
Sun Microsystems, Inc.
www.sun.com

Submit comments about this document at: http://www.sun.com/hwdocs/feedback

Netra™ CT Server Software
Developer’s Guide

For Netra 810 and Netra 410 Servers

Part No. 819-2744-10
February 2007, Revision A

http://www.sun.com/hwdocs/feedback

Copyright 2007 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more of the U.S. patents listed at http://www.sun.com/patents and one or
more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, AnswerBook2, docs.sun.com, JMX, OpenBoot, Java, Netra, and Solaris are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and in other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and in other
countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

U.S. Government Rights—Commercial use. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2007 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, Californie 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie qui est décrit dans ce document. En particulier, et sans la
limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés à http://www.sun.com/patents et
un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats-Unis et dans les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des
fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, AnswerBook2, docs.sun.com, JMX, OpenBoot, Java, Netra, et Solaris sont des marques de fabrique ou des
marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.
aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique
pour l’industrie de l’informatique. Sun détient une license non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence
couvrant également les licenciées de Sun qui mettent en place l’interface d ’utilisation graphique OPEN LOOK et qui en outre se conforment
aux licences écrites de Sun.

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFAÇON.

Contents

1. Programming Environment 1

Netra CT Server 2

Hardware Description 2

Alarm Card 2

Host CPU Board 2

Satellite CPU Boards 3

I/O Boards 3

Hot-Swapping Capabilities 3

Software Description 4

Operating System Specifics 6

Managed Object Hierarchy 6

Processor Management Services 6

Multicomputing Network 7

Platform Information Control Library 7

Management Framework 7

SNMP/MIB Support 7

SNMP Interface 7

RMI Interface 8

Developing Applications Using PMS 8
iii

Developing Applications to Interface with MOH or SNMP 8

Developing Applications to Run on Host or Satellite CPU Boards 8

2. Netra CT System Equipment Models 9

Modeling a Netra CT System 10

Managed Objects 10

Viewing the Equipment Model Hierarchies 12

Netra CT 810 System Equipment Models 12

Netra CT 410 System Equipment Models 17

3. Getting Started With Netra CT Element Management Agent API 21

Before You Begin 22

Netra CT Element Management Agent API 22

Netra CT Agent Security 23

Creating Your Application 24

Purpose of the Application 25

Determining the System Configuration Hierarchy 25

Communicating With the Netra CT Agent 26

Finding the Root Object Name 27

Traversing the Containment Hierarchy From a Node 28

Listening for Notifications 28

Registering a Notification Listener With EFDMBean Instance 29

Managing Alarms 29

Registering a NotificationListener With an
AlarmNotificationFilter 30

Using the Default AlarmSeverityProfile 31

Creating Your Own AlarmSeverityProfile 32

Assigning a New AlarmSeverityProfile 33
iv Netra CT Server Software Developer’s Guide • February 2007

Configuring the Agent to Drive Alarm Card Alarm Outputs 34

▼ To Set Up and Use Alarm Features 35

Clearing Alarms 36

Software Monitoring 37

4. Netra CT Element Management Agent API 41

Interface Overview 42

Summary of JDMK 42

Viewing the Netra CT Management Agent API Online 44

How the API Sections are Organized 44

Netra CT Management Agent Interfaces and Classes 45

5. Simple Network Management Protocol 49

SNMP Overview 50

Management Information Base 50

Object Identifiers 51

Netra CT System SNMP Representation 52

ENTITY-MIB 52

IF-MIB 54

HOST-RESOURCES-MIB 54

Host Resources Running Software Table 54

Host Resources Installed Software Table 55

SUN-SNMP-NETRA-CT-MIB 55

Netra CT Network Element High-Level Objects 56

Physical Path Termination Point Table 56

Equipment Table 57

Equipment Holder Table 58

Plug-in Unit Table 59

Hardware Unit to Running Software Relationship Table 60
Contents v

Hardware Unit to Installed Software Relationship Table 60

Alarm Severity Identifier Textual Convention 61

Alarm Severity Profile Table 61

Alarm Severity Table 61

Trap Forwarding Table 62

MIB Notification Types 63

SNMP Traps 64

Understanding the MIB Variable Descriptions 65

Changing Midplane FRU-ID 66

Setting High Temperature Alarms 68

▼ To Set the High Temperature Alarm Severity to Major 69

6. Managed Object Hierarchy Software Modules 73

Software Module Design 74

Software Services 74

Software Module MBeans 75

SoftwareMonitorMBean 75

DaemonMBean 75

SoftwareServiceMBean 76

NfsServiceMBean 76

UfsServiceMbean 76

TcpServiceMBean 76

UdpServiceMBean 77

IpServiceMBean 77

EtherIfStatsMBean 77

CgtpServiceMBean 77

RnfsServiceMBean 77
vi Netra CT Server Software Developer’s Guide • February 2007

7. Processor Management Services 79

PMS Software Overview 80

PMS Man Pages 83

PMS Examples 84

8. Solaris Operating System APIs 137

Solaris Operating System PICL Framework 138

PICL Frutree Topology 140

Chassis Node Property Updates 141

ChassisType 141

fru Class Properties 141

port Class Node 142

port Class Properties 143

Common Property Updates 145

GeoAddr 145

StatusTime 145

ConditionTime 145

Temperature Sensor Node State 146

PICL Man Page References 146

Dynamic Reconfiguration Interfaces 148

Reconfiguration Coordination Manager 148

Hot-Swap Support 149

Configuration Administration 150

Programming Temperature Sensors Using the PICL API 151

Programming Watchdog Timers Using the PICL API 153

Displaying FRU-ID Data 156

MCNet Support 159
Contents vii

Glossary 161

Index 167
viii Netra CT Server Software Developer’s Guide • February 2007

Figures

FIGURE 1-1 Netra CT Server Software 4

FIGURE 2-1 Partial Hardware Resource Hierarchy 10

FIGURE 2-2 Hardware Resource Hierarchy Showing Managed Object Classes 11

FIGURE 2-3 Rear-Access Netra CT 810 System View From Alarm Card 13

FIGURE 2-4 Rear-Access Netra CT 810 System View From Host CPU Board 14

FIGURE 2-5 Rear-Access Netra CT 810 System Host CPU Board Local View 15

FIGURE 2-6 Rear-Access Netra CT 810 System Satellite CPU Board Local View 16

FIGURE 2-7 Netra CT 810 System Satellite CPU Board Local View 16

FIGURE 2-8 Rear-Access Netra CT 410 Diskful System View From Alarm Card 18

FIGURE 2-9 Rear-Access Netra CT 410 Diskful Local View From Host CPU Board 19

FIGURE 2-10 Rear-Access Netra CT 410 System Satellite CPU Board Local View 20

FIGURE 4-1 Key Components of the Java Dynamic Management Kit 43

FIGURE 5-1 Hardware Resource Hierarchy 53

FIGURE 7-1 Netra CT Software Services 80

FIGURE 7-2 PMS Software Services and Interfaces 81

FIGURE 8-1 PICL Daemon (picld) and Plug-Ins 139
ix

x Netra CT Server Software Developer’s Guide • February 2007

Tables

TABLE 1-1 Netra CT Server Software Overview 5

TABLE 2-1 Managed Object Class Definitions 11

TABLE 3-1 Solaris Packages for Netra CT Developer APIs 22

TABLE 3-2 Example of Alarm Output Mapping 34

TABLE 4-1 Netra CT Management Agent Interfaces 45

TABLE 4-2 Netra CT Management Agent Classes 47

TABLE 5-1 Physical Entity Table 53

TABLE 5-2 SUN-SNMP-NETRA-CT-MIB Netra CT NE High-Level Objects 56

TABLE 5-3 SUN-SNMP-NETRA-CT-MIB Physical Path Termination Point Table 56

TABLE 5-4 SUN-SNMP-NETRA-CT-MIB Equipment Table 57

TABLE 5-5 SUN-SNMP-NETRA-CT-MIB Equipment Holder Table 58

TABLE 5-6 SUN-SNMP-NETRA-CT-MIB Plug-In Unit Table 59

TABLE 5-7 SUN-SNMP-NETRA-CT-MIB Hardware Unit to Running Software Relation Table 60

TABLE 5-8 SUN-SNMP-NETRA-CT-MIB Hardware Unit to Installed Software Relationship Table 60

TABLE 5-9 SUN-SNMP-NETRA-CT-MIB Alarm Severity Identifier Textual Conventions 61

TABLE 5-10 SUN-SNMP-NETRA-CT-MIB Alarm Severity Profile Table 61

TABLE 5-11 SUN-SNMP-NETRA-CT-MIB Alarm Severity Table 62

TABLE 5-12 SUN-SNMP-NETRA-CT-MIB Trap Forwarding Table 62

TABLE 5-13 MIB Notification Types 63

TABLE 5-14 SUN-SNMP-NETRA-CT-MIB Traps 64
xi

TABLE 5-15 RFC1213-MIB Traps 65

TABLE 5-16 MIB Variable Syntax 65

TABLE 6-1 Software Services 74

TABLE 7-1 Processor Management Services Man Pages 83

TABLE 8-1 PICL FRUtree Topology Summary 140

TABLE 8-2 PICL FRU State Value Properties 142

TABLE 8-3 PICL FRU Condition Value Properties 142

TABLE 8-4 Port Class State Values 143

TABLE 8-5 Port Condition Values 144

TABLE 8-6 PortType Property Values 144

TABLE 8-7 State Property Values for Temperature Sensor Node 146

TABLE 8-8 PICL Man Pages 146

TABLE 8-9 PICL Temperature Sensor Class Node Properties 151

TABLE 8-10 PICL Threshold Levels and MOH Equivalents 151

TABLE 8-11 Watchdog Plug-in Interfaces for Netra CT 810 and 410 Server Software 155

TABLE 8-12 Properties Under watchdog-controller Node 155

TABLE 8-13 Properties Under watchdog-timer Node 155
xii Netra CT Server Software Developer’s Guide • February 2007

Preface

The Netra CT Server Software Developer’s Guide contains information for developers
writing application software for the Netra™ CT 810 and 410 servers. This manual
assumes you are a software developer familiar with UNIX® commands and
networking applications.

How This Book Is Organized
Chapter 1 contains an overview of the Netra CT software and lists the requirements
for developing software applications for the platform.

Chapter 2 displays the system’s various equipment models. The diagrams in this
chapter demonstrate how the Netra CT software views the hardware components.

Chapter 3 offers a tutorial in writing applications that interface with the Netra CT
server software.

Chapter 4 introduces the application programming interfaces for the Netra CT server
including the Netra CT element management agent software.

Chapter 5 describes the Netra CT Simple Network Management Protocol (SNMP)
management information base (MIB).

Chapter 6 presents the design of the Netra CT software modules and how they relate
to each other.

Chapter 7 provides an overview of the Netra CT Processor Management Services
(PMS) software.

Chapter 8 defines the Solaris™ Operating System’s Platform Information and
Control Library (PICL) software and how you can use it to set the watchdog timer.
xiii

For obscure or difficult terminology definition, see the Glossary.

Typographic Conventions

Shell Prompts

Typeface*

* The settings on your browser might differ from these settings.

Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your.login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when contrasted
with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized.
Replace command-line variables
with real names or values.

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.
To delete a file, type rm filename.

Shell Prompt

C shell machine-name%

C shell superuser machine-name#

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #
xiv Netra CT Server Software Developer’s Guide • February 2007

Related Documentation
The Netra CT Server documentation is listed in the following table.

You might want to refer to documentation on the following software for additional
information: the Solaris Operating System, OpenBoot™ PROM firmware, and the
Netra High Availability (HA) Suite.

Title Part Number

Netra CT Server Upgrade Guide 819-2745

Netra CT Server Product Overview 819-2742

Netra CT Server Installation Guide 819-2740

Netra CT Server Service Manual 819-2741

Netra CT Server System Administration Guide 819-2743

Netra CT Server Safety and Compliance Manual 819-2746

Netra CT Server Software Developer’s Guide 819-2744

Netra CT Server Release Notes 819-2739

Netra CT Server Release Notes for Lucent Technologies 819-2747
Preface xv

Documentation, Support, and Training

Third-Party Web Sites
Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites
or resources. Sun will not be responsible or liable for any actual or alleged damage
or loss caused by or in connection with the use of or reliance on any such content,
goods, or services that are available on or through such sites or resources.

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. You can submit your comments by going to:

http://www.sun.com/hwdocs/feedback

Please include the title and part number of your document with your feedback:

Netra CT Server Software Developer’s Guide, part number 819-2744-10

Sun Function URL

Documentation http://www.sun.com/documentation/

Support http://www.sun.com/support/

Training http://www.sun.com/training/
xvi Netra CT Server Software Developer’s Guide • February 2007

http://www.sun.com/training/
http://www.sun.com/support/
http://www.sun.com/hwdocs/feedback
http://www.sun.com/documentation/

CHAPTER 1

Programming Environment

This chapter provides an overview of the software environment that forms the basis
for developing applications for the Netra CT server:

■ “Netra CT Server” on page 2
■ “Hardware Description” on page 2
■ “Software Description” on page 4
1

Netra CT Server
The Netra CT server system consists of a host CPU, an alarm card which is the nexus
of system management, optionally one or several satellite CPUs, and one or several
CompactPCI (cPCI) I/O cards. Different software combinations run on each of these
elements as is shown in FIGURE 1-1.

Hardware Description
This section provides brief descriptions of the Netra CT server board components
and hot-swapping capabilities. See the Netra CT Server Product Overview (819-2742)
for more information.

Alarm Card
An alarm card is used in the Netra CT 810 and Netra CT 410 servers to control
system functions. The board is plugged into slot 8 for the Netra CT 810, and into
slot 1 for the Netra CT 410 server. The alarm card has an embedded operating
system, and the boot environment is controlled by boot control firmware.
Developers use a command-line interface (CLI) to provide an administrative
interface to the system. Drawer-level monitoring and control of the system is
accomplished through Managed Object Hierarchy (MOH) and Processor
Management Service (PMS) software.

Host CPU Board
The host CPU board is the same for both Netra 810 and Netra CT 410 servers. The
board is plugged into slot 1 for the Netra CT 810, and into slot 3 for the Netra CT 410
server. The Solaris Operating System runs on these boards. MOH and PMS provide
local and drawer-level monitor and control functions.
2 Netra CT Server Software Developer’s Guide • February 2007

Satellite CPU Boards
Several satellite CPU cards can occupy the I/O slots and perform normal CPU
functions independently. MOH and PMS provide local monitor and control
functions.

I/O Boards
One or more cPCI boards can occupy I/O slots. The I/O boards are controlled by the
host CPU and the Solaris OS running on the host CPU board.

Hot-Swapping Capabilities
Boards and other field-replaceable units (FRUs) can be swapped while the system is
running, depending on whether or not they conform to the Hot-Swap Specification
PICMG 2.1 R 2.0. This ability to hot-swap is a feature that is controllable by software
if the board itself is hot-swap compliant. For further information on hot-swap issues,
see the Netra CT Server Product Overview (819-2742), Netra CT Server System
Administration Guide (819-2744), and Netra CT Server Service Manual (819-2741).
Chapter 1 Programming Environment 3

Software Description

FIGURE 1-1 Netra CT Server Software

Satellite CPU
Alarm Card

MCNet

I/O board

cPCI bus

IPMI

External data network (LAN)

Host CPU

Solaris

OBP

SMC PCI i/f SMC PCI i/f BMC PCI i/f

MOH
PMS

Solaris

OBP

MOH
PMS

ChorusOS

BCF

CLI
MOH
PMS

Embedded
software
4 Netra CT Server Software Developer’s Guide • February 2007

The abbreviations shown in FIGURE 1-1 are identified in TABLE 1-1.

TABLE 1-1 Netra CT Server Software Overview

Abbreviation Name Description

Solaris Solaris Operating System Installed by the user. Runs on the host CPU card and on
any satellite CPU cards.

Embedded
software

Embedded firmware on the
alarm card

Factory-installed on the alarm card. Manages all elements
of the Netra CT server that are connected to the midplane.

CLI Command-line interface The primary user interface to the alarm card.

MOH Managed Object Hierarchy Application that manages the hardware and software
components of the system.

PMS Processor Management
Service

Manages processor elements used by client applications.

OpenBoot PROM OpenBoot PROM firmware
and diagnostics

Boot firmware and diagnostics on CPU cards.

BCF Boot control firmware Firmware on the alarm card to control booting.

BMC BMC firmware Baseboard management controller of the IPMI controller
on the alarm card, which provides a command nexus
between satellite CPU and RMC client during hot swap
unconfiguration operations.

SMC SMC firmware System management controller firmware is related to
IPMI Controller on CPU cards. SMC APIs provide client
access to local resources such as temperature sensors,
watchdog subsystems, and local I2C bus devices; and
access to IPMI bus devices.

IPMI IPMI Intelligent Platform Management Interface is a
communication channel over the cPCI backplane.

MCNet MCNet MCNet is a PICMG 2.14 communication protocol over the
cPCI backplane. It can be used to communicate between
the alarm card, the host CPU card, and any satellite CPU
cards which are MCNet capable.
Chapter 1 Programming Environment 5

Operating System Specifics
The embedded firmware on the alarm card provides chassis management features
that support real-time, multi-threaded applications, and POSIX interfaces to support
easy porting of POSIX/UNIX (Solaris OS) applications.

Solaris 9 OS on the host and satellite CPU cards provides APIs such as Platform
Information Control Library (PICL), reconfiguration coordination manager (RCM),
and cfgadm (1M), as explained in Chapter 8. The kernel layer interacts with device
drivers to control hardware components of the system such as the CPU cards and
the I/O boards. These device drivers bind to the kernel using the device driver
interfaces (DDI) and driver kernel interfaces (DKI).

Managed Object Hierarchy
The Managed Object Hierarchy (MOH) is a distributed management application that
runs on the alarm card, and host and satellite CPUs. MOH on the alarm card
provides drawer-level monitoring of the system. MOH on the CPUs, both host and
satellite, provides local views of the board on which it runs, and collaborates to
provide the status of its components to the MOH on the alarm card. The various
MOHs communicate with one another over MCNet. MOH is discussed further in
Chapter 6.

Processor Management Services
Processor management services (PMS) software is an extension to the Netra CT
platform services software that addresses the requirements of high-availability
application frameworks. PMS software enables client applications to manage the
operation of the processor CPU board elements within a single Netra CT system or
within a cluster of multiple Netra CT systems.

PMS ensures high availability by monitoring a processor element’s fault condition,
such as OS hangs, deadlock, and panic. The alarm card provides a server-level view
showing the state of each CPU card as a plug-in unit. PMS services are enabled
separately on the alarm card and on the host CPU. PMS services are discussed
further in Chapter 7.
6 Netra CT Server Software Developer’s Guide • February 2007

Multicomputing Network
MCNet uses the cPCI backplane on the Netra CT platform to provide Ethernet-like
interface to the CPU cards and the alarm card.

Solaris MCNet driver provides standard Data Link Provider Interface (DLPI) v2
interface to higher level protocols and applications. It appears like any other
network interface in Solaris when plumbed.

Platform Information Control Library
This Solaris library provides a method for publishing platform-specific information
that clients can access in a way that is not specific to the platform. PICL is discussed
further in Chapter 8.

Management Framework
The Java™ Dynamic Management Kit development package provides a framework
of managed objects and their associated interfaces. SNMP uses a management
information base (MIB), which defines managed objects for the elements within the
Netra CT server platform. The managed objects are abstract representations of the
resources and services within the system. The following interfaces can be used to
manage Netra CT system.

SNMP/MIB Support
The netract agent supports the following parts of the MIB:

■ System group from MIB II

■ Interface group from interface MIB

■ Physical entity group from ENTITY-MIB

SNMP Interface
The netract agent operates on the alarm card, the system host CPU card, and the
satellite CPUs in a distributed manner. They all provide the SNMP interface version
2, and Netra CT-specific instrumentation monitoring.
Chapter 1 Programming Environment 7

RMI Interface
The netract agent uses JDMK service to support common client-server protocols.
These include Remote Method Invocation (RMI) which is the mechanism used to
support remote, or distributed access to the managed object hierarchy (MOH).

Developing Applications Using PMS
PMS can run on both the alarm card, and host and satellite CPUs. To develop
applications that use PMS on the alarm card or host and staellite CPUs, you need
Solaris 9 OS, C compiler version, PMS API, and libraries as described in Chapter 7.

Developing Applications to Interface with MOH
or SNMP
To develop applications to interface with MOH or SNMP, you need the Solaris 9 OS,
Java Virtual Machine and the Java Dynamic Management Kit and the Netra CT
agent library. For more information about Java Dynamic Management Kit refer to
Java Dynamic Management Kit 5.1 Tutorial (816-7609).

Developing Applications to Run on Host or
Satellite CPU Boards
To develop applications to run on host or satellite CPU cards you require Solaris 9
OS to access services such as dynamic reconfiguration (DR) framework, and
platform information and control library (PICL) API. Standard Solaris tools such as
the cfgadm(1) command enable service operations such as configuring and
unconfiguring system FRUs.
8 Netra CT Server Software Developer’s Guide • February 2007

CHAPTER 2

Netra CT System Equipment
Models

This chapter provides illustrations of the Netra CT system equipment models, and
contains the following sections:

■ “Modeling a Netra CT System” on page 10

■ “Netra CT 810 System Equipment Models” on page 12

■ “Netra CT 410 System Equipment Models” on page 17
9

Modeling a Netra CT System
Equipment models show how the Netra CT element management agent software
views the Netra CT system hardware. Each equipment model presents a Netra CT
system in a containment hierarchy of hardware components, with the midplane at
the root of the hierarchy. For example, a cPCI slot might contain an alarm card,
which in turn will contain a number of Ethernet and serial ports. These relationships
extending from the midplane form a hierarchy of hardware resources. This hierarchy
is modeled using relationships between managed objects representing the hardware
resources.

FIGURE 2-1 Partial Hardware Resource Hierarchy

Managed Objects
In the Netra CT software, a managed resource is represented as a managed object,
which presents information needed to manage the resource. A managed resource can
be represented by a single managed object, or by several managed objects. An agent
typically contains or provides views of many managed objects.

FIGURE 2-2 shows the class names of the hardware Netra CT software managed
objects, and TABLE 2-1 provides definitions for these objects.

CompactPCI slot

Midplane

Power distribution unit Removable media slot

Alarm card DVD drive

Alarm port 2 Ethernet ports 2 serial ports
10 Netra CT Server Software Developer’s Guide • February 2007

FIGURE 2-2 Hardware Resource Hierarchy Showing Managed Object Classes

TABLE 2-1 Managed Object Class Definitions

Managed Object Class Definition

Network element Network elements can be standalone devices or multi-component,
geographically distributed systems.

Equipment holder Represents physical resources of the network element that are
capable of holding other physical resources, for example,
CompactPCI slots, fan tray slots, and system controller board slots.

Plug-in unit This managed entity represents equipment that can be physically
inserted or removed from slots of the system (for example,
CompactPCI I/O cards and power supply units).

Equipment Equipment represents those externally manageable physical
components which are not FRUs (for example, a power distribution
unit or a CPU temperature sensor) of a network that are not
modeled as a plug-in unit or an equipment holder.

Termination point Represents the points where physical paths terminate (for example,
Ethernet and serial ports) and physical path functions.

Midplane
(equipment)

CompactPCI slot
(equipment holder)

Power distribution unit
(equipment)

Removable media slot
(equipment holder)

Alarm card
(plug-in unit)

DVD drive
(plug-in unit)

Alarm port
(termination point)

2 Ethernet ports
(termination points)

2 serial ports
(termination points)
Chapter 2 Netra CT System Equipment Models 11

Viewing the Equipment Model Hierarchies
Both the SNMP interface and the Java Management Extensions (JMX) compatible
Netra CT element management API provide ways to traverse the equipment
containment hierarchy. You can view the managed objects of a Netra CT system
through the system’s alarm card or through the host CPU board. You can also view
the managed objects from the agent on any satellite CPU board. In both system-wide
views, the system’s midplane is at the top of the equipment hierarchy and all other
hardware objects (slots, fan trays, I/O cards, and so on) are displayed subordinate to
the midplane.

When viewing the system through the alarm card (defined as the system view from the
alarm card), the alarm card’s termination points (alarm port, Ethernet ports, and
serial ports) are displayed in the model, but the host CPU board’s termination points
are not displayed.

Conversely, when you view the system through the host CPU board (the system view
from host CPU board), the alarm card’s termination points are not displayed, but the
host CPU board’s termination points, and any hardware connected to the host CPU
board (for example, SCSI devices), is displayed.

You can also view the equipment model with the host CPU board or a supported
satellite CPU board as the network element at the top of the hierarchy. In these
models (defined as the host CPU board local view and satellite CPU board local view),
only the objects directly controlled by the host or satellite CPU board are displayed.
Other objects, like the midplane, alarm card, and the power distribution unit, are not
seen in these equipment models.

“Netra CT 810 System Equipment Models” on page 12 and “Netra CT 410 System
Equipment Models” on page 17 present the equipment models for the Netra CT rear-
access systems. These sections contain the equipment models shown in the system
alarm card view, the host CPU board view, and the host and satellite CPU board
views.

Netra CT 810 System Equipment Models
This section discusses the following equipment models of the Netra CT 810 server:

■ “Rear-Access Netra CT 810 System View From Alarm Card” on page 13
■ “Rear-Access Netra CT 810 System View From Host CPU Board” on page 14
■ “Rear-Access Netra CT 810 System Satellite CPU Board Local View” on page 16
■ “Netra CT 810 System Satellite CPU Board Local View” on page 16
12 Netra CT Server Software Developer’s Guide • February 2007

FIGURE 2-3 Rear-Access Netra CT 810 System View From Alarm Card

Midplane
(equipment)

CompactPCI
slot

(equipment holder)

Disk slot
(equipment holder)

Fan tray slot
(equipment holder)

Power supply
slot

(equipment holder)

Proprietary rear
transition module slot
(equipment holder)

System CPU rear
transition card slot
(equipment holder)

System controller
board slot

(equipment holder)

Disk drive
2 instances
(plug-in unit)

Alarm card
slot 8

(plug-in
unit)

I/O card
slots 2–7
(plug-in

unit)

Satellite
CPU card
slots 2–7
(plug-in

unit)

System
CPU card

slot 1
(plug-in

unit)

Alarm
proprietary

rear transition
card

(plug-in unit)

Alarm port
1 instance

(termination
point)

Ethernet port
2 instances
(termination

point)

Serial port
2 instances
(termination

point)

Satellite CPU
rear transition
card slots 2 –7
(plug-in unit)

System CPU
rear transition

card slot 1
(plug-in unit)

CPU
temperature
(equipment)

CPU
temperature
(equipment)

Fan tray
2 instances
(plug-in unit)

DVD drive or DAT drive
slot 1

(plug-in unit)

Power supply unit
2 instances
(plug-in unit)

System controller
board slot 1
(plug-in unit)

System status
panel slot

(equipment holder)

System
status

panel slot 1
(plug-in

unit)

Power distribution
unit

(equipment)

Removable media
slot

(equipment holder)
Chapter 2 Netra CT System Equipment Models 13

FIGURE 2-4 Rear-Access Netra CT 810 System View From Host CPU Board

Midplane
(equipment)

CompactPCI
slot

(equipment holder)

Disk slot
(equipment holder)

Fan tray slot
(equipment holder)

Power supply
slot

(equipment holder)

Proprietary rear
transition module slot
(equipment holder)

System CPU rear
transition card slot
(equipment holder)

System controller
board slot

(equipment holder)

Disk drive
2 instances
(plug-in unit)

Alarm card
slot 8

(plug-in
unit)

I/O card
slots 2–7
(plug-in

unit)

Satellite
CPU card
slots 2–7

(plug-in unit)

System
CPU card

slot 1
(plug-in

unit)

Alarm
proprietary

rear transition
card slot 8

(plug-in unit)

Parallel port
1 instance

(termination
point)

Ethernet port
2 instances
(termination

point)

SCSI slot
1 instance
(equipment

holder)

Serial port
2 instances
(termination

point)

Satellite CPU
rear transition

card
slots 2–7

(plug-in unit)

System CPU
rear transition

card
(plug-in unit)

CPU
temperature
(equipment)

CPU
temperature
(equipment)

Fan tray
2 instances
(plug-in unit)

DVD drive or DAT drive
slot 1

(plug-in unit)

Power supply unit
2 instances
(plug-in unit)

System controller
board slot 1
(plug-in unit)

System status
panel slot

(equipment holder)

System
status

panel slot 1
(plug-in

unit)

Power distribution
unit

(equipment)

Removable media
slot

(equipment holder)

SCSI slot
(equipment

holder)

SCSI slot
(equipment

holder)

Ethernet port
(termination

point)

PMC slot
(equipment

holder)

Drive expansion box
(equipment holder)

Expansion box
disk drive

(equipment)

SCSI slot
1 instance

(equipment holder)

Drive expansion box
(equipment holder)

Expansion box disk drive
3 instances
(equipment)

PMC card
(plug-in unit)
14 Netra CT Server Software Developer’s Guide • February 2007

FIGURE 2-5 Rear-Access Netra CT 810 System Host CPU Board Local View

Root
(network element)

CompactPCI
slots 2–7

(equipment holder)

Disk slot
(equipment holder)

System CPU card
(equipment)

Removable media slot
(equipment holder)

Disk drive
2 instances
(plug-in unit)

I/O card
slots 3–7

(plug-in unit)

DVD drive or DAT drive
slot 1

(plug-in unit)

CPU
temperature
(equipment)

Parallel port
1 instance

(termination
point)

Ethernet port
2 instances
(termination

point)

SCSI slot
1 instance
(equipment

holder)

Serial port
2 instances
(termination

point)

SCSI slot
2 instances
(equipment

holder)

SCSI slot
(equipment

holder)

Ethernet port
2 instances
(termination

point)

PMC slot
1 instance
(equipment

holder)

Drive expansion box
(equipment holder)

Expansion box
disk drive

(equipment)

SCSI slot
(equipment

holder)

Expansion box
disk drive

(equipment)

Drive expansion box
(equipment holder)

PMC card
(plug-in unit)
Chapter 2 Netra CT System Equipment Models 15

FIGURE 2-6 Rear-Access Netra CT 810 System Satellite CPU Board Local View

FIGURE 2-7 Netra CT 810 System Satellite CPU Board Local View

Root
(network element)

System CPU
CPU card equipment

(equipment)

PMC slot
2 instances

(equipment holder)

Ethernet port
2 instances

(termination point)

PMC card
(plug-in unit)

Serial port
2 instances

(termination point)

CPU temperature
(equipment)

Root
(network element)

System CPU
CPU card equipment

(equipment)

PMC slot
2 instances

(equipment holder)

PMC card
(plug-in unit)

CPU temperature
(equipment)
16 Netra CT Server Software Developer’s Guide • February 2007

Netra CT 410 System Equipment Models
This section discusses the following equipment models for the Netra CT 410 server:

■ “Rear-Access Netra CT 410 Diskful System View From Alarm Card” on page 18

■ “Rear-Access Netra CT 410 Diskful Local View From Host CPU Board” on
page 19

■ “Rear-Access Netra CT 410 System Satellite CPU Board Local View” on page 20
Chapter 2 Netra CT System Equipment Models 17

FIGURE 2-8 Rear-Access Netra CT 410 Diskful System View From Alarm Card

Midplane
(equipment)

CompactPCI
slot

(equipment
holder)

Disk slot
(equipment

holder)

Fan tray
slot

(equipment
holder)

Power
supply

slot
(equipment

holder)

Proprietary
rear transition

card slot
(equipment

holder)

System CPU
rear transition

card slot
(equipment

holder)

System
controller
board slot

(equipment
holder)

Disk drive
1 instance

(plug-in unit)

Alarm card
(3U) slots
1 and 2
(plug-in

unit)

I/O card
slots

4 and 5
(plug-in

unit)

Satellite CPU
card slots
4 and 5
(plug-in

unit)

System
CPU card

slot 3
(plug-in

unit)

Alarm
proprietary

rear
transition

card
(plug-in unit)

Alarm port
1 instance

(termination
point)

Ethernet port
2 instances
(termination

point)

Serial port
2 instances
(termination

point)

Satellite CPU
rear transition

card
slots 4 and 5
(plug-in unit)

System CPU
rear transition

card
slot 3

(plug-in unit)

CPU
temperature
(equipment)

CPU
temperature
(equipment)

Fan tray
2 instances
(plug-in unit)

Power supply
unit

1 instance
(plug-in unit)

System
controller

board
slot 1

(plug-in
unit)

System
status

panel slot
(equipment

holder)

System
status
panel
slot 1

(plug-in
unit)

Power
distribution

unit
(equipment)
18 Netra CT Server Software Developer’s Guide • February 2007

FIGURE 2-9 Rear-Access Netra CT 410 Diskful Local View From Host CPU Board

Root
(network element)

CompactPCI slot
(equipment holder)

Disk slot
(equipment holder)

System CPU
CPU card equipment

 slot 3
(equipment)

Disk drive
1 instance

(plug-in unit)

I/O card
slots 4 and 5
(plug-in unit)

PMC slot
1 instance
(equipment

holder)

Ethernet port
2 instances
(termination

point)

SCSI slot
2 instances
(equipment

holder)

PMC slot
(equipment

holder)

Ethernet port
(termination

point)

SCSI slot
(equipment

holder)

Parallel port
(termination

point)

Serial port
(termination

point)

PMC card
(plug-in unit)

CPU temperature
(equipment)

Drive expansion box
(equipment holder)

Expansion box
disk drive

(equipment)

SCSI slot
(equipment

holder)

Drive expansion box
(equipment holder)

Expansion box
disk drive

(equipment)

SCSI slot
(equipment

holder)
Chapter 2 Netra CT System Equipment Models 19

FIGURE 2-10 Rear-Access Netra CT 410 System Satellite CPU Board Local View

Root
(network element)

System CPU
CPU card equipment

 slot 3
(equipment)

PMC slot
(equipment holder)

Ethernet port
(termination point)

Parallel port
(termination point)

Serial port
(termination point)

CPU temperature
(equipment)
20 Netra CT Server Software Developer’s Guide • February 2007

CHAPTER 3

Getting Started With Netra CT
Element Management Agent API

This chapter explains how to get started writing applications that interface with the
Netra CT element management agent, using the Java Management Extensions (JMX)
compatible Java API supported by the Netra CT management agent. The chapter
consists of:

■ “Before You Begin” on page 22
■ “Netra CT Element Management Agent API” on page 22
■ “Creating Your Application” on page 24
21

Before You Begin
You should become acquainted with the topology of the Netra CT server (see
Chapter 2), and have some knowledge of Java programming, JMX specifications, and
JDMK framework. For more information about JDMK refer to Java Dynamic
Management Kit 4.2 Tutorial (806-6633), or go to
http://java.sun.com/docs/books/tutorial/index.html.

Verify that you have the Solaris OS on your development system. In addition, you
can download the required Netra CT patch packages from:

http://sunsolve.com

These packages consist of:

You will use these installed packages to work with this tutorial.

Netra CT Element Management Agent
API
The Netra CT server software package includes various modules and extensions (see
“Operating System Specifics” on page 6), and the netract agent is one of these.

The netract agent, when appropriately invoked, provides configuration
monitoring and fault monitoring. This enables you to investigate the installed
system, and to determine whether the components are running smoothly.

Individual netract agents run on the alarm card, the host CPU board, and any
satellite CPU board. A management application must be able to talk to the different
agents and gather information about the system into a database.

TABLE 3-1 Solaris Packages for Netra CT Developer APIs

Package Description

SUNW2jdrt Java Runtime Java Dynamic Management Kit (JDMK) package

SUNWctmgx Netra CT management agent package

SUNWctac Alarm card firmware package that includes the Netra CT
management agent
22 Netra CT Server Software Developer’s Guide • February 2007

Each netract agent notifies the management application of any changes, such as
hardware or software configuration changes, and also detects faults when they
occur.

The netract agent provides two different interfaces for the management
applications, one is SNMP version 2C interface, the other is a JMX compatible Java
API called Netra CT management agent API. This chapter provides an introduction
on how to write a management application using this Java API.

Netra CT Agent Security
For JMX, JDMK, and RMI connectivity, the Netra CT agent provides security by
authenticating the application connecting to it through the context of a valid
username and password pair.

The username and password must be previously created in the alarm card database
through the alarm card CLI. An account on the alarm card consists of username,
password, and permission. The Netra CT agent has only two permissions: read-only
and read-write. User account on the alarm card must have ALL PRIVILEDGES
ENABLED to have read-write permission. (See the Netra CT Server System
Administration Guide for details on setting up user accounts.)

There is a security flag used to enable and disable the security feature. This flag is
stored persistently and its default value is false. The security flag can be set to true
or false via alarm card CLI command setmohsecurity. A reset of alarm card is
required after changing the flag for the feature to take effect. (See the Netra CT Server
System Administration Guide for information on the setmohsecurity and
showmohsecurity CLI commands).

You can get the state of security flag with the alarm card CLI command
showmohsecurity or with the API by using the NEMBean’s getSecurityFlag
method.

If the flag is true, security is on. This means the application that connects to Netra
CT agent must provide a valid username and password to be able to establish
connection.

If the flag is false, security is off and no authentication is done. It does not matter
whether an application provides username and password or not, the application is
always allowed to connect.

Sample code with Netra CT Security is shown CODE EXAMPLE 3-1.
Chapter 3 Getting Started With Netra CT Element Management Agent API 23

CODE EXAMPLE 3-1 Sample Code With Netra CT Security

Creating Your Application
Creating an application to interface with and manage the configuration of the Netra
CT server involves a series of steps. You must be able to:

■ Enquire into the hierarchy of the system configuration
■ Monitor notifications
■ Monitor alarms

1. Cut and paste the relevant code example into a text editor, make any necessary
adjustments, and compile the code.

Make sure that SUNW2jdtk is installed before trying to compile Client.java.
Refer to the Java Dynamic Management Kit 4.2 Tutorial for background information on
Client.java.

2. To compile Client.java, issue the command /usr/j2se/bin/javac
-classpath:

Compiling Client.java should produce the file Client.class. If you have
difficulty, refer to the Java Tutorial example of running a simple client.

3. Before running Client.java, start the agent by issuing the
command/opt/SUNWnetract/mgmt2.0/bin/ctmgx start

...
// set up the authentication info
AuthClient.setAuthInfo(connectorClient, username, password);
// now connect to the agent...
connectorClient.connect();
...

$ /usr/j2se/bin/javac -classpath \
/opt/SUNWjdmk/jdmk4.2/1.2/lib/jdmkrt.jar: \
/opt/SUNWnetract/mgmt2.0/lib/agent.jar Client.java

$ /opt/SUNWnetract/mgmt2.0/bin/ctmgx start
24 Netra CT Server Software Developer’s Guide • February 2007

4. Use the following command to run Client.java:

The following sections point out various features of the Netra CT element
management API.

Purpose of the Application
First, a management application needs to know how the system is configured. The
simplest example sets up an agent describing the hardware containment hierarchy.
From the root of this tree, you can develop the management tree to show, for
example, how many fans there are, which cards are in which slots and so on.
Developing code that begins this action is the purpose of “Determining the System
Configuration Hierarchy” on page 25.

“Listening for Notifications” on page 28 deals with developing a way of monitoring
notifications such as power on and power off to a particular slot or device.

“Managing Alarms” on page 29 covers alarm management -– how to handle the
receiving and transmitting of system alarms such as CPU overtemperature alarm.

“Software Monitoring” on page 37 shows how to get a list of running software
services and daemons so they can be registered to receive notice of events.

Determining the System Configuration Hierarchy
In this section you develop a client to print out the object names of the MBeans
representing the system. A complete description of Mbeans, together with examples,
can be found in the JDMK documentation.

1. Ensure that you have the appropriate software installed on the development
system for the application you intend to develop.

Refer to the Netra CT Server System Administration Guide if you need help in installing
the appropriate software.

2. Go to /opt/SUNWnetract/mgmt2.0/docs/api to find the documentation that
identifies the pieces you need to communicate with the netract agent.

See the API documentation for:

■ com.sun.ctmgx.MohNames

$ /usr/j2se/bin/java -classpath \
.:/opt/SUNWjdmk/jdmk4.2/1.2/lib/jdmkrt.jar: \
/opt/SUNWnetract/mgmt2.0/lib/agent.jar Client
Chapter 3 Getting Started With Netra CT Element Management Agent API 25

■ com.sun.ctmgx.ContainmentTreeMbean

For JDMK documentation, go to: /opt/SUNWjdmk/jdmk4.2/1.2/docs. For an
introduction to JDMK, go to //docs.sun.com, and search for the Java Dynamic
Management Kit 4.2 Tutorial.

See the API documentation for:

■ com.sun.jdmk.comm.RmiConnectorAddress
■ com.sun.jdmk.comm.RmiConnectorClient

Communicating With the Netra CT Agent

This simple demonstration lets you connect a client with an instance of netract
agent, beginning in CODE EXAMPLE 3-2. This example represents part one of a
three-part example. A detailed explanation follows.

CODE EXAMPLE 3-2 Creating a Client to Communicate With the Netra CT Agent (Part 1)

import java.util.Iterator;
import java.util.Set;
import javax.management.ObjectName;
import com.sun.ctmgx.moh.MohNames;
import com.sun.jdmk.ServiceName;
import com.sun.jdmk.comm.RmiConnectorAddress;
import com.sun.jdmk.comm.RmiConnectorClient;

public class Client {

 private RmiConnectorClient connectorClient;
 private RmiConnectorAddress connectorAddress;

 public Client() {
 connectorClient = new RmiConnectorClient();
 connectorAddress = new RmiConnectorAddress();
 }

 public static void main(String[] args) {
 Client client = new Client();
 try {
 client.printContainmentTree();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
26 Netra CT Server Software Developer’s Guide • February 2007

CODE EXAMPLE 3-2 instantiates the RmiConnectorClient and
RmiConnectorAddress.

The demonstration continues in CODE EXAMPLE 3-3.

Finding the Root Object Name

CODE EXAMPLE 3-3 continues from the previous example. The code example connects
to the client and prints the ContainmentTree by getting the ObjectName of the root
MBean in the containment hierarchy.

Each MohNames instance comes up with ObjectNames instances that are accessible
via public static fields defined in MohNames. This includes the
ContainmentTreeMBean instance, which provides a mechanism for the user to
traverse the containment hierarchy representing the Netra CT system.

This demonstration returns the ObjectName of the instance of NEMBean. NEMBean
is the name of the network element MBean representing the system as a whole, in
other words, the root of the tree.

Now that you have identified the ObjectName of the root of the
MOH_CONTAINMENT_TREE you are ready to traverse the tree and find out what
other elements are in the tree.

CODE EXAMPLE 3-3 Getting the Root MBean Object Name (Part 2)

 public void printContainmentTree() throws Exception {
 connectorClient.connect(connectorAddress);

 Object[] params = new Object[0];
 String[] signature = new String[0];
 ObjectName rootName =
 (ObjectName)connectorClient.invoke(MohNames.MOH_CONTAINMENT_TREE,
 "getRoot", params, signature);
 printSubTree(rootName);

 connectorClient.disconnect();
 }
Chapter 3 Getting Started With Netra CT Element Management Agent API 27

Traversing the Containment Hierarchy From a Node

Continuing the demonstration from the previous example, in CODE EXAMPLE 3-4 you
traverse the MOH_CONTAINMENT_TREE from a node, and can get a list of all the
nodes on the tree using getChildren.

Here, the nodeName is the ObjectName of the MBean where the search starts. The
line beginning Set children gets the children of the specified MBean in the
containment hierarchy.

Once you have established the hierarchy of the existing system, your application
must receive notification when changes to the system occur. This is the subject of the
following section.

Listening for Notifications
This series of examples assumes you continue from the previous three-part example.
Return to /opt/SUNWnetract/mgmt2.0/docs/api to find documentation.

In the JDMK framework, look at:

■ javax.management.Notification
■ javax.management.NotificationListener
■ javax.management.NotificationFilterSupport
■ javax.management.NotificationFilter

In MOH documentation you need to look at: com.sun.ctmgx.moh.MohNames and
com.sun.ctmgx.moh.Moh.EFDMBean.

CODE EXAMPLE 3-4 Traversing the Containment Hierarchy From a Node (Part 3)

 private void printSubTree(ObjectName nodeName) throws Exception {
 System.out.println(nodeName);

 Object[] params = {nodeName};
 String[] signature = {"javax.management.ObjectName"};

 Set children =
 (Set)connectorClient.invoke(MohNames.MOH_CONTAINMENT_TREE,
 "getChildren", params, signature);

 for (Iterator itr = children.iterator(); itr.hasNext();) {
 printSubTree((ObjectName)itr.next());
 }
 }
}

28 Netra CT Server Software Developer’s Guide • February 2007

Registering a Notification Listener With EFDMBean Instance

This example continues from the previous examples and shows you how to register
a NotificationListener using a NotificationFilter.You begin by adding a
NotificationListener that catches communications from the
RmiConnectorClient.

CODE EXAMPLE 3-5 establishes that MohNames can access MOH_DEFAULT_EFD. The
EFDMBean exposes the remote management interface of an event forwarding
discriminator managed object.

The netract agent of the Netra CT alarm card does not support the PUSH_MODE, so
the above code will work for any of the netract agent instances (those on the host,
satellite, and alarm card) in a Netra CT drawer.

Managing Alarms
Before you begin this segment of code example, you should refer back to:
/opt/SUNWnetract/mgmt2.0/docs/api

Look at the MOH documentation for:

■ com.sun.ctmgx.moh.AlarmNotification
■ com.sun.ctmgx.moh.AlarmNotificationFilter
■ com.sun.ctmgx.moh.AlarmSeverity
■ com.sun.ctmgx.moh.AlarmSeverityProfileMBean

CODE EXAMPLE 3-5 RMI Example of Listening for MOH Notifications

Registering a NotificationListener with a NotificationFilter

try {
// accessing MohNames for MOH_DEFAULT_EFD
//
connectorClient.addNotificationListener(MohNames.MOH_DEFAULT_EFD,\

aListener, aFilter, null);
}
catch (com.sun.jdmk.comm.CommunicationException ce) {

 try {
connectorClient.setMode(RmiConnectorClient.PULL_MODE);
connectorClient.addNotificationListener\

(MohNames.MOH_DEFAULT_EFD,aListener, aFilter, null);
 }

catch (Exception e) {
 }

}

Chapter 3 Getting Started With Netra CT Element Management Agent API 29

■ com.sun.ctmgx.moh.AlarmType

Registering a NotificationListener With an
AlarmNotificationFilter

In this section you identify the kinds of alarms the script listens for when events
occur. You can specify the level of action; this example listens for critical or major
alarms. AlarmNotification represents an alarm notification emitted by an
MBean.

CODE EXAMPLE 3-6 follows the form of the previous example in setting the
RmiConnectorClient to PULL_MODE. The alarm filter is set to
enableAllAlarmTypes, then refined to enable only AlarmSeverity.CRITICAL
and AlarmSeverity.MAJOR.

CODE EXAMPLE 3-6 Registering a NotificationListener With an AlarmNotificationFilter

AlarmNotificationFilter aFilter = new AlarmNotificationFilter();

// interested in all types of alarms
//
aFilter.enableAllAlarmTypes();

// interested in only CRITICAL and MAJOR alarms
//
aFilter.enableSeverity(AlarmSeverity.CRITICAL);
aFilter.enableSeverity(AlarmSeverity.MAJOR);

try {
connectorClient.addNotificationListener(MohNames.MOH_DEFAULT_EFD,\

aListener, aFilter, null)
 }
catch (com.sun.jdmk.comm.CommunicationException ce) {

connectorClient.setMode(RmiConnectorClient.PULL_MODE);
connectorClient.addNotificationListener(MohNames.MOH_DEFAULT_EFD,\

aListener, aFilter, null)
 }
 catch (Exception e) {
 }
30 Netra CT Server Software Developer’s Guide • February 2007

Using the Default AlarmSeverityProfile

Each netract agent instance comes up with a default instance of
AlarmSeverityProfile which can be accessed by its object name,
MohNames.MOH_DEFAULT_ASP. The MBean instances that might generate
AlarmNotifications will have this default AlarmSeverityProfile associated
with them. You can associate a new profile any time.

CODE EXAMPLE 3-7 Using the Default AlarmSeverityProfile

// Get the alarm severity association of the default profile
//
Object[] allObjs = null;
Object obj = null;
Java.util.Set mySet = null;
Java.util.Map myMap = null;
 try {
 myMap = (Map)connectorClient.invoke(MohNames.MOH_DEFAULT_ASP,\

"getAlarmSeverityList", null,null);

 mySet = (Set)myMap.keySet();
 allObjs = mySet.toArray();
 } catch(Exception e) {
 e.printStackTrace();
 }

 AlarmType aType = null;
 AlarmSeverity aSeverity = null;

 for (int i = 0; i < mySet.size();i++) {
 try {

// aType and aSeverity is the association in this
 // default profile

aType = (AlarmType)allObjs[i];
 aSeverity = (AlarmSeverity)myMap.get(aType);

 // setting the severity of high temp alarm to critical
 //
 if (aType.equals(AlarmType.HIGH_TEMPERATURE)) {
 Object[] params = new Object[2];
 String[] signature = new String[2];
 params[0] = aType;
 params[1] = AlarmSeverity.CRITICAL;
 signature[0] = "com.sun.ctmgx.moh.AlarmType";
 signature[1] = "com.sun.ctmgx.moh.AlarmSeverity";
 connectorClient.invoke(MohNames.MOH_DEFAULT_ASP, \

"setAlarmSeverity", params, signature);
Chapter 3 Getting Started With Netra CT Element Management Agent API 31

In CODE EXAMPLE 3-7, the severity level of HIGH.TEMPERATURE AlarmType in the
default AlarmSeverityProfile has been set to CRITICAL. The following
example shows how to create your own alarm severity profile instances.

Creating Your Own AlarmSeverityProfile

You can create your own AlarmSeverityProfile by following CODE EXAMPLE 3-8.

 } catch(Exception e) {
 e.printStackTrace();
 }
 }

CODE EXAMPLE 3-8 Creating an AlarmSeverityProfile

try {
// You need to provide the class name to instantiate an MBean,
// for AlarmSeverityProfileMBean
// the class name string is defined by the constant MohNames.CLASS_NAME_ASP
//

ObjectName profileName = new ObjectName("NetraCT:name=\
AlarmSeverityProfile,id=2");

connectorClient.createMBean(MohNames.CLASS_NAME_ASP, profileName,\
null,null);

// To make the profile usable, you need to provide the alarm type and severity
// associations
//

 Object[] params = new Object[2];
 String[] signature = new String[2];
 signature[0] = "com.sun.ctmgx.moh.AlarmType";
 signature[1] = "com.sun.ctmgx.moh.AlarmSeverity";

 // For high temperature alarm
 //
 params[0] = AlarmType.HIGH_TEMPERATURE;
 params[1] = AlarmSeverity.CRITICAL;
 connectorClient.invoke(profileName, \

"setAlarmSeverity", params, signature);

 // For high memory utilization alarm
 //
 params[0] = AlarmType.HIGH_MEMORY_UTILIZATION;
 params[1] = AlarmSeverity.MAJOR;

CODE EXAMPLE 3-7 Using the Default AlarmSeverityProfile (Continued)
32 Netra CT Server Software Developer’s Guide • February 2007

CODE EXAMPLE 3-8 assigns alarm notifications for high temperature, high memory
usage, fan failure, and fuse failure, although the current netract agent does not
support alarm notifications for fuse failure. The code example is included here for
demonstration purposes.

Assigning a New AlarmSeverityProfile

CODE EXAMPLE 3-9 shows how to assign a new AlarmSeverityProfile to an
MBean which can generate AlarmNotifications.

 connectorClient.invoke(profileName,\
"setAlarmSeverity", params, signature);

// For fan failure alarm (NetraCT agent does not support this alarm
// currently
//

 params[0] = AlarmType.FAN_FAILURE;
 params[1] = AlarmSeverity.MINOR;
 connectorClient.invoke(profileName,\

"setAlarmSeverity", params, signature);

// For fuse failure alarm (NetraCT agent does not support this alarm
// currently
//

 params[0] = AlarmType.FUSE_FAILURE;
 params[1] = AlarmSeverity.WARNING;
 connectorClient.invoke(profileName,\

"setAlarmSeverity", params, signature);

 } catch (Exception e) {
 e.printStackTrace();
 }

CODE EXAMPLE 3-9 Assigning a New AlarmSeverityProfile

try {
 Object[] params = new Object[1];
 String[] signature = new String[1];

 signature[0] = "javax.management.ObjectName";

// pass the object name of the newly created AlarmSeverityProfileMBean
// instance
//

 params[0] = profileName;

CODE EXAMPLE 3-8 Creating an AlarmSeverityProfile (Continued)
Chapter 3 Getting Started With Netra CT Element Management Agent API 33

The new AlarmSeverityProfile can be reserved to replace the default profile
when required.

Configuring the Agent to Drive Alarm Card Alarm Outputs

The system configuration hierarchy indicates the physical alarm port which
corresponds to a termination point, as shown in “Hardware Resource Hierarchy
Showing Managed Object Classes” on page 11 and subsequent views. The alarm port
termination point supports five alarm interfaces – three for output, two for input. In
general, when an alarm occurs the corresponding output alarm pin is driven high
based on the alarm severity.

The output alarm pins (alarm0, alarm1, alarm2) are statically mapped into
severities of critical, major, and minor respectively.

For example, assume that HIGH_TEMPERATURE is assigned as critical, and
HIGH_MEMORY_UTILIZATION is assigned as minor. When a high temperature
occurs, alarm0 is driven high to indicate a critical alarm. When a
HIGH_MEMORY_UTILIZATION occurs, alarm2 is driven high to indicate a minor
alarm.

In JMX, an alarm is defined as a notification with a severity associated with it. These
alarms are assigned as NetworkInterfaceMBeans, each of which represent a
network interface object in the system.

You can configure an alarm card agent to drive output alarms from the alarm card
on the Netra CT server using MOH as described in the following section.

// sensorObjectName is the object name of lets say a temperature sensor
// MBean instance
//

 connectorClient.invoke(sensorObjectName,\
"setAlarmSeverityProfilePointer", params, signature);

 } catch (Exception e) {
e.printStackTrace();

}

TABLE 3-2 Example of Alarm Output Mapping

alarm0 alarm1 alarm2

critical major minor

HIGH_TEMPERATURE HIGH_MEMORY_UTILIZATION

CODE EXAMPLE 3-9 Assigning a New AlarmSeverityProfile (Continued)
34 Netra CT Server Software Developer’s Guide • February 2007

▼ To Set Up and Use Alarm Features

The following steps show how to configure an agent from the alarm card to
correspond with the mapping in TABLE 3-2.

1. Register a notification listener with an AlarmNotificationFilter.

Use the examples beginning “Registering a NotificationListener With an
AlarmNotificationFilter” on page 30, and modify the default to listen for
critical or major alarms. Return to the start of this chapter for help in getting an
ObjectName.

2. Develop an AlarmSeverityProfile based on the default profile.

An AlarmSeverityProfile (ASP) contains multiple entries, and can be assigned
to several alarm-generating objects. Some entries in the profile might not be used by
an object, because that object might not be generating that specific kind of alarm.
The default instance of AlarmSeverityProfile can be accessed by its object
name, MohNames.MOH_DEFAULT_ASP.

3. Assign the AlarmSeverityProfile to the corresponding objects.

■ Assign HIGH_TEMPERATURE to the corresponding CPU thermistor
sensorObjectName.

■ Assign HIGH_MEMORY_UTILIZATION to the corresponding CpuCardEquipment
object.

In CODE EXAMPLE 3-10 extracted from “Using the Default AlarmSeverityProfile”
on page 31, the severity level of HIGH.TEMPERATURE alarm type in the default ASP
has been set to CRITICAL corresponding with alarm0.

CODE EXAMPLE 3-10 Extract of Using the Default Alarm Severity Profile

// Get the alarm severity association of the default profile
//
<snip>

 // setting the severity of high temp alarm to critical
 //
 if (aType.equals(AlarmType.HIGH_TEMPERATURE)) {
 Object[] params = new Object[2];
 String[] signature = new String[2];
 params[0] = aType;
 params[1] = AlarmSeverity.CRITICAL;
 signature[0] = "com.sun.ctmgx.moh.AlarmType";
 signature[1] = "com.sun.ctmgx.moh.AlarmSeverity";
 connectorClient.invoke(MohNames.MOH_DEFAULT_ASP, \

"setAlarmSeverity", params, signature);
Chapter 3 Getting Started With Netra CT Element Management Agent API 35

Any number of objects are capable of generating an alarm. If you assign this profile
to a particular object, whenever a hardware failure of that object occurs, the
netract agent refers to the profile and responds as you have specified.

CODE EXAMPLE 3-11 creates your own AlarmSeverityProfile instances based on
these examples. In this case, the sensorObjectName is the object name of a
temperature sensor MBean instance.

The new alarm severity profile replaces the default profile when required.

You can create several alarm severity profiles, each specifying a different response.
One might designate fan failure as critical, another might designate high
temperature as major. You then assign the appropriate profile to the object.

.....
<unsnip>

CODE EXAMPLE 3-11 Extract of Assigning a New AlarmSeverityProfile

try {
 Object[] params = new Object[1];
 String[] signature = new String[1];

 signature[0] = "javax.management.ObjectName";

// pass the object name of the newly created AlarmSeverityProfileMBean
// instance
//

 params[0] = profileName;

// sensorObjectName is the object name of lets say a temperature sensor
// MBean instance
//

 connectorClient.invoke(sensorObjectName,\
"setAlarmSeverityProfilePointer", params, signature);

 } catch (Exception e) {
e.printStackTrace();

}

CODE EXAMPLE 3-10 Extract of Using the Default Alarm Severity Profile (Continued)
36 Netra CT Server Software Developer’s Guide • February 2007

Clearing Alarms

Alarms are cleared automatically when each alarm relay is driven low.
OperationalState will accordingly be shown to be enabled, disabled, or
unknown.

Software Monitoring
The following code examples help monitor software events. The series begins in
CODE EXAMPLE 3-12 with establishing the printService to print system status
reports, then gathers the list of software services and their associated daemons.

CODE EXAMPLE 3-12 Software Monitor Test (Part 1)

private void printService(ObjectName objName) {
 try {
 String name = (String)connectorClient.getAttribute(objName,"Name");

String status = (String)connectorClient.getAttribute(objName,"Status");
 Integer polling_interval =\

(Integer)connectorClient.getAttribute(objName,"PollingInterval");
 System.out.println("Name: " + name);
 System.out.println("Status: " + status);
 System.out.println("Polling Interval: " + polling_interval);
 }catch(Exception e) {
 e.printStackTrace();
 }
 }

 private void printDaemon(ObjectName objName) {
 try {
 String name = (String)connectorClient.getAttribute(objName,"Name");
 String status = (String)connectorClient.getAttribute(objName,"State");
 Integer retry = (Integer)connectorClient.getAttribute(objName,\

"CurrentRetryCount");
 Integer maxretry = (Integer)connectorClient.getAttribute(objName,\

"MaxRetryCount");

 System.out.println("name: " + name);
 System.out.println("state: " + status);
 System.out.println("retry: " + retry);
 System.out.println("maxretry: " + maxretry);
 }catch(Exception e) {e.printStackTrace();}
 }

 // This method traverses through the hierarchy of software monitor and
 // prints out all the software services and the daemons.
Chapter 3 Getting Started With Netra CT Element Management Agent API 37

CODE EXAMPLE 3-12 builds on previous examples to establish the status of
connectorClient, and examine the hierarchy of the swServiceList in order to
find existing services and running daemons.

The following segment of code collects the attributes of each software service so that
the service can be registered to receive event notification.

CODE EXAMPLE 3-13 traverses swServiceList and adds NotificationListener
to the connectorClient.

The final code segment gets the list of daemons that support the service, and prints
out the daemon attributes for event notification.

 private void test() {
Object[] allObjs = null;

 Set swServiceList = null;
ObjectName myObjName = null;

 try {
 // Get the list of all software services */
 swServiceList =(Set)connectorClient.invoke\

(MohNames.MOH_SOFTWARE_MONITOR,"getSoftwareServiceList",null,null);
allObjs = swServiceList.toArray();

CODE EXAMPLE 3-13 Traversing the Software Service List (Part 2)

//Traverse through the software service list and print out the attributes
 //of each software service
 for (int i = 0; i < swServiceList.size();i++) {
 myObjName = (ObjectName)allObjs[i];
 System.out.println("service : "+ ((ObjectName)allObjs[i]).toString());
 printService(myObjName);
 // Register the software service to receive the event notifications
 connectorClient.addNotificationListener(myObjName,this,null,null);

CODE EXAMPLE 3-14 Getting the List of Service Daemons (Part 3)

 // For each service, get the list of daemons that support the service
 ObjectName[] daemonList =\

(ObjectName[])connectorClient.getAttribute(myObjName,"DaemonList");
 if (daemonList != null && daemonList.length > 0){
 System.out.print("Daemon List: ");
 Integer retry = null;
 Integer maxretry = null;
 // For each daemon, print out all attributes of the daemon.
 for (int k= 0;k < daemonList.length;k++) {
 printDaemon(daemonList[k]);

CODE EXAMPLE 3-12 Software Monitor Test (Part 1)
38 Netra CT Server Software Developer’s Guide • February 2007

CODE EXAMPLE 3-14 establishes a DaemonList for each service and prints out the
attributes of each daemon. Finally, the code registers these daemons to receive notice
of events with addNotificationListener.

For further information, look at /opt/SUNWnetract/mgmt2.0/docs/api which
details all the MOH interfaces and classes that are provided for the Netra CT system
software.

 // register the daemon to receive the event notifications
connectorClient.addNotificationListener\

(daemonList[k],this,null,null);
 }
 }
 }
 }catch(Exception e) {throw new UncheckedException(e);}

}

CODE EXAMPLE 3-14 Getting the List of Service Daemons (Part 3)
Chapter 3 Getting Started With Netra CT Element Management Agent API 39

40 Netra CT Server Software Developer’s Guide • February 2007

CHAPTER 4

Netra CT Element Management
Agent API

This chapter contains the application programming interfaces (API) of the Netra CT
element management agent software and includes the following sections:

■ “Interface Overview” on page 42

■ “How the API Sections are Organized” on page 44

■ “Netra CT Management Agent Interfaces and Classes” on page 45
41

Interface Overview
Netra CT management agent uses the Java Dynamic Management Kit (JDMK)
framework as a Java API which provides the management capability for the Netra
CT system.

JDMK supports JMX, which is a standard set of APIs for network and client
management. JDMK provides an extended API along with different communication
protocol adapters such as Remote Method Invocation (RMI), HTTP, HTML, and
Simple Network Management Protocol (SNMP).

These protocol adapters are used to communicate with instances of JDMK agents;
Netra CT management agent supports SNMP and RMI communication protocols.

You can find an introduction to the JDMK, tutorials, code samples, and APIs on the
Sun Developer Network web site: http://java.sun.com

Summary of JDMK
JDMK’s API and development tools can help you develop distributed management
applications. The JDMK allows resources of one host to be monitored from another
host.

A resource can be any entity, physical or virtual, that you want to monitor through
your network. Physical resources include network elements, and virtual resources
include applications operating on a host. A resource can be seen through its
management interface, where its attributes, operations, and notifications are
accessible by a management agent.

In order for a management agent to monitor a resource, the resource must be
developed as a managed bean (MBean), which is Java object that represents the
resource’s management interface. If the resource itself is a Java application, it can be
its own MBean. Otherwise, an MBean is a Java representation of a device.

In the JDMK model, a Java Dynamic Management agent follows the client-server
model, in which an agent responds to the management requests from any number of
client applications that wish to access its resources. The central component of an
agent is the MBean server, which is a registry for MBean instances and provides the
framework that allows agent services to interact with MBeans.
42 Netra CT Server Software Developer’s Guide • February 2007

http://java.sun.com

The JDMK provides protocol connector interfaces that allow remote applications to
access agent applications and their resources. Remote method invocation (RMI) and
HTTP are two such JDMK supported protocols that enable a Java client application
running on one system to access the resources and methods of another Java server
application running on a different system.

FIGURE 4-1 displays the location of the RMI/HTTP protocols between an agent
application and a remote manager application.

FIGURE 4-1 Key Components of the Java Dynamic Management Kit

In FIGURE 4-1, a resource and an agent service are registered as MBeans with the
agent application’s MBean server. The application agent also contains a connector
server for the RMI/HTTP protocols. The remote manager application is a Java
application running on a distant host system. The manager contains the RMI/HTTP
connector client and proxy MBeans representing the resource and service. When the
RMI/HTTP connector client establishes the connection with the agent’s RMI/HTTP
connector server, the other components of the application can issue management
requests to the agent.

Typically, you would first determine the management interface of your resource, that
is, the information needed to manage it. This information is expressed as attributes
and operations. An attribute is a value of any type that a manager can get or set
remotely. An operation is a method with any signature and any return type that the
manager can invoke remotely.

As specified by the Java Management extensions for instrumentation, all attributes
and operations are explicitly listed in an MBean interface. This Java interface defines
the full management interface of an MBean. The interface must have the same name
as the class that implements it, followed by the MBean suffix. Since the interface and
its implementation are usually in different files, two files make up a standard

Agent application Remote manager application

Connector
server

MBean
Server

Agent
Service

Java virtual machine

RMI/HTTP

Connector
client

Developer’s
management
components

Java virtual machine

Resource

R

M

R

M

Chapter 4 Netra CT Element Management Agent API 43

MBean. For example, the management interface of the class SimpleStandard (in
the file SimpleStandard.java) is defined in the interface
SimpleStandardMBean (in the file SimpleStandardMBean.java).

For a complete discussion of JDMK components and protocols, refer to the Java
Dynamic Management Kit documentation set found on the Solaris documentation
website, http://docs.sun.com. For additional information of JDMK and the
RMI/HTTP protocol, refer to the documentation, tutorials, code samples, and APIs
found on the Java Developers website: http://developer.java.sun.com.

Viewing the Netra CT Management Agent API
Online
The entire Netra CT RMI API specification can be viewed online as cross-referenced
HTML pages. By default, these HTML pages are installed in the following directory:

/opt/SUNWnetract/mgmt2.0/docs/api/com/sun/ctmgx/moh

You can view an index of all of these pages by opening the following link in an web
browser:

file:///opt/SUNWnetract/mgmt2.0/docs/api/index.html

You can view additional Java API specification on the java.sun.com webpage at:

http://java.sun.com/apis.html

How the API Sections are Organized
The following sections in this chapter list the classes of the Netra CT RMI
application programming interface.

Each class, interface, inner class, and inner interface has its own separate section.
Each of these sections have three subsections consisting of a class or interface
description, summary tables, and detailed member descriptions of the following:

■ Class inheritance diagram
■ Direct subclasses
■ All known subinterfaces
■ All known implementing classes
■ Class or interface declaration
■ Class or interface description
■ Inner class summary
44 Netra CT Server Software Developer’s Guide • February 2007

■ Field summary
■ Constructor summary
■ Method summary
■ Field detail
■ Constructor detail
■ Method detail

Each summary entry contains the first sentence from the detailed description for that
item. The summary entries are alphabetical, while the detailed descriptions are in
the order they appear in the source code. This preserves the logical groupings
established by the programmer.

Netra CT Management Agent Interfaces
and Classes
TABLE 4-1 lists the management agent interfaces and TABLE 4-2 lists the management
agent classes included in the Netra CT RMI API. In these tables, the term expose
refers to the encapsulation of the object’s variables inside a nucleus. This
encapsulation allows for exposing (allowing access to) or hiding (denying access to)
an object’s access methods, which provides for greater modularity.

Detailed descriptions of the interfaces reside in the
/opt/SUNWnetract/mgmt2.0/docs/api directory.

TABLE 4-1 Netra CT Management Agent Interfaces

Interface Description

AlarmCardPluginMBean Describes the management interface of the
AlarmCardPluginMBean

AlarmSeverityProfileMBean Describes the management interface of the
AlarmSeverityProfileMBean.

CgtpServiceMBean Describes the management interface of the
CgtpServiceMBean.

ContainmentTreeMBean Describes the management interface of the
ContainmentTreeMBean.

CpiSlotMBean Describes the management interface of the
CpiSlotMBean objects.

CpuCardEquipmentMBean Describes the management interface for the
CpuCardEquipmentMBean.
Chapter 4 Netra CT Element Management Agent API 45

CpuPluginMBean Describes the management interface of the
CpuPluginMBean board objects as perceived from
the alarm card MOH.

DaemonMBean Describes the interface for the DaemonMBean.

EFDMBean Describes the management interface of the
EFDMBean.

EquipmentHolderMBean Describes the management interface of the
EquipmentHolderMBean.

EquipmentMBean Describes the interface of the EquipmentMBean.

EtherIfStatsMBean Describes the management interface of the
EtherIfStatsMBean I/O Statistics Monitoring
service.

FullLogMBean Describes the interface of the FullLogMBean

IpServiceMBean Describes the interface of IpServiceMBean, the
UNIX File System (UFS) service.

LOLMBean Describes the management interface of LOLMBean,
the Latest Occurrence Log MBean

NEMBean Describes the management interface of the NEMBean.

NetworkInterfaceMBean Describes the management interface for
NetworkInterfaceMBean.

NfsServiceMBean Describes the management interface of
NfsServiceMBean, the Network File System (NFS)
Monitor service.

NumericSensorMBean Describes the interface for NumericSensorMBean.

PlugInUnitMBean Describes the management interface of the
PlugInUnitMBean.

RnfsServiceMBean Describes the interface of RnfsServiceMBean, the
Reliable Network File System (RNFS) Monitor
service.

SensorMBean Describes the interface for the SensorMBean.

SlotMBean Describes the management interface of the
SlotMBean.

SoftwareMonitorMBean Describes the interface of the
SoftwareMonitorMBean.

SoftwareServiceMBean Describes the interface of SoftwareServiceMBean.

TcpServiceMBean Describes the interface of TcpServiceMBean, the
Transmission Control Protocol (TCP) service.

TABLE 4-1 Netra CT Management Agent Interfaces (Continued)

Interface Description
46 Netra CT Server Software Developer’s Guide • February 2007

TerminationPointMBean Describes the management interface of the
TerminationPointMBean.

UdpServiceMBean Describes the interface of UdpServiceMBean, the
User Datagram Protocol (UDP) service.

UfsServiceMBean Describes the interface of UfsServiceMBean, the
UNIX File System (UFS) service.

TABLE 4-2 Netra CT Management Agent Classes

Class Description

AdministrativeState Defines the AdministrativeState of the
device.

AlarmNotification The AlarmNotification class represents an
alarm notification emitted by an MBean.

AlarmNotificationFilter Allows you to filter AlarmNotification
notifications by selecting the types and
severities of interest.

AlarmSeverity Defines the AlarmSeverity objects for use
with AlarmNotification.

AlarmType This class is an enumeration of predefined
AlarmType, user need to use one of the
predefined types to construct an
AlarmNotification object.

AttributeChangeNotification Provides definitions of the
AttributeChangeNotification sent by
MBeans.

AttributeChangeNotificationFilter The filtering of the
AttributeChangeNotificationFilter is
performed on the name of the observed
attribute.

AuthClient AuthClient class defines the client utility
routines, particularly for authentication.

AvailabilityStatus Defines the AvailabilityStatus of the
plug-in unit object.

EquipmentHolderType Describes the management interface of the
EquipmentHolderType.

LogFullAction Describes the action to perform when
LogFullAction indicates the log is full.

TABLE 4-1 Netra CT Management Agent Interfaces (Continued)

Interface Description
Chapter 4 Netra CT Element Management Agent API 47

MohNames Defines MohNames, the public constants or
static variables for MOH user to communicate
to the MBean server.

ObjectCreationNotification Defines ObjectCreationNotification, the
creation notifications sent by MBeans.

ObjectDeletionNotification Defines ObjectDeletionNotification, the
deletion notifications sent by MBeans.

OperationalState Defines the OperationalState of a device,
equipment, or plug-in.

SlotStatus Defines SlotStatus, the status of the slot
object.

StateChangeNotification Defines StateChangeNotification, the
state change notifications sent by MBeans.

StateChangeNotificationFilter Describes
StateChangeNotificationFilter, the
filtering performed on the name of the
observed attribute.

TABLE 4-2 Netra CT Management Agent Classes (Continued)

Class Description
48 Netra CT Server Software Developer’s Guide • February 2007

CHAPTER 5

Simple Network Management
Protocol

This chapter describes the Netra CT server Simple Network Management Protocol
(SNMP) support, and provides a useful example. This chapter contains the following
sections:

■ “SNMP Overview” on page 50
■ “Netra CT System SNMP Representation” on page 52
■ “ENTITY-MIB” on page 52
■ “SUN-SNMP-NETRA-CT-MIB” on page 55
■ “Changing Midplane FRU-ID” on page 66
49

SNMP Overview
The most widespread legacy architecture for network and device management is
SNMP, for which the Java DMK provides a complete toolkit. This gives you the
advantages of developing both Java Dynamic Management agents and managers
that are interoperable with existing management systems.

SNMP network protocol enables devices to be managed remotely by a Network
Management Station (NMS). To be managed, a device must have an SNMP agent
associated with it. The agent receives requests for data representing the state of the
device and provides an appropriate response. The agent can also control the state of
the device. Additionally, the agent can generate SNMP traps, which are unsolicited
messages sent to selected NMSs to signal significant events relating to the device.

The Sun Netra SNMP Management Agent is an intelligent SNMP v2 agent for
continuously monitoring key hardware variables. You can generate and collect
value-add reports collected by remote monitoring. Using Sun Netra SNMP
Management Agent’s generic management interface and comprehensive event
mechanisms, you can dynamically build configuration and health status data, thus
reducing development costs.

Management Information Base
To manage and monitor devices, the characteristics of the devices must be
represented using a format known to both the agent and the NMS. These
characteristics can represent physical properties such as fan speeds, or services such
as routing tables. The data structure defining these characteristics is known as a
Management Information Base (MIB). This data model is typically organized into
tables, but can also include simple values. An example of the former is routing
tables, and an example of the latter is a timestamp indicating the time at which the
agent was started.

A MIB is a text file, written in abstract syntax notation one (ASN.1) notation, which
describes the variables containing the information that SNMP can access. The
variables described in a MIB, which are also called MIB objects, are the items that
can be monitored using SNMP. There is one MIB object for each element being
monitored. All MIBs are, in fact, part of one large hierarchical structure, with leaf
nodes containing unique identifiers, data types, and access rights for each variable
and the paths providing classifications. A standard path structure includes branches
for private subtrees.
50 Netra CT Server Software Developer’s Guide • February 2007

For reference, the structure of the MIBs for SNMPv2 is defined by its Structure of
Management Information (SMI) defined in the RFC2578 document. This SMI defines
the syntax and basic data types available to MIBs. The Textual Conventions (type
definitions) defined in the RFC2579 document define additional data types and
enumerations.

Before an NMS can manage a device through its agent, the MIB corresponding to the
data presented by the agent must be loaded into the NMS. The mechanism for doing
this varies depending on the implementation of the network management software.
This gives the NMS the information required to address and correctly interpret the
data model presented by the agent. Note that MIBs can reference definitions in other
MIBs, so to use a given MIB, it might be necessary to load others.

Object Identifiers
The MIB defines a virtual datastore accessible by way of the SNMP software, the
content being provided either by corresponding data maintained by the agent, or by
the agent obtaining the required data on demand from the managed device. For
writes of data by the NMS to this virtual data, the agent typically performs some
action affecting the state either of itself or the managed device.

To address the content of this virtual datastore, the MIB is defined in terms of object
identifiers (OIDs) which uniquely identify each data entry. An OID consists of an
hierarchically arranged sequence of integers providing a unique name space. Each
assigned integer has a associated text name. For example, the OID 1.3.6.1
corresponds to the OID iso.org.dod.internet and 1.3.6.1.4 corresponds to
the OID iso.org.dod.internet.private. The numeric form is used within
SNMP protocol transactions, whereas the text form is used in user interfaces to aid
readability. Objects represented by such OIDs are commonly referred to by the last
component of their name as a shorthand form. To avoid confusion arising from this
convention, it is normal to apply a MIB-specific prefix, such as netract, to all object
names defined therein.

All addressable objects defined in the MIB have associated maximum access rights
(for instance, read-only or read-write), which determine what operations the NMS
permits the operator to attempt. The agent can limit access rights as required; that is,
it is able to refuse writes to objects that are considered read-write. This refusal can be
done on the grounds of applicability of the operation to the object being addressed,
or on the basis of security restrictions that can limit certain operations to restricted
sets of NMS. The mechanism used to communicate security access rights is
community strings. These text strings, such as private and public, are passed with
each SNMP data request.

Much of the data content defined by MIBs is of a tabular form, organized as entries
consisting of a sequence of objects (each with their own OIDs). For example, a table
of fan characteristics could consist of a number of rows, one per fan, with each row
Chapter 5 Simple Network Management Protocol 51

containing columns corresponding to the current speed, the expected speed, and the
minimum acceptable speed. The addressing of the rows within the table can be a
simple single dimensional index (a row number within the table, for example, 6), or
a more complex, multidimensional, instance specifier such as an IP address and port
number (for example, 127.0.0.1, 1234). In either case, a specific data item within
a table is addressed by specifying the OID giving its prefix (for example,
myFanTable.myFanEntry.myCurrentFanSpeed) with a suffix instance specifier
(for example, 127.0.0.1.1234 from the previous example) to give
myFanTable.myFanEntry.myCurrentFanSpeed.127.0.0.1.1234.

Each table definition within the MIB has an INDEX clause that defines which
instance specifiers to use to select a given entry. The SMI defining the MIB syntax
provides an important capability whereby tables can be extended to add additional
entries, effectively adding extra columns to the table. This is achieved by defining a
table with an INDEX clause that is a duplicate of that of the table being extended.

Netra CT System SNMP Representation
The Netra CT software uses these SNMP MIBs to present the network information
model:

■ ENTITY-MIB (RFC 2037)
■ IF-MIB (RFC 2863)
■ HOST-RESOURCES-MIB (RFC 2790)
■ SUN-SNMP-NETRA-CT-MIB

ENTITY-MIB

The ENTITY-MIB is defined by the IETF standard RFC2037. The ENTITY-MIB
provides a mechanism for presenting hierarchies of physical entities using SNMP
tables.

The Netra CT information model uses the ENTITY-MIB to provide:

■ A hierarchy of hardware resources – relationships between managed objects

■ Common hardware resource characteristics – a mapping of common attributes
from the GNIM Top, Equipment, and Termination Point classes

This information is presented using SNMP tables:
52 Netra CT Server Software Developer’s Guide • February 2007

■ Physical Entity Table (entPhysicalTable)

This table contains one row per hardware resource. These rows are called entries,
and a particular row is referred to as an instance. Each entry contains the physical
class (entPhysicalClass) and common characteristics of the hardware
resource. Each entry has a unique index (entPhysicalIndex) and contains a
reference (entPhysicalContainedIn) that points to the row of the hardware
resource which acts as the container for this resource.

FIGURE 5-1 and TABLE 5-1 show how an example hierarchy of hardware resources are
presented using the ENTITY-MIB.

FIGURE 5-1 Hardware Resource Hierarchy

TABLE 5-1 Physical Entity Table

entPhysicalIndex entPhysicalClass entPhysicalContainedIn . . .

1 chassis 0 . . .

2 fan 1 . . .

3 sensor 2 . . .

4 container 1 . . .

5 module 4 . . .

6 power supply 5 . . .

7 sensor 6 . . .

Chassis(1)

Fan(2) Container(4) Port(8)

Sensor(3) Module(5)

Power supply(6)

Sensor(7)

Sensor device(9)
Chapter 5 Simple Network Management Protocol 53

The Netra CT Management Agent uses values for entPhysicalIndex and
ifIndex that might not be contiguous, but are within the range of permitted values.

IF-MIB

The IF-MIB is defined by the IETF standard RFC 2863. The IF-MIB provides
information about the network interfaces of the server. The information is presented
using the ifTable. The ifTable contains a row for each network interface. The
ifTable includes columns which describe the interface (ifDescr), indicate the
type of interface (ifType), and the indicate the status of the interface
(ifOperStatus).

HOST-RESOURCES-MIB

The Host-Resources-MIB is defined in RFC 2790.

Host Resources Running Software Table
The Host Resources Running Software Table (hrSWRunTable) contains information
about the software that is running on the network element (for example, NFS, TFTP,
and CGTP). When an application or daemon under the monitor is running, the
MOH Software Module adds an entry into the hrSWRunTable and will send to the
client the netraCtRunningSwCreated trap. When an application or a daemon
stops running, the MOH Software Module sends the netraCtRunningSwChanged
trap with hrSWRunStatus is invalid. The MOH Software Module only deletes the
entry from the hrSWRunTable and sends the netraCtRunningSwDeleted trap
when the service is uninstalled from the system.

8 port 1 . . .

9 other 5 . . .

10 other 5 . . .

TABLE 5-1 Physical Entity Table

entPhysicalIndex entPhysicalClass entPhysicalContainedIn . . .
54 Netra CT Server Software Developer’s Guide • February 2007

Host Resources Installed Software Table
The Host Resources Installed Software Table (hrSWInstalledTable) contains
information about the software installed on the network element (for example,
installation packages related to NFS, CGTP, and so on).
netraCtInstalledSwCreated, netraCtInstalledSwDeleted and
netraCtInstalledSwChanged are traps sent to the client corresponding to the
software package installed event, software package uninstalled event, and different
version of the existing software package installed event.

SUN-SNMP-NETRA-CT-MIB

This section describes the SUN-SNMP-NETRA-CT-MIB, which is the SNMP version of
the Netra CT network element view.

A brief description of each of the groups that comprise the MIB module is provided
in the following subsections:
■ “Netra CT Network Element High-Level Objects” on page 56
■ “Physical Path Termination Point Table” on page 56
■ “Equipment Table” on page 57
■ “Plug-in Unit Table” on page 59
■ “Hardware Unit to Running Software Relationship Table” on page 60
■ “Hardware Unit to Installed Software Relationship Table” on page 60
■ “Alarm Severity Identifier Textual Convention” on page 61
■ “Alarm Severity Profile Table” on page 61
■ “Alarm Severity Table” on page 61
■ “Trap Forwarding Table” on page 62
■ “MIB Notification Types” on page 63

For more information, refer to the MIB file that is available as part of the software
package at the default location:

/opt/SUNWnetract/mgmt2.0/mibs/SUN-SNMP-NETRA-CT-MIB.mib
Chapter 5 Simple Network Management Protocol 55

Netra CT Network Element High-Level Objects

The SUN-SNMP-NETRA-CT-MIB module representation of high-level objects in the
Netra CT network element (NE) is composed of the elements in TABLE 5-2:

Physical Path Termination Point Table

The Netra CT Physical Path Termination Point Table extends the
entPhysicalTable. Each entry of this table represents a Physical Path Termination
Point within the Netra CT NE. The SUN-SNMP-NETRA-CT-MIB module
representation of a physical path termination point is composed of the elements
shown in TABLE 5-3:

TABLE 5-2 SUN-SNMP-NETRA-CT-MIB Netra CT NE High-Level Objects

Field Description

Vendor The vendor of the Netra CT network element.

Version The version of the Netra CT network element.

Start Time The time at which the agent was last started; in other words, the
time at which sysUpTime was zero (0).

Alarm Severity Index An index into the alarm severity profile table, specifying the
severity assignments for Netra CT alarms reported for the Netra
CT network element. The default value for this object is zero (0).

Suppress Zero Stats When the value of this object is true, no entry will be created in
any of the historical statistics tables for intervals in which all
counts are zero. The default value for this object is true (1).

TABLE 5-3 SUN-SNMP-NETRA-CT-MIB Physical Path Termination Point Table

Field Description

Physical Path Termination
Point Hardware Unit Index

Specifies the index of the entry in the entPhysicalTable
that represents the device (that is, a card) on which the
physical path terminates.
56 Netra CT Server Software Developer’s Guide • February 2007

Equipment Table

The Netra CT Equipment Table extends the entPhysicalTable. Each entry in this table
represents a piece of equipment within the Netra CT NE that neither is nor accepts a
replaceable plug-in unit. The SUN-SNMP-NETRA-CT-MIB module representation of
an equipment is composed of the elements shown in TABLE 5-4:

Physical Path Termination
Point Port ID

Identifies the port within the card identified by the hardware
unit index on which the physical path terminates.

Physical Path Termination
Point Port Label

Provides the external label string for the physical path
termination point entry. If there is no label, the value is a
zero-length display string.

Physical Path Termination
Point Port Alarm Severity
Index

Specifies the index of the entry in the communications alarm
severity profile table that should be used. The default value
of this object is zero (0).

TABLE 5-4 SUN-SNMP-NETRA-CT-MIB Equipment Table

Field Description

Equipment Administration
Status

Used by the administrator to lock and unlock the object.

Equipment Location The specific or general location of the component.

Equipment Operating Status Identifies whether or not the component is capable of
performing its normal functions.

Equipment Vendor The vendor of the component.

Equipment Version The version of the component.

Equipment User Label A user-friendly name for the piece of equipment. The
default value of this object is the null string.

Equipment Alarm Severity
Index

An index into the alarm severity profile table, specifying
the severity assignments for Netra CT alarms reported for
this component. The default value of this object is zero (0).

TABLE 5-3 SUN-SNMP-NETRA-CT-MIB Physical Path Termination Point Table

Field Description
Chapter 5 Simple Network Management Protocol 57

Equipment Holder Table

The Netra CT Equipment Holder table extends the entPhysicalTable. Each entry
in this table represents a component within the Netra CT NE that accepts a
replaceable plug-in unit. The SUN-SNMP-NETRA-CT-MIB module representation of
an equipment holder is composed of the elements shown in TABLE 5-5:

TABLE 5-5 SUN-SNMP-NETRA-CT-MIB Equipment Holder Table

Field Description

Equipment Holder Type The type of the component.

Equipment Holder Acceptable
Types

The types of plug-in units that can be supported by
the slot, separated by newline characters. This
attribute is present only when the Equipment Holder
represents a slot.

Equipment Holder Slot Status Identifies whether or not a plug-in unit is present in
the slot. This attribute is present only when the
Equipment Holder represents a slot.

Equipment Holder Label Provides the external label string for the holder
entry. If there is no label, the value is a zero-length
display string.

Equipment Holder Software Load An index into the installed software table, specifying
the software that is to be loaded into the plug-in unit
whenever an automatic reload of software is needed.
This attribute is present only when the Equipment
Holder represents a slot.

Equipment Holder Plug-In Unit
Acceptable

This field is true when the plug-in unit contained in
the equipment holder is supported.

Equipment Holder Alarm Severity
Index

An index into the alarm severity profile table,
specifying the severity assignments for Netra CT
alarms reported for this component.
58 Netra CT Server Software Developer’s Guide • February 2007

Plug-in Unit Table

The Plug-In Unit Table extends the entPhysicalTable. Each entry of this table
represents a piece of equipment within the Netra CT NE that is inserted into and
removed from an Equipment Holder. The SUN-SNMP-NETRA-CT-MIB module
representation of a plug-in unit is composed of the elements shown in TABLE 5-6.

TABLE 5-6 SUN-SNMP-NETRA-CT-MIB Plug-In Unit Table

Field Description

Plug-In Unit Administration
Status

Used by the administrator to lock and unlock the object.
Values are: up (1) and down (2).

Plug-In Unit Availability Status Provides further information regarding the state of the
component. Value are: available (1), inTest (2), failed
(3), powerOff (4), notInstalled (5), offine (6),
dependency (7), and unknown (8).

Plug-In Unit Operative Status Identifies whether or not the component is capable of
performing its normal functions. Values are: up (1),
down (2), and unknown (3).

Plug-In Unit Vendor The vendor of the component.

Plug-In Unit Version The version of the component.

Plug-In Unit Label Provides the external label string for the plug-in entry. If
there is no label, the value is a zero-length display
string.

Plug-In Unit Alarm Severity
Index

An index into the alarm severity profile table, specifying
the severity assignments for Netra CT alarms reported
for this component. The default value of this object is
zero (0).
Chapter 5 Simple Network Management Protocol 59

Hardware Unit to Running Software Relationship Table

The Netra CT Hardware Unit to Running Software Relationship Table describes the
software that is running on each hardware unit in the Netra CT NE. Each entry of
this table identifies an entry in the entPhysicalTable and one in the
hrSWInstalledTable.

The SUN-SNMP-NETRA-CT-MIB hardware unit to running software relationship table is
composed of the elements shown in TABLE 5-7.

Hardware Unit to Installed Software Relationship Table

The Netra CT Hardware Unit to Install Software Relationship Table describes the
software that is installed on each hardware unit in the Netra CT NE. Each entry of
this table identifies an entry in the entPhysicalTable and one in the
hrSWInstalledTable. The SUN-SNMP-NETRA-CT-MIB hardware unit to installed
software relationship table is composed of the elements shown in TABLE 5-8.

TABLE 5-7 SUN-SNMP-NETRA-CT-MIB Hardware Unit to Running Software Relation Table

Field Description

Hardware Running Software to Hardware Index The index, in the entPhysicalTable, of the containing
hardware unit in this pair.

Hardware Running Software Index A unique number within the context of the containing
hardware unit.

Hardware Running Software to Software Index An index into the Netra CT Hardware Unit to Running
Software relationship table.

TABLE 5-8 SUN-SNMP-NETRA-CT-MIB Hardware Unit to Installed Software Relationship Table

Field Description

Hardware Installed Software to Hardware Index The index, in the entPhysicalTable, of the containing
physical entity in this pair.

Hardware Installed Software Index A unique number within the context of the containing
hardware unit.

Hardware Installed Software to Software Index The index, in the hrSWInstalledTable, of the software
product represented by this entry.

Hardware to Software Alarm Severity Index An index into the alarm severity profile table, specifying
the severity assignments for Netra CT alarms reported for
this piece of software installed on the hardware unit. The
default value of this object is zero.

Hardware Installed Software to Hardware Index The index, in the entPhysicalTable, of the containing
physical entity in this pair.
60 Netra CT Server Software Developer’s Guide • February 2007

Alarm Severity Identifier Textual Convention

The SUN-SNMP-NETRA-CT-MIB alarm severity identifier textual conventions consist
of the elements shown in TABLE 5-9.

Alarm Severity Profile Table

The Netra CT alarm severity profile table specifies which profiles exist. Creating or
deleting an entry in this table automatically creates or deletes the corresponding
entries in the netraCtAlarmSeverityTable. Each entry of this table represents a
group of severities, one for each alarm type in the communications alarm group. The
SUN-SNMP-NETRA-CT-MIB alarm severity profile table consists of the elements
shown in TABLE 5-10.

Alarm Severity Table

The Netra CT alarm severity table associates profile index and trap ID pairs with
severities to be used for Netra CT alarm traps that have occurred. (Note that this
table does not apply to cleared alarms). An entry in this table associates an alarm
severity profile index and trap ID pair with a severity. Deleting a particular profile’s
row in the alarm severity profile table deletes all rows in this table with the same
profile index. Conceptually, rows corresponding to all possible trap IDs are created

TABLE 5-9 SUN-SNMP-NETRA-CT-MIB Alarm Severity Identifier Textual Conventions

Field Description

Alarm Log Severity The value of this object identifies the severity of an alarm in the log.
Values are: cleared (-1), indeterminate (0), critical (1), major (2),
minor (3), and warning (4).

Alarm Severity The value of this object identifies the severity of an alarm that has
occurred. Values are: indeterminate (0), critical (1), major (2), minor
(3), and warning (4). (Note that there is no value corresponding to
’cleared’.)

TABLE 5-10 SUN-SNMP-NETRA-CT-MIB Alarm Severity Profile Table

Field Description

Alarm Severity
Profile Index

A number identifying this alarm severity profile.

Alarm Severity
Profile Row Status

This object is used to create a new row or to delete an existing row
in the table.
Chapter 5 Simple Network Management Protocol 61

in this table when a new alarm severity profile is created, but the agent returns a
default value except for those few traps for which values have been set. The alarm
severity table elements are listed in TABLE 5-11.

Trap Forwarding Table

The Netra CT Trap forwarding discriminator table specifies which traps will be sent
to which management system. Each entry of this table contents information about a
group of traps to be sent to a particular IP address. This is used as the value of the
object netraCtForwardedTrapObject when traps from all objects are to be
forwarded, or when there is only one object of the type that forwards the specified
trap type. The elements for this table are shown in TABLE 5-12.

TABLE 5-11 SUN-SNMP-NETRA-CT-MIB Alarm Severity Table

Field Description

Alarm Severity Trap
ID

The ID of the trap type to which this entry applies.

TABLE 5-12 SUN-SNMP-NETRA-CT-MIB Trap Forwarding Table

Field Description

Trap Forwarding
Index

A number identifying the Trap forwarding discriminator.

Trap Forwarding
Destination

The IP address to which traps identified by this table entry should
be sent.

Forwarded Trap ID The ID of the trap type to which this entry applies. The special value
{0 0} indicates that this entry applies to all traps.

Forwarded Trap
Object

The object to which this entry applies. By convention, this is the
name of the first object in the row in the table referenced. The
special value {0 0} indicates that traps of this type from all objects
of the type that can generate it. It should also be used when traps
from the Netra CT NE are to be specified.

Trap Forwarding
Port

The UDP port on the specified management system to which traps
identified by this entry should be sent.
62 Netra CT Server Software Developer’s Guide • February 2007

MIB Notification Types

MIB notification types consist of auxiliary definitions for alarms. Except for
perceived severity, the objects shown in TABLE 5-13 can be optionally appended to
any alarm notification.

Lowest Forwarded
Severity

The lowest severity of traps of this type from the specified object
that should be sent to this address. This object has significance only
if the trap type specified has a severity associated with it.

Forwarded
Indeterminate

When this object has the value TRUE, traps with indeterminate
severity will be forwarded to the specified event. This object has
significance only if the trap type specified has a severity associated
with it.

Trap Forwarding
Row Status

This object is used to create a new row or to delete an existing row
in the table.

TABLE 5-13 MIB Notification Types

Field Description

Trap Alarm Severity The perceived severity of the alarm, as specified by the agent that
generated it.

Trap Alarm Backed
Up

If the value of this object is TRUE, the failed object has been backed
up.

Trap Alarm Back-Up
Object

Indicates the object that provided back-up services to the failed
object.

Trap Alarm Specific
Problem

Indicates further refinements to the problem identified by the alarm
type. If more than one specific problem is described in this object,
the problem descriptions are separated by newline characters.

Trap Alarm Repair
Act

Indicates proposed repair actions reported by the agent for the
problem identified by the alarm. If more than one action is described
in this object, the problem descriptions are separated by newline
characters.

TABLE 5-12 SUN-SNMP-NETRA-CT-MIB Trap Forwarding Table

Field Description
Chapter 5 Simple Network Management Protocol 63

SNMP Traps
The SNMP management software has the ability to send traps, or messages, to an
application when one or more conditions have been met. Generally, a trap is an
unsolicited network packet sent from an agent that usually reports some unexpected
error condition.

TABLE 5-14 describes the SNMP traps found in the Netra CT SNMP MIB.

TABLE 5-14 SUN-SNMP-NETRA-CT-MIB Traps

SNMP Trap Description

netraCtHwHighTempAlarm Indicates that a high temperature condition has
occurred on the hardware unit associated with the
specified index.

netraCtHwUnitUp Indicates that the operational state of the specified
hardware unit has transitioned to up.

netraCtHwUnitDown Indicates that the operational state of the specified
hardware unit has transitioned to down.

netraCtHwUnitCreated Indicates that the specified hardware unit has been
installed at the specified location.

netraCtHwUnitDeleted Indicates that the specified hardware unit has been
removed or uninstalled from the specified location.

netraCtInstalledSwCreated Indicates that the specified software package has been
installed.

netraCtInstalledSwDeleted Indicates that the specified software package has been
removed.

netraCtRunningSwCreated Indicates that the specified software has been started.

netraCtRunningSwDeleted Indicates that the specified software has been stopped.

netraCtHwMemoryErrorAlarm Indicates that a memory error has occurred.
64 Netra CT Server Software Developer’s Guide • February 2007

TABLE 5-15 defines the standard SNMP traps found in the RFC123-MIB.

Understanding the MIB Variable Descriptions
TABLE 5-16 defines the MIB elements used in MIB module descriptions in the sections
of the MIB file. For detailed information about these elements, refer to the RFC2578
document, which can be downloaded from the http://www.ietf.org web site.

Note – Not every MIB element is present for every MIB module.

TABLE 5-15 RFC1213-MIB Traps

SNMP Trap Description

coldStart Signifies that the entity, acting in an agent role, is reinitializing
itself and that its configuration might have been altered.

warmStart Signifies that the entity, acting in an agent role, is reinitializing
itself such that its configuration is unaltered.

linkUp Signifies that the entity, acting in an agent role, has detected that
the ifOperStatus object for one of its communication links left
the down state and transitioned into some other state (but not into
the notPresent state). This other state is indicated by the
included value of ifOperStatus.

linkDown Signifies that the entity, acting in an agent role, has detected that
the ifOperStatus object for one of its communication links is
about to enter the down state from some other state (but not from
the notPresent state). This other state is indicated by the
included value of ifOperStatus.

TABLE 5-16 MIB Variable Syntax

MIB Element Description

Module name The name of the MIB module.

Module type The type of ASN.1 macro used for the module. Macro types are the
following:
• OBJECT-TYPE – Defines the type of the managed object.
• NOTIFICATION-TYPE – Defines the information contained

within an unsolicited transmission of management information
(for example, a trap or a request).

SYNTAX Defines the data structure of the module.
Chapter 5 Simple Network Management Protocol 65

For a complete description, see the MIB module in the default location
/opt/SUNWnetract/mgmt2.0/mibs/SUN-SNMP-NETRA-CT-MIB.mib, delivered
as part of the Netra CT software package.

Changing Midplane FRU-ID
This section shows how to change the locationName part of FRU-ID.

The Netra CT midplane stores the locationName, which is the geographical location
of the system, for example, chassis6. This value is stored in the alarm card flash
and can be set by the customer. The locationName enables system monitoring
applications to report specific details.

This example uses a NET-SNMP application to interact with MOH and set the
midplane’s location to a particular value.

MAX-ACCESS Defines whether the module can read, write, or create an instance of
the object, or to include its value in a notification. Can be one of the
following:
• not-accessible – Indicates an auxiliary object (objects that are

both specified in the INDEX clause of a conceptual row and also
columnar objects of the same conceptual row are termed auxiliary
objects).

• accessible-for-notify – Indicates an object that is accessible
only by way of a notification (for example, an SNMP trap).

• read-only – Only able to read an instance of the object.
• read-write – Able to read and write, but not create an instance

of the object.
• read-create – Able to read, write, and create an instance of the

object provides the maximum level of access (read-create is a
superset of read-write).

STATUS Indicates whether this module definition is current or historic. All of
the modules in the SUN-SNMP-NETRA-CT-MIB are current.

DESCRIPTION Describes the function and use of the module.

INDEX The INDEX clause defines instance identification information for the
columnar objects subordinate to that object. Refer to RFC2578 for
more information.

DEFVAL Defines the default value (DEFVAL) which might be used at the
discretion of an SNMP agent when an object instance is created.

TABLE 5-16 MIB Variable Syntax

MIB Element Description
66 Netra CT Server Software Developer’s Guide • February 2007

1. Determine the index of the midplane object from the entPhysicalTable.

At the prompt, type the command:

where:

-c community specifies the community string.

-m SUN-SNMP-NETRA-CT-MIB specifies that the Netra CT MIB should be loaded.

hostName is the development system running MOH.

This process and its results are shown in CODE EXAMPLE 5-1

snmpwalk -c public -m SUN-SNMP-NETRA-CT-MIB hostName \
entPhysicalDescr

CODE EXAMPLE 5-1 Index of the Midplane Object

$snmpwalk -c public -m SUN-SNMP-NETRA-CT-MIB hostName:9161 entPhysicalDescr
ENTITY-MIB::entPhysicalDescr.2 = STRING: 01ae 5405026 Midplane 0000
ENTITY-MIB::entPhysicalDescr.3 = STRING: scb_slot
ENTITY-MIB::entPhysicalDescr.4 = STRING: fan_slot
ENTITY-MIB::entPhysicalDescr.5 = STRING: fan_slot
ENTITY-MIB::entPhysicalDescr.6 = STRING: ps_slot
ENTITY-MIB::entPhysicalDescr.7 = STRING: crtm_slot
ENTITY-MIB::entPhysicalDescr.8 = STRING: cftm_slot
ENTITY-MIB::entPhysicalDescr.9 = STRING: cpci_slot
ENTITY-MIB::entPhysicalDescr.10 = STRING: cpci_slot
ENTITY-MIB::entPhysicalDescr.11 = STRING: cpci_slot
ENTITY-MIB::entPhysicalDescr.12 = STRING: cpci_slot
ENTITY-MIB::entPhysicalDescr.13 = STRING: cpci_slot
ENTITY-MIB::entPhysicalDescr.14 = STRING: prtm_slot
ENTITY-MIB::entPhysicalDescr.15 = STRING: pdu
ENTITY-MIB::entPhysicalDescr.25 = STRING: 01ae 5016118 scb 0499
ENTITY-MIB::entPhysicalDescr.26 = STRING: ssp_slot
ENTITY-MIB::entPhysicalDescr.27 = STRING: ssp
ENTITY-MIB::entPhysicalDescr.28 = STRING: 01ae 5404931 fan 0499
ENTITY-MIB::entPhysicalDescr.29 = STRING: 01ae 5404931 fan 0499
ENTITY-MIB::entPhysicalDescr.30 = STRING: 01ae 3001535 ps 0399
ENTITY-MIB::entPhysicalDescr.31 = STRING: cftm
ENTITY-MIB::entPhysicalDescr.32 = STRING: 0000 5016123 0101 0000
ENTITY-MIB::entPhysicalDescr.33 = STRING: RJ45
ENTITY-MIB::entPhysicalDescr.35 = STRING: RJ45
ENTITY-MIB::entPhysicalDescr.37 = STRING: RJ45
ENTITY-MIB::entPhysicalDescr.39 = STRING: RJ45
ENTITY-MIB::entPhysicalDescr.41 = STRING: DB15
Chapter 5 Simple Network Management Protocol 67

2. Set the midplane location to the new value of chassis6 using the following
command:

3. Show the current value of the midplane’s location.

At the prompt, type the command:

The result displays the identifying string of the location of any Netra CT equipment
locations, as shown in CODE EXAMPLE 5-2.

Setting High Temperature Alarms
An alarm in SNMP is defined as a trap with a severity associated with it. When a
HIGH_TEMPERATURE alarm (CPU high temperature) occurs, the user’s application
will receive the SNMP trap netraCtHwHighTempAlarm, and netraCtIfChanged
trap for the ifOperStatus of the interface corresponding to the alarm output port.
The user’s application also will receive alarm clear traps when the condition of
alarms are cleared, and an attribute change trap of the ifOperStatus.

The Netra CT alarm card supports three output alarm interfaces. The alarm pins
(alarm0, alarm1, alarm2) are statically mapped into severities of critical, major,
minor respectively. When an alarm occurs, the corresponding alarm pin is driven
high according to the severity of the alarm.

The following example shows how to set the high temperature alarm from the
default to major.

$snmpset -c public -m SUN-SNMP-NETRA-CT-MIB hostName:9161 \
netraCtEquipLocation.1 = chassis6

$snmpget -c public -m SUN-SNMP-NETRA-CT-MIB hostName:9161 \
netraCtEquipLocation.1

CODE EXAMPLE 5-2 Identifying the Midplane’s Current Location

$snmpget -c public -m SUN-SNMP-NETRA-CT-MIB hostName:9161 \
netraCtEquipLocation.1
SUN-SNMP-NETRA-CT-MIB::netraCtEquipLocation.1 = STRING: chassis6
68 Netra CT Server Software Developer’s Guide • February 2007

▼ To Set the High Temperature Alarm Severity to
Major

1. Create an entry in the netraCtAlarmSevProfileTable.

At the prompt, type the command:

where:

-c community specifies the community string.

-m SUN-SNMP-NETRA-CT-MIB specifies that the Netra CT MIB should be loaded.

hostName is the development system running MOH.

This process and its result are shown in CODE EXAMPLE 5-3.

Creating an entry in the netraCtAlarmSevProfileTable also creates an entry in
the netraCtAlarmSevTable. The entry in the latter corresponds to the profile
entry and translates the high temperature alarm entry into the row of integers
shown in CODE EXAMPLE 5-4.

$snmpset -c public -m SUN-SNMP-NETRA-CT-MIB hostName\
netraCtAlarmSevProfileRowStatus.1 = 4

CODE EXAMPLE 5-3 Creating an Entry in the Profile Table

$snmpset -c public -m SUN-SNMP-NETRA-CT-MIB localhost:9161 \
netraCtAlarmSevProfileRowStatus.1 = 4
SUN-SNMP-NETRA-CT-MIB::netraCtAlarmSevProfileRowStatus.1 = INTEGER: active(1)

CODE EXAMPLE 5-4 Automatic Entry Created in Corresponding Alarm Severity Table

$snmpwalk -c public -m SUN-SNMP-NETRA-CT-MIB localhost:9161\
netraCtAlarmSevTable
SUN-SNMP-NETRA-CT-MIB:\
:netraCtAlarmSeverity.1.15.1.3.6.1.4.1.42.2.65.1.1.1.2.0.34 = INTEGER:\
minor(3)
End of MIB
Chapter 5 Simple Network Management Protocol 69

2. Set the severity of netraCtHighTempAlarm for this profile.

At the prompt, type the command:

where:

1.3.6.1.4.1.42.2.65.1.1.1.2.0.34 represents the string
‘netraCtHighTempAlarm’

The entry at = (in this example, 2) establishes a major alarm severity.

The result is shown in CODE EXAMPLE 5-5.

3. Set netraCtEquipAlarmSeverityIndex of the thermistor entry to correspond
with the netraCtAlarmSevProfile entry from the
netraCtAlarmSevProfileTable.

At the prompt, type the command:

This example uses the netraCtAlarmSevProfileTable entry from
CODE EXAMPLE 5-3. The index of that entry was the integer 1 in the statement:
netraCtAlarmSevProfileRowStatus.1. The result of this process is shown in
CODE EXAMPLE 5-6.

$ snmpset -c public -m SUN-SNMP-NETRA-CT-MIB localhost:9161\
netraCtAlarmSeverity.1.15.1.3.6.1.4.1.42.2.65.1.1.1.2.0.34 = 2

CODE EXAMPLE 5-5 Setting the Alarm Severity for the Profile Table

$ snmpset -c public -m SUN-SNMP-NETRA-CT-MIB localhost:9161\
netraCtAlarmSeverity.1.15.1.3.6.1.4.1.42.2.65.1.1.1.2.0.34 = 2
SUN-SNMP-NETRA-CT-MIB:\
:netraCtAlarmSeverity.1.15.1.3.6.1.4.1.42.2.65.1.1.1.2.0.34 = INTEGER:
major(2)

$ snmpset -c public -m SUN-SNMP-NETRA-CT-MIB localhost:9161 \
netraCtEquipAlarmSeverityIndex.2 = 1

CODE EXAMPLE 5-6 Setting the Index Entry Corresponding to the Thermistor

$snmpset -c public -m SUN-SNMP-NETRA-CT-MIB localhost:9161 \
netraCtEquipAlarmSeverityIndex.2 = 1
SUN-SNMP-NETRA-CT-MIB::netraCtEquipAlarmSeverityIndex.2 = INTEGER: 1
70 Netra CT Server Software Developer’s Guide • February 2007

When the CPU temperature returns to normal, the alarms are cleared automatically.
For further information, refer to “SUN-SNMP-NETRA-CT-MIB” on page 55.
Chapter 5 Simple Network Management Protocol 71

72 Netra CT Server Software Developer’s Guide • February 2007

CHAPTER 6

Managed Object Hierarchy Software
Modules

This chapter provides a high-level description of the Release 2 Management Object
Hierarchy (MOH) software modules for the Netra CT platform. It describes the
software module interfaces and their major internal modules. It consists of:

■ “Software Module Design” on page 74
■ “Software Services” on page 74
■ “Software Module MBeans” on page 75
73

Software Module Design
The software services in the system are monitored by software modules that are part
of the Information Module layer objects.

Software services are either reliable services (such as RNFS, RBS, or CGTP) or
unreliable services (such as TFTP, or NIS). The software services can be a software
subsystem such as a network stack (TCP, IP, UDP); an I/O driver such as a network
driver; or network processes or network daemons such as NFS.

Some software services are only available on certain CPU boards. For example,
CGTP is available for both the host and the satellite CPU boards, but RBS or RNFS
are only available on the host CPU board.

The software module interacts with the OS platform through Java interfaces to:

■ Monitor OS platform software services for software status, such as installed or not
installed and configured or not configured

■ Monitor software service subsystems and daemons for status, such as running or
not running

■ Provide traps and notifications for events related to the status of software services

The software module also provides APIs for management applications to configure
the monitoring of software services, such as setting error thresholds, setting polling
intervals, starting and stopping polling, and setting maximum retry-counts for the
recovery of the daemons.

Software Services
The software modules monitor the following software services:

TABLE 6-1 Software Services

Software Module Software Service Monitored

CGTP RDHCP

Ethernet Interface Statistics RNFS

NIS SNDR

PMS TCP, IP, UDP
74 Netra CT Server Software Developer’s Guide • February 2007

Software Module MBeans
This section describes the software module MBeans for each of the software services
that the MOH software modules monitor. As specified by the Java Management
Extensions for instrumentation, all attributes and operations are explicitly listed in
an MBean interface. This interface must have the same name as the class that
implements it, followed by the MBean suffix. Since the interface and its
implementation are usually in different files, there are two files which make up a
standard MBean.

These MBeans and their public APIs provide the management interface to manage
the applications. All the specific MBeans below are extended from the
SoftwareServiceMbean. For more specific information, refer to the Java
documents for the APIs that are distributed as part of the Netra CT MOH package.
See “Viewing the Netra CT Management Agent API Online” on page 44 for details.

SoftwareMonitorMBean

The SoftwareMonitorMBean is an object that clients can use to discover all the
software services in the system. The SoftwareMonitorMBean contains the method
getSoftwareServiceList() which returns the list of software services.

DaemonMBean

This class provides the name of the daemon, the state of the daemon, and the
daemon recovery try count.

Platform Management Service (PICLD on Solaris OS) TFTP

RDHCP UFS

RNFS

TABLE 6-1 Software Services

Software Module Software Service Monitored
Chapter 6 Managed Object Hierarchy Software Modules 75

SoftwareServiceMBean

The SoftwareServiceMBean provides the base class from which other
ServiceMBeans are extended. The SoftwareServiceMBean provides the
following:

■ Name of the services

■ Status of the service (up or down)

■ Getting and setting polling intervals

■ Starting the polling

■ Stopping the polling

■ Getting and setting the number of excessive error intervals. This number is the
threshold that determines if an event is sent to a client. If an error count exceeds
this number, an error event is sent. There will be no more error events until the
error condition disappears or a clear event is sent. For example, assume that the
error threshold is set at 5% error per total transaction and the number of excessive
intervals is set at 3. If the error exceeds 5% in more than three consecutive polling
intervals, a file system error event is sent to the client.

■ Getting a list of DaemonMBeans that support the service, if any

NfsServiceMBean

The NfsServiceMBean enables the client to monitor the NFS services. A client can
get and set the maximum error threshold, get and set the threshold for excessive
error intervals, and get the list of NFS mount failures.

UfsServiceMbean

The UfsServiceMBean enables the client to monitor the UFS services. A client can
get and set the maximum threshold of the file system usage percentage, get and set
the threshold for the number of excessive usage intervals, and query the list of file
systems exceeding the usage threshold.

TcpServiceMBean

The TcpServiceMBean enables the client to monitor the TCP services. A client can
get status and statistics for the TCP network layer, get and set intervals and
thresholds for gathering the statistics, start and stop polling, and get a list of
daemons supporting the service.
76 Netra CT Server Software Developer’s Guide • February 2007

UdpServiceMBean

The UdpServiceMBean enables the client to monitor the UPD services. A client can
get status and statistics for the UDP network layer, get and set intervals and
threshold for gathering the statistics, start and stop polling, and get a list of daemons
supporting the service.

IpServiceMBean

The IpServiceMBean enables the client to monitor the IP services. A client can get
status and statistics for the IP network layer, get and set intervals and thresholds for
gathering the statistics, start and stop polling, and get a list of daemons supporting
the service.

EtherIfStatsMBean

The EtherIfStatsMbean monitors the Ethernet drivers, and monitors the interface
for transmitter and receiver error counts. A client can set and get the maximum error
threshold, set and get the threshold for number of excessive intervals, and query for
the list of Ethernet interfaces in error.

CgtpServiceMBean

The CgtpServiceMBean enables the client to monitor the CGTP services. A client
can get status and statistics for the IP network layer, list and get state of associated
Ethernet physical interfaces, get and set intervals and thresholds for gathering the
statistics, start and stop polling, and get a list of daemons supporting the service.

RnfsServiceMBean

The RnfsServiceMBean enables the client to monitor the RNFS services. A client
can get status and statistics for the UDP network layer, get and set intervals and
thresholds for gathering the statistics, start and stop polling, and get a list of
daemons supporting the service.
Chapter 6 Managed Object Hierarchy Software Modules 77

78 Netra CT Server Software Developer’s Guide • February 2007

CHAPTER 7

Processor Management Services

This chapter describes the processor management services (PMS) application
programming interface (API). This chapter contains the following sections:

■ “PMS Software Overview” on page 80
■ “PMS Man Pages” on page 83
■ “PMS Examples” on page 84
79

PMS Software Overview
The Processor Management Services (PMS) software is an extension to the Netra CT
platform services software that addresses the requirements of high-availability (HA)
application frameworks. The PMS software enables client applications to manage the
operation of the processor nodes within a single Netra CT system or within a cluster
of multiple Netra CT systems. A processor node is a combination of CPU blade
hardware, CPU memory, I/O interfaces, the operating system that runs on them, and
select applications. A PMS cluster can include the alarm card and all of the CPU
cards in a single Netra CT system, or it can include a defined group of alarm cards
and CPU cards located in multiple systems.

The PMS software provides distributed CPU board resource management
infrastructure for clusters of CPU boards. This infrastructure includes low-level
administrative control and monitoring, high-level configuration, fault recovery, and
user-interface functionality. FIGURE 7-1 identifies the architectural components of the
Netra CT software services.

FIGURE 7-1 Netra CT Software Services

Platform services

Management services

Processor services

Processor services

Equipment services

CPU Node

Communication services

Software services

Customer services

Customer services High-availability services
80 Netra CT Server Software Developer’s Guide • February 2007

In a Netra CT cluster, the PMS software runs on both the alarm cards and the CPU
boards. The PMS software running on alarm cards provides local and remote service
connections for managing the CPU cards in its system. The PMS software running
on CPU cards provides local and remote service connections for managing the
resources running on the board, and the software provides remote access for
managing resources running on other CPU cards in a PMS cluster.

FIGURE 7-2 PMS Software Services and Interfaces

FIGURE 7-2 indicates the internal interfaces of the processor services.

The PMS software organizes the CPU resources it manages into the following three
groups:

■ Resource group 0 (RG0) – Specific application services

■ Resource group 1 (RG1) – Operating system functionality

■ Resource group 2 (RG2) – CPU hardware and the remaining processor board
resources

Platform services

Management services

Processor services

Processor services

Equipment services

CPU node

Customer services

High-availability services

Application
interface

Management
interface

Core
service

Node
interface
Chapter 7 Processor Management Services 81

The PMS software that runs on both alarm cards and the CPU cards divides its
functionality along client-side and server-side (daemon-side) lines. The common
client-side function provides a shared API for up to eight simultaneous application
service processes. The core API functionality includes API control, PMS daemon
control, application PMS connectivity, and application message send and receive
with function execution. The API provides per-process serialization and separate
threads for message reception and user-defined function execution, and messaging
process timing.

In a typical example, a PMS client detects resource failures remotely and then
remotely activates replacement resources such as those found in high-availability
applications. The common daemon function provides server-side control and
monitoring functionality for up to 16 remote CPUs. The daemon function also
provides client-side functionality for controlling and monitoring up to 16 remote
CPUs simultaneously with minimized latency by way of per-remote-CPU threading,
as well as daemon control and performance monitoring and resource group
monitoring and control.

From the client side, the alarm card function available by way of the send and
receive messaging API is broken into management and drawer blocks. (The PMS
software refers to Netra CT systems as drawers.) The CPU cards are divided into
management node and remote node drawer (RND) views. The management
view on both the alarm card and the CPU board provides administrative control and
status over the PMS daemon as a whole. The management view also monitors the
PMS software’s performance.

The drawer (system) view by means of the alarm card provides the following
administrative controls and monitors of the RG2 (hardware) resources: Core power
down, power up, and reset. For RG1 (operating system) resources, this view also
provides the following administrative controls and monitors: core shutdown, boot,
and reboot. For RG0 (application services), this view provides off-line and active
administrative controls. Finally, for the combined resource groups, this view
provides the following administrative controls and monitors: Core maintenance, and
operational configuration, five recovery processes, and the graceful reboot of the
group.

The node view, by way of the CPU card itself, provides a much reduced set of
administrative controls and monitors relative to the drawer view of the hardware,
operating system, and the same administrative controls and monitors of the
application services. In RG2 only reset administrative controls exists, but no
monitors. Likewise, in RG1 only reboot administrative controls exist, but no
monitors. In this view, there is no administrative control over the combined resource
groups.

The CPU card RND view provides remote system view administrative controls and
monitors to all the resource groups, with the exception of an alarm card failure. In
this failure case, a reduced remote node view is used.
82 Netra CT Server Software Developer’s Guide • February 2007

The PMS software execution performance is targeted by scheduling optimizations as
well as using lightweight, proprietary messaging protocols, intersystem data
encoding, and packetization protocols. The PMS software scalability due to CPU
card growth is addressed by a per-CPU multithreading of up to 16 remote CPU
cards per CPU. Application client growth is addressed by way of per-process multi-
threading with up to eight client processes per PMS daemon.

The PMS software performance and reliability in cluster communication is also
addressed with a messaging infrastructure that supports unidirectional and
bidirectional point-to-point and unidirectional point-multipoint channels. This
infrastructure includes source time-stamping available to the client for latency
detection, call and return time-out for failure detection, and interprocess and
intersystem TCP/IP socket streams for connection control, reachability
determination, and reliable transport.

PMS Man Pages
The PMS software application programming interface (API) has been documented
completely in the UNIX man pages included with the Netra CT software. TABLE 7-1
lists the man pages included with the Netra CT PMS software:

TABLE 7-1 Processor Management Services Man Pages

Man page Description

pms(1M) Provides an overview of the PMS software.

pmsd(1M) Describes how to start and stop the CPU
board PMS daemon (pmsd) and lists the
daemon’s command line options.

pmsd_ac(1M) Describes how to start and stop the alarm
card PMS daemon (pmsd_ac) from the
command line interface, and lists all the
daemon’s other command-line functions.

pms_apistart(1M) Describes the PMS API functions used to
initialize (pms_apistart) and to free up
(pms_apistop) PMS API resources in a PMS
process. The man page also documents the
functions used to take PMS out of an inactive
state (pms_start) and to return it to an
inactive state (pms_stop).
Chapter 7 Processor Management Services 83

If you cannot view these man pages, add the PMS man page directory location to
your $MANPATH environment variable. By default, the PMS man pages are installed
in the following directory: /opt/SUNWnetract/mgmt2.0/man. Depending on the
UNIX shell you are using, this variable might be defined in a shell startup file. Refer
to the Solaris documentation for instructions on adding the PMS man page directory
to a UNIX shell startup file on your system.

PMS Examples
The following examples show how to initialize a PMS client, the structure of the
main thread, asynchronous messaging, scheduling, and the PMS client’s user and
management, node, and RND interfaces.

■ “PMS Client Initialization Example” on page 85
■ “PMS Client Main Thread” on page 91
■ “PMS Client Asynchronous Message Handling” on page 93
■ “PMS Client Scheduling Example” on page 106
■ “PMS Client User and Management Interface” on page 107
■ “PMS Client Node Interface” on page 124
■ “PMS Client RND Interface” on page 131

pms_connect(1M) Documents the PMS API functions used to
create (pms_connect) and destroy
(pms_disconnect) a PMS daemon interface
session.

pms_send(1M) Describes the PMS API functions that enable
PMS clients to send (pms_send) and receive
(pms_receive) messages with other PMS
clients or clusters.

pms_usermgmt_message_payloads(1M) Describes the payloads for the user and
management PMS function groups.

pms_node_message_payloads(1M) Defines the payloads for the node PMS
function group.

pms_rnd_message_payloads(1M) Describes the payloads for the remote node
drawer (system) PMS function group.

TABLE 7-1 Processor Management Services Man Pages (Continued)

Man page Description
84 Netra CT Server Software Developer’s Guide • February 2007

CODE EXAMPLE 7-1 begins by initializing the main thread for a PMS client.

CODE EXAMPLE 7-1 PMS Client Initialization Example

#include <sys/types.h> /* socketpair() */
#include <sys/socket.h> /* socketpair() */

#include <unistd.h> /* write(), read() */

#include <signal.h> /* sigemptyset(), sigaddset(), sigaction() */
#include <time.h> /* timer_create(), timer_settime() */

#include <stdio.h> /* printf(), scanf() */

#include "pms.h"

/* Application State Machine Example Overview:
1) PMS API initialization and usage.
2) PMS Daemon connectivity and availability management.
3) Named application synchronization and behavior.
4) Remote Node Drawer address list synchronization and monitoring.
5) Basic example data caching synchronization on the client side for PMS

items a particular application’s intent/design makes it interested in.
6) Basic asynchronous message handling infrastructure for the application.
7) Remote monitoring of remote node drawer’s.
8) Example Control of a pair of remote node drawer’s(not implemented yet).

*/

void* app_hasim_thread(void*);

/* Event message handlers.. */

/* This mechanism registers one receive handler with PMS for all messages, which
simply posts the messages to the client thread’s processing queue to have them

 handled synchronously. Alternatively, handlers can be registered with PMS
individually in which case they will execute asynchronous to the client thread

 in the context of the PMS API receive thread. */

void app_hasim_receive_post(struct pms_receive *pr);
int app_hasim_receive_dispatch(struct pms_receive* pr);

void app_hasim_receive_user_status(struct pms_receive *pr);
void app_hasim_receive_mgmt_status(struct pms_receive *pr);
Chapter 7 Processor Management Services 85

void app_hasim_receive_node_rg0_status(struct pms_receive *pr);
void app_hasim_receive_node_rg0_app_state_set_execute\

(struct pms_receive *pr);
void app_hasim_receive_rnd_status(struct pms_receive *pr);
void app_hasim_receive_rnd_md0_status(struct pms_receive *pr);

void app_hasim_receive_time_status(void);

/* Convenient state machine process sub-groupings.. */

void app_hasim_user_process(void);
void app_hasim_mgmt_process(void);
void app_hasim_node_process(void);
void app_hasim_rnd_process(void);
void app_hasim_process(void);

/* Timer signal handler.. */

void app_hasim_sigusr1_signal_handler(int);

/* Interval’s currently set for example convenience.. */

#define HASIM_CHECK_INTERVAL 2
#define HASIM_SYNCCHECK_INTERVAL 600
#define HASIM_CHECK_VALID_INTERVAL 1800
#define HASIM_CHECK_INVALID_INTERVAL 3600

#define HASIM_RND_ADDRESS_AUDIT_ENTRYS 2

struct hasim_info
 {
 int sockfd[2];
 struct
 {
 char node_ip_address[20];
 char drawer_ip_address[20];
 int node_slot_number;
 } rnd_address[HASIM_RND_ADDRESS_AUDIT_ENTRYS];

 struct
 {
#define HASIM_USER_RECEIVE_UNREGISTERED 0x00
#define HASIM_USER_RECEIVE_REGISTERED 0x01
 int receive_state;
#define HASIM_USER_PMS_VIEW_REACHABLE 0x00

CODE EXAMPLE 7-1 PMS Client Initialization Example (Continued)
86 Netra CT Server Software Developer’s Guide • February 2007

#define HASIM_USER_PMS_VIEW_UNREACHABLE 0x01
 int pms_view;

 int view_cache;
 } user_info;

 struct
 {
#define HASIM_MGMT_RECEIVE_UNREGISTERED 0x00
#define HASIM_MGMT_RECEIVE_REGISTERED 0x01
 int receive_state;
#define HASIM_MGMT_PMS_STATE_UNAVAILABLE 0x00
#define HASIM_MGMT_PMS_STATE_AVAILABLE 0x01
 int pms_state;
#define HASIM_MGMT_RND_ADDRESS_UNVERIFIED 0x00
#define HASIM_MGMT_RND_ADDRESS_VERIFIED 0x01
 int rnd_address_state;
 int rnd_address_identifier[16];

#define HASIM_MGMT_CACHE_INVALID 0x00
#define HASIM_MGMT_CACHE_OLD 0x01
#define HASIM_MGMT_CACHE_VALID 0x02
 int cache_state;
 int last_update;
 int last_sync_check;

 int mgmt_state_cache;
 struct
 {
 int identifier;
 char node_ip_address[20];
 char drawer_ip_address[20];
 int node_slot_number;
 } rnd_address_cache[16];
 } mgmt_info;

 struct
 {
#define HASIM_NODE_RG0_STATUS_RECEIVE_REGISTERED 0x02
#define HASIM_NODE_RG0_APP_STATE_SET_EXECUTE_RECEIVE_REGISTERED 0x04
#define HASIM_NODE_GROUP_RECEIVE_UNREGISTERED 0x00
#define HASIM_NODE_GROUP_RECEIVE_REGISTERED 0x06
 int receive_state;
#define HASIM_NODE_RG0_APP_NAME_UNREGISTERED 0x00
#define HASIM_NODE_RG0_APP_NAME_REGISTERED 0x01
 int rg0_app_name_state;
#define HASIM_NODE_SERVICE_STATE_OFFLINE 0x00

CODE EXAMPLE 7-1 PMS Client Initialization Example (Continued)
Chapter 7 Processor Management Services 87

#define HASIM_NODE_SERVICE_STATE_ACTIVE 0x01
 int service_state;

#define HASIM_NODE_CACHE_INVALID 0x00
#define HASIM_NODE_CACHE_OLD 0x01
#define HASIM_NODE_CACHE_VALID 0x02
 int cache_state;
 int last_update;
 int last_sync_check;

 int rg0_state_cache;
 } node_info;

 struct
 {
#define HASIM_RND_RECEIVE_REGISTERED 0x01
#define HASIM_RND_MD0_RECEIVE_REGISTERED 0x20
#define HASIM_RND_GROUP_RECEIVE_UNREGISTERED 0x00
#define HASIM_RND_GROUP_RECEIVE_REGISTERED 0x21
 int receive_state;

#define HASIM_RND_CACHE_INVALID 0x00
#define HASIM_RND_CACHE_OLD 0x01
#define HASIM_RND_CACHE_VALID 0x02
 int cache_state;
 int last_update;
 int last_sync_check;

 int view_cache;
 int md0_config_cache;
 } rnd_info[16];

 };

static struct hasim_info mdi;

int
main(int argc, char *argv[])
{

 struct pms_receive pr;
 struct sigaction sigusr1_signal_handler_info;
 struct sigevent evp;
 timer_t timerid;
 struct itimerspec val;
 struct itimerspec oval;

CODE EXAMPLE 7-1 PMS Client Initialization Example (Continued)
88 Netra CT Server Software Developer’s Guide • February 2007

 int i;

 if (argc != 1)
 {
 printf("Invalid Arguments\n");

 exit(1);
 }

 /* Start/Initialize the PMS API before using any further calls.. */

 if (pms_apistart() == -1)
 exit(2);

 /* Create message queue.. */

 if (socketpair(AF_UNIX, SOCK_DGRAM, 0, mdi.sockfd) == -1)
 {
 exit(3);
 }

 /* Setup defaults.. */

 /* Audit DB hardcoding for this example.. */

 strcpy(&mdi.rnd_address[0].node_ip_address[0], "129.150.94.70");
 strcpy(&mdi.rnd_address[0].drawer_ip_address[0], "129.150.151.140");
 mdi.rnd_address[0].node_slot_number = 2;
 strcpy(&mdi.rnd_address[1].node_ip_address[0], "129.150.94.58");
 strcpy(&mdi.rnd_address[1].drawer_ip_address[0], "129.150.151.143");
 mdi.rnd_address[1].node_slot_number = 3;

 mdi.user_info.receive_state = HASIM_USER_RECEIVE_UNREGISTERED;
 mdi.user_info.pms_view = HASIM_USER_PMS_VIEW_UNREACHABLE;

 mdi.mgmt_info.receive_state = HASIM_MGMT_RECEIVE_UNREGISTERED;

CODE EXAMPLE 7-1 PMS Client Initialization Example (Continued)
Chapter 7 Processor Management Services 89

 mdi.mgmt_info.pms_state = HASIM_MGMT_PMS_STATE_UNAVAILABLE;
 mdi.mgmt_info.rnd_address_state = HASIM_MGMT_RND_ADDRESS_UNVERIFIED;
 for(i=0;i<16;i++)
 mdi.mgmt_info.rnd_address_identifier[i] = -1;
 mdi.mgmt_info.cache_state = HASIM_MGMT_CACHE_INVALID;
 mdi.mgmt_info.last_update = HASIM_CHECK_INVALID_INTERVAL;
 mdi.mgmt_info.last_sync_check = HASIM_SYNCCHECK_INTERVAL;

 mdi.node_info.receive_state = HASIM_NODE_GROUP_RECEIVE_UNREGISTERED;
 mdi.node_info.rg0_app_name_state = HASIM_NODE_RG0_APP_NAME_UNREGISTERED;
 mdi.node_info.service_state = HASIM_NODE_SERVICE_STATE_OFFLINE;
 mdi.node_info.cache_state = HASIM_NODE_CACHE_INVALID;
 mdi.node_info.last_update = HASIM_CHECK_INVALID_INTERVAL;
 mdi.node_info.last_sync_check = HASIM_SYNCCHECK_INTERVAL;

 for(i=0;i<16;i++)
 {
 mdi.rnd_info[i].receive_state = HASIM_RND_GROUP_RECEIVE_UNREGISTERED;
 mdi.rnd_info[i].cache_state = HASIM_RND_CACHE_INVALID;
 mdi.rnd_info[i].last_update = HASIM_CHECK_INVALID_INTERVAL;
 mdi.rnd_info[i].last_sync_check = HASIM_SYNCCHECK_INTERVAL;
 }

 /* Setup timer.. */

 sigemptyset(&sigusr1_signal_handler_info.sa_mask);
 sigaddset(&sigusr1_signal_handler_info.sa_mask, SIGUSR1);
 sigusr1_signal_handler_info.sa_flags = 0;
 sigusr1_signal_handler_info.sa_handler = app_hasim_sigusr1_signal_handler;
 sigaction(SIGUSR1, &sigusr1_signal_handler_info, NULL);

 evp.sigev_notify = SIGEV_SIGNAL;
 evp.sigev_signo = SIGUSR1;

 if (timer_create(CLOCK_REALTIME, &evp, &timerid) == -1)
 exit(4);

 val.it_value.tv_sec = HASIM_CHECK_INTERVAL;
 val.it_value.tv_nsec = 0;
 val.it_interval.tv_sec = HASIM_CHECK_INTERVAL;
 val.it_interval.tv_nsec = 0;

 if (timer_settime(timerid, TIMER_RELTIME, &val, NULL) == -1)
 exit(4);

CODE EXAMPLE 7-1 PMS Client Initialization Example (Continued)
90 Netra CT Server Software Developer’s Guide • February 2007

 /* Don’t bother creating another thread, run in context of main default.. */
 app_hasim_thread(0);

}

CODE EXAMPLE 7-2 PMS Client Main Thread

void*
app_hasim_thread(void* arg)
{

 char receivebuffer[256];
 int receivestatus;

 fd_set readfds;
 int select_return;
 struct timeval timeout;

 struct pms_send ps;
 struct pms_receive pr;

 int i;

 printf("*** HA Client Application Simulation ***\n");

 /* Presuming PMS will have been started at boot or by another app.. */

 timeout.tv_sec = HASIM_CHECK_INTERVAL;
 timeout.tv_usec = 0;

 while(1)
 {

 FD_ZERO(&readfds);

 FD_SET(mdi.sockfd[1], &readfds);

 /* Wait for event messages.. */

CODE EXAMPLE 7-1 PMS Client Initialization Example (Continued)
Chapter 7 Processor Management Services 91

 select_return = select(64, &readfds, NULL, NULL, &timeout);

 if (select_return > 0)
 {
 if (FD_ISSET(mdi.sockfd[1], &readfds) != 0)
 {

 receivestatus = read(mdi.sockfd[1], &receivebuffer[0], 256);

 if (receivestatus <= 0)
 {

 /* Handle Error.. */

 }
 else
 {

 /* Handle Message.. */

 app_hasim_receive_dispatch((struct pms_receive*)&receivebuffer[0]);

 }
 }
 }
 else if (select_return == 0)
 {

 /* Handle Timeout.. */

 }
 else
 {

 /* Handle Error.. */

 }

 }

}

void
app_hasim_sigusr1_signal_handler(int signal)
{

CODE EXAMPLE 7-2 PMS Client Main Thread (Continued)
92 Netra CT Server Software Developer’s Guide • February 2007

The following example sets up a PMS client to handle asynchronous messages.

 struct pms_receive pr;

 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_PAYLOAD_TYPE_MAX+1;

 app_hasim_receive_post(&pr);
}

CODE EXAMPLE 7-3 PMS Client Asynchronous Message Handling

void
app_hasim_receive_post(struct pms_receive* pr)
{

 int status;

 /* Write for reading in context of main thread.. */

 status = write(mdi.sockfd[0], pr, sizeof(struct pms_receive));

 if (status < 0)
 {
 }

}

int
app_hasim_receive_dispatch(struct pms_receive* pr)
{

 switch(pr->payload.type)
 {
 case PMS_PD_USER_STATUS:

 app_hasim_receive_user_status(pr);

CODE EXAMPLE 7-2 PMS Client Main Thread (Continued)
Chapter 7 Processor Management Services 93

 break;

 case PMS_PD_MGMT_STATUS:

 app_hasim_receive_mgmt_status(pr);

 break;

 case PMS_PD_NODE_RG0_STATUS:

 app_hasim_receive_node_rg0_status(pr);

 break;

 case PMS_PD_NODE_RG0_APP_STATE_SET_EXECUTE:

 app_hasim_receive_node_rg0_app_state_set_execute(pr);

 break;
 case PMS_PD_RND_STATUS:

 app_hasim_receive_rnd_status(pr);

 break;
 case PMS_PD_RND_MD0_STATUS:

 app_hasim_receive_rnd_md0_status(pr);

 break;
 case PMS_PD_PAYLOAD_TYPE_MAX+1:

 app_hasim_receive_time_status();

 break;
 }

 return(0);

}

void
app_hasim_receive_user_status(struct pms_receive* pr)
{

CODE EXAMPLE 7-3 PMS Client Asynchronous Message Handling (Continued)
94 Netra CT Server Software Developer’s Guide • February 2007

 switch(pr->payload.data.user_status.code)
 {
 case PMS_PD_USER_STATUS_PMS_REACHABLE:

 printf("hasim : received USER_STATUS PMS_REACHABLE..\n");

 mdi.user_info.view_cache = PMS_PD_USER_STATUS_PMS_REACHABLE;

 /* Run state machine.. */

 app_hasim_process();

 break;
 case PMS_PD_USER_STATUS_PMS_UNREACHABLE:

 printf("hasim : received USER_STATUS PMS_UNREACHABLE..\n");

 mdi.user_info.view_cache = PMS_PD_USER_STATUS_PMS_UNREACHABLE;

 app_hasim_process();

 break;
 }

}

void
app_hasim_receive_mgmt_status(struct pms_receive* pr)
{

 struct pms_send ps;
 struct pms_receive prs;

 int info_get_fail;

 int rnd_address_identifier[16];
 char rnd_address_node_ip_address[16][20];
 char rnd_address_drawer_ip_address[16][20];
 int rnd_address_node_slot_number[16];

CODE EXAMPLE 7-3 PMS Client Asynchronous Message Handling (Continued)
Chapter 7 Processor Management Services 95

 int i, j;

 switch(pr->payload.data.mgmt_status.code)
 {
 case PMS_PD_MGMT_STATUS_PMS_STATE_AVAILABLE:

 printf("hasim : received MGMT_STATUS PMS STATE AVAILABLE..\n");

 /* Update cached data and set update time.. */

 mdi.mgmt_info.mgmt_state_cache = PMS_PD_MGMT_INFO_GET_STATUS_AVAILABLE;
 mdi.mgmt_info.last_update = 0;

 app_hasim_process();

 break;
 case PMS_PD_MGMT_STATUS_PMS_STATE_UNAVAILABLE:

 printf("hasim : received MGMT_STATUS PMS STATE UNAVAILABLE..\n");

mdi.mgmt_info.mgmt_state_cache = PMS_PD_MGMT_INFO_GET_STATUS_UNAVAILABLE;
 mdi.mgmt_info.last_update = 0;

 app_hasim_process();

 break;
 case PMS_PD_MGMT_STATUS_PMS_ADMIN_STATE_FORCE_UNAVAILABLE:

 printf("hasim : received MGMT_STATUS PMS ADMIN STATE FORCE\
UNAVAILABLE..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_MGMT_STATUS_PMS_ADMIN_STATE_VOTE_AVAILABLE:

printf("hasim : received MGMT_STATUS PMS ADMIN STATE VOTE AVAILABLE\
..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_MGMT_STATUS_PMS_ADMIN_STATE_FORCE_AVAILABLE:

CODE EXAMPLE 7-3 PMS Client Asynchronous Message Handling (Continued)
96 Netra CT Server Software Developer’s Guide • February 2007

 printf("hasim : received MGMT_STATUS PMS ADMIN STATE FORCE \
AVAILABLE..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_MGMT_STATUS_PMS_PERFORMANCE_DEGRADED:

printf("hasim : received MGMT_STATUS PMS PERFORMANCE DEGRADED..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_MGMT_STATUS_RND_ADDRESS_ADD:
 case PMS_PD_MGMT_STATUS_RND_ADDRESS_DELETE:

 if (pr->payload.data.mgmt_status.code == \
 PMS_PD_MGMT_STATUS_RND_ADDRESS_ADD)
 printf("hasim : received MGMT_STATUS RND ADDRESS ADD..\n");
 else
 printf("hasim : received MGMT_STATUS RND ADDRESS DELETE..\n");

 info_get_fail = 0;

 /* Get MGMT rnd address information.. */

 ps.session.type = PMS_SR_CALL_RETURN_TIMED;
 ps.session.info.crt.time = 0;
 ps.payload.type = PMS_PD_MGMT_RND_ADDRESS_INFO_GET_EXECUTE;

 for(i=0;i<16;i++)
 {
 ps.payload.data.mgmt_rnd_address_info_get_execute.index = i;

 if (pms_send(&ps, &prs) == 0)
 {
 if (prs.payload.data.mgmt_rnd_address_info_get_status.err == \
 PMS_PD_MGMT_RND_ADDRESS_INFO_GET_STATUS_ERR_NONE)
 {
 rnd_address_identifier[i] = \
 prs.payload.data.mgmt_rnd_address_info_get_status.identifier;
 strncpy(&rnd_address_node_ip_address[i][0], \

&prs.payload.data.mgmt_rnd_address_info_get_status.node_ip_address[0], 20);

CODE EXAMPLE 7-3 PMS Client Asynchronous Message Handling (Continued)
Chapter 7 Processor Management Services 97

 strncpy(&rnd_address_drawer_ip_address[i][0], \

&prs.payload.data.mgmt_rnd_address_info_get_status.drawer_ip_address[0], 20);
 rnd_address_node_slot_number[i] = \

prs.payload.data.mgmt_rnd_address_info_get_status.node_slot_number;
 }
 else
 {
 info_get_fail = 1;
 }
 }
 else
 {
 info_get_fail = 1;
 }
 }

 if (info_get_fail == 0)
 {

 for(i=0;i<16;i++)
 {
 mdi.mgmt_info.rnd_address_cache[i].identifier = \
 rnd_address_identifier[i];
 strncpy(&mdi.mgmt_info.rnd_address_cache[i].node_ip_address[0], \
 &rnd_address_node_ip_address[i][0], 20);
 strncpy(&mdi.mgmt_info.rnd_address_cache[i].drawer_ip_address[0], \
 &rnd_address_drawer_ip_address[i][0], 20);
 mdi.mgmt_info.rnd_address_cache[i].node_slot_number = \
 rnd_address_node_slot_number[i];
 }

 mdi.mgmt_info.last_update = 0;
 }

 app_hasim_process();

 break;
 case PMS_PD_MGMT_STATUS_PMS_ADMIN_STATE_AV_RG0VA_DELAY:

 printf("hasim : received MGMT_STATUS PMS ADMIN STATE AV RG0VA \
DELAY..\n");

CODE EXAMPLE 7-3 PMS Client Asynchronous Message Handling (Continued)
98 Netra CT Server Software Developer’s Guide • February 2007

 /* Doing nothing at the moment.. */

 break;
 }

}

void
app_hasim_receive_node_rg0_status(struct pms_receive* pr)
{

 switch(pr->payload.data.node_rg0_status.code)
 {
 case PMS_PD_NODE_RG0_STATUS_STATE_ACTIVE:

 printf("hasim : received NODE_RG0_STATUS STATE ACTIVE..\n");

 mdi.node_info.rg0_state_cache = PMS_PD_NODE_RG0_INFO_GET_STATUS_ACTIVE;
 mdi.node_info.last_update = 0;

 app_hasim_process();

 break;
 case PMS_PD_NODE_RG0_STATUS_STATE_OFFLINE:

 printf("hasim : received NODE_RG0_STATUS STATE OFFLINE..\n");

 mdi.node_info.rg0_state_cache = PMS_PD_NODE_RG0_INFO_GET_STATUS_OFFLINE;
 mdi.node_info.last_update = 0;

 app_hasim_process();

 break;
 case PMS_PD_NODE_RG0_STATUS_ADMIN_STATE_FORCE_OFFLINE:

 printf("hasim : received NODE_RG0_STATUS ADMIN STATE FORCE \
OFFLINE ..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_NODE_RG0_STATUS_ADMIN_STATE_VOTE_ACTIVE:

 printf("hasim : received NODE_RG0_STATUS ADMIN STATE VOTE \
ACTIVE..\n");

CODE EXAMPLE 7-3 PMS Client Asynchronous Message Handling (Continued)
Chapter 7 Processor Management Services 99

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_NODE_RG0_STATUS_ADMIN_STATE_FORCE_ACTIVE:

 printf("hasim : received NODE_RG0_STATUS ADMIN STATE FORCE \
ACTIVE..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_NODE_RG0_STATUS_APP_STATE_SET_FAULT:

printf("hasim : received NODE_RG0_STATUS APP STATE SET FAULT..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_NODE_RG0_STATUS_ADOPER_STATUSMASK_SET:

printf("hasim : received NODE_RG0_STATUS ADOPER STATUSMASK SET..\n");

 /* Doing nothing at the moment.. */

 break;
 }

}

void
app_hasim_receive_node_rg0_app_state_set_execute(struct pms_receive* pr)
{

 struct pms_send ps;

 switch(pr->payload.data.node_rg0_app_state_set_execute.state)
 {
 case PMS_PD_NODE_RG0_APP_STATE_SET_EXECUTE_ACTIVE:

printf("hasim : received NODE_RG0_APP_STATE_SET_EXECUTE ACTIVE..\n");

 /* Do whatever, within pr->session.info.crt.time if possible.. */

CODE EXAMPLE 7-3 PMS Client Asynchronous Message Handling (Continued)
100 Netra CT Server Software Developer’s Guide • February 2007

 /* Send return message indicating successful reception.. */

 ps.session.type = PMS_SR_RETURN;
 ps.session.info.r.return_identifier = \

pr->session.info.crt.call_identifier;
ps.session.info.r.return_priority = pr->session.info.crt.return_priority;

 ps.payload.type = PMS_PD_NODE_RG0_APP_STATE_SET_STATUS;
 ps.payload.data.node_rg0_app_state_set_status.err = \
 PMS_PD_NODE_RG0_APP_STATE_SET_STATUS_SUCCESS;

 if (pms_send(&ps, 0) != 0)
 {
 }

 break;
 case PMS_PD_NODE_RG0_APP_STATE_SET_EXECUTE_OFFLINE:

 printf("hasim : received NODE_RG0_APP_STATE_SET_EXECUTE OFFLINE\
..\n");

 /* Do whatever, within pr->session.info.crt.time if possible.. */

 ps.session.type = PMS_SR_RETURN;
 ps.session.info.r.return_identifier = \

pr->session.info.crt.call_identifier;
ps.session.info.r.return_priority = pr->session.info.crt.return_priority;

 ps.payload.type = PMS_PD_NODE_RG0_APP_STATE_SET_STATUS;
 ps.payload.data.node_rg0_app_state_set_status.err = \
 PMS_PD_NODE_RG0_APP_STATE_SET_STATUS_SUCCESS;

 if (pms_send(&ps, 0) != 0)
 {
 }

 break;
 };

}

CODE EXAMPLE 7-3 PMS Client Asynchronous Message Handling (Continued)
Chapter 7 Processor Management Services 101

void
app_hasim_receive_rnd_status(struct pms_receive* pr)
{

 printf("hasim : rs.identifier=%.8X\n", \
pr->payload.data.rnd_status.identifier);

 switch(pr->payload.data.rnd_status.code)
 {
 case PMS_PD_RND_STATUS_VIEW_NODE_REACHABLE_DRAWER_REACHABLE:

 printf("hasim : received RND_STATUS NODE REACHABLE DRAWER \
REACHABLE..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_RND_STATUS_VIEW_NODE_REACHABLE_DRAWER_UNREACHABLE:

 printf("hasim : received RND_STATUS NODE REACHABLE DRAWER\
UNREACHABLE..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_RND_STATUS_VIEW_NODE_UNREACHABLE_DRAWER_REACHABLE:

 printf("hasim : received RND_STATUS NODE UNREACHABLE DRAWER\
REACHABLE..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_RND_STATUS_VIEW_NODE_UNREACHABLE_DRAWER_UNREACHABLE:

 printf("hasim : received RND_STATUS NODE UNREACHABLE DRAWER\
UNREACHABLE..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_RND_STATUS_ADOPER_FORCE_UNAVAILABLE:

printf("hasim : received RND_STATUS ADOPER FORCE UNAVAILABLE..\n");

CODE EXAMPLE 7-3 PMS Client Asynchronous Message Handling (Continued)
102 Netra CT Server Software Developer’s Guide • February 2007

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_RND_STATUS_ADOPER_VOTE_AVAILABLE:

 printf("hasim : received RND_STATUS ADOPER VOTE AVAILABLE..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_RND_STATUS_ADOPER_FORCE_AVAILABLE:

 printf("hasim : received RND_STATUS ADOPER FORCE AVAILABLE..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_RND_STATUS_ADOPER_STATUSMASK_SET:

 printf("hasim : received RND_STATUS ADOPER STATUSMASK SET..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_RND_STATUS_STATE_UNAVAILABLE:

 printf("hasim : received RND_STATUS STATE UNAVAILABLE..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_RND_STATUS_STATE_AVAILABLE:

 printf("hasim : received RND_STATUS STATE AVAILABLE..\n");

 /* Doing nothing at the moment.. */

 break;
 }

}

void
app_hasim_receive_rnd_md0_status(struct pms_receive* pr)
{

CODE EXAMPLE 7-3 PMS Client Asynchronous Message Handling (Continued)
Chapter 7 Processor Management Services 103

 printf("hasim : rms.identifier=%.8X\n", \
pr->payload.data.rnd_md0_status.identifier);

 switch(pr->payload.data.rnd_md0_status.code)
 {
 case PMS_PD_RND_MD0_STATUS_ADOPER_CONFIG_MAINTENANCE:

 printf("hasim : received RND_MD0_STATUS ADOPER CONFIG \
MAINTENANCE..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_RND_MD0_STATUS_ADOPER_CONFIG_OPERATIONAL:

 printf("hasim : received RND_MD0_STATUS ADOPER CONFIG \
OPERATIONAL..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_RND_MD0_STATUS_ADOPER_GRACEFUL_REBOOT:

printf("hasim : received RND_MD0_STATUS ADOPER GRACEFUL REBOOT..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_RND_MD0_STATUS_ADOPER_STATUSMASK_SET:

printf("hasim : received RND_MD0_STATUS ADOPER STATUSMASK SET..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_RND_MD0_STATUS_ADOPER_RECOVERY_PC:

 printf("hasim : received RND_MD0_STATUS ADOPER RECOVERY PC..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_RND_MD0_STATUS_ADOPER_RECOVERY_RST:

CODE EXAMPLE 7-3 PMS Client Asynchronous Message Handling (Continued)
104 Netra CT Server Software Developer’s Guide • February 2007

printf("hasim : received RND_MD0_STATUS ADOPER RECOVERY RST..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_RND_MD0_STATUS_ADOPER_RECOVERY_RSTPC:

printf("hasim : received RND_MD0_STATUS ADOPER RECOVERY RSTPC..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_RND_MD0_STATUS_ADOPER_RECOVERY_PD:
 printf("hasim : received RND_MD0_STATUS ADOPER RECOVERY PD..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_RND_MD0_STATUS_ADOPER_RECOVERY_RB:

 printf("hasim : received RND_MD0_STATUS ADOPER RECOVERY RB..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_RND_MD0_STATUS_ADOPER_RECOVERYAUTOMODE_SET:

 printf("hasim : received RND_MD0_STATUS ADOPER RECOVERYAUTOMODE\
SET..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_RND_MD0_STATUS_ADOPER_SCDM_TIMEOUT:

printf("hasim : received RND_MD0_STATUS ADOPER SCDM TIMEOUT..\n");

 /* Doing nothing at the moment.. */

 break;
 case PMS_PD_RND_MD0_STATUS_CONFIG_MAINTENANCE:

 printf("hasim : received RND_MD0_STATUS CONFIG MAINTENANCE..\n");

 /* Doing nothing at the moment.. */

 break;

CODE EXAMPLE 7-3 PMS Client Asynchronous Message Handling (Continued)
Chapter 7 Processor Management Services 105

The following example shows a PMS client’s scheduling.

 case PMS_PD_RND_MD0_STATUS_CONFIG_OPERATIONAL:

 printf("hasim : received RND_MD0_STATUS CONFIG OPERATIONAL..\n");

 /* Doing nothing at the moment.. */

 break;
 }

}

CODE EXAMPLE 7-4 PMS Client Scheduling Example

void
app_hasim_receive_time_status(void)
{

 int i;
 mdi.mgmt_info.last_update += HASIM_CHECK_INTERVAL;
 mdi.mgmt_info.last_sync_check += HASIM_CHECK_INTERVAL;

 mdi.node_info.last_update += HASIM_CHECK_INTERVAL;
 mdi.node_info.last_sync_check += HASIM_CHECK_INTERVAL;

 for(i=0;i<16;i++)
 {
 mdi.rnd_info[i].last_update += HASIM_CHECK_INTERVAL;
 mdi.rnd_info[i].last_sync_check += HASIM_CHECK_INTERVAL;
 }

 app_hasim_process();

}

void
app_hasim_process(void)
{

CODE EXAMPLE 7-3 PMS Client Asynchronous Message Handling (Continued)
106 Netra CT Server Software Developer’s Guide • February 2007

The following example shows the PMS client’s user management interface.

 /* Run state machine sub-groupings.. */

 app_hasim_user_process();

app_hasim_mgmt_process();

app_hasim_node_process();

app_hasim_rnd_process();

}

CODE EXAMPLE 7-5 PMS Client User and Management Interface

void
app_hasim_user_process(void)
{

 struct pms_receive pr;

 int i;

 /* PMS View check */

 /* Periodically attempt to connect if unreachable. Return to initial
 state variable settings on reachable to unreachable transition.. */

 if (mdi.user_info.pms_view == HASIM_USER_PMS_VIEW_UNREACHABLE)
 {
 if (pms_connect(PMS_SERVER_PORT_NUMBER_DEFAULT) != 0)
 {
 }
 else
 {
 mdi.user_info.pms_view = HASIM_USER_PMS_VIEW_REACHABLE;
 mdi.user_info.view_cache = PMS_PD_USER_STATUS_PMS_REACHABLE;
 }
 }

CODE EXAMPLE 7-4 PMS Client Scheduling Example (Continued)
Chapter 7 Processor Management Services 107

 else /* mdi.user_info.pms_view == HASIM_USER_PMS_VIEW_REACHABLE */
 {
 if (mdi.user_info.view_cache == PMS_PD_USER_STATUS_PMS_UNREACHABLE)
 {

 /* RND */

 for(i=0;i<16;i++)
 {

 mdi.rnd_info[i].cache_state = HASIM_RND_CACHE_INVALID;
 mdi.rnd_info[i].last_update = HASIM_CHECK_INVALID_INTERVAL;

if ((mdi.rnd_info[i].receive_state & HASIM_RND_RECEIVE_REGISTERED) != 0)
 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_RND_STATUS;
 pr.payload.data.rnd_status.identifier = \
 mdi.mgmt_info.rnd_address_identifier[i];
 pms_receive(&pr, 0, 0);
 mdi.rnd_info[i].receive_state &= !HASIM_RND_RECEIVE_REGISTERED;
 }

if ((mdi.rnd_info[i].receive_state & HASIM_RND_MD0_RECEIVE_REGISTERED)\
!= 0)

 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_RND_MD0_STATUS;
 pr.payload.data.rnd_status.identifier = \
 mdi.mgmt_info.rnd_address_identifier[i];
 pms_receive(&pr, 0, 0);
 mdi.rnd_info[i].receive_state &= !HASIM_RND_MD0_RECEIVE_REGISTERED;
 }

 }

 /* NODE */

 mdi.node_info.cache_state = HASIM_NODE_CACHE_INVALID;
 mdi.node_info.last_update = HASIM_CHECK_INVALID_INTERVAL;

 if (mdi.node_info.service_state == HASIM_NODE_SERVICE_STATE_ACTIVE)
 {
 mdi.node_info.service_state = HASIM_NODE_SERVICE_STATE_OFFLINE;
 }

CODE EXAMPLE 7-5 PMS Client User and Management Interface (Continued)
108 Netra CT Server Software Developer’s Guide • February 2007

 if (mdi.node_info.rg0_app_name_state ==\
HASIM_NODE_RG0_APP_NAME_REGISTERED)

 {
mdi.node_info.rg0_app_name_state = HASIM_NODE_RG0_APP_NAME_UNREGISTERED;

 }

 if ((mdi.node_info.receive_state &\
HASIM_NODE_RG0_STATUS_RECEIVE_REGISTERED) != 0)

 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_NODE_RG0_STATUS;
 pms_receive(&pr, 0, 0);
 mdi.node_info.receive_state &=\

!HASIM_NODE_RG0_STATUS_RECEIVE_REGISTERED;
 }

 if ((mdi.node_info.receive_state & \
 HASIM_NODE_RG0_APP_STATE_SET_EXECUTE_RECEIVE_REGISTERED) != 0)
 {
 pr.session.type = PMS_SR_CALL_RETURN_TIMED;
 pr.payload.type = PMS_PD_NODE_RG0_APP_STATE_SET_EXECUTE;
 pms_receive(&pr, 0, 0);
 mdi.node_info.receive_state &= \

!HASIM_NODE_RG0_APP_STATE_SET_EXECUTE_RECEIVE_REGISTERED;
 }

 /* MGMT */

 mdi.mgmt_info.cache_state = HASIM_MGMT_CACHE_INVALID;
 mdi.mgmt_info.last_update = HASIM_CHECK_INVALID_INTERVAL;

 for(i=0;i<16;i++)
 mdi.mgmt_info.rnd_address_identifier[i] = -1;

 if (mdi.mgmt_info.rnd_address_state == HASIM_MGMT_RND_ADDRESS_VERIFIED)
 {
 mdi.mgmt_info.rnd_address_state = HASIM_MGMT_RND_ADDRESS_UNVERIFIED;
 }

 if (mdi.mgmt_info.pms_state == HASIM_MGMT_PMS_STATE_AVAILABLE)
 {
 mdi.mgmt_info.pms_state = HASIM_MGMT_PMS_STATE_UNAVAILABLE;
 }

 if (mdi.mgmt_info.receive_state == HASIM_MGMT_RECEIVE_REGISTERED)
 {

CODE EXAMPLE 7-5 PMS Client User and Management Interface (Continued)
Chapter 7 Processor Management Services 109

 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_MGMT_STATUS;
 pms_receive(&pr, 0, 1);

 mdi.mgmt_info.receive_state = HASIM_MGMT_RECEIVE_UNREGISTERED;
 }

 /* USER */

 if (mdi.user_info.receive_state == HASIM_USER_RECEIVE_REGISTERED)
 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_USER_STATUS;
 pms_receive(&pr, 0, 0);

 mdi.user_info.receive_state = HASIM_USER_RECEIVE_UNREGISTERED;
 }

 if (mdi.user_info.pms_view == HASIM_USER_PMS_VIEW_REACHABLE)
 {
 pms_disconnect();

 mdi.user_info.pms_view = HASIM_USER_PMS_VIEW_UNREACHABLE;
 }

 }
 }

 /* Receive Check */

 /* If USER messages are not receive registered, attempt to register if PMS
 is reachable.. */

 if (mdi.user_info.pms_view == HASIM_USER_PMS_VIEW_REACHABLE)
 {
 if (mdi.user_info.receive_state != HASIM_USER_RECEIVE_REGISTERED)
 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_USER_STATUS;
 if (pms_receive(&pr, app_hasim_receive_post, 0) != -1)
 mdi.user_info.receive_state = HASIM_USER_RECEIVE_REGISTERED;
 }
 }

CODE EXAMPLE 7-5 PMS Client User and Management Interface (Continued)
110 Netra CT Server Software Developer’s Guide • February 2007

}

void
app_hasim_mgmt_process(void)
{

 struct pms_send ps;
 struct pms_receive pr;

 int info_get_fail;

 int match[HASIM_RND_ADDRESS_AUDIT_ENTRYS];

 int mgmt_state;
 int rnd_address_identifier[16];
 char rnd_address_node_ip_address[16][20];
 char rnd_address_drawer_ip_address[16][20];
 int rnd_address_node_slot_number[16];

 int i, j;

 /* Receive Check */

 /* If MGMT messages are not receive registered, attempt to register if PMS
 is reachable and USER receive messages are registered. If registration
 is successful, force an initial cache update.. */

 if (mdi.mgmt_info.receive_state != HASIM_MGMT_RECEIVE_REGISTERED)
 {
 if (mdi.user_info.receive_state == HASIM_USER_RECEIVE_REGISTERED)
 {
 if (mdi.user_info.pms_view == HASIM_USER_PMS_VIEW_REACHABLE)
 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_MGMT_STATUS;
 if (pms_receive(&pr, app_hasim_receive_post, 1) != -1)
 mdi.mgmt_info.receive_state = HASIM_MGMT_RECEIVE_REGISTERED;

 /* Force an info_get immediately after registering.. */
 mdi.mgmt_info.last_sync_check = HASIM_SYNCCHECK_INTERVAL;
 }
 }
 }

CODE EXAMPLE 7-5 PMS Client User and Management Interface (Continued)
Chapter 7 Processor Management Services 111

 /* PMS State check */

 /* Process PMS state transitions. On an available to unavailable transition
 return to pre-NODE and RND operational state variable settings.. */

 if (mdi.mgmt_info.pms_state == HASIM_MGMT_PMS_STATE_UNAVAILABLE)
 {
 if (mdi.mgmt_info.cache_state != HASIM_MGMT_CACHE_INVALID)
 {
 if (mdi.mgmt_info.mgmt_state_cache != \

PMS_PD_MGMT_INFO_GET_STATUS_UNAVAILABLE)
 {
 mdi.mgmt_info.pms_state = HASIM_MGMT_PMS_STATE_AVAILABLE;
 }
 }
 }
 else /* mdi.mgmt_info.pms_state == HASIM_MGMT_PMS_STATE_AVAILABLE */
 {
 if (mdi.mgmt_info.cache_state != HASIM_MGMT_CACHE_INVALID)
 {
 if (mdi.mgmt_info.mgmt_state_cache == \

PMS_PD_MGMT_INFO_GET_STATUS_UNAVAILABLE)
 {

 /* RND */

 for(i=0;i<16;i++)
 {

 if ((mdi.rnd_info[i].receive_state & \
HASIM_RND_RECEIVE_REGISTERED) != 0)

 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_RND_STATUS;
 pr.payload.data.rnd_status.identifier = \
 mdi.mgmt_info.rnd_address_identifier[i];
 pms_receive(&pr, 0, 0);
 mdi.rnd_info[i].receive_state &= !HASIM_RND_RECEIVE_REGISTERED;
 }

if ((mdi.rnd_info[i].receive_state & HASIM_RND_MD0_RECEIVE_REGISTERED)\
!= 0)

 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;

CODE EXAMPLE 7-5 PMS Client User and Management Interface (Continued)
112 Netra CT Server Software Developer’s Guide • February 2007

 pr.payload.type = PMS_PD_RND_MD0_STATUS;
 pr.payload.data.rnd_status.identifier = \
 mdi.mgmt_info.rnd_address_identifier[i];
 pms_receive(&pr, 0, 0);

mdi.rnd_info[i].receive_state &= !HASIM_RND_MD0_RECEIVE_REGISTERED;
 }

 }

 /* NODE */

 if (mdi.node_info.service_state == HASIM_NODE_SERVICE_STATE_ACTIVE)
 {
 mdi.node_info.service_state = HASIM_NODE_SERVICE_STATE_OFFLINE;
 }

 if (mdi.node_info.rg0_app_name_state == \
HASIM_NODE_RG0_APP_NAME_REGISTERED)

 {
mdi.node_info.rg0_app_name_state = HASIM_NODE_RG0_APP_NAME_UNREGISTERED;

 }

 if ((mdi.node_info.receive_state &\
HASIM_NODE_RG0_STATUS_RECEIVE_REGISTERED) != 0)

 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_NODE_RG0_STATUS;
 pms_receive(&pr, 0, 0);
 mdi.node_info.receive_state &=\

!HASIM_NODE_RG0_STATUS_RECEIVE_REGISTERED;
 }

 if ((mdi.node_info.receive_state & \
 HASIM_NODE_RG0_APP_STATE_SET_EXECUTE_RECEIVE_REGISTERED) != 0)
 {
 pr.session.type = PMS_SR_CALL_RETURN_TIMED;
 pr.payload.type = PMS_PD_NODE_RG0_APP_STATE_SET_EXECUTE;
 pms_receive(&pr, 0, 0);
 mdi.node_info.receive_state &= \

!HASIM_NODE_RG0_APP_STATE_SET_EXECUTE_RECEIVE_REGISTERED;
 }

 mdi.mgmt_info.pms_state = HASIM_MGMT_PMS_STATE_UNAVAILABLE;
 }

CODE EXAMPLE 7-5 PMS Client User and Management Interface (Continued)
Chapter 7 Processor Management Services 113

 }
 }

 /* RND Address Check */

 /* Check once at startup if the RND address pairs currently in the list
 are the same as this control application's defaults. If not, remove
 any that differ and add any that are missing. This is a bit contrived
 to demonstrate interaction via the address list messages. No point
 in starting processing if cache is invalid and PMS is not reachable
 and USER registration is not completed.. */

 if (mdi.mgmt_info.rnd_address_state != HASIM_MGMT_RND_ADDRESS_VERIFIED)
 {
 if (mdi.mgmt_info.cache_state != HASIM_MGMT_CACHE_INVALID)
 {
 if (mdi.user_info.receive_state == HASIM_USER_RECEIVE_REGISTERED)
 {
 if (mdi.user_info.pms_view == HASIM_USER_PMS_VIEW_REACHABLE)
 {

 match[0] = 0;
 match[1] = 0;

/* Search RND address list for entries not in the app's verify list.. */

 for(i=0;i<16;i++)
 {
 if (mdi.mgmt_info.rnd_address_cache[i].identifier != -1)
 {
 for(j=0;j<HASIM_RND_ADDRESS_AUDIT_ENTRYS;j++)
 {
 if (match[j] == 0)
 {
 /* Use strcmp() for the moment. Use sockaddr_in when \

I get around to it.. */
 if \

(strcmp(&mdi.mgmt_info.rnd_address_cache[i].node_ip_address[0], \
 &mdi.rnd_address[j].node_ip_address[0]) == 0)
 {
 if\

(strcmp(&mdi.mgmt_info.rnd_address_cache[i].drawer_ip_address[0], \
 &mdi.rnd_address[j].drawer_ip_address[0]) == 0)
 {

if (mdi.mgmt_info.rnd_address_cache[i].node_slot_number == \

CODE EXAMPLE 7-5 PMS Client User and Management Interface (Continued)
114 Netra CT Server Software Developer’s Guide • February 2007

 mdi.rnd_address[j].node_slot_number)
 {
 match[j] = 1;

 break;
 }
 }
 }
 }
 }

 /* Delete entries not in the app's verify list.. */

 if (j == HASIM_RND_ADDRESS_AUDIT_ENTRYS)
 {
 ps.session.type = PMS_SR_CALL_RETURN_TIMED;
 ps.session.info.crt.time = 0;
 ps.payload.type = PMS_PD_MGMT_RND_ADDRESS_DELETE_EXECUTE;

 ps.payload.data.mgmt_rnd_address_delete_execute.identifier = \
 mdi.mgmt_info.rnd_address_cache[i].identifier;

 if (pms_send(&ps, &pr) == 0)
 {
 if (pr.payload.data.mgmt_rnd_address_delete_status.err == \
 PMS_PD_MGMT_RND_ADDRESS_DELETE_STATUS_ERR_NONE)
 {
 }
 }
 }

 }
 }

 /* Add any missing entries.. */

 for(i=0;i<HASIM_RND_ADDRESS_AUDIT_ENTRYS;i++)
 {
 if (match[i] == 0)
 {
 ps.session.type = PMS_SR_CALL_RETURN_TIMED;
 ps.session.info.crt.time = 0;
 ps.payload.type = PMS_PD_MGMT_RND_ADDRESS_ADD_EXECUTE;

 strncpy(&ps.payload.data.mgmt_rnd_address_add_execute.node_ip_address[0], \
 &mdi.rnd_address[i].node_ip_address[0], 20);
 strncpy(&ps.payload.data.mgmt_rnd_address_add_execute.drawer_ip_address[0], \

CODE EXAMPLE 7-5 PMS Client User and Management Interface (Continued)
Chapter 7 Processor Management Services 115

 &mdi.rnd_address[i].drawer_ip_address[0], 20);
ps.payload.data.mgmt_rnd_address_add_execute.node_slot_number = \

 mdi.rnd_address[i].node_slot_number;

 if (pms_send(&ps, &pr) == 0)
 {
 if (pr.payload.data.mgmt_rnd_address_add_status.err == \
 PMS_PD_MGMT_RND_ADDRESS_ADD_STATUS_ERR_NONE)
 {
 }
 }
 }
 }

 mdi.mgmt_info.rnd_address_state = HASIM_MGMT_RND_ADDRESS_VERIFIED;
 }
 }
 }
 }

 /* RND Address Identifier check */

 /* Process RND address identifier transitions. On in-use to not-in-use
 transitions, return state variables to pre-RND initialized state for that

identifier. Check whether any list entries have been deleted and re-added
 since last processing and do an available->unavailable->available

transition.. */

 for(i=0;i<16;i++)
 {

 if (mdi.mgmt_info.rnd_address_identifier[i] == -1)
 {

 if (mdi.mgmt_info.cache_state != HASIM_MGMT_CACHE_INVALID)
 {
 if (mdi.mgmt_info.rnd_address_cache[i].identifier != -1)
 {
 mdi.mgmt_info.rnd_address_identifier[i] =\

mdi.mgmt_info.rnd_address_cache[i].identifier;
 }
 }

 }
 else /* mdi.mgmt_info.rnd_address_identifier[i] != -1 */

CODE EXAMPLE 7-5 PMS Client User and Management Interface (Continued)
116 Netra CT Server Software Developer’s Guide • February 2007

 {

 if (mdi.mgmt_info.cache_state != HASIM_MGMT_CACHE_INVALID)
 {

 if (mdi.mgmt_info.rnd_address_cache[i].identifier == -1)
 {

 /* RND */

 if ((mdi.rnd_info[i].receive_state & HASIM_RND_RECEIVE_REGISTERED)\
 != 0)

 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_RND_STATUS;
 pr.payload.data.rnd_status.identifier = \
 mdi.mgmt_info.rnd_address_identifier[i];
 pms_receive(&pr, 0, 0);
 mdi.rnd_info[i].receive_state &= !HASIM_RND_RECEIVE_REGISTERED;
 }

if ((mdi.rnd_info[i].receive_state & HASIM_RND_MD0_RECEIVE_REGISTERED)\
!= 0)

 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_RND_MD0_STATUS;
 pr.payload.data.rnd_status.identifier = \
 mdi.mgmt_info.rnd_address_identifier[i];
 pms_receive(&pr, 0, 0);

mdi.rnd_info[i].receive_state &= !HASIM_RND_MD0_RECEIVE_REGISTERED;
 }

 mdi.mgmt_info.rnd_address_identifier[i] = -1;
 }
 else
 {
 if (mdi.mgmt_info.rnd_address_identifier[i] != \
 mdi.mgmt_info.rnd_address_cache[i].identifier)
 {
 /* RND */

if ((mdi.rnd_info[i].receive_state & HASIM_RND_RECEIVE_REGISTERED)\
!= 0)

 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_RND_STATUS;

CODE EXAMPLE 7-5 PMS Client User and Management Interface (Continued)
Chapter 7 Processor Management Services 117

 pr.payload.data.rnd_status.identifier = \
 mdi.mgmt_info.rnd_address_identifier[i];
 pms_receive(&pr, 0, 0);
 mdi.rnd_info[i].receive_state &= !HASIM_RND_RECEIVE_REGISTERED;
 }

 if ((mdi.rnd_info[i].receive_state & \
HASIM_RND_MD0_RECEIVE_REGISTERED) != 0)

 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_RND_MD0_STATUS;
 pr.payload.data.rnd_status.identifier = \
 mdi.mgmt_info.rnd_address_identifier[i];
 pms_receive(&pr, 0, 0);

mdi.rnd_info[i].receive_state &= !HASIM_RND_MD0_RECEIVE_REGISTERED;
 }

 mdi.mgmt_info.rnd_address_identifier[i] =\
mdi.mgmt_info.rnd_address_cache[i].identifier;

 }
 }

 }

 }

 }

 /* Sync Check */

 /* Policy: Sync update checked every SYNCCHECK_INTERVAL seconds.. */
 if (mdi.mgmt_info.last_sync_check > HASIM_SYNCCHECK_INTERVAL)
 {
 /* Policy: Don't attempt a sync update if any async partial updates have
 been received within SYNCCHECK_INTERVAL.. */
 if (mdi.mgmt_info.last_update > HASIM_SYNCCHECK_INTERVAL)
 {
 /* Policy: Don't attempt a sync update if registration for async
 updates have not succeeded.. */
 if (mdi.mgmt_info.receive_state == HASIM_MGMT_RECEIVE_REGISTERED)
 {
 if (mdi.user_info.receive_state == HASIM_USER_RECEIVE_REGISTERED)
 {
 if (mdi.user_info.pms_view == HASIM_USER_PMS_VIEW_REACHABLE)
 {
 mdi.mgmt_info.last_sync_check = 0;

CODE EXAMPLE 7-5 PMS Client User and Management Interface (Continued)
118 Netra CT Server Software Developer’s Guide • February 2007

 info_get_fail = 0;

 /* Get MGMT base information.. */
 ps.session.type = PMS_SR_CALL_RETURN_TIMED;
 ps.session.info.crt.time = 0;
 ps.payload.type = PMS_PD_MGMT_INFO_GET_EXECUTE;

 if (pms_send(&ps, &pr) == 0)
 {
 if (pr.payload.data.mgmt_info_get_status.err == \
 PMS_PD_MGMT_INFO_GET_STATUS_SUCCESS)
 {
 mgmt_state = pr.payload.data.mgmt_info_get_status.state;
 }
 else
 {
 info_get_fail = 1;
 }
 }
 else
 {
 info_get_fail = 1;
 }

 /* Get MGMT rnd address information.. */

 ps.session.type = PMS_SR_CALL_RETURN_TIMED;
 ps.session.info.crt.time = 0;
 ps.payload.type = PMS_PD_MGMT_RND_ADDRESS_INFO_GET_EXECUTE;

 for(i=0;i<16;i++)
 {
 ps.payload.data.mgmt_rnd_address_info_get_execute.index = i;

 if (pms_send(&ps, &pr) == 0)
 {
 if (pr.payload.data.mgmt_rnd_address_info_get_status.err == \
 PMS_PD_MGMT_RND_ADDRESS_INFO_GET_STATUS_ERR_NONE)
 {
 rnd_address_identifier[i] = \

pr.payload.data.mgmt_rnd_address_info_get_status.identifier;
 strncpy(&rnd_address_node_ip_address[i][0], \
 &pr.payload.data.mgmt_rnd_address_info_get_status.node_ip_address[0], 20);
 strncpy(&rnd_address_drawer_ip_address[i][0], \
 &pr.payload.data.mgmt_rnd_address_info_get_status.drawer_ip_address[0], 20);

CODE EXAMPLE 7-5 PMS Client User and Management Interface (Continued)
Chapter 7 Processor Management Services 119

 rnd_address_node_slot_number[i] = \
 pr.payload.data.mgmt_rnd_address_info_get_status.node_slot_number;
 }
 else
 {
 info_get_fail = 1;
 }
 }
 else
 {
 info_get_fail = 1;
 }
 }

 /* Only mark MGMT update as successful if all pieces of data
 were received successfully.. */

 if (info_get_fail == 0)
 {
 mdi.mgmt_info.mgmt_state_cache = mgmt_state;

 for(i=0;i<16;i++)
 {
 mdi.mgmt_info.rnd_address_cache[i].identifier = \
 rnd_address_identifier[i];

strncpy(&mdi.mgmt_info.rnd_address_cache[i].node_ip_address[0], \
 &rnd_address_node_ip_address[i][0], 20);
 strncpy(&mdi.mgmt_info.rnd_address_cache[i].drawer_ip_address[0],\
 &rnd_address_drawer_ip_address[i][0], 20);
 mdi.mgmt_info.rnd_address_cache[i].node_slot_number = \
 rnd_address_node_slot_number[i];
 }

 mdi.mgmt_info.last_update = 0;
 }

 }
 }
 }
 }
 else
 {
 mdi.mgmt_info.last_sync_check = 0;
 }
 }

CODE EXAMPLE 7-5 PMS Client User and Management Interface (Continued)
120 Netra CT Server Software Developer’s Guide • February 2007

 /* Validity Check */

 /* Process cache state validity transitions. The policy is on a MGMT cache
transition to invalid, return state variables to initial configuration.. */

 if(mdi.mgmt_info.last_update < HASIM_CHECK_VALID_INTERVAL)
 {
 if (mdi.mgmt_info.cache_state != HASIM_MGMT_CACHE_VALID)
 mdi.mgmt_info.cache_state = HASIM_MGMT_CACHE_VALID;
 }
 else if((mdi.mgmt_info.last_update >= HASIM_CHECK_VALID_INTERVAL && \
 mdi.mgmt_info.last_update < HASIM_CHECK_INVALID_INTERVAL))
 {
 if (mdi.mgmt_info.cache_state == HASIM_MGMT_CACHE_VALID)
 mdi.mgmt_info.cache_state = HASIM_MGMT_CACHE_OLD;
 }
 else if(mdi.mgmt_info.last_update >= HASIM_CHECK_INVALID_INTERVAL)
 {
 if (mdi.mgmt_info.cache_state == HASIM_MGMT_CACHE_OLD)
 {

 /* RND */

 for(i=0;i<16;i++)
 {

 mdi.rnd_info[i].cache_state = HASIM_RND_CACHE_INVALID;
 mdi.rnd_info[i].last_update = HASIM_CHECK_INVALID_INTERVAL;

if ((mdi.rnd_info[i].receive_state & HASIM_RND_RECEIVE_REGISTERED) != 0)
 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_RND_STATUS;
 pr.payload.data.rnd_status.identifier = \
 mdi.mgmt_info.rnd_address_identifier[i];
 pms_receive(&pr, 0, 0);
 mdi.rnd_info[i].receive_state &= !HASIM_RND_RECEIVE_REGISTERED;
 }

if ((mdi.rnd_info[i].receive_state & HASIM_RND_MD0_RECEIVE_REGISTERED)\
!= 0)

 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_RND_MD0_STATUS;
 pr.payload.data.rnd_status.identifier = \
 mdi.mgmt_info.rnd_address_identifier[i];
 pms_receive(&pr, 0, 0);

CODE EXAMPLE 7-5 PMS Client User and Management Interface (Continued)
Chapter 7 Processor Management Services 121

 mdi.rnd_info[i].receive_state &= !HASIM_RND_MD0_RECEIVE_REGISTERED;
 }

 }

 /* NODE*/

 mdi.node_info.cache_state = HASIM_NODE_CACHE_INVALID;
 mdi.node_info.last_update = HASIM_CHECK_INVALID_INTERVAL;

 if (mdi.node_info.service_state == HASIM_NODE_SERVICE_STATE_ACTIVE)
 {
 mdi.node_info.service_state = HASIM_NODE_SERVICE_STATE_OFFLINE;
 }

 if (mdi.node_info.rg0_app_name_state ==\
HASIM_NODE_RG0_APP_NAME_REGISTERED)

 {
mdi.node_info.rg0_app_name_state = HASIM_NODE_RG0_APP_NAME_UNREGISTERED;

 }

 if ((mdi.node_info.receive_state &\
HASIM_NODE_RG0_STATUS_RECEIVE_REGISTERED) != 0)

 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_NODE_RG0_STATUS;
 pms_receive(&pr, 0, 0);
 mdi.node_info.receive_state &=\

!HASIM_NODE_RG0_STATUS_RECEIVE_REGISTERED;
 }

 if ((mdi.node_info.receive_state & \
 HASIM_NODE_RG0_APP_STATE_SET_EXECUTE_RECEIVE_REGISTERED) != 0)
 {
 pr.session.type = PMS_SR_CALL_RETURN_TIMED;
 pr.payload.type = PMS_PD_NODE_RG0_APP_STATE_SET_EXECUTE;
 pms_receive(&pr, 0, 0);
 mdi.node_info.receive_state &=\

!HASIM_NODE_RG0_APP_STATE_SET_EXECUTE_RECEIVE_REGISTERED;
 }

 /* MGMT */

 mdi.mgmt_info.cache_state = HASIM_MGMT_CACHE_INVALID;

CODE EXAMPLE 7-5 PMS Client User and Management Interface (Continued)
122 Netra CT Server Software Developer’s Guide • February 2007

 for(i=0;i<16;i++)
 mdi.mgmt_info.rnd_address_identifier[i] = -1;

 if (mdi.mgmt_info.rnd_address_state == HASIM_MGMT_RND_ADDRESS_VERIFIED)
 {
 mdi.mgmt_info.rnd_address_state = HASIM_MGMT_RND_ADDRESS_UNVERIFIED;
 }

 if (mdi.mgmt_info.pms_state == HASIM_MGMT_PMS_STATE_AVAILABLE)
 {
 mdi.mgmt_info.pms_state = HASIM_MGMT_PMS_STATE_UNAVAILABLE;
 }

 if (mdi.mgmt_info.receive_state == HASIM_MGMT_RECEIVE_REGISTERED)
 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_MGMT_STATUS;
 pms_receive(&pr, 0, 1);

 mdi.mgmt_info.receive_state = HASIM_MGMT_RECEIVE_UNREGISTERED;
 }

 /* USER */

 if (mdi.user_info.receive_state == HASIM_USER_RECEIVE_REGISTERED)
 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_USER_STATUS;
 pms_receive(&pr, 0, 0);

 mdi.user_info.receive_state = HASIM_USER_RECEIVE_UNREGISTERED;
 }

 if (mdi.user_info.pms_view == HASIM_USER_PMS_VIEW_REACHABLE)
 {
 pms_disconnect();

 mdi.user_info.pms_view = HASIM_USER_PMS_VIEW_UNREACHABLE;
 }
 }
 }
}

CODE EXAMPLE 7-5 PMS Client User and Management Interface (Continued)
Chapter 7 Processor Management Services 123

The following example shows the PMS client node interface.

CODE EXAMPLE 7-6 PMS Client Node Interface

void
app_hasim_node_process(void)
{

 struct pms_send ps;
 struct pms_receive pr;

 int info_get_fail;

 int rg0_state;

 int i;

 /* Receive Check */

/* If NODE messages are not receive registered, attempt to register them if PMS
 is in the available state and reachable, and if USER receive messages are
 registered. If registration is successful, force an initial cache
 update.. */

 if (mdi.node_info.receive_state != HASIM_NODE_GROUP_RECEIVE_REGISTERED)
 {
 if (mdi.mgmt_info.pms_state == HASIM_MGMT_PMS_STATE_AVAILABLE)
 {
 if (mdi.user_info.receive_state == HASIM_USER_RECEIVE_REGISTERED)
 {
 if (mdi.user_info.pms_view == HASIM_USER_PMS_VIEW_REACHABLE)
 {

 if ((mdi.node_info.receive_state & \
HASIM_NODE_RG0_STATUS_RECEIVE_REGISTERED) == 0)

 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_NODE_RG0_STATUS;
 if (pms_receive(&pr, app_hasim_receive_post, 0) != -1)
 mdi.node_info.receive_state |= \

HASIM_NODE_RG0_STATUS_RECEIVE_REGISTERED;
 }

 if ((mdi.node_info.receive_state & \
 HASIM_NODE_RG0_APP_STATE_SET_EXECUTE_RECEIVE_REGISTERED) == 0)
 {
 pr.session.type = PMS_SR_CALL_RETURN_TIMED;
 pr.session.info.crt.time = 50;
124 Netra CT Server Software Developer’s Guide • February 2007

 pr.payload.type = PMS_PD_NODE_RG0_APP_STATE_SET_EXECUTE;
 if (pms_receive(&pr, app_hasim_receive_post, 0) != -1)
 mdi.node_info.receive_state |= \
 HASIM_NODE_RG0_APP_STATE_SET_EXECUTE_RECEIVE_REGISTERED;
 }

 /* Force an info_get immediately after registering.. */
 mdi.node_info.last_sync_check = HASIM_SYNCCHECK_INTERVAL;
 }
 }
 }
 }

 /* Name Check */

 /* If this application’s name is not registered, register it if PMS is
 available and reachable, and if USER registration is complete.. */

 if (mdi.node_info.rg0_app_name_state != HASIM_NODE_RG0_APP_NAME_REGISTERED)
 {
 if (mdi.mgmt_info.pms_state == HASIM_MGMT_PMS_STATE_AVAILABLE)
 {
 if (mdi.user_info.receive_state == HASIM_USER_RECEIVE_REGISTERED)
 {
 if (mdi.user_info.pms_view == HASIM_USER_PMS_VIEW_REACHABLE)
 {

 /* Set NODE RG0 application name.. */

 ps.session.type = PMS_SR_CALL_RETURN_TIMED;
 ps.session.info.crt.time = 0;
 ps.payload.type = PMS_PD_NODE_RG0_APP_NAME_EXECUTE;
 strcpy(&ps.payload.data.node_rg0_app_name_execute.name[0], \
 "hasim");
 ps.payload.data.node_rg0_app_name_execute.command = \
 PMS_PD_NODE_RG0_APP_NAME_EXECUTE_ADD;

 if (pms_send(&ps, &pr) == 0)
 {
 if (pr.payload.data.node_rg0_app_name_status.err == \
 PMS_PD_NODE_RG0_APP_NAME_STATUS_ERR_NONE)
 {
 mdi.node_info.rg0_app_name_state = \

HASIM_NODE_RG0_APP_NAME_REGISTERED;
 }
 }

CODE EXAMPLE 7-6 PMS Client Node Interface (Continued)
Chapter 7 Processor Management Services 125

 }
 }
 }
 }

 /* Service State check */

 /* Process application service state transitions. On an active-to-offline
 transition, return state variables to a pre-RND configuration. This
 example’s applications policy does not monitor RND pairs
 if it is offline.. */

 if (mdi.node_info.service_state == HASIM_NODE_SERVICE_STATE_OFFLINE)
 {
 if (mdi.node_info.cache_state != HASIM_NODE_CACHE_INVALID)
 {
 if (mdi.node_info.rg0_state_cache != \

PMS_PD_NODE_RG0_INFO_GET_STATUS_OFFLINE)
 {
 mdi.node_info.service_state = HASIM_NODE_SERVICE_STATE_ACTIVE;
 }
 }
 }
 else /* mdi.node_info.service_state == HASIM_NODE_SERVICE_STATE_ACTIVE */
 {
 if (mdi.node_info.cache_state != HASIM_NODE_CACHE_INVALID)
 {
 if (mdi.node_info.rg0_state_cache == \

PMS_PD_NODE_RG0_INFO_GET_STATUS_OFFLINE)
 {

 /* RND */

 for(i=0;i<16;i++)
 {

 if ((mdi.rnd_info[i].receive_state & \
HASIM_RND_RECEIVE_REGISTERED) != 0)

 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_RND_STATUS;
 pr.payload.data.rnd_status.identifier = \
 mdi.mgmt_info.rnd_address_identifier[i];
 pms_receive(&pr, 0, 0);
 mdi.rnd_info[i].receive_state &= !HASIM_RND_RECEIVE_REGISTERED;

CODE EXAMPLE 7-6 PMS Client Node Interface (Continued)
126 Netra CT Server Software Developer’s Guide • February 2007

 }

if ((mdi.rnd_info[i].receive_state & HASIM_RND_MD0_RECEIVE_REGISTERED)\
!= 0)

 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_RND_MD0_STATUS;
 pr.payload.data.rnd_status.identifier = \
 mdi.mgmt_info.rnd_address_identifier[i];
 pms_receive(&pr, 0, 0);

mdi.rnd_info[i].receive_state &= !HASIM_RND_MD0_RECEIVE_REGISTERED;
 }

 }

 mdi.node_info.service_state = HASIM_NODE_SERVICE_STATE_OFFLINE;
 }
 }
 }

 /* Sync Check */

 /* Policy: Sync update checked every SYNCCHECK_INTERVAL seconds.. */
 if (mdi.node_info.last_sync_check > HASIM_SYNCCHECK_INTERVAL)
 {
 /* Policy: Don’t attempt a sync update if any async partial updates have
 been received within SYNCCHECK_INTERVAL.. */
 if (mdi.node_info.last_update > HASIM_SYNCCHECK_INTERVAL)
 {
 /* Policy: Don’t attempt a sync update if registration for async
 updates have not succeeded.. */
 if (mdi.node_info.receive_state == HASIM_NODE_GROUP_RECEIVE_REGISTERED)
 {
 if (mdi.user_info.receive_state == HASIM_USER_RECEIVE_REGISTERED)
 {
 if (mdi.user_info.pms_view == HASIM_USER_PMS_VIEW_REACHABLE)
 {
 mdi.node_info.last_sync_check = 0;

 info_get_fail = 0;

 /* Get NODE RG0 information.. */
 ps.session.type = PMS_SR_CALL_RETURN_TIMED;
 ps.session.info.crt.time = 0;
 ps.payload.type = PMS_PD_NODE_RG0_INFO_GET_EXECUTE;

CODE EXAMPLE 7-6 PMS Client Node Interface (Continued)
Chapter 7 Processor Management Services 127

 if (pms_send(&ps, &pr) == 0)
 {
 if (pr.payload.data.node_rg0_info_get_status.err == \
 PMS_PD_NODE_RG0_INFO_GET_STATUS_SUCCESS)
 {
 rg0_state = pr.payload.data.node_rg0_info_get_status.state;
 }
 else
 {
 info_get_fail = 1;
 }
 }
 else
 {
 info_get_fail = 1;
 }

 /* Get any other NODE info? */

/* Only mark NODE update as successful if all pieces of data gotten
 were received successfully.. */

 if (info_get_fail == 0)
 {
 mdi.node_info.rg0_state_cache = rg0_state;

 mdi.node_info.last_update = 0;
 }

 }
 }
 }
 }
 else
 {
 mdi.node_info.last_sync_check = 0;
 }
 }

 /* Validity Check */

/* Process cache state validity transitions. The policy is that on a NODE cache
 transition to invalid, NODE AND RND state variables are returned to an

CODE EXAMPLE 7-6 PMS Client Node Interface (Continued)
128 Netra CT Server Software Developer’s Guide • February 2007

initial configuration.. */

 if(mdi.node_info.last_update < HASIM_CHECK_VALID_INTERVAL)
 {
 if (mdi.node_info.cache_state != HASIM_NODE_CACHE_VALID)
 mdi.node_info.cache_state = HASIM_NODE_CACHE_VALID;
 }
 else if((mdi.node_info.last_update >= HASIM_CHECK_VALID_INTERVAL && \
 mdi.node_info.last_update < HASIM_CHECK_INVALID_INTERVAL))
 {
 if (mdi.node_info.cache_state == HASIM_NODE_CACHE_VALID)
 mdi.node_info.cache_state = HASIM_NODE_CACHE_OLD;
 }
 else if(mdi.node_info.last_update >= HASIM_CHECK_INVALID_INTERVAL)
 {
 if (mdi.node_info.cache_state == HASIM_NODE_CACHE_OLD)
 {

 /* RND */

 for(i=0;i<16;i++)
 {

if ((mdi.rnd_info[i].receive_state & HASIM_RND_RECEIVE_REGISTERED) != 0)
 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_RND_STATUS;
 pr.payload.data.rnd_status.identifier = \
 mdi.mgmt_info.rnd_address_identifier[i];
 pms_receive(&pr, 0, 0);
 mdi.rnd_info[i].receive_state &= !HASIM_RND_RECEIVE_REGISTERED;
 }

if ((mdi.rnd_info[i].receive_state & HASIM_RND_MD0_RECEIVE_REGISTERED)\
 != 0)

 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_RND_MD0_STATUS;
 pr.payload.data.rnd_status.identifier = \
 mdi.mgmt_info.rnd_address_identifier[i];
 pms_receive(&pr, 0, 0);
 mdi.rnd_info[i].receive_state &= !HASIM_RND_MD0_RECEIVE_REGISTERED;
 }

 }

CODE EXAMPLE 7-6 PMS Client Node Interface (Continued)
Chapter 7 Processor Management Services 129

 /* NODE*/

 if (mdi.node_info.service_state == HASIM_NODE_SERVICE_STATE_ACTIVE)
 {
 mdi.node_info.service_state = HASIM_NODE_SERVICE_STATE_OFFLINE;
 }

 if (mdi.node_info.rg0_app_name_state == \
HASIM_NODE_RG0_APP_NAME_REGISTERED)

 {
mdi.node_info.rg0_app_name_state = HASIM_NODE_RG0_APP_NAME_UNREGISTERED;

 }

 if ((mdi.node_info.receive_state & \
HASIM_NODE_RG0_STATUS_RECEIVE_REGISTERED) != 0)

 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_NODE_RG0_STATUS;
 pms_receive(&pr, 0, 0);
 mdi.node_info.receive_state &= \

!HASIM_NODE_RG0_STATUS_RECEIVE_REGISTERED;
 }

 if ((mdi.node_info.receive_state & \
HASIM_NODE_RG0_APP_STATE_SET_EXECUTE_RECEIVE_REGISTERED) != 0)

 {
 pr.session.type = PMS_SR_CALL_RETURN_TIMED;
 pr.payload.type = PMS_PD_NODE_RG0_APP_STATE_SET_EXECUTE;
 pms_receive(&pr, 0, 0);
 mdi.node_info.receive_state &= \

!HASIM_NODE_RG0_APP_STATE_SET_EXECUTE_RECEIVE_REGISTERED;
 }

 }
 }

}

CODE EXAMPLE 7-6 PMS Client Node Interface (Continued)
130 Netra CT Server Software Developer’s Guide • February 2007

The following example shows a PMS client RND interface.

CODE EXAMPLE 7-7 PMS Client RND Interface

void
app_hasim_rnd_process(void)
{

 struct pms_send ps;
 struct pms_receive pr;

 int info_get_fail;

 int view;
 int md0_config;

 int i;

 /* Receive Check */

 /* If RND messages are not receive registered, attempt to register for
 in-use RND address list entries if the service state is active, if
 PMS is in the available state and reachable, and if USER receive messages
 are registered. If registration is successful, force an initial cache
 update.. */

 for(i=0;i<16;i++)
 {
 if (mdi.rnd_info[i].receive_state != HASIM_RND_GROUP_RECEIVE_REGISTERED)
 {
 if (mdi.node_info.service_state == HASIM_NODE_SERVICE_STATE_ACTIVE)
 {
 if (mdi.mgmt_info.rnd_address_identifier[i] != -1)
 {
 if (mdi.mgmt_info.pms_state == HASIM_MGMT_PMS_STATE_AVAILABLE)
 {
 if (mdi.user_info.receive_state == HASIM_USER_RECEIVE_REGISTERED)
 {
 if (mdi.user_info.pms_view == HASIM_USER_PMS_VIEW_REACHABLE)
 {

 if ((mdi.rnd_info[i].receive_state & \
HASIM_RND_RECEIVE_REGISTERED) == 0)

 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_RND_STATUS;
 pr.payload.data.rnd_status.identifier = \
Chapter 7 Processor Management Services 131

 mdi.mgmt_info.rnd_address_cache[i].identifier;
 if (pms_receive(&pr, app_hasim_receive_post, 0) != -1)

mdi.rnd_info[i].receive_state |= HASIM_RND_RECEIVE_REGISTERED;
 }

 if ((mdi.rnd_info[i].receive_state & \
HASIM_RND_MD0_RECEIVE_REGISTERED) == 0)

 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_RND_MD0_STATUS;
 pr.payload.data.rnd_md0_status.identifier = \
 mdi.mgmt_info.rnd_address_cache[i].identifier;
 if (pms_receive(&pr, app_hasim_receive_post, 0) != -1)
 mdi.rnd_info[i].receive_state |= \

HASIM_RND_MD0_RECEIVE_REGISTERED;
 }

 /* Force an info_get immediately after registering.. */
 mdi.rnd_info[i].last_sync_check = HASIM_SYNCCHECK_INTERVAL;
 }
 }
 }
 }
 }
 }
 }

 /* Sync Check */

 for(i=0;i<16;i++)
 {
 /* Policy: Sync update checked every SYNCCHECK_INTERVAL seconds.. */
 if (mdi.rnd_info[i].last_sync_check > HASIM_SYNCCHECK_INTERVAL)
 {

/* Policy: Don’t attempt a sync update if any async partial updates have
 been received within SYNCCHECK_INTERVAL.. */
 if (mdi.rnd_info[i].last_update > HASIM_SYNCCHECK_INTERVAL)
 {
 /* Policy: Don’t attempt a sync update if registration for async
 updates have not succeeded.. */

if (mdi.rnd_info[i].receive_state == HASIM_RND_GROUP_RECEIVE_REGISTERED)
 {
 if (mdi.user_info.receive_state == HASIM_USER_RECEIVE_REGISTERED)
 {
 if (mdi.user_info.pms_view == HASIM_USER_PMS_VIEW_REACHABLE)

CODE EXAMPLE 7-7 PMS Client RND Interface (Continued)
132 Netra CT Server Software Developer’s Guide • February 2007

 {
 mdi.rnd_info[i].last_sync_check = 0;

 info_get_fail = 0;

 /* Get RND information.. */
 ps.session.type = PMS_SR_CALL_RETURN_TIMED;
 ps.session.info.crt.time = 0;
 ps.payload.type = PMS_PD_RND_INFO_GET_EXECUTE;
 ps.payload.data.rnd_info_get_execute.identifier = \
 mdi.mgmt_info.rnd_address_identifier[i];

 if (pms_send(&ps, &pr) == 0)
 {
 if (pr.payload.data.rnd_info_get_status.err == \
 PMS_PD_RND_INFO_GET_STATUS_ERR_NONE)
 {
 view = pr.payload.data.rnd_info_get_status.view;
 }
 else
 {
 info_get_fail = 1;
 }
 }
 else
 {
 info_get_fail = 1;
 }

 /* Get RND MD0 information.. */
 ps.session.type = PMS_SR_CALL_RETURN_TIMED;
 ps.session.info.crt.time = 0;
 ps.payload.type = PMS_PD_RND_MD0_INFO_GET_EXECUTE;
 ps.payload.data.rnd_md0_info_get_execute.identifier = \
 mdi.mgmt_info.rnd_address_identifier[i];

 if (pms_send(&ps, &pr) == 0)
 {
 if (pr.payload.data.rnd_md0_info_get_status.err == \
 PMS_PD_RND_MD0_INFO_GET_STATUS_ERR_NONE)
 {
 md0_config = pr.payload.data.rnd_md0_info_get_status.config;
 }
 else
 {
 info_get_fail = 1;
 }

CODE EXAMPLE 7-7 PMS Client RND Interface (Continued)
Chapter 7 Processor Management Services 133

 }
 else
 {
 info_get_fail = 1;
 }

 /* Only mark MGMT update as successful if all pieces of data
 were received successfully.. */

 if (info_get_fail == 0)
 {
 mdi.rnd_info[i].view_cache = view;

 mdi.rnd_info[i].md0_config_cache = md0_config;

 mdi.rnd_info[i].last_update = 0;
 }

 }
 }
 }
 }
 else
 {
 mdi.rnd_info[i].last_sync_check = 0;
 }
 }
 }

 /* Validity Check */

 /* Process cache state validity transitions. The policy is on a RND cache
transition to invalid, return RND state variables for the pair to an initial

 configuration.. */

 for(i=0;i<16;i++)
 {
 if(mdi.rnd_info[i].last_update < HASIM_CHECK_VALID_INTERVAL)
 {
 if (mdi.rnd_info[i].cache_state != HASIM_RND_CACHE_VALID)
 mdi.rnd_info[i].cache_state = HASIM_RND_CACHE_VALID;
 }
 else if((mdi.rnd_info[i].last_update >= HASIM_CHECK_VALID_INTERVAL && \
 mdi.rnd_info[i].last_update < HASIM_CHECK_INVALID_INTERVAL))
 {

CODE EXAMPLE 7-7 PMS Client RND Interface (Continued)
134 Netra CT Server Software Developer’s Guide • February 2007

 if (mdi.rnd_info[i].cache_state == HASIM_RND_CACHE_VALID)
 mdi.rnd_info[i].cache_state = HASIM_RND_CACHE_OLD;
 }
 else if(mdi.rnd_info[i].last_update >= HASIM_CHECK_INVALID_INTERVAL)
 {
 if (mdi.rnd_info[i].cache_state == HASIM_RND_CACHE_OLD)
 {

 /* RND */

if ((mdi.rnd_info[i].receive_state & HASIM_RND_RECEIVE_REGISTERED) != 0)
 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_RND_STATUS;
 pr.payload.data.rnd_status.identifier = \
 mdi.mgmt_info.rnd_address_identifier[i];
 pms_receive(&pr, 0, 0);
 mdi.rnd_info[i].receive_state &= !HASIM_RND_RECEIVE_REGISTERED;
 }

 if ((mdi.rnd_info[i].receive_state & \
HASIM_RND_MD0_RECEIVE_REGISTERED) != 0)

 {
 pr.session.type = PMS_SR_CALL_NO_RETURN;
 pr.payload.type = PMS_PD_RND_MD0_STATUS;
 pr.payload.data.rnd_status.identifier = \
 mdi.mgmt_info.rnd_address_identifier[i];
 pms_receive(&pr, 0, 0);
 mdi.rnd_info[i].receive_state &= !HASIM_RND_MD0_RECEIVE_REGISTERED;
 }

 }
 }
 }
}

CODE EXAMPLE 7-7 PMS Client RND Interface (Continued)
Chapter 7 Processor Management Services 135

136 Netra CT Server Software Developer’s Guide • February 2007

CHAPTER 8

Solaris Operating System APIs

This chapter introduces Solaris Operating System (Solaris OS) APIs of concern to the
Netra CT server, including configuration and status of the system frutree and
environmental monitoring with sensor status information. This is handled through
the Platform Information and Control Library (PICL) framework, gathering FRU-ID
information, and dynamic reconfiguration interfaces. These subjects are addressed
in:

■ “Solaris Operating System PICL Framework” on page 138
■ “PICL Frutree Topology” on page 140
■ “PICL Man Page References” on page 146
■ “Dynamic Reconfiguration Interfaces” on page 148
■ “Programming Temperature Sensors Using the PICL API” on page 151
■ “Programming Watchdog Timers Using the PICL API” on page 153
■ “Displaying FRU-ID Data” on page 156
■ “MCNet Support” on page 159
137

Solaris Operating System PICL
Framework
PICL provides a method to publish platform-specific information for clients to access
in a way that is not specific to the platform. The Solaris PICL framework provides
information about the system configuration which it maintains in the PICL tree.
Within this PICL tree is a subtree named frutree, that represents the hierarchy of
system FRUs with respect to a root node in the tree called chassis. The frutree
represents physical resources of the system.

The main components of the PICL framework are:

■ PICL interface (libpicl.so) – Implements the generic platform-independent
interface that clients can use to access the platform-specific information.

■ PICL tree (libpicltree.so) – A repository of all the nodes and properties
representing the platform configuration.

■ PICL plug-in modules – Shared objects that publish platform-specific data in the
PICL tree.

■ PICL daemon (picld) – Maintains and controls access to the PICL information
from clients and from PICL plug-in modules.
138 Netra CT Server Software Developer’s Guide • February 2007

FIGURE 8-1 PICL Daemon (picld) and Plug-Ins

FIGURE 8-1 diagrams the PICL daemon (picld) and its connection to the PICL
plug-ins, some of which are common to all platforms. These plug-ins are responsible
for populating and maintaining the PICL tree during system boot and dynamic
reconfiguration (DR) operations. They also handle sensor events.

Application clients use libpicl(3LIB) to interface with picld to display or set
parameters using Managed Object Hierarchy (MOH), RMI, SNMP, or Solaris PICL
client interfaces. MOH uses the common operating system library (COSL) interface
to access picld, which in turn uses the libpicl interfaces.

Updates to the system frutree are done during DR operations, which are performed
using cfgadm (1M), or during fru latch and unlatch operations.

The following section identifies the exported interfaces in the PICL tree which are
basically the nodes and the properties of the node that are present in the PICL tree.

picld

PICL
interface

PICL
framework

MOH Application
clients

PICL plug-ins

COSL

DR/hot-plug/sensor
events
Chapter 8 Solaris Operating System APIs 139

PICL Frutree Topology
To read the PICL frutree data of the system, use the prtpicl(1M) command. The
structure of the PICL frutree involves a hierarchical representation of nodes. The
immediate descendants of /frutree are one or more fru nodes by the name of
chassis.

FRUs and their locations are represented by nodes of classes fru and location
respectively, in the PICL frutree under the /frutree node. The port node is an
extension of the fru class.

The three major node classes, location, fru, and port, are summarized in
TABLE 8-1. Each of these classes is populated with various properties, among which
are State and Condition. More detailed information is provided in the sections
following this summary table.

TABLE 8-1 PICL FRUtree Topology Summary

Node Class Properties Description

location SlotType Type of location.

Label Slot/Label information.

GeoAddr Geographical address.

StatusTime Time when State was updated last.

Bus-addr Bus address.

State State of the location: empty, connected, disconnected, or
unknown.

fru FruType Type of FRU.

Devices Table of node handles in platform tree.

State State of the FRU – configured, unconfigured, or unknown.

StatusTime Time when State was updated last.

Condition Condition or operational state of the FRU – ok, failing,
failed, unknown, or unusable.

ConditionTime Time when Condition was updated last.

port Bus-addr Bus address of port – network, serial, or parallel.

GeoAddr Geographical address of port.

Label Label information.

PortType Type of port.
140 Netra CT Server Software Developer’s Guide • February 2007

Chassis Node Property Updates
In addition to those properties already defined by PICL, the following property is
added:

ChassisType

CHARSTRING read-only

The ChassisType read-only property represents the type of chassis. The value of
ChassisType is currently defined as: SUNW,NetraCT-410 for a 5-slot chassis or
SUNW,NetraCT-810 for an 8-slot chassis.

The value of this property can be derived using the following:

prtpicl -v -c fru | grep ChassisType | cut -f2 | tr -d ’ ’

There should be a configuration file of this name with the .conf extension in the
/usr/platform/’uname -i’/lib/picl/plugins/ directory. If none is
provided, then the frutree is not initialized.

fru Class Properties

Where the following fru class properties are writeable, permission checks govern
that they be written to by a process with the user ID of root.

fru State

CHARSTRING read-only

State State of the port – up, down, or unknown.

StatusTime Time when State was updated last.

Condition Condition of the port – ok, unknown, failing, or failed.

ConditionTime Time when Condition was updated last.

Devices Table of node handles in platform device tree.

TABLE 8-1 PICL FRUtree Topology Summary

Node Class Properties Description
Chapter 8 Solaris Operating System APIs 141

The State property of the fru class node represents the occupant state of the
cfgadm attachment point associated with fru node. In such a case, a read operation
of this property directs the plug-in to check the state of the occupant using
libcfgadm to determine the latest State information.

The various state values are shown in TABLE 8-2.

FRU Condition

CHARSTRING read-only

The Condition property of the fru class node represents the condition of occupant
of the cfgadm attachment point. The various condition values are shown in
TABLE 8-3. When libcfgadm interfaces are not available, a platform must provide
the same semantics using platform-specific interfaces in defining this property.

The FRU Condition can represent both software and hardware faults.

port Class Node

The connectivity between nodes in a telecommunications network is established by a
link that provides the physical transmission medium. A port node represents a
resource of a fru that provides such a link. Examples of ports are – serial port and
network port.

TABLE 8-2 PICL FRU State Value Properties

State Property Value Description

unconfigured The FRU is not configured and unusable. See cfgadm(1M) for
details.

configured The FRU is configured and usable. See cfgadm(1M) for details.

TABLE 8-3 PICL FRU Condition Value Properties

Condition Property Value Description

unknown FRU condition could not be determined. See cfgadm(1M) for
details.

ok FRU is functioning as expected. See cfgadm(1M) for details.

failing A recoverable fault was found. See cfgadm(1M) for details.

failed An unrecoverable fault was found. See cfgadm(1M) for details.

unusable FRU is unusable for undetermined reason. See cfgadm(1M) for
details.
142 Netra CT Server Software Developer’s Guide • February 2007

The port class node extends the PICL frutree definition of fru class of nodes. A
port is always a child of a fru class, even if it is the only resource of the fru. There
are no location or fru nodes beneath a port class node, because FRUs linked to the
port class node are not managed in the domain in which port class node exists.
There might be dependencies, such as when a remote device is cabled to a port
node. These dependencies can influence the state of the port, but not necessarily the
FRU itself.

The PICL frutree plug-in is responsible for identifying the port class nodes and
creating the respective nodes in the frutree.

Note – The port class node should not be associated with USB port or SCSI port.
These are locations into which a FRU can be plugged, become visible to the system
CPU, and managed by it. FRUs beyond the port class of nodes are not visible to the
CPU.

port Class Properties

port class properties consist of State and Condition, values of which are shown
in the following paragraphs.

State

CHARSTRING read-only

A port class node can be in one of the states shown in TABLE 8-4:

The state of the port node is maintained by the frutree plug-in. The State value is
initially determined by looking at the kstat information published by the device
driver that owns the port. If the device driver information is not determined, this
value remains unknown. The parent fru of the port must set its state to
configured for the port to be anything other than unknown. See kstat(1M) for
details.

TABLE 8-4 Port Class State Values

Port State Values Description

down A port is down when its link state is down, that is, a carrier was not
detected.

up A port is up when its link state is up, that is, a carrier is detected.

unknown The plug-in cannot determine the state of the port.
Chapter 8 Solaris Operating System APIs 143

Condition

CHARSTRING read-write

The Condition value of a port class node carries the same meaning as the cfgadm
value of the attachment point, as shown in TABLE 8-5.

Initial Condition values can be obtained by looking at the driver kstat
information, if present. A device driver managing a resource of the FRU can
influence the overall condition of the FRU by sending appropriate fault events. The
property information is valid only when the parent fru state is configured.

PortType

CHARSTRING read-only

This PortType property indicates the functional class of port device, as shown in
TABLE 8-6.

TABLE 8-5 Port Condition Values

Port Condition Values Description

ok Port is functioning as expected.

failing A predictive failure has been detected. This typically occurs when
the number of correctable errors exceeds a threshold.

failed Port has failed. It cannot transmit or receive data due to an internal
fault. This indicates a broken path within the FRU, and not external
to the FRU which would be denoted by its link state.

unknown Port condition could not be determined.

TABLE 8-6 PortType Property Values

PortType Values Description

network Represents a network device.

serial Represents a serial device.

parallel Represents a parallel port.
144 Netra CT Server Software Developer’s Guide • February 2007

Common Property Updates
The following properties are common to all PICL classes:

GeoAddr

UINT read-only

This property indicates the geographical address of the node in relation to its parent
node. It should be possible to point to the physical location (slot number) of the
node in its parent domain. For example, the Netra CT 810 server describes a
location’s GeoAddr under the chassis node as its physical slot number. This could
differ from the Label information printed on the chassis itself. In this instance, the
system controller slot on the Netra CT 810 system chassis is labelled as CPU,
although its GeoAddr has a value of 1. Note that the Label property might not have
the physical slot number embedded in it.

StatusTime

TIMESTAMP read-only

This property indicates when the State property was last updated. This can
indicate when a FRU was last inserted or removed, configured or unconfigured, or
when the port link went down. Status time is updated even for transitional state
changes.

ConditionTime

TIMESTAMP read-only

This property indicates when the Condition property was last updated. Using this
property, for example, system management software can calculate how long a fru or
port has been in operation before failure.
Chapter 8 Solaris Operating System APIs 145

Temperature Sensor Node State
CHARSTRING

A temperature sensor node is in the PICL frutree under the Environment property
of the fru node.

The temperature sensors are represented as PICL_CLASS_TEMPERATURE_SENSOR
class in the PICL tree. A State property is declared for each temperature sensor
node representing the state information as shown in TABLE 8-7.

PICL Man Page References
TABLE 8-8 lists the Solaris OS man pages that document the PICL framework and
API. You can view the following man pages at the command line or on the Solaris
OS documentation web site (http://docs.sun.com/documentation).

TABLE 8-7 State Property Values for Temperature Sensor Node

State Property Values Description

ok Environment state is OK.

warning Environment state is warning, (that is, current temperature is
below lower or above upper warning temperature).

failed Environment state is failed (that is, current temperature is
below lower or above upper critical temperature).

unknown Environment state is unknown (that is, current temperature
cannot be determined).

TABLE 8-8 PICL Man Pages

Man Page Description

picld(1M) Describes how the daemon initializes plug-in modules at startup.
The man page also describes the PICL tree and PICL plug-in
modules.

libpicl(3LIB) Lists the library functions clients use to interface with the PICL
daemon in order to access information from the PICL tree.

libpicl(3PICL) Client API for sending requests to the PICL daemon to access the
PICL tree.
146 Netra CT Server Software Developer’s Guide • February 2007

For examples of use of these functions, see “Programming Watchdog Timers Using
the PICL API” on page 153.

picld_log(3PICLTREE) Describes the function the PICL daemon and the plug-in modules
use to log messages and inform users of any error or warning
conditions.

picl_plugin_register(3PICLTREE) Describes the function plug-in modules use to register itself with
the PICL daemon.

prtpicl(1M) Prints the PICL tree. The prtpicl command prints the PICL tree
maintained by the PICL daemon. The output of prtpicl
includes the name and PICL class of the nodes.

(3LIB) Functions

picl_initialize(3PICL) Initiates a session with the PICL daemon.

picl_get_first_prop(3PICL) Gets a property handle of a node.

picl_get_next_by_col(3PICL) Accesses a table property.

picl_get_next_by_row(3PICL) Accesses a table property.

picl_get_next_prop(3PICL) Gets a property handle of a node.

picl_get_prop_by_name(3PICL) Gets the handle of the property by name.

picl_get_propinfo(3PICL) Gets the information about a property.

picl_get_propinfo_by_name(3PICL) Gets property information and handle of a property by name.

picl_get_propval(3PICL) Gets the value of a property.

picl_get_propval_by_name(3PICL) Gets the value of a property by name.

picl_get_root(3PICL) Gets the root handle of the PICL tree.

picl_set_propval(3PICL) Sets the value of a property to the specified value.

picl_set_propval_by_name(3PICL) Sets the value of a named property to the specified value.

picl_shutdown(3PICL) Shuts down the session with the PICL daemon.

picl_strerror(3PICL) Gets error message string.

picl_wait(3PICL) Waits for PICL tree to refresh.

picl_walk_tree_by_class(3PICL) Walks subtree by class.

TABLE 8-8 PICL Man Pages (Continued)

Man Page Description
Chapter 8 Solaris Operating System APIs 147

Dynamic Reconfiguration Interfaces
The dynamic reconfiguration (DR) interfaces allow resources to be reconfigured
without user intervention when system resources are added or removed while the
system is running. Traditionally, applications assume that OS resources remain static
after boot. In DR situations, challenges faced by applications include the following:

■ Addition or availability of new devices. Applications might want to be notified in
order to make use of the newly added resources.

■ Removal of devices. Applications need to be notified of pending resource removal
from the system so they can either block or prepare for the pending operation.

The Solaris OS has knowledge of DR operations, but certain applications might not.
If an application is holding the resources involved in the DR operation, the operation
will fail. To be successful, applications need to be dynamically aware of the current
state of the system. The Solaris DR framework includes the Reconfiguration
Coordination Manager (RCM), cfgadm(1m), and libcfgadm (3LIB). It also includes
the PCI hot-plug/cPCI Hot-swap framework (cfgadm_pci(1M)), SCSI hot-plug
framework (cfgadm_scsi(1M)), and the Hot-swap Controller driver (cphsc(7D)).

The following sections describe:

■ “Reconfiguration Coordination Manager” on page 148
■ “Hot-Swap Support” on page 149
■ “Configuration Administration” on page 150

Reconfiguration Coordination Manager
The Reconfiguration Coordination Manager (RCM) is a generic framework which
allows DR to interact with system management software. The framework enables
automated DR removal operations on platforms with proper software and hardware
configuration. RCM defines generic APIs to coordinate DR operations between DR
initiators and DR clients during resource removal. For details on RCM, go to
http://www.sun.com/documentation.
148 Netra CT Server Software Developer’s Guide • February 2007

Hot-Swap Support
The Netra CT server supports the following three hot-swap models according to the
PICMG CompactPCI Hot-Swap specifications version 2.1 R1.0:

■ Basic hot-swap
■ Full hot-swap
■ High availability hot swap

These models can be described by two terms:

■ Hardware connection process – the electrical connection (and disconnection) of an
I/O board

■ Software connection process – the software configuration (and unconfiguration)
of the I/O board by the operating system (allocating or releasing PCI resources,
attaching or detaching device drivers, and so on.)

In the basic hot-swap model, the hardware connection process can be performed
automatically by the hardware, while the software connection process requires
operator assistance.

In the full hot-swap model, both the hardware and the software connection
processes are performed automatically. The Netra CT server is configured for full hot
swap by default. The mode of a slot can be reconfigured to basic hot swap using the
cfgadm command in cases where a third-party board does not support full hot
swap.

In the high-availability model, software has the capability of controlling the
power-on of the FRU hardware, beyond the hardware and software connection
processes. Drivers and services can isolate a board from the system until an operator
is able to intervene.

The Netra CT server uses the cfgadm(1M) utility for administering the hot-swap
process. This includes connecting and disconnecting, configuring, and unconfiguring
the hardware and software, and setting various operation modes. Elements of the
cfgadm(1M) utility are described in the next section.

On the Netra CT server, CPU card, CPU transition card, and I/O board hot
swapping is supported. It should be noted that non-hotswap friendly devices can be
supported only in basic hot-swap mode. See the Netra CT Server Service Manual
(819-2743) for list of hot-swappable FRUs.

Configuration changes are handled in a coherent way, because DR and the Frutree
management framework are integrated in PICL. PICL frutree properties and cfgadm
attachment point elements are mapped one-to-one, which creates data consistency.
All DR operations are coordinated with a service processor.
Chapter 8 Solaris Operating System APIs 149

Configuration Administration
Configuration administration of a dynamically reconfigurable system is carried out
through cfgadm(1M), which can display status, invoke configuration state changes,
and invoke hardware specific functions. See the Netra CT System Administration Guide
(819-2743) for more information on the cfgadm utility.

The libcfgadm(3LIB) command can be used to display a library of configuration
interfaces.

Use cfgadm to perform a connect operation on a cPCI FRU, for example:

■ To power on a FRU
■ To check for HEALTHY#
■ To bring a FRU out of reset and connect it electrically to the cPCI backplane

Use cfgadm to perform a disconnect operation on a cPCI FRU, for example:

■ To notify applications (via RCM)
■ To bring the FRU bridge in reset and disconnecting it electrically from the cPCI

backplane
■ To power OFF a FRU

cfgadm -c connect operation

cfgadm -c disconnect operation
150 Netra CT Server Software Developer’s Guide • February 2007

Programming Temperature Sensors
Using the PICL API
Temperature sensor states can be read using the libpicl API. The properties that
are supported in a PICL temperature sensor class node are listed in TABLE 8-9.

The PICL plug-in receives these sensor events and updates the State property based
on the information extracted from the IPMI message. It then posts a PICL event.

The threshold levels of the PICL node class temperature-sensor are:

■ Warning
■ Shutdown
■ PowerOff

TABLE 8-10 lists the PICL threshold levels and their MOH equivalents.

TABLE 8-9 PICL Temperature Sensor Class Node Properties

Property Type Description

LowWarningThreshold INT Low threshold for warning

LowShutdownThreshold INT Low threshold for shutdown

LowPowerOffThreshold INT Low threshold for power off

HighWarningThreshold INT High threshold for warning

HighShutdownThreshold INT High threshold for shutdown

HighPowerOffThreshold INT High threshold for power off

TABLE 8-10 PICL Threshold Levels and MOH Equivalents

PICL Threshold levels MOH Equivalent

LowWarningThreshold LowerThresholdNonCritical

LowShutdownThreshold LowerThresholdCritical

LowPowerOffThreshold LowerThresholdFatal

HighWarningThreshold UpperThresholdNonCritical

HighShutdownThreshold UpperThresholdCritical

HighPowerOffThreshold UpperThresholdFatal
Chapter 8 Solaris Operating System APIs 151

To obtain a reading of temperature sensor states, type the prtpicl -v command:

PICL output of the temperature sensors on a Netra CT system using a Netra-CP2500
host is shown in CODE EXAMPLE 8-1.

Note – PICL clients can use the libpicl APIs to set and get various properties of
this sensor.

prtpicl -c temperature-sensor -v

CODE EXAMPLE 8-1 Example Output of PICL Temperature Sensors

prtpicl -c temperature-sensor -v
 CPU-sensor (temperature-sensor, 41000003fb)
 :Condition ok
 :HighPowerOffThreshold 115
 :HighShutdownThreshold 110
 :HighWarningThreshold 105
 :LowPowerOffThreshold -20
 :LowShutdownThreshold -10
 :LowWarningThreshold -5
 :Temperature 78
 :Label Ambient
 :GeoAddr 0xe
 :_class temperature-sensor
 :name CPU-sensor
152 Netra CT Server Software Developer’s Guide • February 2007

Programming Watchdog Timers Using
the PICL API
The Netra CT system’s watchdog service captures catastrophic faults in the Solaris
OS running on either a host or satellite CPU board. The watchdog service reports
such faults to the alarm card by means of either an IPMI message or by a
de-assertion of the CPU’s HEALTHY# signal.

The Netra CT system management controller provides two watchdog timers, the
watchdog level 2 (WD2) timer and the watchdog level 1 (WD1) timer. Systems
management software starts and the Solaris OS periodically pats the timers before
they expire. If the WD2 timer expires, the watchdog function of the WD2 timer
forces the SPARC® processor to optionally reset. The maximum range for WD2 is 255
seconds.

The WD1 timer is typically set to a shorter interval than the WD2 timer. User
applications can examine the expiration status of the WD1 timer to get advance
warning if the main timer, WD2, is about to expire. The system management
software has to start WD1 before it can start WD2. If WD1 expires, then WD2 starts
only if enabled. The maximum range for WD1 is 6553.5 seconds.

The watchdog subsystem is managed by a PICL plug-in module. This PICL plug-in
module provides a set of PICL properties to the system, which enables a Solaris
PICL client to specify the attributes of the watchdog system.

To use the PICL API to set the watchdog properties, your application must adhere to
the following sequence:
Chapter 8 Solaris Operating System APIs 153

1. Before setting the watchdog timer, use the PMS API to disable the primary
HEALTHY# signal monitoring for the CPU board on which the watchdog timer is
to be changed.

To do this, switch to the alarm card CLI and use the command pmsd infoshow,
specifying the slot number. The output will indicate whether the card is in
MAINTENANCE mode or OPERATIONAL mode.

If the card is in OPERATIONAL mode, switch it into MAINTENANCE mode by issuing
the following command:

This disables the primary HEALTHY# signal monitoring of the board in the specified
slot.

2. In your application, use the PICL API to disarm, set, and arm the active watchdog
timer.

Refer to the picld(1M), libpicl(3LIB), and libpicl(3PICL) man pages for a
complete description of the PICL architecture and programming interface. Develop
your application using the PICL programming interface to do the following:

■ Disarm the active watchdog timer.

■ Change the watchdog timer PICL properties to the required values.

■ Re-arm the watchdog timer. The properties of watchdog-controller and
watchdog-timer are defined in TABLE 8-11, TABLE 8-12, and TABLE 8-13.

3. Use the PMS API to enable the primary HEALTHY# signal monitoring on the CPU
card in the specified slot.

From the alarm card CLI, switch the card back to OPERATIONAL mode by issuing the
following command:

HEALTHY# monitoring will be enabled again on the card in the slot that you
specified.

Refer to Chapter 7 for information on Processor Management Services (PMS).

pmsd infoshow -s slot_number
config=<MAINTENANCE|OPERATIONAL>

ALARM_STATE=NONE

pmsd operset -s slot_number -o MAINT_CONFIG

pmsd operset -s slot_number -o OPER_CONFIG
154 Netra CT Server Software Developer’s Guide • February 2007

PICL interfaces for the watchdog plug-in module (see TABLE 8-11) include the nodes
watchdog-controller and watchdog-timer.

TABLE 8-11 Watchdog Plug-in Interfaces for Netra CT 810 and 410 Server Software

PICL Class Property Meaning

watchdog-controller WdOp Represents a watchdog subsystem.

watchdog-timer State Represents a watchdog timer hardware that
belongs to its controller. Each timer depends on
the status of its peers to be activated or
deactivated.

WdTimeout Timeout for the watchdog timer.

WdAction Action to be taken after the watchdog expires.

TABLE 8-12 Properties Under watchdog-controller Node

Property Operations Description

WdOp arm Activates all timers under the controller with
values already set for WdTimeout and WdAction.

disarm All active timers under the controller will be
stopped.

TABLE 8-13 Properties Under watchdog-timer Node

Property Values Description

State armed Indicates timer is armed or running. Cleared by disarm.

expired Indicates timer has expired. Cleared by disarm.

disarmed Default value set at boot time. Indicates timer is disarmed or
stopped.

WdTimeout*

* A platform might not support a specified timeout resolution. For example Netra CT systems only take -1, 0, and 100 6553500 ms in
increments of 100 msec. (Level 1), and -1 -255 seconds (Level 2).

Varies by system
and timer level

Indicates the timer initial countdown value. Should be set prior
to arming the timer.

WdAction† none Default value. No action is taken.

alarm Send notifications to system alarm hardware by means of
HEALTHY#.

reset Perform a soft or hard reset the system (implementation
specific).

reboot Reboot the system.
Chapter 8 Solaris Operating System APIs 155

To identify current settings of watchdog-timer, issue the command prtpicl -v
as shown in CODE EXAMPLE 8-2.

Displaying FRU-ID Data
Sun FRU-ID is the container for presenting the FRU-ID data. If the Sun FRU-ID
container is not present, the FRU-ID Access plug-in looks for the IPMI FRU-ID
container of cPCI FRUs. It then converts FRU-ID data from IPMI format to Sun
FRU-ID format and presents the result in Sun FRU-ID ManR (manufacturer record)
format.

The command prtfru(1M) displays FRU data of all FRUs in the PICL fru tree.
When prtfru is run on the host CPU, FRU data is displayed for the host CPU and
the satellite CPUs.) CODE EXAMPLE 8-3 shows an example of the output of the
prtfru command.

† A specific timer node might not support all action types. For example Netra CT watchdog level 1 timer supports only “none” and
“alarm” actions. Watchdog level 2 timer supports only “none” and “reset”

CODE EXAMPLE 8-2 Example of watchdog-timer

prtpicl -v -c watchdog-timer
 watchdog-level1 (watchdog-timer, 370000058e)
 :WdAction alarm
 :WdTimeout 0x2710
 :State armed
 :_class watchdog-timer
 :name watchdog-level1
 watchdog-level2 (watchdog-timer, 3700000591)
 :WdAction none
 :WdTimeout 0xffffffff
 :State disarmed
 :_class watchdog-timer
 :name watchdog-level2

CODE EXAMPLE 8-3 Sample Output of prtfru Command

prtfru
/frutree
/frutree/chassis (fru)
/frutree/chassis/AL-1?Label=AL 1
/frutree/chassis/AL-1?Label=AL 1/AL-1 (fru)
/frutree/chassis/IO-2?Label=I.O 2
156 Netra CT Server Software Developer’s Guide • February 2007

/frutree/chassis/CPU?Label=CPU 3
/frutree/chassis/CPU?Label=CPU 3/SUNW,Netra-CP2500 (container)
 SEGMENT: FD
 /ECO_CurrentR

/ECO_CurrentR/UNIX_Timestamp32: Thu Sep 15 18:02:32 PDT 2005
 /ECO_CurrentR/Firmware_Revision: 00000000
 /ECO_CurrentR/Hardware_Revision: 00
 /ECO_CurrentR/HW_Dash_Level: 00
 /CPUFirmwareR

/CPUFirmwareR/UNIX_Timestamp32: Thu Sep 15 18:02:32 PDT 2005
 /CPUFirmwareR/CPU_FW_Part_No: 5252225
 /CPUFirmwareR/CPU_FW_Dash_Level: 01
 /Drawer_InfoR

/Drawer_InfoR/UNIX_Timestamp32: Thu Sep 15 18:02:32 PDT 2005
 /Drawer_InfoR/Drawer_Id: 000000
 /Drawer_InfoR/Drawer_Type: 0000000000000000
 /Drawer_InfoR/Access_Model: 0000000000000000
 /Drawer_InfoR/Slot_Mode: 0000000000000000
 /Drawer_InfoR/Reserved_Data:
00
00
 /Customer_DataR
 /Customer_DataR/UNIX_Timestamp32: Thu Sep 15 18:02:32 PDT
2005
 /Customer_DataR/Cust_Data: Customer Data
 SEGMENT: SD
 /ManR
 /ManR/UNIX_Timestamp32: Thu Sep 15 18:02:32 PDT 2005
 /ManR/Fru_Description: FRUID,PRGM INSTR,MBD,JADE
 /ManR/Manufacture_Loc: CELESTICA,THAILAND
 /ManR/Sun_Part_No: 5017031
 /ManR/Sun_Serial_No: JM0001
 /ManR/Vendor_Name: Celestica
 /ManR/Initial_HW_Dash_Level: 06
 /ManR/Initial_HW_Rev_Level: 06
 /ManR/Fru_Shortname: CPU
 /SpecPartNo: 885-0530-01
/frutree/chassis/CPU?Label=CPU 3/SUNW,Netra-CP2500/PMC-1?Label=
PMC
/frutree/chassis/IO-4?Label=I.O 4
/frutree/chassis/IO-4?Label=I.O 4/IO-4 (fru)
/frutree/chassis/IO-5?Label=I.O 5
/frutree/chassis/IO-5?Label=I.O 5/IO-5 (container)
 SEGMENT: FD
 /ECO_CurrentR

/ECO_CurrentR/UNIX_Timestamp32: Thu Sep 15 18:02:32 PDT 2005
 /ECO_CurrentR/Firmware_Revision: 00000000

CODE EXAMPLE 8-3 Sample Output of prtfru Command (Continued)
Chapter 8 Solaris Operating System APIs 157

 /ECO_CurrentR/Hardware_Revision: 00
 /ECO_CurrentR/HW_Dash_Level: 00
 /CPUFirmwareR

/CPUFirmwareR/UNIX_Timestamp32: Thu Sep 15 18:02:32 PDT 2005
 /CPUFirmwareR/CPU_FW_Part_No: 5252225
 /CPUFirmwareR/CPU_FW_Dash_Level: 01
 /Drawer_InfoR

/Drawer_InfoR/UNIX_Timestamp32: Thu Sep 15 18:02:32 PDT 2005
 /Drawer_InfoR/Drawer_Id: 000000
 /Drawer_InfoR/Drawer_Type: 0000000000000000
 /Drawer_InfoR/Access_Model: 0000000000000000
 /Drawer_InfoR/Slot_Mode: 0000000000000000
 /Drawer_InfoR/Reserved_Data:
00
00
 /Customer_DataR
 /Customer_DataR/UNIX_Timestamp32: Thu Sep 15 18:02:32 PDT
2005
 /Customer_DataR/Cust_Data: Customer Data
 SEGMENT: SD
 /ManR
 /ManR/UNIX_Timestamp32: Thu Sep 15 18:02:32 PDT 2005
 /ManR/Fru_Description: FRUID,PRGM INSTR,MBD,JADE
 /ManR/Manufacture_Loc: CELESTICA,THAILAND
 /ManR/Sun_Part_No: 5017031
 /ManR/Sun_Serial_No: JM0001
 /ManR/Vendor_Name: Celestica
 /ManR/Initial_HW_Dash_Level: 06
 /ManR/Initial_HW_Rev_Level: 06
 /ManR/Fru_Shortname: CPU
 /SpecPartNo: 885-0530-01
/frutree/chassis/RTM?Label=RTM
/frutree/chassis/RTM?Label=RTM/RTM (container)
 SEGMENT: SD
 /ManR
 /ManR/UNIX_Timestamp32: Tue Aug 23 18:51:25 PDT 2005
 /ManR/Fru_Description: FRUID,PRGM INSTR,RTM,JADE_HOST
 /ManR/Manufacture_Loc: CELESTICA,THAILAND
 /ManR/Sun_Part_No: 5017032
 /ManR/Sun_Serial_No: 000001
 /ManR/Vendor_Name: Celestica
 /ManR/Initial_HW_Dash_Level: 01
 /ManR/Initial_HW_Rev_Level: 01
 /ManR/Fru_Shortname: RTM-H
 /SpecPartNo: 885-0531-01
/frutree/chassis/c0::dsk.c0t0d0?Label=HDD 0

CODE EXAMPLE 8-3 Sample Output of prtfru Command (Continued)
158 Netra CT Server Software Developer’s Guide • February 2007

MCNet Support
Communication between CPUs is enabled by MCNet (mcn(7D)), which presents an
Ethernet-like interface over the cPCI bus in accordance with PICMG 2.14. The
interface is configured automatically during system boot, and supports all existing
network tools, such as ifconfig(1M), netstat(1M) and so forth. The CPUs must
be MCNet-capable in order to communicate with each another.

/frutree/chassis/c0::dsk.c0t0d0?Label=HDD 0/c0::dsk.c0t0d0 (fru)
rwings-110#

CODE EXAMPLE 8-3 Sample Output of prtfru Command (Continued)
Chapter 8 Solaris Operating System APIs 159

160 Netra CT Server Software Developer’s Guide • February 2007

Glossary

A
AC Alarm card. The alarm card is used in the Netra 810 and Netra CT 410

servers to provide system control functions. The alarm card resides in slot
8 in the Netra CT 810 server and in slot 1 in the Netra 410 server.

ACL Access control list; a file that details which SNMP management applications
can access information maintained by the MOH. The file also lists which hosts
can receive SNMP traps or events.

alarm severity profile A managed entity that contains the severity assignments for the reported
alarms.

ASN1 Abstract notation one. The notation used in a text file for a MIB.The
variables containing the information that SNMP can access are described
in this file.

attribute value change
record A managed entity used to represent logged information resulting from

attribute value change notifications. Instances of this managed entity are
created automatically by the network entity (NE), and deleted by the NE
or by request of the managing system.
161

C
CGTP Carrier Grade Transport Protocol. CGTP network interfaces send and receive

packets on redundant networks. These software devices use CGTP protocol.
See the ifcgtp(7) man page, which details the general properties of the
network interfaces.

CLI Command-line interface. The primary user interface to the alarm card.

cPCI Compact PCI.

E
EFDMBean Event Forwarding Discriminator. A managed entity used as a notification

forwarder discriminator. At startup it registers itself as a listener to all the
broadcaster MBeans registered with the MBeanServer, then listens for
MBeanServer creation notifications to register with newly created MBeans.

equipment A managed entity used to represent the various externally manageable
physical components of the network entity (NE) that are not modeled
using the Plug-in Unit or Equipment Holder managed entities.

equipment holder A managed entity representing physical resources of the NE that are capable of
holding other physical resources. An instance of this managed entity exists
foreach rack, shelf, drawer, and slot of the NE.

F
full log A managed entity used to group multiple instances of the Managed Entity

Creation Log Record, Managed Entity Deletion Log Record, State Change
Log Record, Attribute Value Change Log Record, and/or Alarm Record
managed entities to form a log. This managed entity contains information
that, among other things, allows the management system to control the
behavior of the log.
162 Netra CT Server Software Developer’s Guide • February 2007

G
GPIO General purpose I/O.

H
host Host CPU board. In the Netra CT 810 server, the host CPU board resides in slot

1. In the Netra CT 410, the host CPU board resides in slot 3.

I
IM Information model

IPMI Intelligent Platform Management Interface, used as a communication channel
over the cPCI backplane in the Netra CT server.

L
latest occurrence log A managed entity used to group multiple log records to form a latest

occurrence log. If no other log record contained in the Latest Occurrence
Log instance has values of the attributes identified by the Key Attribute
List attribute equal to the attribute values of the log record to be added,
the log record is created and contained in the Latest Occurrence Log.

M
MCNet A communication channel running over the CompactPCI backplane. It can be

used to communicate between the alarm card, the host CPU board, and any
satellite boards.
Glossary 163

MIB Managed information base used to describe the exchange of information across
the network element (NE) interface. A MIB is loadable, but can reference other
MIBs.

module Software modules are part of a program that are not combined with other parts
until the program is linked. Modules do not have to be changed when a new
type of object is added.

MOH Managed Object Hierarchy. An application that monitors the field replaceable
units in the system. MOH runs on the alarm card, the host CPU, and any
satellite CPUs.

N
NE Network Element Managed Entity. A component of the MIB. An instance of

this managed entity is automatically created upon initialization

NFS Network File System.

NIS Network Information System.

P
physical path

termination point See Termination Point MBean.

PICL Platform Information and Control Library. A Solaris OS library that provides a
method used to publish platform-specific information for clients to access in
a way that is not specific to the platform.

plug-in unit A managed entity used to represent equipment that is inserted (plugged
into) and removed from slots of the NE.

PMS Processor Management Service. Manages processor elements used by client
applications to implement high availability.
164 Netra CT Server Software Developer’s Guide • February 2007

R
RCM Reconfiguration Coordination Manager. Part of the Solaris OS’s dynamic

reconfiguration (DR) framework that enables automated DR removal
operations on platforms with appropriate software and hardware
configuration.

RDHCP Reliable Dynamic Host Configuration Protocol.

RMI Remote Method Invocation. Java RMI is a mechanism that allows one to invoke
a method on an object that exists in another address space.

RNFS Reliable Network File System.

S
SAT Satellite. An auxiliary CPU board that occupies a designated cPCI slot on the

Netra CT system, which might, under certain conditions, operate
independently.

SNMP Simple Network Management Protocol. A protocol that allows devices to be
controlled remotely by a network management station.

SMI Structure of Management Information. A definition that describes the syntax
and basic data types available in a given MIB.

software MBean A managed entity representing logical information stored in equipment,
including programs and data tables. Instances of this managed entity are
created by the NE to report to the management system, the currently
installed software in the related entity (that is, NE, equipment or Plug-In
Unit).

state change record A managed entity used to represent logged information resulting from state
change notifications. Instances of this managed entity are created
automatically by the NE, and deleted by the NE or by request of the
managing system.
Glossary 165

T
TFTP Trivial File Transfer Protocol.

termination point
MBean A managed entity used to represent the points in the NE where physical

paths terminate (such as ports), and physical path level functions (for
example, path overhead functions) are performed.

topology change
notification An abstract class representing generic notifications for a change in the

topology of a network entity.
166 Netra CT Server Software Developer’s Guide • February 2007

Index
A
access rights, 51
addressable objects, 51
agent

connecting client, 26
netract, 22

agent, element management, 10, 22, 41
alarm card, 2, 12, 34
alarm card view of system, 12, 13, 18
alarm card, indicating mode, 154
Alarm Forwarding Discriminator, 62
alarm pins, 34
Alarm Severity Trap, 63
AlarmNotification, 30
AlarmNotification, example, 30
alarms

assign to objects, example, 35
clearing, 36
high temperature example, 31
set with SNMP, 69
setting, 35

alarms, managing, 30
AlarmSeverityProfile, example, 31
assign alarm profile to object, 35
audience, xiii

B
Backed Up Alarm Trap, 63
beginning an application, 21
board resource management, 80

C
card, alarm, 2, 12, 34
cfgadm, 150
change locationName, 66
ChassisType, PICL, 141
Command Line Interface, example, 154
community strings, 51
ConditionTime, PICL, 145
configuration administration, 150
connecting an agent with a client, example, 26
ContainmentTreeMBean, example, 27
CPU cards, managing, 81

D
DaemonList example, 39
determining system configuration hierarchy,

example, 25
documentation, related, xv
DR see dynamic reconfiguration
drawer, definition of, 82
drivers

MCNet, 7
driving alarm output, 34
dynamic reconfiguration, 148

E
element management agent, 22, 41
ENTITY-MIB, 52
entPhysicalClass, 53
entPhysicalContainedIn, 53
167

entPhysicalDescr, example, 66
entPhysicalIndex, 53
entPhysicalTable, 53
environment, 1
example

AlarmNotification, 30
AlarmSeverityProfile, 31
connecting client with agent, 26
daemonList, 38
finding the root MBean, 27
getting nodes on tree, 28
initializing PMS client, 85
message handling, PMS client, 93
monitoring software events, 37
NotificationListener, 29
PMS client node interface, 124
PMS client RND interface, 131
PMS client scheduling, 106
setting alarm severity with SNMP, 70
setting alarms, 34
setting watchdog timer, 153
SNMP midplane object index, 66
system configuration hierarchy, 25

example, Netra CT security, 23

F
finding the root MBean, example, 27
front-access diskless system view, 18
fru class, PICL, 141
fru state, PICL, 141
FRU-ID, changing, 66
frutree topology, PICL, 140

G
GeoAddr, PICL, 145
getting started, 21

H
hardware

associating alarms to failure, 36
hardware description, 2
high temperature alarm, SNMP, 69
HIGH_MEMORY_UTILIZATION, example, 35
HIGH_TEMPERATURE, example, 35
host CPU board description, 2
host CPU board view of system, 13 to 14

hot-swap, 3

I
I/O board, description, 3
initializing PMS client, 85
instance specifier, 52
interface

dynamic reconfiguration, 148
MCNet, 5
PMS client node, example, 124
PMS client RND, example, 131

J
Java Dynamic Management Kit

see JDMK
JDMK

agent, 42
resources, 44

L
libcfgadm, 148

M
managed device, 51
Managed Object Hierarchy see MOH, 6
managed objects, 10

list, 7
management agent, 22
Management Information Base see also MIB, 50
managing CPU boards, 81
MBean

introduction to, 42
MCNet, 159

definition, 5
description, 7

memory use alarm tutorial, 34
message handling, PMS client, example, 93
MIB

access rights, 51
addressable objects, 51
objects, 50
table definition, 52
tables, 51

MIB Notifications, 63
MIB tables, 50
midplane FRU-ID, changing, 66
168 Netra CT Server Software Developer’s Guide • February 2007

midplane object
sample, 66

MOH
directory path, 44
example with SNMP, 66
introduction to agent, 22
overview, 6

N
netract, 7
netract agent, 22
netraCtAlarmSevProfileTable, entry example, 69
netraCtHighTempAlarm, example, 70
network protocol, 50
nodes, example of finding, 28
Notification

MIB, 63
registering a listener, example, 29

NotificationFilter, example, 29
NotificationListener, example, 29
NotificationListener, example, 30

O
OID (Object Identifiers), 51
output alarms, 34

P
Physical Entity Table, 53
physical properties in MIB, 50
PICL

ChassisType property, 141
ConditionTime, 145
fru class property, 141
Frutree topology, 140
GeoAddr, 145
man pages, 146
port node properties, 142
StatusTime, 145
temperature sensor node, 146
watchdog plug-in, 153

PMS, 80 to 135
PMS client

asynchronous message handling, example, 93
initializing, example, 85
RND interface, example, 131
scheduling,example, 106

PMS client node interface,example, 124
PMS introduction, 6
PMS software, overview, 80
port class, PICL, 142
port condition, PICL, 144
port state, PICL, 143
portType, PICL, 144
processor management services, 80 to 135
processor management services see also PMS, 6

R
RCM, 148
rear-access diskfull system view, 17, 19
rear-access diskless system view, 18
Reconfiguration Coordination Manager, 148
registering notification listener, example, 29
Remote Method Invocation (RMI), 8, 43
represent the system MBeans, example, 25
RFC2578, 51
RFC2579, 51
RFC2737, 52
RG (Resource Group) description, 81
RMI API directory path, 44
RMI see Remote Method Invocation
root MBean, example of finding, 27
routing tables, in MIB, 50

S
satellite CPU board, 3, 15
satellite CPU board rear-access view, 20
set alarms with SNMP, 69
setting watchdog timer, 153
SNMP

setting high temperature alarm, example, 70
SNMP interface, 7
SNMP Traps, 50, 62 to 63
software environment, 1
software service daemons, example, 38
starting netract agent, 21
StatusTime, PICL, 145
system configuration hierarchy example, 25
system view

from alarm card, 12, ?? to 13
from host CPU, 13 to 14
Index 169

from satellite CPU, 15
front-access, ?? to 13
front-access diskfull, 18
rear-access, 13, 14, 23
rear-access diskfull, 17, 19
satellite CPU board, 20

T
table definition, 52
tables in MIB, 50
temperature

sensor node, PICL, 146
temperature alarm tutorial, 34
thermister, 35
timer, watchdog, 153
Trap

Alarm Backed Up, 63
Alarm Severity, 63
definition, 50

tutorial, 21

W
watchdog plug-ins, 155
watchdog timer, 153
watchdog-timer settings, 156
170 Netra CT Server Software Developer’s Guide • February 2007

	Netra™ CT Server Software Developer’s Guide
	Contents
	Figures
	Tables
	Preface
	Programming Environment
	Netra CT Server
	Hardware Description
	Alarm Card
	Host CPU Board
	Satellite CPU Boards
	I/O Boards
	Hot-Swapping Capabilities

	Software Description
	Operating System Specifics
	Managed Object Hierarchy
	Processor Management Services
	Multicomputing Network
	Platform Information Control Library
	Management Framework
	SNMP/MIB Support
	SNMP Interface
	RMI Interface
	Developing Applications Using PMS
	Developing Applications to Interface with MOH or SNMP
	Developing Applications to Run on Host or Satellite CPU Boards

	Netra CT System Equipment Models
	Modeling a Netra CT System
	Managed Objects
	Viewing the Equipment Model Hierarchies

	Netra CT 810 System Equipment Models
	Netra CT 410 System Equipment Models

	Getting Started With Netra CT Element Management Agent API
	Before You Begin
	Netra CT Element Management Agent API
	Netra CT Agent Security

	Creating Your Application
	Purpose of the Application
	Determining the System Configuration Hierarchy
	Communicating With the Netra CT Agent
	Finding the Root Object Name
	Traversing the Containment Hierarchy From a Node

	Listening for Notifications
	Registering a Notification Listener With EFDMBean Instance

	Managing Alarms
	Registering a NotificationListener With an AlarmNotificationFilter
	Using the Default AlarmSeverityProfile
	Creating Your Own AlarmSeverityProfile
	Assigning a New AlarmSeverityProfile
	Configuring the Agent to Drive Alarm Card Alarm Outputs
	To Set Up and Use Alarm Features
	Clearing Alarms

	Software Monitoring

	Netra CT Element Management Agent API
	Interface Overview
	Summary of JDMK
	Viewing the Netra CT Management Agent API Online

	How the API Sections are Organized
	Netra CT Management Agent Interfaces and Classes

	Simple Network Management Protocol
	SNMP Overview
	Management Information Base
	Object Identifiers

	Netra CT System SNMP Representation
	ENTITY-MIB
	IF-MIB
	HOST-RESOURCES-MIB
	Host Resources Running Software Table
	Host Resources Installed Software Table
	SUN-SNMP-NETRA-CT-MIB
	Netra CT Network Element High-Level Objects
	Physical Path Termination Point Table
	Equipment Table
	Equipment Holder Table
	Plug-in Unit Table
	Hardware Unit to Running Software Relationship Table
	Hardware Unit to Installed Software Relationship Table
	Alarm Severity Identifier Textual Convention
	Alarm Severity Profile Table
	Alarm Severity Table
	Trap Forwarding Table
	MIB Notification Types

	SNMP Traps
	Understanding the MIB Variable Descriptions

	Changing Midplane FRU-ID
	Setting High Temperature Alarms
	To Set the High Temperature Alarm Severity to Major

	Managed Object Hierarchy Software Modules
	Software Module Design
	Software Services
	Software Module MBeans
	SoftwareMonitorMBean
	DaemonMBean
	SoftwareServiceMBean
	NfsServiceMBean
	UfsServiceMbean
	TcpServiceMBean
	UdpServiceMBean
	IpServiceMBean
	EtherIfStatsMBean
	CgtpServiceMBean
	RnfsServiceMBean

	Processor Management Services
	PMS Software Overview
	PMS Man Pages
	PMS Examples

	Solaris Operating System APIs
	Solaris Operating System PICL Framework
	PICL Frutree Topology
	Chassis Node Property Updates
	ChassisType
	fru Class Properties
	port Class Node
	port Class Properties

	Common Property Updates
	GeoAddr
	StatusTime
	ConditionTime

	Temperature Sensor Node State

	PICL Man Page References
	Dynamic Reconfiguration Interfaces
	Reconfiguration Coordination Manager
	Hot-Swap Support
	Configuration Administration

	Programming Temperature Sensors Using the PICL API
	Programming Watchdog Timers Using the PICL API
	Displaying FRU-ID Data
	MCNet Support

	Glossary
	Index

