
901 San Antonio Road
Palo Alto, CA 94303-4900 USA
650 960-1300 Fax 650 969-9131

Netra™ ft 1800 CMS API

Developer’s Guide

Part No. 805-5870-10
February 1999, Revision A

Sun Microsystems, Inc.

Send comments about this document to: docfeedback@sun.com

Please
Recycle

Copyright 1999 Sun Microsystems, Inc., 901 San Antonio Road • Palo Alto, CA 94303 USA. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and

decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization

of Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in

the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, AnswerBook, Java, the Java Coffee Cup, and Solaris are trademarks, registered trademarks, or service

marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered

trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture

developed by Sun Microsystems, Inc. Registered Excellence (and Design) is a certification mark of Bellcore.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges

the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun

holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN

LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and

FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-

INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 1999 Sun Microsystems, Inc., 901 San Antonio Road • Palo Alto, CA 94303 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la

décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans

l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie

relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque

déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, AnswerBook, Java, le logo Jave Coffee Cup, et Solaris sont des marques de fabrique ou des marques

déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous

licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les

produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun

reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique

pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence

couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux

licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y

COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE

UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE

GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

iii

Contents

1. The CMS Application Programming Interface 1

The Purpose of the CMS API 1

What the CMS API Provides 2

Use of the CMS API within Network Management Environments 3

Use of CMS API within the TMN Environment 3

2. The CMS API Architecture 5

The CMS Components 5

Object Types 5

Functionality 6

How the CMS Models the Platform 6

Object Definition Files 6

How the CMS API Communicates with the CMS 7

3. The CMS Server Object Model 11

Definition of a Managed Object 11

Attributes 11

Driver States 12

Behavior 15

iv Netra ft 1800 CMS API Developer’s Guide • February 1999

Relationships 15

Constraints 16

4. The CMS API Object Model 17

CMS API Object Classes 20

Object 20

session Object 21

managed Object 21

system Object 21

module Object 22

attribute Object 22

scope and filter Object 23

notification Object 23

event forwarding discriminator 23

exception forwarding discriminator 23

event Object 24

exception Object 24

notification record Object 24

event record Object 25

exception record Object 25

error Object 26

CMS API Commands 26

cms_open 26

cms_close 26

cms_request_notifications 27

cms_cancel_notifications 27

cms_get 27

cms_set 28

Contents v

5. Introduction to CMS API Functionality 29

Opening a CMS API Session 29

Registering Event and Exception Handlers 29

Obtaining the Class Names 30

Obtaining the Instance Identifiers of Modules of Interest 30

Obtaining the Attributes of a Module 31

Obtaining Attribute Values 31

Accessing the Definition of a Module 32

Setting the Value of an Attribute 32

Closing the Session 33

6. Connecting to and Disconnecting from the CMS 35

Connecting to the CMS 35

session Object 36

Disconnecting from the CMS 37

session Object 37

7. Creating a Model of the CMS Module Classes 39

Obtaining a List of the Platform Model Object Classes 39

session Object 39

system Object 39

scope and filter Object 40

Obtaining a List of Platform Model Object Classes with a Common Attribute 41

scope and filter Object 42

Obtaining a List of the Platform Model Object Instances 44

session Object 44

system Object 44

scope and filter Object 44

vi Netra ft 1800 CMS API Developer’s Guide • February 1999

Obtaining a List of Platform Model Object Instances with a Common Attribute
Value 47

attribute Object 47

scope and filter Object 47

Obtaining a List of Platform Model Object Instances that are Faulty 49

scope and filter Object 50

Obtaining Class Information About a Platform Object 51

session Object 51

module Object 52

scope and filter Object 52

attribute Object 52

Obtaining Instance Information About a Platform Object 55

session Object 55

module Object 55

scope and filter Object 56

attribute Object 56

Setting Attribute Values of a Platform Object Instance 57

session Object 57

module Object 57

attribute Object 57

scope and filter Object 58

Glossary 61

vii

Figures

FIGURE 1-1 The TMN Layered Model 3

FIGURE 2-1 CMS Architecture 9

FIGURE 3-1 A State Diagram for an Abstract Device Object. 13

FIGURE 3-2 Event Trace for an Abstract Device Object. 14

FIGURE 4-1 The CMS API Object Model 19

viii Netra ft 1800 CMS API Developer’s Guide • February 1999

ix

Code Examples

CODE EXAMPLE 6-1 Opening a CMS API Session 36

CODE EXAMPLE 6-2 Closing a CMS API Session 37

CODE EXAMPLE 7-1 Returning the CMS Object Classes 40

CODE EXAMPLE 7-2 Returning the CMS Object Classes with a Common Attribute 42

CODE EXAMPLE 7-3 Returning a List of Object Instances of the Platform Model 45

CODE EXAMPLE 7-4 Returning the Instance Names with a Common Attribute 47

CODE EXAMPLE 7-5 Obtaining the Faulty Object Instances 50

CODE EXAMPLE 7-6 Obtaining Class Information 52

CODE EXAMPLE 7-7 Obtaining Instance Information 56

CODE EXAMPLE 7-8 Setting Attribute Values 58

x Netra ft 1800 CMS API Developer’s Guide • February 1999

xi

Preface

This guide is intended for software engineers to enable them to develop a

programming interface for applications that are required to interface to the

configuration and fault tolerant services of the Netra ft platform.

How This Book Is Organized

The guide contains the following chapters:

Chapter 1 provides an overview of the features and purpose of the CMS API.

Chapter 2 describes the CMS API architecture.

Chapter 3 describes the CMS server object model.

Chapter 4 describes the CMS API object model.

Chapter 5 provides an introduction to how the CMS API functions.

Chapter 6 illustrates how to connect and disconnect from the CMS.

Chapter 7 describes how to model the CMS server platform.

Glossary contains a list of words and phrases used in the guide, and their definition.

xii Netra ft 1800 CMS API Developer’s Guide • February 1999

Typographic Conventions

Shell Prompts

TABLE P-1 Typographic Conventions

Typeface Meaning Examples

AaBbCc123 The names of commands, files,

and directories; on-screen

computer output

Edit your .login file.

Use ls -a to list all files.

% You have mail .

AaBbCc123 What you type, when

contrasted with on-screen

computer output

% su
Password:

AaBbCc123 Book titles, new words or terms,

words to be emphasized

Command-line variable; replace

with a real name or value

Read Chapter 6 in the User’s Guide.

These are called class options.

You must be superuser to do this.

To delete a file, type rm filename.

TABLE P-2 Shell Prompts

Shell Prompt

C shell machine_name%

C shell superuser machine_name#

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #

Preface xiii

Related Documentation

Sun Documentation on the Web
The docs.sun.com sm web site enables you to access Sun technical documentation

on the Web. You can browse the docs.sun.com archive or search for a specific book

title or subject at:

http://docs.sun.com

Sun Welcomes Your Comments

We are interested in improving our documentation and welcome your comments

and suggestions. You can email your comments to us at:

docfeedback@sun.com

Please include the part number of your document in the subject line of your email.

TABLE P-3 Related Documentation

Application Title Part Number

Software Reference Netra ft 1800 Reference Manual 805-4532-10

Driver Development Netra ft 1800 Developer’s Guide 805-4530-10

CMS Development Netra ft 1800 CMS Developer’s Guide 805-7899-10

xiv Netra ft 1800 CMS API Developer’s Guide • February 1999

1

CHAPTER

Bet
a

1

The CMS Application
Programming Interface

The Configuration Management System (CMS) is an essential component of the

Netra™ ft 1800 fault tolerant platform. It provides configuration management for a

telecommunications environment, addressing the needs for remote management and

alarms.

The Application Programming Interface (API) to the Netra ft CMS enables the

software developer to implement applications that interface to the configuration and

fault management services of the fault tolerant platform.

The Purpose of the CMS API

The CMS API enables vendors to provide additional system management policies

beyond those provided by the CMS. These policies can require the generation of

statistical information on the health of the platform, or the generation of external

event or alarm notifications based on certain CMS events. The CMS API also enables

vendors to provide their own user interface for the system management of the

platform.

The CMS API provides the software developer with the services required to

integrate the Netra ft into network management systems using Telecommunication

Managed Networks (TMN) or communications protocols. The software developer

can also implement additional applications for local control of the configuration and

fault management services of the Netra ft.

Currently, most computer systems used within telecommunications are replicated to

provide redundancy, and the fault tolerance is managed by the software. The Netra

ft 1800 manages its own fault tolerance using the CMS. To external management

2 Netra ft 1800 CMS API Developer’s Guide • February 1999

Bet
a

entities, it appears as a virtual, highly-reliable machine. The CMS API enables

management entities to manage the internal fault tolerance of the CMS in the same

way as they can manage redundant systems.

The CMS API can be used directly to connect to network managers or agents written

to provide CMIP, SNMP or other protocols.

What the CMS API Provides

The CMS API provides a basic set of library routines for:

■ monitoring all or specific aspects of the platform’s physical configuration and

fault tolerance

■ managing the platform’s physical configuration and fault tolerance

The CMS API provides an event notification mechanism, which enables the

developer to write applications that can gather statistics on the health of a platform.

The CMS API also enables the developer to manipulate the model of the platform,

which influences the behavior of the machine and enables vendor-specific policies to

be implemented on top of the platform’s generic behavior. The CMS API exports its

model of the platform using generic constructs, enabling external utilities to create

their own model of the machine.

The CMS API provides author access to configuration and fault management of the

Netra ft system. The CMS API has been used in conjunction with the user

commands cmsfix (1M), xcmsfix (1M), cmsconfig (1M) and cmsfruinfo (1M) to

provide the local interfaces to the CMS. The developer can add to the base

functionality of the Netra ft system by providing services to manage the system

remotely.

The CMS API enables the application developer to:

■ Traverse the module hierarchy of the Netra ft system

■ Obtain the attribute definitions of Netra ft modules

■ Interrogate the value of Netra ft module attributes

■ Change the value of Netra ft module attributes

■ Optimize the CMS API according to the application needs

■ Register event and exception handlers

Chapter 1 The CMS Application Programming Interface 3

Bet
a

Use of the CMS API within
Network Management Environments

The CMS API can be used to connect to network managers, or agents written to

provide CMIP, SNMP or other protocols. It is not essential to export the complete

CMS model of a platform to the network manger. It is important to define the level

of management or monitoring required, and the capabilities of the standard used.

From this, it is possible to define a simplified CMS model of the platform that can be

mapped by the CMS API, application or agent to the particular management object

model defined by the required standard.

Use of CMS API within the
TMN Environment

As telecommunications companies look to network management systems to hide

from the operator the complexity and inconsistency of the different management

domains, they need to be able to move from today’s vendor-proprietary world to a

standard ISO/ITU-T environment. TMN is an ITUI-T standard that specifies world-

wide management of telecommunications networks. It defines the functional areas of

management as well as the interfaces between different parts of the network.

FIGURE 1-1 The TMN Layered Model

Network Element

Network Element Management

Network Management

Services

Business
Management

Management

Responsible for the total enterprise.

Responsible for the services provided to
the customers or to other service providers.

Responsible for the management of
network elements.

Collects information from individual
network management elements.

OSI agent system, directly connected
to the managed resource.

4 Netra ft 1800 CMS API Developer’s Guide • February 1999

Bet
a

The network element layer consists of agents that communicate between the TMN

management layers and the individual non-TMN network elements. The agent

performs management operations on, and forwards notifications from, the managed

objects that represent the physical network elements.

With an appropriate agent, the Netra ft system can be managed as a network agent

in addition to providing its own internal configuration and fault management.

5

CHAPTER

Bet
a

2

The CMS API Architecture

The CMS Components

The CMS has the following components:

CMS server. The CMS server is responsible for modeling and interacting with the

platform.

CMS API server. The CMS API server manages the per-client instances of the CMS

API. It manages the client access to and control of information relating to the CMS

platform model. Client notifications are managed by the CMS API server.

CMS API instance for each client. The CMS API provides a per-client instance for

connection with the CMS.

Object Types

The CMS API defines the following object types as tools:

■ Session
■ System
■ Module
■ Attribute
■ Scope and filter
■ Event and exception
■ Event record and exception record
■ Error

6 Netra ft 1800 CMS API Developer’s Guide • February 1999

Bet
a

Functionality

The CMS API functionality is provided through the methods performed by the

objects listed above and through the following commands:

■ cms_open
■ cms_close
■ cms_get
■ cms_set
■ cms_request_notifications
■ cms_cancel_notifications
■ cms_has_event_occurred

How the CMS Models the Platform

The CMS manages a platform by creating a model of it in terms of objects. The

objects serve a dual purpose:

■ To describe the platform to a user

■ To provide a mechanism by which the CMS can manipulate the platform it is

managing

An object is an abstraction of a physical component of the platform, or an abstraction

of a component of functionality provided by the platform.

Object Definition Files

The CMS creates the model of the platform by using a blueprint object model which

is prescribed by the CMS object definition files. These files define the structure of the

objects on the platform – their identity, their relationship to other objects, their

attributes and their behavior.

The CMS object definition files define:

■ Object class.

The Object class is a group of objects with similar properties (attributes),

common behavior and common relationships to other objects.

The CMS objects in the model created from the CMS object definition files are

called object instances. An object instance is an actual realization of an object

class.

Chapter 2 The CMS API Architecture 7

Bet
a

■ Attributes of the Object class.

An attribute is a data value held by the objects in a class. An attribute is a pure

data value, not an object. Each attribute name is unique within a class and all

instances of objects of that class have an attribute of that name. The range of

attribute values for instances in that class is defined by the class. However, each

instance within that class can have a different value for that attribute.

■ Relationships or constituents of the Object class.

A relationship is a physical or conceptual connection between object instances.

Relationships can only be one-to-one and can only be defined in one direction.

The relationship is described by an attribute. An object class can specify the name

of the relationship and the object instances that can be linked by that relationship.

The CMS object definition files also define the conditions that determine the state of

an object of that class.

■ A condition is a Boolean function of object values.

■ A state is an abstraction of the attribute values and links of an object.

The state is defined only in terms of those attributes that affect the behavior of the

object. The state specifies the response of the object to input events. A change of state

caused by an event is called a state transition. The CMS object definition files define

the object behavior in response to events that cause state transitions. The response of

the object is likely to cause the CMS to interact with the entity it is modeling.

How the CMS API Communicates with the CMS

The CMS API is designed to be independent of the CMS platform model. To achieve

this, the CMS API provides an interface that enables the platform meta-model to be

read; that is:

■ The object classes to be identified and their attribute and relationship definitions

to be retrieved

■ Object instances to be identified and their attribute values and relationships to be

retrieved or set

Object class and object instance attributes and relationships are retrieved by passing

a CMS API object, representing the chosen platform object target, into the cms_get
function. After execution of the function, the CMS API object contains the requested

information relating to the chosen target.

Alternatively, object instance attribute values are set by passing a CMS API object

representing the chosen platform object target, and containing the attribute or

relationship to be changed, into the cms_set function. After execution of the

function, the CMS target takes on the attribute value of the CMS API object.

8 Netra ft 1800 CMS API Developer’s Guide • February 1999

Bet
a

The CMS server contains representations of the physical components, such as

devices or FRUs, within the machine and the higher-level objects which represent

components of physical devices. These representations are known as managed objects.

The CMS server creates the managed objects from system definition files. The CMS

server interfaces to the system software that controls and monitors the physical

components.

The CMS Server uses a state transition model paradigm. The managed objects are

used to issue simple commands to the system software of their corresponding

physical component, and responses and events from the system software are fed

back to the managed object. The managed object will then change its state to

represent the event. Other managed objects can have states which are dependent on

the changed managed object; their states will also change.

The CMS API server manages the per-client instances of the CMS API. It manages

the client access to the managed objects and the control of information relating to

them. Client event and exception notifications are managed by the CMS API server.

The CMS API provides a per-client instance for management of the CMS. The CMS

API provides tools for the client to access the managed objects, set event or

exception forwarding discriminators and access information in an event or exception

notification.

FIGURE 2-1 on page 9 provides an overview of the CMS architecture.

Chapter 2 The CMS API Architecture 9

Bet
a

FIGURE 2-1 CMS Architecture

NOTIFICATION

PROPRIETARY N/W MANAGER

INTERFACE TO CLIENTS

TMN N/W MANAGERS ENTERPRISE MANAGER

cmsfix cmsconfig
OTHER
AGENT

CMIP
AGENT

SNMP
AGENT

CMS API CMS API CMS API CMS API CMS API

CMS API SERVER

MANAGED
OBJECT

EFDs

OBJECT
DEFINITIONS

PHYSICAL PHYSICAL LOG
DEVICE

MANAGED
OBJECTS

MANAGED
OBJECTS

INTERFACE TO CLIENTS

INTERFACE TO DRIVERS

CMS

CMS SERVER

COMPONENT COMPONENT

10 Netra ft 1800 CMS API Developer’s Guide • February 1999

Bet
a

11

CHAPTER

Bet
a

3 .

The CMS Server Object Model

The object model describes the managed object classes known to the CMS server

and their relationship to each another. There is no concept of a class hierarchy within

the CMS. All module instance identifiers are unique and modules are not referenced

by their containment relationships.

Definition of a Managed Object

Attributes

A managed object has attributes. The attributes can be:

■ System attributes whose value can be set by a system object (for example, a

device driver or a system daemon).

System attributes include:

■ _driver_state
The _driver_state is a property which is set by the driver of the managed

object. The attribute is a driver state as described in “Driver States” on page 12.

■ state
The attribute values and links held by the managed object are called its state.

The state is derived from the condition attribute and other system and user

attributes such as _action .

12 Netra ft 1800 CMS API Developer’s Guide • February 1999

Bet
a

■ User attributes whose value can be set by a non-system object (for example, an

application such as cmsfix (1M) or cmsconfig (1M)).

User attributes include:

■ _action
The _action attribute indicates to the CMS the condition that the user

requires the managed object to have.

■ location
The location attribute specifies the physical location in which the managed

object resides. The attribute is relevant to physical objects only.

■ fault_acknowledged
The fault_acknowledged attribute signifies that the user has acknowledged

a fault condition associated with the managed object. The local utilities

cmsfix (1M) and cmsconfig (1M) provide mechanisms by which the user can

acknowledge faults.

■ description
The description attribute provides a pre-defined text description of the

managed object class.

■ user_label
The user_label attribute is used by the system administrator to specify a

meaningful name, using free text, for a managed object instance. For example,

this attribute can be used to relate a volume to a disk.

Driver States

The _driver_state attribute of the device object represents the state in which the

device drivers believe their devices to be. The states are reported through the CMS

device drivers interface and the device object’s condition attribute is changed

accordingly. The driver states of an abstract device object are shown below.

Chapter 3 The CMS Server Object Model 13

Bet
aFIGURE 3-1 A State Diagram for an Abstract Device Object.

An abstract CMS device object has five core states:

■ offline
The device object is not usable to the system.

■ initialising
The device object is attempting to come online (it is not usable to the system).

■ online
The device object is usable to the system.

■ degraded
The device object has a fault but is still usable to the system, possibly in a degraded

mode of operation.

■ failed
The device object has a fault and is not usable to the system.

An event trace for typical scenarios for the state changes of an abstract device object

are given in FIGURE 3-2 on page 14.

DEGRADED

ONLINE

INITIALISING

OFFLINE

FAILED

14 Netra ft 1800 CMS API Developer’s Guide • February 1999

Bet
a

FIGURE 3-2 Event Trace for an Abstract Device Object.

ONLINEINITIALISINGOFFLINE

DEGRADED ONLINE

OFFLINEONLINE

DEGRADED OFFLINE

Scenario for typical user-controlled driver state changes

Scenario for turning off a device object

FAILED OFFLINE

Scenario for typical device driver-controlled driver state changes

ONLINE DEGRADED

ONLINE FAILED

DEGRADED FAILED

Chapter 3 The CMS Server Object Model 15

Bet
a

Behavior

The behavior of a managed object is defined as a set of responses in the event of a

derived state change or a specific attribute change. The responses are generated

using a rule-based decision system within the CMS server. The responses are

commands which are executable by a shell.

Responses are used to:

■ Power on a module

■ Enable access to a module

■ Record the power on event in a module’s EEPROM

■ Power down a module

■ Record information about module failures

Relationships

Relationships exist between managed objects, the nature of which depend on the

objects being modeled. The types of relationship that can exist within the CMS

include:

■ Physical containment
■ Logical containment
■ Controlled by

Physical Containment

The physical containment relationship defines the physical modules that are

contained within a chassis or container.

Logical Containment

The logical containment relationship defines the logical modules that are

components of a fault tolerant container logical module.

Often, a logical module and a physical module are represented within the CMS by

the managed object.

Occasionally, logical modules can share the same physical location.

16 Netra ft 1800 CMS API Developer’s Guide • February 1999

Bet
a

Controlled By

The controlled by relationship defines when one module is controlled by

another.

Constraints

Each managed object has a set of constraints on its behavior. These constraints are

defined by rules that fall into three categories:

■ Generic rules that apply to all object classes

■ Rules that apply to a particular group of object classes

■ Rules that apply to individual objects

The constraints are used to maintain the system’s availability and protect it against

user error.

17

CHAPTER

Bet
a

4

The CMS API Object Model

In order for the CMS API to be generic across platforms, the specific object model of

a platform is not visible through the CMS API. Instead, the CMS API uses objects to

represent objects in the platform. These objects can be used to:

■ Get attribute and relationship definitions and values from the platform objects

■ Set the values of attributes of platform objects

■ Register for event or exception notifications

■ Get attribute information returned on an event or exception notification

The CMS API objects are owned by the user. The user is responsible for their

creation and deletion.

The CMS API defines the following object types:

■ Attribute
■ Error
■ Event
■ Event record
■ Exception
■ Exception record
■ Module
■ Scope and filter
■ Session
■ System

FIGURE 4-1 on page 19 shows the associations between the CMS API objects and the

CMS server platform objects, event and exception forwarding discriminators, and

event and exception notification objects. It also shows the relationships between

the CMS API objects. FIGURE 4-1 uses Object Modeling Technique (OMT) notation.

The links indicate generalization (inheritance), aggregation (or containment) and

associations between the managed objects. For example, the notification object is

a generalization of an event and exception object. The event and exception
objects inherit features from the notification object.

18 Netra ft 1800 CMS API Developer’s Guide • February 1999

Bet
a

A module is an aggregation of attributes of one or more attribute objects. The

contained attribute object can hold the attribute definition or the attribute value,

and hence the module object’s derived definition or value can be obtained.

ASSEMBLY

PART-1-CLASS PART-2-CLASS

CLASS

CLASS-1 CLASS-2

 Link Attribute

CLASS

CLASS

Exactly one

Many (zero or more)

SUPERCLASS

SUBCLASS-1 SUBCLASS-2

CLASS One or more1+

Multiplicity of Associations:

Link Attribute:

Association Name

Generalization (inheritance);

Aggregation:

Class:

CLASS NAME

KEY

CLASS NAME

Concrete Class

Abstract Class

Chapter 4 The CMS API Object Model 19

Bet
a

FIGURE 4-1 The CMS API Object Model

CMS Server

Instance Id.
Class Name

Contains

Name
Type

Access
Possible Values
Default Values

Represents

Generates

WATCHED ATTRIBUTE

1+

definition

CHANGED ATTRIBUTE

additional information

SCOPE &

FILTER

NOTIFICATION

NOTIFICATION

Instance Id.

EVENTMODULESYSTEM EXCEPTION
EXCEPTION

RECORD

1+

Generates

Relating to

Happened in

Instance Id.

1+

value

filters

CMS API

Creates Creates

Name
Filter

Value (Opt)

Name
Filter

Value (Opt)

Name
Filter

Past Value

Name
Value

NOTIFICATION
RECORD

MANAGED
OBJECT

EVENT

RECORD

EFD
MANAGED
OBJECT

ATTRIBUTE

SESSION

OBJECT ERROR

20 Netra ft 1800 CMS API Developer’s Guide • February 1999

Bet
a

When one object references another, it is represented as an association. For example,

the system object can contain the instance identifier or class name of modules, but

not the actual modules themselves. The CMS API module objects represent the CMS

server objects, but they are not the same entity. The module objects are used to take

static snapshots of the managed objects they represent and are not dynamically

updated when the state of a managed object changes. When the state of a managed

object changes, the module object must be used to provide another static snapshot.

The CMS API objects are defined in the following sections.

Note – The total number of instances of CMS API object class is defined by

CMS_maximum_number_instances . The total number of attributes that a scope

and filter or a module object can have is defined by

CMS_maximum_number_attributes , and the length of any attribute type

character string is defined by CMS_maximum_value_length .

CMS API Object Classes

All CMS API objects are pointers to struct s. Therefore, access to all methods

within a CMS API object is made by means of pointers to functions of the form

Object

This abstract object is a generalization of all objects within the CMS API, with the

exception of the error object which is used to access error information from a

subclass object.

The CMS API objects form the following hierarchy:

■ Object
■ Session
■ Managed

■ System
■ Module

■ Attribute
■ Scope and filter

XXX_object->method()

Chapter 4 The CMS API Object Model 21

Bet
a

■ Notification
■ Event
■ Exception

■ Notification record
■ Event record
■ Exception record

session Object

A subclass of the Object object.

The session object represents the client session with the CMS. It is used to:

■ Open and close a client session with the CMS

■ Read and interpret error codes returned from the CMS commands

■ Optimize the performance of the CMS API depending on the needs of the

application

■ Specify the extent of rule checking when an application sets attribute values

Note – One session object should be used for each client connection to the CMS

API.

managed Object

A subclass of the Object object.

The managed object is an abstract object which is generalization of the system and

the module objects. A managed object provides access to information about the

platform object module.

system Object

A subclass of the managed object.

The system object represents the object model of the platform. It is used to:

■ Request the class names of CMS server objects in the platform model

■ Request the instance names of CMS server objects in the platform model

conforming to a specified scope or filter criterion

The system object can contain platform object class names or references (instance

identifiers) to the platform object instances.

22 Netra ft 1800 CMS API Developer’s Guide • February 1999

Bet
a

module Object

A subclass of the managed object.

The module object represents a CMS server platform object. It can be used to:

■ Identify the physical platform object class or instance in which the client is

interested

■ Return attribute objects representing the attribute values of the CMS server

platform object instances

■ Return attribute objects representing the attribute definition of the platform object

instance

The module object can contain one or more attribute objects representing attribute

values of CMS server managed objects. It is referenced by the system object and

event record object.

attribute Object

A subclass of the Object object.

The attribute object can be used:

■ To represent an attribute of a CMS server platform object

■ As a filter in a scope and filter object

■ As the watched attribute in an event object

■ As the changed attribute in an event record object

Using the attribute object, the client can

■ Read the type, access permissions and value of an attribute

■ Read the possible values and default value of an attribute

■ Set an attribute to a new value

■ Set a command filter

■ Read the last value of a changed attribute

■ Read the reason for a change

The attribute object forms part of a scope and filter object, an event object

and an event record object.

eu

Chapter 4 The CMS API Object Model 23

Bet
a

scope and filter Object

A subclass of the Object object.

The scope and filter object defines the scope of the CMS API command. It is

used in conjunction with the CMS server platform model’s relationships to:

■ Set the scope of a command to a platform object’s dependents

■ Set the scope of a command to a platform object’s definitions

■ Set the scope of a command to the platform model’s definition

■ Set the scope of a command to only platform object instances that are considered

to be present, or those that are considered to be absent

■ Set filters that apply to all attributes within the chosen platform object instances

having a specified value or name, to select the returned set of objects or attributes

The definition of the presence of a platform object is specific to the platform.

Note – The filters used in the scope and filter object are attribute objects.

notification Object

A subclass of the Object object.

This abstract object is a generalization of event and exception objects.

The notification object is used for establishing and canceling event notifications

relating to changes in the platform model, and exception notifications relating to

events in the client’s session.

event forwarding discriminator

The event forwarding discriminator (EFD) is an object that defines the

criteria for determining the event notifications that are sent to the client.

exception forwarding discriminator

The exception forwarding discriminator (XFD) is an object that defines the

criteria for determining the exception notifications that are sent to the client.

24 Netra ft 1800 CMS API Developer’s Guide • February 1999

Bet
a

event Object

A subclass of the notification object.

The event object is used to create an EFD within the CMS server. An EFD defines

the types of event of which the client wishes to be notified, and the type of

information it wishes to receive in the event record. An event, in this context, is an

attribute or relationship change within the CMS platform model.

Only one EFD can be used in a session. The client is notified of all events and

receives the default set of information in the event record object.

Use the event object to:

■ Set a client event handler

■ Set a client-specific argument to be returned with the event record object

exception Object

A subclass of the notification object.

The exception object is used to create an XFD. An XFD defines the types of

exception of which the client wishes to be notified. Only one XFD can be used in a

session. The client is notified of all exceptions and receives the information in the

exception record object.

Use the exception object to:

■ Set a client exception handler

■ Set a client-specific argument to be returned with the exception record object

notification record Object

A subclass of the Object object.

This abstract object is a generalization of an event record object and an

exception record object.

When an event occurs, an event record object is passed to the client notification

handler previously registered by the application.

When an exception occurs, an exception record object is passed to the exception

notification handler previously registered by the application.

Chapter 4 The CMS API Object Model 25

Bet
a

event record Object

A subclass of the notification record object.

The event record object returns information to the client by means of the event

handler function relating to the event that has occurred. This record is generated by

the EFD set up by an event object.

The record contains:

■ A unique identifier for the EFD which generated this object

■ The argument specified by the client when the event handler was registered

■ the instance identifier of the CMS server platform object in which the event

occurred

■ An attribute object containing information relating to the platform object

attribute that changed:

■ Name

■ Type

■ Value

■ Last value of the changed attribute

■ Reason for the event change (if available)

The event record object uses an attribute object to return information about

the changed attribute.

exception record Object

A subclass of the notification record object.

The exception record object returns information to the client by means of the

exception handler function relating to the exception that has occurred.

The record contains:

■ A unique identifier for the EFD that generated this exception notification

■ The argument specified by the client when the exception handler was registered

■ A description of the type of exception that has occurred

26 Netra ft 1800 CMS API Developer’s Guide • February 1999

Bet
a

error Object

The error object returns information to the client about failures that have occurred

whilst using the CMS API. Each CMS object contains an error object.

■ If an error occurs during an object method call, the object will have information

relating to the failure in its error object.

■ If a failure occurs during a call to a CMS API command, the session object’s error

object will contain information relating to the failure.

The error object contains:

■ The class of error

■ The error code

■ A list of error or warning messages returned from cmsconfig.rule
■ A text version of the error

■ A more detailed text version of the error for developers

CMS API Commands

cms_open

The cms_open command opens a session with the CMS API Server. The command

is used in conjunction with a session object, which specifies the CMS API session

characteristics.

cms_close

The cms_close command closes the session with the CMS API Server. The

command is used in conjunction with the session object opened with cms_open .

The session is closed:

■ On completion of the client’s interaction

■ When an unrecoverable error occurs

■ When an abdication occurs

Chapter 4 The CMS API Object Model 27

Bet
a

cms_request_notifications

The cms_request_notifications command registers event and exception

notifications.

The command is used in conjunction with:

■ An event object to register a client event handler and set up an EFD

■ An exception object to register a client exception handler and set up an XFD

cms_cancel_notifications

The cms_cancel_notifications command is used to deregister event and

exception notifications by deleting the EFD or XFD responsible for the notification

generation.

The command is used in conjunction with:

■ The event object that was used to create the EFD

■ The exception object that was used to create the XFD

cms_get

The cms_get command is used to retrieve a description of the CMS server platform

object model.

Use the command in conjunction with the system object to retrieve a list of platform

object class names or a list of platform object instance names. A scope and
filter object is used to specify the client’s choice of class names or instance names.

It is also used to specify scoping or filtering search criteria used to generate the list.

Use the command in conjunction with a module object to retrieve one or more

attribute definitions or actual attribute values of the associated platform object. The

client’s choice of attribute definitions or values is specified using a scope and
filter object. It is also used to specify the filtering search criteria required to

generate the list of attribute objects returned.

28 Netra ft 1800 CMS API Developer’s Guide • February 1999

Bet
a

cms_set

The cms_set command is used to modify an attribute of a CMS server platform

object instance.

Use the command in conjunction with a module object to set one attribute value of

the associated platform object. A scope and filter object is used to specify

which attribute should be modified.

29

CHAPTER

Bet
a

5

Introduction to CMS API
Functionality

Opening a CMS API Session

A CMS API session is opened with the cms_open command, using a system object

to specify session characteristics.

See Chapter 6, "Connecting to and Disconnecting from the CMS" for further

information on opening a CMS API session.

Registering Event and
Exception Handlers

An application can register event and exception handlers which are invoked

asynchronously when event and exception conditions occur.

The application uses cms_request_notifications in conjunction with an event
object to register an event handler. It can then obtain information relating to the

cause of the event by means of the event notification record passed to it.

The application uses cms_request_notifications in conjunction with an

exception object to register an exception handler. It can then obtain information

relating to the cause of the exception by means of the exception notification record

passed to it.

30 Netra ft 1800 CMS API Developer’s Guide • February 1999

Bet
a

An application can cancel the event and exception handlers with the

cms_cancel_notifications command.

Obtaining the Class Names

The cms_get command is employed to obtain the class names defined in the

system. When used in this context, the cms_get command uses a system object and

a scope and filter object. The scope and filter object is used to specify the

class names of the system.

On return from the cms_get command, the system object contains all the class

names defined in the system. The system object provides methods by which the

applications can access these class names.

Obtaining the Instance Identifiers
of Modules of Interest

The cms_get command is employed to obtain the instance identifiers of the

modules of interest. When used in this context, the cms_get command makes use of

a system object and a scope and filter object.

The scope and filter object is used to specify the modules whose instance

identifiers are required.

The scope specifies the depth of information returned from the object hierarchy. For

example, the application can select all modules that relate to a particular module.

The filter specifies criteria by which to restrict the modules selected by the scope.

The filters are based on the names and values of module attributes. Complex filter

criteria can be created. For example, the application can obtain the instance

identifiers of all modules that are faulty, or all modules whose location attribute is

set to a particular value.

On return from the cms_get command, the system object contains the instance

identifiers of the modules specified by the scope and filter object. The system

object provides methods by which the application can access these instance

identifiers. The module instance identifiers are then available to the application to

obtain attributes of the module.

Chapter 5 Introduction to CMS API Functionality 31

Bet
a

If the application already knows the instance identifiers of a particular module, it

does not have to use the cms_get command, but can obtain the attributes of the

module by specifying the known instance identifier.

Obtaining the Attributes of a Module

The application employs the cms_get command to obtain the attributes of a

module. When used in this context, the cms_get command uses a module object

and a scope and filter object.

The module object is used to specify the instance identifier of the module whose

attributes are required.

If the instance identifier of the module is to be determined at run time according to

scope and filter criteria, the cms_get command is used in conjunction with the

system object and a scope and filter object to obtain the instance identifiers of

the modules matching the scope and filter criteria. System object methods must then

be used to iterate through the module instance identifiers thus obtained, as

described above.

If the instance identifier of the module is already known (that is, it has been

explicitly specified), it can be used directly with the module object employing a

module object method. The scope and filter object can be used to define which

attributes are returned and is specified in terms of attribute objects.

On return from the cms_get command, the module object contains the attribute

objects specified by the scope and filter object.

Obtaining Attribute Values

The application employs the cms_get command to obtain the attributes of a

module, as described in the section “Obtaining the Attributes of a Module” on

page 31. On return, the module object contains attribute objects.

The application uses module object methods to access a specific attribute object.

If the attribute name is known (that is, it has been specified explicitly) the object can

be directly accessed using a module object method.

32 Netra ft 1800 CMS API Developer’s Guide • February 1999

Bet
a

If the attribute name is not known, or it is necessary to access all attributes of the

module, another module object method can be used to iterate through all the

attribute objects contained in the module object. Attribute object methods can

then be used to obtain the attribute value.

“Obtaining Instance Information About a Platform Object” on page 55 describes how

to access a module's attributes in greater detail.

Accessing the Definition of a Module

The application employs the cms_get command to obtain the definition of a

module. A module is defined by a set of attribute definitions. When used in this

context, the cms_get command uses a module object and a scope and filter
object.

The module object is used to specify the instance identifier of the module whose

definition is required. The scope and filter object can be used to specify which

attribute definitions are returned.

On return, the module object contains attribute objects. The application uses

module object methods to access a specific attribute or iterate through all the

attribute objects returned. Attribute object methods can be used to access the

attribute definitions. The attribute definition includes the permitted possible values

of an attribute. Attribute object methods are provided to enable the application to

iterate through all the possible values.

Chapter 7, "Creating a Model of the CMS Module Classes" describes how to access

the values and definition of an attribute in greater detail.

Setting the Value of an Attribute

The application employs the cms_set command to set the value of an attribute.

When used in this context, the cms_set command uses a module object and a

scope and filter object. The module object is used to specify the instance

identifier of the module whose attribute value is required. The scope and filter
object is used to specify the attribute to be set and its new value. The session object

is used to specify the extent of the cmsconfig.rule checking.

Chapter 5 Introduction to CMS API Functionality 33

Bet
a

Closing the Session

The application employs the cms_close command to close the CMS API session.

After the cms_close command has been invoked, the application can register a new

session by invoking cms_open as described in the section “Opening a CMS API

Session” on page 29.

The session must be closed using cms_close when an unrecoverable error or

abdication occurs. Abdication could mean that any object model built up by the

application is invalid. The application must close the session and rebuild its object

model. The session object is used to obtain information relating to error conditions,

and to determine their type.

“Disconnecting from the CMS” on page 37 describes how to close a CMS API session

in more detail.

34 Netra ft 1800 CMS API Developer’s Guide • February 1999

Bet
a

35

CHAPTER

Bet
a

6

Connecting to and Disconnecting
from the CMS

This chapter describes how to connect and disconnect from the CMS by registering

and closing a session, respectively.

Connecting to the CMS

A client connects to the CMS by registering a session via the CMS API. A session

enables the client to access the CMS API commands for configuration and fault

management. The CMS API provides two types of session for the client:

■ A fully-featured session

■ A fast, uncached session

The fully-featured session should be used by clients that intend to:

■ Retrieve the platform object module

■ Enable a user to modify attribute values of platform objects

■ Make use of the event and exception notification mechanisms

The fast, uncached session is designed to be used in scripts when a session is created

for modifying a single (or few) attribute(s) of a platform object without unnecessary

overhead.

A client registers for a session within the CMS using the cms_open command in

conjunction with a session object. The session object is used by the cms_open
command to set the type of session and to return the client session's unique

identifier.

36 Netra ft 1800 CMS API Developer’s Guide • February 1999

Bet
a

Note – The application can have only one client session with the CMS at any one

time. The same session object must be used when calling all other CMS API

commands to identify the client session.

session Object

The session object is used by the client to specify whether the session is fully-

featured or uncached. The session is fully-featured by default.

CODE EXAMPLE 6-1 Opening a CMS API Session

/*
* ==

 * example1.c - opening a CMS API session
* --

 */

/* include files */
#include “example.h”

/* open_cms_session - opens the CMS API session, using the session
 * object
 */
void
open_cms_session(CMS_session_object *session_ptr)
{

int ret;

if ((ret = cms_create_session(session_ptr))!= CMS_success)
cms_fatal((CMS_object) *session_ptr, ret);

if ((ret = cms_open(*session_ptr))!= CMS_success)
cms_fatal((CMS_object) *session_ptr, ret);

}

/* cms_fatal - prints contents of the CMS API Object’s Error Object
* to standard out and exits when an unrecoverable error occurs.

 */

void
cms_fatal(CMS_object parent, int code)
{

CMS_error_object error = parent->error;

Chapter 6 Connecting to and Disconnecting from the CMS 37

Bet
a

Disconnecting from the CMS

Closing the session enables the CMS to clear the client workspace and free any

client-held memory. To close the session with the CMS API, the application uses the

cms_close command in conjunction with the session object. The session object

must be the same as that used to open the session. After a session has been closed,

the client will not be able to use any of the CMS API objects created during the

session, other than the session object itself which should be destroyed by the user.

session Object

The session object is used to specify the unique client session identifier of the

session to be closed.

if (code == CMS_error_code_failure) {
error = parent->error;
printf(“CMS failure (%d):%s\n”,

error->getCode(error),
(char *) error->getMessage(error));

} else {
 printf(“CMS failure (%d): %s\n”,

code,
cms_get_error_code_string(code));

}
exit(1);

}

CODE EXAMPLE 6-2 Closing a CMS API Session

/*
* ==

 * example1.c - closing a CMS API session
* --

 */

/* include files */
#include “example.h”

/* close_cms_session - closes the CMS API session, using the
 * session object
 */

CODE EXAMPLE 6-1 Opening a CMS API Session (Continued)

38 Netra ft 1800 CMS API Developer’s Guide • February 1999

Bet
a

void
close_cms_session(CMS_session_object *session_ptr)
{

int ret;

if ((ret = cms_close(*session_ptr)) != CMS_success)
cms_fatal((CMS_object) *session_ptr, ret);

(*session_ptr)->destroy(*session_ptr);
*session_ptr = NULL;

}

/* cms_fatal - prints contents of the CMS API Object’s Error Object
* to standard out and exits when an unrecoverable error occurs.

 */

void
cms_fatal(CMS_object parent, int code)
{

CMS_error_object error = parent->error;

if (code == CMS_error_code_failure) {
error = parent->error;
printf(“CMS failure (%d): %s\n”,

error->getCode(error),
(char *) error->getMessage(error));

} else {
 printf(“CMS failure (%d): %s\n”,

code,
cms_get_error_code_string(code));

}
exit(1);

}

CODE EXAMPLE 6-2 Closing a CMS API Session (Continued)

39

CHAPTER

Bet
a

7

Creating a Model of the
CMS Module Classes

Obtaining a List of the Platform
Model Object Classes

The client can retrieve a list of all the object class names within the CMS Server

Platform Model using the cms_get command in conjunction with the session
object, the system object, and the scope and filter object.

session Object

This is used to:

■ Specify the unique client session identifier

■ Read the returned error and error string

system Object

This subclass of the managed object is used to read the returned class names.

40 Netra ft 1800 CMS API Developer’s Guide • February 1999

Bet
a

scope and filter Object

This is used to scope the cms_get command to return class names for all the

platform object classes.

Note – In the following example, the system object is cast to a managed object. This

suppresses warning messages during compilation.

CODE EXAMPLE 7-1 Returning the CMS Object Classes

/*

 * ===

 * get_classes_1.c - returns the object classes of the CMS

 * ---

 */

/* include files */

#include “example.h”

/* get_cms_classes - prints the CMS class names */

void

get_cms_classes(CMS_session_object session)

{

int ret;

CMS_system_object system;

CMS_scope_filter_object scope_filter;

char class_name[CMS_maximum_value_length+1];

int number_classes;

int i;

if ((ret = cms_create_system(&system)) != CMS_success)

cms_error(session, (CMS_object) system, ret);

if ((ret = cms_create_scope_filter(&scope_filter)) !=

CMS_success)

cms_error(session, (CMS_object) scope_filter, ret);

if ((ret = scope_filter->setScope(scope_filter,

CMS_scope_my_classes)) != CMS_success

cms_error(session, (CMS_object) scope_filter, ret);

if ((ret = cms_get(

Chapter 7 Creating a Model of the CMS Module Classes 41

Bet
a

Obtaining a List of Platform Model
Object Classes with a Common Attribute

The client can retrieve a list containing object class names only of those CMS server

object classes that contain a particular attribute. This is achieved by applying a filter

to the previous cms_get command.

session,

(CMS_managed_object)system,

scope_filter)) != CMS_success)

cms_error(session, (CMS_object) session, ret);

if ((ret = system->getNumberOfClasses(

system, &number_classes)) != CMS_success)

cms_error(session, (CMS_object) system, ret);

for (i = 0; i < number_classes; i++)

{

if ((ret = system->getClassName(

system,i,class_name)) != CMS_success)

cms_error(session, (CMS_object)system, ret);

printf(“%s\n”,class_name);

}

scope_filter->destroy(scope_filter);

scope_filter = NULL ;

system->destroy(system);

system = NULL ;

}

CODE EXAMPLE 7-1 Returning the CMS Object Classes (Continued)

42 Netra ft 1800 CMS API Developer’s Guide • February 1999

Bet
a

scope and filter Object

This is used to filter the cms_get command to return class names for only those

platform object classes that contain an attribute with the specified name.

CODE EXAMPLE 7-2 Returning the CMS Object Classes with a Common Attribute

/*

 * ===

* get_classes_2.c - returns the CMS Object Classes with attribute

 * ---

 */

/* include files */

#include “example.h”

/* get_cms_classes_with_attribute - prints the CMS class names */

void

get_cms_classes_with_attribute(

CMS_session_object session,

char *attribute_name)

{

int ret;

CMS_system_object system;

CMS_scope_filter_object scope_filter;

CMS_attribute_object attribute;

char class_name[CMS_maximum_value_length+1];

int number_classes;

int i;

if ((ret = cms_create_system(&system)) != CMS_success)

cms_error(session, (CMS_object) system, ret);

if ((ret = cms_create_scope_filter(&scope_filter)) !=

CMS_success)

cms_error(session, (CMS_object) scope_filter, ret);

if ((ret = cms_create_attribute(&attribute)) !=

CMS_success)

cms_error(session, (CMS_object) attribute, ret);

if ((attribute->setName(attribute,attribute_name)) !=

CMS_success)

cms_error(session, (CMS_object) attribute, ret);

Chapter 7 Creating a Model of the CMS Module Classes 43

Bet
a

if ((attribute->setFilter(

attribute,CMS_filter_name_equal)) !=

CMS_success)

cms_error(session, (CMS_object) attribute, ret);

if ((ret = scope_filter->setScope(

scope_filter, CMS_scope_my_classes)) !=

CMS_success)

cms_error(session, (CMS_object) scope_filter, ret);

if ((ret = scope_filter->addFilter(

scope_filter, attribute)) != CMS_success)

cms_error(session, (CMS_object) scope_filter, ret);

if ((ret = cms_get(

session,

(CMS_managed_object)system,

scope_filter)) != CMS_success)

cms_error(session, (CMS_object) session, ret);

if ((ret = system->getNumberOfClasses(

system, &number_classes)) != CMS_success)

cms_error(session, (CMS_object) system, ret);

for (i = 0; i < number_classes; i++)

{

if ((ret = system->getClassName(

system,i,class_name)) != CMS_success)

cms_error(session, (CMS_object)system, ret);

printf(“%s\n”,class_name);

}

scope_filter->destroy(scope_filter);

scope_filter = NULL;

attribute->destroy(attribute);

attribute = NULL;

system->destroy(system);

system = NULL;

}

CODE EXAMPLE 7-2 Returning the CMS Object Classes with a Common Attribute

44 Netra ft 1800 CMS API Developer’s Guide • February 1999

Bet
a

Obtaining a List of the Platform
Model Object Instances

The client can retrieve a list of all the object instances within the CMS server

platform model using the cms_get command in conjunction with the session
object, the system object, and a scope and filter object.

The CMS server creates all the instances for each class that could theoretically exist.

The client can restrict the list to those object instances that are considered to be

present. Object instances are considered present when they do not have a state of

not_present .

The client can restrict the list to only those object instances that are present by means

of a predefined scope and filter object.

session Object

This is used to:

■ Specify the unique client session identifier

■ Read the returned error and error string

system Object

This subclass of the managed object is used to read the returned instance names.

scope and filter Object

This is used to scope the cms_get command to return instance names for all the

platform object instances that are considered present.

Chapter 7 Creating a Model of the CMS Module Classes 45

Bet
a

Note – In the following example, the system object is cast to a managed object. This

prevents the issue of warning messages during compilation.

CODE EXAMPLE 7-3 Returning a List of Object Instances of the Platform Model

/*

 * ===

 * get_instances_1.c - returns the object instance names

* --

 */

/* include files */

#include “example.h”

/* get_cms_instances - prints the CMS instances names */

void

get_cms_instances(CMS_session_object session, char *class_name)

{

int ret;

CMS_system_object system;

CMS_scope_filter_object scope_filter;

CMS_attribute_object attribute;

char instance_name[CMS_maximum_value_length+1];

int number_instances;

int i;

if ((ret = cms_create_system(&system)) != CMS_success)

cms_error(session, (CMS_object) system, ret);

if ((ret = cms_create_scope_filter(&scope_filter)) !=
CMS_success)

cms_error(session, (CMS_object) scope_filter, ret);

if ((ret = scope_filter->setPreDefined(

scope_filter, CMS_sf_modules_present)) !=
CMS_success)

cms_error(session, (CMS_object) scope_filter, ret);

if (class_name) {

if ((ret = cms_create_attribute(&attribute)) !=
CMS_success)

46 Netra ft 1800 CMS API Developer’s Guide • February 1999

Bet
a

cms_error(session, (CMS_object) attribute, ret);

if ((ret = attribute->setClassName(

attribute, class_name)) != CMS_success)

cms_error(session, (CMS_object) attribute, ret);

if ((ret = attribute->setFilter(

attribute,CMS_filter_name_equal))!=
CMS_success)

cms_error(session, (CMS_object) attribute, ret);

if ((ret = scope_filter->addFilter(

scope_filter, attribute)) != CMS_success)

cms_error(session, (CMS_object) scope_filter, ret);

}

if ((ret = cms_get(

session,

(CMS_managed_object)system,

scope_filter)) != CMS_success)

cms_error(session, (CMS_object) session, ret);

if ((ret = system->getNumberOfModules(

system, &number_instances)) != CMS_success)

cms_error(session, (CMS_object) system, ret);

printf(“Number of instances is %d\n”,number_instances);

for (i = 0; i < number_instances; i++)

{

if ((ret = system->getInstanceIdentifier(

system,i,instance_name)) != CMS_success)

cms_error(session, (CMS_object)system, ret);

printf(“%s\n”,instance_name);

}

scope_filter->destroy(scope_filter);

scope_filter = NULL ;

system->destroy(system);

system = NULL ;

}

CODE EXAMPLE 7-3 Returning a List of Object Instances of the Platform Model

Chapter 7 Creating a Model of the CMS Module Classes 47

Bet
a

Obtaining a List of Platform Model
Object Instances with a Common
Attribute Value

The client can retrieve a list containing object instance names restricted to those CMS

server object classes that contain a particular attribute that has (or does not have) a

particular value. This is achieved by applying a filter to the previous cms_get
command.

attribute Object

This is used to create a filter attribute that filters object instances containing a

particular attribute that either has or does not have a specified value.

scope and filter Object

This is used to filter the cms_get command to return instance names for only those

platform object instances that are considered present and meet the filter criteria.

CODE EXAMPLE 7-4 Returning the Instance Names with a Common Attribute

/*

* ==

 * get_instances_2.c - returns the Object instances that are
 * present

* --

 */

/* include files */

#include “example.h”

/* get_cms_instances - prints the CMS instances names /*

void

get_cms_instances_attribute_value(

CMS_session_object session,

char *attribute_name,

48 Netra ft 1800 CMS API Developer’s Guide • February 1999

Bet
a

char *attribute_value,

int is_equal)

{

int ret;

CMS_system_object system;

CMS_scope_filter_object scope_filter;

CMS_attribute_object attribute;

char instance_name[CMS_maximum_value_length+1];

int number_instances;

int i;

if ((ret = cms_create_system(&system)) != CMS_success)

cms_error(session, (CMS_object) system, ret);

if ((ret = cms_create_scope_filter(&scope_filter)) !=
CMS_success)

cms_error(session, (CMS_object) scope_filter, ret);

if ((ret = scope_filter->setPreDefined(

scope_filter, CMS_sf_modules_present)) !=
CMS_success)

cms_error(session, (CMS_object) scope_filter, ret);

if ((ret = cms_create_attribute(&attribute)) != CMS_success)

cms_error(session, (CMS_object) attribute, ret);

if ((attribute->setName(attribute,attribute_name)) !=
CMS_success)

cms_error(session, (CMS_object) attribute, ret);

if ((attribute->setValue(attribute,attribute_value)) !=
CMS_success)

cms_error(session, (CMS_object) attribute, ret);

if ((attribute->setFilter(

attribute,

is_equal?CMS_filter_value_equal:

CMS_filter_value_not_equal)) != CMS_success)

cms_error(session, (CMS_object) attribute, ret);

if ((ret = scope_filter->addFilter(

scope_filter, attribute)) != CMS_success)

cms_error(session, (CMS_object) scope_filter, ret);

CODE EXAMPLE 7-4 Returning the Instance Names with a Common Attribute (Continued)

Chapter 7 Creating a Model of the CMS Module Classes 49

Bet
a

Obtaining a List of Platform Model
Object Instances that are Faulty

The client can retrieve a list containing object instance names of only those CMS

server object instances that are considered to be faulty. The definition of when an

object instance is considered faulty is specific to the platform.

The client restricts the list to only those object instances that are faulty, using a

predefined scope and filter object with the original cms_get command.

if ((ret = cms_get(

session,

(CMS_managed_object)system,

scope_filter)) != CMS_success)

cms_error(session, (CMS_object) session, ret);

if ((ret = system->getNumberOfModules(

system, &number_instances)) != CMS_success)

cms_error(session, (CMS_object) system, ret);

for (i = 0; i < number_instances; i++)

{

if ((ret = system->getInstanceIdentifier(

system,i,instance_name)) != CMS_success)

cms_error(session, (CMS_object)system, ret);

printf(“%s\n”,instance_name);

}

scope_filter->destroy(scope_filter);

scope_filter = NULL ;

attribute->destroy(attribute);

attribute = NULL ;

system->destroy(system);

system = NULL ;

}

CODE EXAMPLE 7-4 Returning the Instance Names with a Common Attribute (Continued)

50 Netra ft 1800 CMS API Developer’s Guide • February 1999

Bet
a

scope and filter Object

This is used to filter the cms_get command to return instance names for only those

platform object instances that are considered present and faulty.

CODE EXAMPLE 7-5 Obtaining the Faulty Object Instances

/*

* ==

* get_instances_3.c - returns the Object Instances that are faulty

* --

 */

/* include files */

#include “example.h”

/* get_cms_faulty_instances - prints the CMS instances names /*

void

get_cms_faulty_instances(CMS_session_object session)

{

int ret;

CMS_system_object system;

CMS_scope_filter_object scope_filter;

char instance_name[CMS_maximum_value_length+1];

int number_instances;

int i;

if ((ret = cms_create_system(&system)) != CMS_success)

cms_error(session, (CMS_object) system, ret);

if ((ret = cms_create_scope_filter(&scope_filter)) !=
CMS_success)

cms_error(session, (CMS_object) scope_filter, ret);

if ((ret = scope_filter->setPreDefined(

scope_filter, CMS_sf_modules_faulty)) !=
CMS_success)

cms_error(session, (CMS_object) scope_filter, ret);

if ((ret = cms_get(

session,

(CMS_managed_object)system,

scope_filter)) != CMS_success)

cms_error(session, (CMS_object) session, ret);

Chapter 7 Creating a Model of the CMS Module Classes 51

Bet
a

Obtaining Class Information
About a Platform Object

The client can retrieve the definitions of the attributes contained by the CMS server

platform object class using the cms_get command in conjunction with the session
object, the module object, attribute objects and a scope and filter object.

session Object

This is used to:

■ Specify the unique client session identifier

■ Read the returned error and error string

if ((ret = system->getNumberOfModules(

system, &number_instances)) != CMS_success)

cms_error(session, (CMS_object) system, ret);

printf(“Number of instances is %d\n”,number_instances);

for (i = 0; i < number_instances; i++)

{

if ((ret = system->getInstanceIdentifier(

system,i,instance_name)) != CMS_success)

cms_error(session, (CMS_object)system, ret);

printf(“%s\n”,instance_name);

}

scope_filter->destroy(scope_filter);

scope_filter = NULL ;

system->destroy(system);

system = NULL ;

}

CODE EXAMPLE 7-5 Obtaining the Faulty Object Instances (Continued)

52 Netra ft 1800 CMS API Developer’s Guide • February 1999

Bet
a

module Object

This subclass of the managed object is used to:

■ Specify the instance of platform object to be interrogated

■ Return a group of attribute objects representing the attribute definitions of the

platform object class

scope and filter Object

This is used to:

■ Scope the cms_set command to get the definition of the platform object class

■ Select for retrieval only those definitions with specific attributes

attribute Object

This is used to:

■ Read the returned definition of each requested attribute

■ Specify what filtering is required (if any)

CODE EXAMPLE 7-6 Obtaining Class Information

/*
 * get_definitions _1.c
 *
 *
 */

/* include files */
#include “example.h”

void
print_attribute_defintion(CMS_attribute_object a)
{

int n;
int i;

printf(“Name: \t%s\n”,a->getName(a));
printf(“Type: \t%s\n”,

a>getType(a)==CMS_attribute_type_string?
“string”:”invalid”);

printf(“Access: \t%s\n”,
a->getAccess(a)==CMS_attribute_access_system?

Chapter 7 Creating a Model of the CMS Module Classes 53

Bet
a

“system”:
a->getAccess(a)==CMS_attribute_access_user?
“user”:”invalid”);

printf(“Default:\t%s\n”,a->getDefaultValue(a));

n = a->getNumberPossibleValues(a);
printf(“Values: \t”);
for (i = 0; i < n ; i++) {
printf(“%s%s”,a->getPossibleValue(a,i), i+1!=n?”, “:” “);
}
printf(“\n”);

}

/* get_cms_instances - prints the CMS instances names
 */
void
get_cms_attribute_defintions(

CMS_session_object session,
char *class_name,
char *attribute_name)

{
int ret;
CMS_module_object module;
CMS_scope_filter_object scope_filter;
CMS_attribute_object attribute;
CMS_attribute_object returned_attribute;
char instance_name[CMS_maximum_value_length+1];
int number_attributes;
int i;

if ((ret = cms_create_module(&module)) != CMS_success)
cms_error(session, (CMS_object) module, ret);

if ((ret = cms_create_scope_filter(&scope_filter)) !=
CMS_success)

cms_error(session, (CMS_object) scope_filter, ret);

if ((ret = scope_filter->setScope(
scope_filter, CMS_scope_my_definition)) !=

CMS_success)
cms_error(session, (CMS_object) scope_filter, ret);

if (attribute_name) {
if ((ret = cms_create_attribute(&attribute)) !=

CMS_success)
cms_error(session, (CMS_object) attribute, ret);

CODE EXAMPLE 7-6 Obtaining Class Information (Continued)

54 Netra ft 1800 CMS API Developer’s Guide • February 1999

Bet
a

if ((attribute->setName(attribute,attribute_name))!=
CMS_success)

cms_error(session, (CMS_object) attribute, ret);

if ((attribute->setFilter(
attribute, CMS_filter_name_equal))!=
CMS_success)

cms_error(session, (CMS_object) attribute, ret);

if ((ret = scope_filter->addFilter(
scope_filter, attribute)) != CMS_success)

cms_error(session, (CMS_object) scope_filter, ret);
}

if ((ret = module->setClassName(module,class_name)) !=
CMS_success)

cms_error(session, (CMS_object) module, ret);

if ((ret = cms_get(
session,
(CMS_managed_object)module,
scope_filter)) != CMS_success)

cms_error(session, (CMS_object) session, ret);

if (attribute_name) {
if ((ret = module->getAttributeWithName(

module,
attribute_name,
&returned_attribute)) != CMS_success)

cms_error(session, (CMS_object) module, ret);

print_attribute_defintion(returned_attribute);

attribute->destroy(attribute);
attribute = NULL ;
}
else {

if ((ret = module->getNumberOfAttributes(
module, &number_attributes)) != CMS_success)

cms_error(session, (CMS_object) module, ret);

for (i = 0; i < number_attributes; i++) {
if ((ret = module->getAttributeAtNumber(

module,
i,
&returned_attribute)) != CMS_success)

CODE EXAMPLE 7-6 Obtaining Class Information (Continued)

Chapter 7 Creating a Model of the CMS Module Classes 55

Bet
a

Obtaining Instance Information
About a Platform Object

The client can retrieve the value of one or more attributes contained by the CMS

server platform object class using the cms_get command in conjunction with the

session object, the module object, attribute objects and a scope and filter
object.

session Object

This is used to:

■ Specify the unique client session identifier

■ Read the returned error and error string

module Object

This subclass of the managed object is used to:

■ Specify the instance of platform object to be interrogated

■ Return a group of attribute objects representing the attribute definitions of the

platform object class

cms_error(session, (CMS_object) module, ret);
print_attribute_defintion(returned_attribute);
printf(“\n”);

}
}
scope_filter->destroy(scope_filter);
scope_filter = NULL ;
module->destroy(module);
module = NULL ;

}

CODE EXAMPLE 7-6 Obtaining Class Information (Continued)

56 Netra ft 1800 CMS API Developer’s Guide • February 1999

Bet
a

scope and filter Object

This is used to:

■ Scope the cms_get command to return the definition of the platform object class

■ Retrieve definitions for specific attributes only; the attributes can be selected

using filters

attribute Object

This is used to:

■ Read the returned definition of each requested attribute

■ Specify the filtering required (if any)

CODE EXAMPLE 7-7 Obtaining Instance Information

/* include files */

#include “example.h”

void

print_attribute_defintion(CMS_attribute_object a)

{

int n;

int i;

printf(“Name: \t%s\n”,a->getName(a));

printf(“Type: \t%s\n”,
a->getType(a)==CMS_attribute_type_string?

“string”:”invalid”);

printf(“Access: \t%s\n”,
a->getAccess(a)==CMS_attribute_access_system?

“system”:

a->getAccess(a)==CMS_attribute_access_user?

“user”:”invalid”);

printf(“Default:\t%s\n”,a->getDefaultValue(a));

n = a->getNumberPossibleValues(a);

printf(“Values: \t”);

for (i = 0; i < n ; i++) {

printf(“%s%s”,a->getPossibleValue(a,i), i+1!=n?”, “:” “);

}

printf(“\n”);

Chapter 7 Creating a Model of the CMS Module Classes 57

Bet
a

Setting Attribute Values of a
Platform Object Instance

The client can set the value of an attribute contained by the CMS server platform

object class using the cms_set command in conjunction with the session object,

the module object, an attribute object and a scope and filter object.

session Object

This is used to:

■ Specify the unique client session identifier

■ Read the returned error and error string

module Object

This subclass of the managed object is used to specify the platform object instance to

be modified.

attribute Object

This is used to specify the name and value of the attribute of the platform object

instance that forms the filter.

58 Netra ft 1800 CMS API Developer’s Guide • February 1999

Bet
a

scope and filter Object

This is used to scope the cms_set command to the attribute name of the platform

object instance specified by the platform object class.

CODE EXAMPLE 7-8 Setting Attribute Values

/*

* ==

* set_classes.c - sets the attribute values of an object instance

* --

 */

/* include files */

#include “example.h”

/* get_cms_attribute_values - prints the CMS instances names */

void

set_cms_attribute_value(

CMS_session_object session,

char *class_name,

int instance_number,

char *attribute_name,

char *attribute_value)

{

int ret;

CMS_module_object module;

CMS_scope_filter_object scope_filter;

CMS_attribute_object attribute;

char instance_name[CMS_maximum_value_length+1];

int number_attributes;

int i;

if ((ret = cms_create_module(&module)) != CMS_success)

cms_error(session, (CMS_object) module, ret);

if ((ret = cms_create_scope_filter(&scope_filter)) !=
CMS_success)

cms_error(session, (CMS_object) scope_filter, ret);

if ((ret = scope_filter->setScope(

scope_filter, CMS_scope_me)) != CMS_success)

cms_error(session, (CMS_object) scope_filter, ret);

Chapter 7 Creating a Model of the CMS Module Classes 59

Bet
a

if ((ret = cms_create_attribute(&attribute)) != CMS_success)

cms_error(session, (CMS_object) attribute, ret);

if ((attribute->setName(attribute,attribute_name)) !=
CMS_success)

cms_error(session, (CMS_object) attribute, ret);

if ((attribute->setValue(attribute,attribute_value)) !=
CMS_success)

cms_error(session, (CMS_object) attribute, ret);

if ((attribute->setFilter(

attribute, CMS_filter_name_equal))!=CMS_success)

cms_error(session, (CMS_object) attribute, ret);

if ((ret = scope_filter->addFilter(

scope_filter, attribute)) != CMS_success)

cms_error(session, (CMS_object) scope_filter, ret);

sprintf(instance_name,”%s %d”,class_name,instance_number);

if ((ret = module->setInstanceIdentifier(

module,instance_name)) != CMS_success)

cms_error(session, (CMS_object) module, ret);

if ((ret = cms_set(

session,

(CMS_managed_object)module,

scope_filter)) != CMS_success)

cms_error(session, (CMS_object) session, ret);

attribute->destroy(attribute);

attribute = NULL;

scope_filter->destroy(scope_filter);

scope_filter = NULL ;

module->destroy(module);

module = NULL ;

}

CODE EXAMPLE 7-8 Setting Attribute Values (Continued)

60 Netra ft 1800 CMS API Developer’s Guide • February 1999

Bet
a

61

Glossary

abstract class A class having no instances but specifying the common characteristics of its

subclasses.

ASIC Application-Specific Integrated Circuit.

ASR Automatic System Recovery: reboot on system hang.

attribute A data value held by instances of a class. The class defines the unique attribute

names that each instance of the class contain, but each instance within that

class can have a different value for any particular attribute name.

behavior A set of responses of a managed object in the event of a derived state change or

a specific attribute change.

BMX+ Crossbar switch ASIC.

bridge The interface between the CPUsets and the I/O devices.

CAF Console, Alarms and Fans module.

class A group of objects with similar characteristics that respond to the same set of

commands, have the same attributes and respond in the same way to each

command.

CMS Configuration Management System. The software that records and monitors

the modules in the system. Users access the CMS via a set of utilities which they

use to add and remove modules from the system configuration and enable and

disable modules that are in the system configuration.

component An identifiable part of a module.

condition A Boolean function of object values.

configure (CMS) Notify the CMS that a module is present in a specified location.

constituent (CMS) An object that provides part of the functionality of another object. An

object references its constituents.

CPUset A module containing the system processors and associated components.

62 Netra ft 1800 CMS API Developer’s Guide • February 1999

craft-replaceable A module which clearly indicates when it is faulty and can be hot-replaced by a

trained craftsperson.

DIMM Dual Inline Memory Module.

disable (CMS). Bring offline and power down a module.

DMA Direct Memory Access.

DRAM Dynamic Random Access Memory.

DSK Disk chassis module.

DVMA Direct Virtual Memory Access. A mechanism to enable a device on the PCI bus

to initiate data transfers between it and the CPUsets.

ECC Error Correcting Code.

EEPROM Electrically Erasable Programmable Read Only Memory.

EFD Event Forwarding Discriminator

EMI Electro-magnetic Interference.

enable (CMS) Power up and bring online a module that is already configured into the

system.

engineer-replaceable A module which may not indicate that it is faulty and which may require

special tools for diagnosis and replacement. The Netra ft 1800 does not have

any engineer-replacable modules.

ESD ElectroStatic Discharge.

EState Error limitation mode.

fault tolerant A system in which no single hardware failure can disrupt system operation.

fault-free No faults are evident in the operating system, or application software, or in

external systems, except in the case of certain high demand real-time uses.

faulty module A module one or more of whose devices have gone into the degraded or failed

states, as indicated to the CMS via the hot-plug device driver framework.

FPGA Field Programmable Gate Array.

front-replaceable The ability to replace a module from the front of the system.

FRU Field Replacable Unit. Another name for a module, used within the CMS.

generalization See inheritance.

HDD Hard Disk Drive.

Glossary 63

hardened Specially engineered to be resistant to hardware and some causes of software

failure. Applies to device drivers.

health features Features that can indicate that a fault is about to occur.

hot plug The ability to insert or remove a module without causing an interruption of

service to the operating platform.

hotPCI An implementation of the PCI bus designed to minimize the probability

that a fault on a module will corrupt the bus, and so to ensure that the

system control mechanism runs without interruption

hot-replaceable A module that can be replaced without stopping the system.

I2C Inter Integrated Circuit

inheritance A relationship between classes organized into a hierarchy whereby a class

lower in the hierarchy receives (inherits) the methods and attributes of the

class from which it was derived.

IOMMU Input/Output Memory Management Unit

LED Light-Emitting Diode.

location A slot where a module can be inserted. Each location has a unique name

and is clearly marked on the chassis.

lockstep The process by which two CPUsets work in synchronization.

losing side The side of a split system which has a new identity when rebooted.

managed object A representation of the physical components within the machine and the

higher level objects that represent components of physical devices.

MBD Motherboard.

Mbus Maintenance bus.

module An assembly that can be replaced without requiring the base machine to be

returned to the factory. A module is a physical assembly that has a module

number which is stored in the software on the machine, generally in the

EEPROM of the physical assembly

PCI Peripheral Component Interconnect.

PCIO PCI-to-Ebus2/Ethernet controller ASIC.

PRI Processor re-integration. The process by which the two CPUsets come into

lockstep to function as a fault tolerant system. Re-integration is preferred.

PROM Programmable Read Only Memory.

PSU Power Supply Unit.

64 Netra ft 1800 CMS API Developer’s Guide • February 1999

RAS Reliability, Availability and Serviceability.

RCP Remote Control Processor.

relationship A physical or conceptual connection between object instances, described by an

attribute.

RMM Removable Media Module.

RS232 An EIA specification that defines the interface between DTE and DCE using

asynchronous binary data interchange.

SC_UP+ System controller ASIC.

side One CPUset and its associated modules, capable of running as a standalone

system. A side is one half of a fault tolerant system or one of two systems in a

split system.

SPF Single Point of Failure.

split system A system whose two sides run as separate systems.

state transition A change of state caused by an event.

stealthy PRI Stealthy processor re-integration. Processor re-integration (PRI) which is

completed without user intervention.

subclass A class derived from an existing class (its superclass) an which inherits its

protocol. An instance of a subclass can therefore respond to the same

commands and has the same attributes as its superclass. It can also contain

additional attributes and respond to additional commands.

subsystem (CMS) A fault tolerant configuration of modules defined in the CMS.

superclass The class from which a subclass inherits its functionality.

system attribute (CMS) An attribute of a CMS object that is written only by the CMS.

surviving side The side of a split system which retains the identity of the previous fault
tolerant system.

TLB Translation Lookaside Buffer. The hardware which handles the mapping of

virtual addresses to real addresses.

TMN Telecommunication Managed Networks

U2P UPA-to-PCI bridge (U2P) ASIC.

UPA UltraSPARC Port Architecture.

user attribute An attribute whose value can be set by a non-system object.

XFD Exception Forwarding Discriminator

65

Index

SYMBOLS
_action , 11, 12

_driver_state , 11, 12

A
aggregation, 17

associations, 17, 20

attribute , 22, 47, 52, 56, 57

attribute values

obtaining, 31

setting, 32

attributes, 11

system, 11

user, 12

B
behavior, 15

constraints, 16

C
class names, 30

CMS API

commands, 6, 26

instances, 5

object model, 17

object types, 5, 17

server, 5

CMS server, 5

CMS_maximum_number_attributes , 20

CMS_maximum_number_instances , 20

CMS_maximum_value_length , 20

cmsconfig() , 2, 12

cmsfix() , 2, 12

cmsfruinfo() , 2

commands, 6

cms_cancel_notifications , 27, 30

cms_close , 26

cms_get , 7, 27, 30

cms_open , 26, 29

cms_request_notifications , 27, 29

cms_set , 7, 28

condition, 7

connecting, 35

containment, 17

D
description , 12

disconnecting, 37

E
error , 26

event , 24

event forwarding discriminator, 8, 17

event forwarding discriminator , 23

event handlers, 29

66 Netra ft 1800 CMS API Developer’s Guide • February 1999

event record , 25

exception , 24

exception forwarding discriminator, 8, 17

exception forwarding discriminator , 23

exception handlers, 29

exception record , 25

F
fault management, 2

fault_acknowledged , 12

G
generalization, 17

I
inheritance, 17

instance identifiers, 30

L
location , 12

M
managed, 21

managed objects, 8, 11, 20

module , 22, 52, 55, 57

module attributes

obtaining, 31

module definition, 32

N
network management environments, 3

notification , 23

notification record , 24

O
Object , 20

object

attributes, 7

class, 6

relationships, 7

object definition files, 6

object states

degraded , 13

failed , 13

initialising , 13

offline , 13

online , 13

object types, 5, 17, 20

attribute , 22, 47, 52, 56, 57

error , 26

event , 24

event forwarding discriminator , 23

event record , 25

exception , 24

exception forwarding
discriminator , 23

exception record , 25

hierarchy, 20

managed, 21

module , 22, 52, 55, 57

notification , 23

notification record , 24

Object , 20

scope and filter , 23, 40, 42, 44, 47, 50, 52,

56, 58

session , 21, 36, 37, 39, 44, 51, 55, 57

system , 21, 39, 44

obtaining

attribute values, 31

class names, 30

instance identifiers, 30

module attributes, 31

platform model object classes, 39

with common attribute, 41

platform model object instances, 44

faulty, 49

with common attribute, 47

platform object

class information, 51

instance information, 55

Index 67

P
platform model, 6

object classes, 39

with common attribute, 41

object instances, 44

faulty, 49

with common attribute, 47

R
registering a session, 35

S
scope and filter , 23, 40, 42, 44, 47, 50, 52, 56, 58

server object model, 11

session

closing, 37

fully-featured, 35

registering, 35

uncached, 35

session , 21, 36, 37, 39, 44, 51, 55, 57

setting

attribute values, 32

platform object attribute values, 57

state, 7

state , 11

state transition, 7, 8

system , 21, 39, 44

U
user commands, 2

user_label , 12

X
xcmsfix() , 2

68 Netra ft 1800 CMS API Developer’s Guide • February 1999

