
901 San Antonio Road
Palo Alto, CA 94303-4900 USA
650 960-1300 Fax 650 969-9131

Netra™ ft 1800

CMS Developer’s Guide

Part No. 805-7899-10
February 1999, Revision A

Sun Microsystems, Inc.

Send comments about this document to: docfeedback@sun.com

Please
Recycle

Copyright 1999 Sun Microsystems, Inc., 901 San Antonio Road • Palo Alto, CA 94303 USA. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and

decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization

of Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in

the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, AnswerBook, Java, the Java Coffee Cup, and Solaris are trademarks, registered trademarks, or service

marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered

trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture

developed by Sun Microsystems, Inc. Registered Excellence (and Design) is a certification mark of Bellcore.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges

the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun

holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN

LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and

FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-

INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 1999 Sun Microsystems, Inc., 901 San Antonio Road • Palo Alto, CA 94303 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la

décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans

l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie

relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque

déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, AnswerBook, Java, le logo Jave Coffee Cup, et Solaris sont des marques de fabrique ou des marques

déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous

licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les

produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun

reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique

pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence

couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux

licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y

COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE

UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE

GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

iii

Contents

1. System Management of the Netra ft 1800 1

How Does the CMS Work? 1

The Platform Model 2

Framework for Management 2

The Objectives of the CMS 3

Providing a Simple User Interface for Hot Plugging 3

Separating Policy From Mechanism 3

Providing an Operational System State Blueprint 4

Components on Which the CMS Is Dependent 4

What Comprises the CMS? 4

cmsd – The CMS Core 4

cmsdef 5

cmsconfig.rule 6

2. CMS User and System Models 9

CMS User Model 9

Objects 9

FRUs 10

Services 10

iv Netra ft 1800 CMS Developer’s Guide • February 1999

Relationships 11

FRU to FRU Relationships 11

Service to FRU Relationships 11

Managing Objects 11

Visible Attributes and Constituents 12

CMS System Model 12

Hidden Attributes and Constituents 12

3. States 13

State Generation 13

State Definition 14

Relationships 14

Attributes 15

FRU State Model 16

FRU States 16

FRU Relationships 17

Generic FRU Hidden Attributes 18

Generic FRU Visible Attributes 20

Device State Model 22

Device States 23

Device Relationships 23

Generic Attributes of a Device Object 24

Constraints 26

Built-in States 27

Abdication 27

State Transition 27

Behavior on Attribute Changes 28

Contents v

Changing Attribute Values 29

System Events 29

CMS Events 30

User Events 30

A. Sample cmsdef s 33

Glossary 43

vi Netra ft 1800 CMS Developer’s Guide • February 1999

vii

Figures

FIGURE 3-1 The CMS FRU State Model 16

FIGURE 3-2 The Device State Model 22

viii Netra ft 1800 CMS Developer’s Guide • February 1999

ix

Tables

TABLE 2-1 FRU Objects in the CMS User Model 10

x Netra ft 1800 CMS Developer’s Guide • February 1999

xi

Code Samples

CODE EXAMPLE 3-1 System Attributes 26

CODE EXAMPLE A-1 cmsdef for Device flop 33

CODE EXAMPLE A-2 cmsdef for Child Device flip 37

xii Netra ft 1800 CMS Developer’s Guide • February 1999

xiii

Preface

System management of the Netra ft 1800 is implemented by the Configuration

Management System (CMS) comprising an object model database which is

controlled by an automated state machine. Each object in the database represents a

software abstraction of a Netra ft 1800 platform component, and is defined by a text-

based definition file called a cmsdef file.

This guide provides an operational view of the Configuration Management System

(CMS) of the Netra ft 1800. It explains the design, constraints and objectives of the

Netra ft 1800 cmsdef model and is essential reading for anyone who needs to

maintain or write a cmsdef.

The guide is also useful, in conjunction with the Netra ft 1800 CMS API Developer’s
Guide (Part Number 805-5870-10), for programmers who want to use the Application

Programming Interface (API) to manipulate CMS objects.

How This Book Is Organized

Chapter 1 describes the CMS framework, shows how the CMS is used to model the

system configuration, introduces the concept of state, and shows how the CMS

constrains changes in state.

Chapter 2 describes the User and System Models.

Chapter 3 describes the FRU and Device State Models.

Chapter 4 provides a guide to writing a cmsdef .

Appendix A contains a sample cmsdef for a device.

Glossary is a list of words and phrases and their definitions.

xiv Netra ft CMS Developer’s Guide • February 1999

Typographic Conventions

Shell Prompts

TABLE P-1 Typographic Conventions

Typeface Meaning Examples

AaBbCc123 The names of commands, files,

and directories; on-screen

computer output

Edit your .login file.

Use ls -a to list all files.

% You have mail .

AaBbCc123 What you type, when

contrasted with on-screen

computer output

% su
Password:

AaBbCc123 Book titles, new words or terms,

words to be emphasized

Command-line variable; replace

with a real name or value

Read Chapter 6 in the User’s Guide.

These are called class options.

You must be superuser to do this.

To delete a file, type rm filename.

TABLE P-2 Shell Prompts

Shell Prompt

C shell machine_name%

C shell superuser machine_name#

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #

Preface xv

Related Documentation

Sun Documentation on the Web
The docs.sun.com sm web site enables you to access Sun technical documentation

on the Web. You can browse the docs.sun.com archive or search for a specific book

title or subject at:

http://docs.sun.com

Sun Welcomes Your Comments

We are interested in improving our documentation and welcome your comments

and suggestions. You can email your comments to us at:

docfeedback@sun.com

Please include the part number of your document in the subject line of your email.

TABLE P-3 Related Documentation

Application Title Part Number

Software Reference Netra ft 1800 Reference Manual 805-4532-10

Driver Development Netra ft 1800 Developer’s Guide 805-4530-10

CMS API Development Netra ft 1800 CMS API Developer’s Guide 805-5870-10

xvi Netra ft CMS Developer’s Guide • February 1999

1

CHAPTER 1

System Management of the
Netra ft 1800

This chapter provides an operational overview of the Netra ft 1800 Configuration

Management System (CMS).

The CMS is an essential component of the fault tolerant platform. It provides

configuration management for a telecommunications environment, addressing the

needs for remote management and alarms.

The CMS provides the following functionality:

■ enables the definition of an ideal configuration against which the system can be

compared

■ oversees control of fault tolerance and automatic recovery

■ manages the redundancy of core components

■ provides early diagnosis and notification of faults

■ manages auto re-integration of degraded components

■ assists hot replacement of degraded or faulty components

■ provides the means for remote management

How Does the CMS Work?

The CMS achieves the required functionality of both the active systems

management and the remote management interfaces by providing a framework for

managing a software abstraction of the platform.

2 Netra ft 1800 CMS Developer’s Guide • February 1999

The Platform Model

The platform is represented as a directed graph of managed objects. The following

types of object exist for a Netra ft platform:

■ Field Replaceable Units (FRUs) represent the physical modules. These can be

thought of as containers for devices. They can also represent environmental

characteristics of the hardware modules such as temperature, fault LEDs, or the

status of fans contained within them.

■ Devices represent the logical realization of the physical functionality of hardware

components, such as a disk or a tape. In general, a CMS device maps directly to a

Solaris device driver instance. The CMS therefore provides a representation of the

device driver which, in turn, provides a representation of the physical

functionality of the hardware components.

■ Virtual devices represent an aggregation of similar devices that present a single

pseudo device interface to their user, such as two Ethernets that comprise a single

ft Ethernet device.

■ Services represent an aggregation of devices that present a service to the user. For

example, a disk and an Ethernet device can make up an ftp service. The system,

which is the logical realization of the Netra ft platform, is a specialized type of

service.

Other types of object can exist.

Framework for Management

The framework provides an infrastructure for managing the objects using attributes.

The entire configuration and manipulation of an object is controlled by setting its

attribute values. Attribute values can be set by the user, the actions of an object, or

by the platform component that the object represents.

For example:

■ The user sets an attribute to specify the platform locator of an object (that is, the

location attribute).

This causes the object to interface with the platform to see if the managed

platform component is present at the selected locator.

■ The user sets an attribute to request a change in the object's operational state.

This causes the object to interface to the managed platform component to cause it

to enter the state requested by the user (usually through the driver control

command u4ftctl).

■ An action from an object sets an attribute in another object.

This causes the other object to act on the attribute change.

Chapter 1 System Management of the Netra ft 1800 3

■ A managed platform component sets an attribute representing its state.

This causes the object to update its state and trigger actions associated with the

change of state, such as external notifications.

The CMS creates an interface for defining objects to represent platform components,

and provides an interface by which object attributes can be read and set by the user,

object, or by the platform component that is being represented. The configuration of

the platform components and their interfaces is defined by the objects for the given

platform.

The CMS provides services to the objects and user interface such as the ability to

assess the impact of an attribute change on all the objects before permitting its

update, limited scoping and filtering abilities for the user, and an asynchronous

notification of unexpected changes in the objects.

The Objectives of the CMS

The objectives of the CMS are to provide configuration management for a Telco

environment and address the needs for remote management and alarms. In support

of this requirement, the CMS has a number of design objectives.

Providing a Simple User Interface for Hot Plugging

The CMS provides a simple, consistent user interface for manipulating FRUs and

devices based on the principles of object management and the representation of

object methods as attribute values. The CMS uses the same mechanisms to enable

the user to specify redundant and hardware fault tolerant system configurations.

The CMS hides the complexity of driver ioctls and maintenance bus utilities and

presents a simple system image to the user.

Separating Policy From Mechanism

The CMS enables platform developers to move management of their platform

components out of the kernel to user level object definitions.

This means that decisions can be made by the objects based on the system policies.

The CMS also provides an event notification interface enabling remote managers to

make decisions based on network policies.

4 Netra ft 1800 CMS Developer’s Guide • February 1999

Providing an Operational System State Blueprint

The CMS provides an infrastructure for platform developers to create objects that

can be instantiated by the user. The user can also specify a required operational state

for the system which the CMS will attempt to maintain and will report any changes

from this operational state.

Components on Which the CMS Is Dependent

The CMS is dependent on the input received via the component interface. It assumes

that device drivers are hardened and therefore follow the u4ft Nexus bus device

state framework. It assumes that all state or association changes will be reported via

the u4FTlog:cms pseudo device. It is also dependent on the hardware, that is,

FRUs, providing a means of identification.

What Comprises the CMS?

The CMS comprises the following key functional areas:

■ cmsd
■ cmsdef
■ cmsconfig.rule

cmsd – The CMS Core

The core of the CMS is cmsd(1M), a daemon process that models the actual

configuration of the system based on the theoretical configuration specified in the

system definition files. cmsd is started during the transition to run level 2 by means

of the system startup script S90CMS.

The model held by cmsd is adjusted in response to events signalled to it by device

drivers and other managed objects through the system logging device, u4ftlog .

The model can also be adjusted by the system administrator by means of the user

interfaces to the CMS.

When the model held by cmsd changes, cmsd executes shell command lines

specified in the system definition files.

The model held by cmsd persists across a reboot. cmsd achieves this by writing all

attributes that are not set to their default value to a private database. The database

comprises flat files (configfile and configfile-) duplicated and checksummed

Chapter 1 System Management of the Netra ft 1800 5

for security. When cmsd restarts, it restores the values of all user attributes (that is,

attributes that can be set using the user interfaces to the CMS) to the values defined

in the database.

Commands specified in S90CMSthen attempt to restore the actual system

configuration to that specified by the user attributes. This is achieved by setting

attribute values, whereupon the responses specified in the system definition effect

the desired changes to the system configuration.

An application programming interface (API) is provided to enable third party

applications to interface to the CMS. The CMS API comprises a C include file and

a dynamically-linked library for use by applications. The CMS API communicates

with cmsd by means of a UNIX domain socket. It maintains a local cache of cmsd's

model of the state of the system. The local cache is initialized using a snapshot of the

entire state of the system when the communication link is established. The local

cache is then updated in real time by events received from cmsd when it modifies its

model of the system state. The local cache is available to the application by means of

a set of access functions. The CMS API also provides an asynchronous event and

exception notification mechanism.

The CMS API provides functions that enable an application to modify the values of

user attributes. Constraints are specified in cmsconfig.rule (4) to restrict such

requests. This is intended to prevent user requests from jeopardizing the integrity of

the system. For information about the function and use of the CMS API, refer to the

Netra ft 1800 CMS API Developer’s Guide (Part Number 805-5870-10).

The CMS core includes a single system definition for the null object. Objects that

can theoretically reference other objects, but which currently do not, are configured

to reference the null object.

cmsdef

A cmsdef file exists for each class of object managed by the CMS (for example, disk

SCSI controller, motherboard). Each cmsdef specifies the following:

■ The maximum number of instances for the class of object specified.

■ The state model for the object.

The state model of an object is expressed in terms of other attribute values and

the state of objects related to it.

■ The behavior of the object when state transitions occur.

Typically, this behavior will be encapsulated in a state transition-specific shell

script, which the CMS developer is responsible for specifying.

■ The attributes of the object and the permitted values for these attributes.

All CMS objects are managed by assigning values to attributes. This can cause the

state of the object to change which, in turn, can trigger behavior associated with

the state change. Behavior can also be triggered by attribute changes.

6 Netra ft 1800 CMS Developer’s Guide • February 1999

■ Related objects.

A single relationship type exists which is expressed using attributes. The

relationship is used in ways that are intrinsic to the CMS and to cmsconfig and

cmsfix , and in ways specified by the developer of the cmsdef .

■ The owner of each attribute, either user or system.

User attributes can be set using cmsconfig and cmsfix . System attributes can be

set only by events received from the logging device – that is, from the CMS object

itself or from the object it manages. User and system attributes differ in that

changing user attributes is subject to more stringent controls than changing

system attributes. The attributes of the user utilities cmsconfig and cmsfix can

also be made invisible.

Refer to cmsdef (4) for a specification of cmsdef s and a general description of the

way they are constructed, and to Chapter 4, “Writing cmsdef s” for more specific

examples.

A cmsdef represents a software abstraction of a component of the Netra ft platform.

In this sense, a software abstraction is a CMS software representation of a FRU or a

device. This representation can model characteristics of the component, such as its

device driver instance state or the power-on status of a FRU. This representation can

also be used to elicit behavior from the component. For example, a user can

manipulate the representation so that it attempts to enable or disable a device, or

power on or power off a FRU.

A cmsdef exists for each of the following types of software abstraction:

■ FRUs

■ Devices

■ Virtual devices

■ Services

See also “The Platform Model” on page 2.

cmsconfig.rule

The single cmsconfig.rule file specifies the constraints applied when the user

attempts to modify attribute values. Each constraint is expressed using a rule in the

cmsconfig.rule file.

Rules can be specified using varying levels of generality. For example, system wide

rules can be specified that apply to all objects. Since rules evaluate attributes, a

consistent approach to the specification of cmsdef attributes is required. Conversely,

rules can be specified for particular objects and attributes.

Chapter 1 System Management of the Netra ft 1800 7

Certain rules are used to ensure consistency of the data model used by the CMS,

particularly in the protection of relationship constituents. Other rules are used to

ensure that the services supported by the system are not compromised by erroneous

commands by the user.

Note that attempts to set an attribute to a value not specified in its set of permitted

values contained in the associated cmsdef will fail. This behavior is built into the

CMS and does not involve the specification of rules in cmsconfig.rule .

The man page cmsconfig.rule (4) gives the syntax of cmsconfig.rule and

provides a simple description of how to specify the contents of the file.

8 Netra ft 1800 CMS Developer’s Guide • February 1999

9

CHAPTER 2

CMS User and System Models

The CMS is designed so that only those objects and attributes that are necessary for

configuring, operating and dealing with any fault conditions in the Netra ft 1800 are

visible to the user.

The CMS therefore provides two models of the system:

■ A User Model that provides a simple interface for user management and

maintenance tasks

■ A System Model that is concerned with the automated functions and system

management

The CMS implements these two model by means of hidden constituents and hidden

system attributes. As users have only a limited view of the system, the CMS

developer must ensure that users can diagnose from their user model the

appropriate action to take to recover from any state the machine may be in.

CMS User Model

This section describes how the CMS models the user’s view of the system and the

functions that the user can perform.

Objects

The CMS user model comprises two classes of object:

■ Field Replaceable Units (FRUs) that represent physical modules in specific

locations

■ Services that represent combinations of modules configured as subsystems

10 Netra ft 1800 CMS Developer’s Guide • February 1999

FRUs

TABLE 2-1 lists the eight types of FRU that can be found in the Netra ft 1800, together

with the maximum number of instances that each FRU can have.

Services

The user model contains the following services:

■ ft_network (network subsystem)

■ sm (console subsystem)

■ ft_alarm (alarm subsystem)

■ ft_core (processor subsystem)

Note – ft_core is considered to be a service but its behavior is similar to that of

a FRU.

TABLE 2-1 FRU Objects in the CMS User Model

Object Representing Instances

A-MBD Motherboard 1

B-MBD Motherboard 1

CAF Console, alarms and fans 2

CPU CPUsets 2

DSK Disk chassis 2

HDD Disk drives 12

PCI PCI cards 16

PSU Power supply units 6

RMM Removable media modules 2

Chapter 2 CMS User and System Models 11

Relationships

The user model contains the following types of relationship.

FRU to FRU Relationships

Associations exist between the FRUs which represent physical dependencies, such as

power management, and which are set up automatically by the CMS using the slot

location attribute of the FRU.

These physical dependencies are encapsulated in the slot location names on the

system chassis and, although obvious to users, it is unlikely that they will need to

use these links explicitly. However, the relationships are used by the CMS to ensure

the integrity of the system.

Service to FRU Relationships

The following relationships exist between services and FRUs:

■ ft_core is the subsystem object for the CPU FRUs.

■ ft_network is the multiplexer device for the CAF and PCI FRUs (network

controllers)

■ sm is the multiplexer device for the CAF (serial device)

■ ft_alarm is the multiplexer device for the CAF (alarms device)

Managing Objects

A user can perform the following operations:

■ Enable or disable a FRU

■ Configure or unconfigure a FRU

■ Modify the behavior of the FRU

■ Configure or unconfigure links to devices

■ Modify the behavior of a service

When a FRU is enabled or disabled, the CMS links or unlinks the service from the

FRU. This does not change its configuration, but can cause the service to be brought

online or taken offline.

12 Netra ft 1800 CMS Developer’s Guide • February 1999

Visible Attributes and Constituents

The user can see only the attributes and constituents of FRUs and services that

comprise the User Model. Other attributes and constituents, including those to

device objects, are hidden from the user.

For a detailed explanation these attributes and the values they can take, see

Chapter 3, "States".

CMS System Model

The CMS System Model includes, in addition to the FRU and service objects, device

objects and port objects. There is a one-to-one mapping between the CMS device

objects and the Solaris device instances that are managed by the CMS.

The CMS System Model contains:

■ A Device Hierarchy Tree that represents the Solaris Device Tree

■ A Device Containment Tree that represents the location of the physical hardware

of the device in relation to the system's FRUs

■ Device Hot Plug Trees, which are trees with two roots, that represent the hot plug

requirements of the Solaris Device Tree

The Device Hierarchy Tree is used to define the state dependencies between the

devices (for example, a child device cannot be brought online until its parent is

online, and, conversely, a parent device cannot be taken offline until its child device

is offline).

The Device Containment Tree is used to define which FRU device hardware failures

should be reported.

The Device Hot Plug Tree is used to define the group of devices to be managed in

the hot plug operation of a particular FRU.

Hidden Attributes and Constituents

The constituents and devices used to create these trees, and a number of attributes

that are used by the trees to perform their functionality, are hidden from the user.

For a detailed explanation of these attributes and the values they can take, see

Chapter 3, "States".

13

CHAPTER 3

States

The primary purpose of an object's state is to trigger its own or another object's

behavior. This is achieved by changing the value of the object's attributes, or when

the value of a related object's state changes. The behavior triggered can be

immediate, or take place after subsequent attribute changes or after the change of

state of related object(s).

A secondary role of an object's state is to consolidate the values of the object's

attributes, and those of any related object's state, into a single attribute.

CMS applications make use of an object's state. For example, cmsfix and the CMS

API make use of the state attribute. They determine that a device is faulty if its

state is failed and a FRU is faulty if its faulty attribute is set to yes .

State Generation

When any attribute in the CMS is modified, the CMS regenerates the state variables

of every object. Any state variable change can result in behavior being triggered

appropriate to the resultant state transition.

The relationships specified in the cmsdef are used to determine the order in which

state change events are generated by the CMS. This only affects applications making

use of the CMS API and which register for asynchronous event notification.

The CMS descends the constituent hierarchy so that the state variables of all

constituent objects are regenerated before the dependent objects.

This ensures that events generated by the CMS are in the desired order (that is,

events are delivered for constituents, then for dependents).

14 Netra ft 1800 CMS Developer’s Guide • February 1999

In principle, this behavior also means that behavior triggered by state changes is

initiated in the desired order (that is, behavior of constituents is initiated before

behavior of dependents). However, since the behaviors run asynchronously with

respect to the CMS, there is no guarantee that behavior initiated in a particular

order, according to the constituent relationships, will actually execute in that order.

The cmsdef developer must consider this issue when designing the cmsdef s and

take action to prevent any dangerous consequences that could result.

Loops must not be created in the constituent hierarchy. Loops are not detected by the

CMS and will cause the CMS to fail through infinite recursion. The cmsdef
developer must ensure that erroneous user input does not cause the CMS to fail in

this way, either by use of permitted attribute values, or by appropriate rules in

cmsconfig.rule .

State Definition

The states of an object are defined in the corresponding cmsdef in the

state-function section. A given state is assigned to an object if the corresponding

function evaluates to true . The functions are evaluated in the order specified in the

cmsdef, from top to bottom. The state corresponding to the first function that

evaluates to true is used.

The state of all objects is evaluated when:

■ the CMS is started

■ a configuration change occurs and abdication takes place

■ a system event is received from the logging device

■ an attribute change occurs due to a user request via cmsconfig or cmsfix

Note – If a constituent has not yet been defined, its default value will usually be

null 0 , a valid object whose state is always offline . When writing state functions

(and elsewhere), consider the constituent's default value – system attributes are reset

to default values when the CMS starts.

Relationships

Relationships between objects in the CMS are specified using constituent attributes.

An object's constituent attribute contains the identifier of the related object. The

related object is considered the constituent of an object.

Chapter 3 States 15

The CMS API refers to the constituent and dependent as child and parent

respectively. The CMS API extends this convention further by referring to any

dependent, or dependent of a dependent, as an ancestor. Any constituent, or

constituent of a constituent, is referred to as a descendent.

A single relationship scheme, having certain built-in characteristics, exists

throughout the CMS. Any relationship class specific behavior must then be added to

the cmsdef by the developer.

Note that within cmsdef specifications, it is generally possible to identify the

constituents of an object, but not possible to identify the dependents of an object. An

indirect mechanism is available for traversing back through the relationship, but this

cannot be used in the state definition. It is not permitted to set up circular

relationships in the form B is a constituent of A, C is a constituent of B, and A is a

constituent of C.

Attributes

This section describes the attributes used in the device state model and the FRU state

model.

System Attributes are those attributes of the object that the device driver can report,

for example, _driver_state , and the conditions of the module, that is, undefined,

offline , online , degraded , failed . They cannot be set using cmsconfig and

are reset to their default values when the CMS is started.

User Attributes are those that a user can change using cmsconfig . Their values

persist across a CMS restart (that is, after a reboot). Attributes are displayed by

cmsconfig in the order in which they are defined in the cmsdef . Thus it is

important to make sure that the standard user attributes listed below are defined in

the cmsdef in the order given, and before any other user attributes.

Hidden Attributes can be either system or user attributes, and are defined by the

first character being ‘_’. These attributes are hidden from the users of cmsconfig .

Attributes should be hidden if their display might confuse the user or when the user

should be prevented from setting them.

16 Netra ft 1800 CMS Developer’s Guide • February 1999

FRU State Model

FIGURE 3-1 The CMS FRU State Model

FRU States

A FRU object can have the following states.

■ initial

The state of the FRU changes to initial at start up.

The FRU will remain in this state until its _initialised attribute is set to yes .

initial

not
present

disable
failed

enable
failed

disabled busy enabled

Transition caused by:
Automated CMS change
at startup

State change caused by
setting action attribute
or by the automated
CMS change at startup

Chapter 3 States 17

■ not_present

A FRU is in this state when its location attribute has not been set. This means

that the CMS is not aware of the FRU. A FRU that is in the not_present state

will have no relationships with any other FRUs, devices or the ft_core object.

■ disabled

A FRU is in this state when the CMS believes that the FRU exists in a particular

location, but the CMS is not currently managing the FRU. The FRU is configured

but has not been enabled.

■ enabled

The FRU is in this state when the CMS believes that the FRU exists in a particular

location and the CMS has attempted to enable the FRU for use.

■ enabled_failed

A FRU is in this state when the CMS believes that the FRU exists in a particular

location, but the CMS has been unable to enable it for use. This could mean that

the CMS has failed to read the FRU’s EEPROM (perhaps because the FRU was not

present at the location) or the FRU’s EEPROM failed the validation for a FRU of

that type. It could also mean that the CMS failed to apply power to the location.

■ disable_failed

The FRU is in this state when the CMS believes that the FRU exists in a particular

location that has previously been enabled , but the CMS has been unable to

disable the FRU. This is generally due to the CMS being unable to take offline

some of the FRU’s devices. In this state, the FRU will still be powered up.

■ busy

The FRU is in this state when the CMS in performing some action on the FRU.

FRU Relationships

The following relationship exists between the FRU object and the devices that reside

in the FRU.

■ device_x

The attributes can either be fixed per class of FRU or read from the EEPROM

when the user attempts to configure the FRU. The attribute can have one of the

following values:

null 0
device instances

18 Netra ft 1800 CMS Developer’s Guide • February 1999

Generic FRU Hidden Attributes

The FRU object can have the following system attributes.

■ _show_by_default

This attribute defines whether a FRU should appear on the default cmsconfig
menu. It has two permitted values:

no
yes

■ _initialised

This attribute is referenced at CMS start up. It has two permitted values:

no
yes

If set to no , the FRU state is initial

■ _locked

This attribute is used to define when a FRU is performing an action. It has two

permitted values:

no
yes

If set to yes , the FRU state is busy .

■ _action

This attribute is used in state definitions to signify the last required state. It has

two permitted values:

disable
enable

■ _enabled

This attribute is used in state definitions to signify when the FRU is enabled. It

has two permitted values:

no
yes

■ _device_failed

This attribute is used by device objects to indicate that they have gone to the

failed state. It takes a string value that returns the device name.

Chapter 3 States 19

■ _device_soft_fault

This attribute is used by device objects to indicate that they have not managed to

go online as a result of a software fault. It takes a string value.

■ _device_state

This attribute is used by device objects to indicate that they have changed state. It

takes a string value.

■ _monitoring

This attribute is used to start or stop environmental monitoring of the FRU. It has

one permitted value:

yes

If the attribute is not present or is not set to yes , no environmental monitoring is

set up.

■ _power_control

This attribute is used to control the power to the FRU. It has one permitted value:

yes

If the attribute is not present or is not set to yes , power control is not applied to

the FRU.

■ _device_del_loop

This attribute is used by the FRU to take its child devices offline sequentially. It

has two permitted values:

disable
enable

■ _power_control_delay

This attribute is used to define a time delay between supplying power to a FRU

and accessing it to allow time for firmware to be downloaded. It has two

permitted values:

disable
enable

20 Netra ft 1800 CMS Developer’s Guide • February 1999

Generic FRU Visible Attributes

The FRU object can have the following user attributes.

■ action

action is the operation attribute enables the user to enable and disable the FRU,

and preserves the user’s desired FRU configuration following a reboot. It has two

permitted values:

disable
enable

■ location

location is used by the CMS to specify the physical location (that is, slot name)

of the FRU. The CMS uses the location as the origin for identifying objects

considered to exist. All objects with a non-NULL location and their ancestors (that

is, dependents and dependents of dependents) are considered to exist. If a

location value is not set, the FRU is considered not to exist.

■ fault_acknowledged

The fault_acknowledged attribute is set when a user acknowledges that a fault

has been seen on a particular FRU. It has two permitted values:

no
yes

■ description

This string attribute gives the user a test description of the class of device

(maximum 33 characters). The attribute is not changed by cmsconfig .

■ user_label

This string attribute enables a user to set a test description for each instance of the

FRU (maximum 33 characters).

■ part_number

This string attribute is set up the first time the FRU is enabled and is read from

the EEPROM. Subsequently, each time the FRU is enabled, the value of the

attribute is compared with the value in the EEPROM. If the values do not match,

the FRU is not enabled. This function can be overridden by setting the value to ‘ ’.

■ serial_number

This read-only string attribute is set up the first time the FRU is enabled and is

read from the EEPROM.

Chapter 3 States 21

■ software_fault

This read-only attribute is used to signify that a software fault has occurred. It has

two permitted values:

no
yes

■ present

This read-only attribute is used to signify that the FRU cannot be accessed. The

attribute is set when the FRU is enabled and its EEPROM has been read. The

attribute can be set by the environmental monitor if it finds that the FRU is no

longer present.

It has two permitted values:

no
yes

22 Netra ft 1800 CMS Developer’s Guide • February 1999

Device State Model

FIGURE 3-2 The Device State Model

A CMS device object is notified of its state by the driver of the device that

the object is representing. The device driver implements the Nexus device

driver framework. This specifies the permitted state transitions.

not
present

undefined

online
failed

offline busy online

offline
failed

degraded

failed

Transition caused by:
Change to
_driver_state

State change caused by
setting action or
_meta_action attribute

Chapter 3 States 23

Device States

A CMS device object can have the following states.

■ undefined

A device is in this state when either the CMS has failed to tag or create the device,

or when the CMS has deleted the device but has been unable to delete its parent.

■ offline

A device is in this state when its driver is offline but its FRU is enabled. This can

occur only when a super-user is using the CMS to configure the device’s action
or required_state attributes manually.

■ online_failed

A device is in this state when its driver state is offline and the FRU has

attempted to bring the device online but the request failed.

■ online

A device is in this state when its driver state is online .

■ degraded

A device is in this state when its driver state is degraded .

■ failed

A device is in this state when its driver state is failed .

■ offline_failed

A device is in this state when its driver state is not offline and its FRU has

attempted to take the device offline but the request failed.

Device Relationships

The following relationships exist between the device and other software abstractions

of Netra ft components.

■ controller

If the device requires a controller, this is the CMS object instance for that device.

The attribute is set up by the FRU when appropriate and can have one of the

following values

null 0
device instances

24 Netra ft 1800 CMS Developer’s Guide • February 1999

■ bridge

If the device operates under a bridge, this is the CMS object instance for that

device. The attribute is set up by the FRU when appropriate and can have one of

the following values:

null 0
bridge instances

■ location^

This is a reverse direction mapping of the FRU that has this device as a

constituent. The attribute value is therefore a FRU instance

Generic Attributes of a Device Object

A CMS device object can have the following attributes. Where permitted values are

specified, the first to be listed is the default value.

■ _driver_state

The _driver_state attribute is set by cmsd when a message of class state is

received from the logging device u4ftlog Its value is used to derive the state of

the device. It can have one of the following values:

undefined
offline
online
failed
degraded

■ _present

_present is a hidden attribute used to define the existence of the device. This

attribute is set by the FRU and is used to derive the state of the device. It has two

permitted values:

no
yes

■ FRU_name

FRU_nameis a string attribute that identifies the name of the FRU in which the

device resides. The attribute is set by the device when it leaves the not_present
state.

■ info

The info attribute is a string that informs the user about the status of the device.

Chapter 3 States 25

■ _locked

The locked attribute informs the user that the device is locked and will not

accept any requests to change its attributes. It has two permitted values:

no
yes

When the attribute is set to yes , the device state is busy .

■ action

action enables the super-user to manipulate the device directly when the value

is set to offline . It has two permitted values:

offline
online

■ _meta_action

This attribute is used by the FRU to create a device and cause it to take its

required_state , or to delete a device. It can have one of the following values:

null
create
delete

■ required_state

This attribute enables the super-user to specify whether the device should be

brought online when the FRU is enabled. It has two permitted values:

online
offline

■ description

This string attribute enables the user to specify a test description for the class of

device.

■ user_label

This string attribute enables the user to set a test description for each instance of

the device.

■ _device_name

This string attribute contains the name of the device driver if the CMS creates the

device instance.

26 Netra ft 1800 CMS Developer’s Guide • February 1999

■ _parent_state

This attribute is set by cmsd when a message of class state is received from

u4ftlog . Its value is used to derive the state of the device.

The attribute can have one of the following values:

not_present
busy
undefined
online_failed
online
offline
offline_failed
inaccessible
degraded
failed

■ devpath

This string attribute contains the system name for the device. The attribute value

is passed to the FRU to identify the device’s functionality.

CODE EXAMPLE 3-1 System Attributes

Note – Values appear in comma delimited lists, where the first value is the default.

The default value is generally negative (for example, offline rather than online ,

null rather than not null). This ensures that objects are inactive by default and

have to be deliberately brought into the active state by the CMS. System attributes

are reset to default values when the CMS restarts.

Constraints

The following cmsconfig restrictions apply to device objects:

■ If the state equals not_present , you can change only the _locked attribute.

■ If _busylock equals yes , a warning is issued if you try to change any attribute.

■ You cannot change the description.

■ You cannot change the controller.

■ You cannot change the bridge.

■ If _locked equals yes , you cannot change any attribute.

system attribute values
---------------- ------
_driver_state undefined, offline, online, degraded, failed

Chapter 3 States 27

Built-in States

In addition to the states specified in the state–function section of the cmsdef ,

two further states are built-in to the CMS:

■ unknown

The unknown state is assigned to the object at CMS startup. Once the previous

values of attributes are recovered from disk, the CMS changes from the unknown
state to the new state which is based on the recovered attribute values and the

state functions specified in the cmsdef .

■ abdicate

The abdicate state is assigned to a new CMS when abdication occurs. Once the

existing values of attributes are recovered from the abdicating CMS, the CMS

changes from the abdicate state to the new state which is based on the

recovered attribute values and the state functions specified in the cmsdef .

Although it is possible to specify transitions from the unknown or abdicate states

in the transition–response section of the cmsdef , do so only when no other

solution is possible. This is because, at CMS startup and abdication, every single

object will be transitioning from the unknown or abdicate state which could result

in the execution of a large number of response scripts. This could seriously impact

system performance. If transitions are specified in the transition–response
section, limit the number of response scripts that will execute at CMS startup or

abdication.

Abdication

Abdication is a mechanism provided by cmsd that enables a hot upgrade to be made

to the configuration of the system held by the CMS. On abdication, a new instance of

cmsd is started using a new set of system definition files. The new instance of cmsd
next obtains the actual system configuration from the old instance of cmsd which it

then supersedes.

State Transition

The behavior triggered by state transitions is defined in the cmsdef . The behavior is

specified in the form of shell commands with some extensions to enable the attribute

values of that cmsdef to be available to the shell commands. This is achieved by a

macro expansion which is performed once the behavior is triggered.

28 Netra ft 1800 CMS Developer’s Guide • February 1999

For example:

The shell commands are executed in a separate process that executes synchronously

with respect to the CMS. It is possible for behaviors triggered by multiple and rapid

state changes of a single object to run concurrently with no guarantee of the order of

execution or that the commands will complete. The cmsdef developer must

consider this issue when designing cmsdef s and provide locking to prevent two

scripts from running concurrently.

Behaviors must also test the exit codes of the executed commands and take recovery

action of the command fails. For example, this is necessary when taking a device

offline as there could be a process holding the device open.

Behaviors that ignore the failure of the offline command could cause power to be

removed from the FRU which would result in failure messages appearing in the log

and possible software failure elsewhere. Error recovery must be built into the

behavior to ensure that this does not happen.

Behavior on Attribute Changes

Shell commands are issued when attribute changes occur if they have been specified

in the cmsdef . Each attributed of the object class is available as a macro, using the

same mechanism as a conventional cmsdef file.

As before, behavior triggered by an attribute value change runs asynchronous with

respect to the CMS and there is no guarantee that behavior will execute in order

with respect to any other behavior, even that triggered by a subsequent change to

the same attribute value.

The cmsdef developer must consider this issue when designing cmsdef s and take

action to prevent any dangerous consequences that could result.

Take care where attributes involved in the state function also have behavior

triggered on changes to the attribute. It is likely that this will result in two scripts

being initiated – one for the state transition and one for the attribute change. Again,

there is no guarantee as to the order in which these scripts will be executed.

$state
$req_condition
$location

Chapter 3 States 29

Note – Surround all environment variables provided to the script by the CMS with

double quotes. This is because the environment variables could comprise more than

one word.

Changing Attribute Values

There are three sources of changes to attribute values within the CMS:

■ System events received from the logging device

■ CMS events received from the logging device

■ User events received from the logging device

System Events

System events are received from the logging device. Typically, system events

correspond to device state changes and appear in the log as ‘S’ class messages.

Device state changes are mapped within the CMS to changes to the object's

condition attribute.

Alternatively, device property updates can be sent to the CMS by the device. Device

property updates are mapped within the CMS to changes to the object's attribute

whose name is identical to the device property. If there is no such attribute, the

property update is ignored. The CMS attempts to restrain its response to device

property updates by counting and discarding updates for a device property while it

is attempting to acquire the value for that device property. When the property value

is acquired, the count of property updates received for that device property is

reported to the log. This mechanism is intended to prevent the CMS from being

saturated by property updates.

System events are not subject to validation according to cmsconfig.rule and are

therefore always actioned.

30 Netra ft 1800 CMS Developer’s Guide • February 1999

CMS Events

CMS events are received from the logging device and are used to notify the CMS of

system attribute changes for objects that do not have a corresponding device driver.

Typically, CMS events are generated by the use of u4ftctl (1M) from within

cmsdef responses.

CMS events appear in the log in the following format:

■ <level > is not currently used by the CMS and should be set to 0.

■ <source > is the software object originating the CMS event (for example, pmft).

■ <module > <instance > is the module and instance of the CMS object (for

example, ioset 0).

■ <attribute > is the attribute name.

■ <value > is the attribute value.

CMS events are not subject to validation according to cmsconfig.rule and are

therefore always actioned.

User Events

User requests are received from cmsconfig , cmsfix , xcmsfix and other CMS

applications. User requests modify attributes specified as user attributes in the

cmsdef . User requests are always validated according to cmsconfig.rule and are

actioned if the consequence of the request does not violate a rule.

Validation of User Events

The CMS validates user requests by assessing the consequence of the change

according to cmsconfig.rule . This is achieved by identifying attribute and state

changes that would occur if the change were actioned. The CMS does this by

duplicating itself, executing the request in the duplicate, but not actually executing

any scripts as a result of attribute and state changes that are caused by the request.

The resultant attribute and state changes are sent back to the requesting application

by the duplicated CMS. The application is then responsible for determining if

cmsconfig.rule is violated.

■ If cmsconfig.rule is violated, the application is responsible for abandoning the

user request and issuing suitable error messages to the user.

■ If cmsconfig.rule is not violated, the application issues the real request and

the CMS actions it.

[time] <u4ftcmd#0> C < level > < source > < module > < instance > < attribute > < value >
[message]

Chapter 3 States 31

For the cmsconfig.rule mechanism to work effectively, the state of dependent

objects must be partially or entirely derived from related objects. For example,

devices that would become failed if power to the related FRU were removed must

have their state directly related to the FRU in some way.

The application does not consider the object whose attribute is being changed when

evaluating cmsconfig.rule . This is because it is assumed that the user must be

aware of the consequences of a change to that object.

32 Netra ft 1800 CMS Developer’s Guide • February 1999

33

APPENDIX A

Sample cmsdef s

This appendix provides sample cmsdef s for imaginary device called flop and

flip .

flop has four instances and can have up to two child devices of the type flip .

CODE EXAMPLE A-1 cmsdef for Device flop

#
%W% %E% SMI
#
Copyright (c) 1998, by Sun Microsystems, Inc.
All rights reserved.
#
slot cmsdef file
#

module max_number_in_system
------ --------------------
flop 4

 user_attribute values
 -------------- ------

action offline, online startup=norestore
 required_state online, offline
 description "flop device"
 user_label string

_locked no, yes startup=norestore

 system_attribute values
 ---------------- ------
 FRU_name string
 info string
 busylock no, yes
 _meta_action null, create, delete

34 Netra ft 1800 CMS Developer’s Guide • February 1999

 _action offline, online, report_state
startup=norestore
 _driver_state undefined, offline, online, degraded,
failed
 _present no, yes
 _parent_state not_present, busy, undefined,\
 online_failed, online, offline\
 offline_failed, inaccessible, \
 degraded,failed
 _device_name "u4flop"
 _type_flop_device yes
 _bsh yes
 _no_delete yes

 constituent values
 ----------- ------

dev0 null 0, flip 0, flip 1, flip 2, flip 3,

 dev1 null 0, flip 4, flip 5, flip 6, flip 7

 state function
 ----- --------
 not_present if (_present == no)
 busy if (_locked == yes)
 undefined if (_driver_state == undefined)

online_failed if (_driver_state == offline && _action\
 == online)

online if (_driver_state == online && _action\
 != offline)

offline if (_driver_state == offline && _action\
 != online)

offline_failed if (_driver_state != offline && _action\
 == offline)
 inaccessible if (_parent_state != online && \
 _driver_state == online)
 degraded if (_driver_state == degraded)
 failed if (_driver_state == failed)

 class response
 ----- --------

 generic_script \
 function _cms_my_report_device_state { \
 cmsmreport $name $number _parent_state $state \
 $dev0->name $dev0->number \
 $dev1->name $dev1->number; \

CODE EXAMPLE A-1 cmsdef for Device flop (Continued)

#

Appendix A Sample cmsdef s 35

 };\
 function _cms_my_create_device { \

: add your own create device script if appropriate ;\
 : return 0 for success, 1 otherwise ;\
 return 1;\
 };\
 function _cms_my_tag_device { \

: add your own tag device script if appropriate ;\
 : return 0 for success, 1 otherwise
 return 1; \
 } ;\
 function _cms_my_report_device_failed { \
 _cms_report_device_failed $location^location \

"$location^name $location^number";\
 esac;\
 };

 transition response
 ---------- --------

 not_present -> busy \
 _cms_report $name $number FRU_name "$location^name
$location^number" ;

 busy -> undefined \
 _cms_my_report_device_state ;

 busy -> online_failed \
 _cms_my_report_device_state ;

 busy -> online \
 _cms_my_report_device_state ;

 busy -> degraded \
 _cms_my_report_device_state ;

 busy -> failed \
 _cms_my_report_device_state ;\
 _cms_my_report_device_failed;

 busy -> offline \
 _cms_my_report_device_state ;

 busy -> inaccessible \
 _cms_my_report_device_state ;

CODE EXAMPLE A-1 cmsdef for Device flop (Continued)

#

36 Netra ft 1800 CMS Developer’s Guide • February 1999

 busy -> offline_failed \
 _cms_my_report_device_state ;

 online -> failed \
 _cms_my_report_device_state ;\
 _cms_my_report_device_failed;

 degraded -> failed \
 _cms_my_report_device_state ;\
 _cms_my_report_device_failed;

 offline_failed -> online \
 _cms_my_report_device_state ;

 online_failed -> offline \
 _cms_my_report_device_state ;

 busy -> not_present \
 _cms_my_report_device_state ;

 attribute response
 --------- --------

 action \
 my_parent_name=$_type_gate^name;\
 my_parent_number=$_type_gate^number; \
 _cms_device_action $$my_parent_name $$my_parent_number;

 _parent_state \
 _cms_device_parent_state ;

 _meta_action \
 my_parent_name=$_type_gate^name;\
 my_parent_number=$_type_gate^number; \
 _cms_device_meta_action $$my_parent_name
$$my_parent_number;

 _driver_state \
 my_parent_name=$_type_gate^name;\
 my_parent_number=$_type_gate^number; \
 _cms_device_driver_state $$my_parent_name
$$my_parent_number;

 _action \
 _cms_device__action "$location^name $location^number";

CODE EXAMPLE A-1 cmsdef for Device flop (Continued)

#

Appendix A Sample cmsdef s 37

The following points apply to the device flop :

■ The device does not bring its parent online or take it offline .

■ Its parent has an attribute called type_gate .

■ The device is not deleted when a FRU is disabled.

■ The device is brought online and taken offline by its children and, therefore,

does not report its state to a FRU, but to its children.

■ The device reports failures to the FRU which is its container and which has an

attribute location .

The following code example is the cmsdef for the corresponding child device flip .

CODE EXAMPLE A-2 cmsdef for Child Device flip

%W% %E% SMI
#
Copyright (c) 1998, by Sun Microsystems, Inc.
All rights reserved.
#
flip cmsdef file
#

module max_number_in_system
------ --------------------
flip 8

 user_attribute values
 -------------- ------

action offline, online startup=norestore
 required_state online, offline
 description "flip device"
 user_label string

_locked no, yes startup=norestore

 system_attribute values
 ---------------- ------
 FRU_name string
 FRU_info string
 info string
 busylock no, yes
 _meta_action null, create, delete
 _action offline, online, report_state
startup=norestore
 _driver_state undefined, offline, online, degraded,
failed
 _device_name "sd"
 _present no, yes
 _parent_state not_present, busy, undefined,
online_failed, online, \

38 Netra ft 1800 CMS Developer’s Guide • February 1999

offline, offline_failed, inaccessible,\
 degraded, \
 failed

 state function
 ----- --------
 not_present if (_present == no)
 busy if (_locked == yes)
 undefined if (_driver_state == undefined)

online_failed if (_driver_state == offline && _action\
 == online)

online if (_driver_state == online && _action\
 != offline)

offline if (_driver_state == offline && _action\
 != online)

offline_failed if (_driver_state != offline && _action\
 == offline)
 inaccessible if (_parent_state != online && \
 _driver_state == online)
 degraded if (_driver_state == degraded)
 failed if (_driver_state == failed)

 class response
 ----- --------

 generic_script \
 function _cms_my_report_device_state { \
 _cms_report_device_state $location^name
$location^number; \
 }; \
 function _cms_my_create_device { \

: add your own create device script if appropriate ;\
 : return 0 for success, 1 otherwise ;\
 return 1;\
 };\
 function _cms_my_tag_device { \

: add your own tag device script if appropriate ;\
 : return 0 for success, 1 otherwise
 return 1; \
 } ;\
 function _cms_my_report_device_failed { \
 _cms_report_device_failed $location^location \
 "$location^name $location^number"; \
 };\
 function _cms_my_post_online_function { \
 u4ft_findPath $name $number "$tag"; \

CODE EXAMPLE A-2 cmsdef for Child Device flip (Continued)

%W% %E% SMI

Appendix A Sample cmsdef s 39

 };

 transition response
 ---------- --------

 not_present -> busy \
 _cms_report $name $number FRU_name "$location^name \
 $location^number" ;

 busy -> undefined \
 _cms_my_report_device_state ;

 busy -> online_failed \
 _cms_my_report_device_state ;

 busy -> online \
 _cms_my_report_device_state ;

 busy -> degraded \
 _cms_my_report_device_state ;

 busy -> failed \
 _cms_my_report_device_state ;\
 _cms_my_report_device_failed;

 busy -> offline \
 _cms_my_report_device_state ;

 busy -> inaccessible \
 _cms_my_report_device_state ;

 busy -> offline_failed \
 _cms_my_report_device_state ;

 online -> failed \
 _cms_my_report_device_state ;\
 _cms_my_report_device_failed;

 degraded -> failed \
 _cms_my_report_device_state ;\
 _cms_my_report_device_failed;

 offline_failed -> online \
 _cms_my_report_device_state ;

 online_failed -> offline \

CODE EXAMPLE A-2 cmsdef for Child Device flip (Continued)

%W% %E% SMI

40 Netra ft 1800 CMS Developer’s Guide • February 1999

 _cms_my_report_device_state ;

 busy -> not_present \
 _cms_my_report_device_state ;

 attribute response
 --------- --------

 action \
 my_parent_name=$_type_flop_device^name; \
 my_parent_number=$_type_flop_device^number; \
 _cms_device_action $$my_parent_name $$my_parent_number;

 _parent_state \
 _cms_device_parent_state ;

 _meta_action \
 my_parent_name=$_type_flop_devicer^name; \
 my_parent_number=$_type_flop_device^number; \
 _cms_device_meta_action $$my_parent_name
$$my_parent_number;

 _driver_state \
 my_parent_name=$_type_flop_device^name; \
 my_parent_number=$_type_flop_device^number; \
 _cms_device_driver_state $$my_parent_name
$$my_parent_number;

 _action \
 _cms_device__action "$location^name $location^number";

 FRU_info \
 [["$location^_dev1" = "$name $number"]] && \

_cms_report $location^name $location^number Funct_0\
 "$FRU_info";\
 [["$location^_dev2" = "$name $number"]] && \

_cms_report $location^name $location^number Funct_1\
 "$FRU_info";

CODE EXAMPLE A-2 cmsdef for Child Device flip (Continued)

%W% %E% SMI

Appendix A Sample cmsdef s 41

The following points apply to the device flip :

■ The device brings its parent online and takes it offline .

■ Its parent has an attribute called _type_flop_device .

■ The device is deleted when a FRU is disabled.

■ The device reports its state to a FRU. As it has no children, it also reports its

failure to the FRU.

■ The FRU has a system attribute for the device as part of its user interface.

42 Netra ft 1800 CMS Developer’s Guide • February 1999

43

Glossary

abstract class A class having no instances but specifying the common characteristics of its

subclasses.

ASIC Application-Specific Integrated Circuit.

ASR Automatic System Recovery: reboot on system hang.

attribute A data value held by instances of a class. The class defines the unique attribute

names that each instance of the class contain, but each instance within that

class can have a different value for any particular attribute name.

behavior A set of responses of a managed object in the event of a derived state change or

a specific attribute change.

BMX+ Crossbar switch ASIC.

bridge The interface between the CPUsets and the I/O devices.

CAF Console, Alarms and Fans module.

class A group of objects with similar characteristics that respond to the same set of

commands, have the same attributes and respond in the same way to each

command.

CMS Configuration Management System. The software that records and monitors

the modules in the system. Users access the CMS via a set of utilities which they

use to add and remove modules from the system configuration and enable and

disable modules that are in the system configuration.

component An identifiable part of a module.

condition A Boolean function of object values.

configure (CMS) Notify the CMS that a module is present in a specified location.

constituent (CMS) An object that provides part of the functionality of another object. An

object references its constituents.

CPUset A module containing the system processors and associated components.

44 Netra ft 1800 CMS Developer’s Guide • February 1999

craft-replaceable A module which clearly indicates when it is faulty and can be hot-replaced by a

trained craftsperson.

DIMM Dual Inline Memory Module.

disable (CMS). Bring offline and power down a module.

DMA Direct Memory Access.

DRAM Dynamic Random Access Memory.

DSK Disk chassis module.

DVMA Direct Virtual Memory Access. A mechanism to enable a device on the PCI bus

to initiate data transfers between it and the CPUsets.

ECC Error Correcting Code.

EEPROM Electrically Erasable Programmable Read Only Memory.

EFD Event Forwarding Discriminator

EMI Electro-magnetic Interference.

enable (CMS) Power up and bring online a module that is already configured into the

system.

engineer-replaceable A module which may not indicate that it is faulty and which may require

special tools for diagnosis and replacement. The Netra ft 1800 does not have

any engineer-replacable modules.

ESD ElectroStatic Discharge.

EState Error limitation mode.

fault tolerant A system in which no single hardware failure can disrupt system operation.

fault-free No faults are evident in the operating system, or application software, or in

external systems, except in the case of certain high demand real-time uses.

faulty module A module one or more of whose devices have gone into the degraded or failed

states, as indicated to the CMS via the hot-plug device driver framework.

FPGA Field Programmable Gate Array.

front-replaceable The ability to replace a module from the front of the system.

FRU Field Replacable Unit. Another name for a module, used within the CMS.

generalization See inheritance.

HDD Hard Disk Drive.

hardened Specially engineered to be resistant to hardware and some causes of software

failure. Applies to device drivers.

Glossary 45

health features Features that can indicate that a fault is about to occur.

hot plug The ability to insert or remove a module without causing an interruption of

service to the operating platform.

hotPCI An implementation of the PCI bus designed to minimize the probability

that a fault on a module will corrupt the bus, and so to ensure that the

system control mechanism runs without interruption

hot-replaceable A module that can be replaced without stopping the system.

I2C Inter Integrated Circuit

inheritance A relationship between classes organized into a hierarchy whereby a class

lower in the hierarchy receives (inherits) the methods and attributes of the

class from which it was derived.

IOMMU Input/Output Memory Management Unit

LED Light-Emitting Diode.

location A slot where a module can be inserted. Each location has a unique name

and is clearly marked on the chassis.

lockstep The process by which two CPUsets work in synchronization.

losing side The side of a split system which has a new identity when rebooted.

managed object A representation of the physical components within the machine and the

higher level objects that represent components of physical devices.

MBD Motherboard.

Mbus Maintenance bus.

module An assembly that can be replaced without requiring the base machine to be

returned to the factory. A module is a physical assembly that has a module

number which is stored in the software on the machine, generally in the

EEPROM of the physical assembly

PCI Peripheral Component Interconnect.

PCIO PCI-to-Ebus2/Ethernet controller ASIC.

PRI Processor re-integration. The process by which the two CPUsets come into

lockstep to function as a fault tolerant system. Re-integration is preferred.

PROM Programmable Read Only Memory.

PSU Power Supply Unit.

RAS Reliability, Availability and Serviceability.

RCP Remote Control Processor.

46 Netra ft 1800 CMS Developer’s Guide • February 1999

relationship A physical or conceptual connection between object instances, described by an

attribute.

RMM Removable Media Module.

RS232 An EIA specification that defines the interface between DTE and DCE using

asynchronous binary data interchange.

SC_UP+ System controller ASIC.

side One CPUset and its associated modules, capable of running as a standalone

system. A side is one half of a fault tolerant system or one of two systems in a

split system.

SPF Single Point of Failure.

split system A system whose two sides run as separate systems.

state transition A change of state caused by an event.

stealthy PRI Stealthy processor re-integration. Processor re-integration (PRI) which is

completed without user intervention.

subclass A class derived from an existing class (its superclass) an which inherits its

protocol. An instance of a subclass can therefore respond to the same

commands and has the same attributes as its superclass. It can also contain

additional attributes and respond to additional commands.

subsystem (CMS) A fault tolerant configuration of modules defined in the CMS.

superclass The class from which a subclass inherits its functionality.

system attribute (CMS) An attribute of a CMS object that is written only by the CMS.

surviving side The side of a split system which retains the identity of the previous fault
tolerant system.

TLB Translation Lookaside Buffer. The hardware which handles the mapping of

virtual addresses to real addresses.

TMN Telecommunication Managed Networks

U2P UPA-to-PCI bridge (U2P) ASIC.

UPA UltraSPARC Port Architecture.

user attribute An attribute whose value can be set by a non-system object.

XFD Exception Forwarding Discriminator

47

Index

A
abdication, 27

API, 5

application programming interface, 5

attributes, 15

changing values, 29

user, 15

B
behavior, 5, 28

C
CMS

API, 5

components, 4

cmsconfig.rule , 6

cmsd, 4

cmsdef , 5

events, 30

functionality, 1

objectives, 3

cmsconfig.rule , 6

cmsd, 4

cmsdef , 5

D
device, 2

constraints, 26

virtual, 2

device attributes

_device_name , 25

_driver_state , 24

_locked , 25

_meta_action , 25

_parent_state , 26

_present , 24

action , 25

description , 25

devpath , 26

FRU_name, 24

info , 24

required_state , 25

user_label , 25

device relationships

bridge , 24

controller , 23

location^ , 24

device states

built in

abdicate , 27

unknown , 27

degraded , 23

failed , 23

offline , 23

offline_failed , 23

online , 23

online_failed , 23

undefined , 23

device trees, 12

48 Netra ft 1800 CMS Developer’s Guide • February 1999

E
events

CMS, 30

system, 29

user, 30

F
field replaceable unit, 2

framework, 2

FRU attributes

hidden

_action , 18

_device_del_loop , 19

_device_failed , 18

_device_soft_fault , 19

_device_state , 19

_enabled, 18

_initialised , 18

_locked , 18

_monitoring , 19

_power_control , 19

_power_control_delay , 19

_show_by_defaul, 18

visible

action , 20

description , 20

fault_acknowledged , 20

location , 20

part_number , 20

present , 21

serial_number , 20

software_fault , 21

user_label , 20

FRU relationships

device_x , 17

FRU states

busy , 17

disable_failed , 17

disabled , 17

enabled , 17

enabled_failed , 17

initial , 16

not_present , 17

M
management framework, 2

P
platform model, 2

R
relationships, 14

FRU to FRU, 11

service to FRU, 11

S
service, 2

state

definition, 14

generation, 13

purpose of, 13

state model, 5

device, 22

FRU, 16

state transition, 27

system events, 29

system model, 12

U
u4ftlog , 4

user events, 30

validating, 30

user model, 9

V
virtual device, 2

