,7 ホスト鍵、SSH,91

#### ま

マッピング, 123 CPU/メモリー, 123 I/Oアセンブリ, 124 ノード, 123

### め

メッセージ イベント,81 ロギング,12 メモリー インタリーブ,103 永続, 102 再構成, 103 非永続, 102