Solstice HA 1.3 Programmer’s Guide

XD Sun

microsystems

THE NETWORK IS THE COMPUTER"

SunSoft, Inc.

A Sun Microsystems, Inc. Business
2550 Garcia Avenue

Mountain View, CA 94043 USA
415960-1300 fax 415 969-9131

Part No.: 805-0318-10
Revision A, April 1997

&E
Please
Recycle

Copyright 1997 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written
authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® system, licensed from Novell, Inc., and from the Berkeley 4.3 BSD
system, licensed from the University of California. UNIX is a registered trademark in the United States and other countries and is
exclusively licensed by X/Open Company Ltd. Third-party software, including font technology in this product, is protected by
copyrightand licensed from Sun’s suppliers.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-
14(9)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-1(a).

Sun, Sun Microsystems, the Sun logo, Solaris, SunSoft, the SunSoft logo, SunQOS, Solstice, OpenWindows, DeskSet,
SunFastEthernet, SunFDDI, SunNetManager, AnswerBook, JumpStart, OpenBoot, RSM, Solstice DiskSuite, Solstice Backup,
ONC, ONC+, NFS, and Ultra Enterprise are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States
and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the United States and other countries. Products bearing SPARC trademarks are based upon an architecture
developed by Sun Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which
license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X'Window System is a product of the X Consortium, Inc.

THISPUBLICATION ISPROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

‘(‘h

Adobe PostScript

Contents

Preface \Y
1. Data Services APl Introduction 1-1
1.1 OVEIVIBW . . ot 1-1

1.2 Interaction Between Data Services and Solstice HA 1-2

1.3 Logical Host Configuration Issues................... 1-3
1.4 Data Service Requirements 1-5
1.5 RegisteringaDataService.......................... 1-10
2. SampleDataService. 2-1
2.1 OVEIVIBW . . ot 2-1
2.2 Sample Application Setup. 2-2

2.3 Fault Monitoring Methods for the in.named
Data ServiCe. 2-11

3. Tips for Writing and Testing HA Data Services. 3-1

31 OVEIVIEW . . .ot 3-1
3.2 Deciding Which MethodstoUse 3-2
3.3 Using Keep-Alives i 3-3
3.4 Testing HA DataServicesccovuu.. 3-4
3.5 Coordinating Dependencies Between Data Services.... 3-5
A. Using Symbolic Links for Dual-Ported Data Placement A-1
B. APIManPages i B-1
INdEX .o I-1

Solstice HA 1.3 Programmer’s Guide—April 1997

Preface

Ultra™ Enterprise™ Cluster HA is a hardware and software product that
supports specific dual-server hardware configurations. It is compatible with
the Solaris™ 2.5.1 software environment. When configured properly, the
hardware and software together provide highly available data services. The
software component, Solstice™ High Availability (Solstice HA), depends upon
the mirroring and diskset capabilities and other functionality provided by
Solstice DiskSuite™ 4.1, which is an integral part of Solstice HA.

Solstice HA provides two application programming interfaces (API) for
making data services highly available. The data services API permits
client-server data services to be layered on top of Solstice HA. The fault
monitor API enables programmers to develop fault monitors for a new highly
available data service.

Usually, the data service of interest is one that already exists and was
developed in a hon-HA environment. This APl was designed to permit an
existing data service to be added easily to the Solstice HA environment. This
guide provides tips on how to achieve the addition.

The Solstice HA 1.3 Programmer’s Guide describes the recommended usage of
the two APIs. It also discusses conventions that a data service should follow to
be highly available.

Part 1 — Data Services APl includes an example of making a data service highly
available. The example data service is the Internet Domain Name Service
(DNS), specifically Sun's implementation, which is the daemon program
in.named(1M) . The in.named example is presented for illustrative purposes
only; running the presented code is not supported by Sun.

This book is intended to be used with the other hardware and software books
listed under “Related Documentation” on page vii, and with the man pages
associated with the API. Some of these man pages are: hareg(1m),

haget(1m), hads(1m), ha_open(1m), ha get_calls(1m),

hactl(1m), hatimerun(1m), rpc.pmfd(1m), pmfadm(im),

halockrun (1m). Of particular interest is also the Solstice HA 1.3 User’s
Guide. This book describe the HA environment into which you will integrate
your data service.

Who Should Use This Book

This book is for programmers responsible for integrating an existing data
service application into the HA environment. The instructions and discussions
are intended for a technically advanced audience.

The instructions in this book assume the reader has a high level of expertise
with the data service he or she is integrating.

How This Book Is Organized

Vi

This document contains the following chapters and appendixes:

Part 1 - Data Services API
Chapter 1, “Data Services API Introduction,” introduces the Solstice HA
concepts that enable application programs to become highly available.

Chapter 2, “Sample Data Service,” describes a sample data service used to
demonstrate how the API is used.

Chapter 3, “Tips for Writing and Testing HA Data Services,” provides
suggestions for how to most effectively write and test new data services.

Appendix A, “Using Symbolic Links for Dual-Ported Data Placement,”
describes how you can use symbolic links to avoid having to modify data
service code.

Solstice HA 1.3 Programmer’s Guide—April 1997

Appendix B, “APl Man Pages,” contains quick reference to the syntax for the
commands and functions associated with the Solstice HA Data Services API,
and the complete text of the man pages.

Related Documentation

The documents in Table P-1 contain information that may be helpful to the
system administrator and service provider.

Table P-1 Related Documentation

Product Family Title Part Number
Solstice HA Solstice HA 1.3 User’s Guide 805-0317
Solstice HA 1.3 Software New Product Information 805-0629
Name Services Name Services Administration Guide 801-6633
Name Services Configuration Guide 801-6635
Other Referenced Manuals NFS Administration Guide 801-6634
TCP/IP Network Administration Guide 801-6632

Preface Vii

Typographic Conventions
Table P-2 describes the typographic conventions used in this book.

Table P-2 Typographic Conventions

Typeface or

Symbol Meaning Example
Typewriter The names of commandes, Edit your .login file.
files, and directories; Usels -a to list all files.
on-screen computer output. machine_name% You have mail.
boldface What you type, contrasted machine_name% su
with on-screen computer Password:
output.
italic Command-line placeholder: To delete a file, type rm filename.
replace with a real name or
value.

Book titles, new words or
terms, or words to be
emphasized.

Shell Prompts in Command Examples

Table P-3 shows the default system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

Table P-3 Shell Prompts

Shell Prompt

C shell prompt machine_name%
C shell superuser prompt machine_name#
Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

viii Solstice HA 1.3 Programmer’s Guide—April 1997

1.1 Overview

Data Services APl Introduction 1

This chapter introduces the Solstice HA Data Services API and the concepts
needed to make your data service applications highly available.

Overview page 1-1
Interaction Between Data Services and Solstice HA page 1-2
Logical Host Configuration Issues page 1-3
Data Service Requirements page 1-5
Registering a Data Service page 1-10

The Solstice HA Data Service API uses command-line utilities and a C-callable
library. For convenience, all C-callable functionality is also available using the
command-line utility programs. This allows you to code in a scripting
language such as the Bourne shell (sh(1)), if you choose.

The API is defined by its man pages:

hareg(1M) - control registration and activation of Solstice HA data services
haget(1M) - query current state of Solstice HA configuration

hads(3ha) - library routines for Solstice HA data services

ha_open(3ha) , ha_close(3ha) - Solstice HA environment open and close
ha_get_calls(3ha) - get Solstice HA environment

1-1

1-2

The command line utilities and the C-callable library are documented in these
man pages.

Interaction Between Data Services and Solstice HA

This section introduces the interface between a data service and Solstice HA.

When a data service first registers with Solstice HA, it registers a set of
call-back programs, or methods. Solstice HA makes call-backs to the data
service's methods when certain key events in the Solstice HA cluster occur. The
remainder of this section describes the three basic methods required to make
any data service run in the Solstice HA environment. The methods are: start
stop , and abort .

After the failure of a host, Solstice HA itself takes care of moving the logical
host (both its diskset and its logical network IP addresses) to the surviving
host. At this point, the data service's software must be restarted on the
surviving host. Solstice HA itself cannot restart a data service. Instead, it
makes a call to the data service telling it to restart itself. This call is to the data
service's start method.

The Solstice HA haswitch(1M) command smoothly shuts down a logical host
on one physical server in preparation for moving the logical host to another
physical server. For Solstice HA to coordinate this shut-down work with
layered data services, each data service also registered a stop method. Solstice
HA calls the data service's stop method during haswitch(1M) operations,
and whenever Solstice HA is stopped using hastop(1M) . The stop method
performs a smooth, safe shutdown of the data service. This occurs without
waiting for clients on the network to completely finish their work, because
waiting for a client could introduce an unbounded delay.

Solstice HA continuously monitors the health of the physical servers in the
cluster. In some cases, Solstice HA will decide that a physical server is failing,
but is still able to execute some “last wishes” cleanup code before Solstice HA
halts and reboots the server. In this case, each data service is given an
opportunity to execute last wishes cleanup code before Solstice HA halts the
server. Solstice HA does this by calling the abort method of each data service.
A data service that does not need or want the last wishes cleanup opportunity
can choose not to register an abort method.

Solstice HA 1.3 Programmer’s Guide—April 1997

[EEN
I

1.3 Logical Host Configuration Issues

A data service is made highly available by exploiting the Solstice HA concept
of a logical host. The data service's data is placed on a logical host's diskset. A
diskset is dual-ported, making the data accessible by a surviving server in the
event that one server fails. For network access by clients on the network, the
data service advertises the logical host name as the server name that clients
should use. A logical network IP address failover causes network clients of the
data service to move with the logical host.

1.3.1 Data Service Use of Single or Multiple Logical Hosts

In release 1.3 of Solstice HA, there are at most two logical hosts. This might
change with later releases, so your data service implementation should not
depend on this fact. You must decide whether your data service will keep its
data in just one or in multiple logical hosts.

It is generally easier to design and implement a data service that uses just one
logical host. In that case, all the data service's data is placed on just that logical
host's diskset. The data service needs just one set of daemon(s). A physical host
runs the daemon(s) for that data service only if the physical host currently
masters the single logical host that the data service uses. When the physical
host takes over mastery of the logical host, the data service's start method
can start up the daemon(s). When the physical host is giving up mastery of the
logical host, the data service's stop method can stop the daemon(s). In some
cases, killing the daemon(s) by sending a kill signal will suffice.

If you use multiple logical hosts, you must be able to split the data service's
data into disjoint sets. The sets must be split so that no operation the data
service needs to perform requires data from more than one set.

Consider Sun's Solstice HA-NFS product, which has multiple file systems with
different data residing in each file system. For Solstice HA-NFS, each logical
host has its own set of NFS file systems. Each physical host NFS shares the file
systems that belong to the logical hosts that it masters. The sets of NFS file
systems belonging to the two logical hosts are disjoint.

Using multiple logical hosts enables some rudimentary load balancing: when
both physical hosts are up, each physical host masters one of the logical hosts
and handles the data service's traffic for that logical host. Thus, both physical
hosts are doing useful work in addition to acting as standbys for each other.

Data Services API Introduction 1-3

1-4

For some data services, splitting the data into disjoint collections such that no
data service operation requires more than one collection is not feasible. The
in.named example described in Chapter 2, “Sample Data Service” is such a
data service. It has only one set of interdependent data files, and it would be
difficult to split them into disjoint sets.

Note — Have the data service use just one of the logical hosts, unless the data is
easily split into disjoint collections and the rudimentary load balancing that
using multiple logical hosts enables is a significant benefit.

1.3.2 Required File System for Each Logical Host

Each Solstice HA logical host has a diskset. The diskset might contain one or
more file systems or raw partitions. Solstice HA requires that each logical host
has one file system that is special, in that it must exist and must have a
particular name (that is, it must be mounted on a particular directory name in
the name space hierarchy). When Solstice HA is first installed and configured,
the hasetup(1M) program assists the administrator in creating the required
file system, thus following the required convention. Solstice HA uses the term
HA administrative file system to refer to this special required file system.

For example, suppose there is a logical host named “hahostl” and also a
diskset “hahostl.” On the hahostl diskset, the HA administrative file system is
mounted in the name space as “/hahost1.”

Data service code should not assume that the HA administrative file system
always has a name of the form “/logicalhostname,” instead, it should use the
API calls that take the logical host name as an argument and return the name
of the HA administrative file system (the pathprefix field described in
haget(1M)). See haget(1M) and hads(3HA) for more information.

The HA administrative file system is used by Solstice HA for some of its own
administrative data. Layered data services can also use it for some of their
administrative data. Data services should use the HA administrative file
system rather than private file systems on the physical hosts to avoid having to
keep multiple copies (one copy on each physical host) in agreement. Solstice
HA does not provide any interfaces for keeping multiple copies of data in
agreement. This problem does not arise when the data is stored on the logical
host, since the data is accessible when the physical host masters that logical
host.

Solstice HA 1.3 Programmer’s Guide—April 1997

[EEN
I

1.3.2.1 Required HA Administrative File System Conventions

If your data service uses the HA administrative file system, it must adhere to
the conventions described in this section.

Per Data-Service Subdirectory

Each data service should place its administrative data in its own subdirectory
of the HA administrative file system. For example, if the data service uses
Solaris packages, then the subdirectory should have a name of the form:

/ HA_administrative_file_system/ PkgName
where PkgName is the name of your data service package.

If the package mechanism is not used, then the data service should use the
same name that it supplied as its data service name when it registered with
Solstice HA using hareg(1M) . The hareg(1M) utility detects and prohibits
naming conflicts. If your implementation uses logical host “hahost1,” and calls
hareg(1M) with the name “hainnamed,” you create the administrative
subdirectory:

/hahostl/hainnamed

Small Amount of Data

The HA administrative file system is relatively small. Each data service should
limit the amount of administrative data it keeps in the HA administrative file
system to a few kilobytes. If larger administrative data is required, use the HA
administrative file system as a level of indirection—to point at another
directory in one of the logical host's file systems. The data service's user data
should not be stored in the HA administrative file system, because for most
data services, that data would be too large.

1.4 Data Service Requirements

This section presents the requirements that a data service must meet to
participate in the Solstice HA Data Service API.

Data Services API Introduction 1-5

1.4.1 Client-Server Environment

Solstice HA is designed for client-server networking environments. Solstice
HA cannot operate in time-sharing environments in which applications are run
on a server that is accessed through telnet or rlogin . Such models typically
have no inherent ability to recover from a server crash.

1.4.2 Crash Tolerance

The data service must be crash-tolerant. This means that the data service's
daemon process(es) must be relatively stateless, in that they write all updates
to disk synchronously.

When a physical host that masters a logical host crashes, and a new physical
host takes over, Solstice HA calls the start method of each data service. The
start method triggers any crash recovery of the on-disk data. For example, if
the data service uses logging techniques, the start method should cause the
data service to carry out crash recovery using the log.

1.4.3 Dual-Ported Data

The logical host's diskset is dual-ported, so that when one physical host
crashes, the surviving host can access the disk. For a data service to be highly
available, its data must be highly available, and thus its data must reside on
the logical host's diskset.

A data service might have command-line switches or configuration files
pointing to the location of the data files. If the data service has hard-wired file
path names, it might be possible to change the path name to a symbolic link
that points to a file in the logical host's diskset, without having to change the
data service code. See Appendix A, “Using Symbolic Links for Dual-Ported
Data Placement” for a more detailed discussion about using symbolic links.

In the worst case, the data service's code will have to be modified to provide
some mechanism for pointing to the actual data location. You can do this by
implementing additional command-line switches.

Solstice HA 1.3 Programmer’s Guide—April 1997

[EEN
I

Solstice HA supports the use of both UFS and raw partitions on the logical
host's diskset. When the system administrator installs and configures Solstice
HA, he or she must specify which disk resources to use for UFS file systems
and which for raw partitions. Typically, raw partitions are used only by
database servers and multimedia servers.

1.4.4 Host Names

You must determine whether the data service ever needs to have the host name
of the server on which it is running. If so, then the data service might need to
be modified to use the host name of the logical host, rather than that of the
physical host. Recall that the Solstice HA concept of “logical host” involves
having a physical host “impersonate” a logical host's host name and IP
address.

Occasionally, in the client-server protocol for a data service, the server returns
its own host name to the client as part of the contents of a message to the
client. For such protocols, the client could be depending on this returned host
name as the host name to use when contacting the server. For the returned host
name to be usable after a takeover/switchover, the host name should be that of
the logical host, not the physical host. In this case, you must modify the data
service code to return the logical host name to the client.

Data Services API Introduction 1-7

1-8

1.4.5 Multihomed Hosts

The term “multihomed host” describes a host that is on more than one public
network. Such a host has multiple host names and IP addresses; it has one host
name/IP address pair for each network. Solstice HA is designed to permit a
host to appear on any number of networks, including just one (the
non-multihomed case). Just as the physical host name has multiple host
name/IP address pairs, each logical host has multiple host name/IP address
pairs, one for each public network. By convention, one of the host names in the
set of pairs is the same name as that of the logical host itself. When Solstice HA
moves a logical host from one physical host to another, the complete set of host
name/IP address pairs for that logical host is moved.

For each Solstice HA logical host, the set of host name/IP address pairs is part
of the Solstice HA configuration data and is specified by the system
administrator when Solstice HA is first installed and configured. The Solstice
HA Data Service API contains facilities for querying the set of pairs,
specifically, the names_on_subnets field described in the hads(3HA) and
haget(1M) man pages.

Most off-the-shelf data service daemons that have been written for Solaris
already handle multihomed hosts properly. Many data services do all their
network communication by binding to the Solaris wildcard address
INADDR_ANYThis automatically causes them to handle all the IP addresses for
all the network interfaces. The semantics of INADDR_ANYare that it effectively
binds to all the IP addresses currently configured on the machine. A data
service daemon that uses INADDR_ANYgenerally does not have to be changed
to handle the Solstice HA logical host's IP addresses.

1.4.6 Binding to INADDR_ANYVersus Binding to Specific IP Addresses

Even in the non-multihomed case, the Solstice HA logical host concept has the
effect that the machine can have more than one IP address. It has one for its
own physical host and one additional IP address for each logical host it
currently masters. When a machine becomes the master of a logical host, it
dynamically acquires an additional IP address. When it gives up mastery of a
logical host, it dynamically relinquishes an IP address.

Solstice HA 1.3 Programmer’s Guide—April 1997

[EEN
I

Some data services cannot work properly using only INADDR_ANYThese data
services must dynamically change the set of IP addresses to which they are
bound as a logical host is mastered or unmastered. The starting and stopping
methods provide the hooks for Solstice HA to inform the data service that a
logical host has appeared or disappeared. One strategy for such a data service
to accomplish the rebinding is for its stop and start methods to kill and
restart the data service's daemon(s).

During cluster reconfiguration, there is a relationship between the order in which
data service methods are called and the time when the logical host's network
addresses are configured by Solstice HA. See the hareg(1M) man page for
details about this relationship.

By the time the data service’s stop method returns, the data service should
have stopped using the logical host's IP addresses. Similarly, by the time the
start_net method returns, the data service should have started to use the
logical host's IP addresses. If the data service uses INADDR_ANYrather than
individually binding to individual IP addresses, this becomes a non-issue. If
the data service's stopping and starting methods accomplish their work by
killing and restarting the data service's daemon(s), then the data service stops
and starts using the network addresses at the appropriate times.

1.4.7 Client Retry

To a network client, a takeover or switchover appears to be a crash of the logical
host followed by a fast reboot. Ideally, the client application and the
client-server protocol are structured to do some amount of retrying. If the
application and protocol already handle the case of a single server crashing
and rebooting, then they also will handle the case of the logical host being
taken over or switched over. Some applications might elect to retry endlessly.
More sophisticated applications notify the user that a long retry is in progress
and allow the user to choose whether or not to continue.

Data Services API Introduction 1-9

1.5 Registering a Data Service

1-10

A data service is registered with Solstice HA using the Solstice HA program
hareg(1M) . Registration is persistent in that it survives across takeovers,
switchovers, and reboots. Registration with Solstice HA is usually done as the
last step of installing and configuring a data service. Registration is a one-time
event. A data service also can be unregistered with hareg(1M) . See the
hareg(1M) man page for additional details.

In addition to the distinction between registered versus unregistered, Solstice
HA also has the concept of a data service being either “on” or “off.” The
purpose of the “on” or “off” state is to provide the system administrator with a
mechanism for temporarily shutting down a data service, without having to
take the more drastic step of unregistering it.

For example, a system administrator could put the data service in the “off”
state to do stand-alone backups. While the data service is “off,” it is not
providing service to clients.

When a data service is “off,” the parameters that Solstice HA passes to the data
service's methods indicate that the data service should not be servicing data
from any of the logical hosts.

When a data service is first registered with Solstice HA, its initial state is “off.”
The hareg(1M) program is used to transition a data service between the “off”
and “on” states. The work of moving a data service between states is
accomplished through Solstice HA cluster reconfiguration.

Before unregistering a data service, the system administrator first must
transition the data service into the “off” state, by calling hareg(1M) .

Solstice HA 1.3 Programmer’s Guide—April 1997

2.1 Overview

Sample Data Service 2

This chapter describes the Solstice HA Data Services APl sample application,
in.named . The in.named daemon is the Solaris implementation of the
Internet Domain Name Service (DNS).

Overview page 2-1
Sample Application Setup page 2-2
Fault Monitoring Methods for the in.named Data Service page 2-11

The sample application described in this chapter demonstrates how to make a
data service application highly available. It is for illustrative purposes only.
There is no guarantee that this particular application will be highly available.

This chapter assumes that you have read the Solstice HA Data Services API
man pages describing hareg(1M) and haget(1M)

This sample application demonstrates many, but not all, of the features
included in the API. Note these aspects of the sample application:

® The data used in the sample application cannot be split easily into disjoint
sets, so only one data set (one logical host) is used.

® Thein.named data service has a command line option, -b , used to point to
a data file. The -b option points to data in a file system residing on the
logical host's diskset.

2-1

® In the client-server protocol for a data service, the server sometimes will
return its own host name to the client as part of the contents of a message to
the client. For such protocols, the client might be depending on this
returned host name as the host name to use in the future for contacting the
server. For the in.named sample, these issues do not arise. The in.named
data service does not need the host name of the server and does not return
the host name to clients.

® Thein.named data service works off-the-shelf with multihomed hosts.

® Thein.named data service works off-the-shelf with the additional IP
addresses for the logical hosts. Its stopping and starting methods kill and
restart the in.named daemon.

2.2 Sample Application Setup

2-2

The in.named data service uses only one logical host, even when the
underlying Solstice HA cluster has more than one logical host. The method
implementations will compute dynamically which logical host is being used.
For example, if the “hahostl” logical host is used, then the in.named data is
placed on the “hahost1” diskset.

An administrator may place the boot file (pointed to by the -b flag argument)
on any arbitrary file system in the diskset, depending on which file system has
space. However, the HA-in.named method implementations need a specific
starting point from which to find the boot file. The sample application places
this starting point in the HA administrative file system under the hainnamed
subdirectory. It is placed in the configuration file hainnamed.config , which
contains a single directory name that indicates a directory elsewhere in the
logical host's dual-ported disk. This is where the data actually resides (it is a
level of indirection).

For our “hahost1” logical host, the path name for the file hainnamed.config
is:

/hahost1l/hainnamed/hainnamed.config
In general, the path name for an arbitrary logical host would be:

/ HA administrative_file_system/hainnamed/hainnamed.config

Solstice HA 1.3 Programmer’s Guide—April 1997

2

The HA-in.named methods are written to compute dynamically which logical
host is being used for HA-in.named by testing, for the presence or absence of
this configuration file, for each logical host.

For example, if file systems Al through A5 reside on the “hahost1” diskset, and
the administrator chooses to locate the HA-in.named data in the directory
/hahostl/Al/hainnamed , then the hainnamed.config file must contain
that directory name.

In the /hahost1/Al/hainnamed directory, the administrator must create a
named.boot file for in.named . (See the in.named(1M) man page for
information about the contents of the named.boot file.) The administrator
updates the in.named database by editing the named.boot file in this
directory, just as he or she would edit the /etc/named.boot file in a non-HA
in.named configuration. See “HA-in.named Administration: Updating the
Database” on page 2-10 for additional discussion of administration and
updates.

2.2.1 Basic Functionality of the in.named Method Implementations

Consider the basic functionality of the HA-in.named method implementations.
The start method is not registered in this case, and all the work is
accomplished in the start_net method. Similarly, the stop method is not
registered for HA-in.named, and all the work is accomplished in the stop_net
method. The start_net method starts up the in.named daemon, and the
stop_net method kills it by sending it a -TERMsignal.

The Solstice HA API requires each method to be idempotent—that is, repeated
calls on a method must have the same effect as a single call on that method.
For HA-in.named, the idempotency is achieved by having each method test
whether its work has already been accomplished. That is, start_net tests
whether the in.named daemon is already running, and stop_net tests
whether the in.named daemon is already stopped.

The Solstice HA process monitor facility consists of two components, the
pmfadm(1M) command and the rpc.pmfd(1M) process monitor daemon. In
the sample application, the pmfadm(1M) command is used to start and kill the
in.named daemon, and to query whether the in.named daemon is already
running. See the pmfadm(1M) and rpc.pmfd(1M) man pages for details.

Sample Data Service 2-3

2-4

The HA-in.named method implementations use the haget(1M) utility
program to extract information about the Solstice HA configuration. (See the
haget(1M) man page for details.) The method implementations log their error
messages to syslog(3) , because the code runs without user attendance. They
use the same syslog facility that Solstice HA uses. Determine the syslog facility
name by calling haget(1M) with the option -f syslog_facility

Solstice HA 1.3 Programmer’s Guide—April 1997

2.2.2 start_net Method for the in.named Data Service

The following is a sample start_net method for the in.named
service.

data

#! /bin/sh
#
Copyright 13 Apr 1996 Sun Microsystems, Inc. All Rights Reserved.
#
#ident "@(#)innamed_start_net.sh 1.1 96/04/13 SMI"
#
HA-in.named start_net method
ARGVO0="basename $0
SYSLOG_FACILITY="haget -f syslog_facility"
MASTERED_LOGICAL_HOSTS="$1"
if [-z "$SMASTERED_LOGICAL_HOSTS"]; then
This physical host does not currently master any logical hosts.
exit 0
fi
Replace comma with space to form an sh word list:
MASTERED_LOGICAL_HOSTS=""echo $MASTERED_LOGICAL_HOSTS | tr'' """

Dynamically search the list of logical hosts which this physical
host currently masters, to see if one of them is the logical host
that HA-in.named uses.
MYLH=
for LH in $MASTERED_LOGICAL_HOSTS ; do
Map logical hostname to HA administrative file system name:
PATHPREFIX_FS="haget -f pathprefix $LH'
CONFIG="${PATHPREFIX_FS}/hainnamed/hainnamed.config"
if [-f SCONFIG]; then
MYLH=$LH
break
fi
done
if [-z "$MYLH"]; then
This host does not currently master the logical host
that HA-in.named uses.
exit 0
fi

Sample Data Service

2-5

2-6

continued:

This host currently masters the logical host that HA-in.named uses, $MYLH
See if in.named is already running, if so exit. (We must have
started it on some earlier cluster reconfiguration when this
physical host first took over mastery of the $SMYLH logical host.)
We determine whether in.named is already running by using the pmfadm
command to query its status: if the query succeeds, it is already
running.
if pmfadm -g hainnamed >/dev/null 2>&1 ; then
exit 0
fi

HA_INNAMED_DIR=""cat $CONFIG™
if [! -d $HA_INNAMED_DIR J; then
logger -p ${SYSLOG_FACILITY}.err\
"${ARGVO0}: directory $HA_INNAMED_DIR missing or not mounted"
exit 1
fi

We cd to the HA_INNAMED_DIR directory because the named.boot file
contains the names of other files. By cd'ing, we permit all of
those names to be relative names, relative to the current directory
cd $HA_INNAMED_DIR
if [! -s named.boot]; then
logger -p ${SYSLOG_FACILITY}.err\
"${ARGVO}:file $HA_INNAMED_DIR/named.boot is missing or empty"
exit 1
fi

Run the in.named daemon under the control of the Solstice HA process
monitory facility. Let it crash and restart up to 4 times an hour;
if it crashes more often than that, the process monitor facility daemon
will cease trying to restart it.
pmfadm -c hainnamed -n 4 -t 60 /usr/sbin/in.named -b named.boot
if [$? -ne 0]; then

logger -p ${SYSLOG_FACILITY}.err\

“${ARGVO0}: pmfadm -c of in.named failed”

exit 1
fi
exit 0

Solstice HA 1.3 Programmer’s Guide—April 1997

2.2.3 stop_net Method for the in.named Data Service

The following is a sample stop_net method for the in.named data service.

#! /bin/sh

Copyright 13 Apr 1996 Sun Microsystems, Inc. All Rights Reserved.
#

#ident "@(#)innamed_stop_net.sh 1.1 96/04/13 SMI"

#

HA-in.named stop_net method

#

ARGV0="basename $0°
SYSLOG_FACILITY="haget -f syslog_facility
NOT_MASTERED_LOGICAL_HOSTS="$2"
if [-z "SNOT_MASTERED_LOGICAL_HOSTS" |; then
This physical host currently masters all logical hosts.
exit 0
fi
Replace comma with space to have an sh word list:
NOT_MASTERED_LOGICAL_HOSTS=""echo $SNOT_MASTERED_LOGICAL_HOSTS |tr',''"™"

Dynamically search the list of logical hosts that this physical

host should not master, to see if one of them is the logical host

that HA-in.named uses. There are two cases to consider:

(1) This physical host gave up mastery of that logical host during
#some earlier cluster reconfiguration. Inthat case, the HA administrative
file system for the logical host will no longer be mounted so the

[HA administrative_file_system/hainnamed directory will not exist.

This method has no work to do, because the work got done during the
earlier cluster reconfiguration when this physical host first gave up

mastery of the logical host.

(2) This cluster reconfiguration is the one in which this physical

host is giving up mastery of the logical host. In that case, the

HA administrative file system is still mounted when the stop_net method
is called and the /HA administrative_file_system/hainnamed directory
will exist.

Sample Data Service

2-7

2-8

continued:

MYLH=

for LH in $NOT_MASTERED_LOGICAL_HOSTS ; do
Map logical hostname to pathprefix file system name:
PATHPREFIX_FS="haget -f pathprefix $LH"

CONFIGDIR="${PATHPREFIX_FS}/hainnamed
if [-d $CONFIGDIR]; then
MYLH=$LH
break
fi
done
if [-z "$MYLH"]; then
This host is not giving up mastery of the HA-in.named logical host
during this cluster reconfiguration.
exit 0
fi
This host is giving up mastery of the HA-in.named logical host, $MYLH
during this cluster reconfiguration.

#

See if in.named is running, and if so, kill it. If it is not running,

then either we must have killed it during some earlier reconfiguration
when this physical host first gave up mastery of the logical host, or
this physical host has not had mastery of the logical host since it

last rebooted.

#

Tell process monitor to kill the in.named daemon, if it was already

running.

if pmfadm -g hainnamed if [$? -ne 0]; then
pmfadm -s hainnamed TERM
if [$? -ne 0]; then
logger ${SYSLOG_FACILITY}.err\
"${ARGVO0}: pmfadm -s of in.named failed"
exit 1
fi
fi

exit0

Solstice HA 1.3 Programmer’s Guide—April 1997

N
1]

2.2.4 abort_net Method for the in.named Data Service

The abort method is not registered for the HA-in.named example. The
abort_net method uses the same code as the stop_net method; when
HA-in.named is registered with Solstice HA by the hareg(1M) utility, the
abort_net registration points to the code used by stop_net

2.2.5 Possible Improvements to in.named Methods

Consider some possible improvements to the start net and stop_net
methods for HA-in.named. The methods can benefit from better error detection
and handling. For example, you can test whether the /usr/sbin/in.named
binary exists, is executable, and is non-empty. If not, an error message can be
logged. Before attempting to cat(l) the file hainnamed.config , verify that
the file exists, has the correct permissions, and is non-empty.

The methods also can test for the existence of the non-HA in.named data file
/etc/named.boot . If the file exists, there is confusion about whether this host
is running non-HA in.named or HA-in.named; only one can run at one time.
The code can treat this case as a severe configuration error, log appropriate
messages, and neither start nor kill in.named .

2.2.6 DNS Clients

In Solaris, a host that is a client of DNS has an /etc/resolv.conf file. The
file lists name server hosts to contact for DNS service. The name server hosts
are listed as IP addresses rather than host names. More than one host IP
address might be listed.

Network clients of HA-in.named would list the IP address of the logical host,
for example, that of “hahostl,” in the /etc/resolv.conf file.

There are periods when a physical host does not master the logical host that
HA-in.named uses. However, the host must have the ability to be a client of
HA-in.named during those periods. To achieve this, add the IP address of the
logical host to the /etc/resolv.conf file on all physical hosts of the Solstice
HA cluster.

Sample Data Service 2-9

2-10

2.2.7 HA-in.named Administration: Updating the Database

Administration of HA-in.named resembles that of non-HA in.named . To
update the in.named database, log in to the server (it is a security risk to grant
root NFS access to the file system where the in.named data files are stored).
For HA-in.named, log in to the physical server that currently masters the
logical host that HA-in.named has been configured to use. Use the

hastat(1M) utility to determine which physical host masters which logical
hosts.

You perform an update to HA-in.named by editing its data files. Do this in a

way that leaves the data files well-formed in the event of a sudden crash. For
example, after logging in, cd to the directory where the HA-in.named data is

stored (in our example, the directory /hahostl/Al/hainnamed). Then edit a
new temporary copy of the data file, and once you are finished, move this copy
onto the real data file name. For example:

% cd /hahostl/Al/hainnamed

% cp named.boot named.boot.new
% vi named.boot.new

% sync

% mv named.boot.new named.boot

As explained in the in.named(1M) man page, you then can use the kill(1M)
command to send a SIGHUPsignal to the in.named daemon, to cause it to
re-read the file.

2.2.8 HA-in.named Documentation

You must document the installation and configuration of the highly available
data service. This documentation must explain how to configure any
administrative files that live in the HA administrative file system, and how to
install the data service's data on one or more of the logical host's file systems or
raw partitions. You should also document administration history and updates
for the HA version of your data service.

Solstice HA 1.3 Programmer’s Guide—April 1997

N
1]

2.3 Fault Monitoring Methods for the in.named Data Service

Solstice HA enables the author of an HA data service to write fault monitoring
methods for the data service. As an example, one can write a modest fault
monitor for in.named , and can query in.named periodically using
nslookup(1M) . If the look-up times out using a very long time-out value, the
fault monitor will conclude that the in.named daemon is hung and must be
killed and restarted.

Fault monitoring will be executed only on the physical host on which
in.named is running, that is, on the host that masters the logical host used by
in.named . The non-master physical hosts do not perform fault monitoring.

The fault monitor is started by the FM_STARTmethod and stopped by the
FM_STORmethod. It has no need for the FM_INIT method—HA in.named
would not register an FM_INIT method when calling hareg(1M) .

The following is a sample FM_STARTmethod for the in.named data service.

#! /bin/sh

#

fi

Copyright 26 Oct 1996 Sun Microsystems, Inc. All Rights Reserved.
#ident "@(#)innamed_fm_start.sh 1.1 96/04/13 SMI"

HA in.named fm_start method

Called-back by Solstice HA as the FM_START method for HA in.named.

ARGVO0="basename $0
SYSLOG_FACILITY="haget -f syslog_facility"

MASTERED_LOGICAL_HOSTS="$1"
if [-z "$MASTERED_LOGICAL_HOSTS"]; then

This physical host does not currently master any logical hosts.
exit 0

Replace comma with space to form an sh word list:
MASTERED_LOGICAL_HOSTS="echo $MASTERED_LOGICAL_HOSTS tr' """

Dynamically search the list of logical hosts which this physical
host currently masters, to see if one of them is the logical host
that HA-in.named uses.

continued

Sample Data Service 2-11

2-12

continued:

MYLH=

for LH in SMASTERED LOGICAL HOSTS ; do
Map logical hostname to HA administrative file system name:
PATHPREFIX_FS="haget -f pathprefix $LH"
CONFIG="${PATHPREFIX_FS}/hainnamed/hainnamed.config"

if [-f $CONFIG]; then
MYLH=$LH
break
fi
done
if [-z "$MYLH"]; then
This host does not currently master the logical host
that HA-in.named uses.
exit 0
fi

This host currently masters the logical host that HA in.named uses,
$MYLH.

Create an asynchronous process to periodically probe the in.named
daemon, under the control of the process monitor facility.

The asynchronous probe is in its own shell script:

hainnamed_fmprobe

The asynchronous process will be terminated by the FM_STOP method.

pmfadm -c hainnamedfm hainnamed_fmprobe $MYLH
exit 0

Solstice HA 1.3 Programmer’s Guide—April 1997

2

The following is a sample FM_STOPmethod for the in.named

data service.

#! /bin/sh

#

Copyright 26 Oct 1996 Sun Microsystems, Inc. All Rights Reserved.
#

#ident "@(#)innamed_fm_stop.sh 1.1 96/04/13 SMI"

#

HA in.named fm_stop method

#

Called back by Solstice HA as the FM_STOP method for HA in.named.
#

Stop the asynchronous fault monitoring process that was created

earlier under the control of pmfd.

#

Ignore errors when calling pmfadm just in case the hainnamed_fmprobe
is already not running. Reasons for it being already not running

include the fact that it is started only on the physical host that

currently masters the logical host, the fact that FM_STOP can be

called even though FM_START has not been called, and the fact

that it may have died an early death all by itself.

pmfadm -s hainnamedfm TERM >/dev/null 2>&1

exit 0

Sample Data Service

2-13

1]l
N

The following is a sample probe script, ha.innamed_fmprobe | for the
in.named data service. It is started under the control of the process monitor
facility by the FM_STARTmethod.

#! /bin/sh
#
Copyright 26 Oct 1996 Sun Microsystems, Inc. All Rights Reserved.
#
#ident "@(#)hainnamed_fmprobe.sh 1.1 96/04/13 SMI"
#
Usage: hainnamed_fmprobe logical_host
#
Periodically probes the in.named running on the logical_host.
If the probe times out, then this script will query the pmfd to
see if the pmfd is still running in.named:
(i) if so, this script assumes that in.named is hung and
sends a KILL signal to the in.named process, causing it to
die. pmfd will restart in.named provided it has not used
up its ration of restarts per time period.
(i) if not, this script will assume that in.named has exhausted
its ration of restarts. This script will call hactl -g to giveup
mastery of the logical host to some other new master physical host.
#
ARGVO0="basename $0°
LOGICAL_HOST="$1"
SYSLOG_FACILITY="haget -f syslog_facility’
PROBE_INTERVAL_SECS=60
MIN_PROBE_SECS="hactl -f min_probe_timeout_secs’
PROBE_TIMEOUT_SECS="expr $MIN_PROBE_SECS + 180"
CLUSTER_KEY="hactl -f cluster_key"
NSLOOKUP=/usr/sbin/nslookup
if [! -x $NSLOOKUP -0 !-s $NSLOOKUP]; then
logger ${SYSLOG_FACILITY}.err\
"${ARGV0}: SNSLOOKUP does not exist or is not executable"
exit 1
fi
while true; do

continued

2-14 Solstice HA 1.3 Programmer’s Guide—April 1997

continued:

done

Call nslookup under a timeout, using hatimerun.
The -norecurse option tells in.named not to consult
other name service instances on other hosts beyond the
one on $LOGICAL_HOST.
The -retry=10000 is telling nslookup to take forever
retrying: this means that for a hung server, nslookup
will never itself giveup, rather, the timeout on hatimerun
will expire first.
hatimerun -t $SPROBE_TIMEOUT_SECS\
$NSLOOKUP -norecurse -retry=10000 $LOGICAL_HOST $LOGICAL_HOST
if [$? -ne 99]; then
sleep $PROBE_INTERVAL_SECS
continue
fi

Here when the timeout occurred.
logger -p ${SYSLOG_FACILITY}.err\
"${ARGVO0}: nslookup of in.named on $LOGICAL_HOST timed-out"
if pmfadm -q hainnamed then
The in.named process exists. Kill it on the
assumption that it is hung. Sleep a short time,
and if hainnamed still exists in the pmfd, assume
that pmfd is restarting it (it has not yet used
up its ration of restarts per time interval.)
logger -p ${SYSLOG_FACILITY}.err\
"${ARGVO0}: KILLing hung in.named"
pmfadm -k hainnamed KILL
sleep 30
if pmfadm -g hainnamed then
continue
fi
fi
Here when pmfadm -q says that hainnamed no longer
exists in pmfd. Assume that the ration of restarts
was exhausted. Also assume that something is amiss
that moving to a new master could improve.
logger -p ${SYSLOG_FACILITY}.err\
"${ARGVO0}: in.named restarted too many times, not restarting"
logger -p ${SYSLOG_FACILITY}.err\
"${ARGVO0}: giving up mastery of SLOGICAL_HOST"
hactl -g -s hainnamed -k $CLUSTER_KEY -l $LOGICAL_HOST

Sample Data Service

2-15

2-16

Solstice HA 1.3 Programmer’s Guide—April 1997

3.1 Overview

Tipsfor Writingand Testing HA
Data Services 3

This chapter provides tips for writing and testing new highly available data
services.

Overview page 3-1
Deciding Which Methods to Use page 3-2
Using Keep-Alives page 3-3
Testing HA Data Services page 3-4
Coordinating Dependencies Between Data Services page 3-5

This chapter describes how to:
* Modify your data service to better suit your particular task

® Test your data service to ensure that it will operate correctly in the HA
environment

® Coordinate dependencies between data services

3-1

3

3.2 Deciding Which Methods to Use

3-2

This section provides some tips about when to use the start net , stop_net ,
and abort net methods versus using the start , stop , and abort methods.

Generally, it is easier to start, stop, or abort the data service using start net
stop_net , or abort_net, because the logical network addresses are
configured to be up at the point where these methods are called.

To start, stop, or abort a data service, you often will have to invoke the data
service's administrative utilities or libraries. Sometimes, the data service has
administrative utilities or libraries that use a client-server networking interface
to perform the administration. That is, an administrative utility makes a call to
the server daemon, so the logical network address might need to be up to use
the administrative utility or library.

Consider whether your client software will respond differently depending on
whether the network interface or the data service comes on-line first after a
reboot, takeover, or switchover. Use the methods that will ensure adequate
retries occur before giving up. For example, if your client implementation does
minimal retries when it determines that the data service port is not available,
ensure that the data service starts before the network interface is configured. In
this case, use the start method rather than the start net method.

If you use the stop or abort method, the data service is still up at the point
where the logical network address is configured to be down; it is only after the
logical network address is configured down that the stop and abort methods
are invoked.

This creates the invariant that the data service's TCP or UDP service port, or its
RPC program number, always appear to be available to clients on the
network—except when the logical host network address also is not responding.
This invariant is important only if the client code behaves in a significantly
different way when it finds that the TCP or UDP service port, or RPC program
number, is not responding, but that the logical host’s network address is
responding. For example, a client might decide to abandon its retry path early
in this scenario. This means that the client code is going down a different code
path when it receives an explicit error packet back from the server host saying
“ICMP port unreachable” or “Program not registered.”

Solstice HA 1.3 Programmer’s Guide—April 1997

3

You need in-depth knowledge of the client and the data service’s client-server
networking protocol to know whether a client implementation depends on this
invariant.

3.3 Using Keep-Alives

If the client-server communication uses a TCP stream, then both the client and
the server should enable the TCP keep-alive mechanism. This is applicable
even in the non-HA single server case.

Note — Other connection-oriented protocols might also have a keep-alive
mechanism.

On the server side, using TCP keep-alives protects the server from wasting
resources for a down (or network partitioned) client. If those resources are not
cleaned up (in a server that stays up long enough), eventually the wasted
resources will grow without bound as clients crash and reboot.

On the client side, using TCP keep-alives allows the client to be notified when
a logical host has failed over or switched over from one physical host to
another. That transfer of the logical host breaks the TCP connection. However,
unless the client has enabled the keep-alive, it would not necessarily learn of
the connection break if the connection happens to be quiescent at the time.

For example, consider the case in which the client is waiting for a response
from the server to a long-running request. In this scenario, the client’s request
message has already arrived at the server and has been acknowledged at the
TCP layer, so the client’s TCP module has no need to keep retransmitting it.
The client application is now blocked, waiting for a response to the request.

Where possible, in addition to using the TCP keep-alive mechanism, the client
application also should perform its own periodic keep-alive at its level,
because the TCP keep-alive mechanism is not perfect in all possible boundary
cases. Using an application-level keep-alive typically requires that the
client-server protocol supports a null operation or at least an efficient
read-only operation such as a status operation.

Tips for Writing and Testing HA Data Services 3-3

3

3.4 Testing HA Data Services

3-4

You will want to test your data service implementation thoroughly before
putting it into a production environment. This section provides suggestions
about how to test your implementation in the HA environment. The test cases
are suggestions and are not exhaustive. For testing, you need to have access to
a test-bed Solstice HA configuration, so that your work will not impact
production machines.

Test that your HA data service behaves properly in all cases where a logical
host is moved between physical hosts. These include system crashes and the
use of haswitch(1M) and hastop(1M) . Test that client machines continue to
get service after these events. Try crashing either host in the middle of
haswitch(1M) and hastop(1M) . For example, try crashing the host:

® to which a logical host is moving.

* from which the logical host is moving.

® that is executing the hastop(1M) command.

® that is not executing the hastop(1M) command.

Test halting both physical hosts and then starting them up again at
approximately the same time.

Test the idempotency of the methods. An important way to do this is to
repeatedly crash and reboot one physical host, without ever doing an
haswitch(1M) of a logical host to it. Let the rebooting host complete cluster
reconfiguration before crashing it again. Note that when a rebooting host
rejoins the cluster, cluster reconfiguration runs, but no logical host is moved
between physical hosts during that reconfiguration.

Another way to test idempotency is to replace temporarily each method with a
short shell script that calls the original method twice.

To test that your data service properly implements the abort and abort_net
methods, make one physical host look very sick to Solstice HA, but without
crashing the host outright, so that Solstice HA will take it out of the system on
the “last wishes” path. First, do an haswitch(1M) of all logical hosts to that
physical host. Then make that host appear to be sick by unplugging all the
public network connections to that host. Solstice HA's network fault
monitoring will notice the problem and take the physical host out of the
cluster, using the aborting “last wishes” path.

Solstice HA 1.3 Programmer’s Guide—April 1997

w
1]

3.5 Coordinating Dependencies Between Data Services

Sometimes, one client-server data service makes requests upon another
client-server data service while fulfilling a request for a client. Informally, a
data service A depends on a data service B if, for A to provide its service, B
must be providing its service.

Solstice HA enables having dependent data services by providing the -d
switch to the hareg(1M) program. The dependencies affect the order in which
Solstice HA starts and stops data services. See the hareg(1M) man page for
details.

Determine whether there are any data service dependencies and whether to
supply the appropriate -d switches to hareg(1M) . Solstice HA does not check
the completeness of the supplied -d switches.

Decide whether to use the -d switches or to omit them and poll for the
availability of the other data service(s) in your HA data service’s own code. In
some cases, polling is required anyway, because the other data service's start
method might be asynchronous—it might start the data service but not wait for
the data service to actually be available to clients before returning from the
start orstart net method. Database services typically exhibit this behavior
because database recovery time is often lengthy.

3.5.1 Dependent Data Service Using Another Back-End Data Service

Some data services store no data directly themselves, but instead depend upon
another back-end data service to store all their data. Such a data service
translates all read and update requests into calls on the back-end data service.
For example, consider a hypothetical client-server appointment calendar
service that keeps all of its data in an SQL database such as Oracle. The
appointment calendar service has its own client-server network protocol. For
example, it might have defined its protocol using an RPC specification
language, such as ONC™ RPC.

Tips for Writing and Testing HA Data Services 3-5

3-6

In the Solstice HA environment, you can use Solstice HA-DBMS for ORACLE7
to make the back-end Oracle database highly available. Then, you can write
simple methods for starting and stopping the appointment calendar daemon.
You can register the appointment calendar data service with Solstice HA as one
that depends upon another Solstice HA data service, Solstice HA-DBMS for
ORACLET?. Specify this dependency using the -d option to hareg(1M) .

The start method for Oracle might initiate only database recovery and might
not wait for the recovery to complete. Therefore, our calendar data service
daemon, once it has been started, must poll waiting for the Oracle database to
become available.

Solstice HA 1.3 Programmer’s Guide—April 1997

Using Symbolic Links for
Dual-Ported Data Placement A

This appendix describes how to use symbolic links to avoid having to modify
data service code.

In Chapter 1, “Data Services API Introduction,” we mentioned that
occasionally an existing data service has the path names of its data files
hard-wired, with no mechanism for overriding the hard-wired path names. To
avoid modifying the data service’s code, symbolic links sometimes can be
used.

For example, suppose the data service names its data file with the hard-wired
path name /etc/mydatafile . You can change that path from a file to a
symbolic link, whose value points at a file in one of the logical host’s file
systems. For example, you could make it be a symbolic link to

/hahostl/Al/ myservicename/mydatafile

There is a potential problem with this use of symbolic links. That is, sometimes
the data service, or one of its administrative procedures, modifies the data file
name as well as its contents. For example, suppose that the data service
performs an update by first creating a new temporary file,

/etc/mydatafile.new . Then it renames the temporary file to have the real
file name, by using the rename(2) system call (or the mv(1) program):

rename("/etc/mydatafile.new", "/etc/mydatafile");

A-2

By going through the sequence of creating the temporary file, and then
renaming it to the real file, the data service is attempting to ensure that its data
file contents are always well-formed.

Unfortunately, the rename(2) action destroys the symbolic link. The name
/etc/mydatafile is now a regular file, and is in the same file system as the
/etc directory, not in the logical host’s dual-ported file system. Because the
/etc file system is private to each host, the data is not available after a
takeover or switchover.

The underlying problem in this situation is that the existing data service is not
aware of the symbolic link and was not written with symbolic links considered.
To use symbolic links to redirect data access into the logical host’s file
system(s), the data service implementation must behave in a way that does not
obliterate the symbolic links. So, symbolic links are not a cure-all for the
problem of placing data on the logical host’s file system(s).

Solstice HA 1.3 Programmer’s Guide—April 1997

API Man Pages B

This appendix contains a quick reference to the syntax for the commands and
functions associated with the Solstice HA APIs, and the complete text of the
man pages.

The man pages described in this appendix are included in the printed version
of this book. These pages are not available in the AnswerBook on-line
documentation. They are available on line using the man(1) command.

B.1 API Man Pages Quick Reference

The syntax for each Solstice HA Data Services APl command or function is
included below.

® hactl(1M) - Control operations on Solstice HA.

lopt/SUNWhadf/bin/hactl [-n] -t|-g -s service_name

-I|-p hostname [-L severity][k cluster_key]
hactl [-n] -r -s service_name [-k cluster_key]
hactl -f fieldname

®* haget(1M) - query current state of Solstice HA configuration.

haget [-S][-a APIlversion] -f fieldname[-h hostname][-s dataservicename]

B-1

| B
|
|
® halockrun(1M) - Run a child program while holding a file lock.
halockrun [-vsn][-e exitcode | lockfilename prog [args]
® hareg(1M) - control registration and activation of Solstice HA data
services.
hareg -r service_name -m method= path[,method= path]... [-b basedir]
[-t method= timeout[,method= timeout]...]
[-d depends_on_servicel[,...]] [-V service_version] [-a APlversion]
[P pkgL..]]
hareg -s -r Sun_service_name
hareg -u service_name
hareg -q service_name [-M method | -T method |-D |-V | -A
|-P | -B]
hareg -y|-n service_name[,...]
hareg [-Y | -N]
® hatimerun(1M) - Run a child program under a time-out.
hatimerun [-va][-k signalname][-e exitcode]
-t timeOutSecs prog args
* pmfadm(1M) - Process monitor facility administration.
pmfadm -c nametag [-n retries][-t period][-a action]
command [args_to_command ...]
pmfadm -m nametag [-n retries][-t period]
pmfadm -s nametag [-w timeout][signal]
pmfadm -k nametag [-w timeout][signal]
pmfadm -l nametag [-h host]
pmfadm -q nametag [-h host]
B-2 Solstice HA 1.3 Programmer’s Guide—April 1997

w
1]

® hads(3HA) - library routines for Solstice HA data services.

cc[flag...] -l/fopt/'SUNWhadf/include file...
-L /opt/SUNWhadf/lib [threads lib] -Ihads -lintl -Idl
[library...]

#include <hads.h>

® ha_get_calls(3HA) —ha_get calls |, ha_getconfig ,
ha_getcurstate , ha_getmastered , ha getnotmastered ,
ha_getonoff |, ha_getlogfacility - get Solstice HA environment.

cc[flag...] -l/lopt/'SUNWhadf/include file...
-L /opt/SUNWhadf/lib [threads lib] -Ihads -lintl -Idl
[library...]

ha_error_t ha_getconfig(ha_handle_t handle, ha_config_t
**config);

ha_error_t ha_getcurstate(ha_handle_t handle, ha_lhost_dyn_t
**[hosts|[]);

ha_error_t ha_getmastered(ha_handle_t handle, ha_lhost_dyn_t
**[hosts|[]);

ha_error_t ha_getnotmastered(ha_handle_t handle, ha_lhost_dyn_t
**[hosts|[]);

ha_error_t ha_getonoff(ha_handle_t handle, char *service_name,
bool_t *ison);

ha_error_t ha_getlogfacility(ha_handle_t handle, int *facility);

API Man Pages B-3

B-4

®* ha_open(3HA) / ha_close(3HA) — Solstice HA environment
open/close.
cc[flag...] -l/lopt/'SUNWhadf/include file...
-L /opt/SUNWhadf/lib [threads lib] -Ihads -lintl -Idl
[library...]

ha_error_t ha_open(ha_handle_t *handlep);

ha_error_t ha_close(ha_handle_t handle);

Solstice HA 1.3 Programmer’s Guide—April 1997

Index

A

abort method

usage, 1-2

versus abort_net method, 3-2
abort_net method, example, 2-9

administration of the in.named data
service, 2-10

B

boot file, placement, 2-2

C

cleanup code, "last wishes", 1-2

client retry, 1-9

client-server environment,
requirement, 1-6

commands syntax, quick reference,
B-1to B-4

crash recovery, by start method, 1-6

crash tolerance, requirement, 1-6

D

daemons, data service
starting and stopping, 1-3
data files
location, 1-6
updating, 2-10
data placement, logical hosts, 1-3
data service methods, tests, 2-9
data service subdirectories, naming, 1-5
data services
calling order and configuration, 1-9
documenting, 2-10
in.named example, 2-1to 2-9
registering, 1-2, 1-10
requirements, 1-5to 1-9
shutting down temporarily, 1-10
starting and stopping, 1-9
testing, 3-4
unregistering, 1-10
data sets, defining, 1-3
dependencies between data services, 3-5
disksets
definition, 1-3
splitting data into sets, 1-3
documenting the data service, 2-10
Domain Name Service (DNS) clients, 2-9
dual-ported data, requirements, 1-6

Index-1

Index-2

E
error logging, 2-4

F
failover, implications, 1-3
failure recovery, 1-2

H

HA administrative file system
conventions, 1-5
description, 1-5
naming, 1-4
sample application setup, 2-2
size, 1-5
usage, 1-4

ha_close(3ha) command
definition, 1-1
syntax, B-4

ha_get_calls(3ha) command
definition, 1-1
syntax, B-3

ha_open(3ha) command
definition, 1-1
syntax, B-4

hactl(1M)
syntax, man page, B-1

hads(3ha) command
definition, 1-1
syntax, B-3

haget(lm) command
definition, 1-1
syntax, B-1
usage, 2-4

halockrun(1M)
syntax, man page, B-2

hareg(1lm) command
definition, 1-1
syntax, B-2
usage, 1-5, 1-9, 1-10, 3-5
hastat(lm) utility, usage, 2-10

Solstice HA 1.3 Programmer’s Guide—April 1997

hastop(lm) command, usage, 1-2
haswitch(lm) command
usage, 1-2
usage, moving logical host, 1-2
hatimerun(1M)
syntax, man page, B-2
host names
and IP address pairs, 1-8
dependencies in client-server
model, 2-2
guidelines, 1-7

idempotency
of data services, 2-3
testing, 3-4
in.named method
basic functionality, 2-3 to 2-4
limitations, 2-1
INADDR_ANWvildcard address, 1-8
IP addresses
binding guidelines, 1-8
configuring, 1-8

K

keep-alives, usage, 3-3

L

last wishes cleanup code, 1-2

load balancing, multiple logical hosts, 1-3

logical host

concept, 1-7

configuration, 1-3to 1-5

definition, 1-3

file system requirement, 1-4

multiple logical hosts
recommendation, 1-4
requirements, 1-3

path name format, 2-2

single versus multiple, 1-3

M set-up, sample data service, 2-2
start method

usage, 1-2,1-6

versus start_net method, 3-2
start_net method, usage, 2-5

man pages
list of, 1-1
Solstice HA Data Services API quick
reference, B-1

methods stop method

definition, 1-2 usage, 1-2

start_net ,sample, 2-5 versus stop_net method, 3-2

stop_net , sample, 2-7 stop_net method, usage, 2-7

improvements, 2-9 switchover, 1-9

types of, 1-2 symbolic links
multihomed host, definition, 1-8 limitations, A-2

usage, A-1
N syslog(3) facility, usage, 2-4
name server hosts and DNS clients, 2-9
named.boot file, 2-3 T
network communication, using takeover, 1-9
INADDR_ANY 1-8 TCP keep-alives, usage, 3-3
testing data services, 3-4

P
partitions, types allowed, 1-7)
pmfadm(1M) UFS file system, resource allocation, 1-7

syntax, man page, B-2 unregistration of a data services, 1-10
polling, 3-5

wW

R wildcard address, INADDR_ANY 1-8

raw partitions, guidelines, 1-7

registration of data services, 1-10
overview, 1-2

rename(2) command, usage, A-2

resolv.conf file, 2-9

S

sample data service
in.named , 2-1
limitations, 2-1
set-up, 2-2

Index-3

Index-4 Solstice HA 1.3 Programmer’s Guide—April 1997

Copyright 1997 Sun Microsystems Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100, U.S.A. Tous droits
réserveés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent I'utilisation, la copie,
la distribution, et la décompilation. Aucune partie de ce produit ou de sa documentation associée ne peut étre reproduite sous
aucune forme, par quelgque moyen que ce soit, sans I’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il
yena.

Des parties de ce produit pourront étre dérivées du systéme UNIX® licencié par Novell, Inc. et du systéme Berkeley 4.3 BSD
licencié par I’'Université de Californie. UNIX est une marque enregistrée aux Etats-Unis et dans d’autres pays et licenciée
exclusivement par X/Open Company Ltd. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices
de caracteres, est protégé par un copyright et licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Solaris, SunSoft, le logo SunSoft, SunOS, Solstice, OpenWindows, DeskSet,
SunFastEthernet, SunFDDI, SunNetManager, AnswerBook, JumpStart, OpenBoot, RSM, Solstice DiskSuite, Solstice Backup,
ONC, ONC+, NFS, et Ultra Enterprise sont des marques déposées ou enregistrées de Sun Microsystems, Inc. aux Etats-Unis et
dans d’autres pays. Toutes les marques SPARC, utilisées sous licence, sont des marques déposées ou enregistrées de SPARC
International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture
développée par Sun Microsystems, Inc..

Les interfaces d’utilisation graphique OPEN LOOK® et Sun™ ont été développées par Sun Microsystems, Inc. pour ses
utilisateurs et licenciés. Sun reconnait les efforts de pionniers de Xerox pour la recherche et le développement du concept des
interfaces d’utilisation visuelle ou graphique pour I'industrie de I'informatique. Sun détient une licence non exclusive de
Xerox sur I'interface d’utilisation graphique Xerox, cette licence couvrant aussi les licenciés de Sun qui mettent en place
I'interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

Le systeme X Window est un produit de X Consortium, Inc.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” SANS GARANTIE D’AUCUNE SORTE, NI EXPRESSE NI IMPLICITE,
Y COMPRIS, ET SANS QUE CETTE LISTE NE SOIT LIMITATIVE, DES GARANTIES CONCERNANT LA VALEUR
MARCHANDE, LAPTITUDE DES PRODUITS A REPONDRE A UNE UTILISATION PARTICULIERE, OU LE FAIT QU’ILS
NE SOIENT PAS CONTREFAISANTS DE PRODUITS DE TIERS.

