The extent to which such disclaimers are held to be legally invalid. Implied warranty of merchantability, fitness for a particular purpose or non-infringement, are disclaimed, except to the extent that such disclaimers are held to be legally invalid.

The Xerox Graphical User Interface, which also covers Sun's licensees who implement OPENLOOK GUIs and otherwise comply with Sun's written license of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially designated nationals list is strictly prohibited.

Documentation is provided "as is" and all express or implied conditions, representations and warranties, including any implied warranty of merchantability, fitness for a particular purpose or non-infringement, are disclaimed, except to the extent that such disclaimers are held to be legally invalid.

Copyright 2008 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, OpenSolaris, Sun xVM hypervisor, and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. Adobe is a registered trademark of Adobe Systems, Incorporated. PostScript is a trademark or registered trademark of Adobe Systems, Incorporated, which may be registered in certain jurisdictions.

The OPENLOOK and Sun TM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially designated nationals list is strictly prohibited.

Documentation is provided "as is" and all express or implied conditions, representations and warranties, including any implied warranty of merchantability, fitness for a particular purpose or non-infringement, are disclaimed, except to the extent that such disclaimers are held to be legally invalid.

Copyright 2008 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux États-Unis et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tiers.

Certaines composants de ce produit peuvent être dérivés du logiciel Berkeley BSD, licenciés par l'Université de Californie. UNIX est une marque déposée aux États-Unis et dans d'autres pays ; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Java, OpenSolaris, Sun xVM hypervisor, et Solaris sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux États-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux États-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc. Adobe est une marque enregistrée de Adobe Systems, Incorporated. PostScript est une marque de fabrique d'Adobe Systems, Incorporated, laquelle pourrait ÊTRE D'ÔPO'të dans certaines juridictions.

L'interface d'utilisation graphique OPENLOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface d'utilisation graphique OPEN LOOK et qui, en outre, se conformant aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la législation américaine en matière de contrôle des exportations et peuvent être soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires, des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou réexportations vers des pays sous embargo des États-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de manière non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux exportations des produits ou des services qui sont régis par la législation américaine en matière de contrôle des exportations et la liste de ressortissants spécifiquement désignés, sont rigoureusement interdites.

La documentation est fournie "EN L'ETAT" ET TOUTES LES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISÉE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIÈRE OU A L'ABSENCE DE CONTREFACON.

Copyright 2008 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.
Managing Serial Ports With the Service Access Facility (Tasks) .......................................................... 35

Managing Serial Ports (Task Map) ........................................................................................................ 36
Using the Service Access Facility ........................................................................................................ 36
Overall SAF Administration (sacadm) .................................................................................................. 37
  Service Access Controller (SAC Program) ...................................................................................... 38
  SAC Initialization Process ............................................................................................................... 38
Port Monitor Service Administration (pmadm) .................................................................................. 38
  ttymon Port Monitor ..................................................................................................................... 39
  Port Initialization Process .............................................................................................................. 39
  Bidirectional Service .................................................................................................................... 40
TTY Monitor and Network Listener Port Monitors .............................................................................. 40
  TTY Port Monitor (ttymon) ........................................................................................................... 40
  ttymon and the Console Port ......................................................................................................... 40
  ttymon-Specific Administrative Command (ttyadm) ...................................................................... 41
  Network Listener Service (listen) .................................................................................................. 41
  Special listen-Specific Administrative Command (nlsadmin) ......................................................... 42
Administering ttymon Port Monitors .................................................................................................. 42
  ▼ How to Set the ttymon Console Terminal Type ........................................................................ 42
  ▼ How to Set the Baud Rate Speed on the ttymon Console Terminal ........................................... 43
  ▼ How to Add a ttymon Port Monitor .......................................................................................... 44
  ▼ How to View ttymon Port Monitor Status ................................................................................ 44
  ▼ How to Stop a ttymon Port Monitor ......................................................................................... 45
  ▼ How to Start a ttymon Port Monitor ......................................................................................... 46
  ▼ How to Disable a ttymon Port Monitor ..................................................................................... 46
  ▼ How to Enable a ttymon Port Monitor ...................................................................................... 46
  ▼ How to Remove a ttymon Port Monitor .................................................................................... 47
Administering ttymon services (Task Map) ........................................................................................ 47
Administering ttymon Services ........................................................................................................... 48
  ▼ How to Add a Service ............................................................................................................... 48
  ▼ How to View the Status of a TTY Port Service ........................................................................... 49
  ▼ How to Enable a Port Monitor Service ...................................................................................... 51
  ▼ How to Disable a Port Monitor Service ................................................................................... 51
Service Access Facility Administration (Reference) ........................................................................... 51
  Files Associated With the SAF ................................................................................................... 52
    /etc/saf/_sactab File .................................................................................................................. 52
    /etc/saf/pmtab/_pmtab File ....................................................................................................... 53
Contents

Service States .................................................................................................................. 54
Port Monitor States ........................................................................................................ 54
Port States ..................................................................................................................... 55

4 Managing System Resources (Overview) ................................................................. 57
What’s New in Managing System Resources? ............................................................ 57
prtconf Option to Display Product Names ................................................................ 57
Managing System Resources (Road Map) .................................................................... 58

5 Displaying and Changing System Information (Tasks) .......................................... 59
Displaying System Information (Task Map) ................................................................. 59
Displaying System Information .................................................................................... 60
▼ How to Determine Whether a System Has 32–bit or 64–Bit Solaris Capabilities Enabled ........................................................................................................... 61
▼ How to Display Solaris Release Information ............................................................ 64
▼ How to Display General System Information ......................................................... 64
▼ How to Display a System’s Host ID Number ......................................................... 65
▼ How to Display a System’s Product Name .............................................................. 65
▼ How to Display a System’s Installed Memory ........................................................ 66
▼ How to Display the Date and Time ........................................................................ 66
psrinfo Command Option to Identify Chip Multithreading Features ......................... 66
▼ How to Display a System’s Physical Processor Type .............................................. 67
▼ How to Display a System’s Logical Processor Type .............................................. 67
New localeadm Command ........................................................................................... 68
▼ How to Display Locales Installed on a System ...................................................... 68
▼ How to Determine if a Locale is Installed on a System .......................................... 69
Changing System Information (Task Map) ............................................................... 69
Changing System Information .................................................................................... 70
▼ How to Set a System’s Date and Time Manually .................................................... 70
▼ How to Set Up a Message-Of-The-Day ................................................................... 71
▼ How to Change a System’s Host Name ................................................................... 72
▼ How to Add a Locale to a System ........................................................................... 73
▼ How to Remove a Locale From a System ............................................................... 73
## Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changing and Removing Quotas</td>
<td>101</td>
</tr>
<tr>
<td>▼ How to Change the Soft Limit Default</td>
<td>101</td>
</tr>
<tr>
<td>▼ How to Change Quotas for a User</td>
<td>102</td>
</tr>
<tr>
<td>▼ How to Disable Quotas for a User</td>
<td>103</td>
</tr>
<tr>
<td>▼ How to Turn Off Quotas</td>
<td>104</td>
</tr>
<tr>
<td>8 <strong>Scheduling System Tasks (Tasks)</strong></td>
<td>107</td>
</tr>
<tr>
<td>Creating and Editing <code>crontab</code> Files (Task Map)</td>
<td>107</td>
</tr>
<tr>
<td>Ways to Automatically Execute System Tasks</td>
<td>108</td>
</tr>
<tr>
<td>For Scheduling Repetitive Jobs: <code>crontab</code></td>
<td>109</td>
</tr>
<tr>
<td>For Scheduling a Single Job: <code>at</code></td>
<td>109</td>
</tr>
<tr>
<td>Scheduling a Repetitive System Task (<code>cron</code>)</td>
<td>110</td>
</tr>
<tr>
<td>Inside a <code>crontab</code> File</td>
<td>110</td>
</tr>
<tr>
<td>How the <code>cron</code> Daemon Handles Scheduling</td>
<td>111</td>
</tr>
<tr>
<td>Syntax of <code>crontab</code> File Entries</td>
<td>112</td>
</tr>
<tr>
<td>Creating and Editing <code>crontab</code> Files</td>
<td>112</td>
</tr>
<tr>
<td>▼ How to Create or Edit a <code>crontab</code> File</td>
<td>113</td>
</tr>
<tr>
<td>▼ How to Verify That a <code>crontab</code> File Exists</td>
<td>114</td>
</tr>
<tr>
<td>Displaying <code>crontab</code> Files</td>
<td>114</td>
</tr>
<tr>
<td>▼ How to Display a <code>crontab</code> File</td>
<td>115</td>
</tr>
<tr>
<td>Removing <code>crontab</code> Files</td>
<td>116</td>
</tr>
<tr>
<td>▼ How to Remove a <code>crontab</code> File</td>
<td>116</td>
</tr>
<tr>
<td>Controlling Access to the <code>crontab</code> Command</td>
<td>117</td>
</tr>
<tr>
<td>▼ How to Deny <code>crontab</code> Command Access</td>
<td>118</td>
</tr>
<tr>
<td>▼ How to Limit <code>crontab</code> Command Access to Specified Users</td>
<td>118</td>
</tr>
<tr>
<td>How to Verify Limited <code>crontab</code> Command Access</td>
<td>119</td>
</tr>
<tr>
<td>Using the <code>at</code> Command (Task Map)</td>
<td>120</td>
</tr>
<tr>
<td>Scheduling a Single System Task (<code>at</code>)</td>
<td>121</td>
</tr>
<tr>
<td>Description of the <code>at</code> Command</td>
<td>121</td>
</tr>
<tr>
<td>Controlling Access to the <code>at</code> Command</td>
<td>122</td>
</tr>
<tr>
<td>▼ How to Create an <code>at</code> Job</td>
<td>122</td>
</tr>
<tr>
<td>▼ How to Display the <code>at</code> Queue</td>
<td>123</td>
</tr>
<tr>
<td>▼ How to Verify an <code>at</code> Job</td>
<td>123</td>
</tr>
<tr>
<td>▼ How to Display <code>at</code> Jobs</td>
<td>124</td>
</tr>
<tr>
<td>▼ How to Remove <code>at</code> Jobs</td>
<td>124</td>
</tr>
</tbody>
</table>
9 Managing System Accounting (Tasks) ................................................................. 127

What’s New in System Accounting ................................................................. 127
  Solaris Process Accounting and Statistics Improvements ................................ 127
What is System Accounting? ............................................................................ 128
  How System Accounting Works ..................................................................... 128
  System Accounting Components .................................................................. 128
System Accounting (Task Map) ...................................................................... 132
Setting Up System Accounting ...................................................................... 133
  ▼ How to Set Up System Accounting ............................................................. 133
Billing Users ...................................................................................................... 135
  ▼ How to Bill Users ..................................................................................... 136
Maintaining Accounting Information ............................................................. 136
  Fixing Corrupted Files and wtmpx Errors ..................................................... 136
  ▼ How to Fix a Corrupted wtmpx File .......................................................... 137
  Fixing tacct Errors ..................................................................................... 137
  ▼ How to Fix tacct Errors ............................................................................ 137
  Restarting the runacct Script ...................................................................... 138
  ▼ How to Restart the runacct Script ............................................................ 138
Stopping and Disabling System Accounting .................................................. 139
  ▼ How to Temporarily Stop System Accounting ........................................... 139
  ▼ How to Permanently Disable System Accounting ....................................... 140

10 System Accounting (Reference) ................................................................. 141

runacct Script ................................................................................................ 141
Daily Accounting Reports ............................................................................... 144
  Daily Report .................................................................................................. 144
  Daily Usage Report ...................................................................................... 145
  Daily Command Summary .......................................................................... 146
  Monthly Command Summary ..................................................................... 148
  Last Login Report ........................................................................................ 148
  Examining the pacct File With acctcom .................................................... 149
System Accounting Files ................................................................................ 151
11 Managing System Performance (Overview) .................................................. 155
What's New in Managing System Performance? .......................................... 155
  Enhanced pfiles Tool .................................................................................. 155
  CPU Performance Counters ....................................................................... 155
Where to Find System Performance Tasks .................................................. 156
System Performance and System Resources ................................................. 157
Processes and System Performance ............................................................... 157
About Monitoring System Performance ....................................................... 158
  Monitoring Tools ....................................................................................... 159

12 Managing System Processes (Tasks) ......................................................... 161
Managing System Processes (Task Map) ....................................................... 161
  Commands for Managing System Processes .............................................. 162
    Using the ps Command ........................................................................... 163
    Using the /proc File System and Commands .......................................... 164
    Managing Processes With Process Commands (/proc) ......................... 165
    ▼ How to List Processes .......................................................................... 165
    ▼ How to Display Information About Processes ................................... 167
    ▼ How to Control Processes ................................................................... 168
      Terminating a Process (pkill, kill) ....................................................... 169
      ▼ How to Terminate a Process (pkill) .................................................. 169
      ▼ How to Terminate a Process (kill) ..................................................... 170
      Debugging a Process (pargs, preap) .................................................... 171
  Managing Process Class Information (Task Map) ...................................... 172
    Changing the Scheduling Priority of Processes (priocntl) ..................... 173
      ▼ How to Display Basic Information About Process Classes (priocntl) .. 174
      ▼ How to Display the Global Priority of a Process ............................... 174
      ▼ How to Designate a Process Priority (priocntl) .................................. 175
      ▼ How to Change Scheduling Parameters of a Timesharing Process (priocntl) ................................................................. 176
      ▼ How to Change the Class of a Process (priocntl) .............................. 176
      Changing the Priority of a Timesharing Process (nice) ....................... 177
      ▼ How to Change the Priority of a Process (nice) ................................. 178
13 Monitoring System Performance (Tasks) ..................................................................................... 181
Displaying System Performance Information (Task Map) ............................................................... 181
Displaying Virtual Memory Statistics (vmstat) ................................................................................. 182
  ▼ How to Display Virtual Memory Statistics (vmstat) .............................................................. 183
  ▼ How to Display System Event Information (vmstat -s) ......................................................... 184
  ▼ How to Display Swapping Statistics (vmstat -S) .................................................................... 185
  ▼ How to Display Interrupts Per Device (vmstat -i) ............................................................. 185
Displaying Disk Utilization Information (iostat) ............................................................................. 186
  ▼ How to Display Disk Utilization Information (iostat) .......................................................... 186
  ▼ How to Display Extended Disk Statistics (iostat -xtc) ....................................................... 187
Displaying Disk Space Statistics (df) .............................................................................................. 188
  ▼ How to Display Disk Space Information (df -k) ................................................................... 188
Monitoring System Activities (Task Map) ........................................................................................ 189
Monitoring System Activities (sar) .................................................................................................. 191
  ▼ How to Check File Access (sar -a) ......................................................................................... 191
  ▼ How to Check Buffer Activity (sar -b) .................................................................................. 192
  ▼ How to Check System Call Statistics (sar -c) ........................................................................ 193
  ▼ How to Check Disk Activity (sar -d) ..................................................................................... 195
  ▼ How to Check Page-Out and Memory (sar -g) ................................................................. 196
    Checking Kernel Memory Allocation ......................................................................................... 198
  ▼ How to Check Kernel Memory Allocation (sar -k) ............................................................. 198
  ▼ How to Check Interprocess Communication (sar -m) ........................................................ 200
  ▼ How to Check Page-In Activity (sar -p) ................................................................................ 201
  ▼ How to Check Queue Activity (sar -q) .................................................................................. 202
  ▼ How to Check Unused Memory (sar -r) ............................................................................... 203
  ▼ How to Check CPU Utilization (sar -u) .............................................................................. 204
  ▼ How to Check System Table Status (sar -v) ......................................................................... 206
  ▼ How to Check Swapping Activity (sar -w) ......................................................................... 207
  ▼ How to Check Terminal Activity (sar -y) .............................................................................. 208
  ▼ How to Check Overall System Performance (sar -A) ......................................................... 209
Collecting System Activity Data Automatically (sar) ...................................................................... 210
  Running the sadc Command When Booting ............................................................................ 210
  Running the sadc Command Periodically With the sa1 Script ................................................ 210
Managing Core Files Overview ...................................................................................................... 232
  Configurable Core File Paths .................................................................................................... 232
  Expanded Core File Names ....................................................................................................... 232
  Setting the Core File Name Pattern .......................................................................................... 233
  Enabling setuid Programs to Produce Core Files ...................................................................... 234
  How to Display the Current Core Dump Configuration .............................................................. 234
▼ How to Set a Core File Name Pattern ....................................................................................... 235
▼ How to Enable a Per-Process Core File Path ........................................................................... 235
▼ How to Enable a Global Core File Path .................................................................................... 235
Troubleshooting Core File Problems .............................................................................................. 236
Examing Core Files ........................................................................................................................ 236

17 Managing System Crash Information (Tasks) ........................................................................ 239
Managing System Crash Information (Task Map) ........................................................................ 239
System Crashes (Overview) ............................................................................................................. 240
  ZFS Support for Swap Devices ................................................................................................... 240
  x86: System Crashes in the GRUB Boot Environment ................................................................ 240
  System Crash Dump Files ......................................................................................................... 241
  Saving Crash Dumps ................................................................................................................ 241
  The dumpadm Command ......................................................................................................... 242
  How the dumpadm Command Works ........................................................................................ 243
  Dump Devices and Volume Managers ....................................................................................... 243
Managing System Crash Dump Information .................................................................................. 243
▼ How to Display the Current Crash Dump Configuration ........................................................... 243
▼ How to Modify a Crash Dump Configuration .......................................................................... 244
▼ How to Examine a Crash Dump ............................................................................................... 245
▼ How to Recover From a Full Crash Dump Directory (Optional) .............................................. 246
▼ How to Disable or Enable Saving Crash Dumps ...................................................................... 247

18 Troubleshooting Miscellaneous Software Problems (Tasks) ..................................................... 249
x86: What to Do if the Multiboot Module From Previous GRUB Implementation Is Loaded at Boot Time ...................................................................................................................... 249
What to Do if Rebooting Fails ..................................................................................................... 250
What to Do if You Forgot Root Password .................................................................................... 251
x86: What to Do if the SMF Boot Archive Service Fails During a System Reboot ......................... 254
What to Do if a System Hangs ......................................................................................................... 255
What to Do if a File System Fills Up ............................................................................................... 256
  File System Fills Up Because a Large File or Directory Was Created ....................................... 256
  A TMPFS File System is Full Because the System Ran Out of Memory ..................................... 257
What to Do if File ACLs Are Lost After Copy or Restore ............................................................. 257
Troubleshooting Backup Problems ............................................................................................... 257
  The root (/) File System Fills Up After You Back Up a File System ........................................... 257
  Make Sure the Backup and Restore Commands Match ............................................................ 258
  Check to Make Sure You Have the Right Current Directory ..................................................... 258
  Interactive Commands ............................................................................................................... 258
Troubleshooting Common Agent Container Problems in the Solaris OS ................................. 259
  Port Number Conflicts ................................................................................................................. 259
  ▼ How to Check Port Numbers .................................................................................................... 259
  Compromised Security for Superuser Password ........................................................................ 260
  ▼ How to Generate Security Keys for the Solaris OS ................................................................. 260

19 Troubleshooting File Access Problems (Tasks) ........................................................................ 261
Solving Problems With Search Paths (Command not found) .......................................................... 261
  ▼ How to Diagnose and Correct Search Path Problems ............................................................. 262
Solving File Access Problems ....................................................................................................... 264
  Changing File and Group Ownerships ......................................................................................... 264
Recognizing Problems With Network Access ............................................................................... 264

20 Resolving UFS File System Inconsistencies (Tasks) .................................................................. 265
New fsck Error Messages ................................................................................................................. 265
fsck Error Messages ........................................................................................................................ 266
  General fsck Error Messages ...................................................................................................... 267
  Initialization Phase fsck Messages .............................................................................................. 269
  Phase 1: Check Blocks and Sizes Messages .............................................................................. 272
Solaris 10: Phase 1B: Rescan for More DUPs Messages ............................................................... 276
  Phase 1B: Rescan for More DUPs Messages ............................................................................. 277
  Phase 2: Check Path Names Messages ....................................................................................... 277
  Phase 3: Check Connectivity Messages ...................................................................................... 284
  Phase 4: Check Reference Counts Messages ............................................................................. 286
  Phase 5: Check Cylinder Groups Messages ............................................................................... 289
Contents

Phase 5: Check Cylinder Groups Messages ................................................................. 290
fsck Summary Messages .............................................................................................. 291
Cleanup Phase Messages ............................................................................................ 292

21 Troubleshooting Software Package Problems (Tasks) ........................................... 293
Troubleshooting Software Package Symbolic Link Problems .................................... 293
Specific Software Package Installation Errors ......................................................... 294
General Software Package Installation Problems .................................................... 295

Index ...................................................................................................................... 297
Preface

System Administration Guide: Advanced Administration is part of a set that covers a significant part of the Solaris™ system administration information. This guide includes information for both SPARC® and x86 based systems.

This book assumes that you have installed the SunOS™ Solaris Operating System. It also assumes that you have set up any networking software that you plan to use. The SunOS Solaris Operating System is part of the Solaris product family, which also includes many features, including the GNOME Desktop Environment. The SunOS Solaris Operating System is compliant with AT&T’s System V, Release 4 operating system.

For the Solaris release, new features that are interesting to system administrators are covered in sections called What's New in ...? in the appropriate chapters.

Note – This Solaris release supports systems that use the SPARC and x86 families of processor architectures: UltraSPARC®, SPARC64, AMD64, Pentium, and Xeon EM64T. The supported systems appear in the Solaris 10 Hardware Compatibility List at http://www.sun.com/bigadmin/hcl. This document cites any implementation differences between the platform types.

In this document these x86 related terms mean the following:

- “x86” refers to the larger family of 64-bit and 32-bit x86 compatible products.
- “x64” points out specific 64-bit information about AMD64 or EM64T systems.
- “32-bit x86” points out specific 32-bit information about x86 based systems.

For supported systems, see the Solaris 10 Hardware Compatibility List.

Who Should Use This Book

This book is intended for anyone responsible for administering one or more systems that are running the Solaris release. To use this book, you should have 1-2 years of UNIX® system administration experience. Attending UNIX system administration training courses might be helpful.
## How the System Administration Volumes Are Organized

Here is a list of the topics that are covered by the volumes of the System Administration Guides.

<table>
<thead>
<tr>
<th>Book Title</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Administration Guide: Basic Administration</td>
<td>User accounts and groups, server and client support, shutting down and booting a system, managing services, and managing software (packages and patches)</td>
</tr>
<tr>
<td>System Administration Guide: Advanced Administration</td>
<td>Terminals and modems, system resources (disk quotas, accounting, and crontabs), system processes, and troubleshooting Solaris software problems</td>
</tr>
<tr>
<td>System Administration Guide: Devices and File Systems</td>
<td>Removable media, disks and devices, file systems, and backing up and restoring data</td>
</tr>
<tr>
<td>System Administration Guide: IP Services</td>
<td>TCP/IP network administration, IPv4 and IPv6 address administration, DHCP, IPSec, IKE, Solaris IP filter, Mobile IP, IP network multipathing (IPMP), and IPQoS</td>
</tr>
<tr>
<td>System Administration Guide: Naming and Directory Services</td>
<td>DNS, NIS, and LDAP naming and directory services, including transitioning from NIS to LDAP and transitioning from NIS+ to LDAP</td>
</tr>
<tr>
<td>System Administration Guide: Naming and Directory Services (NIS+)</td>
<td>NIS+ naming and directory services</td>
</tr>
<tr>
<td>System Administration Guide: Network Services</td>
<td>Web cache servers, time-related services, network file systems (NFS and Autofs), mail, SLP, and PPP</td>
</tr>
<tr>
<td>System Administration Guide: Solaris Printing</td>
<td>Solaris printing topics and tasks, using services, tools, protocols, and technologies to set up and administer printing services and printers</td>
</tr>
<tr>
<td>System Administration Guide: Security Services</td>
<td>Auditing, device management, file security, BART, Kerberos services, PAM, Solaris Cryptographic Framework, privileges, RBAC, SASL, and Solaris Secure Shell</td>
</tr>
<tr>
<td>System Administration Guide: Virtualization Using the Solaris Operating System</td>
<td>Resource management features, which enable you to control how applications use available system resources; zones software partitioning technology, which virtualizes operating system services to create an isolated environment for running applications; and virtualization using Sun® xVM hypervisor technology, which supports multiple operating system instances simultaneously</td>
</tr>
<tr>
<td>Solaris CIFS Administration Guide</td>
<td>Solaris CIFS service, which enables you to configure a Solaris system to make CIFS shares available to CIFS clients; and native identity mapping services, which enables you to map user and group identities between Solaris systems and Windows systems</td>
</tr>
</tbody>
</table>
### Related Third-Party Web Site References

**Note** – Sun is not responsible for the availability of third-party web sites mentioned in this document. Sun does not endorse and is not responsible or liable for any content, advertising, products, or other materials that are available on or through such sites or resources. Sun will not be responsible or liable for any actual or alleged damage or loss caused by or in connection with the use of or reliance on any such content, goods, or services that are available on or through such sites or resources.

### Documentation, Support, and Training

The Sun web site provides information about the following additional resources:


### Typographic Conventions

The following table describes the typographic conventions that are used in this book.

<table>
<thead>
<tr>
<th>Typeface</th>
<th>Meaning</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>AaBbCc123</td>
<td>The names of commands, files, and directories, and onscreen computer output</td>
<td>Edit your .login file. Use <code>ls -a</code> to list all files. <code>machine_name</code> you have mail.</td>
</tr>
</tbody>
</table>
### Typographic Conventions (Continued)

<table>
<thead>
<tr>
<th>Typeface</th>
<th>Meaning</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>AaBbCc123</strong></td>
<td>What you type, contrasted with onscreen computer output</td>
<td><code>machine_name% su</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>Password:</code></td>
</tr>
<tr>
<td><strong>aabcc123</strong></td>
<td>Placeholder: replace with a real name or value</td>
<td>The command to remove a file is <code>rm filename</code>.</td>
</tr>
<tr>
<td><strong>AaBbCc123</strong></td>
<td>Book titles, new terms, and terms to be emphasized</td>
<td>Read Chapter 6 in the <em>User's Guide</em>.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>A cache</em> is a copy that is stored locally.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>Do not</em> save the file.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Note:</strong> Some emphasized items appear bold online.</td>
</tr>
</tbody>
</table>

### Shell Prompts in Command Examples

The following table shows the default UNIX system prompt and superuser prompt for the C shell, Bourne shell, and Korn shell.

<table>
<thead>
<tr>
<th>Shell</th>
<th>Prompt</th>
</tr>
</thead>
<tbody>
<tr>
<td>C shell</td>
<td><code>machine_name%</code></td>
</tr>
<tr>
<td>C shell for superuser</td>
<td><code>machine_name#</code></td>
</tr>
<tr>
<td>Bourne shell and Korn shell</td>
<td><code>$</code></td>
</tr>
<tr>
<td>Bourne shell and Korn shell</td>
<td><code>#</code></td>
</tr>
</tbody>
</table>

### General Conventions

Be aware of the following conventions that are used in this book.

- When following steps or using examples, be sure to type double-quotes ("), left single-quotes (’), and right single-quotes (‘) exactly as shown.
- The key referred to as Return is labeled Enter on some keyboards.
- It is assumed that the root path includes the `/sbin`, `/usr/sbin`, `/usr/bin`, and `/etc` directories, so the steps in this book show the commands in these directories without absolute path names. Steps that use commands in other, less common directories show the absolute path in the example.
The examples in this book are for a basic SunOS Solaris software installation without the Binary Compatibility Package installed and without /usr/ucb in the path.

Caution – If /usr/ucb is included in a search path, it should always be at the end of the search path. Commands like ps or df are duplicated in /usr/ucb with different formats and different options from the SunOS Solaris commands.
Managing Terminals and Modems (Overview)

This chapter provides overview information for managing terminals and modems.

This is a list of the overview information in this chapter:

- “What’s New in Managing Terminals and Modems?” on page 21
- “Terminals, Modems, Ports, and Services” on page 23
- “Tools for Managing Terminals and Modems” on page 25
- “Serial Ports Tool” on page 25
- “Service Access Facility” on page 25

For step-by-step instructions on how to set up terminals and modems with the Serial Ports tool, see Chapter 2, “Setting Up Terminals and Modems (Tasks).”

For step-by-step instructions on how to set up terminals and modems with the Service Access Facility (SAF), see Chapter 3, “Managing Serial Ports With the Service Access Facility (Tasks).”

What’s New in Managing Terminals and Modems?

This section describes new or changed features for managing terminals and modems in the Solaris release.

SPARC: Coherent Console

Solaris 10 8/07: The coherent console subsystem feature implements a part of the kernel console subsystem to facilitate rendering console output. The coherent console uses the Solaris kernel mechanisms to render console output rather than Programmable Read-Only Memory (PROM) interfaces. This reduces the console rendering dependence on the OpenBoot PROM (OBP). The coherent console uses a kernel-resident framebuffer driver to generate console output. The generated console output is more efficient than using OBP rendering. The coherent console also avoids idling CPUs during the SPARC console output and enhances the user experience.
SPARC: Changes to How $TERM Value for Console Is Set

Solaris 10 8/07: The $TERM value is now dynamically derived and depends on the terminal emulator that the console is using. On x86 based systems, the $TERM value is sun-color because the kernel’s terminal emulator is always used.

On SPARC based systems the $TERM value is as follows:

- sun-color        This value is used for $TERM if the system uses the kernel’s terminal emulator.
- sun              This value is used for $TERM if the system uses the PROM’s terminal emulator.

This change does not impact how the terminal type is set for the serial port. You can still use the svccfg command to modify the $TERM value, as shown in the following example:

```
# svccfg
svc:> select system/console-login
svc:/system/console-login> setprop ttymon/terminal_type = "xterm"
svc:/system/console-login> exit
```

**ttymon Invocations on the System Console Managed by SMF**

Solaris 10: ttymon invocations on the system console are managed by SMF. The addition of properties to the svc:/system/console-login:default service enables you to specify ttymon command arguments with the svccfg command. Note that these properties are specific to ttymon, not generic SMF properties.

**Note** – You can no longer customize the ttymon invocation in the /etc/inittab file.

For step-by-step instructions on how to specify ttymon command arguments with SMF, see "How to Set the ttymon Console Terminal Type" on page 42.

For a complete overview of SMF, see Chapter 16, “Managing Services (Overview),” in System Administration Guide: Basic Administration. For information on the step-by-step procedures that are associated with SMF, see Chapter 17, “Managing Services (Tasks),” in System Administration Guide: Basic Administration.
Terminals, Modems, Ports, and Services

Terminals and modems provide both local and remote access to system and network resources. Setting up terminals and modem access is an important responsibility of a system administrator. This section explains some of the concepts behind modem and terminal management in the Solaris Operating System.

Terminal Description

Your system’s bitmapped graphics display is not the same as an alphanumeric terminal. An alphanumeric terminal connects to a serial port and displays only text. You don’t have to perform any special steps to administer the graphics display.

Modem Description

Modems can be set up in three basic configurations:
- Dial-out
- Dial-in
- Bidirectional

A modem connected to your home computer might be set up to provide dial-out service. With dial-out service, you can access other computers from your own home. However, nobody outside can gain access to your machine.

Dial-in service is just the opposite. Dial-in service allows people to access a system from remote sites. However, it does not permit calls to the outside world.

Bidirectional access, as the name implies, provides both dial-in and dial-out capabilities.

Ports Description

A port is a channel through which a device communicates with the operating system. From a hardware perspective, a port is a “receptacle” into which a terminal or modem cable might be physically connected.

However, a port is not strictly a physical receptacle, but an entity with hardware (pins and connectors) and software (a device driver) components. A single physical receptacle often provides multiple ports, allowing connection of two or more devices.

Common types of ports include serial, parallel, small computer systems interface (SCSI), and Ethernet.
A serial port, using a standard communications protocol, transmits a byte of information bit-by-bit over a single line.

Devices that have been designed according to RS-232-C or RS-423 standards, this include most modems, alphanumeric terminals, plotters, and some printers. These devices can be connected interchangeably, using standard cables, into serial ports of computers that have been similarly designed.

When many serial port devices must be connected to a single computer, you might need to add an adapter board to the system. The adapter board, with its driver software, provides additional serial ports for connecting more devices than could otherwise be accommodated.

**Services Description**

Modems and terminals gain access to computing resources by using serial port software. Serial port software must be set up to provide a particular “service” for the device attached to the port. For example, you can set up a serial port to provide bidirectional service for a modem.

**Port Monitors**

The main mechanism for gaining access to a service is through a port monitor. A port monitor is a program that continuously monitors for requests to log in or access printers or files.

When a port monitor detects a request, it sets whatever parameters are required to establish communication between the operating system and the device requesting service. Then, the port monitor transfers control to other processes that provide the services needed.

The following table describes the two types of port monitors included in the Solaris Operating System.

<table>
<thead>
<tr>
<th>Man Page</th>
<th>Port Monitor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>listen(IM)</td>
<td>listen</td>
<td>Controls access to network services, such as handling remote print requests prior to the Solaris 2.6 release. The default Solaris Operating System no longer uses this port monitor type.</td>
</tr>
<tr>
<td>ttymon(IM)</td>
<td>ttymon</td>
<td>Provides access to the login services needed by modems and alphanumeric terminals. The Serial Ports tool automatically sets up a ttymon port monitor to process login requests from these devices.</td>
</tr>
</tbody>
</table>
You might be familiar with an older port monitor called getty. The new ttymon port monitor is more powerful. A single ttymon port monitor can replace multiple occurrences of getty. Otherwise, these two programs serve the same function. For more information, see the getty(1M) man page.

## Tools for Managing Terminals and Modems

The following table lists the tools for managing terminals and modems.

**TABLE 1–2 Tools For Managing Terminals and Modems**

<table>
<thead>
<tr>
<th>Managing Terminals and Modems Method</th>
<th>Tool</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>The most comprehensive</td>
<td>Service Access Facility (SAF) commands</td>
<td>&quot;Service Access Facility&quot; on page 25</td>
</tr>
<tr>
<td>The quickest setup</td>
<td>Solaris Management Console's Serial Ports tool</td>
<td>Chapter 2, “Setting Up Terminals and Modems (Tasks),” and Solaris Management Console online help</td>
</tr>
</tbody>
</table>

### Serial Ports Tool

The Serial Ports tool sets up the serial port software to work with terminals and modems by calling the `pmadm` command with the appropriate information.

The tool also provides the following:

- Templates for common terminal and modem configurations
- Multiple port setup, modification, or deletion
- Quick visual status of each port

### Service Access Facility

The SAF is the tool used for administering terminals, modems, and other network devices.

In particular, the SAF enables you to set up the following:

- `ttymon` and `listen` port monitors by using the `sacadm` command
- `ttymon` port monitor services by using the `pmadm` and `ttyadm` commands
- `listen` port monitor services by using the `pmadm` and `nlsadmin` commands
- Troubleshoot `tty` devices
- Troubleshoot incoming network requests for printing service
Troubleshoot the Service Access Controller by using the `sacadm` command

The SAF is an open-systems solution that controls access to system and network resources through `tty` devices and local-area networks (LANs). The SAF is not a program, but a hierarchy of background processes and administrative commands.
This chapter provides step-by-step instructions for setting up terminals and modems using Solaris Management Console’s Serial Ports tool.

For overview information about terminals and modems, see Chapter 1, “Managing Terminals and Modems (Overview).” For overview information about managing system resources, see Chapter 4, “Managing System Resources (Overview).”

For information about the procedures associated with setting up terminals and modems using Solaris Management Console’s Serial Ports tool, see “Setting Terminals and Modems (Task Map)” on page 27
Setting Up Terminals and Modems With Serial Ports Tool (Overview)

You can set up serial ports with the Solaris Management Console’s Serial Ports tool.

Select a serial port from the Serial Ports window and then choose a Configure option from the Action menu to configure the following:

- Terminal
- Modem – Dial–In
- Modem – Dial–Out
- Modem – Dial–In/Dial–Out
- Initialize Only – No Connection

The Configure options provide access to the templates for configuring these services. You can view two levels of detail for each serial port: Basic and Advanced. You can access the Advanced level of detail for each serial port after it is configured by selecting the serial port and selecting the Properties option from the Action menu. After a serial port is configured, you can disable or enable the port with the SAF commands. For information on using the SAF commands, see Chapter 3, “Managing Serial Ports With the Service Access Facility (Tasks).”

For information on using the Serial Ports command–line interface, see the smserialport(1M) man page.

Setting Up Terminals

The following table describes the menu items (and their default values) when you set up a terminal by using the Serial Ports tool.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialize a port.</td>
<td>To initialize a port, use the Solaris Management Console Serial Ports tool. Choose the appropriate option from the Action menu.</td>
<td>&quot;How to Initialize a Port&quot; on page 32</td>
</tr>
</tbody>
</table>

Setting Up Terminals and Modems With Serial Ports Tool

You can set up serial ports with the Solaris Management Console’s Serial Ports tool.

Select a serial port from the Serial Ports window and then choose a Configure option from the Action menu to configure the following:

- Terminal
- Modem – Dial–In
- Modem – Dial–Out
- Modem – Dial–In/Dial–Out
- Initialize Only – No Connection

The Configure options provide access to the templates for configuring these services. You can view two levels of detail for each serial port: Basic and Advanced. You can access the Advanced level of detail for each serial port after it is configured by selecting the serial port and selecting the Properties option from the Action menu. After a serial port is configured, you can disable or enable the port with the SAF commands. For information on using the SAF commands, see Chapter 3, “Managing Serial Ports With the Service Access Facility (Tasks).”

For information on using the Serial Ports command–line interface, see the smserialport(1M) man page.

Setting Up Terminals

The following table describes the menu items (and their default values) when you set up a terminal by using the Serial Ports tool.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialize a port.</td>
<td>To initialize a port, use the Solaris Management Console Serial Ports tool. Choose the appropriate option from the Action menu.</td>
<td>&quot;How to Initialize a Port&quot; on page 32</td>
</tr>
</tbody>
</table>

Setting Up Terminals and Modems With Serial Ports Tool

You can set up serial ports with the Solaris Management Console’s Serial Ports tool.

Select a serial port from the Serial Ports window and then choose a Configure option from the Action menu to configure the following:

- Terminal
- Modem – Dial–In
- Modem – Dial–Out
- Modem – Dial–In/Dial–Out
- Initialize Only – No Connection

The Configure options provide access to the templates for configuring these services. You can view two levels of detail for each serial port: Basic and Advanced. You can access the Advanced level of detail for each serial port after it is configured by selecting the serial port and selecting the Properties option from the Action menu. After a serial port is configured, you can disable or enable the port with the SAF commands. For information on using the SAF commands, see Chapter 3, “Managing Serial Ports With the Service Access Facility (Tasks).”

For information on using the Serial Ports command–line interface, see the smserialport(1M) man page.

Setting Up Terminals

The following table describes the menu items (and their default values) when you set up a terminal by using the Serial Ports tool.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialize a port.</td>
<td>To initialize a port, use the Solaris Management Console Serial Ports tool. Choose the appropriate option from the Action menu.</td>
<td>&quot;How to Initialize a Port&quot; on page 32</td>
</tr>
</tbody>
</table>
Setting Up Terminals and Modems With Serial Ports Tool (Overview)

### Setting Up Terminals and Modems

The following table describes the three modem templates that are available when you set up a modem using the Serial Ports tool.

**TABLE 2–2  Modem Templates**

<table>
<thead>
<tr>
<th>Modem Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dial-In Only</td>
<td>Users can dial in to the modem but cannot dial out.</td>
</tr>
<tr>
<td>Dial-Out Only</td>
<td>Users can dial out from the modem but cannot dial in.</td>
</tr>
<tr>
<td>Dial-In and Out (Bidirectional)</td>
<td>Users can either dial in or dial out from the modem.</td>
</tr>
</tbody>
</table>

The following table describes the default values of each template.

**TABLE 2–3  Modem Template Default Values**

<table>
<thead>
<tr>
<th>Detail</th>
<th>Item</th>
<th>Modem - Dial-In Only</th>
<th>Modem - Dial-Out Only</th>
<th>Modem - Dial In and Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td>Port Name</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Description</td>
<td>Modem – Dial In Only</td>
<td>Modem – Dial Out Only</td>
<td>Modem – Dial In and Out</td>
</tr>
<tr>
<td></td>
<td>Service Status</td>
<td>Enabled</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

---

**TABLE 2–1  Terminal Default Values (Continued)**

<table>
<thead>
<tr>
<th>Detail</th>
<th>Item</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td>Service Status</td>
<td>Enabled</td>
</tr>
<tr>
<td></td>
<td>Baud Rate</td>
<td>9600</td>
</tr>
<tr>
<td></td>
<td>Terminal Type</td>
<td>vi925</td>
</tr>
<tr>
<td></td>
<td>Login Prompt</td>
<td>ttyn login:</td>
</tr>
<tr>
<td>Advanced</td>
<td>Carrier Detection</td>
<td>Software</td>
</tr>
<tr>
<td></td>
<td>Option: Connect on Carrier</td>
<td>Not available</td>
</tr>
<tr>
<td></td>
<td>Option: Bidirectional</td>
<td>Available</td>
</tr>
<tr>
<td></td>
<td>Option: Initialize Only</td>
<td>Not available</td>
</tr>
<tr>
<td></td>
<td>Timeout (seconds)</td>
<td>Never</td>
</tr>
<tr>
<td></td>
<td>Port Monitor</td>
<td>zsmon</td>
</tr>
<tr>
<td></td>
<td>Service Program</td>
<td>/usr/bin/login</td>
</tr>
</tbody>
</table>
TABLE 2–3  Modem Template Default Values  (Continued)

<table>
<thead>
<tr>
<th>Detail</th>
<th>Item</th>
<th>Modem - Dial-In Only</th>
<th>Modem - Dial-Out Only</th>
<th>Modem - Dial In and Out</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baud Rate</td>
<td>9600</td>
<td>9600</td>
<td>9600</td>
</tr>
<tr>
<td></td>
<td>Login Prompt</td>
<td>ttyn login:</td>
<td>ttyn login:</td>
<td>ttyn login:</td>
</tr>
<tr>
<td></td>
<td>Carrier Detection</td>
<td>Software</td>
<td>Software</td>
<td>Software</td>
</tr>
<tr>
<td>Advanced</td>
<td>Option: Connect on Carrier</td>
<td>Not available</td>
<td>Not available</td>
<td>Not available</td>
</tr>
<tr>
<td></td>
<td>Option: Bidirectional</td>
<td>Not available</td>
<td>Not available</td>
<td>Available</td>
</tr>
<tr>
<td></td>
<td>Option: Initialize Only</td>
<td>Not available</td>
<td>Available</td>
<td>Not available</td>
</tr>
<tr>
<td></td>
<td>Timeout (seconds)</td>
<td>Never</td>
<td>Never</td>
<td>Never</td>
</tr>
<tr>
<td></td>
<td>Port Monitor</td>
<td>zsmon</td>
<td>zsmon</td>
<td>zsmon</td>
</tr>
<tr>
<td></td>
<td>Service Program</td>
<td>/usr/bin/login</td>
<td>/usr/bin/login</td>
<td>/usr/bin/login</td>
</tr>
</tbody>
</table>

The following table describes the default values for the Initialize Only template.

TABLE 2–4  Initialize Only - No Connection Default Values

<table>
<thead>
<tr>
<th>Detail</th>
<th>Item</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td>Port Name</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Description</td>
<td>Initialize Only - No Connection</td>
</tr>
<tr>
<td></td>
<td>Service Status</td>
<td>Enabled</td>
</tr>
<tr>
<td></td>
<td>Baud Rate</td>
<td>9600</td>
</tr>
<tr>
<td></td>
<td>Login Prompt</td>
<td>ttyn login:</td>
</tr>
<tr>
<td>Advanced</td>
<td>Carrier Detection</td>
<td>Software</td>
</tr>
<tr>
<td></td>
<td>Option: Connect on Carrier</td>
<td>Not available</td>
</tr>
<tr>
<td></td>
<td>Option: Bidirectional</td>
<td>Available</td>
</tr>
<tr>
<td></td>
<td>Option: Initialize Only</td>
<td>Available</td>
</tr>
<tr>
<td></td>
<td>Timeout (seconds)</td>
<td>Never</td>
</tr>
<tr>
<td></td>
<td>Port Monitor</td>
<td>zsmon</td>
</tr>
<tr>
<td></td>
<td>Service Program</td>
<td>/usr/bin/login</td>
</tr>
</tbody>
</table>
How to Set Up a Terminal, a Modem, and Initialize a Port (Tasks)

▼ How to Set Up a Terminal

1. Start the Solaris Management Console, if it’s not already running.
   
   ```
   % /usr/sadm/bin/smc &
   ```
   
   For information on starting the Solaris Management Console, see “Starting the Solaris Management Console” in System Administration Guide: Basic Administration.

2. Click This Computer icon in the Navigation pane.

3. Click Devices and Hardware —> Serial Ports.
   
   The Serial Ports menu is displayed.

4. Select the port that will be used with a terminal.

5. Choose Configure —> Terminal from the Action menu.
   
   The Configure Serial Port window is displayed in Basic Detail mode.
   
   For a description of the Terminal menu items, see Table 2–1.

6. Click OK.

7. To configure the advanced items, select the port configured as a terminal. Then, select Properties from the Action menu.

8. Change the values of template entries, if desired.

9. Click OK to configure the port.

10. Verify that the terminal service has been added.

   ```
   $ pmadm -l -s ttyr
   ```

▼ How to Set Up a Modem

1. Start the Solaris Management Console, if it’s not already running.
   
   ```
   % /usr/sadm/bin/smc &
   ```
For information on starting the Solaris Management Console, see “Starting the Solaris Management Console” in *System Administration Guide: Basic Administration*.

2 **Click This Computer icon in the Navigation pane.**

3 **Click Devices and Hardware—>Serial Ports.**
   The Serial Ports menu is displayed.

4 **Select the port that will be used with a modem.**

5 **Choose one of the following Configure options from the Action menu.**
   a. **Configure—>Modem (Dial In)**
   b. **Configure—>Modem (Dial Out)**
   c. **Configure—>Modem (Dial In/Out)**
   The Configure Serial Port window is displayed in Basic Detail mode.
   For a description of the Modem menu items, see Table 2–3.

6 **Click OK.**

7 **To configure the advanced items, select the port configured as a modem. Then, select Properties from the Action menu.**

8 **Change the values of template entries, if desired.**

9 **Click OK to configure the port.**

10 **Verify that the modem service has been configured.**

   $ pmadm -l -s ttyn

▼ **How to Initialize a Port**

1 **Start the Solaris Management Console, if it’s not already running.**

   % /usr/sadm/bin/smc &

   For information on starting the Solaris Management Console, see “Starting the Solaris Management Console” in *System Administration Guide: Basic Administration*.

2 **Click This Computer icon in the Navigation pane.**
3 Click Devices and Hardware—>Serial Ports.
The Serial Ports menu is displayed.

4 Select the port to be initialized.

5 Choose Configure—>Initialize Only – No Connection
   The Serial Port window is displayed in Basic Detail mode.
   For a description of the Initialize Only menu items, see Table 2–4.

6 Click OK.

7 To configure the advanced items, select the port configured as initialize only. Then, select Properties from the Action menu.

8 Change the values of template entries, if desired.

9 Click OK to configure the port.

10 Verify that the modem service has been initialized.
   $ pmadm -l -s tty

Troubleshooting Terminal and Modem Problems

If users are unable to log in over serial port lines after you have added a terminal or modem and set up the proper services, consider the following possible causes of failure:

- Check with the user.
  Malfunctions in terminals and modem use are typically reported by a user who has failed to log in or dial in. For this reason, begin troubleshooting by checking for a problem on the desktop.

Some common reasons for login failure include:
- Login ID or password is incorrect
- Terminal is waiting for X-ON flow control key (Control-Q)
- Serial cable is loose or unplugged
- Terminal configuration is incorrect
- Terminal is shut off or otherwise has no power

- Check the terminal.
  Continue to troubleshoot by checking the configuration of the terminal or modem. Determine the proper ttylabel for communicating with the terminal or modem. Verify that the terminal or modem settings match the ttylabel settings.
Check the terminal server.

If the terminal checks out, continue to search for the source of the problem on the terminal or modem server. Use the pmadm command to verify that a port monitor has been configured to service the terminal or modem and that it has the correct ttylabel associated with it. For example:

```
$ pmadm -l -t ttymon
```

Examine the `/etc/ttydefs` file and double-check the label definition against the terminal configuration. Use the sacadm command to check the port monitor’s status. Use pmadm to check the service associated with the port the terminal uses.

Check the serial connection.

If the Service Access Controller is starting the TTY port monitor and the following is true:

- The `pmadm` command reports that the service for the terminal’s port is enabled.
- The terminal’s configuration matches the port monitor’s configuration.

Then, continue to search for the problem by checking the serial connection. A serial connection comprises serial ports, cables, and terminals. Test each of these parts by using one part with two other parts that are known to be reliable.

Test all of the following:

- Serial ports
- Modems
- Cables
- Connectors

Do not use the Serial Ports tool to modify serial port settings if the serial port is being used as a console. Starting with the Solaris 10 release, invocations of `ttymon` for the console are managed by SMF. For step-by-step instructions on how to change the console terminal type, see “How to Set the `ttymon` Console Terminal Type” on page 42.

For more information on `ttymon` and SMF, see “What’s New in Managing Terminals and Modems?” on page 21.
Managing Serial Ports With the Service Access Facility (Tasks)

This chapter describes how to manage serial port services using the Service Access Facility (SAF).

Also included in this chapter is information on how to perform console administration with the Service Management Facility (SMF).

Note - The SAF and SMF are two different tools in the Solaris OS. Starting with the Solaris 10 release, ttymon invocations on the system console are now managed by SMF. The SAF tool is still used to administer terminals, modems, and other network devices.

This is a list of the overview information in this chapter.

- “Using the Service Access Facility” on page 36
- “Overall SAF Administration (sacadm)” on page 37
- “Port Monitor Service Administration (pmon)” on page 38
- “TTY Monitor and Network Listener Port Monitors” on page 40

For information on the step-by-step procedures that are associated with managing serial ports, see the following:

- “Managing Serial Ports (Task Map)” on page 36
- “Administering ttymon services (Task Map)” on page 47

For reference information about the SAF, see “Service Access Facility Administration (Reference)” on page 51.
Managing Serial Ports (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perform console administration.</td>
<td>You might need to perform the following console administration tasks:</td>
<td>“How to Set the ttymon Console Terminal Type” on page 42</td>
</tr>
<tr>
<td></td>
<td>■ Set the ttymon console terminal type. Starting with the Solaris 10</td>
<td>“How to Set the Baud Rate Speed on the ttymon Console Terminal” on page 43</td>
</tr>
<tr>
<td></td>
<td>release, you must use the svccfg command to specify the ttymon console</td>
<td></td>
</tr>
<tr>
<td></td>
<td>terminal type.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ Set the ttymon console terminal baud rate speed.</td>
<td></td>
</tr>
<tr>
<td>Add a ttymon port monitor.</td>
<td>Use the sacadm command to add a ttymon port monitor.</td>
<td>“How to Add a ttymon Port Monitor” on page 44</td>
</tr>
<tr>
<td>View a ttymon port monitor status.</td>
<td>Use the sacadm command to view ttymon port monitor status.</td>
<td>“How to View ttymon Port Monitor Status” on page 44</td>
</tr>
<tr>
<td>Stop a ttymon port monitor.</td>
<td>Use the sacadm command to stop a ttymon port monitor.</td>
<td>“How to Stop a ttymon Port Monitor” on page 45</td>
</tr>
<tr>
<td>Start a ttymon port monitor.</td>
<td>Use the sacadm command to start a ttymon port monitor.</td>
<td>“How to Start a ttymon Port Monitor” on page 46</td>
</tr>
<tr>
<td>Disable a ttymon port monitor.</td>
<td>Use the sacadm command to disable a ttymon port monitor.</td>
<td>“How to Disable a ttymon Port Monitor” on page 46</td>
</tr>
<tr>
<td>Enable a ttymon port monitor.</td>
<td>Use the sacadm command to enable a ttymon port monitor.</td>
<td>“How to Enable a ttymon Port Monitor” on page 46</td>
</tr>
<tr>
<td>Remove a ttymon port monitor.</td>
<td>Use the sacadm command to remove a ttymon port monitor.</td>
<td>“How to Remove a ttymon Port Monitor” on page 47</td>
</tr>
</tbody>
</table>

Using the Service Access Facility

You can set up terminals and modems with the Solaris Management Console’s Serial Ports tool or the SAF commands.

The SAF is a tool that is used to administer terminals, modems, and other network devices. The top-level SAF program is the Service Access Controller (SAC). The SAC controls port monitors that you administer through the sacadm command. Each port monitor can manage one or more ports.
You administer the services associated with ports through the `pmadm` command. While services provided through the SAC can differ from network to network, the SAC and its administrative commands, `sacadm` and `pmadm`, are network independent.

The following table describes the SAF control hierarchy. The `sacadm` command is used to administer the SAC, which controls the `ttymon` and `listen` port monitors.

The services of `ttymon` and `listen` are in turn controlled by the `pmadm` command. One instance of `ttymon` can service multiple ports. One instance of `listen` can provide multiple services on a network interface.

<table>
<thead>
<tr>
<th>Function</th>
<th>Program</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall administration</td>
<td><code>sacadm</code></td>
<td>Command for adding and removing port monitors</td>
</tr>
<tr>
<td>Service Access Controller</td>
<td><code>sac</code></td>
<td>SAF’s master program</td>
</tr>
<tr>
<td>Port monitors</td>
<td><code>ttymon</code></td>
<td>Monitors serial port login requests</td>
</tr>
<tr>
<td></td>
<td><code>listen</code></td>
<td>Monitors requests for network services</td>
</tr>
<tr>
<td>Port monitor service administrator</td>
<td><code>pmadm</code></td>
<td>Command for controlling port monitors services</td>
</tr>
<tr>
<td>Services</td>
<td><code>logins, remote procedure calls</code></td>
<td>Services to which the SAF provides access</td>
</tr>
<tr>
<td>Console administration</td>
<td><code>console login</code></td>
<td>Console services are managed by the SMF service, <code>svc:/system/console-login:default</code>. This service invokes the <code>ttymon</code> port monitor. Do not use the <code>pmadm</code> or the <code>sacadm</code> command to manage the console. For more information, see &quot;ttymon and the Console Port&quot; on page 40, &quot;How to Set the ttymon Console Terminal Type&quot; on page 42, and &quot;How to Set the Baud Rate Speed on the ttymon Console Terminal&quot; on page 43.</td>
</tr>
</tbody>
</table>

**Overall SAF Administration**

The `sacadm` command is the top level of the SAF. The `sacadm` command primarily is used to add and remove port monitors such as `ttymon` and `listen`. Other `sacadm` functions include listing the current status of port monitors and administering port monitor configuration scripts.
Service Access Controller (SAC Program)

The Service Access Controller program (SAC) oversees all port monitors. A system automatically starts the SAC upon entering multiuser mode.

When the SAC program is invoked, it first looks for, and interprets, each system's configuration script. You can use the configuration script to customize the SAC program environment. This script is empty by default. The modifications made to the SAC environment are inherited by all the "children" of the SAC. This inherited environment might be modified by the children.

After the SAC program has interpreted the per-system configuration script, the SAC program reads its administrative file and starts the specified port monitors. For each port monitor, the SAC program runs a copy of itself, forking a child process. Each child process then interprets its per-port monitor configuration script, if such a script exists.

Any modifications to the environment specified in the per-port monitor configuration script affect the port monitor and will be inherited by all its children. Finally, the child process runs the port monitor program by using the command found in the SAC program administrative file.

SAC Initialization Process

The following steps summarize what happens when SAC is first started:

1. The SAC program is started by the SMF service, svc:/system/sac:default.
2. The SAC program reads /etc/saf/_sysconfig, the per-system configuration script.
3. The SAC program reads /etc/saf/_sactab, the SAC administrative file.
4. The SAC program forks a child process for each port monitor it starts.
5. Each port monitor reads /etc/saf/pmtag/_config, the per-port monitor configuration script.

Port Monitor Service Administration (pmodm)

The pmodm command enables you to administer port monitors’ services. In particular, you use the pmodm command to add or remove a service and to enable or disable a service. You can also install or replace per-service configuration scripts, or print information about a service.

Each instance of a service must be uniquely identified by a port monitor and a port. When you use the pmodm command to administer a service, you specify a particular port monitor with the pmtag argument, and a particular port with the svctag argument.

For each port monitor type, the SAF requires a specialized command to format port monitor-specific configuration data. This data is used by the pmodm command. For ttymon and listen type port monitors, these specialized commands are ttyadm and nlsadmin, respectively.
ttymon Port Monitor

Whenever you attempt to log in by using a directly connected modem or alphanumeric terminal, ttymon goes to work. First, the SAC process is started by SMF. Then, the SAC automatically starts the port monitors that are designated in its administrative file, /etc/saf/_sactab. After the ttymon port monitor has been started, it monitors the serial port lines for service requests.

When someone attempts to log in by using an alphanumeric terminal or a modem, the serial port driver passes the activity to the operating system. The ttymon port monitor notes the serial port activity, and attempts to establish a communications link. The ttymon port monitor determines which data transfer rate, line discipline, and handshaking protocol are required to communicate with the device.

After the proper parameters for communication with the modem or terminal are established, the ttymon port monitor passes these parameters to the login program and transfers control to it.

Port Initialization Process

When an instance of the ttymon port monitor is invoked by the SAC, ttymon starts to monitor its ports. For each port, the ttymon port monitor first initializes the line disciplines, if they are specified, and the speed and terminal settings. The values used for initialization are taken from the appropriate entry in the /etc/ttydefs file.

The ttymon port monitor then writes the prompt and waits for user input. If the user indicates that the speed is inappropriate by pressing the Break key, the ttymon port monitor tries the next speed and writes the prompt again.

If autobaud is enabled for a port, the ttymon port monitor tries to determine the baud rate on the port automatically. Users must press Return before the ttymon port monitor can recognize the baud rate and print the prompt.

When valid input is received, the ttymon port monitor does the following tasks:

- Interprets the per-service configuration file for the port
- Creates an /etc/utmpx entry, if required
- Establishes the service environment
- Invokes the service associated with the port

After the service terminates, the ttymon port monitor cleans up the /etc/utmpx entry, if this entry exists, and returns the port to its initial state.
Bidirectional Service

If a port is configured for bidirectional service, the `ttymon` port monitor does the following:

- Allows users to connect to a service
- Allows the `uucico`, `cu`, or `ct` commands to use the port for dialing out, if the port is free
- Waits to read a character before printing a prompt
- Invokes the port’s associated service, without sending the prompt message, when a connection is requested, if the connect-on-carrier flag is set

TTY Monitor and Network Listener Port Monitors

Though the SAF provides a generic means for administering any future or third-party port monitors, only two port monitors are implemented in the Solaris Operating System: `ttymon` and `listen`.

TTY Port Monitor (`ttymon`)

The `ttymon` port monitor is STREAMS-based and does the following:

- Monitors ports
- Sets terminal modes, baud rates, and line disciplines
- Invokes the login process

The `ttymon` port monitor provides Solaris users the same services that the `getty` port monitor did under previous versions of SunOS 4.1 software.

The `ttymon` port monitor runs under the SAC program and is configured with the `sacadm` command. Each instance of `ttymon` can monitor multiple ports. These ports are specified in the port monitor’s administrative file. The administrative file is configured by using the `pmadm` and `ttyadm` commands.

`ttymon` and the Console Port

Console services are not managed by the Service Access Controller (SAC), nor by any explicit `ttymon` administration file. `ttymon` invocations are managed by SMF. As a result, you can no longer invoke `ttymon` by adding an entry to the `/etc/inittab` file. A property group with the type, application, and the name `ttymon`, has been added to the SMF service, `svc:/system/console-login:default`. The properties within this property group are used by the method script, `/lib/svc/method/console-login`. This script uses the property values as arguments to the `ttymon` invocation. Usually, if the values are empty, or if the values are not
defined for any of the properties, then the value is not used for ttymon. However, if the ttymon device value is empty, or not set, then /dev/console is used as the default to enable ttymon to run.

The following properties are available under the SMF service, svc:/system/console-login:default:

- **ttymon/nohangup**: Specifies the nohangup property. If set to true, do not force a line hang up by setting the line speed to zero before setting the default or specified speed.
- **ttymon/prompt**: Specifies the prompt string for the console port.
- **ttymon/terminal_type**: Specifies the default terminal type for the console.
- **ttymon/device**: Specifies the console device.
- **ttymon/label**: Specifies the TTY label in the /etc/ttydefs line.

**ttymon-Specific Administrative Command (ttyadm)**

The ttymon administrative file is updated by the sacadm and pmadm commands, as well as by the ttyadm command. The ttyadm command formats ttymon-specific information and writes it to standard output, providing a means for presenting formatted ttymon-specific data to the sacadm and pmadm commands.

Thus, the ttyadm command does not administer ttymon directly. The ttyadm command complements the generic administrative commands, sacadm and pmadm. For more information, see the ttyadm(1M) man page.

**Network Listener Service (listen)**

The listen port monitor runs under the SAC and does the following:

- Monitors the network for service requests
- Accepts requests when they arrive
- Invokes servers in response to those service requests

The listen port monitor is configured by using the sacadm command. Each instance of listen can provide multiple services. These services are specified in the port monitor's administrative file. This administrative file is configured by using the pmadm and nlsadmin commands.

The network listener process can be used with any connection-oriented transport provider that conforms to the Transport Layer Interface (TLI) specification. In the Solaris Operating System, listen port monitors can provide additional network services not provided by the inetd service.
Special **listen-Specific Administrative Command**

*(nlsadmin)*

The *listen* port monitor's administrative file is updated by the *sacadm* and *pmadm* commands, as well as by the *nlsadmin* command. The *nlsadmin* command formats *listen*-specific information and writes it to standard output, providing a means of presenting formatted *listen*-specific data to the *sacadm* and *pmadm* commands.

Thus, the *nlsadmin* command does not administer *listen* directly. The command complements the generic administrative commands, *sacadm* and *pmadm*.

Each network, configured separately, can have at least one instance of the network listener process associated with it. The *nlsadmin* command controls the operational states of *listen* port monitors.

The *nlsadmin* command can establish a *listen* port monitor for a given network, configure the specific attributes of that port monitor, and start and kill the monitor. The *nlsadmin* command can also report on the *listen* port monitors on a machine.

For more information, see the *nlsadmin*(1M) man page.

**Administering ttymon Port Monitors**

Console administration for *ttymon* is now managed by SMF. Use the *svccfg* command to set *ttymon* system console properties. Continue to use the SAF command, *sacadm*, to add, list, remove, kill, start, enable, disable, enable, and remove *ttymon* port monitors.

▼ **How to Set the ttymon Console Terminal Type**

This procedure shows how to change the console terminal type by using the *svccfg* command.

1. **Become superuser or assume an equivalent role.**

   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in *System Administration Guide: Security Services*.

2. **Run the svccfg command to set the property for the service instance that you want to change.**

   ```
   # svccfg -s console-login setprop ttymon/terminal_type = "xterm"
   ```

   where “xterm” is an example of a terminal type that you might want to use.
3 (Optional) Restart the service instance.

```
# svcadm restart svc:/system/console-login:default
```

**Caution** – If you choose to restart the service instance immediately, you are logged out of the console. If you do not restart the service instance immediately, the property changes apply at the next login prompt on the console.


How to Set the Baud Rate Speed on the `ttymon` Console Terminal

This procedure shows how to set the baud rate speed on the `ttymon` console terminal. Support for console speeds on x86 based systems are dependent on the specific platform.

The following are supported console speeds for SPARC based systems:

- 9600 bps
- 19200 bps
- 38400 bps

1 **Become superuser or assume an equivalent role.**

Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2 **Use the `eeprom` command to set a baud rate speed that is appropriate for your system type.**

   ```
   # eeprom ttya-mode=baud-rate,8,n,1,-
   ```

   For example, to change the baud rate on an x86 based system's console to 38400, type:

   ```
   # eeprom ttya-mode=38400,8,n,1,-
   ```

3 **Change the console line in the `/etc/ttydefs` file as follows.**

   ```
   console baud-rate hupcl opost onlcr:baud-rate::console
   ```

4 **Make the following additional changes for your system type.**

   Note that these changes are platform-dependent.

   - **On SPARC based systems:** Change the baud rate speed in the `/kernel/drv/options.conf` file.

     Use the following command to change the baud rate to 9600.

     ```
     # 9600
     :bd:
     ```
Use the following command to change the baud rate speed to 19200.

```
# 19200  :be:
```

Use the following command to change the baud rate speed to 38400.

```
# 38400  :bf:
```

- **On x86 based systems:** Change the console speed if the BIOS serial redirection is enabled. The method that you use to change the console speed is platform-dependent.

### How to Add a ttymon Port Monitor

1. **Become superuser or assume an equivalent role.**
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2. **Add a ttymon port monitor.**
   ```
   # sacadm -a -p mbmon -t ttymon -c /usr/lib/saf/ttymon -v 'ttyadm
   -V' -y "TTY Ports a & b"
   ```
   - `-a` Specifies the `add` port monitor option.
   - `-p` Specifies the `pmtag` mbmon as the port monitor tag.
   - `-t` Specifies the port monitor type as `ttymon`.
   - `-c` Defines the `command` string used to start the port monitor.
   - `-v` Specifies the `version` number of the port monitor.
   - `-y` Defines a comment to describe this instance of the port monitor.

### How to View ttymon Port Monitor Status

1. **Become superuser or assume an equivalent role.**
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2. **View the status of a ttymon port monitor.**
   ```
   # sacadm -l -p mbmon
   ```
Example 3–1 Viewing ttymon Port Monitor Status

This example shows how to view a port monitor named, mbmon.

```
# sacadm -l -p mbmon
```

<table>
<thead>
<tr>
<th>PMTAG</th>
<th>PMTYPE</th>
<th>FLGS</th>
<th>RCNT</th>
<th>STATUS</th>
<th>COMMAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>mbmon</td>
<td>ttymon</td>
<td>-</td>
<td>0</td>
<td>STARTING</td>
<td>/usr/lib/saf/ttymon #TTY Ports a &amp; b</td>
</tr>
</tbody>
</table>

**PMTAG** Identifies the port monitor name, mbmon.

**PMTYPE** Identifies the port monitor type, ttymon.

**FLGS** Indicates whether the following flags are set:
- **d** — Do not enable the new port monitor.
- **x** — Do not start the new port monitor.
- **dash (-)** — No flags are set.

**RCNT** Indicates the return count value. A return count of 0 indicates that the port monitor is not to be restarted if it fails.

**STATUS** Indicates the current status of the port monitor.

**COMMAND** Identifies the command used to start the port monitor.

**#TTY Ports a & b** Identifies any comment used to describe the port monitor.

**How to Stop a ttymon Port Monitor**

1. **Become superuser or assume an equivalent role.**
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in *System Administration Guide: Security Services*.

2. **Stop a ttymon port monitor.**
   
   ```
   # sacadm -k -p mbmon
   ```
   
   **-k** Specifies the *kill* port monitor status flag.

   **-p** Specifies the *pmtag* mbmon as the port monitor tag.
How to Start a ttymon Port Monitor

1. Become superuser or assume an equivalent role.
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2. Start a killed ttymon port monitor.
   
   ```
   # sacadm -s -p mbmon
   -s  Specifies the start port monitor status flag.
   -p  Specifies the pntag mbmon as the port monitor tag.
   ```

How to Disable a ttymon Port Monitor

Disabling a port monitor prevents new services from starting, without affecting existing services.

1. Become superuser or assume an equivalent role.
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2. Disable a ttymon port monitor.
   
   ```
   # sacadm -d -p mbmon
   -d  Specifies the disable port monitor status flag.
   -p  Specifies the pntag mbmon as the port monitor tag.
   ```

How to Enable a ttymon Port Monitor

Enabling a ttymon port monitor allows it to service new requests.

1. Become superuser or assume an equivalent role.
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2. Enable a ttymon port monitor.
   
   ```
   # sacadm -e -p mbmon
   -e  Specifies the enable port monitor status flag.
   ```
How to Remove a ttymon Port Monitor

Removing a port monitor deletes all the configuration files associated with it.

Note – Port monitor configuration files cannot be updated or changed by using the sacadm command. To reconfigure a port monitor, remove it and then add a new one.

1 Become superuser or assume an equivalent role.
Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2 Remove a ttymon port monitor.

# sacadm -r -p mbmon

- r Specifies the remove port monitor status flag.
- p Specifies the pmtag mbmon as the port monitor tag.

Administering ttymon services (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add a ttymon service.</td>
<td>Use the pmadm command to add a service.</td>
<td>“How to Add a Service” on page 48</td>
</tr>
<tr>
<td>View the Status of a TTY Port Service.</td>
<td>Use the pmadm command to view the status of a TTY port.</td>
<td>“How to View the Status of a TTY Port Service” on page 49</td>
</tr>
<tr>
<td>Enable a port monitor service.</td>
<td>Use the pmadm command with the -e option to enable a port monitor.</td>
<td>“How to Enable a Port Monitor Service” on page 51</td>
</tr>
<tr>
<td>Disable a port monitor service.</td>
<td>Use the pmadm command with the -d option to disable a port monitor.</td>
<td>“How to Disable a Port Monitor Service” on page 51</td>
</tr>
</tbody>
</table>
Administering ttymon Services

Use the `pmadm` command to add services, list the services of one or more ports associated with a port monitor, and enable or disable a service.

▼ How to Add a Service

1 **Become superuser or assume an equivalent role.**
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2 **Add a standard terminal service to the mbmon port monitor.**
   ```bash
   # pmadm -a -p mbmon -s a -i root -v 'ttyadm -V' -m "'ttyadm -i 'Terminal disabled' -l contty -m ldterm,ttcompat -S y -d /dev/term/a
   -s /usr/bin/login"
   ```

   **Note** – In this example, the input wraps automatically to the next line. Do not use a Return key or line feed.

- `-a` Specifies the `add` port monitor status flag.
- `-p` Specifies the `pmtag` `mbmon` as the port monitor tag.
- `-s` Specifies the `svctag` `a` as the port monitor `service` tag.
- `-i` Specifies the `identity` to be assigned to `svctag` when the service runs.
- `-v` Specifies the `version` number of the port monitor.
- `-m` Specifies the `ttymon`-specific configuration data formatted by `ttyadm`.

The preceding `pmadm` command contains an embedded `ttyadm` command. The options in this embedded command are as follows:

- `-b` Specifies the `bidirectional` port flag.
- `-i` Specifies the `inactive` (disabled) response message.
- `-l` Specifies which TTY `label` in the `/etc/ttydefs` file to use.
- `-m` Specifies the STREAMS `modules` to push before invoking this service.
- `-d` Specifies the full path name to the `device` to use for the TTY port.
- `-s` Specifies the full path name of the `service` to invoke when a connection request is received. If arguments are required, enclose the command and its arguments in quotation marks ("").
**How to View the Status of a TTY Port Service**

Use the `pmadm` command as shown in this procedure to list the status of a TTY port or all the ports that are associated with a port monitor.

1. **Become superuser or assume an equivalent role.**
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in *System Administration Guide: Security Services*.

2. **List one service of a port monitor.**

   ```
   # pmadm -l -p mbon -s a
   
   -l   Lists service information on the system.
   -p   Specifies the `pmtag` `mbon` as the port monitor tag.
   -s   Specifies the `svctag` `a` as the port monitor `service` tag.
   ```

**Example 3–2**  
**Viewing the Status of a TTY Port Monitor Service**

This example lists all services of a port monitor.

```
# pmadm -l -p mbon

PMTAG  PTYPE   SVCTAG  FLAGS  ID  <PMSPECIFIC>

mbmon  ttypmon a  -  root  /dev/term/a  -  /usr/bin/login  -  contty

lterm,ttcompat login: Terminal disabled tvi925 y #

PMTAG  Identifies the port monitor name, `mbon`, that is set by using the `pmadm -p` command.

PTYPE   Identifies the port monitor type, `ttypmon`.

SVCTAG  Indicates the service tag value that is set by using the `pmadm -s` command.

FLAGS   Identifies whether the following flags are set by using the `pmadm -f` command.

- x — Do not enable the service.
- u — Create a utmpx entry for the service.
- dash (-) — No flags are set.

ID     Indicates the identity assigned to the service when it is started. This value is set by using the `pmadm -i` command.

<PMSPECIFIC>  Information
/dev/term/a  Indicates the TTY port path name that is set by using the `ttyadm -d` command.
Indicates whether the following flags are set by using the `ttyadm -c -b -h -I -r` command.

- **c** — Sets the connect on carrier flag for the port.
- **b** — Sets the port as bidirectional, allowing both incoming and outgoing traffic.
- **h** — Suppresses an automatic hangup immediately after an incoming call is received.
- **I** — Initializes the port.
- **r** — Forces `ttymon` to wait until it receives a character from the port before it prints the `login:` message.
- **dash (-)** — No flags are set.

Indicates a value that is set by using the `ttyadm -r count` option. This option determines when `ttymon` displays a prompt after receiving data from a port. If `count` is 0, `ttymon` waits until it receives any character. If `count` is greater than 0, `ttymon` waits until `count` new lines have been received. No value is set in this example.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>/usr/bin/login</code></td>
<td>Identifies the full path name of the service to be invoked when a connection is received. This value is set by using the <code>ttyadm -s</code> command.</td>
</tr>
<tr>
<td><code>contty</code></td>
<td>Identifies the TTY label in the <code>/etc/ttydefs</code> file. This value is set by using the <code>ttyadm -l</code> command.</td>
</tr>
<tr>
<td><code>ldterm,ttcompat</code></td>
<td>Identifies the STREAMS modules to be pushed. These modules are set by using the <code>ttymain -m</code> command.</td>
</tr>
<tr>
<td><code>login: Terminal disabled</code></td>
<td>Identifies an inactive message to be displayed when the port is disabled. This message is set by using the <code>ttyadm -i</code> command.</td>
</tr>
<tr>
<td><code>tvi925</code></td>
<td>Identifies the terminal type, if set, by using the <code>ttyadm -T</code> command. The terminal type is <code>tvi925</code> in this example.</td>
</tr>
<tr>
<td><code>y</code></td>
<td>Identifies the software carrier value that is set by using the <code>ttyadm -S</code> command. <code>n</code> turns the software carrier off. <code>y</code> turns the software carrier on. The software carrier is turned on in this example.</td>
</tr>
</tbody>
</table>
Identifies any comment specified with the `pmadm -y` command. There is no comment in this example.

▼ **How to Enable a Port Monitor Service**

1. **Become superuser or assume an equivalent role.**
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in *System Administration Guide: Security Services*.

   ![Enable](#)

   ![Enable](#)

   Enables a disabled port monitor service.

   ```
   # pmadm -e -p mbmon -s a
   
   - `e` Specifies the *enable* flag.
   - `p` Specifies the `pmtag mbmon` as the port monitor tag.
   - `s` Specifies the `svctag a` as the port monitor *service* tag.
   ```

▼ **How to Disable a Port Monitor Service**

1. **Become superuser or assume an equivalent role.**
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in *System Administration Guide: Security Services*.

   ![Disable](#)

   ![Disable](#)

   Disables a port monitor service.

   ```
   # pmadm -d -p mbmon -s a
   
   - `d` Specifies the *disable* flag.
   - `p` Specifies the `pmtag mbmon` as the port monitor tag.
   - `s` Specifies the `svctag a` as the port monitor *service* tag.
   ```

**Service Access Facility Administration (Reference)**

This chapter includes reference information for administration of the Service Access Facility.
Files Associated With the SAF

The SAF uses configuration files that can be modified by using the `sacadm` and `pmadm` commands. You should not need to manually edit the configuration files.

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>/etc/saf/_sysconfig</code></td>
<td>Per-system configuration script.</td>
</tr>
<tr>
<td><code>/etc/saf/_sactab</code></td>
<td>The SAC’s administrative file that contains configuration data for the port monitors that the SAC controls</td>
</tr>
<tr>
<td><code>/etc/saf/pmtag</code></td>
<td>Home directory for port monitor <code>pmtag</code></td>
</tr>
<tr>
<td><code>/etc/saf/pmtag/_config</code></td>
<td>Per-port monitor configuration script for port monitor <code>pmtag</code> if it exists</td>
</tr>
<tr>
<td><code>/etc/saf/pmtag/_pmtab</code></td>
<td>Port monitor <code>pmtag</code>'s administrative file that contains port monitor-specific configuration data for the services <code>pmtag</code> provides</td>
</tr>
<tr>
<td><code>/etc/saf/pmtag/svctag</code></td>
<td>Per-service configuration script for service <code>svctag</code></td>
</tr>
<tr>
<td><code>/var/saf/log</code></td>
<td>The SAC’s log file</td>
</tr>
<tr>
<td><code>/var/saf/pmtag</code></td>
<td>Directory for files created by <code>pmtag</code>, for example, log files</td>
</tr>
</tbody>
</table>

/`etc/saf/_sactab` File

The information in the `/etc/saf/_sactab` file is as follows:

```
# VERSION=1
zsmon:ttymon::0:/usr/lib/saf/ttymon
#
# VERSION=1
zsmon
ttymon
::
```

Indicates the Service Access Facility version number.

`zsmon` Is the name of the port monitor.

`ttymon` Is the type of port monitor.

`::` Indicates whether the following two flags are set:

- `d` — Do not enable the port monitor.
- `x` — Do not start the port monitor. No flags are set in this example.
Indicates the return code value. A return count of 0 indicates that the port monitor is not be restarted if the port monitor fails.

`/usr/lib/saf/ttymon` indicates the port monitor path name.

### `/etc/saf/pmtab/_pmtab` File

The `/etc/saf/pmtab/_pmtab` file, such as `/etc/saf/zsmon/_pmtab`, is similar to the following:

```
# VERSION=1
ttya:u:root:reserved:reserved:reserved:/dev/term/a:/usr/bin/login:9600:
ldterm,ttcompat:ttya login: ::tvi925:y:#

# VERSION=1
```

- `ttya` indicates the Service Access Facility version number.
- `ttya` indicates the service tag.
- `x,u` identifies whether the following flags are set:
  - `x` — Do not enable the service.
  - `u` — Create a `utmpx` entry for the service.
- `root` indicates the identity assigned to the service tag.
- `reserved` this field is reserved for future use.
- `reserved` this field is reserved for future use.
- `reserved` this field is reserved for future use.
- `/dev/term/a` indicates the TTY port path name.
- `/usr/bin/login` identifies the full path name of the service to be invoked when a connection is received.
- `:c,b,h,I,r:` indicates whether the following flags are set:
  - `c` — Sets the connect on carrier flag for the port.
  - `b` — Sets the port as bidirectional, allowing both incoming and outgoing traffic.
  - `h` — Suppresses an automatic hangup immediately after an incoming call is received.
  - `I` — Initializes the port.
  - `r` — Forces `ttymon` to wait until it receives a character from the port before `ttymon` prints the `login:` message.
- `9600` identifies the TTY label defined in the `/etc/ttydefs` file.
ldterm, ttcompat
Identifies the STREAMS modules to be pushed.

ttya login\:
Identifies the prompt to be displayed.

:y/n:
Indicates yes or no response.

message
Identifies any inactive (disabled) response message.

tvi925
Identifies the terminal type.

y
Indicates whether the software carrier is set (y/n).

Service States
The sacadm command controls the states of services. The following table describes the possible states of services.

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabled</td>
<td><em>Default state</em> – When the port monitor is added, the service operates.</td>
</tr>
<tr>
<td>Disabled</td>
<td><em>Default state</em> – When the port monitor is removed, the service stops.</td>
</tr>
</tbody>
</table>

To determine the state of any particular service, use the following:

```
# pmadm -l -p portmon-name -s svctag
```

Port Monitor States
The sacadm command controls the states of the ttymon and listen port monitors. The following table describes the possible port monitor states.

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Started</td>
<td><em>Default state</em> – When the port monitor is added, it is automatically started.</td>
</tr>
<tr>
<td>Enabled</td>
<td><em>Default state</em> – When the port monitor is added, it is automatically ready to accept requests for service.</td>
</tr>
<tr>
<td>Stopped</td>
<td><em>Default state</em> – When the port monitor is removed, it is automatically stopped.</td>
</tr>
<tr>
<td>Disabled</td>
<td><em>Default state</em> – When the port monitor is removed, it automatically continues existing services and refuses to add new services.</td>
</tr>
<tr>
<td>Starting</td>
<td><em>Intermediate state</em> – The port monitor is in the process of starting.</td>
</tr>
</tbody>
</table>
To determine the state of any particular port monitor, use the following command:

```
# sacadm -l -p portmon-name
```

## Port States

Ports can be enabled or disabled depending on the state of the port monitor that controls the ports.

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Serial (ttymon) port states</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Enabled</strong></td>
<td>The ttymon port monitor sends a prompt message to the port and provides login service to it.</td>
</tr>
<tr>
<td><strong>Disabled</strong></td>
<td>Default state of all ports if ttymon is killed or disabled. If you specify this state, ttymon sends out the disabled message when it receives a connection request.</td>
</tr>
</tbody>
</table>
Managing System Resources (Overview)

This chapter provides a brief description of the system resource management features that are available in the Solaris Operating System and a road map to help you manage system resources.

Using these features, you can display general system information, monitor disk space, set disk quotas and use accounting programs. You can also schedule the \texttt{cron} and \texttt{at} commands to automatically run routine commands.

This section does not cover information on Solaris resource management that enables you to allocate, monitor, and control system resources in a flexible way.

For information on the procedures that are associated with managing system resources without Solaris resource management, see “Managing System Resources (Road Map)” on page 58.

For information on managing system resources with Solaris resource management, see Chapter 1, “Introduction to Solaris Resource Management,” in \textit{System Administration Guide: Virtualization Using the Solaris Operating System}.

What's New in Managing System Resources?

This section describes new or changed features for managing system resources in this Solaris release. For information about new or changes features in the Solaris 10 OS, see the following:

- “\texttt{psrinfo} Command Option to Identify Chip Multithreading Features” on page 66
- “New \texttt{localeadm} Command” on page 68

\texttt{prtconf} Option to Display Product Names

\textbf{Solaris 10 1/06:} A new -b option has been added to the \texttt{prtconf} command for the purpose of displaying a system’s product name. This option is similar to the \texttt{uname -i} command. However, the \texttt{prtconf} -b command is specifically designed to determine the marketing name of a product.
The firmware device tree root properties that are displayed by using the -b option to the `prtconf` command are as follows:

- name
- compatible
- banner-name
- model

To display additional platform-specific output that might be available, use the `prtconf -vb` command. For more information, see the `prtconf(1M)` man page and “How to Display a System’s Product Name” on page 65.

### Managing System Resources (Road Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displaying and changing system information</td>
<td>Use various commands to display and change system information, such as general system information, the language environment, the date and time, and the system’s host name.</td>
<td>Chapter 5, “Displaying and Changing System Information (Tasks),”</td>
</tr>
<tr>
<td>Managing disk use</td>
<td>Identify how disk space is used and take steps to remove old and unused files.</td>
<td>Chapter 6, “Managing Disk Use (Tasks),”</td>
</tr>
<tr>
<td>Managing quotas</td>
<td>Use UFS file system quotas to manage how much disk space is used by users.</td>
<td>Chapter 7, “Managing Quotas (Tasks),”</td>
</tr>
<tr>
<td>Scheduling system events</td>
<td>Use cron and at jobs to help schedule system routines that can include clean up of old and unused files.</td>
<td>Chapter 8, “Scheduling System Tasks (Tasks),”</td>
</tr>
<tr>
<td>Managing system accounting</td>
<td>Use system accounting to identify how users and applications are using system resources.</td>
<td>Chapter 9, “Managing System Accounting (Tasks),”</td>
</tr>
<tr>
<td>Managing system resources with Solaris Resource Management</td>
<td>Use resource manager to control how applications use available system resources and to track and charge resource usage.</td>
<td>Chapter 1, “Introduction to Solaris Resource Management,” in System Administration Guide: Virtualization Using the Solaris Operating System</td>
</tr>
</tbody>
</table>
This chapter describes the tasks that are required to display and change the most common system information.

For information about the procedures associated with displaying and changing system information, see the following:

- “Displaying System Information (Task Map)” on page 59
- “Changing System Information (Task Map)” on page 69

For overview information about managing system resources, see Chapter 4, “Managing System Resources (Overview).”

## Displaying System Information (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determine whether a system has 32 bit or 64–bit capabilities enabled.</td>
<td>Use the <code>isainfo</code> command to determine whether a system has 32–bit or 64-bit capabilities enabled. For x86 based systems, you can use the <code>isalist</code> command to display this information.</td>
<td>“How to Determine Whether a System Has 32–bit or 64–Bit Solaris Capabilities Enabled” on page 61</td>
</tr>
<tr>
<td>Display Solaris Release Information</td>
<td>Display the contents of the <code>/etc/release</code> file to identify your Solaris release version.</td>
<td>“How to Display Solaris Release Information” on page 64</td>
</tr>
<tr>
<td>Display General System Information.</td>
<td>Use the <code>showrev</code> command to display general system information.</td>
<td>“How to Display General System Information” on page 64</td>
</tr>
</tbody>
</table>
Displaying System Information

The following table describes commands that enable you to display general system information.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display a system’s Host ID number</td>
<td>Use the <code>hostid</code> command to display your system’s host id.</td>
<td>“How to Display a System’s Host ID Number” on page 65</td>
</tr>
<tr>
<td>Display a System’s product name</td>
<td>Starting with the Solaris Express 7/05 release, you can use the <code>prtconf -b</code> command to display the product name of a system.</td>
<td>“How to Display a System’s Product Name” on page 65</td>
</tr>
<tr>
<td>Display a System’s Installed Memory</td>
<td>Use the <code>prtconf</code> command to display information about your system’s installed memory.</td>
<td>“How to Display a System’s Installed Memory” on page 66</td>
</tr>
<tr>
<td>Display a system’s date and time</td>
<td>Use the <code>date</code> command to display your system’s date and time.</td>
<td>“How to Display the Date and Time” on page 66</td>
</tr>
<tr>
<td>Display a system’s physical processor type</td>
<td>Use the <code>psrinfo -p</code> command to list the total number of physical processors on a system. Use the <code>psrinfo -pv</code> command to list all physical processors on a system and the virtual processors that is associated with each physical processor.</td>
<td>“How to Display a System’s Physical Processor Type” on page 67</td>
</tr>
<tr>
<td>Display a system’s logical processor type</td>
<td>Use the <code>psrinfo -v</code> command to display a system’s logical processor type.</td>
<td>“How to Display a System’s Logical Processor Type” on page 67</td>
</tr>
<tr>
<td>Display locales that are installed on a system.</td>
<td>Use the <code>localeadm</code> command to display locales that are installed on your system.</td>
<td>“How to Display Locales Installed on a System” on page 68</td>
</tr>
<tr>
<td>Determine if a locale is installed on a system.</td>
<td>Use the <code>-q</code> option of the <code>localeadm</code> command and a locale to determine if a locale is installed on your system.</td>
<td>“How to Determine if a Locale is Installed on a System” on page 69</td>
</tr>
</tbody>
</table>

Displaying System Information (Task Map)
How to Determine Whether a System Has 32–bit or 64–Bit Solaris Capabilities Enabled

Use the isainfo command to determine whether a system has 32–bit or 64-bit capabilities enabled.

```
# isainfo options
```

The isainfo command, run without specifying any options, displays the name or names of the native instruction sets for applications supported by the current OS version.

- \( \text{-v} \) Prints detailed information about the other options
- \( \text{-b} \) Prints the number of bits in the address space of the native instruction set.
- \( \text{-n} \) Prints the name of the native instruction set used by portable applications supported by the current version of the OS.
- \( \text{-k} \) Prints the name of the instruction set or sets that are used by the OS kernel components such as device drivers and STREAMS modules.
Note – For x86 based systems, the `isalist` command can also be used to display this information.

For more information, see the `isalist(1)` man page.

**Example 5–1  SPARC: Determining Whether a System Has 32–Bit or 64–Bit Solaris Capabilities Enabled**

The `isainfo` command output for an UltraSPARC system that is running previous releases of the Solaris OS using a 32-bit kernel is displayed as follows:

```
$ isainfo -v
32-bit sparc applications
```

This output means that this system can support only 32–bit applications.

The current release of the Solaris OS only ships a 64–bit kernel on SPARC based systems. The `isainfo` command output for an UltraSPARC system that is running a 64–bit kernel is displayed as follows:

```
$ isainfo -v
64-bit sparcv9 applications
32-bit sparc applications
```

This output means that this system is capable of supporting both 32–bit and 64–bit applications.

Use the `isainfo -b` command to display the number of bits supported by native applications on the running system.

The output from a SPARC based, x86 based, or UltraSPARC system that is running the 32–bit Solaris Operating System is displayed as follows:

```
$ isainfo -b
32
```

The `isainfo` command output from a 64–bit UltraSPARC system that is running the 64–bit Solaris Operating System is displayed as follows:

```
$ isainfo -b
64
```

The command returns 64 only. Even though a 64–bit UltraSPARC system can run both types of applications, 64–bit applications are the best kind of applications to run on a 64–bit system.
Determining Whether a System Has 32–Bit or 64–Bit Solaris Capabilities Enabled

The `isainfo` command output for an x86 based system that is running the 64-bit kernel is displayed as follows:

```
$ isainfo
amd64 i386
```

This output means that this system can support 64–bit applications.

Use the `isainfo -v` command to determine if an x86 based system is capable of running a 32–bit kernel.

```
$ isainfo -v
64-bit amd64 applications
   fpu tsc cx8 cmov mmx ammx a3dnow a3dnowx fxsr sse sse2
32-bit i386 applications
   fpu tsc cx8 cmov mmx ammx a3dnow a3dnowx fxsr sse sse2
```

This output means that this system can support both 64–bit and 32–bit applications.

Use the `isainfo -b` command to display the number of bits supported by native applications on the running system.

The output from an x86 based system that is running the 32–bit Solaris Operating System is displayed as follows:

```
$ isainfo -b
32
```

The `isainfo` command output from an x86 based system that is running the 64–bit Solaris Operating System is displayed as follows:

```
$ isainfo -b
64
```

You can also use the `isalist` command to determine whether an x86 based system is running in 32–bit or 64–bit mode.

```
$ isalist
amd64 pentium_pro+mmx pentium_pro pentium+mmx pentium i486 i386 i86
```

In the preceding example, `amd64` indicates that the system has 64–bit Solaris capabilities enabled.
How to Display Solaris Release Information

- Display the contents of the /etc/release file to identify your Solaris release version.

% cat /etc/release

Solaris Nevada snv_26 SPARC
Copyright 2005 Sun Microsystems, Inc. All Rights Reserved.
Use is subject to license terms.
Assembled 24 October 2005

How to Display General System Information

- To display general system information, use the showrev command.

$ showrev options
- -a Prints all system revision information available.
- -c (command) Prints the revision information about command
- -p Prints only the revision information about patches.
- -R (root_path) Defines the full path name of a directory to use as the root_path.
- -s (host name) Performs this operation on the specified host name
- -w Prints only the OpenWindows revision information.

You can also use the uname command to display system information. The following example shows the uname command output. The -a option displays the operating system name as well as the system node name, operating system release, operating system version, hardware name, and processor type.

$ uname
SunOS
$ uname -a
SunOS starbug 5.10 Generic sun4u sparc SUNW,Ultra-5 10
$

Example 5–3 Displaying General System Information

The following example shows the showrev command output. The -a option displays all available system information.

% showrev -a
Hostname: suwat
Hostid: 830915da
Release: 5.11
Kernel architecture: sun4u
Application architecture: sparc
Hardware provider: Sun Microsystems
Kernel version: SunOS 5.11 SunOS_Development

OpenWindows version:
Solaris X11 Version 6.6.3 12 October 2005

Patch: 116298-08 Obsoletes: Requires: Incompatibles: Packages: SUNWxsrt, ...
Patch: 116302-02 Obsoletes: Requires: Incompatibles: Packages: SUNWxrpcrt

▼ How to Display a System's Host ID Number

To display the host ID number in hexadecimal format, use the `hostid` command.

Example 5–4  Displaying a System's Host ID Number

The following example shows sample output from the `hostid` command.

```
$ hostid
80a5d34c
```

▼ How to Display a System's Product Name

Solaris 10 1/06: The `-b` option to the `prtconf` command enables you to display a system's product name. For more information on this feature, see the `prtconf(1M)` man page.

To display the product name for your system, use the `prtconf` command with the `-b` option.

Example 5–5  Displaying a System's Product Name

This example shows sample output from the `prtconf -b` command.

```
# prtconf -b
name: SUNW,Ultra-5_10
model: SUNW,375-0066
banner-name: Sun Ultra 5/10 UPA/PCI (UltraSPARC-IIIi 333MHz)
```

This example shows sample output from the `prtconf -vb` command.

```
# prtconf -vb
name: SUNW,Ultra-5_10
model: SUNW,375-0066
banner-name: Sun Ultra 5/10 UPA/PCI (UltraSPARC-IIIi 333MHz)
idprom: 01800800.20a6c363.00000000.a6c363a9.00000000.00000000.405555aa.aa555500
```
How to Display a System’s Installed Memory

- To display the amount of memory that is installed on your system, use the `prtconf` command.

Example 5–6  Displaying a System’s Installed Memory

The following example shows sample output from the `prtconf` command. The `grep Memory` command selects output from the `prtconf` command to display memory information only.

```
# prtconf | grep Memory
Memory size: 128 Megabytes
```

How to Display the Date and Time

- To display the current date and time according to your system clock, use the `date` command.

Example 5–7  Displaying the Date and Time

The following example shows sample output from the `date` command.

```
$ date
Wed Jan 21 17:32:59 MST 2004
$ 
```

`psrinfo` Command Option to Identify Chip Multithreading Features

*Solaris 10*: The `psrinfo` command has been modified to provide information about physical processors, in addition to information about virtual processors. This enhanced functionality has been added to identify chip multithreading (CMT) features. The new `-p` option reports the total number of physical processors that are in a system. Using the `psrinfo -pv` command will list all the physical processors that are in the system, as well as the virtual processors that are associated with each physical processor. The default output of the `psrinfo` command continues to display the virtual processor information for a system.

For more information, see the `psrinfo(1M)` man page.
For information about the procedures associated with this feature, see “How to Display a System’s Physical Processor Type” on page 67.

▼ How to Display a System's Physical Processor Type

- **Use the** `psrinfo -p` **command to display the total number of physical processors on a system.**
  
  ```
  $ psrinfo -p
  1
  ```

  Use the `psrinfo -pv` command to display information about each physical processor on a system, and the virtual processor associated with each physical processor.

  ```
  $ psrinfo -pv
  The UltraSPARC-IV physical processor has 2 virtual processors (8, 520)
The UltraSPARC-IV physical processor has 2 virtual processors (9, 521)
The UltraSPARC-IV physical processor has 2 virtual processors (10, 522)
The UltraSPARC-IV physical processor has 2 virtual processors (11, 523)
The UltraSPARC-III+ physical processor has 1 virtual processor (16)
The UltraSPARC-III+ physical processor has 1 virtual processor (17)
The UltraSPARC-III+ physical processor has 1 virtual processor (18)
The UltraSPARC-III+ physical processor has 1 virtual processor (19)
  ```

  When you use the `psrinfo -pv` command on an x86 based system, the following output is displayed:

  ```
  $ psrinfo -pv
  The i386 physical processor has 2 virtual processors (0, 2)
The i386 physical processor has 2 virtual processors (1, 3)
  ```

▼ How to Display a System's Logical Processor Type

- **Use the** `psrinfo -v` **command to display information about a system’s processor type.**
  
  ```
  $ psrinfo -v
  ```

  On an x86 based system, use the `isalist` command to display the virtual processor type.

  ```
  $ isalist
  ```

Example 5–8  SPARC: Displaying a System’s Processor Type

This example shows how to display information about a SPARC based system’s processor type.
$ psrinfo -v
Status of virtual processor 0 as of: 04/16/2004 10:32:13
    on-line since 03/22/2004 19:18:27.
The sparcv9 processor operates at 650 MHz,
    and has a sparcv9 floating point processor.

Example 5–9  x86: Displaying a System's Processor Type

This example shows how to display information about an x86 based system's processor type.

$ isalist
pentium_pro+mmx pentium_pro pentium+mmx pentium i486 i386 i86

New localeadm Command

Solaris 10: The new localeadm command allows you to change the locales on your system without reinstalling the OS or manually adding and removing packages. This command also allows you to query your system to determine which locales are installed. To run the localeadm command, you must have superuser privileges or assume an equivalent role through role-based access control (RBAC).

For more information, see the localeadm(1M) man page.

For more information in this guide, see Chapter 5, "Displaying and Changing System Information (Tasks)."

▼ How to Display Locales Installed on a System

1  Become superuser or assume an equivalent role.
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2  Display the locales currently installed on your system using the localeadm command. The -l option displays the locales that are installed on the system. For example:

   # localeadm -l
   Checking for installed pkgs. This could take a while.

   Checking for Australasia region (aua)
   (1 of 2 pkgs)
   [......]
   .
   .
The following regions are installed on concordance on Wed Dec 17 15:13:00 MST 2003

POSIX (C)

Central Europe (ceu)
[Austria, Czech Republic, Germany, Hungary, Poland, Slovakia, Switzerland (German), Switzerland (French)]

Done.

▼ How to Determine if a Locale is Installed on a System

1 Become superuser or assume an equivalent role.
Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2 Determine if a locale is installed on your system using the `localeadm` command. The `-q` option and a locale queries the system to see if that locale is installed on the system. To see if the Central European region (ceu) is installed on your system, for example:

```
# localeadm -q ceu
locale/region name is ceu
Checking for Central Europe region (ceu)
.
.
.
The Central Europe region (ceu) is installed on this system
```

Changing System Information (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Directions</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manually set a system’s date and time.</td>
<td>Manually set your system’s date and time by using the <code>date</code> <code>mmdHHMM[cc]yy</code> command-line syntax.</td>
<td>“How to Set a System’s Date and Time Manually” on page 70</td>
</tr>
<tr>
<td>Set up a message-of-the-day.</td>
<td>Set up a message-of-the-day on your system by editing the <code>/etc/motd</code> file.</td>
<td>“How to Set Up a Message-Of-The-Day” on page 71</td>
</tr>
</tbody>
</table>
**Task Directions**

Change a system’s hostname. Change your system’s hostname by editing the following files:
- `/etc/nodename`
- `/etc/hostname.* host-name`
- `/etc/inet/hosts`

*Note* – If you are running the Solaris 3/05, 1/06, 6/06, or 11/06 releases, you also need to update the `/etc/inet/ipnodes` file. Starting with Solaris 10 8/07 release, the Solaris OS does not have two separate `hosts` files. The `/etc/inet/hosts` file is the single `hosts` file that contains both IPv4 and IPv6 entries.

Add a locale to a system. Use the `localeadm` command to add a locale to your system.

Remove a locale from a system. Use the `-r` option of the `localeadm` command and the locale to remove of locale from your system.

---

**Changing System Information**

This section describes commands that enable you to change general system information.

### How to Set a System's Date and Time Manually

1. **Become superuser or assume an equivalent role.**
   
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in *System Administration Guide: Security Services*.

2. **Enter the new date and time.**

   ```
   # date mmdHHMM[[cc]yy]
   
   mm   Month, using two digits.
   dd   Day of the month, using two digits.
   HH   Hour, using two digits and a 24-hour clock.
   MM   Minutes, using two digits.
   ```
Century, using two digits.

Year, using two digits.

See the date(1) man page for more information.

3 Verify that you have reset your system's date correctly by using the date command with no options.

Example 5–10 Setting a System's Date and Time Manually

The following example shows how to use the date command to manually set a system's date and time.

```
# date
Wed Mar  3 14:04:19 MST 2004
# date 0121173404
Thu Jan 21 17:34:34 MST 2004
```

How to Set Up a Message-Of-The-Day

Edit the message-of-the-day file, /etc/motd, to include announcements or inquiries to all users of a system when they log in. Use this feature sparingly, and edit this file regularly to remove obsolete messages.

1 Become superuser or assume an equivalent role.

Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2 Edit the /etc/motd file and add a message of your choice.

Edit the text to include the message that will be displayed during user login. Include spaces, tabs, and carriage returns.

3 Verify the changes by displaying the contents of the /etc/motd file.

```
$ cat /etc/motd
Welcome to the UNIX Universe. Have a nice day.
```

Example 5–11 Setting Up a Message-Of-The-Day

The default message-of-the-day, which is provided when you install Solaris software, contains SunOS version information.
The following example shows an edited /etc/motd file that provides information about system availability to each user who logs in.

```
$ cat /etc/motd
The system will be down from 7:00 a.m to 2:00 p.m. on Saturday, July 7, for upgrades and maintenance. Do not try to access the system during those hours. Thank you.
```

▼ How to Change a System's Host Name

A system's host name is specified in several different locations.

Remember to update your name service database to reflect the new host name.

Use the following procedure to change or rename a system's host name.

You can also use the `sys-unconfig` command to reconfigure a system, including the host name. For more information, see the `sys-unconfig(1M)` man page.

1 Become superuser or assume an equivalent role.

Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2 Change the system's host name in the following files:
   - /etc/nodename
   - /etc/hostname.*interface
   - /etc/inethosts
   - /etc/inet/ipnodes – Applies only to some release Solaris releases.

   **Note** – Starting with the Solaris 10 8/07 release, there is no longer two separate hosts files. The /etc/inethosts file is the single hosts file that contains both IPv4 and IPv6 entries. You do not need to maintain IPv4 entries in two hosts files that always require synchronization. For backward compatibility, the /etc/inet/ipnodes file is replaced with a symbolic link of the same name to the /etc/inethosts file. For more information, see the hosts(4) man page.

3 (Optional) If you are using a name service, change the system's host name in the hosts file.
4 Rename the host name directory within the /var/crash directory.
   # cd /var/crash
   # mv old-host-name new-host-name

5 Reboot the system to activate the new host name.
   # init 6

How to Add a Locale to a System

1 Become superuser or assume an equivalent role.
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2 Add the packages for the locale you want to install on your system using the localeadm command. The -a option and a locale identifies the locale that you want to add. The -d option and a device identifies the device containing the locale packages you want to add. To add the Central European region (ceu) to your system, for example:
   # localeadm -a ceu -d /net/install/latest/Solaris/Product

   locale/region name is ceu

   Devices are /net/install/latest/Solaris/Product
   .
   .
   .
   One or more locales have been added.
   To update the list of locales available at
   .
   .

How to Remove a Locale From a System

1 Become superuser or assume an equivalent role.
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.
2 Remove the packages for the locale installed on your system using the `localeadm` command. The `-r` option and a locale identifies the locale that you want to remove from the system. To remove the Central European region (ceu) from your system, for example:

```
# localeadm -r ceu
locale/region name is ceu
Removing packages for Central Europe (ceu)
```

One or more locales have been removed.

To update the list of locales available at the login screen’s "Options->Language" menu,

```
```
This chapter describes how to optimize disk space by locating unused files and large directories.

For information on the procedures associated with managing disk use, see “Managing Disk Use (Task Map)” on page 75.

### Managing Disk Use (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display information about files and disk space.</td>
<td>Display information about how disk space is used by using the <code>df</code> command.</td>
<td>“How to Display Information About Files and Disk Space” on page 77</td>
</tr>
<tr>
<td>Display the size of files.</td>
<td>Display information about the size of files by using the <code>ls</code> command with the <code>-lh</code> options.</td>
<td>“How to Display the Size of Files” on page 79</td>
</tr>
<tr>
<td>Find large files.</td>
<td>The <code>ls -s</code> command allows you to sort files by size, in descending order.</td>
<td>“How to Find Large Files” on page 80</td>
</tr>
<tr>
<td>Find files that exceed a specified size limit.</td>
<td>Locate and display the names of files that exceed a specified size by using the <code>find</code> command with the <code>-size</code> option and the value of the specified size limit.</td>
<td>“How to Find Files That Exceed a Specified Size Limit” on page 82</td>
</tr>
<tr>
<td>Display the size of directories, subdirectories, and files.</td>
<td>Display the size of one or more directories, subdirectories, and files by using the <code>du</code> command.</td>
<td>“How to Display the Size of Directories, Subdirectories, and Files” on page 83</td>
</tr>
</tbody>
</table>
### Displaying Information About Files and Disk Space

This table summarizes the commands available for displaying information about file size and disk space.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Man Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>df</td>
<td>Reports the number of free disk blocks and files</td>
<td>df(1M)</td>
</tr>
<tr>
<td>du</td>
<td>Summarizes disk space allocated to each subdirectory</td>
<td>du(1)</td>
</tr>
<tr>
<td>find -size</td>
<td>Searches recursively through a directory based on the size specified with the -size option</td>
<td>find(1)</td>
</tr>
</tbody>
</table>
**Displaying Information About Files and Disk Space**

- Display information about how disk space is used by using the `df` command.

  ```
  $ df [directory] [-h] [-t]
  
  df     With no options, lists all mounted file systems and their device names, the number of 512-byte blocks used, and the number of files.
  directory Specifies the directory whose file system you want to check.
  -h     Displays disk space in the power of 1024 scaling.
  -t     Displays the total blocks as well as the blocks used for all mounted file systems.
  ```

**Example 6–1** Displaying Information About File Size and Disk Space

In the following example, all the file systems listed are locally mounted except for `/usr/dist`, which is mounted remotely from the system `venus`.

```
$ df
/ (/dev/dsk/c0t0d0s0 ): 101294 blocks 105480 files
/devices (/devices ): 0 blocks 0 files
/system/contract (ctfs ): 0 blocks 2147483578 files
/proc (proc ): 0 blocks 1871 files
/etc/mnttab (mnttab ): 0 blocks 0 files
/etc/svc/volatile (swap ): 992704 blocks 16964 files
/system/object (objfs ): 0 blocks 2147483530 files
/usr (/dev/dsk/c0t0d0s6 ): 503774 blocks 299189 files
/dev/fd (fd ): 0 blocks 0 files
/var/run (swap ): 992704 blocks 16964 files
/tmp (swap ): 992704 blocks 16964 files
/opt (/dev/dsk/c0t0d0s5 ): 23914 blocks 6947 files
/export/home (/dev/dsk/c0t0d0s7 ): 16810 blocks 7160 files
```

**Example 6–2** Displaying File Size Information in 1024 Bytes

In the following example, file system information is displayed in 1024 bytes.
### Displaying Information About Files and Disk Space

$ df -h

<table>
<thead>
<tr>
<th>Filesystem</th>
<th>size</th>
<th>used</th>
<th>avail</th>
<th>capacity</th>
<th>Mounted on</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/dsk/c0t0d0s0</td>
<td>249M</td>
<td>200M</td>
<td>25M</td>
<td>90%</td>
<td>/</td>
</tr>
<tr>
<td>/devices</td>
<td>0K</td>
<td>0K</td>
<td>0K</td>
<td>0%</td>
<td>/devices</td>
</tr>
<tr>
<td>ctrfs</td>
<td>0K</td>
<td>0K</td>
<td>0K</td>
<td>0%</td>
<td>/system/contract</td>
</tr>
<tr>
<td>proc</td>
<td>0K</td>
<td>0K</td>
<td>0K</td>
<td>0%</td>
<td>/proc</td>
</tr>
<tr>
<td>mnttab</td>
<td>0K</td>
<td>0K</td>
<td>0K</td>
<td>0%</td>
<td>/etc/mnttab</td>
</tr>
<tr>
<td>swap</td>
<td>485M</td>
<td>376K</td>
<td>485M</td>
<td>1%</td>
<td>/etc/svc/volatile</td>
</tr>
<tr>
<td>objfs</td>
<td>0K</td>
<td>0K</td>
<td>0K</td>
<td>0%</td>
<td>/system/object</td>
</tr>
<tr>
<td>/dev/dsk/c0t0d0s6</td>
<td>3.2G</td>
<td>2.9G</td>
<td>214M</td>
<td>94%</td>
<td>/usr</td>
</tr>
<tr>
<td>fd</td>
<td>0K</td>
<td>0K</td>
<td>0K</td>
<td>0%</td>
<td>/dev/fd</td>
</tr>
<tr>
<td>swap</td>
<td>485M</td>
<td>40K</td>
<td>485M</td>
<td>1%</td>
<td>/var/run</td>
</tr>
<tr>
<td>swap</td>
<td>485M</td>
<td>40K</td>
<td>485M</td>
<td>1%</td>
<td>/tmp</td>
</tr>
<tr>
<td>/dev/dsk/c0t0d0s5</td>
<td>13M</td>
<td>1.7M</td>
<td>10M</td>
<td>15%</td>
<td>/opt</td>
</tr>
<tr>
<td>/dev/dsk/c0t0d0s7</td>
<td>9.2M</td>
<td>1.0M</td>
<td>7.3M</td>
<td>13%</td>
<td>/export/home</td>
</tr>
</tbody>
</table>

Although /proc and /tmp are local file systems, they are not UFS file systems. /proc is a PROCFS file system, /var/run and /tmp are TMPFS file systems, and /etc/mnttab is an MNTFS file system.

### Example 6–3 Displaying Total Number of Blocks and Files Allocated for a File System

The following example shows a list of all mounted file systems, device names, total 512-byte blocks used, and the number of files. The second line of each two-line entry displays the total number of blocks and files that are allocated for the file system.

$ df -t

```
/       (/dev/dsk/c0t0d0s0 ): 101294 blocks 105480 files
                           total:  509932 blocks 129024 files
/devices   (/devices   ):  0 blocks   0 files
                           total:     0 blocks    113 files
/system/contract (ctfs  ):  0 blocks 2147483578 files
                           total:     0 blocks    69 files
/proc      (proc      ):  0 blocks  1871 files
                           total:     0 blocks  1916 files
/etc/mnttab (mnttab   ):  0 blocks     0 files
                           total:     0 blocks     1 files
/etc/svc/volatile (swap  ): 992608 blocks 16964 files
                           total:  993360 blocks 17025 files
/system/object (objfs   ):  0 blocks 2147483530 files
                           total:     0 blocks  117 files
/usr       (/dev/dsk/c0t0d0s6 ): 503774 blocks 299189 files
                           total:  6650604 blocks 420480 files
/dev/fd    (fd        ):  0 blocks     0 files
                           total:     0 blocks     31 files
/var/run   (swap      ): 992608 blocks 16964 files
                           total:  992688 blocks 17025 files
```
Checking the Size of Files

You can check the size of files and sort them by using the `ls` command. You can find files that exceed a size limit by using the `find` command. For more information, see the `ls(1)` and `find(1)` man pages.

**Note** - If you run out of space in the `/var` directory, do not symbolically link the `/var` directory to a directory on a file system with more disk space. Doing so, even as a temporary measure, might cause problems for certain Solaris daemon processes and utilities.

**How to Display the Size of Files**

1. Change to the directory where the files you want to check are located.

2. Display the size of the files.

   `$ ls [-lh] [-s]`

   `-l` Displays a list of files and directories in long format, showing the sizes in bytes. (See the example that follows.)

   `-h` Scales file sizes and directory sizes into Kbytes, Mbytes, Gbytes, or Tbytes when the file or directory size is larger than 1024 bytes. This option also modifies the output displayed by the `-o`, `-n`, `-g`, and `-g` options to display file or directory sizes in the new format. For more information, see the `ls(1)` man page.

   `-s` Displays a list of the files and directories, showing the sizes in blocks.

**Example 6-4**  Displaying the Size of Files

The following example shows that the `lastlog` and `messages` files are larger than the other files in the `/var/adm` directory.

   `$ cd /var/adm`
   `$ ls -lh`
   `total 148`
The following example shows that the `lpsched.1` file uses two blocks.

```
$ cd /var/lp/logs
$ ls -s
total 2 0 lpsched 2 lpsched.1
```

▼ How to Find Large Files

1. Change to the directory that you want to search.

2. Display the size of files in blocks from largest to smallest.
   - If the characters or columns for the files are different, use the following command to sort a list of files by block size, from largest to smallest.

```
$ ls -l | sort +4rn | more
```

   Note that this command sorts files in a list by the character that is in the fourth field, starting from the left.

   - If the characters or columns for the files are the same, use the following command to sort a list of files by block size, from largest to smallest.

```
$ ls -s | sort -nr | more
```

   Note that this command sorts files in a list, starting with the left most character.
Example 6–5  Finding Large Files (Sorting by the Fifth Field’s Character)

$ cd /var/adm
$ ls -l | sort +4rn | more
-r--r--r-- 1 root root 4568368 Oct 17 08:36 lastlog
-rw-r--r-- 1 adm adm 697040 Oct 17 12:30 pacct.9
-rw-r--r-- 1 adm adm 280520 Oct 17 13:05 pacct.2
-rw-r--r-- 1 adm adm 277360 Oct 17 12:55 pacct.4
-rw-r--r-- 1 adm adm 264080 Oct 17 12:45 pacct.6
-rw-r--r-- 1 adm adm 255840 Oct 17 12:40 pacct.7
-rw-r--r-- 1 adm adm 254120 Oct 17 13:10 pacct.1
-rw-r--r-- 1 adm adm 250360 Oct 17 12:25 pacct.10
-rw-r--r-- 1 adm adm 248880 Oct 17 13:00 pacct.3
-rw-r--r-- 1 adm adm 247200 Oct 17 12:35 pacct.8
-rw-r--r-- 1 adm adm 246720 Oct 17 13:15 pacct.0
-rw-r--r-- 1 adm adm 245920 Oct 17 12:50 pacct.5
-rw-r--r-- 1 root root 190229 Oct 5 03:02 messages.1
-rw-r--r-- 1 adm adm 156800 Oct 17 13:17 pacct
-rw-r--r-- 1 adm adm 129084 Oct 17 08:36 wtmpx

Example 6–6  Finding Large Files (Sorting by the Left Most Character)

In the following example, the lastlog and messages files are the largest files in the /var/adm directory.

$ cd /var/adm
$ ls -s | sort -nr | more
48 lastlog
30 messages
24 wtmpx
18 pacct
8 utmpx
2 vold.log
2 sulog
2 sm.bin/
2 sa/
2 passwd/
2 pacct1
2 log/
2 acct/
0 spellhist
0 aculog
total 144
How to Find Files That Exceed a Specified Size Limit

To locate and display the names of files that exceed a specified size, use the `find` command.

```
$ find directory -size +nnn
```

directory      Identifies the directory that you want to search.
-size +nnn     Is a number of 512-byte blocks. Files that exceed this size are listed.

Example 6–7 Finding Files That Exceed a Specified Size Limit

The following example shows how to find files larger than 400 blocks in the current working directory. The `-print` option displays the output of the `find` command.

```
$ find . -size +400 -print
./Howto/howto.doc
./Howto/howto.doc.backup
./Howto/howtotest.doc
./Routine/routineBackupconcepts.doc
./Routine/routineIntro.doc
./Routine/routineTroublefsck.doc
./.record
./Mail/pagination
./Config/configPrintadmin.doc
./Config/configPrintsetup.doc
./Config/configMailappx.doc
./Config/configMailconcepts.doc
./snapshot.rs
```

Checking the Size of Directories

You can display the size of directories by using the `du` command and options. Additionally, you can find the amount of disk space used by user accounts on local UFS file systems by using the `quot` command. For more information about these commands, see the `du(1)` and `quot(1M)` man pages.
How to Display the Size of Directories, Subdirectories, and Files

Display the size of one or more directories, subdirectories, and files by using the du command. Sizes are displayed in 512-byte blocks.

$ du [-as] [directory ...]

du Displays the size of each directory that you specify, including each subdirectory beneath it.
-a Displays the size of each file and subdirectory, and the total number of blocks that are contained in the specified directory.
-s Displays the total number of blocks that are contained in the specified directory.
-h Displays the size of each directory in 1024-byte blocks.
-H Displays the size of each directory in 1000-byte blocks.

[directory ...] Identifies one or more directories that you want to check. Separate multiple directories in the command-line syntax with spaces.

Example 6–8 Displaying the Size of Directories, Subdirectories, and Files

The following example shows the sizes of two directories.

$ du -s /var/adm /var/spool/lp
130 /var/adm
40 /var/spool/lp

The following example shows the sizes of two directories and includes the sizes of all the subdirectories and files that are contained within each directory. The total number of blocks that are contained in each directory is also displayed.

$ du /var/adm /var/spool/lp
2 /var/adm/exacct
2 /var/adm/log
2 /var/adm/streams
2 /var/adm/acct/fiscal
2 /var/adm/acct/nite
2 /var/adm/acct/sum
8 /var/adm/acct
2 /var/adm/da
2 /var/adm/sm.bin
258 /var/adm
The following example shows directory sizes in 1024-byte blocks.

```bash
$ du -h /usr/share/audio
  796K /usr/share/audio/samples/au
  797K /usr/share/audio/samples
  798K /usr/share/audio
```

### How to Display the User Ownership of Local UFS File Systems

1. **Become superuser or assume an equivalent role.**
   
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in *System Administration Guide: Security Services*.

2. **Display users, directories, or file systems, and the number of 1024-byte blocks used.**
   
   ```bash
   # quot [-a] [filesystem ...]
   
   -a     Lists all users of each mounted UFS file system and the number of 1024-byte blocks used.
   
   filesystem   Identifies a UFS file system. Users and the number of blocks used are displayed for that file system.
   ```

   **Note** – The `quot` command works only on local UFS file systems.

**Example 6–9**    

**Displaying the User Ownership of Local UFS File Systems**

In the following example, users of the root (/) file system are displayed. In the subsequent example, users of all mounted UFS file systems are displayed.

```bash
# quot /dev/rdsk/c0t0d0s0:
  43340 root
  3142 rimmer
  47 uucp
```
Finding and Removing Old or Inactive Files

Part of the job of cleaning up heavily loaded file systems involves locating and removing files that have not been used recently. You can locate unused files by using the `ls` or `find` commands. For more information, see the `ls(1)` and `find(1)` man pages.

Other ways to conserve disk space include emptying temporary directories such as the directories located in `/var/tmp` or `/var/spool`, and deleting core and crash dump files. For more information about crash dump files, refer to Chapter 17, “Managing System Crash Information (Tasks).”

▼ How to List the Newest Files

- List files, displaying the most recently created or changed files first, by using the `ls -t` command.

  $ ls -t [directory]

  `-t`          Sorts files by latest time stamp first.
Identifiesthe directory that you want to search.

### Example 6-10  Listing the Newest Files

The following example shows how to use the `ls -tl` command to locate the most recently created or changed files within the `/var/adm` directory. The `sulog` file was created or edited most recently.

```
$ ls -tl /var/adm
```

```
total 134
-rw------- 1 root root 315 Sep 24 14:00 sulog
-r--r--r-- 1 root other 350700 Sep 22 11:04 lastlog
-rw-r--r-- 1 root bin 4464 Sep 22 11:04 utmpx
-rw-r--r-- 1 adm adm 20088 Sep 22 11:04 wtmpx
-rw-r--r-- 1 root other 0 Sep 19 03:10 messages
-rw-r--r-- 1 root other 0 Sep 12 03:10 messages.0
-rw-r--r-- 1 root root 11510 Sep 10 16:13 messages.1
-rw-r--r-- 1 root root 0 Sep 10 16:12 vold.log
drwxr-xr-x 2 root sys 512 Sep 10 15:33 sm.bin
drwxrwxr-x 5 adm adm 512 Sep 10 15:19 acct
drwxrwxr-x 2 adm sys 512 Sep 10 15:19 sa
-rw------- 1 uucp bin 0 Sep 10 15:17 aculog
-rw-rw-rw- 1 root bin 0 Sep 10 15:17 spellhist
drwxr-xr-x 2 adm adm 512 Sep 10 15:17 log
```

#### How to Find and Remove Old or Inactive Files

1. **Become superuser or assume an equivalent role.**
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in *System Administration Guide: Security Services*.

2. **Find files that have not been accessed for a specified number of days and list them in a file.**

   ```
   # find directory -type f [-atime +nnn] [-mtime +nnn] -print > filename &
   ```

   - **directory**: Identifies the directory you want to search. Directories below this directory are also searched.
   - **atime +nnn**: Finds files that have not been accessed within the number of days (nnn) that you specify.
   - **mtime +nnn**: Finds files that have not been modified within the number of days (nnn) that you specify.

   - **filename**: Identifies the file that contains the list of inactive files.
3 Remove the inactive files found listed in the previous step.
   # rm 'cat filename'

where filename identifies the file that was created in the previous step. This file contains the list of inactive files.

Example 6–11 Finding and Removing Old or Inactive Files

The following example shows files in the /var/adm directory and the subdirectories that have not been accessed in the last 60 days. The /var/tmp/deadfiles file contains the list of inactive files. The rm command removes these inactive files.

# find /var/adm -type f -atime +60 -print > /var/tmp/deadfiles &
# more /var/tmp/deadfiles
/var/adm/aculog
/var/adm/spellhist
/var/adm/wtmpx
/var/adm/sa/sa13
/var/adm/sa/sa27
/var/adm/sa/sa11
/var/adm/sa/sa23
/var/adm/sulog
/var/adm/vold.log
/var/adm/messages.1
/var/adm/messages.2
/var/adm/messages.3
# rm 'cat /var/tmp/deadfiles'
#

▼ How to Clear Out Temporary Directories

1 Become superuser or assume an equivalent role.
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2 Change to the directory that you want to clean out.
   # cd directory

Caution – Ensure that you are in the correct directory before completing Step 3. Step 3 deletes all files in the current directory.
3 Delete the files and subdirectories in the current directory.
   \# rm -r *

4 Change to other directories that contain unnecessary, temporary or obsolete subdirectories and files. Delete these subdirectories and files by repeating Step 3.

Example 6–12 Clearing Out Temporary Directories

The following example shows how to clear out the mywork directory, and how to verify that all files and subdirectories were removed.

\# cd mywork
\# ls
filea.000
fileb.000
filec.001
\# rm -r *
\# ls
#
#

▼ How to Find and Delete core Files

1 Become superuser or assume an equivalent role.

Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2 Change to the directory where you want to search for core files.

3 Find and remove any core files in this directory and its subdirectories.
   \# find . -name core -exec rm {} \\

Example 6–13 Finding and Deleting core Files

The following example shows how to find and remove core files from the jones user account by using the find command.

\# cd /home/jones
\# find . -name core -exec rm {} \

How to Delete Crash Dump Files

Crash dump files can be very large. If you have enabled your system to store these files, do not retain them for longer than necessary.

1 Become superuser or assume an equivalent role.
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2 Change to the directory where crash dump files are stored.
   # cd /var/crash/system
   where system identifies a system that created the crash dump files.

Caution – Ensure you are in the correct directory before completing Step 3. Step 3 deletes all files in the current directory.

3 Remove the crash dump files.
   # rm *

4 Verify that the crash dump files were removed.
   # ls

Example 6–14 Deleting Crash Dump Files

The following example shows how to remove crash dump files from the system venus, and how to verify that the crash dump files were removed.

# cd /var/crash/venus
# rm *
# ls
Chapter 7

Managing Quotas (Tasks)

This chapter describes how to set up and administer quotas for disk space and inodes.

For information associated with managing quotas, see the following:

- “Setting Up Quotas (Task Map)” on page 94
- “Maintaining Quotas (Task Map)” on page 98

What Are Quotas?

Quotas enable system administrators to control the size of UFS file systems. Quotas limit the amount of disk space and the number of inodes, which roughly corresponds to the number of files, that individual users can acquire. For this reason, quotas are especially useful on the file systems where user home directories reside. As a rule, the public and /tmp file systems usually do not benefit significantly by establishing quotas.

Using Quotas

Once quotas are in place, they can be changed to adjust the amount of disk space or the number of inodes that users can consume. Additionally, quotas can be added or removed as system needs change. For instructions on changing quotas or the amount of time that quotas can be exceeded, disabling individual quotas, or removing quotas from file systems, see “Changing and Removing Quotas” on page 101.

In addition, quota status can be monitored. Quota commands enable administrators to display information about quotas on a file system, or search for users who have exceeded their quotas. For procedures that describe how to use these commands, see “Checking Quotas” on page 99.
Setting Soft Limits and Hard Limits for Quotas

You can set both soft limits and hard limits. The system does not allow a user to exceed his or her hard limit. However, a system administrator might set a soft limit, which the user can temporarily exceed. The soft limit must be less than the hard limit.

Once the user exceeds the soft limit, a quota timer begins. While the quota timer is ticking, the user is allowed to operate above the soft limit but cannot exceed the hard limit. Once the user goes below the soft limit, the timer is reset. However, if the user’s usage remains above the soft limit when the timer expires, the soft limit is enforced as a hard limit. By default, the soft limit timer is set to seven days.

The `timeleft` field in the `repquota` and `quota` commands shows the value of the timer.

For example, let’s say a user has a soft limit of 10,000 blocks and a hard limit of 12,000 blocks. If the user’s block usage exceeds 10,000 blocks and the seven-day timer is also exceeded, the user cannot allocate more disk blocks on that file system until his or her usage drops below the soft limit.

The Difference Between Disk Block and File Limits

A file system provides two resources to the user, blocks for data and inodes for files. Each file consumes one inode. File data is stored in data blocks. Data blocks are usually made up of 1Kbyte blocks.

Assuming no directories exist, a user can exceed his or her inode quota by creating all empty files without using any blocks. A user can also use one inode, yet exceed his or her block quota, by creating one file that is large enough to consume all the data blocks in the user’s quota.

Setting Up Quotas

Setting up quotas involves these general steps:

1. Ensuring that quotas are enforced each time the system is rebooted by adding a quota option to the `/etc/vfstab` file entries. Also, creating a `quotas` file in the top-level directory of the file system.
2. After you create a quota for one use, copying the quota as a prototype to set up other user quotas.
3. Before you turn quotas on, checking the consistency of the proposed quotas with the current disk usage to make sure that there are no conflicts.
4. Turning on the quotas on for one or more file systems.

For specific information about these procedures, see "Setting Up Quotas (Task Map)” on page 94.
The following table describes the commands that you use to set up disk quotas.

**TABLE 7–1 Commands for Setting Up Quotas**

<table>
<thead>
<tr>
<th>Command</th>
<th>Task</th>
<th>ManPage</th>
</tr>
</thead>
<tbody>
<tr>
<td>edquota</td>
<td>Sets the hard limits and soft limits on the number of inodes and the amount of disk space for each user.</td>
<td>edquota(1M)</td>
</tr>
<tr>
<td>quotacheck</td>
<td>Examines each mounted UFS file system, comparing the file system’s current disk usage against information stored in the file system’s disk quota file. Then, resolves inconsistencies</td>
<td>quotacheck(1M)</td>
</tr>
<tr>
<td>quotaon</td>
<td>Activates the quotas for the specified file systems.</td>
<td>quotaon(1M)</td>
</tr>
<tr>
<td>quota</td>
<td>Displays users’ disk quotas on mounted file systems to verify that the quotas have been correctly set up.</td>
<td>quota(1M)</td>
</tr>
</tbody>
</table>

**Guidelines for Setting Up Quotas**

Before you set up quotas, you need to determine how much disk space and how many inodes to allocate to each user. If you want to ensure that the total file system space is never exceeded, you can divide the total size of the file system between the number of users. For example, if three users share a 100-Mbyte slice and have equal disk space needs, you could allocate 33 Mbytes to each user.

In environments where not all users are likely to push their limits, you might want to set individual quotas so that they add up to more than the total size of the file system. For example, if three users share a 100-Mbyte slice, you could allocate 40 Mbytes to each user.

When you have established a quota for one user by using the edquota command, you can use this quota as a prototype to set the same quota for other users on the same file system.

Before you turn on the quotas, do the following:

- First, configure the UFS file systems for the quotas.
- Establish quotas for each user, and run the quotacheck command to check for consistency between current disk usage and quota files.
- Run the quotacheck command periodically if systems are rebooted infrequently.

The quotas you set up with the edquota command are not enforced until you turn them on by using the quotaon command. If you have properly configured the quota files, the quotas are turned on automatically each time a system is rebooted and the file system is mounted.
Setting Up Quotas (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Configure a file system for quotas.</td>
<td>Edit the /etc/vfstab file so that quotas are activated each time the file system is mounted. Also, create a quotas file.</td>
</tr>
<tr>
<td>2.</td>
<td>Set up quotas for a user.</td>
<td>Use the edquota command to create disk quotas and inode quotas for a single user account.</td>
</tr>
<tr>
<td>3.</td>
<td>(Optional) Set up quotas for multiple users.</td>
<td>Use the edquota command to apply prototype quotas to other user accounts.</td>
</tr>
<tr>
<td>4.</td>
<td>Check for consistency.</td>
<td>Use the quotacheck command to compare quotas to current disk usage for consistency across one or more file systems.</td>
</tr>
<tr>
<td>5.</td>
<td>Turn on quotas.</td>
<td>Use the quotaon command to initiate quotas on one or more file systems.</td>
</tr>
</tbody>
</table>

**How to Configure File Systems for Quotas**

1. Become superuser or assume an equivalent role. Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2. Edit the /etc/vfstab file and add the field for each UFS file system that will have quotas.

3. Change directory to the root of the file system that will have quotas.

4. Create a file named quotas.

   # touch quotas

5. Change permissions to read/write for superuser access only.

   # chmod 600 quotas
Example 7–1 Configuring File Systems for Quotas

The following /etc/vfstab example shows that the /export/home directory from the system pluto is mounted as an NFS file system on the local system. You can tell that quotas are enabled by the rq entry under the mount options column.

```
# device device mount FS fsck mount mount
# to mount to fsck point type pass at boot options
# pluto:/export/home - /export/home nfs - yes rq
```

The following example line from the /etc/vfstab file shows that the local /work directory is mounted with quotas enabled, signified by the rq entry under the mount options column.

```
#/dev/dsk/c0t4d0s0 /dev/rdsk/c0t4d0s0 /work ufs 3 yes rq
```

See Also

- “How to Set Up Quotas for a User” on page 95
- “How to Set Up Quotas for Multiple Users” on page 96
- “How to Check Quota Consistency” on page 96
- “How to Turn On Quotas” on page 97

▼ How to Set Up Quotas for a User

1 Become superuser or assume an equivalent role.
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2 Use the quota editor to create a temporary file that contains one line of quota information for each mounted UFS file system that has a quotas file in the file system’s root directory.
   
   ```
   # edquota username
   ```
   where username is the user for whom you want to set up quotas.

3 Change the number of 1-Kbyte disk blocks, both soft and hard, and the number of inodes, both soft and hard, from the default of 0, to the quotas that you specify for each file system.

4 Verify the user’s quota.
   
   ```
   # quota -v username
   ```
   
   -v Displays the user’s quota information on all mounted file systems where quotas exist.
   
   username Specifies the user name to view quota limits.
Example 7–2  Setting Up Quotas for a User

The following example shows the contents of the temporary file opened by edquota on a system where /files is the only mounted file system that contains a quotas file in the root directory.

```
fs /files blocks (soft = 0, hard = 0) inodes (soft = 0, hard = 0)
```

The following example shows the same line in the temporary file after quotas have been set up.

```
fs /files blocks (soft = 50, hard = 60) inodes (soft = 90, hard = 100)
```

▼  How to Set Up Quotas for Multiple Users

1  Become superuser or assume an equivalent role.

Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2  Use the quota editor to apply the quotas you already established for a prototype user to the additional users that you specify.

```
# edquota -p prototype-user username ...
```

`prototype-user`  Is the user name of the account for which you have set up quotas.

`username ...`  Specifies one or more user names of additional accounts. More than one user name is specified by separating each user name with a space.

Example 7–3  Setting Up Prototype Quotas for Multiple Users

The following example shows how to apply the quotas established for user bob to users mary and john.

```
# edquota -p bob mary john
```

▼  How to Check Quota Consistency

The quotacheck command is run automatically when a system is rebooted. You generally do not have to run the quotacheck command on an empty file system with quotas. However, if you are setting up quotas on a file system with existing files, you need to run the quotacheck command to synchronize the quota database with the files or inodes that already exist in the file system.
Also keep in mind that running the `quotacheck` command on large file systems can be time-consuming.

**Note** – To ensure accurate disk data, the file systems being checked should be quiescent when you run the `quotacheck` command manually.

1. **Become superuser or assume an equivalent role.**
   Roles contain authorizations and privileged commands. For more information about roles, see "Configuring RBAC (Task Map)" in *System Administration Guide: Security Services*.

2. **Run a consistency check on UFS file systems.**
   
   ```
   # quotacheck [-va] filesystem
   ```
   
   **-v** (Optional) Identifies the disk quotas for each user on a particular file system.
   
   **-a** Checks all file systems with an rq entry in the `/etc/vfstab` file.
   
   **filesystem** Specifies the file system to check.
   
   See the `quotacheck(1M)` man page for more information.

**Example 7–4** Checking Quota Consistency

The following example shows how to check quotas for the `/export/home` file system on the `/dev/rdsk/c0t0d0s7` slice. The `/export/home` file system is the only file system with an rq entry in the `/etc/vfstab` file.

```bash
# quotacheck -va
*** Checking quotas for /dev/rdsk/c0t0d0s7 (/export/home)
```

**How to Turn On Quotas**

1. **Become superuser or assume an equivalent role.**
   Roles contain authorizations and privileged commands. For more information about roles, see "Configuring RBAC (Task Map)" in *System Administration Guide: Security Services*.

2. **Turn on file system quotas.**
   
   ```
   # quotaon [-v] -a filesystem ...
   ```
   
   **-v** Displays a message for each file system after quotas are turned on.
   
   **-a** Turns on quotas for all file systems with an rq entry in the `/etc/vfstab` file.
filesystem ...  Turns on quotas for one or more file systems that you specify. More than one file system is specified by separating each file system name with a space.

Example 7–5  Turning On Quotas

The following example shows how to turn quotas on for the file systems on the /dev/dsk/c0t4d0s7 and /dev/dsk/c0t3d0s7 slices.

# quotaon -v /dev/dsk/c0t4d0s7 /dev/dsk/c0t3d0s7
/dev/dsk/c0t4d0s7: quotas turned on
/dev/dsk/c0t3d0s7: quotas turned on

Maintaining Quotas (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check for exceeded quotas.</td>
<td>Display the quotas and disk use for individual users on file systems on which quotas have been activated by using the quota command.</td>
<td>&quot;How to Check for Exceeded Quotas&quot; on page 99</td>
</tr>
<tr>
<td>Check for quotas on a file system.</td>
<td>Display the quotas and disk use for all users on one or more file systems by using the repquota command.</td>
<td>&quot;How to Check Quotas on a File System&quot; on page 100</td>
</tr>
<tr>
<td>Change the soft limit default.</td>
<td>Change the length of time that users can exceed their disk space quotas or inode quotas by using the edquota command.</td>
<td>&quot;How to Change the Soft Limit Default&quot; on page 101</td>
</tr>
<tr>
<td>Change quotas for a user.</td>
<td>Use the quota editor, edquota, to change quotas for an individual user.</td>
<td>&quot;How to Change Quotas for a User&quot; on page 102</td>
</tr>
<tr>
<td>Disable quotas for a user.</td>
<td>Use the quota editor, edquota, to disable quotas for an individual user.</td>
<td>&quot;How to Disable Quotas for a User&quot; on page 103</td>
</tr>
<tr>
<td>Turn off quotas.</td>
<td>Turn off quotas by using the quotaoff command.</td>
<td>&quot;How to Turn Off Quotas&quot; on page 104</td>
</tr>
</tbody>
</table>
Checking Quotas

After you have set up and turned on disk quotas and inode quotas, you can check for users who exceed their quotas. In addition, you can check quota information for entire file systems.

The following table describes the commands that you use to check quotas.

<table>
<thead>
<tr>
<th>TABLE 7–2</th>
<th>Commands for Checking Quotas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
<td>Task</td>
</tr>
<tr>
<td>quota(1M)</td>
<td>Displays user quotas and current disk use, and information about users who are exceeding their quotas</td>
</tr>
<tr>
<td>repquota(1M)</td>
<td>Displays quotas, files, and the amount of space that is owned for specified file systems</td>
</tr>
</tbody>
</table>

▶ How to Check for Exceeded Quotas

You can display the quotas and disk use for individual users on file systems on which quotas have been activated by using the quota command.

1 Become superuser or assume an equivalent role.

Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2 Display user quotas for mounted file systems where quotas are enabled.

```bash
# quota [-v] username
-v     Displays one or more users' quotas on all mounted file systems that have quotas.
username   Is the login name or UID of a user's account.
```

Example 7–6 Checking for Exceeded Quotas

The following example shows that the user account identified by UID 301 has one 1–Kbyte quota but has not used any disk space.

```bash
# quota -v 301
Disk quotas for bob (uid 301):
Filesystem usage quota limit timeleft files quota limit timeleft
/export/home 0 1 2 0 2 3
Filesystem Is the mount point for the file system.
usage      Is the current block usage.
```
Checking Quotas

quota Is the soft-block limit.
limit Is the hard-block limit.
timeleft Is the amount of time, in days, left on the quota timer.
files Is the current inode usage.
quota Is the soft-inode limit.
limit Is the hard-inode limit.
timeleft Is the amount of time, in days, left on the quota timer.

▼ How to Check Quotas on a File System

Display the quotas and disk use for all users on one or more file systems by using the repquota command.

1 Become superuser or assume an equivalent role.
Roles contain authorizations and privileged commands. For more information about roles, see "Configuring RBAC (Task Map)" in System Administration Guide: Security Services.

2 Display all quotas for one or more file systems, even if there is no usage.
   # repquota [-v] -a filesystem
   -v Reports on quotas for all users, even those users who do not consume resources.
   -a Reports on all file systems.
   filesystem Reports on the specified file system.

Example 7–7 Checking Quotas on a File System

The following example shows output from the repquota command on a system that has quotas enabled on only one file system (/export/home).

   # repquota -va
   /dev/dsk/c0t3d0s7 (/export/home):
   Block limits File limits
   User used soft hard timeleft used soft hard timeleft
   #301 -- 0 1 2.0 days 0 2 3
   #341 -- 57 50 60 7.0 days 2 90 100
   Block limits Definition
   used Is the current block usage.
Changing and Removing Quotas

You can change quotas to adjust the amount of disk space or the number of inodes that users can consume. You can also remove quotas, for individual users or from entire file systems, as needed.

The following table describes the commands that you use to change quotas or to remove quotas.

<table>
<thead>
<tr>
<th>Command</th>
<th>Man Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>edquota</td>
<td>edquota(1M)</td>
<td>Changes the hard limits and soft limits on the number of inodes or amount of disk space for each user. Also, changes the soft limit for each file system with a quota.</td>
</tr>
<tr>
<td>quotaoff</td>
<td>quotaon(1M)</td>
<td>Turns off quotas for specified file systems.</td>
</tr>
</tbody>
</table>

How to Change the Soft Limit Default

By default, users can exceed the soft time limits for their quotas for one week. So, after a week of repeated violations of the soft time limits of either disk space quotas or inode quotas, the system prevents users from using any more inodes or disk blocks.

You can change the length of time that users can exceed their disk space quotas or inode quotas by using the edquota command.

1 Become superuser or assume an equivalent role.

Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.
Use the quota editor to create a temporary file that contains soft time limits.

```bash
# edquota -t
```

where the `-t` option specifies the editing of the soft time limits for each file system.

Change the time limits from 0 (the default) to the time limits that you specify. So, use numbers and the keywords `month`, `week`, `day`, `hour`, `min`, or `sec`.

Note – This procedure does not affect current quota violators.

Example 7–8 Changing the Soft Limit Default

The following example shows the contents of the temporary file opened by the `edquota` command on a system where `/export/home` is the only mounted file system with quotas. The default value, 0, means that the default time limit of one week is used.

```plaintext
fs /export/home blocks time limit = 0 (default), files time limit = 0 (default)
```

The following example shows the same temporary file after the time limit for exceeding the blocks quota has been changed to 2 weeks. Also, the time limit for exceeding the number of files has been changed to 16 days.

```plaintext
fs /export/home blocks time limit = 2 weeks, files time limit = 16 days
```

How to Change Quotas for a User

1. Become superuser or assume an equivalent role.
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2. Use the quota editor to open a temporary file that contains one line for each mounted file system that has a quotas file in the file system’s root directory.

   ```bash
   # edquota username
   ```

   where `username` specifies the user name whose quota you want to change.

   Caution – You can specify multiple users as arguments to the `edquota` command. However, the user that this information belongs to, is not displayed. To avoid confusion, specify only one user name.

3. Specify the number of 1-Kbyte disk blocks, both soft and hard, and the number of inodes, both soft and hard.
Verify that a user’s quota has been correctly changed.

```
# quota -v username
```

- `-v` Displays user quota information on all mounted file systems with quotas enabled.
- `username` Specifies the user name whose quota you want to check.

### Example 7–9 Changing Quotas for a User

The following example shows the contents of the temporary file opened by the edquota command. This temporary file is opened on a system where `/files` is the only mounted file system containing a quotas file in the file system’s root directory.

```
fs /files blocks (soft = 0, hard = 0) inodes (soft = 0, hard = 0)
```

The following output shows the same temporary file after quotas have been changed.

```
fs /files blocks (soft = 0, hard = 500) inodes (soft = 0, hard = 100)
```

### Example 7–10 Verifying That Hard Quotas Have Been Changed

The following example shows how to verify that the hard quotas for user `smith` have been changed to 500 1-Kbyte blocks, and 100 inodes.

```
# quota -v smith
Disk quotas for smith (uid 12):
Filesystem usage quota limit timeleft files quota limit timeleft
    /files  1  0 500  1  0 100
```

### How to Disable Quotas for a User

1. **Become superuser or assume an equivalent role.**
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2. **Use the quota editor to create a temporary file containing one line for each mounted file system that has a quotas file in its top-level directory.**

   ```
   # edquota username
   ```

   Where `username` specifies the user name whose quota you want to disable.
Changing and Removing Quotas

**Caution** – You can specify multiple users as arguments to the edquota command. However, the user that this information belongs to, is not displayed. To avoid confusion, specify only one user name.

3 Change the number of 1-Kbyte disk blocks, both soft and hard, and the number of inodes, both soft and hard, to 0.

**Note** – Ensure that you change the values to zero. Do not delete the line from the text file.

4 Verify that you have disabled a user’s quota.

```
# quota -v username
-v Displays user quota information on all mounted file systems with quotas enabled.
username Specifies the user name (UID) whose quota you want to check.
```

**Example 7–11** Disabling Quotas for a User

The following example shows the contents of the temporary file opened by the edquota command on a system where /files is the only mounted file system that contains a quotas file in the file system’s root directory.

```
fs /files blocks (soft = 50, hard = 60) inodes (soft = 90, hard = 100)
```

The following example shows the same temporary file after quotas have been disabled.

```
fs /files blocks (soft = 0, hard = 0) inodes (soft = 0, hard = 0)
```

**▼ How to Turn Off Quotas**

1 Become superuser or assume an equivalent role.

Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in *System Administration Guide: Security Services*.

2 Turn off file system quotas.

```
# quotaoff [-v] -a filesystem ...
-v Displays a message from each file system when quotas are turned off.
-a Turns off quotas for all file systems.
```
Eastbound

Example 7–12 Turning Off Quotas

The following example shows how to turn off the quotas for the /export/home file system.

```
# quotaoff -v /export/home
/export/home: quotas turned off
```

*filesystem*  Turns off quotas for one or more file systems that you specify. More than one file system is specified by separating each file system name with a space.
This chapter describes how to schedule routine or single (one-time) system tasks by using the crontab and at commands.

This chapter also explains how to control access to these commands by using the following files:

- cron.deny
- cron-allow
- at.deny

For information on the procedures that are associated with scheduling system tasks, see the following:

- “Creating and Editing crontab Files (Task Map)” on page 107
- “Using the at Command (Task Map)” on page 120

## Creating and Editing crontab Files (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create or edit a crontab file</td>
<td>Use the crontab -e command to create or edit a crontab file.</td>
<td>“How to Create or Edit a crontab File” on page 113</td>
</tr>
<tr>
<td>Verify that a crontab file exists.</td>
<td>Use the ls -l command to verify the contents of the /var/spool/cron/crontabs file.</td>
<td>“How to Verify That a crontab File Exists” on page 114</td>
</tr>
<tr>
<td>Display a crontab file.</td>
<td>Use the ls -l command to display the crontab file.</td>
<td>“How to Display a crontab File” on page 115</td>
</tr>
</tbody>
</table>
You can set up many system tasks to execute automatically. Some of these tasks should occur at regular intervals. Other tasks need to run only once, perhaps during off hours such as evenings or weekends.

This section contains overview information about two commands, `crontab` and `at`, which enable you to schedule routine tasks to execute automatically. The `crontab` command schedules repetitive commands. The `at` command schedules tasks that execute once.

The following table summarizes `crontab` and `at` commands, as well as the files that enable you to control access to these commands.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remove a <code>crontab</code> file</td>
<td>The <code>crontab</code> file is set up with restrictive permissions. Use the <code>crontab -r</code> command, rather than the <code>rm</code> command to remove a <code>crontab</code> file.</td>
<td>&quot;How to Remove a <code>crontab</code> File&quot; on page 116</td>
</tr>
<tr>
<td>Deny <code>crontab</code> access</td>
<td>To deny users access to <code>crontab</code> commands. Add user names to the <code>/etc/cron.d/cron.deny</code> file by editing this file.</td>
<td>&quot;How to Deny <code>crontab</code> Command Access&quot; on page 118</td>
</tr>
<tr>
<td>Limit <code>crontab</code> access to specified users.</td>
<td>To allow users access to the <code>crontab</code> command. Add user names to the <code>/etc/cron.d/cron.allow</code> file.</td>
<td>&quot;How to Limit <code>crontab</code> Command Access to Specified Users&quot; on page 118</td>
</tr>
</tbody>
</table>

Ways to Automatically Execute System Tasks

You can also use the Solaris Management Console’s Scheduled Jobs tool to schedule routine tasks. For information on using and starting the Solaris Management Console, see Chapter 2, “Working With the Solaris Management Console (Tasks),” in System Administration Guide: Basic Administration.
For Scheduling Repetitive Jobs: `crontab`

You can schedule routine system administration tasks to execute daily, weekly, or monthly by using the `crontab` command.

Daily `crontab` system administration tasks might include the following:

- Removing files more than a few days old from temporary directories
- Executing accounting summary commands
- Taking snapshots of the system by using the `df` and `ps` commands
- Performing daily security monitoring
- Running system backups

Weekly `crontab` system administration tasks might include the following:

- Rebuilding the `catman` database for use by the `man -k` command
- Running the `fsck -n` command to list any disk problems

Monthly `crontab` system administration tasks might include the following:

- Listing files not used during a specific month
- Producing monthly accounting reports

Additionally, users can schedule `crontab` commands to execute other routine system tasks, such as sending reminders and removing backup files.

For step-by-step instructions on scheduling `crontab` jobs, see "How to Create or Edit a `crontab` File" on page 113.

For Scheduling a Single Job: `at`

The `at` command allows you to schedule a job for execution at a later time. The job can consist of a single command or a script.

Similar to `crontab`, the `at` command allows you to schedule the automatic execution of routine tasks. However, unlike `crontab` files, `at` files execute their tasks once. Then, they are removed from their directory. Therefore, the `at` command is most useful for running simple commands or scripts that direct output into separate files for later examination.

Submitting an `at` job involves typing a command and following the `at` command syntax to specify options to schedule the time your job will be executed. For more information about submitting `at` jobs, see "Description of the `at` Command" on page 121.

The `at` command stores the command or script you ran, along with a copy of your current environment variable, in the `/var/spool/cron/at jobs` directory. Your `at` job file name is given a long number that specifies its location in the `at` queue, followed by the `.a` extension, such as 793962000.a.
The cron daemon checks for at jobs at startup and listens for new jobs that are submitted. After the cron daemon executes an at job, the at job's file is removed from the at jobs directory. For more information, see the at(1) man page.

For step-by-step instructions on scheduling at jobs, see “How to Create an at Job” on page 122.

Scheduling a Repetitive System Task (cron)

The following sections describe how to create, edit, display, and remove crontab files, as well as how to control access to them.

Inside a crontab File

The cron daemon schedules system tasks according to commands found within each crontab file. A crontab file consists of commands, one command per line, that will be executed at regular intervals. The beginning of each line contains date and time information that tells the cron daemon when to execute the command.

For example, a crontab file named root is supplied during SunOS software installation. The file's contents include these command lines:

```
10 3  *  *  *  /usr/sbin/logadm (1)
15 3  *  *  0  /usr/lib/fs/nfs/nfsfind (2)
1 2  *  *  *  [-x /usr/sbin/rtc ] && /usr/sbin/rtc -c > /dev/null 2>&1 (3)
30 3  *  *  *  [ -x /usr/lib/gss/gsscred_clean ] && /usr/lib/gss/gsscred_clean (4)
```

The following describes the output for each of these command lines:

- The first line runs the logadm command at 3:10 a.m. every day.
- The second line executes the nfsfind script every Sunday at 3:15 a.m.
- The third line runs a script that checks for daylight savings time (and make corrections, if necessary) at 2:10 a.m. daily.

If there is no RTC time zone, nor an /etc/rtc_config file, this entry does nothing.

```
x86 only – The /usr/sbin/rtc script can only be run on an x86 based system.
```

- The fourth line checks for (and removes) duplicate entries in the Generic Security Service table, /etc/gss/gsscred_db, at 3:30 a.m. daily.

For more information about the syntax of lines within a crontab file, see “Syntax of crontab File Entries” on page 112.
The crontab files are stored in the /var/spool/cron/crontabs directory. Several crontab files besides root are provided during SunOS software installation. See the following table.

<table>
<thead>
<tr>
<th>crontab File</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>adm</td>
<td>Accounting</td>
</tr>
<tr>
<td>lp</td>
<td>Printing</td>
</tr>
<tr>
<td>root</td>
<td>General system functions and file system cleanup</td>
</tr>
<tr>
<td>sys</td>
<td>Performance data collection</td>
</tr>
<tr>
<td>uucp</td>
<td>General uucp cleanup</td>
</tr>
</tbody>
</table>

Besides the default crontab files, users can create crontab files to schedule their own system tasks. Other crontab files are named after the user accounts in which they are created, such as bob, mary, smith, or jones.

To access crontab files that belong to root or other users, superuser privileges are required.

Procedures explaining how to create, edit, display, and remove crontab files are described in subsequent sections.

**How the cron Daemon Handles Scheduling**

The cron daemon manages the automatic scheduling of crontab commands. The role of the cron daemon is to check the /var/spool/cron/crontab directory for the presence of crontab files.

The cron daemon performs the following tasks at startup:

- Checks for new crontab files.
- Reads the execution times that are listed within the files.
- Submits the commands for execution at the proper times.
- Listens for notifications from the crontab commands regarding updated crontab files.

In much the same way, the cron daemon controls the scheduling of at files. These files are stored in the /var/spool/cron/atjobs directory. The cron daemon also listens for notifications from the crontab commands regarding submitted at jobs.
Syntax of `crontab` File Entries

A `crontab` file consists of commands, one command per line, that execute automatically at the
time specified by the first five fields of each command line. These five fields, described in the
following table, are separated by spaces.

<table>
<thead>
<tr>
<th>Time Field</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minute</td>
<td>0-59</td>
</tr>
<tr>
<td>Hour</td>
<td>0-23</td>
</tr>
<tr>
<td>Day of month</td>
<td>1-31</td>
</tr>
<tr>
<td>Month</td>
<td>1-12</td>
</tr>
<tr>
<td>Day of week</td>
<td>0-6 (0 = Sunday)</td>
</tr>
</tbody>
</table>

Follow these guidelines for using special characters in `crontab` time fields:

- Use a space to separate each field.
- Use a comma to separate multiple values.
- Use a hyphen to designate a range of values.
- Use an asterisk as a wildcard to include all possible values.
- Use a comment mark (#) at the beginning of a line to indicate a comment or a blank line.

For example, the following `crontab` command entry displays a reminder in the user's console
window at 4 p.m. on the first and fifteenth days of every month.

```bash
0 16 1,15 * * echo Timesheets Due > /dev/console
```

Each command within a `crontab` file must consist of one line, even if that line is very long. The
`crontab` file does not recognize extra carriage returns. For more detailed information about
`crontab` entries and command options, refer to the `crontab(1)` man page.

Creating and Editing `crontab` Files

The simplest way to create a `crontab` file is to use the `crontab -e` command. This command
invokes the text editor that has been set for your system environment. The default editor for
your system environment is defined in the `EDITOR` environment variable. If this variable has not
been set, the `crontab` command uses the default editor, `ed`. Preferably, you should choose an
editor that you know well.
The following example shows how to determine if an editor has been defined, and how to set up vi as the default.

```bash
$ which $EDITOR
$ EDITOR=vi
$ export EDITOR
```

When you create a crontab file, it is automatically placed in the /var/spool/cron/crontabs directory and is given your user name. You can create or edit a crontab file for another user, or root, if you have superuser privileges.

▼ How to Create or Edit a crontab File

Before You Begin

If you are creating or editing a crontab file that belongs to root or another user you must become superuser or assume an equivalent role. Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services

You do not need to become superuser to edit your own crontab file.

1 Create a new crontab file, or edit an existing file.

```bash
$ crontab -e [username]
```

where `username` specifies the name of the user’s account for which you want to create or edit a crontab file. You can create your own crontab file without superuser privileges, but you must have superuser privileges to creating or edit a crontab file for root or another user.

Caution – If you accidentally type the `crontab` command with no option, press the interrupt character for your editor. This character allows you to quit without saving changes. If you instead saved changes and exited the file, the existing crontab file would be overwritten with an empty file.

2 Add command lines to the crontab file.

Follow the syntax described in “Syntax of crontab File Entries” on page 112. The crontab file will be placed in the /var/spool/cron/crontabs directory.

3 Verify your crontab file changes.

```bash
# crontab -l [username]
```
Example 8–1  Creating a crontab File

The following example shows how to create a crontab file for another user.

```
# crontab -e jones
```

The following command entry added to a new crontab file automatically removes any log files from the user’s home directory at 1:00 a.m. every Sunday morning. Because the command entry does not redirect output, redirect characters are added to the command line after *.log. Doing so ensures that the command executes properly.

```
# This command helps clean up user accounts.
1 0 * * 0 rm /home/jones/*.log > /dev/null 2>&1
```

▼ How to Verify That a crontab File Exists

To verify that a crontab file exists for a user, use the `ls -l` command in the `/var/spool/cron/crontabs` directory. For example, the following output shows that crontab files exist for users jones and smith.

```
$ ls -l /var/spool/cron/crontabs
-rw-r--r-- 1 root sys 190 Feb 26 16:23 adm
-rw------- 1 root staff 225 Mar 1 9:19 jones
-rw-r--r-- 1 root root 1063 Feb 26 16:23 lp
-rw-r--r-- 1 root sys 441 Feb 26 16:25 root
-rw------- 1 root staff 60 Mar 1 9:15 smith
-rw-r--r-- 1 root sys 308 Feb 26 16:23 sys
```

Verify the contents of user’s crontab file by using the `crontab -l` command as described in “How to Display a crontab File” on page 115.

Displaying crontab Files

The `crontab -l` command displays the contents of a crontab file much the same way that the `cat` command displays the contents of other types of files. You do not have to change the directory to `/var/spool/cron/crontabs` directory (where crontab files are located) to use this command.

By default, the `crontab -l` command displays your own crontab file. To display crontab files that belong to other users, you must be superuser.
How to Display a `crontab` File

Before You Begin

Become superuser or assume an equivalent role to display a `crontab` file that belongs to root or another user. Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

You do not need to become superuser or assume an equivalent role to display your own `crontab` file.

- Display the `crontab` file.

  ```
  $ crontab -l [username]
  ```

  where `username` specifies the name of the user’s account for which you want to display a `crontab` file. Displaying another user’s `crontab` file requires superuser privileges.

Caution – If you accidentally type the `crontab` command with no option, press the interrupt character for your editor. This character allows you to quit without saving changes. If you instead saved changes and exited the file, the existing `crontab` file would be overwritten with an empty file.

Example 8–2 Displaying a `crontab` File

This example shows how to use the `crontab -l` command to display the contents of the user’s default `crontab` file.

```
$ crontab -l
13 13 * * * chmod g+w /home1/documents/*.book > /dev/null 2>&1
```

Example 8–3 Displaying the Default root `crontab` file.

This example shows how to display the default root `crontab` file.

```
$ suPassword:
Sun Microsystems Inc. SunOS 5.10 s10.51 May 2004
# crontab -l
#ident "*@(#)root" 1.19 98/07/06 SMI" /* SVr4.0 1.1.3.1 */
#
# The root crontab should be used to perform accounting data collection.
#
#
10 3 * * * /usr/sbin/logadm
15 3 * * 0 /usr/lib/fs/nfs/nfsfind
30 3 * * [ -x /usr/lib/gss/gsscred_clean ] & & /usr/lib/gss/gsscred_clean
#10 3 * * * /usr/lib/krb5/kprop_script ___slave_kdcs___
```
Removing `crontab` Files

### Example 8–4 Displaying the crontab File of Another User

This example shows how to display the `crontab` file that belongs to another user.

```
$ su
Password: Sun Microsystems Inc. SunOS 5.10 s10_51 May 2004
# crontab -l jones
13 13 * * * cp /home/jones/work_files /usr/backup/. > /dev/null 2>&1
```

### Removing `crontab` Files

By default, `crontab` file protections are set up so that you cannot inadvertently delete a `crontab` file by using the `rm` command. Instead, use the `crontab -r` command to remove `crontab` files.

By default, the `crontab -r` command removes your own `crontab` file.

You do not have to change the directory to `/var/spool/cron/crontabs` (where `crontab` files are located) to use this command.

#### ▼ How to Remove a `crontab` File

**Before You Begin**

Become superuser or assume an equivalent role to remove a `crontab` file that belongs to root or another user. Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

You do not need to become superuser or assume an equivalent role to remove your own `crontab` file.

1. **Remove the `crontab` file.**

   ```
   $ crontab -r [username]
   ```

   where `username` specifies the name of the user’s account for which you want to remove a `crontab` file. Removing `crontab` files for another user requires superuser privileges.

   **Caution** – If you accidentally type the `crontab` command with no option, press the interrupt character for your editor. This character allows you to quit without saving changes. If you instead saved changes and exited the file, the existing `crontab` file would be overwritten with an empty file.

2. **Verify that the `crontab` file has been removed.**

   ```
   # ls /var/spool/cron/crontabs
   ```
Example 8-5  Removing a crontab File

The following example shows how user smith uses the crontab -r command to remove his crontab file.

$ ls /var/spool/cron/crontabs
adm  jones  lp  root  smith  sys  uucp
$ crontab -r
$ ls /var/spool/cron/crontabs
adm  jones  lp  root  sys  uucp

Controlling Access to the crontab Command

You can control access to the crontab command by using two files in the /etc/cron.d directory: cron.deny and cron.allow. These files permit only specified users to perform crontab command tasks such as creating, editing, displaying, or removing their own crontab files.

The cron.deny and cron.allow files consist of a list of user names, one user name per line. These access control files work together as follows:

- If cron.allow exists, only the users who are listed in this file can create, edit, display, or remove crontab files.
- If cron.allow does not exist, all users can submit crontab files, except for users who are listed in cron.deny.
- If neither cron.allow nor cron.deny exists, superuser privileges are required to run the crontab command.

Superuser privileges are required to edit or create the cron.deny and cron.allow files.

The cron.deny file, which is created during SunOS software installation, contains the following user names:

$ cat /etc/cron.d/cron.deny
daemon
bin
smtp
nuucp
listen
nobody
noaccess

None of the user names in the default cron.deny file can access the crontab command. You can edit this file to add other user names that will be denied access to the crontab command.
No default `cron.allow` file is supplied. So, after Solaris software installation, all users (except users who are listed in the default `cron.deny` file) can access the `crontab` command. If you create a `cron.allow` file, only these users can access the `crontab` command.

**▼ How to Deny crontab Command Access**

1. **Become superuser or assume an equivalent role.**
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in *System Administration Guide: Security Services*.

2. **Edit the `/etc/cron.d/cron.deny` file and add user names, one user per line. Include users who will be denied access to the crontab commands.**
   
   ```
   daemon
   bin
   smtp
   nuucp
   listen
   nobody
   noaccess
   username1
   username2
   username3
   ...
   ```

3. **Verify that the `/etc/cron.d/cron.deny` file contains the new entries.**
   ```
   # cat /etc/cron.d/cron.deny
   daemon
   bin
   smtp
   nuucp
   listen
   nobody
   noaccess
   ```

**▼ How to Limit crontab Command Access to Specified Users**

1. **Become superuser or assume an equivalent role.**
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in *System Administration Guide: Security Services*. 
Create the `/etc/cron.d/cron.allow` file.

Add the root username into the `cron.allow` file.
- If you do not add root to the file, superuser access to `crontab` commands will be denied.

Add the user names, one user name per line. Include users that will be allowed to use the `crontab` command.
- root
- username1
- username2
- username3
- ...
- ...

Example 8–6 Limiting `crontab` Command Access to Specified Users

The following example shows a `cron.deny` file that prevents user names `jones`, `temp`, and `visitor` from accessing the `crontab` command.

```
$ cat /etc/cron.d/cron.deny
daemon
bin
smtp
nuucp
listen
nobody
noaccess
jones
temp
visitor
```

The following example shows a `cron.allow` file. The users `root`, `jones`, `lp`, and `smith` are the only users who can access the `crontab` command.

```
$ cat /etc/cron.d/cron.allow
root
jones
lp
smith
```

How to Verify Limited `crontab` Command Access

To verify if a specific user can access the `crontab` command, use the `crontab -l` command while you are logged into the user account.
If the user can access the `crontab` command, and already has created a `crontab` file, the file is displayed. Otherwise, if the user can access the `crontab` command but no `crontab` file exists, a message similar to the following message is displayed:

```
crontab: can’t open your crontab file
```

Either this user either is listed in the `cron.allow` file (if the file exists), or the user is not listed in the `cron.deny` file.

If the user cannot access the `crontab` command, the following message is displayed whether or not a previous `crontab` file exists:

```
crontab: you are not authorized to use cron. Sorry.
```

This message means that either the user is not listed in the `cron.allow` file (if the file exists), or the user is listed in the `cron.deny` file.

---

**Using the `at` Command (Task Map)**

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create an <code>at</code> job.</td>
<td>Use the <code>at</code> command to do the following:</td>
<td>&quot;How to Create an <code>at</code> Job&quot; on page 122</td>
</tr>
<tr>
<td></td>
<td>■ Start the <code>at</code> utility from the command line.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ Type the commands or scripts that you want to execute, one per line.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ Exit the <code>at</code> utility and save the job.</td>
<td></td>
</tr>
<tr>
<td>Display the <code>at</code> queue.</td>
<td>User the <code>atq</code> command to display the <code>at</code> queue.</td>
<td>&quot;How to Display the <code>at</code> Queue&quot; on page 123</td>
</tr>
<tr>
<td>Verify an <code>at</code> job.</td>
<td>Use the <code>atq</code> command to confirm that <code>at</code> jobs that belong to a specific user have been submitted to the queue.</td>
<td>&quot;How to Verify an <code>at</code> Job&quot; on page 123</td>
</tr>
<tr>
<td>Display <code>at</code> jobs.</td>
<td>Use the `at -l</td>
<td>job-id<code>to display</code>at` jobs that have been submitted to the queue.</td>
</tr>
</tbody>
</table>
### Scheduling a Single System Task (at)

The following sections describe how to use the at command to perform the following tasks:

- Schedule jobs (command and scripts) for execution at a later time
- How to display and remove these jobs
- How to control access to the at command

By default, users can create, display, and remove their own at job files. To access at files that belong to root or other users, you must have superuser privileges.

When you submit an at job, it is assigned a job identification number along with the .a extension. This designation becomes the job's file name, as well as its queue number.

### Description of the at Command

Submitting an at job file involves these steps:

1. Invoking the at utility and specifying a command execution time.
2. Typing a command or script to execute later.

**Note** – If output from this command or script is important, be sure to direct the output to a file for later examination.

For example, the following at job removes core files from the user account smith near midnight on the last day of July.

```
$ at 11:45pm July 31
at> rm /home/smith/*core*
at> Press Control-d
commands will be executed using /bin/csh
job 933486300.a at Tue Jul 31 23:45:00 2004
```
Controlling Access to the `at` Command

You can set up a file to control access to the `at` command, permitting only specified users to create, remove, or display queue information about their `at` jobs. The file that controls access to the `at` command, `/etc/cron.d/at.deny`, consists of a list of user names, one user name per line. The users who are listed in this file cannot access at commands.

The `at.deny` file, which is created during SunOS software installation, contains the following user names:

- daemon
- bin
- smtp
- nuucp
- listen
- nobody
- noaccess

With superuser privileges, you can edit the `at.deny` file to add other user names whose `at` command access you want to restrict.

How to Create an `at` Job

1. **Start the `at` utility, specifying the time you want your job executed.**
   
   ```
   $ at [-m] time [date]
   ```
   
   - `-m` Sends you email after the job is completed.
   - `time` Specifies the hour that you want to schedule the job. Add am or pm if you do not specify the hours according to the 24-hour clock. Acceptable keywords are `midnight`, `noon`, and `now`. Minutes are optional.
   - `date` Specifies the first three or more letters of a month, a day of the week, or the keywords `today` or `tomorrow`.

2. **At the `at` prompt, type the commands or scripts that you want to execute, one per line.**

   You may type more than one command by pressing Return at the end of each line.

3. **Exit the `at` utility and save the `at` job by pressing Control-D.**

   Your `at` job is assigned a queue number, which is also the job’s file name. This number is displayed when you exit the `at` utility.
Example 8–7 Creating an at Job

The following example shows the at job that user jones created to remove her backup files at 7:30 p.m. She used the -m option so that she would receive an email message after her job completed.

```
$ at -m 1930
at> rm /home/jones/*.backup
at> Press Control-D
job 897355800.a at Thu Jul 12 19:30:00 2004
```

She received an email message which confirmed the execution of her at job.

```
Your "at" job "rm /home/jones/*.backup"
completed.
```

The following example shows how jones scheduled a large at job for 4:00 a.m. Saturday morning. The job output was directed to a file named big.file.

```
$ at 4 am Saturday
at> sort -r /usr/dict/words > /export/home/jones/big.file
```

\section*{How to Display the at Queue}

To check your jobs that are waiting in the at queue, use the \texttt{atq} command. This command displays status information about the at jobs that you have created.

```
$ atq
```

\section*{How to Verify an at Job}

To verify that you have created an at job, use the \texttt{atq} command. In the following example, the \texttt{atq} command confirms that at jobs that belong to jones have been submitted to the queue.

```
$ atq
```

```
**How to Display at Jobs**

- To display information about the execution times of your at jobs, use the `at -l` command.

  ```
  $ at -l [job-id]
  ```

  where the `-l job-id` option identifies the identification number of the job whose status you want to display.

**Example 8–8** Displaying at Jobs

The following example shows output from the `at -l` command, which provides information on the status of all jobs submitted by a user.

```
$ at -l
897543900.a Sat Jul 14 23:45:00 2004
897355800.a Thu Jul 12 19:30:00 2004
897732000.a Tue Jul 17 04:00:00 2004
```

The following example shows the output that is displayed when a single job is specified with the `at -l` command.

```
$ at -l 897732000.a
897732000.a Tue Jul 17 04:00:00 2004
```

**How to Remove at Jobs**

**Before You Begin**

Become superuser or assume an equivalent role to remove an at job that belongs to root or another user. Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

You do not need to become superuser or assume an equivalent role to remove your own at job.

1. **Remove the at job from the queue before the job is executed.**

   ```
   $ at -r [job-id]
   ```

   where the `-r job-id` option specifies the identification number of the job you want to remove.

2. **Verify that the at job is removed by using the `at -l` (or the atq) command.**

   The `at -l` command displays the jobs remaining in the at queue. The job whose identification number you specified should not appear.

   ```
   $ at -l [job-id]
   ```
Example 8–9  Removing at Jobs

In the following example, a user wants to remove an at job that was scheduled to execute at 4 a.m. on July 17th. First, the user displays the at queue to locate the job identification number. Next, the user removes this job from the at queue. Finally, the user verifies that this job has been removed from the queue.

$ at -l
897543900.a  Sat Jul 14 23:45:00 2003
897355800.a  Thu Jul 12 19:30:00 2003
897732000.a  Tue Jul 17 04:00:00 2003
$ at -r 897732000.a
$ at -l 897732000.a
at: 858142000.a: No such file or directory

▼ How to Deny Access to the at Command

1  Become superuser or assume an equivalent role.

Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2  Edit the /etc/cron.d/at.deny file and add the names of users, one user name per line, that will be prevented from using the at commands.

  daemon
  bin
  smtp
  nuucp
  listen
  nobody
  noaccess
  username1
  username2
  username3
  .
  .
  .

Example 8–10  Denying at Access

The following example shows an at . deny file that has been edited so that the users smith and jones cannot access the at command.
How to Verify That `at` Command Access Is Denied

To verify that a username was added correctly to the `/etc/cron.d/at.deny` file, use the `at -l` command while logged in as the user. If the user `smith` cannot access the `at` command, the following message is displayed.

```
# su smith
Password:
$ at -l
at: you are not authorized to use at. Sorry.
```

Likewise, if the user tries to submit an `at` job, the following message is displayed:

```
$ at 2:30pm
at: you are not authorized to use at. Sorry.
```

This message confirms that the user is listed in the `at.deny` file.

If `at` command access is allowed, then the `at -l` command returns nothing.
Managing System Accounting (Tasks)

This chapter describes how to set up and maintain system accounting.

This is a list of the overview information in this chapter.

- “What is System Accounting?” on page 128
- “Setting Up System Accounting” on page 133

For information on using extended accounting, see Chapter 4, “Extended Accounting (Overview),” in System Administration Guide: Virtualization Using the Solaris Operating System.

For information on the step-by-step procedures that are associated with system accounting, see “System Accounting (Task Map)” on page 132.

For reference information about the various system accounting reports, see Chapter 10, “System Accounting (Reference).”

What's New in System Accounting

This section describes new or changed features in system accounting in the Solaris release.

Solaris Process Accounting and Statistics Improvements

**Solaris 10**: Changes have been made to the internals of the load averaging, cpu usr/sys/idl\%e, and accounting functions. Microstate accounting has replaced the old accounting mechanism and is enabled by default all of the time. As a result, you might notice slightly different process usage and timing statistics.
Switching to microstate accounting provides substantially more accurate data about user processes and the amount of time they spend in various states. In addition, this information is used to generate more accurate load averages and statistics from the /proc file system. For more information, see the proc(4) man page.

What is System Accounting?

System accounting software in the Solaris OS is a set of programs that enables you to collect and record data about user connect time, CPU time charged to processes, and disk usage. Once you collect this data, you can generate reports and charge fees for system usage.

You can use system accounting on a daily or monthly basis. Or, you can track disk usage per user.

You can use the accounting programs to perform these tasks:

- Monitor system usage
- Locate and correct performance problems
- Maintain system security

After you set up the system accounting programs, they run mostly on their own.

How System Accounting Works

Automatic accounting is set up by first putting the accounting startup script into root’s crontab file. The accounting startup script can then be started automatically by the cron command.

The following overview describes the system accounting process.

1. Between system startup and shutdown, raw data about system use (such as user logins, running processes, and data storage) are collected in accounting files.
2. Periodically (usually once a day), the /usr/lib/acct/runacct script processes the various accounting files and produces both cumulative summary files and daily accounting reports. Then, the /usr/lib/acct/prdaily script prints the daily reports.
   For more information about the runacct script, see “runacct Script” on page 141.
3. Monthly, you can process and print the cumulative runacct summary files by executing the monacct script. The summary reports produced by the monacct script provide an efficient means for billing users on a monthly or other fiscal basis.

System Accounting Components

The system accounting software provides C language programs and shell scripts that organize data into summary files and reports. These programs reside in the /usr/lib/acct directory. The accounting reports reside in the /var/adm/acct directory.
Daily accounting can help you perform four types of auditing:
- Connect accounting
- Process accounting
- Disk accounting
- Fee calculations

**Connect Accounting**
Connect accounting enables you to determine the following information:
- The length of time a user was logged in
- How the tty lines are being used
- The number of reboots on your system
- How many times the accounting software was turned off and on

To provide this information on connect sessions, the system stores the following data:
- Record of time adjustments
- Boot times
- Number of times the accounting software was turned off and on
- Changes in run levels
- The creation of user processes (login processes and init processes)
- The terminations of processes

These records are produced from the output of system programs such as `date`, `init`, `login`, `ttymon`, and `acctwtmp`. They are stored in the `/var/adm/wtmpx` file.

Entries in the `wtmpx` file can contain the following information:
- Login name
- Device name
- Process ID
- Entry type
- Time stamp that denotes when the entry was made

**Process Accounting**
Process accounting enables you to keep track of the following data about each process that runs on your system:
- User IDs and group IDs of users using the process
- Beginning times and elapsed times of the process
- CPU time for the process (user time and system time)
- Amount of memory used by the process
- Commands run by the process
- The tty that controls the process
Every time a process terminates, the `exit` program collects this information and writes it to the `/var/adm/pacct` file.

**Disk Accounting**

Disk accounting enables you to gather and format the following data about the files each user has on disks:

- User name and user ID of the user
- Number of blocks that are used by the user's files

This data is collected by the `/usr/lib/acct/dodisk` shell script at intervals that are determined by the entry you add to the `/var/spool/cron/crontabs/root` file. In turn, the `dodisk` script invokes the `acctdisk` and `acctdusg` commands. These commands gather disk usage by login name.

---

**Caution** – Information gathered by running the `dodisk` script is stored in the `/var/adm/acct/nite/disktacct` file. This information is overwritten the next time the `dodisk` script is run. Therefore, avoid running the `dodisk` script twice in the same day.

The `acctdusg` command might overcharge for files that are written randomly, which can create holes in the files. This problem occurs because the `acctdusg` command does not read the indirect blocks of a file when determining the file size. Rather, the `acctdusg` command determines the file size by checking the current file size value in the file's inode.

**Fee Calculations**

The `chargefee` utility stores charges for special services that are provided to a user in the `/var/adm/fee` file. A special service, for example, is file restoration. Each entry in the file consists of a user login name, user ID, and the fee. This file is checked by the `runacct` script every day, and new entries are merged into the accounting records. For instructions on running the `chargefee` script to bill users, see “How to Bill Users” on page 136.

**How Daily Accounting Works**

Here is a step-by-step summary of how daily accounting works:

1. When the system is switched into multiuser mode, the `/usr/lib/acct/startup` program is executed. The `startup` program executes several other programs that invoke daily accounting.

2. The `acctwtmp` program adds a “boot” record to the `/var/adm/wtmpx` file. In this record, the system name is shown as the user name in the `wtmpx` record. The following table summarizes how the raw accounting data is gathered and where it is stored.
### What is System Accounting?

<table>
<thead>
<tr>
<th>File in /var/adm</th>
<th>Information Stored</th>
<th>Written By</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>wtmpx</td>
<td>Connect sessions</td>
<td>login, init</td>
<td>Binary</td>
</tr>
<tr>
<td></td>
<td>Changes</td>
<td>date</td>
<td>Binary</td>
</tr>
<tr>
<td></td>
<td>Reboots</td>
<td>acctwtmp</td>
<td>Binary</td>
</tr>
<tr>
<td></td>
<td>Shutdowns</td>
<td>shutacct</td>
<td>Binary</td>
</tr>
<tr>
<td>pacctn</td>
<td>Processes</td>
<td>Kernel (when the process ends)</td>
<td>Binary</td>
</tr>
<tr>
<td></td>
<td></td>
<td>turnacct switch (which creates a new file when the old file reaches 500 blocks)</td>
<td>Binary</td>
</tr>
<tr>
<td>fee</td>
<td>Special charges</td>
<td>chargefee</td>
<td>ASCII</td>
</tr>
<tr>
<td>acct/nite/disktacct</td>
<td>Disk space used</td>
<td>dodisk</td>
<td>Binary</td>
</tr>
</tbody>
</table>

3. The `turnacct` script, invoked with the `-on` option, begins process accounting. Specifically, the `turnacct` script executes the `accton` program with the `/var/adm/pacct` argument.

4. The `login` and `init` programs record connect sessions by writing records into the `/var/adm/wtmpx` file. Date changes (using `date` with an argument) are also written to the `/var/adm/wtmpx` file. Reboots and shutdowns using the `acctwtmp` command are also recorded in the `/var/adm/wtmpx` file.

5. When a process ends, the kernel writes one record per process, using the `acct.h` format, in the `/var/adm/pacct` file.

   Every hour, the `cron` command executes the `ckpacct` script to check the size of the `/var/adm/pacct` file. If the file grows beyond 500 blocks (default), the `turnacct switch` command is executed. (The program moves the `pacct` file to the `pacctn` file and creates a new file.) The advantage of having several smaller `pacct` files becomes apparent when you try to restart the `runacct` script if a failure occurs when processing these records.

6. The `runacct` script is executed by the `cron` command each night. The `runacct` script processes the accounting files to produce command summaries and usage summaries by user name. These accounting files are processed: `/var/adm/pacctn`, `/var/adm/wtmpx`, `/var/adm/fee`, and `/var/adm/acct/nite/disktacct`.

7. The `/usr/lib/acct/prdaily` script is executed on a daily basis by the `runacct` script to write the daily accounting information in the `/var/adm/acct/sum/rprt/MMDD` files.
9. The `monacct` script should be executed on a monthly basis (or at intervals you determine, such as at the end of every fiscal period). The `monacct` script creates a report that is based on data stored in the `sum` directory that has been updated daily by the `runacct` script. After creating the report, the `monacct` script “cleans up” the `sum` directory to prepare the directory’s files for the new `runacct` data.

**What Happens if the System Shuts Down**

If the system is shut down by using the `shutdown` command, the `shutacct` script is executed automatically. The `shutacct` script writes a *reason record* into the `/var/adm/wtmpx` file and turns off process accounting.

---

### System Accounting (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set up system accounting.</td>
<td>Set up system accounting by performing the following tasks:</td>
<td>“How to Set Up System Accounting” on page 133</td>
</tr>
<tr>
<td></td>
<td>■ Create the <code>/etc/rc0.d/K22acct</code> and <code>/etc/rc2.d/S22acct</code> files.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ Modify the <code>/var/spool/cron/crontabs/adm</code> and <code>/var/spool/cron/crontabs/root</code> files.</td>
<td></td>
</tr>
<tr>
<td>Bill users.</td>
<td>Run the <code>/usr/lib/acct/chargefee username amount</code> command.</td>
<td>“How to Bill Users” on page 136</td>
</tr>
<tr>
<td>Fix a corrupted <code>wtmpx</code> file.</td>
<td>Convert the <code>wtmpx</code> file from binary to ASCII format.</td>
<td>“How to Fix a Corrupted <code>wtmpx</code> File” on page 137</td>
</tr>
<tr>
<td>Fix <code>tacct</code> errors.</td>
<td>Run the <code>prtacct</code> script to check the <code>/var/adm/acct/sum/tacctprev</code> file.</td>
<td>“How to Fix <code>tacct</code> Errors” on page 137</td>
</tr>
<tr>
<td></td>
<td>Then, patch the latest <code>/var/adm/acct/sum/tacctMMDD</code> file.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>You will need to re-create the <code>/var/adm/acct/sum/tacct</code> file.</td>
<td></td>
</tr>
<tr>
<td>Restart the <code>runacct</code> script.</td>
<td>Remove the last date file and any lock files. Then, manually restart the <code>runacct</code> script.</td>
<td>“How to Restart the <code>runacct</code> Script” on page 138</td>
</tr>
<tr>
<td>Disable system accounting temporarily.</td>
<td>Edit the <code>adm crontab</code> file to stop the <code>ckpacct</code>, <code>runacct</code>, and <code>monacct</code> programs from running.</td>
<td>“How to Temporarily Stop System Accounting” on page 139</td>
</tr>
<tr>
<td>Disable system accounting permanently.</td>
<td>Delete the entries for the <code>ckpacct</code>, <code>runacct</code>, and <code>monacct</code> programs in the <code>adm</code> and <code>crontab</code> files.</td>
<td>“How to Permanently Disable System Accounting” on page 140</td>
</tr>
</tbody>
</table>
Setting Up System Accounting

You can set up system accounting to run while the system is in multiuser mode (Run Level 2). Generally, this task involves these steps:

1. Creating the `/etc/rc0.d/K22acct` and `/etc/rc2.d/S22acct` startup scripts
2. Modifying the `/var/spool/cron/crontabs/adm` and `/var/spool/cron/crontabs/root` cron tab files

The following table describes the default accounting scripts.

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Accounting Script</th>
<th>Man Page</th>
<th>Run Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checks the size of the <code>/usr/adm/pacct</code> log file and makes sure that it does not get too large.</td>
<td>ckpacct</td>
<td>acctsh(1M)</td>
<td>Periodically</td>
</tr>
<tr>
<td>Processes connect, disk, and fee accounting information. You can remove from this script the commands for the accounting features you do not want processed.</td>
<td>runacct</td>
<td>runacct(1M)</td>
<td>Daily</td>
</tr>
<tr>
<td>Generates fiscal accounting summary reports on a monthly basis. You can determine how often this script is run. You can remove from this script the commands for the accounting features you do not want to use.</td>
<td>monacct</td>
<td>acctsh(1M)</td>
<td>On a fiscal basis</td>
</tr>
</tbody>
</table>

You can choose which accounting scripts run by default. After these entries have been added to the cron tab files, system accounting should run automatically.

How to Set Up System Accounting

1. **Become superuser or assume an equivalent role.**

   Roles contain authorizations and privileged commands. For more information about roles, see "Configuring RBAC (Task Map)" in System Administration Guide: Security Services.
2 If necessary, install the SUNwaccr and SUNwaccu packages on your system by using the pkgadd command.

3 Install /etc/init.d/acct as the startup script for Run Level 2.
   # ln /etc/init.d/acct /etc/rc2.d/S22acct

4 Install /etc/init.d/acct as the stop script for Run Level 0.
   # ln /etc/init.d/acct /etc/rc0.d/K22acct

5 Add the following lines to the adm crontab file to start the ckpacct, runacct, and monacct scripts automatically.
   # EDITOR=vi; export EDITOR
   # crontab -e adm
   0 * * * * /usr/lib/acct/ckpacct
   30 2 * * * /usr/lib/acct/runacct 2> /var/adm/acct/nite/fd2log
   30 7 1 * * /usr/lib/acct/monacct

6 Add the following line to the root crontab file to start the dodisk script automatically.
   # crontab -e
   30 22 * * 4 /usr/lib/acct/dodisk

7 Edit /etc/acct/holidays to include national holidays and local holidays.
   For more information, see the holidays(4) man page and the example that follows.

8 Reboot the system, or start system accounting manually by typing:
   # /etc/init.d/acct start

Example 9–1 Setting Up Accounting (adm crontab)

This modified adm crontab contains entries for the ckpacct, runacct, and monacct scripts.

   #ident "@(#).adm 1.5 92/07/14 SMI" /* SVr4.0 1.2 */
   #
   # The adm crontab file should contain startup of performance
collection if the profiling and performance feature has been
installed.
   0 * * * * /usr/lib/acct/ckpacct
   30 2 * * * /usr/lib/acct/runacct 2> /var/adm/acct/nite/fd2log
   30 7 1 * * /usr/lib/acct/monacct

Example 9–2 Setting Up Accounting (root crontab)

This modified root crontab contains entries for the dodisk program.
The root crontab should be used to perform accounting data collection.

```bash
1 0 3 ** /usr/sbin/logadm
1 5 3 ** /usr/lib/fs/nfs/nfsfind
3 0 3 ** [-x /usr/lib/gss/gsscred_clean ] && /usr/lib/gss/gsscred_clean
3 0 2 ** /usr/lib/acct/dodisk
```

### Example 9-3 Setting Up Accounting (/etc/acct/holidays)

The following example shows a sample `/etc/acct/holidays` file.

```plaintext
* @(#)holidays January 1, 2004
* Prime/Nonprime Table for UNIX Accounting System
* Curr Prime Non-Prime
* Year Start Start
* 2004 0800 1800
* only the first column (month/day) is significant.
* month/day Company
* Holiday
* 1/1 New Years Day
7/4 Indep. Day
12/25 Christmas
```

### Billing Users

If you provide special user services by request. Special services include restoring files or remote printing. You might want to bill users by running the `chargefee` utility. The `chargefee` utility records charges in the `/var/adm/fee` file. Each time the `runacct` utility is executed, new entries are merged into the total accounting records.

See the `acctsh(1M)` man page for more information.
How to Bill Users

1. Become superuser or assume an equivalent role.
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2. Charge a user for special services.
   
   ```
   # /usr/lib/acct/chargefee username amount
   ```

   **username** is the user account you want to bill.
   **amount** specifies the number of units to bill the user. This value is an arbitrary unit that you set to charge users based on some task such as printing or restoring a file. You would have to write a script that invokes the `chargefee` utility and charges a user for a specific task.

   **Example 9-4** Billing Users

   In the following example, the user `print_customer` is charged 10 units.

   ```
   # /usr/lib/acct/chargefee print_customer 10
   ```

Maintaining Accounting Information

This section describes how to fix corrupted system accounting files and how to restart the `runacct` script.

Fixing Corrupted Files and `wtmpx` Errors

Unfortunately, system accounting is not foolproof. Occasionally, a file becomes corrupted or lost. Some files can simply be ignored or restored from backup. However, certain files must be fixed to maintain the integrity of system accounting.

The `wtmpx` files seem to cause the most problems in the daily operation of system accounting. When the date is changed manually and the system is in multiuser mode, a set of date change records is written to the `/var/adm/wtmpx` file. The `wtmpfix` utility is designed to adjust the time stamps in the `wtmp` records when a date change is encountered. However, some combinations of date changes and reboots slip through the `wtmpfix` utility and cause the `acctcon` program to fail.
How to Fix a Corrupted `wtmpx` File

1. **Become superuser or assume an equivalent role.**
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in *System Administration Guide: Security Services*.

2. **Change to the `/var/adm` directory.**

3. **Convert the `wtmpx` file from binary format to ASCII format.**
   ```
   # /usr/lib/acct/fwtmp < wtmpx > wtmpx.ascii
   ```

4. **Edit the `wtmpx.ascii` file to delete the corrupted records.**

5. **Convert the `wtmpx.ascii` file back to a binary file.**
   ```
   # /usr/lib/acct/fwtmp -ic < wtmpx.ascii > wtmpx
   ```

   See the `fwtmp(1M)` man page for more information.

Fixing `tacct` Errors

The integrity of the `/var/adm/acct/sum/tacct` file is important if you are charging users for system resources. Occasionally, unusual `tacct` records appear with negative numbers, duplicate user IDs, or a user ID of 65535. First, check the `/var/adm/acct/sum/tacctprev` file by using the `prtacct` script to print the file. If the contents look all right, patch the latest `/var/adm/acct/sum/tacctMMDD` file. Then, re-create the `/var/adm/acct/sum/tacct` file.

The following steps outline a simple patch procedure.

How to Fix `tacct` Errors

1. **Become superuser or assume an equivalent role.**
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in *System Administration Guide: Security Services*.

2. **Change to the `/var/adm/acct/sum` directory.**

3. **Convert the `tacctMMDD` file from binary format to ASCII format.**
   ```
   # /usr/lib/acct/acctmerg -v < tacctMMDD > xtacct
   ```

   `MMDD` is pair of two-digit numbers that represent the month and day.
4 Edit the xtacct file, removing corrupted records and writing duplicate records to another file.

5 Convert the xtacct file from ASCII format to binary format.
   # /usr/lib/acct/acctmerg -i < xtacct > tacct.MMDD

6 Merge the files tacctprev and tacct.MMDD into the tacct file.
   # /usr/lib/acct/acctmerg < tacctprev tacct.MMDD > tacct

**Restarting the runacct Script**

The runacct script can fail for several reasons.

The following are the most common reasons:

- A system crash
- The /var directory is running out of space
- A corrupted wtmpx file

If the active.MMDD file exists, check it first for error messages. If the active and lock files exist, check the fd2log file for any relevant messages.

Run without arguments, the runacct script assumes that this invocation is the first invocation of the day. The argument MMDD is necessary if the runacct script is being restarted and specifies the month and day for which the runacct script reruns the accounting. The entry point for processing is based on the contents of the statefile file. To override the statefile file, include the desired state on the command line. For a description of the available states, see the runacct(1M) man page.

**Caution** – When you run the runacct program manually, be sure to run it as user adm.

▼ **How to Restart the runacct Script**

1 Change directories to the /var/adm/acct/nite directory.
   $ cd /var/adm/acct/nite

2 Remove the lastdate file and any lock* files, if any.
   $ rm lastdate lock*

   The lastdate file contains the date that the runacct program was last run. Restarting the runacct script in the next step re-creates this file.
3 Restart the `runacct` script.

```bash
$ /usr/lib/acct/runacct MMDD [state] 2> /var/adm/acct/nite/fd2log &
```

`MMDD` is the month and day specified by two-digit numbers.

`state` Specifies a state, or starting point, where the `runacct` script processing should begin.

### Stopping and Disabling System Accounting

You can temporarily stop system accounting or permanently disable it.

#### How to Temporarily Stop System Accounting

1 **Become superuser or assume an equivalent role.**
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in *System Administration Guide: Security Services*.

2 **Edit the `adm crontab` file to stop the `ckpacct`, `runacct`, and `monacct` programs from running by commenting out the appropriate lines.**
   ```
   # EDITOR=vi; export EDITOR
   # crontab -e adm
   #0 * * * * /usr/lib/acct/ckpacct
   #30 2 * * * /usr/lib/acct/runacct 2> /var/adm/acct/nite/fd2log
   #30 7 1 * * /usr/lib/acct/monacct
   ```

3 **Edit the `root crontab` file to stop the `dodisk` program from running by commenting out the appropriate line.**
   ```
   # crontab -e
   #30 22 * * 4 /usr/lib/acct/dodisk
   ```

4 **Stop the system accounting program.**
   ```
   # /etc/init.d/acct stop
   ```

5 **(Optional) Remove the newly added comment symbols from the `crontab` files.**

6 **Restart the system accounting program to re-enable system accounting.**
   ```
   # /etc/init.d/acct start
   ```
How to Permanently Disable System Accounting

1. Become superuser or assume an equivalent role.
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2. Edit the adm crontab file and delete the entries for the ckpacct, runacct, and monacct programs.
   
   ```
   # EDITOR=vi; export EDITOR
   # crontab -e adm
   ```

3. Edit the root crontab file and delete the entries for the dodisk program.
   
   ```
   # crontab -e
   ```

4. Remove the startup script for Run Level 2.
   
   ```
   # unlink /etc/rc2.d/S22acct
   ```

5. Remove the stop script for Run Level 0.
   
   ```
   # unlink /etc/rc0.d/K22acct
   ```

6. Stop the system accounting program.
   
   ```
   # /etc/init.d/acct stop
   ```
This chapter provides reference information about system accounting.

This is a list of the reference information in this chapter.

- “runacct Script” on page 141
- “Daily Accounting Reports” on page 144
- “System Accounting Files” on page 151

For more information about system accounting tasks, see Chapter 9, “Managing System Accounting (Tasks).”

**runacct Script**

The main daily accounting script, runacct, is normally invoked by the cron command outside of normal business hours. The runacct script processes connect, fee, disk, and process accounting files. This script also prepares daily and cumulative summary files for use by the ptdaily and monacct scripts for billing purposes.

The runacct script takes care not to damage files if errors occur.

A series of protection mechanisms that are used to perform the following tasks:

- Recognize an error
- Provide intelligent diagnostics
- Complete processing in such a way that the runacct script can be restarted with minimal intervention

This script records its progress by writing descriptive messages to the active file. Files used by the runacct script are assumed to be in the /var/adm/acct/nite directory, unless otherwise noted. All diagnostic output during the execution of the runacct script is written to the fd2log file.
When the runacct script is invoked, it creates the `lock` and `lock1` files. These files are used to prevent simultaneous execution of the runacct script. The runacct program prints an error message if these files exist when it is invoked. The `lastdate` file contains the month and day the runacct script was last invoked, and is used to prevent more than one execution per day.

If the runacct script detects an error, the following occurs:

- A message is written to the console
- Email is sent to root and adm
- Locks might be removed
- Diagnostics are saved
- Execution is ended

For instructions on how to restart the runacct script, see "How to Restart the runacct Script" on page 138.

To allow the runacct script to be restarted, processing is broken down into separate re-entrant states. The `statefile` file is used to track the last state completed. When each state is completed, the `statefile` file is updated to reflect the next state. After processing for the state is complete, the `statefile` file is read and the next state is processed. When the runacct script reaches the `CLEANUP` state, it removes the locks and ends. States are executed as shown in the following table.

<table>
<thead>
<tr>
<th>STATE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SETUP</td>
<td>The <code>runacct switch</code> command is executed to create a new <code>pacct</code> file. The <code>/var/adm/pacctn</code> process accounting files (except for the <code>pacct</code> file) are moved to the <code>/var/adm/Spacctn/MMDD</code> files. The <code>/var/adm/wtmpx</code> file is moved to the <code>/var/adm/acct/nte/wtmp/MMDD</code> file (with the current time record added on the end) and a new <code>/var/adm/wtmp</code> file is created. The <code>closewtmp</code> and <code>utmp2wtmp</code> programs add records to the <code>wtmp.MMDD</code> file and the new <code>wtmpx</code> file to account for users who are currently logged in.</td>
</tr>
<tr>
<td>WTMPFIX</td>
<td>The <code>wtmpfix</code> program checks the <code>wtmp.MMDD</code> file in the <code>nte</code> directory for accuracy. Because some date changes cause the <code>acctcon</code> program to fail, the <code>wtmpfix</code> program attempts to adjust the time stamps in the <code>wtmpx</code> file if a record of a date change appears. This program also deletes any corrupted entries from the <code>wtmpx</code> file. The fixed version of the <code>wtmp.MMDD</code> file is written to the <code>tmpwtmp</code> file.</td>
</tr>
<tr>
<td>CONNECT</td>
<td>The <code>acctcon</code> program is used to record connect accounting records in the file <code>ctacct.MMDD</code>. These records are in <code>tacct.h</code> format. In addition, the <code>acctcon</code> program creates the <code>lineuse</code> and <code>reboots</code> files. The <code>reboots</code> file records all the boot records found in the <code>wtmpx</code> file.</td>
</tr>
</tbody>
</table>
TABLE 10–1  States of the runacct Script  (Continued)

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROCESS</td>
<td>The acctprc program is used to convert the /var/adm/Spacctn.MMDD process accounting files into complete accounting records in the ptacctn.MMDD files. The Spacct and ptacct files are correlated by number so that if the runacct script fails, the Spacct files are not processed.</td>
</tr>
<tr>
<td>MERGE</td>
<td>The acctmerg program merges the process accounting records with the connect accounting records to form the daytacct file.</td>
</tr>
<tr>
<td>FEES</td>
<td>The acctmerg program merges ASCII tacct records from the fee file into the daytacct file.</td>
</tr>
<tr>
<td>DISK</td>
<td>The dodisk script produces the disktacct file. If the dodisk script has been run, which produces the disktacct file, the DISK program merges the file into the daytacct file and moves the disktacct file to the /tmp/disktacct.MMDD file.</td>
</tr>
<tr>
<td>MERGETACCT</td>
<td>The acctmerg program merges the daytacct file with the sum/tacct file, the cumulative total accounting file. Each day, the daytacct file is saved in the sum/tacct.MMDD file so that the sum/tacct file can be re-created if it is corrupted or lost.</td>
</tr>
<tr>
<td>CMS</td>
<td>The acctcms program is run several times. This program is first run to generate the command summary by using the Spacctn files and write the data to the sum/daycms file. The acctcms program is then run to merge the sum/daycms file with the sum/cms cumulative command summary file. Finally, the acctms program is run to produce nite/daycms and nite/cms, the ASCII command summary files from the sum/daycms and sum/cms files, respectively. The lastlogin program is used to create the /var/adm/acct/sum/loginlog file. This file reports when each user last logged in. If the runacct script is run after midnight, the dates showing the time last logged in by some users will be incorrect by one day.</td>
</tr>
<tr>
<td>USEREXIT</td>
<td>Any installation-dependent (local) accounting program can be run at this point. The runacct script expects this program to be called the /usr/lib/acct/runacct.local program.</td>
</tr>
<tr>
<td>CLEANUP</td>
<td>This state cleans up temporary files, runs the prdaily script and saves its output in the sum/rpt.MMDD file, removes the locks, and then exits.</td>
</tr>
</tbody>
</table>

Caution – When restarting the runacct script in the CLEANUP state, remove the last ptacct file because this file will not be complete.

Chapter 10 • System Accounting (Reference) 143
Daily Accounting Reports

The `runacct` shell script generates five basic reports upon each invocation. The following table describes these reports.

<table>
<thead>
<tr>
<th>Report Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;Daily Report&quot; on page 144</td>
<td>Shows terminal line utilization by tty number.</td>
</tr>
<tr>
<td>&quot;Daily Usage Report&quot; on page 145</td>
<td>Indicates usage of system resources by users (listed in order of user ID).</td>
</tr>
<tr>
<td>&quot;Daily Command Summary&quot; on page 146</td>
<td>Indicates usage of system resources by commands, listed in descending order of memory use. In other words, the command that used the most memory is listed first. This same information is reported for the month in the monthly command summary.</td>
</tr>
<tr>
<td>&quot;Monthly Command Summary&quot; on page 148</td>
<td>A cumulative summary that reflects the data accumulated since the last invocation of the <code>monacct</code> program.</td>
</tr>
<tr>
<td>&quot;Last Login Report&quot; on page 148</td>
<td>Shows the last time each user logged in (listed in chronological order).</td>
</tr>
</tbody>
</table>

Daily Report

This report gives information about each terminal line used. The following is a sample Daily Report.

Jan 16 02:30 2004  DAILY REPORT FOR venus Page 1

from Mon Jan 15 02:30:02 2004
to  Tue Oan 16 02:30:01 2004
1 runacct
1 acctcon

TOTAL DURATION IS 1440 MINUTES

<table>
<thead>
<tr>
<th>LINE</th>
<th>MINUTES</th>
<th>PERCENT</th>
<th># SESS</th>
<th># ON</th>
<th># OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>console</td>
<td>868</td>
<td>60</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>TOTALS</td>
<td>868</td>
<td>--</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

The `from` and `to` lines specify the time period reflected in the report. This time period covers the time the last Daily Report was generated to the time the current Daily Report was generated. Then, the report presents a log of system reboots, shutdowns, power failure recoveries, and any other record written to the `/var/adm/wtmpx` file by the `acctwtmp` program. For more information, see the `acct(1M)` man page.
The second part of the report is a breakdown of terminal line utilization. The TOTAL DURATION tells how long the system was in multiuser mode (accessible through the terminal lines). The following table describes the data provided by the Daily Report.

**TABLE 10-3  Daily Report Data**

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINE</td>
<td>The terminal line or access port.</td>
</tr>
<tr>
<td>MINUTES</td>
<td>The number of minutes that the line was in use during the accounting period.</td>
</tr>
<tr>
<td>PERCENT</td>
<td>The TOTAL DURATION divided by the number of MINUTES.</td>
</tr>
<tr>
<td># SESS</td>
<td>The number of times this line or port was accessed for a login session.</td>
</tr>
<tr>
<td># ON</td>
<td>Same as SESS. (This column no longer has meaning. Previously, this column listed the number of times that a line or port was used to log in a user.)</td>
</tr>
<tr>
<td># OFF</td>
<td>The number of times a user logs out and any interrupts that occur on that line. Generally, interrupts occur on a port when <code>tty</code>mon is first invoked after the system is brought to multiuser mode. If the # OFF exceeds the # SESS by a large factor, the multiplexer, modem, or cable is probably going bad. Or, a bad connection exists somewhere. The most common cause is an unconnected cable dangling from the multiplexer.</td>
</tr>
</tbody>
</table>

During real time, you should monitor the `/var/adm/wtmpx` file because it is the file from which the connect accounting is derived. If the `wtmpx` file grows rapidly, execute the following command to see which `tty` line is the noisiest.

```
#/usr/lib/acct/acctcon -l file < /var/adm/wtmpx
```

If interruption is occurring frequently, general system performance will be affected. Additionally, the `wtmp` file might become corrupted. To correct this problem, see "How to Fix a Corrupted `wtmp` File" on page 137.

**Daily Usage Report**

The Daily Usage Report breaks down system resource utilization by user. A sample of this report follows.

```
Jan 16 02:30 2004 DAILY USAGE REPORT FOR skisun Page 1

<table>
<thead>
<tr>
<th>LOGIN</th>
<th>CPU (MINS)</th>
<th>KORE- MINS</th>
<th>CONNECT (MINS)</th>
<th>DISK # OF # OF # DISK FEE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NAME</td>
<td>PRIME</td>
<td>NPRIME PRIME</td>
<td>NPRIME PRIME</td>
</tr>
<tr>
<td>0</td>
<td>TOTAL</td>
<td>72</td>
<td>148</td>
<td>11006173 51168</td>
</tr>
<tr>
<td>0</td>
<td>root</td>
<td>32</td>
<td>76</td>
<td>11006164 33664</td>
</tr>
</tbody>
</table>
```

Jan 16 02:30 2004 DAILY USAGE REPORT FOR skisun Page 1
The following table describes the data provided by the Daily Usage Report.

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UID</td>
<td>User ID number.</td>
</tr>
<tr>
<td>LOGIN NAME</td>
<td>Login (or user) name of the user. Identifies a user who has multiple login names.</td>
</tr>
<tr>
<td>CPU (MINS)</td>
<td>Amount of time, in minutes, that the user’s process used the central processing unit. Divided into PRIME and NPRIME (nonprime) utilization. The accounting system’s version of this data is located in the /etc/acct/holidays file.</td>
</tr>
<tr>
<td>KCORE-MINS</td>
<td>A cumulative measure of the amount of memory in Kbyte segments per minute that a process uses while running. Divided into PRIME and NPRIME utilization.</td>
</tr>
<tr>
<td>CONNECT (MINS)</td>
<td>Amount of time, in minutes, that the a user was logged in to the system, or “real time.” Divided into PRIME and NPRIME utilization. If these numbers are high while the # OF PROCESSES is low, you can conclude that the user logs in first thing in the morning and hardly touches the terminal the rest of the day.</td>
</tr>
<tr>
<td>DISK BLOCKS</td>
<td>Output from the acctdusg program, which runs the disk accounting programs and merges the accounting records (dayacct). For accounting purposes, a block is 512 bytes.</td>
</tr>
<tr>
<td># OF PROCESSES</td>
<td>Number of processes invoked by the user. If large numbers appear, a user might have a shell procedure that has run out of control.</td>
</tr>
<tr>
<td># OF SESS</td>
<td>Number of times that a user logged in to the system.</td>
</tr>
<tr>
<td># DISK SAMPLES</td>
<td>Number of times that disk accounting was run to obtain the average number of DISK BLOCKS.</td>
</tr>
<tr>
<td>FEE</td>
<td>Often unused field that represents the total accumulation of units charged against the user by the charge fee script.</td>
</tr>
</tbody>
</table>

### Daily Command Summary

The Daily Command Summary report shows the system resource utilization by command. With this report, you can identify the most heavily used commands. Based on how those commands use system resources, you can then gain insight on how best to tune the system.

These reports are sorted by TOTAL KCOREMIN, which is an arbitrary gauge but often useful for calculating drain on a system.

A sample Daily Command Summary follows.
### TOTAL COMMAND SUMMARY

<table>
<thead>
<tr>
<th>COMMAND NAME</th>
<th>NUMBER CMDS</th>
<th>TOTAL KCOREMIN</th>
<th>TOTAL CPU-MIN</th>
<th>TOTAL REAL-MIN</th>
<th>MEAN SIZE-K</th>
<th>MEAN CPU-MIN</th>
<th>HOG FACTOR</th>
<th>CHARS TRNSFD</th>
</tr>
</thead>
<tbody>
<tr>
<td>netscape</td>
<td>43</td>
<td>2456898.50</td>
<td>92.03</td>
<td>54503.12</td>
<td>26695.51</td>
<td>2.14</td>
<td>0.00</td>
<td>947774912</td>
</tr>
<tr>
<td>adeptedi</td>
<td>7</td>
<td>88328.22</td>
<td>4.03</td>
<td>404.12</td>
<td>21914.95</td>
<td>0.58</td>
<td>0.01</td>
<td>33155160</td>
</tr>
<tr>
<td>dtmail</td>
<td>1</td>
<td>54919.17</td>
<td>5.33</td>
<td>17716.57</td>
<td>10308.94</td>
<td>5.33</td>
<td>0.00</td>
<td>213843968</td>
</tr>
<tr>
<td>acroread</td>
<td>8</td>
<td>31218.02</td>
<td>2.67</td>
<td>17744.57</td>
<td>11682.66</td>
<td>0.33</td>
<td>0.00</td>
<td>33828352</td>
</tr>
<tr>
<td>dtterm</td>
<td>5</td>
<td>4762.71</td>
<td>1.30</td>
<td>76300.29</td>
<td>3658.93</td>
<td>0.26</td>
<td>0.00</td>
<td>158662656</td>
</tr>
<tr>
<td>dtaction</td>
<td>23</td>
<td>1389.72</td>
<td>0.33</td>
<td>4196.43</td>
<td>18653184</td>
<td>0.01</td>
<td>0.55</td>
<td>23535616</td>
</tr>
<tr>
<td>dtssesio</td>
<td>1</td>
<td>1174.87</td>
<td>0.24</td>
<td>17716.57</td>
<td>4932.97</td>
<td>0.24</td>
<td>0.00</td>
<td>23535616</td>
</tr>
<tr>
<td>dtcm</td>
<td>1</td>
<td>866.30</td>
<td>0.18</td>
<td>17716.57</td>
<td>4826.21</td>
<td>0.18</td>
<td>0.00</td>
<td>3012096</td>
</tr>
</tbody>
</table>

The following table describes the data provided by the Daily Command Summary.

### TABLE 10-5  Daily Command Summary Data

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMAND NAME</td>
<td>Name of the command. All shell procedures are lumped together under the name sh because only object modules are reported by the process accounting system. You should monitor the frequency of programs called a.out or core, or any other unexpected name. You can use the acctcom program to determine who executed an oddly named command and if superuser privileges were used.</td>
</tr>
<tr>
<td>NUMBER CMDS</td>
<td>Total number of times this command was run.</td>
</tr>
<tr>
<td>TOTAL KCOREMIN</td>
<td>Total cumulative measurement of the Kbyte segments of memory used by a process per minute of run time.</td>
</tr>
<tr>
<td>TOTAL CPU-MIN</td>
<td>Total processing time this program accumulated.</td>
</tr>
<tr>
<td>TOTAL REAL-MIN</td>
<td>Total real-time (wall-clock) minutes this program accumulated.</td>
</tr>
<tr>
<td>MEAN SIZE-K</td>
<td>Mean (average) of the TOTAL KCOREMIN over the number of invocations reflected by the NUMBER CMDS.</td>
</tr>
<tr>
<td>MEAN CPU-MIN</td>
<td>Mean (average) derived from the NUMBER CMDS and the TOTAL CPU-MIN.</td>
</tr>
<tr>
<td>HOG FACTOR</td>
<td>Total CPU time divided by elapsed time. Shows the ratio of system availability to system utilization, providing a relative measure of total available CPU time consumed by the process during its execution.</td>
</tr>
<tr>
<td>CHARS TRNSFD</td>
<td>Total number of characters transferred by the read and write system calls. Might be negative due to overflow.</td>
</tr>
</tbody>
</table>
TABLE 10–5  Daily Command Summary Data  (Continued)

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLOCKS READ</td>
<td>Total number of the physical block reads and writes that a process performed.</td>
</tr>
</tbody>
</table>

**Monthly Command Summary**

The format of the Daily Command Summary and the Monthly Command Summary reports are virtually the same. However, the daily summary reports only on the current accounting period while the monthly summary reports on the start of the fiscal period to the current date. In other words, the monthly report is a cumulative summary that reflects the data accumulated since the last invocation of the monacct program.

A sample Monthly Command Summary follows.

Jan 16 02:30 2004  MONTHLY TOTAL COMMAND SUMMARY  Page 1

<table>
<thead>
<tr>
<th>COMMAND</th>
<th>NUMBER</th>
<th>TOTAL</th>
<th>TOTAL</th>
<th>MEAN</th>
<th>MEAN</th>
<th>HOG</th>
<th>CHARS</th>
<th>BLOCKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>netscape</td>
<td>789</td>
<td>3110437.25</td>
<td>121.03</td>
<td>79101.12</td>
<td>25699.58</td>
<td>0.15</td>
<td>0.00</td>
<td>3930527232</td>
</tr>
<tr>
<td>adeptedi</td>
<td>84</td>
<td>1214419.00</td>
<td>50.20</td>
<td>4174.65</td>
<td>24193.62</td>
<td>0.60</td>
<td>0.01</td>
<td>890216640</td>
</tr>
<tr>
<td>acroread</td>
<td>145</td>
<td>165297.78</td>
<td>7.01</td>
<td>18180.74</td>
<td>23566.84</td>
<td>0.05</td>
<td>0.00</td>
<td>1900504604</td>
</tr>
<tr>
<td>dtmail</td>
<td>2</td>
<td>64208.90</td>
<td>6.35</td>
<td>20557.14</td>
<td>10112.43</td>
<td>3.17</td>
<td>0.00</td>
<td>250445824</td>
</tr>
<tr>
<td>dtaction</td>
<td>800</td>
<td>47602.28</td>
<td>11.26</td>
<td>15.37</td>
<td>4226.93</td>
<td>0.01</td>
<td>0.73</td>
<td>640057536</td>
</tr>
<tr>
<td>soffice.</td>
<td>13</td>
<td>35506.79</td>
<td>0.97</td>
<td>9.23</td>
<td>36510.84</td>
<td>0.07</td>
<td>0.11</td>
<td>134754320</td>
</tr>
<tr>
<td>dtwm</td>
<td>2</td>
<td>20350.98</td>
<td>3.17</td>
<td>20557.14</td>
<td>6419.87</td>
<td>1.59</td>
<td>0.00</td>
<td>190636032</td>
</tr>
</tbody>
</table>

For a description of the data provided by the Monthly Command Summary, see "Daily Command Summary" on page 146.

**Last Login Report**

This report gives the date when a particular login was last used. You can use this information to find unused logins and login directories that can be archived and deleted. A Last Login Report follows.

Jan 16 02:30 2004  LAST LOGIN  Page 1
Examining the `pacct` File With `acctcom`

At any time, you can examine the contents of the `/var/adm/pacct` files, or any file with records in the `acct.h` format, by using the `acctcom` program. If you do not specify any files and do not provide any standard input when you run this command, the `acctcom` command reads the `pacct` file. Each record read by the `acctcom` command represents information about a terminated process. Active processes can be examined by running the `ps` command.

The default output of the `acctcom` command provides the following information:

<table>
<thead>
<tr>
<th>COMMAND NAME</th>
<th>USER</th>
<th>TTYNAME</th>
<th>START TIME</th>
<th>END TIME</th>
<th>REAL (SECS)</th>
<th>CPU (SECS)</th>
<th>MEAN SIZE (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#acctcom</td>
<td>root</td>
<td>?</td>
<td>02:30:01</td>
<td>02:30:01</td>
<td>0.03</td>
<td>0.01</td>
<td>304.00</td>
</tr>
<tr>
<td>turnacct</td>
<td>adm</td>
<td>?</td>
<td>02:30:01</td>
<td>02:30:01</td>
<td>0.42</td>
<td>0.01</td>
<td>320.00</td>
</tr>
<tr>
<td>mv</td>
<td>adm</td>
<td>?</td>
<td>02:30:01</td>
<td>02:30:01</td>
<td>0.07</td>
<td>0.01</td>
<td>504.00</td>
</tr>
<tr>
<td>utmp_upd</td>
<td>adm</td>
<td>?</td>
<td>02:30:01</td>
<td>02:30:01</td>
<td>0.03</td>
<td>0.01</td>
<td>712.00</td>
</tr>
<tr>
<td>utmp_upd</td>
<td>adm</td>
<td>?</td>
<td>02:30:01</td>
<td>02:30:01</td>
<td>0.01</td>
<td>0.01</td>
<td>824.00</td>
</tr>
<tr>
<td>utmp_upd</td>
<td>adm</td>
<td>?</td>
<td>02:30:01</td>
<td>02:30:01</td>
<td>0.01</td>
<td>0.01</td>
<td>912.00</td>
</tr>
<tr>
<td>utmp_upd</td>
<td>adm</td>
<td>?</td>
<td>02:30:01</td>
<td>02:30:01</td>
<td>0.01</td>
<td>0.01</td>
<td>920.00</td>
</tr>
<tr>
<td>utmp_upd</td>
<td>adm</td>
<td>?</td>
<td>02:30:01</td>
<td>02:30:01</td>
<td>0.01</td>
<td>0.01</td>
<td>1136.00</td>
</tr>
<tr>
<td>utmp_upd</td>
<td>adm</td>
<td>?</td>
<td>02:30:01</td>
<td>02:30:01</td>
<td>0.01</td>
<td>0.01</td>
<td>576.00</td>
</tr>
<tr>
<td>closewtm</td>
<td>adm</td>
<td>?</td>
<td>02:30:01</td>
<td>02:30:01</td>
<td>0.10</td>
<td>0.01</td>
<td>664.00</td>
</tr>
</tbody>
</table>

Field | Explanation
--- | ---
COMMAND NAME | Command name (pound (#) sign if the command was executed with superuser privileges)
USER | User name
TTYNAME | TTY name (listed as ? if unknown)
START TIME | Command execution starting time
END TIME | Command execution ending time
REAL (SECS) | Real time (in seconds)
CPU (SECS) | CPU time (in seconds)
MEAN SIZE (K) | Mean size (in Kbytes)
You can obtain the following information by using `acctcom` command options.

- State of the `fork/exec` flag (1 for `fork` without `exec`)
- System exit status
- Hog factor
- Total `kcore` minutes
- CPU factor
- Characters transferred
- Blocks read

The following table describes the `acctcom` command options.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-a</code></td>
<td>Shows average statistics about the processes selected. The statistics are printed after the output is recorded.</td>
</tr>
<tr>
<td><code>-b</code></td>
<td>Reads the files backward, showing latest commands first. This option has no effect if reading standard input.</td>
</tr>
<tr>
<td><code>-f</code></td>
<td>Prints the <code>fork/exec</code> flag and system exit status columns. The output is an octal number.</td>
</tr>
<tr>
<td><code>-h</code></td>
<td>Instead of mean memory size, shows the hog factor, which is the fraction of total available CPU time consumed by the process during its execution. Hog factor = total-CPU-time/elapsed-time.</td>
</tr>
<tr>
<td><code>-i</code></td>
<td>Prints columns that contains the I/O counts in the output.</td>
</tr>
<tr>
<td><code>-k</code></td>
<td>Shows total <code>kcore</code> minutes instead of memory size.</td>
</tr>
<tr>
<td><code>-m</code></td>
<td>Shows mean core size. This size is the default.</td>
</tr>
<tr>
<td><code>-q</code></td>
<td>Prints average statistics, not output records.</td>
</tr>
<tr>
<td><code>-r</code></td>
<td>Shows CPU factor: <code>user-time/(system-time + user-time)</code>.</td>
</tr>
<tr>
<td><code>-t</code></td>
<td>Shows separate system and user CPU times.</td>
</tr>
<tr>
<td><code>-v</code></td>
<td>Excludes column headings from the output.</td>
</tr>
<tr>
<td><code>-C sec</code></td>
<td>Shows only processes with total CPU time (system plus user) that exceeds <code>sec</code> seconds.</td>
</tr>
<tr>
<td><code>-e time</code></td>
<td>Shows processes existing at or before <code>time</code>, given in the format <code>hr:min[sec]</code>.</td>
</tr>
<tr>
<td><code>-E time</code></td>
<td>Shows processes starting at or before <code>time</code>, given in the format <code>hr:min[sec]</code>. Using the same time for both <code>-S</code> and <code>-E</code>, shows processes that existed at the time.</td>
</tr>
<tr>
<td><code>-g group</code></td>
<td>Shows only processes that belong to <code>group</code>.</td>
</tr>
</tbody>
</table>
System Accounting Files

The /var/adm directory contains the active data collection files. The following table describes the accounting files in this directory.

**TABLE 10–7  Files in the /var/adm Directory**

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dtmp</td>
<td>Output from the acctdusg program</td>
</tr>
<tr>
<td>fee</td>
<td>Output from the chargefee program, which are the ASCII tacct records</td>
</tr>
<tr>
<td>pacct</td>
<td>Active process accounting file</td>
</tr>
<tr>
<td>pacctn</td>
<td>Process accounting files that are switched by running the turnacct script</td>
</tr>
<tr>
<td>Spacctn.MMDD</td>
<td>Process accounting files for MMDD during execution of the turnacct script</td>
</tr>
</tbody>
</table>

The /var/adm/acct directory contains the nite, sum, and fiscal directories. These directories contain the actual data collection files. For example, the nite directory contains files that are reused daily by the runacct script. A brief summary of the files in the /var/adm/acct/nite directory follows.
### TABLE 10–8  Files in the /var/adm/acct/nite Directory

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>active</td>
<td>Used by the runacct script to record progress and print warning and error messages</td>
</tr>
<tr>
<td>active.MMDD</td>
<td>Same as the active file after the runacct script detects an error</td>
</tr>
<tr>
<td>cms</td>
<td>ASCII total command summary used by the prdaily script</td>
</tr>
<tr>
<td>ctacct.MMDD</td>
<td>Connect accounting records in tacct.h format</td>
</tr>
<tr>
<td>ctmp</td>
<td>Output of acctcon1 program, which consists of connect session records in ctmp.h format (acctcon1 and acctcon2 are provided for compatibility purposes)</td>
</tr>
<tr>
<td>daycms</td>
<td>ASCII daily command summary used by the prdaily script</td>
</tr>
<tr>
<td>daytacct</td>
<td>Total accounting records for one day in tacct.h format</td>
</tr>
<tr>
<td>disktacct</td>
<td>Disk accounting records in tacct.h format, created by the dodisk script</td>
</tr>
<tr>
<td>fd2log</td>
<td>Diagnostic output during execution of the runacct script</td>
</tr>
<tr>
<td>lastdate</td>
<td>Last day the runacct script executed (in date +%m%d format)</td>
</tr>
<tr>
<td>lineuse</td>
<td>tty line usage report used by the prdaily script</td>
</tr>
<tr>
<td>lock</td>
<td>Used to control serial use of the runacct script</td>
</tr>
<tr>
<td>log</td>
<td>Diagnostic output from the acctcon program</td>
</tr>
<tr>
<td>log.MMDD</td>
<td>Same as the log file after the runacct script detects an error</td>
</tr>
<tr>
<td>owtmpx</td>
<td>Previous day's wtmpx file</td>
</tr>
<tr>
<td>reboots</td>
<td>Beginning and ending dates from the wtmpx file, and a listing of reboots</td>
</tr>
<tr>
<td>statefile</td>
<td>Used to record current state during execution of the runacct script</td>
</tr>
<tr>
<td>tmptmp</td>
<td>wtmpx file corrected by the wtmpfix program</td>
</tr>
<tr>
<td>wtmperror</td>
<td>Contains wtmpfix error messages</td>
</tr>
<tr>
<td>wtmperror.MMDD</td>
<td>Same as the wtmperror file after the runacct script detects an error</td>
</tr>
<tr>
<td>wtmp.MMDD</td>
<td>The runacct script's copy of the wtmpx file</td>
</tr>
</tbody>
</table>

The sum directory contains the cumulative summary files updated by the runacct script and used by the monacct script. The following table summarizes the files in the /var/adm/acct/sum directory.
The fiscal directory contains periodic summary files that are created by the monacct script. The following table summarizes the files in the /var/adm/acct/fiscal directory.

### TABLE 10–10  Files in the /var/adm/acct/fiscal Directory

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cmnsn</td>
<td>Total command summary file for fiscal period n in internal summary format</td>
</tr>
<tr>
<td>rprt$MMDD</td>
<td>Saved output of prdaily script</td>
</tr>
<tr>
<td>tacct$MMDD</td>
<td>Cumulative total accounting file for fiscal period</td>
</tr>
<tr>
<td>tacctprev</td>
<td>Same as the tacct file without latest update</td>
</tr>
</tbody>
</table>

### Files Produced by the runacct Script

The following table summarizes the most useful files produced by the runacct script. These files are found in the /var/adm/acct directory.

### TABLE 10–11  Files Created by the runacct Script

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nite/daytacct</td>
<td>The total accounting file for the day in tacct.h format.</td>
</tr>
<tr>
<td>File</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>nite/lineuse</td>
<td>The <em>runacct</em> script calls the acctcon program to gather data on terminal line usage from the /var/adm/acct/nite/tmpwtmp file and writes the data to the /var/adm/acct/nite/lineuse file. The <em>prdaily</em> script uses this data to report line usage. This report is especially useful for detecting bad lines. If the ratio between the number of logouts to logins is greater than three to one, the line is very likely failing.</td>
</tr>
<tr>
<td>sum/cms</td>
<td>This file is the accumulation of each day's command summaries. The accumulation restarts when the <em>monacct</em> script is executed. The ASCII version is the nite/cms file.</td>
</tr>
<tr>
<td>sum/daycms</td>
<td>The <em>runacct</em> script calls the acctcms program to process the commands used during the day to create the Daily Command Summary report and stores the data in the /var/adm/acct/sum/daycms file. The ASCII version is the /var/adm/acct/nite/daycms file.</td>
</tr>
<tr>
<td>sum/loginlog</td>
<td>The <em>runacct</em> script calls the lastlogin script to update the last data logged in for the logins in the /var/adm/acct/sum/loginlog file. The lastlogin command also removes from this file any logins that are no longer valid.</td>
</tr>
<tr>
<td>sum/rprt.MMDD</td>
<td>Each execution of the <em>runacct</em> script saves a copy of the daily report that was printed by the <em>prdaily</em> script.</td>
</tr>
<tr>
<td>sum/tacct</td>
<td>Contains the accumulation of each day's nite/daytacct data and is used for billing purposes. The <em>monacct</em> script restarts accumulating this data each month or fiscal period.</td>
</tr>
</tbody>
</table>
Managing System Performance (Overview)

Achieving good performance from a computer or network is an important part of system administration. This chapter provides an overview of some factors that contribute to managing the performance of the computer systems in your care.

This is a list of the overview information in this chapter.

- “What’s New in Managing System Performance?” on page 155
- “Where to Find System Performance Tasks” on page 156
- “System Performance and System Resources” on page 157
- “Processes and System Performance” on page 157
- ”About Monitoring System Performance” on page 158

What's New in Managing System Performance?

This section describes new or changed features in managing system performance in the Solaris release.

**Enhanced pfiles Tool**

**Solaris 10**: The /proc file system has been enhanced to include file name information in the /proc/pic/path directory. This information is used by pfiles to display file names for each file in the process. This change provides new insight into process behavior. For more information, see “How to Display Information About Processes” on page 167 and the proc(1) man page.

**CPU Performance Counters**

**Solaris 10**: The CPU Performance Counter (CPC) system has been updated to give better access to the performance analysis features available in the SPARC and x86 platforms that run the Solaris Operating System.
The CPC commands `cpustat` and `cputrack` have enhanced, command-line syntax for specifying CPU information. For example, in previous versions of the Solaris OS, you were required to specify two counters. The configuration of both commands now allows you to specify only one counter, as shown in the following example:

```
# cputrack -c pic0=Cycle_cnt ls -d .
time lwp event pic0 pic1
  0.034  1 exit 841167
```

For simple measurements, you can even omit the counter configuration, as shown in the following example:

```
# cputrack -c Cycle_cnt ls -d .
time lwp event pic0 pic1
  0.016  1 exit 850736
```

For more information on using the `cpustat` command, see the `cpustat(1M)` man page. For more information on using the `cputrack` command, see the `cputrack(1)` man page.

**Where to Find System Performance Tasks**

<table>
<thead>
<tr>
<th>System Performance Task</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manage processes</td>
<td>Chapter 12, “Managing System Processes (Tasks),”</td>
</tr>
<tr>
<td>Monitor system performance</td>
<td>Chapter 13, “Monitoring System Performance (Tasks),”</td>
</tr>
<tr>
<td>Change Solaris tunable parameters</td>
<td><em>Solaris Tunable Parameters Reference Manual</em></td>
</tr>
<tr>
<td>Manage System Performance Tasks</td>
<td>Chapter 2, “Projects and Tasks (Overview),” in <em>System Administration Guide: Virtualization Using the Solaris Operating System</em></td>
</tr>
<tr>
<td>Manage Processes With FX and FS Schedulers</td>
<td>Chapter 8, “Fair Share Scheduler (Overview),” in <em>System Administration Guide: Virtualization Using the Solaris Operating System</em></td>
</tr>
</tbody>
</table>
System Performance and System Resources

The performance of a computer system depends upon how the system uses and allocates its resources. Monitor your system's performance regularly so that you know how it behaves under normal conditions. You should have a good idea of what to expect, and be able to recognize a problem when it occurs.

System resources that affect performance are described in the following table.

<table>
<thead>
<tr>
<th>System Resource</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central processing unit (CPU)</td>
<td>The CPU processes instructions by fetching instructions from memory and executing them.</td>
</tr>
<tr>
<td>Input/output (I/O) devices</td>
<td>I/O devices transfer information into and out of the computer. Such a device could be a terminal and keyboard, a disk drive, or a printer.</td>
</tr>
<tr>
<td>Memory</td>
<td>Physical (or main) memory is the amount of random access memory (RAM) on the system.</td>
</tr>
</tbody>
</table>

Chapter 13, “Monitoring System Performance (Tasks),” describes the tools that display statistics about the system’s activity and performance.

Processes and System Performance

The following table describes terms that are related to processes.

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process</td>
<td>Any system activity or job. Each time you boot a system, execute a command, or start an application, the system activates one or more processes.</td>
</tr>
<tr>
<td>Lightweight process (LWP)</td>
<td>A virtual CPU or execution resource. LWPs are scheduled by the kernel to use available CPU resources based on their scheduling class and priority. LWPs include a kernel thread and an LWP. A kernel thread contains information that has to be in memory all the time. An LWP contains information that is swappable.</td>
</tr>
<tr>
<td>Application thread</td>
<td>A series of instructions with a separate stack that can execute independently in a user's address space. Application threads can be multiplexed on top of LWPs.</td>
</tr>
</tbody>
</table>
A process can consist of multiple LWPs and multiple application threads. The kernel schedules a kernel-thread structure, which is the scheduling entity in the SunOS environment. Various process structures are described in the following table.

**TABLE 11–2 Process Structures**

<table>
<thead>
<tr>
<th>Structure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>proc</strong></td>
<td>Contains information that pertains to the whole process and must be in main memory all the time</td>
</tr>
<tr>
<td><strong>kthread</strong></td>
<td>Contains information that pertains to one LWP and must be in main memory all the time</td>
</tr>
<tr>
<td><strong>user</strong></td>
<td>Contains the &quot;per process&quot; information that is swappable</td>
</tr>
<tr>
<td><strong>klwp</strong></td>
<td>Contains the &quot;per LWP process&quot; information that is swappable</td>
</tr>
</tbody>
</table>

The following figure illustrates the relationships among these process structures.

![Figure 11–1 Relationships Among Process Structures](image)

Most process resources are accessible to all the threads in the process. Almost all process virtual memory is shared. A change in shared data by one thread is available to the other threads in the process.

**About Monitoring System Performance**

While your computer is running, counters in the operating system are incremented to track various system activities.
System activities that are tracked are as follows:

- Central processing unit (CPU) utilization
- Buffer usage
- Disk and tape input/output (I/O) activity
- Terminal device activity
- System call activity
- Context switching
- File access
- Queue activity
- Kernel tables
- Interprocess communication
- Paging
- Free memory and swap space
- Kernel memory allocation (KMA)

## Monitoring Tools

The Solaris software provides several tools to help you track how your system is performing. The following table describes these tools.

### TABLE 11-3  Performance Monitoring Tools

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cpustat</code> and <code>cputrack</code> commands</td>
<td>Monitors performance of a system or a process using CPU performance counters.</td>
<td><code>cpustat(1M)</code> and <code>cputrack(1)</code></td>
</tr>
<tr>
<td><code>netstat</code> and <code>nfsstat</code> commands</td>
<td>Displays information about network performance</td>
<td><code>netstat(1M)</code> and <code>nfsstat(1M)</code></td>
</tr>
<tr>
<td><code>ps</code> and <code>prstat</code> commands</td>
<td>Displays information about active processes</td>
<td>Chapter 12, &quot;Managing System Processes (Tasks),&quot;</td>
</tr>
<tr>
<td><code>sar</code> and <code>sadc</code> commands</td>
<td>Collects and reports on system activity data</td>
<td>Chapter 13, &quot;Monitoring System Performance (Tasks),&quot;</td>
</tr>
<tr>
<td>Sun Enterprise SyMON</td>
<td>Collects system activity data on Sun's enterprise-level systems</td>
<td><code>Sun Enterprise SyMON 2.0.1 Software User’s Guide</code></td>
</tr>
<tr>
<td>swap command</td>
<td>Displays information about available swap space on your system</td>
<td>Chapter 21, &quot;Configuring Additional Swap Space (Tasks),&quot; in System Administration Guide: Devices and File Systems</td>
</tr>
</tbody>
</table>
### TABLE 11–3  Performance Monitoring Tools (Continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>vmstat</code> and <code>iostat</code></td>
<td>Summarizes system activity data, such as virtual memory statistics, disk usage, and CPU activity</td>
<td>Chapter 13, &quot;Monitoring System Performance (Tasks),&quot;</td>
</tr>
<tr>
<td><code>cputrack</code> and <code>cpustat</code></td>
<td>Assists in accessing hardware performance counter facilities provided by microprocessors</td>
<td><code>cputrack(1) and cpustat(1M)</code> man pages</td>
</tr>
<tr>
<td><code>kstat</code> and <code>mpstat</code></td>
<td>Examines the available kernel statistics, or <code>kstats</code>, on the system and reports those statistics which match the criteria specified on the command line. The <code>mpstat</code> command reports processor statistics in tabular form.</td>
<td><code>kstat(1M) and mpstat(1M)</code> man pages.</td>
</tr>
</tbody>
</table>
This chapter describes the procedures for managing system processes.

For information on the procedures associated with managing system processes, see the following:
- “Managing System Processes (Task Map)” on page 161
- “Managing Process Class Information (Task Map)” on page 172

For overview information about managing system processes, see the following:
- “Commands for Managing System Processes” on page 162
- “Managing Process Class Information” on page 173

## Managing System Processes (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>List processes.</td>
<td>Use the <code>ps</code> command to list all the processes on a system.</td>
<td>“How to List Processes” on page 165</td>
</tr>
<tr>
<td>Display information about processes.</td>
<td>Use the <code>pgrep</code> command to obtain the process IDs for processes that you want to display more information about.</td>
<td>“How to Display Information About Processes” on page 167</td>
</tr>
<tr>
<td>Control processes.</td>
<td>Locate processes by using the <code>pgrep</code> command. Then, use the appropriate command (<code>/proc</code>) to control the process. See Table 12–3 for a description of the (<code>/proc</code>) commands.</td>
<td>“How to Control Processes” on page 168</td>
</tr>
</tbody>
</table>
### Commands for Managing System Processes

The following table describes the commands for managing system processes.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Man Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ps, pgrep, prstat, pkill</td>
<td>Checks the status of active processes on a system, as well as displays detailed information about the processes</td>
<td>ps(1), pgrep(1), and prstat(1M)</td>
</tr>
<tr>
<td>pkill</td>
<td>Functions identically to pgrep but finds or signals processes by name or other attribute and terminates the process. Each matching process is signaled as if by the kill command, instead of having its process ID printed.</td>
<td>pgrep(1), and pkill(1)</td>
</tr>
<tr>
<td>pargs, preap</td>
<td>Assists with processes debugging</td>
<td>pargs(1), and preap(1)</td>
</tr>
<tr>
<td>dispadmin</td>
<td>Lists default process scheduling policies</td>
<td>dispadmin(1M)</td>
</tr>
<tr>
<td>priocntl</td>
<td>Assigns processes to a priority class and manages process priorities</td>
<td>priocntl(1)</td>
</tr>
<tr>
<td>nice</td>
<td>Changes the priority of a timesharing process</td>
<td>nice(1)</td>
</tr>
<tr>
<td>psrset</td>
<td>Binds specific process groups to a group of processors rather than to just a single processor</td>
<td>psrset(1M)</td>
</tr>
</tbody>
</table>

The Solaris Management Console's Processes tool enables you to manage processes with a user-friendly interface. For information on using and starting the Solaris Management Console, see Chapter 2, "Working With the Solaris Management Console (Tasks),” in *System Administration Guide: Basic Administration*. 
Using the `ps` Command

The `ps` command enables you to check the status of active processes on a system, as well as display technical information about the processes. This data is useful for administrative tasks such as determining how to set process priorities.

Depending on which options you use, the `ps` command reports the following information:

- Current status of the process
- Process ID
- Parent process ID
- User ID
- Scheduling class
- Priority
- Address of the process
- Memory used
- CPU time used

The following table describes some fields that are reported by the `ps` command. Which fields are displayed depend on which option you choose. For a description of all available options, see the `ps(1)` man page.

**TABLE 12-2  Summary of Fields in ps Reports**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UID</td>
<td>The effective user ID of the process's owner.</td>
</tr>
<tr>
<td>PID</td>
<td>The process ID.</td>
</tr>
<tr>
<td>PPID</td>
<td>The parent process ID.</td>
</tr>
<tr>
<td>C</td>
<td>The processor utilization for scheduling. This field is not displayed when the <code>-c</code> option is used.</td>
</tr>
<tr>
<td>CLS</td>
<td>The scheduling class to which the process belongs such as real-time, system, or timesharing. This field is included only with the <code>-c</code> option.</td>
</tr>
<tr>
<td>PRI</td>
<td>The kernel thread's scheduling priority. Higher numbers indicate a higher priority.</td>
</tr>
<tr>
<td>NI</td>
<td>The process's <code>nice</code> number, which contributes to its scheduling priority. Making a process “nicer” means lowering its priority.</td>
</tr>
<tr>
<td>ADDR</td>
<td>The address of the <code>proc</code> structure.</td>
</tr>
<tr>
<td>SZ</td>
<td>The virtual address size of the process.</td>
</tr>
<tr>
<td>WCHAN</td>
<td>The address of an event or lock for which the process is sleeping.</td>
</tr>
</tbody>
</table>
TABLE 12–2  Summary of Fields in ps Reports  (Continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STIME</td>
<td>The starting time of the process in hours, minutes, and seconds.</td>
</tr>
<tr>
<td>TTY</td>
<td>The terminal from which the process, or its parent, was started. A question mark indicates that there is no controlling terminal.</td>
</tr>
<tr>
<td>TIME</td>
<td>The total amount of CPU time used by the process since it began.</td>
</tr>
<tr>
<td>CMD</td>
<td>The command that generated the process.</td>
</tr>
</tbody>
</table>

Using the /proc File System and Commands

You can display detailed information about the processes that are listed in the /proc directory by using process commands. The following table lists the /proc process commands. The /proc directory is also known as the process file system (PROCFS). Images of active processes are stored here by their process ID number.

TABLE 12–3  Process Commands (/proc)

<table>
<thead>
<tr>
<th>Process Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pcred</td>
<td>Displays process credential information</td>
</tr>
<tr>
<td>pfiles</td>
<td>Reports fstat and fcntl information for open files in a process</td>
</tr>
<tr>
<td>pflags</td>
<td>Prints /proc tracing flags, pending signals and held signals, and other status information</td>
</tr>
<tr>
<td>pldd</td>
<td>Lists the dynamic libraries that are linked into a process</td>
</tr>
<tr>
<td>pmap</td>
<td>Prints the address space map of each process</td>
</tr>
<tr>
<td>psig</td>
<td>Lists the signal actions and handlers of each process</td>
</tr>
<tr>
<td>prun</td>
<td>Starts each process</td>
</tr>
<tr>
<td>pstack</td>
<td>Prints a hex+symbolic stack trace for each lwp in each process</td>
</tr>
<tr>
<td>pstop</td>
<td>Stops each process</td>
</tr>
<tr>
<td>ptime</td>
<td>Times a process by using microstate accounting</td>
</tr>
<tr>
<td>ptree</td>
<td>Displays the process trees that contain the process</td>
</tr>
<tr>
<td>pwait</td>
<td>Displays status information after a process terminates</td>
</tr>
<tr>
<td>pwdx</td>
<td>Displays the current working directory for a process</td>
</tr>
</tbody>
</table>

For more information, see proc(1).
The process tools are similar to some options of the `ps` command, except that the output that is provided by these commands is more detailed.

In general, the process commands do the following:

- Display more information about processes, such as `fstat` and `fcntl`, working directories, and trees of parent and child processes
- Provide control over processes by allowing users to stop or resume them

**Managing Processes With Process Commands (/proc)**

You can display detailed, technical information about processes or control active processes by using some of the process commands. Table 12–3 lists some of the `/proc` commands.

If a process becomes trapped in an endless loop, or if the process takes too long to execute, you might want to stop (kill) the process. For more information about stopping processes using the `kill` or the `pkill` command, see Chapter 12, "Managing System Processes (Tasks)."

The `/proc` file system is a directory hierarchy that contains additional subdirectories for state information and control functions.

The `/proc` file system also provides an xwatchpoint facility that is used to remap read-and-write permissions on the individual pages of a process’s address space. This facility has no restrictions and is MT-safe.

Debugging tools have been modified to use `/proc`’s xwatchpoint facility, which means that the entire xwatchpoint process is faster.

The following restrictions have been removed when you set xwatchpoints by using the `dbx` debugging tool:

- Setting xwatchpoints on local variables on the stack due to SPARC based system register windows
- Setting xwatchpoints on multithreaded processes

For more information, see the `proc(4)`, and `mdb(1)` man pages.

**How to List Processes**

- **Use the `ps` command to list all the processes on a system.**
  
  $ ps [-efc]
  
  `-ps` Displays only the processes that are associated with your login session.
  
  `-ef` Displays full information about all the processes that are being executed on the system.
Example 12–1

Listing Processes

The following example shows output from the `ps` command when no options are used.

```
$ ps
  PID TTY TIME   CMD
 1664 pts/4 0:06  csh
 2081 pts/4 0:00  ps
```

The following example shows output from the `ps -ef` command. This output shows that the first process that is executed when the system boots is `sched` (the swapper) followed by the `init` process, `pageout`, and so on.

```
$ ps -ef
  UID   PID  PPID  C STIME TTY TIME   CMD
  root  0    0    0 Dec 20 ?   0:17   sched
  root  1    0    0 Dec 20 ?   0:00  /etc/init -
  root  2    0    0 Dec 20 ?   0:00  pageout
  root  3    0    0 Dec 20 ?   4:20   fsflush
  root 374  367    0 Dec 20 ?   0:00  /usr/lib/saf/ttymon
  root 367    1    0 Dec 20 ?   0:00  /usr/lib/saf/sac -t 300
  root 126    1    0 Dec 20 ?   0:00  /usr/sbin/rpcbind
  root 54    1    0 Dec 20 ?   0:00  /usr/lib/sysevent/syseventd
  root 59    1    0 Dec 20 ?   0:00  /usr/lib/picl/picld
  root 178    1    0 Dec 20 ?   0:03  /usr/lib/nfs/autofs/automountd
  root 129    1    0 Dec 20 ?   0:00  /usr/sbin/keyserv
  root 213    1    0 Dec 20 ?   0:00  /usr/lib/lpsched
  root 154    1    0 Dec 20 ?   0:00  /usr/sbin/inetd -s
  root 139    1    0 Dec 20 ?   0:00  /usr/lib/netsvc/yp/ypbind ...
  root 191    1    0 Dec 20 ?   0:00  /usr/sbin/syslogd
  root 208    1    0 Dec 20 ?   0:02  /usr/sbin/nscd
  root 193    1    0 Dec 20 ?   0:00  /usr/sbin/cron
  root 174    1    0 Dec 20 ?   0:00  /usr/lib/nfs/mountd
daemon 175    1    0 Dec 20 ?   0:00  /usr/lib/nfs/statd
  root 376    1    0 Dec 20 ?   0:00  /usr/lib/ssh/sshd
  root 226    1    0 Dec 20 ?   0:00  /usr/lib/power/powerd
  root 315    1    0 Dec 20 ?   0:00  /usr/lib/nfs/mountd
  root 237    1    0 Dec 20 ?   0:00  /usr/lib/utmpd
  .
  .
  .
```
How to Display Information About Processes

1. Obtain the process ID of the process that you want to display more information about.
   
   ```
   # pgrep process
   ```
   
   where `process` is the name of the process you want to display more information about.

   The process ID is displayed in the first column of the output.

2. Display the process information that you need.
   
   ```
   # /usr/bin/pcommand pid
   ```

   `pcommand` is the (`/proc`) command that you want to run. **Table 12–3** lists and describes these commands.

   `pid` identifies the process ID.

**Example 12–2** Displaying Information About Processes

The following example shows how to use process commands to display more information about a cron process.

```bash
# pgrep cron 1
4780
# pwdx 4780 2
4780: /var/spool/cron/atjobs
# ptree 4780 3
4780: /usr/sbin/cron
# pfiles 4780 4
4780: /usr/sbin/cron
```

Current rlimit: 256 file descriptors

0: S_IFCHR mode:0666 dev:290,0 ino:6815752 uid:0 gid:3 rdev:13,2
   /devices/pseudo/mm@0:null
1: S_IFREG mode:0600 dev:32,128 ino:42054 uid:0 gid:0 size:9771
   O_WRONLY|O_APPEND|O_CREAT|O_LARGEFILE
   /var/cron/log
2: S_IFREG mode:0600 dev:32,128 ino:42054 uid:0 gid:0 size:9771
   O_WRONLY|O_APPEND|O_CREAT|O_LARGEFILE
   /var/cron/log
3: S_IFIFO mode:0600 dev:32,128 ino:42049 uid:0 gid:0 size:0
   O_RDWR|O_LARGEFILE
   /etc/cron.d/FIFO
4: S_IFIFO mode:0000 dev:293,0 ino:4630 uid:0 gid:0 size:0
   O_RDWR|O_NONBLOCK
5: S_IFIFO mode:0000 dev:293,0 ino:4630 uid:0 gid:0 size:0
O_RDWR

1. Obtains the process ID for the `cron` process
2. Displays the current working directory for the `cron` process
3. Displays the process tree that contains the `cron` process
4. Displays `fstat` and `fcntl` information

### How to Control Processes

1. Obtain the process ID of the process that you want to control.
   ```
   # pgrep process
   
   where `process` is the name of the process you want to control.
   The process ID displayed in the first column of the output.
   ```

2. Use the appropriate process command to control the process.
   ```
   # /usr/bin/pcmd pid
   
   `pcmd` is the process (`/proc`) command that you want to run. Table 12–3 lists and describes these commands.
   `pid` Identifies the process ID.
   ```

3. Verify the process status.
   ```
   # ps -ef | grep pid
   ```

### Example 12–3 Controlling Processes

The following example shows how to use process command to stop and restart the `dtpad` process.

```
# pgrep dtpad
2921

# pstop 2921 1
# prun 2921 2
# prun 2921 3
```

1. Obtains the process ID for the `dtpad` process
2. Stops the `dtpad` process
3. Restarts the `dtpad` process
Terminating a Process (pkill, kill)

Sometimes, you might need to stop (kill) a process. The process might be in an endless loop. Or, you might have started a large job that you want to stop before it is completed. You can kill any process that you own. Superuser can kill any process in the system except for those processes with process IDs of 0, 1, 2, 3, and 4. Killing these processes most likely will crash the system.

For more information, see the pgrep(1) and pkill(1) and kill(1) man pages.

▼ How to Terminate a Process (pkill)

1  (Optional) Become superuser or assume an equivalent role to terminate the process of another user.

2  Obtain the process ID for the process that you want to terminate.
   
   $ pgrep process
   
   where process is the name of the process that you want to terminate.
   
   For example:

   $ pgrep netscape
   
   587
   
   566

   The process ID is displayed in the output.

   Note – To obtain process information on a Sun Ray, use the following commands:

   # ps -fu user

   This command lists all user processes.

   # ps -fu user | grep process

   This command locates a specific process for a user.

3  Terminate the process.
   
   $ pkill [signal] process

   signal When no signal is included in the pkill command-line syntax, the default signal
   that is used is −15 (SIGTERM). Using the −9 signal (SIGKILL) with the pkill command ensures that the process terminates promptly. However, the −9 signal
should not be used to kill certain processes, such as a database process, or an LDAP server process. The result is that data might be lost.

process is the name of the process to stop.

Tip – When using the `pkill` command to terminate a process, first try using the command by itself, without including a signal option. Wait a few minutes to see if the process terminates before using the `pkill` command with the -9 signal.

4 Verify that the process has been terminated.

$ `pgrep process`

The process you terminated should no longer be listed in the output of the `pgrep` command.

How to Terminate a Process (`kill`)

1 (Optional) Become superuser or assume an equivalent role to terminate the process of another user.

2 Obtain the process ID of the process that you want to terminate.

$ `ps -fu user`

where `user` is the user that you want to display processes for.

For example:

$ `ps -fu userabc`

```
userabc  328  323  2 Mar 12 ?  10:18 /usr/openwin/bin/Xsun
:userabc  366  349  0 Mar 12 ?  00:00 /usr/openwin/bin/fbconsole
userabc  496  485  0 Mar 12 ?  00:09 /usr/dt/bin/sdtperfmeter
    -f -H -t cpu -t disk -s I -name fpperfmeter
userabc  366  332  0 Mar 12 ?  00:00 /bin/ksh /usr/dt/bin/Xsession
userabc  440  438  0 Mar 12 pts/3  00:00 -csh -c unsetenv _ PWD;
unset env DT;    setenv DISPLAY :0;
userabc  372  1  0 Mar 12 ?  00:00 /usr/openwin/bin/speckeysd
userabc  438  349  0 Mar 12 pts/3  00:00 /usr/dt/bin/sdt_shell -c
unset
```

The process ID is displayed in the first column of the output.
3 Terminate the process.

$ kill [signal-number] pid

**signal**  When no signal is included in the `kill` command-line syntax, the default signal that is used is –15 (SIGKILL). Using the –9 signal (SIGTERM) with the `kill` command ensures that the process terminates promptly. However, the –9 signal should not be used to kill certain processes, such as a database process, or an LDAP server process. The result is that data might be lost.

**pid**  Is the process ID of the process that you want to terminate.

---

**Tip** – When using the `kill` command to stop a process, first try using the command by itself, without including a signal option. Wait a few minutes to see if the process terminates before using the `kill` command with the -9 signal.

4 Verify that the process has been terminated.

$ pgrep pid

The process you terminated should no longer be listed in the output of the `pgrep` command.

## Debugging a Process (**pargs**, **preap**)

The `pargs` command and the `preap` command improve process debugging. The `pargs` command prints the arguments and environment variables associated with a live process or core file. The `preap` command removes defunct (zombie) processes. A zombie process has not yet had its exit status claimed by its parent. These processes are generally harmless but can consume system resources if they are numerous. You can use the `pargs` and `preap` commands to examine any process that you have the privileges to examine. As superuser, you can examine any process.

For information on using the `preap` command, see the `preap(1)` man page. For information on using the `pargs` command, see the `pargs(1)` man page. See also, the `proc(1)` man page.

**EXAMPLE 12-4  Debugging a Process (**pargs**)**

The `pargs` command solves a long-standing problem of being unable to display with the `ps` command all the arguments that are passed to a process. The following example shows how to use the `pargs` command in combination with the `pgrep` command to display the arguments that are passed to a process.

```
# pargs 'pgrep ttymon'
579: /usr/lib/saf/ttymon -g -h -p system-name console login:
    -T sun -d /dev/console -l
argv[0]: /usr/lib/saf/ttymon
```
EXAMPLE 12-4 Debugging a Process (pargs) (Continued)

argv[1]: -g
argv[2]: -h
argv[3]: -p
argv[4]: system-name console login:
argv[5]: -T
argv[6]: sun
argv[7]: -d
argv[8]: /dev/console
argv[9]: -l
argv[10]: console
argv[11]: -m
argv[12]: ldterm,ttycompat
S48: /usr/lib/saf/ttymon
argv[0]: /usr/lib/saf/ttymon

The following example shows how to use the pargs -e command to display the environment variables that are associated with a process.

$ pargs -e 6763
6763: tcsh
envp[0]: DISPLAY=:0.0

Managing Process Class Information (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display basic information about process classes.</td>
<td>Use the priocntl -l command to display process scheduling classes and priority ranges.</td>
<td>&quot;How to Display Basic Information About Process Classes (priocntl)&quot; on page 174</td>
</tr>
<tr>
<td>Display the global priority of a process.</td>
<td>Use the ps -ecl command to display the global priority of a process.</td>
<td>&quot;How to Display the Global Priority of a Process&quot; on page 174</td>
</tr>
<tr>
<td>Designate a process priority.</td>
<td>Start a process with a designated priority by using the priocntl -e -c command.</td>
<td>&quot;How to Designate a Process Priority (priocntl)&quot; on page 175</td>
</tr>
<tr>
<td>Change scheduling parameters of a timesharing process.</td>
<td>Use the priocntl -s -m command to change scheduling parameters in a timesharing process.</td>
<td>&quot;How to Change Scheduling Parameters of a Timesharing Process (priocntl)&quot; on page 176</td>
</tr>
<tr>
<td>Change the class of a process.</td>
<td>Use the priocntl -s -c command to change the class of a process.</td>
<td>&quot;How to Change the Class of a Process (priocntl)&quot; on page 176</td>
</tr>
</tbody>
</table>
Managing Process Class Information

The following list identifies the process scheduling classes that can be configured on your system. Also included is the user priority range for the timesharing class.

The possible process scheduling classes are as follows:

- Fair share (FSS)
- Fixed (FX)
- System (SYS)
- Interactive (IA)
- Real-time (RT)
- Timesharing (TS)
  - The user-supplied priority ranges from -60 to +60.
  - The priority of a process is inherited from the parent process. This priority is referred to as the user-mode priority.
  - The system looks up the user-mode priority in the timesharing dispatch parameter table. Then, the system adds in any nice or priocntl (user-supplied) priority and ensures a 0–59 range to create a global priority.

Changing the Scheduling Priority of Processes (priocntl)

The scheduling priority of a process is the priority assigned by the process scheduler, according to scheduling policies. The dispadmin command lists the default scheduling policies. For more information, see the dispadmin(1M) man page.

You can use the priocntl command to assign processes to a priority class and to manage process priorities. For instructions on using the priocntl command to manage processes, see “How to Designate a Process Priority (priocntl)” on page 175.
How to Display Basic Information About Process Classes (priocntl)

- Display process scheduling classes and priority ranges with the `priocntl -l` command.

```
$ priocntl -l
```

**Example 12–5** Displaying Basic Information About Process Classes (priocntl)

The following example shows output from the `priocntl -l` command.

```
# priocntl -l
CONFIGURED CLASSES
==================
SYS (System Class)
TS (Time Sharing)
    Configured TS User Priority Range: -60 through 60
FX (Fixed priority)
    Configured FX User Priority Range: 0 through 60
IA (Interactive)
    Configured IA User Priority Range: -60 through 60
```

How to Display the Global Priority of a Process

- Display the global priority of a process by using the `ps` command.

```
$ ps -ecl
```

The global priority is listed under the PRI column.

**Example 12–6** Displaying the Global Priority of a Process

The following example shows `ps -ecl` command output. The values in the PRI column show that the `pageout` process has the highest priority, while the `sh` process has the lowest priority.

```
$ ps -ecl
   F S UID PID PPID  CLS  PRI ADDR SZ WCHAN TTY TIME CMD
19 T   0    0  SYS   96  f00d05a8  0    ? 0:03  sched
 8 S   0    1  TS    50  f0ff4678 185  f0ff4848 ? 36:51  init
19 S   0    2  SYS   98  f0ff4018  0  f00c645c ? 0:01  pageout
19 S   0    3  SYS   60  f0ff5998  0  f00d0c68 ? 241:01  fsflush
```
How to Designate a Process Priority (priocntl)

1 (Optional) Assume the Primary Administrator role, or become superuser.
   The Primary Administrator role includes the Primary Administrator profile. To create the role
   and assign the role to a user, see Chapter 2, “Working With the Solaris Management Console
   (Tasks),” in System Administration Guide: Basic Administration.

2 Start a process with a designated priority.
   
   ```bash
   # priocntl -e -c class -m user-limit -p pricommand-name
   
   -e       Executes the command.
   -c class Specifies the class within which to run the process. The valid classes
             are TS (timesharing), RT (real-time), IA (interactive), FSS (fair share),
             and FX (fixed priority).
   -m user-limit When you use the -p option, specifies the maximum amount you
                 can raise or lower your priority,
   -p pricommand-name Lets you specify the relative priority in the RT class for a real-time
                        thread. For a timesharing process, the -p option lets you specify the
                        user-supplied priority, which ranges from -60 to +60.
   
   3 Verify the process status.
   
   ```bash
   # ps -ecl | grep command-name
   ```

Example 12-7 Designating a Process Priority (priocntl)

The following example shows how to start the find command with the highest possible
user-supplied priority.

```bash
# priocntl -e -c TS -m 60 -p 60 find . -name core -print
# ps -ecl | grep find
```
How to Change Scheduling Parameters of a Timesharing Process (priocntl)

1. (Optional) Assume the Primary Administrator role, or become superuser.
   The Primary Administrator role includes the Primary Administrator profile. To create the role and assign the role to a user, see Chapter 2, “Working With the Solaris Management Console (Tasks),” in *System Administration Guide: Basic Administration*.

2. Change the scheduling parameters of a running timesharing process.
   
   ```
   # priocntl -s -m user-limit [-p user-priority] -i idtype idlist
   -s                  Lets you set the upper limit on the user priority range and change the current priority.
   -m user-limit       When you use the -p option, specifies the maximum amount you can raise or lower the priority.
   -p user-priority    Allows you to designate a priority.
   -i xidtype xidlist  Uses a combination of xidtype and xidlist to identify the process or processes. The xidtype specifies the type of ID, such as the process ID or the user ID. Use xidlist to identify a list of process IDs or user IDs.
   ```

3. Verify the process status.
   
   ```
   # ps -ecl | grep idlist
   ```

Example 12–8 Changing Scheduling Parameters of a Timesharing Process (priocntl)

The following example shows how to execute a command with a 500-millisecond time slice, a priority of 20 in the RT class, and a global priority of 120.

```
# priocntl -e -c RT -m 500 -p 20 myprog
# ps -ecl | grep myprog
```

How to Change the Class of a Process (priocntl)

1. (Optional) Become superuser or assume an equivalent role.

2. Change the class of a process.
   
   ```
   # priocntl -s -c class -i idtype idlist
   ```
-s  Lets you set the upper limit on the user priority range and change the current priority.

-\text{c class}  Specifies the class, TS for time-sharing or RT for real-time, to which you are changing the process.

-\text{i idtype idlist}  Uses a combination of \textit{idtype} and \textit{idlist} to identify the process or processes. The \textit{idtype} specifies the type of ID, such as the process ID or user ID. Use \textit{idlist} to identify a list of process IDs or user IDs.

\textbf{Note} – You must be superuser or working in a real-time shell to change a process from, or to, a real-time process. If, as superuser, you change a user process to the real-time class, the user cannot subsequently change the real-time scheduling parameters by using the \texttt{priocntl -s} command.

3  Verify the process status.

\texttt{# ps -ecl | grep idlist}

\textbf{Example 12–9}  Changing the Class of a Process (\texttt{priocntl})

The following example shows how to change all the processes that belong to user 15249 to real-time processes.

\texttt{# priocntl -s -c RT -i uid 15249}
\texttt{# ps -ecl | grep 15249}

\textbf{Changing the Priority of a Timesharing Process (nice)}

The \texttt{nice} command is only supported for backward compatibility to previous Solaris releases. The \texttt{priocntl} command provides more flexibility in managing processes.

The priority of a process is determined by the policies of its scheduling class and by its \textit{nice number}. Each timesharing process has a global priority. The global priority is calculated by adding the user-supplied priority, which can be influenced by the \textit{nice} or \texttt{priocntl} commands, and the system-calculated priority.

The execution priority number of a process is assigned by the operating system. The priority number is determined by several factors, including the process's scheduling class, how much CPU time it has used, and in the case of a timesharing process, its \textit{nice} number.

Each timesharing process starts with a default \textit{nice} number, which it inherits from its parent process. The \textit{nice} number is shown in the \textit{NI} column of the \texttt{ps} report.
A user can lower the priority of a process by increasing its user-supplied priority. However, only superuser can lower a nice number to increase the priority of a process. This restriction prevents users from increasing the priorities of their own processes, thereby monopolizing a greater share of the CPU.

The nice numbers range from 0 to +39, with 0 representing the highest priority. The default nice value for each timesharing process is 20. Two versions of the command are available: the standard version, `/usr/bin/nice`, and the C shell built-in command.

▼ **How to Change the Priority of a Process (nice)**

Using this procedure, a user can lower the priority of a process. However, superuser can raise or lower the priority of a process.

**Note** – This section describes the syntax of the `/usr/bin/nice` command and not the C-shell built-in `nice` command. For information about the C-shell `nice` command, see the `csh(1)` man page.

1. **Determine whether you want to change the priority of a process, either as a user or as superuser.**
   Then, select one of the following:
   - As a user, follow the examples in Step 2 to lower the priority of a command.
   - As a superuser, follow the examples in Step 3 to raise or lower priorities of a command.

2. **As a user, lower the priority of a command by increasing the nice number.**
   The following `nice` command executes `command-name` with a lower priority by raising the nice number by 5 units.

   ```
   $ /usr/bin/nice -5 command-name
   ```

   In the preceding command, the minus sign designates that what follows is an option. This command could also be specified as follows:

   ```
   % /usr/bin/nice -n 5 command-name
   ```

   The following `nice` command lowers the priority of `command-name` by raising the nice number by the default increment of 10 units, but not beyond the maximum value of 39.

   ```
   % /usr/bin/nice command-name
   ```
As superuser or assuming an equivalent role, raise or lower the priority of a command by changing the *nice* number.

The following `nice` command raises the priority of `command-name` by lowering the nice number by 10 units, but not below the minimum value of 0.

```
# /usr/bin/nice --10 command-name
```

In the preceding command, the first minus sign designates that what follows is an option. The second minus sign indicates a negative number.

The following `nice` command lowers the priority of `command-name` by raising the nice number by 5 units, but not beyond the maximum value of 39.

```
# /usr/bin/nice -5 command-name
```

**See Also** For more information, see the *nice*(1) man page.

**Troubleshooting Problems With System Processes**

Here are some tips on obvious problems you might encounter:

- Look for several identical jobs that are owned by the same user. This problem might occur because of a running script that starts a lot of background jobs without waiting for any of the jobs to finish.

- Look for a process that has accumulated a large amount of CPU time. You can identify this problem by checking the `TIME` field in the `ps` output. Possibly, the process is in an endless loop.

- Look for a process that is running with a priority that is too high. Use the `ps -c` command to check the `CLS` field, which displays the scheduling class of each process. A process executing as a real-time (RT) process can monopolize the CPU. Or, look for a timesharing (TS) process with a high `nice` number. A user with superuser privileges might have increased the priority of a process. The system administrator can lower the priority by using the `nice` command.

- Look for a runaway process. A runaway process progressively uses more and more CPU time. You can identify this problem by looking at the time when the process started (`STIME`) and by watching the cumulation of CPU time (`TIME`) for a while.
This chapter describes procedures for monitoring system performance by using the `vmstat`, `iostat`, `df`, and `sar` commands.

For information on the procedures that are associated with monitoring system performance, see the following:

- “Displaying System Performance Information (Task Map)” on page 181
- “Monitoring System Activities (Task Map)” on page 189

### Displaying System Performance Information (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display virtual memory Statistics.</td>
<td>Collect virtual memory statistics by using the <code>vmstat</code> command.</td>
<td>“How to Display Virtual Memory Statistics (vmstat)” on page 183</td>
</tr>
<tr>
<td>Display system event information.</td>
<td>Display system event information by using the <code>vmstat</code> command with the <code>-s</code> option</td>
<td>“How to Display System Event Information (vmstat -s)” on page 184</td>
</tr>
<tr>
<td>Display swapping statistics.</td>
<td>Use the <code>vmstat</code> command with the <code>-S</code> option to display swapping statistics.</td>
<td>“How to Display Swapping Statistics (vmstat -S)” on page 185</td>
</tr>
<tr>
<td>Display interrupts per device.</td>
<td>Use the <code>vmstat</code> command with the <code>-i</code> option to show the number of interrupts per device.</td>
<td>“How to Display Interrupts Per Device (vmstat -i)” on page 185</td>
</tr>
<tr>
<td>Display disk utilization.</td>
<td>Use the <code>iostat</code> command to report disk input and output statistics.</td>
<td>“How to Display Disk Utilization Information (iostat)” on page 186</td>
</tr>
</tbody>
</table>
Displaying Virtual Memory Statistics (**vmstat**)  

You can use the `vmstat` command to report virtual memory statistics and information about system events such as CPU load, paging, number of context switches, device interrupts, and system calls. The `vmstat` command can also display statistics on swapping, cache flushing, and interrupts.

The following table describes the fields in the `vmstat` command output.

<table>
<thead>
<tr>
<th>Category</th>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>procs</td>
<td>r</td>
<td>The number of kernel threads in the dispatch queue</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>The number of blocked kernel threads that are waiting for resources</td>
</tr>
<tr>
<td></td>
<td>w</td>
<td>The number of swapped out LWP s that are waiting for processing resources to finish</td>
</tr>
<tr>
<td>memory</td>
<td>swap</td>
<td>Available swap space</td>
</tr>
<tr>
<td></td>
<td>free</td>
<td>Size of the free list</td>
</tr>
<tr>
<td>page</td>
<td>re</td>
<td>Pages reclaimed</td>
</tr>
<tr>
<td></td>
<td>mf</td>
<td>Minor faults and major faults</td>
</tr>
<tr>
<td></td>
<td>pi</td>
<td>Kbytespagedin</td>
</tr>
<tr>
<td></td>
<td>po</td>
<td>Kbytespagedout</td>
</tr>
<tr>
<td></td>
<td>fr</td>
<td>Kbytesfreed</td>
</tr>
</tbody>
</table>

**Displaying Virtual Memory Statistics (**vmstat**)**
TABLE 13-1  Output From the vmstat Command  (Continued)

<table>
<thead>
<tr>
<th>Category</th>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>de</td>
<td></td>
<td>Anticipated memory that is needed by recently swapped-in processes</td>
</tr>
<tr>
<td>sr</td>
<td></td>
<td>Pages scanned by the page daemon not currently in use. If sr does not equal zero, the page daemon has been running.</td>
</tr>
<tr>
<td>disk</td>
<td></td>
<td>Reports the number of disk operations per second, showing data on up to four disks</td>
</tr>
<tr>
<td>faults</td>
<td></td>
<td>Reports the trap/interrupt rates per second:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in: Interrupts per second</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sy: System calls per second</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cs: CPU context switch rate</td>
</tr>
<tr>
<td>cpu</td>
<td></td>
<td>Reports on the use of CPU time:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>us: User time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sy: System time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>id: Idle time</td>
</tr>
</tbody>
</table>

For a more detailed description of this command, see the `vmstat(1M)` man page.

**How to Display Virtual Memory Statistics (vmstat)**

- **Collect virtual memory statistics by using the `vmstat` command with a time interval in seconds.**

  ```
  $ vmstat n
  ```

  where `n` is the interval in seconds between reports.

**Example 13-1**  Displaying Virtual Memory Statistics

The following example shows the `vmstat` display of statistics that were gathered at five-second intervals.

```
$ vmstat 5
kthr memory page disk faults cpu
r b w swap free re mf pi po fr de sr dd f0 s1 -- in sy cs us sy id
0 0 0 863160 365680 0 3 1 0 0 0 0 0 0 0 0 406 378 209 1 0 99
0 0 0 765640 208568 0 36 0 0 0 0 0 0 0 0 0 479 4445 1378 3 3 94
0 0 0 765640 208568 0 0 0 0 0 0 0 0 0 0 0 0 423 214 235 0 0 100
0 0 0 765712 208640 0 0 0 0 0 0 3 0 0 0 412 158 181 0 0 100
```
How to Display System Event Information (vmstat -s)

- Run the `vmstat -s` command to show how many system events have taken place since the last time the system was booted.

```plaintext
$ vmstat -s
 0 swap ins
 0 swap outs
 0 pages swapped in
 0 pages swapped out
522586 total address trans. faults taken
17006 page ins
 25 page outs
23361 pages paged in
 28 pages paged out
45594 total reclaims
45592 reclaims from free list
 0 micro (hat) faults
522586 minor (as) faults
16189 major faults
98241 copy-on-write faults
137280 zero fill page faults
45052 pages examined by the clock daemon
 0 revolutions of the clock hand
 26 pages freed by the clock daemon
 2857 forks
 78 vforks
 1647 execs
34673885 cpu context switches
65943468 device interrupts
 711250 traps
63957605 system calls
3523925 total name lookups (cache hits 99%)
 92590 user cpu
 65952 system cpu
16085832 idle cpu
 7450 wait cpu
```
How to Display Swapping Statistics (vmstat -S)

- Run `vmstat -S` to show swapping statistics.

```
$ vmstat -S
```

```
  kthr memory page disk faults cpu
     r b w swap free si po fr de sr dd f0 si -- in sy cs us sy id
 0 0 0 862608 364792 0 0 0 0 0 0 0 0 0 406 394 213 1 0 99
```

The swapping statistics fields are described in the following list. For a description of the other fields, see Table 13–1.

- **si**: Average number of LWP’s that are swapped in per second
- **so**: Number of whole processes that are swapped out

**Note** - The `vmstat` command truncates the output of `si` and `so` fields. Use the `sar` command to display a more accurate accounting of swap statistics.

How to Display Interrupts Per Device (vmstat -i)

- Run the `vmstat -i` command to show the number of interrupts per device.

**Example 13-2**

Displaying Interrupts Per Device

The following example shows output from the `vmstat -i` command.

```
$ vmstat -i
```

```
  interrupt    total    rate
---------------------------
  clock  52163269  100
  esp0    2600077   4
  zsc0    25341     0
  zsc1    48917     0
  cgixc0   450      0
  lec0    400882    0
  fdc0     14       0
  bppc0    0        0
  audios0  0        0
---------------------------
      Total  55238959  105
```
Displaying Disk Utilization Information (iostat)

Use the iostat command to report statistics about disk input and output, and to produce measures of throughput, utilization, queue lengths, transaction rates, and service time. For a detailed description of this command, refer to the iostat(1M) man page.

How to Display Disk Utilization Information (iostat)

- You can display disk utilization information by using the iostat command with a time interval in seconds.

```bash
$ iostat 5
```

<table>
<thead>
<tr>
<th>tty</th>
<th>fd0</th>
<th>sd3</th>
<th>nfs1</th>
<th>nfs31</th>
<th>cpu</th>
</tr>
</thead>
<tbody>
<tr>
<td>tin</td>
<td>tout</td>
<td>kps</td>
<td>tps</td>
<td>serv</td>
<td>kps</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>410</td>
<td>3</td>
<td>29</td>
</tr>
</tbody>
</table>

The first line of output shows the statistics since the last time the system was booted. Each subsequent line shows the interval statistics. The default is to show statistics for the terminal (tty), disks (fd and sd), and CPU (cpu).

Example 13–3 Displaying Disk Utilization Information

The following example shows disk statistics that were gathered every five seconds.

```bash
$ iostat 5
```

<table>
<thead>
<tr>
<th>tty</th>
<th>sd0</th>
<th>sd6</th>
<th>nfs1</th>
<th>nfs49</th>
<th>cpu</th>
</tr>
</thead>
<tbody>
<tr>
<td>tin</td>
<td>tout</td>
<td>kps</td>
<td>tps</td>
<td>serv</td>
<td>kps</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>49</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>47</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>16</td>
<td>44</td>
<td>6</td>
<td>132</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>16</td>
<td>3</td>
<td>1</td>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The following table describes the fields in the output of the iostat n command.
### How to Display Extended Disk Statistics (iostat -xtc)

- **Run the iostat -xtc command to display extended disk statistics.**

```bash
$ iostat -xtc
```

#### Output Example

```
device    r/s  w/s  kr/s  kw/s  wait actv svc_t %w %b  tin  tout  us  sy  wt  id
fd0       0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0
sd0       0.0  0.0  0.4  0.4  0.0  0.0  49.5  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0
sd6       0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0
nfs1      0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0
nfs49     0.0  0.0  0.0  0.0  0.0  0.0  15.1  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0
nfs53     0.0  0.0  0.4  0.0  0.0  0.0  24.5  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0
nfs54     0.0  0.0  0.0  0.0  0.0  0.0  6.3   0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0
nfs55     0.0  0.0  0.0  0.0  0.0  0.0  4.9   0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0
```

The iostat -xtc command displays a line of output for each disk. The output fields are described in the following list.

- **r/s**: Reads per second
- **w/s**: Writes per second
- **kr/s**: Kbytes read per second
Displaying Disk Space Statistics (df)

Use the `df` command to show the amount of free disk space on each mounted disk. The *usable* disk space that is reported by `df` reflects only 90 percent of full capacity, as the reporting statistics allows for 10 percent above the total available space. This head room normally stays empty for better performance.

The percentage of disk space actually reported by the `df` command is used space divided by usable space.

If the file system exceeds 90 percent capacity, you could transfer files to a disk that is not as full by using the `cp` command. Alternately, you could transfer files to a tape by using the `tar` or `cpio` commands. Or, you could remove the files.

For a detailed description of this command, see the `df(1M)` man page.

How to Display Disk Space Information (df -k)

- Use the `df -k` command to display disk space information in Kbytes.

```
$ df -k
Filesystem   kbytes   used   avail   capacity Mounted on
/dev/dsk/c0t3d0s0  192807  40231  133296   24%   /
```

Example 13-4  Displaying File System Information

The following example shows the output from the `df -k` command.

```
$ df -k
Filesystem   kbytes   used   avail   capacity Mounted on
/dev/dsk/c0t0d0s0  254966  204319   51648  90%   /
/devices         0       0       0     0%  /devices
ctfs            0       0       0     0%  /system/contract
```
The following table describes the output of the `df -k` command.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>kbytes</code></td>
<td>Total size of usable space in the file system</td>
</tr>
<tr>
<td><code>used</code></td>
<td>Amount of space used</td>
</tr>
<tr>
<td><code>avail</code></td>
<td>Amount of space available for use</td>
</tr>
<tr>
<td><code>capacity</code></td>
<td>Amount of space used, as a percentage of the total capacity</td>
</tr>
<tr>
<td><code>mounted on</code></td>
<td>Mount point</td>
</tr>
</tbody>
</table>

---

### Monitoring System Activities (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check file access.</td>
<td>Display file access operation status by using the sar command with the <code>-a</code> option.</td>
<td>&quot;How to Check File Access (sar -a)&quot; on page 191</td>
</tr>
<tr>
<td>Check buffer activity.</td>
<td>Display buffer activity statistics by using the sar command with the <code>-b</code> option.</td>
<td>&quot;How to Check Buffer Activity (sar -b)&quot; on page 192</td>
</tr>
<tr>
<td>Check system call statistics.</td>
<td>Display system call statistics by using the sar command with the <code>-c</code> option.</td>
<td>&quot;How to Check System Call Statistics (sar -c)&quot; on page 193</td>
</tr>
<tr>
<td>Check disk activity.</td>
<td>Check disk activity by using the sar command with the <code>-d</code> option.</td>
<td>&quot;How to Check Disk Activity (sar -d)&quot; on page 195</td>
</tr>
<tr>
<td>Check page-out and memory.</td>
<td>Use the sar command with the <code>-g</code> option to display page-out memory freeing activities.</td>
<td>&quot;How to Check Page-Out and Memory (sar -g)&quot; on page 196</td>
</tr>
<tr>
<td>Task</td>
<td>Description</td>
<td>For Instructions</td>
</tr>
<tr>
<td>-------------------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
<td>-----------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Check kernel memory allocation.</td>
<td>The kernel memory allocation (KMA) allows a kernel subsystem to allocate and free memory, as needed. Use the &quot;sar&quot; command with the &quot;-k&quot; option to check KMA.</td>
<td>&quot;How to Check Kernel Memory Allocation (&quot;sar -k&quot;)&quot; on page 198</td>
</tr>
<tr>
<td>Check interprocess communication.</td>
<td>Use the &quot;sar&quot; command with the &quot;-m&quot; option to report interprocess communication activities.</td>
<td>&quot;How to Check Interprocess Communication (&quot;sar -m&quot;)&quot; on page 200</td>
</tr>
<tr>
<td>Check page-in activity.</td>
<td>Use the &quot;sar&quot; command with the &quot;-p&quot; option to report page-in activity.</td>
<td>&quot;How to Check Page-In Activity (&quot;sar -p&quot;)&quot; on page 201</td>
</tr>
<tr>
<td>Check queue activity.</td>
<td>Use the &quot;sar&quot; command with the &quot;-q&quot; option to check the following:</td>
<td>&quot;How to Check Queue Activity (&quot;sar -q&quot;)&quot; on page 202</td>
</tr>
<tr>
<td></td>
<td>■ Average queue length while queue is occupied</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ Percentage of time that the queue is occupied</td>
<td></td>
</tr>
<tr>
<td>Check unused memory.</td>
<td>Use the &quot;sar&quot; command with the &quot;-r&quot; option to report the number of memory pages and swap file disk blocks that are currently used.</td>
<td>&quot;How to Check Unused Memory (&quot;sar -r&quot;)&quot; on page 203</td>
</tr>
<tr>
<td>Check CPU utilization.</td>
<td>Use the &quot;sar&quot; command with the &quot;-u&quot; option to display CPU utilization statistics.</td>
<td>&quot;How to Check CPU Utilization (&quot;sar -u&quot;)&quot; on page 204</td>
</tr>
<tr>
<td>Check system table status.</td>
<td>Use the &quot;sar&quot; command with the &quot;-v&quot; option to report status on the following system tables:</td>
<td>&quot;How to Check System Table Status (&quot;sar -v&quot;)&quot; on page 206</td>
</tr>
<tr>
<td></td>
<td>■ Process</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ Inode</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ File</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ Shared memory record</td>
<td></td>
</tr>
<tr>
<td>Check swapping activity.</td>
<td>Use the &quot;sar&quot; command with the &quot;-w&quot; option to check swapping activity.</td>
<td>&quot;How to Check Swapping Activity (&quot;sar -w&quot;)&quot; on page 207</td>
</tr>
<tr>
<td>Check terminal activity.</td>
<td>Use the &quot;sar&quot; command with the &quot;-y&quot; option to monitor terminal device activity.</td>
<td>&quot;How to Check Terminal Activity (&quot;sar -y&quot;)&quot; on page 208</td>
</tr>
<tr>
<td>Check overall system performance.</td>
<td>The &quot;sar -A&quot; command displays statistics from all options to provide overall system performance information.</td>
<td>&quot;How to Check Overall System Performance (&quot;sar -A&quot;)&quot; on page 209</td>
</tr>
<tr>
<td>Set up automatic data collection.</td>
<td>To set up your system to collect data automatically and to run the &quot;sar&quot; commands, do the following:</td>
<td>&quot;How to Set Up Automatic Data Collection&quot; on page 212</td>
</tr>
<tr>
<td></td>
<td>■ Run the &quot;svcadm enable system/sar:default&quot; command</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ Edit the &quot;/var/spool/cron/crontabs/sys file&quot;</td>
<td></td>
</tr>
</tbody>
</table>
Monitoring System Activities (sar)

Use the sar command to perform the following tasks:

- Organize and view data about system activity.
- Access system activity data on a special request basis.
- Generate automatic reports to measure and monitor system performance, as well as special request reports to pinpoint specific performance problems. For information on how to set up the sar command to run on your system, as well as a description of these tools, see “Collecting System Activity Data Automatically (sar)” on page 210.

For a detailed description of this command, see the sar(1) man page.

▼ How to Check File Access (sar -a)

Display file access operation statistics with the sar -a command.

$ sar -a

SunOS balmyday 5.10 s10_51 sun4u 03/18/2004

00:00:00  iget/s namei/s dirbk/s
01:00:00  0   3   0
02:00:00  0   3   0
03:00:00  0   3   0
04:00:00  0   3   0
05:00:00  0   3   0
06:00:00  0   3   0
07:00:00  0   3   0
08:00:00  0   3   0
08:20:01  0   3   0
08:40:00  0   3   0
09:00:00  0   3   0
09:20:01  0  10   0
09:40:01  0   1   0
10:00:02  0   5   0

Average  0   4   0

The following list describes the field names and description of operating system routines that are reported by the sar -a command.

iget/s  The number of requests made for inodes that were not in the directory name look-up cache (DNLC).
The number of file system path searches per second. If `namei` does not find a directory name in the DNLC, it calls `iget` to get the inode for either a file or directory. Hence, most `igets` are the result of DNLC misses.

The number of directory block reads issued per second. The larger the reported values for these operating system routines, the more time the kernel is spending to access user files. The amount of time reflects how heavily programs and applications are using the file systems. The `-a` option is helpful for viewing how disk-dependent an application is.

**How to Check Buffer Activity (**sar** -b)**

- Display buffer activity statistics with the `sar -b` command.

  The buffer is used to cache metadata. Metadata includes inodes, cylinder group blocks, and indirect blocks.

  ```bash
  $ sar -b
  00:00:00 bread/s lread/s %rcache bwrit/s lwrit/s %wcache pread/s pwrit/s
  00:01:00 0 0 100 0 0 94 0 0
  ```

  **Example 13-5  Checking Buffer Activity (**sar** -b)**

  The following example of `sar -b` command output shows that the `%cache` and `%wcache` buffers are not causing any slowdowns. All the data is within acceptable limits.

  ```bash
  $ sar -b
  SunOS balmyday 5.10 s10_51 sun4u 03/18/2004
  00:00:04 bread/s lread/s %rcache bwrit/s lwrit/s %wcache pread/s pwrit/s
  01:00:00 0 0 100 0 0 94 0 0
  02:00:01 0 0 100 0 0 94 0 0
  03:00:00 0 0 100 0 0 94 0 0
  04:00:00 0 1 100 0 0 93 0 0
  05:00:00 0 0 100 0 0 93 0 0
  06:00:00 0 0 100 0 0 93 0 0
  07:00:00 0 0 100 0 0 93 0 0
  08:00:00 0 0 100 0 0 93 0 0
  09:00:01 0 1 100 0 0 93 0 0
  10:00:01 0 1 100 0 0 93 0 0
  11:00:00 0 1 100 0 0 93 0 0
  12:00:00 0 1 100 0 0 93 0 0
  13:00:00 0 1 100 0 0 93 0 0
  14:00:00 0 1 100 0 0 93 0 0
  15:00:00 0 1 100 0 0 93 0 0
  ```
The following table describes the buffer activities that are displayed by the -b option.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bread/s</td>
<td>Average number of reads per second that are submitted to the buffer cache from the disk</td>
</tr>
<tr>
<td>lread/s</td>
<td>Average number of logical reads per second from the buffer cache</td>
</tr>
<tr>
<td>%rcache</td>
<td>Fraction of logical reads that are found in the buffer cache (100 % minus the ratio of bread/s to lread/s)</td>
</tr>
<tr>
<td>bwrit/s</td>
<td>Average number of physical blocks (512 blocks) that are written from the buffer cache to disk, per second</td>
</tr>
<tr>
<td>lwrit/s</td>
<td>Average number of logical writes to the buffer cache, per second</td>
</tr>
<tr>
<td>%wcache</td>
<td>Fraction of logical writes that are found in the buffer cache (100 % minus the ratio of bwrit/s to lwrit/s)</td>
</tr>
<tr>
<td>pread/s</td>
<td>Average number of physical reads, per second, that use character device interfaces</td>
</tr>
<tr>
<td>pwrit/s</td>
<td>Average number of physical write requests, per second, that use character device interfaces</td>
</tr>
</tbody>
</table>

The most important entries are the cache hit ratios %rcache and %wcache. These entries measure the effectiveness of system buffering. If %rcache falls below 90 percent, or if %wcache falls below 65 percent, it might be possible to improve performance by increasing the buffer space.

▼ **How to Check System Call Statistics (sar -c)**

- **Display system call statistics by using the sar -c command.**

  ```bash
  $ sar -c
  00:00:00 scall/s sread/s swrit/s fork/s exec/s rchar/s wchar/s
  01:00:00 38 2 2 0.00 0.00 149 120
  ```
Example 13–6  Checking System Call Statistics (sar -c)

The following example shows output from the sar -c command.

$ sar -c

SunOS balmyday 5.10 s10_51 sun4u 03/18/2004

<table>
<thead>
<tr>
<th>Time</th>
<th>scall/s</th>
<th>sread/s</th>
<th>swrit/s</th>
<th>fork/s</th>
<th>exec/s</th>
<th>rchar/s</th>
<th>wchar/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00:04</td>
<td>89</td>
<td>14</td>
<td>9</td>
<td>0.01</td>
<td>0.00</td>
<td>2906</td>
<td>2394</td>
</tr>
<tr>
<td>01:00:00</td>
<td>89</td>
<td>14</td>
<td>9</td>
<td>0.01</td>
<td>0.00</td>
<td>2905</td>
<td>2393</td>
</tr>
<tr>
<td>02:00:01</td>
<td>89</td>
<td>14</td>
<td>9</td>
<td>0.01</td>
<td>0.00</td>
<td>2908</td>
<td>2393</td>
</tr>
<tr>
<td>03:00:00</td>
<td>90</td>
<td>14</td>
<td>9</td>
<td>0.01</td>
<td>0.00</td>
<td>2912</td>
<td>2393</td>
</tr>
<tr>
<td>04:00:00</td>
<td>89</td>
<td>14</td>
<td>9</td>
<td>0.01</td>
<td>0.00</td>
<td>2905</td>
<td>2393</td>
</tr>
<tr>
<td>05:00:00</td>
<td>89</td>
<td>14</td>
<td>9</td>
<td>0.01</td>
<td>0.00</td>
<td>2906</td>
<td>2393</td>
</tr>
<tr>
<td>06:00:00</td>
<td>89</td>
<td>14</td>
<td>9</td>
<td>0.01</td>
<td>0.00</td>
<td>2906</td>
<td>2393</td>
</tr>
<tr>
<td>07:00:00</td>
<td>89</td>
<td>14</td>
<td>9</td>
<td>0.01</td>
<td>0.00</td>
<td>2905</td>
<td>2393</td>
</tr>
<tr>
<td>08:00:00</td>
<td>89</td>
<td>14</td>
<td>9</td>
<td>0.01</td>
<td>0.00</td>
<td>2906</td>
<td>2393</td>
</tr>
<tr>
<td>08:20:00</td>
<td>90</td>
<td>14</td>
<td>9</td>
<td>0.01</td>
<td>0.01</td>
<td>2914</td>
<td>2395</td>
</tr>
<tr>
<td>08:40:01</td>
<td>90</td>
<td>14</td>
<td>9</td>
<td>0.01</td>
<td>0.00</td>
<td>2914</td>
<td>2396</td>
</tr>
<tr>
<td>09:00:00</td>
<td>90</td>
<td>14</td>
<td>9</td>
<td>0.01</td>
<td>0.01</td>
<td>2915</td>
<td>2396</td>
</tr>
<tr>
<td>09:20:00</td>
<td>90</td>
<td>14</td>
<td>9</td>
<td>0.01</td>
<td>0.01</td>
<td>2915</td>
<td>2396</td>
</tr>
<tr>
<td>09:40:00</td>
<td>880</td>
<td>207</td>
<td>156</td>
<td>0.08</td>
<td>0.08</td>
<td>26671</td>
<td>9290</td>
</tr>
<tr>
<td>10:00:00</td>
<td>2020</td>
<td>530</td>
<td>322</td>
<td>0.14</td>
<td>0.13</td>
<td>57675</td>
<td>36393</td>
</tr>
<tr>
<td>10:20:00</td>
<td>853</td>
<td>129</td>
<td>75</td>
<td>0.02</td>
<td>0.01</td>
<td>10500</td>
<td>8594</td>
</tr>
<tr>
<td>10:40:00</td>
<td>2061</td>
<td>524</td>
<td>450</td>
<td>0.08</td>
<td>0.08</td>
<td>579217</td>
<td>567072</td>
</tr>
<tr>
<td>11:00:00</td>
<td>1658</td>
<td>404</td>
<td>350</td>
<td>0.07</td>
<td>0.06</td>
<td>1152916</td>
<td>1144203</td>
</tr>
</tbody>
</table>

Average 302 66 49 0.02 0.01 57842 55544

The following table describes the system call categories that are reported by the -c option. Typically, reads and writes account for about half of the total system calls. However, the percentage varies greatly with the activities that are being performed by the system.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>scall/s</td>
<td>The number of all types of system calls per second, which is generally about 30 per second on a system with 4 to 6 users.</td>
</tr>
<tr>
<td>sread/s</td>
<td>The number of read system calls per second.</td>
</tr>
<tr>
<td>swrit/s</td>
<td>The number of write system calls per second.</td>
</tr>
<tr>
<td>fork/s</td>
<td>The number of fork system calls per second, which is about 0.5 per second on a system with 4 to 6 users. This number increases if shell scripts are running.</td>
</tr>
</tbody>
</table>
### Field Name | Description
--- | ---
exec/s | The number of exec system calls per second. If exec/s divided by fork/s is greater than 3, look for inefficient PATH variables.
rchar/s | The number of characters (bytes) transferred by read system calls per second.
wchar/s | The number of characters (bytes) transferred by write system calls per second.

#### ▼ How to Check Disk Activity (sar -d)

- **Display disk activity statistics with the sar -d command.**

  ```
  $ sar -d
  00:00:00 device %busy avque r+w/s blks/s avwait avserv
  12:40:01 dad1 15 0.7 26 399 18.1 10.0
  ```

#### Example 13–7 Checking Disk Activity

This abbreviated example illustrates the output from the sar -d command.

```
$ sar -d

SunOS balmyday 5.10 s10_51 sun4u 03/18/2004
12:36:32 device %busy avque r+w/s blks/s avwait avserv
12:40:01 dad1 15 0.7 26 399 18.1 10.0
dad1,a 15 0.7 26 398 18.1 10.0
dad1,b 0 0.0 0 1 1.0 3.0
dad1,c 0 0.0 0 0 0.0 0.0
dad1,h 0 0.0 0 0 0.0 6.0
fd0 0 0.0 0 0 0.0 0.0
nfs1 0 0.0 0 0 0.0 0.0
nfs2 1 0.0 1 12 0 0.0 13.2
nfs3 0 0.0 0 2 0.0 1.9
nfs4 0 0.0 0 0 0.0 7.0
nfs5 0 0.0 0 0 0.0 57.1
nfs6 1 0.0 6 125 4.3 3.2
nfs7 0 0.0 0 0 0.0 6.0
sd1 0 0.0 0 0 0.0 5.4
ohci0,bu 0 0.0 0 0 0.0 0.0
ohci0,ct 0 0.0 0 0 0.0 0.0
ohci0,in 0 0.0 7 0 0.0 0.0
```
The following table describes the disk device activities that are reported by the -d option.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>device</td>
<td>Name of the disk device that is being monitored.</td>
</tr>
<tr>
<td>%busy</td>
<td>Portion of time the device was busy servicing a transfer request.</td>
</tr>
<tr>
<td>avque</td>
<td>Average number of requests during the time the device was busy servicing a transfer request.</td>
</tr>
<tr>
<td>r+w/s</td>
<td>Number of read-and-write transfers to the device, per second.</td>
</tr>
<tr>
<td>blk/s</td>
<td>Number of 512-byte blocks that are transferred to the device, per second.</td>
</tr>
<tr>
<td>avwait</td>
<td>Average time, in milliseconds, that transfer requests wait idly in the queue. This time is measured only when the queue is occupied.</td>
</tr>
<tr>
<td>avserv</td>
<td>Average time, in milliseconds, for a transfer request to be completed by the device. For disks, this value includes seek times, rotational latency times, and data transfer times.</td>
</tr>
</tbody>
</table>

Note that queue lengths and wait times are measured when something is in the queue. If %busy is small, large queues and service times probably represent the periodic efforts by the system to ensure that altered blocks are promptly written to the disk.

**How to Check Page-Out and Memory (sar -g)**

- **Use the sar -g command to display page-out and memory freeing activities in averages.**

  ```
  $ sar -g
  00:00:00 pgout/s ppgout/s pgfree/s pgscan/s %ufs_ipf
  01:00:00 0.00 0.00 0.00 0.00 0.00
  ```

  The output displayed by the sar -g command is a good indicator of whether more memory might be needed. Use the ps -elf command to show the number of cycles that are used by the page daemon. A high number of cycles, combined with high values for the pgfree/s and pgscan/s fields, indicates a memory shortage.

  The sar -g command also shows whether inodes are being recycled too quickly and causing a loss of reusable pages.
Example 13–8 Checking Page-Out and Memory (sar -g)

The following example shows output from the sar -g command.

```
$ sar -g

SunOS balmyday 5.10 s10_51 sun4u   03/18/2004

00:00:00   pgout/s   ppgout/s   pgfree/s   pgscan/s   %ufs_ipf
01:00:00   0.00      0.00      0.00      0.00      0.00
02:00:00   0.01      0.01      0.01      0.00      0.00
03:00:00   0.00      0.00      0.00      0.00      0.00
04:00:00   0.00      0.00      0.00      0.00      0.00
05:00:00   0.00      0.00      0.00      0.00      0.00
06:00:00   0.00      0.00      0.00      0.00      0.00
07:00:00   0.00      0.00      0.00      0.00      0.00
08:00:00   0.00      0.00      0.00      0.00      0.00
08:20:01  0.00      0.00      0.00      0.00      0.00
08:40:00   0.00      0.00      0.00      0.00      0.00
09:00:00   0.00      0.00      0.00      0.00      0.00
09:20:01  0.05      0.52      1.62      10.16     0.00
09:40:01  0.03      0.44      1.47      4.77      0.00
10:00:02  0.13      2.00      4.38      12.28     0.00
10:20:03  0.37      4.68      12.26     33.80     0.00

Average  0.02      0.25      0.64      1.97      0.00
```

The following table describes the output from the -g option.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pgout/s</td>
<td>The number of page-out requests per second.</td>
</tr>
<tr>
<td>ppgout/s</td>
<td>The actual number of pages that are paged-out, per second. A single page-out request might involve paging-out multiple pages.</td>
</tr>
<tr>
<td>pgfree/s</td>
<td>The number of pages, per second, that are placed on the free list.</td>
</tr>
<tr>
<td>pgscan/s</td>
<td>The number of pages, per second, that are scanned by the page daemon. If this value is high, the page daemon is spending a lot of time checking for free memory. This situation implies that more memory might be needed.</td>
</tr>
</tbody>
</table>
### Field Name Description

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%ufs_ipf</td>
<td>The percentage of ufs inodes taken off the free list by iget that had reusable pages associated with them. These pages are flushed and cannot be reclaimed by processes. Thus, this field represents the percentage of igets with page flushes. A high value indicates that the free list of inodes is page-bound, and that the number of ufs inodes might need to be increased.</td>
</tr>
</tbody>
</table>

#### Checking Kernel Memory Allocation

The KMA allows a kernel subsystem to allocate and free memory, as needed.

Rather than statically allocating the maximum amount of memory it is expected to require under peak load, the KMA divides requests for memory into three categories:

- Small (less than 256 bytes)
- Large (512 bytes to 4 Kbytes)
- Oversized (greater than 4 Kbytes)

The KMA keeps two pools of memory to satisfy small requests and large requests. The oversized requests are satisfied by allocating memory from the system page allocator.

If you are checking a system that is being used to write drivers or STREAMS that use KMA resources, then the `sar -k` command will likely prove useful. Otherwise, you will probably not need the information it provides. Any driver or module that uses KMA resources, but does not specifically return the resources before it exits, can create a memory leak. A memory leak causes the amount of memory that is allocated by KMA to increase over time. Thus, if the `alloc` fields of the `sar -k` command increase steadily over time, there might be a memory leak. Another indication of a memory leak is failed requests. If this problem occurs, a memory leak has probably caused KMA to be unable to reserve and allocate memory.

If it appears that a memory leak has occurred, you should check any drivers or STREAMS that might have requested memory from KMA and not returned it.

#### How to Check Kernel Memory Allocation (sar -k)

- Use the `sar -k` command to report on the following activities of the Kernel Memory Allocator (KMA).

```
sar -k
00:00:00  sml_mem alloc fail lg_mem alloc fail ovsz_alloc fail
01:00:00  2523136 1866512  0 18939904 14762364  0 360448  0
02:00:02  2523136 1861724  0 18939904 14778748  0 360448  0
```
Example 13–9  Checking Kernel Memory Allocation (sar -k)

The following is an abbreviated example of sar -k output.

```
$ sar -k

SunOS balmyday 5.10 s10_51 sun4u 03/18/2004

00:00:04 sml_mem alloc fail lg_mem alloc fail ovsz_alloc fail
01:00:00  6119744  4852865   0  60243968  54334808 156  9666560  0
02:00:00  6119744  4853057   0  60243968  54336088 156  9666560  0
03:00:00  6119744  4853297   0  60243968  54335760 156  9666560  0
04:00:00  6119744  4857673   0  60252160  54375280 156  9666560  0
05:00:00  6119744  4858097   0  60252160  54376240 156  9666560  0
06:00:00  6119744  4858289   0  60252160  54375608 156  9666560  0
07:00:00  6119744  4857893   0  60252160  54442424 156  9666560  0
08:00:00  6119744  4858985   0  60252160  54474552 156  9666560  0
08:20:00  6119744  4858169   0  60252160  54377400 156  9666560  0
08:40:01  6119744  4857345   0  60252160  54376880 156  9666560  0
09:00:00  6119744  4859433   0  60252160  54539752 156  9666560  0
09:20:00  6119744  4858633   0  60252160  54410020 156  9666560  0
09:40:00  6127936  5262064   0  60530688  55619816 156  9666560  0
10:00:00  6545728  5823137   0  62996480  58391136 156  9666560  0
10:20:00  6545728  5758997   0  62996480  57907400 156  9666560  0
10:40:00  6734144  6035759   0  64389120  59743064 156  10493952 0
11:00:00  6996288  6394872   0  69347696  60935936 156  10493952 0

Average  6250044  5150556   0  61138340  55609004 156  9763900  0
```

The following table describes the output from the -k option.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sml_mem</td>
<td>The amount of memory, in bytes, that the KMA has available in the small memory request pool. In this pool, a small request is less than 256 bytes.</td>
</tr>
<tr>
<td>alloc</td>
<td>The amount of memory, in bytes, that the KMA has allocated from its small memory request pool to small memory requests.</td>
</tr>
<tr>
<td>fail</td>
<td>The number of requests for small amounts of memory that failed.</td>
</tr>
<tr>
<td>lg_mem</td>
<td>The amount of memory, in bytes, that the KMA has available in the large memory request pool. In this pool, a large request is from 512 bytes to 4 Kbytes.</td>
</tr>
<tr>
<td>Field Name</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>alloc</td>
<td>The amount of memory, in bytes, that the KMA has allocated from its large memory request pool to large memory requests.</td>
</tr>
<tr>
<td>fail</td>
<td>The number of failed requests for large amounts of memory.</td>
</tr>
<tr>
<td>ovsz_alloc</td>
<td>The amount of memory that is allocated for oversized requests, which are requests that are greater than 4 Kbytes. These requests are satisfied by the page allocator. Thus, there is no pool.</td>
</tr>
<tr>
<td>fail</td>
<td>The number of failed requests for oversized amounts of memory.</td>
</tr>
</tbody>
</table>

**How to Check Interprocess Communication (sar -m)**

- **Use the `sar -m` command to report interprocess communication activities.**

  ```
  $ sar -m
  00:00:00 msg/s sema/s
  01:00:00 0.00 0.00
  ```

  These figures are usually zero (0.00), unless you are running applications that use messages or semaphores.

  The following list describes the output from the `-m` option.

  - `msg/s` The number of message operations (sends and receives) per second
  - `sema/s` The number of semaphore operations per second

**Example 13–10 Checking Interprocess Communication (sar -m)**

The following abbreviated example shows output from the `sar -m` command.

```
$ sar -m

SunOS balmyday 5.10 s10_51 sun4u 03/18/2004

00:00:00 msg/s sema/s
01:00:00 0.00 0.00
02:00:02 0.00 0.00
03:00:00 0.00 0.00
04:00:00 0.00 0.00
05:00:01 0.00 0.00
06:00:00 0.00 0.00
```
How to Check Page-In Activity (**sar -p**)

- Use the **sar -p** command to report page-in activity, which includes protection and translation faults.

  ```
  $ sar -p
  00:00:00 atch/s pgin/s ppgin/s pflt/s vflt/s slock/s
  01:00:00 0.07 0.00 0.00 0.21 0.39 0.00
  ```

Example 13–11  Checking Page-In Activity (**sar -p**)

The following example shows output from the **sar -p** command.

  ```
  $ sar -p
  
  SunOS balmyday 5.10 s10_51 sun4u  03/18/2004
  00:00:04 atch/s pgin/s ppgin/s pflt/s vflt/s slock/s
  01:00:00 0.09 0.00 0.00 0.78 2.02 0.00
  02:00:01 0.08 0.00 0.00 0.78 2.02 0.00
  03:00:00 0.09 0.00 0.00 0.81 2.07 0.00
  04:00:00 0.11 0.01 0.01 0.86 2.18 0.00
  05:00:00 0.08 0.00 0.00 0.78 2.02 0.00
  06:00:00 0.09 0.00 0.00 0.78 2.02 0.00
  07:00:00 0.08 0.00 0.00 0.78 2.02 0.00
  08:00:00 0.09 0.00 0.00 0.78 2.02 0.00
  08:20:00 0.11 0.00 0.00 0.87 2.24 0.00
  08:40:01 0.13 0.00 0.00 0.90 2.29 0.00
  09:00:00 0.11 0.00 0.00 0.88 2.24 0.00
  09:20:00 0.10 0.00 0.00 0.88 2.24 0.00
  09:40:00 2.91 1.80 2.38 4.61 17.62 0.00
  10:00:00 2.74 2.03 3.08 8.17 21.76 0.00
  10:20:00 0.16 0.04 0.04 1.92 2.96 0.00
  10:40:00 2.10 2.50 3.42 6.62 16.51 0.00
  11:00:00 3.36 0.87 1.35 3.92 15.12 0.00
  
  Average 0.42 0.22 0.31 1.45 4.00 0.00
  ```

The following table describes the reported statistics from the -p option.
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>atch/s</td>
<td>The number of page faults, per second, that are satisfied by reclaiming a page currently in memory (attaches per second). Instances include reclaiming an invalid page from the free list and sharing a page of text that is currently being used by another process. An example is two or more processes that are accessing the same program text.</td>
</tr>
<tr>
<td>pgin/s</td>
<td>The number of times, per second, that file systems receive page-in requests.</td>
</tr>
<tr>
<td>ppgin/s</td>
<td>The number of pages paged in, per second. A single page-in request, such as a soft-lock request (see slock/s) or a large block size, might involve paging-in multiple pages.</td>
</tr>
<tr>
<td>pflt/s</td>
<td>The number of page faults from protection errors. Instances of protection faults indicate illegal access to a page and &quot;copy-on-writes.&quot; Generally, this number consists primarily of &quot;copy-on-writes.&quot;</td>
</tr>
<tr>
<td>vflt/s</td>
<td>The number of address translation page faults, per second. These faults are known as validity faults. Validity faults occur when a valid process table entry does not exist for a given virtual address.</td>
</tr>
<tr>
<td>slock/s</td>
<td>The number of faults, per second, caused by software lock requests that require physical I/O. An example of the occurrence of a soft-lock request is the transfer of data from a disk to memory. The system locks the page that is to receive the data so that the page cannot be claimed and used by another process.</td>
</tr>
</tbody>
</table>

▼ How to Check Queue Activity (**sar -q**)

- **Use the **sar -q** command to report the following information:**
  - The Average queue length while the queue is occupied.
  - The percentage of time that the queue is occupied.

```
$ sar -q
00:00:00  runq-sz  %runocc  swpq-sz  %swpocc
```

The following list describes the output from the `-q` option.

**runq-sz** The number of kernel threads in memory that are waiting for a CPU to run. Typically, this value should be less than 2. Consistently higher values mean that the system might be CPU-bound.
The percentage of time that the dispatch queues are occupied.

swpq-sz  No longer reported by the sar command.

%swpocc  No longer reported by the sar command.

**Example 13–12  Checking Queue Activity**

The following example shows output from the `sar -q` command. If the `%runocc` value is high (greater than 90 percent) and the `runq-sz` value is greater than 2, the CPU is heavily loaded and response is degraded. In this case, additional CPU capacity might be required to obtain acceptable system response.

```bash
$ sar -q

SunOS balmyday 5.10 s10_51 sun4u 03/18/2004

00:00:04 runq-sz %runocc swpq-sz %swpocc
01:00:00 1.0 0 0.0 0
02:00:00 1.0 0 0.0 0
03:00:00 1.0 0 0.0 0
04:00:00 1.0 0 0.0 0
05:00:00 1.0 0 0.0 0
06:00:00 2.0 0 0.0 0
07:00:00 0.0 0 0.0 0
08:00:00 1.0 0 0.0 0
08:20:00 1.0 0 0.0 0
08:40:01 2.0 0 0.0 0
09:00:00 0.0 0 0.0 0
09:20:00 1.0 0 0.0 0
09:40:00 1.2 2 0.0 0
10:00:00 1.2 2 0.0 0
10:20:00 1.0 1 0.0 0
10:40:00 1.3 9 0.0 0
11:00:00 1.2 7 0.0 0

Average 1.2 1 0.0 0
```

**How to Check Unused Memory (`sar -r`)**

- Use the `sar -r` command to report the number of memory pages and swap-file disk blocks that are currently unused.

```bash
$ sar -r

00:00:00 freemem freeswap
01:00:00 2135 401922
```
The following list describes the output from the `-r` option.

`freemem`  The average number of memory pages that are available to user processes over the intervals sampled by the command. Page size is machine-dependent.

`freeswap`  The number of 512-byte disk blocks that are available for page swapping.

**Example 13–13  Checking Unused Memory (`sar -r`)**

The following example shows output from the `sar -r` command.

```
$ sar -r
SunOS balmyday 5.10 s10_51 sun4u 03/18/2004

00:00:04 freemem freeswap
01:00:00  44717  1715062
02:00:01  44733  1715496
03:00:00  44715  1714746
04:00:00  44751  1715403
05:00:00  44784  1714743
06:00:00  44794  1715186
07:00:00  44793  1715159
08:00:00  44786  1714914
08:20:00  44805  1715576
08:40:01  44797  1715347
09:00:00  44761  1713948
09:20:00  44802  1715478
09:40:00  41770  1682239
10:00:00  35401  1610833
10:20:00  34295  1599141
10:40:00  33943  1598425
11:00:00  30500  1561959
Average  43312  1699242
```

**How to Check CPU Utilization (`sar -u`)**

- **Use the `sar -u` command to display CPU utilization statistics.**

```
$ sar -u
00:00:00  %usr  %sys  %wio  %idle
01:00:00   0    0    0    100
```
The `sar` command without any options is equivalent to the `sar -u` command. At any given moment, the processor is either busy or idle. When busy, the processor is in either user mode or system mode. When idle, the processor is either waiting for I/O completion or "sitting still" with no work to do.

The following list describes output from the `-u` option.

- `%usr` Lists the percentage of time that the processor is in user mode
- `%sys` Lists the percentage of time that the processor is in system mode
- `%wio` Lists the percentage of time that the processor is idle and waiting for I/O completion
- `%idle` Lists the percentage of time that the processor is idle and not waiting for I/O

A high `%wio` value generally means that a disk slowdown has occurred.

**Example 13–14  Checking CPU Utilization (sar -u)**

The following example shows output from the `sar -u` command.

```
$ sar -u

SunOS balmyday 5.10 s10_51 sun4u 03/18/2004

00:00:04  %usr  %sys  %wio  %idle
01:00:00  0  0  0  100
02:00:01  0  0  0  100
03:00:00  0  0  0  100
04:00:00  0  0  0  100
05:00:00  0  0  0  100
06:00:00  0  0  0  100
07:00:00  0  0  0  100
08:00:00  0  0  0  100
08:20:00  0  0  0  99
08:40:01  0  0  0  99
09:00:00  0  0  0  99
09:20:00  0  0  0  99
09:40:00  4  1  0  95
10:00:00  4  2  0  94
10:20:00  1  1  0  98
10:40:00  18  3  0  79
11:00:00  25  3  0  72

Average  2  0  0  98
```
How to Check System Table Status (sar -v)

- Use the sar -v command to report the status of the process table, inode table, file table, and shared memory record table.

```
$ sar -v
00:00:00 proc-sz ov inod-sz ov file-sz ov lock-sz
01:00:00 43/922 0 2984/4236 0 322/322 0 0/0
```

Example 13–15 Checking System Table Status (sar -v)

The following abbreviated example shows output from the sar -v command. This example shows that all tables are large enough to have no overflows. These tables are all dynamically allocated based on the amount of physical memory.

```
$ sar -v
SunOS balmyday 5.10 s10_51 sun4u 03/18/2004
00:00:04 proc-sz ov inod-sz ov file-sz ov lock-sz
01:00:00 69/8010 0 3476/34703 0 0/0 0 0/0
02:00:01 69/8010 0 3476/34703 0 0/0 0 0/0
03:00:00 69/8010 0 3476/34703 0 0/0 0 0/0
04:00:00 69/8010 0 3494/34703 0 0/0 0 0/0
05:00:00 69/8010 0 3494/34703 0 0/0 0 0/0
06:00:00 69/8010 0 3494/34703 0 0/0 0 0/0
07:00:00 69/8010 0 3494/34703 0 0/0 0 0/0
08:00:00 69/8010 0 3494/34703 0 0/0 0 0/0
08:20:00 69/8010 0 3494/34703 0 0/0 0 0/0
08:40:01 69/8010 0 3494/34703 0 0/0 0 0/0
09:00:00 69/8010 0 3494/34703 0 0/0 0 0/0
09:20:00 69/8010 0 3494/34703 0 0/0 0 0/0
09:40:00 74/8010 0 3494/34703 0 0/0 0 0/0
10:00:00 75/8010 0 4918/34703 0 0/0 0 0/0
10:20:00 72/8010 0 4918/34703 0 0/0 0 0/0
10:40:00 71/8010 0 5018/34703 0 0/0 0 0/0
11:00:00 77/8010 0 5018/34703 0 0/0 0 0/0
```

Output from the -v option is described in the following table.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proc-sz</td>
<td>The number of process entries (proc structures) that are currently being used, or allocated, in the kernel.</td>
</tr>
</tbody>
</table>
### How to Check Swapping Activity (**sar -w**)

- **Use the** `sar -w` **command to report swapping and switching activity.**

```bash
$ sar -w
00:00:00 swpin/s bswin/s swpot/s bswot/s pswch/s
01:00:00 0.00 0.00 0.00 0.00 22
```

The following list describes target values and observations related to the `sar -w` command output.

- **swpin/s**  
  The number of LWP transfers into memory per second.

- **bswin/s**  
  The number of blocks transferred for swap-ins per second. /*
  (float)PGTOBLK(xx->cvmi.pgswapin) / sec_diff */

- **swpot/s**  
  The average number of processes that are swapped out of memory per second. If
  the number is greater than 1, you might need to increase memory.

- **bswot/s**  
  The number of blocks that are transferred for swap-outs per second.

- **pswch/s**  
  The number of kernel thread switches, per second.

**Note** – All process swap-ins include process initialization.

**Example 13–16**  
Checking Swap Activity (**sar -w**)

The following example shows output from the `sar -w` command.
### Monitoring System Activities (sar)

**$ sar -w**

SunOS balmyday 5.10 s10_51 sun4u 03/18/2004

<table>
<thead>
<tr>
<th>Time</th>
<th>rawch/s</th>
<th>canch/s</th>
<th>outch/s</th>
<th>rcvin/s</th>
<th>xmtin/s</th>
<th>mdmin/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00:04</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>132</td>
</tr>
<tr>
<td>01:00:00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>133</td>
</tr>
<tr>
<td>02:00:01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>133</td>
</tr>
<tr>
<td>03:00:00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>133</td>
</tr>
<tr>
<td>04:00:00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>134</td>
</tr>
<tr>
<td>05:00:00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>133</td>
</tr>
<tr>
<td>06:00:00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>133</td>
</tr>
<tr>
<td>07:00:00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>132</td>
</tr>
<tr>
<td>08:00:00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>131</td>
</tr>
<tr>
<td>08:20:00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>133</td>
</tr>
<tr>
<td>08:40:01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>132</td>
</tr>
<tr>
<td>09:00:00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>132</td>
</tr>
<tr>
<td>09:20:00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>132</td>
</tr>
<tr>
<td>09:40:00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>335</td>
</tr>
<tr>
<td>10:00:00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>601</td>
</tr>
<tr>
<td>10:20:00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>353</td>
</tr>
<tr>
<td>10:40:00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>747</td>
</tr>
<tr>
<td>11:00:00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>198</td>
</tr>
</tbody>
</table>

Average: 0.00 0.00 0.00 0.00 198

### How to Check Terminal Activity (sar -y)

- **Use the sar -y command to monitor terminal device activities.**

  ```
  $ sar -y
  00:00:00 rawch/s canch/s outch/s rcvin/s xmtin/s mdmin/s
  01:00:00 0 0 0 0 0 0
  ```

If you have a lot of terminal I/O, you can use this report to determine if any bad lines exist. The activities recorded are defined in the following list.

- **rawch/s** Input characters (raw queue) per second
- **canch/s** Input characters that are processed by canon (canonical queue) per second
- **outch/s** Output characters (output queue) per second
- **rcvin/s** Receiver hardware interrupts per second
- **xmtin/s** Transmitter hardware interrupts per second
- **mdmin/s** Modem interrupts per second
The number of modem interrupts per second (mdmin/s) should be close to zero. The receive and transmit interrupts per second (xmtin/s and rcvin/s) should be less than or equal to the number of incoming or outgoing characters, respectively. If not, check for bad lines.

Example 13–17  Checking Terminal Activity (sar -y)

The following example shows output from the sar -y command.

```
$ sar -y

SunOS balmyday 5.10 s10_51 sun4u 03/18/2004

00:00:04 rawch/s canch/s outch/s rcvin/s xmtin/s mdmin/s
01:00:00 0 0 0 0 0 0
02:00:01 0 0 0 0 0 0
03:00:00 0 0 0 0 0 0
04:00:00 0 0 0 0 0 0
05:00:00 0 0 0 0 0 0
06:00:00 0 0 0 0 0 0
07:00:00 0 0 0 0 0 0
08:00:00 0 0 0 0 0 0
08:20:00 0 0 0 0 0 0
08:40:01 0 0 0 0 0 0
09:00:00 0 0 0 0 0 0
09:20:00 0 0 0 0 0 0
09:40:00 0 0 0 0 0 0
10:00:00 0 0 37 0 0 0
10:20:00 0 0 0 0 0 0
10:40:00 0 0 3 0 0 0
11:00:00 0 0 3 0 0 0

Average 0 0 1 0 0 0
```

▼ How to Check Overall System Performance (sar -A)

- Use the sar -A command to display statistics from all options to provide a view of overall system performance.

This command provides a more global perspective. If data from more than a single time segment is shown, the report includes averages.
Collecting System Activity Data Automatically (sar)

Three commands are involved in the automatic collection of system activity data: sadc, sa1, and sa2.

The sadc data collection utility periodically collects data on system activity and saves the data in a file in binary format, one file for each 24-hour period. You can set up the sadc command to run periodically (usually once each hour), and whenever the system boots to multiuser mode. The data files are placed in the /var/adm/sa directory. Each file is named sadd, where dd is the current date. The format of the command is as follows:

```
/usr/lib/sa/sadc [t n] [ofile]
```

The command samples n times with an interval of t seconds, which should be greater than five seconds between samples. This command then writes to the binary ofile file, or to standard output.

Running the sadc Command When Booting

The sadc command should be run at system boot time to record the statistics from when the counters are reset to zero. To make sure that the sadc command is run at boot time, the svcadm enable system/sar:default command writes a record to the daily data file.

The command entry has the following format:

```
/usr/bin/su sys -c "/usr/lib/sa/sadc /var/adm/sa/sa'date +%d"
```

Running the sadc Command Periodically With the sa1 Script

To generate periodic records, you need to run the sadc command regularly. The simplest way to do so is to uncomment the following lines in the /var/spool/cron/crontabs/sys file:

```
# 0 * * * 0-6 /usr/lib/sa/sa1
# 20,40 8-17 * * 1-5 /usr/lib/sa/sa1
# 5 18 * * 1-5 /usr/lib/sa/sa2 -s 8:00 -e 18:01 -i 1200 -A
```
The `sys crontab` entries do the following:

- The first two `crontab` entries cause a record to be written to the `/var/adm/sa/sadd` file every 20 minutes from 8 a.m. to 5 p.m., Monday through Friday, and every hour on the hour otherwise.
- The third entry writes a record to the `/var/adm/sa/sar dd` file hourly, Monday through Friday, and includes all `sar` options.

You can change these defaults to meet your needs.

**Producing Reports With the `sa2` Shell Script**

Another shell script, `sa2`, produces reports rather than binary data files. The `sa2` command invokes the `sar` command and writes the ASCII output to a report file.

**Setting Up Automatic Data Collection (`sar`)**

The `sar` command can be used either to gather system activity data itself or to report what has been collected in the daily activity files that are created by the `sadc` command.

The `sar` command has the following formats:

```
sar [-aAbcdgkmpqruvwy] [-o file] t [n]
sar [-aAbcdgkmpqruvwy] [-s time] [-e time] [-i sec] [-f file]
```

The following `sar` command samples cumulative activity counters in the operating system every `t` seconds, `n` times. The `t` should be five seconds or greater. Otherwise, the command itself might affect the sample. You must specify a time interval in which to take the samples. Otherwise, the command operates according to the second format. The default value of `n` is 1. The following example takes two samples separated by 10 seconds. If the `-o` option were specified, samples are saved in binary format.

```
$ sar -u 10 2
```

Other important information about the `sar` command includes the following:

- With no sampling interval or number of samples specified, the `sar` command extracts data from a previously recorded file. This file is either the file specified by the `-f` option or, by default, the standard daily activity file, `/var/adm/sa/sadd`, for the most recent day.
- The `-s` and `-e` options define the starting time and the ending time for the report. Starting and ending times are of the form `hh:mm:ss`, where `hh`, `mm`, and `ss` represent hours, minutes, and seconds.
The -i option specifies, in seconds, the intervals between record selection. If the -i option is not included, all intervals that are found in the daily activity file are reported.

The following table lists the sar options and their actions.

**TABLE 13-2** Options for the sar Command

<table>
<thead>
<tr>
<th>Option</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>-a</td>
<td>Checks file access operations</td>
</tr>
<tr>
<td>-b</td>
<td>Checks buffer activity</td>
</tr>
<tr>
<td>-c</td>
<td>Checks system calls</td>
</tr>
<tr>
<td>-d</td>
<td>Checks activity for each block device</td>
</tr>
<tr>
<td>-g</td>
<td>Checks page-out and memory freeing</td>
</tr>
<tr>
<td>-k</td>
<td>Checks kernel memory allocation</td>
</tr>
<tr>
<td>-m</td>
<td>Checks interprocess communication</td>
</tr>
<tr>
<td>-nv</td>
<td>Checks system table status</td>
</tr>
<tr>
<td>-p</td>
<td>Checks swap and dispatch activity</td>
</tr>
<tr>
<td>-q</td>
<td>Checks queue activity</td>
</tr>
<tr>
<td>-r</td>
<td>Checks unused memory</td>
</tr>
<tr>
<td>-u</td>
<td>Checks CPU utilization</td>
</tr>
<tr>
<td>-w</td>
<td>Checks swapping and switching volume</td>
</tr>
<tr>
<td>-y</td>
<td>Checks terminal activity</td>
</tr>
<tr>
<td>-A</td>
<td>Reports overall system performance, which is the same as entering all options.</td>
</tr>
</tbody>
</table>

Using no option is equivalent to calling the sar command with the -u option.

**How to Set Up Automatic Data Collection**

1. **Become superuser or assume an equivalent role.**
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in *System Administration Guide: Security Services*.

2. **Run the svcadm enable system/sar:default command.**
   This version of the sadc command writes a special record that marks the time when the counters are reset to zero (boot time).
3 Edit the `/var/spool/cron/crontabs/sys crontab` file.

Note – Do not edit a crontab file directly. Instead, use the `crontab -e` command to make changes to an existing crontab file.

```
# crontab -e sys
```

4 Uncomment the following lines:

```
0 * * 0-6 /usr/lib/sa/sa1
20,40 8-17 * 1-5 /usr/lib/sa/sa1
5 18 * * 1-5 /usr/lib/sa2 -s 8:00 -e 18:01 -i 1200 -A
```

For more information, see the `crontab(1)` man page.
This chapter provides a general overview of troubleshooting software problems, including information on troubleshooting system crashes and viewing system messages.

This is a list of information in this chapter.
- “What’s New in Troubleshooting?” on page 215
- “Where to Find Software Troubleshooting Tasks” on page 217
- “Troubleshooting a System Crash” on page 218
- “Troubleshooting a System Crash Checklist” on page 220

What’s New in Troubleshooting?

This section describes new or changed troubleshooting information in this Solaris release.

For information on new or changed troubleshooting features in the Solaris 10 release, see the following:
- “Dynamic Tracing Facility” on page 216
- “kmdb Replaces kadb as Standard Solaris Kernel Debugger” on page 217

x86: Error Message Upon System Boot if Multiboot Module From the Previous GRUB Implementation Is Loaded

Solaris 10 11/07: Changes have been made to the GRUB bootloader that enable the direct loading and booting of the unix kernel. The GRUB multiboot module is no longer used. If the multiboot module from the previous GRUB implementation is loaded by GRUB, the console displays an error message upon system boot. For more information about what to do if this error message is displayed when the system boots, see “x86: What to Do if the Multiboot Module From Previous GRUB Implementation Is Loaded at Boot Time” on page 249.
For more information about what’s new in booting and changes to GRUB in this Solaris release, see Chapter 9, “Booting a System (Overview),” in System Administration Guide: Basic Administration.

Common Agent Container Problems

Solaris 10 6/06: The common agent container is a stand-alone Java program that is now included in the Solaris OS. This program implements a container for Java management applications. The common agent container provides a management infrastructure that is designed for Java Management Extensions (JMX) and Java Dynamic Management Kit (Java DMK) based functionality. The software is installed by the SUNWcacaort package and resides in the /usr/lib/cacao directory.

Typically, the container is not visible. However, there are two instances when you might need to interact with the container daemon:

- It is possible that another application might attempt to use a network port that is reserved for the common agent container.
- In the event that a certificate store is compromised, you might have to regenerate the common agent container certificate keys.

For information about how to troubleshoot these problems, see “Troubleshooting Common Agent Container Problems in the Solaris OS” on page 259.

x86: SMF Boot Archive Service Might Fail During System Reboot

If a system crash occurs in the GRUB based boot environment, it is possible that the SMF service svc:/system/boot-archive:default might fail when the system is rebooted. If this problem occurs, reboot the system and select the Solaris failsafe archive in the GRUB boot menu. Follow the prompts to rebuild the boot archive. After the archive is rebuilt, reboot the system. To continue the boot process, you can use the svcadm command to clear the svc:/system/boot-archive:default service. For instructions, see “x86: What to Do if the SMF Boot Archive Service Fails During a System Reboot” on page 254. For more information on GRUB based booting, see “Booting an x86 Based System by Using GRUB (Task Map)” in System Administration Guide: Basic Administration.

Dynamic Tracing Facility

The Solaris Dynamic Tracing (DTrace) facility is a comprehensive dynamic tracking facility that gives you a new level of observerability into the Solaris kernel and user processes. DTrace helps you understand your system by permitting you to dynamically instrument the OS kernel
and user processes to record data that you specify at locations of interest, called, *probes*. Each probe can be associated with custom programs that are written in the new D programming language. All of DTrace’s instrumentation is entirely dynamic and available for use on your production system. For more information, see the `dtrace(1M)` man page and the *Solaris Dynamic Tracing Guide*.

**kmdb Replaces kadb as Standard Solaris Kernel Debugger**

`kmdb` has replaced `kadb` as the standard “in situ” Solaris kernel debugger.

`kmdb` brings all the power and flexibility of `mdb` to live kernel debugging. `kmdb` supports the following:

- Debugger commands (dcmds)
- Debugger modules (dmods)
- Access to kernel type data
- Kernel execution control
- Inspection
- Modification

For more information, see the `kmdb(1)` man page. For step-by-step instructions on using `kmdb` to troubleshoot a system, see “How to Boot the System With the Kernel Debugger (`kmdb`)” in *System Administration Guide: Basic Administration* and “How to Boot a System With the Kernel Debugger in the GRUB Boot Environment (`kmdb`)” in *System Administration Guide: Basic Administration*.

**Where to Find Software Troubleshooting Tasks**

<table>
<thead>
<tr>
<th>Troubleshooting Task</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manage system crash information</td>
<td>Chapter 17, “Managing System Crash Information (Tasks),”</td>
</tr>
<tr>
<td>Manage core files</td>
<td>Chapter 16, “Managing Core Files (Tasks),”</td>
</tr>
<tr>
<td>Troubleshoot software problems such as reboot failures and backup problems</td>
<td>Chapter 18, “Troubleshooting Miscellaneous Software Problems (Tasks),”</td>
</tr>
<tr>
<td>Troubleshoot file access problems</td>
<td>Chapter 19, “Troubleshooting File Access Problems (Tasks),”</td>
</tr>
</tbody>
</table>
### Troubleshooting a System Crash

If a system running the Solaris Operating System crashes, provide your service provider with as much information as possible, including crash dump files.

### What to Do if the System Crashes

The most important things to remember are:

1. Write down the system console messages.

   If a system crashes, making it run again might seem like your most pressing concern. However, before you reboot the system, examine the console screen for messages. These messages can provide some insight about what caused the crash. Even if the system reboots automatically and the console messages have disappeared from the screen, you might be able to check these messages by viewing the system error log, the `/var/adm/messages` file. For more information about viewing system error log files, see “How to View System Messages” on page 222.

   If you have frequent crashes and can’t determine their cause, gather all the information you can from the system console or the `/var/adm/messages` files, and have it ready for a customer service representative to examine. For a complete list of troubleshooting information to gather for your service provider, see “Troubleshooting a System Crash” on page 218.

   If the system fails to reboot successfully after a system crash, see Chapter 18, “Troubleshooting Miscellaneous Software Problems (Tasks).”

---

**Additional Resources for Troubleshooting System and Software Problems**

You can use the Sun Explorer software to collect data for troubleshooting system and software problems. For more information about downloading the Sun Explorer software, see *Sun Explorer User's Guide*.
2. Synchronize the disks and reboot.

```bash
ok sync
```

If the system fails to reboot successfully after a system crash, see Chapter 18, “Troubleshooting Miscellaneous Software Problems (Tasks).”

Check to see if a system crash dump was generated after the system crash. System crash dumps are saved by default. For information about crash dumps, see Chapter 17, “Managing System Crash Information (Tasks).”

Gathering Troubleshooting Data

Answer the following questions to help isolate the system problem. Use “Troubleshooting a System Crash Checklist” on page 220 for gathering troubleshooting data for a crashed system.

<table>
<thead>
<tr>
<th>Question</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can you reproduce the problem?</td>
<td>This is important because a reproducible test case is often essential for debugging really hard problems. By reproducing the problem, the service provider can build kernels with special instrumentation to trigger, diagnose, and fix the bug.</td>
</tr>
<tr>
<td>Are you using any third-party drivers?</td>
<td>Drivers run in the same address space as the kernel, with all the same privileges, so they can cause system crashes if they have bugs.</td>
</tr>
<tr>
<td>What was the system doing just before it crashed?</td>
<td>If the system was doing anything unusual like running a new stress test or experiencing higher-than-usual load, that might have led to the crash.</td>
</tr>
<tr>
<td>Were there any unusual console messages right before the crash?</td>
<td>Sometimes the system will show signs of distress before it actually crashes; this information is often useful.</td>
</tr>
<tr>
<td>Did you add any tuning parameters to the /etc/system file?</td>
<td>Sometimes tuning parameters, such as increasing shared memory segments so that the system tries to allocate more than it has, can cause the system to crash.</td>
</tr>
<tr>
<td>Did the problem start recently?</td>
<td>If so, did the onset of problems coincide with any changes to the system, for example, new drivers, new software, different workload, CPU upgrade, or a memory upgrade.</td>
</tr>
</tbody>
</table>
Troubleshooting a System Crash Checklist

Use this checklist when gathering system data for a crashed system.

<table>
<thead>
<tr>
<th>Item</th>
<th>Your Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is a system crash dump available?</td>
<td></td>
</tr>
<tr>
<td>Identify the operating system release and appropriate software</td>
<td></td>
</tr>
<tr>
<td>application release levels.</td>
<td></td>
</tr>
<tr>
<td>Identify system hardware.</td>
<td></td>
</tr>
<tr>
<td>Include prtdiag output for sun4u systems. Include Explorer output</td>
<td></td>
</tr>
<tr>
<td>for other systems.</td>
<td></td>
</tr>
<tr>
<td>Are patches installed? If so, include showrev -p output.</td>
<td></td>
</tr>
<tr>
<td>Is the problem reproducible?</td>
<td></td>
</tr>
<tr>
<td>Does the system have any third-party drivers?</td>
<td></td>
</tr>
<tr>
<td>What was the system doing before it crashed?</td>
<td></td>
</tr>
<tr>
<td>Were there any unusual console messages right before the system</td>
<td></td>
</tr>
<tr>
<td>crashed?</td>
<td></td>
</tr>
<tr>
<td>Did you add any parameters to the /etc/system file?</td>
<td></td>
</tr>
<tr>
<td>Did the problem start recently?</td>
<td></td>
</tr>
</tbody>
</table>
Managing System Messages

This chapter describes system messaging features in the Solaris Operating System.

Viewing System Messages

System messages display on the console device. The text of most system messages look like this:

[ID msgid facility.priority]

For example:

[ID 672855 kern.notice] syncing file systems...

If the message originated in the kernel, the kernel module name is displayed. For example:

Oct 1 14:07:24 mars ufs: [ID 845546 kern.notice] alloc: /: file system full

When a system crashes, it might display a message on the system console like this:

panic: error message

Less frequently, this message might be displayed instead of the panic message:

Watchdog reset !

The error logging daemon, syslogd, automatically records various system warnings and errors in message files. By default, many of these system messages are displayed on the system console and are stored in the /var/adm directory. You can direct where these messages are stored by setting up system message logging. For more information, see “Customizing System Message Logging” on page 224. These messages can alert you to system problems, such as a device that is about to fail.
The `/var/adm` directory contains several message files. The most recent messages are in `/var/adm/messages` file (and in `messages.*`), and the oldest are in the `messages.3` file. After a period of time (usually every ten days), a new `messages` file is created. The `messages.0` file is renamed `messages.1`, `messages.1` is renamed `messages.2`, and `messages.2` is renamed `messages.3`. The current `/var/adm/messages.3` file is deleted.

Because the `/var/adm` directory stores large files containing messages, crash dumps, and other data, this directory can consume lots of disk space. To keep the `/var/adm` directory from growing too large, and to ensure that future crash dumps can be saved, you should remove unneeded files periodically. You can automate this task by using the `crontab` file. For more information on automating this task, see “How to Delete Crash Dump Files” on page 89 and Chapter 8, “Scheduling System Tasks (Tasks).”

### How to View System Messages

- Display recent messages generated by a system crash or reboot by using the `dmesg` command.

  ```bash
  $ dmesg
  
  Or, use the `more` command to display one screen of messages at a time.

  ```bash
  $ more /var/adm/messages
  ```

**Example 15–1**  
Viewing System Messages

The following example shows output from the `dmesg` command.

```bash
$ dmesg
Jan 3 08:44:41 starbug genunix: [ID 540533 kern.notice] SunOS Release 5.10 ...
Jan 3 08:44:41 starbug genunix: [ID 913631 kern.notice] Copyright 1983-2003 ...
Jan 3 08:44:41 starbug genunix: [ID 678236 kern.info] Ethernet address ...
Jan 3 08:44:41 starbug unix: [ID 389951 kern.info] mem = 131072K (0x8000000)
Jan 3 08:44:41 starbug unix: [ID 930857 kern.info] avail mem = 12188768
Jan 3 08:44:41 starbug rootnex: [ID 466748 kern.info] root nexus = Sun Ultra 5/10 UPA/PCI (UltraSPARC-IIi 333MHz)
Jan 3 08:44:41 starbug rootnex: [ID 349649 kern.info] pcipsy0 at root: UPA 0/1f0/x0
Jan 3 08:44:41 starbug genunix: [ID 936769 kern.info] pcipsy0 is /pci@1f,0
Jan 3 08:44:41 starbug pcipsy: [ID 370704 kern.info] PCI-device: pci@1,1, simba0
Jan 3 08:44:41 starbug genunix: [ID 936769 kern.info] simba0 is /pci@1f,0/pci@1,1
Jan 3 08:44:41 starbug pcipsy: [ID 370704 kern.info] PCI-device: pci@1, simba1
Jan 3 08:44:41 starbug genunix: [ID 936769 kern.info] simba1 is /pci@1f,0/pci@1
Jan 3 08:44:57 starbug simba: [ID 370704 kern.info] PCI-device: ide@3, uata0
Jan 3 08:44:57 starbug genunix: [ID 936769 kern.info] uata0 is /pci@1f,0/pci@1,1/ide@3
Jan 3 08:44:57 starbug uata: [ID 114370 kern.info] dad0 at pci1095,6460
```
System Log Rotation

System log files are rotated by the `logadm` command from an entry in the root `crontab` file. The `/usr/lib/newsyslog` script is no longer used.

The system log rotation is defined in the `/etc/logadm.conf` file. This file includes log rotation entries for processes such as `syslogd`. For example, one entry in the `/etc/logadm.conf` file specifies that the `/var/log/syslog` file is rotated weekly unless the file is empty. The most recent `syslog` file becomes `syslog.0`, the next most recent becomes `syslog.1`, and so on. Eight previous `syslog` log files are kept.

The `/etc/logadm.conf` file also contains time stamps of when the last log rotation occurred.

You can use the `logadm` command to customize system logging and to add additional logging in the `/etc/logadm.conf` file as needed.

For example, to rotate the Apache access and error logs, use the following commands:

```
# logadm -w /var/apache/logs/access_log -s 100m
# logadm -w /var/apache/logs/error_log -s 10m
```

In this example, the Apache `access_log` file is rotated when it reaches 100 MB in size, with a `.0`, `.1`, (and so on) suffix, keeping 10 copies of the old `access_log` file. The `error_log` is rotated when it reaches 10 MB in size with the same suffixes and number of copies as the `access_log` file.

The `/etc/logadm.conf` entries for the preceding Apache log rotation examples look similar to the following:

```
# cat /etc/logadm.conf
...
/var/apache/logs/error_log -s 10m
/var/apache/logs/access_log -s 100m
```

For more information, see `logadm(1M)`.

You can use the `logadm` command as superuser or by assuming an equivalent role (with Log Management rights). With role-based access control (RBAC), you can grant non-root users the privilege of maintaining log files by providing access to the `logadm` command.

See Also  For more information, see the `dmesg(1M)` man page.
For example, add the following entry to the `/etc/user_attr` file to grant user andy the ability to use the `logadm` command:

`andy:::profiles=Log Management`

Or, you can set up a role for log management by using the Solaris Management Console. For more information about setting up a role, see "Role-Based Access Control (Overview)" in *System Administration Guide: Security Services*.

---

**Customizing System Message Logging**

You can capture additional error messages that are generated by various system processes by modifying the `/etc/syslog.conf` file. By default, the `/etc/syslog.conf` file directs many system process messages to the `/var/adm/messages` files. Crash and boot messages are stored here as well. To view `/var/adm` messages, see “How to View System Messages” on page 222.

The `/etc/syslog.conf` file has two columns separated by tabs:

```
facility.level ... action
```

- **facility.level** A facility or system source of the message or condition. May be a comma-separated listed of facilities. Facility values are listed in *Table 15–1*. A level, indicates the severity or priority of the condition being logged. Priority levels are listed in *Table 15–2*.

  Do not put two entries for the same facility on the same line, if the entries are for different priorities. Putting a priority in the syslog file indicates that all messages of that all messages of that priority or higher are logged, with the last message taking precedence. For a given facility and level, `syslogd` matches all messages for that level and all higher levels.

- **action** The action field indicates where the messages are forwarded.

The following example shows sample lines from a default `/etc/syslog.conf` file.

```
user.err /dev/sysmsg
user.err /var/adm/messages
user.alert 'root, operator'
user.emerg *
```

This means the following user messages are automatically logged:

- User errors are printed to the console and also are logged to the `/var/adm/messages` file.
- User messages requiring immediate action (`alert`) are sent to the root and operator users.
- User emergency messages are sent to individual users.
**Note** – Placing entries on separate lines might cause messages to be logged out of order if a log target is specified more than once in the `/etc/syslog.conf` file. Note that you can specify multiple selectors in a single line entry, each separated by a semi-colon.

The most common error condition sources are shown in the following table. The most common priorities are shown in Table 15–2 in order of severity.

<table>
<thead>
<tr>
<th>TABLE 15–1</th>
<th>Source Facilities for <code>syslog.conf</code> Messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>Description</td>
</tr>
<tr>
<td>kern</td>
<td>The kernel</td>
</tr>
<tr>
<td>auth</td>
<td>Authentication</td>
</tr>
<tr>
<td>daemon</td>
<td>All daemons</td>
</tr>
<tr>
<td>mail</td>
<td>Mail system</td>
</tr>
<tr>
<td>lp</td>
<td>Spooling system</td>
</tr>
<tr>
<td>user</td>
<td>User processes</td>
</tr>
</tbody>
</table>

**Note** – The number of syslog facilities that can be activated in the `/etc/syslog.conf` file is unlimited.

<table>
<thead>
<tr>
<th>TABLE 15–2</th>
<th>Priority Levels for <code>syslog.conf</code> Messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priority</td>
<td>Description</td>
</tr>
<tr>
<td>emerg</td>
<td>System emergencies</td>
</tr>
<tr>
<td>alert</td>
<td>Errors requiring immediate correction</td>
</tr>
<tr>
<td>crit</td>
<td>Critical errors</td>
</tr>
<tr>
<td>err</td>
<td>Other errors</td>
</tr>
<tr>
<td>info</td>
<td>Informational messages</td>
</tr>
<tr>
<td>debug</td>
<td>Output used for debugging</td>
</tr>
<tr>
<td>none</td>
<td>This setting doesn’t log output</td>
</tr>
</tbody>
</table>
How to Customize System Message Logging

1 Become superuser or assume an equivalent role.
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2 Edit the /etc/syslog.conf file, adding or changing message sources, priorities, and message locations according to the syntax described in syslog.conf(4).

3 Exit the file, saving the changes.

Example 15–2 Customizing System Message Logging

This sample /etc/syslog.conf user.emerg facility sends user emergency messages to root and individual users.

```
user.emerg 'root, *'
```

Enabling Remote Console Messaging

The following new console features improve your ability to troubleshoot remote systems:

- The consadm command enables you to select a serial device as an auxiliary (or remote) console. Using the consadm command, a system administrator can configure one or more serial ports to display redirected console messages and to host su login sessions when the system transitions between run levels. This feature enables you to dial in to a serial port with a modem to monitor console messages and participate in init state transitions. (For more information, see su login(1M) and the step-by-step procedures that follow.)

   While you can log in to a system using a port configured as an auxiliary console, it is primarily an output device displaying information that is also displayed on the default console. If boot scripts or other applications read and write to and from the default console, the write output displays on all the auxiliary consoles, but the input is only read from the default console. (For more information on using the consadm command during an interactive login session, see “Using the consadm Command During an Interactive Login Session” on page 228.)

- Console output now consists of kernel and syslog messages written to a new pseudo device, /dev/sysmsg. In addition, rc script startup messages are written to /dev/msglog. Previously, all of these messages were written to /dev/console.

   Scripts that direct console output to /dev/console need to be changed to /dev/msglog if you want to see script messages displayed on the auxiliary consoles. Programs referencing /dev/console should be explicitly modified to use syslog() or strlog() if you want messages to be redirected to an auxiliary device.
The **consadm** command runs a daemon to monitor auxiliary console devices. Any display device designated as an auxiliary console that disconnects, hangs up or loses carrier, is removed from the auxiliary console device list and is no longer active. Enabling one or more auxiliary consoles does not disable message display on the default console; messages continue to display on `/dev/console`.

### Using Auxiliary Console Messaging During Run Level Transitions

Keep the following in mind when using auxiliary console messaging during run level transitions:

- **Input cannot come from an auxiliary console if user input is expected for an rc script that is run when a system is booting.** The input must come from the default console.

- The **sulogin** program, invoked by **init** to prompt for the superuser password when transitioning between run levels, has been modified to send the superuser password prompt to each auxiliary device in addition to the default console device.

- When the system is in single-user mode and one or more auxiliary consoles are enabled using the **consadm** command, a console login session runs on the first device to supply the correct superuser password to the **sulogin** prompt. When the correct password is received from a console device, **sulogin** disables input from all other console devices.

- A message is displayed on the default console and the other auxiliary consoles when one of the consoles assumes single-user privileges. This message indicates which device has become the console by accepting a correct superuser password. If there is a loss of carrier on the auxiliary console running the single-user shell, one of two actions might occur:
  - If the auxiliary console represents a system at run level 1, the system proceeds to the default run level.
  - If the auxiliary console represents a system at run level S, the system displays the **ENTER RUN LEVEL (0-6, s or S) :** message on the device where the **init** or **shutdown** command had been entered from the shell. If there isn’t any carrier on that device either, you will have to reestablish carrier and enter the correct run level. **init** or **shutdown** command will not redisplay the run-level prompt.

- **If you are logged in to a system using a serial port, and an init or shutdown command is issued to transition to another run level, the login session is lost whether this device is the auxiliary console or not.** This situation is identical to Solaris releases without auxiliary console capabilities.

- **Once a device is selected as an auxiliary console using the **consadm** command, it remains the auxiliary console until the system is rebooted or the auxiliary console is unselected. However, the **consadm** command includes an option to set a device as the auxiliary console across system reboots.** (See the following procedure for step-by-step instructions.)
Using the **consadm** Command During an Interactive Login Session

If you want to run an interactive login session by logging into a system using a terminal that is connected to a serial port, and then using the **consadm** command to see the console messages from the terminal, note the following behavior:

- If you use the terminal for an interactive login session while the auxiliary console is active, the console messages are sent to the `/dev/sysmsg` or `/dev/msglog` devices.
- While you issue commands on the terminal, input goes to your interactive session and not to the default console (`/dev/console`).
- If you run the `init` command to change run levels, the remote console software kills your interactive session and runs the `su` login program. At this point, input is accepted only from the terminal and is treated like it's coming from a console device. This allows you to enter your password to the `su` login program as described in "Using Auxiliary Console Messaging During Run Level Transitions" on page 227.

Then, if you enter the correct password on the (auxiliary) terminal, the auxiliary console runs an interactive `su` login session, locks out the default console and any competing auxiliary console. This means the terminal essentially functions as the system console.

- From here you can change to run level 3 or go to another run level. If you change run levels, `su` runs again on all console devices. If you exit or specify that the system should come up to run level 3, then all auxiliary consoles lose their ability to provide input. They revert to being display devices for console messages.

As the system is coming up, you must provide information to `rc` scripts on the default console device. After the system comes back up, the `login` program runs on the serial ports and you can log back into another interactive session. If you've designated the device to be an auxiliary console, you will continue to get console messages on your terminal, but all input from the terminal goes to your interactive session.

▼ How to Enable an Auxiliary (Remote) Console

The **consadm** daemon does not start monitoring the port until after you add the auxiliary console with the **consadm** command. As a security feature, console messages are only redirected until carrier drops, or the auxiliary console device is unselected. This means carrier must be established on the port before you can successfully use the **consadm** command.

For more information on enabling an auxiliary console, see the **consadm**(1m) man page.

1 Log in to the system as superuser.

2 Enable the auxiliary console.

   ```
   # consadm -a devicename
   ```
Verify that the current connection is the auxiliary console.

```
# consadm
```

Example 15–3 Enabling an Auxiliary (Remote) Console

```
# consadm -a /dev/term/a
# consadm /dev/term/a
```

**How to Display a List of Auxiliary Consoles**

1. Log in to the system as superuser.

2. Select one of the following steps:
   a. Display the list of auxiliary consoles.
      
      ```
      # consadm
      /dev/term/a
      ```
   b. Display the list of persistent auxiliary consoles.
      
      ```
      # consadm -p
      /dev/term/b
      ```

**How to Enable an Auxiliary (Remote) Console Across System Reboots**

1. Log in to the system as superuser.

2. Enable the auxiliary console across system reboots.

   ```
   # consadm -a -p devicename
   ```

   This adds the device to the list of persistent auxiliary consoles.

3. Verify that the device has been added to the list of persistent auxiliary consoles.

   ```
   # consadm
   ```

Example 15–4 Enabling an Auxiliary (Remote) Console Across System Reboots

```
# consadm -a -p /dev/term/a
# consadm /dev/term/a
```
How to Disable an Auxiliary (Remote) Console

1. Log in to the system as superuser.
2. Select one of the following steps:
   a. Disable the auxiliary console.
      
      ```bash
      # consadm -d devicename
      ```
      
   or
   b. Disable the auxiliary console and remove it from the list of persistent auxiliary consoles.
      
      ```bash
      # consadm -p -d devicename
      ```
3. Verify that the auxiliary console has been disabled.
   
   ```bash
   # consadm
   ```

Example 15–5    Disabling an Auxiliary (Remote) Console

```bash
# consadm -d /dev/term/a
# consadm
```
Managing Core Files (Tasks)

This chapter describes how to manage core files with the `coreadm` command.

For information on the procedures associated with managing core files, see “Managing Core Files (Task Map)” on page 231.

### Managing Core Files (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Display the current core dump configuration</td>
<td>Display the current core dump configuration by using the <code>coreadm</code> command.</td>
<td>“How to Display the Current Core Dump Configuration” on page 234</td>
</tr>
<tr>
<td>2. Modify the core dump configuration</td>
<td>Modify the core dump configuration to do one of the following:</td>
<td>“How to Set a Core File Name Pattern” on page 235</td>
</tr>
<tr>
<td></td>
<td>Set a core file name pattern.</td>
<td>“How to Enable a Per-Process Core File Path” on page 235</td>
</tr>
<tr>
<td></td>
<td>Enable a per-process core file path.</td>
<td>“How to Enable a Global Core File Path” on page 235</td>
</tr>
<tr>
<td>3. Examine a Core Dump File</td>
<td>Use the <code>proc</code> tools to view a core dump file.</td>
<td>“Examining Core Files” on page 236</td>
</tr>
</tbody>
</table>
Managing Core Files Overview

Core files are generated when a process or application terminates abnormally. Core files are managed with the `coreadm` command.

For example, you can use the `coreadm` command to configure a system so that all process core files are placed in a single system directory. This means it is easier to track problems by examining the core files in a specific directory whenever a Solaris process or daemon terminates abnormally.

Configurable Core File Paths

Two new configurable core file paths that can be enabled or disabled independently of each other are:

- A per-process core file path, which defaults to `core` and is enabled by default. If enabled, the per-process core file path causes a core file to be produced when the process terminates abnormally. The per-process path is inherited by a new process from its parent process.
  
  When generated, a per-process core file is owned by the owner of the process with read/write permissions for the owner. Only the owning user can view this file.

- A global core file path, which defaults to `core` and is disabled by default. If enabled, an additional core file with the same content as the per-process core file is produced by using the global core file path.

  When generated, a global core file is owned by superuser with read/write permissions for superuser only. Non-privileged users cannot view this file.

When a process terminates abnormally, it produces a core file in the current directory by default. If the global core file path is enabled, each abnormally terminating process might produce two files, one in the current working directory, and one in the global core file location.

By default, a `setuid` process does not produce core files using either the global or per-process path.

Expanded Core File Names

If a global core file directory is enabled, core files can be distinguished from one another by using the variables described in the following table.
<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Variable Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>%d</td>
<td>Executable file directory name, up to a maximum of MAXPATHLEN characters</td>
</tr>
<tr>
<td>%f</td>
<td>Executable file name, up to a maximum of MAXCOMLEN characters</td>
</tr>
<tr>
<td>%g</td>
<td>Effective group ID</td>
</tr>
<tr>
<td>%m</td>
<td>Machine name (uname -m)</td>
</tr>
<tr>
<td>%n</td>
<td>System node name (uname -n)</td>
</tr>
<tr>
<td>%p</td>
<td>Process ID</td>
</tr>
<tr>
<td>%t</td>
<td>Decimal value of time(2)</td>
</tr>
<tr>
<td>%u</td>
<td>Effective user ID</td>
</tr>
<tr>
<td>%z</td>
<td>Name of the zone in which process is executed (zonename)</td>
</tr>
<tr>
<td>%%</td>
<td>Literal %</td>
</tr>
</tbody>
</table>

For example, if the global core file path is set to:

```
/var/core/core.%f.%p
```

and a sendmail process with PID 12345 terminates abnormally, it produces the following core file:

```
/var/core/core.sendmail.12345
```

## Setting the Core File Name Pattern

You can set a core file name pattern on a global, zone, or per-process basis. In addition, you can set the per-process defaults that persist across a system reboot.

For example, the following `coreadm` command sets the default per-process core file pattern. This setting applies to all processes that have not explicitly overridden the default core file pattern. This setting persists across system reboots.

```
# coreadm -i /var/core/core.%f.%p
```

This `coreadm` command sets the per-process core file name pattern for any processes:

```
$ coreadm -p /var/core/core.%f.%p $$
```

The $$ symbols represent a placeholder for the process ID of the currently running shell. The per-process core file name pattern is inherited by all child processes.
Once a global or per-process core file name pattern is set, it must be enabled with the `coreadm -e` command. See the following procedures for more information.

You can set the core file name pattern for all processes run during a user's login session by putting the command in a user's `$HOME/.profile` or `.login` file.

**Enabling setuid Programs to Produce Core Files**

You can use the `coreadm` command to enable or disable setuid programs to produce core files for all system processes or on a per-process basis by setting the following paths:

- If the global setuid option is enabled, a global core file path allows all setuid programs on a system to produce core files.
- If the per-process setuid option is enable, a per-process core file path allows specific setuid processes to produce core files.

By default, both flags are disabled. For security reasons, the global core file path must be a full pathname, starting with a leading `/`. If superuser disables per-process core files, individual users cannot obtain core files.

The setuid core files are owned by superuser with read/write permissions for superuser only. Regular users cannot access them even if the process that produced the setuid core file was owned by an ordinary user.

For more information, see `coreadm(1M)`.

**How to Display the Current Core Dump Configuration**

Use the `coreadm` command without any options to display the current core dump configuration.

```
$ coreadm
  global core file pattern:
  global core file content: default
  init core file pattern: core
  init core file content: default
  global core dumps: disabled
  per-process core dumps: enabled
  global setid core dumps: disabled
  per-process setid core dumps: disabled
  global core dump logging: disabled
```
How to Set a Core File Name Pattern

- Determine whether you want to set a per-process or global core file and select one of the following:
  
a. Set a per-process file name pattern.
     
     $ coreadm -p HOME/corefiles/%f.%p $$
  
b. Become superuser or assume an equivalent role.
     Roles contain authorizations and privileged commands. For more information about roles, see "Configuring RBAC (Task Map)" in System Administration Guide: Security Services.
  
c. Set a global file name pattern.
     
     # coreadm -g /var/corefiles/%f.%p

How to Enable a Per-Process Core File Path

1 Become superuser or assume an equivalent role.
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2 Enable a per-process core file path.
   
   # coreadm -e process

3 Display the current process core file path to verify the configuration.
   
   $ coreadm $$
   1180: /home/kryten/corefiles/%f.%p

How to Enable a Global Core File Path

1 Become superuser or assume an equivalent role.
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2 Enable a global core file path.
   
   # coreadm -e global -g /var/core/core.%f.%p
3 Display the current process core file path to verify the configuration.

```bash
# coreadm
global core file pattern: /var/core/core.%f.%p
global core file content: default
init core file pattern: core
init core file content: default
global core dumps: enabled
per-process core dumps: enabled
global setid core dumps: disabled
per-process setid core dumps: disabled
global core dump logging: disabled
```

Troubleshooting Core File Problems

Error Message

NOTICE: ‘set allow_setid_core = 1’ in /etc/system is obsolete
NOTICE: Use the coreadm command instead of ‘allow_setid_core’

Cause
You have an obsolete parameter that allows setuid core files in your /etc/system file.

Solution
Remove allow_setid_core=1 from the /etc/system file. Then use the coreadm command to enable global setid core file paths.

Examining Core Files

Some of the proc tools have been enhanced to examine process core files as well as live processes. The proc tools are utilities that can manipulate features of the /proc file system.

The /usr/proc/bin/pstack, pmap, pldd, pflags, and pcred tools can now be applied to core files by specifying the name of the core file on the command line, similar to the way you specify a process ID to these commands.

For more information on using proc tools to examine core files, see proc(1).

EXAMPLE 16-1 Examing Core Files With proc Tools

```bash
$ ./a.out
Segmentation Fault(coredump)
$ /usr/proc/bin/pstack ./core
core './core' of 19305: ./a.out
000108c4 main (1, ffbef5cc, ffbef5d4, 20000, 0, 0) + 1c
```
EXAMPLE 16–1    Examining Core Files With proc Tools  (Continued)

00010880  _start  (0, 0, 0, 0, 0) + b8
Managing System Crash Information (Tasks)

This chapter describes how to manage system crash information in the Solaris Operating System.

For information on the procedures associated with managing system crash information, see “Managing System Crash Information (Task Map)” on page 239.

Managing System Crash Information (Task Map)

The following task map identifies the procedures needed to manage system crash information.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Display the current crash dump configuration.</td>
<td>Display the current crash dump configuration by using the dumpadm command.</td>
<td>“How to Display the Current Crash Dump Configuration” on page 243</td>
</tr>
<tr>
<td>2. Modify the crash dump configuration.</td>
<td>Use the dumpadm command to specify the type of data to dump, whether or not the system will use a dedicated dump device, the directory for saving crash dump files, and the amount of space that must remain available after crash dump files are written.</td>
<td>“How to Modify a Crash Dump Configuration” on page 244</td>
</tr>
<tr>
<td>3. Examine a crash dump file.</td>
<td>Use the mdb command to view crash dump files.</td>
<td>“How to Examine a Crash Dump” on page 245</td>
</tr>
<tr>
<td>4. (Optional) Recover from a full crash dump directory.</td>
<td>The system crashes, but no room is available in the savecore directory, and you want to save some critical system crash dump information.</td>
<td>“How to Recover From a Full Crash Dump Directory (Optional)” on page 246</td>
</tr>
</tbody>
</table>
System Crashes (Overview)

System crashes can occur due to hardware malfunctions, I/O problems, and software errors. If the system crashes, it will display an error message on the console, and then write a copy of its physical memory to the dump device. The system will then reboot automatically. When the system reboots, the `savecore` command is executed to retrieve the data from the dump device and write the saved crash dump to your `savecore` directory. The saved crash dump files provide invaluable information to your support provider to aid in diagnosing the problem.

ZFS Support for Swap Devices

If you select a ZFS root file system during an initial installation or use live upgrade to migrate from a UFS root file system to a ZFS root file system, a swap area is created on a ZFS volume in the ZFS root pool. The swap area size is based on 1/4 to 1/2 of physical memory.

For example:

```
# swap -l
swapfile dev  swaplo blocks  free
/dev/zvol/dsk/rpool/swap 253,3 16 8257520 8257520
```

A ZFS volume is also created for the dump device. Currently, the swap area and the dump device must reside on separate ZFS volumes.

If you need to modify your ZFS swap area after installation, then use the `swap` command as in previous Solaris releases. For more information, see Chapter 21, “Configuring Additional Swap Space (Tasks),” in System Administration Guide: Devices and File Systems.

For information about managing dump devices, see "Managing System Crash Dump Information" on page 243.

x86: System Crashes in the GRUB Boot Environment

If a system crash occurs on an x86 based system in the GRUB boot environment, it is possible that the SMF service that manages the GRUB boot archive, `svc:/system/boot-archive:default`, might fail on the next system reboot. To troubleshoot this type of problem, see "x86: What to Do if the SMF Boot Archive Service Fails During a
The `savecore` command runs automatically after a system crash to retrieve the crash dump information from the dump device and writes a pair of files called `unix.X` and `vmcore.X`, where `X` identifies the dump sequence number. Together, these files represent the saved system crash dump information.

Crash dump files are sometimes confused with `core` files, which are images of user applications that are written when the application terminates abnormally.

Crash dump files are saved in a predetermined directory, which by default, is `/var/crash/hostname`. In previous Solaris releases, crash dump files were overwritten when a system rebooted, unless you manually enabled the system to save the images of physical memory in a crash dump file. Now, the saving of crash dump files is enabled by default.

System crash information is managed with the `dumpadm` command. For more information, see “The `dumpadm` Command” on page 242.

You can examine the control structures, active tables, memory images of a live or crashed system kernel, and other information about the operation of the kernel by using the `mdb` utility. Using `mdb` to its full potential requires a detailed knowledge of the kernel, and is beyond the scope of this manual. For information on using this utility, see the `mdb(1)` man page.

Additionally, crash dumps saved by `savecore` can be useful to send to a customer service representative for analysis of why the system is crashing.
The **dumpadm** Command

Use the *dumpadm* command to manage system crash dump information in the Solaris Operating System.

- The *dumpadm* command enables you to configure crash dumps of the operating system. The *dumpadm* configuration parameters include the dump content, dump device, and the directory in which crash dump files are saved.

- Dump data is stored in compressed format on the dump device. Kernel crash dump images can be as big as 4 Gbytes or more. Compressing the data means faster dumping and less disk space needed for the dump device.

- Saving crash dump files is run in the background when a dedicated dump device, not the swap area, is part of the dump configuration. This means a booting system does not wait for the *savecore* command to complete before going to the next step. On large memory systems, the system can be available before *savecore* completes.

- System crash dump files, generated by the *savecore* command, are saved by default.

- The *savecore* -L command is a new feature which enables you to get a crash dump of the live running the Solaris OS. This command is intended for troubleshooting a running system by taking a snapshot of memory during some bad state, such as a transient performance problem or service outage. If the system is up and you can still run some commands, you can execute the *savecore* -L command to save a snapshot of the system to the dump device, and then immediately write out the crash dump files to your *savecore* directory. Because the system is still running, you can only use the *savecore* -L command if you have configured a dedicated dump device.

The following table describes *dumpadm*’s configuration parameters.

<table>
<thead>
<tr>
<th>Dump Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dump device</td>
<td>The device that stores dump data temporarily as the system crashes. When the dump device is not the swap area, <em>savecore</em> runs in the background, which speeds up the boot process.</td>
</tr>
<tr>
<td>savecore directory</td>
<td>The directory that stores system crash dump files.</td>
</tr>
<tr>
<td>dump content</td>
<td>Type of memory data to dump.</td>
</tr>
<tr>
<td>minimum free space</td>
<td>Minimum amount of free space required in the <em>savecore</em> directory after saving crash dump files. If no minimum free space has been configured, the default is one Mbyte.</td>
</tr>
</tbody>
</table>

The dump configuration parameters are managed by the *dumpadm* command.

For more information, see *dumpadm*(1M).

System storages (Overview)
How the `dumpadm` Command Works

During system startup, the `dumpadm` command is invoked by the `svc:/system/dumpadm:default` service to configure crash dumps parameters.

Specifically, `dumpadm` initializes the dump device and the dump content through the `/dev/dump` interface.

After the dump configuration is complete, the `savecore` script looks for the location of the crash dump file directory. Then, `savecore` is invoked to check for crash dumps and check the content of the `minfree` file in the crash dump directory.

Dump Devices and Volume Managers

Do not configure a dedicated dump device that is under the control of volume management product such as Solaris Volume Manager for accessibility and performance reasons. You can keep your swap areas under the control of Solaris Volume Manager and this is a recommend practice, but keep your dump device separate.

Managing System Crash Dump Information

Keep the following key points in mind when you are working with system crash information:

- You must be superuser or assume an equivalent role to access and manage system crash information.
- Do not disable the option of saving system crash dumps. System crash dump files provide an invaluable way to determine what is causing the system to crash.
- Do not remove important system crash information until it has been sent to your customer service representative.

How to Display the Current Crash Dump Configuration

1. Become superuser or assume an equivalent role.
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2. Display the current crash dump configuration.

   ```
   # dumpadm
   Dump content: kernel pages
   Dump device: /dev/dsk/c0t3d0s1 (swap)
   Savecore directory: /var/crash/venus
   Savecore enabled: yes
   ```
The preceding example output means:

- The dump content is kernel memory pages.
- Kernel memory will be dumped on a swap device, /dev/dsk/c0t3d0s1. You can identify all your swap areas with the swap -l command.
- System crash dump files will be written in the /var/crash/venus directory.
- Saving crash dump files is enabled.

▼ How to Modify a Crash Dump Configuration

1 Become superuser or assume an equivalent role.
Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2 Identify the current crash dump configuration.

```
# dumpadm
```

```
Dump content: kernel pages
Dump device: /dev/dsk/c0t3d0s1 (swap)
Savecore directory: /var/crash/pluto
Savecore enabled: yes
```

This output identifies the default dump configuration for a system running the Solaris 10 release.

3 Modify the crash dump configuration.

```
# dumpadm -c content -d dump-device -m nnnk | nnnm | nnn% -n -s savecore-dir
```

- **-c content** Specifies the type of data to dump. Use kernel to dump all kernel memory, all to dump all of memory, or curproc, to dump kernel memory and the memory pages of the process whose thread was executing when the crash occurred. The default dump content is kernel memory.

- **-d dump-device** Specifies the device that stores dump data temporarily as the system crashes. The primary swap device is the default dump device.

- **-m nnnk | nnnm | nnn%** Specifies the minimum free disk space for saving crash dump files by creating a minfree file in the current savecore directory. This parameter can be specified in Kbytes (nnnk), Mbytes (nnnm) or file system size percentage (nnn%). The savecore command consults this file prior to writing the crash dump files. If writing the crash dump files, based on their size, would decrease the amount of free space below the minfree threshold, the dump files are not written and an error message is logged. For information on recovering from
this scenario, see “How to Recover From a Full Crash Dump Directory (Optional)” on page 246.

- \( n \)  
  Specifies that savecore should not be run when the system reboots. This dump configuration is not recommended. If system crash information is written to the swap device, and savecore is not enabled, the crash dump information is overwritten when the system begins to swap.

- \( s \)  
  Specifies an alternate directory for storing crash dump files. The default directory is \(/var/crash/hostname\) where \(hostname\) is the output of the `uname -n` command.

**Example 17–1**  
Modifying a Crash Dump Configuration

In this example, all of memory is dumped to the dedicated dump device, \(/dev/dsk/c0t1d0s1\), and the minimum free space that must be available after the crash dump files are saved is 10% of the file system space.

```bash
# dumpadm
  Dump content: kernel pages
  Dump device: /dev/dsk/c0t3d0s1 (swap)
Savecore directory: /var/crash/pluto
Savecore enabled: yes
# dumpadm -c all -d /dev/dsk/c0t1d0s1 -m 10%
  Dump content: all pages
  Dump device: /dev/dsk/c0t1d0s1 (dedicated)
Savecore directory: /var/crash/pluto (minfree = 77071KB)
Savecore enabled: yes
```

**How to Examine a Crash Dump**

1. **Become superuser or assume an equivalent role.**
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in *System Administration Guide: Security Services*.

2. **Examine a crash dump by using the `mdb` utility.**
   ```bash
   # /usr/bin/mdb [-k] crashdump-file
   -k                     Specifies kernel debugging mode by assuming the file is an operating system crash dump file.
   crashdump-file         Specifies the operating system crash dump file.
   ```
Examining a Crash Dump

The following example shows sample output from the `mdb` utility, which includes system information and identifies the tunables that are set in this system’s `/etc/system` file.

```
# /usr/bin/mdb -k unix.0
Loading modules: [ unix krtld genunix ip nfs ipc ptm ]
> ::status
debugging crash dump /dev/mem (64-bit) from ozlo
operating system: 5.10 Generic (sun4u)
> ::system
set ufs_ninode=0x9c40 [0t40000]
set ncsize=0x4e20 [0t20000]
set pt_cnt=0x400 [0t1024]
```

### How to Recover From a Full Crash Dump Directory (Optional)

In this scenario, the system crashes but no room is left in the `savecore` directory, and you want to save some critical system crash dump information.

1. Log in as superuser or assume an equivalent role after the system reboots.

2. Clear out the `savecore` directory, usually `/var/crash/hostname`, by removing existing crash dump files that have already been sent to your service provider. Or, run the `savecore` command and specify an alternate directory that has sufficient disk space. See the next step.

3. Manually run the `savecore` command and if necessary, specify an alternate `savecore` directory.
   
   ```
   # savecore [ directory ]
   ```

```

Example 17–2

Display crash status information.

```
# /usr/bin/mdb file-name
> ::status
> ::system
```

Managing System Crash Dump Information
How to Disable or Enable Saving Crash Dumps

1. Become superuser or assume an equivalent role.
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2. Disable or enable the saving of crash dumps on your system.
   
   # dumpadm -n | -y

Example 17–3 Disabling the Saving of Crash Dumps

This example illustrates how to disable the saving of crash dumps on your system.

   # dumpadm -n
   Dump content: all pages
   Dump device: /dev/dsk/c0t1d0s1 (dedicated)
   Savecore directory: /var/crash/pluto (minfree = 77071KB)
   Savecore enabled: no

Example 17–4 Enabling the Saving of Crash Dumps

This example illustrates how to enable the saving of crash dump on your system.

   # dumpadm -y
   Dump content: all pages
   Dump device: /dev/dsk/c0t1d0s1 (dedicated)
   Savecore directory: /var/crash/pluto (minfree = 77071KB)
   Savecore enabled: yes
This chapter describes miscellaneous software problems that might occur occasionally and are relatively easy to fix. Troubleshooting miscellaneous software problems includes solving problems that aren’t related to a specific software application or topic, such as unsuccessful reboots and full file systems. Resolving these problems are described in the following sections.

This is a list of the information in this chapter.

- “x86: What to Do if the Multiboot Module From Previous GRUB Implementation Is Loaded at Boot Time” on page 249
- “What to Do if Rebooting Fails” on page 250
- “x86: What to Do if the SMF Boot Archive Service Fails During a System Reboot” on page 254
- “What to Do if a System Hangs” on page 255
- “What to Do if a File System Fills Up” on page 256
- “What to Do if File ACLs Are Lost After Copy or Restore” on page 257
- “Troubleshooting Backup Problems” on page 257
- “Troubleshooting Common Agent Container Problems in the Solaris OS” on page 259

**x86: What to Do if the Multiboot Module From Previous GRUB Implementation Is Loaded at Boot Time**

The Solaris installation software and utilities, including the bootadm command, use the presence of the /boot/multiboot and /platform/i86pc/multiboot files to determine if the system’s running OS or the Solaris installation software implements the GRUB boot method or the Solaris Device Configuration Assistant boot method.

In this Solaris release, hanges have been made to the GRUB bootloader that enable direct loading and booting of the unix kernel. The GRUB multiboot module is no longer used. This implementation integrates the previous multiboot functionality directly into the platform-specific unix kernel module.
If the multiboot module from the previous GRUB implementation is loaded by GRUB, the console displays the following error message:

```
multiboot is no longer used to boot the Solaris Operating System.
The grub entry should be changed to:
kernel$ /platform/i86pc/kernel/$ISADIR/unix
module$ /platform/i86pc/$ISADIR/boot_archive
Press any key to reboot.
```

If the preceding message is displayed, you will need to update the entries in the GRUB menu.lst manually to successfully boot the system. More information can be found at http://www.sun.com/msg/SUNOS-8000-AK. See also the boot(1M) man page. For more information, see “Error Messages Upon System Boot” in System Administration Guide: Basic Administration.

**What to Do if Rebooting Fails**

If the system does not reboot completely, or if it reboots and then crashes again, there might be a software or hardware problem that is preventing the system from booting successfully.

<table>
<thead>
<tr>
<th>Cause of System Not Booting</th>
<th>How to Fix the Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>The system can't find /platform/`uname -m`/kernel/unix.</td>
<td>You may need to change the boot-device setting in the PROM on a SPARC based system. For information on changing the default boot device, see “How to Change the Default Boot Device” in System Administration Guide: Basic Administration.</td>
</tr>
</tbody>
</table>

**Solaris 10:** There is no default boot device on an x86 based system. The message displayed is: Not a UFS filesystem.

**Solaris 10:** Boot the system by using the Configuration Assistant/boot diskette and select the disk from which to boot.

**Solaris 10 1/06:** The GRUB boot archive has become corrupted. Or, the SMF boot archive service has failed. An error message is displayed if you run the svc$\`s -x command.

**Solaris 10 1/06:** Boot the failsafe archive.

There's an invalid entry in the /etc/passwd file.

For information on recovering from an invalid passwd file, see Chapter 12, “Booting a System (Tasks),” in System Administration Guide: Basic Administration.
Cause of System Not Booting | How to Fix the Problem
--- | ---
There’s a hardware problem with a disk or another device. | Check the hardware connections:
  ■ Make sure the equipment is plugged in.
  ■ Make sure all the switches are set properly.
  ■ Look at all the connectors and cables, including the Ethernet cables.
  ■ If all this fails, turn off the power to the system, wait 10 to 20 seconds, and then turn on the power again.

If none of the above suggestions solve the problem, contact your local service provider.

What to Do if You Forgot Root Password

If you forget the root password and you cannot log into the system, you will have to do the following:

  ■ Stop the system by using the keyboard stop sequence.
  ■ **Solaris 10 1/06** On x86 based systems, boot the system in the Solaris failsafe archive.
  ■ **Solaris 10**: Boot the system from a boot server or an install server, or from a local CD-ROM.
  ■ Mount the root (/) file system.
  ■ Remove the root password from the `/etc/shadow` file.
  ■ Reboot the system.
  ■ Log in and set root’s password.

These procedures are fully described in Chapter 12, “Booting a System (Tasks),” in *System Administration Guide: Basic Administration*

**Note** – GRUB based booting is not available on SPARC based systems in this Solaris release.

The following examples describe how to recover from a forgotten root password on both SPARC and x86 based systems.

**EXAMPLE 18-1**  SPARC: What to Do if You Forgot Root Password

The following example shows how to recover when you forget the root password by booting from the network. This example assumes that the boot server is already available. Be sure to apply a new root password after the system has rebooted.
EXAMPLE 18–1  SPARC: What to Do if You Forgot Root Password  (Continued)

(Use keyboard abort sequence—Press Stop A keys to stop the system)
ok boot net -s
# mount /dev/dsk/c0t3d0s0 /a
# cd /a/etc
# TERM=vt100
# export TERM
# vi shadow
(Remove root’s encrypted password string)
# cd /
# umount /a
# init 6

EXAMPLE 18–2  x86: Performing a GRUB Based Boot When You Have Forgotten the Root Password

Solaris 10 1/06: This example assumes that the boot server is already available. Be sure to apply a new root password after the system has rebooted.

Press any key to reboot.
Resetting...

GNU GRUB version 0.95  (631K lower / 2095488K upper memory)

+-------------------------------------------------------------------------+
| Solaris 10.1 nv_14 X86 |
| Solaris failsafe       |
|                       |
+-------------------------------------------------------------------------+  

GNU GRUB version 0.95  (631K lower / 2095488K upper memory)

+-------------------------------------------------------------------------+
| root (hd0,2,a)          |
| kernel /boot/multiboot -B console=ttys0 kernel/unix -s          |
| module /boot/x86.miniroot-safe                                   |
|                     |
+-------------------------------------------------------------------------+

Booting command-list

root (hd0,2,a)
EXAMPLE 18–2  x86: Performing a GRUB Based Boot When You Have Forgotten the Root Password
(Continued)

Filesystem type is ufs, partition type 0x000000bf
kernel /boot/multiboot -B console=ttya kernel/unix -s
[Multiboot-elf, <0x1000000:0x13f3b:0x3941d>, shtab=0x104e258, entry=0x100000]
module /boot/x86.miniroot-safe
SunOS Release 5.10.1 Version snv_14 32-bit
Copyright 1983-2005 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.
Booting to milestone "milestone/single-user:default".
Configuring devices.
Searching for installed OS...
/dev/dsk/c1t0d0s0 -- Solaris 10.1 nv_14 X86

Do you wish to automatically update boot archives? [y,n,?] n

# mount /dev/dsk/c0t0d0s0 /a

# cd /a/etc
# vi shadow
(Remove root's encrypted password string)

# cd /
# umount /a
# init 6

EXAMPLE 18–3  x86: Booting a System When You Have Forgotten the Root Password

Solaris 10: The following example shows how to recover when you forget root's password by
booting from the network. This example assumes that the boot server is already available. Be
sure to apply a new root password after the system has rebooted.

Press any key to reboot.
Resetting...
.
.
.
Initializing system
Please wait...

<<< Current Boot Parameters >>>
Boot path: /pci@0,0/pci-ide@7,1/ide@0/cmdi@0,0:a
Boot args:
Type b [file-name] [boot-flags] <ENTER> to boot with options
or i <ENTER> to enter boot interpreter
or <ENTER> to boot with defaults

<<< timeout in 5 seconds >>>

Select (b)oot or (i)nterpreter: b -s

SunOS Release 5.10 Version amd64-gate-2004-09-30 32-bit
Copyright 1983-2004 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.
DEBUG enabled
Booting to milestone "milestone/single-user:default".
Hostname: venus
NIS domain name is example.com
Requesting System Maintenance Mode
SINGLE USER MODE

Root password for system maintenance (control-d to bypass): xxxxxx
Entering System Maintenance Mode
.
.
.
# mount /dev/dsk/c0t0d0s0 /a
.
.
.
# cd /a/etc
# vi shadow
(Remove root's encrypted password string)
# cd /
# umount /a
# init 6

x86: What to Do if the SMF Boot Archive Service Fails During a System Reboot

Solaris 10 1/06: If the system crashes, the boot archive SMF service, svc:/system/boot-archive:default, might fail when the system is rebooted. If the boot archive service has failed, a message similar to the following is displayed when you run the svcs -x command:

svc:/system/boot-archive:default (check boot archive content)
State: maintenance since Fri Jun 03 10:24:52 2005
Reason: Start method exited with SMF_EXIT_ERR_FATAL.
   See: http://sun.com/msg/SMF-8000-KS
   See: /etc/svc/volatile/system-boot-archive:default.log
Impact: 48 dependent services are not running. (Use -v for list.)

svc:/network/rpc/gss:default (Generic Security Service)
State: uninitialized since Fri Jun 03 10:24:51 2005
Reason: Restarter svc:/network/inetd:default is not running.
   See: http://sun.com/msg/SMF-8000-5H
   See: gssd(1M)
Impact: 10 dependent services are not running. (Use -v for list.)

svc:/application/print/server:default (LP print server)
State: disabled since Fri Jun 03 10:24:51 2005
Reason: Disabled by an administrator.
   See: http://sun.com/msg/SMF-8000-05
   See: lpsched(1M)
Impact: 1 dependent service is not running. (Use -v for list.)

To correct the problem, take the following action:
1. Reboot the system and select the Solaris failsafe archive option from the GRUB boot menu.
2. Answer y when prompted by the system to rebuild the boot archive.
   After the boot archive is rebuilt, the system is ready to boot.
3. To continue booting, clear the SMF boot archive service by using the following command.

   # svcadm clear boot-archive

Note that you must become superuser or the equivalent to run this command.

For more information on rebuilding the GRUB boot archive, see “How to Boot the Failsafe Archive on an x86 Based System” in *System Administration Guide: Basic Administration* and the bootadm(1M) man page.

**What to Do if a System Hangs**

A system can freeze or hang rather than crash completely if some software process is stuck. Follow these steps to recover from a hung system.

1. Determine whether the system is running a window environment and follow these suggestions. If these suggestions don’t solve the problem, go to step 2.
   - Make sure the pointer is in the window where you are typing the commands.
   - Press Control-q in case the user accidentally pressed Control-s, which freezes the screen. Control-s freezes only the window, not the entire screen. If a window is frozen, try using another window.
If possible, log in remotely from another system on the network. Use the `pgrep` command to look for the hung process. If it looks like the window system is hung, identify the process and kill it.

2. Press Control-\ to force a “quit” in the running program and (probably) write out a core file.
3. Press Control-c to interrupt the program that might be running.
4. Log in remotely and attempt to identify and kill the process that is hanging the system.
5. Log in remotely, become superuser or assume an equivalent role and reboot the system.
6. If the system still does not respond, force a crash dump and reboot. For information on forcing a crash dump and booting, see “Forcing a Crash Dump and Reboot of the System” in System Administration Guide: Basic Administration.
7. If the system still does not respond, turn the power off, wait a minute or so, then turn the power back on.
8. If you cannot get the system to respond at all, contact your local service provider for help.

What to Do if a File System Fills Up

When the root (/) file system or any other file system fills up, you will see the following message in the console window:

.... file system full

There are several reasons why a file system fills up. The following sections describe several scenarios for recovering from a full file system. For information on routinely cleaning out old and unused files to prevent full file systems, see Chapter 6, “Managing Disk Use (Tasks).”

File System Fills Up Because a Large File or Directory Was Created

<table>
<thead>
<tr>
<th>Reason Error Occurred</th>
<th>How to Fix the Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Someone accidentally copied a file or directory to the wrong location. This also happens when an application crashes and writes a large core file into the file system.</td>
<td>Log in as superuser or assume an equivalent role and use the <code>ls -lt</code> command in the specific file system to identify which large file is newly created and remove it. For information on removing core files, see “How to Find and Delete core Files” on page 88.</td>
</tr>
</tbody>
</table>
**A TMPFS File System is Full Because the System Ran Out of Memory**

<table>
<thead>
<tr>
<th>Reason Error Occurred</th>
<th>How to Fix the Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>This can occur if TMPFS is trying to write more than it is allowed or some current processes are using a lot of memory.</td>
<td>For information on recovering from tmpfs-related error messages, see the tmpfs(7FS) man page.</td>
</tr>
</tbody>
</table>

**What to Do if File ACLs Are Lost After Copy or Restore**

<table>
<thead>
<tr>
<th>Reason Error Occurred</th>
<th>How to Fix the Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>If files or directories with ACLs are copied or restored into the /tmp directory, the ACL attributes are lost. The /tmp directory is usually mounted as a temporary file system, which doesn’t support UFS file system attributes such as ACLs.</td>
<td>Copy or restore files into the /var/tmp directory instead.</td>
</tr>
</tbody>
</table>

**Troubleshooting Backup Problems**

This section describes some basic troubleshooting techniques to use when backing up and restoring data.

**The root (/) File System Fills Up After You Back Up a File System**

You back up a file system, and the root (/) file system fills up. Nothing is written to the media, and the *ufsdump* command prompts you to insert the second volume of media.
Reason Error Occurred
If you used an invalid destination device name with the \texttt{-f} option, the \texttt{ufsdump} command wrote to a file in the \texttt{/dev} directory of the root (\texttt{/}) file system, filling it up. For example, if you typed \texttt{/dev/rmt/st0} instead of \texttt{/dev/rmt/0}, the backup file \texttt{/dev/rmt/st0} was created on the disk rather than being sent to the tape drive.

How to Fix the Problem
Use the \texttt{ls -tl} command in the \texttt{/dev} directory to identify which file is newly created and abnormally large, and remove it.

Make Sure the Backup and Restore Commands Match
You can only use the \texttt{ufsrestore} command to restore files backed up with the \texttt{ufsdump} command. If you back up with the \texttt{tar} command, restore with the \texttt{tar} command. If you use the \texttt{ufsrestore} command to restore a tape that was written with another command, an error message tells you that the tape is not in \texttt{ufsdump} format.

Check to Make Sure You Have the Right Current Directory
It is easy to restore files to the wrong location. Because the \texttt{ufsdump} command always copies files with full path names relative to the root of the file system, you should usually change to the root directory of the file system before running the \texttt{ufsrestore} command. If you change to a lower-level directory, after you restore the files you will see a complete file tree created under that directory.

Interactive Commands
When you use the interactive command, a \texttt{ufsrestore>} prompt is displayed, as shown in this example:

\begin{verbatim}
# ufsrestore ivf /dev/rmt/0
Verify volume and initialize maps
Media block size is 126
Dump date: Fri Jan 30 10:13:46 2004
Dumped from: the epoch
Level 0 dump of /export/home on starbug:/dev/dsk/c0t0d0s7
Label: none
Extract directories from tape
Initialize symbol table.
ufsrestore >
\end{verbatim}
At the `ufsrestore` prompt, you can use the commands listed on Chapter 28, “UFS Backup and Restore Commands (Reference),” in *System Administration Guide: Devices and File Systems* to find files, create a list of files to be restored, and restore them.

## Troubleshooting Common Agent Container Problems in the Solaris OS

This section addresses problems that you might encounter with the common agent container shared component. In this Solaris release, the common agent container Java program is included in the Solaris OS. The program implements a container for Java management applications. Typically, the container is not visible.

The following are potential problems:
- Port number conflicts
- Compromised security for the superuser password

### Port Number Conflicts

The common agent container occupies the following port numbers by default:

- JMX port (TCP) = 11162
- SNMPAdaptor port (UDP) = 11161
- SNMPAdaptor port for traps (UDP) = 11162
- Commandstream Adaptor port (TCP) = 11163
- RMI connector port (TCP) = 11164

**Note** – If you are troubleshooting an installation of Sun Cluster, the port assignments are different.

If your installation already reserves any of these port numbers, change the port numbers that are occupied by the common agent container, as described in the following procedure.

### How to Check Port Numbers

This procedure shows you how to verify the Solaris port.

1. **Become superuser or assume an equivalent role.**
   
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in *System Administration Guide: Security Services*. 

2. Stop the common agent container management daemon.
   
   ```bash
   # /usr/sbin/cacaoadm stop
   ```

3. Change the port numbers by using the following syntax:
   
   ```bash
   # /usr/sbin/cacaoadm set-param param=value
   ```

   For example, to change the port occupied by the SNMPAdaptor from the default of 11161 to 11165, type:

   ```bash
   # /usr/sbin/cacaoadm set-param snmp-adaptor-port=11165
   ```

4. Restart the common agent container management daemon.
   
   ```bash
   # /usr/sbin/cacaoadm start
   ```

**Compromised Security for Superuser Password**

It might be necessary to regenerate security keys on a host that is running the Java ES. For example, if there is a risk that a superuser password has been exposed or compromised, you should regenerate the security keys. The keys that are used by the common agent container services are stored in `etc/cacao/instances/instance-name/security` directory. The following task shows you how to generate security keys for the Solaris OS.

**How to Generate Security Keys for the Solaris OS**

1. Become superuser or assume an equivalent role.

   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in *System Administration Guide: Security Services*.

2. Stop the common agent container management daemon.
   
   ```bash
   # /usr/sbin/cacaoadm stop
   ```

3. Regenerate the security keys.
   
   ```bash
   # /usr/sbin/cacaoadm create-keys --force
   ```

4. Restart the common agent container management daemon.
   
   ```bash
   # /usr/sbin/cacaoadm start
   ```

**Note** – For the Sun Cluster software, you must propagate this change across all nodes in the cluster.
This chapter provides information on resolving file access problems such as those related to incorrect permissions and search paths.

This is a list of troubleshooting topics in this chapter.

- “Solving Problems With Search Paths (Command not found)” on page 261
- “Solving File Access Problems” on page 264
- “Recognizing Problems With Network Access” on page 264

Users frequently experience problems, and call on a system administrator for help, because they cannot access a program, a file, or a directory that they could previously use.

Whenever you encounter such a problem, investigate one of three areas:

- The user’s search path may have been changed, or the directories in the search path may not be in the proper order.
- The file or directory may not have the proper permissions or ownership.
- The configuration of a system accessed over the network may have changed.

This chapter briefly describes how to recognize problems in each of these three areas and suggests possible solutions.

**Solving Problems With Search Paths (Command not found)**

A message of Command not found indicates one of the following:

- The command is not available on the system.
- The command directory is not in the search path.

To fix a search path problem, you need to know the pathname of the directory where the command is stored.
If the wrong version of the command is found, a directory that has a command of the same name is in the search path. In this case, the proper directory may be later in the search path or may not be present at all.

You can display your current search path by using the echo $PATH command. For example:

```
$ echo $PATH
/home/kryten/bin:/sbin:/usr/sbin:/usr/bin:/usr/dt:/usr/dist/exe
```

Use the which command to determine whether you are running the wrong version of the command. For example:

```
$ which acroread
/usr/doctools/bin/acroread
```

**Note** – The which command looks in the .cshrc file for path information. The which command might give misleading results if you execute it from the Bourne or Korn shell and you have a .cshrc file that contains aliases for the which command. To ensure accurate results, use the which command in a C shell, or, in the Korn shell, use the whence command.

## How to Diagnose and Correct Search Path Problems

1. Display the current search path to verify that the directory for the command is not in your path or that it isn’t misspelled.
   ```
   $ echo $PATH
   ```

2. Check the following:
   - Is the search path correct?
   - Is the search path listed before other search paths where another version of the command is found?
   - Is the command in one of the search paths?

   If the path needs correction, go to step 3. Otherwise, go to step 4.

3. Add the path to the appropriate file, as shown in this table.

<table>
<thead>
<tr>
<th>Shell and Korn</th>
<th>$HOME/.profile</th>
<th>Syntax</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$PATH=$HOME/bin:/sbin:/usr/local/bin ...</td>
<td>$ export PATH</td>
<td>A colon separates path names.</td>
</tr>
</tbody>
</table>
4 Activate the new path as follows:

<table>
<thead>
<tr>
<th>Shell</th>
<th>File Where Path Is Located</th>
<th>Use this Command to Activate The Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bourne and Korn</td>
<td>.profile</td>
<td>$./.profile</td>
</tr>
<tr>
<td>C</td>
<td>.cshrc</td>
<td>hostname% source .cshrc</td>
</tr>
<tr>
<td></td>
<td>.login</td>
<td>hostname% source .login</td>
</tr>
</tbody>
</table>

5 Verify the new path.

$ which command

Example 19–1 Diagnosing and Correcting Search Path Problems

This example shows that the mytool executable is not in any of the directories in the search path using the which command.

venus% mytool
mytool: Command not found
venus% which mytool
no mytool in /sbin /usr/sbin /usr/bin /etc /home/ignatz/bin .
venus% echo $PATH
/sbin /usr/sbin /usr/bin /etc /home/ignatz/bin
venus% vi ~/.cshrc
(Add appropriate command directory to the search path)
venus% source .cshrc
venus% mytool

If you cannot find a command, look at the man page for its directory path. For example, if you cannot find the lpsched command (the lp printer daemon), the lpsched(1M) man page tells you the path is /usr/lib/lp/lpsched.
Solving File Access Problems

When users cannot access files or directories that they previously could access, the permissions or ownership of the files or directories probably has changed.

Changing File and Group Ownership

Frequently, file and directory ownerships change because someone edited the files as superuser. When you create home directories for new users, be sure to make the user the owner of the dot (.) file in the home directory. When users do not own “.” they cannot create files in their own home directory.

Access problems can also arise when the group ownership changes or when a group of which a user is a member is deleted from the /etc/group database.

For information about how to change the permissions or ownership of a file that you are having problems accessing, see Chapter 7, “Controlling Access to Files (Tasks),” in System Administration Guide: Security Services.

Recognizing Problems With Network Access

If users have problems using the rcp remote copy command to copy files over the network, the directories and files on the remote system may have restricted access by setting permissions. Another possible source of trouble is that the remote system and the local system are not configured to allow access.

See “Strategies for NFS Troubleshooting” in System Administration Guide: Network Services for information about problems with network access and problems with accessing systems through AutoFS.
Resolving UFS File System Inconsistencies (Tasks)

This chapter describes the `fsck` error messages and the possible responses you can make to resolve the error messages.

This is a list of the information in this chapter:

- “General `fsck` Error Messages” on page 267
- “Initialization Phase `fsck` Messages” on page 269
- “Phase 1: Check Blocks and Sizes Messages” on page 272
- “Phase 1B: Rescan for More DUPs Messages” on page 277
- **Solaris 10**: “Solaris 10: Phase 1B: Rescan for More DUPs Messages” on page 276
- “Phase 2: Check Path Names Messages” on page 277
- “Phase 3: Check Connectivity Messages” on page 284
- “Phase 4: Check Reference Counts Messages” on page 286
- “Phase 5: Check Cylinder Groups Messages” on page 289
- **Solaris 10**: “Phase 5: Check Cylinder Groups Messages” on page 290
- “`fsck` Summary Messages” on page 291
- **Solaris 10**: “Cleanup Phase Messages” on page 292

For information about the `fsck` command and how to use it to check file system integrity, see Chapter 22, “Checking UFS File System Consistency (Tasks),” in System Administration Guide: Devices and File Systems.

**New `fsck` Error Messages**

**Solaris 10 6/06**: In this Solaris release, error messages that are displayed when you run the `fsck` command have changed. This section includes the revised `fsck` error messages. If you are not running at least the Solaris 10 6/06 release, see the Solaris 10 version of the System Administration Guide: Advanced Administration at [http://docs.sun.com](http://docs.sun.com). Refer to the error messages in this chapter that are labeled “Solaris 10.” For a detailed description of all the `fsck` improvements in the current Solaris release, see System Administration Guide: Devices and File Systems.
Normally, the `fsck` command is run non-interactively to *preen* the file systems after an abrupt system halt in which the latest file system changes were not written to disk. Preening automatically fixes any basic file system inconsistencies and does not try to repair more serious errors. While preening a file system, the `fsck` command fixes the inconsistencies it expects from such an abrupt halt. For more serious conditions, the command reports the error and terminates.

When you run the `fsck` command interactively, it reports each inconsistency found and fixes innocuous errors. However, for more serious errors, the command reports the inconsistency and prompts you to choose a response. When you run the `fsck` command with the `-y` or `-n` options, your response is predefined as yes or no to the default response suggested by the `fsck` command for each error condition.

Some corrective actions will result in some loss of data. The amount and severity of data loss might be determined from the `fsck` diagnostic output.

The `fsck` command is a multipass file system check program. Each pass invokes a different phase of the `fsck` command with different sets of messages. After initialization, the `fsck` command performs successive passes over each file system, checking blocks and sizes, path names, connectivity, reference counts, and the map of free blocks (possibly rebuilding it). It also performs some cleanup.

The phases (passes) performed by the UFS version of the `fsck` command are:

- **Initialization**
- **Phase 1 – Check Blocks and Sizes**
- **Phase 2a – Check Duplicated Names**
- **Phase 2b – Check Pathnames**
- **Phase 3 – Check Connectivity**
- **Phase 3b – Verify Shadows/ACLs**
- **Phase 4 – Check Reference Counts**
- **Phase 5 – Check Cylinder Groups**

The next sections describe the error conditions that might be detected in each phase, the messages and prompts that result, and possible responses you can make.

Messages that might appear in more than one phase are described in "General `fsck` Error Messages" on page 267. Otherwise, messages are organized alphabetically by the phases in which they occur.

The following table lists many of the abbreviations included in the `fsck` error messages.
### Table 20–1 Error Message Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLK</td>
<td>Block number</td>
</tr>
<tr>
<td>DUP</td>
<td>Duplicate block number</td>
</tr>
<tr>
<td>DIR</td>
<td>Directory name</td>
</tr>
<tr>
<td>CG</td>
<td>Cylinder group</td>
</tr>
<tr>
<td>MTIME</td>
<td>Time file was last modified</td>
</tr>
<tr>
<td>UNREF</td>
<td>Unreferenced</td>
</tr>
</tbody>
</table>

Many of the messages also include variable fields, such as inode numbers, which are represented in this book by an italicized term, such as *inode-number*. For example, this screen message:

```
INCORRECT BLOCK COUNT I=2529
```

is shown as follows:

```
INCORRECT BLOCK COUNT I=inode-number
```

### General fsck Error Messages

The error messages in this section might be displayed in any phase after initialization. Although they offer the option to continue, it is generally best to regard them as fatal. They reflect a serious system failure and should be handled immediately. When confronted with such a message, terminate the program by entering `n(o)`. If you cannot determine what caused the problem, contact your local service provider or another qualified person.

#### CANNOT SEEK: BLK disk-block-number (CONTINUE)

**Solaris 10:**

```
CANNOT SEEK: BLK block-number (CONTINUE)
```

**Cause**

A request to move to the specified block number, *disk-block-number*, in the file system failed. This message indicates a serious problem, probably a hardware failure.

**Solaris 10:** A request to move to the specified block number, *block-number*, in the file system failed. This message indicates a serious problem, probably a hardware failure.

If you want to continue the file system check, `fsck` will retry the move and display a list of sector numbers that could not be moved. If the block was part of the virtual memory buffer cache, `fsck` will terminate with a fatal I/O error message.
Action
If the disk is experiencing hardware problems, the problem will persist. Run fsck again to recheck the file system.

If the recheck fails, contact your local service provider or another qualified person.

CANNOT READ: DISK BLOCK disk-block-number: I/O ERROR
CONTINUE?

Solaris 10:

CANNOT READ: DISK BLOCK block-number: I/O ERROR
CONTINUE?

Cause
A request to read the specified block number, disk-block-number, in the file system failed. The message indicates a serious problem, probably a hardware failure.

Solaris 10: A request to read a specified block number, block-number, in the file system failed. The message indicates a serious problem, probably a hardware failure.

If you want to continue the file system check, fsck will retry the read and display a list of sector numbers that could not be read. If the block was part of the virtual memory buffer cache, fsck will terminate with a fatal I/O error message. If fsck tries to write back one of the blocks on which the read failed, it will display the following message:

WRITING ZERO'ED BLOCK sector-numbers TO DISK

Action
If the disk is experiencing hardware problems, the problem will persist. Run fsck again to recheck the file system. If the recheck fails, contact your local service provider or another qualified person.

CANNOT WRITE: BLK disk-block-number (CONTINUE)

Solaris 10:

CANNOT WRITE: BLK block-number (CONTINUE)

Cause
A request to write the specified block number, disk-block-number, in the file system failed.

If you continue the file system check, fsck will retry the write and display a list of sector numbers that could not be written. If the block was part of the virtual memory buffer cache, fsck will terminate with a fatal I/O error message.

Solaris 10: A request to write a specified block number, block-number, in the file system failed.
If you continue the file system check, *fsck* will retry the write and display a list of sector numbers that could not be written. If the block was part of the virtual memory buffer cache, *fsck* will terminate with a fatal I/O error message.

**Action**

The disk might be write-protected. Check the write-protect lock on the drive. If the disk has hardware problems, the problem will persist. Run *fsck* again to recheck the file system. If the write-protect is not the problem or the recheck fails, contact your local service provider or another qualified person.

**Initialization Phase *fsck* Messages**

In the initialization phase, command-line syntax is checked. Before the file system check can be performed, *fsck* sets up tables and opens files.

The messages in this section relate to error conditions resulting from command-line options, memory requests, the opening of files, the status of files, file system size checks, and the creation of the scratch file. All such initialization errors terminate *fsck* when it is preening the file system.

**Can't roll the log for device-name.**

**DISCARDING THE LOG MAY DISCARD PENDING TRANSACTIONS.**

**DISCARD THE LOG AND CONTINUE?**

**Cause**

*fsck* was unable to flush the transaction log of a logging UFS file system prior to checking the file system for errors.

**Action**

Answering yes means the file system operations that were in the log, but had not been applied to the file system, are lost. In this case, *fsck* runs the same checks it always runs and asks the following question in phase 5:

**FREE BLK COUNT(S) WRONG IN SUPERBLK (SALVAGE)**

Answering yes at this point reclaims the blocks that were used for the log. The next time the file system is mounted with logging enabled, the log will be recreated.

Answering no preserves the log and exits, but the file system isn’t mountable.

**bad inode number inode-number to ginode**

**Cause**

An internal error occurred because of a nonexistent inode *inode-number*. *fsck* exits.

**Action**

Contact your local service provider or another qualified person.
**fsck Error Messages**

cannot alloc size-of-block map bytes for blockmap
cannot alloc size-of-free map bytes for freemap
cannot alloc size-of-state map bytes for statemap
cannot alloc size-of-lncntp bytes for lncntp

**Cause**
Request for memory for its internal tables failed. fsck terminates. This message indicates a serious system failure that should be handled immediately. This condition might occur if other processes are using a very large amount of system resources.

**Action**
Killing other processes might solve the problem. If not, contact your local service provider or another qualified person.

**Can't open checklist file: filename**

**Cause**
The file system checklist file `filename` (usually `/etc/vfstab`) cannot be opened for reading. fsck terminates.

**Action**
Check if the file exists and if its access modes permit read access.

**Can't open filename**

**Cause**
fsck cannot open file system `filename`. When running interactively, fsck ignores this file system and continues checking the next file system given.

**Action**
Check to see if read and write access to the raw device file for the file system is permitted.

**Can't stat root**

**Cause**
fsck request for statistics about the root directory failed. fsck terminates.

**Action**
This message indicates a serious system failure. Contact your local service provider or another qualified person.

**Can't stat filename**
**Can't make sense out of name filename**

**Cause**
fsck request for statistics about the file system `filename` failed. When running interactively, fsck ignores this file system and continues checking the next file system given.

**Action**
Check if the file system exists and check its access modes.
filename: (NO WRITE)

Cause
Either the -n option was specified or fsck could not open the file system filename for writing. When fsck is running in no-write mode, all diagnostic messages are displayed, but fsck does not attempt to fix anything.

Action
If -n was not specified, check the type of the file specified. It might be the name of a regular file.

IMPOSSIBLE MINFREE=percent IN SUPERBLOCK (SET TO DEFAULT)

Cause
The superblock minimum space percentage is greater than 99 percent or less than 0 percent.

Action
To set the minfree parameter to the default 10 percent, type y at the default prompt. To ignore the error condition, type n at the default prompt.

filename: BAD SUPER BLOCK: message
USE AN ALTERNATE SUPER-BLOCK TO SUPPLY NEEDED INFORMATION;
e.g., fsck[-f ufs] -o b=# [special ...]
where # is the alternate superblock. See fsck_ufs(1M)

Cause
The superblock has been corrupted.

Action
One of the following messages might be displayed:

CPG OUT OF RANGE
FRAGS PER BLOCK OR FRAGSIZE WRONG
INODES PER GROUP OUT OF RANGE
INOPB NONSENСHAL RELATIVE TO BSIZE
MAGIC NUMBER WRONG
NCG OUT OF RANGE
NCYL IS INCONSISTENT WITH NCG*CPG
NUMBER OF DATA BLOCKS OUT OF RANGE
NUMBER OF DIRECTORIES OUT OF RANGE
ROTATIONAL POSITION TABLE SIZE OUT OF RANGE
SIZE OF CYLINDER GROUP SUMMARY AREA WRONG
SIZE TOO LARGE
BAD VALUES IN SUPERBLOCK

Try to rerun fsck with an alternative superblock. Specifying block 32 is a good first choice. You can locate an alternative copy of the superblock by running the newfs -N command on the slice. Be sure to specify the -N option; otherwise, newfs overwrites the existing file system.
UNDEFINED OPTIMIZATION IN SUPERBLOCK (SET TO DEFAULT)

Cause
   The superblock optimization parameter is neither OPT_TIME nor OPT_SPACE.

Action
   To minimize the time to perform operations on the file system, type y at the SET TO DEFAULT
   prompt. To ignore this error condition, type n.

Phase 1: Check Blocks and Sizes Messages

This phase checks the inode list. It reports error conditions encountered while:

- Checking inode types
- Setting up the zero-link-count table
- Examining inode block numbers for bad or duplicate blocks
- Checking inode size
- Checking inode format

All errors in this phase except INCORRECT BLOCK COUNT, PARTIALLY TRUNCATED INODE,
PARTIALLY ALLOCATED INODE, and UNKNOWN FILE TYPE terminate fsck when it is preening a
file system.

These messages (in alphabetical order) might occur in phase 1:

block-number BAD I=inode-number

Cause
   Inode inode-number contains a block number block-number with a number lower than the
   number of the first data block in the file system or greater than the number of the last block
   in the file system. This error condition might generate the EXCESSIVE BAD BLKS error
   message in phase 1 if inode inode-number has too many block numbers outside the file
   system range. This error condition generates the BAD/DUP error message in phases 2 and 4.

Action
   N/A

BAD MODE: MAKE IT A FILE?

Cause
   The status of a given inode is set to all 1s, indicating file system damage. This message does
   not indicate physical disk damage, unless it is displayed repeatedly after fsck -y has been
   run.

Action
   Type y to reinitialize the inode to a reasonable value.

BAD STATE state-number TO BLKERR
Cause
An internal error has scrambled the fsck state map so that it shows the impossible value state-number. fsck exits immediately.

Action
Contact your local service provider or another qualified person.

fragment-number DUP I=inode-number

Solaris 10:
block-number DUP I=inode-number

Cause
Inode inode-number contains a block number fragment-number, which is already claimed by the same or another inode. This error condition might generate the EXCESSIVE DUP BLKS error message in phase 1 if inode inode-number has too many block numbers claimed by the same or another inode. This error condition invokes phase 1B and generates the BAD/DUP error messages in phases 2 and 4.

Solaris 10: Inode inode-number contains a block number block-number, which is already claimed by the same or another inode. This error condition might generate the EXCESSIVE DUP BLKS error message in phase 1 if inode inode-number has too many block numbers claimed by the same or another inode. This error condition invokes phase 1B and generates the BAD/DUP error messages in phases 2 and 4.

Action
N/A

DUP TABLE OVERFLOW (CONTINUE)

Cause
fsck could not allocate memory to track duplicate fragments. If the -op option is specified, the program terminates.

Solaris 10: There is no more room in an internal table in fsck containing duplicate block numbers. If the -op option is specified, the program terminates.

Action
To continue the program, type y at the CONTINUE prompt. When this error occurs, a complete check of the file system is not possible. If another duplicate fragment is found, this error condition repeats. Increase the amount of virtual memory available (by killing some processes, increasing swap space) and run fsck again to recheck the file system. To terminate the program, type n.

Solaris 10: To continue the program, type y at the CONTINUE prompt. When this error occurs, a complete check of the file system is not possible. If another duplicate block is found, this error condition repeats. Increase the amount of virtual memory available (by killing...
some processes, increasing swap space) and run fsck again to recheck the file system. To terminate the program, type n.

EXCESSIVE BAD FRAGMENTS I=inode-number (CONTINUE)

Solaris 10:

EXCESSIVE BAD BLOCKS I=inode-number (CONTINUE)

Cause
Too many (usually more than 10) fragments indicate an invalid disk address. If the -o p (preen) option is specified, the program terminates.

Solaris 10: Too many (usually more than 10) blocks have a number lower than the number of the first data block in the file system or greater than the number of the last block in the file system associated with inode inode-number. If the -o p (preen) option is specified, the program terminates.

Action
To continue the program, type y at the CONTINUE prompt. When this error occurs, a complete check of the file system is not possible. You should run fsck again to recheck the file system. To terminate the program, type n.

EXCESSIVE DUP BLKSDUPLICATE FRAGMENTS I=inode-number (CONTINUE)

Solaris 10:

EXCESSIVE DUP BLKS I=inode-number (CONTINUE)

Cause
Too many (usually more than 10) fragments are claimed by the same or another inode or by a free-list. If the -o p option is specified, the program terminates.

Solaris 10: Too many (usually more than 10) blocks are claimed by the same or another inode or by a free-list. If the -o p option is specified, the program terminates.

Action
To continue the program, type y at the CONTINUE prompt. When this error occurs, a complete check of the file system is not possible. You should run fsck again to recheck the file system. To terminate the program, type n.

INCORRECT DISK BLOCK COUNT I=inode-number (number-of-BAD-DUP-or-missing-blocks should be number-of-blocks-in-filesystem) (CORRECT)

Solaris 10:

INCORRECT BLOCK COUNT I=inode-number (number-of-BAD-DUP-or-missing-blocks should be number-of-blocks-in-filesystem) (CORRECT)
Cause
The disk block count for inode \texttt{inode-number} is incorrect. When preening, \texttt{fsck} corrects the count.

\textbf{Solaris 10:} The block count for inode \texttt{inode-number} is \texttt{number-of-BAD-DUP-or-missing-blocks}, but should be \texttt{number-of-blocks-in-filesystem}. When preening, \texttt{fsck} corrects the count.

Action
To correct the disk block count of inode \texttt{inode-number} by \texttt{number-of-blocks-in-file}, type \texttt{y} at the \texttt{CORRECT} prompt.

\textbf{Solaris 10:} To replace the block count of inode \texttt{inode-number} by \texttt{number-of-blocks-in-filesystem}, type \texttt{y} at the \texttt{CORRECT} prompt. To terminate the program, type \texttt{n}.

\textbf{LINK COUNT TABLE OVERFLOW (CONTINUE)}

Cause
There is no more room in an internal table for \texttt{fsck} containing allocated inodes with a link count of zero. If the \texttt{-o p} (preen) option is specified, the program exits and \texttt{fsck} has to be completed manually.

Action
To continue the program, type \texttt{y} at the \texttt{CONTINUE} prompt. If another allocated inode with a zero-link count is found, this error condition repeats. When this error occurs, a complete check of the file system is not possible. You should run \texttt{fsck} again to recheck the file system. Increase the virtual memory available by killing some processes or increasing swap space, then run \texttt{fsck} again. To terminate the program, type \texttt{n}.

\textbf{PARTIALLY ALLOCATED INODE I=inode-number (CLEAR)}

Cause
Inode \texttt{inode-number} is neither allocated nor unallocated. If the \texttt{-o p} (preen) option is specified, the inode is cleared.

Action
To deallocate the inode \texttt{inode-number} by zeroing out its contents, type \texttt{y}. This might generate the \texttt{UNALLOCATED} error condition in phase 2 for each directory entry pointing to this inode. To ignore the error condition, type \texttt{n}. A no response is appropriate only if you intend to take other measures to fix the problem.

\textbf{PARTIALLY TRUNCATED INODE I=inode-number (SALVAGE)}

Cause
\texttt{fsck} has found inode \texttt{inode-number} whose size is shorter than the number of fragments allocated to it. This condition occurs only if the system crashes while truncating a file. When preening the file system, \texttt{fsck} completes the truncation to the specified size.
**Solaris 10:** `fsck` has found inode `inode-number` whose size is shorter than the number of blocks allocated to it. This condition occurs only if the system crashes while truncating a file. When preening the file system, `fsck` completes the truncation to the specified size.

**Action**
To complete the truncation to the size specified in the inode, type y at the SALVAGE prompt.
To ignore this error condition, type n.

**UNKNOWN FILE TYPE I=inode-number (CLEAR)**

**Cause**
The mode word of the inode `inode-number` shows that the inode is not a pipe, character device, block device, regular file, symbolic link, FIFO file, or directory inode. If the `-o p` option is specified, the inode is cleared.

**Solaris 10:** The mode word of the inode `inode-number` shows that the inode is not a pipe, special character inode, special block inode, regular inode, symbolic link, FIFO file, or directory inode. If the `-o p` option is specified, the inode is cleared.

**Action**
To deallocate the inode `inode-number` by zeroing its contents, which results in the UNALLOCATED error condition in phase 2 for each directory entry pointing to this inode, type y at the CLEAR prompt. To ignore this error condition, type n.

---

**Solaris 10: Phase 1B: Rescan for More DUPS Messages**

This section contains phase 1B `fsck` messages in the current Solaris release.

When a duplicate fragment is found in the file system, this message is displayed:

`fragment DUP I=inode-number`

**Cause**
Inode `inode-number` contains a fragment number `fragment-number` that is already claimed by the same or another inode. This error condition generates the BAD/DUP error message in phase 2. Inodes that have overlapping fragments might be determined by examining this error condition and the DUP error condition in phase 1. This is simplified by the duplicate fragment report produced at the `fsck` run.

**Action**
When a duplicate block is found, the file system is rescanned to find the inode that previously claimed that block.
Phase 1B: Rescan for More DUPS Messages

This section contains fsck messages in the Solaris 10 release.

When a duplicate block is found in the file system, this message is displayed:

```
block-number DUP I=inode-number
```

Cause

Inode `inode-number` contains a block number `block-number` that is already claimed by the same or another inode. This error condition generates the BAD/DUP error message in phase 2. Inodes that have overlapping blocks might be determined by examining this error condition and the DUP error condition in phase 1.

Action

When a duplicate block is found, the file system is rescanned to find the inode that previously claimed that block.

Phase 2: Check Path Names Messages

This phase removes directory entries pointing to bad inodes found in phases 1 and 1B. It reports error conditions resulting from:

- Incorrect root inode mode and status
- Directory inode pointers out of range
- Directory entries pointing to bad inodes
- Directory integrity checks

When the file system is being pruned (-o -p option), all errors in this phase terminate fsck, except those related to directories not being a multiple of the block size, duplicate and bad blocks, inodes out of range, and extraneous hard links.

These messages (in alphabetical order) might occur in phase 2:

```
BAD INODE state-number TO DESCEND
```

Cause

An fsck internal error has passed an invalid state `state-number` to the routine that descends the file system directory structure. fsck exits.

Action

If this error message is displayed, contact your local service provider or another qualified person.

```
BAD INODE NUMBER FOR ‘.’ I=inode-number OWNER=UID MODE=file-mode SIZE=file-size MTIME=modification-time DIR=filename (FIX)
```
**Cause**
A directory *inode-number* has been found whose inode number for “.” does not equal *inode-number*.

**Action**
To change the inode number for “.” to be equal to *inode-number*, type *y* at the *FIX* prompt.
To leave the inode numbers for “.” unchanged, type *n*.

**BAD INODE NUMBER FOR ‘.’ I=inode-number OWNER=UID MODE=file-mode
SIZE=file-size MTIME=modification-time DIR=filename (FIX)**

**Cause**
A directory *inode-number* has been found whose inode number for “.” does not equal the parent of *inode-number*.

**Action**
To change the inode number for “.” to be equal to the parent of *inode-number*, type *y* at the *FIX* prompt. (Note that “.” in the root inode points to itself.) To leave the inode number for “.” unchanged, type *n*.

**BAD RETURN STATE state-number FROM DESCEND**

**Cause**
An *fsck* internal error has returned an impossible state *state-number* from the routine that descends the file system directory structure. *fsck* exits.

**Action**
If this message is displayed, contact your local service provider or another qualified person.

**BAD STATE state-number FOR ROOT INODE**

**Cause**
An internal error has assigned an impossible state *state-number* to the root inode. *fsck* exits.

**Action**
If this error message is displayed, contact your local service provider or another qualified person.

**BAD STATE state-number FOR INODE=inode-number**

**Cause**
An internal error has assigned an impossible state *state-number* to inode *inode-number*. *fsck* exits.

**Action**
If this error message is displayed, contact your local service provider or another qualified person.

**DIRECTORY TOO SHORT I=inode-number OWNER=UID MODE=file-mode
SIZE=file-size MTIME=modification-time DIR=filename (FIX)**
**fsck Error Messages**

**Cause**
A directory filename has been found whose size file-size is less than the minimum directory size. The owner UID, mode file-mode, size file-size, modify time modification-time, and directory name filename are displayed.

**Action**
To increase the size of the directory to the minimum directory size, type y at the FIX prompt. To ignore this directory, type n.

DIRECTORY filename: LENGTH file-size NOT MULTIPLE OF disk-block-size (ADJUST)

**Solaris 10:**

DIRECTORY filename: LENGTH file-size NOT MULTIPLE OF block-number (ADJUST)

**Cause**
A directory filename has been found with size file-size that is not a multiple of the directory block size disk-block-size.

**Solaris 10:**

A directory filename has been found with size file-size that is not a multiple of the directory block size block-number.

**Action**
To round up the length to the appropriate disk block size, type y. When preening the file system (-o p option), fsck only displays a warning and adjusts the directory. To ignore this condition, type n.

**Solaris 10:**

To round up the length to the appropriate block size, type y. When preening the file system (-o p option), fsck only displays a warning and adjusts the directory. To ignore this condition, type n.

DIRECTORY CORRUPTED I=inode-number OWNER=UID MODE=file-mode SIZE=file-size MTIME=modification-time DIR=filename (SALVAGE)

**Cause**
A directory with an inconsistent internal state has been found.

**Action**
To throw away all entries up to the next directory boundary (usually a 512-byte boundary), type y at the SALVAGE prompt. This drastic action can throw away up to 42 entries. Take this action only after other recovery efforts have failed. To skip to the next directory boundary and resume reading, but not modify the directory, type n.

DUP/BAD I=inode-number OWNER=O MODE=M SIZE=file-size MTIME=modification-time TYPE=filename (REMOVE)


**Cause**
Phase 1 or phase 1B found duplicate fragments or bad fragments associated with directory or file entry *filename*, inode *inode-number*. The owner *UID*, mode *file-mode*, size *file-size*, modification time *modification-time*, and directory or file name *filename* are displayed. If the -op (preen) option is specified, the duplicate/bad fragments are removed.

**Solaris 10:**
Phase 1 or phase 1B found duplicate blocks or bad blocks associated with directory or file entry *filename*, inode *inode-number*. The owner *UID*, mode *file-mode*, size *file-size*, modification time *modification-time*, and directory or file name *filename* are displayed. If the -op (preen) option is specified, the duplicate/bad blocks are removed.

**Action**
To remove the directory or file entry *filename*, type *y* at the REMOVE prompt. To ignore this error condition, type *n*.

**DUPS/BAD IN ROOT INODE (REALLOCATE)**

**Cause**
Phase 1 or phase 1B has found duplicate fragments or bad fragments in the root inode, (inode number 20, of the file system.

**Solaris 10:**
Phase 1 or phase 1B has found duplicate blocks or bad blocks in the root inode (usually inode number 2 of the file system.

**Action**
To clear the existing contents of the root inode and reallocate it, type *y* at the REALLOCATE prompt. The files and directories usually found in the root inode will be recovered in phase 3 and put into the *lost+found* directory. If the attempt to allocate the root fails, fsck will exit with: *CANNOT ALLOCATE ROOT INODE*. Type *n* to get the CONTINUE prompt. Type: *y* to respond to the CONTINUE prompt, and ignore the DUPS/BAD error condition in the root inode and continue running the file system check. If the root inode is not correct, this might generate many other error messages. Type *n* to terminate the program.

**EXTRA ‘.’ ENTRY**

I=*inode-number* OWNER=*UID* MODE=*file-mode*
SIZE=*file-size* MTIME=*modification-time* DIR=*filename* (FIX)

**Cause**
A directory *inode-number* has been found that has more than one entry for “.”.

**Action**
To remove the extra entry for “.”, type *y* at the FIX prompt. To leave the directory unchanged, type *n*.

**EXTRA ‘..’ ENTRY**

I=*inode-number* OWNER=*UID* MODE=*file-mode*
SIZE=*file-size* MTIME=*modification-time* DIR=*filename* (FIX)
Cause
A directory *inode-number* has been found that has more than one entry for “. ..” (the parent directory).

Action
To remove the extra entry for ‘. ..’ (the parent directory), type *y* at the FIX prompt. To leave the directory unchanged, type *n*.

*hard-link-number* IS AN EXTRANEOUS HARD LINK TO A DIRECTORY *filename* (REMOVE)

Cause
*fsck* has found an extraneous hard link *hard-link-number* to a directory *filename*. When preening (-o p option), *fsck* ignores the extraneous hard links.

Action
To delete the extraneous entry *hard-link-number* type *y* at the REMOVE prompt. To ignore the error condition, type *n*.

*inode-number* OUT OF RANGE I=*inode-number* NAME=*filename* (REMOVE)

Cause
A directory entry *filename* has an inode number *inode-number* that is greater than the end of the inode list. If the -p (preen) option is specified, the inode will be removed automatically.

Action
To delete the directory entry *filename* type *y* at the REMOVE prompt. To ignore the error condition, type *n*.

MISSING ‘.’ I=*inode-number* OWNER=UID MODE=file-mode SIZE=file-size
MTIME=modification-time DIR=*filename* (FIX)

Cause
A directory *inode-number* has been found whose first entry (the entry for “.,”) is unallocated.

Action
To build an entry for “.,” with inode number equal to *inode-number*, type *y* at the FIX prompt. To leave the directory unchanged, type *n*.

MISSING ‘.’ I=*inode-number* OWNER=UID MODE=file-mode SIZE=file-size
MTIME=modification-time DIR=*filename* CANNOT FIX, FIRST ENTRY IN DIRECTORY CONTAINS *filename*

Cause
A directory *inode-number* has been found whose first entry is *filename*. *fsck* cannot resolve this problem.

Action
If this error message is displayed, contact your local service provider or another qualified person.
**fsck Error Messages**

MISSING `.‘ I=inode-number OWNER=UID MODE=file-mode SIZE=file-size
MTIME=modification-time DIR=filename CANNOT FIX, INSUFFICIENT SPACE TO ADD `.‘

**Cause**
A directory *inode-number* has been found whose first entry is not `.‘. fsck cannot resolve the problem.

**Action**
If this error message is displayed, contact your local service provider or another qualified person.

MISSING `..’ I=inode-number OWNER=UID MODE=file-mode SIZE=file-size
MTIME=modification-time DIR=filename (FIX)

**Cause**
A directory *inode-number* has been found whose second entry is unallocated.

**Action**
To build an entry for `.‘ with inode number equal to the parent of *inode-number*, type y at the FIX prompt. (Note that `.‘ in the root inode points to itself.) To leave the directory unchanged, type n.

MISSING `..’ I=inode-number OWNER=UID MODE=file-mode SIZE=file-size
MTIME=modification-time DIR=filename CANNOT FIX, SECOND ENTRY IN DIRECTORY CONTAINS filename

**Cause**
A directory *inode-number* has been found whose second entry is *filename*. fsck cannot resolve this problem.

**Action**
If this error message is displayed, contact your local service provider or another qualified person.

MISSING `..’ I=inode-number OWNER=UID MODE=file-mode SIZE=file-size
MTIME=modification-time DIR=filename CANNOT FIX, INSUFFICIENT SPACE TO ADD `.‘

**Cause**
A directory *inode-number* has been found whose second entry is not `.‘ (the parent directory). fsck cannot resolve this problem.

**Action**
If this error message is displayed, contact your local service provider or another qualified person.

NAME TOO LONG *filename*
Cause
An excessively long path name has been found, which usually indicates loops in the file system name space. This error can occur if a privileged user has made circular links to directories.

Action
Remove the circular links.

ROOT INODE UNALLOCATED (ALLOCATE)

Cause
The root inode (usually inode number 2) has no allocate-mode bits.

Action
To allocate inode 2 as the root inode, type y at the ALLOCATE prompt. The files and directories usually found in the root inode will be recovered in phase 3 and put into the lost+found directory. If the attempt to allocate the root inode fails, fsck displays this message and exits: CANNOT ALLOCATE ROOT INODE. To terminate the program, type n.

ROOT INODE NOT DIRECTORY (REALLOCATE)

Cause
The root inode (usually inode number 2) of the file system is not a directory inode.

Action
To clear the existing contents of the root inode and reallocate it, type y at the REALLOCATE prompt. The files and directories usually found in the root inode will be recovered in phase 3 and put into the lost+found directory. If the attempt to allocate the root inode fails, fsck displays this message and exits: CANNOT ALLOCATE ROOT INODE. To have fsck prompt with FIX, type n.

UNALLOCATED I=inode-number OWNER=UID MODE=file-mode SIZE=file-size
MTIME=modification-time type=filename(REMOVE)

Cause
A directory or file entry filename points to an unallocated inode inode-number. The owner UID, mode file-mode, size file-size, modify time modification-time, and file name filename are displayed.

Action
To delete the directory entry filename, type y at the REMOVE prompt. To ignore the error condition, type n.

ZERO LENGTH DIRECTORY I=inode-number OWNER=UID MODE=file-mode
SIZE=file-size MTIME=modification-time DIR=filename (REMOVE)

Cause
A directory entry filename has a size file-size that is zero. The owner UID, mode file-mode, size file-size, modify time modification-time, and directory name filename are displayed.
Action
To remove the directory entry filename, type y at the REMOVE prompt. This results in the BAD/DUP error message in phase 4. To ignore the error condition, type n.

Phase 3: Check Connectivity Messages
This phase checks the directories examined in phase 2 and reports error conditions resulting from:
- Unreferenced directories
- Missing or full lost+found directories

These messages (in alphabetical order) might occur in phase 3:

BAD INODE state-number TO DESCEND
Cause
An internal error has caused an impossible state state-number to be passed to the routine that descends the file system directory structure. fsck exits.
Action
If this occurs, contact your local service provider or another qualified person.

DIR I=inode-number1 CONNECTED. PARENT WAS I=inode-number2
Cause
This is an advisory message indicating a directory inode inode-number1 was successfully connected to the lost+found directory. The parent inode inode-number2 of the directory inode inode-number1 is replaced by the inode number of the lost+found directory.
Action
N/A

DIRECTORY filename LENGTH file-size NOT MULTIPLE OF disk-block-size (ADJUST)
Solaris 10:
DIRECTORY filename LENGTH file-size NOT MULTIPLE OF block-number (ADJUST)
Cause
A directory filename has been found with size file-size that is not a multiple of the directory block size B. (This condition can recur in phase 3 if it is not adjusted in phase 2.)
Action
To round up the length to the appropriate disk block size, type y at the ADJUST prompt. When preening, fsck displays a warning and adjusts the directory. To ignore this error condition, type n.

Solaris 10:
To round up the length to the appropriate block size, type y at the ADJUST prompt. When preening, fsck displays a warning and adjusts the directory. To ignore this error condition, type n.

lost+found IS NOT A DIRECTORY (REALLOCATE)

Cause
The entry for lost+found is not a directory.

Action
To allocate a directory inode and change the lost+found directory to reference it, type y at the REALLOCATE prompt. The previous inode reference by the lost+found directory is not cleared and it will either be reclaimed as an unreferenced inode or have its link count adjusted later in this phase. Inability to create a lost+found directory displays the message: SORRY. CANNOT CREATE lost+found DIRECTORY and aborts the attempt to link up the lost inode, which generates the UNREF error message in phase 4. To abort the attempt to link up the lost inode, which generates the UNREF error message in phase 4, type n.

NO lost+found DIRECTORY (CREATE)

Cause
There is no lost+found directory in the root directory of the file system. When preening, fsck tries to create a lost+found directory.

Action
To create a lost+found directory in the root of the file system, type y at the CREATE prompt. This might lead to the message NO SPACE LEFT IN / (EXPAND). If the lost+found directory cannot be created, fsck displays the message: SORRY. CANNOT CREATE lost+found DIRECTORY and aborts the attempt to link up the lost inode. This in turn generates the UNREF error message later in phase 4. To abort the attempt to link up the lost inode, type n.

NO SPACE LEFT IN /lost+found (EXPAND)

Cause
Another entry cannot be added to the lost+found directory in the root directory of the file system because no space is available. When preening, fsck expands the lost+found directory.

Action
To expand the lost+found directory to make room for the new entry, type y at the EXPAND prompt. If the attempted expansion fails, fsck displays: SORRY. NO SPACE IN lost+found DIRECTORY and aborts the request to link a file to the lost+found directory. This error generates the UNREF error message later in phase 4. Delete any unnecessary entries in the lost+found directory. This error terminates fsck when preening is in effect. To abort the attempt to link up the lost inode, type n.

UNREF DIR I=inode-number OWNER=UID MODE=file-mode SIZE=file-size MTIME=modification-time (RECONNECT)
Cause
The directory inode \texttt{inode-number} was not connected to a directory entry when the file system was traversed. The owner \texttt{UID}, mode \texttt{file-mode}, size \texttt{file-size}, and modification time \texttt{modification-time} of directory inode \texttt{inode-number} are displayed. When preening, \texttt{fsck} reconnects the non-empty directory inode if the directory size is non-zero. Otherwise, \texttt{fsck} clears the directory inode.

Action
To reconnect the directory inode \texttt{inode-number} into the \texttt{lost+found} directory, type \texttt{y} at the \texttt{RECONNECT} prompt. If the directory is successfully reconnected, a \texttt{CONNECTED} message is displayed. Otherwise, one of the \texttt{lost+found} error messages is displayed. To ignore this error condition, type \texttt{n}. This error causes the \texttt{UNREF} error condition in phase 4.

Phase 4: Check Reference Counts Messages
This phase checks the link count information obtained in phases 2 and 3. It reports error conditions resulting from:

- Unreferenced files
- A missing or full \texttt{lost+found} directory
- Incorrect link counts for files, directories, symbolic links, or special files
- Unreferenced files, symbolic links, and directories
- Bad or duplicate fragments in files and directories
  \textbf{Solaris 10:}
  Bad or duplicate blocks in files and directories
- Incorrect total free-inode counts

All errors in this phase (except running out of space in the \texttt{lost+found} directory) are correctable when the file system is being preened.

These messages (in alphabetical order) might occur in phase 4:

\texttt{BAD/DUP type I=inode-number OWNER=UID MODE=file-mode SIZE=file-size MTIME=modification-time (CLEAR)}

Cause
Phase 1 or phase 1B found duplicate fragments or bad fragments associated with file or directory inode \texttt{inode-number}. The owner \texttt{UID}, mode \texttt{file-mode}, size \texttt{file-size}, and modification time \texttt{modification-time} of inode \texttt{inode-number} are displayed.

\textbf{Solaris 10:}
Phase 1 or phase 1B found duplicate blocks or bad blocks associated with file or directory inode \texttt{inode-number}. The owner \texttt{UID}, mode \texttt{file-mode}, size \texttt{file-size}, and modification time \texttt{modification-time} of inode \texttt{inode-number} are displayed.
**fsck Error Messages**

**Action**
To deallocate inode *inode-number* by zeroing its contents, type `y` at the CLEAR prompt. To ignore this error condition, type `n`.

(CLEAR)

**Cause**
The inode mentioned in the UNREF error message immediately preceding cannot be reconnected. This message does not display if the file system is being preened because lack of space to reconnect files terminates fsck.

**Action**
To deallocate the inode by zeroing out its contents, type `y` at the CLEAR prompt. To ignore the preceding error condition, type `n`.

```
LINK COUNT type I=inode-number OWNER=UID MODE=file-mode
SIZE=file-size
MTIME=modification-time COUNT link-count SHOULD BE
corrected-link-count (ADJUST)
```

**Cause**
The link count for directory or file inode *inode-number* is *link-count* but should be *corrected-link-count*. The owner UID, mode file-mode, size file-size, and modification time modification-time of inode *inode-number* are displayed. If the `-o p` option is specified, the link count is adjusted unless the number of references is increasing. This condition does not occur unless there is a hardware failure. When the number of references is increasing during preening, fsck displays this message and exits: LINK COUNT INCREASING

**Action**
To replace the link count of directory or file inode *inode-number* with *corrected-link-count*, type `y` at the ADJUST prompt. To ignore this error condition, type `n`.

**lost+found IS NOT A DIRECTORY (REALLOCATE)**

**Cause**
The entry for *lost+found* is not a directory.

**Action**
To allocate a directory inode and change the *lost+found* directory to reference it, type `y` at the REALLOCATE prompt. The previous inode reference by the *lost+found* directory is not cleared. It will either be reclaimed as an unreferenced inode or have its link count adjusted later in this phase. Inability to create a *lost+found* directory displays this message: SORRY, CANNOT CREATE *lost+found* DIRECTORY and aborts the attempt to link up the lost inode. This error generates the UNREF error message later in phase 4. To abort the attempt to link up the lost inode, type `n`.

**NO lost+found DIRECTORY (CREATE)**
Cause
There is no lost+found directory in the root directory of the file system. When preening, fsck tries to create a lost+found directory.

Action
To create a lost+found directory in the root of the file system, type y at the CREATE prompt. If the lost+found directory cannot be created, fsck displays the message: SORRY. CANNOT CREATE lost+found DIRECTORY and aborts the attempt to link up the lost inode. This error in turn generates the UNREF error message later in phase 4. To abort the attempt to link up the lost inode, type n.

NO SPACE LEFT IN / lost+found (EXPAND)

Cause
There is no space to add another entry to the lost+found directory in the root directory of the file system. When preening, fsck expands the lost+found directory.

Action
To expand the lost+found directory to make room for the new entry, type y at the EXPAND prompt. If the attempted expansion fails, fsck displays the message: SORRY. NO SPACE IN lost+found DIRECTORY and aborts the request to link a file to the lost+found directory. This error generates the UNREF error message later in phase 4. Delete any unnecessary entries in the lost+found directory. This error terminates fsck when preening (-o p option) is in effect. To abort the attempt to link up the lost inode, type n.

UNREF FILE I=inode-number OWNER=UID MODE=file-mode SIZE=file-size
MTIME=modification-time (RECONNECT)

Cause
File inode inode-number was not connected to a directory entry when the file system was traversed. The owner UID, mode file-mode, size file-size, and modification time modification-time of inode inode-number are displayed. When fsck is preening, the file is cleared if either its size or its link count is zero; otherwise, it is reconnected.

Action
To reconnect inode inode-number to the file system in the lost+found directory, type y. This error might generate the lost+found error message in phase 4 if there are problems connecting inode inode-number to the lost+found directory. To ignore this error condition, type n. This error always invokes the CLEAR error condition in phase 4.

UNREF type I=inode-number OWNER=UID MODE=file-mode SIZE=file-size
MTIME=modification-time (CLEAR)

Cause
Inode inode-number (whose type is directory or file) was not connected to a directory entry when the file system was traversed. The owner UID, mode file-mode, size file-size, and
modification time modification-time of inode inode-number are displayed. When fsck is preening, the file is cleared if either its size or its link count is zero; otherwise, it is reconnected.

Action
To deallocate inode inode-number by zeroing its contents, type y at the CLEAR prompt. To ignore this error condition, type n.

ZERO LENGTH DIRECTORY I=inode-number OWNER=UID MODE=file-mode SIZE=file-size MTIME=modification-time (CLEAR)

Cause
A directory entry filename has a size file-size that is zero. The owner UID, mode file-mode, size file-size, modification time modification-time, and directory name filename are displayed.

Action
To deallocate the directory inode inode-number by zeroing out its contents, type y. To ignore the error condition, type n.

Phase 5: Check Cylinder Groups Messages

This section contains phase 5 fsck messages in the current Solaris release.

This phase checks the free-fragment and used_inode maps. It reports error conditions resulting from:

- Allocated inodes missing from used_inode maps
- Free fragments missing from free-fragment maps
- Free inodes in the used_inode maps
- Incorrect total free-fragment count
- Incorrect total used inode count

These messages (in alphabetical order) might occur in phase 5:

FRAG BITMAP WRONG (CORRECTED)

Cause
A cylinder group fragment map is missing some free fragments. During preening, fsck reconstructs the maps.

Action
To reconstruct the free-fragment map, type y at the SALVAGE prompt. To ignore this error condition, type n.

CG cg-number: BAD MAGIC NUMBER
Cause
The magic number of cylinder group cg-number is wrong. This error usually indicates that the cylinder group maps have been destroyed. When running interactively, the cylinder group is marked as needing reconstruction. fsck terminates if the file system is being preened.

Action
If this occurs, contact your local service provider or another qualified person.

CORRECT GLOBAL SUMMARY (SALVAGE)

Cause
The summary information is incorrect. When preening, fsck recomputes the summary information.

Action
To reconstruct the summary information, type y at the SALVAGE prompt. To ignore this error condition, type n.

Phase 5: Check Cylinder Groups Messages

This section contains phase 5 fsck messages in the Solaris 10 initial 3/05 release.

This phase checks the free-block and used-inode maps. It reports error conditions resulting from:

- Allocated inodes missing from used-inode maps
- Free blocks missing from free-block maps
- Free inodes in the used-inode maps
- Incorrect total free-block count
- Incorrect total used inode count

These messages (in alphabetical order) might occur in phase 5:

BLK(S) MISSING IN BIT MAPS (SALVAGE)

Cause
A cylinder group block map is missing some free blocks. During preening, fsck reconstructs the maps.

Action
To reconstruct the free-block map, type y at the SALVAGE prompt. To ignore this error condition, type n.

CG character-for-command-option: BAD MAGIC NUMBER
Cause
The magic number of cylinder group character-for-command-option is wrong. This error usually indicates that the cylinder group maps have been destroyed. When running interactively, the cylinder group is marked as needing reconstruction. fsck terminates if the file system is being preened.

Action
If this occurs, contact your local service provider or another qualified person.

FREE BLK COUNT(S) WRONG IN SUPERBLK (SALVAGE)

Cause
The actual count of free blocks does not match the count of free blocks in the superblock of the file system. If the -o p option was specified, the free-block count in the superblock is fixed automatically.

Action
To reconstruct the superblock free-block information, type y at the SALVAGE prompt. To ignore this error condition, type n.

SUMMARY INFORMATION BAD (SALVAGE)

Cause
The summary information is incorrect. When preening, fsck recomputes the summary information.

Action
To reconstruct the summary information, type y at the SALVAGE prompt. To ignore this error condition, type n.

**fsck Summary Messages**

This section contains fsck summary messages in the current Solaris release. If you are not running at least the Solaris 10 6/06 release, these messages are displayed in the cleanup phase. For more information, see “Cleanup Phase Messages” on page 292.

Once a file system has been checked, a few summary messages are displayed.

```
number-of files, number-of-files used, number-of-files free (number-of frags, number-of blocks, percent fragmentation)
```

This message indicates that the file system checked contains number-of files using number-of fragment-sized blocks, and that there are number-of fragment-sized blocks free in the file system. The numbers in parentheses break the free count down into number-of free fragments, number-of free full-sized blocks, and the percent fragmentation.
This message indicates that the file system was modified by `fsck`. There is no need to rerun `fsck` if you see this message. This message is just informational about `fsck`'s corrective actions.

## Cleanup Phase Messages

This section contains `fsck` cleanup phase messages in the Solaris 10 release. In this Solaris release, similar messages can be found in the `fsck` summary phase. See “`fsck` Summary Messages” on page 291 for more information.

Once a file system has been checked, a few cleanup functions are performed. The cleanup phase displays the following status messages.

`number-of files, number-of-files used, number-of-files free (number-of frags, number-of blocks, percent fragmentation)`

This message indicates that the file system checked contains `number-of files` using `number-of fragment-sized blocks`, and that there are `number-of fragment-sized blocks free` in the file system. The numbers in parentheses break the free count down into `number-of free fragments`, `number-of free full-sized blocks`, and the `percent` fragmentation.

This message indicates that the file system was modified by `fsck`. If this file system is mounted or is the current root (/) file system, reboot. If the file system is mounted, you might need to unmount it and run `fsck` again; otherwise, the work done by `fsck` might be undone by the in-core copies of tables.

`filename FILE SYSTEM STATE SET TO OKAY`

This message indicates that file system `filename` was marked as stable. Use the `fsck -m` command to determine if the file system needs checking.

`filename FILE SYSTEM STATE NOT SET TO OKAY`

This message indicates that file system `filename` was not marked as stable. Use the `fsck -m` command to determine if the file system needs checking.
This chapter describes problems you might encounter when installing or removing software packages. The Specific Software Package Installation Errors section describes package installation and administration errors you might encounter. The General Software Package Installation Problems section describes behavioral problems that might not display an error message.

This is a list of information in this chapter:
- “Specific Software Package Installation Errors” on page 294
- “General Software Package Installation Problems” on page 295

For information about managing software packages, see Chapter 18, “Managing Software (Overview),” in System Administration Guide: Basic Administration.

Troubleshooting Software Package Symbolic Link Problems

In previous Solaris releases, there was no way to specify a symbolic link target in the pkgmap file when creating a software package. This meant a package or patch-related symbolic link was always followed to the source of the symbolic link rather than to the target of the symbolic link when a package was added with the pkgadd command. This created problems when upgrading a package or a patch package that needed to change a symbolic link target destination to something else.

Now, the default behavior is that if a package needs to change the target of a symbolic link to something else, the target of the symbolic link and not the source of the symbolic link is inspected by the pkgadd command.

Unfortunately, this means that some packages may or may not conform to the new pkgadd behavior.
The PKG_NONABI_SYMLINKS environment variable might help you transition between the old and new pkgadd symbolic link behaviors. If this environment variable is set to true, pkgadd follows the source of the symbolic link.

Setting this variable enables a non-conforming package to revert to the old behavior if set by the administrator before adding a package with the pkgadd command.

The new pkgadd symbolic link behavior might cause an existing package to fail when added with the pkgadd command. You might see the following error message in this situation:

unable to create symbolic link to <path>

If a package doesn't install due to this problem, do the following:
1. If this is a Sun-supplied package, call the Resolution Center and report the non-conforming package name.
2. Set the PKG_NONABI_SYMLINKS environment variable and try adding the package with the pkgadd command again.

```
# PKG_NONABI_SYMLINKS=true
# export PKG_NONABI_SYMLINKS
# pkgadd pkg-name
```

### Specific Software Package Installation Errors

**WARNING:** filename <not present on Read Only file system>

<table>
<thead>
<tr>
<th>Reason Error Occurred</th>
<th>How to Fix the Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>This error message indicates that not all of a package’s files could be installed. This usually occurs when you are using pkgadd to install a package on a client. In this case, pkgadd attempts to install a package on a file system that is mounted from a server, but pkgadd doesn’t have permission to do so.</td>
<td>If you see this warning message during a package installation, you must also install the package on the server. See Chapter 18, “Managing Software (Overview),” in System Administration Guide: Basic Administration for details.</td>
</tr>
</tbody>
</table>
General Software Package Installation Problems

<table>
<thead>
<tr>
<th>Reason Error Occurred</th>
<th>How to Fix the Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>There is a known problem with adding or removing some packages developed prior to the Solaris 2.5 release and compatible versions. Sometimes, when adding or removing these packages, the installation fails during user interaction or you are prompted for user interaction and your responses are ignored.</td>
<td>Set the following environment variable and try to add the package again. NONABI_SCRIPTS=TRUE</td>
</tr>
</tbody>
</table>
Index

A
accounting, 137, 139, 153
See also billing users
connect, 129
runacct states and, 142
/var/adm/acct/nite/directory and, 151
/var/adm/wtmpx, 145
daily, 130, 153
See also accounting, reports
step-by-step summary of, 132
disabling, 140
disk, 130, 131
acctdusg program, 146
files for, 151, 153
fixing corrupted files
tacct file, 137-138
wtmpx file, 136, 137, 142
maintaining, 139
overview, 128
process, 129, 131, 145, 146
raw data, 130
reports, 144
daily command summary, 146, 153
daily report (tty line utilization), 144, 145
daily usage report, 145, 146
last login report, 148
overview, 144
total command summary (monthly), 148, 152, 153
set up to run automatically (how to), 134
starting, 134
stopping, 139
accounting (Continued)
types of, 135
user fee calculation, 130
See also billing users
acct.h format files, 149, 150
acctcms command, 142, 153
acctcom command, 149, 150
acctcon command, 136, 142, 151
acctdusg command, 130, 146, 151
acctprc command, 142
acctwtmp command, 129, 131, 144
active file, 138, 151
active file, 141
active.MMDD file, 138, 151
adapter board (serial port), 24
address space map, 165
alert message priority (for syslogd), 225
alphabetic terminal, See terminals
application threads, 157, 158
at command, 121, 122, 125
-l option (list), 124
-m option (mail), 122, 123
automatic scheduling of, 111
controlling access to, 122, 125
overview, 108
denying access, 125-126
error messages, 126
overview, 108, 109, 121
at deny file, 122, 125
description, 108
at job files, 121, 125
creating, 122, 123
at job files (Continued)
deleting, 125
description, 109
displaying, 124
location of, 109
submitting, 121
at jobs directory, 111
description, 108
automatic system activity data collection, 210
automatic system activity reporting, 210 211
automatic system task execution
repetitive tasks, 118 119
single tasks, 121 122 125
automatically turning on quotas, 92
automating system task execution, 108
auxiliary (remote) console, 226

B
baud rate
how to set on ttymon terminal, 43-44
how to set with the eeprom command, 43
bidirectional modem service, 23, 40
billing users, 135
See also charge fee script
boot archive, SMF service failure on reboot, 216
boot archive service failure
x86
GRUB troubleshooting, 254-255
booting
displaying messages generated during, 222-223
running sadc command when, 210

C
changing
crontab files, 113
date, 71
message of the day, 71
priority, 176 178
timesharing processes, 177 178
quotas for individual users, 103
scheduling classes, 176
changing (Continued)
soft limit time, 102
system’s host name, 72-73
charge fee script, 130 131 146
billing users, 135
ckpacct script, 131, 133, 134
closewtmp command, 142
cmssprev file, 152
Command not found error message, 261
commands, monitoring usage of, 151
Common Agent Container
troubleshooting, 259-260
devices
in Solaris OS, 216
Common Agent Container shared, shared component, 259-260
Common Agent Container shared component
data structure, 259-260
Common Agent Container shared component
types of problems
port number conflicts, 259-260
Common Agent Container shared component
types of problems
security around superuser password, 259-260
connect accounting, See accounting, connect
consadm command, 228-229
disabling an auxiliary console, 230
displaying list of auxiliary consoles (how to), 229
enabling an auxiliary console, 228-229
across system reboots, 229
console
auxiliary
enabling across system reboots, 229
console terminal, how to set the baud rate on, 43-44
console terminal baud rate, setting with eeprom command, 43
controlling
access to at command, 108, 122, 125
access to crontab command, 118, 119
overview, 108
processes, 168
core dump configuration, displaying with coreadm, 234
core file name pattern, setting with coreadm, 233
core files
   automatically deleting, 121
core files
   examining with proc tools, 236
   finding and deleting, 88
core files
   managing with coreadm, 232
coreadm command, 232
   displaying core dump configuration, 234
   managing core files, 232
   setting a core file name pattern, 235
CPU (central processing unit)
   displaying information on
time usage, 146, 163, 179
   high-usage processes, 179
crash dump directory, recovering from a full, 246
   crashes, 224, 256
   customer service and, 218, 241
   displaying system information generated by, 221, 246
   examining crash dumps, 245, 246
   procedure following, 218, 256
   rebooting fails after, 250-251
   saving crash dump information, 241
   saving other system information, 222
creating
   at jobs, 122
   at jobs, 123
   crontab files, 113, 114
cron.allow file, 117, 118, 119
cron daemon, 110, 111
cron.deny file, 117, 118
defaults, 117
crontab command, 118
   accounting scripts run by, 133, 134
   controlling access to, 117, 118, 119
   denying access, 117, 118
   limiting access to specific users, 117, 118, 119
   overview, 108, 117, 118
cron daemon and, 111
   -e option (edit), 113
   -l option (list), 114, 115
   -r option (remove), 116, 117
/var/adm maintenance and, 222
crontab command (Continued)
daily tasks, 109
error messages, 120
files used by, 111
overview, 108, 109
quitting without saving changes, 113
scheduling of, 111
crontab files
   creating, 113, 114
   creating and editing, 107-108
defaults, 111
deleting, 116, 117
denying access, 118
description, 111, 112
displaying, 114, 115-116
editing, 113, 114
   location of, 111
   removing, 116-117
   syntax, 112
tacct.MMDD file, 142, 151
tc[mp] file, 151
customer service, sending crash information, 218
customizing
   system message logging, 224
   system message logging (how to), 226
D
daily accounting, See accounting, daily
daily tasks (scheduling with crontab), 109
date command
   accounting data and, 129, 131
daytarct file
   Daily Usage Reports and, 146
   runacct script and, 142, 153
   /var/adm/acct/nite Directory, located in, 152
defaults
   for quotas, 101-102
   message of the day, 71
   nice number, 178
   soft limit time, 102
deleting
   at jobs, 125
core files, 88
deleting (Continued)
crontab files, 116, 117
finding and deleting old/inactive files, 85
log files, 114
old/inactive files, 109
temporary files, 88
df command, 188
  -h option, 77
  -k option (kilobytes), 188
  -t option (total blocks), 78
examples, 77, 188
overview, 76, 188
dial-in modem service, 23
dial-out modem service, 23
directories
current working directory for processes, 165
displaying information about, 79, 80, 82, 84
size of, 82, 84
temporary, clearing out, 85, 88
disabling
  an auxiliary console with the consadm command, 230
  quotas for individual users, 104
  system accounting, 140
disk accounting, see accounting, disk
disk block and file limits, difference between, 92
disk drives
displaying information about
  free disk space, 188
finding and deleting old/inactive files, 114
disk space
displaying information about
  df command, 188
directory sizes, 82, 84
disk space owned per user, 84
  file sizes, 79, 80, 82
  mount point, 189
finding and deleting old/inactive files, 85, 89
finding files exceeding a size limit, 82
finding large files, 80, 81
disktacct file, 131
disktacct file, 130, 142, 151
disktacct.MMDD file, 142
dispadmin command, overview, 173
display
date and time, 66
host ID, 65
  system’s installed memory, 66
displaying
  acct.h format files, 149, 150
  at jobs, 124
  booting messages, 222-223
  core dump configuration with coreadm, 234
  crash information, 221, 246
  crontab files, 114, 115-116
directory information, 79, 80, 82
file information
  file size, 79, 80
  listing newest, 85
  using the du command, 82
file system information, 84
linked libraries, 165
LWP information, 165
pacctn file, 149, 150
priority information, 163, 174
process information (how to), 167-168
quota information, 93, 99
quotas, 99-100
scheduling class information, 163, 174
size of files, 79-80
system activity information, 191, 211
system information commands for, 60, 66
displaying a system’s physical processor type, psrinfo -p, 67
displaying product name information, prtconf command, 65-66
dmesg command, 222-223
dodisk script, 130
caution, 130
crontab entry that runs, 134
files created by, 130, 131, 142, 151
overview, 130, 131
dtmp file, 151
DTrace facility, 216-217
du command, 82, 84
dumpadm, managing system crash information, 242
E
editing
crontab files, 113, 114
edquota command
  disabling quotas for individual users, 104
    -p option (prototype), 96
    -t option (time limit), 102
  overview, 93, 101
  setting up user quotas, 96
eeprom command, using to set the baud rate on the
ttymon terminal, 43
enabling
  an auxiliary console with consadm
    command, 228-229
  auxiliary console across system reboots, 229
error messages
  at command, 126
  crash messages, 222
  crash related, 221
crontab command, 120
  customizing logging of, 224
  log file for, 218, 221
  priorities for, 225
  runacct script, 138
  sources of, 224
  specifying storage location for, 221 224
/etc/acct/holidays file, 134, 135
/etc/cron.d/at.deny file, 122, 125
/etc/cron.d/cron.allow file, 117, 118, 119
/etc/cron.d/cron.deny file, 117, 118
/etc/init.d/acct file, 134
/etc/syslog.conf file, 224
/etc/utmpx file, 39
/etc/vfstab file, 94
examining a core file, with proc tools, 236
executing routine tasks automatically (overview), 108

F
failed SMF boot archive service, troubleshooting GRUB
  based booting, 240-241
failed x86 based system reboot, SMF boot archive
  service, 216
fenv information, 165, 167
fd2log file, 138 141 151
fee file, 131, 136 142 151
fees, user, 131, 135
fees (user), 146
file or group ownership, solving file access
  problems, 264
file systems
  disk space usage, 188
  mount point, 189
  restoring, 135, 146
files
  accounting, 151, 153
  checking access operations, 191, 192
deleting
  See deleting
displaying information about
  listing, 79, 80
  size, 79, 80, 82, 84
displaying size of, 79-80
finding files exceeding a size limit, 82
fixing corrupted
  wtmpx file, 142
for setting search path, 262
fstat and fcntl information display, 165, 167
size of, 79, 80, 82, 84
usage monitoring, 130, 146
find command
  core files, 88
  finding files exceeding a size limit, 82
  old/inactive files, 85, 86
finding
  and deleting old/inactive files
  See deleting
  files exceeding a size limit, 82
  large files, 80, 81
fiscreptn file, 153
fixing, 137
  corrupted tacct file, 137-138
  corrupted wtmpx file, 136, 137
forcing programs to quit, 256
forget root password
  SPARC, 251
  x86, 252, 253
  booting the failsafe archive for recovery, 252-253
Index

fsck command, 109
fstat information, 165, 167

G
getty, 25
global core file path, setting with coreadm, 232
global priorities
defined, 173
displaying, 174
GRUB based booting
system crashes
failed SMF boot archive service, 240-241
troubleshooting SMF boot archive service failure, 216

H
holidays file, 135
host name, changing, 72-73
hostid command, 60

I
initializing quotas, 93, 97
interrupting programs, 256
iostat command
basic information display, 186
overview, 186

K
kernel thread
scheduling and, 163
structures, 158, 163
killing processes, 165, 169
klwp structure, 158
klwp utility, 252-253, 253-254
kthread structure, 158

L
large files, 81
last login report, 148
last date file, 142, 151
last login command, 142
line discipline, 39
line usage
connect accounting and, 129
daily report and, 144
/var/adm/acct/nite/lineuse file, 154
line usage monitoring, 145
lineuse file, See /var/adm/acct/nite/lineuse file listing
files and directories, 79, 80, 85, 86
processes, 165
processes being executed, 166
localeadm command, 68
tock file, 138, 142
tock1 file, 142
tock file, 151
log files, deleting automatically, 114
tock, MMDD file, 151
login monitoring
last login, 142, 148, 153
number of logins, 146
time usage, 129, 131, 146
login log file, 142, 152, 153
ls command
checking directory sizes, 79
-l option (size in bytes), 80
-s option (size in blocks), 80
-t option (newest files), 85
LWPs (lightweight processes)
defined, 157
displaying information on, 165
processes and, 157, 158
structures for, 158

M
managing serial ports with SAF, task map, 36
managing system crash information, with
dumpadm, 242
managing system resources, road map, 57
maximums
   finding files exceeding maximum size, 82
   nice number, 178
mdb utility, 245, 246
memory
   command for displaying information on, 60
   example of displaying information on, 66
   process structures and, 158
   shared
      process virtual memory, 158
   virtual
      process, 158
message of the day (MOTD) facility, 71-72
messages file, 218, 224
messages .n file, 222
minimums, nice number, 178
modems, 31-32
   bidirectional service, 23 40
   defined, 23
   dial-in service, 23
   dial-out service, 23
   different ways to use, 23
   overview of Serial Ports Tool, 28
   Serial Ports Tool modem templates, 29
   tools for managing, 25
monacct script
   crontab entry that runs, 134
   files used/produced by, 153
   monthly command summary and, 146 148
   runacct script and, 132 141
   scheduling running of, 133
   monthly command summary, 148
   monthly tasks (scheduling with crontab), 109
   MOTD (message of the day) facility, 71-72
   motd file, 71-72
   motd file, 71

N
networks, recognizing access problems, 264
new features
   CPU performance counters, 155-156
   enhanced pfiles tool, 155
new features (Continued)
   svcadm enable system/sar:default
      command, 210
   nice command, 177, 178, 179
   nice number, 163 178
   nlsadmin command, 42
O
   owtmpx file, 152
P
   pacctn file
      displaying, 149 150
      monitoring size of, 131 141
      overview, 131 142 151
   panic messages, 221
   password security conflicts, superuser, Common Agent
      Container, 259-260
   per-process core file path, setting with coreadm, 232
   perf file, 210
   performance
      activities that are tracked, 158
      automatic collection of activity data, 210
      file access, 191 192
      manual collection of activity data, 191 211
      process management, 157 165 178
      reports on, 191
      system activity monitoring, 158 191 210
      tools for monitoring, 159
   pfiles command, 165 167
   pflags command, 165
   pkill command, 165 169
   pldd command, 165
   pmadm command
      adding a ttymon service with, 48
      described, 38
      disabling a ttymon service with, 51
      enabling a ttymon service with, 51
      listing a ttymon service with, 49
   pmapp command, 165
   port, 32-33
Index

port (Continued)
defined, 23
initialization process of, 39
states of (table), 55
port monitor
definition, 24
states of (table), 54
ttymon and listen (defined), 24, 40-42
port number conflicts
Common Agent container shared component
troubleshooting, 259-260
port numbers (how to check)
Common Agent Container shared component
cacao, 259-260
power cycling, 256
power failure recoveries, 144
prdaily script
files used by, 151 152
line usage reporting and, 153
overview, 141
runacct script and, 141, 153
printing, user fee calculation for, 135
priocntl command
overview, 173
- c option (scheduling class designation), 176
- i option (ID type), 176
- l option (scheduling class display), 174
- m option (max/min priority), 176
- p option (priority designation), 176
- s option (priority upper limit/change priority), 176
priority (process)
changing, 176 178
timesharing processes, 176 177 178
designating, 175 176
displaying information on, 163 174
global
defined, 173
displaying, 174
overview, 173 178
scheduling classes and, 176
user-mode priority, 173
/proc directory, 164
proc structure, 158, 163
proc tools, examining a core file, 236
process accounting, 129, 131, 145, 146
reason records, 132
process file system (PROCFS), 164
processes
accounting utilities for, 129, 131, 145, 146
address space map, 165
application threads and, 157, 158
controlling, 168
current working directory for, 165, 167
defined, 157
displaying information (how to), 167-168
displaying information on, 163
acctcom command, 149, 150
daily usage report, 145, 146
dead processes, 149
listing processes, 165
listing processes being executed, 166
LWPs, 165
priocntl command, 174
ps command, 163, 166, 174
displaying information with proc tool commands, 165
displaying information with proc tools, 164
fstat and fcntl information for open files, 165
killing, 165, 169
libraries linked into, 165
nice number of, 163, 177, 178, 179
priority, 178
changing, 176, 178
timesharing process priority, 176, 177, 178
designating, 175, 176
displaying information on, 163, 174
global priorities, 173, 174
overview, 173, 178
scheduling classes and, 173, 176
user-mode priority, 173
proc tool commands, 164
restarting, 165
runaway, 179
scheduling classes, 173
changing, 176
processes, scheduling classes (Continued)
changing priority of, 176 178
designating, 175
displaying information on, 163 174
priority levels and, 173 176
signal actions, 165
stack trace, 165
stopping temporarily, 165
structures for, 158 163
terminology, 157 158
tool commands, 165
tracing flags, 165
trees, 165 167
troubleshooting, 179
PROCFS (process file system), 164
product name for a system, displaying with `prtconf`
command, 65-66
programs
disk-dependency of, 192
forcing to quit running, 256
interrupting, 256
`prtconf` command, 60 66
displaying a system's product name, 65-66
`ps` command, 163 166
fields reported, 163
overview, 163
-c option (scheduling class), 163 179
-ecl option (global priority), 174
-ef option (full information), 165 166
`psig` command, 165
`psrinfo` command option to identify chip
multithreading features, `psrinfo -p`, 66-67
`pstack` command, 165
`ptacctn.MMDD` file, 143
`ptime` command, 165
`ptree` command, 165 167
`pwait` command, 165
`pwdx` command, 165 167

`quot` command, 93
`quotachek` command, 93 97
`quotact` command, 93 98
quotas, 100-101 101-102
changing, 101
changing for individual users, 103
changing the soft limit default, 101-102
checking, 99
checking for exceeded, 99-100
checking for exceeded user quotas, 99
checking on file systems, 100-101
consistency checking, 97
disabling for individual users, 104
displaying, 99-100
displaying information on, 99
initializing, 93 97
overview, 91
prototype for multiple users, 96
removing, 101
requirements, 93
setting hard limits for, 92
setting soft limits for, 92
setting up, 92
soft limit time
changing, 102
turning on, 92
turning on, example of, 98
turning on and off, 93
user
changing for individual users, 103
checking for exceeded, 99
setting up, 96
using, 91-92
verifying, 93 99 103
quotas file, 92 94

`R`
real-time processes, changing class of, 176
reason records, process accounting, 132
rebooting
and `/var/adm/wtmpx` file, 131
connect accounting and, 129
daily report and, 144
rebooting (Continued)
fails after crash, 250-251
rebooting an x86 based system, boot archive SMF service fails, 216
reboots file, 142, 151
recognizing network access problems, 264
recover root password
SPARC, 251
x86, 252, 253
recovering from a full crash dump directory, 246
remote printing, user fee calculation for, 135
removing, crontab files, 116-117
repetitive system tasks, 118
repquota command, 99, 100-101
requirements, quotas, 93
restarting processes, 165
runacct script, 138, 142, 143
restore, using matching commands, 258
rm command, 87, 88
root crontab file, 130
root password, forget
SPARC, 251
x86, 252, 253
GRUB based booting, 252-253
rprt .MMDD file, 131, 153
rpt .MMDD file, 142, 152
RS-232-C, See serial port
runacct script, 137, 141
crontab entry that runs, 141
diagnostics file, 141
error messages, 138
error protection, 141, 142
failure of, 138
files used/produced by, 151, 153
fixing corrupted files, 136, 137, 142
last time executed, 151
monacct script and, 141
overview, 131
prdaily script and, 141, 153
progress file, 141
restarting, 138, 142, 143
scheduling running of, 133
states of, 142
runacct script (Continued)
user fee calculation and, 135, 146
runaway processes, 179

S
sa1 command, 210
sa2 command, 210, 211
SAC, See Service Access Controller
sacadm command, 46-47
adding a ttymon port monitor with, 44
described, 37
killing a ttymon port monitor with, 45
starting a ttymon port monitor with, 46
sadc command, 210, 211
sadd file, 210
SAF, See Service Access Facility
sar command, 191, 211
description of all options, 212
options listed, 211
overview, 191, 211
-A option (overall performance), 209, 212
-a option (file access), 191, 192
-b option (buffers), 192
-c option (system calls), 194
-e option (ending time), 211
-f option (file to extract data from), 211
-i option (interval), 212
-m option (interprocess communication), 200
-p option (page-in/page faults), 201
-q option (queue), 202, 203
-r option (unused memory), 203
-s option (starting time), 211
-u option (CPU usage), 204
-v option (system tables), 206
-y option (terminal devices), 208
saving crash dump information, 241
scheduling
See also crontab command, at command
one-time system tasks, 109, 121
repetitive system tasks, 109, 110
scheduling classes, 173
changing, 176
changing priority of, 176, 178
scheduling classes (Continued)
  designating, 175
displaying information on, 163, 174
  priority levels and, 173, 176
search path, files for setting, 262
security
  at command, 122
crontab command, 118
security around superuser password
  Common Agent Container shared component
troubleshooting, 259-260
serial port
  adapter board, 24
defined, 24
Serial Ports Tool, terminals and modems, 25
Service Access Controller, 38
Service Access Facility
description, 25, 36
  overview of, 25, 36
programs associated with (table), 37
services controlled by
  states of (table), 54
uses for, 25, 36
when to use, 25
setting, a core file name pattern with coreadm, 235
setting terminals and modems, task map, 27-28
setting the baud rate on the ttymon console terminal,
  how to, 43-44
shared memory, process virtual memory, 158
shutacct script, 131, 132
shutdown command, 132
shutdowns
  monitoring, 131, 132, 144
size
  directory, 82, 84
  file, 79, 80, 82, 84
soft limit time, changing, 101-102
software packages, troubleshooting installation of, 293
Solaris process accounting and statistics
  improvements, 127-128
Spacctn.MMDD file, 142, 151
startup command, acct, 130
statefile file, 138, 142, 151
states, (runacct script), 142
stopping
  processes temporarily, 165
system accounting, 139
superuser (root) password, forget
  SPARC, 251
  x86, 252, 253
svcadm enable system/sar:default command, 210
sys crontab, 210
syslog.conf file, 224
syslogd daemon, 221
system accounting, task map, 132-133
system activities
  automatic collection of data on, 210
  list of activities tracked, 158
  manual collection of data on, 211
system crash information, managing with
dumpadm, 242
system message logging (customizing), 224
system messages
  customizing logging (how to), 226
  specifying storage location for, 221
system resources
  accounting
    overview, 128
  monitoring, 122
    accounting, 139
    accounting system for, 153
    automatic, 122
    crashes, 224, 256
    quotas, 100-101
    overview, 157
system tasks
  See also crontab command, at command
scheduling
  one-time tasks, 109, 121
  repetitive tasks, 109, 110
  scheduling automatically, 108

T
tacct file, 137-138, 142, 152, 153
tacct.MMDD file, 137-138, 142, 152
tacctn file, 153
tacctprev file, 152
Index

technical support
  crash dump analysis, 241
  sending crash information, 218
temporary directories, 85, 88
terminals, 31
  alphanumeric, 23
  defined, 23
  distinctions between types of, 23
  line usage
    connect accounting and, 129
    daily report and, 144, 145
    /var/adm/acct/nite/lineuse file, 154
  overview of Serial Ports Tool, 28
  process controlling, 163
  Serial Ports Tool item descriptions, 28
  tools for managing, 25
  troubleshooting bad lines, 145
time
  CPU usage, 146, 163, 179
  processes accumulating large amounts of CPU
    time, 179
timesharing processes
  changing scheduling parameters, 176
  priority of
    changing, 176, 177, 178
    overview, 173
    range of, 173
  /tmp/disktacct.MMDD file, 142
  tmpwtmp file, 142, 151, 153
tools
  for displaying process information, 164
  process, 165
  system performance monitoring, 159
  total command summary, 148, 152
tracing flags, 165
troubleshooting
  Common Agent Container, 216
  Common Agent container shared component
    types of problems, 259-260
    processes, 179
  software package installation/removal, 293
  tty lines, 145
  troubleshooting failed SMF boot archive service
    x86
      GRUB failsafe archive, 254-255
  troubleshooting system crashes
    GRUB
      boot archive service fails on reboot, 240-241
  troubleshooting tasks, where to find, 217-218
  tty lines
    troubleshooting bad lines, 145
    tty lines, usage monitoring, 144
  tty lines
    usage monitoring, 129, 145, 153
  ttyadm command, 41
  ttymon port monitor, 46-47
    (figure), 39
    adding, 44
    bidirectional modem service and, 40
    killing, 45
    starting, 46
  ttymon service
    adding, 48
    disabling, 51
    enabling, 51
    listing, 49
  tuning, daily command summary and, 146
  turnacct switch script, 131
  turnacct switch script, 142
  turning off quotas, 93
  turning on quotas, 93
  turning on quotas, example of, 98

U
  UFS file systems, displaying information about, 84
  UNIX systems (crash information), 241
  user fees, 130, 131, 146
    See also billing users
  user logins
    last login monitoring, 142, 148, 153
    number of logins, 146
    time monitoring, 129, 142, 146
  user-mode priority, 173
  user ownership of disk space, 84
user processes
  changing priority, 177 178
  CPU usage by, 146
  priority of, 173
user quotas, 99-100
  changing for individual users, 103
  disabling for individual users, 104
  setting up, 96
user structure, 158
using quotas, 91-92

/var/adm/messages file, 218
/usr/bin/mdb utility, 245
/usr/proc/bin directory, 164,165
utmp2wtmp command, 142

V
/var/adm/acct directory, 151
/var/adm/acct/fiscal directory, 151
/var/adm/acct/nite/active file, 138 141,151
/var/adm/acct/nite/active.MMDD file, 141 151
/var/adm/acct/nite/cms file, 142
/var/adm/acct/nite/cms file, 151
/var/adm/acct/nite/ctacct.MMDD file, 142 151
/var/adm/acct/nite/ctmp file, 151
/var/adm/acct/nite/daycms file, 142 151,153
/var/adm/acct/nite/daytacct file, See daytacct file
/var/adm/acct/nite/directory, 151
/var/adm/acct/nite/disktacct file, 131
/var/adm/acct/nite/disktacct file, 130,131,142,151
/var/adm/acct/nite/disktacct.MMDD file, 142
/var/adm/acct/nite/fd2log file, 138 141,151
/var/adm/acct/nite/lastdate file, 142,151
/var/adm/acct/nite/lineuse file, 142,151,153
/var/adm/acct/nite/lock file, 138,142,151
/var/adm/acct/nite/lock1 file, 142
/var/adm/acct/nite/log file, 151
/var/adm/acct/nite/log.MMDD file, 151
/var/adm/acct/nite/otemptpx file, 152
/var/adm/acct/nite/reboots file, 142,151
/var/adm/acct/nite/statefile file, 138,142,151
/var/adm/acct/nite/tmpwtmp file, 142,151,153
/var/adm/acct/nite/wtmp.MMDD file, 142,152
/var/adm/acct/nite/wtmperror file, 151
/var/adm/acct/nite/wtmperror.MMDD file, 151
/var/adm/acct/sum/cms file, 142
/var/adm/acct/sum/cms file, 152 153
/var/adm/acct/sum/cmsprev file, 152
/var/adm/acct/sum/daycms file, 152,153
/var/adm/acct/sum/daycmsfile, 142
/var/adm/acct/sum/directory, 131,151,152
/var/adm/acct/sum/loginlog file, 142 152 153
/var/adm/acct/sum/rprt.MMDD file, 153
/var/adm/acct/sum/rprt.MMDD file, 131
/var/adm/acct/sum/tacct file, 142
/var/adm/acct/sum/tacct file, 137-138,152,153
/var/adm/acct/sum/tacct.MMDD file, 142,152
/var/adm/acct/sum/tacctMMDDfile, 137-138
/var/adm/acct/sum/tacctprev file, 138,152
/var/adm/acct/sum/tacctfile, 137-138
/var/adm/acct directory
  controlling size of, 87
  described, 151
  raw accounting data in, 130
/var/adm/dtmp file, 151
/var/adm/fee file, 131,136,142,151
/var/adm/messages file, 218 224
/var/adm/messages.n file, 222
/var/adm/sp/a/sadid file, 210
/var/adm/Spacct.n.MMDD file, 142,151
/var/spool/cron/atjobs directory, 108,109,111
/var/spool/cron/crontabs directory, 111
/var/spool/cron/crontabs/root file, 110,130
/var/spool/cron/crontabs/sys crontab, 210
verifying
  quotas, 99,103
vfstab file, quotas and, 94
vmstat command
  fields in reports from, 182
  overview, 182

W
Watchdog reset! message, 221
weekly tasks (scheduling with crontab), 109

309
what to do if boot archive service fails
  x86
    booting the failsafe archive, 254-255
wtmp.MMDD file, 142, 152
wtmperror file, 151
wtmperror.MMDD file, 151
wtmpfix command, 136, 142, 151
wtmpx file, 137
  daily report and, 144
  fixing corrupted, 136, 137, 142
  overview, 131 136 142
  shutdowns and, 132

X
x86: error messages upon system boot,
  troubleshooting, 249-250
x86: troubleshooting error messages upon system
  boot, 249-250