
Sun Microsystems, Inc.
www.sun.com

Submit comments about this document at: http://www.sun.com/hwdocs/feedback

Netra™ CT Server Software
Developer’s Guide

Part No. 816-2486-11
August 2004, Revision A

http://www.sun.com/hwdocs/feedback

Copyright 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more of the U.S. patents listed at http://www.sun.com/patents and one or
more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, AnswerBook2, docs.sun.com, VIS, Sun StorEdge, Solstice DiskSuite, Java, SunVTS, Netra, and Solaris are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and in other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and in other
countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

U.S. Government Rights—Commercial use. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, Californie 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie qui est décrit dans ce document. En particulier, et sans la
limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés à http://www.sun.com/patents et
un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats-Unis et dans les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des
fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, AnswerBook2, docs.sun.com, VIS, Sun StorEdge, Solstice DiskSuite, Java, SunVTS, Netra, et Solaris sont
des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.
aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique
pour l’industrie de l’informatique. Sun détient une license non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence
couvrant également les licenciées de Sun qui mettent en place l’interface d ’utilisation graphique OPEN LOOK et qui en outre se conforment
aux licences écrites de Sun.

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFAÇON.

Contents

Preface xvii

1. Programming Environment 1

Netra CT Server 1

Hardware Description 1

Alarm Card 1

Host CPU Board 2

Satellite CPU Boards 2

I/O Boards 2

Hot-Swapping Capabilities 2

Software Description 3

Operating System Specifics 4

Managed Object Hierarchy 5

Processor Management Services 5

Multicomputing Network 5

Platform Information Control Library 6

Management Framework 6

SNMP/MIB Support 6

SNMP Interface 6

RMI Interface 6
 iii

Developing Applications Using PMS 7

Developing Applications to Interface with MOH or SNMP 7

Developing Applications to Run on Host or Satellite CPU Boards 7

2. Netra CT System Equipment Models 9

Modeling a Netra CT System 9

Managed Objects 10

Viewing the Equipment Model Hierarchies 11

Netra CT 810 System Equipment Models 12

Netra CT 410 System Equipment Models 20

3. Getting Started With Netra CT Element Management Agent API 31

Before You Begin 31

About Netra CT Element Management Agent API 32

Netra CT Agent Security 32

Creating Your Application 33

Purpose of the Application 34

Determining the System Configuration Hierarchy 35

Communicating to the Netra CT Agent 35

Finding the Root Object Name 36

Traversing the Containment Hierarchy From a Node 37

Listening for Notifications 38

Registering a Notification Listener With EFDMBean Instance 38

Managing Alarms 39

Registering a Notification Listener With an Alarm Notification Filter 39

Using the Default Alarm Severity Profile 40

Creating Your Own Alarm Severity Profile 41

Assigning a New Alarm Severity Profile 43

Configuring the Agent to Drive Alarm Card Alarm Outputs 43
iv Netra CT Server Software Developer’s Guide • August 2004

▼ To Set Up and Use Alarm Features 44

Clearing Alarms 46

Software Monitoring 46

4. Netra CT Element Management Agent API 49

Interface Overview 49

Summary of JDMK 50

Viewing the Netra CT Management Agent API Online 51

How the API Sections are Organized 52

Netra CT Management Agent Interfaces and Classes 52

Netra CT Management Agent Interface Descriptions 56

AlarmCardPluginMBean 56

AlarmSeverityProfileMBean 57

CgtpServiceMBean 58

ContainmentTreeMBean 60

CpciSlotMBean 65

CpuCardEquipmentMBean 67

CpuPluginMBean 70

DaemonMBean 71

EFDMBean 72

EquipmentHolderMBean 73

EquipmentMBean 74

EtherIfStatsMBean 78

FullLogMBean 80

IpServiceMBean 86

LOLMBean 88

NEMBean 95

NetworkInterfaceMBean 98

NfsServiceMBean 101
Contents v

NumericSensorMBean 104

PlugInUnitMBean 110

RnfsServiceMBean 114

SensorMBean 116

SlotMBean 118

SoftwareMonitorMBean 120

SoftwareServiceMBean 124

TcpServiceMBean 127

TerminationPointMBean 130

UdpServiceMBean 133

UfsServiceMBean 134

Netra CT Management Agent Class Descriptions 136

AdministrativeState 136

AlarmNotification 138

AlarmNotificationFilter 142

AlarmSeverity 145

AlarmType 148

AttributeChangeNotification 150

AttributeChangeNotificationFilter 153

AuthClient 154

AvailabilityStatus 156

EquipmentHolderType 159

LogFullAction 161

MohNames 162

ObjectCreationNotification 165

ObjectDeletionNotification 168

OperationalState 170

SlotStatus 172
vi Netra CT Server Software Developer’s Guide • August 2004

StateChangeNotification 174

StateChangeNotificationFilter 177

5. Simple Network Management Protocol 179

SNMP Overview 179

Management Information Base (MIB) 180

Object Identifiers (OIDs) 180

Netra CT System SNMP Representation 181

ENTITY-MIB 182

IF-MIB 183

SUN-SNMP-NETRA-CT-MIB 183

Netra CT Network Element High-Level Objects 184

Physical Path Termination Point Table 185

Equipment Table 185

Equipment Holder Table 186

Plug-in Unit Table 187

Hardware Unit to Running Software Relationship Table 188

Hardware Unit to Installed Software Relationship Table 188

Alarm Severity Identifier Textual Convention 189

Alarm Severity Profile Table 190

Alarm Severity Table 190

Trap Forwarding Table 191

Trap Agent MIB Log Table 192

Logged Trap Table 192

Logged Alarm Table 193

MIB Notification Types 194

MIB Notifications 195

State Change Notification Traps 195

Object Creation and Deletion Notification Traps 195
Contents vii

Configuration Change Notification Traps 196

Understanding the MIB Variable Descriptions 196

Changing Midplane FRU-ID 198

Setting High Temperature Alarms 200

▼ To Set the High Temperature Alarm Severity to Major 200

6. Managed Object Hierarchy Software Modules 203

Software Module Design 203

Software Services 204

Software Module MBeans 204

SoftwareMonitorMBean 205

DaemonMBean 205

SoftwareServiceMBean 205

NfsServiceMBean 205

UfsServiceMbean 206

TcpServiceMBean 206

UdpServiceMBean 206

IpServiceMBean 206

EtherIfStatsMBean 206

CgtpServiceMBean 207

RnfsServiceMBean 207

Software Modules in the SNMP View 207

Host Resources MIB 207

Host Resources Running Software Table (hrSWRunTable) 207

Host Resources Installed Software Table (hrSWInstalledTable) 208

SNMP Traps 208

7. Processor Management Services 211

PMS Software Overview 211
viii Netra CT Server Software Developer’s Guide • August 2004

PMS Man Pages 215

PMS Examples 216

8. Solaris Operating System APIs 269

Solaris Operating System PICL Framework 269

PICL Frutree Topology 271

Chassis Node Property Updates 272

Fru Class Properties 272

Port Class Node 274

Port Class Properties 274

Common Property Updates 276

GeoAddr 276

StatusTime 276

ConditionTime 276

Temperature Sensor Node State 277

PICL Man Page References 277

Dynamic Reconfiguration Interfaces 279

Reconfiguration Coordination Manager 279

Hot-Swap Support 279

Configuration Administration (cfgadm) 280

Programming Temperature Sensors Using the PICL API 281

Programming Watchdog Timers Using the PICL API 283

Displaying FRU-ID Data 286

MCNet Support 289

Glossary 291

Index 297
Contents ix

x Netra CT Server Software Developer’s Guide • August 2004

Figures

FIGURE 1-1 Netra CT Server Software 3

FIGURE 2-1 Partial Hardware Resource Hierarchy 10

FIGURE 2-2 Hardware Resource Hierarchy Showing Managed Object Classes 10

FIGURE 2-3 Rear-Access Netra CT 810 System View From Alarm Card 13

FIGURE 2-4 Front-Access Netra CT 810 System View From Alarm Card 14

FIGURE 2-5 Rear-Access Netra CT 810 System View From Host CPU Board 15

FIGURE 2-6 Front-Access Netra CT 810 System View From Host CPU Board 16

FIGURE 2-7 Front-Access Netra CT 810 System Host CPU Board Local View 17

FIGURE 2-8 Rear-Access Netra CT 810 System Host CPU Board Local View 18

FIGURE 2-9 Rear-Access Netra CT 810 System Satellite CPU Board Local View 19

FIGURE 2-10 Netra CT 810 System Satellite CPU Board Local View 19

FIGURE 2-11 Rear-Access Netra CT 410 Diskfull System View From Alarm Card 21

FIGURE 2-12 Front-Access Netra CT 410 Diskfull System View From Alarm Card 22

FIGURE 2-13 Front-Access Netra CT 410 Diskless System View From Alarm Card 23

FIGURE 2-14 Rear-Access Netra CT 410 Diskless System View From Alarm Card 24

FIGURE 2-15 Rear-Access Netra CT 410 Diskless System View From Host CPU Board 25

FIGURE 2-16 Front-Access Netra CT 410 Diskless System View From Host CPU Board 26

FIGURE 2-17 Front-Access Netra CT 410 Diskfull System View From Host CPU Board 27

FIGURE 2-18 Rear-Access Netra CT 410 Diskfull Local View From Host CPU Board 28

FIGURE 2-19 Rear-Access Netra CT 410 System Satellite CPU Board Local View 29
 xi

FIGURE 4-1 Key Components of the Java Dynamic Management Kit 50

FIGURE 5-1 Hardware Resource Hierarchy 182

FIGURE 7-1 Netra CT Software Services 212

FIGURE 7-2 PMS Software Services and Interfaces 213

FIGURE 8-1 PICL Daemon (picld) and Plug-ins 270
xii Netra CT Server Software Developer’s Guide • August 2004

Tables

TABLE 1-1 Netra CT Server Software Overview 4

TABLE 2-1 Managed Object Class Definitions 11

TABLE 3-1 Solaris Packages for Netra CT Developer APIs 32

TABLE 3-2 Example of Alarm Output Mapping 44

TABLE 4-1 Netra CT Management Agent Interfaces 53

TABLE 4-2 Netra CT Management Agent Classes 54

TABLE 5-1 Physical Entity Table 183

TABLE 5-2 SUN-SNMP-NETRA-CT-MIB Netra CT NE High-Level Objects 184

TABLE 5-3 SUN-SNMP-NETRA-CT-MIB Physical Path Termination Point Table 185

TABLE 5-4 SUN-SNMP-NETRA-CT-MIB Equipment Table 185

TABLE 5-5 SUN-SNMP-NETRA-CT-MIB Equipment Holder 186

TABLE 5-6 SUN-SNMP-NETRA-CT-MIB Plug-In Unit Table 187

TABLE 5-7 SUN-SNMP-NETRA-CT-MIB Hardware Unit to Running Software Relation Table 188

TABLE 5-8 SUN-SNMP-NETRA-CT-MIB Hardware Unit to Installed Software Relationship Table 188

TABLE 5-9 SUN-SNMP-NETRA-CT-MIB Alarm Severity Identifier Textual Conventions 189

TABLE 5-10 SUN-SNMP-NETRA-CT-MIB Alarm Severity Profile Table 190

TABLE 5-11 SUN-SNMP-NETRA-CT-MIB Alarm Severity Table 190

TABLE 5-12 SUN-SNMP-NETRA-CT-MIB Trap Forwarding Table 191

TABLE 5-13 SUN-SNMP-NETRA-CT-MIB Trap Agent MIB Log Table 192

TABLE 5-14 SUN-SNMP-NETRA-CT-MIB Logged Trap Table 193
 xiii

TABLE 5-15 SUN-SNMP-NETRA-CT-MIB Logged Alarm Table 193

TABLE 5-16 MIB Notification Types 194

TABLE 5-17 SUN-SNMP-NETRA-CT-MIB State Change Notification Traps 195

TABLE 5-18 SUN-SNMP-NETRA-CT-MIB Object Creation and Deletion Notification Traps 195

TABLE 5-19 SUN-SNMP-NETRA-CT-MIB Configuration Change Notification Traps 196

TABLE 5-20 MIB Variable Syntax 197

TABLE 6-1 SUN-SNMP-NETRA-CT-MIB Traps 208

TABLE 6-2 RFC1213-MIB Traps 209

TABLE 7-1 Processor Management Services Man Pages 215

TABLE 8-1 PICL FRUtree Topology Summary 271

TABLE 8-2 PICL FRU State Value Properties 273

TABLE 8-3 PICL FRU Condition Value Properties 273

TABLE 8-4 Port Class State Values 274

TABLE 8-5 Port Condition Values 275

TABLE 8-6 PortType Property Values 275

TABLE 8-7 State Property Values for Temperature Sensor Node 277

TABLE 8-8 PICL Man Pages 277

TABLE 8-9 PICL Temperature Sensor Class Node Properties 281

TABLE 8-10 PICL Threshold Levels and MOH Equivalents 282

TABLE 8-11 Watchdog Plug-in Interfaces for Netra CT 810 and 410 Server Software 284

TABLE 8-12 Properties Under watchdog-controller Node 285

TABLE 8-13 Properties Under watchdog-timer Node 285
xiv Netra CT Server Software Developer’s Guide • August 2004

Code Samples

CODE EXAMPLE 3-1 Sample code with Netra CT Security 33

CODE EXAMPLE 3-2 Creating a Client to Communicate With the Netra CT Agent (Part 1) 35

CODE EXAMPLE 3-3 Getting the Root MBean Object Name (Part 2) 36

CODE EXAMPLE 3-4 Traversing the Containment Hierarchy From a Node (Part 3) 37

CODE EXAMPLE 3-5 RMI Example of Listening for MOH Notifications 38

CODE EXAMPLE 3-6 Registering a NotificationListener With an AlarmNotificationFilter 39

CODE EXAMPLE 3-7 Using the Default Alarm Severity Profile 40

CODE EXAMPLE 3-8 Creating an Alarm Severity Profile 41

CODE EXAMPLE 3-9 Assigning a New Alarm Severity Profile 43

CODE EXAMPLE 3-10 Extract of Using the Default Alarm Severity Profile 45

CODE EXAMPLE 3-11 Extract of Assigning a New Alarm Severity Profile 45

CODE EXAMPLE 3-12 Software Monitor Test (Part 1) 46

CODE EXAMPLE 3-13 Traversing the Software Service List (Part 2) 47

CODE EXAMPLE 3-14 Getting the List of Service Daemons (Part 3) 48

CODE EXAMPLE 5-1 Index of the Midplane Object 198

CODE EXAMPLE 5-2 Identifying the Midplane’s Current Location 199

CODE EXAMPLE 5-3 Creating an Entry in the Profile Table 200

CODE EXAMPLE 5-4 Automatic Entry Created in Corresponding Alarm Severity Table 201

CODE EXAMPLE 5-5 Setting the Alarm Severity for the Profile Table 201

CODE EXAMPLE 5-6 Setting the Index Entry Corresponding to the Thermistor 202
 xv

CODE EXAMPLE 7-1 PMS Client Initialization Example 216

CODE EXAMPLE 7-2 PMS Client Main Thread 223

CODE EXAMPLE 7-3 PMS Client Asynchronous Message Handling 225

CODE EXAMPLE 7-4 PMS Client Scheduling Example 238

CODE EXAMPLE 7-5 PMS Client User and Management Interface 239

CODE EXAMPLE 7-6 PMS Client Node Interface 256

CODE EXAMPLE 7-7 PMS Client RND Interface 263

CODE EXAMPLE 8-1 Example Output of PICL Temperature Sensors 282

CODE EXAMPLE 8-2 Example of watchdog-controller 286

CODE EXAMPLE 8-3 Sample Output of prtfru Command 286
xvi Netra CT Server Software Developer’s Guide • August 2004

Preface

The Netra CT Server Software Developer’s Guide contains information for developers
writing application software for the Netra™ CT 810 and 410 servers. This manual
assumes you are a software developer familiar with UNIX commands and
networking applications.

How This Book Is Organized
Chapter 1 contains an overview of the Netra CT software and lists the requirements
for developing software applications for the platform.

Chapter 2 displays the system’s various equipment models. The diagrams in this
chapter demonstrate how the Netra CT software views the hardware components.

Chapter 3 offers a tutorial in writing applications that interface with the Netra CT
server software.

Chapter 4 introduces the application programming interfaces for the Netra CT server
including the Netra CT element management agent software.

Chapter 5 describes the Netra CT Simple Network Management Protocol (SNMP)
management information base (MIB).

Chapter 6 presents the design of the Netra CT software modules and how they relate
to each other.

Chapter 7 provides an overview of the Netra CT Processor Management Services
(PMS) software.

Chapter 8 defines the Solaris™ operating system’s platform information and control
library (PICL) software and how you can use it to set the watchdog timer.
 xvii

For obscure or difficult terminology definition, see the Glossary.

Typographic Conventions

Shell Prompts

Typeface*

* The settings on your browser might differ from these settings.

Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your.login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when contrasted
with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized.
Replace command-line variables
with real names or values.

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.
To delete a file, type rm filename.

Shell Prompt

C shell machine-name%

C shell superuser machine-name#

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #
xviii Netra CT Server Software Developer’s Guide • August 2004

Related Documentation
The Netra CT Server documentation is listed in the following table.

You might want to refer to documentation on the following software for additional
information: the Solaris operating environment, the ChorusOS™ environment,
OpenBoot™ PROM firmware, and the Netra High Availability (HA) Suite.

Accessing Sun Documentation
You can view, print, or purchase a broad selection of Sun documentation, including
localized versions, at:

http://www.sun.com/documentation

Contacting Sun Technical Support
If you have technical questions about this product that are not answered in this
document, go to:

http://www.sun.com/service/contacting

Title Part Number

Netra CT Server Start Here 816-2479

Netra CT Server Product Overview 816-2480

Netra CT Server Installation Guide 816-2481

Netra CT Server Service Manual 816-2482

Netra CT Server System Administration Guide 816-2483

Netra CT Server Safety and Compliance Manual 816-2484

Netra CT Server Software Developer’s Guide 816-2486

Netra CT Server Release Notes 817-0939
Preface xix

http://www.sun.com/service/contacting
http://www.sun.com/documentation

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. You can submit your comments by going to:

http://www.sun.com/hwdocs/feedback

Please include the title and part number of your document with your feedback:

Netra CT Server Software Developer’s Guide, part number 816-2486-11
xx Netra CT Server Software Developer’s Guide • August 2004

http://www.sun.com/hwdocs/feedback

CHAPTER 1

Programming Environment

This chapter provides an overview of the software environment that forms the basis
for developing applications for the Netra CT server:

■ “Netra CT Server” on page 1
■ “Hardware Description” on page 1
■ “Software Description” on page 3

Netra CT Server
The Netra CT server system consists of a host CPU, an alarm card which is the nexus
of system management, optionally one or several satellite CPUs, and one or several
CompactPCI (cPCI) I/O cards. Different software combinations run on each of these
elements as is shown in FIGURE 1-1.

Hardware Description
This section provides brief descriptions of the Netra CT server board components
and hot-swapping capabilities. See the Netra CT Server Product Overview (816-2480)
for more information.

Alarm Card

An alarm card is used in the Netra CT 810 and Netra CT 410 servers to control
system functions. The board is plugged into slot 8 for the Netra CT 810, and into slot
1 for the Netra CT 410 server. ChorusOS 5.0 is the operating system running on the
1

alarm card, and the boot environment is controlled by boot control firmware.
Developers use a command-line interface (CLI) to provide an administrative
interface to the system. Drawer-level monitoring and control of the system is
accomplished through Managed Object Hierarchy (MOH) and Processor
Management Service (PMS) software.

Host CPU Board

The host CPU board is the same for both Netra 810 and Netra CT 410 servers. The
board is plugged into slot 1 for the Netra CT 810, and into slot 3 for the Netra CT 410
server. The Solaris OS runs on these boards. MOH and PMS provide local and
drawer-level monitor and control functions.

Satellite CPU Boards

Several satellite CPU cards can occupy the I/O slots and perform normal CPU
functions independently. MOH and PMS provide local monitor and control
functions.

I/O Boards

One or more cPCI boards can occupy I/O slots. The I/O boards are controlled by the
host CPU and the Solaris OS running on the host CPU board.

Hot-Swapping Capabilities

Boards and other field-replaceable units (FRUs) can be swapped while the system is
running, depending on whether or not they conform to the Hot Swap Specification
PICMG 2.1 R 2.0. This ability to hot swap is a feature that is controllable by software
if the board itself is hot-swap compliant. For further information on hot swap issues,
see the Netra CT Server Product Overview (816-2480), Netra CT Server System
Administration Guide (816-2483), and Netra CT Server Service Manual (816-2482).
2 Netra CT Server Software Developer’s Guide • August 2004

Software Description

FIGURE 1-1 Netra CT Server Software

Satellite CPU
Alarm Card

MCNet

I/O board

cPCI bus

IPMI

External data network (LAN)

Host CPU

Solaris

OBP

SMC PCI i/f SMC PCI i/f BMC PCI i/f

MOH
PMS

Solaris

OBP

MOH
PMS

ChorusOS

BCF

CLI
MOH
PMS
Chapter 1 Programming Environment 3

The abbreviations shown in FIGURE 1-1 are identified in TABLE 1-1.

Operating System Specifics

ChorusOS on the alarm card provides chassis management features that support
real-time, multi-threaded applications, and POSIX interfaces to support easy porting
of POSIX/UNIX (Solaris) applications. For details of ChorusOS 5.0, refer to the
ChorusOS documentation.

TABLE 1-1 Netra CT Server Software Overview

Abbreviation Name Description

Solaris Solaris Operating
Environment

Installed by the user. Runs on the host CPU card and on
any satellite CPU cards.

ChorusOS ChorusOS operating
environment

Factory-installed on the alarm card. Manages all elements
of the Netra CT server that are connected to the midplane.

CLI Command-line interface The primary user interface to the alarm card.

MOH Managed Object Hierarchy Application that manages the hardware and software
components of the system.

PMS Processor Management
Service

Manages processor elements used by client applications.

OBP OpenBoot PROM firmware
and diagnostics

Boot firmware and diagnostics on CPU cards.

BCF Boot control firmware Firmware on the alarm card to control booting.

BMC BMC firmware Baseboard management controller of the IPMI Controller
on the alarm card, which provides a command nexus
between Satellite CPU and RMC client during hot swap
unconfiguration operations.

SMC SMC firmware System Management Controller firmware is related to
IPMI Controller on CPU cards. SMC APIs provide client
access to local resources such as temperature sensors,
watchdog subsystems, and local I2C bus devices; and
access to IPMI bus devices.

IPMI IPMI Intelligent platform management Interface is a
communication channel over the cPCI backplane.

MCNet MCNet MCNet is a PICMG 2.14 communication protocol over the
cPCI backplane. It can be used to communicate between
the alarm card, the host CPU card, and any satellite CPU
cards which are MCNet capable.
4 Netra CT Server Software Developer’s Guide • August 2004

Solaris 9 OS on the host and satellite CPU cards provides APIs such as platform
information and control library (PICL), reconfiguration coordination manager
(RCM), and cfgadm (1M), as explained in Chapter 8. The kernel layer interacts with
device drivers to control hardware components of the system such as the CPU cards
and the I/O boards. These device drivers bind to the kernel using the device driver
interfaces (DDI) and driver kernel interfaces (DKI).

Managed Object Hierarchy

The Managed Object Hierarchy (MOH) is a distributed management application that
runs on the alarm card, and host and satellite CPUs. MOH on the alarm card
provides drawer-level monitoring of the system. MOH on the CPUs, both host and
satellite, provides local views of the board on which it runs, and collaborates to
provide the status of its components to the MOH on the alarm card. The various
MOHs communicate with one another over MCNet. MOH is discussed further in
Chapter 6.

Processor Management Services

Processor management services (PMS) software is an extension to the Netra CT
platform services software that addresses the requirements of high-availability
application frameworks. PMS software enables client applications to manage the
operation of the processor CPU board elements within a single Netra CT system or
within a cluster of multiple Netra CT systems.

PMS ensures high availability by monitoring a processor element’s fault condition,
such as OS hangs, deadlock, and panic. The alarm card provides a server-level view
showing the state of each CPU card as a plug-in unit. PMS services are enabled
separately on the alarm card and on the host CPU. PMS services are discussed
further in Chapter 7.

Multicomputing Network

MCNet uses the cPCI backplane on the Netra CT platform to provide Ethernet-like
interface to the CPU cards and the alarm card.

Solaris MCNet driver provides standard DLPI v2 interface to higher level protocols
and applications. It appears like any other network interface in Solaris when
plumbed.
Chapter 1 Programming Environment 5

Platform Information Control Library

This Solaris library provides a method for publishing platform-specific information
that clients can access in a way that is not specific to the platform. PICL is discussed
further in Chapter 8.

Management Framework
The Java Dynamic Management™ Kit (JDMK) development package provides a
framework of managed objects and their associated interfaces. SNMP uses a
management information base (MIB), which defines managed objects for the
elements within the Netra CT server platform. The managed objects are abstract
representations of the resources and services within the system. The following
interfaces can be used to manage Netra CT system.

SNMP/MIB Support

The netract agent supports the following parts of the MIB:

■ System group from MIB II

■ Interface group from interface MIB

■ Physical entity group from ENTITY-MIB

SNMP Interface

The netract agent operates on the alarm card, the system host CPU card, and the
satellite CPUs in a distributed manner. They all provide the SNMP interface version
2, and Netra CT-specific instrumentation monitoring.

RMI Interface

The netract agent uses JDMK service to support common client/server protocols.
These include Remote Method Invocation (RMI) which is the mechanism used to
support remote, or distributed access to the managed object hierarchy (MOH).
6 Netra CT Server Software Developer’s Guide • August 2004

Developing Applications Using PMS
PMS can run on both the alarm card, and host and satellite CPUs. To develop
applications that use PMS on the alarm card you need Solaris 9 OS, ChorusOS 5.0, C
compiler version, PMS API, and libraries as described in Chapter 7.

To develop applications that use PMS on host and satellite CPUs you need Solaris 9
OS, C compiler version, PMS API, and libraries as described in Chapter 7.

For more information about ChorusOS refer to the ChorusOS 5.0 Features and
Architecture Overview (806-6897).

Developing Applications to Interface with MOH
or SNMP
To develop applications to interface with MOH or SNMP, you need the Solaris 9 OS,
Java Virtual Machine (JVM) and the Java Dynamic Management Kit (JDMK) and the
Netra CT agent library. For more information about JDMK refer to Java Dynamic
Management Kit 4.2 Tutorial (806-6633).

Developing Applications to Run on Host or
Satellite CPU Boards
To develop applications to run on host or satellite CPU cards you require Solaris 9
OS to access services such as dynamic reconfiguration (DR) framework, and
platform information and control library (PICL) API. Standard Solaris tools such as
the cfgadm(1) command enable service operations such as configuring and
unconfiguring system FRUs.
Chapter 1 Programming Environment 7

8 Netra CT Server Software Developer’s Guide • August 2004

CHAPTER 2

Netra CT System Equipment
Models

This chapter provides illustrations of the Netra CT system equipment models, and
contains the following sections:

■ “Modeling a Netra CT System” on page 9

■ “Netra CT 810 System Equipment Models” on page 12

■ “Netra CT 410 System Equipment Models” on page 20

Modeling a Netra CT System
Equipment models show how the Netra CT element management agent software
views the Netra CT system hardware. Each equipment model presents a Netra CT
system in a containment hierarchy of hardware components, with the midplane at
the root of the hierarchy. For example, a cPCI slot might contain an alarm card,
which in turn will contain a number of Ethernet and serial ports. These relationships
extending from the midplane form a hierarchy of hardware resources. This hierarchy
is modeled using relationships between managed objects representing the hardware
resources.
9

FIGURE 2-1 Partial Hardware Resource Hierarchy

Managed Objects
In the Netra CT software, a managed resource is represented as a managed object,
which presents information needed to manage the resource. A managed resource can
be represented by a single managed object, or by several managed objects. An agent
typically contains or provides views of many managed objects.

FIGURE 2-2 shows the class names of the hardware Netra CT software managed
objects, and TABLE 2-1 provides definitions for these objects.

FIGURE 2-2 Hardware Resource Hierarchy Showing Managed Object Classes

Midplane

CompactPCI slot Power distribution unit Removable media slot

Alarm card DVD drive

Alarm port 2 Ethernet ports 2 serial ports

Midplane
(equipment)

CompactPCI slot
(equipment holder)

Power distribution unit
(equipment)

Removable media slot
(equipment holder)

Alarm card
(plug-in unit)

DVD drive
(plug-in unit)

Alarm port
(termination point)

2 Ethernet ports
(termination points)

2 serial ports
(termination points)
10 Netra CT Server Software Developer’s Guide • August 2004

Viewing the Equipment Model Hierarchies
Both the SNMP interface and the JMX compatible Netra CT element management
API provide ways to traverse the equipment containment hierarchy. You can view
the managed objects of a Netra CT system through the system’s alarm card or
through the host CPU board. You can also view the managed objects from the agent
on any satellite CPU board. In both system-wide views, the system’s midplane is at
the top of the equipment hierarchy and all other hardware objects (slots, fan trays,
I/O cards, and so on) are displayed subordinate to the midplane.

When viewing the system through the alarm card (defined as the system view from the
alarm card), the alarm card’s termination points (alarm port, Ethernet ports, and
serial ports) are displayed in the model, but the host CPU board’s termination points
are not displayed.

Conversely, when you view the system through the host CPU board (the system view
from host CPU board), the alarm card’s termination points are not displayed, but the
host CPU board’s termination points, and any hardware connected to the host CPU
board (for example, SCSI devices), is displayed.

You can also view the equipment model with the host CPU board or a supported
satellite CPU board as the network element at the top of the hierarchy. In these
models (defined as the host CPU board local view and satellite CPU board local view),

TABLE 2-1 Managed Object Class Definitions

Managed Object Class Definition

Network element Network elements can be standalone devices or multi-component,
geographically distributed systems.

Equipment holder Represents physical resources of the network element that are
capable of holding other physical resources. For example,
CompactPCI slots, fan tray slots, and system controller board slots
are equipment holder resources.

Plug-in unit This managed entity represents equipment that can be physically
inserted or removed from slots of the system (for example,
CompactPCI I/O cards and power supply units).

Equipment Equipment represents those externally manageable physical
components which are not FRUs (for example, a power distribution
unit or a CPU temperature sensor) of a network that are not
modeled as a plug-in unit or an equipment holder.

Termination point Represents the points where physical paths terminate (for example,
Ethernet and serial ports) and physical path functions.
Chapter 2 Netra CT System Equipment Models 11

only the objects directly controlled by the host or satellite CPU board are displayed.
Other objects, like the midplane, alarm card, and the power distribution unit, are not
seen in these equipment models.

“Netra CT 810 System Equipment Models” on page 12 and “Netra CT 410 System
Equipment Models” on page 20 present the equipment models for the Netra CT
front and rear-access systems. These sections contain the equipment models shown
in the system alarm card view, the host CPU board view, and the host and satellite
CPU board views.

Netra CT 810 System Equipment Models
This section contains the following equipment models of the Netra CT 810 server:

■ “Rear-Access Netra CT 810 System View From Alarm Card” on page 13
■ “Front-Access Netra CT 810 System View From Alarm Card” on page 14
■ “Rear-Access Netra CT 810 System View From Host CPU Board” on page 15
■ “Front-Access Netra CT 810 System View From Host CPU Board” on page 16
■ “Front-Access Netra CT 810 System Host CPU Board Local View” on page 17
■ “Rear-Access Netra CT 810 System Satellite CPU Board Local View” on page 19
■ “Netra CT 810 System Satellite CPU Board Local View” on page 19
12 Netra CT Server Software Developer’s Guide • August 2004

FIGURE 2-3 Rear-Access Netra CT 810 System View From Alarm Card

Midplane
(equipment)

CompactPCI
slot

(equipment holder)

Disk slot
(equipment holder)

Fan tray slot
(equipment holder)

Power supply
slot

(equipment holder)

Proprietary rear
transition module slot
(equipment holder)

System CPU rear
transition card slot
(equipment holder)

System controller
board slot

(equipment holder)

Disk drive
2 instances
(plug-in unit)

Alarm card
slot 8

(plug-in
unit)

I/O card
slots 2–7
(plug-in

unit)

Satellite
CPU card
slots 2–7
(plug-in

unit)

System
CPU card

slot 1
(plug-in

unit)

Alarm
proprietary

rear transition
card

(plug-in unit)

Alarm port
1 instance

(termination
point)

Ethernet port
2 instances
(termination

point)

Serial port
2 instances
(termination

point)

Satellite CPU
rear transition
card slots 2 –7
(plug-in unit)

System CPU
rear transition

card slot 1
(plug-in unit)

CPU
temperature
(equipment)

CPU
temperature
(equipment)

Fan tray
2 instances
(plug-in unit)

DVD drive or DAT drive
slot 1

(plug-in unit)

Power supply unit
2 instances
(plug-in unit)

System controller
board slot 1
(plug-in unit)

System status
panel slot

(equipment holder)

System
status

panel slot 1
(plug-in

unit)

Power distribution
unit

(equipment)

Removable media
slot

(equipment holder)
Chapter 2 Netra CT System Equipment Models 13

FIGURE 2-4 Front-Access Netra CT 810 System View From Alarm Card

Midplane
(equipment)

CompactPCI
slot

(equipment
holder)

Disk slot
(equipment

holder)

Fan tray
slot

(equipment
holder)

Power supply
slot

(equipment
holder)

Removable
media slot
(equipment

holder)

System controller
board slot

(equipment
holder)

Disk drive
2 instances
(plug-in unit)

Alarm card
slot 8

(plug-in unit)

I/O card
slots 3–7

(plug-in unit)

Satellite CPU
card

slots 3–7
(plug-in unit)

System
CPU card

slot 1
(plug-in unit)

System CPU
front transition

card slot 2
(plug-in unit)

Alarm port
1 instance

(termination
point)

Ethernet port
2 instances
(termination

point)

Serial port
2 instances
(termination

point)

DVD drive
or DAT drive

slot 1
(plug-in unit)

CPU
temperature
(equipment)

CPU
temperature
(equipment)

Fan tray
2 instances
(plug-in unit)

System controller
board
slot 1

(plug-in unit)

System status
panel slot

(equipment
holder)

System status
panel
slot 1

(plug-in
unit)

Power
distribution

unit
(equipment)

Power supply
unit

2 instances
(plug-in unit)
14 Netra CT Server Software Developer’s Guide • August 2004

FIGURE 2-5 Rear-Access Netra CT 810 System View From Host CPU Board

Midplane
(equipment)

CompactPCI
slot

(equipment holder)

Disk slot
(equipment holder)

Fan tray slot
(equipment holder)

Power supply
slot

(equipment holder)

Proprietary rear
transition module slot
(equipment holder)

System CPU rear
transition card slot
(equipment holder)

System controller
board slot

(equipment holder)

Disk drive
2 instances
(plug-in unit)

Alarm card
slot 8

(plug-in
unit)

I/O card
slots 2–7
(plug-in

unit)

Satellite
CPU card
slots 2–7

(plug-in unit)

System
CPU card

slot 1
(plug-in

unit)

Alarm
proprietary

rear transition
card slot 8

(plug-in unit)

Parallel port
1 instance

(termination
point)

Ethernet port
2 instances
(termination

point)

SCSI slot
1 instance
(equipment

holder)

Serial port
2 instances
(termination

point)

Satellite CPU
rear transition

card
slots 2–7

(plug-in unit)

System CPU
rear transition

card
(plug-in unit)

CPU
temperature
(equipment)

CPU
temperature
(equipment)

Fan tray
2 instances
(plug-in unit)

DVD drive or DAT drive
slot 1

(plug-in unit)

Power supply unit
2 instances
(plug-in unit)

System controller
board slot 1
(plug-in unit)

System status
panel slot

(equipment holder)

System
status

panel slot 1
(plug-in

unit)

Power distribution
unit

(equipment)

Removable media
slot

(equipment holder)

SCSI slot
(equipment

holder)

SCSI slot
(equipment

holder)

Ethernet port
(termination

point)

PMC slot
(equipment

holder)

Drive expansion box
(equipment holder)

Expansion box
disk drive

(equipment)

SCSI slot
1 instance

(equipment holder)

Drive expansion box
(equipment holder)

Expansion box disk drive
3 instances
(equipment)

PMC card
(plug-in unit)
Chapter 2 Netra CT System Equipment Models 15

FIGURE 2-6 Front-Access Netra CT 810 System View From Host CPU Board

Midplane
(equipment)

CompactPCI
slot

(equipment
holder)

Disk slot
(equipment

holder)

Fan tray
slot

(equipment
holder)

Power supply
slot

(equipment
holder)

Removable
media slot
(equipment

holder)

System controller
board slot

(equipment
holder)

Disk drive
2 instances
(plug-in unit)

Alarm card
slot 8

(plug-in unit)

I/O card
slots 3–7

(plug-in unit)

Satellite CPU
card

slots 3–7
(plug-in unit)

System
CPU card

slot 1
(plug-in unit)

System CPU
front transition

card slot 2
(plug-in unit)

Ethernet port
1 instance

(termination
point)

DVD drive
or DAT drive

slot 1
(plug-in unit)

CPU
temperature
(equipment)

CPU
temperature
(equipment)

Parallel port
1 instance

(termination
point)

Ethernet port
2 instances
(termination

point)

SCSI slot
1 instance
(equipment

holder)

Serial port
2 instances
(termination

point)

SCSI slot
(equipment

holder)

SCSI slot
(equipment

holder)

Ethernet port
(termination

point)

PMC slot
(equipment

holder)

Drive expansion box
(equipment holder)

Expansion box
disk drive

(equipment)

SCSI slot
(equipment

holder)

Expansion box
disk drive

(equipment)

Drive expansion box
(equipment holder)

PMC card
(plug-in unit)

Fan tray
2 instances
(plug-in unit)

System controller
board slot 1
(plug-in unit)

System status
panel slot

(equipment
holder)

System status
panel slot 1
(plug-in unit)

Power
distribution

unit
(equipment)

Power supply
unit

2 instances
(plug-in unit)
16 Netra CT Server Software Developer’s Guide • August 2004

FIGURE 2-7 Front-Access Netra CT 810 System Host CPU Board Local View

Root
(network element)

Compact PCI
slots 2–7

(equipment holder)

Disk slot
(equipment holder)

System CPU card
(equipment)

Removable media slot
(equipment holder)

Disk drive
2 instances
(plug-in unit)

I/O card
slots 3–7

(plug-in unit)

System CPU
front transition

card slot 2
(plug-in unit)

DVD drive or DAT drive
slot 1

(plug-in unit)

CPU
temperature
(equipment)

Parallel port
1 instance

(termination
point)

Ethernet port
2 instances
(termination

point)

SCSI slot
1 instance
(equipment

holder)

Serial port
2 instances
(termination

point)

SCSI slot
2 instances
(equipment

holder)

SCSI slot
(equipment

holder)

Ethernet port
2 instances
(termination

point)

PMC slot
1 instance
(equipment

holder)

Drive expansion box
(equipment holder)

Expansion box
disk drive

(equipment)

SCSI slot
(equipment

holder)

Expansion box
disk drive

(equipment)

Drive expansion box
(equipment holder)

PMC card
(plug-in unit)

Ethernet port
1 instance

(equipment holder)
Chapter 2 Netra CT System Equipment Models 17

FIGURE 2-8 Rear-Access Netra CT 810 System Host CPU Board Local View

Root
(network element)

CompactPCI
slots 2–7

(equipment holder)

Disk slot
(equipment holder)

System CPU card
(equipment)

Removable media slot
(equipment holder)

Disk drive
2 instances
(plug-in unit)

I/O card
slots 3–7

(plug-in unit)

DVD drive or DAT drive
slot 1

(plug-in unit)

CPU
temperature
(equipment)

Parallel port
1 instance

(termination
point)

Ethernet port
2 instances
(termination

point)

SCSI slot
1 instance
(equipment

holder)

Serial port
2 instances
(termination

point)

SCSI slot
2 instances
(equipment

holder)

SCSI slot
(equipment

holder)

Ethernet port
2 instances
(termination

point)

PMC slot
1 instance
(equipment

holder)

Drive expansion box
(equipment holder)

Expansion box
disk drive

(equipment)

SCSI slot
(equipment

holder)

Expansion box
disk drive

(equipment)

Drive expansion box
(equipment holder)

PMC card
(plug-in unit)
18 Netra CT Server Software Developer’s Guide • August 2004

FIGURE 2-9 Rear-Access Netra CT 810 System Satellite CPU Board Local View

FIGURE 2-10 Netra CT 810 System Satellite CPU Board Local View

Root
(network element)

System CPU
CPU card equipment

(equipment)

PMC slot
2 instances

(equipment holder)

Ethernet port
2 instances

(termination point)

PMC card
(plug-in unit)

Serial port
2 instances

(termination point)

CPU temperature
(equipment)

Root
(network element)

System CPU
CPU card equipment

(equipment)

PMC slot
2 instances

(equipment holder)

PMC card
(plug-in unit)

CPU temperature
(equipment)
Chapter 2 Netra CT System Equipment Models 19

Netra CT 410 System Equipment Models
This section contains the following equipment models for the Netra CT 410 server:

■ “Rear-Access Netra CT 410 Diskfull System View From Alarm Card” on page 21

■ “Front-Access Netra CT 410 Diskfull System View From Alarm Card” on page 22

■ “Front-Access Netra CT 410 Diskless System View From Alarm Card” on page 23

■ “Rear-Access Netra CT 410 Diskless System View From Alarm Card” on page 24

■ “Rear-Access Netra CT 410 Diskless System View From Host CPU Board” on
page 25

■ “Front-Access Netra CT 410 Diskless System View From Host CPU Board” on
page 26

■ “Front-Access Netra CT 410 Diskfull System View From Host CPU Board” on
page 27

■ “Rear-Access Netra CT 410 Diskfull Local View From Host CPU Board” on
page 28

■ “Rear-Access Netra CT 410 Diskfull Local View From Host CPU Board” on
page 28

■ “Rear-Access Netra CT 410 System Satellite CPU Board Local View” on page 29
20 Netra CT Server Software Developer’s Guide • August 2004

FIGURE 2-11 Rear-Access Netra CT 410 Diskfull System View From Alarm Card

Midplane
(equipment)

CompactPCI
slot

(equipment
holder)

Disk slot
(equipment

holder)

Fan tray
slot

(equipment
holder)

Power
supply

slot
(equipment

holder)

Proprietary
rear transition

card slot
(equipment

holder)

System CPU
rear transition

card slot
(equipment

holder)

System
controller
board slot

(equipment
holder)

Disk drive
1 instance

(plug-in unit)

Alarm card
(3U) slots
1 and 2
(plug-in

unit)

I/O card
slots

4 and 5
(plug-in

unit)

Satellite CPU
card slots
4 and 5
(plug-in

unit)

System
CPU card

slot 3
(plug-in

unit)

Alarm
proprietary

rear
transition

card
(plug-in unit)

Alarm port
1 instance

(termination
point)

Ethernet port
2 instances
(termination

point)

Serial port
2 instances
(termination

point)

Satellite CPU
rear transition

card
slots 4 and 5
(plug-in unit)

System CPU
rear transition

card
slot 3

(plug-in unit)

CPU
temperature
(equipment)

CPU
temperature
(equipment)

Fan tray
2 instances
(plug-in unit)

Power supply
unit

1 instance
(plug-in unit)

System
controller

board
slot 1

(plug-in
unit)

System
status

panel slot
(equipment

holder)

System
status
panel
slot 1

(plug-in
unit)

Power
distribution

unit
(equipment)
Chapter 2 Netra CT System Equipment Models 21

FIGURE 2-12 Front-Access Netra CT 410 Diskfull System View From Alarm Card

Midplane
(equipment)

CompactPCI
slot

(equipment
holder)

Disk slot
(equipment

holder)

Fan tray
slot

(equipment
holder)

Power
supply

slot
(equipment

holder)

System CPU
front transition

card slot
(equipment

holder)

System
controller
board slot

(equipment
holder)

Disk drive
1 instance

(plug-in unit)

Alarm card (3U)
slots 1 and 2
(plug-in unit)

I/O card
slots 4 and 5
(plug-in unit)

Satellite CPU
card

slots 4 and 5
(plug-in unit)

System CPU
card slot 3

(plug-in unit)

Alarm port
1 instance

(termination
point)

Ethernet port
2 instances
(termination

point)

Serial port
2 instances
(termination

point)

System CPU
front

transition
card

(plug-in unit)

CPU
temperature
(equipment)

CPU
temperature
(equipment)

Fan tray
2 instances
(plug-in unit)

Power supply
unit

1 instance
(plug-in unit)

System
controller

board
slot 1

(plug-in
unit)

System
status

panel slot
(equipment

holder)

System
status panel

slot 1
(plug-in unit)

Power
distribution

unit
(equipment)
22 Netra CT Server Software Developer’s Guide • August 2004

FIGURE 2-13 Front-Access Netra CT 410 Diskless System View From Alarm Card

Midplane
(equipment)

CompactPCI
slot

(equipment
holder)

Fan tray
slot

(equipment
holder)

Power
supply

slot
(equipment

holder)

System CPU
front transition

card slot
(equipment

holder)

System
controller
board slot

(equipment
holder)

Alarm card
(6U) slot 1

(plug-in
unit)

I/O card
slots 2, 4,

and 5
(plug-in

unit)

Satellite
CPU card
slots 2, 4,

and 5
(plug-in

unit)

System
CPU card

slot 3
(plug-in

unit)

Alarm port
1 instance

(termination
point)

Ethernet port
2 instances
(termination

point)

Serial port
2 instances
(termination

point)

System CPU
front

transition
card

(plug-in unit)

CPU
temperature
(equipment)

CPU
temperature
(equipment)

Fan tray
2 instances
(plug-in unit)

Power supply
unit

1 instance
(plug-in unit)

System
controller

board
slot 1

(plug-in
unit)

System
status

panel slot
(equipment

holder)

System
status
panel
slot 1

(plug-in
unit)

Power
distribution

unit
(equipment)
Chapter 2 Netra CT System Equipment Models 23

FIGURE 2-14 Rear-Access Netra CT 410 Diskless System View From Alarm Card

Midplane
(equipment)

CompactPCI
slot

(equipment
holder)

Fan tray
slot

(equipment
holder)

Power
supply

slot
(equipment

holder)

Proprietary
rear transition

card slot
(equipment

holder)

System CPU
rear transition

card slot
(equipment

holder)

System
controller
board slot

(equipment
holder)

Alarm card
(6U)
slot 1

(plug-in
unit)

I/O card
slots 2,
4 and 5
(plug-in

unit)

Satellite
CPU card

slots 2,
4 and 5
(plug-in

unit)

System
CPU card

slot 3
(plug-in

unit)

Alarm
proprietary

rear
transition

card
(plug-in unit)

Alarm port
1 instance

(termination
point)

Ethernet port
2 instances
(termination

point)

Serial port
2 instances
(termination

point)

Satellite CPU
rear transition

card
slots 2, 4 and 5

(plug-in unit)

System CPU
rear

transition
card slot 3

(plug-in unit)

CPU
temperature
(equipment)

CPU
temperature
(equipment)

Fan tray
2 instances
(plug-in unit)

Power supply
unit

1 instance
(plug-in unit)

System
controller

board
slot 1

(plug-in
unit)

System
status

panel slot
(equipment

holder)

System
status
panel
slot 1

(plug-in
unit)

Power
distribution

unit
(equipment)
24 Netra CT Server Software Developer’s Guide • August 2004

FIGURE 2-15 Rear-Access Netra CT 410 Diskless System View From Host CPU Board

Midplane
(equipment)

CompactPCI
slot

(equipment
holder)

Fan tray
slot

(equipment
holder)

Power
supply

slot
(equipment

holder)

Proprietary
rear transition

card slot
(equipment

holder)

System CPU
rear transition

card slot
(equipment

holder)

System
controller
board slot

(equipment
holder)

Alarm card
(6U)
slot 1

(plug-in
unit)

I/O card
slots 2,
4 and 5
(plug-in

unit)

Satellite
CPU card

slots 2,
4 and 5
(plug-in

unit)

System
CPU card

slot 3
(plug-in

unit)

Alarm
proprietary

rear
transaction

card
(plug-in unit)

SCSI slot
(equipment

holder)

PMC slot
(equipment

holder)

Drive expansion
box (equipment

holder)

PMC card
(plug-in unit)

Expansion box
disk drive

(equipment)

SCSI slot
(equipment

holder)

Drive expansion box
(equipment holder)

Expansion box disk
drive 3 instances

(equipment)

SCSI slot
1 instance

(equipment holder)

Ethernet port
(termination

point)

Parallel port
1 instance

(termination
point)

Ethernet port
2 instances
(termination

point)

SCSI slot
1 instance

(termination
point)

Serial port
2 instances
(termination

point)

Satellite CPU
rear transaction

card
slots 2, 4 and 5

(plug-in unit)

System CPU
rear

transition
card slot 3

(plug-in unit)

CPU
temperature
(equipment)

CPU
temperature
(equipment)

Fan tray
2 instances
(plug-in unit)

Power supply
unit

1 instance
(plug-in unit)

System
controller

board
slot 1

(plug-in
unit)

System
status

panel slot
(equipment

holder)

System
status
panel
slot 1

(plug-in
unit)

Power
distribution

unit
(equipment)
Chapter 2 Netra CT System Equipment Models 25

FIGURE 2-16 Front-Access Netra CT 410 Diskless System View From Host CPU Board

Satellite CPU card
slots 2, 4 and 5

(plug-in unit)

Midplane
(equipment)

CompactPCI slot
(equipment holder)

Fan tray slot
(equipment holder)

Power supply slot
(equipment holder)

System CPU front
transition card slot
(equipment holder)

System controller
board slot

(equipment holder)

Alarm card
(6U) slot 1

(plug-in unit)

I/O card
slots 2, 4 and 5

(plug-in unit)

System CPU card
slot 3

(plug-in unit)

Ethernet port
2 instances
(termination

point)

Serial port
2 instances
(termination

point)

CPU front
transition card
(plug-in unit)

CPU
temperature
(equipment)

SCSI slot
(equipment

holder)

SCSI slot
(equipment

holder)

Ethernet port
(termination

point)

PMC slot
(equipment

holder)

Drive expansion box
(equipment holder)

Expansion box
disk drive

(equipment)

SCSI slot
1 instance

(equipment holder)

Drive expansion box
(equipment holder)

Expansion box disk drive
3 instances
(equipment)

PMC card
(plug-in unit)

Serial port
1 instance

(termination
point)

SCSI slot
1 instance
(equipment

holder)

Ethernet port
1 instance

(termination
point)

Parallel port
1 instance

(termination
point)

CPU
temperature
(equipment)

Fan tray
2 instances
(plug-in unit)

Power supply unit
1 instance

(plug-in unit)

System controller
board slot 1
(plug-inunit)

System status
panel slot

(equipment holder)

System status
panel slot 1
(plug-in unit)

Power distribution
unit (equipment)
26 Netra CT Server Software Developer’s Guide • August 2004

FIGURE 2-17 Front-Access Netra CT 410 Diskfull System View From Host CPU Board

Midplane
(equipment)

CompactPCI
slot

(equipment
holder)

Disk slot
(equipment

holder)

Fan tray
slot

(equipment
holder)

Power supply
slot

(equipment
holder)

System CPU front
transition card slot

(equipment
holder)

System controller
board slot

(equipment
holder)

Disk drive
1 instance

(plug-in unit)

Alarm card (3U)
slots 1 and 2
(plug-in unit)

I/O card
slots 4 and 5
(plug-in unit)

Satellite CPU card
slots 4 and 5
(plug-in unit)

System CPU card
slot 3

(plug-in unit)

Ethernet port
1 instance

(termination
point)

Serial port
1 instance

(termination
point)

CPU front
transition card
(plug-in unit)

SCSI slot
1 instance

(equipment holder)

Drive expansion box
(equipment holder)

Expansion box disk drive
3 instances
(equipment)

Serial port
1 instance

(termination point)

SCSI slot
1 instance

(equipment holder)

Ethernet port
1 instance

(termination point)

Parallel port
1 instance

(termination point)

CPU
temperature
(equipment)

CPU
temperature
(equipment)

Fan tray
2 instances
(plug-in unit)

Power supply
unit 1 instance
(plug-in unit)

System controller
board slot 1
(plug-in unit)

System status
panel slot

(equipment
holder)

System status
panel slot 1
(plug-in unit)

Power
distribution

unit
(equipment)
Chapter 2 Netra CT System Equipment Models 27

FIGURE 2-18 Rear-Access Netra CT 410 Diskfull Local View From Host CPU Board

Root
(network element)

CompactPCI slot
(equipment holder)

Disk slot
(equipment holder)

System CPU
CPU card equipment

 slot 3
(equipment)

Disk drive
1 instance

(plug-in unit)

I/O card
slots 4 and 5
(plug-in unit)

PMC slot
1 instance
(equipment

holder)

Ethernet port
2 instances
(termination

point)

SCSI slot
2 instances
(equipment

holder)

PMC slot
(equipment

holder)

Ethernet port
(termination

point)

SCSI slot
(equipment

holder)

Parallel port
(termination

point)

Serial port
(termination

point)

PMC card
(plug-in unit)

CPU temperature
(equipment)

Drive expansion box
(equipment holder)

Expansion box
disk drive

(equipment)

SCSI slot
(equipment

holder)

Drive expansion box
(equipment holder)

Expansion box
disk drive

(equipment)

SCSI slot
(equipment

holder)
28 Netra CT Server Software Developer’s Guide • August 2004

FIGURE 2-19 Rear-Access Netra CT 410 System Satellite CPU Board Local View

Root
(network element)

System CPU
CPU card equipment

 slot 3
(equipment)

PMC slot
(equipment holder)

Ethernet port
(termination point)

Parallel port
(termination point)

Serial port
(termination point)

CPU temperature
(equipment)
Chapter 2 Netra CT System Equipment Models 29

30 Netra CT Server Software Developer’s Guide • August 2004

CHAPTER 3

Getting Started With Netra CT
Element Management Agent API

This chapter explains how to get started writing applications that interface with the
Netra CT element management agent, using the Java Management Extensions (JMX)
compatible Java API supported by the Netra CT management agent. The chapter
consists of:

■ “Before You Begin” on page 31
■ “About Netra CT Element Management Agent API” on page 32
■ “Creating Your Application” on page 33

Before You Begin
You should become acquainted with the topology of the Netra CT server (see
Chapter 2), and have some knowledge of Java programming, JMX specifications, and
JDMK framework. For more information about JDMK refer to Java Dynamic
Management Kit 4.2 Tutorial (806-6633), or go to
http://java.sun.com/docs/books/tutorial/index.html.

Verify that you have the Solaris OS on your development system. In addition, you
can download the required Netra CT patch packages from:

http://sunsolve.com
31

These packages consist of:

You will use these installed packages to work with this tutorial.

About Netra CT Element Management
Agent API
The Netra CT server software package includes various modules and extensions (see
“Operating System Specifics” on page 4), and the netract agent is one of these.

The netract agent, when appropriately invoked, provides configuration
monitoring and fault monitoring. This enables you to investigate the installed
system, and to determine whether the components are running smoothly.

Individual netract agents run on the alarm card, the host CPU board, and any
satellite CPU board. A management application must be able to talk to the different
agents and gather information about the system into a database.

Each netract agent notifies the management application of any changes, such as
hardware or software configuration changes, and also detects faults when they
occur.

The netract agent provides two different interfaces for the management
applications, one is SNMP version 2C interface, the other is a JMX-compatible Java
API called Netra CT management agent API. This chapter provides an introduction
on how to write a management application using this Java API.

Netra CT Agent Security

For JMX/JDMK/RMI connectivity, the Netra CT agent provides security by
authenticating the application connecting to it via the context of a valid username
and password pair.

TABLE 3-1 Solaris Packages for Netra CT Developer APIs

Package Description

SUNW2jdrt Java Runtime Java Dynamic Management Kit (JDMK) package

SUNWctmgx Netra CT management agent package

SUNWctac Alarm card firmware package that includes the Netra CT
management agent
32 Netra CT Server Software Developer’s Guide • August 2004

The username and password must be previously created in the Alarm Card database
via Alarm Card CLI. An account on Alarm card consists of username, password and
permission. For Netra CT agent, there are only two permissions: read-only and
read-write. User account on Alarm Card must have ALL PRIVILEDGES ENABLED
to have read-write permission. (See the Netra CT Server System Administration Guide
for details on setting up user accounts.)

There is a security flag used to enable and disable the Security Feature. This flag is
stored persistently and its default value is false. The security flag can be set to true
or false via Alarm Card CLI command setmohsecurity. A reset of Alarm Card is
required after changing the flag for the feature to take effect. (See the Netra CT Server
System Administration Guide for information on the setmohsecurity and
showmohsecurity CLI commands).

You can get the state of security flag with the Alarm Card CLI command
showmohsecurity or with the API by using the NEMBean’s getSecurityFlag
method described in “NEMBean” on page 95.

If the flag is true, security is on. This means the application that connects to Netra
CT agent must provide a valid username and password to be able to establish
connection.

If the flag is false, security is off and no authentication is done. It does not matter
whether an application provides username, password or not, it is always allowed to
connect.

Sample code with Netra CT Security is shown CODE EXAMPLE 3-1.

CODE EXAMPLE 3-1 Sample code with Netra CT Security

Creating Your Application
Creating an application to interface with and manage the configuration of the Netra
CT server involves a series of steps. You must be able to:

■ Enquire into the hierarchy of the system configuration
■ Monitor notifications
■ Monitor alarms

...
// set up the authentication info
AuthClient.setAuthInfo(connectorClient, username, password);
// now connect to the agent...
connectorClient.connect();
...
Chapter 3 Getting Started With Netra CT Element Management Agent API 33

1. Cut and paste the relevant code example into a text editor, make any necessary
adjustments, and compile the code.

Make sure that SUNW2jdtk is installed before trying to compile Client.java.
Refer to the Java Dynamic Management Kit 4.2 Tutorial for background information on
Client.java.

2. To compile Client.java, issue the command /usr/j2se/bin/javac
-classpath:

Compiling Client.java should produce the file Client.class. If you have
difficulty, refer to the Java Tutorial example of running a simple client.

3. Before running Client.java, start the agent by issuing the
command/opt/SUNWnetract/mgmt2.0/bin/ctmgx start

4. Use the following command to run Client.java:

The following sections point out various features of the Netra CT element
management API.

Purpose of the Application
First, a management application needs to know how the system is configured. The
simplest example sets up an agent describing the hardware containment hierarchy.
From the root of this tree, the management tree can be developed to show, for
example, how many fans there are, which cards are in which slots and so on.
Developing code that begins this action is the purpose of “Determining the System
Configuration Hierarchy” on page 35.

“Listening for Notifications” on page 38 deals with developing a way of monitoring
notifications such as power on and power off to a particular slot or device.

$ /usr/j2se/bin/javac -classpath \
/opt/SUNWjdmk/jdmk4.2/1.2/lib/jdmkrt.jar: \
/opt/SUNWnetract/mgmt2.0/lib/agent.jar Client.java

$ /opt/SUNWnetract/mgmt2.0/bin/ctmgx start

$ /usr/j2se/bin/java -classpath \
.:/opt/SUNWjdmk/jdmk4.2/1.2/lib/jdmkrt.jar: \
/opt/SUNWnetract/mgmt2.0/lib/agent.jar Client
34 Netra CT Server Software Developer’s Guide • August 2004

“Managing Alarms” on page 39 covers alarm management: how to handle the
receiving and transmitting of system alarms such as CPU over-temperature alarm.

“Software Monitoring” on page 46 shows how to get a list of running software
services and daemons, so they can be registered to receive notice of events.

Determining the System Configuration Hierarchy
In this section you develop a client to print out the object names of the MBeans
representing the system. A complete description of Mbeans, together with examples,
can be found in the JDMK documentation.

1. Ensure you have the appropriate software installed on the development system
for the application you intend to develop.

Refer to the Netra CT Server System Administration Guide if you need help in installing
the appropriate software.

2. Go to: /opt/SUNWnetract/mgmt2.0/docs/api to find the documentation that
identifies the pieces you need to communicate with the netract agent.

See the API documentation for:

■ com.sun.ctmgx.MohNames
■ com.sun.ctmgx.ContainmentTreeMbean

For JDMK documentation, go to: /opt/SUNWjdmk/jdmk4.2/1.2/docs. For an
introduction to JDMK, go to //docs.sun.com, and search for the Java Dynamic
Management Kit 4.2 Tutorial.

See the API documentation for:

■ com.sun.jdmk.comm.RmiConnectorAddress
■ com.sun.jdmk.comm.RmiConnectorClient

Communicating to the Netra CT Agent

This simple demonstration lets you connect a client with an instance of netract
agent, beginning in CODE EXAMPLE 3-2. This example represents part one of a
three-part example. A detailed explanation follows.

CODE EXAMPLE 3-2 Creating a Client to Communicate With the Netra CT Agent (Part 1)

import java.util.Iterator;
import java.util.Set;
import javax.management.ObjectName;
import com.sun.ctmgx.moh.MohNames;
Chapter 3 Getting Started With Netra CT Element Management Agent API 35

CODE EXAMPLE 3-2 instantiates the RmiConnectorClient and RmiConnectorAddress.

The demonstration continues in CODE EXAMPLE 3-3.

Finding the Root Object Name

CODE EXAMPLE 3-3 continues from the previous example. The code example connects
to the client and prints the ContainmentTree by getting the ObjectName of the root
MBean in the containment hierarchy.

Each MohNames instance comes up with ObjectNames instances that are accessible
via public static fields defined in MohNames. This includes the
ContainmentTreeMBean instance, which provides a mechanism for the user to
traverse the containment hierarchy representing the Netra CT system.

import com.sun.jdmk.ServiceName;
import com.sun.jdmk.comm.RmiConnectorAddress;
import com.sun.jdmk.comm.RmiConnectorClient;

public class Client {

 private RmiConnectorClient connectorClient;
 private RmiConnectorAddress connectorAddress;

 public Client() {
 connectorClient = new RmiConnectorClient();
 connectorAddress = new RmiConnectorAddress();
 }

 public static void main(String[] args) {
 Client client = new Client();
 try {
 client.printContainmentTree();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

CODE EXAMPLE 3-3 Getting the Root MBean Object Name (Part 2)

 public void printContainmentTree() throws Exception {
 connectorClient.connect(connectorAddress);

 Object[] params = new Object[0];
 String[] signature = new String[0];

CODE EXAMPLE 3-2 Creating a Client to Communicate With the Netra CT Agent (Part 1)
36 Netra CT Server Software Developer’s Guide • August 2004

This demonstration returns the object name of the instance of NEMBean. NEMBean
is the name of the network element MBean representing the system as a whole, in
other words, the root of the tree.

Now that you have identified the ObjectName of the root of the
MOH_CONTAINMENT_TREE you are ready to traverse the tree and find out what
other elements are in the tree.

Traversing the Containment Hierarchy From a Node

Continuing the demonstration from the previous example, in CODE EXAMPLE 3-4 you
traverse the MOH_CONTAINMENT_TREE from a node, and can get a list of all the
nodes on the tree using getChildren.

Here, the nodeName is the ObjectName of the MBean where the search should start
from. The line beginning Set children gets the children of the specified MBean in
the containment hierarchy.

 ObjectName rootName =
 (ObjectName)connectorClient.invoke(MohNames.MOH_CONTAINMENT_TREE,
 "getRoot", params, signature);
 printSubTree(rootName);

 connectorClient.disconnect();
 }

CODE EXAMPLE 3-4 Traversing the Containment Hierarchy From a Node (Part 3)

 private void printSubTree(ObjectName nodeName) throws Exception {
 System.out.println(nodeName);

 Object[] params = {nodeName};
 String[] signature = {"javax.management.ObjectName"};

 Set children =
 (Set)connectorClient.invoke(MohNames.MOH_CONTAINMENT_TREE,
 "getChildren", params, signature);

 for (Iterator itr = children.iterator(); itr.hasNext();) {
 printSubTree((ObjectName)itr.next());
 }
 }
}

CODE EXAMPLE 3-3 Getting the Root MBean Object Name (Part 2)
Chapter 3 Getting Started With Netra CT Element Management Agent API 37

Once you have established the hierarchy of the existing system, your application
must receive notification when changes to the system occur. This is the subject of the
following section.

Listening for Notifications
This series of examples assumes you continue from the previous three-part example.
Return to /opt/SUNWnetract/mgmt2.0/docs/api to find documentation.

In the JDMK framework, look at:

■ javax.management.Notification
■ javax.management.NotificationListener
■ javax.management.NotificationFilterSupport
■ javax.management.NotificationFilter

In MOH documentation you need to look at: com.sun.ctmgx.moh.MohNames and
com.sun.ctmgx.moh.Moh.EFDMBean.

Registering a Notification Listener With EFDMBean Instance

This example continues from the previous examples and shows you how to register
a NotificationListener using a NotificationFilter.You begin by adding a
NotificationListener that catches communications from the RmiConnectorClient.

CODE EXAMPLE 3-5 RMI Example of Listening for MOH Notifications

Registering a NotificationListener with a NotificationFilter

 try {
 // accessing MohNames for MOH_DEFAULT_EFD
 //
 connectorClient.addNotificationListener(MohNames.MOH_DEFAULT_EFD,\
 aListener, aFilter, null);
 }
 catch (com.sun.jdmk.comm.CommunicationException ce) {
 try {
 connectorClient.setMode(RmiConnectorClient.PULL_MODE);
 connectorClient.addNotificationListener\
 (MohNames.MOH_DEFAULT_EFD,aListener, aFilter, null);
 }
 catch (Exception e) {
 }
 }
38 Netra CT Server Software Developer’s Guide • August 2004

CODE EXAMPLE 3-5 establishes that MohNames can access MOH_DEFAULT_EFD. The
EFDMBean exposes the remote management interface of an event forwarding
discriminator managed object.

The netract agent of the Netra CT alarm card does not support the PUSH_MODE, so
the above code will work for any of the netract agent instances (those on the host,
satellite, and alarm card) in a Netra CT drawer.

Managing Alarms
Before you begin this segment of code example, you should refer back to:
/opt/SUNWnetract/mgmt2.0/docs/api

Look at the MOH documentation for:

■ com.sun.ctmgx.moh.AlarmNotification
■ com.sun.ctmgx.moh.AlarmNotificationFilter
■ com.sun.ctmgx.moh.AlarmSeverity
■ com.sun.ctmgx.moh.AlarmSeverityProfileMBean
■ com.sun.ctmgx.moh.AlarmType

Registering a Notification Listener With an Alarm
Notification Filter

In this section you identify the kinds of alarms the script listens for when events
occur. You can specify the level of action; this example listens for critical or major
alarms. AlarmNotification represents an alarm notification emitted by an MBean.

CODE EXAMPLE 3-6 Registering a NotificationListener With an AlarmNotificationFilter

AlarmNotificationFilter aFilter = new AlarmNotificationFilter();

// interested in all types of alarms
//
aFilter.enableAllAlarmTypes();

// interested in only CRITICAL and MAJOR alarms
//
aFilter.enableSeverity(AlarmSeverity.CRITICAL);
aFilter.enableSeverity(AlarmSeverity.MAJOR);

try {
 connectorClient.addNotificationListener(MohNames.MOH_DEFAULT_EFD,\
 aListener, aFilter, null)
 }
Chapter 3 Getting Started With Netra CT Element Management Agent API 39

CODE EXAMPLE 3-6 follows the form of the previous example in setting the
RmiConnectorClient to PULL_MODE. The alarm filter is set to
enableAllAlarmTypes, then refined to enable only AlarmSeverity.CRITICAL and
AlarmSeverity.MAJOR.

Using the Default Alarm Severity Profile

Each netract agent instance comes up with a default instance of
AlarmSeverityProfile which can be accessed by its object name,
MohNames.MOH_DEFAULT_ASP. The MBean instances that might generate
AlarmNotifications will have this default alarm severity profile associated with
them. The user can associate a new profile to any of those MBeans at any time.

 catch (com.sun.jdmk.comm.CommunicationException ce) {
 connectorClient.setMode(RmiConnectorClient.PULL_MODE);
 connectorClient.addNotificationListener(MohNames.MOH_DEFAULT_EFD,\
 aListener, aFilter, null)
 }
 catch (Exception e) {
 }

CODE EXAMPLE 3-7 Using the Default Alarm Severity Profile

// Get the alarm severity association of the default profile
//
Object[] allObjs = null;
Object obj = null;
Java.util.Set mySet = null;
Java.util.Map myMap = null;
 try {
 myMap = (Map)connectorClient.invoke(MohNames.MOH_DEFAULT_ASP,\
 "getAlarmSeverityList", null,null);

 mySet = (Set)myMap.keySet();
 allObjs = mySet.toArray();
 } catch(Exception e) {
 e.printStackTrace();
 }

 AlarmType aType = null;
 AlarmSeverity aSeverity = null;

 for (int i = 0; i < mySet.size();i++) {
 try {
 // aType and aSeverity is the association in this

CODE EXAMPLE 3-6 Registering a NotificationListener With an AlarmNotificationFilter
40 Netra CT Server Software Developer’s Guide • August 2004

In CODE EXAMPLE 3-7, the severity level of HIGH.TEMPERATURE AlarmType in the
default alarm severity profile has been set to CRITICAL. The following example
shows how to create your own alarm severity profile instances.

Creating Your Own Alarm Severity Profile

You can create your own alarm severity profile by following CODE EXAMPLE 3-8.

 // default profile
 aType = (AlarmType)allObjs[i];
 aSeverity = (AlarmSeverity)myMap.get(aType);

 // setting the severity of high temp alarm to critical
 //
 if (aType.equals(AlarmType.HIGH_TEMPERATURE)) {
 Object[] params = new Object[2];
 String[] signature = new String[2];
 params[0] = aType;
 params[1] = AlarmSeverity.CRITICAL;
 signature[0] = "com.sun.ctmgx.moh.AlarmType";
 signature[1] = "com.sun.ctmgx.moh.AlarmSeverity";
 connectorClient.invoke(MohNames.MOH_DEFAULT_ASP, \
 "setAlarmSeverity", params, signature);

 } catch(Exception e) {
 e.printStackTrace();
 }
 }

CODE EXAMPLE 3-8 Creating an Alarm Severity Profile

try {
 // You need to provide the class name to instantiate an MBean,
 // for AlarmSeverityProfileMBean
 // the class name string is defined by the constant MohNames.CLASS_NAME_ASP
 //
 ObjectName profileName = new ObjectName("NetraCT:name=\
 AlarmSeverityProfile,id=2");
 connectorClient.createMBean(MohNames.CLASS_NAME_ASP, profileName,\
 null,null);

 // To make the profile usable, you need to provide the alarm type and severity
 // associations
 //

CODE EXAMPLE 3-7 Using the Default Alarm Severity Profile (Continued)
Chapter 3 Getting Started With Netra CT Element Management Agent API 41

CODE EXAMPLE 3-8 assigns alarm notifications for high memory usage, fan failure,
and fuse failure, although the current netract agent does not support alarm
notifications for fuse failure. The code example is included here for demonstration
purposes.

 Object[] params = new Object[2];
 String[] signature = new String[2];
 signature[0] = "com.sun.ctmgx.moh.AlarmType";
 signature[1] = "com.sun.ctmgx.moh.AlarmSeverity";

 // For high temperature alarm
 //
 params[0] = AlarmType.HIGH_TEMPERATURE;
 params[1] = AlarmSeverity.CRITICAL;
 connectorClient.invoke(profileName, \
 "setAlarmSeverity", params, signature);

 // For high memory utilization alarm
 //
 params[0] = AlarmType.HIGH_MEMORY_UTILIZATION;
 params[1] = AlarmSeverity.MAJOR;
 connectorClient.invoke(profileName,\
 "setAlarmSeverity", params, signature);

 // For fan failure alarm (NetraCT agent does not support this alarm
 // currently
 //
 params[0] = AlarmType.FAN_FAILURE;
 params[1] = AlarmSeverity.MINOR;
 connectorClient.invoke(profileName,\
 "setAlarmSeverity", params, signature);

 // For fuse failure alarm (NetraCT agent does not support this alarm
 // currently
 //
 params[0] = AlarmType.FUSE_FAILURE;
 params[1] = AlarmSeverity.WARNING;
 connectorClient.invoke(profileName,\
 "setAlarmSeverity", params, signature);

 } catch (Exception e) {
 e.printStackTrace();
 }

CODE EXAMPLE 3-8 Creating an Alarm Severity Profile (Continued)
42 Netra CT Server Software Developer’s Guide • August 2004

Assigning a New Alarm Severity Profile

CODE EXAMPLE 3-9 shows how to assign a new alarm severity profile to an MBean
which can generate AlarmNotifications.

The new alarm severity profile can be reserved to replace the default profile when
required.

Configuring the Agent to Drive Alarm Card Alarm Outputs

The system configuration hierarchy indicates the physical alarm port which
corresponds to a termination point, as shown in “Hardware Resource Hierarchy
Showing Managed Object Classes” on page 10 and subsequent views. The alarm
port termination point supports five alarm interfaces: three for output, two for input.
In general, when an alarm occurs, the corresponding output alarm pin is driven high
based on the alarm severity.

The output alarm pins (alarm0, alarm1, alarm2) are statically mapped into severities
of critical, major, and minor respectively.

CODE EXAMPLE 3-9 Assigning a New Alarm Severity Profile

try {
 Object[] params = new Object[1];
 String[] signature = new String[1];

 signature[0] = "javax.management.ObjectName";

 // pass the object name of the newly created AlarmSeverityProfileMBean
 // instance
 //
 params[0] = profileName;

 // sensorObjectName is the object name of lets say a temperature sensor
 // MBean instance
 //
 connectorClient.invoke(sensorObjectName,\
 "setAlarmSeverityProfilePointer", params, signature);

 } catch (Exception e) {
 e.printStackTrace();
 }
Chapter 3 Getting Started With Netra CT Element Management Agent API 43

For example, assume that HIGH_TEMPERATURE is assigned as critical, and
HIGH_MEMORY_UTILIZATION is assigned as minor. When a high temperature
occurs, alarm0 is driven high to indicate a critical alarm. When a
HIGH_MEMORY_UTILIZATION occurs, alarm2 is driven high to indicate a minor
alarm.

In JMX, an alarm is defined as a notification with a severity associated with it. These
alarms are assigned as NetworkInterfaceMBeans, each of which represent a
network interface object in the system. Refer to “NetworkInterfaceMBean” on
page 98.

You can configure an alarm card agent to drive output alarms from the alarm card
on the Netra CT server using MOH as described in the following section.

▼ To Set Up and Use Alarm Features

The following steps show how to configure an agent from the alarm card to
correspond with the mapping in TABLE 3-2.

1. Register a notification listener with an AlarmNotificationFilter.

Use the examples beginning “Registering a Notification Listener With an Alarm
Notification Filter” on page 39, and modify the default to listen for critical or major
alarms. Return to the start of this chapter for help in getting an ObjectName.

2. Develop an AlarmSeverityProfile based on the default profile.

An AlarmSeverityProfile (ASP) contains multiple entries, and can be assigned to
several alarm-generating objects. Some entries in the profile might not be used by an
object, because that object might not be generating that specific kind of alarm. The
default instance of AlarmSeverityProfile can be accessed by its object name,
MohNames.MOH_DEFAULT_ASP.

3. Assign the AlarmSeverityProfile to the corresponding objects.

■ Assign HIGH_TEMPERATURE to the corresponding CPU thermistor
SensorObject.

■ Assign HIGH_MEMORY_UTILIZATION to the corresponding
CpucardEquipment object.

TABLE 3-2 Example of Alarm Output Mapping

alarm0 alarm1 alarm2

critical major minor

HIGH_TEMPERATURE HIGH_MEMORY_UTILIZATION
44 Netra CT Server Software Developer’s Guide • August 2004

In CODE EXAMPLE 3-10 extracted from “Using the Default Alarm Severity Profile” on
page 40, the severity level of HIGH.TEMPERATURE AlarmType in the default ASP has
been set to CRITICAL corresponding with alarm0.

Any number of objects are capable of generating an alarm. If you assign this profile
to a particular object, whenever a hardware failure of that object occurs, the
netract agent refers to the profile and responds as you have specified.

CODE EXAMPLE 3-11 creates your own alarm severity profile instances based on these
examples. In this case, the sensorObjectName is the object name of a temperature
sensor MBean instance.

CODE EXAMPLE 3-10 Extract of Using the Default Alarm Severity Profile

// Get the alarm severity association of the default profile
//
<snip>

 // setting the severity of high temp alarm to critical
 //
 if (aType.equals(AlarmType.HIGH_TEMPERATURE)) {
 Object[] params = new Object[2];
 String[] signature = new String[2];
 params[0] = aType;
 params[1] = AlarmSeverity.CRITICAL;
 signature[0] = "com.sun.ctmgx.moh.AlarmType";
 signature[1] = "com.sun.ctmgx.moh.AlarmSeverity";
 connectorClient.invoke(MohNames.MOH_DEFAULT_ASP, \
 "setAlarmSeverity", params, signature);
.....
<unsnip>

CODE EXAMPLE 3-11 Extract of Assigning a New Alarm Severity Profile

try {
 Object[] params = new Object[1];
 String[] signature = new String[1];

 signature[0] = "javax.management.ObjectName";

 // pass the object name of the newly created AlarmSeverityProfileMBean
 // instance
 //
 params[0] = profileName;

 // sensorObjectName is the object name of lets say a temperature sensor
 // MBean instance
Chapter 3 Getting Started With Netra CT Element Management Agent API 45

The new alarm severity profile replaces the default profile when required.

You can create several alarm severity profiles, each specifying a different response.
One might designate fan failure as critical, another might designate high
temperature as major. You then assign the appropriate profile to the object.

Clearing Alarms

Alarms are cleared automatically when each alarm relay is driven low.
OperationalState will accordingly be shown to be enabled, disabled or
unknown.

Software Monitoring
The following code examples help monitor software events. The series begins in
CODE EXAMPLE 3-12 with establishing the printService to print system status reports,
then gathers the list of software services and their associated daemons.

 //
 connectorClient.invoke(sensorObjectName,\
 "setAlarmSeverityProfilePointer", params, signature);

 } catch (Exception e) {
 e.printStackTrace();
 }

CODE EXAMPLE 3-12 Software Monitor Test (Part 1)

private void printService(ObjectName objName) {
 try {
 String name = (String)connectorClient.getAttribute(objName,"Name");
 String status = (String)connectorClient.getAttribute(objName,"Status");
 Integer polling_interval =\
 (Integer)connectorClient.getAttribute(objName,"PollingInterval");
 System.out.println("Name: " + name);
 System.out.println("Status: " + status);
 System.out.println("Polling Interval: " + polling_interval);
 }catch(Exception e) {
 e.printStackTrace();
 }
 }

 private void printDaemon(ObjectName objName) {

CODE EXAMPLE 3-11 Extract of Assigning a New Alarm Severity Profile (Continued)
46 Netra CT Server Software Developer’s Guide • August 2004

CODE EXAMPLE 3-12 builds on previous examples to establish the status of
connectorClient, and examine the hierarchy of the swServiceList in order to find
existing services and running daemons.

The following segment of code collects the attributes of each software service so that
the service can be registered to receive event notification.

 try {
 String name = (String)connectorClient.getAttribute(objName,"Name");
 String status = (String)connectorClient.getAttribute(objName,"State");
 Integer retry = (Integer)connectorClient.getAttribute(objName,\
 "CurrentRetryCount");
 Integer maxretry = (Integer)connectorClient.getAttribute(objName,\
 "MaxRetryCount");

 System.out.println("name: " + name);
 System.out.println("state: " + status);
 System.out.println("retry: " + retry);
 System.out.println("maxretry: " + maxretry);
 }catch(Exception e) {e.printStackTrace();}
 }

 // This method traverses through the hierarchy of software monitor and
 // prints out all the software services and the daemons.
 private void test() {
 Object[] allObjs = null;
 Set swServiceList = null;
 ObjectName myObjName = null;
 try {
 // Get the list of all software services */
 swServiceList =(Set)connectorClient.invoke\
 (MohNames.MOH_SOFTWARE_MONITOR,"getSoftwareServiceList",null,null);
 allObjs = swServiceList.toArray();

CODE EXAMPLE 3-13 Traversing the Software Service List (Part 2)

 //Traverse through the software service list and print out the attributes
 //of each software service
 for (int i = 0; i < swServiceList.size();i++) {
 myObjName = (ObjectName)allObjs[i];
 System.out.println("service : "+ ((ObjectName)allObjs[i]).toString());
 printService(myObjName);
 // Register the software service to receive the event notifications
 connectorClient.addNotificationListener(myObjName,this,null,null);

CODE EXAMPLE 3-12 Software Monitor Test (Part 1)
Chapter 3 Getting Started With Netra CT Element Management Agent API 47

CODE EXAMPLE 3-13 traverses swServiceList and adds NotificationListener to the
connectorClient.

The final code segment gets the list of daemons that support the service, and prints
out the daemon attributes for event notification.

CODE EXAMPLE 3-14 establishes a DaemonList for each service and prints out the
attributes of each daemon. Finally, the code registers these daemons to receive notice
of events with addNotificationListener.

For further information, look at /opt/SUNWnetract/mgmt2.0/docs/api which
details all the MOH interfaces and classes that are provided for the Netra CT system
software.

CODE EXAMPLE 3-14 Getting the List of Service Daemons (Part 3)

 // For each service, get the list of daemons that support the service
 ObjectName[] daemonList =\
 (ObjectName[])connectorClient.getAttribute(myObjName,"DaemonList");
 if (daemonList != null && daemonList.length > 0){
 System.out.print("Daemon List: ");
 Integer retry = null;
 Integer maxretry = null;
 // For each daemon, print out all attributes of the daemon.
 for (int k= 0;k < daemonList.length;k++) {
 printDaemon(daemonList[k]);
 // register the daemon to receive the event notifications
 connectorClient.addNotificationListener\
 (daemonList[k],this,null,null);
 }
 }
 }
 }catch(Exception e) {throw new UncheckedException(e);}
 }
48 Netra CT Server Software Developer’s Guide • August 2004

CHAPTER 4

Netra CT Element Management
Agent API

This chapter contains the application programming interfaces (API) of the Netra CT
element management agent software and includes the following sections:

■ “Interface Overview” on page 49

■ “Summary of JDMK” on page 50

■ “Netra CT Management Agent Interfaces and Classes” on page 52

■ “Netra CT Management Agent Interface Descriptions” on page 56

■ “Netra CT Management Agent Class Descriptions” on page 136

Interface Overview
Netra CT management agent uses the Java Dynamic ManagementTM Kit (JDMK)
framework as a Java API which provides the management capability for the Netra
CT system.

JDMK supports JMX, which is a standard set of APIs for network/client
management. JDMK provides an extended API along with different communication
protocol adapters such as Remote Method Invocation (RMI), HTTP, HTML, and
Simple Network Management Protocol (SNMP).

These protocol adapters are used to communicate with instances of JDMK agents;
Netra CT management agent supports SNMP and RMI communication protocols.

You can find an introduction to the JDMK, tutorials, code samples, and APIs on the
Java Developers website: http://developer.java.sun.com.
49

Summary of JDMK
JDMK’s API and development tools can help you develop distributed management
applications. The JDMK allows resources of one host to be monitored from another
host.

A resource can be any entity, physical or virtual, that you wish to monitor through
your network. Physical resources include network elements, and virtual resources
include applications operating on a host. A resource can be seen through its
management interface, where its attributes, operations, and notifications are
accessible by a management agent.

In order for a management agent to monitor a resource, the resource must be
developed as a managed bean (MBean), which is Java object that represents the
resource’s management interface. If the resource itself is a Java application, it can be
its own MBean. Otherwise, an MBean is a Java representation of a device.

In the JDMK model, a Java Dynamic Management agent follows the client-server
model, in which an agent responds to the management requests from any number of
client applications that wish to access its resources. The central component of an
agent is the MBean server, which is a registry for MBean instances and provides the
framework that allows agent services to interact with MBeans.

The JDMK provides protocol connector interfaces that allow remote applications to
access agent applications and their resources. Remote method invocation (RMI) and
HTTP are two such JDMK supported protocols that enable a Java client application
running on one system to access the resources and methods of another Java server
application running on a different system.

FIGURE 4-1 displays the location of the RMI/HTTP protocols between an agent
application and a remote manager application.

FIGURE 4-1 Key Components of the Java Dynamic Management Kit

Agent application Remote manager application

Connector
server

MBean
Server

Agent
Service

Java virtual machine

RMI/HTTP

Connector
client

Developer’s
management
components

Java virtual machine

Resource

R

M

R

M

50 Netra CT Server Software Developer’s Guide • August 2004

In FIGURE 4-1, a resource and an agent service are registered as MBeans with the
agent application’s MBean server. The application agent also contains a connector
server for the RMI/HTTP protocols. The remote manager application is a Java
application running on a distant host system. The manager contains the RMI/HTTP
connector client and proxy MBeans representing the resource and service. When the
RMI/HTTP connector client establishes the connection with the agent’s RMI/HTTP
connector server, the other components of the application can issue management
requests to the agent.

Typically, you would first determine the management interface of your resource, that
is, the information needed to manage it. This information is expressed as attributes
and operations. An attribute is a value of any type that a manager can get or set
remotely. An operation is a method with any signature and any return type that the
manager can invoke remotely.

As specified by the Java Management extensions for instrumentation, all attributes
and operations are explicitly listed in an MBean interface. This Java interface defines
the full management interface of an MBean. The interface must have the same name
as the class that implements it, followed by the MBean suffix. Since the interface and
its implementation are usually in different files, two files make up a standard
MBean. For example, the management interface of the class SimpleStandard (in the
file SimpleStandard.java) is defined in the interface SimpleStandardMBean (in
the file SimpleStandardMBean.java).

For a complete discussion of JDMK components and protocols, refer to the Java
Dynamic Management Kit documentation set found on the Solaris documentation
website, http://docs.sun.com. For additional information of JDMK and the
RMI/HTTP protocol, refer to the documentation, tutorials, code samples, and APIs
found on the Java Developers website: http://developer.java.sun.com.

Viewing the Netra CT Management Agent API
Online
The entire Netra CT RMI API specification can be viewed online as cross-referenced
HTML pages. By default, these HTML pages are installed in the following directory:

/opt/SUNWnetract/mgmt2.0/docs/api/com/sun/ctmgx/moh

You can view an index of all of these pages by opening the following link in an web
browser:

file:///opt/SUNWnetract/mgmt2.0/docs/api/index.html

You can view additional Java API specification on the java.sun.com webpage at:

http://java.sun.com/apis.html
Chapter 4 Netra CT Element Management Agent API 51

How the API Sections are Organized
The following sections in this chapter list the classes of the Netra CT RMI
application programming interface (API).

Each class, interface, inner class, and inner interface has its own separate section.
Each of these sections have three subsections consisting of a class/interface
description, summary tables, and detailed member descriptions of the following:

■ Class inheritance diagram
■ Direct subclasses
■ All known subinterfaces
■ All known implementing classes
■ Class/interface declaration
■ Class/interface description
■ Inner class summary
■ Field summary
■ Constructor summary
■ Method summary
■ Field detail
■ Constructor detail
■ Method detail

Each summary entry contains the first sentence from the detailed description for that
item. The summary entries are alphabetical, while the detailed descriptions are in
the order they appear in the source code. This preserves the logical groupings
established by the programmer.

Netra CT Management Agent Interfaces
and Classes
TABLE 4-1 lists the management agent interfaces and TABLE 4-2 lists the management
agent classes included in the Netra CT RMI API. In these tables, the term expose
refers to the encapsulation of the object’s variables inside a nucleus. This
encapsulation allows for exposing (allowing access to) or hiding (denying access to)
an object’s access methods, which provides for greater modularity.

Detailed descriptions of the interfaces begin with “Netra CT Management Agent
Interface Descriptions” on page 56 and the detailed descriptions of the classes begin
with “Netra CT Management Agent Class Descriptions” on page 136.
52 Netra CT Server Software Developer’s Guide • August 2004

TABLE 4-1 Netra CT Management Agent Interfaces

Interface Description Refer to:

AlarmCardPluginMBean Describes the management interface of the
AlarmCardPluginMBean

“AlarmCardPluginMBean
” on page 56.

AlarmSeverityProfileMBean Describes the management interface of the
AlarmSeverityProfileMBean.

“AlarmSeverityProfileMBe
an” on page 57.

CgtpServiceMBean Describes the management interface of the
CgtpServiceMBean.

“CgtpServiceMBean” on
page 58.

ContainmentTreeMBean Describes the management interface of the
ContainmentTreeMBean.

“ContainmentTreeMBean”
on page 60.

CpiSlotMBean Describes the management interface of the
CPCI Slot objects.

“CpciSlotMBean” on
page 65.

CpuCardEquipmentMBean Describes the management interface for
the CPUCardEquipmentMBean.

“CpuCardEquipmentMBe
an” on page 67.

CpuPluginMBean Describes the management interface of the
CPU board objects as perceived from the
alarm card MOH.

“CpuPluginMBean” on
page 70.

DaemonMBean Describes the interface for the
DaemonMBean.

“DaemonMBean” on
page 71.

EFDMBean Describes the management interface of the
EFDMBean.

“EFDMBean” on page 72.

EquipmentHolderMBean Describes the management interface of the
EquipmentHolderMBean.

“EquipmentHolderMBean
” on page 73.

EquipmentMBean Describes the interface of the
EquipmentMBean.

“EquipmentMBean” on
page 74.

EtherIfStatsMBean Describes the management interface of the
Ethernet I/O Statistics Monitoring service.

“EtherIfStatsMBean” on
page 78.

FullLogMBean Describes the interface of the
FullLogMBean

“FullLogMBean” on
page 80.

IpServiceMBean Describes the interface of the Unix File
System (UFS) service.

“IpServiceMBean” on
page 86,

LOLMBean Describes the management interface of the
Latest Occurrence Log MBean

“LOLMBean” on page 88.

NEMBean Describes the management interface of the
NEMBean.

“NEMBean” on page 95.

NetworkInterfaceMBean Describes the management interface for
NetworkInterfaceMBean.

“NetworkInterfaceMBean”
on page 98.
Chapter 4 Netra CT Element Management Agent API 53

NfsServiceMBean Describes the management interface of the
Network File System (NFS) Monitor
service.

“NfsServiceMBean” on
page 101.

NumericSensorMBean Describes the interface for
NumericSensorMBean.

“NumericSensorMBean”
on page 104.

PlugInUnitMBean Describes the management interface of the
Plug-inUnitMBean.

“PlugInUnitMBean” on
page 110.

RnfsServiceMBean Describes the interface of the Reliable
Network File System (RNFS) Monitor
service.

“RnfsServiceMBean” on
page 114.

SensorMBean Describes the interface for the
SensorMBean.

“SensorMBean” on
page 116.

SlotMBean Describes the management interface of the
SlotMBean.

“SlotMBean” on page 118.

SoftwareMonitorMBean Describes the interface of the
SoftwareMonitorMBean.

“SoftwareMonitorMBean”
on page 120.

SoftwareServiceMBean Describes the interface of
SoftwareServiceMBean.

“SoftwareServiceMBean”
on page 124.

TcpServiceMBean Describes the interface of Transmission
Control Protocol (TCP) service.

“TcpServiceMBean” on
page 127.

TerminationPointMBean Describes the management interface of the
TerminationPoint MBean.

“TerminationPointMBean”
on page 130.

UdpServiceMBean Describes the interface of User Datagram
Protocol (UDP) service.

“UdpServiceMBean” on
page 133.

UfsServiceMBean Describes the interface of Unix File
System (UFS) service.

“UfsServiceMBean” on
page 134.

TABLE 4-2 Netra CT Management Agent Classes

Class Description Refer to:

AdministrativeState Defines the administrative state of the
device.

“AdministrativeState” on
page 136.

AlarmNotification The Alarm Notification class represents
an alarm notification emitted by an
MBean.

“AlarmNotification” on
page 138.

AlarmNotificationFilter This filter allows you to filter
AlarmNotification notifications by
selecting the types and severities of
interest.

“AlarmNotificationFilter” on
page 142.

TABLE 4-1 Netra CT Management Agent Interfaces (Continued)

Interface Description Refer to:
54 Netra CT Server Software Developer’s Guide • August 2004

AlarmSeverity Defines the alarm severity objects for use
with Alarm Notification.

“AlarmSeverity” on
page 145.

AlarmType This class is an enumeration of predefined
Alarm types, user need to use one of the
predefined types to construct an
AlarmNotification object.

“AlarmType” on page 148.

AttributeChangeNotification Provides definitions of the attribute
change notifications sent by MBeans.

“AttributeChangeNotificatio
n” on page 150.

AttributeChangeNotificationFilter The filtering is performed on the name of
the observed attribute.

“AttributeChangeNotificatio
nFilter” on page 153.

AuthClient This class defines the client utility
routines, particularly for authentication.

“AuthClient” on page 154

AvailabilityStatus Defines the availability status of the
plug-in unit object.

“AvailabilityStatus” on
page 156.

EquipmentHolderType Describes the management interface of the
EquipmentHolderType.

“EquipmentHolderType” on
page 159.

LogFullAction Describes the action to perform when the
log is full.

“LogFullAction” on page 161

MohNames Defines the public constants or static
variables for MOH user to communicate
to the MBean server.

“FullLogMBean” on page 80.

ObjectCreationNotification Defines the creation notifications sent by
MBeans.

“ObjectCreationNotification”
on page 165.

ObjectDeletionNotification Defines the deletion notifications sent by
MBeans.

“ObjectDeletionNotification”
on page 168.

OperationalState Defines the operation states of a device
(equipment or plug-in).

“OperationalState” on
page 170.

SlotStatus Defines the status of the slot object. “SlotStatus” on page 172.

StateChangeNotification Defines the state change notifications sent
by MBeans.

“StateChangeNotification”
on page 174.

StateChangeNotificationFilter Describes the filtering performed on the
name of the observed attribute.

“StateChangeNotificationFilt
er” on page 177.

TABLE 4-2 Netra CT Management Agent Classes (Continued)

Class Description Refer to:
Chapter 4 Netra CT Element Management Agent API 55

Netra CT Management Agent Interface
Descriptions
This section contains descriptions of the following RMI interfaces listed in the order
in which they appear in the source code:

AlarmCardPluginMBean

Declaration

public interface AlarmCardPluginMBean extends PlugInUnitMBean

Description

This class describes the management interface of the alarm card in a Netra CT
system.

All Superinterfaces

PlugInUnitMBean

Methods

softReset

public void softReset()

Resets the alarm card with a graceful shutdown.

Method Summary

void softReset()

Resets the alarm card with a graceful shutdown.

Inherited Member Summary

Methods inherited from interface com.sun.ctmgx.moh.PlugInUnitMBean

getAdministrativeState, getAlarmSeverityProfilePointer, getAvailabilityStatus,
getModelNumber, getOperationalState, getPlugInUnitLabel, getPlugInUnitType,
getProductName, getSerialNumber, getVendorName, getVersion, setAdministrativeState,
setAlarmSeverityProfilePointer
56 Netra CT Server Software Developer’s Guide • August 2004

AlarmSeverityProfileMBean

Declaration

public interface AlarmSeverityProfileMBean

Description

This class describes the management interface of the Alarm Severity Profile MBean.

Methods

getAlarmSeverity(AlarmType)

public com.sun.ctmgx.moh.AlarmSeverity

getAlarmSeverity(com.sun.ctmgx.moh.AlarmType alarmType)

Gets the alarm severity assignment for a specific type of alarm notification. This
attribute identifies one alarm/severity pair.

Returns:

One of the following perceived severity values:

com.sun.ctmgx.moh.AlarmSeverity.CLEARED
com.sun.ctmgx.moh.AlarmSeverity.INDETERMINATE
com.sun.ctmgx.moh.AlarmSeverity.CRITICAL
com.sun.ctmgx.moh.AlarmSeverity.MAJOR
com.sun.ctmgx.moh.AlarmSeverity.MINOR
com.sun.ctmgx.moh.AlarmSeverity.WARNING

getAlarmSeverityList()

public java.util.Map getAlarmSeverityList()

Gets the alarm severity assignment list.

This attribute identifies one or more alarm/severity pairs.

Member Summary

Methods

AlarmSeverity getAlarmSeverity(AlarmType alarmType)

Gets the alarm severity assignment for a specific type of alarm notification.

java.util.Map getAlarmSeverityList()

Gets the alarm severity assignment list.

void setAlarmSeverity(AlarmType alarmType, AlarmSeverity severity)

Sets the alarm severity assignment for a specific type of alarm notification.
Chapter 4 Netra CT Element Management Agent API 57

Returns:

The alarm severity assignment list.

setAlarmSeverity(AlarmType, AlarmSeverity)

public void setAlarmSeverity(com.sun.ctmgx.moh.AlarmType
alarmType, com.sun.ctmgx.moh.AlarmSeverity severity)

Sets the alarm severity assignment for a specific type of alarm notification.

This attribute identifies one alarm/severity pair.

Parameters:

alarmType – The alarm notification type.

severity – One of the perceived severity values defined as:

com.sun.ctmgx.moh.AlarmSeverity.CLEARED
com.sun.ctmgx.moh.AlarmSeverity.INDETERMINATE
com.sun.ctmgx.moh.AlarmSeverity.CRITICAL
com.sun.ctmgx.moh.AlarmSeverity.MAJOR
com.sun.ctmgx.moh.AlarmSeverity.MINOR
com.sun.ctmgx.moh.AlarmSeverity.WARNING

CgtpServiceMBean

Declaration

public interface CgtpServiceMBean extends SoftwareServiceMBean

Description

This class describes the interface of class CgtpService.

Member Summary

Methods

java.lang.Float getCurrentFilterThreshold()

Gets the current filtered failure threshold.

java.lang.Float getFilterMaxThreshold()

Gets the max filtered failure threshold.
58 Netra CT Server Software Developer’s Guide • August 2004

Methods

getCurrentFilterThreshold()

public java.lang.Float getCurrentFilterThreshold()

Gets the current filtered failure threshold.

Returns:

The threshold in percentage of the filtered failure packets over the total
received packets.

getFilterMaxThreshold()

public java.lang.Float getFilterMaxThreshold()

Gets the max filtered failure threshold.

Returns:

The threshold in percentage of the filtered failure packets over the total
received packets.

getIfList()

public java.lang.String[] getIfList()

 Get the list of Ethernet physical interfaces associated with CGTP service.

Returns:

A string array of interface names.

java.lang.String[] getIfList()

Get the list of Ethernet physical interfaces associated with CGTP service.

OperationalState getIfState(java.lang.String ifState)

Get the operational state of a CGTP physical interface.

void setFilterMaxThreshold(java.lang.Float threshold)

Sets the max filtered failure threshold.

Inherited Member Summary

Methods inherited from interface SoftwareServiceMBean

getDaemonList(), getName(), getNumExcessiveIntervals(), getPollingInterval(),
getStatus(), setNumExcessiveIntervals(Integer), setPollingInterval(Integer),
startPolling()

Member Summary (Continued)
Chapter 4 Netra CT Element Management Agent API 59

getIfState

public OperationalState getIfState(java.lang.String ifState)

Get the operational state of a CGTP physical interface.

Parameters:

The CGTP physical interface.

Returns:

OperationalState.ENABLED, or OperationalState.DISABLED, or
OperationalState.UNKNOWN.

setFilterMaxThreshold(Float)

public void setFilterMaxThreshold(java.lang.Float threshold)

Sets the max filtered failure threshold.

Parameters:

threshold — threshold to set.

ContainmentTreeMBean

Declaration

public interface ContainmentTreeMBean

Description

This class describes the management interface of the Containment Tree MBean.

Member Summary

Fields

static java.lang.String CT_FILTER_EQUIPMENT

Gets the Equipment object(s) only during topology discovery.

static java.lang.String CT_FILTER_HOLDER
Gets the Holder object(s) only during topology discovery.

static java.lang.String CT_FILTER_NE
Gets the NE object(s) only during topology discovery.

static java.lang.String CT_FILTER_NETWORK_INTERFACE

Gets the Network Interface object(s) only during topology

static java.lang.String CT_FILTER_PLUGIN_UNIT
Gets the Plug-in object(s) only during topology discovery.
60 Netra CT Server Software Developer’s Guide • August 2004

Fields

CT_FILTER_EQUIPMENT

public static final java.lang.String CT_FILTER_EQUIPMENT

This attribute gets the Equipment object(s) only during topology discovery.

static java.lang.String CT_FILTER_TERMINATION_POINT
Gets the Termination Point object(s) only during topology discovery.

Methods

java.util.Set getAncestors(javax.management.ObjectName node)

Gets the ancestors of the specified MBean in the containment hierarchy.

java.util.Set getAncestors(javax.management.ObjectName node,
java.lang.String filter)

Gets the ancestors of the specified MBean in the containment hierarchy
that match the given filter type.

java.util.Set getChildren(javax.management.ObjectName node)

Gets the children of the specified MBean in the containment hierarchy.

java.util.Set getChildren(javax.management.ObjectName node,
java.lang.String filter)

Gets the children of the specified MBean in the containment hierarchy
that match the given type.

java.util.Set getDescendants(javax.management.ObjectName node)

Gets the descendants of the specified MBean in the containment
hierarchy.

java.util.Set getDescendants(javax.management.ObjectName node,
java.lang.String filter)

Gets the descendants of the specified MBean in the containment
hierarchy that match the given type.

javax.management.ObjectName getParent(javax.management.ObjectName node)

Gets the parent of the specified MBean in the containment hierarchy.

javax.management.ObjectName getParent(javax.management.ObjectName node,
java.lang.String filter)

Gets the parent of the specified MBean in the containment hierarchy, if
it matches the given type.

javax.management.ObjectName getRoot()

Gets the object name of the root MBean in the containment hierarchy.

Member Summary (Continued)
Chapter 4 Netra CT Element Management Agent API 61

CT_FILTER_HOLDER

public static final java.lang.String CT_FILTER_HOLDER

This attribute gets the Holder object(s) only during topology discovery.

CT_FILTER_NE

public static final java.lang.String CT_FILTER_NE

This attribute gets the NE object(s) only during topology discovery.

CT_FILTER_NETWORK_INTERFACE

public static final java.lang.String CT_FILTER_NETWORK_INTERFACE

This attribute is used to get the Network Interface object(s) only during topology
discovery.

CT_FILTER_PLUGIN_UNIT

public static final java.lang.String CT_FILTER_PLUGIN_UNIT

This attribute gets the Plugin object(s) only during topology discovery.

CT_FILTER_TERMINATION_POINT

public static final java.lang.String CT_FILTER_TERMINATION_POINT

This attribute gets the Termination Point object(s) only during topology discovery.

Methods

getAncestors(ObjectName)

public java.util.Set getAncestors(javax.management.ObjectName
node)

Gets the ancestors of the specified MBean in the containment hierarchy.

Parameters:

node – The ObjectName of the MBean where the search should start from.

Returns:

A set containing the ObjectName objects for the ancestors MBeans. If the
specified MBean has no ancestors an empty list is returned.

getAncestors(ObjectName, String)

public java.util.Set getAncestors(javax.management.ObjectName
node, java.lang.String filter)
62 Netra CT Server Software Developer’s Guide • August 2004

Gets the ancestors of the specified MBean in the containment hierarchy that match
the given filter type.

Parameters:

node – The ObjectName of the MBean where the search should start from.

filter – The filter constant used for filtering the retrieved MBeans.

Returns:

A set containing the ObjectName objects for the ancestors MBeans. If the
specified MBean has no ancestors or if the ancestors do not match the given
type an empty list is returned.

getChildren(ObjectName)

public java.util.Set getChildren(javax.management.ObjectName
node)

Gets the children of the specified MBean in the containment hierarchy.

Parameters:

node – The ObjectName of the MBean where the search should start from.

Returns:

A set containing the ObjectName objects for the children MBeans. If the
specified MBean has no children, an empty list is returned.

getChildren(ObjectName, String)

public java.util.Set getChildren(javax.management.ObjectName
node, java.lang.String filter)

Gets the children of the specified MBean in the containment hierarchy that match
the given filter type.

Parameters:

node – The ObjectName of the MBean where the search should start from.

filter – The filter constant used for filtering the retrieved MBeans.

Returns:

A set containing the ObjectName objects for the children MBeans. If the
specified MBean has no children, or if the children do not match the given
type, an empty list is returned.

getDescendants(ObjectName)

public java.util.Set getDescendants(javax.management.ObjectName
node)

Gets the descendants of the specified MBean in the containment hierarchy.
Chapter 4 Netra CT Element Management Agent API 63

Parameters:

node – The ObjectName of the MBean where the search should start from.

Returns:

A set containing the ObjectName objects for the descendants MBeans. If the
specified MBean has no descendants an empty list is returned.

getDescendants(ObjectName, String)

public java.util.Set getDescendants(javax.management.ObjectName
node, java.lang.String filter)

Gets the descendants of the specified MBean in the containment hierarchy that
match the given type.

Parameters:

node – The ObjectName of the MBean where the search should start from.

filter – The filter constant used for filtering the retrieved MBeans.

Returns:

A set containing the ObjectName objects for the descendants MBeans. If the
specified MBean has no descendants or if the descendants do not match the
given type an empty list is returned.

getParent(ObjectName)

public javax.management.ObjectName getParent(javax.management.Ob
jectName node)

Gets the parent of the specified MBean in the containment hierarchy.

Parameters:

node – The ObjectName of the MBean where the search should start from.

Returns:

The ObjectName object for the parent MBean. If the specified MBean has no
parent a null value is returned.

getParent(ObjectName, String)

public javax.management.ObjectName getParent(javax.management.Ob
jectName node, java.lang.String filter)

Gets the parent of the specified MBean in the containment hierarchy, if it matches
the given type.

Parameters:

node – The ObjectName of the MBean where the search should start from.

filter – The filter constant used for filtering the retrieved MBeans.
64 Netra CT Server Software Developer’s Guide • August 2004

Returns:

The ObjectName object for the parent MBean. If the specified MBean has no
parent or if its parent does not match the given type, a null value is returned.

getRoot()

public javax.management.ObjectName getRoot()

Gets the object name of the root MBean in the containment hierarchy.

Returns:

The ObjectName object for the root MBean. This is the object name of the
instance of NEMBean.

CpciSlotMBean

Declaration

public interface CpciSlotMBean extends SlotMBean

Description

This class describes the management interface of the CPCI Slot objects.

All Superinterfaces

EquipmentHolderMBean, SlotMbean

Member Summary

Fields

static Boolean OFF

Powered off state

static Boolean ON

Powered on state

Methods

Boolean getPowerState()

Gets slot power state PowerState can be either ON or OFF.

void hardReset()

Executes a hard reset the board in this slot.

void setPowerState(Boolean powerState)

Sets the slot’s PowerState.
Chapter 4 Netra CT Element Management Agent API 65

Fields

OFF

public static final Boolean OFF

Powered off state

ON

public static final Boolean ON

Powered on state

Methods

getPowerState()

public Boolean getPowerState()

Gets the slot’s power state. The PowerState can be either ON or OFF. This state
shows whether the board in this CPCI slot is powered on or not.

Returns:

The PowerState value which can be one of:

com.sun.ctmgx.moh.CpciSlotMBean.ON
com.sun.ctmgx.moh.CpciSlotMBean.OFF

setPowerState(boolean powerState)

public void setPowerState(Boolean powerState)

Sets the slot’s PowerState.

Parameters:

powerState is one of:

com.sun.ctmgx.moh.CpciSlotMBean.ON
com.sun.ctmgx.moh.CpciSlotMBean.OFF

Inherited Member Summary

Methods inherited from interface com.sun.ctmgx.moh.SlotMBean

getAcceptablePlugInUnitTypes, getSlotStatus, getSlotType, getSoftwareLoad,
setAcceptablePlugInUnitTypes, setSoftwareLoad

Methods inherited from interface com.sun.ctmgx.moh.EquipmentHolderMBean

getEquipmentHolderAddress, getEquipmentHolderLabel, getEquipmentHolderType
66 Netra CT Server Software Developer’s Guide • August 2004

hardReset()

public void hardReset()

hardReset(com.sun.ctmgx.moh.CpciSlotMBean)

Hard resets the board in this slot.

CpuCardEquipmentMBean

Declaration

public interface CpuCardEquipmentMBean extends EquipmentMBean.

All Superinterfaces

EquipmentMBean

Description

This class describes the management interface for CPU Card Equipment MBean.

CpuCardEquipmentMBean Memory Monitor Feature:

The purpose of this feature is to monitor memory usage on this CPU. There are three
memory usage thresholds which are settable by user: Minor memory usage
threshold, Major memory usage threshold and Critical threshold.

Minor and Major memory usage thresholds are represented in percentage of
memory usage over total physical memory. Critical threshold is based on number of
memory pages paged out per second.

The defaults are: Minor threshold 94%, Major threshold 97%, and Critical threshold,
1 page paged out per second.

An alarm will occur when physical memory utilization exceeds one of the specified
thresholds. If the memory utilization/paging decreases below a specified threshold
for a specified time interval, the alarm will clear. void

Member Summary

Methods

java.lang.Integer getClearAlarmTimeOut()

Gets time required for a memory alarm to clear.

java.lang.Integer getThreshCriticalMemoryUsed()

Provides the critical threshold of memory utilization in number of page-outs
per second, the default value is 1 page per second.
Chapter 4 Netra CT Element Management Agent API 67

Methods

getClearAlarmTimeOut()

public java.lang.Integer getClearAlarmTimeOut()

Gets time required for a memory alarm to clear.

Returns:

Time in seconds.

java.lang.Integer getThreshMajorMemoryUsed()

Provides the major threshold of memory utilization in percentage value, the
default value is 97%.

java.lang.Integer getThreshMinorMemoryUsed()

Provides the minor threshold of memory utilization in percentage value, the
default value is 94%.

void setClearAlarmTimeOut(java.lang.Integer timeOutPeriod)

Sets time required for a memory alarm to clear.

void setThreshCriticalMemoryUsed(java.lang.Integer pagesPerSec)

Sets the critical threshold of memory utilization in terms of number of
page-outs per second.

void setThreshMajorMemoryUsed(java.lang.Integer pctUsed)

Gets the major threshold of memory utilization in percentage value.

void setThreshMinorMemoryUsed(java.lang.Integer pctUsed)

Sets the minor threshold of memory utilization in percentage value.

void softReset()

This resets the CPU

Inherited Member Summary

Methods inherited from interface EquipmentMBean

getAdministrativeState(), getAlarmSeverityProfilePointer(), getEquipmentType(),
getLocationName(), getModelNumber, getOperationalState(), getProductName,
getSerialNumber, getUserLabel(), getVendorName(), getVersion(),
setAdministrativeState(AdministrativeState),
setAlarmSeverityProfilePointer(ObjectName), setLocationName(String),
setUserLabel(String)

Member Summary
68 Netra CT Server Software Developer’s Guide • August 2004

getThreshCriticalMemoryUsed()

public java.lang.Integer getThreshCriticalMemoryUsed()

Provides the critical threshold of memory utilization in number of page-outs per
second. The default value is 1 page per second.

Returns:

The threshold in number of page-outs per second.

getThreshMajorMemoryUsed()

public java.lang.Integer getThreshMajorMemoryUsed()

Provides the major threshold of memory utilization in percentage value. The
default value is 97%.

Returns:

Major threshold in percentage.

getThreshMinorMemoryUsed()

public java.lang.Integer getThreshMinorMemoryUsed()

Sets the minor threshold of memory utilization in percentage value.

Parameters:

pctUsed – value in percentage to set

setClearAlarmTimeOut(Integer)

public void setClearAlarmTimeOut(java.lang.Integer timeOutPeriod)

Set time required for a memory alarm to clear.

Parameters:

timeOutPeriod – value in seconds.

setThreshCriticalMemoryUsed(Integer)

public void setThreshCriticalMemoryUsed(java.lang.Integer
pagesPerSec)

Sets the critical threshold of memory utilization in terms of number of page-outs
per second.

Parameters:

pagesPerSec – value in page-outs per second to set.

setThreshMajorMemoryUsed(Integer)

public void setThreshMajorMemoryUsed(java.lang.Integer pctUsed)
Chapter 4 Netra CT Element Management Agent API 69

setThreshMinorMemoryUsed(Integer)

public void setThreshMinorMemoryUsed(java.lang.Integer pctUsed)

This lets the user get the major threshold of memory utilization in percentage
value.

Parameters:

pctUsed – value in percentage to set.

softReset()

public void softReset()

This resets the CPU

CpuPluginMBean

Declaration

public interface CpuPluginMBean extends PlugInUnitMBean

All Superinterfaces

PlugInUnitMBean

Description

This class describes the management interface of the CPU board objects as perceived
from the alarm card MOH.

Member Summary

Methods

void softReset()

This lets user to reset this CPU board with a graceful shutdown of the
operating system running on it.

Inherited Member Summary

Methods inherited from interface PlugInUnitMBean

getAdministrativeState, getAlarmSeverityProfilePointer, getAvailabilityStatus,
getModelNumber, getOperationalState, getPlugInUnitLabel, getPlugInUnitType,
getProductName, getSerialNumber, getVendorName, getVersion,
setAdministrativeState, setAlarmSeverityProfilePointer
70 Netra CT Server Software Developer’s Guide • August 2004

Methods

softReset()

public void softReset()

Resets this CPU board with a graceful shutdown of the operating system.

DaemonMBean

Declaration

public interface DaemonMBean

This class describes the interface for DaemonMBean.

Methods

getCurrentRetryCount()

public java.lang.Integer getCurrentRetryCount()

Gets the current number of retries to recover the daemon.

Returns:

Number of times the system has tried to recover the daemon.

getMaxRetryCount()

public java.lang.Integer getMaxRetryCount()

Gets the maximum number of retries to recover the daemon.

Member Summary

Methods

java.lang.Integer getCurrentRetryCount()
Gets the current number of retries to recover the daemon.

java.lang.Integer getMaxRetryCount()

Gets the maximum number of retries to recover the daemon

java.lang.String getName()

Gets the name of the daemon.

java.lang.String getState()

Gets the state of the daemon.

void setMaxRetryCount(java.lang.Integer maxRetries)

Set the maximum recovery retry count for a daemon.
Chapter 4 Netra CT Element Management Agent API 71

Returns:

Maximum number of times the system will try to recover the daemon.

getName()

public java.lang.String getName()

Gets the name of the daemon.

Returns:

String indicating name of the daemon. For example, on Solaris, Platform
Management Service daemon name is picld, NFS service is nfsd.

getState()

public java.lang.String getState()

Gets the state of the daemon.

This attribute identifies the state of the daemon.

Returns:

The daemon states values defined as string(“running”) if the daemon is
running, or string(“configured”) if the daemon is not running and is
installed, or string(“unconfigured”), if the daemon is not running and is
not installed.

setMaxRetryCount(Integer)

public void setMaxRetryCount(java.lang.Integer maxRetries)

Set the maximum recovery retry count for a daemon.

Indicates how many times the system will try to recover the daemon.

Parameters:

maxRetries – The number of retries.

EFDMBean

Declaration

public interface EFDMBean

Description

This class describes the management interface of the EFD MBean.
72 Netra CT Server Software Developer’s Guide • August 2004

EquipmentHolderMBean

Declaration

public interface EquipmentHolderMBean

All Known Subinterfaces

CpciSlotMBean,SlotMBean

Description

This class describes the management interface of the EquipmentHolderMBean

Methods

getEquipmentHolderAddress()

public java.lang.String getEquipmentHolderAddress()

Gets the equipment holder address.

This attribute identifies the physical location of the resource represented by the
Equipment Holder instance.

Returns:

The equipment holder address.

getEquipmentHolderLabel()

public java.lang.String getEquipmentHolderLabel()

Gets the equipment holder label.

This attribute identifies the external label string for this equipment holder.

Returns:

The equipment holder’s external label string, if none, a null string(“”) is returned.

Member Summary

Methods

java.lang.String getEquipmentHolderAddress()

Gets the equipment holder address.

java.lang.String getEquipmentHolderLabel()

Gets the equipment holder label.

EquipmentHolderType getEquipmentHolderType()

Gets the equipment holder type.
Chapter 4 Netra CT Element Management Agent API 73

getEquipmentHolderType()

public com.sun.ctmgx.moh.EquipmentHolderType getEquipmentHolderT
ype()

Gets the equipment holder type.

Indicates whether the Equipment Holder instance is being used to represent a
rack, shelf, drawer, or slot.

Returns:

The equipment holder type defined as:

com.sun.ctmgx.moh.EquipmentHolderType.RACK
com.sun.ctmgx.moh.EquipmentHolderType.SHELF
com.sun.ctmgx.moh.EquipmentHolderType.DRAWER
com.sun.ctmgx.moh.EquipmentHolderType.SLOT

EquipmentMBean

Declaration

public interface EquipmentMBean

All Known Subinterfaces:

CpuCardEquipmentMBean, NumericSensorMBean, SensorMBean

Description

This class describes the interface of the Equipment MBean.

Member Summary

Methods

AdministrativeState getAdministrativeState()

Gets the administrative state.

javax.management.ObjectName getAlarmSeverityProfilePointer()

Gets the ObjectName of the AlarmSeverityProfile associated with this MBean.

java.lang.String getEquipmentType()

Gets the equipment type.

java.lang.String getLocationName()

Get the location name.
74 Netra CT Server Software Developer’s Guide • August 2004

Methods

getAdministrativeState()

public com.sun.ctmgx.moh.AdministrativeState getAdministrativeSt
ate()

Gets the administrative state.

This attribute is used to activate (unlocked) and deactivate (locked) the function
performed by the Equipment.

Returns:

The administrative state value defined as either:

com.sun.ctmgx.moh.AdministrativeState.LOCKED
com.sun.ctmgx.moh.AdministrativeState.UNLOCKED

java.lang.String getModelNumber()
Get the part number.

OperationalState getOperationalState()

Get the operational state.

java.lang.String getProductName()
Get the product name.

java.lang.String getSerialNumber()
Get the serial number.

java.lang.String getUserLabel()

Get the user label.

java.lang.String getVendorName()

Get the vendor name.

java.lang.String getVersion()

Gets the version.

void setAdministrativeState(AdministrativeState admin_state)

Sets the administrative state.

void setAlarmSeverityProfilePointer(javax.management.ObjectName asp)

Sets the ObjectName of the AlarmSeverityProfile associated with this MBean.

void setLocationName(java.lang.String location_name)

Sets the location name.

void setUserLabel(java.lang.String user_label)

Sets the user label.

Member Summary (Continued)
Chapter 4 Netra CT Element Management Agent API 75

getAlarmSeverityProfilePointer()

public javax.management.ObjectName getAlarmSeverityProfilePointe
r()

Gets the ObjectName of the AlarmSeverityProfile associated with this MBean.

This attribute provides a pointer to the instance of the Alarm Severity Assignment
Profile MBean that contains the severity assignments for the alarms reported by
this MBean. When the value of this attribute is set to null, default severity
assignments is used.

Returns:

The ObjectName of the AlarmSeverityProfile MBean.

getEquipmentType()

public java.lang.String getEquipmentType()

Get the equipment type String.

This attribute identifies the type of the equipment.

Returns:

The equipment type of the EquipmentMBean instance.

getLocationName()

public java.lang.String getLocationName()

Get the location name.

This attribute identifies the specific or general location of the Equipment.

Returns:

The specific or general location of the Equipment.

getOperationalState()

public com.sun.ctmgx.moh.OperationalState getOperationalState()

Gets the operational state.

This attribute identifies whether or not the Equipment is capable of performing its
normal functions, that is, enabled or disabled.

Returns:

One of the following operational state values:

com.sun.ctmgx.moh.OperationalState.ENABLED
com.sun.ctmgx.moh.OperationalState.DISABLED
com.sun.ctmgx.moh.OperationalState.UNKNOWN
76 Netra CT Server Software Developer’s Guide • August 2004

getUserLabel()

public java.lang.String getUserLabel()

Gets the user label.

This attribute gets a user-friendly name to the associated Equipment.

Returns:

The user label of the Equipment.

getVendorName()

public java.lang.String getVendorName()

Gets the vendor name.

This attribute identifies the vendor of the Equipment.

Returns:

The vendor of the Equipment.

getVersion()

public java.lang.String getVersion()

Gets version.

This attribute identifies the version of the Equipment.

Returns:

The version of the Equipment.

setAdministrativeState(AdministrativeState)

public void setAdministrativeState(com.sun.ctmgx.moh.Administrat
iveState admin_state)

Sets the administrative state.

This attribute is used to activate (unlocked) and deactivate (locked) the function
performed by the Equipment.

Parameters:

admin_state – The administrative state value defined as either:

com.sun.ctmgx.moh.AdministrativeState.LOCKED
com.sun.ctmgx.moh.AdministrativeState.UNLOCKED

setAlarmSeverityProfilePointer(ObjectName)

public void setAlarmSeverityProfilePointer(javax.management.Obje
ctName asp)

Sets the ObjectName of the AlarmSeverityProfile associated with this MBean.
Chapter 4 Netra CT Element Management Agent API 77

This attribute provides a pointer to the instance of the Alarm Severity Assignment
Profile MBean that contains the severity assignments for the alarms reported by
this MBean. When the value of this attribute is set to null, default severity
assignments shall be used.

Parameters:

asp – The ObjectName of the AlarmSeverityProfile MBean.

setLocationName(String)

public void setLocationName(java.lang.String location_name)

Sets the location name.

This attribute identifies the specific or general location of the Equipment.

Parameters:

location_name – The location name.

setUserLabel(String)

public void setUserLabel(java.lang.String user_label)

Sets the user label.

This attribute is used to assign a user friendly name to the associated Equipment.

Parameters:

user_label – The user label of the Equipment.

EtherIfStatsMBean

Declaration

public interface EtherIfStatsMBean extends SoftwareServiceMBean

All Superinterfaces

SoftwareServiceMBean

Description

This class describes the management interface of Ethernet I/O Statistics Monitoring
service.
78 Netra CT Server Software Developer’s Guide • August 2004

Methods

getMaxThreshhold()

public java.lang.Float getMaxThreshhold()

Gets the threshold in percentage of receive-transmit errors.

This attribute identifies the receive and transmit error threshhold.

Returns:

Percentage value in Float format.

getRxExcessiveThreshholdIfList()

public java.lang.String[] getRxExcessiveThreshholdIfList()

Gets the list of Ethernet interfaces exceeding the receive error threshold

Returns:

The list of Ethernet interfaces OR null if there is none.

Member Summary

Methods

java.lang.Float getMaxThreshhold()

Gets the threshold in percentage of receive-transmit errors.

java.lang.String[] getRxExcessiveThreshholdIfList()

Gets the list of Ethernet interfaces exceeding the receive error threshold.

java.lang.String[] getTxExcessiveThreshholdIfList()

Gets the list of Ethernet interfaces exceeding the transmit error threshold.

void setMaxThreshhold(java.lang.Float threshhold)

Sets the threshold in percentage of receive-transmit errors.

Inherited Member Summary

Methods inherited from interface SoftwareServiceMBean

getDaemonList(), getName(), getNumExcessiveIntervals(), getPollingInterval(),
getStatus(), setNumExcessiveIntervals(Integer), setPollingInterval(Integer),
startPolling(), stopPolling()
Chapter 4 Netra CT Element Management Agent API 79

getTxExcessiveThreshholdIfList()

public java.lang.String[] getTxExcessiveThreshholdIfList()

Gets the list of Ethernet interfaces exceeding the transmit error threshold.

Returns:

The list of Ethernet interfaces OR null if there is none.

setMaxThreshhold(Float)

public void setMaxThreshhold(java.lang.Float threshhold)

Sets the threshold in percentage of receive-transmit errors.

This attribute identifies the receive and transmit error threshhold.

Parameters:

threshold — The percentage to set.

FullLogMBean

Declaration

public interface FullLogMBean

Description

This class describes the management interface of FullLog MBean. This MBean is
used to group multiple instances of the Notification classes to form a log of
Notifications.

Instances of this MBean are created automatically by the NE upon initialization.
Creation and deletion of instances of this MBean from the management system are
not allowed.

Upon initialization of the MOH agent, there will be just one instance of FullLog
which is initialized with a default filter, all notifications from MOH agent will be
logged. The Object name for this instance is defined by
MohNames.OBJECT_NAME_FULL_LOG.

Notifications emitted by this MBean:

■ com.sun.ctmgx.moh.ObjectCreationNotification.OBJECT_CREATION

This notification is used to report the creation of an instance of this MBean.

■ com.sun.ctmgx.moh.ObjectDeletionNotification.OBJECT_DELETION

This notification is used to report the deletion of an instance of this MBean.
80 Netra CT Server Software Developer’s Guide • August 2004

■ com.sun.ctmgx.moh.AttributeChangeNotification.ATTRIBUTE_CHANGE

This notification is used to report changes to the LogFullAction attribute of this
MBean. The notification identifies the attribute that changed, its old value, and its
new value.

■ com.sun.ctmgx.moh.StateChangeNotification.STATE_CHANGE

This notification is used to report changes to the OperationalState attribute and
AdministrativeState attribute of this MBean. The notification identifies the state
attribute that changed, its old value, and its new value.

Member Summary

Methods

void deleteAllRecords()
Deletes all records logged in the Log till now.

void deleteRecords(int noOfRecords, int startIndex)
Deletes records from the Log starting from a specified starting index.

AdministrativeState getAdministrativeState()
Get the administrative state.

java.util.Vector getAllRecords()
Get all the records logged.

int getCapacity()

Get the capacity or the maximum value of the number of records
which can be logged.

javax.management.NotificationFilter getFilter()

Get the filter which is used to filter the Notifications to be logged.

LogFullAction getLogFullAction()

Get the log full action.

java.util.Vector getLogRecordTypes()

Get a vector of Notification types being logged.

OperationalState getOperationalState()

Get the operational state.

java.util.Vector getRecords(int noOfRecords, int startIndex)

Get the records from a starting index.

int getSize()

Get the total number of records logged.
Chapter 4 Netra CT Element Management Agent API 81

Methods

deleteAllRecords()

public void deleteAllRecords()

Deletes all records logged in the Log up to this point.

deleteRecords(int, int)

public void deleteRecords(int noOfRecords, int startIndex) throws jav
a.lang.ArrayIndexOutOfBoundsException

Deletes records from the Log starting from a specified starting index.

Parameters:

noOfRecords – The total number of records to be deleted.

startIndex – The index in the log starting from which the records will be
deleted.

Throws:

Throws – ArrayIndexOutOfBoundsException if startIndex points beyond
0..size-1.

getAdministrativeState()

public com.sun.ctmgx.moh.AdministrativeState getAdministrativeSt
ate()

Gets the administrative state.

This attribute is used to activate (unlocked) and deactivate (locked) the function
performed by the Log.

Returns:

The administrative state value defined as one of the following:

com.sun.ctmgx.moh.AdministrativeState.LOCKED
com.sun.ctmgx.moh.AdministrativeState.UNLOCKED

void setAdministrativeState(AdministrativeState admin_state)

Set the administrative state.

void setFilter(javax.management.NotificationFilter logFilter)

Set the filter, which will be used to filter the Notifications to be
logged.

void setLogFullAction(LogFullAction logFullAction)

Set the log full action.

Member Summary (Continued)
82 Netra CT Server Software Developer’s Guide • August 2004

getAllRecords()

public java.util.Vector getAllRecords()

Gets all the records logged

Returns:

A vector containing all the records logged up to this point.

getCapacity()

public int getCapacity()

Gets the capacity or the maximum value of the number of records that can be
logged.

Returns:

The capacity of the log.

getFilter()

public javax.management.NotificationFilter getFilter()

Gets the filter which is used to filter the Notifications to be logged.

Returns:

The NotificationFilter object.

getLogFullAction()

public com.sun.ctmgx.moh.LogFullAction getLogFullAction()

Gets the log full action.

This attribute is used to identify the action the NE takes when the log space is
full. The valid values for this attribute are wrap around and halt. The default
value is wrap around.

Returns:

The log full action value defined as one of the following:
com.sun.ctmgx.moh.LogFullAction.WRAP
com.sun.ctmgx.moh.LogFullAction.HALT

getLogRecordTypes()

public java.util.Vector getLogRecordTypes()

Gets a vector of Notification types being logged.

This attribute identifies the types of log records grouped by this log-managed
entity.
Chapter 4 Netra CT Element Management Agent API 83

Returns:

A vector object containing the types as String defined as
com.sun.ctmgx.moh.AlarmNotification.FAN_FAILURE,
com.sun.ctmgx.moh.AlarmNotification.FUSE_FAILURE,
com.sun.ctmgx.moh.AlarmNotification.HIGH_TEMPERATURE, and so
on.

getOperationalState()

public com.sun.ctmgx.moh.OperationalState getOperationalState()

Gets the operational state.

This attribute identifies whether or not the Log is capable of performing its
normal functions, that is, enabled or disabled.

Returns:

The operational state value defined as one of the following:

com.sun.ctmgx.moh.OperationalState.ENABLED
com.sun.ctmgx.moh.OperationalState.DISABLED
com.sun.ctmgx.moh.OperationalState.UNKNOWN

getRecords(int, int)

public java.util.Vector getRecords(int noOfRecords, int startIndex)
throws java.lang.ArrayIndexOutOfBoundsException

Gets the records from a starting index

Parameters:

noOfRecords – The total number of records to be retrieved.

startIndex – Index in the log starting from which the records will be retrieved.

Returns:

A vector containing noOfRecords number of records.

Throws:

Throws – ArrayIndexOutOfBoundsException if startIndex points beyond
0..size-1.

getSize()

public int getSize()

Gets the total number of records logged.

Returns:

The size of the log.
84 Netra CT Server Software Developer’s Guide • August 2004

setAdministrativeState(AdministrativeState)

public void
setAdministrativeState(com.sun.ctmgx.moh.AdministrativeState
admin_state)

Sets the administrative state.

This attribute activates (unlocks) and deactivates (locks) the function performed
by the Log.

Parameters:

admin_state – The administrative state value defined as one of the following:

com.sun.ctmgx.moh.AdministrativeState.LOCKED
com.sun.ctmgx.moh.AdministrativeState.UNLOCKED

setFilter(NotificationFilter)

public void setFilter(javax.management.NotificationFilter
logFilter)

Sets the filter, for the Notifications to be logged.

Parameters:

logFilter – An object of type NotificationFilter. This can be object of one of the
following:

com.sun.ctmgx.moh.AlarmNotificationFilter
com.sun.ctmgx.moh.AttributeChangeNotificationFilter
com.sun.ctmgx.moh.StateChangeNotificationFilter
javax.management.NotificationFilterSupport

setLogFullAction(LogFullAction)

public void setLogFullAction(com.sun.ctmgx.moh.LogFullAction
logFullAction)

Sets the log full action.

This attribute is used to identify the action the NE takes when the log space is
full. The valid values for this attribute are wrap around and halt. The default
value is wrap.

Parameters:

logFullAction – the log full action value defined as one of the following:

com.sun.ctmgx.moh.LogFullAction.WRAP
com.sun.ctmgx.moh.LogFullAction.HALT
Chapter 4 Netra CT Element Management Agent API 85

IpServiceMBean

Declaration

public interface IpServiceMBean extends SoftwareServiceMBean

All Superinterfaces

SoftwareServiceMBean

Description

This class describes the interface of Unix File System (UFS) service.

Member Summary

Methods

java.lang.Float getCurrentInAddrErrorThreshold()

Gets the current threshold of input datagrams discarded due to invalid IP address
in their IP header’s destination field.

java.lang.Float getCurrentInHdrErrorThreshold()

Gets the current threshold of input datagrams discarded due to errors in their IP
headers.

java.lang.Float getMaxInAddrErrorThreshold()

Gets the maximum threshold of input datagrams discarded due to an invalid IP
address in IP header destination field.

java.lang.Float getMaxInHdrErrorThreshold()

Gets the maximum threshold of input datagrams discarded due to an error in the
IP header.

void setMaxInAddrErrorThreshold(java.lang.Float newThreshold)

Sets the maximum threshold of input datagrams discarded due to an invalid IP
address in IP header.

void setMaxInHdrErrorThreshold(java.lang.Float newThreshold)

Sets the maximum threshold of input datagrams discarded due to errors in their IP
headers.

Inherited Member Summary

Methods inherited from interface SoftwareServiceMBean

getDaemonList(), getName(), getNumExcessIntervals(),
getPollingInterval(),getStatus(), setNumExcessiveIntervals(Integer),
setPollingInterval(Integer), startPolling(), stopPolling()
86 Netra CT Server Software Developer’s Guide • August 2004

Methods

getCurrentInAddrErrorThreshold()

public java.lang.Float getCurrentInAddrErrorThreshold()

Gets the current threshold of input datagrams discarded due to an invalid IP
address in their IP header’s destination field.

Returns:

The threshold in percentage of number of errors over the total receiving
datagrams.

getCurrentInHdrErrorThreshold()

public java.lang.Float getCurrentInHdrErrorThreshold()

Gets the current threshold of input datagrams discarded due to errors in their IP
headers.

Returns:

The threshold in percentage of number of errors over the total receiving
datagrams.

getMaxInAddrErrorThreshold()

public java.lang.Float getMaxInAddrErrorThreshold()

Gets the maximum threshold of input datagrams discarded due to invalid IP
address in IP header destination field.

Returns:

The maximum threshold in percentage of number of errors over the total
receiving datagrams.

getMaxInHdrErrorThreshold()

public java.lang.Float getMaxInHdrErrorThreshold()

Gets the maximum threshold of input datagrams discarded due to an error in the
IP header.

Returns:

The maximum threshold in percentage of number of errors over the total
receiving datagrams.

setMaxInAddrErrorThreshold(Float)

public void setMaxInAddrErrorThreshold(java.lang.Float newThreshold)

Sets the maximum threshold of input datagrams discarded due to invalid IP
address in IP header.
Chapter 4 Netra CT Element Management Agent API 87

Parameters:

newThreshold – maximum threshold to set.

setMaxInHdrErrorThreshold(Float)

public void setMaxInHdrErrorThreshold(java.lang.Float newThreshold)

Sets the maximum threshold of input datagrams discarded due to errors in their
IP headers.

Parameters:

newThreshold – maximum threshold to set.

LOLMBean

Declaration

public interface LOLMBean

Description

This class describes the management interface for Latest Occurrence Log MBean.

This MBean groups multiple instances of the Notification classes to form a latest
occurrence log (LOL) of Notifications.

If no other log Notification/record contained in LOL has values of the attributes
identified by the ’key attribute list’ attribute equal to the attribute values of the log
record to be added, the log record is added as a new entry to LOL. If a log record
contained in the LOL has values of the attributes identified by the ’key attribute list’
attribute equal to the attribute values of the log record to be added, the older
existing log record contained in the LOL is replaced by the new log record.

Instances of this MBean are created automatically by the NE upon initialization.

Creation and deletion of instances of this MBean from the management system are
not allowed.

Upon initialization of the MOH agent there are two instances of this class. One
instance is initialized with an AlarmNotificationFilter with all severities
enabled and ’Type’ and ’PerceivedSeverity’ being set as the Key attributes. The
AdministrativeState is also activated. The object name for this instance is defined by
NetraCtDefs.OBJECT_NAME_LOL_ALARM.

And the other instance is just initialized with a default filter for netract.moh The
object name for this instance is defined by
NetraCtDefs.OBJECT_NAME_LOL_ALL.
88 Netra CT Server Software Developer’s Guide • August 2004

Notifications emitted by this MBean:

■ com.sun.ctmgx.moh.ObjectCreationNotification.OBJECT_CREATION

This notification is used to report the creation of an instance of this MBean.

■ com.sun.ctmgx.moh.ObjectDeletionNotification.OBJECT_DELETION

This notification is used to report the deletion of an instance of this MBean.

■ com.sun.ctmgx.moh.AttributeChangeNotification.ATTRIBUTE_CHANGE

This notification is used to report changes to the LogFullAction attribute of this
MBean. The notification identifies the attribute that changed, its old value, and its
new value.

■ com.sun.ctmgx.moh.StateChangeNotification.STATE_CHANGE

This notification is used to report changes to the OperationalState attribute and
AdministrativeState attribute of this MBean. The notification identifies the state
attribute that changed, its old value, and its new value.

Method Summary

void addAttribute(java.lang.String attribute)
Adds the attribute into the key attribute list.

void deleteAllRecords()

Deletes all records logged in the log till now.

void deleteRecords(int noOfRecords, int startIndex)
Deletes records from the Log starting from a specified starting index.

AdministrativeState getAdministrativeState()

Gets the administrative state.

java.util.Vector getAllRecords()

Gets all logged records.

int getCapacity()

Gets the capacity or the maximum value of the number of records
that can be logged.

javax.management.NotificationFilter getFilter()

Gets the filter used to filter the Notifications to be logged.

java.util.Set getKeyAttributeList()

Gets the key attribute list as an object of Set.

LogFullAction getLogFullAction()

Gets the log full action.

java.util.Vector getLogRecordTypes()

Gets a set of Notification types being logged.
Chapter 4 Netra CT Element Management Agent API 89

Methods

addAttribute(String)

public void addAttribute(java.lang.String attribute)

Adds the attribute into the key attribute list.

Parameters:

attribute – Name (string) of the attribute to be added to the key attribute list

deleteAllRecords()

public void deleteAllRecords()

Deletes all records logged in the Log till now.

deleteRecords(int, int)

public void deleteRecords(int noOfRecords, int startIndex)
throws ArrayIndexOutOfBoundsException

Deletes records from the Log starting from a specified starting index.

OperationalState getOperationalState()

Gets the operational state.

java.util.Vector getRecords(int noOfRecords, int startIndex)
Gets the records from a starting index.

int getSize()

Gets the total number of records logged.

void removeAttribute(java.lang.String attribute)
Removes the attribute.

void setAdministrativeState(AdministrativeState admin_state)
Sets the administrative state.

void setCapacity(int capacity)

Sets the capacity.

void setFilter(javax.management.NotificationFilter logFilter)

Sets the filter, which will be used to filter the Notifications to be
logged.

void setKeyAttributeList(java.util.Set list)
Sets the key attribute list.

void setLogFullAction(LogFullAction logFullAction)

Sets the log full action.

Method Summary (Continued)
90 Netra CT Server Software Developer’s Guide • August 2004

Parameters:

noOfRecords – The total number of records to be deleted

startIndex – Index in the log starting from which the records will be deleted

Throws:

Throws – ArrayIndexOutOfBoundsException if startIndex points beyond
0..size-1.

getAdministrativeState()

public com.sun.ctmgx.moh.AdministrativeState getAdministrativeSt
ate()

Gets the administrative state.

This attribute is used to activate (unlock) and deactivate (lock) the function
performed by the Log.

Returns:

The administrative state value defined as one of the following:

com.sun.ctmgx.moh.AdministrativeState.LOCKED
com.sun.ctmgx.moh.AdministrativeState.UNLOCKED

getAllRecords()

public java.util.Vector getAllRecords()

Gets all the records logged.

Returns:

A vector containing all the records logged till now.

getCapacity()

public int getCapacity()

Gets the capacity or the maximum value of the number of records which can be
logged.

Returns:

The capacity of the log.

getFilter()

public javax.management.NotificationFilter getFilter()

Gets the filter which is used to filter the Notifications to be logged.

Returns:

The NotificationFilter object.
Chapter 4 Netra CT Element Management Agent API 91

getKeyAttributeList()

public java.util.Set getKeyAttributeList()

Gets the key attribute list as an object of Set.

Returns:

An object of java.util.Set containing all the key attribute names as String.

getLogFullAction()

public com.sun.ctmgx.moh.LogFullAction getLogFullAction()

Gets the log full action.

This attribute is used to identify the action the NE takes when the log space is
full. The valid values for this attribute are wrap around and halt. The default
value is wrap around.

Returns:

The log full action value defined as one of the following:

com.sun.ctmgx.moh.LogFullAction.WRAP
com.sun.ctmgx.moh.LogFullAction.HALT

getLogRecordTypes()

public java.util.Vector getLogRecordTypes()

Gets a set of Notification types being logged.

This attribute identifies the types of log records grouped by this log-managed
entity.

Returns:

A set object containing the types as String defined as
com.sun.ctmgx.moh.AlarmNotification.FAN_FAILURE,
com.sun.ctmgx.moh.AlarmNotification.FUSE_FAILURE,
com.sun.ctmgx.moh.AlarmNotification.HIGH_TEMPERATURE, and so
on.

getOperationalState()

public com.sun.ctmgx.moh.OperationalState getOperationalState()

Gets the operational state.

This attribute identifies whether or not the Log is capable of performing its
normal functions, that is, enabled or disabled.

Returns:

The operational state value defined as one of the following:
92 Netra CT Server Software Developer’s Guide • August 2004

com.sun.ctmgx.moh.OperationalState.ENABLED
com.sun.ctmgx.moh.OperationalState.DISABLED
com.sun.ctmgx.moh.OperationalState.UNKNOWN

getRecords(int, int)

public java.util.Vector getRecords(int noOfRecords, int startIndex)
throws ArrayIndexOutOfBoundsException

Gets the records from a starting index.

Parameters:

noOfRecords –The total number of records to be retrieved.

startIndex – The index in the log starting from which the records will be
retrieved.

Returns:

A vector containing noOfRecord number of records.

Throws:

Throws – ArrayIndexOutOfBoundsException if startIndex points beyond
0..size-1.

getSize()

public int getSize()

Gets the total number of records logged.

Returns:

The size of the log.

removeAttribute(String)

public void removeAttribute(java.lang.String attribute)

Remove the attribute.

Parameters:

attribute – A String which is the name of the attribute to be deleted from the
key attribute list.

setAdministrativeState(AdministrativeState)

public void
setAdministrativeState(com.sun.ctmgx.moh.AdministrativeState
admin_state)

Sets the administrative state.
Chapter 4 Netra CT Element Management Agent API 93

This attribute is used to activate (unlock) and deactivate (lock) the function
performed by the Log.

Parameters:

admin_state – The administrative state value defined as one of the following:

com.sun.ctmgx.moh.AdministrativeState.LOCKED
com.sun.ctmgx.moh.AdministrativeState.UNLOCKED

setCapacity(int)

public void setCapacity(int capacity)

Sets the capacity.

Parameters:

capacity – Maximum size for the log.

setFilter(NotificationFilter)

public void setFilter(javax.management.NotificationFilter
logFilter)

Sets the filter, which will be used to filter the Notifications to be logged.

Parameters:

logFilter – An object of type NotificationFilter. This can be object of one of the
following:

com.sun.ctmgx.moh.AlarmNotificationFilter
com.sun.ctmgx.moh.AttributeChangeNotificationFilter
com.sun.ctmgx.moh.StateChangeNotificationFilter
javax.management.NotificationFilterSupport

setKeyAttributeList(Set)

public void setKeyAttributeList(java.util.Set list)

Sets the key attribute list.

This attribute indicates the list of attribute names to be used as keys to uniquely
identify the entries in a latest occurrence log.

Parameters:

list – An object of java.util.Set containing the attribute names

setLogFullAction(LogFullAction)

public void setLogFullAction(com.sun.ctmgx.moh.LogFullAction
logFullAction)

Sets the log full action.
94 Netra CT Server Software Developer’s Guide • August 2004

This attribute is used to identify the action the NE takes when the log space is
full. The valid values for this attribute are wrap and halt. The default value is
wrap.

Parameters:

logFullAction – The log full action value defined as one of the following:

com.sun.ctmgx.moh.LogFullAction.WRAP
com.sun.ctmgx.moh.LogFullAction.HALT

NEMBean

Declaration

public interface NEMBean

Description

This class describes the management interface of the NE MBean.

Member Summary

Methods

javax.management.ObjectName getAlarmSeverityProfilePointer()

Gets the ObjectName of the AlarmSeverityProfile associated with this MBean.

java.lang.String getDescription()
Get Description of the NE.

long getExternalTime()

This attribute provides the time-of-day system time.

java.lang.String getLocationName()

Gets the location name.

OperationalState getOperationalState()

Gets the operational state.

java.lang.Boolean getSecurityState()

Get the security state of the NE.

java.lang.String getVendorName()

Gets the vendor name.
Chapter 4 Netra CT Element Management Agent API 95

Methods

getAlarmSeverityProfilePointer()

public javax.management.ObjectName getAlarmSeverityProfilePointe
r()

Gets the ObjectName of the AlarmSeverityProfile associated with this MBean.

This attribute provides a pointer to the instance of the Alarm Severity Assignment
Profile MBean that contains the severity assignments for the alarms reported by
this MBean. When the value of this attribute is set to null, default severity
assignments are used.

Returns:

The ObjectName of the AlarmSeverityProfile MBean.

getDescription()

public java.lang.String getDescription()

Gets description of the NE.

Returns:

Description of this network element.

getExternalTime()

public long getExternalTime()

Gets the time-of-day system time.

Returns:

The difference, measured in milliseconds, between the current time and
midnight, January 1, 1970 UTC.

getLocationName()

public java.lang.String getLocationName()

Gets the location name of the NE.

java.lang.String getVersion()

Gets the version.

void setAlarmSeverityProfilePointer(ObjectName asp)

Sets the ObjectName of the AlarmSeverityProfile associated with this MBean.

void setLocationName(java.lang.String location_name)

Sets the location name.

Member Summary (Continued)
96 Netra CT Server Software Developer’s Guide • August 2004

This attribute identifies the specific or general location of the NE.

Returns:

The specific or general location of the NE.

getOperationalState()

public com.sun.ctmgx.moh.OperationalState getOperationalState()

Gets the operational state.

This attribute identifies whether or not the NE MBean is capable of performing its
normal functions, that is, enabled or disabled.

Returns:

One of the following operational state values:

com.sun.ctmgx.moh.OperationalState.ENABLED
com.sun.ctmgx.moh.OperationalState.DISABLED
com.sun.ctmgx.moh.OperationalState.UNKNOWN

getSecurityState

public java.lang.Boolean getSecurityState()

Get the security state of the NE.

This attribute identifies the security state of the NE. It is used to determine
whether authentication checks need to be performed on the client connection. A
boolean value of true indicates that authentication checking will be performed on
each client connection. (See “Netra CT Agent Security” on page 32 for more
information.)

Returns:

The SecurityState of the NE.

getVendorName()

public java.lang.String getVendorName()

Gets the vendor name.

This attribute identifies the vendor of the NE.

Returns:

The vendor of the NE.

getVersion()

public java.lang.String getVersion()

Gets the version.
Chapter 4 Netra CT Element Management Agent API 97

This attribute identifies the version of the NE. A value of null should be used in
cases where version information is not available or applicable to the NE being
represented.

Returns:

The version of the NE.

setAlarmSeverityProfilePointer(ObjectName)

public void setAlarmSeverityProfilePointer(ObjectName asp)

Sets the AlarmSeverityProfile associated with this MBean.

This attribute provides a pointer to the instance of the Alarm Severity Assignment
Profile MBean that contains the severity assignments for the alarms reported by
this MBean. When the value of this attribute is set to null, default severity
assignments shall be used.

Parameters:

asp – The ObjectName of the AlarmSeverityProfile MBean.

setLocationName(String)

public void setLocationName(java.lang.String location_name)

Sets the location name.

Parameters:

location_name – The location name to set

NetworkInterfaceMBean

Declaration

public interface NetworkInterfaceMBean

Description

This class describes the management interface for Network Interface MBean.

This interface needs to be implemented to represent a network interface object in the
system.
98 Netra CT Server Software Developer’s Guide • August 2004

Methods

getAlarmSeverityProfilePointer()

public ObjectName getAlarmSeverityProfilePointer()

Gets the AlarmSeverityProfile associated with this MBean.

This attribute provides a pointer to the instance of the Alarm Severity Assignment
Profile MBean that contains the severity assignments for the alarms reported by
this MBean. When the value of this attribute is set to null, default severity
assignments shall be used.

Returns:

The ObjectName of the AlarmSeverityProfile MBean.

Member Summary

Methods

javax.management.ObjectName getAlarmSeverityProfilePointer()

Gets the AlarmSeverityProfile associated with this MBean.

java.lang.Integer getMtu()

Gets Mtu (Maximum Transmit Unit) of the interface

java.lang.String getName()

Gets the name of the interface

OperationalState getOperationalState()

Gets the operational state.

java.lang.String getPermanentAddress()

Gets address of the interface

javax.management.ObjectName getTerminationPoint

Gets the physical TerminationPoint used by this network interface

java.lang.String getType()

Gets interface type

java.lang.String getVendorName()

Gets the vendor name.

java.lang.String getVersion()

Gets the version.

void setAlarmSeverityProfilePointer(ObjectName asp)

Sets the AlarmSeverityProfile associated with this MBean.
Chapter 4 Netra CT Element Management Agent API 99

getMtu()

public java.lang.Integer getMtu()

Gets Mtu (Maximum Transmit Unit) of the interface.

Returns:

The maximum size of a packet this interface can send/receive.

getName()

public java.lang.String getName()

Gets the name of the interface.

Returns:

The name of the network interface.

getOperationalState()

public com.sun.ctmgx.moh.OperationalState getOperationalState()

Gets the operational state.

Returns:

One of the following operational state values:

com.sun.ctmgx.moh.OperationalState.ENABLED
com.sun.ctmgx.moh.OperationalState.DISABLED
com.sun.ctmgx.moh.OperationalState.UNKNOWN

getPermanentAddress()

public java.lang.String getPermanentAddress()

Gets the address of the interface.

Returns:

The device specific physical address.

getTerminationPoint()

public javax.management.ObjectName getTerminationPoint()

Gets the physical TerminationPoint used by this network interface.

Returns:

The ObjectName of the TerminationPoint.

getType()

public java.lang.String getType()

Gets interface type.
100 Netra CT Server Software Developer’s Guide • August 2004

Returns:

Type of the network interface.

getVendorName()

public java.lang.String getVendorName()

Gets the vendor name.

Returns:

Vendor name.

getVersion()

public java.lang.String getVersion()

Gets the version.

Returns:

Version.

setAlarmSeverityProfilePointer(ObjectName)

public void
setAlarmSeverityProfilePointer(javax.management.ObjectName asp)

Sets the AlarmSeverityProfile associated with this MBean.

This attribute provides a pointer to the instance of the Alarm Severity Assignment
Profile MBean that contains the severity assignments for the alarms reported by
this MBean. When the value of this attribute is set to null, default severity
assignments shall be used.

Parameters:

asp – The ObjectName of the AlarmSeverityProfile MBean.

NfsServiceMBean

Declaration

public interface NfsServiceMBean extends SoftwareServiceMBean

All Superinterfaces

SoftwareServiceMBean
Chapter 4 Netra CT Element Management Agent API 101

Description

This class describes the management interface of the Network File System (NFS)
Monitor service.

Methods

getClientMaxThreshHold()

public java.lang.Float getClientMaxThreshHold()

Gets client maximum threshhold. Threshhold is the percentage of errors/total
transactions.

Returns:

Threshold in percentage.

Member Summary

Methods

java.lang.Float getClientMaxThreshHold()

Gets client maximum threshhold.

java.lang.Float getClientThreshHold()

Gets client current threshhold.

java.lang.String[] getMountFailureList()

Gets the list of failed NFS mount points

java.lang.Float getServerMaxThreshHold()

Gets server maximum threshhold.

java.lang.Float getServerThreshHold()

Gets server current threshhold.

void setClientMaxThreshHold(java.lang.Float threshHold)

Sets the client max threshhold.

void setServerMaxThreshHold(java.lang.Float threshHold)

Sets the server maximum threshhold.

Inherited Member Summary

Methods inherited from interface SoftwareServiceMBean

getDaemonList(), getName(), getNumExcessiveIntervals(), getPollingInterval(),
getStatus(), setNumExcessiveIntervals(Integer), setPollingInterval(Integer),
startPolling(), stopPolling()
102 Netra CT Server Software Developer’s Guide • August 2004

getClientThreshHold()

public java.lang.Float getClientThreshHold()

Gets client current threshhold.

Threshhold is the percentage of errors/total transactions

Returns:

Threshold in percentage.

getMountFailureList()

public java.lang.String[] getMountFailureList()

Gets the list of failed NFS mount points

Returns:

List of failed file system mount points.

getServerMaxThreshHold()

public java.lang.Float getServerMaxThreshHold()

Gets server maximum threshhold.

Threshhold is the percentage of errors/total transactions.

Returns:

Threshold in percentage.

getServerThreshHold()

public java.lang.Float getServerThreshHold()

Gets server current threshhold.

Threshhold is the percentage of errors/total transactions.

Returns:

Threshold in percentage.

setClientMaxThreshHold(Float)

public void setClientMaxThreshHold(java.lang.Float threshHold)

Sets client maximum threshhold.

Threshhold is the percentage of errors/total transactions.

Parameters:

threshHold–threshold to set.

The default value is 0.
Chapter 4 Netra CT Element Management Agent API 103

setServerMaxThreshHold(Float)

public void setServerMaxThreshHold(java.lang.Float threshHold)

Sets server maximum threshhold.

Threshhold is the percentage of errors/total transactions.

Parameters:

threshHold–threshold to set.

The default value is 0.

NumericSensorMBean

Declaration

public interface NumericSensorMBean extends SensorMBean

All Superinterfaces

EquipmentMBean, SensorMBean

Description

This class describes the interface for NumericSensorMBean.

This Mbean is used to model the thermistor (temperature sensor) on the CPU card.
There are three temperature regions to monitor: noncritical, critical, and fatal. Each
of the temperature regions has lower and upper boundaries or thresholds.

In general, an alarm is generated when the temperature falls below the lower
threshold or exceeds the upper threshold.

Not all thresholds are supported in Netra CT. In Netra C 410 and CT 810, only the
upper threshold of each region is supported.

The noncritical and critical thresholds are settable and under user control. The fatal
threshold is the CPU junction temperature which is determined and set at board
manufacturing time. This threshold is read-only by user.

An alarm occurs when the temperature exceeds the noncritical or critical threshold.

An alarm occurs and the system goes through automatic shutdown when the
temperature exceeds the fatal threshold.
104 Netra CT Server Software Developer’s Guide • August 2004

Member Summary

Fields

static java.lang.Short CRITICAL_LOWER

Lower bound of the second (middle) level threshold.

static java.lang.Short CRITICAL_UPPER

Upper bound of the second (middle) level threshold.

static java.lang.Short FATAL_LOWER

Lower bound of the third (highest) level threshold.

static java.lang.Short FATAL_UPPER

Upper bound of the third (highest) level threshold.

static java.lang.Short NONCRITICAL_LOWER

Lower bound of the first (lowest) level threshold.

static java.lang.Short NONCRITICAL_UPPER

Upper bound of the first (lowest) level threshold.

Methods

java.lang.String getBaseUnits()

Gets the base unit of this numeric sensor.

java.lang.Short[] getEnabledThresholds()

Gets enabled thresholds.

java.lang.Integer getLowerThresholdCritical()

Gets lower critical threshold of sensor-reading.

java.lang.Integer getLowerThresholdFatal()

Gets upper fatal threshold of sensor-reading.

java.lang.Integer getLowerThresholdNonCritical()

Gets lower non-critical threshold of sensor-reading.

java.lang.String getRateUnits()

If the RateUnits property is set to a value other than none, the units are further
qualified as rate units.

java.lang.Short[] getSettableThresholds()

Gets settable thresholds.

java.lang.Short[] getSupportedThresholds()

Gets supported thresholds for this system.

java.lang.Integer getUnitModifier()

java.lang.Integer getUpperThresholdCritical()

Gets upper critical threshold of sensor-reading.
Chapter 4 Netra CT Element Management Agent API 105

Fields

CRITICAL_LOWER

public static final java.lang.Short CRITICAL_LOWER

Lower bound of the second (middle) level threshold.

CRITICAL_UPPER

public static final java.lang.Short CRITICAL_UPPER

Upper bound of the second (middle) level threshold.

FATAL_LOWER

public static final java.lang.Short FATAL_LOWER

Lower bound of the third (highest) level threshold.

java.lang.Integer getUpperThresholdFatal()

Gets upper fatal threshold of sensor-reading.

java.lang.Integer getUpperThresholdNonCritical()

Gets the upper non-critical threshold of sensor-reading.

void setUpperThresholdCritical(java.lang.Integer threshVal)

Sets the upper critical threshold to a new value.

void setUpperThresholdNonCritical(java.lang.Integer threshVal)

Sets the upper non-critical threshold to a new value.

Inherited Member Summary

Fields inherited from interface SensorMBean

SENSOR_TYPE_OTHER, SENSOR_TYPE_TEMPERATURE

Methods inherited from interface EquipmentMBean

getAdministrativeState(), getAlarmSeverityProfilePointer(), getEquipmentType(),
getLocationName(), getModelNumber, getOperationalState(), getProductName,
getSerialNumber, getUserLabel(), getVendorName(), getVersion(),
setAdministrativeState(AdministrativeState),
setAlarmSeverityProfilePointer(ObjectName), setLocationName(String),
setUserLabel(String)

Methods inherited from interface SensorMBean

getCurrentState(), getPossibleStates(), getSensorType()

Member Summary (Continued)
106 Netra CT Server Software Developer’s Guide • August 2004

FATAL_UPPER

public static final java.lang.Short FATAL_UPPER

Upper bound of the third (highest) level threshold.

NONCRITICAL_LOWER

public static final java.lang.Short NONCRITICAL_LOWER

Lower bound of the first (lowest) level threshold.

NONCRITICAL_UPPER

public static final java.lang.Short NONCRITICAL_UPPER

Upper bound of the first level threshold.

Methods

getBaseUnits()

public java.lang.String getBaseUnits()

Gets the base unit of this numeric sensor; e.g., a temperature sensor might read
the temperature in degree C.

Returns:

degree C for temperature in Celsius.

getEnabledThresholds()

public java.lang.Short[] getEnabledThresholds()

Gets enabled thresholds. This API provides the same information as
getSupportedThresholds.

Returns:

An array of enabled thresholds where each element(Short) in the array
identifies a threshold type. An instance of this MBean, which is a temperature
sensor, might return a Short array { NONCRITICAL_UPPER,
CRITICAL_UPPER, FATAL_UPPER }.

getLowerThresholdCritical()

public java.lang.Integer getLowerThresholdCritical()

Gets lower critical threshold of sensor-reading.

Returns:

Lower threshold.
Chapter 4 Netra CT Element Management Agent API 107

getLowerThresholdFatal()

public java.lang.Integer getLowerThresholdFatal()

Gets upper fatal threshold of sensor-reading.

Returns:

Upper threshold.

getLowerThresholdNonCritical()

public java.lang.Integer getLowerThresholdNonCritical()

Gets lower non-critical threshold of sensor-reading.

Returns:

Lower threshold.

getRateUnits()

public java.lang.String getRateUnits()

If the RateUnits property is set to a value other than none, the units are further
qualified as rate units. For an instance that is a temperature sensor, the value is
none.

Returns:

none for temperature sensor.

getSettableThresholds()

public java.lang.Short[] getSettableThresholds()

Gets settable thresholds.

Returns:

An array of settable thresholds where each element(Short) in the array
identifies a threshold type. An instance of this MBean, which is a temperature
sensor, might return a Short array {NONCRITICAL_UPPER,
CRITICAL_UPPER}. All possible thresholds modelled by this NumericSensor
are declared as public constants.

getSupportedThresholds()

public java.lang.Short[] getSupportedThresholds()

Gets supported thresholds for this system. This API provides the same
information as getEnabledThresholds.
108 Netra CT Server Software Developer’s Guide • August 2004

Returns:

An array of supported thresholds where each element(Short) in the array
identifies a threshold type. An instance of this MBean, which is a temperature
sensor, might return a Short array {NONCRITICAL_UPPER,
CRITICAL_UPPER, FATAL_UPPER}.

All possible thresholds modelled by this NumericSensor are declared as public
constants.

getUnitModifier()

public java.lang.Integer getUnitModifier()

getUpperThresholdCritical()

public java.lang.Integer getUpperThresholdCritical()

Gets upper critical threshold of sensor-reading.

Returns:

Upper threshold.

getUpperThresholdFatal()

public java.lang.Integer getUpperThresholdFatal()

Gets upper fatal threshold of sensor-reading.

Returns:

Upper threshold.

getUpperThresholdNonCritical()

public java.lang.Integer getUpperThresholdNonCritical()

Gets the upper noncritical threshold of sensor-reading.

Returns:

Upper threshold.

setUpperThresholdCritical(Integer)

public void setUpperThresholdCritical(java.lang.Integer threshVal)

Sets the upper critical threshold to a new value.

Parameters:

threshVal– Value of temperature
Chapter 4 Netra CT Element Management Agent API 109

setUpperThresholdNonCritical(Integer)

public void setUpperThresholdNonCritical(java.lang.Integer
threshVal)

Sets the upper noncritical threshold to a new value.

Parameters:

threshVal– Value of temperature.

PlugInUnitMBean

Declaration

public interface PlugInUnitMBean

All Known Subinterfaces:

AlarmCardPluginMBean,CpuPluginMBean

Description

This class describes the management interface of the Plug-in Unit MBean.

Member Summary

Methods

AdministrativeState getAdministrativeState()

Gets the administrative state.

javax.management.ObjectName getAlarmSeverityProfilePointer()

Gets the AlarmSeverityProfile associated with this MBean.

AvailabilityStatus getAvailabilityStatus()

Gets the availability status.

java.lang.String getModelNumber()
Get the part number.

OperationalState getOperationalState()

Gets the operational state.

java.lang.String getPlugInUnitLabel()

Gets the external label string, if there is any.

java.lang.String getPlugInUnitType()

Gets the plug-in unit type.
110 Netra CT Server Software Developer’s Guide • August 2004

Methods

getAdministrativeState()

public com.sun.ctmgx.moh.AdministrativeState
getAdministrativeState()

Gets the administrative state.

This function gets the current status(locked/unlocked) of this object.

Returns:

The administrative state value defined as either:

com.sun.ctmgx.moh.AdministrativeState.LOCKED
com.sun.ctmgx.moh.AdministrativeState.UNLOCKED

getAlarmSeverityProfilePointer()

public javax.management.ObjectName
getAlarmSeverityProfilePointer()

Gets the AlarmSeverityProfile associated with this MBean.

This function gets a pointer to an instance of the Alarm Severity Profile MBean
containing the severity assignments for the alarms reported by this MBean. When
the returned value is null, the default alarm severity profile is used.

Returns:

The ObjectName of the AlarmSeverityProfile MBean.

java.lang.String getProductName()
Get the product name.

java.lang.String getSerialNumber()
Get the serial number.

java.lang.String getVendorName()

Gets the vendor name.

java.lang.String getVersion()

Gets the version.

void setAdministrativeState(AdministrativeState admin_state)

Sets the administrative state.

void setAlarmSeverityProfilePointer(javax.management.ObjectName asp)
Sets the AlarmSeverityProfile associated with this MBean.

Member Summary (Continued)
Chapter 4 Netra CT Element Management Agent API 111

getAvailabilityStatus()

public com.sun.ctmgx.moh.AvailabilityStatus
getAvailabilityStatus()

Gets the availability status.

This function is used to get the availability status of this object. Valid values for
the availability status are Available, In Test, Failed, Power Off, Not Installed, Off
Line, and Dependency. This last value indicates that the plug-in unit cannot
operate because some other resource on which it depends is unavailable.

Returns:

One of the following availability status values:

com.sun.ctmgx.moh.AvailabilityStatus.AVAILABLE
com.sun.ctmgx.moh.AvailabilityStatus.INTEST
com.sun.ctmgx.moh.AvailabilityStatus.FAILED
com.sun.ctmgx.moh.AvailabilityStatus.POWEROFF
com.sun.ctmgx.moh.AvailabilityStatus.NOTINSTALLED
com.sun.ctmgx.moh.AvailabilityStatus.OFFLINE
com.sun.ctmgx.moh.AvailabilityStatus.DEPENDENCY

getOperationalState()

public com.sun.ctmgx.moh.OperationalState getOperationalState()

Gets the operational state.

This function gets the operation state of the object. The operational state indicates
whether or not the plug-in unit is capable of performing its normal functions, i.e.
enabled or disabled.

Returns:

One of the following operational state values:

com.sun.ctmgx.moh.OperationalState.ENABLED
com.sun.ctmgx.moh.OperationalState.DISABLED
com.sun.ctmgx.moh.OperationalState.UNKNOWN

getPlugInUnitLabel()

public java.lang.String getPlugInUnitLabel()

Gets the external label string, if there is any.

Returns:

The external label string of the plug-in unit.If there is no label, a null string(“”)
is returned.
112 Netra CT Server Software Developer’s Guide • August 2004

getPlugInUnitType()

public java.lang.String getPlugInUnitType()

Gets the plug-in unit type.

Returns:

The plug-in unit type.

getVendorName()

public java.lang.String getVendorName()

Gets the vendor name.

Returns:

The vendor name of the plug-in unit.

getVersion()

public java.lang.String getVersion()

Gets the version.

Returns:

The version of the plug-in unit.

setAdministrativeState(AdministrativeState)

public void
setAdministrativeState(com.sun.ctmgx.moh.AdministrativeState
admin_state)

Sets the administrative state.

This function sets the administrative status of this object.

Parameters:

admin_state – The administrative state value defined as either
com.sun.ctmgx.moh.AdministrativeState.LOCKED or
com.sun.ctmgx.moh.AdministrativeState.UNLOCKED.

setAlarmSeverityProfilePointer(ObjectName)

public void setAlarmSeverityProfilePointer(ObjectName asp)

Sets the AlarmSeverityProfile associated with this MBean.

This function sets the pointer attribute of this Mbean to the instance of the Alarm
Severity Profile. When the setting value is null, the default alarm severity profile
is used.
Chapter 4 Netra CT Element Management Agent API 113

Parameters:

asp – The ObjectName of the AlarmSeverityProfile object.

RnfsServiceMBean

Declaration

public interface RnfsServiceMBean extends SoftwareServiceMBean

All Superinterfaces

SoftwareServiceMBean

Description

This class describes the interface of the Reliable Network File System (RNFS)
Monitor service.

Member Summary

Methods

java.lang.String[] getExcessiveThresholdFileSystemList()

Gets the list of RNFS exceeding threshold.

java.lang.Float getMaxSyncThreshold()

Gets the maximum synchronization threshold.

java.lang.Float getSyncThreshold(java.lang.String rnfs)

Gets the current synchronization threshhold of a RNFS.

void setMaxSyncThreshold(java.lang.Float threshold)

Sets the maximum synchronization threshold of all RNFS.

Inherited Member Summary

Methods inherited from interface SoftwareServiceMBean

setDaemonList(),getName(),getNumExcessiveIntervals(),getPollingInterval(),
getStatus(),setNumExcessiveIntervals(Integer), setPollingInterval(Integer),
startPolling(), stopPolling()
114 Netra CT Server Software Developer’s Guide • August 2004

Methods

getExcessiveThresholdFileSystemList()

public java.lang.String[] getExcessiveThresholdFileSystemList()

Gets the list of RNFS exceeding threshold.

Returns:

List of file system.

Null returned if there is no file systems exceeding threshold.

getMaxSyncThreshold()

public java.lang.Float getMaxSyncThreshold()

Gets maximum synchronization threshold.

Threshold is the percentage of RNFS disk space that needs to be synchronized.

Returns:

Threshold in percentage.

getSyncThreshold(String)

public java.lang.Float getSyncThreshold(java.lang.String rnfs)

Gets current synchronization threshhold of a RNFS.

Threshold is the percentage of RNFS disk space that needs to be synchronized.

Returns:

Threshold in percentage.

setMaxSyncThreshold(Float)

public void setMaxSyncThreshold(java.lang.Float threshold)

Sets maximum synchronization threshold of all RNFS.

Threshold is the percentage of RNFS disk space that needs to be synchronized.

Parameters:

threshold – threshold to set.

The default value is 0.
Chapter 4 Netra CT Element Management Agent API 115

SensorMBean

Declaration

public interface SensorMBean extends EquipmentMBean

All Superinterfaces

EquipmentMBean

All Known Subinterfaces

NumericSensorMBean

Description

This class describes the interface for Sensor MBean. For Netra CT 410 and CT 810,
only sensor type SENSOR_TYPE_TEMPERATURE is supported.

Member Summary

Fields

static java.lang.Short SENSOR_TYPE_OTHER

Other sensor typ.e

static java.lang.Short SENSOR_TYPE_TEMPERATURE

Temperature sensor.

Methods

java.lang.String getCurrentState()

Gets the current sensor state.

java.lang.String[] getPossibleStates()

Gets the sensor possible states.

java.lang.Short getSensorType()

Gets the sensor type.
116 Netra CT Server Software Developer’s Guide • August 2004

Fields

SENSOR_TYPE_OTHER

public static final java.lang.Short SENSOR_TYPE_OTHER

Other sensor type.

SENSOR_TYPE_TEMPERATURE

public static final java.lang.Short SENSOR_TYPE_TEMPERATURE

Temperature sensor.

Methods

getCurrentState()

public java.lang.String getCurrentState()

Gets current sensor state.

Returns:

The current state of the sensed property. Currently not supported.

getPossibleStates()

public java.lang.String[] getPossibleStates()

Gets sensor possible states.

Returns:

Possible states the sensed property can go through. Currently not supported.

getSensorType()

public java.lang.Short getSensorType()

Gets sensor type.

Inherited Member Summary

Methods inherited from interface EquipmentMBean

getAdministrativeState(), getAlarmSeverityProfilePointer(), getEquipmentType(),
getLocationName(), getModelNumber, getOperationalState(), getProductName,
getSerialNumber, getUserLabel(), getVendorName(), getVersion(),
setAdministrativeState(AdministrativeState),
setAlarmSeverityProfilePointer(ObjectName), setLocationName(String),
setUserLabel(String)
Chapter 4 Netra CT Element Management Agent API 117

Returns:

Sensor type. Each sensor type is associated with a particular property of a
logical/physical device, for example, a voltage sensor might
sense/measure/read the voltage through a power supply unit, and a
temperature sensor might do similar thing but for the temperature of the unit.

SlotMBean

Declaration

public interface SlotMBean extends EquipmentHolderMBean

All Superinterfaces

EquipmentHolderMBean

All Known Subinterfaces

CpciSlotMBean

Description

This class describes the management interface of the Slot MBean.

Member Summary

Methods

java.lang.String getAcceptablePlugInUnitTypes()

Gets the acceptable plug-in unit types.

SlotStatus getSlotStatus()

Gets the slot status.

java.lang.String getSlotType()

Gets the slot type string.

javax.management.ObjectName getSoftwareLoad()

Gets the ObjectName of the SoftwareLoad associated with this MBean.

void setAcceptablePlugInUnitTypes(java.lang.String types)

Sets the acceptable plug-in unit types.

void setSoftwareLoad(javax.management.ObjectName sw_load)

Sets the ObjectName of the SoftwareLoad associated with this MBean.
118 Netra CT Server Software Developer’s Guide • August 2004

Methods

getAcceptablePlugInUnitTypes()

public java.lang.String getAcceptablePlugInUnitTypes()

Gets the acceptable plug-in unit types.

This attribute identifies the types of plug-in units that can be supported by the
slot.

Returns:

The newline separated string representing the acceptable plug-in unit types.

getSlotStatus()

public com.sun.ctmgx.moh.SlotStatus getSlotStatus()

Gets the slot status.

This attribute provides an indication as to whether or not the slot is empty or full.

Returns:

The slot status value defined as com.sun.ctmgx.moh.SlotStatus.EMPTY
or com.sun.ctmgx.moh.SlotStatus.FULL.

getSlotType()

public java.lang.String getSlotType()

Gets the slot type string.

This attribute identifies the type of a slot in the chassis, such as a CPCI slot, fan
slot, power supply slot, rmm slot, or pmc slot.

Returns:

A String that identifies a type of slot in a chassis.

getSoftwareLoad()

public javax.mNgement.ObjectName getSoftwareLoad()

Gets the ObjectName of the SoftwareLoad associated with this MBean.

Inherited Member Summary

Methods inherited from interface EquipmentHolderMBean

getEquipmentHolderAddress(), getEquipmentHolderLabel(), getEquipmentHolderType()
Chapter 4 Netra CT Element Management Agent API 119

This attribute identifies the software load, if there is any, which is currently
designated as the one to be loaded to the plug-in whenever an automatic reload
of software is needed.

Returns:

The ObjectName of the SoftwareLoad MBean.

setAcceptablePlugInUnitTypes(String)

public void setAcceptablePlugInUnitTypes(java.lang.String types)

Sets the acceptable plug-in unit types.

This attribute identifies the types of plug-in units that can be supported by the
slot.

Parameters:

types – A newline separated string representing the acceptable plug-in unit
types.

setSoftwareLoad(ObjectName)

public void setSoftwareLoad(javax.management.ObjectName sw_load)

Sets the ObjectName of the SoftwareLoad associated with this MBean.

This attribute identifies the software load, if there is any, which is currently
designated as the one to be loaded to the plug-in whenever an automatic reload
of software is needed.

Returns:

The ObjectName of the SoftwareLoad MBean.

SoftwareMonitorMBean

Declaration

public interface SoftwareMonitorMBean.

Member Summary

Fields

static java.lang.String ETHER_STATS_SERVICE

Ethernet Driver Statistic service name.

static java.lang.String ETHER_STATS_SERVICE_OBJ

Ethernet Driver Statistic service object name.
120 Netra CT Server Software Developer’s Guide • August 2004

static java.lang.String IP_SERVICE

Internet Protocol service name.

static java.lang.String IP_SERVICE_OBJ

Internet Protocol service object name.

static java.lang.String NFS_SERVICE

Network File System service name.

static java.lang.String NFS_SERVICE_OBJ

Network File System service object name.

static java.lang.String PLATFORM_MGT_SERVICE

Platform Management service name.

static java.lang.String PLATFORM_MGT_SERVICE_OBJ

Platform Management service object name.

static java.lang.String TCP_SERVICE

Transport Control Protocol service name.

static java.lang.String TCP_SERVICE_OBJ

Transport Control Protocol service object name.

static java.lang.String TFTP_SERVICE

Trivial File Transfer Protocol service name.

static java.lang.String TFTP_SERVICE_OBJ

Trivial File Transfer Protocol service object name.

static java.lang.String UDP_SERVICE

User Datagram Protocol service name.

static java.lang.String UDP_SERVICE_OBJ

User Datagram Protocol service object name.

static java.lang.String UFS_SERVICE

Unix File System service name.

static java.lang.String UFS_SERVICE_0BJ
Unix File System service object name.

Methods

java.util.Set getSoftwareServiceList()

Gets a list of object names representing the software services.

Member Summary (Continued)
Chapter 4 Netra CT Element Management Agent API 121

Fields

ETHER_STATS_SERVICE

public static final java.lang.String ETHER_STATS_SERVICE

Ethernet Driver Statistic service name.

ETHER_STATS_SERVICE_OBJ

public static final java.lang.String ETHER_STATS_SERVICE_OBJ

Ethernet Driver Statistic service object name.

IP_SERVICE

public static final java.lang.String IP_SERVICE

Internet Protocol service name.

IP_SERVICE_OBJ

public static final java.lang.String IP_SERVICE_OBJ

Internet Protocol service object name.

NFS_SERVICE

public static final java.lang.String NFS_SERVICE

Network File System service name.

NFS_SERVICE_OBJ

public static final java.lang.String NFS_SERVICE_OBJ

Network File System service object name.

PLATFORM_MGT_SERVICE

public static final java.lang.String PLATFORM_MGT_SERVICE

Platform Management service name. It is PICL on Solaris or SMF on Alarm Card.

PLATFORM_MGT_SERVICE_OBJ

public static final java.lang.String PLATFORM_MGT_SERVICE_OBJ

Platform Management service object name.

TCP_SERVICE

public static final java.lang.String TCP_SERVICE

Transport Control Protocol service name.
122 Netra CT Server Software Developer’s Guide • August 2004

TCP_SERVICE_OBJ

public static final java.lang.String TCP_SERVICE_OBJ

Transport Control Protocol service object name.

TFTP_SERVICE

public static final java.lang.String TFTP_SERVICE

Trivial File Transfer Protocol service name.

TFTP_SERVICE_OBJ

public static final java.lang.String TFTP_SERVICE_OBJ

Trivial File Transfer Protocol service object name.

UDP_SERVICE

public static final java.lang.String UDP_SERVICE

User Datagram Protocol service name.

UDP_SERVICE_OBJ

public static final java.lang.String UDP_SERVICE_OBJ

User Datagram Protocol service object name.

UFS_SERVICE

public static final java.lang.String UFS_SERVICE

Unix File System service name.

UFS_SERVICE_OBJ

public static final java.lang.String UFS_SERVICE_OBJ

Unix File System service object name.

Methods

getSoftwareServiceList()

public java.util.Set getSoftwareServiceList()

Gets a list of object names representing the software services.

Returns:

Set of objects of the software services. Each object contains a string representing
one of the following the object names:
Chapter 4 Netra CT Element Management Agent API 123

com.sun.ctmgx.moh.SoftwareMonitorMbean.NFS_SERVICE_OBJ
com.sun.ctmgx.moh.SoftwareMonitorMbean.UFS_SERVICE_OBJ
com.sun.ctmgx.moh.SoftwareMonitorMbean.TCP_SERVICE_OBJ
com.sun.ctmgx.moh.SoftwareMonitorMbean.UDP_SERVICE_OBJ
com.sun.ctmgx.moh.SoftwareMonitorMbean.IP_SERVICE_OBJ
com.sun.ctmgx.moh.SoftwareMonitorMbean.TFTP_SERVICE_OBJ
com.sun.ctmgx.moh.SoftwareMonitorMbean.ETHER_STATS_SERVICE_O
BJ
com.sun.ctmgx.moh.SoftwareMonitorMbean.PLATFORM_MGT_SERVICE_
OBJ

SoftwareServiceMBean

Declaration

public interface SoftwareServiceMBean

All Known Subinterfaces:

CgtpServiceMBean, EtherIfStatsMBean,IpServiceMBean,
NfsServiceMBean, RnfsServiceMBean, TcpServiceMBean,
UdpServiceMBean,UfsServiceMBean

Description

This class describes the interface of Software Service MBean.

This is the base class from which all software services are derived.

Software services in the systems such as NFS, NIS, CGTP, etc. are modeled via MOH
software modules. Each software module represents a service.

The software modules of MOH running on host CPU and satellite CPU monitor the
software services in the system. Software services can be a software sub-system such
as network stacks (TCP, UDP, IP), or I/O drivers such as Ethernet drivers, or
processes or daemons such as NFS, UFS, TFTP, reliable NFS, etc.

In general, a service contains two parts: The daemon monitor part and the statistic
part. The daemon monitor part deals with the installed/not installed, and
running/not running status of a daemon. The statistic part deals with error count,
error thresholds, polling, etc. Not all of the services contain two parts, since some
services might not be implemented as daemons.
124 Netra CT Server Software Developer’s Guide • August 2004

Methods

getDaemonList()

public javax.management.ObjectName() getDaemonList()

Gets the list of daemons supporting the service.

Returns:

The list of object name of DaemonMbean(s). Each object name is defined as
com.sun.ctmgx.moh.SoftwareMonitorMbean.“softwareservice
name”.“daemon name”

getName()

public java.lang.String getName()

Gets the name of the service. All of available services are defined in this method.

Member Summary

Methods

javax.management.ObjectName[] getDaemonList()

Get the list of daemons supporting the service.

java.lang.String getName()

Gets the name of the service.

java.lang.Integer getNumExcessiveIntervals()

Gets configured number of polling intervals that exceed the max threshhold

java.lang.Integer getPollingInterval()

Gets polling interval.

java.lang.String getStatus()

Gets the status of the service.

void setNumExcessiveIntervals(java.lang.Integer numExcessiveIntervals)

Sets number of polling intervals that exceed the max threshold or number of
excessive intervals that the service exceeds error threshold.

void setPollingInterval(java.lang.Integer milliSecs)

Sets polling interval in milliseconds.

void startPolling()

Starts polling for exceeding thresholds and mount failure notifications.

void stopPolling()

Stops polling.
Chapter 4 Netra CT Element Management Agent API 125

Returns:

The name of the service defined as one of the following:

com.sun.ctmgx.moh.SoftwareMonitorMbean.NFS_SERVICE
com.sun.ctmgx.moh.SoftwareMonitorMbean.UFS_SERVICE
com.sun.ctmgx.moh.SoftwareMonitorMbean.TCP_SERVICE
com.sun.ctmgx.moh.SoftwareMonitorMbean.UDP_SERVICE
com.sun.ctmgx.moh.SoftwareMonitorMbean.IP_SERVICE
com.sun.ctmgx.moh.SoftwareMonitorMbean.TFTP_SERVICE
com.sun.ctmgx.moh.SoftwareMonitorMbean.ETHER_STATS_SERVICE
or string(“”) if there is none.

getNumExcessiveIntervals()

public java.lang.Integer getNumExcessiveIntervals()

Gets the number of excessive intervals that the service exceeds error threshold.

This excessive polling interval threshold indicates the maximum number of
consecutive polling intervals that the corresponding service exceeds the
maximum allowable threshold before an error event is generated.

Returns:

The number of excessive intervals.

getPollingInterval()

public java.lang.Integer getPollingInterval()

Gets polling interval of the service.

The polling interval indicates how often the service is polled for status.

Returns:

The polling interval in millisecond. The default is 15 minutes.

getStatus()

public java.lang.String getStatus()

Gets status of the service.

Returns:

The status of the service defined as string(“up”), or string(“down”).

setNumExcessiveIntervals(Integer)

public void setNumExcessiveIntervals(java.lang.Integer
numExcessiveIntervals)

Sets the number of configured polling intervals threshold or number of excessive
intervals that the service exceeds error threshold.
126 Netra CT Server Software Developer’s Guide • August 2004

This excessive polling interval threshold indicates the maximum number of
consecutive polling intervals that the corresponding service exceeds the
maximum allowable threshold before an error event is generated.

Parameters:

numExcessiveIntervals – interval threshold to set. The default of this threshold is
1.

setPollingInterval(Integer)

public void setPollingInterval(java.lang.Integer milliSecs)

Sets polling interval of the service. The polling interval indicates how often the
service is polled for status.

Parameters:

milliSecs– polling interval to set. The default is 15 minutes. The minimum
interval is 15 seconds.

startPolling()

public void startPolling()

Start polling the service.

stopPolling()

public void stopPolling()

Stop polling the service.

TcpServiceMBean

Declaration

public interface TcpServiceMBean extends SoftwareServiceMBean

Description

This class describes the interface of Unix File System (UFS) service.
Chapter 4 Netra CT Element Management Agent API 127

Methods

getCurrentInErrorThreshold()

public java.lang.Float getCurrentInErrorThreshold()

Gets the current threshold of segments received in error.

Returns:

The threshold in percentage of number of errors over the total received
segments of the current polling interval.

getCurrentOutRstsThreshold()

public java.lang.Float getCurrentOutRstsThreshold()

Gets the current threshold of segments sent with RST flag.

Member Summary

Methods

java.lang.Float getCurrntInErrorThreshold()

Gets the current threshold of segments received in error.

java.lang.Float getCurrntOutRstsThreshold()

Gets the current threshold of segments sent with RST flag.

java.lang.Float getMaxInErrorThreshold()

Gets the maximum threshold of segments received in error.

java.lang.Float getMaxOutRstsrThreshold()

Gets the maximum threshold of segments sent with RST flag.

void setMaxInErrorThreshold(java.lang.Float newThreshold)

Sets the maximum threshold of segments received in error.

void setMaxOutRstsrThreshold(java.lang.Float newThreshold)

Sets the maximum threshold of segments sent with RST flag.

Inherited Member Summary

Methods inherited from interface SoftwareServiceMBean

getDaemonList(), getName(), getNumExcessiveIntervals(), getPollingInterval(),
getStatus(), setNumExcessiveIntervals(Integer), setPollingInterval(Integer),
startPolling(), stopPolling()
128 Netra CT Server Software Developer’s Guide • August 2004

Returns:

The threshold in percentage of number of errors over the total sent segments of
the current polling interval.

getMaxInErrorThreshold()

public java.lang.Float getMaxInErrorThreshold()

Gets the maximum threshold of segments received in error.I

Returns:

The configured threshold in percentage of number of errors over the total
received segments of the current polling interval.

getMaxOutRstsThreshold()

public java.lang.Float getMaxOutRstsThreshold()

Gets the maximum threshold of segments sent with RST flag.

Returns:

The max threshold in percentage of number of errors over the total received
segments of the current polling interval.

setMaxInErrorThreshold(Float)

public void setMaxInErrorThreshold(java.lang.Float newThreshold)

Sets the maximum threshold of segments received in error. If the threshold
exceeds a number of configured consecutive intervals, a notification of class
AttributeChangeNotification is sent to the clients for the change of attribute
“CurrentInErrorThreshold”.

Parameters:

newThreshold – maximum threshold to set.

setMaxOutRstsThreshold(Float)

public void setMaxOutRstsThreshold(java.lang.Float newThreshold)

Sets the maximum threshold of segments sent with RST flag. If the threshold
exceeds a number of configured consecutive intervals, a notification of class
AttributeChangeNotification is sent to the clients for the change of attribute
CurrentOutRstsThreshold.

Parameters:

newThreshold – maximum threshold to set.
Chapter 4 Netra CT Element Management Agent API 129

TerminationPointMBean

Declaration

public interface TerminationPointMBean

Description

This class describes the management interface of the Termination Point MBean.

Methods

getAdministrativeState()

public com.sun.ctmgx.moh.AdministrativeState
getAdministrativeState()

Gets the administrative state.

Member Summary

Methods

AdministrativeState getAdministrativeState()

Gets the administrative state.

javax.management.ObjectName getAlarmSeverityProfilePointer()

Gets the ObjectName of the AlarmSeverityProfile associated with this
MBean.

OperationalState getOperationalState()

Gets the operational state.

java.lang.String getPhysicalPathType()

Gets the physical path type.

int getPortID()

Gets the port ID.

java.lang.String getPortLabel()

Gets the port label.

void setAdministrativeState(AdministrativeState admin_state)

Sets the administrative state.

void setAlarmSeverityProfilePointer(ObjectName asp)

Sets the AlarmSeverityProfile associated with this MBean.
130 Netra CT Server Software Developer’s Guide • August 2004

This attribute is used to activate (unlocked) and deactivate (locked) the function
performed by the physical path termination point.

Returns:

The administrative state value defined as either

com.sun.ctmgx.moh.AdministrativeState.LOCKED or
com.sun.ctmgx.moh.AdministrativeState.UNLOCKED

getAlarmSeverityProfilePointer()

public javax.management.ObjectName
getAlarmSeverityProfilePointer()

Gets the ObjectName of the AlarmSeverityProfile associated with this MBean.

This attribute provides a pointer to the instance of the Alarm Severity Assignment
Profile MBean that contains the severity assignments for the alarms reported by
this MBean. When the value of this attribute is set to null, default severity
assignmentsare used.

Returns:

The ObjectName of the AlarmSeverityProfile MBean.

getOperationalState()

public com.sun.ctmgx.moh.OperationalState getOperationalState()

Gets the operational state.

This attribute identifies whether or not the physical path termination point is
capable of performing its normal functions, that is, enabled or disabled.

Returns:

One of the following operational state values:

com.sun.ctmgx.moh.OperationalState.ENABLED
com.sun.ctmgx.moh.OperationalState.DISABLED
com.sun.ctmgx.moh.OperationalState.UNKNOWN

getPhysicalPathType()

public java.lang.String getPhysicalPathType()

Gets the physical path type.

This attribute identifies the type of physical path being terminated (for example
DS1, DS3, SONET STS-3c, or Ethernet).

Returns:

The physical path type.
Chapter 4 Netra CT Element Management Agent API 131

getPortID()

public int getPortID()

Gets the port ID.

This attribute identifies the port on the line card where the physical path
terminates.

Returns:

The port ID.

getPortLabel()

public java.lang.String getPortLabel()

Gets the port label.

This attribute provides the external label string of this physical path termination
point object.

Returns:

The port label.

setAdministrativeState(AdministrativeState)

public void
setAdministrativeState(com.sun.ctmgx.moh.AdministrativeState
admin_state)

Sets the administrative state.

This attribute is used to activate (unlocked) and deactivate (locked) the function
performed by the physical path termination point.

Parameters:

admin_state – The administrative state value defined as either:

com.sun.ctmgx.moh.AdministrativeState.LOCKED
com.sun.ctmgx.moh.AdministrativeState.UNLOCKED

setAlarmSeverityProfilePointer(ObjectName)

public void setAlarmSeverityProfilePointer(ObjectName asp)

Sets the ObjectName of the AlarmSeverityProfile associated with this MBean.

This attribute provides a pointer to the instance of the Alarm Severity Assignment
Profile MBean that contains the severity assignments for the alarms reported by
this MBean. When the value of this attribute is set to null, default severity
assignments are used.

Parameters:

asp – The ObjectName of the AlarmSeverityProfile MBean.
132 Netra CT Server Software Developer’s Guide • August 2004

UdpServiceMBean

Declaration

public interface UdpServiceMBean extends SoftwareServiceMBean

All Superinterfaces

SoftwareServiceMBean

Description

This class describes the interface of Unix File System (UFS) service.

Methods

getCurrentInErrorThreshold()

public java.lang.Float getCurrentInErrorThreshold()

Gets the current threshold of received UDP datagrams that could not be delivered
for reasons other than the lack of an application at the destination port.

Returns:

The threshold in percentage of number of errors over the total receiving
datagrams of the current polling interval.

Member Summary

Methods

java.lang.Float getCurrentInErrorThreshold()

Gets the current threshold of received UDP datagrams that could not be delivered
for reasons other than the lack of an application at the destination port.

java.lang.Float setMaxInErrorThreshold

Gets the maximum threshold of received UDP datagrams that could not be delivered
for reasons other than the lack of an application at the destination port.

void setMaxInErrorThreshold(java.lang.Float newThreshold)

Sets the maximum threshold of received UDP datagrams that could not be delivered
for reasons other than the lack of an application at the destination port.

Inherited Member Summary

Methods inherited from interface SoftwareServiceMBean

getDaemonList(), getName(), getNumExcessiveIntervals(), getPollingInterval(),
getStatus(), setNumExcessiveIntervals(Integer), setPollingInterval(Integer),
startPolling(), stopPolling()
Chapter 4 Netra CT Element Management Agent API 133

getMaxInErrorThreshold()

public java.lang.Float getMaxInErrorThreshold()

Gets the maximum threshold of received UDP datagrams that could not be
delivered for reasons other than the lack of an application at the destination port.

Returns:

The maximum threshold in percentage.

setMaxInErrorThreshold(Float)

public void setMaxInErrorThreshold(java.lang.Float newThreshold)

Sets the maximum threshold of received UDP datagrams that could not be
delivered for reasons other than the lack of an application at the destination port.

Parameters:

newThreshold – maximum threshold to set.

UfsServiceMBean

Declaration

public interface UfsServiceMBean extends SoftwareServiceMBean

All Superinterfaces

SoftwareServiceMBean

Description

This class describes the interface of UfsService class.

Member Summary

Methods

java.lang.String[] getExcessiveThreshHoldFileSystemList()

Gets the list of file systems exceeding threshold.

java.lang.Float getFileSystemMaxThreshHold()

Gets the threshold percentage usage of the file system.

void setFileSystemMaxThreshHold(java.lang.Float threshHold)

Sets the threshold percentage usage of the file system.
134 Netra CT Server Software Developer’s Guide • August 2004

Methods

getExcessiveThreshHoldFileSystemList()

public java.lang.String[] getExcessiveThreshHoldFileSystemList()

Gets the list of file systems exceeding threshold.

Returns:

List of file system.

Null is returned if there is no file systems exceeding threshold.

getFileSystemMaxThreshHold()

public java.lang.Float getFileSystemMaxThreshHold()

Gets the threshold percentage usage of the file system.

Returns:

Usage in percentage.

setFileSystemMaxThreshHold(Float)

public void setFileSystemMaxThreshHold(java.lang.Float threshHold)

Sets the threshold percentage usage of the file system.

Parameters:

threshHold–maximum threshold to set.

Inherited Member Summary

Methods inherited from interface SoftwareServiceMBean

getDaemonList(),getName(), getNumExcessiveIntervals(), getPollingInterval(), getStatus(),
setNumExcessiveIntervals(Integer), setPollingInterval(Integer), startPolling(),
stopPolling()
Chapter 4 Netra CT Element Management Agent API 135

Netra CT Management Agent Class
Descriptions
This section contains descriptions of the following management agent classes:

AdministrativeState

Declaration

public class AdministrativeState extends java.lang.Object
implements java.io.Serializable

java.lang.Object
 |
 +--com.sun.ctmgx.moh.AdministrativeState

All Implemented Interfaces:

java.io.Serializable

Description

This class defines the administrative states of an object. Currently, for Netra CT 410,
and CT 810, there is no implementation in MOH to perform lockout processing
based on this state.

Member Summary

Fields

static AdministrativeState LOCKED

static AdministrativeState UNLOCKED

Methods

 Boolean equals(java.lang.Object obj)

 int hashCode()

 int intValue()

 java.lang.String toString()
136 Netra CT Server Software Developer’s Guide • August 2004

Fields

LOCKED

public static final com.sun.ctmgx.moh.AdministrativeState
LOCKED

Indicates the related object is in-use or busy performing a function.

UNLOCKED

public static final com.sun.ctmgx.moh.AdministrativeState
UNLOCKED

Indicates the related object is not in-use or not busy performing a function.

Methods

equals(Object)

public Boolean equals(java.lang.Object obj)

Overrides:

equals in class Object

hashCode()

public int hashCode()

Overrides:

hashCode in class Object

intValue()

public int intValue()

toString()

public java.lang.String toString()

Overrides:

toString in class Object

Inherited Member Summary

Methods inherited from class Object

getClass(), notify(), notifyAll(), wait(), wait(), wait()
Chapter 4 Netra CT Element Management Agent API 137

AlarmNotification

Declaration

public class AlarmNotification extends
com.sun.ctmgx.moh.AlarmNotification

java.lang.Object
 |
 +--java.util.EventObject
 |
 +--javax.management.Notification
 |
 +--com.sun.ctmgx.moh.AlarmNotification

Description

The Alarm Notification class represents an alarm notification emitted by an MBean.
This notification is used to notify the management system when a failure has been
detected or cleared.

It contains a reference to the source MBean: if the notification has been forwarded
through the MBean server, this is the object name of the MBean. If the listener has
registered directly with the MBean, this is a direct reference to the MBean.

Note – To receive alarms, the alarm listener must: (1) Assign an alarm severity
profile to an object which is in the list of alarm types (for example, fan, CPU
thermistor, or CPU card memory monitor) (2) Enable alarm types.

Member Summary

Constructors

AlarmNotification(AlarmType alarmType, java.lang.Object
source, long sequenceNumber, java.lang.String message,
AlarmSeverity perceivedSeverity, java.lang.String
specificProblems, Boolean backedUpStatus,
javax.management.ObjectName backUpObject, java.lang.String
proposedRepairActions, java.util.Set
failedSwitchComponentList)

Constructs an alarm notification object.

Methods

AlarmType getAlarmType()

Gets the alarm type.
138 Netra CT Server Software Developer’s Guide • August 2004

Constructors

AlarmNotification

public AlarmNotification(com.sun.ctmgx.moh.AlarmType alarmType,
java.lang.Object source, long sequenceNumber,
java.lang.String message,
com.sun.ctmgx.moh.AlarmSeverity perceivedSeverity,
java.lang.String specificProblems, Boolean backedUpStatus,
java.management.ObjectName backUpObject,
java.lang.String proposedRepairActions,
java.util.Set failedSwitchComponentList)

Constructs an alarm notification object.

Parameters:

alarmType – one of the predefined AlarmType instances.

Boolean getBackedUpStatus()

Gets the backed-up status.

javax.management.ObjectName getBackUpObject()

Gets the back-up object.

java.util.Set getFailedSwitchComponentList()

Gets the list of failed switch components.

AlarmSeverity getPerceivedSeverity()

Gets the perceived severity of the alarm.

java.lang.String getProposedRepairActions()

Gets the proposed repair actions.

java.lang.String getSpecificProblems()

Gets the specific problems of the alarm.

Inherited Member Summary

Methods inherited from class javax.management.Notification

getMessage, getSequenceNumber, getSource, getTimeStamp, getType, getUserData,
setSequenceNumber, setSource, setTimeStamp, setUserData

Methods inherited from class java.util.EventObject

toString

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(), wait()

Member Summary (Continued)
Chapter 4 Netra CT Element Management Agent API 139

source – The notification source, that is, the MBean that emits the notification.

sequenceNumber – The notification sequence number within the source object.

message – A String containing the message of the notification.

specificProblems – Indicates further refinements to the problem identified by the
alarm type.

perceivedSeverity – One of the perceived severity values in the
com.sun.ctmgx.moh.AlarmSeverity class.

backedUpStatus – A Boolean indication as to whether or not the failed entity has
been backed-up.

backUpObject – The ObjectName of the MBean providing back-up services to
the failed entity.

proposedRepairActions – Indicates proposed repair actions for the problem
identified by the alarm.

failedSwitchComponentList – A set of failed (or possibly failed) components
associated with this alarm identified by their ObjectName.

Methods

getAlarmType()

public com.sun.ctmgx.moh.AlarmType getAlarmType()

Gets the alarm type.

Returns:

AlarmType enumeration.

getBackedUpStatus()

public Boolean getBackedUpStatus()

Gets the backed-up status.

If the value of this object is true, the agent reported in this notification that the
failed object had been backed up.

Returns:

The backed-up status.

getBackUpObject()

public javax.management.ObjectName getBackUpObject()

Gets the back-up object.

Indicates the object that provided back-up services to the failed object.
140 Netra CT Server Software Developer’s Guide • August 2004

Returns:

The ObjectName of the back-up object.

getFailedSwitchComponentList()

public java.util.Set getFailedSwitchComponentList()

Gets the list of failed switch components.

Returns:

The list of failed switch components.

getPerceivedSeverity()

public com.sun.ctmgx.moh.AlarmSeverity getPerceivedSeverity()

Gets the perceived severity of the alarm.

Returns:

One of the constants for perceived severity defined in the class
com.sun.ctmgx.moh.AlarmSeverity.

getProposedRepairActions()

public java.lang.String getProposedRepairActions()

Gets the proposed repair actions.

Indicates proposed repair actions reported by the agent for the problem identified
by the alarm. If more than one action is described in this object, the problem
descriptions are separated by newline characters.

Returns:

The proposed repair actions.

getSpecificProblems()

public java.lang.String getSpecificProblems()

Gets the specific problems of the alarm.

Indicates further refinements to the problem identified by the alarm type. If more
than one specific problem is described in this object, the problem descriptions are
separated by newline characters.

Returns:

The specific problems of the alarm.
Chapter 4 Netra CT Element Management Agent API 141

AlarmNotificationFilter

Declaration

public class AlarmNotificationFilter implements
java.io.Serializable

java.lang.Object
 |
 +--com.sun.ctmgx.moh.AlarmNotificationFilter

All Implemented Interfaces:

javax.management.NotificationFilter,java.io.Serializable

Description

This class describes the filtering of AlarmNotification notifications by selecting the
types and severities of interest.

It manages a list of enabled types and severities for which notifications should be sent.
Methods in this class allow users to enable/disable (allow/disallow of notifications
based on severities and types) as many types and severities as required.

Member Summary

Constructors

AlarmNotificationFilter()

Methods

void disableAlarmType(AlarmType type)

Disables a specific alarm type.

void disableAllAlarmTypes()

Disables all alarm types.

void disableAllSeverities()

Disables all the severities that were enabled.

void disableSeverity(AlarmSeverity severity)

Disables a specific severity type. Removes a severity for which you are no longer
interested in receiving notifications.

void enableAlarmType(AlarmType type)

Enables a specific type.

void enableAllAlarmTypes()

Enables all alarm types.
142 Netra CT Server Software Developer’s Guide • August 2004

Constructors

AlarmNotificationFilter()

public AlarmNotificationFilter()

Methods

disableAlarmType(AlarmType)

public void disableAlarmType(com.sun.ctmgx.moh.AlarmType type)

Disables a specific alarm type. To disable a specific Alarm type. If all alarm types
are enabled through an enableAllAlarmTypes() call, this call will not have any
effect.

disableAllAlarmTypes()

public void disableAllAlarmTypes()

Disables all alarm types. This method disables all enabled Alarm types as well as
the effect of the enableAllAlarmTypes() call.

disableAllSeverities()

public void disableAllSeverities()

Disables all the severities that were enabled.

void enableSeverity(AlarmSeverity severity)

Adds a severity for which you are interested in receiving notifications.

java.util.Vector getEnabledAlarmTypes()

Gets the alarm types currently enabled.

java.util.Vector getEnabledSeverities()

Gets the list of enabled severities for this filter.

Boolean isNotificationEnabled(javax.management.Notification notification)

Queries whether notification is needed.

Inherited Member Summary

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Member Summary (Continued)
Chapter 4 Netra CT Element Management Agent API 143

disableSeverity(AlarmSeverity)

public void disableSeverity(com.sun.ctmgx.moh.AlarmSeverity severity)

Disables a specific severity type. Remove a severity for which you are no longer
interested in receiving notifications.

Parameters:

severity – The severity value.

enableAlarmType(AlarmType)

public void enableAlarmType(com.sun.ctmgx.moh.AlarmType type)

This enables a specific Alarm type. If all Alarm types are already enabled through
the enableAllAlarmTypes() call, then type is also already enabled. In this case, to
enable just a specific Alarm type, disableAllAlarmTypes() call has to be
performed first and then this method can be invoked.

enableAllAlarmTypes()

public void enableAllAlarmTypes()

Enables all alarm types.This will enable all kinds of Alarm. This call enables the
notifications with the type string that have a prefix of
AlarmType.ALARM_TYPE_PREFIX, for example netract.moh.alarm.

enableSeverity(AlarmSeverity)

public void enableSeverity(com.sun.ctmgx.moh.AlarmSeverity
severity)
throws IllegalArgumentException

Adds a severity for which you are interested in receiving notifications.

Parameters:

severity – The severity value.

Throws:

java.lang.IllegalArgumentException

getEnabledAlarmTypes()

public java.util.Vector getEnabledAlarmTypes()

Gets the alarm types currently enabled.

Returns:

A vector of strings representing alarm types.
144 Netra CT Server Software Developer’s Guide • August 2004

getEnabledSeverities()

public java.util.Vector getEnabledSeverities()

Gets the list of enabled severities for this filter.

Returns:

The list containing the severities for which notifications should be sent.

isNotificationEnabled(Notification)

public Boolean
isNotificationEnabled(javax.management.Notification notification)

Queries whether notification is needed. This method is invoked before sending
the specified notification to the listener.

This filter compares the type and severity of the specified alarm notification with
each enabled type and severity. If the type equals one of the enabled types and
the severity equals one of the enabled severities, the notification must be sent to
the listener so this method returns true.

Parameters:

notification – The alarm notification to be sent.

Returns:

true if the notification has to be sent to the listener, false otherwise.

AlarmSeverity

Declaration

public class AlarmSeverity implements java.io.Serializable

java.lang.Object
 |
 +--com.sun.ctmgx.moh.AlarmSeverity

All Implemented Interfaces:

java.io.Serializable
Chapter 4 Netra CT Element Management Agent API 145

Description

This class defines the alarm severity objects for use with alarm notification.

Fields

CLEARED

public static final com.sun.ctmgx.moh.AlarmSeverity CLEARED

Indicates the alarm condition is clear.

Member Summary

Fields

static AlarmSeverity CLEARED

Indicates that the alarm condition is clear.

static AlarmSeverity CRITICAL

Indicates that the alarm is critical.

static AlarmSeverity INDETERMINATE

Indicates that the alarm condition is indeterminate.

static AlarmSeverity MAJOR

Indicates that the alarm is major.

static AlarmSeverity MINOR

Indicates that the alarm is minor.

static AlarmSeverity WARNING

Indicates that the alarm is minor.

Methods

Boolean equals(java.lang.Object obj)

int hashCode()

int intValue()

java.lang.String toString()

Inherited Member Summary

Methods inherited from class java.lang.Object

getClass(), notify(), notifyAll(), wait(), wait(), wait()
146 Netra CT Server Software Developer’s Guide • August 2004

CRITICAL

public static final com.sun.ctmgx.moh.AlarmSeverity CRITICAL

Indicates the alarm is critical.

INDETERMINATE

public static final com.sun.ctmgx.moh.AlarmSeverity
INDETERMINATE

Indicates the alarm condition is indeterminate.

MAJOR

public static final com.sun.ctmgx.moh.AlarmSeverity MAJOR

Indicates the alarm is major.

MINOR

public static final com.sun.ctmgx.moh.AlarmSeverity MINOR

Indicates the alarm is minor.

WARNING

public static final com.sun.ctmgx.moh.AlarmSeverity WARNING

Indicates the alarm is a warning

Methods

equals(Object)

public Boolean equals(java.lang.Object obj)

Overrides:

equals in class Object

hashCode()

public int hashCode()

Overrides:

hashCode in class Object

intValue()

public int intValue()
Chapter 4 Netra CT Element Management Agent API 147

toString()

public java.lang.String toString()

Overrides:

toString in class Object

AlarmType

Declaration

public class AlarmType extends jaba.lang.Object implements
java.io.Serializable

java.lang.Object
 |
 +--com.sun.ctmgx.moh.AlarmType

All Implemented Interfaces:

java.io.Serializable

Description

This class is an enumeration of predefined Alarm types; the user needs to use one of
the predefined types to construct an AlarmNotification object.

Member Summary

Fields

static AlarmType FAN_FAILURE

Alarm type that indicates a fan failure alarm.

static AlarmType FUSE_FAILURE

Alarm type that indicates a fuse failure alarm.

static AlarmType HIGH_MEMORY_UTILIZATION

Alarm type that indicates a high physical memory utilization alarm.

static AlarmType HIGH_TEMPERATURE

Alarm type that indicates a high temperature alarm.

Methods

Boolean equals(java.lang.Object obj)

int hashCode()

java.lang.String toString()
148 Netra CT Server Software Developer’s Guide • August 2004

Fields

FAN_FAILURE

public static final com.sun.ctmgx.moh.AlarmType FAN_FAILURE

Alarm type that indicates a fan failure alarm.

FUSE_FAILURE

public static final com.sun.ctmgx.moh.AlarmType FUSE_FAILURE

Alarm type that indicates a fuse failure alarm.

HIGH_MEMORY_UTILIZATION

public static final com.sun.ctmgx.moh.AlarmType
HIGH_MEMORY_UTILIZATION

Alarm type that indicates a high physical memory utilization alarm.

HIGH_TEMPERATURE

public static final com.sun.ctmgx.moh.AlarmType HIGH_TEMPERATURE

Alarm type that indicates a high temperature alarm.

Methods

equals(Object)

public Boolean equals(java.lang.Object obj)

Overrides:

equals in class Object.

hashCode()

public int hashCode()

Overrides:

hashCode in class Object.

Inherited Member Summary

Methods inherited from class java.lang.Object

getClass(), notify(), notifyAll(), wait(), wait(), wait()
Chapter 4 Netra CT Element Management Agent API 149

intValue()

public int intValue()

toString()

public java.lang.String toString()

Overrides:

toString in class Object.

AttributeChangeNotification

Declaration

public class AttributeChangeNotification extends
javax.management.AttributeChangeNotification

java.lang.Object
 |
 +--java.util.EventObject
 |
 +--javax.management.Notification
 |
 +--javax.management.AttributeChangeNotification
 |
 +--com.sun.ctmgx.moh.AttributeChangeNotification

All Implemented Interfaces

java.io.Serializable

Description

This class defines definitions of the attribute change notifications sent by MBeans.

It is up to the MBean owning the attribute of interest to create and send attribute
change notifications when the attribute change occurs, so the
NotificationBroadcaster interface has to be implemented by any MBean
interested in sending attribute change notifications.
150 Netra CT Server Software Developer’s Guide • August 2004

Fields

ATTRIBUTE_CHANGE

public static final java.lang.String ATTRIBUTE_CHANGE

Notification type that indicates that the observed MBean attribute value has
changed.

The value of this type string is netract.moh.attribute.change.

Member Summary

Fields

static java.lang.String ATTRIBUTE_CHANGE

Notification type that indicates that the observed MBean attribute value
has changed.

Constructors

AttributeChangeNotification (java.lang.Object source, long sequenceNumber,
java.lang.String message, java.lang.String attributeName,
java.lang.String attributeType, java.lang.Object oldValue,
java.lang.Object newValue)

Constructs an attribute change notification object whose type string is
netract.moh.attribute.change. In addition to the information
common to all notifications, the caller must supply the name and type of
the attribute, as well as its old and new values.

Methods

java.lang.String getType()

Gets type of notification.

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(), wait()
Chapter 4 Netra CT Element Management Agent API 151

Constructors

AttributeChangeNotification

public AttributeChangeNotification(java.lang.Object source,
long sequenceNumber, java.lang.String message,
java.lang.String attributeName, java.lang.String attributeType,
java.lang.Object oldValue, java.lang.Object newValue)

Construct an attribute change notification object whose type string is
netract.moh.attribute.change. In addition to the information common to all
notifications, the caller must supply the name and type of the attribute, as well as
its old and new values.

Parameters:

source – The notification source, that is, the MBean that emits the notification.

sequenceNumber – The notification sequence number within the source object.

message – A String containing the message of the notification.

attributeName – A String specifying the name of the attribute.

attributeType – A String specifying the type of the attribute.

oldValue – An object representing the value of the attribute before the change.

newValue – An object representing the value of the attribute after the change.

Methods

getType()

public java.lang.String getType()

Gets the notification type.

Overrides:

getType in class javax.management.Notification

Returns:

ATTRIBUTE_CHANGE. The method of javax.management.Notification
is overridden to return ATTRIBUTE_CHANGE.
152 Netra CT Server Software Developer’s Guide • August 2004

AttributeChangeNotificationFilter

Declaration

public class AttributeChangeNotificationFilter extends
javax.management.AttributeChangeNotificationFilter

java.lang.Object
 |
 +--javax.management.AttributeChangeNotificationFilter
 |
 +--com.sun.ctmgx.moh.AttributeChangeNotificationFilter

All Implemented Interfaces

javax.management.NotificationFilter, java.io.Serializable

Description

This class describes the filtering performed on the name of the observed attribute.

It manages a list of enabled attributes for which notifications should be sent when
their attribute changes. A method in this class allows users to decide whether
notifications should be sent for attribute changes.

Member Summary

Constructors

AttributeChangeNotificationFilter()

Methods

Boolean isNotificationEnabled(Notification notification)

This method is invoked before sending the specified notification to the listener.

Inherited Member Summary

Methods inherited from class javax.management.AttributeChangeNotificationFilter

disableAllAttributes, disableAttribute, enableAttribute, getEnabledAttributes

Methods inherited from class java.lang.Object

equals(Object), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(), wait()
Chapter 4 Netra CT Element Management Agent API 153

Constructors

AttributeChangeNotificationFilter

public AttributeChangeNotificationFilter()

Methods

isNotificationEnabled(Notification)

public Boolean
isNotificationEnabled(javax.management.Notification notification)

This method is invoked before sending the specified notification to the listener.

This filter compares the attribute name of the specified attribute change
notification with each enabled attribute name. If the attribute name equals one of
the enabled attribute names, the notification must be sent to the listener so this
method returns true.

Parameters:

notification – The attribute change notification to be sent.

Returns:

true if the notification has to be sent to the listener, false otherwise.

AuthClient

Declaration

public class AuthClient extends java.lang.Object

java.lang.Object
 |
 +--com.sun.ctmgx.moh.AuthClient

Description

This class defines the client utility routines, particularly for authentication.
154 Netra CT Server Software Developer’s Guide • August 2004

Constructor

AuthClient

public AuthClient()

Method

setAuthInfo

public static void
setAuthInfo(com.sun.jdmk.comm.RmiConnectorClient client,
java.lang.String user, java.lang.String passwd)

Set the authentication information for a Connector client.

Parameters:

client – an instance of RmiConnectorClient.

user – The username which is the same as the user configured on the Alarm
card.

passwd – The password as configured on the Alarm card for the username.

Member Summary

Constructors

AuthClient()

Methods

static void setAuthInfo(com.sun.jdmk.comm.RmiConnectorClient client, java.lang.String
user, java.lang.String passwd)
Set the authentication information for a Connector client.

Inherited Member Summary

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
Chapter 4 Netra CT Element Management Agent API 155

AvailabilityStatus

Declaration

public class AvailabilityStatus extends java.lang.Object
implements java.io.Serializable

java.lang.Object
 |
 +--com.sun.ctmgx.moh.AvailabilityStatus

All Implemented Interfaces:

java.io.Serializable

Description

This class defines the availability status for a plug-in unit object.

Member Summary

Fields

static AvailabilityStatus AVAILABLE

This class defines the availability status for a plug-in unit object.

static AvailabilityStatus DEPENDENCY

Indicates the object is in dependency state.

static AvailabilityStatus FAILED

Indicates the object is in failed state.

static AvailabilityStatus INTEST

Indicates the object is under test.

static AvailabilityStatus NOTINSTALLED

Indicates the object is not properly configured.

static AvailabilityStatus OFFLINE

Indicates the object is in offline state.

static AvailabilityStatus POWEROFF

Indicates the object is in power off state.

static AvailabilityStatus UNKNOWN

Indicates the state of the object is unknown.

Methods

Boolean equals(java.lang.Object obj)
156 Netra CT Server Software Developer’s Guide • August 2004

Fields

AVAILABLE

public static final com.sun.ctmgx.moh.AvailabilityStatus
AVAILABLE

Indicates the object is capable of performing its normal function.

DEPENDENCY

public static final com.sun.ctmgx.moh.AvailabilityStatus
DEPENDENCY

Indicates the object is in dependency state.

FAILED

public static final com.sun.ctmgx.moh.AvailabilityStatus FAILED

Indicates the object is in failed state.

INTEST

public static final com.sun.ctmgx.moh.AvailabilityStatus INTEST

Indicates the object is under test.

NOTINSTALLED

public static final com.sun.ctmgx.moh.AvailabilityStatus
NOTINSTALLED

Indicates the object is not properly configured

int hashCode()

int intValue()

java.lang.String toString()

Inherited Member Summary

Methods inherited from class java.lang.Object

getClass(), notify(), notifyAll(), wait(), wait(), wait()

Member Summary (Continued)
Chapter 4 Netra CT Element Management Agent API 157

OFFLINE

public static final com.sun.ctmgx.moh.AvailabilityStatus OFFLINE

Indicates the object is in offline state.

POWEROFF

public static final com.sun.ctmgx.moh.AvailabilityStatus
POWEROFF

Indicates the object is in power off state.

UNKNOWN

public static final com.sun.ctmgx.moh.AvailabilityStatus UNKNOWN

Indicates the object is unknown.

Methods

equals(Object)

public Boolean equals(java.lang.Object obj)

Overrides:

equals in class Object

hashCode()

public int hashCode()

Overrides:

hashCode in class Object

intValue()

public int intValue()

toString()

public java.lang.String toString()

Overrides:

toString in class Object
158 Netra CT Server Software Developer’s Guide • August 2004

EquipmentHolderType

Declaration

public class EquipmentHolderType extends java.lang.Object implements
java.io.Serializable

java.lang.Object
 |
 +--com.sun.ctmgx.moh.EquipmentHolderType

All Implemented Interfaces:

java.io.Serializable

Member Summary

Fields

static EquipmentHolderType DRAWER

This type is currently not supported in Netra CT 410/810.

static EquipmentHolderType RACK

This type is currently not supported in Netra CT 410/810.

static EquipmentHolderType SHELF

This type is currently not supported in Netra CT 410/810.

static EquipmentHolderType SLOT

This type is currently not supported in Netra CT 410/810.

Methods

Boolean equals(java.lang.Object obj)

int hashCode()

int intValue()

java.lang.String toString()

Inherited Member Summary

Methods inherited from class Object

getClass(), notify(), notifyAll(), wait(), wait(), wait()
Chapter 4 Netra CT Element Management Agent API 159

Fields

DRAWER

public static final com.sun.ctmgx.moh.EquipmentHolderType DRAWER

This type is currently not supported in Netra CT 410/810.

RACK

public static final com.sun.ctmgx.moh.EquipmentHolderType RACK

This type is currently not supported in Netra CT 410/810.

SHELF

public static final com.sun.ctmgx.moh.EquipmentHolderType SHELF

This type is currently not supported in Netra CT 410/810.

SLOT

public static final com.sun.ctmgx.moh.EquipmentHolderType SLOT

Holder type SLOT such as disk slot, fan slot, power supply slot, or CPCI slots.

Methods

equals(Object)

public Boolean equals(java.lang.Object obj)

Overrides:

equals in class Object

hashCode()

public int hashCode()

Overrides:

hashCode in class Object

intValue()

public int intValue()

toString()

public java.lang.String toString()

Overrides:

toString in class Object
160 Netra CT Server Software Developer’s Guide • August 2004

LogFullAction

Declaration

public class LogFullAction extends java.lang.Object implements
java.io.Serializable

java.lang.Object
 |
 +--com.sun.ctmgx.moh.LogFullAction

All Implemented Interfaces

java.io.Serializable

Description

This class describes the action to perform when the log is full. For Netra
CT 410/CT 810, this class is not supported.

HALT

public static final LogFullAction HALT

WRAP

public static final LogFullAction WRAP

Member Summary

Fields

static LogFullAction HALT

static LogFullAction WRAP

Methods

 int intValue()

 java.lang.String toString()

Inherited Member Summary

Methods inherited from class Object

getClass(), notify(), notifyAll(), wait(), wait(), wait()
Chapter 4 Netra CT Element Management Agent API 161

Methods

intValue()

public int intValue()

toString()

public java.lang.String toString()

Overrides: toString in class java.lang.Object

MohNames

Declaration

public class MohNames extends java.lang.Object

java.lang.Object
 |
 +--com.sun.ctmgx.moh.MohNames

Description

This class defines the public constants and static variables for MOH user to
communicate to the MBean server. For example:

■ A MOH user might need to know the object name of the ContainmentTreeMBean
to traverse the physical topology.

■ A MOH user registers as a listener on EFD using the EFD’s object name kept in a
public static variable.

■ A MOH user might need to know the object name of the Software Monitor
Service to discover all the software services in the system.

Member Summary

Fields

static java.lang.String CLASS_NAME_ASP

AlarmSeverityProfile Class Name.

static java.lang.String CLASS_NAME_EFD

EFD Class Name.

static java.lang.String CLASS_NAME_SOFTWAREMONITOR

SoftwareMonitor Class Name.
162 Netra CT Server Software Developer’s Guide • August 2004

Fields

CLASS_NAME_ASP

public static final java.lang.String CLASS_NAME_ASP

AlarmSeverityProfile Class Name.

CLASS_NAME_EFD

public static final java.lang.String CLASS_NAME_EFD

EFD Class Name.

static java.lang.String DESCR_ALARM

Notification Description: AlarmNotification

static java.lang.String DESCR_ATTRIBUTE_CHANGE

Notification Description: AttributeChangeNotification

static java.lang.String DESCR_OBJECT_CREATION

Notification Description: ObjectCreationNotification

static java.lang.String DESCR_OBJECT_DELETION

Notification Description: ObjectDeletionNotification

static java.lang.String DESCR_STATE_CHANGE

Notification Description: StateChangeNotification

static javax.management.ObjectName MOH_CONTAINMENT_TREE

The object name of the only instance of ContainmentTreeMBean

static javax.management.ObjectName MOH_DEFAULT_ASP

The object name used by the MOH implementation for registering
the default Alarm Severity Profile MBean.

static javax.management.ObjectName MOH_DEFAULT_EFD

The object name used by the MOH implementation for registering
the default EFD MBean.

static javax.management.ObjectName MOH_SOFTWARE_MONITOR

The object name used by the MOH implementation for registering
the Software Monitor MBean.

Inherited Member Summary

Methods inherited from class Object

equals(Object), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(), wait()

Member Summary (Continued)
Chapter 4 Netra CT Element Management Agent API 163

CLASS_NAME_SOFTWAREMONITOR

public static final java.lang.String CLASS_NAME_SOFTWAREMONITOR

SoftwareMonitor Class Name.

DESCR_ALARM

public static final java.lang.String DESCR_ALARM

Notification Description: AlarmNotification

DESCR_ATTRIBUTE_CHANGE

public static final java.lang.String DESCR_ATTRIBUTE_CHANGE

Notification Description: AttributeChangeNotification

DESCR_OBJECT_CREATION

public static final java.lang.String DESCR_OBJECT_CREATION

Notification Description: ObjectCreationNotification

DESCR_OBJECT_DELETION

public static final java.lang.String DESCR_OBJECT_DELETION

Notification Description: ObjectDeletionNotification

DESCR_STATE_CHANGE

public static final java.lang.String DESCR_STATE_CHANGE

Notification Description: StateChangeNotification

MOH_CONTAINMENT_TREE

public static javax.management.ObjectName MOH_CONTAINMENT_TREE

The object name of the only instance of ContainmentTreeMBean. The value is
DOMAIN + “:name=ContainmentTree”

MOH_DEFAULT_ASP

public static javax.management.ObjectName MOH_DEFAULT_ASP

The object name used by the MOH implementation for registering the default
Alarm Severity Profile MBean. The value is DOMAIN + “:name=
AlarmSeverityProfile,id=0”.
164 Netra CT Server Software Developer’s Guide • August 2004

MOH_DEFAULT_EFD

public static javax.management.ObjectName MOH_DEFAULT_EFD

The object name used by the MOH implementation for registering the default
EFD MBean.

The value is DOMAIN + “:name=EFD”.

MOH_SOFTWARE_MONITOR

public static ObjectName MOH_SOFTWARE_MONITOR

The object name used by the MOH implementation for registering the Software
Monitor MBean. The value is DOMAIN + “:name=softwaremonitor”.

ObjectCreationNotification

Declaration

public class ObjectCreationNotification extends
TopologyChangeNotification

java.lang.Object
 |
 +--java.util.EventObject
 |
 +--javax.management.Notification
 |
 +--com.sun.ctmgx.moh.TopologyChangeNotification
 |
 +--com.sun.ctmgx.moh.ObjectCreationNotification

Description

This class defines the creation notifications sent by MBeans.

It is up to the parent MBean, which creates the child MBean, to send the object
creation notification, so the NotificationBroadcaster interface has to be
implemented by the parent MBean.
Chapter 4 Netra CT Element Management Agent API 165

Fields

OBJECT_CREATION

public static final java.lang.String OBJECT_CREATION

Notification type denoting that an MBean has been created.

The value of this type string is netract.moh.object.creation.

Member Summary

Fields

static java.lang.String OBJECT_CREATION

Notification type denoting that an MBean has been created.

Constructors

ObjectCreationNotification(java.lang.Object source, long
sequenceNumber, java.lang.String message,
javax.management.ObjectName child,
javax.management.ObjectName parent)

Creates an ObjectCreationNotification object specifying the object
names of the created MBean and the parent of the created MBean in
the containment hierarchy.

Methods

javax.management.ObjectName getChildMBeanName()

Gets the object name of the created or deleted MBean.

javax.management.ObjectName getParentMBeanName()

Gets the object name of the parent of the created or deleted MBean in
the containment hierarchy.

Inherited Member Summary

Methods inherited from class javax.management.Notification

getMessage, getSequenceNumber, getSource, getTimeStamp, getType, getUserData,
setSequenceNumber, setSource, setTimeStamp, setUserData

Methods inherited from class java.lang.Object

toString

Methods inherited from class java.lang.Object

equals(Object), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(), wait()
166 Netra CT Server Software Developer’s Guide • August 2004

Constructors

ObjectCreationNotification

public ObjectCreationNotification(java.lang.Object source,
long sequenceNumber, java.lang.String message,
javax.management.ObjectName child,
javax.management.ObjectName parent)

Creates an ObjectCreationNotification object specifying the object names of the
created MBean and the parent of the created MBean in the containment hierarchy.

Parameters:

source – The notification source, that is, the MBean that emits the notification.

sequenceNumber – The notification sequence number within the source object.

message – A String containing the message of the notification.

child – The object name of the created MBean, that is, the child MBean in the
containment hierarchy.

parent – The object name of the parent MBean in the containment hierarchy.

Methods

getChildMBeanName()

public javax.management.ObjectName getChildMBeanName()

Gets the object name of the created or deleted MBean.

Returns:

The ObjectName of the created or deleted MBean.

getParentMBeanName()

public javax.management.ObjectName getParentMBeanName()

Gets the object name of the parent of the created/deleted MBean in the
containment hierarchy.

Returns:

The ObjectName of the parent MBean.
Chapter 4 Netra CT Element Management Agent API 167

ObjectDeletionNotification

Declaration

public class ObjectDeletionNotification extends
TopologyChangeNotification

java.lang.Object
 |
 +--java.util.EventObject
 |
 +--javax.management.Notification
 |
 +--com.sun.ctmgx.moh.TopologyChangeNotification
 |
 +-com.sun.ctmgx.moh.ObjectDeletionNotification

Description

This class defines the deletion notifications sent by MBeans.

Member Summary

Fields

static java.lang.String OBJECT_DELETION

Notification type denoting that an MBean has been deleted.

Constructors

ObjectDeletionNotification(java.lang.Object source, long
sequenceNumber, java.lang.String message,
javax.management.ObjectName child,
javax.management.ObjectName parent)

Creates an ObjectDeletionNotification object specifying the object names of
the deleted MBean and the parent of the deleted MBean in the containment
hierarchy.

Methods

javax.management.ObjectName getChildMBeanName()

Gets the object name of the created/deleted MBean.

javax.management.ObjectName getParentMBeanName()

Gets the object name of the parent of the created/deleted MBean in the
containment hierarchy.
168 Netra CT Server Software Developer’s Guide • August 2004

Fields

OBJECT_DELETION

public static final java.lang.String OBJECT_DELETION

Notification type denoting that an MBean has been deleted.

The value of this type string is netract.moh.object.deletion.

Constructors

ObjectDeletionNotification

public ObjectDeletionNotification(java.lang.Object source,
long sequenceNumber, java.lang.String message,
javax.management.ObjectName child, javax.management.ObjectName parent)

Creates an ObjectDeletionNotification object specifying the object names of the
deleted MBean and the parent of the deleted MBean in the containment hierarchy.

Parameters:

source – The notification source, that is, the MBean that emits the notification.

sequenceNumber – The notification sequence number within the source object.

message – A String containing the message of the notification.

child – The object name of the deleted MBean, that is, the child MBean in the
containment hierarchy.

parent – The object name of the parent MBean in the containment hierarchy.

Inherited Member Summary

Methods inherited from class javax.management.Notification

getMessage, getSequenceNumber, getSource, getTimeStamp, getType, getUserData,
setSequenceNumber, setSource, setTimeStamp, setUserData

Methods inherited from class java.util.EventObjec

toString

Methods inherited from class java.lang.Object

equals(Object), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(), wait()
Chapter 4 Netra CT Element Management Agent API 169

Methods

getChildMBeanName()

public javax.management.ObjectName getChildMBeanName()

Gets the object name of the created or deleted MBean.

Returns:

The ObjectName of the created or deleted MBean.

getParentMBeanName()

public javax.management.ObjectName getParentMBeanName()

Gets the object name of the parent of the created or deleted MBean in the
containment hierarchy.

Returns:

The ObjectName of the parent MBean.

OperationalState

Declaration

public class OperationalState extends java.lang.Object
implements java.io.Serializable

java.lang.Object
 |
 +--com.sun.ctmgx.moh.OperationalState

All Implemented Interfaces

java.io.Serializable

Description

This class defines the operational states of a device (equipment or plug-in):

■ ENABLED: In-service, that is, the device is capable of performing its normal
function.

■ DISABLED: Out-of-service, that is, the device is incapable of performing its
normal function.

■ UNKNOWN: The system is unable to determine the operation state of this device.
170 Netra CT Server Software Developer’s Guide • August 2004

Fields

DISABLED

public static final com.sun.ctmgx.moh.OperationalState DISABLED

Device is incapable of performing its normal function.

ENABLED

public static final com.sun.ctmgx.moh.OperationalState ENABLED

Device is capable of performing its normal function.

UNKNOWN

public static final com.sun.ctmgx.moh.OperationalState UNKNOWN

State of this device cannot be determined.

Member Summary

Fields

static OperationalState DISABLED

Device is incapable of performing its normal function.

static OperationalState ENABLED

Device is capable of performing its normal function.

static OperationalState UNKNOWN

State of this device can not be determined.

Methods

Boolean equals(java.lang.Object obj)

int hashCode()

int intValue()

java.lang.String toString()

Inherited Member Summary

Methods inherited from class Object

getClass(), notify(), notifyAll(), wait(), wait(), wait()
Chapter 4 Netra CT Element Management Agent API 171

Methods

equals(Object)

public Boolean equals(java.lang.Object obj)

Overrides:

equals in class Object

hashCode()

public int hashCode()

Overrides:

hashCode in class Object

intValue()

public int intValue()

toString()

public java.lang.String toString()

Overrides: toString in class Object

SlotStatus

Declaration

public class SlotStatus extends java.lang.Objec implements
java.io.Serializable

java.lang.Object
 |
 +--com.sun.ctmgx.moh.SlotStatus

All Implemented Interfaces

java.io.Serializable

Description

This class defines the status of the slot object.
172 Netra CT Server Software Developer’s Guide • August 2004

Fields

EMPTY

public static final com.sun.ctmgx.moh.SlotStatus EMPTY

No card or device is plugged into this slot.

FULL

public static final com.sun.ctmgx.moh.SlotStatus FULL

There is a card or device plugged into this slot.

Methods

equals(Object)

public Boolean equals(java.lang.Object obj)

Overrides:

equals in class Object

Member Summary

Fields

static SlotStatus EMPTY

No card or device is plugged into this slot.

static SlotStatus FULL

A card or device is plugged into this slot.

Methods

Boolean equals(java.lang.Object obj)

int hashCode()

int intValue()

java.lang.String toString()

Inherited Member Summary

Methods inherited from class Object

getClass(), notify(), notifyAll(), wait(), wait(), wait()
Chapter 4 Netra CT Element Management Agent API 173

hashCode()

public int hashCode()

Overrides:

hashCode in class Object

intValue()

public int intValue()

toString()

public java.lang.String toString()

Overrides:

toString in class Object

StateChangeNotification

Declaration

public class StateChangeNotification extends
javax.management.AttributeChangeNotification

java.lang.Object
 |
 +--java.util.EventObject
 |
 +--javax.management.Notification
 |
 +--javax.management.AttributeChangeNotification
 |
 +--com.sun.ctmgx.moh.StateChangeNotification

Description

This class defines the state change notifications sent by MBeans.

It is up to the MBean owning the state attribute of interest to create and send state
change notifications when the state attribute change occurs, so the
NotificationBroadcaster interface has to be implemented by any MBean
interested in sending state change notifications.
174 Netra CT Server Software Developer’s Guide • August 2004

Fields

STATE_CHANGE

public static final java.lang.String STATE_CHANGE

Notification type which indicates that the observed MBean state attribute value
has changed.

The value of this type string is netract.moh.state.change.

Member Summary

Fields

static java.lang.String STATE_CHANGE

Notification type that indicates that the observed MBean state attribute value
has changed.

Constructors

StateChangeNotification(java.lang.Object source, long
sequenceNumber, java.lang.String message, java.lang.String
attributeName, java.lang.String attributeType, java.lang.Object
oldValue, java.lang.Object newValue)

Constructs a state change notification object whose type string is
netract.moh.state.change In addition to the information common to all
notifications, the caller must supply the name and type of the attribute, as well
as its old and new values.

Methods

java.lang.String getType()

Gets notification type. The method of javax.management.Notification is
overridden to return STATE_CHANGE.

Inherited Member Summary

Methods inherited from class javax.management.AttributeChangeNotification

getAttributeName, getAttributeType, getNewValue, getOldValue

Methods inherited from class javax.management.Notification

getMessage, getSequenceNumber, getSource, getTimeStamp, getUserData,
setSequenceNumber, setSource, setTimeStamp, setUserData

Methods inherited from class java.util.Event.Object

toString

Methods inherited from class java.lang.Object

equals(Object), getClass(), hashCode(), notify(), notifyAll(), wait(), wait(), wait()
Chapter 4 Netra CT Element Management Agent API 175

Constructors

StateChangeNotification

public StateChangeNotification(java.lang.Object source,
long sequenceNumber, java.lang.String message,
java.lang.String attributeName, java.lang.String attributeType,
java.lang.Object oldValue, java.lang.Object newValue)

Constructs a state change notification object whose type string is
netract.moh.state.change. In addition to the information common to all
notifications, the caller must supply the name and type of the attribute, as well as
the attribute’s old and new values.

Parameters:

source – The notification source, that is, the MBean that emits the notification.

sequenceNumber – The notification sequence number within the source object.

message – A String containing the message of the notification.

attributeName – A String specifying the name of the state attribute.

attributeType – A String specifying the type of the state attribute.

oldValue – An object representing the value of the state attribute before the
change.

newValue – An object representing the value of the state attribute after the
change.

Methods

getType()

public java.lang.String getType()

Gets notification type. The method of javax.management.Notification is
overridden to return STATE_CHANGE.

Overrides:

getType in class javax.management.Notification
176 Netra CT Server Software Developer’s Guide • August 2004

StateChangeNotificationFilter

Declaration

public class StateChangeNotificationFilter extends
javax.management.AttributeChangeNotificationFilter

java.lang.Object
 |
 +--javax.management.AttributeChangeNotificationFilter
 |
 +--com.sun.ctmgx.moh.StateChangeNotificationFilter

All Implemented Interfaces

javax.management.NotificationFilter, java.io.Serializable

Description

This class describes the filtering performed on the name of the observed attribute.

It manages a list of enabled attributes for which notifications should be sent when
their attribute changes. A method of this class allows users to enable or disable
(allow or disallow notifications to be sent) as many attribute names as required.

Member Summary

Constructors

StateChangeNotificationFilter()

Methods

Boolean isNotificationEnabled(javax.management.Notification notification)

This method is invoked before sending the specified notification to the listener.

Inherited Member Summary

Methods inherited from class javax.management.AttributeChangeNotificationFilter

disableAllAttributes, disableAttribute, enableAttribute, getEnabledAttributes

Methods inherited from class java.lang.Object

equals(Object), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(), wait()
Chapter 4 Netra CT Element Management Agent API 177

Constructors

StateChangeNotificationFilter

public StateChangeNotificationFilter()

Methods

isNotificationEnabled(Notification)

public Boolean
isNotificationEnabled(javax.management.Notification notification)

This method is invoked before sending the specified notification to the listener.

This filter compares the state attribute name of the specified state change
notification with each enabled attribute name. If the attribute name equals one of
the enabled attribute names, the notification must be sent to the listener so this
method returns true.

Overrides:

isNotificationEnabled in class
javax.management.AttributeChangeNotificationFilter

Parameters:

notification – The attribute change notification to be sent.

Returns:

true if the notification has to be sent to the listener, false otherwise.
178 Netra CT Server Software Developer’s Guide • August 2004

CHAPTER 5

Simple Network Management
Protocol

This chapter describes the Netra CT server Simple Network Management Protocol
(SNMP) support, and provides a useful example. This chapter contains the following
sections:

■ “SNMP Overview” on page 179
■ “Netra CT System SNMP Representation” on page 181
■ “ENTITY-MIB” on page 182
■ “SUN-SNMP-NETRA-CT-MIB” on page 183
■ “Changing Midplane FRU-ID” on page 198

SNMP Overview
The most widespread legacy architecture for network and device management is
SNMP, for which the Java DMK provides a complete toolkit. This gives you the
advantages of developing both Java Dynamic Management agents and managers
that are interoperable with existing management systems.

SNMP network protocol enables devices to be managed remotely by a Network
Management Station (NMS). To be managed, a device must have an SNMP agent
associated with it. The agent receives requests for data representing the state of the
device and provides an appropriate response. The agent can also control the state of
the device. Additionally, the agent can generate SNMP traps, which are unsolicited
messages sent to selected NMS(s) to signal significant events relating to the device.

The Sun Netra SNMP Management Agent is an intelligent SNMP v2 agent for
continuously monitoring key hardware variables. You can generate and collect
value-add reports collected by remote monitoring. Using Sun Netra SNMP
Management Agent’s generic management interface and comprehensive event
mechanisms, you can dynamically build configuration and health status data, thus
reducing development costs.
179

Management Information Base (MIB)
To manage and monitor devices, the characteristics of the devices must be
represented using a format known to both the agent and the NMS. These
characteristics can represent physical properties such as fan speeds, or services such
as routing tables. The data structure defining these characteristics is known as a
Management Information Base (MIB). This data model is typically organized into
tables, but can also include simple values. An example of the former is routing
tables, and an example of the latter is a timestamp indicating the time at which the
agent was started.

A MIB is a text file, written in abstract syntax notation one (ASN.1) notation, which
describes the variables containing the information that SNMP can access. The
variables described in a MIB, which are also called MIB objects, are the items that
can be monitored using SNMP. There is one MIB object for each element being
monitored. All MIBs are, in fact, part of one large hierarchical structure, with leaf
nodes containing unique identifiers, data types, and access rights for each variable
and the paths providing classifications. A standard path structure includes branches
for private subtrees.

For reference, the structure of the MIBs for SNMPv2 is defined by its Structure of
Management Information (SMI) defined in the RFC2578 document. This SMI defines
the syntax and basic data types available to MIBs. The Textual Conventions (type
definitions) defined in the RFC2579 document define additional data types and
enumerations.

Before an NMS can manage a device through its agent, the MIB corresponding to the
data presented by the agent must be loaded into the NMS. The mechanism for doing
this varies depending on the implementation of the network management software.
This gives the NMS the information required to address and correctly interpret the
data model presented by the agent. Note that MIBs can reference definitions in other
MIBs, so to use a given MIB, it might be necessary to load others.

Object Identifiers (OIDs)
The MIB defines a virtual datastore accessible by way of the SNMP software, the
content being provided either by corresponding data maintained by the agent, or by
the agent obtaining the required data on demand from the managed device. For
writes of data by the NMS to this virtual data, the agent typically performs some
action affecting the state either of itself or the managed device.

To address the content of this virtual datastore, the MIB is defined in terms of object
identifiers (OIDs) which uniquely identify each data entry. An OID consists of an
hierarchically arranged sequence of integers providing a unique name space. Each
assigned integer has a associated text name. For example, the OID 1.3.6.1
corresponds to the OID iso.org.dod.internet and 1.3.6.1.4 corresponds to
180 Netra CT Server Software Developer’s Guide • August 2004

the OID iso.org.dod.internet.private. The numeric form is used within
SNMP protocol transactions, whereas the text form is used in user interfaces to aid
readability. Objects represented by such OIDs are commonly referred to by the last
component of their name as a shorthand form. To avoid confusion arising from this
convention, it is normal to apply a MIB-specific prefix, such as netraCt, to all object
names defined therein.

All addressable objects defined in the MIB have associated maximum access rights
(for instance, read-only or read-write), which determine what operations the NMS
permits the operator to attempt. The agent can limit access rights as required; that is,
it is able to refuse writes to objects that are considered read-write. This refusal can be
done on the grounds of applicability of the operation to the object being addressed,
or on the basis of security restrictions that can limit certain operations to restricted
sets of NMS. The mechanism used to communicate security access rights is
community strings. These text strings, such as private and public, are passed with
each SNMP data request.

Much of the data content defined by MIBs is of a tabular form, organized as entries
consisting of a sequence of objects (each with their own OIDs). For example, a table
of fan characteristics could consist of a number of rows, one per fan, with each row
containing columns corresponding to the current speed, the expected speed, and the
minimum acceptable speed. The addressing of the rows within the table can be a
simple single dimensional index (a row number within the table, for example, 6), or
a more complex, multidimensional, instance specifier such as an IP address and port
number (for example, 127.0.0.1, 1234). In either case, a specific data item within
a table is addressed by specifying the OID giving its prefix (for example,
myFanTable.myFanEntry.myCurrentFanSpeed) with a suffix instance specifier
(for example, 127.0.0.1.1234 from the previous example) to give
myFanTable.myFanEntry.myCurrentFanSpeed.127.0.0.1.1234.

Each table definition within the MIB has an INDEX clause that defines which
instance specifier(s) to use to select a given entry. The SMI defining the MIB syntax
provides an important capability whereby tables can be extended to add additional
entries, effectively adding extra columns to the table. This is achieved by defining a
table with an INDEX clause that is a duplicate of that of the table being extended.

Netra CT System SNMP Representation
The Netra CT software uses these SNMP MIBs to present the network information
model:

■ ENTITY-MIB (RFC 2037)
■ IF-MIB (RFC 2863)
■ SUN-SNMP-NETRA-CT-MIB
■ HOST-RESOURCES-MIB (RFC 2790)
Chapter 5 Simple Network Management Protocol 181

ENTITY-MIB
The ENTITY-MIB is defined by the IETF standard RFC2037. The ENTITY-MIB
provides a mechanism for presenting hierarchies of physical entities using SNMP
tables.

The Netra CT information model uses the ENTITY-MIB to provide:

■ A hierarchy of hardware resources—relationships between managed objects

■ Common hardware resource characteristics—a mapping of common attributes
from the GNIM Top, Equipment, and Termination Point classes

This information is presented using SNMP tables:

■ Physical Entity Table (entPhysicalTable)

This table contains one row per hardware resource. These rows are called entries,
and a particular row is referred to as an instance. Each entry contains the physical
class (entPhysicalClass) and common characteristics of the hardware resource.
Each entry has a unique index (entPhysicalIndex) and contains a reference
(entPhysicalContainedIn) that points to the row of the hardware resource which
acts as the container for this resource.

FIGURE 5-1 and TABLE 5-1 show how an example hierarchy of hardware resources are
presented using the ENTITY-MIB.

FIGURE 5-1 Hardware Resource Hierarchy

Chassis(1)

Fan(2) Container(4) Port(8)

Sensor(3) Module(5)

Power supply(6)

Sensor(7)

Sensor device(9)
182 Netra CT Server Software Developer’s Guide • August 2004

The Netra CT Management Agent uses values for entPhysicalIndex and ifIndex that
might not be contiguous, but are within the range of permitted values.

IF-MIB
The IF-MIB is defined by the IETF standard RFC 2863. The IF-MIB provides
information about the network interfaces of the server. The information is presented
using the ifTable. The ifTable contains a row for each network interface. The ifTable
includes columns which describe the interface (ifDescr), indicate the type of interface
(ifType), and the indicate the status of the interface (ifOperStatus).

SUN-SNMP-NETRA-CT-MIB
This section describes the SUN-SNMP-NETRA-CT-MIB, which is the SNMP version of
the Netra CT network element view.

To summarize, the MIB module consists of the following groups:
■ “Netra CT Network Element High-Level Objects” on page 184
■ “Physical Path Termination Point Table” on page 185
■ “Equipment Table” on page 185
■ “Plug-in Unit Table” on page 187
■ “Hardware Unit to Running Software Relationship Table” on page 188
■ “Hardware Unit to Installed Software Relationship Table” on page 188

TABLE 5-1 Physical Entity Table

entPhysicalIndex entPhysicalClass entPhysicalContainedIn . . .

1 chassis 0 . . .

2 fan 1 . . .

3 sensor 2 . . .

4 container 1 . . .

5 module 4 . . .

6 power supply 5 . . .

7 sensor 6 . . .

8 port 1 . . .

9 other 5 . . .

10 other 5 . . .
Chapter 5 Simple Network Management Protocol 183

■ “Alarm Severity Identifier Textual Convention” on page 189
■ “Alarm Severity Profile Table” on page 190
■ “Alarm Severity Table” on page 190
■ “Trap Forwarding Table” on page 191
■ “Trap Agent MIB Log Table” on page 192
■ “Logged Trap Table” on page 192
■ “Logged Alarm Table” on page 193
■ “MIB Notification Types” on page 194
■ “MIB Notifications” on page 195
■ “State Change Notification Traps” on page 195
■ “Object Creation and Deletion Notification Traps” on page 195
■ “Configuration Change Notification Traps” on page 196

A brief descriptions of these modules are provided in the following subsections.
sections. For more information, refer to the MIB file which is available as part of the
software package at the default location:

/opt/SUNWnetract/mgmt2.0/mibs/SUN-SNMP-NETRA-CT-MIB.mib

Netra CT Network Element High-Level Objects

The SUN-SNMP-NETRA-CT-MIB module representation of high-level objects in the
Netra CT network element (NE) is composed of the elements in TABLE 5-2:

TABLE 5-2 SUN-SNMP-NETRA-CT-MIB Netra CT NE High-Level Objects

Field Description

Vendor The vendor of the Netra CT network element.

Version The version of the Netra CT network element.

Start Time The time at which the agent was last started; in other words, the
time at which sysUpTime was zero (0).

Alarm Severity Index An index into the alarm severity profile table, specifying the
severity assignments for Netra CT alarms reported for the Netra
CT network element. The default value for this object is zero (0).

Suppress Zero Stats When the value of this object is true, no entry will be created in
any of the historical statistics tables for intervals in which all
counts are zero. The default value for this object is true (1).
184 Netra CT Server Software Developer’s Guide • August 2004

Physical Path Termination Point Table

The Netra CT Physical Path Termination Point Table extends the entPhysicalTable.
Each entry of this table represents a Physical Path Termination Point within the
Netra CT NE. The SUN-SNMP-NETRA-CT-MIB module representation of a physical
path termination point is composed of the elements shown in TABLE 5-3:

Equipment Table

The Netra CT Equipment Table extends the entPhysicalTable. Each entry in this table
represents a piece of equipment within the Netra CT NE that neither is nor accepts a
replaceable plug-in unit. The SUN-SNMP-NETRA-CT-MIB module representation of
an equipment is composed of the elements shown in TABLE 5-4:

TABLE 5-3 SUN-SNMP-NETRA-CT-MIB Physical Path Termination Point Table

Field Description

Physical Path
Termination Point
Hardware Unit
Index

Specifies the index of the entry in the entPhysicalTable that
represents the device (that is, a card) on which the physical path
terminates.

Physical Path
Termination Point
Port ID

Identifies the port (within the card identified by the hardware unit
index) on which the physical path terminates.

Physical Path
Termination Point
Port Label

Provides the external label string for the physical path TP entry. If
there is no label, the value is a zero-length display string.

Physical Path
Termination Point
Port Alarm Severity
Index

Specifies the index of the entry in the communications alarm
severity profile table that should be used. The default value of this
object is zero (0).

TABLE 5-4 SUN-SNMP-NETRA-CT-MIB Equipment Table

Field Description

Equipment
Administration
Status

 Used by the administrator to lock and unlock the object.

Equipment Location The specific or general location of the component.

Equipment
Operating Status

Identifies whether or not the component is capable of performing its
normal functions.

Equipment Vendor The vendor of the component.
Chapter 5 Simple Network Management Protocol 185

Equipment Holder Table

The Netra CT Equipment Holder table extends the entPhysicalTable. Each entry in
this table represents a component within the Netra CT NE that accepts a replaceable
plug-in unit. The SUN-SNMP-NETRA-CT-MIB module representation of an
equipment holder is composed of the elements shown in TABLE 5-5:

Equipment Version The version of the component.

Equipment User
Label

A user-friendly name for the piece of equipment. The default value
of this object is the null string.

Equipment Alarm
Severity Index

An index into the alarm severity profile table, specifying the severity
assignments for Netra CT alarms reported for this component. The
default value of this object is zero (0).

TABLE 5-5 SUN-SNMP-NETRA-CT-MIB Equipment Holder

Field Description

Equipment Holder
Type

The type of the component.

Equipment Holder
Acceptable Types

The types of plug-in units that can be supported by the slot,
separated by newline characters. This attribute is present only when
the Equipment Holder represents a slot.

Equipment Holder
Slot Status

Identifies whether or not a plug-in unit is present in the slot. This
attribute is present only when the Equipment Holder represents a
slot.

Equipment Holder
Label

Provides the external label string for the holder entry. If there is no
label, the value is a zero-length display string.

Equipment Holder
Software Load

An index into the installed software table, specifying the software
that is to be loaded into the plug-in unit whenever an automatic
reload of software is needed. This attribute is present only when the
Equipment Holder represents a slot.

TABLE 5-4 SUN-SNMP-NETRA-CT-MIB Equipment Table

Field Description
186 Netra CT Server Software Developer’s Guide • August 2004

Plug-in Unit Table

The Plug-In Unit Table extends the entPhysicalTable. Each entry of this table
represents a piece of equipment within the Netra CT NE that is inserted into and
removed from an Equipment Holder. The SUN-SNMP-NETRA-CT-MIB module
representation of a plug-in unit is composed of the elements shown in TABLE 5-6.

TABLE 5-6 SUN-SNMP-NETRA-CT-MIB Plug-In Unit Table

Field Description

Plug-In Unit
Administration
Status

Used by the administrator to lock and unlock the object. Values are:
up (1) and down (2).

Plug-In Unit
Availability Status

Provides further information regarding the state of the component.
Value are: available (1), inTest (2), failed (3), powerOff (4),
notInstalled (5), offine (6), dependency (7), and unknown (8).

Plug-In Unit
Operative Status

Identifies whether or not the component is capable of performing its
normal functions. Values are: up (1), down (2), and unknown (3).

Plug-In Unit Vendor The vendor of the component.

Plug-In Unit Version The version of the component.

Plug-In Unit Label Provides the external label string for the plug-in entry. If there is no
label, the value is a zero-length display string.

Plug-In Unit Alarm
Severity Index

An index into the alarm severity profile table, specifying the severity
assignments for Netra CT alarms reported for this component. The
default value of this object is zero (0).
Chapter 5 Simple Network Management Protocol 187

Hardware Unit to Running Software Relationship Table

The Netra CT Hardware Unit to Running Software Relationship Table describes the
software that is running on each hardware unit in the Netra CT NE. Each entry of
this table identifies an entry in the entPhysicalTable and one in the
hrSWInstalledTable.

The SUN-SNMP-NETRA-CT-MIB hardware unit to running software relationship
table is composed of the elements shown in TABLE 5-7.

Hardware Unit to Installed Software Relationship Table

The Netra CT Hardware Unit to Install Software Relationship Table describes the
software that is installed on each hardware unit in the Netra CT NE. Each entry of
this table identifies an entry in the entPhysicalTable and one in the
hrSWInstalledTable. The SUN-SNMP-NETRA-CT-MIB hardware unit to installed
software relationship table is composed of the elements shown in TABLE 5-8.

TABLE 5-7 SUN-SNMP-NETRA-CT-MIB Hardware Unit to Running Software Relation
Table

Field Description

Hardware Running
Software to
Hardware Index

The index, in the entPhysicalTable, of the containing hardware unit
in this pair.

Hardware Running
Software Index

A unique number within the context of the containing hardware
unit.

Hardware Running
Software to Software
Index

An index into the Netra CT Hardware Unit/Running Software
relationship table.

TABLE 5-8 SUN-SNMP-NETRA-CT-MIB Hardware Unit to Installed Software
Relationship Table

Field Description

Hardware Installed
Software to
Hardware Index

The index, in the entPhysicalTable, of the containing physical entity
in this pair.

Hardware Installed
Software Index

A unique number within the context of the containing hardware
unit.
188 Netra CT Server Software Developer’s Guide • August 2004

Alarm Severity Identifier Textual Convention

The SUN-SNMP-NETRA-CT-MIB alarm severity identifier textual conventions
consist of the elements shown in TABLE 5-9.

Hardware Installed
Software to Software
Index

The index, in the hrSWInstalledTable, of the software product
represented by this entry.

Hardware to
Software Alarm
Severity Index

An index into the alarm severity profile table, specifying the severity
assignments for Netra CT alarms reported for this piece of software
installed on the hardware unit. The default value of this object is
zero.

Hardware Installed
Software to
Hardware Index

The index, in the entPhysicalTable, of the containing physical entity
in this pair.

TABLE 5-9 SUN-SNMP-NETRA-CT-MIB Alarm Severity Identifier Textual Conventions

Field Description

Alarm Log Severity The value of this object identifies the severity of an alarm in the log.
Values are: cleared (-1), indeterminate (0), critical (1), major (2),
minor (3), and warning (4).

Alarm Severity The value of this object identifies the severity of an alarm that has
occurred. Values are: indeterminate (0), critical (1), major (2), minor
(3), and warning (4). (Note that there is no value corresponding to
’cleared’.)

TABLE 5-8 SUN-SNMP-NETRA-CT-MIB Hardware Unit to Installed Software
Relationship Table

Field Description
Chapter 5 Simple Network Management Protocol 189

Alarm Severity Profile Table

The Netra CT alarm severity profile table specifies which profiles exist. Creating or
deleting an entry in this table automatically creates or deletes the corresponding
entries in the netraCtAlarmSeverityTable. Each entry of this table represents a group
of severities, one for each alarm type in the communications alarm group. The SUN-
SNMP-NETRA-CT-MIB alarm severity profile table consists of the elements shown
in TABLE 5-10.

Alarm Severity Table

The Netra CT alarm severity table associates profile index and trap ID pairs with
severities to be used for Netra CT alarm traps that have occurred. (Note that this
table does not apply to cleared alarms). An entry in this table associates an alarm
severity profile index/trap ID pair with a severity. Deleting a particular profile’s row
in the alarm severity profile table deletes all rows in this table with the same profile
index. Conceptually, rows corresponding to all possible trap IDs are created in this
table when a new alarm severity profile is created, but the agent returns a default
value except for those few traps for which values have been set. The alarm severity
table elements are listed in TABLE 5-11.

TABLE 5-10 SUN-SNMP-NETRA-CT-MIB Alarm Severity Profile Table

Field Description

Alarm Severity
Profile Index

A number identifying this alarm severity profile.

Alarm Severity
Profile Row Status

This object is used to create a new row or to delete an existing row
in the table.

TABLE 5-11 SUN-SNMP-NETRA-CT-MIB Alarm Severity Table

Field Description

Alarm Severity Trap
ID

The ID of the trap type to which this entry applies.
190 Netra CT Server Software Developer’s Guide • August 2004

Trap Forwarding Table

The Netra CT Trap forwarding discriminator table specifies which traps will be sent
to which management system. Each entry of this table contents information about a
group of traps to be sent to a particular IP address. This is used as the value of the
object netraCtForwardedTrapObject when traps from all objects are to be forwarded,
or when there is only one object of the type that forwards the specified trap type.
The elements for this table are shown in TABLE 5-12.

TABLE 5-12 SUN-SNMP-NETRA-CT-MIB Trap Forwarding Table

Field Description

Trap Forwarding
Index

A number identifying the Trap forwarding discriminator.

Trap Forwarding
Destination

The IP address to which traps identified by this table entry should
be sent.

Forwarded Trap ID The ID of the trap type to which this entry applies. The special value
{0 0} indicates that this entry applies to all traps.

Forwarded Trap
Object

The object to which this entry applies. By convention, this is the
name of the first object in the row in the table referenced. The
special value {0 0} indicates that traps of this type from all objects of
the type that can generate it. It should also be used when traps from
the Netra CT NE are to be specified.

Trap Forwarding
Port

 The UDP port on the specified management system to which traps
identified by this entry should be sent.

Lowest Forwarded
Severity

The lowest severity of traps of this type from the specified object
that should be sent to this address. This object has significance only
if the trap type specified has a severity associated with it.

Forwarded
Indeterminate

When this object has the value TRUE, traps with indeterminate
severity will be forwarded to the specified event. This object has
significance only if the trap type specified has a severity associated
with it.

Trap Forwarding
Row Status

This object is used to create a new row or to delete an existing row
in the table.
Chapter 5 Simple Network Management Protocol 191

Trap Agent MIB Log Table

The Netra CT Trap Agent MIB Log Table defines the trap logs currently maintained
by the agent. The management system creates entries in this table to specify which
types of traps, from which Netra CT network elements, should be logged. Deleting
an entry in this table deletes all entries in the corresponding log. Each entry of this
table represents information about a single trap log.

The SUN-SNMP-NETRA-CT-MIB trap agent MIB log table consists of the elements
shown in TABLE 5-13.

Logged Trap Table

The Netra CT logged trap table contains information about a single trap in the log.
Entries in this table are created automatically but can be deleted by the management
system. Entries that represent alarm log types are augmented by the
netraCtLoggedAlarmEntry table. Each entry in this table is a unique number
identifying this entry in the log. When the maximum value for this object has been

TABLE 5-13 SUN-SNMP-NETRA-CT-MIB Trap Agent MIB Log Table

Field Description

Trap Log Source The IP address of the SNMP agent whose traps are stored in this log.

Trap Log Type The type of traps stored in this log. Values are: objectCreated (1),
objectDeleted (2), configChange (3), stateChange (4), and alarm (5)

Trap Log
Administrative
Status

The management system uses this object to stop and start the
operations of this object. Values are: up (1) and down (2). Default is
up (1).

Trap Log
Operational Status

Indicates whether or not the log is capable of performing its normal
operations.

Trap Log Full Action Indicates the action that should be performed when no more log
entries can be created due to a log-full condition. If the value of this
object is wrap (2), each new log entry will cause the deletion of the
oldest entry still in the log, for as long as the log is still full.
Value are: halt (1) and wrap (2). Default is wrap (2).

Trap Log Row Status This object is used to create a new row or to delete an existing row
in the table.
192 Netra CT Server Software Developer’s Guide • August 2004

reached, it wraps around to 0. The SUN-SNMP-NETRA-CT-MIB Logged Trap Table
is used to maintain the traps logged and consists of the elements shown in
TABLE 5-14.

Logged Alarm Table

The Netra CT Logged Alarm Trap table is used to maintain extra information for
logged traps that represent alarm types. Entries in this table contain information
about the alarm-specific attributes of a single trap in the log. The SUN-SNMP-
NETRA-CT-MIB Logged Alarm Table consists of the elements shown in TABLE 5-15.

TABLE 5-14 SUN-SNMP-NETRA-CT-MIB Logged Trap Table

Field Description

Logged Trap Time The time at which this trap was logged.

Logged Trap ID The type of trap to which this entry applies. Together with the
logged trap ID object, this object specifies the entity to which this
logged trap referred.

Logged Trap Object The object to which this entry applies. By convention, this is the
name of the first object in the row in the table referenced. Together
with the logged trap ID object, this object specifies the entity to
which this logged trap referred. The special value {0 0} indicates that
the trap refers to the Netra CT NE entity itself.

Logged Trap Row
Status

This object is used to delete an existing row in the table. Note that
the only value to which a management system can set this object is
destroy(6).

TABLE 5-15 SUN-SNMP-NETRA-CT-MIB Logged Alarm Table

Field Description

Logged Alarm
Severity

The perceived severity of the alarm, as specified by the agent that
generated it.

Logged Alarm
Backed Up

If the value of this object is true, the agent reported in this trap that
the failed object had been backed up. This object is only present if it
was included in the alarm trap corresponding to this log entry.
Chapter 5 Simple Network Management Protocol 193

MIB Notification Types

MIB notification types consist of auxiliary definitions for alarms. Except for
perceived severity, the objects shown in TABLE 5-16 can be optionally appended to
any alarm notification.

Logged Alarm
Backed Up Object

Indicates the object that provided back-up services to the failed
object. This object is only present if it was included in the alarm trap
corresponding to this log entry.

Logged Alarm
Specific Problem

Indicates further refinements to the problem identified by the alarm
type. If more than one specific problem is described in this object,
the problem descriptions are separated by newline characters. This
object is only present if it was included in the alarm trap
corresponding to this log entry.

Logged Alarm
Repair Act

Indicates proposed repair actions reported by the agent for the
problem identified by the alarm. If more than one action is described
in this object, the problem descriptions are separated by newline
characters. This object is only present if it was included in the alarm
trap corresponding to this log entry.

TABLE 5-16 MIB Notification Types

Field Description

Trap Alarm Severity The perceived severity of the alarm, as specified by the agent that
generated it.

Trap Alarm Backed
Up

If the value of this object is true, the failed object has been backed
up.

Trap Alarm Back-Up
Object

Indicates the object that provided back-up services to the failed
object.

Trap Alarm Specific
Problem

Indicates further refinements to the problem identified by the alarm
type. If more than one specific problem is described in this object,
the problem descriptions are separated by newline characters.

Trap Alarm Repair
Act

Indicates proposed repair actions reported by the agent for the
problem identified by the alarm. If more than one action is described
in this object, the problem descriptions are separated by newline
characters.

TABLE 5-15 SUN-SNMP-NETRA-CT-MIB Logged Alarm Table

Field Description
194 Netra CT Server Software Developer’s Guide • August 2004

MIB Notifications

Note that index values for interfaces, hardware units, and other objects can be
derived from the instance values of the objects included in the notifications. For
example, the ifIndex value for an interface can be derived from the ifOperStatus
instance value, and the entPhysicalIndex value can be derived from any of the
entPhysicalContainedIn, entPhysicalParentRelPos, and entPhysicalClass instance
values.

State Change Notification Traps

The SUN-SNMP-NETRA-CT-MIB state change notification trap table consists of the
elements shown in TABLE 5-17.

Object Creation and Deletion Notification Traps

The SUN-SNMP-NETRA-CT-MIB object creation and deletion notification traps table
consists of the elements shown in TABLE 5-18.

TABLE 5-17 SUN-SNMP-NETRA-CT-MIB State Change Notification Traps

Field Description

Hardware Unit Up Indicates that the operational state of the specified hardware unit
has transitioned to up.

Hardware Unit
Down

 Indicates that the operational state of the specified hardware unit
has transitioned to down.

TABLE 5-18 SUN-SNMP-NETRA-CT-MIB Object Creation and Deletion Notification Traps

Field Description

Hardware Unit
Created

Indicates that the specified hardware unit has been installed at the
specified location.

Hardware Unit
Deleted

Indicates that the specified hardware unit has been removed or
uninstalled from the specified location.

Installed Software
Created

Indicates that the specified software package has been installed.
Chapter 5 Simple Network Management Protocol 195

Configuration Change Notification Traps

The SUN-SNMP-NETRA-CT-MIB configuration change notification traps table
consists of the elements shown in TABLE 5-19.

See the MIB module file for a complete description of SNMP traps.

Understanding the MIB Variable Descriptions
TABLE 5-20 defines the MIB elements used in MIB module descriptions in the sections
of the MIB file. For detailed information about these elements, refer to the RFC2578
document, which can be downloaded from the http://www.ietf.org web site.

Installed Software
Deleted

 Indicates that the specified software package has been removed.

Running Software
Created

Indicates that the specified software has been started.

Running Software
Deleted

Indicates that the specified software has been stopped.

TABLE 5-19 SUN-SNMP-NETRA-CT-MIB Configuration Change Notification Traps

Field Description

Interface Changed Indicates that the configuration of the interface has been changed.

Hardware Unit
Changed

Indicates that the specified hardware unit configuration has changed

Installed Software
Changed

Indicates that the specified software package configuration has
changed.

TABLE 5-18 SUN-SNMP-NETRA-CT-MIB Object Creation and Deletion Notification Traps

Field Description
196 Netra CT Server Software Developer’s Guide • August 2004

Note – Not every MIB element is present for every MIB module.

For a complete description, see the MIB module in the default location
/opt/SUNWnetract/mgmt2.0/mibs/SUN-SNMP-NETRA-CT-MIB.mib, delivered
as part of the Netra CT software package.

TABLE 5-20 MIB Variable Syntax

MIB Element Description

Module name The name of the MIB module.

Module type The type of ASN.1 macro used for the module. Macro types are the
following:
• OBJECT-TYPE – Defines the type of the managed object.
• NOTIFICATION-TYPE – Defines the information contained

within an unsolicited transmission of management information
(for example, a trap or a request).

SYNTAX Defines the data structure of the module.

MAX-ACCESS Defines whether the module can read, write, and/or create an
instance of the object, or to include its value in a notification. Can be
one of the following:
• not-accessible – Indicates an auxiliary object (objects that are both

specified in the INDEX clause of a conceptual row and also
columnar objects of the same conceptual row are termed auxiliary
objects).

• accessible-for-notify – Indicates an object that is accessible only by
way of a notification (for example, an SNMP trap).

• read-only – Only able to read an instance of the object.
• read-write – Able to read and write, but not create an instance of

the object.
• read-create – Able to read, write, and create an instance of the

object provides the maximum level of access (read-create is a
superset of read-write).

STATUS Indicates whether this module definition is current or historic. All of
the modules in the SUN-SNMP-NETRA-CT-MIB are current.

DESCRIPTION Describes the function and use of the module.

INDEX The INDEX clause defines instance identification information for the
columnar objects subordinate to that object. Refer to RFC2578 for
more information.

Default Value Defines the default value (DEFVAL) which might be used at the
discretion of an SNMP agent when an object instance is created.
Chapter 5 Simple Network Management Protocol 197

Changing Midplane FRU-ID
This section shows how to change the locationName part of FRU-ID.

The Netra CT midplane stores the locationName, which is the geographical location
of the system, for example, chassis6. This value is stored in the alarm card flash and
can be set by the customer. The locationName enables system monitoring applications
to report specific details.

This example uses an NET-SNMP application to interact with MOH and set the
midplane’s location to a particular value.

1. Determine the index of the midplane object from the entPhysicalTable.

At the prompt, type the command:

Where:

-c community specifies the community string.

-m SUN-SNMP-NETRA-CT-MIB specifies that the Netra CT MIB should be loaded.

hostName is the development system running MOH.

This process and its results are shown in CODE EXAMPLE 5-1

snmpwalk -c public -m SUN-SNMP-NETRA-CT-MIB hostName \
entPhysicalDescr

CODE EXAMPLE 5-1 Index of the Midplane Object

$snmpwalk -c public -m SUN-SNMP-NETRA-CT-MIB hostName:9161 entPhysicalDescr
ENTITY-MIB::entPhysicalDescr.2 = STRING: 01ae 5405026 Midplane 0000
ENTITY-MIB::entPhysicalDescr.3 = STRING: scb_slot
ENTITY-MIB::entPhysicalDescr.4 = STRING: fan_slot
ENTITY-MIB::entPhysicalDescr.5 = STRING: fan_slot
ENTITY-MIB::entPhysicalDescr.6 = STRING: ps_slot
ENTITY-MIB::entPhysicalDescr.7 = STRING: crtm_slot
ENTITY-MIB::entPhysicalDescr.8 = STRING: cftm_slot
ENTITY-MIB::entPhysicalDescr.9 = STRING: cpci_slot
ENTITY-MIB::entPhysicalDescr.10 = STRING: cpci_slot
ENTITY-MIB::entPhysicalDescr.11 = STRING: cpci_slot
ENTITY-MIB::entPhysicalDescr.12 = STRING: cpci_slot
ENTITY-MIB::entPhysicalDescr.13 = STRING: cpci_slot
ENTITY-MIB::entPhysicalDescr.14 = STRING: prtm_slot
ENTITY-MIB::entPhysicalDescr.15 = STRING: pdu
198 Netra CT Server Software Developer’s Guide • August 2004

2. Set the midplane location to the new value of chassis6 using the following
command:

3. Show the current value of the midplane’s location.

At the prompt, type the command:

The result displays the identifying string of the location of any Netra CT equipment
locations, as shown in CODE EXAMPLE 5-2.

ENTITY-MIB::entPhysicalDescr.25 = STRING: 01ae 5016118 scb 0499
ENTITY-MIB::entPhysicalDescr.26 = STRING: ssp_slot
ENTITY-MIB::entPhysicalDescr.27 = STRING: ssp
ENTITY-MIB::entPhysicalDescr.28 = STRING: 01ae 5404931 fan 0499
ENTITY-MIB::entPhysicalDescr.29 = STRING: 01ae 5404931 fan 0499
ENTITY-MIB::entPhysicalDescr.30 = STRING: 01ae 3001535 ps 0399
ENTITY-MIB::entPhysicalDescr.31 = STRING: cftm
ENTITY-MIB::entPhysicalDescr.32 = STRING: 0000 5016123 0101 0000
ENTITY-MIB::entPhysicalDescr.33 = STRING: RJ45
ENTITY-MIB::entPhysicalDescr.35 = STRING: RJ45
ENTITY-MIB::entPhysicalDescr.37 = STRING: RJ45
ENTITY-MIB::entPhysicalDescr.39 = STRING: RJ45
ENTITY-MIB::entPhysicalDescr.41 = STRING: DB15

$snmpset -c public -m SUN-SNMP-NETRA-CT-MIB hostName:9161 \
netraCtEquipLocation.1 = chassis6

$snmpget -c public -m SUN-SNMP-NETRA-CT-MIB hostName:9161 \
netraCtEquipLocation.1

CODE EXAMPLE 5-2 Identifying the Midplane’s Current Location

$snmpwget -c public -m SUN-SNMP-NETRA-CT-MIB hostName:9161 \
netraCtEquipLocation.1
SUN-SNMP-NETRA-CT-MIB::netraCtEquipLocation.1 = STRING: chassis6

CODE EXAMPLE 5-1 Index of the Midplane Object (Continued)
Chapter 5 Simple Network Management Protocol 199

Setting High Temperature Alarms
An alarm in SNMP is defined as a trap with a severity associated with it. When a
HIGH_TEMPERATURE alarm (CPU high temperature) occurs, the user’s application
will receive the SNMP trap netraCtHwHighTempAlarm, and netraCtIfChanged trap
for the ifOperStatus of the interface corresponding to the alarm output port. The
user’s application also will receive alarm clear traps when the condition of alarms
are cleared, and an attribute change trap of the ifOperStatus. Refer to “Software
Modules in the SNMP View” on page 207 for more information.

The Netra CT alarm card supports three output alarm interfaces. The alarm pins
(alarm0, alarm1, alarm2) are statically mapped into severities of critical, major,
minor respectively. When an alarm occurs, the corresponding alarm pin is driven
high according to the severity of the alarm.

The following example shows how to set the high temperature alarm from the
default to major.

▼ To Set the High Temperature Alarm Severity to
Major

1. Create an entry in the netraCtAlarmSevProfileTable.

At the prompt, type the command:

Where:

-c community specifies the community string.

-m SUN-SNMP-NETRA-CT-MIB specifies that the Netra CT MIB should be loaded.

hostName is the development system running MOH.

This process and its result are shown in CODE EXAMPLE 5-3.

$snmpset -c public -m SUN-SNMP-NETRA-CT-MIB hostName\
netraCtAlarmSevProfileRowStatus.1 = 4

CODE EXAMPLE 5-3 Creating an Entry in the Profile Table

$snmpset -c public -m SUN-SNMP-NETRA-CT-MIB localhost:9161 \
netraCtAlarmSevProfileRowStatus.1 = 4
SUN-SNMP-NETRA-CT-MIB::netraCtAlarmSevProfileRowStatus.1 = INTEGER: active(1)
200 Netra CT Server Software Developer’s Guide • August 2004

Creating an entry in the netraCtAlarmSevProfileTable also creates an entry in the
netraCtAlarmSevTable. The entry in the latter corresponds to the profile entry and
translates the high temperature alarm entry into the row of integers shown in
CODE EXAMPLE 5-4.

2. Set the severity of the netraCtHighTempAlarm for this profile.

At the prompt, type the command:

Where:

1.3.6.1.4.1.42.2.65.1.1.1.2.0.34 represents the string
‘netraCtHighTempAlarm’

The entry at = (in this example, 2) establishes a major alarm severity.

The result is shown in CODE EXAMPLE 5-5.

3. Set netraCtEquipAlarmSeverityIndex of the thermistor entry to correspond with
the netraCtAlarmSevProfile entry from the netraCtAlarmSevProfileTable.

At the prompt, type the command:

CODE EXAMPLE 5-4 Automatic Entry Created in Corresponding Alarm Severity Table

$snmpwalk -c public -m SUN-SNMP-NETRA-CT-MIB localhost:9161\
netraCtAlarmSevTable
SUN-SNMP-NETRA-CT-MIB:\
:netraCtAlarmSeverity.1.15.1.3.6.1.4.1.42.2.65.1.1.1.2.0.34 = INTEGER:\
minor(3)
End of MIB

$ snmpset -c public -m SUN-SNMP-NETRA-CT-MIB localhost:9161\
netraCtAlarmSeverity.1.15.1.3.6.1.4.1.42.2.65.1.1.1.2.0.34 = 2

CODE EXAMPLE 5-5 Setting the Alarm Severity for the Profile Table

$ snmpset -c public -m SUN-SNMP-NETRA-CT-MIB localhost:9161\
netraCtAlarmSeverity.1.15.1.3.6.1.4.1.42.2.65.1.1.1.2.0.34 = 2
SUN-SNMP-NETRA-CT-MIB:\
:netraCtAlarmSeverity.1.15.1.3.6.1.4.1.42.2.65.1.1.1.2.0.34 = INTEGER:
major(2)

$ snmpset -c public -m SUN-SNMP-NETRA-CT-MIB localhost:9161 \
netraCtEquipAlarmSeverityIndex.2 = 1
Chapter 5 Simple Network Management Protocol 201

This example uses the netraCtAlarmSevProfileTable entry from CODE EXAMPLE 5-3.
The index of that entry was the integer 1 in the statement:
netraCtAlarmSevProfileRowStatus.1. The result of this process is shown in
CODE EXAMPLE 5-6.

When the CPU temperature returns to normal, the alarms are cleared automatically.
For further information, refer to the SUN-SNMP-NETRA-CT-MIB.

CODE EXAMPLE 5-6 Setting the Index Entry Corresponding to the Thermistor

$snmpset -c public -m SUN-SNMP-NETRA-CT-MIB localhost:9161 \
netraCtEquipAlarmSeverityIndex.2 = 1
SUN-SNMP-NETRA-CT-MIB::netraCtEquipAlarmSeverityIndex.2 = INTEGER: 1
202 Netra CT Server Software Developer’s Guide • August 2004

CHAPTER 6

Managed Object Hierarchy Software
Modules

This chapter provides a high-level description of the Release 2 Management Object
Hierarchy (MOH) Software Modules for the Netra CT platform. It describes the
software module interfaces and their major internal modules. It consists of:

■ “Software Module Design” on page 203
■ “Software Services” on page 204
■ “Software Module MBeans” on page 204
■ “Software Modules in the SNMP View” on page 207

Software Module Design
The software services in the system are monitored by software modules which are
part of the Information Module layer objects.

Software services are either reliable services (such as RNFS, RBS, or CGTP) or
unreliable services (such as TFTP, or NIS). The software services can be a software
subsystem such as a network stack (TCP, IP, UDP); an I/O driver such as a network
driver; or network processes or network daemons such as NFS.

Some software services are only available on certain CPU boards. For example,
CGTP is available for both the host and the satellite CPU boards, but RBS or RNFS
are only available on the host CPU board.

The software module interacts with the OS platform through Java interfaces to:

■ Monitor OS platform software services for software status, such as installed/not
installed or configured/not configured

■ Monitor software service subsystems and daemons for status, such as running
/not running

■ Provide traps and notifications for events related to the status of software services
203

The software module also provides APIs for management applications to configure
the monitoring of software services, such as setting error thresholds, setting polling
intervals, starting and stopping polling, and setting maximum retry-counts for the
recovery of the daemons.

Software Services
The software modules monitor the following software services:

Software Module MBeans
This section describes the Software Module MBeans for each of the software services
that the MOH Software Modules monitor. As specified by the Java Management
extensions for instrumentation, all attributes and operations are explicitly listed in
an MBean interface. This interface must have the same name as the class that
implements it, followed by the MBean suffix. Since the interface and its
implementation are usually in different files, there are two files which make up a
standard MBean.

These MBeans and their public APIs provide the management interface to manage
the applications. All the specific MBeans below are extended from the
SoftwareServiceMbean. For more specific information, refer to the Java documents
for the APIs that are distributed as part of the Netra CT MOH package. See
“Viewing the Netra CT Management Agent API Online” on page 51 for details.

CGTP RDHCP

Ethernet Interface Statistics RNFS

NIS SNDR

PMS TCP, IP, UDP

Platform Management Service (PICLD on
Solaris)

TFTP

RDHCP UFS

RNFS
204 Netra CT Server Software Developer’s Guide • August 2004

SoftwareMonitorMBean
The SoftwareMonitorMBean is an object that clients can use to discover all the
software services in the system. The SoftwareMonitorMBean contains the method
getSoftwareServiceList() which returns the list of software services.

DaemonMBean
This class provides the name of the daemon, the state of the daemon, and the
daemon recovery try count.

SoftwareServiceMBean
The SoftwareServiceMBean provides the base class from which other ServiceMBeans
are extended. The SoftwareServiceMBean provides the following:

■ Name of the services

■ Status of the service (up or down)

■ Getting and setting polling intervals

■ Starting the polling

■ Stopping the polling

■ Getting and setting the number of excessive error intervals. This number is the
threshold that determines if an event is sent to a client. If an error count exceeds
this number, an error event is sent. There will be no more error events until the
error condition disappears or a clear event is sent. For example, assume that the
error threshold is set at 5% error per total transaction and the number of excessive
intervals is set at 3. If the error exceeds 5% in more than 3 consecutive polling
intervals, a file system error event is sent to the client.

■ Getting a list of DaemonMBeans that support the service, if any.

NfsServiceMBean
The NfsServiceMBean enables the client to monitor the NFS services. A client can get
and set the maximum error threshold, get and set the threshold for excessive error
intervals, and get the list of NFS mount failures.
Chapter 6 Managed Object Hierarchy Software Modules 205

UfsServiceMbean
The UfsServiceMBean enables the client to monitor the UFS services. A client can get
and set the maximum threshold of the file system usage percentage, get and set the
threshold for the number of excessive usage intervals, and query the list of file
systems exceeding the usage threshold.

TcpServiceMBean
The TcpServiceMBean enables the client to monitor the TCP services. A client can get
status and statistics for the TCP network layer, get and set intervals and thresholds
for gathering the statistics, start and stop polling, and get a list of daemons
supporting the service.

UdpServiceMBean
The UdpServiceMBean enables the client to monitor the UPD services. A client can
get status and statistics for the UDP network layer, get and set intervals and
threshold for gathering the statistics, start and stop polling, and get a list of daemons
supporting the service.

IpServiceMBean
The IpServiceMBean enables the client to monitor the IP services. A client can get
status and statistics for the IP network layer, get and set intervals and thresholds for
gathering the statistics, start and stop polling, and get a list of daemons supporting
the service.

EtherIfStatsMBean
The EtherIfStatsMbean monitors the Ethernet drivers, and monitors the interface for
transmitter and receiver error counts. A client can set and get the maximum error
threshold, set and get the threshold for number of excessive intervals, and query for
the list of Ethernet interfaces in error.
206 Netra CT Server Software Developer’s Guide • August 2004

CgtpServiceMBean
The CgtpServiceMBean enables the client to monitor the CGTP services. A client can
get status and statistics for the IP network layer, list and get state of associated
Ethernet physical interfaces, get and set intervals and thresholds for gathering the
statistics, start and stop polling, and get a list of daemons supporting the service.

RnfsServiceMBean
The RnfsServiceMBean enables the client to monitor the RNFS services. A client can
get status and statistics for the UDP network layer, get and set intervals and
thresholds for gathering the statistics, start and stop polling, and get a list of
daemons supporting the service.

Software Modules in the SNMP View
The SNMP view is supported through the Host Resources MIB. The SNMP client can
query for the software services using the Host Resource Software Running table, and
can query for the software services that are installed in the local system using the
Host Resource Software Installed table.

Host Resources MIB
The Host Resources MIB is defined in RFC 2790.

Host Resources Running Software Table
(hrSWRunTable)
The Host Resources Running Software Table contains information about the software
that is running on the network element (for example, NFS, TFTP, and CGTP). When
an application or daemon under the monitor is running, the MOH Software Module
adds an entry into the hrSWRunTable and will send to the client the
netraCtRunningSwCreated trap. When an application or a daemon stops running,
the MOH Software Module sends the netraCtRunningSwChanged trap with
Chapter 6 Managed Object Hierarchy Software Modules 207

hrSWRunStatus is invalid. The MOH Software Module only deletes the entry from
the hrSWRunTable and sends the netraCtRunningSwDeleted trap when the service
is uninstalled from the system.

Host Resources Installed Software Table
(hrSWInstalledTable)
The Host Resources Installed Software Table contains information about the software
installed on the network element (for example, installation packages related to NFS,
CGTP, and so on). netraCtInstalledSwCreated, netraCtInstalledSwDeleted and
netraCtInstalledSwChanged are traps sent to the client corresponding to the
software package installed event, software package uninstalled event, and different
version of the existing software package installed event.

SNMP Traps
The SNMP management software has the ability to send traps, or messages, to an
application when one or more conditions have been met. Generally, a trap is an
unsolicited network packet sent from an agent that usually reports some unexpected
error condition.

TABLE 6-1 describes the SNMP traps found in the Netra CT SNMP MIB.

TABLE 6-1 SUN-SNMP-NETRA-CT-MIB Traps

SNMP Trap Description

netraCtHwHighTempAlarm Indicates that a high temperature condition has occurred on
the hardware unit associated with the specified index.

netraCtHwUnitUp Indicates that the operational state of the specified hardware
unit has transitioned to up.

netraCtHwUnitDown Indicates that the operational state of the specified hardware
unit has transitioned to down.

netraCtHwUnitCreated Indicates that the specified hardware unit has been installed
at the specified location.

netraCtHwUnitDeleted Indicates that the specified hardware unit has been removed
or uninstalled from the specified location.

netraCtInstalledSwCreated Indicates that the specified software package has been
installed.
208 Netra CT Server Software Developer’s Guide • August 2004

TABLE 6-2 defines the standard SNMP traps found in the RFC123-MIB.

netraCtInstalledSwDeleted Indicates that the specified software package has been
removed.

netraCtRunningSwCreated Indicates that the specified software has been started.

netraCtRunningSwDeleted Indicates that the specified software has been stopped.

TABLE 6-2 RFC1213-MIB Traps

SNMP Trap Description

coldStart Signifies that the entity, acting in an agent role, is reinitializing
itself and that its configuration might have been altered.

warmStart Signifies that the entity, acting in an agent role, is reinitializing
itself such that its configuration is unaltered.

linkUp Signifies that the entity, acting in an agent role, has detected that
the ifOperStatus object for one of its communication links left the
down state and transitioned into some other state (but not into the
notPresent state). This other state is indicated by the included value
of ifOperStatus.

linkDown Signifies that the entity, acting in an agent role, has detected that
the ifOperStatus object for one of its communication links is about
to enter the down state from some other state (but not from the
notPresent state). This other state is indicated by the included value
of ifOperStatus.

TABLE 6-1 SUN-SNMP-NETRA-CT-MIB Traps (Continued)

SNMP Trap Description
Chapter 6 Managed Object Hierarchy Software Modules 209

210 Netra CT Server Software Developer’s Guide • August 2004

CHAPTER 7

Processor Management Services

This chapter describes the processor management services (PMS) application
programming interface (API). This chapter contains the following sections:

■ “PMS Software Overview” on page 211

■ “PMS Man Pages” on page 215

■ “PMS Examples” on page 216

PMS Software Overview
The processor management services (PMS) software is an extension to the Netra CT
platform services software that addresses the requirements of high-availability (HA)
application frameworks. The PMS software enables client applications to manage the
operation of the processor nodes within a single Netra CT system or within a cluster
of multiple Netra CT systems. A processor node is a combination of CPU blade
hardware, CPU memory, I/O interfaces, the operating system that runs on them, and
select applications. A PMS cluster can include the alarm card and all of the CPU
cards in a single Netra CT system, or it can include a defined group of alarm cards
and CPU cards located in multiple systems.

The PMS software provides distributed CPU board resource management
infrastructure for clusters of CPU boards. This infrastructure includes low-level
administrative control and monitoring, high-level configuration, fault recovery, and
user-interface functionality. FIGURE 7-1 identifies the architectural components of the
Netra CT software services.
211

FIGURE 7-1 Netra CT Software Services

In a Netra CT cluster, the PMS software runs on both the alarm cards and the CPU
boards. The PMS software running on alarm cards provides local and remote service
connections for managing the CPU cards in its system. The PMS software running
on CPU cards provides local and remote service connections for managing the
resources running on the board, and the software provides remote access for
managing resources running on other CPU cards in a PMS cluster.

Platform services

Management services

Processor services

Processor services

Equipment services

CPU Node

Communication services

Software services

Customer services

Customer services High availability services
212 Netra CT Server Software Developer’s Guide • August 2004

FIGURE 7-2 PMS Software Services and Interfaces

FIGURE 7-2 indicates the internal interfaces of the processor services.

The PMS software organizes the CPU resources it manages into the following three
groups:

■ Resource group 0 (RG0) – Specific application services

■ Resource group 1 (RG1) – Operating system functionality

■ Resource group 2 (RG2) – CPU hardware and the remaining processor board
resources

The PMS software that runs on both alarm cards and the CPU cards divides its
functionality along client-side and server-side (daemon-side) lines. The common
client-side function provides a shared API for up to eight simultaneous application
service processes. The core API functionality includes API control, PMS daemon
control, application PMS connectivity, and application message send and receive

Platform services

Management services

Processor services

Processor services

Equipment services

CPU Node

Customer services

High availability services

Application
interface

Management
interface

Core
service

Node
interface
Chapter 7 Processor Management Services 213

with function execution. The API provides per-process serialization and separate
threads for message reception and user-defined function execution, and messaging
process timing.

In a typical example, a PMS client detects resource failures remotely and then
remotely activates replacement resources such as those found in high-availability
applications. The common daemon function provides server-side control and
monitoring functionality for up to 16 remote CPUs. The daemon function also
provides client-side functionality for controlling and monitoring up to 16 remote
CPUs simultaneously with minimized latency by way of per-remote-CPU threading,
as well as daemon control and performance monitoring and resource group
monitoring and control.

From the client side, the alarm card function available by way of the send and
receive messaging API is broken into management and drawer blocks. (The PMS
software refers to Netra CT systems as drawers.) The CPU cards are divided into
management node and remote node drawer (RND) views. The management view on
both the alarm card and the CPU board provides administrative control and status
over the PMS daemon as a whole. The management view also monitors the PMS
software’s performance.

The drawer (system) view by means of the alarm card provides the following
administrative controls and monitors of the RG2 (hardware) resources: Core power
down, power up, and reset. For RG1 (operating system) resources, this view also
provides the following administrative controls and monitors: core shutdown, boot,
and reboot. For RG0 (application services), this view provides off-line and active
administrative controls. Finally, for the combined resource groups, this view
provides the following administrative controls and monitors: Core maintenance, and
operational configuration, five recovery processes, and the graceful reboot of the
group.

The node view, by way of the CPU card itself, provides a much reduced set of
administrative controls and monitors relative to the drawer view of the hardware,
operating system, and the same administrative controls and monitors of the
application services. In RG2 only reset administrative controls exists, but no
monitors. Likewise, in RG1 only reboot administrative controls exist, but no
monitors. In this view, there is no administrative control over the combined resource
groups.

The CPU card RND view provides remote system view administrative controls and
monitors to all the resource groups, with the exception of an alarm card failure. In
this failure case, a reduced remote node view is used.

The PMS software execution performance is targeted by scheduling optimizations as
well as using lightweight, proprietary messaging protocols, intersystem data
encoding, and packetization protocols. The PMS software scalability due to CPU
214 Netra CT Server Software Developer’s Guide • August 2004

card growth is addressed by a per-CPU multithreading of up to 16 remote CPU
cards per CPU. Application client growth is addressed by way of per-process multi-
threading with up to eight client processes per PMS daemon.

The PMS software performance and reliability in cluster communication is also
addressed with a messaging infrastructure that supports unidirectional and
bidirectional point-to-point and unidirectional point-multipoint channels. This
infrastructure includes source time-stamping available to the client for latency
detection, call and return time-out for failure detection, and interprocess and
intersystem TCP/IP socket streams for connection control, reachability
determination, and reliable transport.

PMS Man Pages
The PMS software application programming interface (API) has been documented
completely in the UNIX man pages included with the Netra CT software. TABLE 7-1
lists the man pages included with the Netra CT PMS software:

TABLE 7-1 Processor Management Services Man Pages

Man page Description

pms(1M) Provides an overview of the PMS software.

pmsd(1M) Describes how to start and stop the CPU board
PMS daemon (pmsd) and lists the daemon’s
command line options.

pmsd_ac(1M) Describes how to start and stop the alarm card
PMS daemon (pmsd_ac) from the command
line interface, and lists all the daemon’s other
command-line functions.

pms_apistart(1M) Describes the PMS API functions used to
initialize (pms_apistart) and to free up
(pms_apistop) PMS API resources in a PMS
process. The man page also documents the
functions used to take PMS out of an inactive
state (pms_start) and to return it to an inactive
state (pms_stop).

pms_connect(1M) Documents the PMS API functions used to create
(pms_connect) and destroy (pms_disconnect)
a PMS daemon interface session.
Chapter 7 Processor Management Services 215

If you cannot view these man pages, add the PMS man page directory location to
your $MANPATH environment variable. By default, the PMS man pages are installed
in the following directory: /opt/SUNWnetract/mgmt2.0/man. Depending on the
UNIX shell you are using, this variable might be defined in a shell startup file. Refer
to the Solaris documentation for instructions on adding the PMS man page directory
to a UNIX shell startup file on your system.

PMS Examples
The following examples show how to initialize a PMS client, the structure of the
main thread, asynchronous messaging, scheduling, and the PMS client’s user and
management, node, and RND interfaces.

■ “PMS Client Initialization Example” on page 216
■ “PMS Client Main Thread” on page 223
■ “PMS Client Asynchronous Message Handling” on page 225
■ “PMS Client Scheduling Example” on page 238
■ “PMS Client User and Management Interface” on page 239
■ “PMS Client Node Interface” on page 256
■ “PMS Client RND Interface” on page 263

CODE EXAMPLE 7-1 begins by initializing the main thread for a PMS client.

pms_send(1M) Describes the PMS API functions that enable
PMS clients to send (pms_send) and receive
(pms_receive) messages with other PMS
clients or clusters.

pms_usermgmt_message_payloads(1M) Describes the payloads for the user and
management PMS function groups.

pms_node_message_payloads(1M) Defines the payloads for the node PMS function
group.

pms_rnd_message_payloads(1M) Describes the payloads for the remote node
drawer (system) PMS function group.

CODE EXAMPLE 7-1 PMS Client Initialization Example

#include <sys/types.h> /* socketpair() */
#include <sys/socket.h> /* socketpair() */

#include <unistd.h> /* write(), read() */

TABLE 7-1 Processor Management Services Man Pages (Continued)

Man page Description
216 Netra CT Server Software Developer’s Guide • August 2004

#include <signal.h> /* sigemptyset(), sigaddset(), sigaction() */
#include <time.h> /* timer_create(), timer_settime() */

#include <stdio.h> /* printf(), scanf() */

#include "pms.h"

/* Application State Machine Example Overview:
 1) PMS API initialization and usage.
 2) PMS Daemon connectivity and availability management.
 3) Named application synchronization and behavior.
 4) Remote Node Drawer address list synchronization and monitoring.
 5) Basic example data caching synchronization on the client side for PMS
 items a particular application’s intent/design makes it interested in.
 6) Basic asynchronous message handling infrastructure for the application.
 7) Remote monitoring of remote node drawer’s.
 8) Example Control of a pair of remote node drawer’s(not implemented yet).
*/

void* app_hasim_thread(void*);

/* Event message handlers.. */

/* This mechanism registers one receive handler with PMS for all messages, which
 simply posts the messages to the client thread’s processing queue to have them
 handled synchronously. Alternatively, handlers can be registered with PMS
 individually in which case they will execute asynchronous to the client thread
 in the context of the PMS API receive thread. */

void app_hasim_receive_post(struct pms_receive *pr);
int app_hasim_receive_dispatch(struct pms_receive* pr);

void app_hasim_receive_user_status(struct pms_receive *pr);
void app_hasim_receive_mgmt_status(struct pms_receive *pr);
void app_hasim_receive_node_rg0_status(struct pms_receive *pr);
void app_hasim_receive_node_rg0_app_state_set_execute\
 (struct pms_receive *pr);
void app_hasim_receive_rnd_status(struct pms_receive *pr);
void app_hasim_receive_rnd_md0_status(struct pms_receive *pr);

void app_hasim_receive_time_status(void);

CODE EXAMPLE 7-1 PMS Client Initialization Example (Continued)
Chapter 7 Processor Management Services 217

/* Convenient state machine process sub-groupings.. */

void app_hasim_user_process(void);
void app_hasim_mgmt_process(void);
void app_hasim_node_process(void);
void app_hasim_rnd_process(void);
void app_hasim_process(void);

/* Timer signal handler.. */

void app_hasim_sigusr1_signal_handler(int);

/* Interval’s currently set for example convenience.. */

#define HASIM_CHECK_INTERVAL 2
#define HASIM_SYNCCHECK_INTERVAL 600
#define HASIM_CHECK_VALID_INTERVAL 1800
#define HASIM_CHECK_INVALID_INTERVAL 3600

#define HASIM_RND_ADDRESS_AUDIT_ENTRYS 2

struct hasim_info
 {
 int sockfd[2];
 struct
 {
 char node_ip_address[20];
 char drawer_ip_address[20];
 int node_slot_number;
 } rnd_address[HASIM_RND_ADDRESS_AUDIT_ENTRYS];

 struct
 {
#define HASIM_USER_RECEIVE_UNREGISTERED 0x00
#define HASIM_USER_RECEIVE_REGISTERED 0x01
 int receive_state;
#define HASIM_USER_PMS_VIEW_REACHABLE 0x00
#define HASIM_USER_PMS_VIEW_UNREACHABLE 0x01
 int pms_view;

 int view_cache;
 } user_info;

 struct

CODE EXAMPLE 7-1 PMS Client Initialization Example (Continued)
218 Netra CT Server Software Developer’s Guide • August 2004

 {
#define HASIM_MGMT_RECEIVE_UNREGISTERED 0x00
#define HASIM_MGMT_RECEIVE_REGISTERED 0x01
 int receive_state;
#define HASIM_MGMT_PMS_STATE_UNAVAILABLE 0x00
#define HASIM_MGMT_PMS_STATE_AVAILABLE 0x01
 int pms_state;
#define HASIM_MGMT_RND_ADDRESS_UNVERIFIED 0x00
#define HASIM_MGMT_RND_ADDRESS_VERIFIED 0x01
 int rnd_address_state;
 int rnd_address_identifier[16];

#define HASIM_MGMT_CACHE_INVALID 0x00
#define HASIM_MGMT_CACHE_OLD 0x01
#define HASIM_MGMT_CACHE_VALID 0x02
 int cache_state;
 int last_update;
 int last_sync_check;

 int mgmt_state_cache;
 struct
 {
 int identifier;
 char node_ip_address[20];
 char drawer_ip_address[20];
 int node_slot_number;
 } rnd_address_cache[16];
 } mgmt_info;

 struct
 {
#define HASIM_NODE_RG0_STATUS_RECEIVE_REGISTERED 0x02
#define HASIM_NODE_RG0_APP_STATE_SET_EXECUTE_RECEIVE_REGISTERED 0x04
#define HASIM_NODE_GROUP_RECEIVE_UNREGISTERED 0x00
#define HASIM_NODE_GROUP_RECEIVE_REGISTERED 0x06
 int receive_state;
#define HASIM_NODE_RG0_APP_NAME_UNREGISTERED 0x00
#define HASIM_NODE_RG0_APP_NAME_REGISTERED 0x01
 int rg0_app_name_state;
#define HASIM_NODE_SERVICE_STATE_OFFLINE 0x00
#define HASIM_NODE_SERVICE_STATE_ACTIVE 0x01
 int service_state;

#define HASIM_NODE_CACHE_INVALID 0x00
#define HASIM_NODE_CACHE_OLD 0x01
#define HASIM_NODE_CACHE_VALID 0x02
 int cache_state;

CODE EXAMPLE 7-1 PMS Client Initialization Example (Continued)
Chapter 7 Processor Management Services 219

 int last_update;
 int last_sync_check;

 int rg0_state_cache;
 } node_info;

 struct
 {
#define HASIM_RND_RECEIVE_REGISTERED 0x01
#define HASIM_RND_MD0_RECEIVE_REGISTERED 0x20
#define HASIM_RND_GROUP_RECEIVE_UNREGISTERED 0x00
#define HASIM_RND_GROUP_RECEIVE_REGISTERED 0x21
 int receive_state;

#define HASIM_RND_CACHE_INVALID 0x00
#define HASIM_RND_CACHE_OLD 0x01
#define HASIM_RND_CACHE_VALID 0x02
 int cache_state;
 int last_update;
 int last_sync_check;

 int view_cache;
 int md0_config_cache;
 } rnd_info[16];

 };

static struct hasim_info mdi;

int
main(int argc, char *argv[])
{

 struct pms_receive pr;
 struct sigaction sigusr1_signal_handler_info;
 struct sigevent evp;
 timer_t timerid;
 struct itimerspec val;
 struct itimerspec oval;

 int i;

 if (argc != 1)
 {
 printf("Invalid Arguments\n");

CODE EXAMPLE 7-1 PMS Client Initialization Example (Continued)
220 Netra CT Server Software Developer’s Guide • August 2004

 exit(1);
 }

 /* Start/Initialize the PMS API before using any further calls.. */

 if (pms_apistart() == -1)
 exit(2);

 /* Create message queue.. */

 if (socketpair(AF_UNIX, SOCK_DGRAM, 0, mdi.sockfd) == -1)
 {
 exit(3);
 }

 /* Setup defaults.. */

 /* Audit DB hardcoding for this example.. */

 strcpy(&mdi.rnd_address[0].node_ip_address[0], "129.150.94.70");
 strcpy(&mdi.rnd_address[0].drawer_ip_address[0], "129.150.151.140");
 mdi.rnd_address[0].node_slot_number = 2;
 strcpy(&mdi.rnd_address[1].node_ip_address[0], "129.150.94.58");
 strcpy(&mdi.rnd_address[1].drawer_ip_address[0], "129.150.151.143");
 mdi.rnd_address[1].node_slot_number = 3;

 mdi.user_info.receive_state = HASIM_USER_RECEIVE_UNREGISTERED;
 mdi.user_info.pms_view = HASIM_USER_PMS_VIEW_UNREACHABLE;

 mdi.mgmt_info.receive_state = HASIM_MGMT_RECEIVE_UNREGISTERED;
 mdi.mgmt_info.pms_state = HASIM_MGMT_PMS_STATE_UNAVAILABLE;
 mdi.mgmt_info.rnd_address_state = HASIM_MGMT_RND_ADDRESS_UNVERIFIED;
 for(i=0;i<16;i++)
 mdi.mgmt_info.rnd_address_identifier[i] = -1;
 mdi.mgmt_info.cache_state = HASIM_MGMT_CACHE_INVALID;
 mdi.mgmt_info.last_update = HASIM_CHECK_INVALID_INTERVAL;
 mdi.mgmt_info.last_sync_check = HASIM_SYNCCHECK_INTERVAL;

CODE EXAMPLE 7-1 PMS Client Initialization Example (Continued)
Chapter 7 Processor Management Services 221

 mdi.node_info.receive_state = HASIM_NODE_GROUP_RECEIVE_UNREGISTERED;
 mdi.node_info.rg0_app_name_state = HASIM_NODE_RG0_APP_NAME_UNREGISTERED;
 mdi.node_info.service_state = HASIM_NODE_SERVICE_STATE_OFFLINE;
 mdi.node_info.cache_state = HASIM_NODE_CACHE_INVALID;
 mdi.node_info.last_update = HASIM_CHECK_INVALID_INTERVAL;
 mdi.node_info.last_sync_check = HASIM_SYNCCHECK_INTERVAL;

 for(i=0;i<16;i++)
 {
 mdi.rnd_info[i].receive_state = HASIM_RND_GROUP_RECEIVE_UNREGISTERED;
 mdi.rnd_info[i].cache_state = HASIM_RND_CACHE_INVALID;
 mdi.rnd_info[i].last_update = HASIM_CHECK_INVALID_INTERVAL;
 mdi.rnd_info[i].last_sync_check = HASIM_SYNCCHECK_INTERVAL;
 }

 /* Setup timer.. */

 sigemptyset(&sigusr1_signal_handler_info.sa_mask);
 sigaddset(&sigusr1_signal_handler_info.sa_mask, SIGUSR1);
 sigusr1_signal_handler_info.sa_flags = 0;
 sigusr1_signal_handler_info.sa_handler = app_hasim_sigusr1_signal_handler;
 sigaction(SIGUSR1, &sigusr1_signal_handler_info, NULL);

 evp.sigev_notify = SIGEV_SIGNAL;
 evp.sigev_signo = SIGUSR1;

 if (timer_create(CLOCK_REALTIME, &evp, &timerid) == -1)
 exit(4);

 val.it_value.tv_sec = HASIM_CHECK_INTERVAL;
 val.it_value.tv_nsec = 0;
 val.it_interval.tv_sec = HASIM_CHECK_INTERVAL;
 val.it_interval.tv_nsec = 0;

 if (timer_settime(timerid, TIMER_RELTIME, &val, NULL) == -1)
 exit(4);

 /* Don’t bother creating another thread, run in context of main default.. */
 app_hasim_thread(0);

}

CODE EXAMPLE 7-1 PMS Client Initialization Example (Continued)
222 Netra CT Server Software Developer’s Guide • August 2004

CODE EXAMPLE 7-2 PMS Client Main Thread

void*
app_hasim_thread(void* arg)
{

 char receivebuffer[256];
 int receivestatus;

 fd_set readfds;
 int select_return;
 struct timeval timeout;

 struct pms_send ps;
 struct pms_receive pr;

 int i;

 printf("*** HA Client Application Simulation ***\n");

 /* Presuming PMS will have been started at boot or by another app.. */

 timeout.tv_sec = HASIM_CHECK_INTERVAL;
 timeout.tv_usec = 0;

 while(1)
 {

 FD_ZERO(&readfds);

 FD_SET(mdi.sockfd[1], &readfds);

 /* Wait for event messages.. */

 select_return = select(64, &readfds, NULL, NULL, &timeout);

 if (select_return > 0)
 {
 if (FD_ISSET(mdi.sockfd[1], &readfds) != 0)
 {

 receivestatus = read(mdi.sockfd[1], &receivebuffer[0], 256);
Chapter 7 Processor Management Services 223

 if (receivestatus <= 0)
 {

 /* Handle Error.. */

 }
 else
 {

 /* Handle Message.. */

 app_hasim_receive_dispatch((struct pms_receive*)&receivebuffer[0]);

 }
 }
 }
 else if (select_return == 0)
 {

 /* Handle Timeout.. */

 }
 else
 {

 /* Handle Error.. */

 }

 }

}

void
app_hasim_sigusr1_signal_handler(int signal)
{

 struct pms_receive pr;

 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_PAYLOAD_TYPE_MAX+1;

CODE EXAMPLE 7-2 PMS Client Main Thread (Continued)
224 Netra CT Server Software Developer’s Guide • August 2004

The following example sets up a PMS client to handle asynchronous messages.

 app_hasim_receive_post(&pr);

}

CODE EXAMPLE 7-3 PMS Client Asynchronous Message Handling

void
app_hasim_receive_post(struct pms_receive* pr)
{

 int status;

 /* Write for reading in context of main thread.. */

 status = write(mdi.sockfd[0], pr, sizeof(struct pms_receive));

 if (status < 0)
 {
 }

}

int
app_hasim_receive_dispatch(struct pms_receive* pr)
{

 switch(pr->payload.type)
 {
 case PMS_PD_USER_STATUS:

 app_hasim_receive_user_status(pr);

 break;

 case PMS_PD_MGMT_STATUS:

 app_hasim_receive_mgmt_status(pr);

CODE EXAMPLE 7-2 PMS Client Main Thread (Continued)
Chapter 7 Processor Management Services 225

 break;

 case PMS_PD_NODE_RG0_STATUS:

 app_hasim_receive_node_rg0_status(pr);

 break;

 case PMS_PD_NODE_RG0_APP_STATE_SET_EXECUTE:

 app_hasim_receive_node_rg0_app_state_set_execute(pr);

 break;
 case PMS_PD_RND_STATUS:

 app_hasim_receive_rnd_status(pr);

 break;
 case PMS_PD_RND_MD0_STATUS:

 app_hasim_receive_rnd_md0_status(pr);

 break;
 case PMS_PD_PAYLOAD_TYPE_MAX+1:

 app_hasim_receive_time_status();

 break;
 }

 return(0);

}

void
app_hasim_receive_user_status(struct pms_receive* pr)
{

 switch(pr->payload.data.user_status.code)
 {
 case PMS_PD_USER_STATUS_PMS_REACHABLE:

 printf("hasim : received USER_STATUS PMS_REACHABLE..\n");

CODE EXAMPLE 7-3 PMS Client Asynchronous Message Handling (Continued)
226 Netra CT Server Software Developer’s Guide • August 2004

 mdi.user_info.view_cache = PMS_PD_USER_STATUS_PMS_REACHABLE;

 /* Run state machine.. */

 app_hasim_process();

 break;
 case PMS_PD_USER_STATUS_PMS_UNREACHABLE:

 printf("hasim : received USER_STATUS PMS_UNREACHABLE..\n");

 mdi.user_info.view_cache = PMS_PD_USER_STATUS_PMS_UNREACHABLE;

 app_hasim_process();

 break;
 }

}

void
app_hasim_receive_mgmt_status(struct pms_receive* pr)
{

 struct pms_send ps;
 struct pms_receive prs;

 int info_get_fail;

 int rnd_address_identifier[16];
 char rnd_address_node_ip_address[16][20];
 char rnd_address_drawer_ip_address[16][20];
 int rnd_address_node_slot_number[16];

 int i, j;

 switch(pr->payload.data.mgmt_status.code)
 {
 case PMS_PD_MGMT_STATUS_PMS_STATE_AVAILABLE:

CODE EXAMPLE 7-3 PMS Client Asynchronous Message Handling (Continued)
Chapter 7 Processor Management Services 227

 printf("hasim : received MGMT_STATUS PMS STATE AVAILABLE..\n");

 /* Update cached data and set update time.. */

 mdi.mgmt_info.mgmt_state_cache = PMS_PD_MGMT_INFO_GET_STATUS_AVAILABLE;
 mdi.mgmt_info.last_update = 0;

 app_hasim_process();

 break;
 case PMS_PD_MGMT_STATUS_PMS_STATE_UNAVAILABLE:

 printf("hasim : received MGMT_STATUS PMS STATE UNAVAILABLE..\n");

 mdi.mgmt_info.mgmt_state_cache = PMS_PD_MGMT_INFO_GET_STATUS_UNAVAILABLE;
 mdi.mgmt_info.last_update = 0;

 app_hasim_process();

 break;
 case PMS_PD_MGMT_STATUS_PMS_ADMIN_STATE_FORCE_UNAVAILABLE:

 printf("hasim : received MGMT_STATUS PMS ADMIN STATE FORCE\
 UNAVAILABLE..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_MGMT_STATUS_PMS_ADMIN_STATE_VOTE_AVAILABLE:

 printf("hasim : received MGMT_STATUS PMS ADMIN STATE VOTE AVAILABLE\
 ..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_MGMT_STATUS_PMS_ADMIN_STATE_FORCE_AVAILABLE:

 printf("hasim : received MGMT_STATUS PMS ADMIN STATE FORCE \
 AVAILABLE..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_MGMT_STATUS_PMS_PERFORMANCE_DEGRADED:

CODE EXAMPLE 7-3 PMS Client Asynchronous Message Handling (Continued)
228 Netra CT Server Software Developer’s Guide • August 2004

 printf("hasim : received MGMT_STATUS PMS PERFORMANCE DEGRADED..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_MGMT_STATUS_RND_ADDRESS_ADD:
 case PMS_PD_MGMT_STATUS_RND_ADDRESS_DELETE:

 if (pr->payload.data.mgmt_status.code == \
 PMS_PD_MGMT_STATUS_RND_ADDRESS_ADD)
 printf("hasim : received MGMT_STATUS RND ADDRESS ADD..\n");
 else
 printf("hasim : received MGMT_STATUS RND ADDRESS DELETE..\n");

 info_get_fail = 0;

 /* Get MGMT rnd address information.. */

 ps.session.type = PMS_SR_CALL_RETURN_TIMED;
 ps.session.info.crt.time = 0;
 ps.payload.type = PMS_PD_MGMT_RND_ADDRESS_INFO_GET_EXECUTE;

 for(i=0;i<16;i++)
 {
 ps.payload.data.mgmt_rnd_address_info_get_execute.index = i;

 if (pms_send(&ps, &prs) == 0)
 {
 if (prs.payload.data.mgmt_rnd_address_info_get_status.err == \
 PMS_PD_MGMT_RND_ADDRESS_INFO_GET_STATUS_ERR_NONE)
 {
 rnd_address_identifier[i] = \
 prs.payload.data.mgmt_rnd_address_info_get_status.identifier;
 strncpy(&rnd_address_node_ip_address[i][0], \

&prs.payload.data.mgmt_rnd_address_info_get_status.node_ip_address[0], 20);
 strncpy(&rnd_address_drawer_ip_address[i][0], \

&prs.payload.data.mgmt_rnd_address_info_get_status.drawer_ip_address[0], 20);
 rnd_address_node_slot_number[i] = \
 prs.payload.data.mgmt_rnd_address_info_get_status.node_slot_number;
 }
 else
 {
 info_get_fail = 1;

CODE EXAMPLE 7-3 PMS Client Asynchronous Message Handling (Continued)
Chapter 7 Processor Management Services 229

 }
 }
 else
 {
 info_get_fail = 1;
 }
 }

 if (info_get_fail == 0)
 {

 for(i=0;i<16;i++)
 {
 mdi.mgmt_info.rnd_address_cache[i].identifier = \
 rnd_address_identifier[i];
 strncpy(&mdi.mgmt_info.rnd_address_cache[i].node_ip_address[0], \
 &rnd_address_node_ip_address[i][0], 20);
 strncpy(&mdi.mgmt_info.rnd_address_cache[i].drawer_ip_address[0], \
 &rnd_address_drawer_ip_address[i][0], 20);
 mdi.mgmt_info.rnd_address_cache[i].node_slot_number = \
 rnd_address_node_slot_number[i];
 }

 mdi.mgmt_info.last_update = 0;
 }

 app_hasim_process();

 break;
 case PMS_PD_MGMT_STATUS_PMS_ADMIN_STATE_AV_RG0VA_DELAY:

 printf("hasim : received MGMT_STATUS PMS ADMIN STATE AV RG0VA \
 DELAY..\n");

 /* Doing nothing at the moment.. */

 break;
 }

}

CODE EXAMPLE 7-3 PMS Client Asynchronous Message Handling (Continued)
230 Netra CT Server Software Developer’s Guide • August 2004

void
app_hasim_receive_node_rg0_status(struct pms_receive* pr)
{

 switch(pr->payload.data.node_rg0_status.code)
 {
 case PMS_PD_NODE_RG0_STATUS_STATE_ACTIVE:

 printf("hasim : received NODE_RG0_STATUS STATE ACTIVE..\n");

 mdi.node_info.rg0_state_cache = PMS_PD_NODE_RG0_INFO_GET_STATUS_ACTIVE;
 mdi.node_info.last_update = 0;

 app_hasim_process();

 break;
 case PMS_PD_NODE_RG0_STATUS_STATE_OFFLINE:

 printf("hasim : received NODE_RG0_STATUS STATE OFFLINE..\n");

 mdi.node_info.rg0_state_cache = PMS_PD_NODE_RG0_INFO_GET_STATUS_OFFLINE;
 mdi.node_info.last_update = 0;

 app_hasim_process();

 break;
 case PMS_PD_NODE_RG0_STATUS_ADMIN_STATE_FORCE_OFFLINE:

 printf("hasim : received NODE_RG0_STATUS ADMIN STATE FORCE \
 OFFLINE ..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_NODE_RG0_STATUS_ADMIN_STATE_VOTE_ACTIVE:

 printf("hasim : received NODE_RG0_STATUS ADMIN STATE VOTE \
 ACTIVE..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_NODE_RG0_STATUS_ADMIN_STATE_FORCE_ACTIVE:

CODE EXAMPLE 7-3 PMS Client Asynchronous Message Handling (Continued)
Chapter 7 Processor Management Services 231

 printf("hasim : received NODE_RG0_STATUS ADMIN STATE FORCE \
 ACTIVE..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_NODE_RG0_STATUS_APP_STATE_SET_FAULT:

 printf("hasim : received NODE_RG0_STATUS APP STATE SET FAULT..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_NODE_RG0_STATUS_ADOPER_STATUSMASK_SET:

 printf("hasim : received NODE_RG0_STATUS ADOPER STATUSMASK SET..\n");

 /* Doing nothing at the moment.. */

 break;
 }

}

void
app_hasim_receive_node_rg0_app_state_set_execute(struct pms_receive* pr)
{

 struct pms_send ps;

 switch(pr->payload.data.node_rg0_app_state_set_execute.state)
 {
 case PMS_PD_NODE_RG0_APP_STATE_SET_EXECUTE_ACTIVE:

 printf("hasim : received NODE_RG0_APP_STATE_SET_EXECUTE ACTIVE..\n");

 /* Do whatever, within pr->session.info.crt.time if possible.. */

 /* Send return message indicating successful reception.. */

 ps.session.type = PMS_SR_RETURN;

CODE EXAMPLE 7-3 PMS Client Asynchronous Message Handling (Continued)
232 Netra CT Server Software Developer’s Guide • August 2004

 ps.session.info.r.return_identifier = \
 pr->session.info.crt.call_identifier;
 ps.session.info.r.return_priority = pr->session.info.crt.return_priority;

 ps.payload.type = PMS_PD_NODE_RG0_APP_STATE_SET_STATUS;
 ps.payload.data.node_rg0_app_state_set_status.err = \
 PMS_PD_NODE_RG0_APP_STATE_SET_STATUS_SUCCESS;

 if (pms_send(&ps, 0) != 0)
 {
 }

 break;
 case PMS_PD_NODE_RG0_APP_STATE_SET_EXECUTE_OFFLINE:

 printf("hasim : received NODE_RG0_APP_STATE_SET_EXECUTE OFFLINE\
 ..\n");

 /* Do whatever, within pr->session.info.crt.time if possible.. */

 ps.session.type = PMS_SR_RETURN;
 ps.session.info.r.return_identifier = \
 pr->session.info.crt.call_identifier;
 ps.session.info.r.return_priority = pr->session.info.crt.return_priority;

 ps.payload.type = PMS_PD_NODE_RG0_APP_STATE_SET_STATUS;
 ps.payload.data.node_rg0_app_state_set_status.err = \
 PMS_PD_NODE_RG0_APP_STATE_SET_STATUS_SUCCESS;

 if (pms_send(&ps, 0) != 0)
 {
 }

 break;
 };

}

void
app_hasim_receive_rnd_status(struct pms_receive* pr)
{

CODE EXAMPLE 7-3 PMS Client Asynchronous Message Handling (Continued)
Chapter 7 Processor Management Services 233

 printf("hasim : rs.identifier=%.8X\n", \
 pr->payload.data.rnd_status.identifier);

 switch(pr->payload.data.rnd_status.code)
 {
 case PMS_PD_RND_STATUS_VIEW_NODE_REACHABLE_DRAWER_REACHABLE:

 printf("hasim : received RND_STATUS NODE REACHABLE DRAWER \
 REACHABLE..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_RND_STATUS_VIEW_NODE_REACHABLE_DRAWER_UNREACHABLE:

 printf("hasim : received RND_STATUS NODE REACHABLE DRAWER\
 UNREACHABLE..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_RND_STATUS_VIEW_NODE_UNREACHABLE_DRAWER_REACHABLE:

 printf("hasim : received RND_STATUS NODE UNREACHABLE DRAWER\
 REACHABLE..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_RND_STATUS_VIEW_NODE_UNREACHABLE_DRAWER_UNREACHABLE:

 printf("hasim : received RND_STATUS NODE UNREACHABLE DRAWER\
 UNREACHABLE..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_RND_STATUS_ADOPER_FORCE_UNAVAILABLE:

 printf("hasim : received RND_STATUS ADOPER FORCE UNAVAILABLE..\n");

 /* Doing nothing at the moment.. */

 break;

CODE EXAMPLE 7-3 PMS Client Asynchronous Message Handling (Continued)
234 Netra CT Server Software Developer’s Guide • August 2004

 case PMS_PD_RND_STATUS_ADOPER_VOTE_AVAILABLE:

 printf("hasim : received RND_STATUS ADOPER VOTE AVAILABLE..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_RND_STATUS_ADOPER_FORCE_AVAILABLE:

 printf("hasim : received RND_STATUS ADOPER FORCE AVAILABLE..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_RND_STATUS_ADOPER_STATUSMASK_SET:

 printf("hasim : received RND_STATUS ADOPER STATUSMASK SET..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_RND_STATUS_STATE_UNAVAILABLE:

 printf("hasim : received RND_STATUS STATE UNAVAILABLE..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_RND_STATUS_STATE_AVAILABLE:

 printf("hasim : received RND_STATUS STATE AVAILABLE..\n");

 /* Doing nothing at the moment.. */

 break;
 }

}

void
app_hasim_receive_rnd_md0_status(struct pms_receive* pr)
{

 printf("hasim : rms.identifier=%.8X\n", \

CODE EXAMPLE 7-3 PMS Client Asynchronous Message Handling (Continued)
Chapter 7 Processor Management Services 235

 pr->payload.data.rnd_md0_status.identifier);

 switch(pr->payload.data.rnd_md0_status.code)
 {
 case PMS_PD_RND_MD0_STATUS_ADOPER_CONFIG_MAINTENANCE:

 printf("hasim : received RND_MD0_STATUS ADOPER CONFIG \
 MAINTENANCE..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_RND_MD0_STATUS_ADOPER_CONFIG_OPERATIONAL:

 printf("hasim : received RND_MD0_STATUS ADOPER CONFIG \
 OPERATIONAL..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_RND_MD0_STATUS_ADOPER_GRACEFUL_REBOOT:

 printf("hasim : received RND_MD0_STATUS ADOPER GRACEFUL REBOOT..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_RND_MD0_STATUS_ADOPER_STATUSMASK_SET:

 printf("hasim : received RND_MD0_STATUS ADOPER STATUSMASK SET..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_RND_MD0_STATUS_ADOPER_RECOVERY_PC:

 printf("hasim : received RND_MD0_STATUS ADOPER RECOVERY PC..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_RND_MD0_STATUS_ADOPER_RECOVERY_RST:

 printf("hasim : received RND_MD0_STATUS ADOPER RECOVERY RST..\n");

 /* Doing nothing at the moment.. */

CODE EXAMPLE 7-3 PMS Client Asynchronous Message Handling (Continued)
236 Netra CT Server Software Developer’s Guide • August 2004

 break;
 case PMS_PD_RND_MD0_STATUS_ADOPER_RECOVERY_RSTPC:

 printf("hasim : received RND_MD0_STATUS ADOPER RECOVERY RSTPC..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_RND_MD0_STATUS_ADOPER_RECOVERY_PD:
 printf("hasim : received RND_MD0_STATUS ADOPER RECOVERY PD..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_RND_MD0_STATUS_ADOPER_RECOVERY_RB:

 printf("hasim : received RND_MD0_STATUS ADOPER RECOVERY RB..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_RND_MD0_STATUS_ADOPER_RECOVERYAUTOMODE_SET:

 printf("hasim : received RND_MD0_STATUS ADOPER RECOVERYAUTOMODE\
 SET..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_RND_MD0_STATUS_ADOPER_SCDM_TIMEOUT:

 printf("hasim : received RND_MD0_STATUS ADOPER SCDM TIMEOUT..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_RND_MD0_STATUS_CONFIG_MAINTENANCE:

 printf("hasim : received RND_MD0_STATUS CONFIG MAINTENANCE..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_RND_MD0_STATUS_CONFIG_OPERATIONAL:

 printf("hasim : received RND_MD0_STATUS CONFIG OPERATIONAL..\n");

CODE EXAMPLE 7-3 PMS Client Asynchronous Message Handling (Continued)
Chapter 7 Processor Management Services 237

The following example shows a PMS client’s scheduling.

 /* Doing nothing at the moment.. */

 break;
 }

}

CODE EXAMPLE 7-4 PMS Client Scheduling Example

void
app_hasim_receive_time_status(void)
{

 int i;
 mdi.mgmt_info.last_update += HASIM_CHECK_INTERVAL;
 mdi.mgmt_info.last_sync_check += HASIM_CHECK_INTERVAL;

 mdi.node_info.last_update += HASIM_CHECK_INTERVAL;
 mdi.node_info.last_sync_check += HASIM_CHECK_INTERVAL;

 for(i=0;i<16;i++)
 {
 mdi.rnd_info[i].last_update += HASIM_CHECK_INTERVAL;
 mdi.rnd_info[i].last_sync_check += HASIM_CHECK_INTERVAL;
 }

 app_hasim_process();

}

void
app_hasim_process(void)
{

 /* Run state machine sub-groupings.. */

CODE EXAMPLE 7-3 PMS Client Asynchronous Message Handling (Continued)
238 Netra CT Server Software Developer’s Guide • August 2004

The following example shows the PMS client’s user management interface.

 app_hasim_user_process();

 app_hasim_mgmt_process();

 app_hasim_node_process();

 app_hasim_rnd_process();

}

CODE EXAMPLE 7-5 PMS Client User and Management Interface

void
app_hasim_user_process(void)
{

 struct pms_receive pr;

 int i;

 /* PMS View check */

 /* Periodically attempt to connect if unreachable. Return to initial
 state variable settings on reachable to unreachable transition.. */

 if (mdi.user_info.pms_view == HASIM_USER_PMS_VIEW_UNREACHABLE)
 {
 if (pms_connect(PMS_SERVER_PORT_NUMBER_DEFAULT) != 0)
 {
 }
 else
 {
 mdi.user_info.pms_view = HASIM_USER_PMS_VIEW_REACHABLE;
 mdi.user_info.view_cache = PMS_PD_USER_STATUS_PMS_REACHABLE;
 }
 }

CODE EXAMPLE 7-4 PMS Client Scheduling Example (Continued)
Chapter 7 Processor Management Services 239

 else /* mdi.user_info.pms_view == HASIM_USER_PMS_VIEW_REACHABLE */
 {
 if (mdi.user_info.view_cache == PMS_PD_USER_STATUS_PMS_UNREACHABLE)
 {

 /* RND */

 for(i=0;i<16;i++)
 {

 mdi.rnd_info[i].cache_state = HASIM_RND_CACHE_INVALID;
 mdi.rnd_info[i].last_update = HASIM_CHECK_INVALID_INTERVAL;

 if ((mdi.rnd_info[i].receive_state & HASIM_RND_RECEIVE_REGISTERED) != 0)
 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_RND_STATUS;
 pr.payload.data.rnd_status.identifier = \
 mdi.mgmt_info.rnd_address_identifier[i];
 pms_receive(&pr, 0, 0);
 mdi.rnd_info[i].receive_state &= !HASIM_RND_RECEIVE_REGISTERED;
 }

 if ((mdi.rnd_info[i].receive_state & HASIM_RND_MD0_RECEIVE_REGISTERED)\
 != 0)
 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_RND_MD0_STATUS;
 pr.payload.data.rnd_status.identifier = \
 mdi.mgmt_info.rnd_address_identifier[i];
 pms_receive(&pr, 0, 0);
 mdi.rnd_info[i].receive_state &= !HASIM_RND_MD0_RECEIVE_REGISTERED;
 }

 }

 /* NODE */

 mdi.node_info.cache_state = HASIM_NODE_CACHE_INVALID;
 mdi.node_info.last_update = HASIM_CHECK_INVALID_INTERVAL;

 if (mdi.node_info.service_state == HASIM_NODE_SERVICE_STATE_ACTIVE)
 {
 mdi.node_info.service_state = HASIM_NODE_SERVICE_STATE_OFFLINE;
 }

CODE EXAMPLE 7-5 PMS Client User and Management Interface (Continued)
240 Netra CT Server Software Developer’s Guide • August 2004

 if (mdi.node_info.rg0_app_name_state ==\
 HASIM_NODE_RG0_APP_NAME_REGISTERED)
 {
 mdi.node_info.rg0_app_name_state = HASIM_NODE_RG0_APP_NAME_UNREGISTERED;
 }

 if ((mdi.node_info.receive_state &\
 HASIM_NODE_RG0_STATUS_RECEIVE_REGISTERED) != 0)
 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_NODE_RG0_STATUS;
 pms_receive(&pr, 0, 0);
 mdi.node_info.receive_state &=\
 !HASIM_NODE_RG0_STATUS_RECEIVE_REGISTERED;
 }

 if ((mdi.node_info.receive_state & \
 HASIM_NODE_RG0_APP_STATE_SET_EXECUTE_RECEIVE_REGISTERED) != 0)
 {
 pr.session.type = PMS_SR_CALL_RETURN_TIMED;
 pr.payload.type = PMS_PD_NODE_RG0_APP_STATE_SET_EXECUTE;
 pms_receive(&pr, 0, 0);
 mdi.node_info.receive_state &= \
 !HASIM_NODE_RG0_APP_STATE_SET_EXECUTE_RECEIVE_REGISTERED;
 }

 /* MGMT */

 mdi.mgmt_info.cache_state = HASIM_MGMT_CACHE_INVALID;
 mdi.mgmt_info.last_update = HASIM_CHECK_INVALID_INTERVAL;

 for(i=0;i<16;i++)
 mdi.mgmt_info.rnd_address_identifier[i] = -1;

 if (mdi.mgmt_info.rnd_address_state == HASIM_MGMT_RND_ADDRESS_VERIFIED)
 {
 mdi.mgmt_info.rnd_address_state = HASIM_MGMT_RND_ADDRESS_UNVERIFIED;
 }

 if (mdi.mgmt_info.pms_state == HASIM_MGMT_PMS_STATE_AVAILABLE)
 {
 mdi.mgmt_info.pms_state = HASIM_MGMT_PMS_STATE_UNAVAILABLE;
 }

 if (mdi.mgmt_info.receive_state == HASIM_MGMT_RECEIVE_REGISTERED)
 {

CODE EXAMPLE 7-5 PMS Client User and Management Interface (Continued)
Chapter 7 Processor Management Services 241

 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_MGMT_STATUS;
 pms_receive(&pr, 0, 1);

 mdi.mgmt_info.receive_state = HASIM_MGMT_RECEIVE_UNREGISTERED;
 }

 /* USER */

 if (mdi.user_info.receive_state == HASIM_USER_RECEIVE_REGISTERED)
 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_USER_STATUS;
 pms_receive(&pr, 0, 0);

 mdi.user_info.receive_state = HASIM_USER_RECEIVE_UNREGISTERED;
 }

 if (mdi.user_info.pms_view == HASIM_USER_PMS_VIEW_REACHABLE)
 {
 pms_disconnect();

 mdi.user_info.pms_view = HASIM_USER_PMS_VIEW_UNREACHABLE;
 }

 }
 }

 /* Receive Check */

 /* If USER messages are not receive registered, attempt to register if PMS
 is reachable.. */

 if (mdi.user_info.pms_view == HASIM_USER_PMS_VIEW_REACHABLE)
 {
 if (mdi.user_info.receive_state != HASIM_USER_RECEIVE_REGISTERED)
 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_USER_STATUS;
 if (pms_receive(&pr, app_hasim_receive_post, 0) != -1)
 mdi.user_info.receive_state = HASIM_USER_RECEIVE_REGISTERED;
 }
 }

CODE EXAMPLE 7-5 PMS Client User and Management Interface (Continued)
242 Netra CT Server Software Developer’s Guide • August 2004

}

void
app_hasim_mgmt_process(void)
{

 struct pms_send ps;
 struct pms_receive pr;

 int info_get_fail;

 int match[HASIM_RND_ADDRESS_AUDIT_ENTRYS];

 int mgmt_state;
 int rnd_address_identifier[16];
 char rnd_address_node_ip_address[16][20];
 char rnd_address_drawer_ip_address[16][20];
 int rnd_address_node_slot_number[16];

 int i, j;

 /* Receive Check */

 /* If MGMT messages are not receive registered, attempt to register if PMS
 is reachable and USER receive messages are registered. If registration
 is successful, force an initial cache update.. */

 if (mdi.mgmt_info.receive_state != HASIM_MGMT_RECEIVE_REGISTERED)
 {
 if (mdi.user_info.receive_state == HASIM_USER_RECEIVE_REGISTERED)
 {
 if (mdi.user_info.pms_view == HASIM_USER_PMS_VIEW_REACHABLE)
 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_MGMT_STATUS;
 if (pms_receive(&pr, app_hasim_receive_post, 1) != -1)
 mdi.mgmt_info.receive_state = HASIM_MGMT_RECEIVE_REGISTERED;

 /* Force an info_get immediately after registering.. */
 mdi.mgmt_info.last_sync_check = HASIM_SYNCCHECK_INTERVAL;
 }
 }
 }

CODE EXAMPLE 7-5 PMS Client User and Management Interface (Continued)
Chapter 7 Processor Management Services 243

 /* PMS State check */

 /* Process PMS state transitions. On an available to unavailable transition
 return to pre-NODE and RND operational state variable settings.. */

 if (mdi.mgmt_info.pms_state == HASIM_MGMT_PMS_STATE_UNAVAILABLE)
 {
 if (mdi.mgmt_info.cache_state != HASIM_MGMT_CACHE_INVALID)
 {
 if (mdi.mgmt_info.mgmt_state_cache != \
 PMS_PD_MGMT_INFO_GET_STATUS_UNAVAILABLE)
 {
 mdi.mgmt_info.pms_state = HASIM_MGMT_PMS_STATE_AVAILABLE;
 }
 }
 }
 else /* mdi.mgmt_info.pms_state == HASIM_MGMT_PMS_STATE_AVAILABLE */
 {
 if (mdi.mgmt_info.cache_state != HASIM_MGMT_CACHE_INVALID)
 {
 if (mdi.mgmt_info.mgmt_state_cache == \
 PMS_PD_MGMT_INFO_GET_STATUS_UNAVAILABLE)
 {

 /* RND */

 for(i=0;i<16;i++)
 {

 if ((mdi.rnd_info[i].receive_state & \
 HASIM_RND_RECEIVE_REGISTERED) != 0)
 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_RND_STATUS;
 pr.payload.data.rnd_status.identifier = \
 mdi.mgmt_info.rnd_address_identifier[i];
 pms_receive(&pr, 0, 0);
 mdi.rnd_info[i].receive_state &= !HASIM_RND_RECEIVE_REGISTERED;
 }

 if ((mdi.rnd_info[i].receive_state & HASIM_RND_MD0_RECEIVE_REGISTERED)\

CODE EXAMPLE 7-5 PMS Client User and Management Interface (Continued)
244 Netra CT Server Software Developer’s Guide • August 2004

 != 0)
 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_RND_MD0_STATUS;
 pr.payload.data.rnd_status.identifier = \
 mdi.mgmt_info.rnd_address_identifier[i];
 pms_receive(&pr, 0, 0);
 mdi.rnd_info[i].receive_state &= !HASIM_RND_MD0_RECEIVE_REGISTERED;
 }

 }

 /* NODE */

 if (mdi.node_info.service_state == HASIM_NODE_SERVICE_STATE_ACTIVE)
 {
 mdi.node_info.service_state = HASIM_NODE_SERVICE_STATE_OFFLINE;
 }

 if (mdi.node_info.rg0_app_name_state == \
 HASIM_NODE_RG0_APP_NAME_REGISTERED)
 {
 mdi.node_info.rg0_app_name_state = HASIM_NODE_RG0_APP_NAME_UNREGISTERED;
 }

 if ((mdi.node_info.receive_state &\
 HASIM_NODE_RG0_STATUS_RECEIVE_REGISTERED) != 0)
 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_NODE_RG0_STATUS;
 pms_receive(&pr, 0, 0);
 mdi.node_info.receive_state &=\
 !HASIM_NODE_RG0_STATUS_RECEIVE_REGISTERED;
 }

 if ((mdi.node_info.receive_state & \
 HASIM_NODE_RG0_APP_STATE_SET_EXECUTE_RECEIVE_REGISTERED) != 0)
 {
 pr.session.type = PMS_SR_CALL_RETURN_TIMED;
 pr.payload.type = PMS_PD_NODE_RG0_APP_STATE_SET_EXECUTE;
 pms_receive(&pr, 0, 0);
 mdi.node_info.receive_state &= \
 !HASIM_NODE_RG0_APP_STATE_SET_EXECUTE_RECEIVE_REGISTERED;
 }

CODE EXAMPLE 7-5 PMS Client User and Management Interface (Continued)
Chapter 7 Processor Management Services 245

 mdi.mgmt_info.pms_state = HASIM_MGMT_PMS_STATE_UNAVAILABLE;
 }
 }
 }

 /* RND Address Check */

 /* Check once at startup if the RND address pairs currently in the list
 are the same as this control application's defaults. If not, remove
 any that differ and add any that are missing. This is a bit contrived
 to demonstrate interaction via the address list messages. No point
 in starting processing if cache is invalid and PMS is not reachable
 and USER registration is not completed.. */

 if (mdi.mgmt_info.rnd_address_state != HASIM_MGMT_RND_ADDRESS_VERIFIED)
 {
 if (mdi.mgmt_info.cache_state != HASIM_MGMT_CACHE_INVALID)
 {
 if (mdi.user_info.receive_state == HASIM_USER_RECEIVE_REGISTERED)
 {
 if (mdi.user_info.pms_view == HASIM_USER_PMS_VIEW_REACHABLE)
 {

 match[0] = 0;
 match[1] = 0;

 /* Search RND address list for entries not in the app's verify list.. */

 for(i=0;i<16;i++)
 {
 if (mdi.mgmt_info.rnd_address_cache[i].identifier != -1)
 {
 for(j=0;j<HASIM_RND_ADDRESS_AUDIT_ENTRYS;j++)
 {
 if (match[j] == 0)
 {
 /* Use strcmp() for the moment. Use sockaddr_in when \
 I get around to it.. */
 if \
 (strcmp(&mdi.mgmt_info.rnd_address_cache[i].node_ip_address[0], \
 &mdi.rnd_address[j].node_ip_address[0]) == 0)
 {
 if\
 (strcmp(&mdi.mgmt_info.rnd_address_cache[i].drawer_ip_address[0], \

CODE EXAMPLE 7-5 PMS Client User and Management Interface (Continued)
246 Netra CT Server Software Developer’s Guide • August 2004

 &mdi.rnd_address[j].drawer_ip_address[0]) == 0)
 {
 if (mdi.mgmt_info.rnd_address_cache[i].node_slot_number == \
 mdi.rnd_address[j].node_slot_number)
 {
 match[j] = 1;

 break;
 }
 }
 }
 }
 }

 /* Delete entries not in the app's verify list.. */

 if (j == HASIM_RND_ADDRESS_AUDIT_ENTRYS)
 {
 ps.session.type = PMS_SR_CALL_RETURN_TIMED;
 ps.session.info.crt.time = 0;
 ps.payload.type = PMS_PD_MGMT_RND_ADDRESS_DELETE_EXECUTE;

 ps.payload.data.mgmt_rnd_address_delete_execute.identifier = \
 mdi.mgmt_info.rnd_address_cache[i].identifier;

 if (pms_send(&ps, &pr) == 0)
 {
 if (pr.payload.data.mgmt_rnd_address_delete_status.err == \
 PMS_PD_MGMT_RND_ADDRESS_DELETE_STATUS_ERR_NONE)
 {
 }
 }
 }

 }
 }

 /* Add any missing entries.. */

 for(i=0;i<HASIM_RND_ADDRESS_AUDIT_ENTRYS;i++)
 {
 if (match[i] == 0)
 {
 ps.session.type = PMS_SR_CALL_RETURN_TIMED;
 ps.session.info.crt.time = 0;
 ps.payload.type = PMS_PD_MGMT_RND_ADDRESS_ADD_EXECUTE;

CODE EXAMPLE 7-5 PMS Client User and Management Interface (Continued)
Chapter 7 Processor Management Services 247

 strncpy(&ps.payload.data.mgmt_rnd_address_add_execute.node_ip_address[0], \
 &mdi.rnd_address[i].node_ip_address[0], 20);
 strncpy(&ps.payload.data.mgmt_rnd_address_add_execute.drawer_ip_address[0], \
 &mdi.rnd_address[i].drawer_ip_address[0], 20);
 ps.payload.data.mgmt_rnd_address_add_execute.node_slot_number = \
 mdi.rnd_address[i].node_slot_number;

 if (pms_send(&ps, &pr) == 0)
 {
 if (pr.payload.data.mgmt_rnd_address_add_status.err == \
 PMS_PD_MGMT_RND_ADDRESS_ADD_STATUS_ERR_NONE)
 {
 }
 }
 }
 }

 mdi.mgmt_info.rnd_address_state = HASIM_MGMT_RND_ADDRESS_VERIFIED;
 }
 }
 }
 }

 /* RND Address Identifier check */

 /* Process RND address identifier transitions. On in-use to not-in-use
 transitions, return state variables to pre-RND initialized state for that
 identifier. Check whether any list entries have been deleted and re-added
 since last processing and do an available->unavailable->available
 transition.. */

 for(i=0;i<16;i++)
 {

 if (mdi.mgmt_info.rnd_address_identifier[i] == -1)
 {

 if (mdi.mgmt_info.cache_state != HASIM_MGMT_CACHE_INVALID)
 {
 if (mdi.mgmt_info.rnd_address_cache[i].identifier != -1)
 {
 mdi.mgmt_info.rnd_address_identifier[i] =\
 mdi.mgmt_info.rnd_address_cache[i].identifier;
 }
 }

CODE EXAMPLE 7-5 PMS Client User and Management Interface (Continued)
248 Netra CT Server Software Developer’s Guide • August 2004

 }
 else /* mdi.mgmt_info.rnd_address_identifier[i] != -1 */
 {

 if (mdi.mgmt_info.cache_state != HASIM_MGMT_CACHE_INVALID)
 {

 if (mdi.mgmt_info.rnd_address_cache[i].identifier == -1)
 {

 /* RND */

 if ((mdi.rnd_info[i].receive_state & HASIM_RND_RECEIVE_REGISTERED)\
 != 0)
 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_RND_STATUS;
 pr.payload.data.rnd_status.identifier = \
 mdi.mgmt_info.rnd_address_identifier[i];
 pms_receive(&pr, 0, 0);
 mdi.rnd_info[i].receive_state &= !HASIM_RND_RECEIVE_REGISTERED;
 }

 if ((mdi.rnd_info[i].receive_state & HASIM_RND_MD0_RECEIVE_REGISTERED)\
 != 0)
 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_RND_MD0_STATUS;
 pr.payload.data.rnd_status.identifier = \
 mdi.mgmt_info.rnd_address_identifier[i];
 pms_receive(&pr, 0, 0);
 mdi.rnd_info[i].receive_state &= !HASIM_RND_MD0_RECEIVE_REGISTERED;
 }

 mdi.mgmt_info.rnd_address_identifier[i] = -1;
 }
 else
 {
 if (mdi.mgmt_info.rnd_address_identifier[i] != \
 mdi.mgmt_info.rnd_address_cache[i].identifier)
 {
 /* RND */

 if ((mdi.rnd_info[i].receive_state & HASIM_RND_RECEIVE_REGISTERED)\
 != 0)

CODE EXAMPLE 7-5 PMS Client User and Management Interface (Continued)
Chapter 7 Processor Management Services 249

 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_RND_STATUS;
 pr.payload.data.rnd_status.identifier = \
 mdi.mgmt_info.rnd_address_identifier[i];
 pms_receive(&pr, 0, 0);
 mdi.rnd_info[i].receive_state &= !HASIM_RND_RECEIVE_REGISTERED;
 }

 if ((mdi.rnd_info[i].receive_state & \
 HASIM_RND_MD0_RECEIVE_REGISTERED) != 0)
 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_RND_MD0_STATUS;
 pr.payload.data.rnd_status.identifier = \
 mdi.mgmt_info.rnd_address_identifier[i];
 pms_receive(&pr, 0, 0);
 mdi.rnd_info[i].receive_state &= !HASIM_RND_MD0_RECEIVE_REGISTERED;
 }

 mdi.mgmt_info.rnd_address_identifier[i] =\
 mdi.mgmt_info.rnd_address_cache[i].identifier;
 }
 }

 }

 }

 }

 /* Sync Check */

 /* Policy: Sync update checked every SYNCCHECK_INTERVAL seconds.. */
 if (mdi.mgmt_info.last_sync_check > HASIM_SYNCCHECK_INTERVAL)
 {
 /* Policy: Don't attempt a sync update if any async partial updates have
 been received within SYNCCHECK_INTERVAL.. */
 if (mdi.mgmt_info.last_update > HASIM_SYNCCHECK_INTERVAL)
 {
 /* Policy: Don't attempt a sync update if registration for async
 updates have not succeeded.. */
 if (mdi.mgmt_info.receive_state == HASIM_MGMT_RECEIVE_REGISTERED)
 {
 if (mdi.user_info.receive_state == HASIM_USER_RECEIVE_REGISTERED)
 {

CODE EXAMPLE 7-5 PMS Client User and Management Interface (Continued)
250 Netra CT Server Software Developer’s Guide • August 2004

 if (mdi.user_info.pms_view == HASIM_USER_PMS_VIEW_REACHABLE)
 {
 mdi.mgmt_info.last_sync_check = 0;

 info_get_fail = 0;

 /* Get MGMT base information.. */
 ps.session.type = PMS_SR_CALL_RETURN_TIMED;
 ps.session.info.crt.time = 0;
 ps.payload.type = PMS_PD_MGMT_INFO_GET_EXECUTE;

 if (pms_send(&ps, &pr) == 0)
 {
 if (pr.payload.data.mgmt_info_get_status.err == \
 PMS_PD_MGMT_INFO_GET_STATUS_SUCCESS)
 {
 mgmt_state = pr.payload.data.mgmt_info_get_status.state;
 }
 else
 {
 info_get_fail = 1;
 }
 }
 else
 {
 info_get_fail = 1;
 }

 /* Get MGMT rnd address information.. */

 ps.session.type = PMS_SR_CALL_RETURN_TIMED;
 ps.session.info.crt.time = 0;
 ps.payload.type = PMS_PD_MGMT_RND_ADDRESS_INFO_GET_EXECUTE;

 for(i=0;i<16;i++)
 {
 ps.payload.data.mgmt_rnd_address_info_get_execute.index = i;

 if (pms_send(&ps, &pr) == 0)
 {
 if (pr.payload.data.mgmt_rnd_address_info_get_status.err == \
 PMS_PD_MGMT_RND_ADDRESS_INFO_GET_STATUS_ERR_NONE)
 {
 rnd_address_identifier[i] = \
 pr.payload.data.mgmt_rnd_address_info_get_status.identifier;
 strncpy(&rnd_address_node_ip_address[i][0], \

CODE EXAMPLE 7-5 PMS Client User and Management Interface (Continued)
Chapter 7 Processor Management Services 251

 &pr.payload.data.mgmt_rnd_address_info_get_status.node_ip_address[0], 20);
 strncpy(&rnd_address_drawer_ip_address[i][0], \
 &pr.payload.data.mgmt_rnd_address_info_get_status.drawer_ip_address[0], 20);
 rnd_address_node_slot_number[i] = \
 pr.payload.data.mgmt_rnd_address_info_get_status.node_slot_number;
 }
 else
 {
 info_get_fail = 1;
 }
 }
 else
 {
 info_get_fail = 1;
 }
 }

 /* Only mark MGMT update as successful if all pieces of data
 were received successfully.. */

 if (info_get_fail == 0)
 {
 mdi.mgmt_info.mgmt_state_cache = mgmt_state;

 for(i=0;i<16;i++)
 {
 mdi.mgmt_info.rnd_address_cache[i].identifier = \
 rnd_address_identifier[i];
 strncpy(&mdi.mgmt_info.rnd_address_cache[i].node_ip_address[0], \
 &rnd_address_node_ip_address[i][0], 20);
 strncpy(&mdi.mgmt_info.rnd_address_cache[i].drawer_ip_address[0],\
 &rnd_address_drawer_ip_address[i][0], 20);
 mdi.mgmt_info.rnd_address_cache[i].node_slot_number = \
 rnd_address_node_slot_number[i];
 }

 mdi.mgmt_info.last_update = 0;
 }

 }
 }
 }
 }
 else
 {
 mdi.mgmt_info.last_sync_check = 0;
 }

CODE EXAMPLE 7-5 PMS Client User and Management Interface (Continued)
252 Netra CT Server Software Developer’s Guide • August 2004

 }

 /* Validity Check */

 /* Process cache state validity transitions. The policy is on a MGMT cache
 transition to invalid, return state variables to initial configuration.. */

 if(mdi.mgmt_info.last_update < HASIM_CHECK_VALID_INTERVAL)
 {
 if (mdi.mgmt_info.cache_state != HASIM_MGMT_CACHE_VALID)
 mdi.mgmt_info.cache_state = HASIM_MGMT_CACHE_VALID;
 }
 else if((mdi.mgmt_info.last_update >= HASIM_CHECK_VALID_INTERVAL && \
 mdi.mgmt_info.last_update < HASIM_CHECK_INVALID_INTERVAL))
 {
 if (mdi.mgmt_info.cache_state == HASIM_MGMT_CACHE_VALID)
 mdi.mgmt_info.cache_state = HASIM_MGMT_CACHE_OLD;
 }
 else if(mdi.mgmt_info.last_update >= HASIM_CHECK_INVALID_INTERVAL)
 {
 if (mdi.mgmt_info.cache_state == HASIM_MGMT_CACHE_OLD)
 {

 /* RND */

 for(i=0;i<16;i++)
 {

 mdi.rnd_info[i].cache_state = HASIM_RND_CACHE_INVALID;
 mdi.rnd_info[i].last_update = HASIM_CHECK_INVALID_INTERVAL;

 if ((mdi.rnd_info[i].receive_state & HASIM_RND_RECEIVE_REGISTERED) != 0)
 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_RND_STATUS;
 pr.payload.data.rnd_status.identifier = \
 mdi.mgmt_info.rnd_address_identifier[i];
 pms_receive(&pr, 0, 0);
 mdi.rnd_info[i].receive_state &= !HASIM_RND_RECEIVE_REGISTERED;
 }

 if ((mdi.rnd_info[i].receive_state & HASIM_RND_MD0_RECEIVE_REGISTERED)\
 != 0)
 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_RND_MD0_STATUS;

CODE EXAMPLE 7-5 PMS Client User and Management Interface (Continued)
Chapter 7 Processor Management Services 253

 pr.payload.data.rnd_status.identifier = \
 mdi.mgmt_info.rnd_address_identifier[i];
 pms_receive(&pr, 0, 0);
 mdi.rnd_info[i].receive_state &= !HASIM_RND_MD0_RECEIVE_REGISTERED;
 }

 }

 /* NODE*/

 mdi.node_info.cache_state = HASIM_NODE_CACHE_INVALID;
 mdi.node_info.last_update = HASIM_CHECK_INVALID_INTERVAL;

 if (mdi.node_info.service_state == HASIM_NODE_SERVICE_STATE_ACTIVE)
 {
 mdi.node_info.service_state = HASIM_NODE_SERVICE_STATE_OFFLINE;
 }

 if (mdi.node_info.rg0_app_name_state ==\
 HASIM_NODE_RG0_APP_NAME_REGISTERED)
 {
 mdi.node_info.rg0_app_name_state = HASIM_NODE_RG0_APP_NAME_UNREGISTERED;
 }

 if ((mdi.node_info.receive_state &\
 HASIM_NODE_RG0_STATUS_RECEIVE_REGISTERED) != 0)
 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_NODE_RG0_STATUS;
 pms_receive(&pr, 0, 0);
 mdi.node_info.receive_state &=\
 !HASIM_NODE_RG0_STATUS_RECEIVE_REGISTERED;
 }

 if ((mdi.node_info.receive_state & \
 HASIM_NODE_RG0_APP_STATE_SET_EXECUTE_RECEIVE_REGISTERED) != 0)
 {
 pr.session.type = PMS_SR_CALL_RETURN_TIMED;
 pr.payload.type = PMS_PD_NODE_RG0_APP_STATE_SET_EXECUTE;
 pms_receive(&pr, 0, 0);
 mdi.node_info.receive_state &=\
 !HASIM_NODE_RG0_APP_STATE_SET_EXECUTE_RECEIVE_REGISTERED;
 }

 /* MGMT */

CODE EXAMPLE 7-5 PMS Client User and Management Interface (Continued)
254 Netra CT Server Software Developer’s Guide • August 2004

 mdi.mgmt_info.cache_state = HASIM_MGMT_CACHE_INVALID;

 for(i=0;i<16;i++)
 mdi.mgmt_info.rnd_address_identifier[i] = -1;

 if (mdi.mgmt_info.rnd_address_state == HASIM_MGMT_RND_ADDRESS_VERIFIED)
 {
 mdi.mgmt_info.rnd_address_state = HASIM_MGMT_RND_ADDRESS_UNVERIFIED;
 }

 if (mdi.mgmt_info.pms_state == HASIM_MGMT_PMS_STATE_AVAILABLE)
 {
 mdi.mgmt_info.pms_state = HASIM_MGMT_PMS_STATE_UNAVAILABLE;
 }

 if (mdi.mgmt_info.receive_state == HASIM_MGMT_RECEIVE_REGISTERED)
 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_MGMT_STATUS;
 pms_receive(&pr, 0, 1);

 mdi.mgmt_info.receive_state = HASIM_MGMT_RECEIVE_UNREGISTERED;
 }

 /* USER */

 if (mdi.user_info.receive_state == HASIM_USER_RECEIVE_REGISTERED)
 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_USER_STATUS;
 pms_receive(&pr, 0, 0);

 mdi.user_info.receive_state = HASIM_USER_RECEIVE_UNREGISTERED;
 }

 if (mdi.user_info.pms_view == HASIM_USER_PMS_VIEW_REACHABLE)
 {
 pms_disconnect();

 mdi.user_info.pms_view = HASIM_USER_PMS_VIEW_UNREACHABLE;
 }
 }
 }
}

CODE EXAMPLE 7-5 PMS Client User and Management Interface (Continued)
Chapter 7 Processor Management Services 255

The following example shows the PMS client node interface.

CODE EXAMPLE 7-6 PMS Client Node Interface

void
app_hasim_node_process(void)
{

 struct pms_send ps;
 struct pms_receive pr;

 int info_get_fail;

 int rg0_state;

 int i;

 /* Receive Check */

 /* If NODE messages are not receive registered, attempt to register them if PMS
 is in the available state and reachable, and if USER receive messages are
 registered. If registration is successful, force an initial cache
 update.. */

 if (mdi.node_info.receive_state != HASIM_NODE_GROUP_RECEIVE_REGISTERED)
 {
 if (mdi.mgmt_info.pms_state == HASIM_MGMT_PMS_STATE_AVAILABLE)
 {
 if (mdi.user_info.receive_state == HASIM_USER_RECEIVE_REGISTERED)
 {
 if (mdi.user_info.pms_view == HASIM_USER_PMS_VIEW_REACHABLE)
 {

 if ((mdi.node_info.receive_state & \
 HASIM_NODE_RG0_STATUS_RECEIVE_REGISTERED) == 0)
 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_NODE_RG0_STATUS;
 if (pms_receive(&pr, app_hasim_receive_post, 0) != -1)
 mdi.node_info.receive_state |= \
 HASIM_NODE_RG0_STATUS_RECEIVE_REGISTERED;
 }

 if ((mdi.node_info.receive_state & \
 HASIM_NODE_RG0_APP_STATE_SET_EXECUTE_RECEIVE_REGISTERED) == 0)
 {
 pr.session.type = PMS_SR_CALL_RETURN_TIMED;
 pr.session.info.crt.time = 50;
256 Netra CT Server Software Developer’s Guide • August 2004

 pr.payload.type = PMS_PD_NODE_RG0_APP_STATE_SET_EXECUTE;
 if (pms_receive(&pr, app_hasim_receive_post, 0) != -1)
 mdi.node_info.receive_state |= \
 HASIM_NODE_RG0_APP_STATE_SET_EXECUTE_RECEIVE_REGISTERED;
 }

 /* Force an info_get immediately after registering.. */
 mdi.node_info.last_sync_check = HASIM_SYNCCHECK_INTERVAL;
 }
 }
 }
 }

 /* Name Check */

 /* If this application’s name is not registered, register it if PMS is
 available and reachable, and if USER registration is complete.. */

 if (mdi.node_info.rg0_app_name_state != HASIM_NODE_RG0_APP_NAME_REGISTERED)
 {
 if (mdi.mgmt_info.pms_state == HASIM_MGMT_PMS_STATE_AVAILABLE)
 {
 if (mdi.user_info.receive_state == HASIM_USER_RECEIVE_REGISTERED)
 {
 if (mdi.user_info.pms_view == HASIM_USER_PMS_VIEW_REACHABLE)
 {

 /* Set NODE RG0 application name.. */

 ps.session.type = PMS_SR_CALL_RETURN_TIMED;
 ps.session.info.crt.time = 0;
 ps.payload.type = PMS_PD_NODE_RG0_APP_NAME_EXECUTE;
 strcpy(&ps.payload.data.node_rg0_app_name_execute.name[0], \
 "hasim");
 ps.payload.data.node_rg0_app_name_execute.command = \
 PMS_PD_NODE_RG0_APP_NAME_EXECUTE_ADD;

 if (pms_send(&ps, &pr) == 0)
 {
 if (pr.payload.data.node_rg0_app_name_status.err == \
 PMS_PD_NODE_RG0_APP_NAME_STATUS_ERR_NONE)
 {
 mdi.node_info.rg0_app_name_state = \
 HASIM_NODE_RG0_APP_NAME_REGISTERED;
 }
 }

CODE EXAMPLE 7-6 PMS Client Node Interface (Continued)
Chapter 7 Processor Management Services 257

 }
 }
 }
 }

 /* Service State check */

 /* Process application service state transitions. On an active-to-offline
 transition, return state variables to a pre-RND configuration. This
 example’s applications policy does not monitor RND pairs
 if it is offline.. */

 if (mdi.node_info.service_state == HASIM_NODE_SERVICE_STATE_OFFLINE)
 {
 if (mdi.node_info.cache_state != HASIM_NODE_CACHE_INVALID)
 {
 if (mdi.node_info.rg0_state_cache != \
 PMS_PD_NODE_RG0_INFO_GET_STATUS_OFFLINE)
 {
 mdi.node_info.service_state = HASIM_NODE_SERVICE_STATE_ACTIVE;
 }
 }
 }
 else /* mdi.node_info.service_state == HASIM_NODE_SERVICE_STATE_ACTIVE */
 {
 if (mdi.node_info.cache_state != HASIM_NODE_CACHE_INVALID)
 {
 if (mdi.node_info.rg0_state_cache == \
 PMS_PD_NODE_RG0_INFO_GET_STATUS_OFFLINE)
 {

 /* RND */

 for(i=0;i<16;i++)
 {

 if ((mdi.rnd_info[i].receive_state & \
 HASIM_RND_RECEIVE_REGISTERED) != 0)
 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_RND_STATUS;
 pr.payload.data.rnd_status.identifier = \
 mdi.mgmt_info.rnd_address_identifier[i];
 pms_receive(&pr, 0, 0);
 mdi.rnd_info[i].receive_state &= !HASIM_RND_RECEIVE_REGISTERED;

CODE EXAMPLE 7-6 PMS Client Node Interface (Continued)
258 Netra CT Server Software Developer’s Guide • August 2004

 }

 if ((mdi.rnd_info[i].receive_state & HASIM_RND_MD0_RECEIVE_REGISTERED)\
 != 0)
 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_RND_MD0_STATUS;
 pr.payload.data.rnd_status.identifier = \
 mdi.mgmt_info.rnd_address_identifier[i];
 pms_receive(&pr, 0, 0);
 mdi.rnd_info[i].receive_state &= !HASIM_RND_MD0_RECEIVE_REGISTERED;
 }

 }

 mdi.node_info.service_state = HASIM_NODE_SERVICE_STATE_OFFLINE;
 }
 }
 }

 /* Sync Check */

 /* Policy: Sync update checked every SYNCCHECK_INTERVAL seconds.. */
 if (mdi.node_info.last_sync_check > HASIM_SYNCCHECK_INTERVAL)
 {
 /* Policy: Don’t attempt a sync update if any async partial updates have
 been received within SYNCCHECK_INTERVAL.. */
 if (mdi.node_info.last_update > HASIM_SYNCCHECK_INTERVAL)
 {
 /* Policy: Don’t attempt a sync update if registration for async
 updates have not succeeded.. */
 if (mdi.node_info.receive_state == HASIM_NODE_GROUP_RECEIVE_REGISTERED)
 {
 if (mdi.user_info.receive_state == HASIM_USER_RECEIVE_REGISTERED)
 {
 if (mdi.user_info.pms_view == HASIM_USER_PMS_VIEW_REACHABLE)
 {
 mdi.node_info.last_sync_check = 0;

 info_get_fail = 0;

 /* Get NODE RG0 information.. */
 ps.session.type = PMS_SR_CALL_RETURN_TIMED;
 ps.session.info.crt.time = 0;
 ps.payload.type = PMS_PD_NODE_RG0_INFO_GET_EXECUTE;

CODE EXAMPLE 7-6 PMS Client Node Interface (Continued)
Chapter 7 Processor Management Services 259

 if (pms_send(&ps, &pr) == 0)
 {
 if (pr.payload.data.node_rg0_info_get_status.err == \
 PMS_PD_NODE_RG0_INFO_GET_STATUS_SUCCESS)
 {
 rg0_state = pr.payload.data.node_rg0_info_get_status.state;
 }
 else
 {
 info_get_fail = 1;
 }
 }
 else
 {
 info_get_fail = 1;
 }

 /* Get any other NODE info? */

 /* Only mark NODE update as successful if all pieces of data gotten
 were received successfully.. */

 if (info_get_fail == 0)
 {
 mdi.node_info.rg0_state_cache = rg0_state;

 mdi.node_info.last_update = 0;
 }

 }
 }
 }
 }
 else
 {
 mdi.node_info.last_sync_check = 0;
 }
 }

 /* Validity Check */

 /* Process cache state validity transitions. The policy is that on a NODE cache
 transition to invalid, NODE AND RND state variables are returned to an

CODE EXAMPLE 7-6 PMS Client Node Interface (Continued)
260 Netra CT Server Software Developer’s Guide • August 2004

 initial configuration.. */

 if(mdi.node_info.last_update < HASIM_CHECK_VALID_INTERVAL)
 {
 if (mdi.node_info.cache_state != HASIM_NODE_CACHE_VALID)
 mdi.node_info.cache_state = HASIM_NODE_CACHE_VALID;
 }
 else if((mdi.node_info.last_update >= HASIM_CHECK_VALID_INTERVAL && \
 mdi.node_info.last_update < HASIM_CHECK_INVALID_INTERVAL))
 {
 if (mdi.node_info.cache_state == HASIM_NODE_CACHE_VALID)
 mdi.node_info.cache_state = HASIM_NODE_CACHE_OLD;
 }
 else if(mdi.node_info.last_update >= HASIM_CHECK_INVALID_INTERVAL)
 {
 if (mdi.node_info.cache_state == HASIM_NODE_CACHE_OLD)
 {

 /* RND */

 for(i=0;i<16;i++)
 {

 if ((mdi.rnd_info[i].receive_state & HASIM_RND_RECEIVE_REGISTERED) != 0)
 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_RND_STATUS;
 pr.payload.data.rnd_status.identifier = \
 mdi.mgmt_info.rnd_address_identifier[i];
 pms_receive(&pr, 0, 0);
 mdi.rnd_info[i].receive_state &= !HASIM_RND_RECEIVE_REGISTERED;
 }

 if ((mdi.rnd_info[i].receive_state & HASIM_RND_MD0_RECEIVE_REGISTERED)\
 != 0)
 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_RND_MD0_STATUS;
 pr.payload.data.rnd_status.identifier = \
 mdi.mgmt_info.rnd_address_identifier[i];
 pms_receive(&pr, 0, 0);
 mdi.rnd_info[i].receive_state &= !HASIM_RND_MD0_RECEIVE_REGISTERED;
 }

 }

CODE EXAMPLE 7-6 PMS Client Node Interface (Continued)
Chapter 7 Processor Management Services 261

 /* NODE*/

 if (mdi.node_info.service_state == HASIM_NODE_SERVICE_STATE_ACTIVE)
 {
 mdi.node_info.service_state = HASIM_NODE_SERVICE_STATE_OFFLINE;
 }

 if (mdi.node_info.rg0_app_name_state == \
 HASIM_NODE_RG0_APP_NAME_REGISTERED)
 {
 mdi.node_info.rg0_app_name_state = HASIM_NODE_RG0_APP_NAME_UNREGISTERED;
 }

 if ((mdi.node_info.receive_state & \
 HASIM_NODE_RG0_STATUS_RECEIVE_REGISTERED) != 0)
 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_NODE_RG0_STATUS;
 pms_receive(&pr, 0, 0);
 mdi.node_info.receive_state &= \
 !HASIM_NODE_RG0_STATUS_RECEIVE_REGISTERED;
 }

 if ((mdi.node_info.receive_state & \
 HASIM_NODE_RG0_APP_STATE_SET_EXECUTE_RECEIVE_REGISTERED) != 0)
 {
 pr.session.type = PMS_SR_CALL_RETURN_TIMED;
 pr.payload.type = PMS_PD_NODE_RG0_APP_STATE_SET_EXECUTE;
 pms_receive(&pr, 0, 0);
 mdi.node_info.receive_state &= \
 !HASIM_NODE_RG0_APP_STATE_SET_EXECUTE_RECEIVE_REGISTERED;
 }

 }
 }

}

CODE EXAMPLE 7-6 PMS Client Node Interface (Continued)
262 Netra CT Server Software Developer’s Guide • August 2004

The following example shows a PMS client RND interface.

CODE EXAMPLE 7-7 PMS Client RND Interface

void
app_hasim_rnd_process(void)
{

 struct pms_send ps;
 struct pms_receive pr;

 int info_get_fail;

 int view;
 int md0_config;

 int i;

 /* Receive Check */

 /* If RND messages are not receive registered, attempt to register for
 in-use RND address list entries if the service state is active, if
 PMS is in the available state and reachable, and if USER receive messages
 are registered. If registration is successful, force an initial cache
 update.. */

 for(i=0;i<16;i++)
 {
 if (mdi.rnd_info[i].receive_state != HASIM_RND_GROUP_RECEIVE_REGISTERED)
 {
 if (mdi.node_info.service_state == HASIM_NODE_SERVICE_STATE_ACTIVE)
 {
 if (mdi.mgmt_info.rnd_address_identifier[i] != -1)
 {
 if (mdi.mgmt_info.pms_state == HASIM_MGMT_PMS_STATE_AVAILABLE)
 {
 if (mdi.user_info.receive_state == HASIM_USER_RECEIVE_REGISTERED)
 {
 if (mdi.user_info.pms_view == HASIM_USER_PMS_VIEW_REACHABLE)
 {

 if ((mdi.rnd_info[i].receive_state & \
 HASIM_RND_RECEIVE_REGISTERED) == 0)
 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_RND_STATUS;
 pr.payload.data.rnd_status.identifier = \
Chapter 7 Processor Management Services 263

 mdi.mgmt_info.rnd_address_cache[i].identifier;
 if (pms_receive(&pr, app_hasim_receive_post, 0) != -1)
 mdi.rnd_info[i].receive_state |= HASIM_RND_RECEIVE_REGISTERED;
 }

 if ((mdi.rnd_info[i].receive_state & \
 HASIM_RND_MD0_RECEIVE_REGISTERED) == 0)
 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_RND_MD0_STATUS;
 pr.payload.data.rnd_md0_status.identifier = \
 mdi.mgmt_info.rnd_address_cache[i].identifier;
 if (pms_receive(&pr, app_hasim_receive_post, 0) != -1)
 mdi.rnd_info[i].receive_state |= \
 HASIM_RND_MD0_RECEIVE_REGISTERED;
 }

 /* Force an info_get immediately after registering.. */
 mdi.rnd_info[i].last_sync_check = HASIM_SYNCCHECK_INTERVAL;
 }
 }
 }
 }
 }
 }
 }

 /* Sync Check */

 for(i=0;i<16;i++)
 {
 /* Policy: Sync update checked every SYNCCHECK_INTERVAL seconds.. */
 if (mdi.rnd_info[i].last_sync_check > HASIM_SYNCCHECK_INTERVAL)
 {
 /* Policy: Don’t attempt a sync update if any async partial updates have
 been received within SYNCCHECK_INTERVAL.. */
 if (mdi.rnd_info[i].last_update > HASIM_SYNCCHECK_INTERVAL)
 {
 /* Policy: Don’t attempt a sync update if registration for async
 updates have not succeeded.. */
 if (mdi.rnd_info[i].receive_state == HASIM_RND_GROUP_RECEIVE_REGISTERED)
 {
 if (mdi.user_info.receive_state == HASIM_USER_RECEIVE_REGISTERED)
 {
 if (mdi.user_info.pms_view == HASIM_USER_PMS_VIEW_REACHABLE)

CODE EXAMPLE 7-7 PMS Client RND Interface (Continued)
264 Netra CT Server Software Developer’s Guide • August 2004

 {
 mdi.rnd_info[i].last_sync_check = 0;

 info_get_fail = 0;

 /* Get RND information.. */
 ps.session.type = PMS_SR_CALL_RETURN_TIMED;
 ps.session.info.crt.time = 0;
 ps.payload.type = PMS_PD_RND_INFO_GET_EXECUTE;
 ps.payload.data.rnd_info_get_execute.identifier = \
 mdi.mgmt_info.rnd_address_identifier[i];

 if (pms_send(&ps, &pr) == 0)
 {
 if (pr.payload.data.rnd_info_get_status.err == \
 PMS_PD_RND_INFO_GET_STATUS_ERR_NONE)
 {
 view = pr.payload.data.rnd_info_get_status.view;
 }
 else
 {
 info_get_fail = 1;
 }
 }
 else
 {
 info_get_fail = 1;
 }

 /* Get RND MD0 information.. */
 ps.session.type = PMS_SR_CALL_RETURN_TIMED;
 ps.session.info.crt.time = 0;
 ps.payload.type = PMS_PD_RND_MD0_INFO_GET_EXECUTE;
 ps.payload.data.rnd_md0_info_get_execute.identifier = \
 mdi.mgmt_info.rnd_address_identifier[i];

 if (pms_send(&ps, &pr) == 0)
 {
 if (pr.payload.data.rnd_md0_info_get_status.err == \
 PMS_PD_RND_MD0_INFO_GET_STATUS_ERR_NONE)
 {
 md0_config = pr.payload.data.rnd_md0_info_get_status.config;
 }
 else
 {
 info_get_fail = 1;
 }

CODE EXAMPLE 7-7 PMS Client RND Interface (Continued)
Chapter 7 Processor Management Services 265

 }
 else
 {
 info_get_fail = 1;
 }

 /* Only mark MGMT update as successful if all pieces of data
 were received successfully.. */

 if (info_get_fail == 0)
 {
 mdi.rnd_info[i].view_cache = view;

 mdi.rnd_info[i].md0_config_cache = md0_config;

 mdi.rnd_info[i].last_update = 0;
 }

 }
 }
 }
 }
 else
 {
 mdi.rnd_info[i].last_sync_check = 0;
 }
 }
 }

 /* Validity Check */

 /* Process cache state validity transitions. The policy is on a RND cache
 transition to invalid, return RND state variables for the pair to an initial
 configuration.. */

 for(i=0;i<16;i++)
 {
 if(mdi.rnd_info[i].last_update < HASIM_CHECK_VALID_INTERVAL)
 {
 if (mdi.rnd_info[i].cache_state != HASIM_RND_CACHE_VALID)
 mdi.rnd_info[i].cache_state = HASIM_RND_CACHE_VALID;
 }
 else if((mdi.rnd_info[i].last_update >= HASIM_CHECK_VALID_INTERVAL && \
 mdi.rnd_info[i].last_update < HASIM_CHECK_INVALID_INTERVAL))
 {

CODE EXAMPLE 7-7 PMS Client RND Interface (Continued)
266 Netra CT Server Software Developer’s Guide • August 2004

 if (mdi.rnd_info[i].cache_state == HASIM_RND_CACHE_VALID)
 mdi.rnd_info[i].cache_state = HASIM_RND_CACHE_OLD;
 }
 else if(mdi.rnd_info[i].last_update >= HASIM_CHECK_INVALID_INTERVAL)
 {
 if (mdi.rnd_info[i].cache_state == HASIM_RND_CACHE_OLD)
 {

 /* RND */

 if ((mdi.rnd_info[i].receive_state & HASIM_RND_RECEIVE_REGISTERED) != 0)
 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_RND_STATUS;
 pr.payload.data.rnd_status.identifier = \
 mdi.mgmt_info.rnd_address_identifier[i];
 pms_receive(&pr, 0, 0);
 mdi.rnd_info[i].receive_state &= !HASIM_RND_RECEIVE_REGISTERED;
 }

 if ((mdi.rnd_info[i].receive_state & \
 HASIM_RND_MD0_RECEIVE_REGISTERED) != 0)
 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_RND_MD0_STATUS;
 pr.payload.data.rnd_status.identifier = \
 mdi.mgmt_info.rnd_address_identifier[i];
 pms_receive(&pr, 0, 0);
 mdi.rnd_info[i].receive_state &= !HASIM_RND_MD0_RECEIVE_REGISTERED;
 }

 }
 }
 }
}

CODE EXAMPLE 7-7 PMS Client RND Interface (Continued)
Chapter 7 Processor Management Services 267

268 Netra CT Server Software Developer’s Guide • August 2004

CHAPTER 8

Solaris Operating System APIs

This chapter introduces Solaris operating system APIs of concern to the Netra CT
server, including configuration and status of the system frutree and environmental
monitoring with sensor status information. This is handled through the Platform
Information and Control Library (PICL) framework, gathering FRU-ID information,
and dynamic reconfiguration interfaces. These subjects are addressed in:

■ “Solaris Operating System PICL Framework” on page 269
■ “PICL Frutree Topology” on page 271
■ “PICL Man Page References” on page 277
■ “Dynamic Reconfiguration Interfaces” on page 279
■ “Programming Temperature Sensors Using the PICL API” on page 281
■ “Programming Watchdog Timers Using the PICL API” on page 283
■ “Displaying FRU-ID Data” on page 286
■ “MCNet Support” on page 289

Solaris Operating System PICL
Framework
PICL provides a method to publish platform-specific information for clients to access
in a way that is not specific to the platform. The Solaris PICL framework provides
information about the system configuration which it maintains in the PICL tree.
Within this PICL tree is a subtree named frutree, that represents the hierarchy of
system FRUs with respect to a root node in the tree called chassis. The frutree
represents physical resources of the system.

The main components of the PICL framework are:

■ PICL interface (libpicl.so) – Implements the generic platform-independent
interface that clients can use to access the platform-specific information.
269

■ PICL tree (libpicltree.so) – A repository of all the nodes and properties
representing the platform configuration.

■ PICL plug-in modules – Shared objects that publish platform-specific data in the
PICL tree.

■ PICL daemon (picld) – Maintains and controls access to the PICL information
from clients and from PICL plug-in modules.

FIGURE 8-1 PICL Daemon (picld) and Plug-ins

FIGURE 8-1 diagrams the PICL daemon (picld) and its connection to the PICL
plug-ins, some of which are common to all platforms. These plug-ins are responsible
for populating and maintaining the PICL tree during system boot and dynamic
reconfiguration (DR) operations. They also handle sensor events.

Application clients use libpicl(3LIB) to interface with picld to display or set
parameters using Managed Object Hierarchy (MOH), RMI, SNMP, or Solaris PICL
client interfaces. MOH uses the common operating system library (COSL) interface
to access picld, which in turn uses the libpicl interfaces.

Updates to the system frutree are done during DR operations, which are performed
using cfgadm (1M), or during fru latch and unlatch operations.

picld

PICL
interface

PICL
framework

MOH Application
clients

PICL plug-ins

COSL

DR/hotplug/sensor
 events
270 Netra CT Server Software Developer’s Guide • August 2004

The following section identifies the exported interfaces in the PICL tree which are
basically the nodes and the properties of the node that are present in the PICL tree.

PICL Frutree Topology
To read the PICL frutree data of the system, use the prtpicl(1M) command. The
structure of the PICL frutree involves a hierarchical representation of nodes. The
immediate descendants of /frutree are one or more fru nodes by the name of
chassis.

FRUs and their locations are represented by nodes of classes fru and location
respectively, in the PICL frutree under the /frutree node. The port node is an
extension of the fru class.

The three major node classes, location, fru, and port, are summarized in TABLE 8-1.
Each of these classes is populated with various properties, among which are State
and Condition. More detailed information is provided in the sections following this
summary table.

TABLE 8-1 PICL FRUtree Topology Summary

Node Class Properties Description

location SlotType Type of location.

Label Slot Label information.

GeoAddr Geographical address.

StatusTime Time when State was updated last.

Bus-addr Bus address.

State State of the location: empty, connected, disconnected, or
unknown.

fru FruType Type of FRU.

Devices Table of node handles in platform tree.

State State of the FRU: configured, unconfigured, or unknown.

StatusTime Time when State was updated last.

Condition Condition or operational state of the FRU: ok, failing, failed,
unknown, or unusable.

ConditionTime Time when Condition was updated last.
Chapter 8 Solaris Operating System APIs 271

Chassis Node Property Updates
In addition to those properties already defined by PICL, the following property is
added:

ChassisType

CHARSTRING read-only

The ChassisType read-only property represents the chassis type. The value of
ChassisType is currently defined as:

uname -i

There should be a configuration file of this name with the .conf extension in the
/usr/platform/’uname -i’/lib/picl/plugins/ directory. If none is
provided, then the frutree is not initialized.

Fru Class Properties

Where the following fru class properties are writeable, permission checks govern
that they be written to by a process with the user ID of root.

port Bus-addr Bus address of port: network, serial, or parallel.

GeoAddr Geographical address of port.

Label Label information.

PortType Type of port.

State State of the port: up, down, or unknown.

StatusTime Time when State was updated last.

Condition Condition of the port: ok, unknown, failing, or failed.

ConditionTime Time when Condition was updated last.

Devices Table of node handles in platform device tree.

TABLE 8-1 PICL FRUtree Topology Summary

Node Class Properties Description
272 Netra CT Server Software Developer’s Guide • August 2004

Fru State

CHARSTRING read-only

The State property of the fru class node represents the occupant state of the cfgadm
attachment point associated with fru node. In such a case, a read operation of this
property directs the plug-in to check the state of the occupant using libcfgadm to
determine the latest State information.

The various state values are shown in TABLE 8-2.

Fru Condition

CHARSTRING read-only

The Condition property of the fru class node represents the condition of occupant of
the cfgadm attachment point. The various condition values are shown in TABLE 8-3.
When libcfgadm interfaces are not available, a platform must provide the same
semantics using platform-specific interfaces in defining this property.

Either the FRU software such as drivers or applications, or FRU hardware, can be
responsible for providing the Condition information. This information might be
either polled for, or retrieved asynchronously via an event mechanism such as
sysevent.

TABLE 8-2 PICL FRU State Value Properties

State Property Value Description

unconfigured The FRU is not configured and unusable. See cfgadm(1M) for
details.

configured The FRU is configured and usable. See cfgadm(1M) for details.

TABLE 8-3 PICL FRU Condition Value Properties

Condition Property Value Description

unknown FRU condition could not be determined. See cfgadm(1M) for
details.

ok FRU is functioning as expected. See cfgadm(1M) for details.

failing A recoverable fault was found. See cfgadm(1M) for details.

failed An unrecoverable fault was found. See cfgadm(1M) for details.

unusable FRU is unusable for undetermined reason. See cfgadm(1M) for
details.
Chapter 8 Solaris Operating System APIs 273

Port Class Node

The connectivity between nodes in a telco network is established by a link that
provides the physical transmission medium. A port node represents a resource of a
fru that provides such a link. Examples of ports are: serial port and network port.

The port class node extends the PICL frutree definition of fru class of nodes. A port
is always a child of a fru class, even if it is the only resource of the fru. There are no
location or fru nodes beneath a port class node, because FRUs linked to the port
class node are not managed in the domain in which port class node exists. There
might be dependencies, such as when a remote device is cabled to a port node.
These dependencies can influence the state of the port, but not necessarily the FRU
itself.

The PICL frutree plug-in is responsible for identifying the port class nodes and
creating the respective nodes in the frutree.

Note – The port class node should not be associated with USB port or SCSI port.
These are locations into which a FRU can be plugged, become visible to the system
CPU, and managed by it. FRUs beyond the port class of nodes are not visible to the
CPU.

Port Class Properties

Port class properties consist of State and Condition, values of which are shown in
the following paragraphs.

State

CHARSTRING read-only

A port class node can be in one of the states shown in TABLE 8-4:

TABLE 8-4 Port Class State Values

Port State Values Description

Down A port is down when its link state is down, that is, a carrier was not
detected.

Up A port is up when its link state is up, that is, a carrier is detected.

Unknown The plug-in cannot determine the state of the port.
274 Netra CT Server Software Developer’s Guide • August 2004

The state of the port node is maintained by the frutree plug-in. The State value is
initially determined by looking at the kstat information published by the device
driver that owns the port. If the device driver information is not determined, this
value remains unknown. The parent fru of the port must set its state to configured
for the port to be anything other than unknown. See kstat(1M) for details.

Condition

CHARSTRING read-write

The Condition value of a port class node carries the same meaning as the cfgadm
value of the attachment point, as shown in TABLE 8-5.

Initial Condition values can be obtained by looking at the driver kstat information,
if present. A device driver managing a resource of the FRU can influence the overall
condition of the FRU by sending appropriate fault events. The property information
is valid only when the parent fru state is configured.

PortType

CHARSTRING read-only

This PortType property indicates the functional class of port device, as shown in
TABLE 8-6.

TABLE 8-5 Port Condition Values

Port Condition Values Description

ok Port is functioning as expected.

failing A predictive failure has been detected. This typically occurs when
the number of correctable errors exceeds a threshold.

failed Port has failed. It cannot transmit or receive data due to an internal
fault. This indicates a broken path within the FRU, and not external
to the FRU which would be denoted by its link state.

unknown Port condition could not be determined.

TABLE 8-6 PortType Property Values

PortType Values Description

network Represents a network device.

serial Represents a serial device.

parallel Represents a parallel port.
Chapter 8 Solaris Operating System APIs 275

Common Property Updates
The following properties are common to all PICL classes:

GeoAddr

UINT read-only

This property indicates the geographical address of the node in relation to its parent
node. It should be possible to point to the physical location (slot number) of the
node in its parent domain. For example, the Netra CT 810 server describes a
location’s GeoAddr under the chassis node as its physical slot number. This could
differ from the Label information printed on the chassis itself. In this instance, the
system controller slot on the Netra CT 810 system chassis is labelled as CPU,
although its GeoAddr has a value of 1. Note that the Label property might not have
the physical slot number embedded in it.

StatusTime

TIMESTAMP read-only

This property indicates when the State property was last updated. This can indicate
when a FRU was last inserted or removed, configured or unconfigured, or when the
port link went down. Status time is updated even for transitional state changes.

ConditionTime

TIMESTAMP read-only

This property indicates when the Condition property was last updated. Using this
property, for example, a System Management software can calculate how long a
fru/port has been in operation before failure.
276 Netra CT Server Software Developer’s Guide • August 2004

Temperature Sensor Node State
CHARSTRING

A temperature sensor node is in the PICL frutree under the Environment property of
the fru node.

The temperature sensors are represented as PICL_CLASS_TEMPERATURE_SENSOR
class in the PICL tree. A State property is declared for each temperature sensor node
representing the state information as shown in TABLE 8-7.

PICL Man Page References
TABLE 8-8 lists the Solaris OS man pages that document the PICL framework and
API. You can view the following man pages at the command line or on the Solaris
OS documentation web site (http://docs.sun.com/documentation).

TABLE 8-7 State Property Values for Temperature Sensor Node

State Property Values Description

ok Environment state is OK.

warning Environment state is warning, (that is, current temperature is
below/above lower/upper warning temperature).

failed Environment state is failed (that is, current temperature is
below/above lower/upper critical temperature).

unknown Environment state is unknown (that is, current temperature
cannot be determined).

TABLE 8-8 PICL Man Pages

Man Page Description

picld(1M) Describes how the daemon initializes plug-in modules at startup.
The man page also describes the PICL tree and PICL plug-in
modules.

libpicl(3LIB) Lists the library functions clients use to interface with the PICL
daemon in order to access information from the PICL tree.

libpicl(3PICL) Client API for sending requests to the PICL daemon to access the
PICL tree.
Chapter 8 Solaris Operating System APIs 277

For examples of use of these functions, see “Programming Watchdog Timers Using
the PICL API” on page 283.

picld_log(3PICLTREE) Describes the function the PICL daemon and the plug-in modules
use to log messages and inform users of any error or warning
conditions.

picl_plugin_register(3PICLTREE) Describes the function plug-in modules use to register itself with
the PICL daemon.

prtpicl(1M) Prints the PICL tree. The prtpicl command prints the PICL tree
maintained by the PICL daemon. The output of prtpicl
includes the name and PICL class of the nodes.

(3LIB) Functions

picl_initialize(3PICL) Initiates a session with the PICL daemon.

picl_get_first_prop(3PICL) Gets a property handle of a node.

picl_get_next_by_col(3PICL) Accesses a table property.

picl_get_next_by_row(3PICL) Accesses a table property.

picl_get_next_prop(3PICL) Gets a property handle of a node.

picl_get_prop_by_name(3PICL) Gets the handle of the property by name.

picl_get_propinfo(3PICL) Gets the information about a property.

picl_get_propinfo_by_name(3PICL) Gets property information and handle of a property by name.

picl_get_propval(3PICL) Gets the value of a property.

picl_get_propval_by_name(3PICL) Gets the value of a property by name.

picl_get_root(3PICL) Gets the root handle of the PICL tree.

picl_set_propval(3PICL) Sets the value of a property to the specified value.

picl_set_propval_by_name(3PICL) Sets the value of a named property to the specified value.

picl_shutdown(3PICL) Shuts down the session with the PICL daemon.

picl_strerror(3PICL) Gets error message string.

picl_wait(3PICL) Waits for PICL tree to refresh.

picl_walk_tree_by_class(3PICL) Walks subtree by class.

TABLE 8-8 PICL Man Pages (Continued)

Man Page Description
278 Netra CT Server Software Developer’s Guide • August 2004

Dynamic Reconfiguration Interfaces
The Dynamic Reconfiguration (DR) interfaces allow resources to be reconfigured
without user intervention when system resources are added or removed while the
system is running. Traditionally, applications assume that OS resources remain static
after boot. In DR situations, challenges faced by applications include the following:

■ Addition or availability of new devices. Applications might want to be notified in
order to make use of the newly added resources.

■ Removal of devices. Applications need to be notified of pending resource removal
from the system so they can either block or prepare for the pending operation.

The Solaris OS has knowledge of DR operations, but certain applications might not.
If an application is holding the resources involved in the DR operation, the operation
will fail. To be successful, applications need to be dynamically aware of the current
state of the system. The Solaris DR framework includes the Reconfiguration
Coordination Manager (RCM), cfgadm(1m), and libcfgadm (3LIB). It also includes
the PCI hotplug/cPCI Hotswap framework (cfgadm_pci(1M)), SCSI hotplug
framework (cfgadm_scsi(1M)), and the Hotswap Controller driver (cphsc(7D)).

The following sections describe:

■ “Reconfiguration Coordination Manager” on page 279
■ “Hot-Swap Support” on page 279
■ “Configuration Administration (cfgadm)” on page 280

Reconfiguration Coordination Manager
The Reconfiguration Coordination Manager (RCM) is a generic framework which
allows DR to interact with system management software. The framework enables
automated DR removal operations on platforms with proper software and hardware
configuration. RCM defines generic APIs to coordinate DR operations between DR
initiators and DR clients during resource removal. For details on RCM, go to
http://www.sun.com/documentation.

Hot-Swap Support
The Netra CT server supports the following three hot-swap models according to the
PICMG CompactPCI Hotswap specifications version 2.1 R1.0:

■ Basic hot swap
■ Full hot swap
■ High availability hot swap
Chapter 8 Solaris Operating System APIs 279

These models can be described by two terms:

■ Hardware connection process — the electrical connection (and disconnection) of
an I/O board

■ Software connection process — the software configuration (and unconfiguration)
of the I/O board by the operating system (allocating/releasing PCI resources,
attaching/detaching device drivers, and so on.)

In the basic hot-swap model, the hardware connection process can be performed
automatically by the hardware, while the software connection process requires
operator assistance.

In the full hot-swap model, both the hardware and the software connection
processes are performed automatically. The Netra CT server is configured for full hot
swap by default. The mode of a slot can be reconfigured to basic hot swap using the
cfgadm command in cases where a third-party board does not support full hot
swap.

In the high-availability model, software has the capability of controlling the
power-on of the FRU hardware, beyond the hardware and software connection
processes. Drivers and services can isolate a board from the system until an operator
is able to intervene.

The Netra CT server uses the cfgadm(1M) utility for administering the hot-swap
process. This includes connecting and disconnecting, configuring and unconfiguring
the hardware and software, and setting various operation modes. Elements of the b

utility are described in the next section.

On the Netra CT server, CPU card, CPU transition card, and I/O board hot
swapping is supported. It should be noted that non-hotswap friendly devices can be
supported only in basic hot-swap mode. See the Netra CT Server Service Manual
(816-2482) for list of hot-swappable FRUs.

Configuration changes are handled in a coherent way, because DR and the Frutree
management framework are integrated in PICL. PICL frutree properties and cfgadm
attachment point elements are mapped one-to-one, which creates data consistency.
All DR operations are coordinated with a service processor.

Configuration Administration (cfgadm)
Configuration administration of a dynamically reconfigurable system is carried out
through cfgadm(1M), which can display status, invoke configuration state changes,
and invoke hardware specific functions. See the Netra CT System Administration Guide
(816-2486) for more information on the cfgadm utility.

The libcfgadm(3LIB) command can be used to display a library of configuration
interfaces.
280 Netra CT Server Software Developer’s Guide • August 2004

Use cfgadm to perform a connect operation on a cPCI FRU, for example:

■ To power on a FRU
■ To check for HEALTHY#
■ To bring a FRU out of PCI_RST#

Use cfgadm to perform a disconnect operation on a cPCI FRU, for example:

■ To notify applications (via RCM)
■ To assert PCI_RST#
■ To power OFF a FRU

Programming Temperature Sensors
Using the PICL API
Temperature sensor states can be read using the libpicl API. The properties that
are supported in a PICL temperature sensor class node are listed in TABLE 8-9.

The PICL plug-in receives these sensor events and updates the State property based
on the information extracted from the IPMI message. It then posts a PICL event.

The threshold levels of the PICL node class temperature-sensor are:

■ Warning
■ Shutdown
■ PowerOff

cfgadm -c connect operation

cfgadm -c disconnect operation

TABLE 8-9 PICL Temperature Sensor Class Node Properties

Property Type Description

LowWarningThreshold INT Low threshold for warning

LowShutdownThreshold INT Low threshold for shutdown

LowPowerOffThreshold INT Low threshold for power off

HighWarningThreshold INT High threshold for warning

HighShutdownThreshold INT High threshold for shutdown

HighPowerOffThreshold INT High threshold for power off
Chapter 8 Solaris Operating System APIs 281

TABLE 8-10 lists the PICL threshold levels and their MOH equivalents.

To obtain a reading of temperature sensor states, type the prtpicl -v command:

PICL output of the temperature sensors on a Netra CT system is shown in
CODE EXAMPLE 8-1.

Note – PICL clients can use the libpicl APIs to set and get various properties of
this sensor.

TABLE 8-10 PICL Threshold Levels and MOH Equivalents

PICL Threshold levels MOH Equivalent

LowWarningThreshold LowerThresholdNonCritical

LowShutdownThreshold LowerThresholdCritical

LowPowerOffThreshold LowerThresholdFatal

HighWarningThreshold UpperThresholdNonCritical

HighShutdownThreshold UpperThresholdCritical

HighPowerOffThreshold UpperThresholdFatal

prtpicl -c temperature-sensor -v

CODE EXAMPLE 8-1 Example Output of PICL Temperature Sensors

prtpicl -c temperature-sensor -v
 CPU-sensor (temperature-sensor, 3700000634)
 :State ok
 :HighWarningThreshold 60
 :HighShutdownThreshold 65
 :HighPowerOffThreshold 70
 :LowWarningThreshold 3
 :LowShutdownThreshold 0
 :LowPowerOffThreshold 0
 :Temperature 30
 :GeoAddr 0x2
 :Label Ambient
 :_class temperature-sensor
 :name CPU-sensor
282 Netra CT Server Software Developer’s Guide • August 2004

Programming Watchdog Timers Using
the PICL API
The Netra CT system’s watchdog service captures catastrophic faults in the Solaris
OS running on either a host or satellite CPU board. The watchdog service reports
such faults to the alarm card by means of either an IPMI message or by a de-
assertion of the CPU’s HEALTHY# signal.

The Netra CT system management controller provides two watchdog timers, the
watchdog level 2 (WD2) timer and the watchdog level 1 (WD1) timer. Systems
management software starts and the Solaris OS periodically pats the timers before
they expire. If the WD2 timer expires, the watchdog function of the WD2 timer
forces the SPARC™ processor to optionally reset. The maximum range for WD2 is
255 seconds.

The WD1 timer is typically set to a shorter interval than the WD2 timer. User
applications can examine the expiration status of the WD1 timer to get advance
warning if the main timer, WD2, is about to expire. The system management
software has to start WD1 before it can start WD2. If WD1 expires, then WD2 starts
only if enabled. The maximum range for WD1 is 6553.5 seconds.

The watchdog subsystem is managed by a PICL plug-in module. This PICL plug-in
module provides a set of PICL properties to the system, which enables a Solaris
PICL client to specify the attributes of the watchdog system.

To use the PICL API to set the watchdog properties, your application must adhere to
the following sequence:

1. Before setting the watchdog timer, use the PMS API to disable the primary
HEALTHY# signal monitoring for the CPU board on which the watchdog timer is
to be changed.

To do this, switch to the alarm card CLI and use the command pmsd infoshow,
specifying the slot number. The output will indicate whether the card is in
MAINTENANCE mode or OPERATIONAL mode.

pmsd infoshow -s slot_number
 config=<MAINTENANCE|OPERATIONAL>
 ALARM_STATE=NONE
Chapter 8 Solaris Operating System APIs 283

If the card is in OPERATIONAL mode, switch it into MAINTENANCE mode by
issuing the following command:

This disables the primary HEALTHY# signal monitoring of the board in the
specified slot.

2. In your application, use the PICL API to disarm, set, and arm the active watchdog
timer.

Refer to the picld(1M), libpicl(3LIB), and libpicl(3PICL) man pages for a
complete description of the PICL architecture and programming interface.
Develop your application using the PICL programming interface to do the
following:

■ Disarm the active watchdog timer.

■ Change the watchdog timer PICL properties to the required values.

■ Re-arm the watchdog timer. The properties of watchdog-controller and
watchdog-timer are defined in TABLE 8-11, TABLE 8-12, and TABLE 8-13.

3. Use the PMS API to enable the primary HEALTHY# signal monitoring on the
CPU card in the specified slot.

From the alarm card CLI, switch the card back to operational mode by issuing the
following command:

HEALTHY# monitoring will be enabled again on the card in the slot that you
specified.

Refer to Chapter 7 for information on Processor Management Services (PMS).

PICL interfaces for the watchdog plug-in module (see TABLE 8-11) include the nodes
watchdog-controller and watchdog-timer.

pmsd operset -s slot_number -o MAINT_CONFIG

pmsd operset -s slot_number -o OPER_CONFIG

TABLE 8-11 Watchdog Plug-in Interfaces for Netra CT 810 and 410 Server Software

PICL Class Property Meaning

watchdog-
controller

WdOp Represents a watchdog subsystem.
284 Netra CT Server Software Developer’s Guide • August 2004

watchdog-timer State Represents a watchdog timer hardware that belongs to its
controller. Each timer depends on the status of its peers to
be activated or deactivated.

WdTimeout Timeout for the watchdog timer

WdAction Action to be taken after the watchdog expires.

TABLE 8-12 Properties Under watchdog-controller Node

Property Operations Description

WdOp arm Activates all timers under the controller with values already set for
WdTimeout and WdAction.

disarm All active timers under the controller will be stopped.

TABLE 8-13 Properties Under watchdog-timer Node

Property Values Description

State armed Indicates timer is armed or running. Cleared by disarm.

expired Indicates timer has expired. Cleared by disarm.

disarmed Default value set at boot time. Indicates timer is disarmed or
stopped.

WdTimeout*

* A platform might not support a specified timeout resolution. For example Netra CT systems only take -1, 0, and 100 6553500 ms in
increments of 100 msec. (Level 1), and -1 -255 seconds (Level 2).

Varies by system
and timer level

Indicates the timer initial countdown value. Should be set prior
to arming the timer.

WdAction†

† A specific timer node might not support all action types. For example Netra CT watchdog level 1 timer supports only “none” and
“alarm” actions. Watchdog level 2 timer supports only “none” and “reset”

none Default value. No action is taken.

alarm Send notifications to system alarm hardware by means of
HEALTHY#.

reset Perform a soft or hard reset the system (implementation
specific).

reboot Reboot the system.

TABLE 8-11 Watchdog Plug-in Interfaces for Netra CT 810 and 410 Server Software

PICL Class Property Meaning
Chapter 8 Solaris Operating System APIs 285

To identify current settings of watchdog-controller, issue the command prtpicl -v
as shown in CODE EXAMPLE 8-2.

Displaying FRU-ID Data
Sun FRU-ID is the container for presenting the FRU-ID data. If the Sun FRU-ID
container is not present, the FRU-ID Access plug-in looks for the IPMI FRU-ID
container of cPCI FRUs. It then converts FRU-ID data from IPMI format to Sun
FRU-ID format and presents the result in Sun FRU-ID ManR (manufacturer record)
format.

The command prtfru(1M) displays FRU data of all FRUs in the PICL frutree. When
prtfru is run on the host CPU, FRU data is displayed for the host CPU and the
satellite CPUs.) CODE EXAMPLE 8-3 shows an example of the output of the prtfru
command.

CODE EXAMPLE 8-2 Example of watchdog-controller

prtpicl -v
 <snip>
 watchdog-controller1 (watchdog-controller,3600000729)
 :wd-op disarm
 :_class watchdog-controller
 :name watchdog-controller1
 watchdog-level1 (watchdog-timer, 360000073f)
 :WdAction alarm
 :WdTimeout 0x1f4
 :State armed
 :_class watchdog-timer
 :name watchdog-level1
 watchdog-level2 (watchdog-timer, 3600000742)
 :WdAction none
 :WdTimeout 0xffff
 :State disarmed
 :_class watchdog-timer
 :name watchdog-level2

CODE EXAMPLE 8-3 Sample Output of prtfru Command

prtfru
/frutree
/frutree/chassis (fru)
/frutree/chassis/CPU?Label=CPU 1
286 Netra CT Server Software Developer’s Guide • August 2004

/frutree/chassis/CPU?Label=CPU 1/CPU (container)
 SEGMENT: FD
 /ECO_CurrentR
 /ECO_CurrentR/UNIX_Timestamp32: Wed Dec 31 16:00:00 PST 1969
 /ECO_CurrentR/Firmware_Revision: 00000000
 /ECO_CurrentR/Hardware_Revision: 00
 /ECO_CurrentR/HW_Dash_Level: 00
 /CPUFirmwareR
 /CPUFirmwareR/UNIX_Timestamp32: Wed Dec 31 16:00:00 PST 1969
 /CPUFirmwareR/CPU_FW_Part_No: 5251979
 /CPUFirmwareR/CPU_FW_Dash_Level: 05
 /Drawer_InfoR
 /Drawer_InfoR/UNIX_Timestamp32: Wed Dec 31 16:00:00 PST 1969
 /Drawer_InfoR/Drawer_Id: 000000
 /Drawer_InfoR/Drawer_Type: 0000000000000000
 /Drawer_InfoR/Access_Model: 0000000000000000
 /Drawer_InfoR/Slot_Mode: 0000000000000000
 /Drawer_InfoR/Reserved_Data:
00
0000000000000000000000000
0000000000000000000000000
 /Customer_DataR
 /Customer_DataR/UNIX_Timestamp32: Wed Dec 31 16:00:00 PST 1969
 /Customer_DataR/Cust_Data: Customer Data
 SEGMENT: SD
 /ManR
 /ManR/UNIX_Timestamp32: Thu Jul 11 17:00:00 PDT 2002
 /ManR/Fru_Description: ASSY,CPCI,CP2140,OTHELLO+
 /ManR/Manufacture_Loc: Pleasanton
 /ManR/Sun_Part_No: 5016358
 /ManR/Sun_Serial_No: 999999
 /ManR/Vendor_Name: Hal Computers
 /ManR/Initial_HW_Dash_Level: 08
 /ManR/Initial_HW_Rev_Level: 99
 /ManR/Fru_Shortname: CPU
 /SpecPartNo: XXX-0071-05
/frutree/chassis/CPU?Label=CPU 1/CPU/PMC-1?Label=PMC
/frutree/chassis/AL-8?Label=AL 8
/frutree/chassis/AL-8?Label=AL 8/AL-8 (container)
 SEGMENT: FD
/ECO_CurrentR
 /ECO_CurrentR/UNIX_Timestamp32: Wed Dec 31 16:00:00 PST 1969
 /ECO_CurrentR/Firmware_Revision: 00000000
 /ECO_CurrentR/Hardware_Revision: 00
 /ECO_CurrentR/HW_Dash_Level: 00
 /Netra_ACFirmwareR
 /Netra_ACFirmwareR/UNIX_Timestamp32: Wed Dec 31 16:00:00 PST 1969

CODE EXAMPLE 8-3 Sample Output of prtfru Command (Continued)
Chapter 8 Solaris Operating System APIs 287

 /Netra_ACFirmwareR/BCFW_Part_No: 5251971
 /Netra_ACFirmwareR/BCFW_Dash_Level: 05
 /Netra_ACFirmwareR/CMSW_Part_No: 5251972
 /Netra_ACFirmwareR/CMSW_Dash_Level: 05
 /Netra_ACFirmwareR/BMCFW_Part_No: 5251965
 /Netra_ACFirmwareR/BMCFW_Dash_Level: 03
 /Customer_DataR
 /Customer_DataR/UNIX_Timestamp32: Wed Dec 31 16:00:00 PST 1969
 /Customer_DataR/Cust_Data: Customer Data
 SEGMENT: SD
 /SpecPartNo: XXX-0015-05
 /ManR
 /ManR/UNIX_Timestamp32: Thu Jul 11 17:00:00 PDT 2002
 /ManR/Fru_Description: - ASSY,MAC,MAKA8
/ManR/Manufacture_Loc: Pleasanton CA
 /ManR/Sun_Part_No: 5016171
 /ManR/Sun_Serial_No: 999999
 /ManR/Vendor_Name: Hal Computers
 /ManR/Initial_HW_Dash_Level: 05
 /ManR/Initial_HW_Rev_Level: 99
 /ManR/Fru_Shortname: AlarmCard
/frutree/chassis/IO-2?Label=I.O 2
/frutree/chassis/IO-2?Label=I.O 2/IO-2 (container)
 SEGMENT: FD
 SEGMENT: SD
 /ManR
 /ManR/UNIX_Timestamp32: Thu Dec 5 06:19:32 PST 2002
 /ManR/Fru_Description: ASSY,MB,650MHZ,1GB,SPUTNIK+
 /ManR/Manufacture_Loc: MITAC TAIWAN
 /ManR/Sun_Part_No: 3753129
 /ManR/Sun_Serial_No: 000355
 /ManR/Vendor_Name: Mitac International
 /ManR/Initial_HW_Dash_Level: 02
 /ManR/Initial_HW_Rev_Level: 01
 /ManR/Fru_Shortname: CPU
 /SpecPartNo: 885-0111-02
/frutree/chassis/IO-3?Label=I.O 3
/frutree/chassis/IO-3?Label=I.O 3/IO-3 (container)
 SEGMENT: FD
 SEGMENT: SD
 /ManR
 /ManR/UNIX_Timestamp32: Thu Dec 5 05:25:03 PST 2002
 /ManR/Fru_Description: ASSY,MB,650MHZ,1GB,SPUTNIK+
 /ManR/Manufacture_Loc: MITAC TAIWAN
 /ManR/Sun_Part_No: 3753129
 /ManR/Sun_Serial_No: 000245
 /ManR/Vendor_Name: Mitac International

CODE EXAMPLE 8-3 Sample Output of prtfru Command (Continued)
288 Netra CT Server Software Developer’s Guide • August 2004

MCNet Support
Communication between CPUs is enabled by MCNet (mcn(7D)), which presents an
Ethernet-like interface over the cPCI bus in accordance with PICMG 2.14. The
interface is configured automatically during system boot, and supports all existing
network tools, such as ifconfig(1M), netstat(1M) and so forth. The CPUs must
be MCNet-capable in order to communicate with each another.

 /ManR/Initial_HW_Dash_Level: 02
 /ManR/Initial_HW_Rev_Level: 01
 /ManR/Fru_Shortname: CPU
 /SpecPartNo: 885-0111-02
/frutree/chassis/IO-4?Label=I.O 4
/frutree/chassis/IO-4?Label=I.O 4/IO-4 (fru)
/frutree/chassis/IO-5?Label=I.O 5
/frutree/chassis/IO-6?Label=I.O 6
/frutree/chassis/IO-7?Label=I.O 7
/frutree/chassis/RTM?Label=RTM
/frutree/chassis/c0::dsk.c0t5d0?Label=RMM
/frutree/chassis/c1::dsk.c1t1d0?Label=HDD 1
/frutree/chassis/c1::dsk.c1t1d0?Label=HDD 1/c1::dsk.c1t1d0 (fru)
/frutree/chassis/c0::dsk.c0t0d0?Label=HDD 0
/frutree/chassis/c0::dsk.c0t0d0?Label=HDD 0/c0::dsk.c0t0d0 (fru)

CODE EXAMPLE 8-3 Sample Output of prtfru Command (Continued)
Chapter 8 Solaris Operating System APIs 289

290 Netra CT Server Software Developer’s Guide • August 2004

Glossary

A
AC Alarm card. The alarm card is used in the Netra 810 and Netra CT 410

servers to provide system control functions. The alarm card resides in slot
8 in the Netra CT 810 server and in slot 1 in the Netra 410 server.

ACL Access control list; a file that details which SNMP management applications
can access information maintained by the MOH. The file also lists which hosts
can receive SNMP traps or events.

Alarm Severity
Profile A managed entity that contains the severity assignments for the reported

alarms.

ASN1 Abstract notation one. The notation used in a text file for a MIB.The
variables containing the information that SNMP can access are described
in this file.

Attribute Value Change
Record A managed entity used to represent logged information resulting from

attribute value change notifications. Instances of this managed entity are
created automatically by the network entity (NE), and deleted by the NE
or by request of the managing system.
291

C
CGTP Carrier Grade Transport Protocol. CGTP network interfaces send and receive

packets on redundant networks. These software devices use CGTP protocol.
See the ifcgtp(7) man page, which details the general properties of the
network interfaces.

CLI Command-line interface. The primary user interface to the alarm card.

cPCI Compact PCI.

E
EFDMBean Event Forwarding Discriminator. A managed entity used as a notification

forwarder discriminator. At startup it registers itself as a listener to all the
broadcaster MBeans registered with the MBeanServer, then listens for
MBeanServer creation notifications to register with newly created MBeans.

Equipment A managed entity used to represent the various externally manageable
physical components of the network entity (NE) that are not modeled
using the Plug-in Unit or Equipment Holder managed entities.

Equipment Holder A managed entity representing physical resources of the NE that are capable of
holding other physical resources. An instance of this managed entity exists for
each rack, shelf, drawer, and slot of the NE.

F

Full Log A managed entity used to group multiple instances of the Managed Entity
Creation Log Record, Managed Entity Deletion Log Record, State Change
Log Record, Attribute Value Change Log Record, and/or Alarm Record
managed entities to form a log. This managed entity contains information
that, among other things, allows the management system to control the
behavior of the log.
292 Netra CT Server Software Developer’s Guide • August 2004

G
GPIO General purpose I/O.

H
Host Host CPU board. In the Netra CT 810 server, the host CPU board resides in slot

1. In the Netra CT 410, the host CPU board resides in slot 3.

I
IM Information model

IPMI Intelligent Platform Management Interface, used as a communication channel
over the cPCI backplane in the Netra CT server.

L
Latest Occurrence

Log A managed entity used to group multiple log records to form a latest
occurrence log. If no other log record contained in the Latest Occurrence
Log instance has values of the attributes identified by the Key Attribute
List attribute equal to the attribute values of the log record to be added,
the log record is created and contained in the Latest Occurrence Log.

M
MCNet A communication channel running over the CompactPCI backplane. It can be

used to communicate between the alarm card, the host CPU board, and any
satellite boards.
Glossary 293

MIB Managed information base used to describe the exchange of information across
the network element (NE) interface. A MIB is loadable, but can reference other
MIBs.

module Software modules are part of a program that are not combined with other parts
until the program is linked. Modules do not have to be changed when a new
type of object is added.

MOH Managed Object Hierarchy. An application that monitors the field replaceable
units in the system. MOH runs on the alarm card, the host CPU, and any
satellite CPUs.

N
NE Network Element Managed Entity. A component of the MIB. An instance of

this managed entity is automatically created upon initialization

NFS Network File System.

NIS Network Information System.

P
Physical Path

Termination Point See Termination Point MBean.

PICL Platform Information Configuration Library. A Solaris OS library that provides
a method used to publish platform-specific information for clients to access
in a way that is not specific to the platform.

Plug-in Unit A managed entity used to represent equipment that is inserted (plugged
into) and removed from slots of the NE.

PMS Processor Management Service. Manages processor elements used by client
applications to implement high availability.

POSIX IEEE version of UNIX first published in 1968. The latest version now merges
with The Open Group’s Specification which comprise the core of the Single
UNIX Specification.
294 Netra CT Server Software Developer’s Guide • August 2004

R
RCM Reconfiguration Coordination Manager. Part of the Solaris OS’s dynamic

reconfiguration (DR) framework that enables automated DR removal
operations on platforms with appropriate software and hardware
configuration.

RDHCP Reliable Dynamic Host Configuration Protocol.

RMI Remote Method Invocation. Java RMI is a mechanism that allows one to invoke
a method on an object that exists in another address space.

RNFS Reliable Network File System.

S
SAT Satellite. An auxiliary CPU board that occupies a designated cPCI slot on the

Netra CT system, which might, under certain conditions, operate
independently.

SNMP Simple Network Management Protocol. A protocol that allows devices to be
controlled remotely by a network management station.

SMI Structure of Management Information. A definition that describes the syntax
and basic data types available in a given MIB.

Software MBean A managed entity representing logical information stored in equipment,
including programs and data tables. Instances of this managed entity are
created by the NE to report to the management system, the currently
installed software in the related entity (that is, NE, equipment or Plug-In
Unit).

State Change Record A managed entity used to represent logged information resulting from state
change notifications. Instances of this managed entity are created
automatically by the NE, and deleted by the NE or by request of the
managing system.

T
TFTP Trivial File Transfer Protocol.
Glossary 295

Termination Point
MBean A managed entity used to represent the points in the NE where physical

paths terminate (such as ports), and physical path level functions (for
example, path overhead functions) are performed.

Topology Change
Notification An abstract class representing generic notifications for a change in the

topology of a network entity.
296 Netra CT Server Software Developer’s Guide • August 2004

Index
A
access rights, 181
addAttribute(String)

of LOLMBean, 90
addressable objects, 181
AdministrativeState

of com.sun.ctmgx.moh, 136
agent

connecting client, 35
netract, 32

alarm card view of system, 12 to 13
alarm card, indicating mode, 283
Alarm Forwarding Discriminator, 191
alarm pins, 43
Alarm Severity Trap, 194
AlarmNotification of

 com.sun.ctmgx.moh, 138
AlarmNotification of

com.sun.ctmgx.moh.AlarmNotification,
 139

AlarmNotification, example, 39
AlarmNotificationFilter of

com.sun.ctmgx.moh, 142
AlarmNotificationFilter() of

AlarmNotificationFilter, 143
alarms

assign to objects, example, 44
clearing, 46
fan failure of AlarmType, 149
fuse failure of AlarmType, 149
high memory usage of AlarmType, 149

high temperature example, 40
high temperature of AlarmType, 149
set with SNMP, 200
setting, 44
temperature threshold, 104

AlarmSeverity of com.sun.ctmgx.moh, 145
AlarmSeverityProfile, example, 40
AlarmSeverityProfileMBean, 57
alarmType of AlarmNotification, 139
AlarmType of com.sun.ctmgx.moh, 148
assign alarm profile to object, 44
ATTRIBUTE_CHANGE

of AttributeChangeNotification, 151
AttributeChangeNotification of

com.sun.ctmgx.moh, 150
AttributeChangeNotification() of

AttributeChangeNotification, 152
AttributeChangeNotificationFilter of

com.sun.ctmgx.moh, 153
attributeName of AttributeChangeNotification, 152
attributeName of StateChangeNotification, 176
attributeType of AttributeChangeNotification, 152
attributeType of StateChangeNotification, 176
audience, xvii
AvailabilityStatus of

com.sun.ctmgx.moh, 156
AVAILABLE of AvailabilityStatus, 157

B
Backed Up Alarm Trap, 194
backedUpStatus of AlarmNotification, 140
 297

backUpObject, 140
beginning an application, 31
board resource management, 211
Bold>AlarmCardPluginMBean, 56
Bold>IpServiceMBean, 86
Bold>LOLMBean, 88
Bold>TcpServiceMBean, 127

C
cfgadm, 280
CgtpServiceMBean, 58
change locationName, 198
ChassisType, PICL, 272
child of ObjectCreationNotification, 167
child of ObjectDeletionNotification, 169
CLASS_NAME_ASP of

com.sun.ctmgx.moh.MohNames, 163
CLASS_NAME_EFD of

com.sun.ctmgx.moh.MohNames, 163
CLASS_NAME_SOFTWAREMONITOR of

com.sun.ctmgx.moh.MohNames, 164
CLEARED of

com.sun.ctmgx.moh.AlarmSeverity, 146
Command Line Interface, example, 283
community strings, 181
ConditionTime, PICL, 276
configuration administration, 280
connecting an agent with a client, example, 35
ContainmentTreeMBean, 60
ContainmentTreeMBean, example, 36
CpciSlotMBean, 65
CPU cards, managing, 212
CpuCardEquipmentMBean, 67
CpuPluginMBean, 70
CRITICAL of

com.sun.ctmgx.moh.AlarmSeverity, 147
CRITICAL_LOWER

of NumericSensorMBean, 106
CRITICAL_UPPER of NumericSensorMBean, 106
CT_FILTER_EQUIPMENT, 61
CT_FILTER_HOLDER, 62
CT_FILTER_NE, 62
CT_FILTER_PLUGIN_UNIT, 62
CT_FILTER_TERMINATION_POINT, 62

D
DaemonMBean, 71
define state of MOH object, 136
deleteAllRecords()

of FullLogMBean, 82
of LOLMBean, 90

deleteRecords(int, int)
of FullLogMBean, 82
of LOLMBean, 90

DEPENDENCY of AvailabilityStatus, 157
DESCR_ALARM of

com.sun.ctmgx.moh.MohNames, 164
DESCR_ATTRIBUTE_CHANGE of

com.sun.ctmgx.moh.MohNames, 164
DESCR_OBJECT_CREATION of

com.sun.ctmgx.moh.MohNames, 164
DESCR_OBJECT_DELETION of

com.sun.ctmgx.moh.MohNames, 164
DESCR_STATE_CHANGE of

com.sun.ctmgx.moh.MohNames, 164
determining system configuration hierarchy,

example, 35
disableAlarmType(AlarmType) of

AlarmNotificationFilter, 143
disableAllAlarmTypes() of

AlarmNotificationFilter, 143
disableAllSeverities() of

AlarmNotificationFilter, 143
DISABLED of OperationalState, 171
disableSeverity(AlarmSeverity) of

AlarmNotificationFilter, 144
documentation, related, xix
DR see dynamic reconfiguration
DRAWER EquipmentHolderType, 160
drawer, definition of, 214
drivers

MCNet, 5
driving alarm output, 43
dynamic reconfiguration, 279

E
EFDMBean, 72
element management agent, 32
EMPTY of

com.sun.ctmgx.moh.SlotStatus, 173
298 Netra CT Server Software Developer’s Guide • August 2004

enableAlarmType(AlarmType) of
AlarmNotificationFilter, 144

enableAllAlarmTypes() of
AlarmNotificationFilter, 144

ENABLED of OperationalState, 171
enableSeverity(AlarmSeverity) of

AlarmNotificationFilter, 144
ENTITY-MIB, 182
entPhysicalClass, 182
entPhysicalContainedIn, 182
entPhysicalDescr, example, 198
entPhysicalIndex, 182
entPhysicalTable, 182
environment, 1
equals(Object)

AvailabilityStatus, 158
of AdministrativeState, 137
of AlarmSeverity, 147
of AlarmType, 149
of EquipmentHolderType, 160
of OperationalState, 172
of SlotStatus, 173

EquipmentHolderMBean, 73
EquipmentHolderType of

com.sun.ctmgx.moh, 159
EquipmentMBean, 74
ETHER_STATS_SERVICE_OBJ of

SoftwareMonitorMBean, 122
EtherIfStatsMBean, 78
example

AlarmNotification, 39
AlarmSeverityProfile, 40
connecting client with agent, 35
daemonList, 48
finding the root MBean, 36
getting nodes on tree, 37
initializing PMS client, 216
message handling, PMS client, 225
monitoring software events, 46
NotificationListener, 38
PMS client node interface, 256
PMS client RND interface, 263
PMS client scheduling, 238
setting alarm severity with SNMP, 201
setting alarms, 44
setting watchdog timer, 283

SNMP midplane object index, 198
system configuration hierarchy, 35

F
FAILED of AvailabilityStatus, 157
failedSwitchComponentList, 140
fan failure, alarm, 149
FAN_FAILURE of

com.sun.ctmgx.moh.AlarmType, 149
FATAL_LOWER of NumericSensorMBean, 106
FATAL_UPPER of NumericSensorMBean, 107
Filter

AlarmNotification, 142
AttributeChangeNotification, 154
Equipment, 61
StateChangeNotification, 177
Threshold, 58

finding the root MBean, example, 36
front-access diskfull system view, 27
front-access diskless system view, 22, 26
fru class, PICL, 272
fru condition, PICL, 273
fru state, PICL, 273
FRU-ID, changing, 198
frutree topology, PICL, 271
FULL of com.sun.ctmgx.moh.SlotStatus, 173
FullLogMBean, 80
fuse failure, alarm, 149
FUSE_FAILURE of

com.sun.ctmgx.moh.AlarmType, 149

G
GeoAddr, PICL, 276
getAcceptablePlugInUnitTypes() of

SlotMBean, 119
getAdministrativeState()

of FullLogMBean, 82
of LOLMBean, 91

getAdministrativeState() of EquipmentMBean, 75
getAdministrativeState() of

PlugInUnitMBean, 111
getAdministrativeState() of

TerminationPointMBean, 130
getAlarmSeverity(AlarmType), 57
getAlarmSeverityList(), 57
Index 299

getAlarmSeverityProfilePointer() of
TerminationPointMBean, 131

getAlarmSeverityProfilePointer() of
EquipmentMBean, 76

getAlarmSeverityProfilePointer() of NEMBean, 96
getAlarmSeverityProfilePointer() of

NetworkInterfaceMBean, 99
getAlarmSeverityProfilePointer() of

PlugInUnitMBean, 111
getAlarmType() of AlarmNotification, 140
getAllRecords()

of FullLogMBean, 83
of LOLMBean, 91

getAncestors(), 62
getAncestors(ObjectName), 62
getAvailabilityStatus() of PlugInUnitMBean, 112
getBackedUpStatus() of

com.sun.ctmgx.moh.AlarmNotification,
 140

getBackUpObject() of
com.sun.ctmgx.moh.AlarmNotification,
 140

getBaseUnits() of NumericSensorMBean, 107
getCapacity()

of FullLogMBean, 83
of LOLMBean, 91

getChildMBeanName()
of ObjectCreationNotification, 167
of ObjectDeletionNotification, 170

getChildren(), 63
getChildren(ObjectName, String), 63
getClearAlarmTimeOut() of

CpuCardEquipmentMBean, 68
getClientMaxThreshHold() of

>NfsServiceMBean, 102
getClientThreshHold() of NfsServiceMBean, 103
getCurrentFilterThreshold(), 58
getCurrentOutRstsThreshold() of

TcpServiceMBean, 128
getCurrentRetryCount() of

com.sun.ctmgx.moh.DaemonMBean, 71
getCurrentRetryCount() of

com.sun.ctmgx.moh.DaemonMbean, 72
getCurrentState() of SensorMBean, 117
getDescendants(ObjectName), 63

getDescription() of NEMBean, 96
getEnabledAlarmTypes() of

AlarmNotificationFilter, 144
getEnabledSeverities() of

AlarmNotificationFilter, 145
getEnabledThresholds() of

NumericSensorMBean, 107
getEquipmentHolderAddress() of

EquipmentHolderMBean, 73
getEquipmentHolderLabel() of

EquipmentHolderMBean, 73
getEquipmentHolderType() of

EquipmentHolderMBean, 74
getEquipmentType() of EquipmentMBean, 76
getExcessiveThreshHoldFileSystemList() of

UfsServiceMBean, 135
getExternalTime() of NEMBean, 96
getFailedSwitchComponentList() of

com.sun.ctmgx.moh.AlarmNotification,
 141

getFileSystemMaxThreshHold() of
UfsServiceMBean, 135

getFilter()
of FullLogMBean, 83
of LOLMBean, 91

getFilterMaxThreshold(), 58
getKeyAttributeList()

of LOLMBean, 92
getLocationName() of EquipmentMBean, 76
getLocationName() of NEMBean, 96
getLogFullAction()

of FullLogMBean, 83
of LOLMBean, 92

getLogRecordTypes()
of FullLogMBean, 83
of LOLMBean, 92

getLowerThresholdCritical(), 107
getLowerThresholdFatal(), 108
getLowerThresholdNonCritical() of

NumericSensorMBean, 108
getMaxInErrorThreshold() of

TcpServiceMBean, 129
getMaxInErrorThreshold() of

UdpServiceMBean, 134
getMaxInHdrErrorThreshold() of

IpServiceMBean, 87
300 Netra CT Server Software Developer’s Guide • August 2004

getMaxOutRstsThreshold() of
TcpServiceMBean, 129

getMaxRetryCount() of
com.sun.ctmgx.moh.DaemonMBean, 72

getMaxSyncThreshold() of
RnfsServiceMBean, 115

getMaxThreshhold() of EtherIfStatsMBean, 79
getMountFailureList() of NfsServiceMBean, 103
getMtu() of NetworkInterfaceMBean, 100
getName() of

com.sun.ctmgx.moh.DaemonMBean, 71
getName() of NetworkInterfaceMBean, 100
getName() of SoftwareServiceMBean, 125
getNumExcessiveIntervals() of

SoftwareServiceMBean, 126
getOperationalState()

of FullLogMBean, 84
of LOLMBean, 92

getOperationalState() of EquipmentMBean, 76
getOperationalState() of NEMBean, 97
getOperationalState() of

NetworkInterfaceMBean, 100
getOperationalState() of PlugInUnitMBean, 112
getOperationalState() of

TerminationPointMBean, 131
getParent(ObjectName), 64
getParentMBeanName()

of ObjectCreationNotification, 167
of ObjectDeletionNotification, 170

getPerceivedSeverity() of
com.sun.ctmgx.moh.AlarmNotification,
 141

getPermanentAddress() of
NetworkInterfaceMBean, 100

getPhysicalPathType() of
TerminationPointMBean, 131

getPlugInUnitLabel() of PlugInUnitMBean, 112
getPlugInUnitType() of PlugInUnitMBean, 113
getPollingInterval() of

SoftwareServiceMBean, 126
getPortID() of TerminationPointMBean, 132
getPortLabel() of TerminationPointMBean, 132
getPossibleStates() of SensorMBean, 117

getProposedRepairActions() of
com.sun.ctmgx.moh.AlarmNotification,
 141

getRateUnits() of NumericSensorMBean, 108
getRecords(int, int)

of FullLogMBean, 84
of LOLMBean, 93

getRoot() of ContainmentTreeMBean, 65
getRxExcessiveThreshholdIfList() of

EtherIfStatsMBean, 79
getSensorType() of SensorMBean, 117
getServerMaxThreshHold() of

NfsServiceMBean, 103
getServerThreshHold() of

>NfsServiceMBean, 103
getSettableThresholds() of

NumericSensorMBean, 108
getSize()

of FullLogMBean, 84
of LOLMBean, 93

getSlotStatus() of SlotMBean, 119
getSlotType() of SlotMBean, 119
getSoftwareLoad() of SlotMBean, 119
getSoftwareServiceList() of

SoftwareMonitorMBean, 123
getSpecificProblems() of

com.sun.ctmgx.moh.AlarmNotification,
 141

getStatus() of SoftwareServiceMBean, 126
getSupportedThresholds() of

NumericSensorMBean, 108
getSyncThreshold(String) of

RnfsServiceMBean, 115
getTerminationPoint() of

NetworkInterfaceMBean, 100
getThreshCriticalMemoryUsed() of

CpuCardEquipmentMBean, 69
getThreshMajorMemoryUsed() of

CpuCardEquipmentMBean, 69
getThreshMinorMemoryUsed() of

CpuCardEquipmentMBean, 69
getting started, 31
getTxExcessiveThreshholdIfList() of

EtherIfStatsMBean, 80
getType()

of StateChangeNotification, 176
Index 301

getType() of
AttributeChangeNotification, 152

getType() of NetworkInterfaceMBean, 100
getUnitModifier() of NumericSensorMBean, 109
getUpperThresholdCritical() of

NumericSensorMBean, 109
getUpperThresholdFatal() of

NumericSensorMBean, 109
getUpperThresholdNonCritical() of

NumericSensorMBean, 109
getUserLabel() of EquipmentMBean, 77
getVendorName()

of EquipmentMBean, 77
of NEMBean, 97
of NetworkInterfaceMBean, 101
of PlugInUnitMBean, 113

getVersion()
of EquipmentMBean, 77
of NEMBean, 97
of NetworkInterfaceMBean, 101
of PlugInUnitMBean, 113

H
HALT of LogFullAction, 161
hardware

associating alarms to failure, 45
hardware description, 1
hashCode()

of AdministrativeState, 137
of AlarmSeverity, 147, 149
of AvailabilityStatus, 158
of EquipmentHolderType, 160
of OperationalState, 172
of SlotStatus, 174

high temperature alarm, SNMP, 200
HIGH_MEMORY_UTILIZATION of

com.sun.ctmgx.moh.AlarmType, 149
HIGH_MEMORY_UTILIZATION, example, 44
HIGH_TEMPERATURE of

com.sun.ctmgx.moh.AlarmType, 149
HIGH_TEMPERATURE, example, 44
host CPU board description, 2
host CPU board view of system, 14 to 17
hot-swap, 2

I
I/O board, description, 2
INDETERMINATE of

com.sun.ctmgx.moh.AlarmSeverity, 147
initializing PMS client, 216
instance specifier, 181
interface

dynamic reconfiguration, 279
MCNet, 4
PMS client node, example, 256
PMS client RND, example, 263

INTEST of AvailabilityStatus, 157
intValue()

of AdministrativeState, 137
of AlarmSeverity, 147, 150
of AvailabilityStatus, 158
of EquipmentHolderType, 160
of LogFullAction, 162
of OperationalState, 172
of SlotStatus, 174

IP_SERVICE of SoftwareMonitorMBean, 122
IP_SERVICE_OBJ of

SoftwareMonitorMBean, 122
isNotificationEnabled(Notification)

of AlarmNotificationFilter, 145
of AttributeChangeNotificationFilter, 154
of StateChangeNotificationFilter, 178

J
Java Dynamic Management Kit

see JDMK
JDMK

agent, 50
resources, 51

L
libcfgadm, 279
LOCKED of AdministrativeState, 137
LogFullAction of com.sun.ctmgx.moh, 161

M
MAJOR of

com.sun.ctmgx.moh.AlarmSeverity, 147
managed device, 180
Managed Object Hierarchy see MOH, 5
managed objects, 10
302 Netra CT Server Software Developer’s Guide • August 2004

list, 6
management agent, 32
Management Information Base see also MIB, 180
managing CPU boards, 212
MBean

AlarmCardPlugin, 56
AlarmSeverityProfile, 57
CgtpService, 58
ContainmentTree, 60
CpciSlot, 65
CpuCardEquipment, 67
CpuPlugin, 70
Daemon, 71
EFD, 72
Equipment, 74
EquipmentHolder, 73
EtherIfStats, 78
FullLog, 80
introduction to, 50
IpService, 86
LOL, 88
NE, 95
NetworkInterface, 98
NfsService, 101
NumericSensor, 104
PlugInUnit, 110
RnfsService, 114
Sensor, 116
Slot, 118
SoftwareMonitor, 120
SoftwareService, 124
TcpService, 127
TerminationPoint, 130
UdpService, 133
UfsService, 134

MCNet, 289
definition, 4
description, 5

memory usage, alarm, 149
memory use alarm tutorial, 43
message handling, PMS client, example, 225
message of AlarmNotification, 140
message of AttributeChangeNotification, 152
message of ObjectCreationNotification, 167
message of ObjectDeletionNotification, 169
message of StateChangeNotification, 176
MIB

access rights, 181
addressable objects, 181
objects, 180
table definition, 181
tables, 181

MIB Notifications, 194 to 196
MIB tables, 180
midplane FRU-ID, changing, 198
midplane object

sample, 198
MINOR of

com.sun.ctmgx.moh.AlarmSeverity, 147
MOH

directory path, 51
example with SNMP, 198
introduction to agent, 32
overview, 5

MOH_CONTAINMENT_TREE of
com.sun.ctmgx.moh.MohNames, 164

MOH_DEFAULT_ASP of
com.sun.ctmgx.moh.MohNames, 164

MOH_DEFAULT_EFD of
com.sun.ctmgx.moh.MohNames, 165

MOH_SOFTWARE_MONITOR of
com.sun.ctmgx.moh.MohNames, 165

MohNames of com.sun.ctmgx.moh, 162

N
NEMBean, 95
netract agent, 32
netraCtAlarmSevProfileTable, entry example, 200
netraCtHighTempAlarm, example, 201
network protocol, 179
NetworkInterfaceMBean, 98
newValue of AttributeChangeNotification, 152
newValue of StateChangeNotification, 176
NFS_SERVICE of SoftwareMonitorMBean, 122
NFS_SERVICE_OBJ of

SoftwareMonitorMBean, 122
NfsServiceMBean, 101
nodes, example of finding, 37
NONCRITICAL_LOWER of

NumericSensorMBean, 107
NONCRITICAL_UPPER of

NumericSensorMBean, 107
Index 303

Notification
Alarm, 139
AlarmNotification, 138
AlarmNotificationFilter, 142, 143
AttributeChange, 150
AttributeChangeNotification, 150, 152
AttributeChangeNotificationFilter, 153, 154
isNotificationEnabled, 145, 154, 178
MIB, 194
ObjectCreationNotification, 167
ObjectDeletionNotification, 168, 169
registering a listener, example, 38
setFilter(NotificationFilter), 94
StateChangeNotification, 174, 176
StateChangeNotificationFilter, 177
StateChangeNotificationFilter()

of StateChangeNotificationFilter, 178
Notification Traps, 195
NotificationFilter, example, 38
NotificationListener, example, 38, 39
NOTINSTALLED of AvailabilityStatus, 157
NumericSensorMBean, 104

O
OBJECT_CREATION of

ObjectCreationNotification, 166
OBJECT_DELETION

of ObjectDeletionNotification, 169
ObjectCreationNotification of

com.sun.ctmgx.moh, 165
ObjectCreationNotification() of

ObjectCreationNotification, 167
ObjectDeletionNotification of

com.sun.ctmgx.moh, 168
ObjectDeletionNotification()

of ObjectDeletionNotification, 169
OFFLINE of AvailabilityStatus, 158
OID (Object Identifiers), 180
oldValue of AttributeChangeNotification, 152
oldValue of StateChangeNotification, 176
OperationalState of com.sun.ctmgx.moh, 170
output alarms, 43

P
parent of ObjectCreationNotification, 167
parent of ObjectDeletionNotification, 169

perceivedSeverity of AlarmNotification, 140
Physical Entity Table, 182
physical properties in MIB, 180
PICL

ChassisType property, 272
ConditionTime, 276
fru class property, 272
Frutree topology, 271
GeoAddr, 276
man pages, 277
port node properties, 274
StatusTime, 276
temperature sensor node, 277
watchdog plug-in, 283

PLATFORM_MGT_SERVICE of
SoftwareMonitorMBean, 122

PLATFORM_MGT_SERVICE_OBJ of
SoftwareMonitorMBean, 122

PlugInUnitMBean, 110
PMS, 211 to 267
PMS client

asynchronous message handling, example, 225
initializing, example, 216
RND interface, example, 263
scheduling,example, 238

PMS client node interface,example, 256
PMS introduction, 5
PMS software, overview, 211
port class, PICL, 274
port condition, PICL, 275
port state, PICL, 274
portType, PICL, 275
POWEROFF of AvailabilityStatus, 158
processor management services, 211 to 267
processor management services see also PMS, 5
proposedRepairAction, 140

R
RACK of EquipmentHolderType, 160
RCM, 279
rear-access diskfull system view, 20, 28
rear-access diskless system view, 23, 24
Reconfiguration Coordination Manager, 279
registering notification listener, example, 38
Remote Method Invocation (RMI), 6, 50
304 Netra CT Server Software Developer’s Guide • August 2004

removeAttribute(String)
of LOLMBean, 93

represent the system MBeans, example, 35
RFC2578, 180
RFC2579, 180
RFC2737, 182
RG (Resource Group) description, 213
RMI API directory path, 51
RMI see Remote Method Invocation
RnfsServiceMBean, 114
root MBean, example of finding, 36
routing tables, in MIB, 180

S
satellite CPU board, 2, 18
satellite CPU board rear-access view, 29
sensor, 104
SENSOR_TYPE_OTHER of SensorMBean, 117
SENSOR_TYPE_TEMPERATURE of

SensorMBean, 117
SensorMBean, 116
sequenceNumber of Alarm Notification, 140
sequenceNumber of

AttributeChangeNotification, 152
sequenceNumber of

ObjectDeletionNotification, 169
sequenceNumber of StateChangeNotification, 176
set alarms with SNMP, 200
setAcceptablePlugInUnitTypes(String) of

SlotMBean, 120
setAdministrativeState(AdministrativeState)

of FullLogMBean, 85
of LOLMBean, 93

setAdministrativeState(AdministrativeState) of
PlugInUnitMBean, 113

setAdministrativeState(AdministrativeState) of
TerminationPointMBean, 132

setAdministrativeState(AdministrativeState) of
EquipmentMBean, 77

setAlarmSeverity(), 58
setAlarmSeverityProfilePointer(ObjectName) of

NEMBean, 98
setAlarmSeverityProfilePointer(ObjectName) of

TerminationPointMBean, 132

setAlarmSeverityProfilePointer(ObjectName) of
EquipmentMBean, 77

setAlarmSeverityProfilePointer(ObjectName) of
NetworkInterfaceMBean, 101

setAlarmSeverityProfilePointer(ObjectName) of
PlugInUnitMBean, 113

setCapacity(int)
of LOLMBean, 94

setClearAlarmTimeOut(Integer) of
CpuCardEquipmentMBean, 69

setClientMaxThreshHold(Float) of
NfsServiceMBean, 103

setFileSystemMaxThreshHold(Float) of
UfsServiceMBean, 135

setFilter(NotificationFilter)
of FullLogMBean, 85
of LOLMBean, 94

setFilterMaxThreshold, 59
setKeyAttributeList(Set)

of LOLMBean, 94
setLocationName(String) of EquipmentMBean, 78
setLocationName(String) of NEMBean, 98
setLogFullAction(LogFullAction)

of FullLogMBean, 85
of LOLMBean, 94

setMaxInAddrErrorThreshold(Float) of
IpServiceMBean, 87

setMaxInErrorThreshold(Float) of
TcpServiceMBean, 129

setMaxInErrorThreshold(Float) of
UdpServiceMBean, 134

setMaxOutRstsThreshold(Float) of
TcpServiceMBean, 129

setMaxSyncThreshold(Float) of
RnfsServiceMBean, 115

setMaxThreshhold(Float) of
EtherIfStatsMBean, 80

setNumExcessiveIntervals(Integer) of
SoftwareServiceMBean, 126

setPollingInterval(Integer) of
SoftwareServiceMBean, 127

setRetryCount(int) of
com.sun.ctmgx.moh.DaemonMBean, 72

setServerMaxThreshHold(Float) of
NfsServiceMBean, 104

setSoftwareLoad(ObjectName) of SlotMBean, 120
Index 305

setThreshCriticalMemoryUsed(Integer) of
CpuCardEquipmentMBean, 69

setThreshMajorMemoryUsed(Integer)
of CpuCardEquipmentMBean Font>, 69

setThreshMinorMemoryUsed(Integer) of
CpuCardEquipmentMBean Font>, 70

setting watchdog timer, 283
setUpperThresholdCritical(Integer) of

NumericSensorMBean, 109
setUpperThresholdNonCritical(Integer) of

NumericSensorMBean, 110
setUserLabel(String) of EquipmentMBean, 78
SHELF of EquipmentHolderType, 160
SLOT of EquipmentHolderType, 160
SlotMBean, 118
SlotStatus of com.sun.ctmgx.moh, 172
SNMP

setting high temperature alarm, example, 201
SNMP interface, 6
SNMP Traps, 179, 190 to 194
software environment, 1
software service daemons, example, 48
SoftwareMonitorMBean, 120
SoftwareServiceMBean, 124
source of AlarmNotification, 140
source of AttributeChangeNotification, 152
source of ObjectCreationNotification, 167
source of ObjectDeletionNotification, 169
source of StateChangeNotification, 176
specificProblems of AlarmNotification, 140
starting netract agent, 31
startPolling() of SoftwareServiceMBean, 127
STATE_CHANGE of StateChangeNotification, 175
StateChangeNotification of

com.sun.ctmgx.moh, 174
StateChangeNotification() of

StateChangeNotification, 176
StateChangeNotificationFilter of

com.sun.ctmgx.moh, 177
StateChangeNotificationFilter() of

StateChangeNotificationFilter, 178
StatusTime, PICL, 276
stopPolling() of SoftwareServiceMBean, 127
system configuration hierarchy example, 35

system view
from alarm card, 12 to 13
from host CPU, 14 to 17
from satellite CPU, 18
front-access, 13
front-access diskfull, 21, 27
rear-access, 12, 17
rear-access diskfull, 20, 28
satellite CPU board, 29

T
table definition, 181
tables in MIB, 180
TCP_SERVICE of SoftwareMonitorMBean, 122
TCP_SERVICE_OBJ of

SoftwareMonitorMBean, 123
temperature

high, 149
sensor node, PICL, 277
thresholds, 104

temperature alarm tutorial, 43
TerminationPointMBean, 130
TFTP_SERVICE of SoftwareMonitorMBean, 123
TFTP_SERVICE_OBJ of

SoftwareMonitorMBean, 123
thermister, 44
thermistor, 104
Threshold

getClientMaxThreshHold, 102
getClientThreshHold, 103
getCurrentFilterThreshold, 58
getCurrentOutRstsThreshold, 128
getEnabledThresholds, 107
getExcessiveThreshHoldFileSystemList, 135
getFileSystemMaxThreshHold, 135
getFilterMaxThreshold, 58
getLowerThresholdCritical, 107
getLowerThresholdFatal, 108
getLowerThresholdNonCritical, 108
getMaxInErrorThreshold, 129, 134
getMaxInHdrErrorThreshold, 87
getMaxOutRstsThreshold, 129
getMaxSyncThreshold, 115
getMaxThreshhold, 79
getRxExcessiveThreshholdIfList, 79
getServerMaxThreshHold, 103
getServerThreshHold, 103
306 Netra CT Server Software Developer’s Guide • August 2004

getSettableThresholds, 108
getSupportedThreshold, 108
getSyncThreshold, 115
getThreshCriticalMemoryUsed, 69
getThreshMajorMemoryUsed, 69
getThreshMinorMemoryUsed, 69
getTxExcessiveThreshholdIfList, 80
getUpperThresholdCritical, 109
getUpperThresholdFatal, 109
getUpperThresholdNonCritical, 109
setClientMaxThreshHold, 103
setFileSystemMaxThreshHold, 135
setFilterMaxThreshold, 59
setMaxInAddrErrorThreshold, 87
setMaxInErrorThreshold, 129, 134
setMaxOutRstsThreshold, 129
setMaxSyncThreshold, 115
setMaxThreshhold, 80
setServerMaxThreshHold, 104
setThreshCriticalMemoryUsed, 69
setThreshMajorMemoryUsed, 69
setThreshMinorMemoryUsed, 70
setUpperThresholdCritical, 109
setUpperThresholdNonCritical, 110

timer, watchdog, 283
toString()

of AdministrativeState, 137
of AlarmSeverity, 148
of AlarmType, 150
of AvailabilityStatus, 158
of EquipmentHolderType, 160
of LogFullAction, 162
of OperationalState, 172
of SlotStatus, 174

Trap
Agent MIB Log Table, 192
Agent MIB Logged Trap Table, 192
Alarm Backed Up, 194
Alarm Severity, 194
definition, 179

tutorial, 31

U
UDP_SERVICE of SoftwareMonitorMBean, 123
UDP_SERVICE_OBJ of

SoftwareMonitorMBean, 123
UdpServiceMBean, 133
UFS_SERVICE of SoftwareMonitorMBean, 123

UFS_SERVICE_OBJ of
SoftwareMonitorMBean, 123

UfsServiceMBean, 134
UNKNOWN

of AvailabilityStatus, 158
of OperationalState, 171

UNLOCKED of AdministrativeState, 137

W
WARNING of

com.sun.ctmgx.moh.AlarmSeverity, 147
watchdog plug-ins, 284
watchdog timer, 283
watchdog-controller settings, 286
WRAP of LogFullAction, 161
Index 307

308 Netra CT Server Software Developer’s Guide • August 2004

	Netra™ CT Server Software Developer’s Guide
	Contents
	Figures
	Tables
	Code Samples
	Preface
	Programming Environment
	Netra CT Server
	Hardware Description
	Alarm Card
	Host CPU Board
	Satellite CPU Boards
	I/O Boards
	Hot-Swapping Capabilities

	Software Description
	Operating System Specifics
	Managed Object Hierarchy
	Processor Management Services
	Multicomputing Network
	Platform Information Control Library
	Management Framework
	SNMP/MIB Support
	SNMP Interface
	RMI Interface

	Developing Applications Using PMS
	Developing Applications to Interface with MOH or SNMP
	Developing Applications to Run on Host or Satellite CPU Boards

	Netra CT System Equipment Models
	Modeling a Netra CT System
	Managed Objects
	Viewing the Equipment Model Hierarchies

	Netra CT 810 System Equipment Models
	Netra CT 410 System Equipment Models

	Getting Started With Netra CT Element Management Agent API
	Before You Begin
	About Netra CT Element Management Agent API
	Netra CT Agent Security

	Creating Your Application
	Purpose of the Application
	Determining the System Configuration Hierarchy
	Communicating to the Netra CT Agent
	Finding the Root Object Name
	Traversing the Containment Hierarchy From a Node

	Listening for Notifications
	Registering a Notification Listener With EFDMBean Instance

	Managing Alarms
	Registering a Notification Listener With an Alarm Notification Filter
	Using the Default Alarm Severity Profile
	Creating Your Own Alarm Severity Profile
	Assigning a New Alarm Severity Profile
	Configuring the Agent to Drive Alarm Card Alarm Outputs
	To Set Up and Use Alarm Features
	Clearing Alarms

	Software Monitoring

	Netra CT Element Management Agent API
	Interface Overview
	Summary of JDMK
	Viewing the Netra CT Management Agent API Online

	How the API Sections are Organized
	Netra CT Management Agent Interfaces and Classes
	Netra CT Management Agent Interface Descriptions
	AlarmCardPluginMBean
	Declaration
	Description
	All Superinterfaces
	Methods

	AlarmSeverityProfileMBean
	Declaration
	Description
	Methods

	CgtpServiceMBean
	Declaration
	Description
	Methods

	ContainmentTreeMBean
	Declaration
	Description
	Fields
	Methods

	CpciSlotMBean
	Declaration
	Description
	All Superinterfaces
	Fields
	Methods

	CpuCardEquipmentMBean
	Declaration
	All Superinterfaces
	Description
	Methods

	CpuPluginMBean
	Declaration
	All Superinterfaces
	Description
	Methods

	DaemonMBean
	Declaration
	Methods

	EFDMBean
	Declaration
	Description

	EquipmentHolderMBean
	Declaration
	All Known Subinterfaces
	Description
	Methods

	EquipmentMBean
	Declaration
	All Known Subinterfaces:
	Description
	Methods

	EtherIfStatsMBean
	Declaration
	All Superinterfaces
	Description
	Methods

	FullLogMBean
	Declaration
	Description
	Methods

	IpServiceMBean
	Declaration
	All Superinterfaces
	Description
	Methods

	LOLMBean
	Declaration
	Description
	Methods

	NEMBean
	Declaration
	Description
	Methods

	NetworkInterfaceMBean
	Declaration
	Description
	Methods

	NfsServiceMBean
	Declaration
	All Superinterfaces
	Description
	Methods

	NumericSensorMBean
	Declaration
	All Superinterfaces
	Description
	Fields
	Methods

	PlugInUnitMBean
	Declaration
	All Known Subinterfaces:
	Description
	Methods

	RnfsServiceMBean
	Declaration
	All Superinterfaces
	Description
	Methods

	SensorMBean
	Declaration
	All Superinterfaces
	All Known Subinterfaces
	Description
	Fields
	Methods

	SlotMBean
	Declaration
	All Superinterfaces
	All Known Subinterfaces
	Description
	Methods

	SoftwareMonitorMBean
	Declaration
	Fields
	Methods

	SoftwareServiceMBean
	Declaration
	All Known Subinterfaces:
	Description
	Methods

	TcpServiceMBean
	Declaration
	Description
	Methods

	TerminationPointMBean
	Declaration
	Description
	Methods

	UdpServiceMBean
	Declaration
	All Superinterfaces
	Description
	Methods

	UfsServiceMBean
	Declaration
	All Superinterfaces
	Description
	Methods

	Netra CT Management Agent Class Descriptions
	AdministrativeState
	Declaration
	All Implemented Interfaces:
	Description
	Fields
	Methods

	AlarmNotification
	Declaration
	Description
	Constructors
	Methods

	AlarmNotificationFilter
	Declaration
	All Implemented Interfaces:
	Description
	Constructors
	Methods

	AlarmSeverity
	Declaration
	All Implemented Interfaces:
	Description
	Fields
	Methods

	AlarmType
	Declaration
	All Implemented Interfaces:
	Description
	Fields
	Methods

	AttributeChangeNotification
	Declaration
	All Implemented Interfaces
	Description
	Fields
	Constructors
	Methods

	AttributeChangeNotificationFilter
	Declaration
	All Implemented Interfaces
	Description
	Constructors
	Methods

	AuthClient
	Declaration
	Description
	Constructor
	Method

	AvailabilityStatus
	Declaration
	All Implemented Interfaces:
	Description
	Fields
	Methods

	EquipmentHolderType
	Declaration
	All Implemented Interfaces:
	Fields
	Methods

	LogFullAction
	Declaration
	All Implemented Interfaces
	Description
	Methods

	MohNames
	Declaration
	Description
	Fields

	ObjectCreationNotification
	Declaration
	Description
	Fields
	Constructors
	Methods

	ObjectDeletionNotification
	Declaration
	Description
	Fields
	Constructors
	Methods

	OperationalState
	Declaration
	All Implemented Interfaces
	Description
	Fields
	Methods

	SlotStatus
	Declaration
	All Implemented Interfaces
	Description
	Fields
	Methods

	StateChangeNotification
	Declaration
	Description
	Fields
	Constructors
	Methods

	StateChangeNotificationFilter
	Declaration
	All Implemented Interfaces
	Description
	Constructors
	Methods

	Simple Network Management Protocol
	SNMP Overview
	Management Information Base (MIB)
	Object Identifiers (OIDs)

	Netra CT System SNMP Representation
	ENTITY-MIB
	IF-MIB
	SUN-SNMP-NETRA-CT-MIB
	Netra CT Network Element High-Level Objects
	Physical Path Termination Point Table
	Equipment Table
	Equipment Holder Table
	Plug-in Unit Table
	Hardware Unit to Running Software Relationship Table
	Hardware Unit to Installed Software Relationship Table
	Alarm Severity Identifier Textual Convention
	Alarm Severity Profile Table
	Alarm Severity Table
	Trap Forwarding Table
	Trap Agent MIB Log Table
	Logged Trap Table
	Logged Alarm Table
	MIB Notification Types
	MIB Notifications
	State Change Notification Traps
	Object Creation and Deletion Notification Traps
	Configuration Change Notification Traps

	Understanding the MIB Variable Descriptions

	Changing Midplane FRU-ID
	Setting High Temperature Alarms
	To Set the High Temperature Alarm Severity to Major

	Managed Object Hierarchy Software Modules
	Software Module Design
	Software Services
	Software Module MBeans
	SoftwareMonitorMBean
	DaemonMBean
	SoftwareServiceMBean
	NfsServiceMBean
	UfsServiceMbean
	TcpServiceMBean
	UdpServiceMBean
	IpServiceMBean
	EtherIfStatsMBean
	CgtpServiceMBean
	RnfsServiceMBean

	Software Modules in the SNMP View
	Host Resources MIB
	Host Resources Running Software Table (hrSWRunTable)
	Host Resources Installed Software Table (hrSWInstalledTable)
	SNMP Traps

	Processor Management Services
	PMS Software Overview
	PMS Man Pages
	PMS Examples

	Solaris Operating System APIs
	Solaris Operating System PICL Framework
	PICL Frutree Topology
	Chassis Node Property Updates
	Fru Class Properties
	Port Class Node
	Port Class Properties

	Common Property Updates
	GeoAddr
	StatusTime
	ConditionTime

	Temperature Sensor Node State

	PICL Man Page References
	Dynamic Reconfiguration Interfaces
	Reconfiguration Coordination Manager
	Hot-Swap Support
	Configuration Administration (cfgadm)

	Programming Temperature Sensors Using the PICL API
	Programming Watchdog Timers Using the PICL API
	Displaying FRU-ID Data
	MCNet Support

	Glossary
	Index

