Contents

1. Product Description 1
 System Unit 1
 Systems Illustrations 2
 Display Panel 5

2. Diagnostic Overview 7
 Default Boot Mode 7
 Diagnostic Tools 9
 OpenBoot PROM Diagnostics 10
 SunDiag System Exerciser 12

3. Power-On Self-Test (POST) 15
 Normal Mode 15
 Diagnostic Mode 15
 Setting Up a tip Connection to Another Workstation 16
 How to Invoke POST at Power On 17
 Tests POST Runs 17
 Status Lights (LEDs) and Indicators 20
 Power-On Self-Test 21
 POST Error Messages 21
After POST Ends 22

4. **Troubleshooting Procedures** 25
 - Troubleshooting Tips 25
 - Power On Does Not Succeed 26
 - System Board Test 27
 - DC/DC Converter Test 27
 - Display Panel Problems 28
 - No Video Output on Display Panel 28
 - Lines or Blank Areas on the Display Panel 28
 - Disk Drive or SCSI Errors 29
 - Testing the System SCSI Controller 29
 - Memory Errors 31

5. **Safety and Tools Requirements** 33
 - Safety Requirements 33
 - Symbols 33
 - Safety Precautions 34
 - Modification to Equipment 34
 - Placement of a Sun product 34
 - Power Cord Connection 34
 - Electrostatic Discharge 35
 - Lithium Battery 35
 - Rechargeable Battery 35
 - Display Panel 35
 - Tools Required 36

6. **Power Off and On** 37
 - Powering Off the System 37
7. **Internal Access** 43

 - Opening the Rear of the System 43
 - Removing the Power Supply 43
 - Removing the Left Cap 44
 - Removing the Right Cap 45
 - Removing the Rear cover 46

 - Attaching the Wrist Strap 47

 - Opening the Front of the System 48
 - Removing the Filler Cover 48
 - Removing the Display Panel 49
 - Removing the Front Cover 50

 - Removing the Bottom Front Cover 51
 - Removing the Bottom Rear Cover 52

 - Closing the System 55
 - Replacing the Bottom Rear Cover 55
 - Replacing the Bottom Front Cover 58
 - Replacing the Front Cover 59
 - Replacing the Display Panel 60
 - Replacing the Rear Cover 61
 - Replacing the Right Cap 62
 - Replacing the Left Cap 63
 - Replacing the Power Supply 64

8. **Major Subassemblies** 67

 - Display Panel 68
 - Removing the Display Panel 68
 - Replacing the Display Panel 68
Power Supply 69
 Removing the Power Supply 69
 Replacing the Power Supply 69
Speaker 69
 Removing the Speaker 69
 Replacing the Speaker 70
DC/DC Converter 70
 Removing the DC/DC Converter 70
 Replacing the DC/DC Converter 72
SCSI Cable 72
 Removing the SCSI Cable 72
 Replacing the SCSI Cable 73
Floppy Cable 73
 Removing the Floppy Cable 73
 Replacing the Floppy Cable 76
Flex Cable 81
 Removing the Flex Cable 81
 Replacing the Flex Cable 82
IR Cable 83
 Removing the IR Cable 83
 Replacing the IR Cable 85

9. Storage Devices 87
Floppy Drive 87
 Removing the Floppy Drive 87
 Replacing the Floppy Drive 90
Hard Disk Drive 92
 Removing the Hard Disk Drive 92
10. **System Boards and Component Replacement**
 - **CPU Board** 96
 - Removing the CPU Board 96
 - Replacing the TOD/NVRAM 98
 - Replacing the CPU Board 99
 - **TOD/NVRAM** 100
 - Removing the TOD/NVRAM 101
 - Replacing the TOD/NVRAM 101
 - **Video Board** 101
 - Removing the Video Board 101
 - Replacing the Video Board 103
 - **Memory Card** 103
 - Removing the Memory Card 103
 - Replacing the Memory Card 104
 - **IR Board** 105
 - Removing the IR Board 105
 - Replacing the IR Board 107
 - **I/O Board** 108
 - Removing the I/O Board 108
 - Replacing the I/O Board 110

11. **Replacement Parts** 111
 - List of Replacement Parts 111
 - Illustrated Parts Breakdown 114

A. **Product Specifications** 117
 - Physical Specifications 117
B. Signal Descriptions 121

External Battery Connector 121
Internal Battery Connector 122
CPU Board to I/O Board Connector 123
CPU Board to Video Board Connector 126
Mono Display Panel Connector 128
Color Display Panel Connector 130
PCMCIA Connector(s) 131
Keyboard/Mouse and Serial Port 133
 Keyboard/Mouse 133
ISDN Ports 134
 ISDN TE 134
 ISDN NT 134
Serial Port 135
Twisted Pair Ethernet 136
Floppy Connector 136
SCSI Connector (Internal) 137
SCSI Connector (External) 139
Audio Connectors 140

C. Selected On-Board Diagnostics 143

test Device Alias, test Device Pathname 143
test-all 144
watch-clock 144
watch-net, watch-tpe 145
probe-scsi 146
test-memory 146
power-off 147

Glossary 149
Figures

FIGURE 1-1 Front View—Exploded 2
FIGURE 1-2 Rear View—Exploded 3
FIGURE 1-3 Front View—Internal 4
FIGURE 1-4 Rear View—Internal 4
FIGURE 1-5 Back Panel 4
FIGURE 2-1 Default Boot Mode 8
FIGURE 3-1 How to Invoke POST 17
FIGURE 3-2 Power LED 20
FIGURE 3-3 Arrangements of the Sun Compact 1 Keyboard LEDs 21
FIGURE 3-4 Upper and Lower Memory Cards Location 22
FIGURE 3-5 Tests to Run After Running POST 23
FIGURE 4-1 Upper and Lower Memory Card Location 31
FIGURE 6-1 Power Key Location - Sun Compact 1 Keyboard 38
FIGURE 6-2 Power Switch Location 38
FIGURE 6-3 System With the Power Supply 39
FIGURE 6-4 System With the Battery Installed 40
FIGURE 6-5 System With the Battery and Power Supply Installed 41
FIGURE 7-1 Removing the Power Supply Door 43
FIGURE 7-2 Removing the Power Supply 44
FIGURE 7-3 Removing the Left Cap 45
FIGURE 7-4 Removing the Right Cap 45
FIGURE 7-5 Removing the Lock Block 46
FIGURE 7-6 Removing the Rear Cover 47
FIGURE 7-7 Wrapping the Wrist Strap Around Your Wrist 48
FIGURE 7-8 Attaching the Wrist Strap to the System 48
FIGURE 7-9 Removing the Filler Cover 49
FIGURE 7-10 Removing the Display Panel 50
FIGURE 7-11 Removing the Front Cover 51
FIGURE 7-12 Removing the Bottom Front Cover 52
FIGURE 7-13 Loosening the Screws from the Bottom Rear Cover 53
FIGURE 7-14 Flex Connectors Location on the Video Board 53
FIGURE 7-15 Screw on the Floppy Drive Locking lever 54
FIGURE 7-16 Removing the Floppy Drive 54
FIGURE 7-17 Removing the Bottom Rear Cover 55
FIGURE 7-18 Replacing the Bottom Rear Cover 56
FIGURE 7-19 Replacing the Floppy Drive 57
FIGURE 7-20 Screw on the Floppy Drive Locking Lever 57
FIGURE 7-21 Screws in the Bottom Rear Cover 58
FIGURE 7-22 Replacing the Bottom Front Cover 59
FIGURE 7-23 Replacing the Front Cover 60
FIGURE 7-24 Replacing the Display Panel 61
FIGURE 7-25 Replacing the Rear Cover 62
FIGURE 7-26 Replacing the Right Cap 63
FIGURE 7-27 Replacing the Lock Block 63
FIGURE 7-28 Replacing the Left Cap 64
FIGURE 7-29 Replacing the Power Supply 65
FIGURE 7-30 Replacing the Power Supply Door 65
FIGURE 8-1 Removing/Replacing the Speaker 70
FIGURE 8-2 DC/DC Converter Connector 71
FIGURE 8-3 Removing/Replacing the DC/DC Converter 71
FIGURE 8-4 Disconnecting the SCSI Cable from the I/O Board 72
FIGURE 8-5 Removing/Replacing the Speaker 74
FIGURE 8-6 Flex Connectors Location on the Video Board 74
FIGURE 8-7 Removing the Video Board 75
FIGURE 8-8 Removing the Floppy Cable From the Floppy Drive 75
FIGURE 8-9 Positioning the CPU Board 76
FIGURE 8-10 Connecting the Floppy and Flex Cables to the CPU Board 77
FIGURE 8-11 Connecting/Disconnecting the Speaker Cable 77
FIGURE 8-12 Replacing the CPU Board 78
FIGURE 8-13 Connecting the DC/DC Converter 78
FIGURE 8-14 Unlocking the Floppy Connector 79
FIGURE 8-15 Connecting the Floppy Cable to the Floppy Drive 79
FIGURE 8-16 Replacing the Video Board 80
FIGURE 8-17 Replacing the Speaker 80
FIGURE 8-18 Removing/Replacing the Flex Cable from the Video Board 81
FIGURE 8-19 Connecting/Disconnecting the Flex Cable—the CPU Board 82
FIGURE 8-20 Connecting/Disconnecting the SCSI Cable—the I/O board 83
FIGURE 8-21 IR Cable Connection to the IR Board 84
FIGURE 8-22 Removing/Replacing the IR Board 84
FIGURE 8-23 IR Cable Connection to the I/O Board 85
FIGURE 9-1 Flex Connectors Location on the Video Board 88
FIGURE 9-2 Removing the Floppy Cable From the Floppy Drive 88
FIGURE 9-3 Loosening the Screw on the Locking Lever 89
FIGURE 9-4 Removing the Floppy Drive 89
FIGURE 9-5 Unlocking the Floppy Connector 90
FIGURE 9-6 Connecting the Floppy Cable to the Floppy Drive 90
FIGURE 9-7 Replacing the Floppy Drive 91
FIGURE 9-8 Tightening the Screw on the Locking lever 92
FIGURE 9-9 Connecting/Disconnecting the SCSI Cable—the Disk Drive 93
FIGURE 9-10 Location of Screws on the Disk Drive Mounting Bracket 93
FIGURE 9-11 Replacing the Disk Drive 94
FIGURE 10-1 Removing/Replacing the CPU Board to the System 96
FIGURE 10-2 Disconnecting Connectors from the CPU Board 97
FIGURE 10-3 Disconnecting the Flex Cable from the CPU Board 97
FIGURE 10-4 Connecting/Disconnecting the Speaker Cable 98
FIGURE 10-5 Removing/Positioning the CPU Board 98
FIGURE 10-6 Location of the TOD/NVRAM 99
FIGURE 10-7 Removing/Replacing the Speaker 102
FIGURE 10-8 Flex Connectors Location on the Video Board 102
FIGURE 10-9 Removing/Replacing the Video Board 103
FIGURE 10-10 Removing the Memory Card 104
FIGURE 10-11 Replacing a Memory Card 105
FIGURE 10-12 Connecting/Disconnecting the SCSI Cable—the I/O board 106
FIGURE 10-13 IR Cable Connection to the IR Board 106
FIGURE 10-14 Removing/Replacing the IR Board 107
FIGURE 10-15 Connecting/Disconnecting the SCSI Cable—the I/O board 108
FIGURE 10-16 I/O Board and Backpanel 109
FIGURE 10-17 Screw Location at the Bottom of I/O Board 109
FIGURE 10-18 Removing/Replacing the I/O Board 110
FIGURE 11-1 Front View—Exploded 114
FIGURE 11-2 Rear View—Exploded 115
FIGURE 11-3 Front View—Internal 116
FIGURE 11-4 Rear View—Internal 116
FIGURE B-1 Power Connector 121
FIGURE B-2 Battery Signal Connector 122
FIGURE B-3 Battery Power Connector 122
FIGURE B-4 CPU to I/O Board Connector 123
FIGURE B-5 CPU to Video Board Connector 126
FIGURE B-6 Mono Display Panel Connector 128
FIGURE B-7 Color Display Panel Connector 130
FIGURE B-8 PCMCIA Connector(s) 131
FIGURE B-9 Keyboard/Mouse Connector 133
FIGURE B-10 ISDN TE Connector 134
FIGURE B-11 ISDN NT Connector 135
FIGURE B-12 Serial Port Connector 135
FIGURE B-13 Twisted Pair Ethernet Connector 136
FIGURE B-14 Floppy Connector 137
FIGURE B-15 SCSI Connector (Internal) 138
FIGURE B-16 SCSI Connector (External) 139
FIGURE B-17 Audio Connector—Microphone Input 140
FIGURE B-18 Audio Connector—Line Input 141
FIGURE B-19 Audio Connector—Line Output 141
FIGURE B-20 Audio Connector—Headphone Output 142
Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE 1-1</td>
<td>Display Panel Types</td>
<td>5</td>
</tr>
<tr>
<td>TABLE 2-1</td>
<td>Definition of auto-boot? and diag-switch? Parameters</td>
<td>9</td>
</tr>
<tr>
<td>TABLE 2-2</td>
<td>Diagnostic Tools</td>
<td>10</td>
</tr>
<tr>
<td>TABLE 2-3</td>
<td>Selected On-Board Diagnostic Tests</td>
<td>11</td>
</tr>
<tr>
<td>TABLE 3-1</td>
<td>Keyboard LEDs Description</td>
<td>21</td>
</tr>
<tr>
<td>TABLE 4-1</td>
<td>Troubleshooting Tips</td>
<td>25</td>
</tr>
<tr>
<td>TABLE 4-2</td>
<td>DC/DC Converter Voltages</td>
<td>27</td>
</tr>
<tr>
<td>TABLE 4-3</td>
<td>Troubleshooting Disk Drive Errors</td>
<td>29</td>
</tr>
<tr>
<td>TABLE 4-4</td>
<td>Physical Memory Address and Memory Locations</td>
<td>31</td>
</tr>
<tr>
<td>TABLE 11-1</td>
<td>Replacement Parts List</td>
<td>111</td>
</tr>
<tr>
<td>TABLE A-1</td>
<td>Color System Physical Specifications</td>
<td>117</td>
</tr>
<tr>
<td>TABLE A-2</td>
<td>Monochrome System Physical Specifications</td>
<td>117</td>
</tr>
<tr>
<td>TABLE A-3</td>
<td>Headless System Physical Specifications</td>
<td>118</td>
</tr>
<tr>
<td>TABLE A-4</td>
<td>AC/DC Power Supply Specifications</td>
<td>118</td>
</tr>
<tr>
<td>TABLE A-5</td>
<td>Recommended Operating Ranges</td>
<td>119</td>
</tr>
<tr>
<td>TABLE A-6</td>
<td>Environmental Limits</td>
<td>119</td>
</tr>
<tr>
<td>TABLE B-1</td>
<td>Power Connector Pin Assignments</td>
<td>121</td>
</tr>
<tr>
<td>TABLE B-2</td>
<td>Battery Signal Connector Pin Assignments</td>
<td>122</td>
</tr>
<tr>
<td>TABLE B-3</td>
<td>Battery Power Connector Pin Assignment</td>
<td>122</td>
</tr>
<tr>
<td>TABLE B-4</td>
<td>CPU to I/O Board Pin Assignments</td>
<td>123</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>B-5</td>
<td>CPU to Video Board Pin Assignments</td>
<td>126</td>
</tr>
<tr>
<td>B-6</td>
<td>Mono Display Panel Pin Assignments</td>
<td>128</td>
</tr>
<tr>
<td>B-7</td>
<td>Color Display Panel Pin Assignments</td>
<td>130</td>
</tr>
<tr>
<td>B-8</td>
<td>PCMCIA Pin Assignments</td>
<td>131</td>
</tr>
<tr>
<td>B-9</td>
<td>Keyboard/Mouse Connector Pin Assignments</td>
<td>133</td>
</tr>
<tr>
<td>B-10</td>
<td>ISDN TE Connector Pin Assignments</td>
<td>134</td>
</tr>
<tr>
<td>B-11</td>
<td>ISDN TE Connector Pin Assignments</td>
<td>135</td>
</tr>
<tr>
<td>B-12</td>
<td>Serial Port Connector Pin Assignments</td>
<td>135</td>
</tr>
<tr>
<td>B-13</td>
<td>Twisted Pair Ethernet Pin Assignments</td>
<td>136</td>
</tr>
<tr>
<td>B-14</td>
<td>Floppy Pin Assignments</td>
<td>137</td>
</tr>
<tr>
<td>B-15</td>
<td>SCSI (Internal) Pin Assignments</td>
<td>138</td>
</tr>
<tr>
<td>B-16</td>
<td>SCSI (External) Pin Assignments</td>
<td>139</td>
</tr>
<tr>
<td>B-17</td>
<td>Audio—Microphone Input Pin Assignments</td>
<td>140</td>
</tr>
<tr>
<td>B-18</td>
<td>Audio—Line Input Pin Assignments</td>
<td>141</td>
</tr>
<tr>
<td>B-19</td>
<td>Audio—Line Output Pin Assignments</td>
<td>141</td>
</tr>
<tr>
<td>B-20</td>
<td>Audio—Headphone Output Pin Assignments</td>
<td>142</td>
</tr>
</tbody>
</table>
Preface

The SPARCstation Voyager Service Manual describes how to remove and replace system parts. Chapter 11 lists the replacement parts. This manual also describes how to troubleshoot system problems by running diagnostic programs.

This book is written for Sun® field service representatives, original equipment manufacturers (OEMs), value-added resellers (VARs), and other customers with self-maintenance contracts.

What Typographic Changes Mean

The following table describes the typographic changes used in this book.

<table>
<thead>
<tr>
<th>Typeface or Symbol</th>
<th>Meaning</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>AaBbCc123</td>
<td>The names of commands, files, and directories; on-screen computer output</td>
<td>Edit your .login file. Use ls -a to list all files. machine_name% You have mail.</td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>What you type, contrasted with on-screen computer output</td>
<td>machine_name% su</td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>Command-line placeholder: replace with a real name or value</td>
<td>Password:</td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>Book titles, new words or terms, or words to be emphasized</td>
<td>To delete a file, type rm filename. Read Chapter 6 in User's Guide. These are called class options. You must be root to do this.</td>
</tr>
</tbody>
</table>
Shell Prompts in Command Examples

The following table shows the default system prompt and superuser prompt for the C shell, Bourne shell, and Korn shell.

<table>
<thead>
<tr>
<th>Shell Prompt</th>
<th>Prompt</th>
</tr>
</thead>
<tbody>
<tr>
<td>C shell prompt</td>
<td>machine_name%</td>
</tr>
<tr>
<td>C shell superuser prompt</td>
<td>machine_name#</td>
</tr>
<tr>
<td>Bourne shell and Korn shell prompt</td>
<td>$</td>
</tr>
<tr>
<td>Bourne shell and Korn shell superuser prompt</td>
<td>#</td>
</tr>
</tbody>
</table>

Related Documentation

The following documents provide additional information and are referenced in this manual:

<table>
<thead>
<tr>
<th>Application</th>
<th>Title</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostics</td>
<td>Introduction to Open Boot 2.0</td>
<td>800-5674</td>
</tr>
<tr>
<td>Diagnostics</td>
<td>SunDiag User’s Guide</td>
<td>801-6627</td>
</tr>
<tr>
<td>Installation</td>
<td>SPARCstation Voyager User’s Guide</td>
<td>801-4083</td>
</tr>
<tr>
<td>Installation</td>
<td>SPARCstation Voyager Memory Card Installation</td>
<td>801-4335</td>
</tr>
</tbody>
</table>
Notes, Cautions, and Warnings

Caution – This equipment contains lethal voltage. Accidental contact can result in serious injury or death.

Caution – Improper handling by unqualified personnel can cause serious damage to this equipment. Unqualified personnel who tamper with this equipment may be held liable for any resultant damage to the equipment.

Individuals who remove any outer panels or open covers to access this equipment must observe all safety precautions and ensure compliance with skill level requirements, certification, and all applicable local and national laws.

Procedures contained in this document must be performed by qualified service-trained maintenance providers.

Note – Before you begin, carefully read each of the procedures in this manual. If you have not performed similar operations on comparable equipment, do not attempt to perform these procedures.
Product Description

System Unit

The major system components are:

- CPU unit
- Display Panel
- Sun Compact 1 (or Type 5) Keyboard
- Mouse
- PCMCIA cards (optional)
- Memory cards (optional)
- Battery (optional)

The following figures illustrate the SPARCstation™ Voyager™ workstation:

- FIGURE 1-1 shows the front view of the unit
- FIGURE 1-2 shows the rear view
- FIGURE 1-3 shows the internal front view
- FIGURE 1-4 shows the internal rear view
- FIGURE 1-5 shows the back panel
Systems Illustrations

FIGURE 1-1 Front View—Exploded
FIGURE 1-2 Rear View—Exploded

Display panel

Right cap

Back panel

Rear cover

Bottom rear cover
FIGURE 1-3 Front View—Internal

FIGURE 1-4 Rear View—Internal

FIGURE 1-5 Back Panel
Display Panel

Each system uses a keyboard, a mouse, and one of several types of AMLCD (Active Matrix Liquid Crystal Display) panels or video monitors. Video monitors up to 1152 x 900 resolution are supported. TABLE 1-1 lists the display panels supported.

<table>
<thead>
<tr>
<th>Display Panel Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-inch (307 mm) AMLCD color panel</td>
</tr>
<tr>
<td>14-inch (356 mm) AMLCD monochrome panel</td>
</tr>
</tbody>
</table>
CHAPTER 2

Diagnostic Overview

This chapter describes how to diagnose a problem with a SPARCstation Voyager workstation and run diagnostic tests. You should be familiar with troubleshooting hardware, running diagnostic tests, and replacing or upgrading hardware.

- “Diagnostic Overview” on page 7
- “Diagnostic Tools” on page 9

Default Boot Mode

To troubleshoot a problem, it is helpful to know what part of the system has control of system operations at any moment.

When you turn on the power, control of the system passes in this order:

- OpenBoot’ initialization (initializes serial-controller-chip and checks the keyboard)
- Power-On Self-Test (POST) program (if Stop-D keys are pressed or diag-switch? true or if keyboard is not attached)
- OpenBoot program
- Operating system

The flowchart in FIGURE 2-1 outlines the roles played by various diagnostics during the default boot mode.
This section describes how the various diagnostic tools work together in the different power-on modes.

Note – POST will run at power on if the Stop-D keys are pressed or the diag-switch? parameter is set to true, or the keyboard is disconnected.

While the POST code executes, the Caps Lock LED on the keyboard flashes to indicate that testing is in progress. If a failure occurs in POST, the failing replaceable unit is encoded on three LEDs located on the keyboard and failure messages are output to the serial port. See Chapter 3, “Power-On Self-Test (POST).”

If the POST passes, the system probes for SBus devices and interprets their drivers. Next, high-level tests are performed. You will see the words **Testing Memory** while the high-level tests are running. After **Testing Memory** is displayed, if you want to use the OpenBoot PROM commands (ok prompt), press the Stop-A keys simultaneously.
If the auto-boot? parameter is set to false (not the default), you will get the ok prompt. To change to the monitor prompt (>) see the manual OpenBoot Command Reference.

If the auto-boot? parameter is set to true (default), and the diag-switch? parameter is set to false (default), the operating system is booted using the device alias disk. If the auto-boot? parameter is set to true (default), and the diag-switch? parameter is set to true (not the default), the operating system is booted using the device alias net. See TABLE 2-1.

To run user-specified programs, you must be at the ok prompt.

TABLE 2-1 describes the auto-boot? and diag-switch? parameters.

TABLE 2-1 Definition of auto-boot? and diag-switch? Parameters

<table>
<thead>
<tr>
<th>Autoboot Switch set to:</th>
<th>Diagnostic Switch set to:</th>
<th>Results will be:</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>Don’t care</td>
<td>ok prompt (OpenBoot PROM commands)</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>Boot operating system (/kernel/unix) from disk automatically only if the boot-device is set to disk (default setting)</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>Boot operating system (/kernel/unix) from network automatically only if diag-device is set to net (default setting)</td>
</tr>
</tbody>
</table>

Diagnostic Tools

The main categories of diagnostic tests are:
- OpenBoot PROM diagnostics
- Power-On Self-Test (POST)
- On-Board diagnostics
- SunDiag™ System Exerciser
TABLE 2-2 provides a summary of the available diagnostic tools and lists when to use each diagnostic tool.

TABLE 2-2 Diagnostic Tools

<table>
<thead>
<tr>
<th>Diagnostic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power-On Self-Test</td>
<td>POST tells you if the CPU board or memory card fails. POST code, residing in the OpenBoot PROM, executes at power-on when you press and hold the Stop-D keys, or the diag-switch? parameter is set to true, or the keyboard is disconnected.</td>
</tr>
<tr>
<td>On-Board Diagnostics</td>
<td>Includes tests such as: Ethernet and the diskette drive controller tests. To run on-board diagnostics, you must be at the \texttt{ok} prompt. See Appendix C, “Selected On-Board Diagnostics.”</td>
</tr>
<tr>
<td>Forth Toolkit</td>
<td>Allows input to the system at the OpenBoot PROM level. Supports functions such as changing NVRAM parameters, resetting the system, running diagnostic tests, displaying system information, and redirecting input and output. See the manual \textit{OpenBoot Command Reference}.</td>
</tr>
<tr>
<td>SunDiag System Exerciser</td>
<td>Runs under the operating system and displays real-time use of the system resources and peripherals. See the \textit{SunDiag User’s Guide} for more information. If SunDiag fails, run the Power-On Self-Test.</td>
</tr>
</tbody>
</table>

OpenBoot PROM Diagnostics

The diagnostics stored in the OpenBoot PROM include:

- POST
- On-board diagnostics

See TABLE 2-2 and Chapter 3 for information on POST. If there is system trouble, you can run on-board diagnostics for thorough tests, including but not limited to:

- Ethernet test
- Memory test
- Diskette drive test
- SCSI disk test

You can run on-board diagnostics from the \texttt{ok} prompt. If there is a problem with the operating system, the operating system brings the system to the \texttt{ok} prompt. You can also get to the \texttt{ok} prompt by shutting down the operating system.
TABLE 2-3 describes selected on-board diagnostic tests and what you must do before you run each test. Some of the tests verify the proper operation of the network controller, the diskette drive system, memory, and the system clock.

TABLE 2-3 Selected On-Board Diagnostic Tests

<table>
<thead>
<tr>
<th>Type of Test</th>
<th>Description</th>
<th>Preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>test screen</td>
<td>Tests the system video graphics hardware and monitor</td>
<td>The diag-switch? NVRAM parameter must be set to true.</td>
</tr>
<tr>
<td>test floppy</td>
<td>Tests the diskette drive ability to respond to commands</td>
<td>Insert a formatted diskette into the drive.</td>
</tr>
<tr>
<td>test scsi</td>
<td>Tests the SCSI interface logic on the system board</td>
<td>The diag-switch? NVRAM parameter must be set to true.</td>
</tr>
<tr>
<td>test net-tpe</td>
<td>Performs an internal and external loopback test on the TPE interface</td>
<td>A cable must be connected to the system TPE port and to a TPE hub or the test will fail the external loopback phase. If the tpe-link-test? parameter is false (disabled), the external loopback test will appear to pass even if a cable is not connected.</td>
</tr>
<tr>
<td>test net</td>
<td></td>
<td></td>
</tr>
<tr>
<td>test disk</td>
<td>Tests internal or external SCSI disks which have a self-diagnostic program contained in the drive controller.</td>
<td>The drive must be spinning before this test is executed or the test will fail. Enter a boot disk alias command to cause the drive to spin up.</td>
</tr>
<tr>
<td>test disk0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>test disk1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>test disk2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>test disk3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>test cdrom</td>
<td>Performs a self-test diagnostic on the CD-ROM drive.</td>
<td>The CD-ROM must be set to SCSI address and have a CD inserted or the test will fail.</td>
</tr>
<tr>
<td>test tape</td>
<td>Tests the SCSI tape drive by executing the drive self-test program. tape and tape 0 are the first tape drive. tape 1 is the second tape drive.</td>
<td>The tape drive must be set to SCSI address 4 (tape 0) or address 5 (tape 1) and a tape must be installed.</td>
</tr>
<tr>
<td>test tape0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>test tape1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>test ttya</td>
<td>Tests serial port. Outputs an alphanumeric test pattern on the system serial port (ttya = serial port A).</td>
<td>Attach a terminal to the serial port to observe the output.</td>
</tr>
</tbody>
</table>
Use the SunDiag system exerciser, which is shipped with and runs under the operating system, to test system resources and peripheral equipment.
If the SunDiag program has been selected during the operating system loading procedure, it can be run at any time. The SunDiag system exerciser is usually located in the directory /opt/SUNWdiag/bin. If the SunDiag system exerciser is not on the system hard disk or server, you can load it from CD-ROM. For more information, see the SunDiag User's Guide.

If the SunDiag tests pass, the system is operating properly. If the SunDiag tests fail, the error messages indicate the part of the system which has failed. If the error messages are not descriptive enough, you can run POST. See Chapter 3
The Power-On Self-Test (POST) diagnostics reside in the OpenBoot PROM located on the system board. There are two POST modes: Normal and Diagnostic.

Normal Mode

Under normal mode, when the system is turned on, control is sent to the OpenBoot PROM. Depending on the options set in the OpenBoot PROM, for example if `diag-switch` is disabled (set to false) and `auto-boot` is enabled (set to true), the operating system will load.

Low level diagnostic testing is not run, but memory will be tested based on the setting of the `selftest-#megs` parameter in the system’s NVRAM. The default for `selftest-#megs` is 1 (one megabyte). Change this parameter to increase the amount of memory tested at power on time.

Diagnostic Mode

You need to remove the PCMCIA card from the system to run a full diagnostic mode test by POST. If there is any PCMCIA card inserted in the system, POST will not run the following tests:
PCMCIA Status Chnge Intr Test
PCMCIA I/O Interrupt Test
PCMCIA Card Detect Intr Test
PCMCIA I/O St Chnge Intr Test

If an error or errors occur during the POST, all error messages are displayed on the TTY, tip window or display panel.

Setting Up a tip Connection to Another Workstation

You can use the serial port on the SPARCstation Voyager workstation to connect to another Sun workstation (either the same type of SPARC system or a different type of Sun workstation or server system). This connection lets you use a shell window on the Sun workstation as a terminal to the SPARCstation Voyager workstation being tested.

The tip method is recommended, because it lets you use SunOS windowing and operating system features to help you work with the boot PROM.

1. Connect the SPARCstation Voyager workstation serial port (TTYa) to another Sun workstation TTYa serial port using a serial connection cable. This connection is made with a 3-wire null modem cable. Connect wires 3-2, 2-3, and 7-7.

2. At the other Sun workstation, add the following lines to the file /etc/remote:

```
hardwire:\
    :dv=/dev/ttya:br#9600:el=^C^S^Q^U^D:ie=%$:oe=^D:
```

3. In a shelltool window on the Sun workstation, type `tip hardwire`. (Some commands will not work properly in a command tool window.) The system will reply `connected`.

4. When you are finished running POST and want to disconnect the tip window, type `kill -9` and the process ID number of the tip hardwire process.
How to Invoke POST at Power On

You can invoke POST at power on with or without a keyboard. The following flowchart shows the steps to POST and the options available.

![Flowchart](image)

FIGURE 3-1 How to Invoke POST

Tests POST Runs

Following is a sample listing from OpenBoot PROM version 2.15, or later versions of the diagnostic mode tests completed by POST in a SPARCstation Voyager workstation.
These messages are sent to the system’s serial port and can be viewed by attaching a terminal or `tip` window to the port.

<table>
<thead>
<tr>
<th>SMCC SPARCstation Voyager POST version x.x (xx/xx/xx)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMU Context Table Reg Test</td>
</tr>
<tr>
<td>MMU Context Register Test</td>
</tr>
<tr>
<td>MMU TLB Replace Ctrl Reg Test</td>
</tr>
<tr>
<td>MMU Sync Fault Stat Reg Test</td>
</tr>
<tr>
<td>MMU Sync Fault Addr Reg Test</td>
</tr>
<tr>
<td>MMU TLB RAM NTA Pattern Test</td>
</tr>
<tr>
<td>MMU TLB CAM NTA Pattern Test</td>
</tr>
<tr>
<td>MMU TLB LCAM NTA Pattern Test</td>
</tr>
<tr>
<td>IOMMU SBUS Config Regs Test</td>
</tr>
<tr>
<td>IOMMU Control Reg Test</td>
</tr>
<tr>
<td>IOMMU Base Address Reg Test</td>
</tr>
<tr>
<td>IOMMU TLB Flush Entry Test</td>
</tr>
<tr>
<td>IOMMU TLB Flush All Test</td>
</tr>
<tr>
<td>SBus Read Timeout Test</td>
</tr>
<tr>
<td>EBus Read Timeout Test</td>
</tr>
<tr>
<td>D-Cache RAM NTA Test</td>
</tr>
<tr>
<td>D-Cache TAG NTA Test</td>
</tr>
<tr>
<td>I-Cache RAM NTA Test</td>
</tr>
<tr>
<td>I-Cache TAG NTA Test</td>
</tr>
<tr>
<td>Memory Address Pattern Test</td>
</tr>
<tr>
<td>Memory Checker Pattern Test</td>
</tr>
<tr>
<td>FPU Register File Test</td>
</tr>
<tr>
<td>FPU Single -precision Test</td>
</tr>
<tr>
<td>FPU Double-precision Test</td>
</tr>
<tr>
<td>FPU SP Invalid CEXC Test</td>
</tr>
<tr>
<td>FPU SP Overflow CEXC Test</td>
</tr>
<tr>
<td>FPU SP Divide-by-O CEXC Test</td>
</tr>
<tr>
<td>FPU DP Inexact CEXC Test</td>
</tr>
<tr>
<td>FPU DP Trap Priority > Test</td>
</tr>
<tr>
<td>FPU DP Trap Priority < Test</td>
</tr>
<tr>
<td>PROCO Interrupt Regs Tests</td>
</tr>
</tbody>
</table>
Soft Interrupts OFF Test
Soft Interrupts ON Test
PROCO User Time Test
PROCO Counter/Timer Test
DMA E CSR Register Test
LANCE Address Port Tests
LANCE Data Port Tests
DMA D_CSR Register Test
DMA D_ADDR Register Test
DMA D_BCNT Register Test
DMA D_NADDR Register Test
ESP Registers Tests
DMA P_CSR Register Test
DMA P_ADDR Register Test
DMA P_BCNT Register Test
PPORT Registers Test
NVRAM Access Test
TOD Registers test
PMC Registers test
PMC SCSI Power test
PMC Audio Power Test
PMC D/A to A/D Loop Test
MIC Registers Test
MIC FIFO Loop Test
MIC SCC Internal Loop Test
MIC SCC TX Empty Intr Test
MIC RX Timeout Intr Test
MIC RX Watermark Intr Test
MIC TX Watermark Intr Test
MIC Flow Control Test
MIC IR Board Loop Test
PCMCIA Registers Test
PCMCIA Internal Loop Test
PCMCIA Status Chnge Intr Test
PCMCIA I/O Interrupt Test
PCMCIA Card Detect Intr Test
PCMCIA I/O St Chnge Intr Test
Status Lights (LEDs) and Indicators

The power light emitting diode (LED) at the front of the chassis remains lit when the system is operating normally. FIGURE 3-2 shows the location of the power LED.

This section describes the keyboard LED sequences displayed at power on when POST fails. If a failure occurs in POST, the keyboard displays a specific LED pattern. See FIGURE 3-3 and TABLE 3-1. After POST is completed and during normal system operation, the LEDs should not be interpreted as diagnostic error indicators.

Following system initialization, the operating system boots automatically, unless the NVRAM configuration options specify not to do so.

Note – The Caps Lock key LED, located just below the left Shift key, is not used as a power-on test failure indicator, but flashes on and off while POST is running.
Power-On Self-Test

This section describes the keyboard LED patterns as a result of POST and their meaning. FIGURE 3-3 shows the location of the LED keys on the Sun Compact 1 keyboard. TABLE 3-1 lists the meaning of the LED keys.

![Keyboard Diagram]

FIGURE 3-3 Arrangements of the Sun Compact 1 Keyboard LEDs

<table>
<thead>
<tr>
<th>LED State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caps Lock flashing or lit</td>
<td>POST is running</td>
</tr>
<tr>
<td>Num Lock on</td>
<td>Either CPU board or a memory card has failed. See “POST Error Messages” on page 21.</td>
</tr>
<tr>
<td>Scroll Lock on</td>
<td>Is not applicable</td>
</tr>
<tr>
<td>Compose on</td>
<td>Is not applicable</td>
</tr>
</tbody>
</table>

If the Caps Lock key fails to flash on and off after you have pressed and held the Stop-D keys when you power on the system, POST failed.

POST Error Messages

The following are the possible POST error messages that will be displayed after POST runs.
If the CPU failed:

STATUS : Power-On Selftest FAILED ... Replace Main Logic Board

If the upper memory card failed:

STATUS : Power-On Selftest FAILED ... Replace Upper Memory Card

If the lower memory card failed:

STATUS : Power-On Selftest FAILED ... Replace Lower Memory Card

The upper memory card is the one located farthest from the CPU board. The lower memory card is the one located closest to the CPU board.

FIGURE 3-4 Upper and Lower Memory Cards Location

After POST Ends

Use FIGURE 3-5 to determine what diagnostics tests to run after the POST ends.
FIGURE 3-5 Tests to Run After Running POST

- POST passed?
 - Yes: Run on-board diagnostics or SunDiag
 - No: Use error messages displayed on TTY, tip window or display panel
Troubleshooting Procedures

This chapter describes how to troubleshoot problems you might experience and the corrective actions you can take.

- “Troubleshooting Tips” on page 25
- “Power On Does Not Succeed” on page 26
- “Display Panel Problems” on page 28
- “Disk Drive or SCSI Errors” on page 29

Troubleshooting Tips

TABLE 4-1 lists the potential problems and corrective measures.

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Corrective Actions</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel display is off</td>
<td>Press the Shift, Control or Alt key</td>
<td>See SPARCstation Voyager hardware setup or SPARCstation Voyager User’s Guide</td>
</tr>
<tr>
<td></td>
<td>Press Power key</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Make sure all cable connections are secure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Make sure the power supply is installed properly</td>
<td>See SPARCstation Voyager ∼ battery installation and charging or SPARCstation Voyager User’s Guide</td>
</tr>
<tr>
<td></td>
<td>Make sure wall outlet has power if it is running on AC power</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Recharge the battery, or replace the battery with the power supply if a battery is used</td>
<td>See SPARCstation Voyager ∼ battery installation and charging or SPARCstation Voyager User’s Guide</td>
</tr>
</tbody>
</table>
TABLE 4-1 Troubleshooting Tips

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Corrective Actions</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>System doesn’t power on</td>
<td>Do corrective actions as if your panel display is off</td>
<td>See SPARCstation Voyager User’s Guide</td>
</tr>
<tr>
<td></td>
<td>Press Stop-D keys immediately after power on to call up POST</td>
<td></td>
</tr>
<tr>
<td>Battery needs recharging too soon</td>
<td>Use the Power Manager to decrease power usage</td>
<td></td>
</tr>
<tr>
<td>Mouse pointer is not on the panel display</td>
<td>Make sure the mouse cable is connected properly</td>
<td>See SPARCstation Voyager User’s Guide</td>
</tr>
<tr>
<td>Mouse does not work smoothly</td>
<td>Clean the mouse</td>
<td></td>
</tr>
</tbody>
</table>

Power On Does Not Succeed

1. Check that the AC power cord is connected to the wall outlet and to the power supply.

2. Verify that AC power is being supplied from the wall outlet by using a VOM.

3. Remove the power supply from the system and connect it to the wall outlet. The LED on the power supply should light to indicate the power supply is working. If the LED does not light, the power supply is defective.

4. If the system runs on battery, connect the external DC cable to the DC input connector on the back panel and to the power supply. The battery may be dead or defective.

5. If power on fails using the keyboard power-on key, press the power switch at the rear of the system. If power on succeeds, the cable for the keyboard may be damaged or incorrectly connected. Or, the keyboard may be defective.

6. The CPU board may have failed. See Section “System Board Test” on page 4-27.

7. The DC/DC converter may have failed. See Section “DC/DC Converter Test” on page 4-27.
System Board Test

1. Connect a terminal to the system serial port, or use a tip connection to another workstation to view POST progress and failure information.
 See Section “Setting Up a tip Connection to Another Workstation” on page 3-16.

2. Press and hold the Stop–D keys. While holding the keys down, press the power-on key. Observe the keyboard LEDs.
 ■ The Caps Lock key should flash on and off, indicating the system is running the POST.
 ■ If the Caps Lock key fails to flash, POST failed to start or a test has failed. Remove optional parts of the system such as memory cards and PCMCIA cards, and try to run POST again.
 ■ If a test fails, POST uses other keyboard LEDs to indicate which part of the system has failed. See Section “Power-On Self-Test” on page 3-21.

3. Observe the POST progress messages on the system serial port. It provides additional diagnostic information.

DC/DC Converter Test

1. Remove the rear cover of the system to expose the DC/DC converter.
 See Section “Opening the Rear of the System” on page 7-43.

2. Press the power switch on. Use a VOM to measure the voltages at the DC/DC converter connector (location J0900 on the CPU board).
 See TABLE 4-2 below for the expected voltages.

 Note – The DC/DC converter should remain connected to the CPU board during this test.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Wire Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>White</td>
<td>BATT_VSPL</td>
</tr>
<tr>
<td>2</td>
<td>Black</td>
<td>BATT_RTN</td>
</tr>
<tr>
<td>3</td>
<td>Orange</td>
<td>+12V</td>
</tr>
<tr>
<td>4</td>
<td>Red</td>
<td>+5V</td>
</tr>
<tr>
<td>5</td>
<td>Red</td>
<td>+5V</td>
</tr>
</tbody>
</table>
3. Replace the DC/DC converter if any of the expected DC voltage is not present.

4. Replace the CPU board if DC voltages are still not present after replacing the DC/DC converter. This may indicate a shorted component on the CPU board.

Display Panel Problems

No Video Output on Display Panel

1. Check the following connections to make sure they are secured:
 - Connection between the display panel and the video board
 - Connection between the flex cable and the video board
 - Connection between the flex cable and the CPU board

2. If a monitor is available, connect it to the 13W3 video port at the rear of the system and power on the system. If data appears on the monitor, the video board is not defective. Replace the display panel.

3. If no monitor is available to test the video board, replace the video board first and retest the system. If video output is still not seen, replace the display panel. Replace the CPU and the flex cable if the previous steps fail to restore the video.

Lines or Blank Areas on the Display Panel

1. If a monitor is available, connect it to the 13W3 video port at the rear of the system and power on the system. If similar defects appear on the monitor, replace the video board.

TABLE 4-2 DC/DC Converter Voltages

<table>
<thead>
<tr>
<th>Pin</th>
<th>Wire Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Brown</td>
<td>Ground</td>
</tr>
<tr>
<td>7</td>
<td>Brown</td>
<td>Ground</td>
</tr>
<tr>
<td>8</td>
<td>Blue</td>
<td>Ground</td>
</tr>
<tr>
<td>9</td>
<td>Yellow</td>
<td>+3.3V</td>
</tr>
<tr>
<td>10</td>
<td>Green</td>
<td>BATT_RTN</td>
</tr>
</tbody>
</table>
2. If solid lines appear, replace the display panel.
 Solid lines usually indicates display panel failures.

3. If lines persist after replacing the display panel, replace the video board and/or the flex cable.

Disk Drive or SCSI Errors

TABLE 4-3 lists disk drive error conditions and corrective actions.

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read, write, or parity error reported by the</td>
<td>Replace the disk drive indicated by the failure message. The operating system</td>
</tr>
<tr>
<td>operating system or applications.</td>
<td>identifies the internal disk as c0t3d0. If a different drive id is indicated, it is</td>
</tr>
<tr>
<td></td>
<td>probably an external disk.</td>
</tr>
</tbody>
</table>

Drive fails to boot or does not respond to commands. | SCSI controller or disk may be defective. See Section “Testing the System SCSI Controller” on page 4-29. |
| If the problem is with an external disk, the SCSI | terminator may be missing, defective, or incorrectly installed on the last device in the SCSI chain. |

Testing the System SCSI Controller

To test the system’s SCSI controller, test the drive’s response to the `probe-scsi` command.
1. At the ok prompt, type `probe-scsi`.

 See the following example:

   ```
   ok probe-scsi
   Target 3
   Unit 0 Disk TOSHIBA MK2326FB A10S
   ```

 If the internal disk drive responds and a message similar to the example above is displayed, the system’s SCSI controller has successfully probed the device. This indicates that the CPU board is working properly.

 If the disk drive does not respond:

2. Verify that all SCSI devices on the SCSI chain have a different SCSI address. The internal disk drive is set to SCSI address 3. Do not assign SCSI address 7 to any device. This address is reserved for the system SCSI controller.

3. If external SCSI devices are connected to the system, verify that all SCSI cables and the SCSI terminator are connected securely. The SCSI terminator must be connected to the last physical SCSI device in the chain.

4. Check the SCSI cables to make sure there are no bent pins.

5. After checking the previous causes and the problem persists, replace the unresponsive SCSI device.

6. If the problem still occurs after replacing the SCSI device, replace the CPU board.

7. If replacing the SCSI device and the CPU board does not correct the problem, replace the I/O board.
Memory Errors

If the operating system, diagnostic program, or POST does not display a memory card location as part of a memory error message, and the only available information is a physical memory address, use TABLE 4-3 to locate the memory errors. See FIGURE 4-1 for memory cards locations.

TABLE 4-4 Physical Memory Address and Memory Locations

<table>
<thead>
<tr>
<th>Physical Memory Address Range</th>
<th>Memory Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bank #0</td>
<td>CPU on-board memory 16 MBytes</td>
</tr>
<tr>
<td>0000000 - 0fffffff</td>
<td></td>
</tr>
<tr>
<td>1000000 - 1fffffff</td>
<td></td>
</tr>
<tr>
<td>Bank #1</td>
<td>Lower memory card 16 or 32 MBytes</td>
</tr>
<tr>
<td>2000000 - 2fffffff</td>
<td></td>
</tr>
<tr>
<td>3000000 - 3fffffff</td>
<td></td>
</tr>
<tr>
<td>Bank #3</td>
<td>Upper memory card 16 or 32 MBytes</td>
</tr>
<tr>
<td>6000000 - 6fffffff</td>
<td></td>
</tr>
<tr>
<td>7000000 - 7fffffff</td>
<td></td>
</tr>
<tr>
<td>Bank #5</td>
<td></td>
</tr>
<tr>
<td>a000000 - affffffff</td>
<td></td>
</tr>
<tr>
<td>b000000 - bfffffff</td>
<td></td>
</tr>
<tr>
<td>Bank #7</td>
<td></td>
</tr>
<tr>
<td>e000000 - efffffff</td>
<td></td>
</tr>
<tr>
<td>f000000 - ffffffff</td>
<td></td>
</tr>
</tbody>
</table>
For example, if physical memory address 125febc is indicated as the failing memory location, TABLE 4-3 shows that this address is within the CPU on-board memory range. The CPU board should be replaced to correct this failure.

If memory errors occur between the address ranges of 2000000 and 7ffffff, replace the lower memory card. If memory errors occur between the address ranges of a000000 and fffffff, replace the upper memory card.
Safety and Tools Requirements

Before beginning any procedure, read the instructions and cautions in this section. This information explains how to work safely when servicing a Sun Microsystems product.

Safety Requirements

For your protection, observe the following safety precautions when setting up your equipment:

- Follow all cautions, warnings, and instructions marked on the equipment.
- Ensure that the voltage and frequency rating of the power outlet you use matches the electrical rating label on the equipment.
- Never push objects of any kind through openings in the equipment as they may touch dangerous voltage points or short out components that could result in fire or electric shock.
- Refer servicing of equipment to qualified personnel.

Symbols

The following symbols mean:

Caution – Risk of personal injury and equipment damage. Follow the instructions.
Caution – Hazardous voltages are present. To reduce the risk of electric shock and danger to personal health, follow the instructions.

Caution – Hot surfaces. Avoid contact. Surfaces are hot and may cause personal injury if touched.

Safety Precautions

Modification to Equipment

Caution – Do not make mechanical or electrical modifications to the equipment. Sun Microsystems, Inc. is not responsible for regulatory compliance of a modified Sun product.

Placement of a Sun product

Caution – To ensure reliable operation of your Sun product and to protect it from overheating, openings in the equipment must not be blocked or covered. A Sun product should never be placed near a radiator or heat register.

Power Cord Connection

Caution – Not all power cords have the same current ratings. Household extension cords do not have overload protection. Do not use household extension cords with your Sun product.
Electrostatic Discharge

Caution – The boards and hard disk drive contain electronic components that are extremely sensitive to static electricity. Ordinary amounts of static from your clothes or work environment can destroy components.

Do not touch the components themselves or any metal parts. Wear a wrist strap when handling the drive assembly, board, or card.

Lithium Battery

Caution – On Sun CPU boards, there is a lithium battery molded into the real-time clock, SGS No. MK48T08. Batteries are not customer replaceable parts. They may explode if mistreated. Do not dispose of the battery in fire. Do not disassemble it or attempt to recharge it.

Rechargeable Battery

Caution – Handle damaged or leaking lithium-ion battery with extreme care. If the battery is damaged, electrolyte may leak from the cells and may cause personal injury.

Display Panel

Caution – High voltage is present in the backlight assembly interior. Do not disassemble the panel.

Caution – The florescent tubes in the backlight assembly contain mercury vapor. Breathing the mercury vapor can be harmful. If breakage occurs, move out of the vicinity until the vapor clears.
Caution – The liquid crystal material can be harmful if breakage occurs. Be sure to wash your hands to avoid accidentally ingesting the liquid crystal material.

Caution – The display panel’s front surface is plastic and easily damaged. Do not press on the front of the display panel. Discoloration and damage can occur. Clean it with a soft cloth dampened with water.

Tools Required

- Screwdriver, Phillips #1
- Hex nut driver, 3/16 inches
- Flat blade screwdriver
- Grounding wrist strap
- Volt-Ohmmeter (VOM) for checking voltages and continuity
- Antistatic surface

You will need an antistatic surface on which to place static-sensitive parts such as boards, cards, disk drive, and TOD/NVRAM. The following items can be used as an antistatic surface:

- Bag used to wrap a Sun replacement part
- Shipping container used to package a Sun replacement part
- Sun ESD mat, P/N 250-1088. You can purchase it through your Sun sales representative
CHAPTER 6

Power Off and On

This chapter tells you how to turn the power off before you service the system and how to turn the power back on after you have serviced the system.

Powering Off the System

Note – Do not suspend the system prior to removing or replacing any part. You must power off the system.

1. Become superuser by typing `su`.
2. Type your superuser password.
3. Type `init 0`.

```
machinename% su
password%
machinename# init 0
screen messages
ok
```

4. Turn off the power to all external units.

 External units can include external drives, printers, or other serial or parallel devices. See the document supplied with each device.

5. Press the Shift and power keys to turn off the system.

 See FIGURE 6-1. If your system does not have a keyboard, go to Step 1.
6. Disconnect the keyboard cable from the keyboard port labeled on the back panel of the system.
 Go to Step 1.

7. Press the power switch on the back panel.

8. Disconnect the power source.
 a. For the system that runs on the power supply:
 Disconnect the AC power cable from the wall outlet and the power supply.
FIGURE 6-3 System With the Power Supply

b. For the system that runs on the battery:
 There is no power cable to be disconnected.
c. For the system that contains a battery and runs on the power supply (slow charging the battery):

Disconnect the external DC cable from the DC input connector on the back panel, and disconnect the AC power cable from the wall outlet.
9. Disconnect cables to any external units.
See the document supplied with each device.

FIGURE 6-5 System With the Battery and Power Supply Installed

Powering On the System

1. Connect the keyboard cable to the keyboard port labeled on the back panel of the system if your system has a keyboard.

2. Connect the power source.
 a. For the system that runs on the power supply:
 Connect the AC power cable to the power supply and to the wall outlet. See FIGURE 6-3.
 b. For the system that runs on the battery:
 There is no power cable to be connected. See FIGURE 6-4.
c. For the system that contains battery and runs on the power supply (slow charging the battery):
 Connect the external DC cable to the DC input connector on the backpanel, and connect the AC power cable to the wall outlet. See FIGURE 6-5.

3. Connect the cables to all external units.
 See the manual supplied with each device for instructions.

4. Turn on the power to all external units starting with the unit farthest electrically from the system unit.
 The external units can include external drives, printers, or other serial or parallel devices.

5. Press the power key on the system unit keyboard, or press the power switch on the back panel for a system without a keyboard.
 See FIGURE 6-1 or FIGURE 6-2. The system will reboot.
CHAPTER 7

Internal Access

Follow the procedure in Section "Powering Off the System" on page 6-37, before you begin.

Opening the Rear of the System

Removing the Power Supply

1. Slide the power supply door to the unlock position and remove it.

2. Pull the pull ring to remove the power supply out of the tunnel.

 See FIGURE 7-2.
Removing the Left Cap

1. Remove the rubber plug from the left cap.
 See FIGURE 7-3. Puncture the end of a paper clip into the center of the rubber plug, then pull it out.

2. Loosen the two screws on the left cap with a Phillips screwdriver.

3. Slide the left cap off the unit.
Removing the Right Cap

1. Remove both rubber plugs from the right cap.
 See FIGURE 7-4. If the lock block was installed, you need to remove the top rubber plug only.
2. Loosen the two screws holding the right cap of the unit with a Phillips screwdriver.

See FIGURE 7-4. If the lock block was installed, loosen the top screw only.

Note – If the system has a lock block installed, remove the lock block with a Phillips screwdriver.

3. Slide the right cap off the unit.

Removing the Rear cover

- Hold both ends of the rear cover, slide it back, and then lift it up away from the unit as shown.
Now you have access to the memory card slots, the CPU board, floppy cable, flex cable and the DC/DC converter.

Caution – Surfaces on the DC/DC converter and the heatsink on the microSPARC II processor may be hot. Avoid contact with these surfaces while they are hot.

Caution – You must attach your wrist strap now. Ordinary amounts of static from your clothes or work environment can destroy components.

For information on how to attach a wrist strap, see the next section, “Attaching the Wrist Strap” on page 47.

Attaching the Wrist Strap

1. Unwrap the first two folds of the wrist strap. Wrap the adhesive side firmly around your wrist.
2. Peel the liner from the copper foil at the opposite end of the wrist strap and attach the end to the metal part of the system. See FIGURE 7-8.

Opening the Front of the System

Follow the procedure in Section “Opening the Rear of the System” on page 7-43 before you begin.

Removing the Filler Cover

This section applies to headless (no display panel) systems only. Otherwise, see Section “Removing the Display Panel” on page 7-49.

1. Loosen the two screws on the filler cover.
2. Remove the filler cover by lifting it up.

3. Proceed to Section “Removing the Front Cover” on page 7-50.

Removing the Display Panel

1. Loosen the two Phillips screws behind the display panel.
 See FIGURE 7-10.

2. Remove the display panel from the system by wiggling it upward.

 Caution – Place the display panel with its front facing down on a flat and clean surface. The front surface could be damaged otherwise.
Removing the Front Cover

- Hold both ends of the front cover, and lift it up away from the unit.
Now you have access to the video board, speaker, and floppy drive.

Removing the Bottom Front Cover

- Remove the bottom front cover by sliding it off the unit.
Now you have access to the hard disk drive, the SCSI cable and the IR board.

Removing the Bottom Rear Cover

Caution — You must remove the display panel before laying the unit on its front, to avoid possible damage to the panel.

1. Lay the system gently on its front.

 See FIGURE 7-13.

2. Loosen the Phillips screws attaching the bottom rear cover of the base as shown.
3. Place the system right side up.

4. Move the floppy drive out of the way.
 The floppy drive must be moved to allow removal of the bottom rear cover.

 a. **Disconnect the flex cable from the video board.**

 See Figure 7-14. Hold both ends of the connectors and wiggle them out of the sockets.

 b. **Loosen the screw on the floppy drive locking lever.**
c. Gently pull the locking lever toward the drive, slide the floppy drive to the right, and leave it hanging.

5. Hold and raise the bottom rear cover slightly, then pull the left side toward the right side of the unit.
Now you have access to the IR cable and the I/O board.

Closing the System

Replacing the Bottom Rear Cover

Replace the bottom rear cover if it has been removed.

1. Hold the bottom rear cover at both ends and place it on the unit.
2. Replace the floppy drive.

a. Position the floppy drive so that the four mounting feet are aligned with the four slots on the system.

 See FIGURE 7-19.

 b. Push the four mounting feet in the slots and slide the floppy drive toward the video board until you hear it click.

 See FIGURE 7-19.
c. Tighten the screw on the floppy drive locking lever.

d. Connect the flex cable to the video board.

See FIGURE 7-20.
e. Lay the system on its front.
 See FIGURE 7-13.

Caution – You must remove the display panel before laying the unit on its front, to avoid possible damage to the panel.

3. Tighten the two screws to secure the bottom rear cover to the base.
 See FIGURE 7-13. Do not overtighten the screws.

![FIGURE 7-21 Screws in the Bottom Rear Cover](image)

Replacing the Bottom Front Cover

Replace the bottom front cover, if it has been removed.

- Hold the bottom front cover at both ends and gently slide it onto the system.
Replacing the Front Cover

1. Hold both ends of the front cover and line it up with the system.
FIGURE 7-23 Replacing the Front Cover

2. Slide the front cover down so the connector comes through the cutout at the center, and the flange of the bottom front cover slides into the groove at the bottom of the front cover.

Replacing the Display Panel

1. Hold the display panel with both hands, position it as shown in FIGURE 7-24, and push it down until the connector sits in the socket.
2. Tighten the two captive screws on the display panel. Do not overtighten the screws.

Replacing the Rear Cover

1. Remove the wrist strap from the system and your wrist.
2. Hold both ends of the rear cover, line it up as shown, and then slide it in.
Replacing the Right Cap

1. Hold the front and rear covers together and slide the right cap onto the unit.
 See FIGURE 7-26.

2. Tighten the two screws to secure the right cap on the unit.
 Do not overtighten the screws. If a lock block was installed, tighten the top screw only.

3. Insert both rubber plugs into the right cap.
 If a lock block was installed, insert the top rubber plug only.
Note – If the system has a lock block installed, insert the lock block into the lower right cap hole and tighten the screw.

Replacing the Left Cap

1. Hold the front and rear covers together and slide the left cap onto the unit. See FIGURE 7-28.
2. Tighten the two screws to secure the left cap on the unit.
 Do not overtighten the screws.

3. Insert the rubber plug in the left cap.

![FIGURE 7-28 Replacing the Left Cap]

Replacing the Power Supply

1. Insert the power supply into the tunnel, and slide it in.
2. Replace the power supply door by sliding it to the locked position.
Major Subassemblies

This chapter explains how to remove and replace the major subassemblies. See Section “List of Replacement Parts” on page 11-111 for the part numbers and description of replaceable parts. The following is the list of the major subassemblies:

■ “Display Panel” on page 68
■ “Power Supply” on page 69
■ “Speaker” on page 69
■ “DC/DC Converter” on page 70
■ “SCSI Cable” on page 72
■ “Floppy Cable” on page 73
■ “Flex Cable” on page 81

Refer to the following before you remove any part:

■ “Safety Requirements” on page 33
■ “Powering Off the System” on page 37
■ “Opening the Rear of the System” on page 43
■ “Attaching the Wrist Strap” on page 47
■ “Opening the Front of the System” on page 48
■ “Removing the Bottom Rear Cover” on page 52
■ “Removing the Bottom Front Cover” on page 51

Refer to the following after replacing any part:

■ “Closing the System” on page 55
■ “Powering On the System” on page 41
Display Panel

Removing the Display Panel

1. **Open the rear of the system.**
 See Section “Opening the Rear of the System” on page 7-43.

2. **Remove the display panel.**
 See Section “Removing the Display Panel” on page 7-49.

Replacing the Display Panel

1. **Install the new display panel.**
 See Section “Replacing the Display Panel” on page 7-60.

2. **Replace the rear cover.**
 See Section “Replacing the Rear Cover” on page 7-61.

3. **Replace the right cap.**
 See Section “Replacing the Right Cap” on page 7-62.

4. **Replace the left cap.**
 See Section “Replacing the Left Cap” on page 7-63.

5. **Replace the power supply.**
 See Section “Replacing the Power Supply” on page 7-64.

6. **Power on the system.**
 See Section “Powering On the System” on page 6-41.
Power Supply

Removing the Power Supply

To remove the power supply, follow the steps in Section “Removing the Power Supply” on page 7-43.

Replacing the Power Supply

1. Replace the power supply.
 See Section “Replacing the Power Supply” on page 7-64.

2. Power on the system.
 Section “Powering On the System” on page 6-41.

Speaker

Removing the Speaker

1. Remove the CPU board from the system.
 See Section “Removing the CPU Board” on page 10-96.

2. Gently press the speaker tabs and pull the speaker out of the system.
 See FIGURE 8-1.
Replacing the Speaker

1. Gently press the speaker tabs and insert the replacement speaker into its cavity. See FIGURE 8-1. Make sure that the speaker cable is routed to the rear side of the system.

2. Replace the CPU board on the system. See Section "Replacing the CPU Board" on page 10-99.

DC/DC Converter

Removing the DC/DC Converter

1. Disconnect the DC/DC converter connector from the CPU board.
2. Loosen the four threaded standoffs.
 Use a 3/16" hex nut driver. See FIGURE 8-3.

3. Remove the DC/DC converter.
Replacing the DC/DC Converter

1. Align the DC/DC converter on the four threaded studs.
 See FIGURE 8-3.

2. Install and tighten the four threaded standoffs on the studs.
 See FIGURE 8-3.

3. Connect the DC/DC converter connector to the CPU board connector.
 See FIGURE 8-1.

4. Close the system and power it on.

SCSI Cable

Removing the SCSI Cable

1. Remove the hard disk drive.
 See Section “Removing the Hard Disk Drive” on page 9-92.

2. Disconnect the SCSI cable from the I/O board.

 ![SCSI Cable Diagram](image.png)

 FIGURE 8-4 Disconnecting the SCSI Cable from the I/O Board
Replacing the SCSI Cable

1. **Connect the SCSI cable to the I/O board.**
 See FIGURE 8-4.

 Note – Check both ends of the SCSI connector to make sure it is lined up with the I/O board socket.

2. **Replace the disk drive.**
 See Section “Replacing the Hard Disk Drive” on page 9-94.

3. **Close the system and power it on.**

Floppy Cable

Removing the Floppy Cable

1. **Remove the CPU board.**
 See Section “Removing the CPU Board” on page 10-96.

2. **Remove the video board.**
 a. Place an antistatic surface on your work area.
 b. Press the speaker at both tabs lightly and pull it out of its cavity.
 See FIGURE 8-5.
c. Disconnect the flex cable from the video board.
 Hold both ends of the connectors and wiggle them out of the sockets.

d. Remove all three screws from the video board.
 See FIGURE 8-7.

 e. Gently pull down the video board, remove it from the chassis and put it aside on the antistatic surface.
3. **Disconnect the floppy cable from the floppy drive.**

 Use the tip of a flat blade screwdriver or similar tool to push both ends of the connector locking device away from the drive. Gently, pull the floppy cable from the drive.

4. **Remove the floppy cable from the system.**
Replacing the Floppy Cable

1. Place the replacement floppy cable in the system.
 See FIGURE 8-9.

2. Replace the CPU Board.
 a. Position the CPU board on the system so that the four slots on the CPU board line up with the four pins on the system.
 See FIGURE 8-9. The card edge should be seated in the I/O board socket.

 b. Connect the floppy cable to the CPU board.
 See FIGURE 8-10.

 i. Make sure the connector locking device is unlocked.
 Use the tip of a flat blade screwdriver or similar tool to push both ends of the connector locking device away from the board.

 ii. Insert the floppy cable into the connector.

 iii. Lock the connector locking device by pushing in both ends of the locking device toward the CPU board.
c. Connect the flex cable to the CPU board.

d. Snap in both bail locks to lock the flex connector on the CPU board.

e. Connect the speaker cable to the CPU board.

See FIGURE 8-11.

f. Push the CPU board down so the card edge is seated in the I/O board socket.

See FIGURE 8-12. Insert a screwdriver or similar tool through the openings at the top of the CPU board and the chassis. Use the tool as a lever to push the CPU board down into the socket on the I/O board.

g. Replace and tighten the two screws on the CPU board.

See FIGURE 8-12.
h. Connect the DC/DC converter connector to the CPU board.

i. Tuck the pull tab behind the memory card.

3. Connect the floppy cable to the floppy drive.
a. Unlock the connector locking device.
See FIGURE 8-14. Use the tip of a flat blade screwdriver or similar tool to push both ends of the locking device away from the drive.

![FIGURE 8-14 Unlocking the Floppy Connector](image)

b. Insert the floppy cable into the connector.
See FIGURE 8-15.

c. Push down both sides of the connector locking device to secure the floppy cable in the floppy connector.

![FIGURE 8-15 Connecting the Floppy Cable to the Floppy Drive](image)

4. Replace the video board.
a. Position the new video board on the system.
 See FIGURE 8-7. The connector of the video board should stick out through the slot on the system.

b. Insert and tighten the three mounting screws.

c. Connect the flex cable to the video board.
 See FIGURE 8-7.

5. Replace the speaker
 Gently press the speaker tabs and insert the speaker into its cavity.
 See FIGURE 8-17.
6. Close the system and power it on.

Flex Cable

Removing the Flex Cable

1. **Remove the hard disk drive.**
 See Section “Removing the Hard Disk Drive” on page 9-92.

2. **Disconnect the flex cable from the video board.**

3. **Snap open the bail locks at both ends of the flex connector.**
 See FIGURE 8-19.

4. **Disconnect the flex cable from the CPU board.**
 See FIGURE 8-19.
5. Remove the flex cable from the system.

Replacing the Flex Cable

1. Connect the replacement flex cable to the CPU board.

 See FIGURE 8-19.

2. Snap in both bail locks to secure the flex connector to the CPU board.

3. Connect the flex cable to the video board.

 See FIGURE 8-18.

4. Replace the disk drive.

 See Section “Replacing the Hard Disk Drive” on page 9-94.

5. Close the system and power it on.
IR Cable

Removing the IR Cable

1. Remove the hard disk drive.
 See Section “Removing the Hard Disk Drive” on page 9-92.

2. Disconnect the SCSI cable from the I/O board.

3. Disconnect the IR cable from the IR board.
 See FIGURE 8-21.

FIGURE 8-20 Connecting/Disconnecting the SCSI Cable—the I/O board
4. **Remove the two screws from the IR board.**
 Use a Phillips screwdriver.

5. **Remove the IR board.**
 Place it on an antistatic surface.

6. **Disconnect the IR cable from the I/O board.**
7. Remove the IR cable.

Replacing the IR Cable

1. Connect the replacement IR cable to the I/O board.

 See FIGURE 8-23.

2. Replace the IR board in the system and connect the IR cable to the IR board.

 See FIGURE 8-21.

3. Insert and tighten the two Phillips screws on the IR board.

 See FIGURE 8-22.

4. Connect the SCSI cable to the I/O board.

 See FIGURE 8-20.

5. Replace the hard disk drive.

 See Section “Replacing the Hard Disk Drive” on page 9-94.

6. Close the system and power it on.
Storage Devices

This chapter describes how to remove and replace the storage device units:
- “Floppy Drive” on page 87
- “Hard Disk Drive” on page 92

Refer to the following before you remove any part:
- “Safety Requirements” on page 33
- “Powering Off the System” on page 37
- “Opening the Rear of the System” on page 43
- “Attaching the Wrist Strap” on page 47
- “Opening the Front of the System” on page 48
- “Removing the Bottom Front Cover” on page 51

Refer to the following after replacing any part:
- “Closing the System” on page 55
- “Powering On the System” on page 41

Floppy Drive

Removing the Floppy Drive

1. Place an antistatic surface on your work area.
2. Disconnect the flex cable from the video board.
 See FIGURE 9-1. Hold both ends of the connectors and wiggle them out of the sockets.
3. **Disconnect the floppy cable from the floppy drive.**

 See FIGURE 9-2. Use the tip of a flat blade screwdriver or similar tool to release the connector locking device. Pull the floppy cable out of the connector.

4. **Loosen the screw on the locking lever.**

 Use a Phillips screwdriver.
5. Gently pull the locking lever toward the drive, slide the floppy drive to the right, and pull it away from the unit.
Replacing the Floppy Drive

1. Unlock the connector locking device at both ends of the floppy drive connector. See FIGURE 9-5. Use the tip of a flat blade screwdriver or similar tool to push both ends of the locking device away from the connector.

![FIGURE 9-5 Unlocking the Floppy Connector](image1)

2. Insert the floppy cable into the floppy drive connector. See FIGURE 9-6.

![FIGURE 9-6 Connecting the Floppy Cable to the Floppy Drive](image2)

3. Push in both ends of the connector locking device to secure the floppy cable in the floppy connector.
4. Position the floppy drive so that the four mounting feet are aligned with the four slots on the system.

5. Push the four mounting feet in the slots and slide the floppy drive toward the video board until you hear the floppy locking lever click.
 See FIGURE 9-7.

6. Insert and tighten the screw on the locking lever.
7. Connect the flex cable to the video board.
 See FIGURE 9-8.

8. Close the system and power it on.

Hard Disk Drive

Removing the Hard Disk Drive

1. Place an antistatic surface on your work area.

2. Disconnect the SCSI cable from the drive by pulling on the pull tab.
 See FIGURE 9-9.
3. **Loosen the two screws on the drive mounting bracket.**
 See FIGURE 9-10.

4. **Slide the disk drive forward and up out of the unit.**
 Place it on an antistatic surface.

Caution – Handle the drive by its ends only. Do not press on the top of the drive.
Replacing the Hard Disk Drive

Caution – Handle the drive by its ends only. Do not press on the top of the drive.

1. Position the replacement drive so both screws line up with the mounting holes.
 See FIGURE 9-11.

2. Tighten both screws to secure the drive into the unit.

3. Connect the SCSI cable to the drive.
 See FIGURE 9-9. Align the cable to the connector carefully so that the cable is correctly inserted.

4. Close the system and power it on.
CHAPTER 10

System Boards and Component Replacement

This chapter provides information on removing and replacing the boards and the TOD/NVRAM on the CPU board:

■ “CPU Board” on page 96
■ “TOD/NVRAM” on page 100
■ “Video Board” on page 101
■ “Memory Card” on page 103
■ “IR Board” on page 105
■ “I/O Board” on page 108

Refer to the following before you remove any part:

■ “Safety Requirements” on page 33
■ “Powering Off the System” on page 37
■ “Opening the Rear of the System” on page 43
■ “Attaching the Wrist Strap” on page 47
■ “Opening the Front of the System” on page 48
■ “Removing the Bottom Rear Cover” on page 52
■ “Removing the Bottom Front Cover” on page 51

Refer to the following after replacing any part:

■ “Closing the System” on page 55
■ “Powering On the System” on page 41
CPU Board

Removing the CPU Board

1. Place an antistatic surface on your work area.

2. Loosen and remove the two Phillips screws from the CPU board.
 See FIGURE 10-1.

3. Disconnect the DC/DC converter cable from the CPU board.
 See FIGURE 10-2.

4. Disconnect the CPU board by pushing it up and away from the system unit.
 Insert a screwdriver or similar tool through the openings at the top of the CPU board
 and the top of the chassis. Use the tool as a lever to push the CPU board up. Do not
 remove the CPU board from the system yet.

5. Disconnect the floppy cable from the CPU board.
 See FIGURE 10-2. Use the tip of a flat blade screwdriver or similar tool to push both
 ends of the connector locking device away from the CPU board. Then, disconnect
 the floppy cable from the CPU board.
6. Snap open the bail lock ends from the flex connector and disconnect the connector from the CPU board.
See FIGURE 10-3.

7. Disconnect the speaker cable from the CPU board.
See FIGURE 10-4.
8. Remove the CPU board from the system.

9. Place the CPU board on an antistatic surface.

Replacing the TOD/NVRAM

Remove the TOD from your defective CPU board, and install it on the replacement CPU board.
1. Locate the TOD on the replacement CPU board.
 See FIGURE 10-6.

 ![FIGURE 10-6 Location of the TOD/NVRAM](image)

2. Hold the TOD carrier on both ends and pull it away from the board.
 See FIGURE 10-6. Gently wiggle the chip carrier as necessary.

3. Put the TOD with its carrier on an antistatic surface.
 You must send this TOD back with the defective CPU board to Sun.

4. Locate the TOD on the defective CPU board, hold the TOD carrier on both ends and lift it straight up.
 Gently wiggle the chip carrier as necessary.

5. Carefully align the pins and insert the TOD in the socket of the replacement CPU board.
 The carrier is keyed so the TOD can be installed only one way.

6. Push the TOD into the carrier until it sits tightly in the socket.

Replacing the CPU Board

1. Position the replacement CPU board so that the four slots on the CPU board line up with the four pins on the system unit.
 See FIGURE 10-5.

2. Connect the floppy cable to the CPU board.
 See FIGURE 10-2.

 a. Make sure the connector locking device is unlocked.
 Use the tip of a flat blade screwdriver or similar tool to push both ends of the connector locking device away from the board.
b. Insert the floppy cable into the connector.

c. Lock the connector locking device by pushing in both ends of the locking device toward the CPU board.

3. Connect the flex cable to the CPU board.
 See FIGURE 10-3.

4. Snap in both bail locks to lock the flex connector on the CPU board.
 See FIGURE 10-3.

5. Connect the speaker cable to the CPU board.
 See FIGURE 10-4.

6. Push the CPU board down so the connector is seated in the I/O board socket.
 See FIGURE 10-1. Insert a screwdriver or similar tool through the openings at the top of the CPU board and the chassis. Use the tool as a lever to push the board down into the socket on the I/O board.

7. Tighten the two screws on the CPU board.
 See FIGURE 10-1. If the CPU board is not installed correctly, the screw holes will not line up with the chassis.

8. Connect the DC/DC converter cable to the CPU board.
 See FIGURE 10-2.

9. Remove any memory cards from the defective CPU and install them in the replacement CPU.
 a. Remove the memory card(s) from the defective CPU.
 See Section “Removing the Memory Card” on page 10-103.
 b. Replace the memory card(s) in the replacement CPU.
 Section “Replacing the Memory Card” on page 10-104.

10. Close the system and power it on.

TOD/NVRAM

You need to remove the CPU board from the system and place it on an antistatic mat before removing the TOD from the CPU board.
Removing the TOD/NVRAM

1. **Remove the CPU Board**
 See Section “Removing the CPU Board” on page 10-96.

2. **Locate the TOD on the CPU board.**
 See FIGURE 10-6.

3. **Hold the TOD carrier on both ends and lift it straight up.**
 Gently wiggle the chip carrier as necessary.

4. **Place it on an antistatic surface.**

Replacing the TOD/NVRAM

1. **Position the replacement TOD on the CPU board.**
 See FIGURE 10-6.

2. **Carefully align the pins and insert the TOD into the socket.**
 The carrier is keyed so the TOD can be installed only one way.

3. **Push the TOD into the carrier until it sits tightly in the socket.**

4. **Replace the CPU Board**
 See Section “Replacing the CPU Board” on page 10-99.

5. **Close the system and power it on.**

Video Board

Removing the Video Board

1. **Place an antistatic surface on your work area.**

2. **Gently press the speaker tabs and pull the speaker out of its cavity.**
 See FIGURE 10-7. Leave the speaker cable connected to the CPU board.
3. Disconnect the flex cable from the video board.
 See FIGURE 10-8.

4. Remove the three screws from the video board.

5. Pull the video board down slightly and slide it out of the three pins.
Replacing the Video Board

1. Position the new video board on the three pins.
 See FIGURE 10-9. The video board connector should stick out of the slot on the system unit.

2. Insert and tighten the three screws.

3. Connect the flex cable to the video board.
 See FIGURE 10-8.

4. Gently press the speaker tabs and insert the speaker back into its cavity.
 See FIGURE 10-7.

5. Close the system and power it on.

Memory Card

Removing the Memory Card

1. Pull the pull tab out from behind the defective memory card.
2. Gently pull up the pull tab to remove the memory card.

![FIGURE 10-10 Removing the Memory Card](image)

Replacing the Memory Card

1. Push the replacement memory card all the way into the slot.

 See FIGURE 10-11. The Sun logo on the memory card should be facing out. The memory card is keyed so it fits one way only.
FIGURE 10-11 Replacing a Memory Card

2. Tuck the pull tab behind the memory card.
 The pull tab interferes with the rear cover installation if not tucked in.

3. Close the system and power it on.

IR Board

Removing the IR Board

1. Remove the hard disk drive.
 See Section “Removing the Hard Disk Drive” on page 9-92.

2. Disconnect the SCSI cable from the I/O board.
3. Disconnect the IR cable from the IR board. See FIGURE 10-13.

4. Remove the two screws from the IR board. Use a Phillips screwdriver.
5. **Remove the IR board.**
 Place it on an antistatic surface.

Replacing the IR Board

1. **Position the replacement IR board in the unit.**
 See FIGURE 10-14.

2. **Install both screws to secure the IR board to the unit.**

3. **Connect the IR cable to the IR board.**
 See FIGURE 10-13.

4. **Connect the SCSI cable to the I/O board.**
 See FIGURE 10-12.

5. **Replace the hard disk drive.**
 See Section “Replacing the Hard Disk Drive” on page 9-94.

6. **Close the system and power it on.**
I/O Board

Removing the I/O Board

1. Remove the hard disk drive.
 See Section “Removing the Hard Disk Drive” on page 9-92.

2. Disconnect the SCSI cable from the I/O board.

3. Remove the CPU board.
 Section “Removing the CPU Board” on page 10-96.

4. Disconnect the DC harness from the I/O board.
 See FIGURE 10-16.

5. Disconnect the IR cable from the I/O board.

6. Remove all screws from the back panel.
 See FIGURE 10-16.
7. Remove the screw from the I/O board.
 See FIGURE 10-17.

8. Grasp the I/O board at both ends and gently lift it up and out of the unit.
 See FIGURE 10-18. Place it on an antistatic surface.
Replacing the I/O Board

1. Replace the I/O board into the unit.
 See FIGURE 10-18.

2. Insert and tighten all screws on the back panel.
 See FIGURE 10-16.

3. Tighten the screw on the I/O board.
 See FIGURE 10-17.

4. Connect the DC power harness to the I/O board.
 See FIGURE 10-16.

5. Connect the IR cable to the I/O board.
 See FIGURE 10-16.

6. Connect the SCSI cable to the I/O board.
 See FIGURE 10-12.

7. Replace the CPU board.
 See Section “Replacing the CPU Board” on page 10-99.

8. Replace the hard disk drive.
 See Section “Replacing the Hard Disk Drive” on page 9-94.
Replacement Parts

This chapter provides the replacement parts list and figures to illustrate the SPARCstation Voyager workstation.

List of Replacement Parts

This section lists part numbers and describes replacement parts for the system. Although these part numbers are correct as of the publication date of this document, they are subject to change. Consult your authorized Sun sales representative or service provider to confirm part numbers before you order new or replacement parts.

<table>
<thead>
<tr>
<th>Replacement Parts</th>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU Board</td>
<td>501-2581</td>
<td>Assy, CPU, w/ 16 MB Memory</td>
</tr>
<tr>
<td>CPU Components</td>
<td>525-1373</td>
<td>TOD/NVRAM</td>
</tr>
<tr>
<td>Video Boards</td>
<td>501-2494</td>
<td>Assy, VOB-1, Mono, Tested</td>
</tr>
<tr>
<td></td>
<td>501-2583</td>
<td>Assy, VOB-1, Color, Tested</td>
</tr>
<tr>
<td>I/O Board</td>
<td>501-2582</td>
<td>Assy, I/O Board, Tested</td>
</tr>
<tr>
<td>IR Board</td>
<td>501-2491</td>
<td>Assy, IR Board, Tested</td>
</tr>
<tr>
<td>Memory Cards</td>
<td>595-3092</td>
<td>Assy, Memory Card, 16MB, Tested</td>
</tr>
<tr>
<td></td>
<td>595-3093</td>
<td>Assy, Memory Card, 32MB, Tested</td>
</tr>
<tr>
<td>Power Supplies</td>
<td>300-1212</td>
<td>Power Supply and Charger, 60W</td>
</tr>
<tr>
<td></td>
<td>300-1234</td>
<td>Power Supply, 40W DC/DC Converter</td>
</tr>
<tr>
<td>Replacement Parts</td>
<td>Part Number</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>Drives</td>
<td>540-2445</td>
<td>Drive, Floppy</td>
</tr>
<tr>
<td></td>
<td>540-2446</td>
<td>Hard Disk Drive, 340MB, 2.5” (6.125 cm)</td>
</tr>
<tr>
<td>Speaker</td>
<td>540-2454</td>
<td>Speaker, Internal</td>
</tr>
<tr>
<td>Display Panels</td>
<td>540-2452</td>
<td>Flat Panel, Color</td>
</tr>
<tr>
<td></td>
<td>540-2453</td>
<td>Flat Panel, Mono</td>
</tr>
<tr>
<td>Cables</td>
<td>530-2049</td>
<td>Cable, Flex, Circuit</td>
</tr>
<tr>
<td></td>
<td>530-2061</td>
<td>Cable, Floppy Drive</td>
</tr>
<tr>
<td></td>
<td>530-2062</td>
<td>Cable, SCSI</td>
</tr>
<tr>
<td></td>
<td>530-2063</td>
<td>Cable, Ext, DC Power</td>
</tr>
<tr>
<td></td>
<td>530-2071</td>
<td>Cable, IR, Internal</td>
</tr>
<tr>
<td></td>
<td>530-2123</td>
<td>Cable, Keyboard, 1.5 m</td>
</tr>
<tr>
<td></td>
<td>530-1442</td>
<td>Cable, Keyboard, 2.0 m</td>
</tr>
<tr>
<td>Keyboards</td>
<td>320-1194</td>
<td>Sun Compact 1, Keyboard, US</td>
</tr>
<tr>
<td></td>
<td>320-1197</td>
<td>Sun Compact 1, Keyboard, UNIX</td>
</tr>
<tr>
<td></td>
<td>320-1200</td>
<td>Sun Compact 1, Keyboard, German</td>
</tr>
<tr>
<td></td>
<td>320-1206</td>
<td>Sun Compact 1, Keyboard, Swedish</td>
</tr>
<tr>
<td></td>
<td>320-1210</td>
<td>Sun Compact 1, Keyboard, UK</td>
</tr>
<tr>
<td></td>
<td>320-1213</td>
<td>Sun Compact 1, Keyboard, UNIX, Logoless</td>
</tr>
<tr>
<td></td>
<td>320-1214</td>
<td>Sun Compact 1, Keyboard, Japan, Logoless</td>
</tr>
<tr>
<td></td>
<td>320-1072</td>
<td>Type 5 Keyboard, U.S.</td>
</tr>
<tr>
<td>Mouse</td>
<td>370-1586</td>
<td>Sun Compact 1, Mouse, Opto-mechanical</td>
</tr>
<tr>
<td></td>
<td>370-1587</td>
<td>Sun Compact 1, Mouse, Logoless</td>
</tr>
<tr>
<td>PCMCIA Modem Card</td>
<td>370-1791</td>
<td>PCMCIA Modem Card, U.S.</td>
</tr>
<tr>
<td></td>
<td>370-1795</td>
<td>PCMCIA Modem Card, U.K.</td>
</tr>
<tr>
<td></td>
<td>370-1796</td>
<td>PCMCIA Modem Card, German</td>
</tr>
<tr>
<td></td>
<td>370-1797</td>
<td>PCMCIA Modem Card, Japan</td>
</tr>
<tr>
<td></td>
<td>370-1798</td>
<td>PCMCIA Modem Card, Sweden</td>
</tr>
<tr>
<td></td>
<td>370-1799</td>
<td>PCMCIA Modem Card, Australian</td>
</tr>
<tr>
<td></td>
<td>370-1802</td>
<td>PCMCIA Modem Card, French</td>
</tr>
<tr>
<td>Power Cord</td>
<td>530-2073</td>
<td>Power Cord Assy, British</td>
</tr>
<tr>
<td>Replacement Parts</td>
<td>Part Number</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Power Cord Assy. European</td>
<td>530-2074</td>
<td></td>
</tr>
<tr>
<td>Power Cord Assy. Australian</td>
<td>530-2075</td>
<td></td>
</tr>
<tr>
<td>Power Cord Assy. N. American</td>
<td>530-2076</td>
<td></td>
</tr>
<tr>
<td>Power Cord Assy. Japanese</td>
<td>530-2122</td>
<td></td>
</tr>
<tr>
<td>Door</td>
<td>540-2493</td>
<td>Battery Door</td>
</tr>
<tr>
<td></td>
<td>540-2494</td>
<td>Power Supply Door</td>
</tr>
</tbody>
</table>

ACCESSORIES

<table>
<thead>
<tr>
<th>Replacement Parts</th>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery Pack</td>
<td>595-3146</td>
<td>Battery Pack</td>
</tr>
<tr>
<td>Microphone</td>
<td>370-1678</td>
<td>Microphone</td>
</tr>
<tr>
<td>Screw Cover</td>
<td>330-1743</td>
<td>Screw Cover (Rubber plug)</td>
</tr>
</tbody>
</table>
Illustrated Parts Breakdown

FIGURE 11-1 Front View—Exploded
FIGURE 11-2 Rear View—Exploded

- Display panel
- Right cap
- Back panel
- Rear cover
- Bottom rear cover
FIGURE 11-3 Front View—Internal

FIGURE 11-4 Rear View—Internal
Product Specifications

Physical Specifications

TABLE A-1 Color System Physical Specifications

<table>
<thead>
<tr>
<th></th>
<th>U.S.</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>13.5 in</td>
<td>34.4 cm</td>
</tr>
<tr>
<td>Width</td>
<td>14.3 in</td>
<td>36.2 cm</td>
</tr>
<tr>
<td>Depth</td>
<td>5.4 in</td>
<td>13.8 cm</td>
</tr>
<tr>
<td>Weight, system w/ power supply</td>
<td>13.2 lb</td>
<td>6.0 kg</td>
</tr>
</tbody>
</table>

TABLE A-2 Monochrome System Physical Specifications

<table>
<thead>
<tr>
<th></th>
<th>U.S.</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>14.1 in</td>
<td>35.7 cm</td>
</tr>
<tr>
<td>Width</td>
<td>14.3 in</td>
<td>36.2 cm</td>
</tr>
<tr>
<td>Depth</td>
<td>5.4 in</td>
<td>13.8 cm</td>
</tr>
<tr>
<td>Weight, system w/ power supply</td>
<td>13.2 lb</td>
<td>6.0 kg</td>
</tr>
</tbody>
</table>
Electrical Specifications

TABLE A-3 Headless System Physical Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>U.S.</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>8.4 in</td>
<td>21.3 cm</td>
</tr>
<tr>
<td>Width</td>
<td>14.3 in</td>
<td>36.2 cm</td>
</tr>
<tr>
<td>Depth</td>
<td>5.4 in</td>
<td>13.8 cm</td>
</tr>
<tr>
<td>Weight, system w/ power supply</td>
<td>7.9 lb</td>
<td>3.6 kg</td>
</tr>
</tbody>
</table>

TABLE A-4 AC/DC Power Supply Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage range</td>
<td>100 to 120 VAC or 200 to 240 VAC</td>
</tr>
<tr>
<td>Current, maximum</td>
<td>1A</td>
</tr>
<tr>
<td>Current frequency range</td>
<td>47-63 Hz</td>
</tr>
<tr>
<td>Output</td>
<td>16.8 VDC, maximum</td>
</tr>
<tr>
<td>Input power rating</td>
<td>Total continuous power</td>
</tr>
<tr>
<td>Volt-Ampere rating</td>
<td>80 VA</td>
</tr>
<tr>
<td>Btu/hr rating</td>
<td>245 Btu/hr</td>
</tr>
<tr>
<td>Power factor</td>
<td>0.8-0.99</td>
</tr>
</tbody>
</table>
Environmental Requirements

TABLE A-5 Recommended Operating Ranges

<table>
<thead>
<tr>
<th></th>
<th>U.S.</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>50° to 90°F</td>
<td>10° to 32°C</td>
</tr>
<tr>
<td>Humidity</td>
<td>20% to 80% RH</td>
<td>20% to 80% RH</td>
</tr>
<tr>
<td>Altitude</td>
<td>to 9843 ft</td>
<td>to 3 km</td>
</tr>
</tbody>
</table>

TABLE A-6 Environmental Limits

<table>
<thead>
<tr>
<th></th>
<th>Operating</th>
<th>Non-operating</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U.S.</td>
<td>Metric</td>
</tr>
<tr>
<td>Temperature</td>
<td>32° to 104°F</td>
<td>0° to 40°C</td>
</tr>
<tr>
<td>Humidity</td>
<td>5% to 93% RH</td>
<td>5% to 93% RH</td>
</tr>
<tr>
<td>Altitude</td>
<td>10.2 psi (9843 ft)</td>
<td>70 kPa (3.0 km)</td>
</tr>
<tr>
<td>Maximum Gradient</td>
<td>1.8°F/min noncondensing 1.5 psi/min</td>
<td>1°C/min noncondensing 10 kPa/min</td>
</tr>
<tr>
<td>Max Dwell at Extremes</td>
<td>16 hours</td>
<td>16 hours</td>
</tr>
</tbody>
</table>
Signal Descriptions

External Battery Connector

This connector is located on the I/O board and is designated as J0201.

FIGURE B-1 Power Connector

TABLE B-1 Power Connector Pin Assignments

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>I/O</th>
<th>Description</th>
<th>Pin</th>
<th>Name</th>
<th>I/O</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>batt_rtn</td>
<td>O</td>
<td>Battery Return</td>
<td>6</td>
<td>batt_ac</td>
<td>I</td>
<td>Battery AC</td>
</tr>
<tr>
<td>2</td>
<td>batt_rtn</td>
<td>O</td>
<td>Battery Return</td>
<td>7</td>
<td>batt_vsp1</td>
<td>I</td>
<td>Battery Voltage Supply</td>
</tr>
<tr>
<td>3</td>
<td>batt_txd</td>
<td>I</td>
<td>Battery Transmit Data</td>
<td>8</td>
<td>batt_rtn2</td>
<td>O</td>
<td>Battery Return 2</td>
</tr>
<tr>
<td>4</td>
<td>batt_rxd</td>
<td>O</td>
<td>Battery Receive Data</td>
<td>9</td>
<td>batt_vsp1</td>
<td>I</td>
<td>Battery Voltage Supply</td>
</tr>
<tr>
<td>5</td>
<td>batt_cpu</td>
<td>I</td>
<td>Battery CPU</td>
<td>10</td>
<td>batt_vsp1</td>
<td>I</td>
<td>Battery Voltage Supply</td>
</tr>
</tbody>
</table>
Internal Battery Connector

This connector is located on the I/O board and is designated as J0202.

![Battery Signal Connector](image)

FIGURE B-2 Battery Signal Connector

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>I/O</th>
<th>Description</th>
<th>Pin</th>
<th>Name</th>
<th>I/O</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>batt_rxd</td>
<td>O</td>
<td>Battery Receive Data</td>
<td>4</td>
<td>batt_vsp1</td>
<td>I</td>
<td>Battery Voltage Supply</td>
</tr>
<tr>
<td>2</td>
<td>batt_ac</td>
<td>I</td>
<td>Battery AC</td>
<td>5</td>
<td>batt_CPU</td>
<td>I</td>
<td>Battery CPU</td>
</tr>
<tr>
<td>3</td>
<td>batt_txd</td>
<td>I</td>
<td>Battery Transmit Data</td>
<td>6</td>
<td>batt_rtn2</td>
<td>O</td>
<td>Battery Return 2</td>
</tr>
</tbody>
</table>

This connector is located on the I/O board and is designated as J203.

![Battery Power Connector](image)

FIGURE B-3 Battery Power Connector

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>I/O</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Batt-vsp1</td>
<td>I</td>
<td>Battery Voltage Supply</td>
</tr>
<tr>
<td>2</td>
<td>Batt-RTN</td>
<td>O</td>
<td>Battery Return</td>
</tr>
</tbody>
</table>
CPU Board to I/O Board Connector

Figure B-4 CPU to I/O Board Connector

Table B-4 CPU to I/O Board Pin Assignments

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>I/O</th>
<th>Pin</th>
<th>Name</th>
<th>I/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>VID_Green</td>
<td>O</td>
<td>B1</td>
<td>VID_RED</td>
<td>O</td>
</tr>
<tr>
<td>A2</td>
<td>VGND</td>
<td>gnd</td>
<td>B2</td>
<td>VID_BLUE</td>
<td>O</td>
</tr>
<tr>
<td>A3</td>
<td>VID_RXD</td>
<td>I</td>
<td>B3</td>
<td>VGND</td>
<td>gnd</td>
</tr>
<tr>
<td>A4</td>
<td>VID_TXD</td>
<td>O</td>
<td>B4</td>
<td>VID_CLK</td>
<td>O</td>
</tr>
<tr>
<td>A5</td>
<td>VCC/G</td>
<td>vcc</td>
<td>B5</td>
<td>VID_CSYNC</td>
<td>O</td>
</tr>
<tr>
<td>A6</td>
<td>VCC/G</td>
<td>vcc</td>
<td>B6</td>
<td>GND/G</td>
<td>gnd</td>
</tr>
<tr>
<td>A7</td>
<td>SCSI_TERMPWR</td>
<td>O</td>
<td>B7</td>
<td>SCSI_DATA<0></td>
<td>I/O</td>
</tr>
<tr>
<td>A8</td>
<td>SCS_BUSY</td>
<td>I</td>
<td>B8</td>
<td>SCSI_DATA<1></td>
<td>I/O</td>
</tr>
<tr>
<td>A9</td>
<td>SCSI_ACK</td>
<td>I</td>
<td>B9</td>
<td>SCSI_DATA<2></td>
<td>I/O</td>
</tr>
<tr>
<td>A10</td>
<td>SCSI_MESSAGE</td>
<td>O</td>
<td>B10</td>
<td>SCSI_DATA<3></td>
<td>I/O</td>
</tr>
<tr>
<td>A11</td>
<td>SCSI_SEL</td>
<td>O</td>
<td>B11</td>
<td>SCSI_DATA<4></td>
<td>I/O</td>
</tr>
<tr>
<td>A12</td>
<td>SCSI_CONTROL</td>
<td>O</td>
<td>B12</td>
<td>SCSI_DATA<5></td>
<td>I/O</td>
</tr>
<tr>
<td>A13</td>
<td>SCSI_REQ</td>
<td>I</td>
<td>B13</td>
<td>SCSI_DATA<6></td>
<td>I/O</td>
</tr>
<tr>
<td>A14</td>
<td>SCSI_RESET</td>
<td>O</td>
<td>B14</td>
<td>SCSI_DATA<7></td>
<td>I/O</td>
</tr>
<tr>
<td>A15</td>
<td>SCSI_ATTENTION</td>
<td>I</td>
<td>B15</td>
<td>SCSI_PWRDN</td>
<td>O</td>
</tr>
<tr>
<td>A16</td>
<td>SCSI_PARITY</td>
<td>I/O</td>
<td>B16</td>
<td>SCSI_DIR</td>
<td>O</td>
</tr>
<tr>
<td>A17</td>
<td>GND/G</td>
<td>gnd</td>
<td>B17</td>
<td>GND/G</td>
<td>gnd</td>
</tr>
<tr>
<td>A18</td>
<td>TPE_DAT<0></td>
<td>O</td>
<td>B18</td>
<td>GND/G</td>
<td>gnd</td>
</tr>
<tr>
<td>A19</td>
<td>GND/G</td>
<td>gnd</td>
<td>B19</td>
<td>TPE_DAT<2></td>
<td>I</td>
</tr>
<tr>
<td>A20</td>
<td>TPE_DAT<1></td>
<td>O</td>
<td>B20</td>
<td>TPE_DAT<3></td>
<td>I</td>
</tr>
<tr>
<td>A21</td>
<td>GND/G</td>
<td>gnd</td>
<td>B21</td>
<td>GND/G</td>
<td>gnd</td>
</tr>
<tr>
<td>A22</td>
<td>GND/G</td>
<td>gnd</td>
<td>B22</td>
<td>TPE_CAB_SENSE</td>
<td>I</td>
</tr>
<tr>
<td>Pin</td>
<td>Name</td>
<td>I/O</td>
<td>Pin</td>
<td>Name</td>
<td>I/O</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>-----</td>
<td>------</td>
<td>--------------</td>
<td>-----</td>
</tr>
<tr>
<td>A23</td>
<td>PP_SELECT</td>
<td>O</td>
<td>B23</td>
<td>PP_IN*</td>
<td>I</td>
</tr>
<tr>
<td>A24</td>
<td>PP_PE</td>
<td>O</td>
<td>B24</td>
<td>PP_RESET*</td>
<td>O</td>
</tr>
<tr>
<td>A25</td>
<td>PP_BUSY</td>
<td>I/O</td>
<td>B25</td>
<td>PP_ERROR</td>
<td>I</td>
</tr>
<tr>
<td>A26</td>
<td>PP_ACK*</td>
<td>I</td>
<td>B26</td>
<td>PP_AUTO_FEED*</td>
<td>O</td>
</tr>
<tr>
<td>A27</td>
<td>PP_DATA<7></td>
<td>O</td>
<td>B27</td>
<td>PP_DATA<6></td>
<td>O</td>
</tr>
<tr>
<td>A28</td>
<td>PP_DATA<5></td>
<td>O</td>
<td>B28</td>
<td>PP_DATA<4></td>
<td>O</td>
</tr>
<tr>
<td>A29</td>
<td>PP_DATA<3></td>
<td>O</td>
<td>B29</td>
<td>PP_DATA<2></td>
<td>O</td>
</tr>
<tr>
<td>A30</td>
<td>PP_DATA<1></td>
<td>O</td>
<td>B30</td>
<td>PP_DS*</td>
<td>O</td>
</tr>
<tr>
<td>A31</td>
<td>PP_DATA<0></td>
<td>O</td>
<td>B31</td>
<td>GND\G</td>
<td>gnd</td>
</tr>
<tr>
<td>A32</td>
<td>GND\G</td>
<td>gnd</td>
<td>B32</td>
<td>GND\G</td>
<td>gnd</td>
</tr>
<tr>
<td>A33</td>
<td>SHIELD</td>
<td></td>
<td>B33</td>
<td>SHIELD</td>
<td></td>
</tr>
<tr>
<td>A34</td>
<td></td>
<td></td>
<td>B34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A35</td>
<td></td>
<td></td>
<td>B35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A36</td>
<td></td>
<td></td>
<td>B36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A37</td>
<td>ISDN_TE_1</td>
<td>I/O</td>
<td>B37</td>
<td>ISDN_NT_1</td>
<td>I/O</td>
</tr>
<tr>
<td>A38</td>
<td>ISDN_TE_3</td>
<td>I/O</td>
<td>B38</td>
<td>ISDN_NT_3</td>
<td>I/O</td>
</tr>
<tr>
<td>A39</td>
<td>ISDN_TE_2</td>
<td>I/O</td>
<td>B39</td>
<td>ISDN_NT_2</td>
<td>I/O</td>
</tr>
<tr>
<td>A40</td>
<td>ISDN_TE_4</td>
<td>I/O</td>
<td>B40</td>
<td>ISDN_NT_4</td>
<td>I/O</td>
</tr>
<tr>
<td>A41</td>
<td></td>
<td></td>
<td>B41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A42</td>
<td></td>
<td></td>
<td>B42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A43</td>
<td>SHIELD</td>
<td></td>
<td>B43</td>
<td>SHIELD</td>
<td></td>
</tr>
<tr>
<td>A44</td>
<td></td>
<td></td>
<td>B44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A45</td>
<td></td>
<td></td>
<td>B45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A46</td>
<td>PANIC*</td>
<td>I</td>
<td>B46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A47</td>
<td>PANIC</td>
<td>I</td>
<td>B47</td>
<td>VCC\G</td>
<td>vcc</td>
</tr>
<tr>
<td>A48</td>
<td>POK</td>
<td>O</td>
<td>B48</td>
<td>VID_SENSE0</td>
<td>I</td>
</tr>
<tr>
<td>A49</td>
<td>GND\G</td>
<td>gnd</td>
<td>B49</td>
<td>VID_SENSE1</td>
<td>I</td>
</tr>
<tr>
<td>A50</td>
<td>V3</td>
<td></td>
<td>B50</td>
<td>VID_SENSE2</td>
<td>I</td>
</tr>
<tr>
<td>A51</td>
<td>V3</td>
<td></td>
<td>B51</td>
<td>IR_CLK</td>
<td>O</td>
</tr>
<tr>
<td>A52</td>
<td>jtag_clk</td>
<td>I</td>
<td>B52</td>
<td>SYS_LED</td>
<td>O</td>
</tr>
</tbody>
</table>
TABLE B-4 CPU to I/O Board Pin Assignments (Continued)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>I/O</th>
<th>Pin</th>
<th>Name</th>
<th>I/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>A53</td>
<td>jtag_ms</td>
<td>I</td>
<td>B53</td>
<td>IR_DIN1</td>
<td>O</td>
</tr>
<tr>
<td>A54</td>
<td>jtag_din_macio</td>
<td>I</td>
<td>B54</td>
<td>IR_DIN2</td>
<td>O</td>
</tr>
<tr>
<td>A55</td>
<td>jtag_dout_slavio</td>
<td>I</td>
<td>B55</td>
<td>IR_DIN3</td>
<td>O</td>
</tr>
<tr>
<td>A56</td>
<td>jtag_jsc_c_rst</td>
<td>I</td>
<td>B56</td>
<td>IR_DOUT</td>
<td>O</td>
</tr>
<tr>
<td>A57</td>
<td>inhibit</td>
<td>I</td>
<td>B57</td>
<td>GND\G</td>
<td>gnd</td>
</tr>
<tr>
<td>A58</td>
<td>VPP</td>
<td>O</td>
<td>B58</td>
<td>+12VDC</td>
<td></td>
</tr>
<tr>
<td>A59</td>
<td>fd_index</td>
<td>I</td>
<td>B59</td>
<td>SP_TXC</td>
<td>O</td>
</tr>
<tr>
<td>A60</td>
<td>fd_drv_sel</td>
<td>O</td>
<td>B60</td>
<td>SP_DCD</td>
<td>I</td>
</tr>
<tr>
<td>A61</td>
<td>fd_dsk_chng</td>
<td>I</td>
<td>B61</td>
<td>SP_DTR</td>
<td>O</td>
</tr>
<tr>
<td>A62</td>
<td>fd_eject</td>
<td>O</td>
<td>B62</td>
<td>SP_DSR</td>
<td>I</td>
</tr>
<tr>
<td>A63</td>
<td>fd_den_sense</td>
<td>I</td>
<td>B63</td>
<td>SP_CTS</td>
<td>I</td>
</tr>
<tr>
<td>A64</td>
<td>fd_motor_en</td>
<td>O</td>
<td>B64</td>
<td>SP_RTXC</td>
<td>I</td>
</tr>
<tr>
<td>A65</td>
<td>fd_desnsity_sel</td>
<td>O</td>
<td>B65</td>
<td>SP_RTS</td>
<td>O</td>
</tr>
<tr>
<td>A66</td>
<td>fd_dir</td>
<td>O</td>
<td>B66</td>
<td>SP_RXD</td>
<td>I</td>
</tr>
<tr>
<td>A67</td>
<td>fd_step</td>
<td>O</td>
<td>B67</td>
<td>SP_TRXC</td>
<td>I</td>
</tr>
<tr>
<td>A68</td>
<td>fd_wr_data</td>
<td>O</td>
<td>B68</td>
<td>SP_TXD</td>
<td>O</td>
</tr>
<tr>
<td>A69</td>
<td>fd_wr_en</td>
<td>O</td>
<td>B69</td>
<td>KBD_PWR</td>
<td>O</td>
</tr>
<tr>
<td>A70</td>
<td>fd_track0</td>
<td>I</td>
<td>B70</td>
<td>KBD_TXD</td>
<td>0</td>
</tr>
<tr>
<td>A71</td>
<td>fd_wr_prot</td>
<td>I</td>
<td>B71</td>
<td>KBD_PWK*</td>
<td>I</td>
</tr>
<tr>
<td>A72</td>
<td>fd_rd_data</td>
<td>I</td>
<td>B72</td>
<td>MSE_RXD</td>
<td>I</td>
</tr>
<tr>
<td>A73</td>
<td>fd_hd_sel</td>
<td>I</td>
<td>B73</td>
<td>KBD_RXD</td>
<td>I</td>
</tr>
<tr>
<td>A74</td>
<td>GND\G</td>
<td>gnd</td>
<td>B74</td>
<td>GND\G</td>
<td>gnd</td>
</tr>
<tr>
<td>A75</td>
<td>BATT_EXT_RXD</td>
<td>I</td>
<td>B75</td>
<td>BATT_RTN2</td>
<td>0</td>
</tr>
<tr>
<td>A76</td>
<td>BATT_AC</td>
<td>I</td>
<td>B76</td>
<td>BATT_TXD</td>
<td>0</td>
</tr>
<tr>
<td>A77</td>
<td>BATT_CPU</td>
<td>I</td>
<td>B77</td>
<td>BATT_RXD</td>
<td>I</td>
</tr>
<tr>
<td>A78</td>
<td>BATT_VSPL</td>
<td>I</td>
<td>B78</td>
<td>BATT_RTN</td>
<td>0</td>
</tr>
<tr>
<td>A79</td>
<td>BATT_VSPL</td>
<td>I</td>
<td>B79</td>
<td>BATT_RTN</td>
<td>0</td>
</tr>
<tr>
<td>A80</td>
<td>BATT_VSPL</td>
<td>I</td>
<td>B80</td>
<td>BATT_RTN</td>
<td>0</td>
</tr>
</tbody>
</table>

* Indicates an active low signal.
CPU Board to Video Board Connector

![CPU Board to Video Board Connector Diagram](image)

TABLE B-5
CPU to Video Board Pin Assignments

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>I/O</th>
<th>Pin</th>
<th>Name</th>
<th>I/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>sb_reset*</td>
<td>O</td>
<td>B1</td>
<td>+12v</td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>sba<27></td>
<td>I/O</td>
<td>B2</td>
<td>+12v</td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>sba<26></td>
<td>I/O</td>
<td>B3</td>
<td>+12v</td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td>sba<25></td>
<td>I/O</td>
<td>B4</td>
<td>+12v</td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td>sba<24></td>
<td>I/O</td>
<td>B5</td>
<td>+12v</td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td>GND</td>
<td></td>
<td>B6</td>
<td>sb_ack<2></td>
<td>I/O</td>
</tr>
<tr>
<td>A7</td>
<td>sba<22></td>
<td>I/O</td>
<td>B7</td>
<td>sba<23></td>
<td>I/O</td>
</tr>
<tr>
<td>A8</td>
<td>sba<20></td>
<td>I/O</td>
<td>B8</td>
<td>sba<21></td>
<td>I/O</td>
</tr>
<tr>
<td>A9</td>
<td>sba<18></td>
<td>I/O</td>
<td>B9</td>
<td>sba<19></td>
<td>I/O</td>
</tr>
<tr>
<td>A10</td>
<td>sb_ack<1></td>
<td>I/O</td>
<td>B10</td>
<td>VCC</td>
<td>vcc</td>
</tr>
<tr>
<td>A11</td>
<td>sba<16></td>
<td>I/O</td>
<td>B11</td>
<td>sba<17></td>
<td>I/O</td>
</tr>
<tr>
<td>A12</td>
<td>sba<14></td>
<td>I/O</td>
<td>B12</td>
<td>sba<15></td>
<td>I/O</td>
</tr>
<tr>
<td>A13</td>
<td>sba<12></td>
<td>I/O</td>
<td>B13</td>
<td>sba<13></td>
<td>I/O</td>
</tr>
<tr>
<td>A14</td>
<td>sb_ack<0></td>
<td>I/O</td>
<td>B14</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>A15</td>
<td>sba<10></td>
<td>I/O</td>
<td>B15</td>
<td>sba<11></td>
<td>I/O</td>
</tr>
<tr>
<td>A16</td>
<td>sba<8></td>
<td>I/O</td>
<td>B16</td>
<td>sba<9></td>
<td>I/O</td>
</tr>
<tr>
<td>A17</td>
<td>sba<6></td>
<td>I/O</td>
<td>B17</td>
<td>sba<7></td>
<td>I/O</td>
</tr>
<tr>
<td>A18</td>
<td>sb_lerr*</td>
<td>I/O</td>
<td>B18</td>
<td>VCC</td>
<td>vcc</td>
</tr>
<tr>
<td>A19</td>
<td>sba<4></td>
<td>I/O</td>
<td>B19</td>
<td>sba<5></td>
<td>I/O</td>
</tr>
<tr>
<td>A20</td>
<td>sba<2></td>
<td>I/O</td>
<td>B20</td>
<td>sba<3></td>
<td>I/O</td>
</tr>
<tr>
<td>A21</td>
<td>sba<0></td>
<td>I/O</td>
<td>B21</td>
<td>sba<1></td>
<td>I/O</td>
</tr>
<tr>
<td>A22</td>
<td>sb_rd</td>
<td>O</td>
<td>B22</td>
<td>GND</td>
<td></td>
</tr>
</tbody>
</table>
Table B-5 CPU to Video Board Pin Assignments

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>I/O</th>
<th>Pin</th>
<th>Name</th>
<th>I/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>A23</td>
<td>sb_siz<1></td>
<td>I/O</td>
<td>B23</td>
<td>sb_siz<2></td>
<td>I/O</td>
</tr>
<tr>
<td>A24</td>
<td>sbd<31></td>
<td>I/O</td>
<td>B24</td>
<td>sb_siz<0></td>
<td>I/O</td>
</tr>
<tr>
<td>A25</td>
<td>VCC</td>
<td></td>
<td>B25</td>
<td>sbd<30></td>
<td></td>
</tr>
<tr>
<td>A26</td>
<td>sbd<28></td>
<td>I/O</td>
<td>B26</td>
<td>sbd<29></td>
<td>I/O</td>
</tr>
<tr>
<td>A27</td>
<td>sbd<26></td>
<td>I/O</td>
<td>B27</td>
<td>sbd<27></td>
<td>I/O</td>
</tr>
<tr>
<td>A28</td>
<td>sbd<24></td>
<td>I/O</td>
<td>B28</td>
<td>sbd<25></td>
<td>I/O</td>
</tr>
<tr>
<td>A29</td>
<td>sbd<23></td>
<td>I/O</td>
<td>B29</td>
<td>GND</td>
<td>gnd</td>
</tr>
<tr>
<td>A30</td>
<td>sbd<21></td>
<td>I/O</td>
<td>B30</td>
<td>sbd<22></td>
<td>I/O</td>
</tr>
<tr>
<td>A31</td>
<td>sbd<19></td>
<td>I/O</td>
<td>B31</td>
<td>sbd<20></td>
<td>I/O</td>
</tr>
<tr>
<td>A32</td>
<td>VCC</td>
<td></td>
<td>B32</td>
<td>sbd<18></td>
<td></td>
</tr>
<tr>
<td>A33</td>
<td>sbd<16></td>
<td>I/O</td>
<td>B33</td>
<td>sbd<17></td>
<td>I/O</td>
</tr>
<tr>
<td>A34</td>
<td>sbd<14></td>
<td>I/O</td>
<td>B34</td>
<td>sbd<15></td>
<td>I/O</td>
</tr>
<tr>
<td>A35</td>
<td>sbd<12></td>
<td>I/O</td>
<td>B35</td>
<td>sbd<13></td>
<td>I/O</td>
</tr>
<tr>
<td>A36</td>
<td>sbd<11></td>
<td>I/O</td>
<td>B36</td>
<td>GND</td>
<td>gnd</td>
</tr>
<tr>
<td>A37</td>
<td>sbd<9></td>
<td>I/O</td>
<td>B37</td>
<td>sbd<10></td>
<td>I/O</td>
</tr>
<tr>
<td>A38</td>
<td>sbd<7></td>
<td>I/O</td>
<td>B38</td>
<td>sbd<8></td>
<td>I/O</td>
</tr>
<tr>
<td>A39</td>
<td>VCC</td>
<td></td>
<td>B39</td>
<td>sbd<6></td>
<td>I/O</td>
</tr>
<tr>
<td>A40</td>
<td>sbd<4></td>
<td>I/O</td>
<td>B40</td>
<td>sbd<5></td>
<td>I/O</td>
</tr>
<tr>
<td>A41</td>
<td>sbd<2></td>
<td>I/O</td>
<td>B41</td>
<td>sbd<3></td>
<td>I/O</td>
</tr>
<tr>
<td>A42</td>
<td>sbd<0></td>
<td>I/O</td>
<td>B42</td>
<td>sbd<1></td>
<td>I/O</td>
</tr>
<tr>
<td>A43</td>
<td>sb_as*</td>
<td>I/O</td>
<td>B43</td>
<td>GND</td>
<td>gnd</td>
</tr>
<tr>
<td>A44</td>
<td>sb_bg<0></td>
<td>O</td>
<td>B44</td>
<td>sb_br<0></td>
<td>I/O</td>
</tr>
<tr>
<td>A45</td>
<td></td>
<td>B45</td>
<td>sb_clk3</td>
<td></td>
<td>O</td>
</tr>
<tr>
<td>A46</td>
<td>fb_sel*</td>
<td>O</td>
<td>B46</td>
<td>sb_intr<5></td>
<td>I/O</td>
</tr>
<tr>
<td>A47</td>
<td>spkr-b</td>
<td>O</td>
<td>B47</td>
<td>spkr-a</td>
<td>O</td>
</tr>
<tr>
<td>A48</td>
<td>tab_tx</td>
<td>O</td>
<td>B48</td>
<td>tab_rx</td>
<td>I</td>
</tr>
<tr>
<td>A49</td>
<td>brightness</td>
<td>O</td>
<td>B49</td>
<td>VGND</td>
<td>gnd</td>
</tr>
<tr>
<td>A50</td>
<td>VGND</td>
<td>gnd</td>
<td>B50</td>
<td>VID_RED</td>
<td>I</td>
</tr>
<tr>
<td>A51</td>
<td>VID_SENSE0</td>
<td>O</td>
<td>B51</td>
<td>VGND</td>
<td>gnd</td>
</tr>
<tr>
<td>A52</td>
<td>VID_SENSE1</td>
<td>O</td>
<td>B52</td>
<td>VID_GREEN</td>
<td>O</td>
</tr>
</tbody>
</table>
Mono Display Panel Connector

This connector is located on the mono video board.

TABLE B-6 Mono Display Panel Pin Assignments

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>I/O</th>
<th>Pin</th>
<th>Name</th>
<th>I/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>A53</td>
<td>VID_SENSE2</td>
<td>O</td>
<td>B53</td>
<td>VGND</td>
<td>gnd</td>
</tr>
<tr>
<td>A54</td>
<td>VID_CSYNC</td>
<td>O</td>
<td>B54</td>
<td>VID_BLUE</td>
<td>O</td>
</tr>
<tr>
<td>A55</td>
<td>VGND</td>
<td>gnd</td>
<td>B55</td>
<td>VGND</td>
<td>gnd</td>
</tr>
<tr>
<td>A56</td>
<td>VID_TXD</td>
<td>O</td>
<td>B56</td>
<td>VID_CLK</td>
<td>O</td>
</tr>
<tr>
<td>A57</td>
<td>batt_vspl</td>
<td>O</td>
<td>B57</td>
<td>VID_RXD</td>
<td>I</td>
</tr>
<tr>
<td>A58</td>
<td>batt_vspl</td>
<td>O</td>
<td>B58</td>
<td>batt_rtn</td>
<td>I</td>
</tr>
<tr>
<td>A59</td>
<td>batt_vspl</td>
<td>O</td>
<td>B59</td>
<td>batt_rtn</td>
<td>I</td>
</tr>
<tr>
<td>A60</td>
<td>batt_vspl</td>
<td>O</td>
<td>B60</td>
<td>batt_rtn</td>
<td>I</td>
</tr>
</tbody>
</table>

* Indicates an active low signal
TABLE B-6 Mono Display Panel Pin Assignments

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>I/O</th>
<th>Pin</th>
<th>Name</th>
<th>I/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>GND</td>
<td>gnd</td>
<td>43</td>
<td>FPS2</td>
<td>I</td>
</tr>
<tr>
<td>10</td>
<td>FPS1</td>
<td>I</td>
<td>44</td>
<td>FPS0</td>
<td>I</td>
</tr>
<tr>
<td>11</td>
<td>GND</td>
<td>gnd</td>
<td>45</td>
<td>GND</td>
<td>gnd</td>
</tr>
<tr>
<td>12</td>
<td>PWR 5V</td>
<td>pwr</td>
<td>46</td>
<td>PWR 5V</td>
<td>pwr</td>
</tr>
<tr>
<td>13</td>
<td>GND</td>
<td>gnd</td>
<td>47</td>
<td>GND</td>
<td>gnd</td>
</tr>
<tr>
<td>14</td>
<td>PWR 12V</td>
<td>pwr</td>
<td>48</td>
<td>PWR 12V</td>
<td>pwr</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td>54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td>55</td>
<td>GND</td>
<td>gnd</td>
</tr>
<tr>
<td>22</td>
<td>FLCD<0></td>
<td>O</td>
<td>56</td>
<td>FLCD<1></td>
<td>O</td>
</tr>
<tr>
<td>23</td>
<td>FLCD<2></td>
<td>O</td>
<td>57</td>
<td>FLCD<3></td>
<td>O</td>
</tr>
<tr>
<td>24</td>
<td>GND</td>
<td>gnd</td>
<td>58</td>
<td>FLCD<4></td>
<td>O</td>
</tr>
<tr>
<td>25</td>
<td>FLCD<5></td>
<td>O</td>
<td>59</td>
<td>FLCD<6></td>
<td>O</td>
</tr>
<tr>
<td>26</td>
<td>FLCD<7></td>
<td>O</td>
<td>60</td>
<td>GND</td>
<td>gnd</td>
</tr>
<tr>
<td>27</td>
<td>FLCD<8></td>
<td>O</td>
<td>61</td>
<td>FLCD<9></td>
<td>O</td>
</tr>
<tr>
<td>28</td>
<td>FLCD<10></td>
<td>O</td>
<td>62</td>
<td>FLCD<11></td>
<td>O</td>
</tr>
<tr>
<td>29</td>
<td>GND</td>
<td>gnd</td>
<td>63</td>
<td>FLCD<12></td>
<td>O</td>
</tr>
<tr>
<td>30</td>
<td>FLCD<13></td>
<td>O</td>
<td>64</td>
<td>FLCD<13></td>
<td>O</td>
</tr>
<tr>
<td>31</td>
<td>FLCD<15></td>
<td>O</td>
<td>65</td>
<td>GND</td>
<td>gnd</td>
</tr>
<tr>
<td>32</td>
<td>FHS</td>
<td>O</td>
<td>66</td>
<td>GND</td>
<td>gnd</td>
</tr>
<tr>
<td>33</td>
<td>FVS</td>
<td>O</td>
<td>67</td>
<td>GND</td>
<td>gnd</td>
</tr>
<tr>
<td>34</td>
<td>FDCLK</td>
<td>O</td>
<td>68</td>
<td>GND</td>
<td>gnd</td>
</tr>
</tbody>
</table>
Color Display Panel Connector

This connector is located on the color video board.

![Color Display Panel Connector](image)

TABLE B-7 Color Display Panel Pin Assignments

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>I/O</th>
<th>Pin</th>
<th>Name</th>
<th>I/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>gnd</td>
<td>35</td>
<td>TAB RX</td>
<td>I</td>
</tr>
<tr>
<td>2</td>
<td>TAB TX</td>
<td>O</td>
<td>36</td>
<td>PWR 5V</td>
<td>pwr</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>37</td>
<td>38</td>
<td>BRIGHT</td>
<td>O</td>
</tr>
<tr>
<td>4</td>
<td>BATT_RTN</td>
<td>I</td>
<td>39</td>
<td>BATT_RTN</td>
<td>I</td>
</tr>
<tr>
<td>5</td>
<td>OHSYNC</td>
<td>I</td>
<td>40</td>
<td>BATT_RTN</td>
<td>I</td>
</tr>
<tr>
<td>6</td>
<td>BATT_RTN</td>
<td>I</td>
<td>41</td>
<td>BATT</td>
<td>O</td>
</tr>
<tr>
<td>7</td>
<td>BLENB</td>
<td>I</td>
<td>42</td>
<td>BATT</td>
<td>O</td>
</tr>
<tr>
<td>8</td>
<td>BATT</td>
<td>O</td>
<td>43</td>
<td>FPS2</td>
<td>I</td>
</tr>
<tr>
<td>9</td>
<td>GND</td>
<td>gnd</td>
<td>44</td>
<td>FPS0</td>
<td>I</td>
</tr>
<tr>
<td>10</td>
<td>FPS1</td>
<td>I</td>
<td>45</td>
<td>GND</td>
<td>gnd</td>
</tr>
<tr>
<td>11</td>
<td>GND</td>
<td>gnd</td>
<td>46</td>
<td>PWR 5V</td>
<td>pwr</td>
</tr>
<tr>
<td>12</td>
<td>PWR 5V</td>
<td>pwr</td>
<td>47</td>
<td>GND</td>
<td>gnd</td>
</tr>
<tr>
<td>13</td>
<td>GND</td>
<td>gnd</td>
<td>48</td>
<td>PWR 12V</td>
<td>pwr</td>
</tr>
<tr>
<td>14</td>
<td>PWR 12V</td>
<td>pwr</td>
<td>49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>50</td>
<td>B13</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>51</td>
<td>B12</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>52</td>
<td>B10</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>B11</td>
<td>O</td>
<td>53</td>
<td>B03</td>
<td>O</td>
</tr>
<tr>
<td>19</td>
<td>GND</td>
<td>gnd</td>
<td>54</td>
<td>B01</td>
<td>O</td>
</tr>
<tr>
<td>20</td>
<td>B02</td>
<td>O</td>
<td>55</td>
<td>GND</td>
<td>gnd</td>
</tr>
</tbody>
</table>
TABLE B-7 Color Display Panel Pin Assignments

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>I/O</th>
<th>Pin</th>
<th>Name</th>
<th>I/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>G13</td>
<td>O</td>
<td>56</td>
<td>G12</td>
<td>O</td>
</tr>
<tr>
<td>23</td>
<td>G11</td>
<td>O</td>
<td>57</td>
<td>G10</td>
<td>O</td>
</tr>
<tr>
<td>24</td>
<td>GND</td>
<td>gnd</td>
<td>58</td>
<td>G03</td>
<td>O</td>
</tr>
<tr>
<td>25</td>
<td>G02</td>
<td>O</td>
<td>59</td>
<td>G01</td>
<td>O</td>
</tr>
<tr>
<td>26</td>
<td>G00</td>
<td>O</td>
<td>60</td>
<td>GND</td>
<td>gnd</td>
</tr>
<tr>
<td>27</td>
<td>R13</td>
<td>O</td>
<td>61</td>
<td>R12</td>
<td>O</td>
</tr>
<tr>
<td>28</td>
<td>R11</td>
<td>O</td>
<td>62</td>
<td>R10</td>
<td>O</td>
</tr>
<tr>
<td>29</td>
<td>GND</td>
<td>gnd</td>
<td>63</td>
<td>R03</td>
<td>O</td>
</tr>
<tr>
<td>30</td>
<td>R02</td>
<td>O</td>
<td>64</td>
<td>R01</td>
<td>O</td>
</tr>
<tr>
<td>31</td>
<td>R00</td>
<td>O</td>
<td>65</td>
<td>GND</td>
<td>gnd</td>
</tr>
<tr>
<td>32</td>
<td>FHS</td>
<td>O</td>
<td>66</td>
<td>GND</td>
<td>gnd</td>
</tr>
<tr>
<td>33</td>
<td>FVS</td>
<td>O</td>
<td>67</td>
<td>GND</td>
<td>gnd</td>
</tr>
<tr>
<td>34</td>
<td>FDCLK</td>
<td>O</td>
<td>68</td>
<td>GND</td>
<td>gnd</td>
</tr>
</tbody>
</table>

TABLE B-8 PCMCIA Pin Assignments

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>I/O</th>
<th>Description</th>
<th>Pin</th>
<th>Name</th>
<th>I/O</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>I/O</td>
<td>Ground</td>
<td>35</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
</tr>
<tr>
<td>2</td>
<td>D3</td>
<td>I/O</td>
<td>Data bit 3</td>
<td>36</td>
<td>CD1</td>
<td>O</td>
<td>Card detect</td>
</tr>
<tr>
<td>3</td>
<td>D4</td>
<td>I/O</td>
<td>Data bit 4</td>
<td>37</td>
<td>D11</td>
<td>I/O</td>
<td>Data bit 11</td>
</tr>
<tr>
<td>4</td>
<td>D5</td>
<td>I/O</td>
<td>Data bit 5</td>
<td>38</td>
<td>D12</td>
<td>I/O</td>
<td>Data bit 12</td>
</tr>
</tbody>
</table>

PCMCIA Connector(s)

These connectors are located on the CPU board.

FIGURE B-8 PCMCIA Connector(s)
TABLE B-8 PCMCIA Pin Assignments

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>I/O</th>
<th>Description</th>
<th>Pin</th>
<th>Name</th>
<th>I/O</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>D6</td>
<td>I/O</td>
<td>Data bit 6</td>
<td>39</td>
<td>D13</td>
<td>I/O</td>
<td>Data bit 13</td>
</tr>
<tr>
<td>6</td>
<td>D7</td>
<td>I/O</td>
<td>Data bit 7</td>
<td>40</td>
<td>D14</td>
<td>I/O</td>
<td>Data bit 14</td>
</tr>
<tr>
<td>7</td>
<td>CE1</td>
<td>I</td>
<td>Card enable</td>
<td>41</td>
<td>D15</td>
<td>I/O</td>
<td>Data bit 15</td>
</tr>
<tr>
<td>8</td>
<td>A10</td>
<td>I</td>
<td>Address bit 10</td>
<td>42</td>
<td>CE2</td>
<td>I</td>
<td>Card enable</td>
</tr>
<tr>
<td>9</td>
<td>OE</td>
<td>I</td>
<td>Address bit 11</td>
<td>43</td>
<td>RFSH</td>
<td>I</td>
<td>Refresh</td>
</tr>
<tr>
<td>10</td>
<td>A11</td>
<td>I</td>
<td>Address bit 12</td>
<td>44</td>
<td>IORD</td>
<td>I</td>
<td>IO read</td>
</tr>
<tr>
<td>11</td>
<td>A9</td>
<td>I</td>
<td>Address bit 9</td>
<td>45</td>
<td>IOWR</td>
<td>I</td>
<td>IO write</td>
</tr>
<tr>
<td>12</td>
<td>A8</td>
<td>I</td>
<td>Address bit 13</td>
<td>46</td>
<td>A17</td>
<td>I</td>
<td>Address bit 17</td>
</tr>
<tr>
<td>13</td>
<td>A13</td>
<td>I</td>
<td>Address bit 14</td>
<td>47</td>
<td>A18</td>
<td>I</td>
<td>Address bit 18</td>
</tr>
<tr>
<td>14</td>
<td>A14</td>
<td>I</td>
<td>Address bit 15</td>
<td>48</td>
<td>A19</td>
<td>I</td>
<td>Address bit 19</td>
</tr>
<tr>
<td>15</td>
<td>WE/PGM</td>
<td>I</td>
<td>Write enable</td>
<td>49</td>
<td>A20</td>
<td>I</td>
<td>Address bit 20</td>
</tr>
<tr>
<td>16</td>
<td>IREQ</td>
<td>O</td>
<td>Interrupt request</td>
<td>50</td>
<td>A21</td>
<td>I</td>
<td>Address bit 21</td>
</tr>
<tr>
<td>17</td>
<td>Vcc</td>
<td></td>
<td>Vcc</td>
<td>51</td>
<td>Vcc</td>
<td></td>
<td>Vcc</td>
</tr>
<tr>
<td>18</td>
<td>Vpp1</td>
<td>Vpp1</td>
<td>Prgrm periph supply</td>
<td>52</td>
<td>Vpp2</td>
<td>Vpp2</td>
<td>Prgrm periph supply 2</td>
</tr>
<tr>
<td>19</td>
<td>A16</td>
<td>I</td>
<td>Address bit 16</td>
<td>53</td>
<td>A22</td>
<td>I</td>
<td>Address bit 22</td>
</tr>
<tr>
<td>20</td>
<td>A15</td>
<td>I</td>
<td>Address bit 17</td>
<td>54</td>
<td>A23</td>
<td>I</td>
<td>Address bit 23</td>
</tr>
<tr>
<td>21</td>
<td>A12</td>
<td>I</td>
<td>Address bit 12</td>
<td>55</td>
<td>A24</td>
<td>I</td>
<td>Address bit 24</td>
</tr>
<tr>
<td>22</td>
<td>A7</td>
<td>I</td>
<td>Address bit 13</td>
<td>56</td>
<td>A25</td>
<td>I</td>
<td>Address bit 25</td>
</tr>
<tr>
<td>23</td>
<td>A6</td>
<td>I</td>
<td>Address bit 6</td>
<td>57</td>
<td>RFU</td>
<td></td>
<td>Reserved</td>
</tr>
<tr>
<td>24</td>
<td>A5</td>
<td>I</td>
<td>Address bit 5</td>
<td>58</td>
<td>RESET</td>
<td>I</td>
<td>Card reset</td>
</tr>
<tr>
<td>25</td>
<td>A4</td>
<td>I</td>
<td>Address bit 4</td>
<td>59</td>
<td>WAIT</td>
<td>O</td>
<td>Extend bus cycle</td>
</tr>
<tr>
<td>26</td>
<td>A3</td>
<td>I</td>
<td>Address bit 3</td>
<td>60</td>
<td>INPACK</td>
<td>O</td>
<td>Input Port Acknowledge</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>I/O</th>
<th>Description</th>
<th>Pin</th>
<th>Name</th>
<th>I/O</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>A2</td>
<td>I</td>
<td>Address bit 2</td>
<td>61</td>
<td>REG</td>
<td>I</td>
<td>Register select & IO enbl</td>
</tr>
<tr>
<td>28</td>
<td>A1</td>
<td>I</td>
<td>Address bit 1</td>
<td>62</td>
<td>SPKR</td>
<td>O</td>
<td>Audio digital waveform</td>
</tr>
<tr>
<td>29</td>
<td>A0</td>
<td>I</td>
<td>Address bit 0</td>
<td>63</td>
<td>STSCHG</td>
<td>O</td>
<td>Card status change</td>
</tr>
<tr>
<td>30</td>
<td>D0</td>
<td>I/O</td>
<td>Data bit 0</td>
<td>64</td>
<td>D8</td>
<td>I/O</td>
<td>Data bit 8</td>
</tr>
</tbody>
</table>
Keyboard/Mouse and Serial Port

Keyboard/Mouse

This connector is located on the I/O board and is designated J0404.

![Keyboard/Mouse Connector](image)

TABLE B-9 Keyboard/Mouse Connector Pin Assignments

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>I/O</th>
<th>Description</th>
<th>Pin</th>
<th>Name</th>
<th>I/O</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>I/O</td>
<td>Ground</td>
<td>5</td>
<td>Kbd-td</td>
<td>O</td>
<td>Keyboard transmit data</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>I/O</td>
<td>Ground</td>
<td>6</td>
<td>Kbd-rd</td>
<td>I</td>
<td>Keyboard receive data</td>
</tr>
<tr>
<td>3</td>
<td>kbd-pwr</td>
<td>O</td>
<td>Keyboard power</td>
<td>7</td>
<td>Kbd-pwk*</td>
<td>I</td>
<td>Keyboard power key</td>
</tr>
<tr>
<td>4</td>
<td>mse-rd</td>
<td>I</td>
<td>Mouse Receive Data</td>
<td>8</td>
<td>kbd-pwr</td>
<td>O</td>
<td>Keyboard power</td>
</tr>
</tbody>
</table>

* Indicates an active low signal
ISDN Ports

ISDN TE

This connector is located on the I/O board and is designated J0301.

FIGURE B-10 ISDN TE Connector

TABLE B-10 ISDN TE Connector Pin Assignments

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>I/O</th>
<th>Pin</th>
<th>Name</th>
<th>I/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>isdn_te_ps3_p</td>
<td>I/O</td>
<td>5</td>
<td>isdn_te_3</td>
<td>I/O</td>
</tr>
<tr>
<td>2</td>
<td>isdn_te_ps3_n</td>
<td>I/O</td>
<td>6</td>
<td>isdn_te_4</td>
<td>I/O</td>
</tr>
<tr>
<td>3</td>
<td>isdn_te_1</td>
<td>I/O</td>
<td>7</td>
<td>isdn_te_ps2_n</td>
<td>I/O</td>
</tr>
<tr>
<td>4</td>
<td>isdn_te_2</td>
<td>I/O</td>
<td>8</td>
<td>isdn_te_ps2_p</td>
<td>I/O</td>
</tr>
</tbody>
</table>

ISDN NT

This connector is located on the I/O board and is designated J0302.
FIGURE B-11 ISDN NT Connector

TABLE B-11 ISDN TE Connector Pin Assignments

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>I/O</th>
<th>Pin</th>
<th>Name</th>
<th>I/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>isdn_nt_ps3_p</td>
<td>I/O</td>
<td>5</td>
<td>isdn_nt_3</td>
<td>I/O</td>
</tr>
<tr>
<td>2</td>
<td>isdn_nt_ps3_n</td>
<td>I/O</td>
<td>6</td>
<td>isdn_nt_4</td>
<td>I/O</td>
</tr>
<tr>
<td>3</td>
<td>isdn_nt_1</td>
<td>I/O</td>
<td>7</td>
<td>isdn_nt_ps2_n</td>
<td>I/O</td>
</tr>
<tr>
<td>4</td>
<td>isdn_nt_2</td>
<td>I/O</td>
<td>8</td>
<td>isdn_nt_ps2_p</td>
<td>I/O</td>
</tr>
</tbody>
</table>

Serial Port

This serial port is located on the I/O board and is designated as J0403.

FIGURE B-12 Serial Port Connector

TABLE B-12 Serial Port Connector Pin Assignments

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>I/O</th>
<th>Description</th>
<th>Pin</th>
<th>Name</th>
<th>I/O</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>sp_txd</td>
<td>O</td>
<td>Transmit Data</td>
<td>15</td>
<td>sp_trxc</td>
<td>I</td>
<td>Transmit Signal Clock</td>
</tr>
<tr>
<td>3</td>
<td>sp_rxd</td>
<td>I</td>
<td>Receive Data</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>sp_rts</td>
<td>O</td>
<td>Request to Send</td>
<td>17</td>
<td>sp_rtxc</td>
<td>I</td>
<td>Receive Signal Clock</td>
</tr>
<tr>
<td>5</td>
<td>sp_cts</td>
<td>I</td>
<td>Clear to Send</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>sp_dsr</td>
<td>I</td>
<td>Data Set Ready</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
<td>20</td>
<td>sp_dtr</td>
<td>O</td>
<td>Data Terminal Ready</td>
</tr>
<tr>
<td>8</td>
<td>sp_dcd</td>
<td>I</td>
<td>Data Carrier Detect</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Twisted Pair Ethernet

This connector is located on the I/O board and is designated as J0205.

![Twisted Pair Ethernet Connector]

TABLE B-13 Twisted Pair Ethernet Pin Assignments

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>I/O</th>
<th>Description</th>
<th>Pin</th>
<th>Name</th>
<th>I/O</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>tpe_1</td>
<td>O</td>
<td>Data Out (+)</td>
<td>5</td>
<td>N.C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>tpe_0</td>
<td>O</td>
<td>Data Out (-)</td>
<td>6</td>
<td>tpe_-3</td>
<td>I</td>
<td>Data In (+)</td>
</tr>
<tr>
<td>3</td>
<td>tpe_2</td>
<td>I</td>
<td>Data In (+)</td>
<td>7</td>
<td>tpe_cab_sen</td>
<td>I</td>
<td>Cable Sense</td>
</tr>
<tr>
<td>4</td>
<td>N.C.</td>
<td></td>
<td></td>
<td>8</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
</tr>
</tbody>
</table>

Floppy Connector

This connector is located on the system board and is designated as J1200.
FIGURE B-14 Floppy Connector

TABLE B-14 Floppy Pin Assignments

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>I/O</th>
<th>Description</th>
<th>Pin</th>
<th>Name</th>
<th>I/O</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VCC</td>
<td>O</td>
<td>Voltage (+)</td>
<td>14</td>
<td>fd_step</td>
<td>O</td>
<td>Step</td>
</tr>
<tr>
<td>2</td>
<td>fd_index</td>
<td>I</td>
<td>Index Signal</td>
<td>15</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
</tr>
<tr>
<td>3</td>
<td>VCC</td>
<td>O</td>
<td>Voltage (+)</td>
<td>16</td>
<td>fd_wr_data</td>
<td>O</td>
<td>Write Data</td>
</tr>
<tr>
<td>4</td>
<td>fd_drv_sel</td>
<td>O</td>
<td>Drive Select</td>
<td>17</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
</tr>
<tr>
<td>5</td>
<td>VCC</td>
<td>O</td>
<td>Voltage (+)</td>
<td>18</td>
<td>fd_wr_en</td>
<td>I</td>
<td>Write Enable</td>
</tr>
<tr>
<td>6</td>
<td>fd_dsk_chng</td>
<td>I</td>
<td>Disk Change</td>
<td>19</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>fd_track_0</td>
<td>I</td>
<td>Track 0 Signal</td>
</tr>
<tr>
<td>8</td>
<td>fd_eject</td>
<td>O</td>
<td>Eject</td>
<td>21</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
</tr>
<tr>
<td>9</td>
<td>fd_den_sense</td>
<td>I</td>
<td>Density Sense</td>
<td>22</td>
<td>fd_wr_prot</td>
<td>I</td>
<td>Write Protect</td>
</tr>
<tr>
<td>10</td>
<td>fd_motor_en</td>
<td>O</td>
<td>Motor Enable</td>
<td>23</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
</tr>
<tr>
<td>11</td>
<td>fd_density_sel</td>
<td>I</td>
<td>Density Select</td>
<td>24</td>
<td>fd_rd_data</td>
<td>I</td>
<td>Read Data</td>
</tr>
<tr>
<td>12</td>
<td>fd_dir</td>
<td>I</td>
<td>Direction</td>
<td>25</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
</tr>
<tr>
<td>13</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
<td>26</td>
<td>fd_hd_sel</td>
<td>O</td>
<td>Head Select</td>
</tr>
</tbody>
</table>

SCSI Connector (Internal)

This connector is located on the I/O board and is designated as J0303.
TABLE B-15 SCSI (Internal) Pin Assignments

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>I/O</th>
<th>Description</th>
<th>Pin</th>
<th>Name</th>
<th>I/O</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N.C.</td>
<td>I/O</td>
<td></td>
<td>26</td>
<td>scsi-data 2</td>
<td>I/O</td>
<td>Data bit 2</td>
</tr>
<tr>
<td>2</td>
<td>N.C.</td>
<td>I/O</td>
<td></td>
<td>27</td>
<td>N.C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>N.C.</td>
<td>I/O</td>
<td></td>
<td>28</td>
<td>scsi-data 1</td>
<td>I/O</td>
<td>Data bit 1</td>
</tr>
<tr>
<td>4</td>
<td>N.C.</td>
<td>I/O</td>
<td></td>
<td>29</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
<td>30</td>
<td>scsi-data 0</td>
<td>O</td>
<td>Data bit 0</td>
</tr>
<tr>
<td>6</td>
<td>GND</td>
<td>O</td>
<td>Voltage (+)</td>
<td>31</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
</tr>
<tr>
<td>7</td>
<td>VCC</td>
<td>O</td>
<td>Voltage (+)</td>
<td>32</td>
<td>scsi-parity</td>
<td>I/O</td>
<td>Parity bit</td>
</tr>
<tr>
<td>8</td>
<td>N.C.</td>
<td>I/O</td>
<td></td>
<td>33</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
</tr>
<tr>
<td>9</td>
<td>N.C.</td>
<td>I/O</td>
<td></td>
<td>34</td>
<td>scsi-termpw</td>
<td>O</td>
<td>Termination Power</td>
</tr>
<tr>
<td>10</td>
<td>N.C.</td>
<td>I/O</td>
<td></td>
<td>35</td>
<td>scsi-attention</td>
<td>I/O</td>
<td>Attention</td>
</tr>
<tr>
<td>11</td>
<td>VCC</td>
<td>O</td>
<td>Voltage (+)</td>
<td>36</td>
<td>scsi-busy</td>
<td>I/O</td>
<td>Busy</td>
</tr>
<tr>
<td>12</td>
<td>VCC</td>
<td>O</td>
<td>Voltage (+)</td>
<td>37</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
</tr>
<tr>
<td>13</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
<td>38</td>
<td>scsi-ack</td>
<td>I/O</td>
<td>Acknowledge</td>
</tr>
<tr>
<td>14</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
<td>39</td>
<td>scsi-reset</td>
<td>I/O</td>
<td>Reset</td>
</tr>
<tr>
<td>15</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
<td>40</td>
<td>scsi-message</td>
<td>I/O</td>
<td>Message</td>
</tr>
<tr>
<td>16</td>
<td>scsi-data 7</td>
<td>I/O</td>
<td>Data bit 7</td>
<td>41</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
</tr>
<tr>
<td>17</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
<td>42</td>
<td>scsi-sel</td>
<td>I/O</td>
<td>Select</td>
</tr>
<tr>
<td>18</td>
<td>scsi-data 6</td>
<td>I/O</td>
<td>Data bit 6</td>
<td>43</td>
<td>scsi-dir</td>
<td>I/O</td>
<td>Direction</td>
</tr>
<tr>
<td>19</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
<td>44</td>
<td>scsi-control</td>
<td>I/O</td>
<td>Control</td>
</tr>
<tr>
<td>20</td>
<td>scsi-data 5</td>
<td>I/O</td>
<td>Data bit 5</td>
<td>45</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
</tr>
<tr>
<td>21</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
<td>46</td>
<td>scsi-req</td>
<td>I/O</td>
<td>Request</td>
</tr>
<tr>
<td>22</td>
<td>scsi-data 4</td>
<td>I/O</td>
<td>Data bit 4</td>
<td>47</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
</tr>
<tr>
<td>23</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
<td>48</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
</tr>
<tr>
<td>24</td>
<td>scsi-data 3</td>
<td>I/O</td>
<td>Data bit 3</td>
<td>49</td>
<td>VCC</td>
<td>O</td>
<td>Voltage (+)</td>
</tr>
<tr>
<td>25</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
<td>50</td>
<td>VCC</td>
<td>O</td>
<td>Voltage (+)</td>
</tr>
</tbody>
</table>
SCSI Connector (External)

This connector is located on the I/O board and is designated as J0304.

![SCSI Connector (External)](image)

TABLE B-16 SCSI (External) Pin Assignments

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>I/O</th>
<th>Description</th>
<th>Pin</th>
<th>Name</th>
<th>I/O</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
<td>26</td>
<td>scsi-data 0</td>
<td>I/O</td>
<td>Data bit 0</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
<td>27</td>
<td>scsi-data 1</td>
<td>I/O</td>
<td>Data bit 1</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
<td>28</td>
<td>scsi-data 2</td>
<td>I/O</td>
<td>Data bit 2</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
<td>29</td>
<td>scsi-data 3</td>
<td>I/O</td>
<td>Data bit 3</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
<td>30</td>
<td>scsi-data 4</td>
<td>I/O</td>
<td>Data bit 4</td>
</tr>
<tr>
<td>6</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
<td>31</td>
<td>scsi-data 5</td>
<td>I/O</td>
<td>Data bit 5</td>
</tr>
<tr>
<td>7</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
<td>32</td>
<td>scsi-data 6</td>
<td>I/O</td>
<td>Data bit 6</td>
</tr>
<tr>
<td>8</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
<td>33</td>
<td>scsi-data 7</td>
<td>I/O</td>
<td>Data bit 7</td>
</tr>
<tr>
<td>9</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
<td>34</td>
<td>scsi-parity</td>
<td>I/O</td>
<td>Parity</td>
</tr>
<tr>
<td>10</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
<td>35</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
</tr>
<tr>
<td>11</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
<td>36</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
</tr>
<tr>
<td>12</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
<td>37</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
</tr>
<tr>
<td>13</td>
<td>Shield</td>
<td></td>
<td></td>
<td>38</td>
<td>scsi-termpwrr</td>
<td>O</td>
<td>Termination Power</td>
</tr>
<tr>
<td>14</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
<td>39</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
</tr>
<tr>
<td>15</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
<td>40</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
</tr>
<tr>
<td>16</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
<td>41</td>
<td>scsi-attention</td>
<td>I/O</td>
<td>Attention</td>
</tr>
<tr>
<td>17</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
<td>42</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
</tr>
<tr>
<td>18</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
<td>43</td>
<td>scsi-busy</td>
<td>I/O</td>
<td>Busy</td>
</tr>
<tr>
<td>19</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
<td>44</td>
<td>scsi-ack</td>
<td>I/O</td>
<td>Acknowledge</td>
</tr>
<tr>
<td>20</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
<td>45</td>
<td>scsi-reset</td>
<td>I/O</td>
<td>Reset</td>
</tr>
<tr>
<td>21</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
<td>46</td>
<td>scsi-message</td>
<td>I/O</td>
<td>Message</td>
</tr>
</tbody>
</table>
Audio Connectors

The Microphone Input connector is located on the CPU board and is designated as J0601.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>I/O</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
</tr>
<tr>
<td>23</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
</tr>
<tr>
<td>24</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
</tr>
<tr>
<td>25</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
</tr>
</tbody>
</table>

The Line Input connector is located on the CPU board and is designated as J0700.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>I/O</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
</tr>
<tr>
<td>2</td>
<td>audi- in & pw- out</td>
<td>I/O</td>
<td>Audio In & Power Out</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIGURE B-18 Audio Connector—Line Input

The Line Output connector is located on the CPU board and is designated as J0701.

FIGURE B-19 Audio Connector—Line Output

The Headphone Output connector is located on the CPU board and is designated as J0602.
FIGURE B-20 Audio Connector—Headphone Output

TABLE B-20 Audio—Headphone Output Pin Assignments

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>I/O</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>O</td>
<td>Ground</td>
</tr>
<tr>
<td>2</td>
<td>head-out-l</td>
<td>O</td>
<td>Headphone output left</td>
</tr>
<tr>
<td>3</td>
<td>head-out-r</td>
<td>O</td>
<td>Headphone output right</td>
</tr>
</tbody>
</table>
Selected On-Board Diagnostics

This appendix describes the selected on-board diagnostics. These tests will help you in troubleshooting the system.

Caution – To run diagnostics at the `ok` prompt, you must shut down the system in an orderly manner. When the operating system or any other stand-alone program is booted, do not use the `Stop (L1) - A` keys to halt the system. Abruptly aborting the operating system may cause damage to data files.

- “test Device Alias, test Device Pathname” on page 143
- “test-all” on page 144
- “watch-clock” on page 144
- “watch-net, watch-tpe” on page 145
- “probe-scsi” on page 146
- “test-memory” on page 146
- “power-off” on page 147

test Device Alias, test Device Pathname

The `test` command, combined with a device alias or device pathname, executes that device selftest program. If a device has no selftest program, this message is displayed: *No selftest method for device name.*

To run the selftest program for a device, type the `test` command followed by the `device alias` or `device pathname`.
For example:

```
  ok test floppy
Testing floppy disk system. A formatted disk should be in the drive.
Test succeeded.
```

test-all

The `test-all` command tests all devices in the system which have a selftest program. Disks, tapes, and CD-ROMs are not tested by `test-all`. Tests are executed in order using the device tree (viewed with the `show-devs` command) as reference. The `diag-switch?` parameter must be set true to run this test.

```
  ok test-all
```

watch-clock

Displays seconds from the NVRAM/TOD (Non-Volatile RAM/Time of Day). The counter counts from 0 to 59 repeatedly. For example:

```
  ok watch-clock
Watching the ‘seconds’ register of the real time clock chip.
It should be ‘ticking’ once a second.
Type any key to stop
41
```

To interrupt the test, press any key on the keyboard.
watch-net, watch-tpe

These tests monitor broadcast Ethernet packets on the Ethernet cable connected to the system. Good packets received by the system are displayed on the screen by a period (.). Errors are indicated with an X and the error description. For example:

```
ok watch-net
  Internal loopback test -- succeeded.
  External loopback test -- Auto-selecting Ethernet cable I/F
Trying TPE
Received packet on TPE
Select cable - TPE succeeded.
Looking for Ethernet packets.
.'.' is a good packet. "X" is a bad packet.
Type any key to stop.
..............................................................
..............................................................
...................Framing error CRC error X..............
```

The SPARCstation Voyager workstation has one on-board 10Base T Ethernet interface, (also called twisted-pair Ethernet or TPE).

You can also use watch-tpe to monitor the 10BaseT (TPE) connection. For example:

```
ok watch-tpe
  Internal loopback test -- succeeded.
  External loopback test -- succeeded.
Looking for Ethernet packets.
.'.' is a good packet. 'X' is a bad packet.
Type any key to stop.
..............................................................
```

..
probe-scsi

The `probe-scsi` test sends an inquiry command to internal and external SCSI devices connected to the SPARCstation Voyager workstation on-board SCSI interface. If a SCSI device is connected and powered up, the target address, unit number, device type, and manufacturer name should be displayed. For example:

```
ok probe-scsi
Target 3
  Unit 0 Disk SEAGATE ST1480 SUN04245828 Copyright (c) 1991 Seagate All rights reserved.
```

test-memory

Tests all of the system main memory if the system `diag-switch?` parameter is true. If the `diag-switch?` is set to false, it tests the memory according to the number specified in `selftest-#megs`. When the `test-memory` diagnostic is running, the number of Mbytes being tested is displayed and counted down to zero during the test.

If the `diag-switch?` parameter is false, this test uses the `selftest-#megs` parameter in NVRAM to determine how much memory to test. The default for the `selftest-#megs` parameter is 1, so only 1 Mbyte of memory is tested.

To change the amount of memory tested using the `selftest-#megs` parameter to 16 Mbytes, type this command:

```
ok setenv selftest-#megs 16
```

This sets the desired memory size to 16 Mbytes. Use any whole number as long as it does not exceed the actual size of memory (in Mbytes) installed in the system. When the `test-memory` diagnostic is running, the number of megabytes being tested is displayed and counted down to zero during the test.
power-off

This command turns the power off. You must have a Compact 1 or type 5 keyboard attached in order to use this command.
Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMLCD</td>
<td>An acronym for Active Matrix Liquid Crystal Display. A specific style of flat panel display technology.</td>
</tr>
<tr>
<td>ASIC</td>
<td>An acronym for Application Specific Integrated Circuit. A silicon chip designed to implement functions that would otherwise require several chips or parts.</td>
</tr>
<tr>
<td>boot</td>
<td>To load the system software into memory and start it running.</td>
</tr>
<tr>
<td>boot PROM</td>
<td>In Sun workstations, contains the PROM monitor program, a command interpreter used for booting, resetting, low-level configuration, and simple test procedures.</td>
</tr>
<tr>
<td>DBRI</td>
<td>An acronym for Dual Basic Rate Interface. A Sun designed ASIC that implements the hardware end of an ISDN interface.</td>
</tr>
<tr>
<td>default</td>
<td>A preset value that is assumed to be correct unless changed by the user.</td>
</tr>
<tr>
<td>Desktop Storage Module</td>
<td>An external data storage that contains a disk drive or a tape drive. Abbreviated as DSM.</td>
</tr>
<tr>
<td>Desktop Storage Pack</td>
<td>An external data storage unit that contains a disk drive (Desktop Disk Pack), a tape drive (Desktop Backup Pack), or a CD-ROM drive (Desktop SunCD Pack), and that can be connected to a SPARCstation Voyager workstation. Abbreviated as DSP.</td>
</tr>
<tr>
<td>Ethernet</td>
<td>A type of network hardware that allows communication between systems connected directly together by transceiver taps, transceiver cables, and a coaxial cable. Implemented in the SPARCstation Voyager workstation using twisted-pair telecommunications wire and cable.</td>
</tr>
<tr>
<td>External Storage Module</td>
<td>An external unit that contains disk/tape drives and that can be connected to a SPARCstation Voyager workstation. Abbreviated as ESM.</td>
</tr>
<tr>
<td>ISDN</td>
<td>An acronym for Integrated Services Digital Network. A technical standard that provides for fully digital transmission and reception of data, and fully digital end-to-end connectivity of telecommunications devices across a public network.</td>
</tr>
<tr>
<td>Memory Card</td>
<td>A small board which usually contains several DRAMs. These cards are added to a system to increase the amount of memory available to the CPU.</td>
</tr>
<tr>
<td>NVRAM</td>
<td>An acronym for non-volatile random access memory. The NVRAM is used to store system variables used by the boot PROM. It also contains the system’s hostid number and Ethernet address.</td>
</tr>
<tr>
<td>PCMCIA</td>
<td>Personal Computer Memory Card International Association is an international organization that has defined interface standards for Personal Computer Cards. These PC Cards add memory, mass storage and I/O capabilities to mobile computing systems. You can use a Sun modem contained on a PCMCIA card on your SPARCstation Voyager workstation.</td>
</tr>
<tr>
<td>point-to-point protocol (PPP)</td>
<td>The successor to SLIP, PPP provides router-to-router and host-to-network connections over both synchronous and asynchronous circuits.</td>
</tr>
<tr>
<td>power management</td>
<td>The regulation of a computer’s power consumption.</td>
</tr>
<tr>
<td>Resume</td>
<td>Turning the power on after a suspend. The resume operation restores the system to the point at which it was suspended.</td>
</tr>
<tr>
<td>SCSI</td>
<td>Small Computer System Interface; pronounced “scuzzy.”</td>
</tr>
<tr>
<td>SLAVIO</td>
<td>This chip contains all of the control logic referred to as slave I/O devices. These devices are serial ports, floppy controller, EPROM, TOD chip and NVRAM.</td>
</tr>
<tr>
<td>suspend</td>
<td>A means of turning off the power in which the system state is saved to disk. See also resume.</td>
</tr>
<tr>
<td>system</td>
<td>Any computer that allows you to run programs or applications. In this book, it means the SPARCstation Voyager workstation unit together with the Sun operating system and peripheral hardware devices.</td>
</tr>
<tr>
<td>system unit</td>
<td>The enclosure containing the system memory, central processing unit, hard disk, floppy drive, and video board.</td>
</tr>
<tr>
<td>TOD</td>
<td>An acronym of Time of Day. This is a special timekeeping chip that keeps track of what day and time it is.</td>
</tr>
</tbody>
</table>
Index

A
auto-boot, 8, 9

B
back panel, 4
bottom front cover, 58
bottom rear cover, 55, 56

C
Caps Lock key, 20
closing system, 55
connector
 audio, 140
 audio—headphone output, 142
 audio—line input, 141
 audio—line output, 141
 audio—microphone input, 140
 battery power, 122
 battery signal, 122
 color display panel, 130
 CPU to I/O board, 123
 CPU to Video board, 126
 external battery, 121
 floppy, 136
 internal battery, 122
 ISDN NT, 134
 ISDN TE, 134
 keyboard/mouse, 133
 mono display panel, 128
 PCMCIA, 131
 power, 121
 SCSI (external), 139
 SCSI (internal), 137
 serial port, 135
 serial port A & B, 135
 twisted pair ethernet, 136
controller
 SCSI, 29
cover
 filler, 48
 front, 51
 bottom, 51
 rear, 46
 bottom, 52
 CPU board, 96

D
DC/DC converter, 27, 70
test, 27
 voltages, 27
default boot mode, 7
diagnostic
 mode, 15
test, 9
tools, 8
disk drive, 92
error, 29
fails to boot, 29
display panel, 35, 68
 problems, 28
blank area, 28
lines on the display panel, 28
no video output, 28
type, 5

E
electrostatic discharge, 35
environmental limits, 119
requirements, 119
environmental limits, 119
equipment modification, 34
error
disk drive, 29
memory, 31
read, write or parity, 29
SCSI, 29
error messages
POST, 21

F
filler cover, 49
flex cable, 81
flex connector
location, 53, 88, 102
floppy cable, 73
floppy drive, 87
floppy drive locking lever screw, 54
forth toolkit, 10
front cover, 51
front view
exploded, 114
external, 2
internal, 4, 116

H
hard disk drive, 92
headless system, 48

I
I/O Board, 108
illustrated parts breakdown, 114
invoke POST at power on, 17
IR board, 105

K
keyboard, 12, 38
LEDs
arrangement, 21
description, 21

L
LED
keyboard, 21
power, 20
status lights, 20
lithium battery, 35
locking lever screw, 54

M
major components, 1
memory address
physical, 31
memory card, 103
lower, 22
upper, 22
memory error, 31
modification to equipment, 34

N
normal mode, 15
null modem cable, 16

O
on-board diagnostics, 10
tests, 11
OpenBoot PROM diagnostics, 10
opening
 system front, 48
 system rear, 43
operating ranges
 recommended, 119

P
 panel
 back, 4
 display
 off, 25
 type, 5
 physical memory address, 31
 physical specification
 color system, 117
 headless system, 118
 monochrome system, 117
 pin assignments
 audio—microphone input, 140
 audio—headphone output, 142
 audio—line input, 141
 audio—line output, 141
 battery power connector, 122
 color display panel connector, 130
 CPU to I/O board connector, 123
 CPU to Video board connector, 126
 floppy, 137
 ISDN TE connector, 134, 135
 keyboard/mouse connector, 133
 mono display panel connector, 128
 PCMCIA connector, 131
 SCSI (external), 139
 SCSI (internal), 138
 twisted pair ethernet, 136
 placement of a Sun product, 34
 POST, 10, 21
 error messages, 21
 power
 key, 38
 LED, 20
 off, 37
 on, 41
 does not succeed, 26
 switch, 38
 power cord connection, 34
 power supply, 69
 door, 65
 specifications, 118
 power supply door, 43
 power-off, 147
 Power-On Self-Test, 10, 21
 probe, 146
 probe-scsi, 12, 146
 pull ring, 43

R
 rear view
 exploded, 115
 external, 3
 internal, 4, 116
 removing
 bottom front cover, 52
 bottom rear cover, 52
 CPU board, 96
 DC/DC converter, 70
 display panel, 49, 68
 filler cover, 48
 flex cable, 81
 floppy cable, 73
 floppy drive, 87
 front cover, 50
 hard disk drive, 92
 I/O board, 108
 IR board, 105
 IR cable, 83
 left cap, 45
 memory card, 103
 power supply, 44, 69
 power supply door, 43
 rear cover, 47
 right cap, 45
 rubber plug, 44, 45
 SCSI cable, 72
 speaker, 69, 101
 TOD/NVRAM, 101
 video board, 101
 replacing
 bottom front cover, 58
 bottom rear cover, 55, 58
 CPU board, 99
 DC/DC converter, 72
display panel, 61, 68
flex cable, 82
floppy cable, 76
floppy drive, 90
front cover, 59
I/O board, 110
IR board, 107
IR cable, 85
left cap, 64
memory card, 104
power supply, 65, 69
power supply door, 65
rear cover, 62
right cap, 63
rubber plug, 62, 64
SCSI cable, 73
speaker, 70
TOD/NVRAM, 98, 101
video board, 79, 103
requirement
environmental, 119
safety, 33
rubber plug, 44, 45, 62, 64

S
safety precautions, 34
safety requirements, 33
SCSI
cable, 72, 93
twisted pair ethernet, 136
twisted pair ethernet, 136
twisted pair ethernet, 136
controller test, 29
devices, 12
test, 143
test-all, 12, 143, 144
test-memory, 146
tests
external battery connector, 121
test, 143
floppy connector, 136
twisted pair ethernet test, 136
twisted pair ethernet test, 136
floppy connector, 136
test<device path>, 143
twisted pair ethernet test<device path>, 143
external battery connector, 121
twisted pair ethernet test<device path>, 143
floppy connector, 136
twisted pair ethernet test<device path>, 143
internal battery connector, 122
twisted pair ethernet test<device path>, 143
ISDN NT, 134
ISDN TE, 134
twisted pair ethernet test<device path>, 143
keyboard/mouse, 133
SCSI connector (external), 139
twisted pair ethernet test<device path>, 143
SCSI connector (internal), 137
serial port, 133, 135
twisted pair ethernet test<device path>, 143
signal descriptions
audio connector, 140
twisted pair ethernet test<device path>, 143
external battery connector, 121
twisted pair ethernet test<device path>, 143
floppy connector, 136
twisted pair ethernet test<device path>, 143
floppy connector, 136
internal battery connector, 122
twisted pair ethernet test<device path>, 143
ISDN NT, 134
ISDN TE, 134
keyboard/mouse, 133
twisted pair ethernet test<device path>, 143
SCSI connector (external), 139
twisted pair ethernet test<device path>, 143
SCSI connector (internal), 137
serial port, 133, 135
twisted pair ethernet test<device path>, 143
signal descriptions
AC/DC power supply, 118
electrical, 118
physical, 117
SunDiag system exerciser, 10, 12
symbols, 33
system
test, 143
cdrom, 11
dc/dc converter, 27
disk, 11
disk0, 11
disk1, 11
disk2, 11
disk3, 11
floppy, 11
keyboard, 12
memory, 12
net, 11
net-tpe, 11
screen, 11
scsi, 11
SCSI controller, 29
system board, 27
tape, 11
tape0, 11
tape1, 11
ttya, 11
test<device path>, 143
test-all, 12, 143, 144
test-memory, 146
tests
supported, 11
tests after POST, 23
tests POST runs, 17
threaded standoff, 71
threaded stud, 72
tip window, 16
TOD/NVRAM, 98
tools required, 36
troubleshooting tips, 25
twisted pair ethernet (TPE), 145

U
user-specified programs, 9

V
video board, 101, 103
voltage, 27

W
watch-clock, 12, 144
watch-net, 12, 145
watch-tpe, 12, 145
wrist strap, 47