
N1 Grid Service Provisioning
System 5.0 Plan and Component

Developer’s Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 817–6503–10
December 2004

Copyright 2004 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, EJB, Enterprise JavaBeans, Java, J2EE, and N1 are trademarks or
registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or
registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an
architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2004 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Certaines parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée
aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, EJB, Enterprise JavaBeans, Java, J2EE, et N1 sont des mardques de
fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous
licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits
portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

041130@10536

Contents

Preface 7

1 Plan and Component Development Concepts 11
Component Concepts 11

Modeling a Component 13
Component Characteristics 14
Component Procedures 15
Component Inheritance 15
Component Variables 16
Variable Settings 16
Variable Overrides 16
Steps 17

Component Type Concepts 17
System Services Concepts 18
Plan Concepts 18

Plan Types 19
Step Overview 19

Session Variable Concepts 21
Secure Session Variables 22

2 Components 23
Managing Components 23

� How to Create a Component 24
� How to Delete a Component 25

Summary of Component CLI Commands 26
Checking In a Component by Using the Command-Line Interface 28

3

3 Built-in Component Types 29

Component Type: system#file 29
Browsing 30
Extended Control Procedures 30

Component Type: system#directory 31
Browsing 32
Extended Control Procedures 32

Component Type: system#symbolic link 33
Browsing 34
Exported/Internal File Format 34

Component Type: system#container 34
Browsing 34
Model to Install Difference 35
Extended Control Procedures 35

Component Type: untyped 35

4 Plans 37

Managing Plans 37
� How to Edit a Plan 38

Creating Plans 38
� How to Create an Auto-Generated Plan 39
� How to Create a Custom Plan 40

Running Plans 40
� How to Run a Plan 41
� How to Deploy a Component by Using a Direct-Run Procedure 43

Summary of Plan CLI Commands 46

5 Session Variables 47

Managing Session Variables 47
Summary of Session Variable CLI Commands 48

6 Configuration Generation 49

Configuration Generation Overview 49
Adding Substitution Variables to Components 50
Substitution Variable Values 50
Generation Context 51
Input Source 51

4 N1 Grid Service Provisioning System 5.0 Plan and Component Developer’s Guide • December 2004

Types of Variables Available for Substitution 52

Simple Substitution Variable References 52

External Component Substitution Variable References 55

Session Substitution Variable References 61

Target Substitution Variable References 62

Using Substitution Variables 65

A Variable Substitution Grammar 71

Glossary 75

Index 79

5

6 N1 Grid Service Provisioning System 5.0 Plan and Component Developer’s Guide • December 2004

Preface

The N1 Grid Service Provisioning System 5.0 Plan and Component Developer’s Guide
provides information that helps developers write plans and components. It includes
information about concepts that are related to plan and component development.

Who Should Use This Book
This book is for developers who want to use the N1™ Grid Service Provisioning
System to install and manage applications in data centers.

How This Book Is Organized
Chapter 1 describes concepts that pertain to components, plans, component types,
system services, and session variables.

Chapter 2 explains how to perform component-related tasks.

Chapter 3 describes the built-in component types.

Chapter 4 explains how to create, manage, and run plans.

Chapter 5 explains how to manage session variables.

Chapter 6 describes configuration generation and substitution variables.

Appendix A provides a description of the grammar used for variable substitution.

7

Related Books
The N1 Grid Service Provisioning System documentation includes these other books:

� N1 Grid Service Provisioning System 5.0 Release Notes
� N1 Grid Service Provisioning System 5.0 Installation Guide
� N1 Grid Service Provisioning System 5.0 System Administration Guide
� N1 Grid Service Provisioning System 5.0 Operations and Provisioning Guide
� N1 Grid Service Provisioning System 5.0 Command-Line Interface Reference Manual
� N1 Grid Service Provisioning System 5.0 XML Schema Reference Guide
� N1 Grid Service Provisioning System 5.0 Plug-In Developer’s Guide

Accessing Sun Documentation Online
The docs.sun.comSM web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com.

Ordering Sun Documentation
Sun Microsystems offers select product documentation in print. For a list of
documents and how to order them, see “Buy printed documentation” at
http://docs.sun.com.

Typographic Conventions
The following table describes the typographic changes that are used in this book.

8 N1 Grid Service Provisioning System 5.0 Plan and Component Developer’s Guide • December 2004

http://docs.sun.com
http://docs.sun.com

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace with
a real name or value

The command to remove a file
is rm filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User’s
Guide.

Perform a patch analysis.

Do not save the file.

[Note that some emphasized
items appear bold online.]

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

9

10 N1 Grid Service Provisioning System 5.0 Plan and Component Developer’s Guide • December 2004

CHAPTER 1

Plan and Component Development
Concepts

This chapter describes plan and component concepts that relate to the N1 Grid Service
Provisioning System software, henceforth referred to as the provisioning system.

This chapter covers the following topics:

� “Component Concepts” on page 11
� “Component Type Concepts” on page 17
� “System Services Concepts” on page 18
� “Plan Concepts” on page 18
� “Session Variable Concepts” on page 21

Component Concepts
A component is a logical grouping of resources that defines an application. It also
includes a set of instructions that specifies how to handle the resources that make up
the application. A component might be a collection of the following:

� Files and directories
� Autonomous archives, such as J2EE™ Enterprise Archives (EAR) or COM

components
� Complete applications, such as the BEA WebLogic Server
� Operating system-level updates, such as patches or service packs
� Pointers to other components

You can use the provisioning system to manage applications in a data center. Before
you can manage your applications with this product, you must first model them as
components. The provisioning system enables you to do the following:

� Create application models that include a carefully defined group of software
resources for each application, along with information about how the application
should be installed, configured, and analyzed

11

� Store components in a component repository that employs version control so you
can retrieve any previous version of a component

� Make components available to plans that perform data center operations in a
step-by-step manner to take advantage of the knowledge that is embedded in each
component

� Compare components to one another as well as to installations of software

The provisioning system supports two basic types of components:

� Simple components. A simple component contains a single resource, but cannot
contain references to other components.

� Composite components. A composite component contains only references to other
components, both simple and composite, but cannot contain any resources.

A composite component contains references to components. The referenced
components are referred to as contained components (child components), and the
referencing component is referred to as the container component (parent component).

A composite component declares whether each of its contained components is to be
installed as a top-level component or a nested component. If a contained component is
installed as top-level, it can be used by any component just as if it had been directly
installed by a plan. However, if a contained component is installed as nested, its
services are only available to the container component. A nested contained component
defines a finer-grained unit of functionality required by the container component, but
is not otherwise useful to other components. Whereas a top-level contained
component defines services that will be used by the container component, it can also
be used by other components.

Note – Composite components contain only references to other components, not to the
components themselves. The referenced components are other existing components
that are updated and managed separately from the container component. A
component can be referenced by any number of composite components. A
component’s name is not affected by whether it is referenced by other composite
components. Name conflicts are resolved using paths.

The provisioning system manages the physical resources associated with a
component. It also includes a number of predefined components that you can use
directly, or as samples for constructing other components.

A component also includes procedures. A procedure is a program that is contained in a
component that controls deployment of the component. Typical component
procedures are defined for installation, uninstallation, and capturing snapshots. Other
procedures can be defined in the control block. A control is a series of instructions in a
component that can be used to manage the deployed application. For example,
controls might be used to start or shut down an application. A component might
include instructions that test for dependencies on other components or that verify that
a particular process is running.

12 N1 Grid Service Provisioning System 5.0 Plan and Component Developer’s Guide • December 2004

A component can also declare substitution variables that can be used within the
component itself or for any resources that the component contains. These variables can
be used as placeholders for values that will be substituted when the plan is run.

Modeling a Component
The provisioning system offers great flexibility when you model components. The
application that you are modeling determines which of the following approaches to
use:

� Fully automated modeling. You can check in a component from a gold server or
from a source code control system. When the check-in completes, the provisioning
system has automatically generated a component, from which you can run
installation, configuration, and comparison procedures.

Use this approach when you model applications for which a plug-in is already
defined and imported. You can use built-in component types or imported
component types to automatically model the most common resources that make up
application components. The component type templates include built-in
procedures for basic operations, such as installations. This means that you can
perform basic operations on common types of components without having to write
a plan.

For descriptions of the built-in component types, see Chapter 3. For a list of
component types delivered through plug-ins, see the N1 Grid Service Provisioning
System 5.0 Plug-In Collection at http://docs.sun.com/db/coll/1223.1.

� Extending built-in component types with XML authoring. You can customize an
automatically generated component by editing its XML directly on the Advanced
Edit page of the browser interface. Another way to customize the component is to
download a file that contains the XML to your system and edit it with an
XML-schema-validating editor, such as Turbo XML.

When you edit the XML, you can do the following:

� Customize the component by supplying additional variables
� Add calls to extended control procedures, such as starting and stopping IIS or

Microsoft Windows services
� Authoring component models in XML. You can create a component on your own

by using an XML editor and by referring to the component schema descriptions in
Chapter 2, “Shared Schema Used by Components and Simple Plans,” in N1 Grid
Service Provisioning System 5.0 XML Schema Reference Guide, Chapter 3, “Component
Schema,” in N1 Grid Service Provisioning System 5.0 XML Schema Reference Guide,
and Chapter 4, “Plan Schema,” in N1 Grid Service Provisioning System 5.0 XML
Schema Reference Guide.

Before you can use the component, you must check the component’s XML file and
its resources in to the repository.

� Authoring component models by using the browser interface. You can use the
browser interface to create a component. Saving it automatically builds the
component. Then, you can install the component by doing one of the following:

Chapter 1 • Plan and Component Development Concepts 13

http://docs.sun.com/db/coll/1223.1

� Running the installation procedure, which installs the component on a single
host or a host set

� Writing a plan to install the component on one or more hosts or host sets

For more information about plans, see Chapter 4.

Before you can use the component, you must first check it in to the repository.

When you check in a component, it is built, and particular versions of the component
resources are assigned to it. The build also assigns a version number to the component
and ensures that that version of the component is always associated with particular
versions of the component’s resources.

Component Characteristics
A component is distinguished by many characteristics. The following list describes
some of the more common component characteristics:

� Path. A location in the folder in which to store components. Use folders to organize
components in a hierarchical manner.

� Component name. The name of the component.
� Component type name. The name of the component type that is associated with a

component. See “Component Type Concepts” on page 17.

The provisioning system includes some component types that support generic
models, such as files and directories. Additional component types can be added to
the system by importing plug-ins that are specific to application domains, such as
Microsoft Windows and WebLogic.

� Version number. The version number of the component. Each time a component is
modified, the version number is incremented.

At check-in time, you choose how to increment the version number. You can
increment by the major number, which is to the left of the decimal point, or by the
minor number, which is to the right of the decimal point.

� Platform. The operating system on which this component can be installed.

� Check-in date. The date and time when the component was checked in.

� Check-in user. The user ID of the person who checked in the component. This
attribute is useful when you want to audit provisioning system processes.

� Label. An optional string that you can use to categorize or group components.

� Category. An optional object that you can use to filter the component list. After you
create a category object, you can subsequently use it to group components.

� Description. An optional string that describes the component. Use this attribute to
provide meaningful information about the component.

� Source. The resource that has been included in this component. The source can be
a single file resource or a list of other components.

14 N1 Grid Service Provisioning System 5.0 Plan and Component Developer’s Guide • December 2004

� Component variables. A list of variables and their values (name-value pairs) that
are required to deploy a component resource. See “Component Variables” on page
16.

� Procedures. A set of instructions that specifies what to do with the resources and
variables.

� Hidden. A characteristic that indicates whether you can view the component in a
list of components. By default, components are not hidden.

You might want to shorten a component list by hiding components that are older
versions or that are not being managed. The shortened list would include any
non-hidden components, which might be those that you are currently managing.
Hidden components do not appear in lists unless you request to view them.

Component Procedures
A component procedure (or procedure) is a program that is contained in and manages a
component. A component procedure might install, uninstall, or control a component.
A procedure is created when you build the component.

You can run a procedure in these ways:

� Directly from the Details page of a component, where a plan is generated and then
executed

� By writing a plan that calls the procedure, then running the plan
� By calling the procedure from other components and plans

Your component can have several procedures. For example, a component might
include a control procedure to start or stop the application that it models.

When you create a component that extends from a component type, the component
inherits the procedures that are defined by the component type.

When you create a composite component, it inherits default installation and
uninstallation procedures. Usually, components inherit procedures from the associated
component type.

Component Inheritance
Component inheritance is the means by which a component obtains attributes and
behavior from another component. When you create a component, it inherits any
variables, snapshots, and procedures from the associated component type.

The use of inheritance makes the component model powerful and flexible. For
example, suppose that you have a thousand components that are based on the IIS
Application component type. You want to add more functionality to these
components. By adding the functionality to the IIS Application component type, each
of the thousand components that extend it will inherit the new functionality.

Chapter 1 • Plan and Component Development Concepts 15

Component Variables
Components support the use of variables, which are user-definable containers that
store values and are used during deployment.

A component variable is used to make parts of a component accessible and configurable
by objects that are external to the component. For example, a component might have a
variable named installPath that is overridden on a per-host basis. This variable
defines where to install each component.

The value of a component variable can be a reference to another component variable,
which includes variables that are defined by the component’s container. When a
nested component is added to a container component, the browser interface verifies
that the referenced variable is defined in the container. If the variable is not defined in
the container component, the browser interface automatically adds the referenced
variable to the list of the container’s variables.

For example, simple components typically define their installPath variable to have
the value of the container component’s installPath variable. In this example, the
syntax of the referenced variable is :[container:installPath]. For more
information about variable substitution, see Chapter 6.

Component variables are evaluated and assigned a value when the component is
deployed. Component variables are used to specify information (such as host names,
IP addresses, and paths) that is required to implement a deployment.

Variable Settings
Variable settings are collections of variable values that can be used to override the
default values of one or more component variables. Based on the variable settings that
you use, you can specify different values for component variables. You specify which
variable settings to use when you run a plan.

For example, a component is deployed to different environments, such as a production
environment and a development environment. If the defined component variables are
set up to recognize the differences between environments, you can use variable
settings to configure the component for each environment. For example, use one set to
configure the production environment and another set to configure the component for
the development environment.

Variable Overrides
Variable overrides enable you to override variable default values for composite
components. They cannot be used for simple components.

16 N1 Grid Service Provisioning System 5.0 Plan and Component Developer’s Guide • December 2004

When a component contains other components, called child components, variable
settings only affect the top-level parent component. All child components use the default
values for their variables. A child component can obtain variable values from its
parent component in these two ways:

� The container (parent) component “pushes” variable values to the contained
(child) components. To override the default values for child components, set the
variable overrides when you create a component that contains child components.
Each referenced component has a set of variable overrides that you can use.

� The contained (child) components “pull” variable values from the container
(parent) component. One or more of the contained component’s variable values
are defined based on the value of a variable in the container component. The
contained component uses the variable substitution syntax
:[container:varname] in the default value of its variables.

Steps
Steps are simple instructions that can be part of both plans and components.

For information about steps, see “Step Overview” on page 19.

Component Type Concepts
A component type is a component that has been designed as an encapsulation of
behavior for reuse by other components. A component type usually represents
behavior that is specific to a particular type of application. For example, an Enterprise
JavaBeans™ (EJB™) component type might contain generic procedures that can be
used to deploy and undeploy an EJB archive to and from an application server. When
a component extends from a component type, it automatically inherits the behavior
that is defined in that component type.

Components are usually associated with a component type. If you select untyped
from the browser interface, your component will not extend from any other
component type. The provisioning system includes some built-in component types.
See Chapter 3.

The files, directories, and other tree structures that are referred to by a simple
component are managed as a discrete unit in a component.

For example, an IIS application, which the provisioning system would manage as
referenced resources, might include the following:

� Directory and its contents

Chapter 1 • Plan and Component Development Concepts 17

� IIS web site settings
� COM+ application
� Microsoft Windows registry settings

Some of the resources that are referenced by components, such as files and directories,
can be copied from a gold server or another data source. Others, such as IIS web site
settings or Microsoft Windows registry entries, must be extracted from a data source
in a special way so that they can be treated as independent, manageable entities.

With its built-in component types, the provisioning system can recognize the most
common source items that are used for Java™ 2 Platform, Enterprise Edition (J2EE
platform) and Microsoft Windows applications. These component types can accurately
extract data for use as a component resource, store the component resource in a
repository, and correctly install the resources in the specified location.

System Services Concepts
System services are components that are automatically deployed to all applicable hosts
when the hosts are prepared. System services define utility controls and resources that
can be used by other components for component installation and management.

System services enrich the set of services that are available during plan execution.

Plan Concepts
A plan, also called an execution plan, is a sequence of instructions that is used to
manage one or more components on the specified hosts. For example, an execution
plan might install three components and initiate the “startup” control of another
component.

A plan can also include a sequence of other plans, which enables common instruction
sequences to be written as plans and then shared among plans. For example, a plan
might instruct the provisioning system to install three components and initiate the
startup control for another.

The provisioning system provides an in-memory representation of the objects
expressed by the XML schema. This representation also defines a process for the
validation, persistence, and version control for those objects.

When the provisioning system executes a plan, substitution variables that are declared
by a component are replaced by actual values. The provisioning system also supports
a notification feature that can send email in response to events that are related to plan
execution.

18 N1 Grid Service Provisioning System 5.0 Plan and Component Developer’s Guide • December 2004

Plan Types
The provisioning system supports two types of plans:

� Simple plans. A simple plan contains a collection of simple steps, but cannot call
other plans.

� Composite plans. A composite plan contains only other plans, called subplans.

The XML schema enforces the distinction between the two types of plans. Thus, you
can use a top-level plan that contains calls to other subplans, or a simple plan that
contains simple steps but no calls to subplans.

This distinction is important because the steps in a simple plan can only execute on
the same set of target hosts, whereas the steps of a composite plan can execute on
different sets of target hosts. A composite plan can use one set of target hosts for each
simple plan that it contains.

Step Overview
Steps are simple instructions that can be part of both plans and components. The
provisioning system supports the following kinds of steps:

� Steps that can only be called from within a component. Such steps can only be
called from install blocks or from uninstall blocks. See “Install-Only Steps for
Components” in N1 Grid Service Provisioning System 5.0 XML Schema Reference Guide
and “Uninstall-Only Steps for Components” in N1 Grid Service Provisioning
System 5.0 XML Schema Reference Guide.

� Steps that can only be called from a plan. Such steps can only be called from
composite plans or from simple plans. See “Plan-Only Steps for Composite Plans”
in N1 Grid Service Provisioning System 5.0 XML Schema Reference Guide and
“Plan-Only Steps for Simple Plans” in N1 Grid Service Provisioning System 5.0 XML
Schema Reference Guide.

� Steps that can be called from either a plan or from a component. See Chapter 2,
“Shared Schema Used by Components and Simple Plans,” in N1 Grid Service
Provisioning System 5.0 XML Schema Reference Guide.

Component References
A number of steps can reference components in the following situations:

� Components that have yet to be installed can use the <install> step.

Steps that refer to components that have yet to be installed only need to specify the
name of the component and an optional version.

� Components that have already been installed can use the following steps:

� <uninstall>

Chapter 1 • Plan and Component Development Concepts 19

� <call>
� <checkDependency>
� <createDependency>
� <addSnapshot>

Steps that refer to an installed component must specify the installPath attribute
because the same component can be installed more than once on the same server.

EXAMPLE 1–1 Using Component References

Assume that the “Apache” component is installed on a host with the following
attribute settings.

Component Instance installPath version installDate

A /opt 1.3 6/1/01 6:00 p.m.

B /usr/local 1.4 6/1/01 5:00 p.m.

C /opt 1.2 6/2/01 5:00 p.m.

D /usr/local/bin 1.4 6/3/01 5:00 p.m.

E /export 1.1 6/4/01 5:00 p.m.

The following shows which installed component is referenced when values for various
combinations of the installPath and version attributes are supplied.

installPath version versionOp Result Explanation

None None None E The most recently installed component on
the target host is used, regardless of the
values of version and installPath.

/opt None None C The most recently installed component in
the named install path is used regardless of
the value of version.

/usr/bin None None ERROR No component is installed in the specified
path.

None 1.4 = D The most recently installed component that
has the specified version is chosen,
regardless of the value of installPath.

None 1.5 Any ERROR No component is installed with the
specified version.

/usr/local 1.4 =, >= B The component that matches the specified
installPath and version attribute values is
chosen.

20 N1 Grid Service Provisioning System 5.0 Plan and Component Developer’s Guide • December 2004

installPath version versionOp Result Explanation

/usr/local 1.2 = ERROR No such version is installed at the specified
install path.

/usr/local 1.2 >, >= B The values for installPath, version, and
versionOp match.

/opt 3 Any ERROR If two or more components are installed in
the same path and they have the same
name, the most recently installed
component effectively overwrites any other
components that have been installed earlier.
Components that have been installed at an
earlier time cannot be accessed, even if
directly specified.

Session Variable Concepts
A session is initiated when you log in to the browser interface or use the CLI. A session
persists until you log out or inactivity causes the session to expire. Logically, a session
represents the authenticated credentials of a particular user. A session is used to
identify the user throughout a series of related requests without reauthentication.

Each session can have a set of session variables that are initialized from the database
when you log in. You can use session variables to preserve session-related
information, such as user authentication and other credentials. You can modify the
session variables in the current session without affecting the session variables that are
saved in the database. If you make changes to session variables and their values, you
can save them to the database. When saved, all of the variables and their values are
saved and are available in future sessions. You can make session variable references
when you execute plans and comparisons.

If you have initiated more than one session and try to save the session variables at the
same time, only the first session to save the variables succeeds. After the first session
successfully saves the session variables, the other sessions are prevented from saving
changes to their session variables. To save those changes, do the following:

1. Log out of all sessions.

2. Log in again to restart a session.

The new set of session variables and values are retrieved from the database based
on the last successful save.

3. Make the changes you want to the session variables.

4. Save the changes to the session variables.

Chapter 1 • Plan and Component Development Concepts 21

Session variables exist in a global namespace, which means that the session variable
names you declare are available to all user sessions. For example, suppose that you
define a session variable named passwd. Any plan that requests the passwd session
variable is referring to the same variable. Session variable names are not scoped to
current plans, components, blocks, or hosts. Thus, you must ensure that your session
variable names are unique. For example, you might use your initials and birthday
month and day, or some other identifier, to make your session variables unique.

Secure Session Variables
A session variable is made up of a name, value, and the secure flag. The session
variable name has the same limits as a host-type variable name. The secure flag is a
Boolean value that describes whether the value should be securely stored.

When a value is securely stored, the secure flag is set to true. The value of the
session variable appears as *** and is encrypted when the variable is saved. When
this value is used during plan execution, the value of this variable is obscured from
plan history output, as well. Use this secure flag when the variable value is sensitive
data, such as passwords. By default, session variables are created with the secure
flag set to true.

If any secure variables are saved to the database, you must type your password, which
is used as the encryption key. If you supply the wrong password, you are prompted
for the password again.

If the password you enter is not recognized, an error is issued. This might occur if the
system administrator has changed your password or your login configuration. You are
given the following options:

� Reencrypt the session variables. Supply your user name, the password with
which the session variables have been encrypted, and your new password.

� Flush the session variables. Delete all of the session variables that you declared.
Supply your user name and your current password.

Use this option if you forgot the password with which the session variables were
encrypted.

22 N1 Grid Service Provisioning System 5.0 Plan and Component Developer’s Guide • December 2004

CHAPTER 2

Components

This chapter describes how to to manage components and covers the following topics:

� “Managing Components” on page 23
� “Summary of Component CLI Commands” on page 26

Managing Components
You can use the N1 Grid Service Provisioning System software browser interface to
manage components.

You can also use the command-line interface (CLI) to manage components. See
“Summary of Component CLI Commands” on page 26. For detailed information
about CLI commands, see the N1 Grid Service Provisioning System 5.0 Command-Line
Interface Reference Manual.

The following pages in the browser interface include information about how to view
and manage components:

� Components page. List components and add new components to the list. You can
also access other component pages to view component details.

� To see which components are already checked in to the repository, choose
Components from the navigation menu.

� To see details about a component, go to the Components page, click the name of
the component you want, and view details on the Details page.

� To create a component, see “How to Create a Component” on page 24.

� To see where a component is installed, go to the component’s Details page and click
Where Installed.

23

� Details page. View detailed information about the component, such as its
attributes and values. This page also provides information and buttons that enable
you to manage the component.

The information shown on the Details page depends on the component type of the
component.

� To edit a component, go to the component’s Details page, click Edit, modify the
component configuration on the Edit page, and click Check In. You can choose
which version number to use, then click Continue To Check In.

� To delete a component, see “How to Delete a Component” on page 25.

� To rename a component, go to the component’s Details page and click Rename.
Specify the new name of the component and click Rename, or click Cancel if
you do not want to rename the component.

� To move a component to another folder, go to the component’s Details page and
click Move. Specify the name of the folder in which to move the component and
click Move, or click Cancel if you do not want to move the component.

� To edit the component’s XML, go to the component’s Details page and click
Advanced Edit. Make the changes you want to the XML. To overwrite the
current XML, click Check In. To create a new component based on the changes
to the XML, click Check In As. Or, click Cancel if you do not want to change the
component’s XML.

� To download the component’s XML to your system, go to the component’s Details
page and click Download. Click OK to continue the download, or click Cancel
to cancel. Specify the directory in which to download the component’s XML
and click Save, or click Cancel if you do not want to download the component’s
XML.

� To modify the component’s variable settings, go to the component’s Details page
and click Variable Settings. Click Create Set to create new variable settings, or
click Import Set to import variable settings from your system.

� To see where the component is installed, go to the component’s Details page and
click Where Installed.

� Edit page. Change component attribute values. Note that all of the fields cannot be
changed.

The information shown on this page depends on the component type of the
component.

� How to Create a Component
Use this procedure to create simple and composite components.

1. From the navigation menu, choose Components.

The Components page appears and lists the components that are already checked
in.

Steps

24 N1 Grid Service Provisioning System 5.0 Plan and Component Developer’s Guide • December 2004

2. Click Change Folder.

A window appears where you specify the name of the folder in which to create the
component.

3. Specify the name of the folder, and click Change to Selected Folder.

The Components page now lists the components in the specified folder.

4. Type a name for the new component in the Component field, and click Create.

The new component’s Edit page appears.

5. Define the component.

a. (Optional) Change the component’s name in the Component field, and click
Rename.

b. Choose the component type from the Component Type drop-down menu.

Some of the resulting fields might change to match those that are used by the
component type that you selected.

c. From the Platform Type drop-down menu, choose the platform type to which
this component can be deployed.

d. (Optional) Specify a label in the Label field.

e. (Optional) Specify a description in the Description field.

f. Supply other required information.

The information that is required is based on the component type that you
selected.

If your component references other components, local names are created for
each of the components that this component references.

g. Click Check In.

A window appears that reports that the provisioning system is checking in the
component as Version 1.0.

6. Click Continue To Check In.

� How to Delete a Component
Note the following restrictions before deleting a component:

� A component that is referred to by another component cannot be deleted.

� An installed component cannot be deleted until it has been uninstalled.

� A component that has been installed by a plug-in cannot be deleted except by
deleting the plug-in.

Chapter 2 • Components 25

� The root component of a family cannot be deleted if non-root members of the
family exist.

� A component cannot be deleted during a plan run because all delete operations
and plan runs acquire a system lock that keeps those operations from running
concurrently.

Also note that when a component is deleted, the installation records are also deleted.
This applies only to a component that has been installed and uninstalled, so no
user-visible change is noticeable. A resource that is associated with a component, if
any, is deleted with the component. Any autogenerated plans that are associated with
the component are also deleted. The plan history that installed the component is
edited to indicate that the component the plan installed was deleted. Plan history itself
is not removed.

1. From the navigation menu, choose Components.

The Components page appears and lists the components that are already checked
in.

2. Click Change Folder.

A window appears where you specify the name of the folder from which to delete
the component.

3. Specify the name of the folder, and click Change to Selected Folder.

The Components page now lists the components in the specified folder.

4. Click the name of the component that you want.

The Details page for that component appears.

5. Click Delete.

A window appears that reports that the provisioning system is about to delete the
component you selected.

6. Click Continue To Delete.

Click Cancel if you do not want to delete the component.

Summary of Component CLI
Commands
You can use the cdb.c commands to manage components. See Chapter 3, “cdb: CLI
Commands for Managing Components,” in N1 Grid Service Provisioning System 5.0
Command-Line Interface Reference Manual.

Steps

26 N1 Grid Service Provisioning System 5.0 Plan and Component Developer’s Guide • December 2004

� cdb.c.ci – Creates a new version of an existing component, or creates an initial
version of a nonbrowsable component using XML format

� cdb.c.co – Checks out a component in XML format

� cdb.c.del – Deletes a component

� cdb.c.la – Lists all versions of all components

� cdb.c.lo – Shows detailed information about a component

� cdb.c.lv – Lists all versions of a component

� cdb.c.mod – Modifies a component

� cdb.c.sc – Applies one or more categories to a component

� cdb.c.sh – Shows or hides a component

The following cdb.ic commands retrieve information about components that have
already been installed on hosts:

� cdb.ic.lbc – Lists all of the hosts on which a component is installed

� cdb.ic.lbh – Lists all of the components that are installed on a specific host

� cdb.ic.vs.lo – Shows the details of the specified generated variable settings

The following cdb.rsrc commands manage resources:

� cdb.rsrc.ci – Checks in certain components and their source objects

� cdb.rsrc.cib – Checks in all of the resources listed in a batch file

� cdb.rsrc.co – Checks out the specified resource

� cdb.rsrc.rci – Rechecks in a resource

� cdb.rsrc.showopts – Shows the check-in options supported by a particular
component type

The following cdb.vs commands manage variable settings for components:

� cdb.vs.add – Adds new variable settings

� cdb.vs.del – Deletes variable settings

� cdb.vs.imp – Imports variable settings from one component to another

� cdb.vs.la – Lists all variable settings that are associated with a specific
component

� cdb.vs.lo – Lists the details of specific variable settings

� cdb.vs.mod – Modifies variable settings

Chapter 2 • Components 27

Checking In a Component by Using the
Command-Line Interface
When you check in a component, you copy a particular resource from a data source,
such as a directory on a gold server, to the component repository. The component
repository is a hierarchical namespace. Within this namespace, components are
identified by name and version number.

A component must also have a component type that identifies the format and, in
many cases, the function of a component. The built-in component types that are
available with the provisioning system are described in Chapter 3.

When you use the cdb.rsrc.ci command to check in a component, use the
following options:

� -src – Specifies the source location of the resource

� -dst – Specifies the place in which to store the component in the component
repository

� -type – Specifies the component type

More than one component can reference the same resource. Checking in a resource
using the cdb.rsrc.ci command associates that resource with the specified
component.

28 N1 Grid Service Provisioning System 5.0 Plan and Component Developer’s Guide • December 2004

CHAPTER 3

Built-in Component Types

You can use built-in component types to quickly model many of the most common
WebLogic, Microsoft Windows, and J2EE application components. These component
types enable you to automatically associate installation, uninstallation, export, and
snapshot behavior with a particular component.

The following component types are available as part of the base product:

� “Component Type: system#file” on page 29
� “Component Type: system#directory” on page 31
� “Component Type: system#symbolic link” on page 33
� “Component Type: system#container” on page 34
� “Component Type: untyped” on page 35

Other component types, such as those for WebLogic and Microsoft Windows
applications, are available through plug-ins. For more information, see the N1 Grid
Service Provisioning System 5.0 Plug-In Collection at
http://docs.sun.com/db/coll/1223.1.

Component Type: system#file
The system#file component type represents a single file that is taken from a target
server. The provisioning system deploys a file directly with no special postprocessing.
The system#file component type includes installation, uninstallation, and snapshot
procedures.

The system#file component type defines the following variables:

� installName – The name to use for the resource when it is installed. The default
value is the name of the component.

� installPath – The path in which to intall the resource. The default value is the
value of the installPath variable of the container component.

29

http://docs.sun.com/db/coll/1223.1

� installPermissions – The permissions to assign to the resource when it is
installed. See the chmod(1M) man page. The default value is empty.

� installUser – The owner of this resource when it is installed. The default value
is empty.

� installGroup – The group to assign to this resource when it is installed. The
default value is empty.

� installDiffDeploy – Specifies whether the resource should be deployed in
differential deploy mode. The default value is TRUE.

� overrideRsrcInstallPath – The absolute path in which to install the resource.
If not defined, the resource is installed in the path specified by installPath. This
variable is not commonly used so that installPath can be used to specify the
path in which to install both the component and the resource.

Browsing

UNIX Systems Microsoft Windows Systems

Root Path / List of physical drives on the
host or network are mapped to
a drive letter. Removable
media is not shown.

Delimiter / \

Ordering Alphabetical with directories appearing first

Selection Type User can select a file for check-in. Double click a directory to
view its contents.

Sample Path /foo/foo.txt C:\foo\foo.txt

Special Links display their local name
and the location pointed to:

foo->/usr/bar

Extended Control Procedures
The following procedures are defined for the system#file component type:

� default install block – Deploys the contained file based on the state of the
variables. No snapshots are captured.

� markOnly install block – Marks the system to indicate that a new version of the
component is installed. No resources are transferred, and no snapshots are
captured.

30 N1 Grid Service Provisioning System 5.0 Plan and Component Developer’s Guide • December 2004

� default uninstall block – Undeploys the contained file from the location to
which it was originally deployed.

� markOnly uninstall block – Marks the system to indicate that the current version
of the component has been uninstalled. The component’s resources are not actually
removed from the target host.

� default snapshot block – Captures a snapshot of the deployed file. Because the
default install block does not capture the file by default, container components
must call this routine explicitly if you want a snapshot.

Component Type: system#directory
The system#directory component type represents a collection of files and folders
that are taken from a target server. The system#directory component type includes
installation, uninstallation, and snapshot procedures.

The system#directory component type defines the following variables:

� installName – The name to use for the resource when it is installed. The default
value is the name of the component.

� installPath – The path in which to install the resource. The default value is the
value of the installPath variable of the container component.

� installPermissions – The permissions to assign to the resource when it is
installed. See the chmod(1M) man page. The default value is empty.

� installUser – The owner of this resource when it is installed. The default value
is empty.

� installGroup – The group to assign to this resource when it is installed. The
default value is empty.

� installDiffDeploy – Specifies whether the resource should be deployed in
differential deploy mode. The default value is TRUE.

� overrideRsrcInstallPath – The absolute path in which to install the resource.
If not defined, the resource is installed in the path specified by installPath. This
variable is not commonly used so that installPath can be used to specify the
path in which to install both the component and the resource.

� installDeployMode – Specifies whether to add files to the directory (ADD_TO) or
replace the files in the directory (REPLACE). The default value is REPLACE.

Chapter 3 • Built-in Component Types 31

Browsing

UNIX Systems Microsoft Windows Systems

Root Path / List of physical drives on the
host or network are mapped to
a drive letter. Removable
media is not shown.

Delimiter / \

Ordering Alphabetical with directories appearing first

Selection Type User can select a directory for check-in. Double click a
directory to view its contents.

Sample Path /foo/foo C:\foo\foo

Filters None

Special Links display their local name
and the location pointed to:

foo/->/usr/bar/

Extended Control Procedures
The following procedures are defined for the system#directory component type:

� default install block – Deploys the contained file based on the state of the
variables. No snapshots are captured.

� markOnly install block – Marks the system to indicate that a new version of the
component is installed. No resources are transferred, and no snapshots are
captured.

� default uninstall block – Undeploys the contained file from the location to
which it was originally deployed.

� markOnly uninstall block – Marks the system to indicate that the current version
of the component has been uninstalled. The component’s resources are not actually
removed from the target host.

� default snapshot block – Captures a snapshot of the deployed file. Because the
default install block does not capture the file by default, container components
must call this routine explicitly if you want a snapshot.

32 N1 Grid Service Provisioning System 5.0 Plan and Component Developer’s Guide • December 2004

Component Type: system#symbolic
link
The system#symbolic link component type represents a single symbolic link that
is taken from a target server. The provisioning system deploys a symbolic link by
creating a new link on the target server. The file that the symbolic link points to is
taken from the value of the symlinkTarget variable. Any file that exists in the install
location of the link is removed before the new symbolic link is created.

The system#symbolic link component type includes installation, uninstallation,
and snapshot procedures. The uninstallation procedure removes the symbolic link, not
the file to which it links. The snapshot procedure also captures the name of the file to
which the symbolic link points, not to the file itself.

The system#symbolic link component type defines the following variables:

� installName – The name to use for the resource when it is installed. The default
value is the name of the component.

� installPath – The path in which to install the resource. The default value is the
value of the installPath variable of the container component.

� symlinkTarget – The absolute path of the file to be linked to by this link. The
default value is the file that was originally linked to by the file.

The following procedures are defined for the system#symbolic link component
type:

� defaultinstall block – Removes any file that previously existed in the install path
and replaces it with a symbolic link that links to the value of the symlinkTarget
variable. No snapshots are captured.

� defaultuninstall block – Removes the deployed link without removing the file to
which that it links.

� default snapshot block – Captures a snapshot of the deployed link. Because the
default install block does not capture the file by default, container components
must call this routine explicitly if you want a snapshot. If you request a snapshot of
a symbolic link, the path pointed to by the symbolic link is captured.

Chapter 3 • Built-in Component Types 33

Browsing

UNIX Systems Microsoft Windows Systems

Root Path / List of physical drives on the
host or network are mapped to
a drive letter. Removable
media is not shown.

Delimiter / \

Ordering Alphabetical with directories appearing first

Selection Type User can select a file for check-in. Double click a directory to
view its contents. Only symbolic link type files can be selected
for check-in.

Sample Path /foo/foo.txt C:\foo\foo.txt

Special Links display their local name
and the location pointed to:

foo->/usr/bar

Exported/Internal File Format
Symbolic links contain a resource that serves as a symbolic placeholder. Symbolic link
data is stored as a set of variables, one for each name and location, in the component.

Component Type: system#container
A system#container component type should be used whenever components must
be grouped together and installed as a single component. The container component
has an install, uninstall, and snapshot block. These blocks automatically call in to the
child components. These calls enable a container to have child components added
directly by using the Component Builder user interface, without having to edit the
container component’s XML.

Browsing
The container component type is a composite component and cannot be browsed.

34 N1 Grid Service Provisioning System 5.0 Plan and Component Developer’s Guide • December 2004

Model to Install Difference
This comparison optionally takes a snapshot of all child components.

The default snapshot block captures snapshots of all child components with
installMode=“NESTED” by using the default snapshot blocks of each child.

Extended Control Procedures
The following procedures are defined for the system#container component type:

� default install block – Installs only those child components that have
installMode=“NESTED” set.

� markOnly install block – Calls the markOnly install block of all the nested child
components, then marks this component as installed.

� default uninstall block – Uninstalls only those child components that have
installMode=“NESTED” set.

� markOnly uninstall block – Calls the markOnly uninstall block of all the nested
child components, then marks this component as uninstalled.

� default snapshot block – Captures a snapshot of all child components if
createSnapshot is set to true. Only child components that have
installMode=“NESTED” set are installed. By default, createSnapshot is set to
false.

Snapshots are not always enabled. If the component is deployed as a nested
component of another component, it should be deployed with
createSnapshot=“false” because the container component will capture a
snapshot of this component after all of its contained components have been deployed.
If the component is being deployed as a top-level component, you can enable
snapshots by setting createSnapshot=“true”.

Snapshots are not captured when a component is contained in a container component.
The deployment of the other contained components after this component might affect
the installed state of this component. Thus, the snapshot is captured after the top-level
installations have completed.

Component Type: untyped
Components of type untyped extend from no base component and have no default
behavior. They are intended for advanced edit use when custom types or XML is being
added to the component and none of the default behaviors of the built-in types are
relevant.

Chapter 3 • Built-in Component Types 35

36 N1 Grid Service Provisioning System 5.0 Plan and Component Developer’s Guide • December 2004

CHAPTER 4

Plans

A plan is used to perform operations on hosts that are managed by the provisioning
system.

This chapter covers the following topics:

� “Managing Plans” on page 37
� “Creating Plans” on page 38
� “Running Plans” on page 40
� “Summary of Plan CLI Commands” on page 46

Managing Plans
You can use the N1 Grid Service Provisioning System software browser interface to
manage plans. The following pages in the browser interface include information about
how to view and manage plans:

� Plans page. List plans and add new plans to the list. You can also access other plan
pages to view plan details.

To see which plans are already checked in, choose Plans from the navigation menu.

� Details page. View detailed information about the plan, such as its attributes and
values. This page also provides information and buttons that enable you to manage
the plan.

� To see details about a plan, go to the Plans page, click the name of the plan you
want, and view details on the Details page.

� To delete a plan, go to the plan’s Details page and click Delete. Click Continue
To Delete, or click Cancel if you do not want to delete the plan.

� Advanced Edit page. Change what a plan does by changing the plan’s XML.

To edit a plan, see “How to Edit a Plan” on page 38.

37

In addition to managing plans, you can create plans and run plans as described later
in this chapter.

You can also use the CLI to work with plans. See “Summary of Plan CLI Commands”
on page 46. For detailed information about the CLI commands, see the N1 Grid
Service Provisioning System 5.0 Command-Line Interface Reference Manual.

� How to Edit a Plan

1. Go to the Details page of the plan you want, and click Advanced Edit.

2. Modify the XML or import new XML for the plan.

To import a plan from another system, do one of the following:

� Type the full path of the file, then click Replace.

� Click Browse and locate the file, then click Replace.

3. Check in the plan.

� Click Check In to save the plan with the same name.

The Plans page appears.

� Click Check In As to save the plan with a different name.

A new page appears that tells you that you are about to check in a plan. The
version number is incremented.

4. Click Continue To Check In.

Creating Plans
You can create an auto-generated plan, create a custom plan, or customize an
auto-generated plan.

The provisioning system can automatically generate a plan that consists of more than
one direct-run procedures. You can run this plan directly or save it for use as a template
for more complex plans that you author in XML.

For deployments that involve the coordination of multiple components, multiple host
sets, or both, write a plan and use the provisioning system XML schema to define
operations. Such operations might include dependency checks and scripting that
execute commands on an application console. Once the plan is written, you need to
check it in to the plan repository.

Steps

38 N1 Grid Service Provisioning System 5.0 Plan and Component Developer’s Guide • December 2004

� How to Create an Auto-Generated Plan
You create an auto-generated plan from inside a component.

To create a generated plan, you must belong to a user group that has Create, Edit, and
Delete permission on the folder that contains the component for which you want to
generate a plan.

1. From the navigation menu, choose Components.

The Components page lists the components that are already checked in.

2. Click Change Folder.

3. Specify the name of the folder in which to create the component, and click
Change to Selected Folder.

The Components page now lists the components in the specified folder.

4. Click the name of the component that you want.

The Details page for that component appears.

5. In the Component Procedures table, select each procedure to include in the plan.

6. In the bottom row of the Component Procedures table, click Generate Plan With
Checked Procedures.

The generated plan’s Advanced Edit page appears.

7. In the Plan field, type the new plan’s name.

8. Click Check In.

Note – You might see this message: Warning - plan names and/or paths
differ. This message indicates that you specified a plan name that is different
from the plan name specified in the XML model. The XML model is updated
according to what you type in the plan name field.

9. Confirm the component check-in.

a. Verify that you specified the correct plan name.

b. If necessary, select the component’s new version number.

c. Click Continue to Check In.

The new plan’s Details page appears.

Before You
Begin

Steps

Chapter 4 • Plans 39

� How to Create a Custom Plan
You can create a plan by using a schema-validating editor, such as TurboXML, or on
the Advanced Edit page of the browser interface.

This procedure describes how to import a plan that you have written by using an
XML editor.

1. Write a plan.

See the XML schema elements described in Chapter 2, “Shared Schema Used by
Components and Simple Plans,” in N1 Grid Service Provisioning System 5.0 XML
Schema Reference Guide and Chapter 4, “Plan Schema,” in N1 Grid Service
Provisioning System 5.0 XML Schema Reference Guide.

2. Launch the browser interface and go to the Plans page.

3. Type the name and brief description for the plan that you want to create, and
click Create.

The Advanced Edit page for the plan appears.
The provisioning system creates an XML skeleton for the plan.

4. In the Plan Definition field, do the following:

� Enter the XML for the plan.

� To import a plan that is stored on your local system, type the full path name
of the file or click the Browse button. Then, click Replace.

5. Click Check In.

A window appears that tells you that you are about to check in a plan. The plan is
assigned Version 1.0.

6. Click Continue To Check In.

Running Plans
A plan must be checked in to the plan repository before it can be run. When you run a
plan, it performs operations on the hosts that you specify.

A preflight is the simulated execution of a plan to a simulated UNIX® environment that
finds and reports any errors or potential errors that might affect the deployment. A
preflight always precedes a deployment, but you can run a preflight as a standalone
operation.

You can also run a detailed preflight, which performs the following functions:

Steps

40 N1 Grid Service Provisioning System 5.0 Plan and Component Developer’s Guide • December 2004

� Checks the availability and the connectivity of target hosts
� Confirms permissions
� Validates dependencies

� How to Run a Plan
Use this procedure to run a plan from a plan’s Details page in the browser interface.

Ensure that you have the installation information that you need to be able to set the
plan’s variable settings.

To run a plan, you must belong to a user group that has Allow on Host Set
permissions on the folder that contains the plan you want to run.

1. Go to the plan’s Details page, and click Run.

The plan’s Run page appears.

2. In the Plan Parameters area, select the variable settings for the component you
want to deploy.

� If the variable settings have been established for this component, choose the
appropriate settings from the menu.

� If the settings are not available from the menu, click Select From List.

The Select Variable Settings From List window appears.

� If you want to use another component’s variable settings, click Import Set.

The Import Variable Settings window appears.

a. If necessary, go to the folder that contains the component with the
variable settings you want to import.

b. Select the component version.

Note – Variable settings can vary between component versions.

c. Click Import Variable Settings.

The imported variable settings appear in the table.

d. Click Select.

� If you want to create new variable settings, click Create Set.

The Select Variable Settings From List window appears.

Before You
Begin

Steps

Chapter 4 • Plans 41

a. In the text field at the top of the table, type a name to use for the new
variable settings.

b. Select the component variable you want to change.
The table cell is highlighted and a text field appears.

c. Type a new value for the component variable.

d. (Optional) Repeat the previous substeps b and c for each variable
value you want to change.

e. After updating the variable settings values, click Save.
The new variable settings appear in the table.

f. Click Select.

3. Specify where to deploy the component.

� To specify a host, type the host name in the Target Host field, or click Select
From List and select a host.

� To select a target host set, choose one from the Target Host Set menu.

4. In the Plan Variables area, configure the variables you want to set.
Whether there are variables to configure depends on the contents of the plan.

5. In the Options area, specify whether to perform a detailed preflight.
The detailed preflight attempts to simulate every step of the plan that will run on
the remote agent. The detailed preflight tests the following functions:

� Resource installation
� <execNative> calls
� File transformations
� File deletion, when uninstalling resources
Running a detailed preflight increases the amount of time the preflight takes.

6. (Optional) To limit the number of hosts running at the same time, type the
number of hosts on which to run a plan in the field provided.
When a plan is run on several hosts simultaneously, all hosts must complete a
particular step before any host can begin the next step. If the number of hosts is too
high, the network connection can time out between steps.
For example, the time interval between Host A finishing the first step and being
able to run the second step might be too long. In this case, the length of the time
interval causes the network connection to time out.

7. (Optional) To limit the overall running time of a plan or of native calls, type a
number in the fields provided, then choose the time unit, such as minutes, from
the menu.
By limiting the runtime of a plan or native call, you prevent a nonresponsive host
from tying up the progress of a running plan.

42 N1 Grid Service Provisioning System 5.0 Plan and Component Developer’s Guide • December 2004

If you set up a notification rule to alert you to plan failures, when the plan times
out, you will be notified that the plan was unsuccessful.
For information about setting up notification rules, see “Configuring Email
Notification” in N1 Grid Service Provisioning System 5.0 System Administration Guide.

8. Specify whether to deploy the component.

� To run just the preflight test of the procedure, click Run Preflight Only.

� To run the preflight test and then the procedure itself, click Run Plan
(Includes Preflight).

Note that the procedure is not run if the preflight fails.

� How to Deploy a Component by Using a
Direct-Run Procedure
Most components include install, uninstall, and snapshot procedures. A component
might also include control procedures that manage the installed component. For
example, a control procedure might to start or stop the application.

You might be able to use one of the direct-run procedures that the provisioning system
automatically generated when you checked in your component. Use this method for
straightforward deployments that do not involve more than one component or
synchronization between hosts.

1. From the navigation menu, choose Components.

The Components page lists the components that are already checked in.

2. Click Change Folder.

3. Specify the name of the folder in which to create the component, and click
Change to Selected Folder.

The Components page now lists the components in the specified folder.

4. Click the name of the component that you want.

The Details page for that component appears.

5. In the Component Procedures table, determine which procedure to run, and
click Run.

The provisioning system generates a plan, which is stored in the
/system/autogen folder.
The Run page for the generated plan appears.

6. In the Plan Parameters area, select the variable settings for the component you
want to deploy.

Steps

Chapter 4 • Plans 43

� If the variable settings have been established for this component, choose the
appropriate settings from the menu.

� If the settings are not available from the menu, click Select From List.

The Select Variable Settings From List window appears.

� If you want to use another component’s variable settings, click Import Set.

The Import Variable Settings window appears.

a. If necessary, go to the folder that contains the component with the
variable settings you want to import.

b. Select the component version.

Note – Variable settings can vary between component versions.

c. Click Import Variable Settings.

The imported variable settings appear in the table.

d. Click Select.

� If you want to create new variable settings, click Create Set.

The Select Variable Settings From List window appears.

a. In the text field at the top of the table, type a name to use for the new
variable settings.

b. Select the component variable you want to change.

The table cell is highlighted and a text field appears.

c. Type a new value for the component variable.

d. (Optional) Repeat the previous substeps b and c for each variable
value you want to change.

e. After updating the variable settings values, click Save.

The new variable settings appear in the table.

f. Click Select.

7. Specify where to deploy the component.

� To select a host, type the host name in the Target Host field or click Select
From List and select a host.

� To select a target host set, choose one from the Target Host Set menu.

8. In the Plan Variables area, configure the variables you want to set.

44 N1 Grid Service Provisioning System 5.0 Plan and Component Developer’s Guide • December 2004

Whether there are variables to configure depends on the contents of the component
procedure you select.

9. In the Options area, select whether to perform a detailed preflight.

The detailed preflight attempts to simulate every step of the plan that will run on
the remote agent. The detailed preflight tests the following functions.

� Resource installation
� <execNative> calls
� File transformations
� File deletion, when uninstalling resources

Running a detailed preflight increases the amount of time the preflight takes.

10. (Optional) To limit the number of hosts running at the same time, type the
number of hosts on which to run a plan in the field provided.

When a plan is run on several hosts simultaneously, all hosts must complete a
particular step before any host can begin the next step. If the number of hosts is too
high, the network connection can time out between steps.

For example, the time interval between Host A finishing the first step and being
able to run the second step might be too long. In this case, the length of the time
interval causes the network connection to time out.

11. (Optional) To limit the overall running time of a plan or of native calls, type a
number in the fields provided, then choose the time unit, such as minutes, from
the menu.

By limiting the runtime of a plan or native call, you prevent a nonresponsive host
from tying up the progress of a running plan.

If you set up a notification rule to alert you to plan failures, when the plan times
out, you will be notified that the plan was unsuccessful.

For information about setting up notification rules, see “Configuring Email
Notification” in N1 Grid Service Provisioning System 5.0 System Administration Guide.

12. Specify whether to deploy the component.

� To run just the preflight test of the procedure, click Run Preflight Only.

� To run the preflight test and then the procedure itself, click Run Plan
(Includes Preflight).

Note that the procedure is not run if the preflight fails.

Chapter 4 • Plans 45

Summary of Plan CLI Commands
You can use the following pdb commands to manage plans:

� pdb.p.ci – Checks in a new version of a plan
� pdb.p.co – Checks out a plan in XML format
� pdb.p.del – Deletes a plan
� pdb.p.genplan – Generates and displays output for a plan in XML format
� pdb.p.la – Lists all versions of all plans
� pdb.p.lo – Shows detailed information about a plan
� pdb.p.lv – Lists all versions of a plan
� pdb.p.sc – Associates a plan with a set of categories
� pdb.p.sh – Shows or hides a plan

The following pe commands are associated with running plans:

� pe.h.prep – Prepares a set of hosts
� pe.p.del – Deletes the history of a completed plan run
� pe.p.en – Displays the output of an <execNative> step
� pe.p.la – Lists running and completed plans
� pe.p.lo – Lists detailed information about a running or completed plan
� pe.p.lp – Lists the subplans and targets that are associated with a plan
� pe.p.run – Runs a plan
� pe.p.stop – Stops a plan that is running
� pe.pi.lo – Lists the parameters that are used to run a plan

For more information about the provisioning system CLI commands, see the N1 Grid
Service Provisioning System 5.0 Command-Line Interface Reference Manual.

46 N1 Grid Service Provisioning System 5.0 Plan and Component Developer’s Guide • December 2004

CHAPTER 5

Session Variables

This chapter describes session variables and how to manage them.

This chapter covers the following topics:

� “Managing Session Variables” on page 47
� “Summary of Session Variable CLI Commands” on page 48

Managing Session Variables
Session variables are global values associated with deployments that expand the
flexibility of the provisioning system. Session variables can be created and saved for
future use with any deployment or created and not saved for use with a single
deployment.

You can use the N1 Grid Service Provisioning System software browser interface to
manage session variables. The following pages of the browser interface include
information about session variables:

� Session variables page. List session variables and add new ones to the list. You can
also access other session variable pages to view details.

To see which session variables are already checked in, choose Session Variables
from the navigation menu.

� Details page. View detailed information about session variables, such as their
attributes and values. This page also provides information and buttons that enable
you to manage the session variables.

To see details about a session variable, go to the Session Variables page, click the
name of the session variable you want, and view the details on the Session
Variables Details page.

� Edit page. Change session variable information.

47

To edit a session variable, go to the Session Variables Details page and click Edit.
On the Session Variables Edit page, modify the session variable. Click Save to save
your changes, or click Cancel to discard the changes.

Summary of Session Variable CLI
Commands
The following udb commands manage session variables:

� udb.sv.add – Adds a new session variable
� udb.sv.del – Deletes a session variable
� udb.sv.fl – Flushes all of a user’s session variables
� udb.sv.la – Lists all session variables
� udb.sv.lo – Retrieves detailed information about a session variable
� udb.sv.mod – Modifies a session variable
� udb.sv.re – Reencrypts all of a user’s session variables

For more information about the provisioning system CLI commands, see the N1 Grid
Service Provisioning System 5.0 Command-Line Interface Reference Manual.

48 N1 Grid Service Provisioning System 5.0 Plan and Component Developer’s Guide • December 2004

CHAPTER 6

Configuration Generation

The N1 Grid Service Provisioning System software enables you to customize the
deployment of any component by using substitution variables and variable settings.

This chapter covers the following topics:

� “Configuration Generation Overview” on page 49
� “Types of Variables Available for Substitution” on page 52
� “Using Substitution Variables” on page 65

Configuration Generation Overview
You can model an application as a component so that it can be customized to run in
different environments.

For example, suppose that you use a database application to manage your online
catalog business. Before you deploy the application to the production environment,
you test it in a test environment. These two environments run the same application
but are configured differently. When the application is deployed to the test
environment, it uses a test database. When the application is deployed to the
production environment, it uses the production database.

You can store configuration information about the application, such as which database
to use, in configuration files. To support each environment, these files must be
customized. These configuration files can include substitution variables that are
replaced by variable setting values when you deploy the component.

Not only can you use substitution variables in configuration files, but also in plans
and components. For example, you might use them to specify the directory in which
to install the application. The provisioning system enables you to define and manage
distinct variable settings for each deployment environment.

49

A substitution variable reference in a configuration file, plan, or component can obtain
the following kinds of values:

� User-defined value
� Component-specific value, such as a name or label
� Target host-specific value, such as an IP address
� User-defined value that is specific to a host in the provisioning system
� Value of a session variable
� Value associated with a component that has already been installed

The provisioning system uses a configuration generation engine to replace substitution
variable references with the appropriate variable setting values. This engine interacts
with the host repository and component repository to resolve values any time that you
run a plan to deploy a component.

The provisioning system has a repository for storing variable settings so you can reuse
them at a later time. You can view the variable settings that have been used to install
components and to run plans to determine the state of the variables. This repository is
also used to determine the state of substitution variables when running a comparison
with an installed component.

Adding Substitution Variables to Components
When you run a plan that deploys an application to more than one host, you can use
configuration generation to automatically replace substitution variables with
appropriate values for each host.

To do this, you add substitution variable definitions to your components. These can be
used, for example, as a way to configure the directory into which an application is
installed. Using the provisioning system, you can define and manage different variable
settings for application deployments on each of your target hosts, as follows:

� Each version of a component can declare its own variable definitions.
� Each version of a component has its own variable settings (possibly imported from

a previous version).
� Each component can be installed using any of its variable settings.

Substitution Variable Values
The values that the provisioning system substitutes when you install an application
can be any of the following:

� Value that you specify
� Component-specific value, such as a name or a label
� Value that is associated with a previously installed component

50 N1 Grid Service Provisioning System 5.0 Plan and Component Developer’s Guide • December 2004

� Value of a session variable

� Value that is specific to a target host, such as an IP address or a user-defined host
variable

Generation Context
Variable substitution happens when a target step is run on a target host. The step can
be in a plan or in a component being installed or already installed on the target host. If
there is a state associated with the target host and component, it is used to determine
the value of a particular substitution variable. The state can include the following:

� Target component – The component on which to perform operations

� Target host – The current host on which the target step is executing

� Target variable settings source – A collection of name-value pairs that override the
the default values defined in the component when it is being installed

� Local variables – Any variables in the target step itself, such as those that you have
declared in the enclosing block or plan

Input Source
The variable substitution engine operates on any text-based input source in the form
of a String or Reader. In practice, however, only these entities are used as input
sources:

� Configuration-type resource files

� Input to CLI commands that perform variable substitution on demand

� Some of the component and plan attributes, such as the defaultInstallPath attribute
of the <installSteps> element and the command attribute of the
<execNative> step

See Chapter 2, “Shared Schema Used by Components and Simple Plans,” in N1
Grid Service Provisioning System 5.0 XML Schema Reference Guide, Chapter 3,
“Component Schema,” in N1 Grid Service Provisioning System 5.0 XML Schema
Reference Guide, and Chapter 4, “Plan Schema,” in N1 Grid Service Provisioning
System 5.0 XML Schema Reference Guide.

Chapter 6 • Configuration Generation 51

Types of Variables Available for
Substitution
You can refer to the following types of variables from within components, plans,
variable settings, and configurable resources:

� Simple substitution variables
� External component substitution variables
� Session substitution variables
� Target substitution variables

Simple Substitution Variable References
The input source can contain any number of simple substitution variable references. A
simple substitution variable has the following syntax:

:[variable]

variable is one of the following:

� Local variable name. You can reference local variable names in plan steps and in
steps that are in a component’s install, uninstall, snapshot, and control service
blocks.

� Parameter name. You can reference parameters in plan steps and in steps that are
in a component’s install, uninstall, snapshot, and control service blocks.

� Predefined component variable name. You can only use predefined component
variable names in input sources that are associated with a component, but not with
a plan.

Predefined component variable names are always resolved relative to the actual
component that is (or is being) installed, even if the variable reference occurs in a
base component. From an accessibility standpoint, predefined component variables
are treated as PUBLIC variables.

See “Predefined Component Variable Names” on page 53 for a list of names.
� Dynamic component variable name. A component can reference both locally

declared and inherited variables. The value that will be substituted for the
reference is either the override value of the associated variable settings source or
the variable’s default value. The value that is used is expanded before it is
substituted.

A dynamic component variable name is declared or inherited by the component
associated with the target component. In this case, the value to be substituted for
the variable reference is either the associated override variable settings value or the
default value defined by the component. The value of this variable is expanded

52 N1 Grid Service Provisioning System 5.0 Plan and Component Developer’s Guide • December 2004

before it is substituted.

Predefined Component Variable Names
These predefined component variable names refer to the associated component
attributes of the generation context:

� sys.name – Component name
� sys.description – Component description
� sys.label – Label of the component
� sys.softwareVendor – Software vendor that wrote the application that is

modeled by the component
� sys.author – Creator of the component
� sys.path – Path of the component

The sys.path variable is like the path attribute of the component, but it includes a
trailing slash (/). sys.path can be directly combined with the sys.name variable
to create the full name of the component.

:[sys.path]:[sys.name]

� sys.rsrcInstallPath – Location where the component resource is installed

The sys.rsrcInstallPath variable is in the file format of the remote agent on
which the component is, or is being, installed. You can only use this variable for
simple components. Since the value of this variable might require other dynamic
component variables to be computed, you cannot use sys.rsrcInstallPath in
a component variable default value or variable settings override value. This
variable also cannot be used as the value of the <component> installPath attribute
or in the <resourceRef>/<installSpec> element attributes. These restrictions
prevent the possibility of circular references.

� sys.targetRefName – Name of the associated component targeting host

The sys.targetRefName variable is only defined for targetable components. The
component targeting host is defined by the resolved value of the hostName attribute
of the targetable component’s <targetRef> element. It cannot appear as a simple
substitution variable in a component variable value because component variables
might be used to compute the sys.targetRefName value. This variable is most
often used with the <retarget> step to install or manipulate components that are
in a targetable component.

Predefined component variables are always resolved relative to the actual component
that is, or is being, installed even if the variable reference occurs in a base component.
Predefined component variables are treated as PUBLIC variables.

Escape Sequences for Substitution Variables
If you want to include :[in input source, you must escape it by using :[[instead.
The configuration generator replaces occurrences of :[[with :[.

Chapter 6 • Configuration Generation 53

For example, to literally include the text :[box] without the provisioning system
substituting a value for box, use :[[box].

When the input source is an attribute of a component that is authored in XML, the
value is subject to the following rules for XML-based escape sequences:

� To get the quote character (′′), use the " sequence.
� To get the apostrophe character (’), use the ' sequence.
� To get the less-than character (<), use the < sequence.
� To get the greater-than character (>), use the > sequence.
� To get the ampersand character (&), use the & sequence.

These escape rules do not apply to override values input via the provisioning system’s
browser interface, configuration resource files, or input to the configuration generation
CLI commands.

Substitution Variable Expansion
When a substitution variable reference is replaced by a variable setting value, the
value is recursively expanded before being substituted. This expansion is necessary
because the value itself might contain references to simple substitution variables. To
prevent the substitution of values, escape input sources with :[[.

You can only use host and external component substitution references in default or
override substitution values, parameter default values, and local variable default
values. Such references are not permitted in other input sources.

Simple Substitution Variable Reference Expansion
The syntax for a simple substitution variable reference in a variable setting value is the
same as for input sources:

:[varname]

In this case, the variable name that is referenced must be a variable that has been
declared before the variable that contains the reference. This restriction prevents
circular references.

For derived components, variables that are inherited from the base component are first
expanded in the order of declaration in the parent. Then, local non-override variables
are expanded in the order of declaration. Local variables that override inherited
variables are expanded in place of the inherited variable in the same order that the
inherited variable would have been expanded. Therefore, override variables can only
refer to other inherited and override variables that have already been declared. For
example, base component A declares variables x and y. Then derived component B
declares variables z and y. The order of evaluation of variables in component B is x,
which is inherited from component A, then y, which is overridden by component B,
and finally z, which is local to component B.

54 N1 Grid Service Provisioning System 5.0 Plan and Component Developer’s Guide • December 2004

EXAMPLE 6–1 Using Simple Substitution Variables

The following table shows examples of substitution variables, as well as their
expanded and unexpanded values.

Variable Name Unexpanded Value Expanded Value

foo silly silly

bar :[foo] silly

baz a :[foo] :[bar] example a silly silly example

badFrob :[frob] Error – forward reference

frob :[[foo] :[foo]

compName :[sys.name] Name of the target component

badFoz :[foz] Error – foz has not been declared

External Component Substitution Variable
References
A variable setting value can include one or more external component substitution
references. An external component substitution reference is one of the following:

� :[primary-component:varname]
� :[primary-component:secondary-component-list:varname]

Note that an external component substitution reference does not include any white
space.

primary-component is one of the following:

� explicit-external-component
� system-service-component
� system-type-component
� targetable-component
� secondary-component

secondary-component is one of the following:

� nested-component
� toplevel-component
� dependee-component
� container-component

secondary-component-list is a sequence of one or more colon-separated
secondary-components.

Chapter 6 • Configuration Generation 55

varname is either a predefined substitution variable name or a dynamic substitution
variable name that is declared by the referenced component.

Explicit External Component Expansion
An explicit-external-component explicitly specifies a component that is expected to be
installed on a particular host in a particular location. It has the component resolution
semantics of the <installedComponent> installed component targeter. See
“Installed Component Targeters” in N1 Grid Service Provisioning System 5.0 XML
Schema Reference Guide.

explicit-external-component has the following syntax:

component-target:explicit-component-reference

component-target specifies the host on which the specified component is installed and is
one of the following:

� component – Specifies the current target host in the generation context
� component(host-redirect) – Refers to the host named by host-redirect (see “Host

Redirects” on page 63)

explicit-component-reference is a reference to a component that is already installed on the
target host that is specified by component-target. The explicit-component-reference
minimally includes the installed component name, but can also include a version and
an install path, as follows:

full-component-name
full-component-name#version
full-component-name@{path}
full-component-name#version@{path}

full-component-name is an absolute or relative reference to the specified component. A
relative reference is expanded relative to the plan or component that contains
explicit-component-reference.

path is the absolute install path name of the specified component, or a substitution
variable reference that, when expanded, represents the absolute install path of the
specified component. If path includes the } character, it must be escaped using the }}
sequence.

System Service Component Expansion
A system-service-component specifies a system service component that is expected to be
installed on the root physical host of the current target. It has the component resolution
semantics of the <systemService> installed component targeter. See “Installed
Component Targeters” in N1 Grid Service Provisioning System 5.0 XML Schema Reference
Guide.

56 N1 Grid Service Provisioning System 5.0 Plan and Component Developer’s Guide • December 2004

system-service-component has the following syntax:

systemService:system-service-name

If the system service is defined by a plug-in, system-service-name must be prefixed with
the name of the plug-in that defines it.

System Type Component Expansion
A system-type-component specifies the component that is derived from a specified
component type that is most recently installed on a particular host in a particular
location. It has the component resolution semantics of the <systemType> installed
component targeter. See “Installed Component Targeters” in N1 Grid Service
Provisioning System 5.0 XML Schema Reference Guide.

system-type-component has the following syntax:

systemType:component-type-name
systemType:component-type-name@{path}
systemType(host-redirect):component-type-name
systemType(host-redirect):component-type-name@{path}

path is optional. If specified, path is the absolute install path name of the specified
component or a substitution variable reference. The reference, when expanded,
represents the absolute install path of the specified component. If path includes the }
character, it must be escaped using the }} sequence.

host-redirect is also optional and indicates the host on which the component is
installed. See “Host Redirects” on page 63.

If the component type is defined by a plug-in, component-type-name must be prefixed
with the name of the plug-in that defines it.

targetableComponent Component Expansion
A targetable-component references variables that are associated with a targetable
component and is similar to the <targetableComponent> targeter. See “Installed
Component Targeters” in N1 Grid Service Provisioning System 5.0 XML Schema Reference
Guide.

targetable-component has the following syntax:

� targetableComponent
� targetableComponent(host-redirect)

host-redirect is the name of a component targeting host. If unspecified, the host on
which the plan is currently executing is used. These constructs resolve to the
targetable component that is associated with a particular component targeting host.
See “Host Redirects” on page 63.

Chapter 6 • Configuration Generation 57

Secondary Component Expansion

Nested Component Expansion

A nested-component specifies the component that is referenced by a nested component
reference that is declared by the current component. It has the component resolution
semantics of the <nestedRef> installed component targeter. See “Installed
Component Targeters” in N1 Grid Service Provisioning System 5.0 XML Schema Reference
Guide.

nested-component has the following syntax:

nestedRef:component-reference-name

component-reference-name is the name of a <componentRef> element where
installMode=NESTED for the current component.

nested-component can only be used when the current component is a composite
component. It can only be used as a primary-component when the external component
substitution reference appears in a composite component. When used as a
primary-component, it cannot be used as the default value of a component variable or
override variable setting. This is because the referenced component will not yet have
been installed when the variable is evaluated.

Top-Level Component Expansion

A toplevel-component specifies the component that is referenced by a top-level
component reference that is declared by the current component. It has the component
resolution semantics of the <toplevelRef> installed component targeter. See
“Installed Component Targeters” in N1 Grid Service Provisioning System 5.0 XML
Schema Reference Guide.

toplevel-component has the following syntax:

toplevelRef:component-reference-name
toplevelRef:component-reference-name@{path}
toplevelRef(host-redirect):component-reference-name
toplevelRef(host-redirect):component-reference-name@{path}

component-reference-name is the name of a <componentRef> element where
installMode=TOPLEVEL for the current component.

path is the absolute install path name of the specified component, or a substitution
variable reference. The reference, when expanded, represents the absolute install path
of the specified component. If path includes the } character, it must be escaped using
the }} sequence.

host-redirect is the host on which the referenced component is expected to be installed.
The syntax for host-redirect is described in “Host Redirects” on page 63.

58 N1 Grid Service Provisioning System 5.0 Plan and Component Developer’s Guide • December 2004

toplevel-component can only be used when the current component is a composite
component. It can only be used as a primary-component when the external component
substitution reference appears in a composite component. When used as a
primary-component, it cannot be used as the default value of a component variable or
an override variable setting. This is because the referenced component has already
been installed.

Dependee Component Expansion

A dependee-component specifies the component on which the current component
depends as a result of a dependency created by a <createDependency> step.
dependee-component has the component resolution semantics of the <dependee>
installed component targeter. See “Installed Component Targeters” in N1 Grid Service
Provisioning System 5.0 XML Schema Reference Guide.

dependee-component has the following syntax:

dependee:dependency-name

dependency-name is the name of a dependency that is created by the current
component.

dependee-component can only be used as a primary-component when the external
component substitution reference appears in a component. When used as a
primary-component, it cannot be used as the default value of a component variable or
an override variable setting. This is because the dependency will not yet have been
created when the variable is evaluated.

Container Component Expansion

A container-component specifies the component that contains the current component as
a nested reference.

container-component has the following syntax:

container

container-component can only be used as a primary-component when the external
component substitution reference appears in a component that has been installed as a
nested component by another “container” component.

Resolving External Component Substitution References
The value of an external component substitution reference is computed first by
resolving the component that is referenced by primary-component. If
secondary-component is used as a primary-component, the component that contains the
external component substitution reference serves as the initial current component that

Chapter 6 • Configuration Generation 59

is used when resolving the primary-component. The component that is resolved by
primary-component becomes the new current component. Then, each
secondary-component in secondary-component-list is resolved by using the last resolved
component as the current component. Finally, the provisioning system looks up and
returns the variable, varname, in the last resolved component.

The value of an external component substitution reference is computed based on the
value of the specified variable in the referenced component at the time the component
was installed. You cannot refer to a variable that is not declared by the installed
component or to a component that is not installed on the target host. You also cannot
refer to a variable that is not accessible to the component or plan that declares the
external component substitution reference. The variable is accessible only if it is
declared with an accessible access mode, the declaring component is accessible, and
each primary and secondary component that is traversed to get to that component is
accessible.

External component substitution references are computed at the time that they are
encountered during a plan run, not at the start of the run. Thus, an actual installed
component that is being referenced might change based on the steps executed earlier
in the plan. Furthermore, references to components that are installed on a host other
than the current target host might be affected by other plans that are running
concurrently on the other host. For predictable results, only refer to hosts that are
included in the target set of the current plan run because they are guaranteed to be
locked. Also, synchronize any <install> or <uninstall> operations on an
externally referenced host in the plan by using retargeting or series execution mode.

EXAMPLE 6–2 Using External Component Substitution Variable References

� The following are examples of external component substitution variable references
that use explicit-external components:

:[component:installApache:sys.label]
:[component:jdk#1.3:classpath]

:[component:webApp#2.4@{/usr/local}:bannerColor]

� In the following example, the provisioning system resolves the component that is
installed on the root physical host of the current target host:

:[component(/):IIS global settings:install_path]

� In this example, webAppPath is resolved as the name of a simple substitution
variable that is set in the associated component of the generation context. It is not a
variable that is defined in the externally referenced component.

:[component:webApp@{:[webAppPath]}:bannerColor]

� The following examples show external component substitution variable references
that use targetable-component:

:[targetableComponent:hostName]

:[targetableComponent(host1):port]

� The following are examples of external component substitution variable references
that use nested-component and toplevel-component:

60 N1 Grid Service Provisioning System 5.0 Plan and Component Developer’s Guide • December 2004

EXAMPLE 6–2 Using External Component Substitution Variable References (Continued)

:[nestedRef:ref1:sys.label]
:[toplevelRef:ref2:sys.name]
:[toplevelRef(/):ref3@{/usr/local}:var1]

� The following are examples of external component substitution variable references
that use system-type-component and system-service-component:

:[systemService:com.sun.windows#Windows SS:classPath]
:[systemType:com.sun.weblogic#WL Target Type:serverName]
:[systemType(..):MyType@{/tmp}:var1]

� The following is an example of an external component substitution variable
reference that uses dependee-component:

:[dependee:app2domain:domainName]

� The following is an example of an external component substitution variable
reference that uses container-component:

:[container:sys.installPath]

� The following is an example of a chained component reference. This reference
assumes that the current target component is installed as a nested component of
another container component. The container: part resolves to the component
that contains the current component, which for this example is called X. The
nestedRef:ref1 part resolves to the component that is referenced by component
X by using its component reference named ref1, which is component Y. The
toplevelRef:ref1 part resolves to the component that component Y refers to by
using its component reference ref1, which is component Z. Finally, the
provisioning system resolves and uses the value of the label attribute that is defined
by component Z.

:[container:nestedRef:ref1:toplevelRef:ref1:sys.label]

Session Substitution Variable References
Session variables enable you to enter data, such as your WebLogic credentials, one time
per user session. You can also securely save the contents of these variables and not
have to re-enter data each time you log in. Session variables are integrated at the
modeling level by using substitution variables.

A session substitution variable reference has the following syntax:

:[session:varname]

varname is the name of a session variable.

A session substitution variable reference resolves to the value of the session variable in
the current user’s session. An attempt to resolve a session variable that is not defined
in the current user’s session results in an error. When a failure to generate a session
variable is encountered, an attempt is made to add the session variable, with an empty
value, to the user’s current session variable set.

Chapter 6 • Configuration Generation 61

A session variable can be used anywhere that a simple substitution variable reference
can be used. However, a session variable cannot be used in the value of another
session variable.

Predefined Session Variables
sys:sessionID is a predefined session variable that resolves to the ID of the current
user session. The system sessionID variable enables you to write steps that call back
into the master server through the CLI by using the same credentials as the user who
ran the plan. The system sessionID variable can only be resolved in the context of
certain hosts, per the config.allowSessionIDOnHosts configuration variable.
Thus, the system sessionID variable can only be resolved if the target host of the
current generation context is included within the hosts named by the
config.allowSessionIDOnHosts configuration variable.

When configuring a CLI for use in callbacks during plan execution, a Remote Agent
and CLI Client must be installed on the same server. For maximum security, you
should install the CLI Client and the Remote Agent on the same server as the Master
Server. In this scenario, plans and components that want to make a callback through
the CLI would use a <retarget> step to redirect execution to the single host that
contains the CLI. In addition, the system sessionID variable would be resolved after
the <retarget> step, and the config.allowSessionIDOnHosts configuration
variable would name only the master server host.

Target Substitution Variable References
You can use target substitution variables to obtain values directly from a particular
host.

Target substitution variable references use the following syntax:

:[target:varname]
:[target(host-redirect):varname]

A variable name that begins with target refers to the logical host on which a plan is
currently being run.

varname represents an attribute value that is specified in the target host’s definition for
the application that you install. Two types of host variables can be referenced:
predefined and dynamic. See “Predefined Host Variable Names” on page 64 and
“Dynamic Host Variable Names” on page 65.

If you also specify host-redirect, the value for varname is retrieved from that particular
host. That host can be a host other than the host on which the plan is currently being
run. You can also specify another substitution variable for hostname that, when
expanded, resolves to the name of a host. The syntax for host-redirect is described in
“Host Redirects” on page 63.

62 N1 Grid Service Provisioning System 5.0 Plan and Component Developer’s Guide • December 2004

Predefined Host Substitution Shorthands
You can use these predefined host substitution shorthands anywhere that a host
substitution reference can be used:

� :[/] – Expands to the operating system-specific file separator, which is based on
the root physical host of the current target host

� UNIX systems – :[/] expands to /
� Microsoft Windows systems – :[/] expands to \

� :[:] – Expands to the operating system-specific path separator, which is based on
the root physical host of the current target host

� UNIX systems – :[:] expands to :
� Microsoft Windows systems – :[:] expands to ;

Host Redirects
Target host substitution variable references and external component substitution
variable references can optionally include a host redirect. This means that the host on
which the variable or component lookup occurs is the specified host rather than the
current target. host-redirect has one of the following forms:

� parent-ref
� hostname
� hostname/parent-ref

hostname is either the name of a host or a substitution variable reference that, when
expanded, resolves to the name of a host.

parent-ref is one of the following:

� / – The root parent host of the specified host, or the current target host if hostname
is omitted

� A series of one or more slash-separated ..s – The nth parent of the specified host,
or current target host if hostname is omitted, where n is the number of ..s that
appear

The parent-ref operators are used primarily for virtual hosts, but they can also be used
for physical hosts. Applying either operator to a physical host is a no-op.

EXAMPLE 6–3 Using Target Substitution Variable References

� This example shows how to look up variable var1 on host myHost:

:[target(myHost):var1]

� This example shows how to look up variable var1 on the host specified by
substitution variable hostName:

:[target(:[hostName]):var1]

Chapter 6 • Configuration Generation 63

EXAMPLE 6–3 Using Target Substitution Variable References (Continued)

� This example shows how to look up variable var1 on the logical host on which the
plan is currently running:

:[target:var1]

Predefined Host Variable Names
These predefined host variable names refer to the associated attribute of the referenced
host:

� sys.hostName – Target host name

� sys.description – Target host description

� sys.hostType – Host type of the target host

� sys.ipAddress – IP address of the remote agent on the target host

� sys.portNumber – Port number of the remote agent on the target host

� sys.raHomeDir – Absolute path of the remote agent home directory on the target
host

� sys.raDataDir – Absolute path of the remote agent data directory on the target
host

� sys.raTmpDir – Absolute path of the remote agent temporary directory on the
target host

� sys.raConfigDir – Absolute path of the remote agent configuration directory
on the target host

EXAMPLE 6–4 Using Host Substitution Variable References

The following are examples of host substitution variable references and their values:

� :[target:sys.ipAddress] – IP address of the current host

� :[target:var1] – Dynamic variable var1 of the current host

� :[target(host1):var1] – Dynamic variable var1 of host host1

� :[target(:[hostNameVar]):var1] – Dynamic variable var1 of the host
whose name is the value of the hostNameVar substitution reference

� :[target(/):var1] – Dynamic variable var1 of the root parent host of the
current host

� :[target(host1//):var1] – Dynamic variable var1 of the root parent host of
the host named host1

� :[target(../..):var1] – Dynamic variable var1 of the second parent host of
the current host

� :[target(host1/../..):var1] – Dynamic variable var1 of the second parent
host of the host named host1

64 N1 Grid Service Provisioning System 5.0 Plan and Component Developer’s Guide • December 2004

Dynamic Host Variable Names
A dynamic host variable name is any attribute name that is declared by the host type of
the referenced host. In this case, the value to be substituted for the variable reference is
the corresponding value of the attribute that is defined by the referenced host. The
value must be expanded prior to substitution, if applicable.

Using Substitution Variables
You can use simple substitution variables in any input source, including configuration
files. You can use external component and target substitution variables in a number of
places, including <varList>/<var> default values of the <installSteps>,
<uninstallSteps>, <controlService>, and <executionPlan> elements.

Simple substitution variable references of the form :[varname] can be used in any
input source, including configuration files and configurable component attributes.
However, host substitution references (:[target:varname]) and external component
substitution references (:[component:compRef:varname]) can only be used in
variable setting values.

Variable setting values include the default attribute of the <var> element and values in
the variable setting overrides, but not configuration files or other configurable
component attributes. This limitation ensures that all variables used in a component
and in the configuration files that it references are explicitly declared and validated by
the <varlist> element of the component.

Following are all substitution variables that can be used in particular input sources.
The elements and attributes listed are the input source, and the sublist contains the
types of variables that are permitted.

� <component>/<varList>/<var>/ default attribute:

Variable settings override value:

� Component substitution references, excluding sys.rsrcInstallPath and
sys.targetRefName

� Host substitution references

� External component substitution references, excluding nested-component and
dependee-component as primary components

� Session variable references

� <component>/<installList>/<installSteps>/<paramList>/<param>/
default attribute:

<component>/<uninstallList>/<uninstallSteps>/
<paramList>/<param>/default attribute:

Chapter 6 • Configuration Generation 65

<component>/<controlList>/<control>/<paramList>/<param>/default
attribute:

<component>/<snapshotList>/<snapshot>/<paramList>/<param>/
default attribute:

� Component substitution references
� Host substitution references
� External component substitution references
� Session variable references

� <component>/<installList>/<installSteps>/<varList>/<var>/
default attribute:

<component>/<uninstallList>/<uninstallSteps>/<varList>/<var>/
default attribute:

<component>/<controlList>/<control>/<varList>/<var>/default
attribute:

<component>/<snapshotList>/<snapshot>/<varlList>/<var>/default
attribute:

� Local variable substitution references that have been previously declared
� Parameter substitution references
� Component substitution references
� Host substitution references
� External component substitution references
� Session variable references

� <component>/<installList>/<installSteps>/child steps:

<component>/<uninstallList>/<uninstallSteps>/child steps:

<component>/<controlList>/<control>/child steps:

<component>/<snapshotList>/<snapshot>/<prepare>/child steps:

<component>/<snapshotList>/<snapshot>/<capture>/child steps:

<component>/<snapshotList>/<snapshot>/<cleanup>/child steps:

� Local variable substitution references
� Parameter substitution references
� Component substitution references

� <component>/<resourceRef>/<installSpec>:

<component>/installPath attribute:

� Component substitution references, excluding sys.rsrcInstallPath

� <component>/<diff>/<ignore>:

<component>/<componentRef>/<argList>:

Configuration files:

� Component substitution references

� <component>/<targetRef>:

66 N1 Grid Service Provisioning System 5.0 Plan and Component Developer’s Guide • December 2004

<component>/<targetRef>/<agent>:

� Component substitution references, excluding sys.targetRefName and
sys.rsrcInstallPath

� <executionPlan>/<paramList>/<param>/ default attribute:

� Session variable references

� <executionPlan>/<varList>/<var>/ default attribute:

<executionPlan>/*/<inlineSubplan>/<varList>/<var>/ default
attribute:

� Session variable references

� Local variable substitution references that have been previously declared

� Unhidden local variable substitution references of enclosing plans

� Unhidden parameter substitution references

� Host substitution references for simple plans and subplans only

� External component substitution references for simple plans and subplans only,
but excluding container, nested, top-level, and dependee as primary component

� <executionPlan>/*/child steps:

� Local variable substitution references
� Unhidden local variable substitution references of enclosing plans
� Unhidden parameter substitution references

� hostAttributes

� Session variable references

The following configuration attributes of a component can include substitution variable
references.

Parent Element Substitutable Attributes

<capture>/<addFile> displayName, path

<component> installPath

<diff>/<ignore> path

<installSpec> name, path, permissions, user, group, deployMode,
diffDeploy

<paramList>/<param> default

<targetRef> hostName

<targetRef>/<agent> connection, ipAddr, port, params

<varList>/<var> default

Chapter 6 • Configuration Generation 67

The following step attributes that are in a component or a plan can include substitution
variable references.

Parent Element Substitutable Attributes

<argList> Attributes of the <argList> element, which
are free form

<execJava> className, classPath

<execNative> dir, userToRunAs

<execNative>/<ouputFile> name

<execNative>/<errorFile> name

<execNative>/<env> name, value

<execNative>/<exec> cmd

<execNative>/<exec>/<arg> value

<execNative>/<shell> cmd, <body>

<execNative>/<successCriteria> outputMatches, errorMatches

<execNative>/<inputFile> name

<execNative>/<inputText> <body>

<if>/<condition>/<equals>

<if>/<condition>/<istrue>

<if>/<condition>/<matches>

value1, value2

value

value, pattern

<processTest> processNamePattern, user

<raise>

<retarget>

<retarget>/<varList>/<var>

message

host

default

<sendCustomEvent> message

<transform> input, output

<transform>/<source> name

<transform>/<stylesheet> <body>

<transform>/<subst> match, replace

<urlTest> url, pattern

The following plan attributes can include substitution variable references.

68 N1 Grid Service Provisioning System 5.0 Plan and Component Developer’s Guide • December 2004

Parent Element Substitutable Attribute

<paramList>/<param> default

<varList>/<var> default

The following attributes of installed component targeters can include substitution
variable references.

Parent Element Substitutable Attributes

<installedComponent> installPath, host

<systemType> installPath, host

<targetableComponent> host

<toplevelRef> installPath, host

The following attributes of repository component targeters can include substitution
variable references.

Parent Element Substitutable Attribute

<component>

<toplevelRef>

host

host

EXAMPLE 6–5 Using Substitution Variables

The following example lists the variables that are defined in a component for the
Apache web server:

<varList>
<var name="domainname" default=":[target:domainname]"/>
<var name="name" default="apache"/>
<var name="installPath" default="/opt/apache"/>
<var name="execNativeShutdown"

default=":[installPath]/bin/apachectlstop"/>
<var name="execNativeStartUp"

default=":[installPath]/bin/apachectlstart"/>

</varList>

This component specifies the following:

� The domain name must be dynamically retrieved from the target host.

� The default value of name is apache.

� The variable called installPath has a value of /opt/apache.

� The value of installPath is used in the definition of two <execNative>
variables.

Chapter 6 • Configuration Generation 69

EXAMPLE 6–5 Using Substitution Variables (Continued)

Although you cannot use a target substitution variable in a configuration file, you can
reference a host-specific value from a configuration file. You can do this because the
value of the variable that you reference can be computed as a host-specific value. For
example, you might have the following variable defined in the <varList> section of
the component:

<var name="box" value=":[target:room]">

You can then reference :[box] from a configuration file. When :[box] is substituted,
it is substituted with the value of the room variable that is defined by the target host.

70 N1 Grid Service Provisioning System 5.0 Plan and Component Developer’s Guide • December 2004

APPENDIX A

Variable Substitution Grammar

Only a session-variable-substitution-reference is permitted to occur in host attribute
values. For the following grammar, a simple-substitution-variable-reference can be used in
configuration resource files and certain component element attributes.
complex-substitution-variable-reference can be used in substitution variable default and
override values.

In this grammar, \p{N} represents all Unicode numbers, and \p{L} represents all
Unicode letters.

simple-substitution-variable-reference:
local-component-substitution-reference

complex-substitution-variable-reference:
simple-substitution-variable-reference
host-substitution-reference
external-component-substitution-reference
session-variable-substitution-reference

local-component-substitution-reference:
:[component-variable-name]

component-variable-name:
predefined-component-variable-name
dynamic-component-variable-name

predefined-component-variable-name:
sys.name
sys.description
sys.label
sys.softwareVendor
sys.author
sys.path
sys.rsrcInstallPath
sys.targetRefName

dynamic-component-variable-name:
identifier

71

host-substitution-reference:
:[target:host-variable-name]
:[target(host-reference):host-variable-name]
:[:]
:[/]

host-reference:
root-host-selector
parent-host-selector
host-selector / root-host-selector
host-selector / parent-host-selector

host-selector:
host-name
complex-substitution-variable-reference

root-host-selector:
/

parent-host-selector:
..(/..)*

host-variable-name:
predefined-host-variable-name
dynamic-host-variable-name

predefined-host-variable-name:
sys.hostName
sys.description
sys.hostType
sys.ipAddress
sys.portNumber
sys.raHomeDir
sys.raDataDir
sys.raConfigDir
sys.raTmpDir

dynamic-host-variable-name:
identifier

session-variable-substitution-reference:
:[session:session-variable-name]

session-variable-name:
predefined-session-variable-name
dynamic-session-variable-name

predefined-session-variable-name:
sys:sessionID

external-component-substitution-reference:
:[component-reference-list:component-variable-name]

component-reference-list:
primary-component-reference

72 N1 Grid Service Provisioning System 5.0 Plan and Component Developer’s Guide • December 2004

primary-component-reference:secondary-component-reference-list

primary-component-reference:
explicit-external-component-reference
system-service-component-reference
system-type-component-reference
secondary-component-reference
targetable-component-reference

secondary-component-reference:
nested-component-reference
toplevel-component-reference
dependee-component-reference
container-component-reference

secondary-component-reference-list:
secondary-component
secondary-component:secondary-component-reference-list

explicit-external-component-reference:
component:explicit-component-reference
component(host-reference):explicit-component-reference

explicit-component-reference:
full-component-name
full-component-name#component-version
full-component-name@{install-path}
full-component-name#component-version@{install-path}

full-component-name:
path-reference component-name
component-name

path-reference:
/
/ relative-path-reference /
relative-path-reference /

relative-path-reference:
.
..
path-part
. / relative-path-reference
.. / relative-path-reference
path-part / relative-path-reference

system-service-component-reference:
systemService:system-name

system-type-component-reference:
systemType:system-name
systemType:system-name@{install-path}
systemType(host-reference):system-name
systemType(host-reference):system-name@{install-path}

Appendix A • Variable Substitution Grammar 73

targetable-component-reference:
targetableComponent
targetableComponent(host-reference)

nested-component-reference:
nestedRef:component-reference-name

toplevel-component-reference:
toplevelRef:component-reference-name
toplevelRef:component-reference-name@{install-path}
toplevelRef(host-reference):component-reference-name
toplevelRef(host-reference):component-reference-name@{install-path}

dependee-component-reference:
dependee:dependency-name

container-component-reference:
container

dependency-name:
component-reference-name:

identifier

dynamic-session-variable-name:
host-name:

[\p{L}_][\p{N}\p{L}-_.]*

path-part:
component-name:

[\p{N}\p{L}-_.]+ (except "." and "..")

system-name:
system-name-identifier
plugin-name#system-name-identifer

plugin-name:
identifier
identifier.plugin-name

system-name-identifier:
[\p{L}_][\p{N}\p{L}-_. +]*

component-version:
[1-9][0-9]*.[0-9]+

install-path:
complex-substitution-variable-reference
path-literal

path-liternal:
(([^}])|(}}))+

identifier:
[\p{L}_][\p{N}\p{L}_]*

74 N1 Grid Service Provisioning System 5.0 Plan and Component Developer’s Guide • December 2004

Glossary

The following terms are used throughout this book.

child component A component that is referenced by a container component. Also called
contained component.

See also container component.

comparison A feature that searches for and identifies differences between hosts and
component models. The provisioning system supports these three
types of comparisons:

� Model to model – Examines the deployment repository and history
that is stored on the master server for two hosts and reports any
differences

� Model to install – Compares what the master server reports is
installed on a host to what is actually on the host and reports any
differences

� Install to install – Examines the contents of two hosts’ file systems
and reports any differences

component A logical grouping of source information that defines an application. A
component also includes a set of instructions that specifies how to
manage the source information.

The XML representation of a component includes the following:

� List of resources used by the application
� Installation steps
� Uninstallation steps
� Dependencies

component inheritance The means by which a component obtains attributes and behavior
from another component. When you create a component, it inherits
any variables, snapshots, and procedures from the associated
component type.

75

component procedure A program in a component that controls deployment of the
component, such as installation, uninstallation, management, and
capturing snapshots. Management procedures are defined in the
control block.

component repository A location on the master server where components and their resources
are checked in.

component type A special kind of component that encapsulates behavior that can be
reused by other components. A component can inherit the behavior of
a component type by extending from it.

component variable A user-definable name-value pair that is used to make parts of a
component accessible and configurable by objects that are external to
the component.

composite component A component that contains only references to other components, both
simple and composite. A composite component cannot contain any
resources.

composite plan A plan that is composed solely of subplans, which can be simple or
composite subplans. A composite plan is not directly targeted, as each
subplan can run on a different set of targets.

configuration generation
engine

A software engine on the master server that replaces substitution
variable references with the appropriate variable setting values. The
engine interacts with the host repository and component repository to
resolve values any time that you run a plan to deploy a component.

contained component A component that is referenced by other components.

container component A component that contains references to other components.

control A procedure defined by a component that can be used to manage the
deployed applications. For example, a control might be used to start or
stop an application. Also called control service.

deployment Using a plan or component procedure to act on a component. The
component’s lifecycle includes installation, uninstallation, and
application management.

direct-run procedure A component procedure that can be run directly from the component
by using the browser interface.

execution plan See plan.

extend To base a component on a component type so that the component
inherits variables and procedures that are defined by the component
type. The component can override variable values and procedure
definitions defined by its associated component type.

gold server A reference server that contains files, directories, and other resources
that make up an application and that checks in these resources to the
master server.

76 N1 Grid Service Provisioning System 5.0 Plan and Component Developer’s Guide • December 2004

host A server that is managed by the provisioning system.

host set A user-defined, logical grouping of hosts that share one or more
common attributes, such as physical location or functional group. Use
a host set to quickly and easily update applications on all hosts in the
set. You can also use a host set to perform model-to-install
comparisons between two hosts.

host type A base class of servers that is bound by a set of common attributes, all
of which are user-defined. You can use host types to categorize hosts
into logical groupings and to facilitate host searches.

master server The application that is installed on a server that manages the
provisioning system. The Master Server application can connect to any
of the data center environments managed by the provisioning system.
The master server provides centralized data storage, data processing,
and user interfaces.

modeling To create components and plans that represent an application that you
want to deploy with the provisioning system.

nested component A contained component that, when installed, can provide its services
only to its container component. A nested contained component
defines a finer-grained unit of functionality required by the container
component, but is not otherwise useful to other components.

parent component A component that contains references to other components. Also called
container component.

See also contained component.

physical host A host that represents a physical server that is connected to the
network. In the provisioning system, a physical host can contain the
Remote Agent and Local Distributor applications.

plan A sequence of instructions that is used to manipulate one or more
components. A plan can also be a sequence of other plans, which
enables common instruction sequences to be shared between one or
more plans.

preflight The simulated execution of a plan to a simulated UNIX environment
that finds and reports any errors or potential errors that might affect
the deployment. A preflight always precedes a deployment, but you
can run a preflight as a standalone operation.

procedure See component procedure.

remote agent The application that is installed on any server in the provisioning
system to which components are deployed. The Remote Agent
application manages tasks, such as installing software, controlling
services, and collecting information to deliver to the master server.

77

resource A file that is deployed to a host when a plan is executed. The file might
be a directory, a symbolic link, or another kind of file.

session A period of time that is initiated when you log in. A session persists
until you log out or inactivity causes the session to expire. Logically, a
session represents the authenticated credentials of a particular user. A
session is used to identify the user throughout a series of related
requests without reauthentication.

session variable A variable that is associated with a user session. The user can change
session variable values for each login session. Session variable values
can also be securely saved for reuse in subsequent sessions.

simple component A component that contains a single resource. A simple component
cannot contain references to other components.

simple plan A sequential list of steps that are executed on a particular set of target
servers. A simple plan does not contain or call other plans.

snapshot A capture of the resources that are stored on a host during a
deployment. The snapshot is used when performing comparisons
between a host and its model on the master server (model-to-install).

step An instruction that can be part of a plan or a component.

substitution variable A variable that appears in plans, components, or configuration files
that is substituted by the configuration generation engine during
deployment.

system service A component that is automatically deployed to all applicable hosts
when the hosts are prepared. System services define utility controls
and resources that can be used by other components.

targetable component A component that creates a host that serves as a deployment target for
other components when it is installed. When a targetable component is
uninstalled, the host it created is automatically deleted.

top-level component A contained component that, when installed, can be used by any
component just as if it had been directly installed by a plan. A top-level
contained component defines services that will be used by the
container component as well as by other components.

variable See component variable.

variable settings A collection of variable values that can be used to override the default
values of one or more component variables. Based on the variable
settings that you use, you can specify different values for component
variables. You specify the variable settings to use when you run a plan.

virtual host A host that represents services that act as a host for other services.

XML schema The language used by the provisioning system to create plans and
components.

78 N1 Grid Service Provisioning System 5.0 Plan and Component Developer’s Guide • December 2004

Index

A
adding

plans, 37, 46
session variables, 47, 48
substitution variables, 50

Advanced Edit page, plan, 37
application, fully automated modeling, 13
authoring in XML, browser interface, 13
auto-generated plans, creating, 39

B
browser interface

See also command-line interface
checking in components, 25
Components page, 23

Details page, 24
Edit page, 24

creating
auto-generated plans, 39
components, 24-25
custom plans, 40
plans, 38

deleting
components, 25-26
plans, 37

editing
components, 24
plans, 38
session variables, 47

extending
built-in component types, 13

browser interface, extending (Continued)
with XML, 13

managing
components, 23
plans, 37
session variables, 47

modeling applications, 13
Plans page, 37

Advanced Edit page, 37
Details page, 37

running
direct-run procedures, 43-45
plans, 40, 41-43

Session Variables page, 47
Details page, 47
Edit page, 47

viewing
component details, 23
components, 23
plan details, 37
plans, 37
session variable details, 47
session variables, 47

XML authoring, 13
built-in component types, 29-35

system#container, 34
system#directory, 31
system#file, 29
system#symbolic link, 33
untyped, 35

79

C
cdb component commands, 26-28
checking in components, 25, 28
child components, 12, 17
command-line interface

See also browser interface
cdb component commands, 26-28
checking in components, 28
pdb managing plan commands, 46
pe running plan commands, 46
udb session variable commands, 48

component substitution variable references, 55
component types, 14

built-in, 29-35
concepts, 17
from plug-ins, 29-35
system#container, 34
system#directory, 31
system#file, 29
system#symbolic link, 33
untyped, 35

components
authoring in XML, 13
category, 14
characteristics of, 14
checking in, 27, 28
CLI commands for, 26-28
composite, 12
concepts, 11
creating, 24-25, 27
definition of, 11
deleting, 25-26, 27
deploying using direct-run

procedures, 43-45
description, 14
editing, 24, 27
extending built-in component types, 13
fully automated modeling of, 13
hidden, 15
inheritance, 15
label, 14
managing, 23, 26-28
modeling an application, 13
name, 14
path, 14
platform, 14
predefined variable names, 53
procedures, 15

components (Continued)
references to, 19
resources, 14
simple, 12
steps and, 19
type, 14
types of, 12
variable overrides, 16
variable settings, 16

managing, 24, 27
variables, 15, 16
version, 14
viewing, 23
where installed, 23

Components page, 23
Details page, 24
Edit page, 24

composite components, 12
composite plans, 19
configuration generation

engine, 50
generation context, 51
input source, 51
overview, 49
substitution variables, 50

contained components, 12, 17
container component, 12, 17

expansion, 59
controls, 12
creating

auto-generated plans, 39
components, 24-25, 27
custom plans, 40
plans, 38

custom plans, creating, 40

D
definitions of terms, 75-78
deleting

components, 25-26, 27
restrictions, 25

plans, 37, 46
session variables, 48

dependee component expansion, 59
Details page

component, 24

80 N1 Grid Service Provisioning System 5.0 Plan and Component Developer’s Guide • December 2004

Details page (Continued)
plan, 37
session variable, 47

direct-run procedures
deploying a component, 43-45
running, 15

dynamic host variable names, 65

E
Edit page

component, 24
session variable, 47

editing
components, 24, 27
plans, 38
session variables, 47, 48
variable settings, 27

escape sequences for substitution variables, 53
execution plans, See plans
expansion

container components, 59
dependee components, 59
explicit external components, 56
nested components, 58
simple substitution variables, 54
substitution variables, 54
system service components, 56
system type components, 57
targetableComponent components, 57
top-level components, 58

extending, built-in component types, 13
external component substitution variable

references, resolution, 59-61

F
fully automated application modeling, 13

G
generation context, configuration

generation, 51
glossary of terms, 75-78
gold server, 13

grammar, for variable substitution, 71

H
hidden components, 15

viewing, 15, 27
host

predefined substitution shorthands, 63
predefined variable names, 64
redirects, 63

I
inheritance, component, 15
input source, configuration generation, 51
installation, component location, 23

M
managing

components, 23, 26-28
plans, 37, 46
session variables, 47, 48
variable settings, 26-28

modeling applications, 11
approaches to, 13
authoring in XML, 13
extending

built-in component types, 13
fully automated, 13
using the browser interface, 13

N
nested components, 12

expansion, 58

P
parent component, 12, 17
pdb managing plan commands, 46
pe running plan commands, 46

81

plans
CLI commands for, 46
composite, 19
concepts, 18
creating, 38

auto-generated, 39
custom, 40

definition of, 18
deleting, 37
editing, 38
managing, 37, 46
preflight, 40
running, 40, 46
simple, 19
steps and, 19
types of, 19
viewing, 37

Plans page, 37
Advanced Edit page, 37
Details page, 37

predefined component variable names, 53
predefined host substitution shorthands, 63
predefined host variable names, 64
predefined session variables, 62
procedures

definition of, 15
running from a plan, 15
running from other components or plans, 15

provisioning system
functionality, 11
purpose of, 11

R
references, component, 19
repository

component, 28
plan, 38
substitution variables, 50

resolving, external component substitution
variable references, 59-61

resources, 11
managing component, 26-28

running
component procedures, 15
direct-run procedures, 15, 43-45
plans, 41-43

running (Continued)
procedures from a plan, 15
procedures from other components or

plans, 15

S
server, gold, 13
session substitution variable references, 61
session variables

adding, 50
CLI commands for, 48
concepts, 21
deleting, 48
editing, 47, 48
predefined, 62
secure, 22
viewing, 47
viewing details, 47

Session Variables page, 47
Details page, 47
Edit page, 47

shorthands, predefined host substitution, 63
simple components, 12
simple plan, 19
simple substitution variable expansion, 54
simple substitution variable references, 52
steps, 19
substitution variable expansion, 54
substitution variable references

external component, 55
session, 61
simple, 52
target, 62

substitution variables, 49
adding, 50
escape sequences, 53
repository, 50
types of, 52
using, 65
values, 50

system#container component type, 34
system#directory component type, 31
system#file component type, 29
system service component expansion, 56
system services concepts, 18
system#symbolic link component type, 33

82 N1 Grid Service Provisioning System 5.0 Plan and Component Developer’s Guide • December 2004

system type component expansion, 57

T
target substitution variable references, 62
targetableComponent component

expansion, 57
top-level components, 12

expansion, 58

U
udb session variable commands, 48
untyped component type, 35

V
variable names

dynamic host, 65
predefined host, 64

variable overrides, 16
variable references

component substitution, 55
substitution, 49
target substitution, 62

variable settings, 16
managing component, 24, 27

variable substitution grammar, 71
variables

component, 16
predefined component, 53
predefined host variables, 64
predefined session, 62
session, 47
substitution

types of, 49
viewing

component details, 23, 27
components, 23, 27

hidden, 15, 27
plan details, 37, 46
plans, 37, 46
session variable details, 47, 48
session variables, 47, 48

X
XML

authoring in, 13
schema, 18

CLI commands for plans, 26-28
downloading component, 24
editing component, 24

83

84 N1 Grid Service Provisioning System 5.0 Plan and Component Developer’s Guide • December 2004

	N1 Grid Service Provisioning System 5.0 Plan and Component Developer's Guide
	Preface
	Who Should Use This Book
	How This Book Is Organized
	Related Books
	Accessing Sun Documentation Online
	Ordering Sun Documentation
	Typographic Conventions
	Shell Prompts in Command Examples

	Plan and Component Development Concepts
	Component Concepts
	Modeling a Component
	Component Characteristics
	Component Procedures
	Component Inheritance
	Component Variables
	Variable Settings
	Variable Overrides
	Steps

	Component Type Concepts
	System Services Concepts
	Plan Concepts
	Plan Types
	Step Overview
	Component References

	Session Variable Concepts
	Secure Session Variables

	Components
	Managing Components
	How to Create a Component
	How to Delete a Component

	Summary of Component CLI Commands
	Checking In a Component by Using the Command-Line Interface

	Built-in Component Types
	Component Type: system#file
	Browsing
	Extended Control Procedures

	Component Type: system#directory
	Browsing
	Extended Control Procedures

	Component Type: system#symbolic link
	Browsing
	Exported/Internal File Format

	Component Type: system#container
	Browsing
	Model to Install Difference
	Extended Control Procedures

	Component Type: untyped

	Plans
	Managing Plans
	How to Edit a Plan

	Creating Plans
	How to Create an Auto-Generated Plan
	How to Create a Custom Plan

	Running Plans
	How to Run a Plan
	How to Deploy a Component by Using a Direct-Run Procedure

	Summary of Plan CLI Commands

	Session Variables
	Managing Session Variables
	Summary of Session Variable CLI Commands

	Configuration Generation
	Configuration Generation Overview
	Adding Substitution Variables to Components
	Substitution Variable Values
	Generation Context
	Input Source

	Types of Variables Available for Substitution
	Simple Substitution Variable References
	Predefined Component Variable Names
	Escape Sequences for Substitution Variables
	Substitution Variable Expansion
	Simple Substitution Variable Reference Expansion

	External Component Substitution Variable References
	Explicit External Component Expansion
	System Service Component Expansion
	System Type Component Expansion
	targetableComponent Component Expansion
	Secondary Component Expansion
	Nested Component Expansion
	Top-Level Component Expansion
	Dependee Component Expansion
	Container Component Expansion

	Resolving External Component Substitution References

	Session Substitution Variable References
	Predefined Session Variables

	Target Substitution Variable References
	Predefined Host Substitution Shorthands
	Host Redirects
	Predefined Host Variable Names
	Dynamic Host Variable Names

	Using Substitution Variables

	Variable Substitution Grammar
	Glossary
	Index

